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Abstract

Bootstrap methods have become one of the most widely used statistical techniques

due to their simplicity and good properties. In this thesis, we introduce a novel

bootstrap method which we call the parametric predictive bootstrap (PP-B). The

PP-B method relies on parametric models, and it is primarily designed for predictive

inference. In the PP-B method, a single observation is sampled from the assumed

distribution with estimated parameters based on an available data set of size n.

Then, this observation is added to the data and the process is repeated, now with

n+ 1 observations. This process continues to sample in total m values in the same

way, each observation being added to the data and re-estimating the parameters

before sampling the next observation. The PP-B sample consists of m newly drawn

observations and excludes the n original data observations. The performance of the

PP-B method is studied on finite and infinite data ranges, and compared to other

bootstrap methods via simulations, which show that it works well as a method for

predictive inference. The PP-B method is applied to a range of scenarios to evaluate

its performance. It relies on an assumed parametric model and we examine how it

performs when the model is misspecified.

A hypothesis test is one of the most important tools in the practical application

of statistics. Statistical hypothesis tests can have different results when they are

repeated. The reproducibility probability of hypothesis tests has gained increasing

attention due to its importance in evaluating the variability and the stability of

test results. The PP-B method is presented for the reproducibility probability (RP)
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of some parametric tests. Test reproducibility is naturally regarded as a predic-

tive inference problem, which is consistent with the PP-B method. The explicitly

predictive nature of PP-B provides an appropriate formulation for inferring RP, as

the nature of RP is explicitly predictive as well. The performance of PP-B for RP

is compared with the nonparametric predictive inference bootstrap method, which

also has a predictive nature but does not assume a parametric model.
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Notation

NPI Nonparametric predictive inference.

A(n) Hill’s assumption.

P NPI lower probability.

P NPI upper probability.

NPI-RP NPI for reproducibility probability.

RP NPI lower reproducibility probability.

RP NPI upper reproducibility probability.

EB Efron’s bootstrap.

PB Parametric bootstrap.

NPI-B Nonparametric predictive inference bootstrap.

PP-B Parametric predictive bootstrap.

n Sample size.

N The number of simulations.

CP Coverage proportion for the confidence interval.

AW Average width of confidence intervals.

LC A percentile prediction interval used by Lu and Chang.

CPLC Coverage proportion for the prediction interval based on LC

method.

AWLC Average width of prediction intervals based on LC method.

vii
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MT A percentile prediction interval used by Mojirsheibani and Tibshi-

rani.

CPMT Coverage proportion for the prediction interval based on MT

method.

AWMT Average width of prediction intervals based on MT method.

PP-B-RP Reproducibility probability using parametric predictive bootstrap.

NPI-B-RP Reproducibility probability using nonparametric predictive infer-

ence bootstrap.

PP-BF-RP Reproducibility probability using parametric predictive bootstrap

with fixed variance.
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Chapter 1

Introduction

1.1 Overview

Measuring the uncertainty of a sample estimate is an important aspect of statistical

inference. Bootstrap methods are sampling techniques to quantify the uncertainty of

sample estimates [10]. They have been applied to a wide range of statistical problems

due to their simplicity of implementation and the possibility of providing good ap-

proximate results for sample estimates. A researcher may use the bootstrap method

to avoid performing complicated mathematical derivations or, in some instances, to

provide a solution where no analytical answer is possible [40]. The bootstrap method

has contributed to resolving problems such as the estimation of the standard error

for the statistical estimators. The standard error can be used to evaluate the ac-

curacy of an estimator, but for the majority of statistical estimators, there are no

mathematical formulas to estimate the standard error. The bootstrap exploits the

power of the computer to assess the statistical accuracy of complicated procedures.

Additionally, the bootstrap method is capable of determining the confidence interval

for a parameter of interest efficiently. The use of the bootstrap method has been

extended to many problems, including hypothesis testing, because of its simplicity

to implement and its good performance.

The first presentation of the bootstrap method was in a Stanford University

technical report by Bradley Efron in 1977, followed by his famous paper in the

Annals of Statistics in 1979 [10, 30]. Many efforts have been made to popularise

1
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the bootstrap method in the statistical community, such as Dianconis and Efron

[28], Efron [31], and Efron and Gong [35]. There are many modifications to Efron’s

bootstrap, such as double bootstrap, smooth bootstrap, and Bayesian bootstrap

that have been presented in the literature, see e.g. [4, 21, 66]. Bootstrap methods

have been introduced for different types of data, e.g. real data [44], right-censored

data [2], and ordinal data [7]. Chernick [8] described bootstrap methods along

with examples and applications such as hypothesis testing, confidence intervals,

regression and time series. As a result, the importance of the bootstrap approach

has been widely recognized. There were a few resampling techniques that predate

Efron’s bootstrap, such as the jackknife method which was presented by Quenouille

in 1949 [32]. The method was initially developed by Quenouille for nonparametric

estimation of bias. The jackknife method will be discussed in Section 2.5.

This thesis presents a new bootstrap method, the parametric predictive boot-

strap, which we denote by PP-B. This method is completely based on parametric

models and it is mainly designed for inferences aimed at prediction. The proposed

bootstrap method will be evaluated in a range of scenarios in order to investigate

its performance in estimation and predictive inference. Hypothesis testing is an im-

portant tool in practical statistics. In the application of statistical hypothesis tests,

the results of the tests can differ each time they are repeated. The reproducibility

probability (RP) is an important factor in the reliability of the statistical test re-

sults. It is naturally considered as a predictive problem which is well aligned to the

predictive nature of PP-B. In this thesis, we study RP within a frequentist statistical

framework from a prediction point of view.

1.2 Outline of thesis

This thesis is organised as follows: Chapter 2 introduces preliminary materials from

the literature relevant to this thesis. Three bootstrap methods are presented first,

followed by a brief introduction to the topic of reproducibility probability for tests.

Finally, we discuss some methods for comparing the performance of different boot-

strapping techniques.
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Chapter 3 introduces PP-B and the differences between Efron’s, parametric, and

NPI bootstrap methods. A comparison of three bootstrap methods from the litera-

ture with PP-B is presented using the methods described in Chapter 2. PP-B will

be compared to other bootstrap methods using confidence intervals and prediction

intervals in terms of the coverage probability through simulations. The comparison

is carried out with finite and infinite range of data.

Chapter 4 presents a summary of four parametric tests, one-sample t-test, two-

sample t-test, Welch’s t-test and F-test. This is followed by introducing the PP-B

method for the reproducibility of these parametric tests, as well as comparing its

performance with the NPI-B for test reproducibility (Bootstrap-RP). The simulation

studies are performed to get an insight into how different bootstrap methods per-

form for RP of various tests. A comparison of Bootstrap-RP methods with NPI-RP

from the literature is presented, as well as an explanation of why the Bootstrap-RP

method is used rather than the NPI-RP method. We will illustrate the consistency

of the proposed bootstrap method for RP with NPI-RP. Some results of this chap-

ter were presented at the International Conference on Advances in Interdisciplinary

Statistics and Combinatorics in the US (online), October 2021 and the Royal Sta-

tistical Society Conference in the UK, September 2022.

In Chapter 5, we examine the performance of PP-B regarding the assumed para-

metric model. The PP-B method relies on the assumption of a parametric model,

and we investigate how it performs when the PP-B samples are generated using a

different model from the original data. The best bootstrap method is determined

by considering a global measure of coverage accuracy as proposed by Banks [4].

This technique creates confidence regions for the bootstrap confidence interval to

see the coverage probabilities for a specific parameter of interest. Then, the chi-

square goodness of fit test is used to measure the discrepancy in coverage probabil-

ity. Also, Banks’ comparison method is applied to the bootstrap prediction interval.

In addition, we investigate how the fixed bootstrap variance of PP-B impacts the

reproducibility probability of one-sample t-test.

In Chapter 6, we end with conclusions and some interesting topics to extend

the research presented in this thesis. Some results of Chapters 3 and 5 were pre-
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sented at the International Conference of the ERCIM WG on Computational and

Methodological Statistics in the UK, December 2022. The appendix includes extra

simulation results. In this thesis, calculations were performed using the statistical

software program R.



Chapter 2

Preliminaries

This chapter provides a review of the basic concepts from literature relevant to

the topics considered in this thesis. First, we introduce the methodology of non-

parametric predictive inference which is used in the topics of bootstrap and test

reproducibility. Then, we introduce three bootstrap methods from the literature

to compare later with our PP-B method. After that, we present a general review

of reproducibility. Finally, we provide some of the most commonly used ways of

comparing bootstrap performance in estimation and predictive inference.

2.1 Nonparametric predictive inference (NPI)

The nonparametric predictive inference (NPI) method has been developed during

the past two decades for a wide range of applications and problems in statistics

along with a variety of data types. NPI is a statistical technique based on Hill’s

assumption A(n) that makes inferences on a future observation based on past data

observations [11, 12]. Hill [45, 46, 47] introduced the assumption A(n) for prediction

of one future observation Xn+1 with no prior knowledge about the underlying distri-

bution. Suppose that x1, ..., xn are the observed data corresponding to real-valued

and exchangeable random quantities X1, ..., Xn. Let x(1) < x(2) < . . . < x(n) be the

ordered observations and define x(0) = −∞ and x(n+1) = +∞ for ease of notation.

For one future observation Xn+1, the assumption A(n) is:

P (Xn+1 ∈ Ii) =
1

n+ 1
(2.1)

5
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where Ii = (x(i−1), x(i)) and i = 1, . . . , n + 1. The assumption A(n) states that the

future observation Xn+1 is equally likely to fall in each open interval (x(i−1), x(i)).

These intervals were created by the previous n observations between consecutive

order statistics of the given sample.

The assumption A(n) itself is not sufficient to derive precise probabilities for any

event of interest, but it can be used to derive bounds (lower and upper) of proba-

bilities, which are called imprecise probabilities. The NPI approach is introduced

by Coolen and Augustin [3, 18] which uses lower and upper probabilities for events

of interest considering future observations based on Hill’s assumption. The lower

probability is the maximum lower bound for the precise probability for the event

and denoted by P (·). The upper probability is the minimum upper bound for the

event and denoted by P (·). The NPI lower and upper probabilities become precise

probability if they are equal P (·) = P (·), 0 ≤ P (·) ≤ P (·) ≤ 1. The NPI lower and

upper probabilities for the event Xn+1 ∈ B, where B ⊂ R are:

P (Xn+1 ∈ B) =
1

n+ 1
|{i : Ii ⊆ B}| (2.2)

P (Xn+1 ∈ B) =
1

n+ 1
|{i : Ii ∩B ̸= ∅}| (2.3)

The lower probability (2.2) is the total probability mass assigned to intervals Ii that

are completely contained within B, and the upper probability (2.3) is taking into

account all probability masses assigned to intervals that can be in B.

Sequential application of the assumptions A(n), . . . , A(n+m−1) can be used to gen-

eralize NPI for (m ≥ 1) future real-valued observations based on n real data obser-

vations. These assumptions imply that all
(
n+m
n

)
possible different orderings of the

m future observations among the n data observations are equally likely to appear,

with no further assumptions made on where future observations will be within each

of these intervals Ii [17]. The NPI approach is considered for statistical inference,

e.g. acceptance sampling [14], precedence testing for two groups [20], and accuracy

of diagnostic tests [19].
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2.2 Bootstrap methods

In this section, we describe three different bootstrap methods: Efron’s bootstrap

(EB), parametric bootstrap (PB), and nonparametric predictive inference bootstrap

(NPI-B). These bootstrap methods will be compared with the parametric predic-

tive bootstrap (PP-B) introduced in this thesis. The classical Efron bootstrap is a

nonparametric sampling technique that does not make any assumptions about how

observations are distributed. In contrast, the parametric bootstrap requires assump-

tions regarding the distribution of the data. The nonparametric predictive inference

bootstrap is formulated for predictive inference and does not use an assumed para-

metric model. The PP-B is similar to NPI-B in terms of focusing on prediction but

it requires assumptions about data distribution.

2.2.1 Efron’s bootstrap

The bootstrap method has become an essential technique for researchers because

of its good properties and general applicability to a variety of statistical situations.

The standard version of the bootstrap method is introduced by Efron [40], which is

a resampling technique from the original data set. This bootstrap method uses the

empirical distribution to quantify the uncertainty of sample estimates. The basic

idea of Efron’s bootstrap (EB) is resampling with replacement from the original ob-

servations repeatedly, where each observation has equal probability of being selected

during the resampling process [51]. It has been widely used in applied statistics as

it relies on few mathematical assumptions and can be implemented easily using sta-

tistical software. It is important to note that EB makes no assumptions regarding

the distribution of observations [43, 61].

Suppose that there is a random sample x1, x2, . . . , xn from an unknown dis-

tribution F , and we want to estimate the parameter of interest θ(F ), e.g. the

mean or variance, by the statistic T . The bootstrap method can be used to con-

struct the sampling distribution of any statistic. A bootstrap sample is denoted

by X∗ = (x∗
1, x

∗
2, . . . , x

∗
n), which consists of members of the original data set X =

(x1, x2, . . . , xn). It is obtained by randomly sampling n times with replacement from
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the original sample. The size of a bootstrap sample can be chosen differently from

the original sample size. The basic bootstrap method generates an empirical es-

timate of the sampling distribution of the statistic (bootstrap distribution). The

procedure involves drawing a large number of samples from the observations and

determining the statistic for each sample. The statistic’s sampling distribution can

be estimated by the relative frequency distribution of these statistics. The bootstrap

distribution typically mirrors the shape of the actual sampling distribution resulting

from the sampling process.

A point worth noting here is that some of the observations will be repeated once

or more in a bootstrap sample, which makes them different from the original sample.

Also, certain observations may not appear at all in a particular bootstrap sample.

Consequently, there will be a variation of the values for the parameter of interest.

We should draw large numbers of bootstrap samples to approximate the variation

of a sampling distribution. The EB method is described in many references with

examples and applications, e.g. Berrar [6], Davison and Hinkley [21], and Efron [34].

The idea of bootstrap has been applied to a variety of statistical inferences. For

example, Rosenkranz [62] estimated the bias of treatment effect estimators using

the bootstrap method.

2.2.2 Parametric bootstrap

The parametric bootstrap (PB) method assumes that the data come from a known

distribution with unknown parameters. In this method, samples are drawn from

the assumed distribution with the estimated parameters instead of resampling with

replacement from the original data. The idea of the PB method is to estimate the

parameters of the assumed distribution using available data, and then to generate

a number of PB samples from the assumed distribution with the estimated param-

eters [43, 55]. The PB method requires knowledge of the data distribution and can

contain observations that weren’t included in the original sample, but this method

may produce misleading results if the assumed model is wrong. Conversely, EB

method does not assume a distribution for the data, all observations are included

in the original sample, and tied observations occur. The PB method can be used
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in situations where some knowledge about the form of the underlying population is

available.

2.2.3 Nonparametric predictive inference bootstrap

Coolen and Binhimd [16] introduced a predictive bootstrap method based on NPI,

called nonparametric predictive inference bootstrap (NPI-B). The NPI-B method

involves creating n + 1 intervals between the n ordered observations of the origi-

nal data, then selecting one of these intervals randomly. The first observation is

drawn uniformly from the selected interval and then added this observation to the

original data, resulting in n + 1 observations. This leads to creating a partition

consisting of n + 2 intervals, from which the second observation is sampled. The

process continues until m observations are drawn, where m is predefined. These m

observations constitute one NPI-B sample (which of course does not include the n

original data observations). In NPI-B, all possible orderings of the new observations

among the past observations are equally likely to occur. NPI-B’s sampling method,

which involves drawing each observation from the intervals in the partition created

by combining the n original observations together with all previously drawn observa-

tions belonging to the same bootstrap sample, leads to more variation in bootstrap

samples than Efron and parametric bootstrap samples.

One observation is sampled uniformly from each chosen interval when applying

NPI-B. However, it cannot be sampled uniformly from an open-ended interval, e.g.,

data defined on the whole real line lead to the first and last intervals in the form

of (−∞, x(1)) and (x(n),+∞). Coolen and Binhimd [16] suggest to use the tail of

a Normal distribution for real-valued data, and the tail of an Exponential distribu-

tion for non-negative real-valued data. It is important to note that the conditional

tail distribution is only used to sample an observation from open-ended intervals,

otherwise the observation is sampled uniformly from finite intervals. The NPI-B

algorithm for real-valued data on finite and infinite intervals is as follows:

1. Create (n+1) intervals between the n ordered observations x(0), x(1), x(2), . . . ,

x(n), x(n+1), where x(0) and x(n+1) are the end points of the possible data range:

(x(0), x(1)), (x(1), x(2)), . . . , (x(n−1), x(n)), (x(n), x(n+1)).
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2. Select one of the n + 1 intervals randomly, each with equal probability, and

sample one future observation uniformly from this selected interval.

(a) We sample the future value uniformly for any finite interval.

(b) For the case with data on the whole real line (−∞,+∞): If the chosen

interval is (−∞, x(1)) or (x(n),+∞), we sample the future value from

the tail of Normal distribution with mean µ =
x(1)+x(n)

2
and standard

deviation σ =
x(n)−µ

Φ−1( n
n+1

)
, where Φ−1 indicating the inverse function of a

standard normal cumulative distribution function.

(c) For the case with data on the (0,+∞): If the chosen interval is (x(n),+∞),

we sample the future value from the tail of Exponential distribution with

rate λ = ln(n+1)
x(n)

.

3. Add this sampled observation x∗
1 to the data; increase n to n+ 1.

4. Repeat Steps 1-3, now with n + 1 data, to obtain a further future value.

This is continued to sample m future observations from the intervals in the

partition created by combining the n original observations with all previously

drawn observations that belong to the bootstrap sample. These m drawn

observations (x∗
1, x

∗
2, . . . , x

∗
m) form one NPI-B sample of size m.

5. Repeat Steps 2-5 to obtain B of NPI-B samples of size m.

2.3 Reproducibility

The term ”reproducible” for the findings of a study refers to the ability of results

gained via an experiment or a statistical analysis of a data set to be reproduced

when the study is replicated. It is considered one of the key concepts of scien-

tific methods and gives investigators confidence in knowing precisely what has been

achieved. Over the last few years, reproducibility has obtained increasing attention

and several scientific journals have launched a campaign to raise awareness on repro-

ducibility issues, titled ”Journals unite for reproducibility” [57]. Many institutional

drug agencies such as the United States Food and Drug Administration (FDA) and
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the European Medicines Agency (EMA) usually require at least two adequate and

well-controlled clinical trials for evaluating the efficacy and safety of a new drug

product before marketing approval [56]. The main purpose of conducting a second

clinical trial is to support the effectiveness of a certain treatment and to investigate

whether the clinical result of the first trial is reproducible in the second clinical trial.

Statistical tests are the tools employed as experimental evidence to support the

effectiveness of the treatment. The results of statistical hypothesis tests can be

different each time the tests are repeated. The topic of reproducibility probability

(RP) of a hypothesis statistical testing framework was first addressed by Goodman,

who pointed out that there seemed to be a misunderstanding about the meaning

of a statistical p-value [42]. According to Goodman, the replication probability

can be used to show that the p-value may exaggerate the evidence against the

null hypothesis. In a later extensive discussion of Goodman’s paper, Senn [64]

disagrees with Goodman’s statement that ”p-values overstate the evidence against

the null hypothesis” and he emphasizes the difference between the p-value and the

RP. However, Senn agreed with Goodman about the importance of reproducibility

of test results. Although acknowledging a natural relation between RP and the

p-value, it is necessary to consider the difference between them. The p-value is an

indication of the strength of the statistical evidence, and the smaller p-value in the

case of rejecting the null hypothesis, the larger one would expect the RP to be.

Senn [64] additionally discussed issues with the reproducibility of tests in real world

situations where a repeated test may be performed in varying circumstances or be

carried out by a different team of analysts.

The RP of a test is the probability that the same test outcome, either rejection

of the null hypothesis or not, would be reached if the test were repeated based on an

experiment performed in the same way as the original experiment. It indicates the

reliability of the result of a statistical hypothesis test. The focus is usually on the

reproducibility of tests that led to the rejection of the null hypothesis, as significant

effects in clinical trials typically lead to new treatments in medical applications.

According to Begley and Ellis [5], researchers from California attempted to confirm

published findings in preclinical cancer research from 53 ’landmark’ studies, but they
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managed to obtain the same scientific findings in only 6 cases. Also, they report

similar studies conducted by a team at Bayer HealthCare in Germany were able

to reproduce only about 25% of the same scientific findings. Begley and Ellis [5]

concentrate on improving the preclinical environment and building a stronger system

in detail without discussing the statistical techniques implemented in preclinical

tests. They provide recommendations to enhance the credibility of studies, such as

avoiding the publication propensity to only positive results, and they emphasize the

importance of RP for more reliability of medical tests.

During recent years, there has been growing interest in the RP due to an impor-

tant aspect of the practical relevance of test results. Shao and Chow [65] present

three approaches to evaluate RP under several different study designs commonly

used in clinical trials: the estimated power approach, the lower confidence bound of

power estimate, and the Bayesian approach. They use the available test data from

the previous trial(s) to estimate the power of a future test, and they consider the

lower confidence bound of this power estimate as a more conservative approach for

the RP, in particular when the clinical result from the first trial is highly significant.

Shao and Chow [65] introduced a concept of RP for a given clinical trial and both

argued that a single clinical trial is sufficient if the statistical result from the first

clinical trial is evaluated to be strongly reproducible. They study the generalization

of the clinical results from one patient population to a different patient population

and also adjust the sample size for the second trial. De Martini [25] used the power

of the test as an estimate of RP to evaluate the results for a large class of parametric

tests. In addition, he proposed to define the statistical tests themselves using the

estimated RP. The power approach was also followed by De Capitani and De Mar-

tini [22, 23, 24] to study the RP estimation for various nonparametric tests, such as

Wilcoxon signed rank test, sign test, Kendall test and binomial test. The power of

a test is defined as the probability of rejecting the null hypothesis if an alternative

hypothesis is true. The estimation of RP using the power approach is somewhat

restrictive because it focus only on the cases where null hypothesis is rejected which

is not consistent with the natural interpretation of test reproducibility. Also, the

repeated application of the test, which would lead to different data, is not taken
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into consideration.

Miller [58] emphasizes the importance of recognising the distinction between two

scenarios for test repetition. The first scenario is a general repetition of tests by other

researchers working independently, in which conditions may differ from the original

experiment. The second scenario is an individual repetition of tests by the same

researcher, where the tests are performed under exactly the same circumstances

as the original experiment and test. Miller [58] is doubtful about the ability to

make inferences that are useful and precise enough from the initial experiment,

in particular when the true effect size is unknown, and consequently the power

of the test is unknown. We will concentrate on the second scenario, ’individual

repetition of tests’ in Miller’s terminology, to investigate RP in this thesis, because

it is conceivable to derive meaningful frequentist inferences in this scenario. We

define statistical reproducibility for a test as the probability that the same test

outcome would be reached if the test were repeated in the same way as the original

experiment.

A new perspective on test reproducibility was presented by Coolen and Binhimd

[15], using the nonparametric predictive inference (NPI) framework of frequentist

statistical methods. Coolen and Binhimd [15] introduce NPI for reproducibility

probability (NPI-RP) of some nonparametric tests, namely the sign test, Wilcoxon’s

signed-rank test and the two-sample rank-sum test. This method considers the test

result for a predicted future sample of the same size as the original sample (m = n)

to reflect the nature of reproducibility. The NPI approach focuses explicitly on

future observations and uses few modelling assumptions, which causes imprecision

in this process that can be quantified by the use of lower and upper probabilities.

NPI-RP considers reproducibility of tests from the perspective of prediction instead

of estimation, which is the substantial difference between NPI-RP and estimated

power approach of Shao and Chow [65]. Also, it presents for any possible results of

the original test, including both rejection and non-rejection of the null hypothesis.

The focus is usually on the reproducibility of tests that led to the rejection of the null

hypothesis, as significant effects in clinical trials typically lead to new treatments in

medical applications. However, we believe that the reproducibility of tests that do
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not produce significant effects should also be considered for a complete view. NPI

for reproducibility probability has been applied to a range of nonparametric tests,

such as the quantile test, and the precedence test [13].

The general idea of the NPI-RP approach considers
(
n+m
n

)
different orderings of

the m future real valued observations among the n data observations, where these

orderings all have the same probability
(
n+m
n

)−1
to occur. The different orderings

of the m future observations among the n data observations are denoted by Oj for

j = 1, . . . ,
(
n+m
n

)
. The number of future observations in the interval (x(i−1), x(i)) can

be expressed by sj1, . . . , s
j
n+1 according to ordering Oj, where sji ≥ 0 and

∑n+1
i=1 sji =

n. We do not know precise values of the future data for any future ordering Oj,

but specify the number sji of observations in the interval (x(i−1), x(i)), for each i =

1, . . . , n+1. There is no additional assumption for these future observations, so they

can have any value within the specific interval. The NPI-RP considers all different

possible orderings of m future observations among n data observations given the

observed data from the original test. The same test is performed on the future data

sets as was applied to the original data and the proportion of these that lead to the

same conclusion as the original test is investigated. A more detailed explanation

will be provided in Section 4.6 within the context of NPI-RP for the likelihood

ratio test. The NPI lower and upper reproducibility of the test are denoted by

RP and RP , respectively. A limitation of the NPI-RP method is that computation

becomes impractical if we consider a large sample size. For example in the case

of m = n = 30, there are
(
n+m
n

)
=
(
30
15

)
= 155117520 possible different orderings

of the m future observations among the n real data observations, which must be

computed to derive NPI lower and upper reproducibility values. To overcome this

difficulty, Coolen and Binhimd [16] use a bootstrap technique for finding the RP of

tests. They introduced an NPI bootstrap method to predict future samples, and

they demonstrated how this method avoids the complex calculations encountered

with the NPI-RP method.

The NPI-RP approach is only feasible for small data sets to compute the ex-

act NPI lower and upper reproducibility probabilities. To overcome computational

limitations associated with large sample sizes, Coolen and Marques [17] propose a
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sampling methodology based on sampling future orderings. They introduced an al-

ternative computational method for the reproducibility of likelihood ratio tests with

the test criterion in terms of the sample mean. The sampling procedure for the or-

derings meets the requirements of simple random sampling (SRS). The probability

of each ordering being selected must be the same at each selection, and independent

of the other selections. A large number of orderings is sufficient to eliminate any

potential differences between sampling with and without replacement and for sim-

plicity, a sample of orderings with replacement is used. An easy way to implement

sampling of orderings by random sampling of a vector of integers (r1, . . . , rn) , with

r1 ≥ 1, rl > rl−1 for all l = 2, . . . , n and rn ≤ 2n. Among the n + m combined

data and future observations, rl is considered to be the rank of the jth ordered data

observation. Defining sjl = rl − rl−1 − 1 for l = 1, . . . , n + 1, with a sampled vector

(r1, . . . , rn), where r0 = 0 and rn+1 = 2n + 1, thus creating the jth sampled future

ordering in the SRS process. This process ensures that each possible ordering has

an equal probability of being selected and independent of the other selections, which

satisfies the requirements for SRS. The NPI-RP method can be applied to a wide

range of statistical tests other than likelihood ratio tests, as a result of sampling

orderings for estimating NPI lower and upper RPs.

2.4 Measures of statistical accuracy

A comparison between bootstrap methods can be performed by computing some

statistical accuracy measures, e.g. variance, standard error, bias, root mean squared

error, and mean absolute error. It is important to explain the rationale for choosing

these measures. The variance is used to measure the variability between bootstrap

methods. Standard error, bias, root mean squared error, and absolute error are the

most commonly used measures of statistical accuracy for estimators. Suppose that

x1, x2, . . . , xn represent observations corresponding to independent and identically

distributed random variables X1, . . . , Xn with distribution function F . Let θ be

the parameter of interest, e.g. the mean or variance, which can be estimated by the

statistic T . The bootstrap method can be used to estimate the sampling distribution
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of T . There are two main types of bootstrap, namely parametric and nonparametric.

The parametric bootstrap is useful for comparison to nonparametric analyses when

some knowledge about the underlying population is available. The nonparametric

bootstrap, as in EB, is typically applied when F is unknown. The distribution F is

estimated by the empirical distribution function F̂ , which puts probability 1/n on

each of the observed values. Here we show the steps of the nonparametric bootstrap

(EB) as it is the standard version of the bootstrap method. The following is the

algorithm of EB [30]:

1. Construct the empirical probability distribution function F̂ by putting prob-

ability 1/n to each value x1, x2, . . . , xn, F̂ (x) =
∑n

i=1 I(xi ≤ x)/n, where

I(xi ≤ x) is the indicator function which is 1 if xi ≤ x and 0 otherwise.

2. Draw B independent random samples of size n by sampling with replacement

from the original data set.

3. Compute the statistic of interest T for each bootstrap sample to obtain

T ∗
1 , T

∗
2 , . . . , T

∗
B.

4. Construct the empirical distribution of T ∗
1 , T

∗
2 , . . . , T

∗
B by putting probability

1/B at each one of them, which can be used to approximate the sampling

distribution of θ.

The bootstrap estimate for the standard error ŝeB can be computed by the sample

standard deviation of T ∗
1 , T

∗
2 , . . . , T

∗
B as follows:

ŝeB =

[∑B
j=1(T

∗
j − T ∗(.))2

B − 1

]1/2
(2.4)

where, T ∗(.) =
∑B

j=1 T
∗
j /B.

The main advantage of the bootstrap method is that it can be used to estimate

the standard error for any estimator. The variance is computed by the square of

Equation (2.4). Another useful measure of statistical accuracy is bias, which is

the difference between the expectation of an estimator T and the quantity being

estimated θ,

biasF = bias(T, θ) = EF (T )− θ (2.5)
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An estimator with good properties is desirable such as small standard error

and small bias. If bias(T, θ) = 0, then T is called an unbiased estimator of θ;

otherwise, it is a biased estimator of θ. The bias of estimators play an important

role in statistical theory and a large bias is usually an undesirable characteristic of

an estimator’s performance. The bootstrap can be used to estimate the bias of any

estimator T by substituting F by F̂ in Equation (2.5), leading to bootstrap estimate

of bias:

biasF̂ = EF̂ (T
∗)− T 0 (2.6)

where T 0 is the computed value of statistic T based on the original sample. The

bootstrap estimate of bias can be approximated by generating independent boot-

strap samples and evaluating the statistic T ∗ for each one, then the bootstrap ex-

pectation EF̂ (T
∗) can be computed by the average T ∗(.) =

∑B
j=1 T

∗
j /B. We obtain

the bootstrap estimate of bias, based on B bootstrap samples, by substituting T ∗(.)

for EF̂ (T
∗) in Equation (2.6) as follows:

b̂iasB = T ∗(.)− T 0 (2.7)

The bootstrap estimate of bias can be computed by applying exactly the boot-

strap algorithm for estimating standard error except that we calculate T ∗(.)−T 0 at

the last step rather than ŝeB. A measure of accuracy that uses both standard error

and bias is the root mean square error (RMSE) of an estimator T for θ as

RMSE =

√
ŝe2B + b̂ias

2

B (2.8)

The absolute error is defined as the difference between a measured value and an

actual value. The absolute error for each bootstrap sample is computed, then the

average of these values is used to calculate the mean absolute error:

MAE =
1

B

B∑
j=1

|T ∗
j − T 0| (2.9)

2.5 Confidence intervals

We begin this section by providing a general review of confidence intervals, followed

by a discussion of how a bootstrap technique can be used to construct different
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confidence intervals. A 100(1 − 2α)% confidence interval for the parameter θ is

an interval constructed from a random sample, such that if we were to repeat the

experiment a large number of times, the interval would contain the true value of θ

in 100(1− 2α)% of the cases. It is important to note that the interval will depend

on the value of the estimate θ̂ and the sampling distribution of the estimator. The

sample size, confidence level, and the variability in the sample are all factors that

influence the width of the interval. The larger samples produce narrower confidence

intervals when all other factors are equal, while a higher confidence level or greater

variability in the sample produces wider confidence intervals when all other factors

are equal. In one sample case, we have a random sample observations x1, x2, ..., xn

from unknown distribution F . Assume we estimate the parameter of interest θ and

denoting it by T = θ̂ and assigning ŝe as an estimate of standard error of θ̂. We need

to determine the sampling distribution of the estimator θ̂. Under most circumstances

the distribution of θ̂ becomes more and more normal when the sample size n grows

larger [40]. So, when the sample size n grows large, the distribution of θ̂ becomes

asymptotically normal with a mean θ and variance ŝe2, which means θ̂∼̇N(θ, ŝe2)

or equivalently

Z =
θ̂ − θ

ŝe
∼̇N(0, 1) (2.10)

Now, we find endpoints θ̂lo and θ̂up which are random values defined on a random

sample such that:

P (θ̂lo ≤ θ ≤ θ̂up) = 1− 2α

There are an infinite number of 100(1−2α)% confidence interval for the parameter of

interest θ, but our aim is to choose the best confidence interval available. A narrower

confidence interval is not necessarily a better one, but the length and shape are

only significant if the coverage probabilities are accurate. If we take approximation

(2.10) to be exact and let z(α) is the 100.αth percentile point of standard normal

distribution, we obtain

P (z(α) ≤ θ̂ − θ

ŝe
≤ z(1−α)) = 1− 2α
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By rearranging this statement around the parameter of interest θ we obtain,

P (θ̂ − z(1−α) · ŝe ≤ θ ≤ θ̂ − z(α) · ŝe) = 1− 2α

The confidence interval is obtained as follows:

(θlo, θup) = (θ̂ − z(1−α) · ŝe, θ̂ − z(α) · ŝe) (2.11)

It is called the standard confidence interval with coverage probability 1 − 2α or

confidence level 100(1 − 2α)%. Since z(α) = −z(1−α) we can be expressed (2.11) in

a more familiar form

θ̂ ± z(1−α) · ŝe (2.12)

The standard confidence interval from the normal distribution is valid for a large

number of data as n → ∞, but for small data it is an approximation. In 1908, a

better approximation using Student’s t-distribution was derived by Gosset [70]. The

Student’s t interval is obtained using t
(1−α)
n−1 which represents (1− α)th percentile of

Student’s t-distribution with n− 1 degree of freedom.

θ̂ ± t
(1−α)
n−1 · ŝe (2.13)

The Student’s t distribution is similar to the normal distribution with its bell shape

but has larger tails and the population variance is unknown. It gets more close to

the normal distribution as sample size increases, and the difference between them

becomes negligible, but it is important with small sample sizes. When n ≥ 20 the

percentiles of student’s tn distribution do not differ much from those of N(0, 1).

The Student’s t-distribution depends on the normality assumption, and we expect

poor performance estimate for standard interval and Student’s t interval in case of

a non-normal distribution.

Now we explore four different estimations of confidence intervals using the boot-

strap method [40]. We will investigate each method separately and explain the

circumstances for each of them to provide an accurate estimate. The first approach

is the bootstrap-t confidence interval that estimates the distribution of Z directly

from the data by generating B bootstrap samples and for each one we find

Z∗(b) =
θ̂∗(b)− θ̂

ŝe∗B(b)
=

T ∗
j − T

ŝe∗B(b)
(2.14)
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where, θ̂∗(b) is the value of θ̂ based on bootstrap sample x∗b and ŝe∗B(b) is the

estimated standard error of θ̂∗ for the bootstrap x∗b. The αth percentile of Z∗(b) is

estimated by the value t̂(α) as follows:

#{Z∗(b) ≤ t̂(α)}
B

= α (2.15)

where t̂(α) is the αth percentile of Z∗(b) across all bootstrap samples and t̂(1−α) is

(1 − α)th percentile. For example, if B = 1000 and α = 0.05, then t̂(α) is the 50th

largest value of the Z∗(b) and t̂(1−α) is the 950th largest value of the Z∗(b). If B · α

is not an integer, we assuming α ≤ 0.05 and let k = ⌊(B + 1)α⌋ is the largest

integer less than or equal (B + 1)α, then we define α and 1− α by the kth largest

and (B + 1 − k)th largest value of Z∗(b), respectively. Therefore, a 100(1 − 2α)%

bootstrap-t confidence interval is obtained as following:

(θ̂ − t̂(1−α) · ŝe∗B, θ̂ − t̂(α) · ŝe∗B) (2.16)

The disadvantage of the bootstrap-t interval is that it cannot be trusted to construct

a confidence interval for all problems and tend to give erratic results in small sam-

ples. Another more reliable approach than bootstrap-t to estimate the confidence

interval using the bootstrap technique is the percentile interval, which depend on the

percentiles of the bootstrap distribution of a statistic. The 100(1− 2α)% percentile

interval is giving by:

θ̂
∗(α)
B < θ < θ̂

∗(1−α)
B

T
∗(α)
B < θ < T

∗(1−α)
B

(2.17)

where T
∗(α)
B is the 100 × αth percentile of the T ∗

j values, that means the B × αth

of the ordered list of the B replications of T ∗ and it is likewise for T
∗(1−α)
B indicate

the 100 × (1 − α)th percentile of the T ∗
j values. For example, if B = 1000 and

α = 0.05, then lower endpoint of the percentile interval T
∗(α)
B is the 50th ordered

value of replications and upper endpoint of the percentile interval T
∗(1−α)
B is the

950th ordered value of replications. If B × α is not an integer, we follow the same

procedure of bootstrap-t interval as discussed earlier.

The percentile interval of θ is well aligned with a standard normal interval created

by transforming θ in a manner that normalises the distribution and then mapped to
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the θ scale [40]. The percentile method incorporates the correct transformation au-

tomatically without requiring the statistician to know the transformation. Also, the

percentile interval has transformation respecting (invariant) property, that means

any (monotone) parameter transformation ϕ = m(θ) of percentile interval is simply

the percentile interval for θ mapped by m(θ) [40]:

[ϕ̂(α), ϕ̂(1−α)] = [m(θ̂(α)),m(θ̂(1−α))]

The percentile method gives good performance if θ̂ is an unbiased estimator, and the

transformation has an approximately normal distribution with a constant variance

[36].

The last two methods to construct a confidence interval are an improved version

of the percentile method known as BC and BCa. Efron introduced the bias-corrected

(BC) bootstrap interval which is an improved version of the percentile interval [31].

The BC method designed to work well when there exist a monotone transformation

ϕ = m(θ) and the estimator ϕ̂ = m(θ̂) is approximately normal distribution with

the mean ϕ− z0σ and constant standard deviation such that

ϕ̂ ∼ N(ϕ− z0σ, σ
2) (2.18)

where, the parameter z0 is the bias correction that can be obtained by bootstrap

method and σ is the standard deviation of ϕ̂ that does not depend on ϕ, which

signifies that the standard deviation is a fixed constant.

The basic idea of the BC method is to build a confidence interval for a monotone

transformation ϕ and then, transform these back to θ scale by using the inverse of the

monotone transformation. In other words, a confidence interval for ϕ is constructed

with the help of Formula (2.18) by using the same logic that gave standard normal

interval as follows

(ϕ̂+ z0σ)± z(1−α)σ

Then, the confidence interval is converted back for θ by using the inverse trans-

formation θ = m−1(ϕ). The advantage of the BC approach is that all of this is

accomplished automatically through bootstrap computations, without needing ex-

plicit knowledge of the transformation m [33]. The value of the bias-correction z0
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counts the possible bias in T as an estimate of θ. It can be obtained uses the ratio

of bootstrap replications less than the original estimate T ,

ẑ0 = Φ−1

(
#{T ∗

j < T}
B

)
(2.19)

where, Φ−1(·) indicates to the inverse function of a standard normal cumulative

distribution function, e.g. Φ−1(0.95) = 1.645. The value of ẑ0 equal zero if exactly

half of the bootstrap replications T ∗
j values are less than or equal to the original

estimate T . The BC interval of intend coverage 1− 2α is obtained by

BC : (θ̂lo, θ̂up) = (T
∗(α1)
B , T

∗(α2)
B ) (2.20)

where,

α1 = Φ
(
2ẑ0 + z(α)

)
(2.21)

α2 = Φ
(
2ẑ0 + z(1−α)

)
(2.22)

Here α1 is the lower endpoint percentile while α2 is the upper endpoint percentile.

z(α) is the 100αth percentile point of a standard normal distribution, and Φ(·) is

the standard normal cumulative distribution function. The BC method helps in

correcting deficiencies of the percentile method when the value of ẑ0 is non-zero by

changing the percentiles used for the BC endpoints. However, if the value ẑ0 equal

zero, then Formulas (2.21) and (2.22) will be

α1 = Φ(z(α)) = α and α2 = Φ(z(1−α)) = 1− α (2.23)

Hence, the BC interval in Equation (2.20) will be the same as the percentile inter-

val in Equation (2.17), meaning both methods will give the same estimate of the

confidence interval when there is no bias.

The last method we discuss for constructing a confidence interval is the bias-

corrected and accelerated (BCa) bootstrap interval. This method is more difficult

to compute than the BC, but yields more accurate confidence intervals with less

restrictive assumptions where it does not assume ϕ̂ = m(θ̂) has a constant standard

deviation such that

ϕ̂ ∼ N(ϕ− z0σϕ, σ
2
ϕ) (2.24)
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where, σϕ is the standard deviation of ϕ̂ that does depend on ϕ as follows: σϕ = 1+aϕ

which is a linear function of ϕ. The acceleration a is a small constant which explains

how the standard deviation of ϕ̂ varies with ϕ.

The BCa method shares similar concepts with the BC method except that it

does not assume ϕ = m(θ) having a constant standard deviation. So, it builds

a confidence interval for ϕ and then converts it back to an interval for θ by the

inverse transformation θ = m−1(ϕ) which is done automatically without the need

to know the transformation [37, 39]. Estimating the bias-correction from bootstrap

distribution is elaborated previously in BC method. There are several methods

for calculating acceleration, we will use the easiest way and computed separately

from the bootstrap distribution using the jackknife approach [29]. The jackknife

method is a resampling technique that pre-dates the bootstrap method, and both

have similarities [40]. The jackknife method has a specific number of resamples

which depends on the sample size, while in bootstrap there is no agreed number of

replications, and it depends on the interest estimation of the confidence interval or

standard error and so on. The jackknife is usually less computationally demanding

than the bootstrap. The resample procedure of the jackknife method is based upon

the sequential removal of one observation from the dataset n times. The size of

the jackknife sample is n− 1. Assuming we have a sample x = (x1, x2, . . . , xn) and

we estimate the interested parameter θ̂ = t(x), the jackknife sample omitting one

observation at a time is

x(i) = (x1, x2, . . . , xi−1, xi+1, . . . , xn) (2.25)

for i = 1, 2, . . . , n, called jackknife samples and T(i) is ith jackknife replication of

T . We can estimate the acceleration using the jackknife method in the following

formula [40]:

â =

∑n
i=1(T(·) − T(i))

3

6{
∑n

i=1(T(·) − T(i))2}3/2
; T(·) =

n∑
i=1

T(i)/n (2.26)

The BCa interval of intend coverage 1− 2α is obtained by

BCa : (θ̂lo, θ̂up) = (T
∗(α1)
B , T

∗(α2)
B ) (2.27)
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where,

α1 = Φ

(
ẑ0 +

ẑ0 + z(α)

1− â(ẑ0 + z(α))

)
(2.28)

α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α)

1− â(ẑ0 + z(1−α))

)
(2.29)

However, if the value of â is equal to zero, then Formulas (2.28) and (2.29) will be

α1 = Φ
(
z0 +

z0+z(α)

1−0(z0+z(α))

)
= Φ

(
2z0 + z(α)

)
(2.30)

α2 = Φ
(
z0 +

z0+z(1−α)

1−0(z0+z(1−α))

)
= Φ

(
2z0 + z(1−α)

)
(2.31)

Therefore, the BCa interval in Equation (2.27) will be the same as the BC interval

in Equation (2.20), implying that both methods will give the same estimate of the

confidence interval.

2.6 Prediction intervals

We begin this section by providing an overview of prediction intervals and explain-

ing how to construct prediction intervals using the bootstrap technique. Lu and

Chang [54] used the bootstrap method to construct a prediction interval for one

or more future values from a Birnbaum-Saunders distribution. They constructed

the prediction interval using the bootstrap percentile method with bootstrap cali-

bration. The Birnbaum-Saunders distribution is used in reliability applications to

model failure times. They assumed that a random sample x1, . . . , xn, is taken from

Birnbaum-Saunders distribution function F with parameters α and β. The density

of F is defined by

f(x;α, β) =
1

2αβ
√
2π

[(
x

β

)− 1
2

+

(
x

β

)− 3
2

]
exp

[
− 1

2α2

(
x

β
− 2 +

β

x

)]
,

where x > 0 and the two parameters of Birnbaum–Saunders distribution α, β > 0.

A bootstrap sample of size n, x∗
1, . . . , x

∗
n is n random values drawn with replace-

ment from x1, . . . , xn, each with a probability of 1/n, to construct the estimated

distribution F ∗. In this case, the bootstrap sample is considered as a sample of
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the unknown distribution. Then, generate y∗1, . . . , y
∗
m from the estimated distri-

bution F ∗, where m is the number of future observations. Thereafter, the mean of

y∗1, . . . , y
∗
m is obtained and denoted by ȳ∗m. Repeat the previous procedure B times to

obtain B values of ȳ∗m, denoted by ȳ∗m(1), . . . , ȳ
∗
m(B). Then, construct 100(1− 2α)%

prediction interval for the mean of future observations x̄m as:(
ȳ
(α)
m,B, ȳ

(1−α)
m,B

)
(2.32)

where the lower endpoint ȳ
(α)
m,B is the B × αth value in the ordered list of the B

replications of ȳ∗m and the upper endpoint ȳ
(1−α)
m,B is the B × (1− α)th value in this

ordered list. If B × α is not an integer, the same procedure of bootstrap-t interval

is used as discussed in previous section (use the largest integer).

Lu and Chang [54] investigate the performance of the bootstrap prediction in-

tervals for a single future observation and for the mean of five future observations

through simulations. They draw a sample of size n+m from the Birnbaum-Saunders

distribution x1, . . . , xn, xn+1, . . . , xn+m, where x1, . . . , xn represents the past sample

and xn+1, . . . , xn+m represents the future sample. Then, find the observed mean

of m future observations xn+1, . . . , xn+m, x̄m. The prediction interval for the mean

of future observations is constructed by drawing the bootstrap sample x∗
1, . . . , x

∗
n,

then generating from them y∗1, . . . , y
∗
m and finding ȳ∗m. Repeat this B = 1000 times

to have the list of B values ȳ∗m(1), . . . , ȳ
∗
m(B) in order to construct the prediction

interval for x̄m as described earlier. In the case of prediction for a single future

observation, we draw the bootstrap sample x∗
1, . . . , x

∗
n, then generate y∗1 from them

and repeat this B = 1000 times to have the list of B values y∗1(1), . . . , y
∗
1(B) and

construct the prediction interval for xn+1. The 90% and 95% prediction intervals

for a single future observation xn+1 and the mean of m future observations x̄m are

computed in the Lu and Chang study [54]. They conducted a Monte-Carlo simula-

tion to determine the coverage probability by counting how many intervals contain

xn+1 and x̄m. A percentile prediction interval used by Lu and Chang [54] is defined

as the LC method.

Mojirsheibani and Tibshirani [60] introduced different ways to construct pre-

diction intervals such as bootstrap-t, percentile and BCa prediction intervals. The

percentile prediction interval is used in this thesis because the BCa prediction in-
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terval cannot be constructed for a single future observation and the bootstrap-t

prediction interval is not transformation respecting. They assumed that a random

sample X = (x1, . . . , xn) represent past sample and Y = (y1, . . . , ym) represent a

future sample, where X and Y are independently and identically distributed with

a common distribution F and θ̂ = T is a scalar parameter. Let Fn and Fm are the

CDF’s of θ̂n = Tn and θ̂m = Tm, which are the estimators of a scalar parameter

from the past sample and future sample respectively. Let F̂n and F̂m are the CDF’s

of θ̂∗n = T ∗
n and θ̂∗m = T ∗

m, the bootstrap version of θ̂n = Tn and θ̂m = Tm. The

bootstrap samples X∗ and Y ∗ are drawn with replacement from the past sample X.

The 100(1− 2α)% percentile prediction interval for θ̂m = Tm is:

(θ̂lo, θ̂up) =
(
F̂−1
m

[
Φ(z(α)(1 +m/n)1/2)

]
, F̂−1

m

[
Φ(z(1−α)(1 +m/n)1/2)

])
(2.33)

where F̂m is the bootstrap distribution of θ̂∗m = T ∗
m, and z(α) = Φ−1(α).

Mojirsheibani [59] studies the effects of bootstrap iteration (calibration) as a

method to improve the coverage accuracy. They generated X∗ and Y ∗ from the

past sample X and then resample Y ∗∗ from X∗. All previous studies of construct-

ing prediction intervals were based on Efron’s bootstrap method. We refer to the

percentile prediction interval recommended by Mojirsheibani and Tibshirani [60] as

the MT method. In this thesis, we focus on the percentile prediction interval using

MT and LC methods, but without iterated bootstrap.

This chapter provides background information for the topic discussed in this

thesis by presenting the main concepts from the literature. In Chapter 3, we intro-

duce a novel bootstrap method called parametric predictive bootstrap (PP-B). This

method is presented for the RP of some parametric tests in Chapter 4. The PP-B

method is primarily designed for predictive inference and it relies on an assumed

parametric model. In Chapter 5, we examine how it performs when the model is

incorrectly specified.



Chapter 3

Parametric Predictive Bootstrap

3.1 Introduction

This chapter introduces the parametric predictive bootstrap (PP-B), a novel boot-

strap method for predictive inference. Additionally, we examine its performance

in a range of scenarios that have been used with other bootstrap methods, as dis-

cussed in Chapter 2. The strength of estimation and prediction inference of PP-B is

evaluated using measures of statistical accuracy, confidence intervals, and prediction

intervals. PP-B is compared with other methods of bootstrap, described in Section

2.2, to demonstrate the differences between them.

This chapter is organized as follows: Section 3.2 introduces the idea of para-

metric predictive bootstrap and clarifies the differences compared to three other

bootstrap methods: Efron’s, parametric, and NPI-Bootstrap. Two different scenar-

ios are considered to compare the PP-B method to other bootstrap methods using

measures of statistical accuracy, confidence intervals, and prediction intervals. The

first scenario generates data from a distribution with finite support. For the second

scenario, data sets are generated from a distribution with infinite support. We pro-

vide a comparison of the two scenarios in Section 3.3 and Section 3.4, respectively.

In Section 3.5, the performance of PP-B for estimation is compared with different

types of bootstrap methods using percentile confidence intervals. In Section 3.6,

we extend the comparison of the percentile prediction intervals to prediction of the

future sample statistics. In Section 3.7, we present some concluding remarks of this

27
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chapter.

3.2 Parametric predictive bootstrap

In this section, we present the main idea of PP-B for real valued data, followed by a

brief initial comparison with other bootstrap methods described in Section 2.2. In

the PP-B method, a single observation is sampled from an assumed distribution with

estimated parameters based on an original data set of size n. Then, this observation

is added to the data and the process is repeated, now with n+1 observations. We re-

estimate the distribution parameters with the new observation added to the data in

order to sample the second observation. This process continues to sample m further

values in the same way, each observation adding to the data and re-estimating the

parameters before sampling the next one. The PP-B sample consists of these m

sampled observations, so it excludes the n original data observations. The PP-B

algorithm for one-dimensional real-valued data is as follows:

1. We have a random sample consisting of n observations x1, x2, . . . , xn from a

known distribution F (x; θ), with parameter θ.

2. The parameter θ of the assumed distribution is estimated by θ̂ from the avail-

able data, using maximum likelihood estimation (MLE) or any other estima-

tion method.

3. Sample one future observation x∗
1 randomly from the fitted distribution F (x; θ̂).

4. Add x∗
1 to the data giving data set (x1, x2, . . . , xn, x

∗
1); increase n to n+ 1.

5. Repeat Steps 2-4, now with n+1 data, to obtain a further future value. This is

continued to sample m observations in total, with each one added to the data

and the parameter re-estimated before sampling the next observation. These

sampled observations x∗
1, x

∗
2, . . . , x

∗
m are a PP-B sample of size m.

6. Repeat Steps 2-6 to obtain B of PP-B samples of size m.

As a consequence of the method of sampling observations in PP-B, with sampled

observation added to the data set and the parameter estimated before sampling
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the next one, the bootstrap samples show more variation than the EB and PB

samples. The method for sampling observations in NPI-B, with each observation

drawn from the intervals created by combining the n original observations with all

previously drawn observations belonging to the same bootstrap sample, also causes

more variation in the bootstrap samples than the EB and PB samples. In the EB

and PB methods, all observations are sampled based on the original data only. EB

depends on resampling with replacement from the original data, where each value of

the original data set has the same probability of being chosen by random selection

during the resampling process [38]. The PB method assumes the data to come from

a known distribution with unknown parameters. The parameters of the assumed

distribution are estimated from the available data, then observations are sampled

from the assumed distribution with the estimated parameters in order to obtain PB

sample [43]. The bootstrap samples in PP-B, NPI-B, and PB are not restricted to

already observed values, whereas all observations in EB samples are in the original

sample.

We give a brief initial comparison of variations in bootstrap samples for each

bootstrap method and leave a more detailed comparison for the following sections.

We compute the variance for a statistic of interest T using the bootstrap technique

to measure the spread of these statistic values based on the bootstrap samples.

The bootstrap variance for the mean and variance is estimated using B = 1000

bootstrap samples for each bootstrap method. We generate an original sample of

size n from N(0,1) and then apply different bootstrap methods B = 1000 times. The

mean and variance of each bootstrap sample are computed, and then we estimate

the variance based on different bootstrap methods. We repeat this procedure with

different original sample sizes n = 5, 25, 100, 200, 500 from N(0,1), as well as with

Exp(0.5). The same data sets of each sample size from N(0,1) and Exp(0.5) are used

with all bootstrap methods. It is important to note that the bootstrap samples for

each method have the same size as the original sample.

Table 3.1 shows the estimate of variance using different bootstrap methods for

the mean and variance. The results were approximated to four decimal digits, but

we used additional digits with some values to make the results more informative
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(a) N(0,1)

method statistics n = 5 n = 25 n = 100 n = 200 n = 500

PP-B
mean 0.3320 0.0606 0.0146 0.0083 0.0041

variance 0.5491 0.1201 0.0249 0.0151 0.0084

NPI-B
mean 0.6067 0.0892 0.0165 0.0085 0.0040

variance 2.9020 0.3624 0.0444 0.0172 0.0112

PB
mean 0.1981 0.0316 0.0075 0.0042 0.0020

variance 0.0009 0.0001 0.00002 0.00001 0.000004

EB
mean 0.1515 0.0359 0.0074 0.0043 0.0021

variance 0.1743 0.0735 0.0133 0.0071 0.0047

(b) Exp(0.5)

method statistics n = 5 n = 25 n = 100 n = 200 n = 500

PP-B
mean 0.4517 0.1764 0.0789 0.0386 0.0149

variance 4.3163 2.0995 1.9951 0.8993 0.3314

NPI-B
mean 0.6725 0.2146 0.0839 0.0321 0.0140

variance 11.7162 9.6144 4.5507 1.1390 0.5424

PB
mean 0.2385 0.0887 0.0396 0.0194 0.0075

variance 2.6386 1.5059 1.3511 0.5997 0.2195

EB
mean 0.1211 0.0717 0.0352 0.0143 0.0070

variance 0.1063 0.3657 0.6540 0.2132 0.1408

Table 3.1: The bootstrap estimate of variance for the mean and variance when the

original sample was from N(0,1) and Exp(0.5).

and to avoid the inclusion of zeros ”0.0000”. PP-B and NPI-B have the largest

estimated variance values for the mean and variance among these bootstrap meth-

ods, as expected due to the method of sampling observations in both methods. The

results for N(0,1) show that the NPI-B method has the largest variance in all cases

except for the mean when n = 500, in which case the PP-B method has a larger



3.3. Finite support scenario 31

variance. Also, the NPI-B method provides the largest variance in most cases of the

mean and all cases of the variance for Exp(0.5), followed by the PP-B method. The

NPI-B method has a larger variance in most cases compared to the PP-B method

due to the assumption of a parametric model in the PP-B method.

3.3 Finite support scenario

In this section, we assess the performance of the parametric predictive bootstrap

method (PP-B) regarding estimation and predictive inference and we compare it

with other bootstrap methods. The comparison is based on measures of statistical

accuracy and confidence intervals in order to investigate the performance of different

bootstrap methods as an estimation approach. Additionally, prediction intervals are

used to examine how the bootstrap methods perform in predictive inference. For the

first scenario, we use distributions with finite support such as the uniform and Beta

distributions. When NPI-B is applied to a finite data range, we sample uniformly

across all intervals as discussed in Section 2.2.3.

3.3.1 Measures of statistical accuracy

We gave an overview of some measures of statistical accuracy for estimators in Sec-

tion 2.4. The standard error, bias, root mean squared error, and mean absolute error

are computed to evaluate the statistical accuracy of estimators using the bootstrap

method. These measures of statistical accuracy are used to assess the performance

of different bootstrap methods as an estimation approach. We investigate the PP-

B’s performance through simulation studies and compare it with the performance

of EB, PB, and NPI-B. The smaller values of statistical accuracy measures are con-

sidered good characteristics of an estimator. We use the uniform distribution in the

first scenario as an example of a distribution with finite support. The probability

density function of the continuous uniform distribution is as follows

f(x) =


1

b− a
; x ∈ [a, b]

0 ; x < a or x > b

(3.1)
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The data range of uniform distribution will be determined based on the parameters

a and b.

Statistical accuracy measures are computed for the mean and variance using

B = 1000 bootstrap samples for each bootstrap technique. Efron and Tibshirani

[40] claim that the estimation of standard error tends not to need more than 200

replications, but confidence interval construction requires 1000 replications. An

original sample of size n is generated from Uniform (2,3), and then applied different

bootstrap techniques B = 1000 times. We compute the mean and variance for each

bootstrap sample. Then, measures of statistical accuracy are estimated for the mean

and variance based on different bootstrap methods, as discussed in Section 2.4. We

repeat this procedure with different original sample sizes n = 5, 25, 100, 200, 500.

For each sample size, we considered the same data sets from Uniform(2,3) with all

bootstrap methods. The estimation results of statistical accuracy measures using

different bootstrap methods for the mean and variance are shown in Tables 3.2 and

3.3, respectively. Note, the bootstrap samples for each method have the same size as

the original sample. Also, the parameters of the uniform distribution are estimated

using the method of moment estimation (MME) when applying PP-B and PB.

We begin by comparing the estimation results of statistical accuracy measures

for the mean based on different bootstrap methods. PP-B has the largest value of

the standard error when n = 25, 100, otherwise NPI-B provides a larger standard

error value compared to the other bootstrap methods. PB gives the smallest value of

the standard error in all cases, except for n = 500, where EB has the smallest value.

The absolute value of bias for NPI-B is larger than for PP-B in all cases except

when n = 5, 500, where PP-B has a larger value. PP-B has the smallest absolute

value of bias when n = 100, 200, otherwise PB and EB have a smaller absolute bias

value. PB provides a smaller absolute bias value than EB in all cases except when

n = 5, 500. The RMSE and MAE of PP-B are smaller than those of NPI-B when

n = 5, 200, 500. However, the RMSE and MAE values associated with PB and EB

are smaller compared to the other bootstrap methods.

We also compare the estimation results of statistical accuracy measures for the

variance based on different bootstrap methods. PB and EB generally produce
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method measures n = 5 n = 25 n = 100 n = 200 n = 500

PP-B

ŝeB 0.1524 0.0820 0.0370 0.0259 0.0177

bias -0.0042 -0.0016 -0.00029 -0.000001 -0.00031

RMSE 0.1525 0.0820 0.0370 0.0259 0.0177

MAE 0.1209 0.0650 0.0298 0.0207 0.0142

NPI-B

ŝeB 0.1702 0.0799 0.0369 0.0267 0.0181

bias -0.0025 -0.0038 -0.0004 -0.0003 0.0002

RMSE 0.1702 0.0800 0.0369 0.0267 0.0181

MAE 0.1390 0.0642 0.0296 0.0215 0.0145

PB

ŝeB 0.1176 0.0588 0.0264 0.0185 0.0125

bias -0.0026 -0.0008 -0.00034 -0.0001 -0.00028

RMSE 0.1176 0.0588 0.0264 0.0185 0.0125

MAE 0.0946 0.0472 0.02131 0.0148 0.0100

EB

ŝeB 0.1181 0.0589 0.0266 0.0191 0.0122

bias -0.00004 0.0014 0.0013 0.0004 0.00004

RMSE 0.1181 0.0589 0.0266 0.0191 0.0122

MAE 0.0974 0.0474 0.02126 0.0154 0.0099

Table 3.2: The statistical accuracy measures for the bootstrap sample mean when

the original sample was from Uniform(2,3).

smaller values of statistical accuracy than PP-B and NPI-B. This is because PB

and EB are sampled individually instead of being added to the sample data set,

resulting in lower variation than PP-B and NPI-B samples. Statistical accuracy

measures with smaller values are desirable for estimators. NPI-B gives the largest

value of the standard error in all cases, except for n = 25, where PP-B has the

largest value. The PP-B method has the smallest value of the standard error when

n = 5, otherwise PB and EB have a smaller standard error value compared to the

other bootstrap methods. The absolute value of bias for PP-B is the largest for all
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method measures n = 5 n = 25 n = 100 n = 200 n = 500

PP-B

ŝeB 0.03252 0.0203 0.0087 0.0064 0.0046

bias -0.0254 -0.0058 -0.00083 -0.0006 -0.00033

RMSE 0.0412 0.0211 0.0087 0.0064 0.0046

MAE 0.0352 0.0171 0.0070 0.0051 0.0037

NPI-B

ŝeB 0.0538 0.0202 0.0094 0.0071 0.0048

bias -0.0026 -0.0007 0.00081 0.0005 0.00013

RMSE 0.0539 0.0202 0.0094 0.0071 0.0048

MAE 0.0445 0.0161 0.0075 0.0057 0.0038

PB

ŝeB 0.03253 0.0155 0.0063 0.0045 0.00328

bias -0.0144 -0.0029 -0.0003 -0.0002 -0.00018

RMSE 0.0355 0.0158 0.0063 0.0045 0.0033

MAE 0.0291 0.0126 0.0050 0.0036 0.0026

EB

ŝeB 0.0376 0.0142 0.0065 0.0047 0.00336

bias -0.0161 -0.0042 -0.0007 -0.0003 -0.00027

RMSE 0.0409 0.0148 0.0065 0.0047 0.0034

MAE 0.0324 0.0119 0.0051 0.0038 0.0027

Table 3.3: The statistical accuracy measures for the bootstrap sample variance when

the original sample was from Uniform(2,3).

cases compared to the other bootstrap methods. PB has smaller absolute bias values

in all cases except when n = 25, 500, where NPI-B provides a smaller value. The

values of RMSE and MAE in NPI-B are largest for all cases except when n = 25,

where PP-B has the largest value. However, PB and EB produce smaller RMSE

and MAE values than other bootstrap methods.

We repeated this experiment with PP-B and PB, but the parameters of uniform

distribution are estimated using maximum likelihood estimation (MLE). Table 3.4

shows the estimation results of statistical accuracy measures for the mean and vari-
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(a) mean

method measures n = 5 n = 25 n = 100 n = 200 n = 500

PP-B

ŝeB 0.0939 0.0548 0.0281 0.0195 0.0127

bias 0.0888 -0.0057 -0.0156 -0.0149 0.0030

RMSE 0.1292 0.0551 0.0321 0.0245 0.0130

MAE 0.1064 0.0441 0.0255 0.0198 0.0105

PB

ŝeB 0.0939 0.0548 0.0281 0.0195 0.0127

bias 0.0888 -0.0057 -0.0156 -0.0149 0.0030

RMSE 0.1292 0.0551 0.0321 0.0245 0.0130

MAE 0.1064 0.0441 0.0255 0.0198 0.0105

(b) variance

method measures n = 5 n = 25 n = 100 n = 200 n = 500

PP-B

ŝeB 0.0208 0.0135 0.0071 0.0050 0.0033

bias -0.0386 -0.0141 0.0086 0.0077 0.0021

RMSE 0.0438 0.0195 0.0112 0.0092 0.0040

MAE 0.0393 0.0163 0.0093 0.0080 0.0032

PB

ŝeB 0.0208 0.0135 0.0071 0.0050 0.0033

bias -0.0386 -0.0141 0.0086 0.0077 0.0021

RMSE 0.0438 0.0195 0.0112 0.0092 0.0040

MAE 0.0393 0.0163 0.0093 0.0080 0.0032

Table 3.4: The statistical accuracy measures for the bootstrap sample mean and

variance when the original sample was from Uniform(2,3).

ance using PP-B and PB based on MLE. It is apparent from the results that PP-B

and PB have exactly the same results in all cases of the mean and variance with

different measures of statistical accuracy. A uniform distribution is characterized by

two parameters which can be estimated from the minimum and maximum values

of data based on the MLE method. In the PP-B procedure, we add the sampled
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observation to the data and re-estimate the parameters in order to sample the next

observation. The parameters of uniform distribution will not be changed in PP-B, as

a result of using the MLE method to re-estimate the parameters after each sampled

observation. This occurs due to each sampled observation being restricted between

the minimum and maximum values of data and adding this drawn observation to

the data set does not change the parameters of uniform distribution. Therefore,

the PP-B and PB methods have the same bootstrap samples due to they have the

same parameters and we use the same seeds to generate different bootstrap methods.

However, the MME does not make much difference for the PB method as it provides

parameter estimation close to the MLE method, in particular for large sample sizes.

3.3.2 BCa confidence interval

We employ confidence intervals to evaluate different bootstrap methods for estima-

tion. A detailed discussion of bootstrap confidence intervals was given in Section 2.5.

There are several methods for constructing confidence intervals, each different in in-

dividual assumptions and the level of difficulty of computation. They become more

complicated in calculations when the assumptions are lessened. The BCa interval

in Equation (2.27) is chosen to compare different bootstrap methods because it has

a higher order of accuracy and transformation respecting [40]. A Beta distribution

with parameters α and β is used in the first scenario as an example of a distribution

with finite support. The probability density function of the Beta distribution is as

follows

f(x) =
1

β(α, β)
xα−1(1− x)β−1 ; x ∈ [0, 1] (3.2)

The simulation study is conducted to find the coverage proportion and average

width of confidence intervals for the mean, variance and median. In this study, we

use Beta(8,2) with different original sample sizes n = 50, 100, 200, 400 at confidence

levels 90% and 95%. We generate an original sample of size n from Beta(8,2) and

then apply different bootstrap methods B = 1000 times. It is important to note that

the bootstrap samples for each method are the same size as the original samples.

The statistics are computed for each bootstrap sample to construct BCa intervals

using Equation (2.27). Then, we discover which BCa confidence intervals include the
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true statistics of the Beta(8,2) distribution. This procedure is repeated N = 1000

times in order to find the coverage proportions of different bootstrap methods. The

performance assessment of each bootstrap method is based on two criteria: coverage

proportion and the average width of the intervals. It is desirable to have a proportion

of coverage that is close to these advertised confidence levels with a smaller average

width of intervals.

Table 3.5 presents the coverage proportions and average interval widths for the

mean, variance, and median based on the four bootstrap procedures. The nota-

tion CP and AW refer to the coverage proportion and average interval widths,

respectively. The NPI-B method produces the largest average width of confidence

intervals in all cases for these three statistics, followed by the PP-B method. As

a result, over-coverage occurs in all cases of the NPI-B method, as well as for the

mean and variance in the PP-B method. The sampling methods in PP-B and NPI-

B, which add a sampled observation to the data set before sampling the next one,

leads to more variation in the bootstrap samples, as discussed in Section 3.2. The

greater variability in the sample produces wider intervals, so as a result PP-B and

NPI-B lead to wider confidence intervals than other bootstrap methods. The NPI-B

method produces a wider average width of intervals than the PP-B method when

the sample size and confidence level of both methods are equal. We conclude that

the NPI-B method has more variation than the PP-B method, as we had expected,

due to the assumption of a parametric model in the PP-B method. The NPI-B

method does not use an assumed parametric model, leading to greater variability

compared to the PP-B method.

The method that has a coverage proportions closer to nominal coverage proba-

bility is the preferred one. PB and EB have coverage that is closer to the presumed

coverage probabilities with narrower intervals on average than NPI-B and PP-B for

the mean and variance. For the variance, the PB method achieved the best coverage

with a nominal coverage probability of 0.95 when n = 400, and 90% when n = 50.

EB gives a result of 5.1% under-coverage below the nominal level of 90% for the vari-

ance when n = 50. Regarding the median, the results for the PB method were far

worse for under-coverage than the other bootstrap methods. The EB method pro-
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(a) mean

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9890 0.9930 0.9940 0.9900 0.9720 0.9760 0.9810 0.9680

AW 0.0946 0.0669 0.0473 0.0334 0.0790 0.0561 0.0397 0.0280

NPI-B
CP 0.9950 0.9980 0.9940 0.9930 0.9820 0.9850 0.9820 0.9760

AW 0.1046 0.0710 0.0488 0.0339 0.0865 0.0592 0.0409 0.0285

PB
CP 0.9390 0.9380 0.9550 0.9430 0.8810 0.9010 0.9060 0.9050

AW 0.0668 0.0474 0.0334 0.0237 0.0561 0.0398 0.0281 0.0199

EB
CP 0.9340 0.9460 0.9580 0.9420 0.8800 0.8960 0.9060 0.9030

AW 0.0660 0.0471 0.0332 0.0236 0.0555 0.0395 0.0280 0.0198

(b) variance

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9900 0.9870 0.9910 0.9920 0.9670 0.9630 0.9800 0.9800

AW 0.0227 0.0147 0.0097 0.0066 0.0184 0.0120 0.0081 0.0055

NPI-B
CP 0.9990 0.9980 0.9980 0.9950 0.9970 0.9940 0.9910 0.9860

AW 0.0303 0.0183 0.0114 0.0074 0.0225 0.0140 0.0091 0.0060

PB
CP 0.9480 0.9410 0.9520 0.9500 0.9000 0.8990 0.9040 0.9020

AW 0.0140 0.0096 0.0066 0.0046 0.0116 0.0080 0.0055 0.0038

EB
CP 0.9170 0.9270 0.9420 0.9430 0.8490 0.8720 0.8920 0.8880

AW 0.0129 0.0093 0.0065 0.0046 0.0108 0.0078 0.0054 0.0038

(c) median

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9260 0.9210 0.9320 0.9200 0.8760 0.8680 0.8740 0.8560

AW 0.1075 0.0768 0.0541 0.0383 0.0909 0.0649 0.0458 0.0324

NPI-B
CP 0.9910 0.9890 0.9880 0.9930 0.9750 0.9740 0.9740 0.9790

AW 0.1211 0.0858 0.0608 0.0427 0.1017 0.0718 0.0511 0.0359

PB
CP 0.8350 0.8330 0.8500 0.8220 0.7590 0.7590 0.7700 0.7420

AW 0.0806 0.0579 0.0411 0.0290 0.0687 0.0493 0.0349 0.0246

EB
CP 0.9400 0.9380 0.9420 0.9370 0.8940 0.8810 0.8980 0.8850

AW 0.0852 0.0603 0.0429 0.0302 0.0719 0.0506 0.0360 0.0254

Table 3.5: Coverage of 100(1 − 2α)% confidence interval using BCa for different

statistics when the original sample from Beta(8,2).
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vides the best results for the median because its coverage is closer to the presumed

coverage probabilities, followed by the PP-B method. PP-B has under-coverage re-

sults in all cases of the median, even though on average it has wide intervals. In

Section 3.5, we will discuss in detail why both the PP-B and PB methods show

under-coverage in all cases of the median. The PP-B method does not perform well

in confidence intervals, as it is not developed for estimating population characteris-

tics, but for predictive inference. It is explicitly aimed at predictive inference, with

variability in different bootstrap samples reflecting uncertainty in prediction in line

with the NPI-B method.

3.3.3 LC and MT prediction intervals

In this section, a comparison of PP-B with other bootstrap methods is carried out

using prediction intervals in order to investigate their performance in prediction in-

ference. A brief overview of prediction intervals based on the bootstrap technique is

presented in Section 2.6. The percentile prediction intervals are constructed based on

the LC and MT methods. Here we will draw the past and future samples separately

as done by Mojirsheibani and Tibshirani [60], where both samples are independent

and identically distributed. A coverage proportion of the percentile prediction inter-

val for the mean of m future observations is studied using the following processes:

1. Draw an original sample of size n from specific distribution to be the past

sample, giving X = (x1, . . . , xn). Then, draw an original sample of size m

from the same distribution to be the future sample, giving Y = (y1, . . . , ym).

The samples X and Y are independent and identically distributed.

2. Compute the observed mean of the m future observations ȳm =
∑m

i=1 yi/m.

3. Draw B bootstrap samples of size m from past sample. Then, calculate the

mean for each bootstrap sample ȳ∗m to obtain a list of ȳ∗m(j) for j = 1, . . . , B.

4. Construct an 100(1 − 2α)% prediction interval for the mean of m future ob-

servations ȳm based on the LC and MT methods:
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(a) Lu and Chang (LC) method: lower endpoint is the α×Bth value in the

ordered list of ȳ∗m(j) and the upper endpoint is the (1 − α) × Bth value

in this list (use the largest integer if these values are not integer).

(b) Mojirsheibani and Tibshirani (MT) method:

Lower endpoint (θ̂lo): F̂−1
m

[
Φ(z(α)(1 +m/n)1/2)

]
= F̂−1

m [α1] is the α1 ×

Bth value in the ordered list of ȳ∗m(j).

Upper endpoint (θ̂up): F̂
−1
m

[
Φ(z(1−α)(1 +m/n)1/2)

]
= F̂−1

m [α2] is the α2×

Bth value in the ordered list of ȳ∗m(j).

If α1 ×B or α2 ×B are not integer, use the largest integer.

5. Determine if this interval contains the mean ȳm of m future observations in

Step 2 and compute the width of the prediction interval for both methods.

6. Steps 1-5 are repeated N times to find the coverage proportion (number of

times out of N that interval captures its corresponding future sample mean)

and the average interval widths.

In the case of a single future observation (m = 1), the percentile prediction interval

is constructed as discussed in Section 2.6.

We conduct a simulation study as shown in the steps above to investigate the

coverage performance and average width of intervals for each bootstrap method.

The number of simulations is set equal to N = 1000 and the bootstrap methods are

applied to each past sample B = 1000 times. The percentile prediction intervals are

constructed for the mean of m = n future observations with various original sample

sizes n = 50, 100, 200, 400 from Beta(3,1) at confidence levels 90% and 95%. Table

3.6 shows the coverage proportions and average width of intervals for LC and MT

methods using different bootstrap methods. The notation CPLC and AWLC refer to

the coverage proportion and average interval widths for the LC prediction interval,

respectively. In the MT prediction interval, CPMT and AWMT represent coverage

proportion and average interval widths, respectively.

First, we compare the performance of different bootstrap methods with the LC

prediction interval. In all future sample sizes and confidence levels, the PP-B and
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Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B

CPLC 0.9510 0.9390 0.9600 0.9480 0.8950 0.8910 0.9080 0.9040

CPMT 0.9900 0.9890 0.9940 0.9940 0.9710 0.9740 0.9830 0.9750

AWLC 0.1493 0.1063 0.0755 0.0534 0.1252 0.0892 0.0634 0.0449

AWMT 0.2091 0.1484 0.1054 0.0742 0.1770 0.1256 0.0894 0.0632

NPI-B

CPLC 0.9600 0.9470 0.9660 0.9450 0.9220 0.8990 0.9180 0.9020

CPMT 0.9930 0.9920 0.9940 0.9950 0.9800 0.9810 0.9840 0.9800

AWLC 0.1574 0.1090 0.0763 0.0537 0.1317 0.0915 0.0641 0.0451

AWMT 0.2211 0.1524 0.1071 0.0750 0.1868 0.1292 0.0905 0.0635

PB

CPLC 0.8390 0.8220 0.8360 0.8300 0.7760 0.7440 0.7450 0.7510

CPMT 0.9460 0.9380 0.9540 0.9420 0.9030 0.8870 0.9120 0.9050

AWLC 0.1066 0.0753 0.0535 0.0378 0.0896 0.0634 0.0450 0.0318

AWMT 0.1478 0.1048 0.0744 0.0525 0.1258 0.0890 0.0632 0.0447

EB

CPLC 0.8380 0.8150 0.8380 0.8380 0.7630 0.7410 0.7420 0.7450

CPMT 0.9490 0.9350 0.9510 0.9420 0.8950 0.8850 0.9110 0.9030

AWLC 0.1054 0.0749 0.0533 0.0377 0.0885 0.0630 0.0449 0.0317

AWMT 0.1461 0.1041 0.0742 0.0525 0.1245 0.0884 0.0631 0.0446

Table 3.6: Coverage of 100(1 − 2α)% prediction interval for the mean of m future

observations from Beta(3,1), when m = n.

NPI-B methods provide coverage that is close to the coverage probability. Con-

versely, the coverage of PB and EB is considerably below the nominal coverage

probability for all cases irrespective of sample size and confidence level. They pro-

vide coverage proportions that are at least 11% lower than their nominal coverage

probabilities. Bootstrap methods with a predictive nature, such as PB-B and NPI-

B, perform well and provide good coverage for LC prediction intervals. PP-B has the

advantage of achieving good coverage with a narrower interval, where the average

interval widths for PP-B are smaller than those for NPI-B in all cases.

We also compare different bootstrap methods in terms of their performance based

on MT prediction intervals. The PP-B and NPI-B methods have over-coverage in all
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Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B

CPLC 0.9330 0.9360 0.9450 0.9370 0.8740 0.8840 0.8860 0.8880

CPMT 0.9360 0.9380 0.9450 0.9380 0.8760 0.8850 0.8870 0.8880

AWLC 0.6943 0.6950 0.6972 0.6979 0.6112 0.6117 0.6140 0.6135

AWMT 0.6990 0.6973 0.6984 0.6985 0.6159 0.6140 0.6152 0.6141

NPI-B

CPLC 0.9370 0.9450 0.9450 0.9460 0.8840 0.8880 0.8890 0.8870

CPMT 0.9420 0.9460 0.9470 0.9460 0.8910 0.8890 0.8920 0.8870

AWLC 0.7271 0.7095 0.7031 0.7005 0.6320 0.6220 0.6188 0.6164

AWMT 0.7333 0.7120 0.7043 0.7011 0.6369 0.6243 0.6200 0.6170

PB

CPLC 0.9330 0.9360 0.9450 0.9370 0.8740 0.8840 0.8860 0.8880

CPMT 0.9360 0.9380 0.9450 0.9380 0.8760 0.8850 0.8870 0.8880

AWLC 0.6943 0.6950 0.6972 0.6979 0.6112 0.6117 0.6140 0.6135

AWMT 0.6990 0.6973 0.6984 0.6985 0.6159 0.6140 0.6152 0.6141

EB

CPLC 0.9150 0.9330 0.9420 0.9450 0.8660 0.8760 0.8870 0.8820

CPMT 0.9170 0.9340 0.9420 0.9450 0.8700 0.8770 0.8900 0.8840

AWLC 0.6757 0.6902 0.6946 0.6957 0.6056 0.6083 0.6118 0.6120

AWMT 0.6801 0.6925 0.6958 0.6963 0.6095 0.6107 0.6131 0.6127

Table 3.7: Coverage of 100(1− 2α)% prediction interval for a single future observa-

tion from Beta(3,1), when m = 1.

cases as a result of the large average interval width in both methods. The PB and

EB methods provide coverage that is closer to the presumed coverage probabilities.

Although the MT method improves coverage for PB and EB, it is still possible to

obtain coverage closer to the coverage probability using PP-B and NPI-B with the

LC method. For example, the coverage of PP-B and NPI-B with the LC method is

closer to the nominal coverage probabilities when m = 100 than PB and EB with

the MT method.

The coverage proportion of the percentile prediction interval is studied for a

single future observation using the same past sample sizes and confidence levels.

The LC and MT methods achieve good coverage in all cases of different bootstrap
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methods as shown in Table 3.7. This occurs because the future sample size is only

one, which greatly impacts the interval width. A larger sample produces narrower

intervals, resulting in the single future observation having a greater average width

of intervals compared to the mean of m future observations in Table 3.6. The

difference of coverage between the LC and MT methods is negligible. The MT

interval in Equation (2.33) includes the term (1 +m/n)1/2, which is approximately

equal to 1 if m = 1 and n is very large. Hence, the MT method is almost the same

as the LC method, e.g. the lower and upper endpoints of the MT method when

α = 0.05 are as follows:

θ̂lo = F̂−1
m

[
Φ(z(0.05) (1 +m/n)1/2

]
≈ F̂−1

m

[
Φ(z(0.05))

]
= 0.05

θ̂up = F̂−1
m

[
Φ(z(0.95) (1 +m/n)1/2

]
≈ F̂−1

m

[
Φ(z(0.95))

]
= 0.95

where z(α) = Φ−1(α), e.g. z(0.95) = Φ−1(0.95) = 1.645. PP-B and PB have ex-

actly the same result in all cases of a single future observation with the LC and

MT methods. It happens due to the same seeds being used to generate different

bootstrap methods, which consist of only one observation in each bootstrap sample.

Also, we considered the same data sets for each sample size from Beta(3,1) with

all bootstrap methods. Consequently, both PP-B and PB have the same bootstrap

samples, resulting in the same coverage and interval average width.

3.4 Infinite support scenario

A comparison of PP-B’s performance for estimation and prediction is presented

in this section. Statistical accuracy measures and confidence intervals are used to

determine how the bootstrap methods perform in estimation. We use prediction

intervals to examine the performance of different bootstrap methods in predictive

inference. The second scenario involves distributions with infinite support such as

the Normal and Gamma distributions. With finite support, for the NPI-B method

one observation is sampled uniformly from an interval and this is possible for each

interval. In the case of infinite support, we will have one or more infinite intervals,

making it impossible to draw one observation uniformly from such intervals. To
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overcome this obstacle, Coolen and Binhimd [16] propose to use the tail of a Normal

distribution for general real-valued data, and the tail of an Exponential distribution

for non-negative real-valued data as discussed in Section 2.2.3. These assumptions

are also applied in the NPI-B method in this section.

3.4.1 Measures of statistical accuracy

The performance of different bootstrap methods with infinite support is evaluated

using statistical accuracy measures. Simulation studies are carried out to study PP-

B’s performance, and compare it with the performance of EB, PB, and NPI-B. A

normal distribution with parameters µ and σ2 is used as an example of data from a

distribution with infinite support. The probability density function of the Normal

distribution is as follows

f(x) =
1

σ
√
2π

exp

(
−1

2

(
x− µ

σ

)2
)

; x ∈ (−∞,∞) (3.3)

The bootstrap method is used for evaluating the statistical accuracy of estimators

by calculating the standard error, bias, root mean square error and mean absolute

error. We generate a sample of size n from N(0,1), and apply different bootstrap

techniques B = 1000 times. The mean and variance of each bootstrap sample

are calculated, then we estimate measures of statistical accuracy based on different

bootstrap methods. This procedure is repeated with different original sample sizes

n = 5, 25, 100, 200, 500, where all bootstrap methods are applied to the same data

sets from N(0,1) for each sample size n. In Tables 3.8 and 3.9, we present the

estimated values of statistical accuracy measures for the mean and variance based

on different bootstrap methods.

We first compare the estimation results of statistical accuracy measures for the

mean based on different bootstrap methods. NPI-B gives the largest value of the

standard error in all cases, except for n = 500, where PP-B has the largest value. PB

provides the smallest value of standard error when n = 25, 200, 500, otherwise EB

has a smaller standard error value compared to other bootstrapping methods. The

absolute value of bias for PP-B is smaller than for NPI-B in all cases except when

n = 5, 200, where NPI-B has a smaller value. The smallest absolute bias value is
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method measures n = 5 n = 25 n = 100 n = 200 n = 500

PPB

ŝeB 0.5762 0.2461 0.1209 0.0910 0.0637

bias -0.0062 0.0014 -0.0024 -0.0017 -0.0003

RMSE 0.5762 0.2461 0.1209 0.0910 0.0637

MAE 0.4510 0.1952 0.0971 0.0733 0.0511

NPI-B

ŝeB 0.7789 0.2987 0.1285 0.0923 0.0632

bias 0.0060 -0.0209 -0.0041 0.0013 -0.0005

RMSE 0.7789 0.2994 0.1286 0.0923 0.0632

MAE 0.5846 0.2360 0.1037 0.0734 0.0506

PB

ŝeB 0.4451 0.1777 0.0869 0.0647 0.0452

bias -0.0031 0.0009 -0.0020 -0.0006 -0.0005

RMSE 0.4451 0.1777 0.0869 0.0647 0.0452

MAE 0.3584 0.1417 0.0699 0.0520 0.0363

EB

ŝeB 0.3893 0.1894 0.0861 0.0658 0.0463

bias 0.0176 0.0004 0.0047 0.0004 0.0002

RMSE 0.3897 0.1894 0.0862 0.0658 0.0463

MAE 0.3137 0.1503 0.0685 0.0526 0.0368

Table 3.8: The statistical accuracy measures for the bootstrap sample mean when

the original sample was from N(0,1).

obtained by PB when n = 5, 100, while it is obtained by EB when n = 25, 200, 500.

The RMSE and MAE of PP-B are smaller than those of NPI-B in most cases.

Nevertheless, the RMSE and MAE values obtained with PB and EB are smaller

than for the other bootstrap methods. PB has the smallest RMSE and MAE values

when n = 25, 200, 500, otherwise EB gives smaller values for the RMSE and MAE.

Also, we compare the estimation results of statistical accuracy measures for the

variance using different bootstrap methods. In general, the measures of statistical

accuracy using the PB and EB have smaller values compared to PP-B and NPI-B.
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method measures n = 5 n = 25 n = 100 n = 200 n = 500

PPB

ŝeB 0.7410 0.3466 0.1577 0.1230 0.0918

bias -0.1138 -0.0291 0.0004 0.0031 -0.0011

RMSE 0.7497 0.3478 0.1577 0.1230 0.0918

MAE 0.5522 0.2725 0.1245 0.0974 0.0739

NPI-B

ŝeB 1.7035 0.6020 0.2107 0.1310 0.1058

bias 0.6073 0.2243 0.0728 0.0259 0.0282

RMSE 1.8085 0.6424 0.2229 0.1335 0.1095

MAE 1.0372 0.4524 0.1674 0.1058 0.0843

PB

ŝeB 0.6685 0.2623 0.1112 0.0869 0.0649

bias 0.0457 0.0049 0.0063 0.0042 0.00004

RMSE 0.6701 0.2623 0.1114 0.0870 0.0649

MAE 0.5146 0.2084 0.0882 0.0689 0.0520

EB

ŝeB 0.4174 0.2710 0.1152 0.0843 0.0689

bias -0.1895 -0.0436 -0.0054 -0.0050 -0.0006

RMSE 0.4584 0.2745 0.1153 0.0844 0.0689

MAE 0.3741 0.2232 0.0923 0.0675 0.0548

Table 3.9: The statistical accuracy measures for the bootstrap sample variance when

the original sample was from N(0,1).

The reason for this is that PB and EB sample all observations based on the original

data only, leading to lower variation than PP-B and NPI-B samples. The smaller

values of statistical accuracy measures are regarded as positive characteristics of

estimators. The NPI-B method gives the largest value of the standard error in all

cases, followed by PP-B. The smallest standard error value is obtained using PB

when n = 25, 100, 500, otherwise EB has the smallest value of standard error. The

absolute value of bias for PP-B is smaller than for NPI-B in all cases, also it has

the smallest absolute bias value when n = 100, 200. The PB has a smaller absolute
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value of bias than EB in all cases except when n = 100, where EB has a smaller

value. The PP-B method has smaller values of RMSE and MAE than the NPI-B

method in all cases. However, the RMSE and MAE values obtained with PB and

EB are smaller than those obtained with other bootstrap methods.

3.4.2 BCa confidence interval

The BCa interval is used to evaluate the performance of different bootstrap meth-

ods in the case of infinite support. We conduct a simulation study to find the

coverage proportion and average width of intervals for three statistics: mean, vari-

ance, and median. This study uses N(3,4) with a different original sample size

n = 50, 100, 200, 400 and confidence levels 95% and 90%. We generate N = 1000

data sets from a Normal distribution with mean 3 and variance 4 with a specific sam-

ple size n. Then, different bootstrap methods are applied to each data set B = 1000

times and compute the statistics of the bootstrap samples. Following this, we con-

struct 1000 BCa intervals using Equation (2.27). Finally, we identify the confidence

intervals that include the true statistics of N(3,4) in order to determine the coverage

proportions of different bootstrap methods. The coverage proportions and average

width of intervals for several statistics using different bootstrap methods are outlined

in Table 3.10.

PP-B and NPI-B intervals lead to wider confidence intervals than the other

bootstrap methods due to the greater variability in their bootstrap samples. Con-

sequently, the NPI-B method has over-coverage in all cases of the three statistics,

as well as for the mean and variance in the PP-B method. The method that has a

coverage proportion closer to nominal coverage probability with a smaller average

width of intervals is preferred. PB and EB are capable of providing good coverage

with smaller average interval widths for the mean and variance than NPI-B and PP-

B. In the case of the mean, the EB method has a nominal coverage probability 0.95

when n = 200. The PB method has the best coverage for most cases of variance.

Regarding the median, the EB method provides the best results because its cover-

age is closer to the nominal coverage probabilities, followed by the PP-B method.

The over-coverage tendency associated with PP-B is disappearing in all cases of the
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(a) mean

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9970 0.9970 0.9960 0.9940 0.9800 0.9840 0.9800 0.9780

AW 1.5540 1.1028 0.7802 0.5512 1.3004 0.9244 0.6549 0.4634

NPI-B
CP 0.9970 0.9980 0.9970 0.9950 0.9860 0.9870 0.9820 0.9840

AW 1.6698 1.1508 0.7998 0.5596 1.3932 0.9639 0.6714 0.4700

PB
CP 0.9520 0.9520 0.9480 0.9460 0.9040 0.9070 0.8990 0.8900

AW 1.1060 0.7810 0.5523 0.3900 0.9296 0.6568 0.4643 0.3282

EB
CP 0.9480 0.9520 0.9500 0.9440 0.9050 0.9060 0.9050 0.8940

AW 1.0949 0.7782 0.5512 0.3898 0.9211 0.6554 0.4634 0.3277

(b) variance

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9890 0.9900 0.9910 0.9930 0.9670 0.9750 0.9760 0.9840

AW 5.3188 3.4592 2.3272 1.6015 4.3417 2.8529 1.9382 1.3407

NPI-B
CP 0.9910 0.9940 0.9940 0.9960 0.9770 0.9790 0.9840 0.9750

AW 5.1264 3.4615 2.3723 1.6330 4.0912 2.8167 1.9559 1.3581

PB
CP 0.9420 0.9550 0.9520 0.9480 0.8970 0.9200 0.8940 0.8880

AW 3.3875 2.3066 1.5983 1.1157 2.8162 1.9270 1.3398 0.9364

EB
CP 0.9160 0.9450 0.9440 0.9430 0.8640 0.9070 0.8780 0.8850

AW 3.2190 2.2604 1.5830 1.1102 2.6974 1.8928 1.3291 0.9319

(c) median

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9170 0.9110 0.9240 0.9150 0.8580 0.8590 0.8430 0.8450

AW 1.7279 1.2230 0.8627 0.6109 1.4576 1.0367 0.7309 0.5168

NPI-B
CP 0.9920 0.9930 0.9940 0.9950 0.9790 0.9770 0.9750 0.9790

AW 1.9741 1.3860 0.9810 0.6925 1.6492 1.1610 0.8254 0.5819

PB
CP 0.8320 0.8230 0.8090 0.8140 0.7580 0.7310 0.7270 0.7440

AW 1.2991 0.9182 0.6526 0.4642 1.1061 0.7835 0.5559 0.3946

EB
CP 0.9460 0.9420 0.9430 0.9480 0.9080 0.9000 0.8930 0.8840

AW 1.3717 0.9689 0.6904 0.4888 1.1509 0.8141 0.5797 0.4109

Table 3.10: Coverage of 100(1 − 2α)% confidence interval using BCa for different

statistics with the original sample from N(3,4).
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median, even though on average it has wide intervals. The PB method has worse

results for under-coverage than the other bootstrap methods for the median.

3.4.3 LC and MT prediction intervals

In this section, we evaluate the prediction performance of different bootstrap tech-

niques using prediction intervals based on the LC and MT methods in case of infinite

support. We consider the Gamma distribution with two parameters α and β as an

example of a distribution with infinite support. The probability density function of

the Gamma distribution is as follows

f(x) =
βα

Γ(α)
xα−1e−βx ; x ∈ (0,∞) (3.4)

The simulation study is performed to investigate the proportion of coverage and

the average interval widths for each bootstrap method. A past sample of size n

and a future sample of size m are generated independently from Gamma(6,3), and

the mean of the m future observations is then determined. For each bootstrap

method, we draw B = 1000 bootstrap samples of size m from the past sample

and compute the mean of each bootstrap sample. Following this, we use Equations

(2.32) and (2.33) to compute the percentile prediction interval for the mean of m

future observations based on the LC and MT methods. We then determine which

prediction intervals include the observed mean of the m future observations. This

procedure is performed N = 1000 times in order to see the coverage proportion and

the average interval widths. In this study, we conduct simulations with sample sizes

n = 50, 100, 200, 400 at confidence levels 95% and 90%. In Table 3.11, we present

the coverage proportions and average interval widths using the LC and MT methods

based on the different bootstrap methods.

We first compare the performance of different bootstrap methods with the LC

prediction interval in terms of coverage proportion and average width of intervals.

PP-B and NPI-B have good coverage results for the LC method, as their coverage

proportions are close to the nominal coverage probabilities. PP-B has the advantage

of providing a smaller average interval width than NPI-B for all future sample sizes

and confidence levels. In contrast, the results of PB and EB are worse in undercov-
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Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B

CPLC 0.9270 0.9330 0.9330 0.9420 0.8770 0.8790 0.8810 0.8890

CPMT 0.9830 0.9860 0.9870 0.9920 0.9630 0.9660 0.9720 0.9740

AWLC 0.6289 0.4469 0.3172 0.2243 0.5245 0.3748 0.2663 0.1884

AWMT 0.8947 0.6314 0.4438 0.3135 0.7506 0.5321 0.3757 0.2657

NPI-B

CPLC 0.9580 0.9440 0.9380 0.9510 0.9050 0.9050 0.8990 0.8950

CPMT 0.9930 0.9940 0.9890 0.9930 0.9820 0.9730 0.9760 0.9790

AWLC 0.7416 0.4927 0.3344 0.2312 0.6087 0.4089 0.2797 0.1940

AWMT 1.1587 0.7270 0.4786 0.3257 0.9137 0.5933 0.3994 0.2743

PB

CPLC 0.8030 0.8160 0.8240 0.8280 0.7270 0.7460 0.7520 0.7460

CPMT 0.9240 0.9250 0.9310 0.9390 0.8840 0.8820 0.8790 0.8830

AWLC 0.4473 0.3176 0.2243 0.1589 0.3759 0.2668 0.1886 0.1337

AWMT 0.6219 0.4422 0.3118 0.2211 0.5288 0.3754 0.2653 0.1877

EB

CPLC 0.8100 0.8100 0.8300 0.8290 0.7270 0.7450 0.7470 0.7550

CPMT 0.9180 0.9180 0.9290 0.9380 0.8730 0.8720 0.8870 0.8860

AWLC 0.4431 0.3150 0.2237 0.1587 0.3724 0.2648 0.1882 0.1334

AWMT 0.6152 0.4387 0.3116 0.2210 0.5225 0.3726 0.2647 0.1875

Table 3.11: Coverage of 100(1− 2α)% prediction interval for the mean of m future

observations from Gamma(6,3), when m = n.

erage for all cases of the LC method regardless of sample size and confidence level.

In comparison with their nominal coverage probabilities, they provide coverage that

is at least 12% lower than the nominal coverage probability of 0.95, and they are at

least 14.5% below the 0.90 nominal coverage probability. For LC prediction inter-

vals, a predictive bootstrap method, such as PB-B and NPI-B, only performs well

and produces good coverage.

Also, we compare the performance of different bootstrap methods using the MT

prediction interval. PP-B and NPI-B have over-coverage for all cases of the MT

method arising from a larger average width of the prediction intervals. PB and EB

produce coverage close to the advertised levels of confidence with the MT method.
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Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B

CPLC 0.9330 0.9400 0.9450 0.9410 0.8720 0.8850 0.8770 0.8900

CPMT 0.9350 0.9410 0.9470 0.9410 0.8760 0.8870 0.8780 0.8900

AWLC 3.1217 3.1253 3.1326 3.1339 2.6093 2.6147 2.6184 2.6212

AWMT 3.1527 3.1415 3.1408 3.1380 2.6349 2.6281 2.6250 2.6245

NPI-B

CPLC 0.9510 0.9460 0.9490 0.9410 0.8960 0.8980 0.8890 0.9000

CPMT 0.9520 0.9480 0.9490 0.9420 0.9000 0.8980 0.8900 0.9000

AWLC 3.4439 3.2756 3.2166 3.1693 2.7613 2.6787 2.6528 2.6394

AWMT 3.4899 3.2954 3.2260 3.1733 2.7932 2.6941 2.6598 2.6428

PB

CPLC 0.9330 0.9400 0.9450 0.9410 0.8720 0.8850 0.8770 0.8900

CPMT 0.9350 0.9410 0.9470 0.9410 0.8760 0.8870 0.8780 0.8900

AWLC 3.1217 3.1253 3.1326 3.1339 2.6093 2.6147 2.6184 2.6212

AWMT 3.1527 3.1415 3.1408 3.1380 2.6349 2.6281 2.6250 2.6245

EB

CPLC 0.9220 0.9350 0.9430 0.9420 0.8730 0.8830 0.8810 0.8950

CPMT 0.9280 0.9360 0.9440 0.9420 0.8770 0.8840 0.8810 0.8970

AWLC 3.0576 3.1101 3.1305 3.1278 2.6044 2.6029 2.6138 2.6206

AWMT 3.0928 3.1249 3.1389 3.1320 2.6242 2.6163 2.6217 2.6239

Table 3.12: Coverage of 100(1 − 2α)% prediction interval for a single future obser-

vations from Gamma(6,3), when m = 1.

It is possible that the coverage of PP-B and NPI-B with the LC method is closer

to the nominal coverage probability than PB and EB with the MT method. For

example, PP-B and NPI-B have closer coverage with the LC method to nominal

coverage probabilities for m = 400 than PB and EB with the MT method.

A single future observation is considered to study the coverage proportion and

average interval width of the percentile prediction interval based on LC and MT

methods using the same past sample sizes and confidence levels. The LC and MT

methods achieve good coverage in all cases of a signal future observation with dif-

ferent bootstrap methods as shown in Table 3.12. A smaller sample produces wider

intervals, leading to the single future observation having a greater average width of
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intervals compared to the mean of m future observations in Table 3.11. The PP-B

and PB methods have exactly the same coverage and average interval widths in all

cases of the LC and MT methods. The reason for this is that both methods have

the same bootstrap sample as they consider a single observation in each bootstrap

sample, also the same seeds are used for generating different bootstrap methods.

3.5 Percentile confidence interval

The BCa method was used to compare different bootstrap approaches through

simulations in order to evaluate their performance in estimation. The compari-

son was conducted using the Beta(8,2) and N(4,3) distributions to simulate data.

The greater variability in the bootstrap samples of PP-B and NPI-B caused wider

intervals than other bootstrap methods. A wide interval leads to over-coverage re-

sults in all cases when using NPI-B. It is surprising that PP-B shows sometimes

under-coverage results despite having wide intervals. Efron [40] recommends the

BCa interval method for general use, in particular for nonparametric problems. The

PB method performed poorly with under-coverage for all cases of the median with

Beta(8,2) and N(3,4). The PP-B method achieves much better median coverage

than the PB method, but it still shows under-coverage despite its wide intervals.

The under-coverage occurs due to the BCa method tending to produce large values

of bias-correction when PP-B and PB are used for the median. The endpoints of

the BCa interval are determined by the percentiles of the bootstrap distribution de-

pending on bias-correction and acceleration values. The large bias-correction values

strongly influence the BCa interval endpoints in Equation (2.27).

We study PP-B and PB with the BC interval, which is a special case of the BCa

method when the acceleration value is zero. The aim of this study is to discover if

the bias-correction value is indeed responsible for under-coverage of PP-B and PB

for the median with Beta(8,2) and N(3,4). Table 3.13 presents the result of coverage

and average interval widths using PP-B and PB with BC method. It should be noted

that the median results for PP-B and PB using the BC method are exactly the same

as those using the BCa method in Tables 3.5 and 3.10. The acceleration value for
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(a) Beta(8,2)

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9260 0.9210 0.9320 0.9200 0.8760 0.8680 0.8740 0.8560

AW 0.1075 0.0768 0.0541 0.0383 0.0909 0.0649 0.0458 0.0324

PB
CP 0.8350 0.8330 0.8500 0.8220 0.7590 0.7590 0.7700 0.7420

AW 0.0806 0.0579 0.0411 0.0290 0.0687 0.0493 0.0349 0.0246

(b) N(3,4)

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9170 0.9110 0.9240 0.9150 0.8580 0.8590 0.8430 0.8450

AW 1.7279 1.2230 0.8627 0.6109 1.4576 1.0367 0.7309 0.5168

PB
CP 0.8320 0.8230 0.8090 0.8140 0.7580 0.7310 0.7270 0.7440

AW 1.2991 0.9182 0.6526 0.4642 1.1061 0.7835 0.5559 0.3946

Table 3.13: Coverage of 100(1− 2α)% confidence interval using BC method for the

median with original sample from Beta(8,2) and N(3,4).

the median is zero, and therefore the endpoints of the BCa and BC intervals are

the same as discussed in Section 2.5. We also use the same original sample sizes for

both interval methods and the same seeds are applied for all bootstrap methods. It

is important to note that the under-coverage for PP-B and PB with BCa method is

not only restricted to the median. In Appendix A, we present the simulation results

for the BCa method with Exp(4). The results show that PP-B and PB have worse

undercoverage results for all cases of variance, as well as for the median. The BC

interval was also studied in Appendix A using PP-B and PB with Exp(4) in order to

determine whether bias-correction is the cause of undercoverage. The BC methods

applied to PP-B and PB are under-coverage for all cases of variance and median.

Note, the acceleration value for the variance is not zero, and therefore the endpoints

of the BCa and BC intervals are not the same.



3.5. Percentile confidence interval 54

Chernick and LaBudde [9] discuss bootstrap confidence intervals for estimating

variance in a nonparametric setting. They examine the coverage of different con-

fidence intervals using the EB method for different sample sizes and distributions.

Through extensive simulations, they have shown that the percentile method per-

forms nearly and sometimes better than the BCa method. The percentile interval

endpoints are given by the percentiles of the bootstrap distribution directly. The

BCa interval endpoints are also determined by the percentiles of the bootstrap dis-

tribution, but not necessarily the same ones as those for the percentile interval. The

percentiles used for the BCa interval are based on two values: acceleration and bias-

correction. The BCa interval provides the same estimate of the percentile interval

when both acceleration and bias-correction are equal to zero. We use the percentile

interval in Equation (2.17) to study the performance of different bootstrap methods

and compare it with the BCa interval. Simulations are conducted using the same

original samples of Beta(8,2) and N(3,4) that were considered in the BCa interval

studies. Tables 3.14 and 3.15 show the results of coverage and average interval

widths for several statistics using Beta(8,2) and N(3,4), respectively.

There is a clear difference between the two interval methods with PP-B and

PB for the median of both distributions. The BCa method shows under-coverage

results for all cases of the median with Beta (8,2) and N(3,4). Conversely, PP-B and

PB have over-coverage results for all cases of the median in the percentile method

with Beta (8,2) and N(3,4). The percentile method produced similar results as the

BCa method for the mean and variance with both distributions, also for the median

when using NPI-B and EB. This occurs because the BCa method has smaller values

of bias-correction and acceleration, resulting in the endpoints of the BCa interval

being close to the percentile interval. Additionally, the simulation results for the

percentile method with Exp(4) are presented in Appendix A. The results show that

PP-B and PB have over-coverage for all cases of variance and median in contrast to

the BCa method.
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(a) mean

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9850 0.9910 0.9930 0.9910 0.9670 0.9750 0.9820 0.9700

AW 0.0933 0.0665 0.0471 0.0333 0.0780 0.0558 0.0396 0.0280

NPI-B
CP 0.9970 0.9970 0.9950 0.9930 0.9860 0.9850 0.9840 0.9690

AW 0.1089 0.0724 0.0492 0.0341 0.0901 0.0605 0.0412 0.0286

PB
CP 0.9430 0.9410 0.9540 0.9440 0.8800 0.8980 0.9080 0.9050

AW 0.0664 0.0472 0.0334 0.0236 0.0558 0.0397 0.0281 0.0198

EB
CP 0.9350 0.9430 0.9580 0.9460 0.8800 0.9030 0.9090 0.9040

AW 0.0656 0.0469 0.0332 0.0235 0.0552 0.0395 0.0279 0.0198

(b) variance

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9820 0.9900 0.9930 0.9940 0.9590 0.9770 0.9800 0.9740

AW 0.0175 0.0126 0.0090 0.0063 0.0144 0.0105 0.0075 0.0053

NPI-B
CP 0.9980 0.9960 0.9960 0.9950 0.9920 0.9860 0.9870 0.9870

AW 0.0390 0.0227 0.0134 0.0082 0.0308 0.0181 0.0108 0.0067

PB
CP 0.9450 0.9410 0.9520 0.9520 0.9000 0.9020 0.9020 0.9000

AW 0.0128 0.0091 0.0064 0.0045 0.0108 0.0076 0.0054 0.0038

EB
CP 0.8820 0.9320 0.9380 0.9450 0.8310 0.8750 0.8880 0.8870

AW 0.0117 0.0087 0.0063 0.0045 0.0099 0.0074 0.0053 0.0037

(c) median

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9930 0.9990 0.9950 0.9980 0.9850 0.9870 0.9910 0.9840

AW 0.1086 0.0777 0.0550 0.0389 0.0911 0.0652 0.0462 0.0327

NPI-B
CP 0.9910 0.9900 0.9880 0.9910 0.9700 0.9730 0.9720 0.9810

AW 0.1210 0.0857 0.0608 0.0427 0.1017 0.0719 0.0512 0.0359

PB
CP 0.9770 0.9830 0.9810 0.9770 0.9430 0.9510 0.9620 0.9430

AW 0.0838 0.0600 0.0426 0.0301 0.0705 0.0505 0.0358 0.0253

EB
CP 0.9470 0.9380 0.9480 0.9420 0.8990 0.8860 0.8950 0.8830

AW 0.0848 0.0601 0.0428 0.0302 0.0718 0.0504 0.0360 0.0253

Table 3.14: Coverage of 100(1 − 2α)% confidence interval using percentile method

for different statistics with original sample from Beta(8,2).
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(a) mean

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9960 0.9960 0.9940 0.9940 0.9800 0.9830 0.9770 0.9790

AW 1.5543 1.1027 0.7798 0.5511 1.2996 0.9240 0.6545 0.4632

NPI-B
CP 0.9970 0.9990 0.9960 0.9950 0.9860 0.9890 0.9800 0.9850

AW 1.6698 1.1508 0.7997 0.5599 1.3932 0.9634 0.6709 0.47696

PB
CP 0.9530 0.9560 0.9500 0.9440 0.9080 0.9030 0.9070 0.8930

AW 1.1058 0.7808 0.5524 0.3900 0.9295 0.6566 0.4641 0.3281

EB
CP 0.9520 0.9520 0.9560 0.9470 0.9090 0.9020 0.9020 0.8960

AW 1.0940 0.7778 0.5510 0.3899 0.9199 0.6548 0.4633 0.3276

(b) variance

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9850 0.9910 0.9930 0.9920 0.9620 0.9780 0.9770 0.9730

AW 4.3649 3.1047 2.2035 1.5569 3.6152 2.5903 1.8443 1.3061

NPI-B
CP 0.9960 0.9910 0.9940 0.9950 0.9810 0.9800 0.9800 0.9850

AW 5.7466 3.8038 2.5375 1.7074 4.6725 3.1211 2.1020 1.4230

PB
CP 0.9410 0.9520 0.9480 0.9480 0.8910 0.9060 0.8950 0.8970

AW 3.1864 2.2303 1.5700 1.1051 2.6754 1.8728 1.3207 0.9285

EB
CP 0.9170 0.9400 0.9410 0.9410 0.8540 0.8990 0.8840 0.8900

AW 2.9811 2.1597 1.5450 1.0950 2.5092 1.8171 1.2997 0.9206

(c) median

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 1.0000 1.0000 0.9980 0.9970 0.9920 0.9950 0.9910 0.9940

AW 1.7632 1.2504 0.8842 0.6249 1.4725 1.0476 0.7424 0.5249

NPI-B
CP 0.9940 0.9920 0.9930 0.9960 0.9770 0.9770 0.9750 0.9820

AW 1.9760 1.3841 0.9795 0.6917 1.6521 1.1602 0.8248 0.5808

PB
CP 0.9880 0.9900 0.9860 0.9850 0.9610 0.9650 0.9610 0.9610

AW 1.3678 0.9728 0.6892 0.4877 1.1489 0.8183 0.5796 0.4103

EB
CP 0.9520 0.9420 0.9430 0.9480 0.9100 0.9040 0.8910 0.8890

AW 1.3718 0.9689 0.6907 0.4887 1.1570 0.8130 0.5798 0.4109

Table 3.15: Coverage of 100(1 − 2α)% confidence interval using percentile method

for different statistics with original sample from N(3,4).
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3.6 Prediction interval for a future sample statis-

tic

The prediction performance of different bootstrap methods was compared using

prediction intervals for the mean of m future observations based on LC and MT

methods. The bootstrap methods with a predictive nature, that is PP-B and NPI-

B, only performed well with the LC method. The MT method for the mean of

m future observations improves coverage in PB and EB because they approximate

the nominal coverage probabilities. In the case of a prediction for m > 1 future

observations, we use the mean of m future observations to compute the percentile

prediction interval for future sample mean. The percentile prediction interval based

on the bootstrap method can be generalized to a large class of statistics and is not

restricted to sample means. In this section, we investigate the prediction intervals

for a statistic of m future observations based on LC and MT methods.

A simulation study is conducted in the same manner as described in Section

3.3.3, except that the statistic of m future observations (Tm) is computed rather

than the future sample mean (ȳm). We set the number of simulations at N = 1000

and the bootstrap methods are applied to each past sample B = 1000 times. Mo-

jsheibani [59] investigated the prediction intervals using a future sample m with a

different size from the past sample n. We construct the percentile prediction inter-

vals for the variance of m = n/2 future observations. Simulations are conducted

with the variance statistic by applying the same distributions, past samples, and

confidence levels that were used in the future sample mean studies. We use differ-

ent original sample sizes n = 50, 100, 200, 400 from Beta(3,1) and Gamma(6,3) with

confidence levels 95% and 90%. The results of coverage proportions and interval av-

erage widths of the future sample variance using LC and MT methods for Beta(3,1)

and Gamma(6,3) are presented in Tables 3.16 and 3.17, respectively.

The performance of different bootstrap procedures is first compared with the LC

prediction interval. PP-B and NPI-B have good coverage in all cases of future sample

sizes m = n/2 at confidence levels 95% and 90%. The superiority of PP-B is that

it achieves good coverage with shorter intervals, where the average interval widths
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Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B

CPLC 0.9510 0.9460 0.9490 0.9410 0.8990 0.8800 0.9020 0.8760

CPMT 0.9800 0.9770 0.9810 0.9760 0.9560 0.9500 0.9550 0.9490

AWLC 0.0506 0.0361 0.0258 0.0183 0.0425 0.0303 0.0217 0.0154

AWMT 0.0618 0.0440 0.0315 0.0223 0.0520 0.0371 0.0265 0.0188

NPI-B

CPLC 0.9660 0.9610 0.9570 0.9530 0.9320 0.9230 0.9070 0.8950

CPMT 0.9960 0.9880 0.9890 0.9880 0.9690 0.9660 0.9620 0.9570

AWLC 0.0629 0.0416 0.0279 0.0191 0.0522 0.0346 0.0233 0.0160

AWMT 0.0782 0.0514 0.0343 0.0233 0.0648 0.0428 0.0287 0.0196

PB

CPLC 0.8110 0.8430 0.8310 0.8590 0.7250 0.7650 0.7600 0.7860

CPMT 0.8920 0.9060 0.9050 0.9240 0.8230 0.8520 0.8440 0.8730

AWLC 0.0417 0.0299 0.0211 0.0150 0.0353 0.0252 0.0178 0.0126

AWMT 0.0504 0.0363 0.0257 0.0183 0.0428 0.0307 0.0217 0.0154

EB

CPLC 0.8700 0.8620 0.8800 0.8560 0.8050 0.7980 0.8050 0.7850

CPMT 0.9230 0.9170 0.9390 0.9350 0.8780 0.8750 0.8940 0.8710

AWLC 0.0405 0.0293 0.0210 0.0149 0.0344 0.0248 0.0177 0.0125

AWMT 0.0485 0.0355 0.0255 0.0181 0.0415 0.0301 0.0216 0.0153

Table 3.16: Coverage of 100(1−2α)% prediction interval for the variance of m future

observations from Beta(3,1), when m = n/2.

of PP-B are smaller than NPI-B in all cases. Additionally, its coverage proportions

are closer to the coverage probabilities than those of NPI-B in most cases. In

contrast, PB and EB show worse under-coverage results for all cases of Beta(3,1)

and Gamma(6,2). Their coverage proportions with Beta(3,1) are at least 7% lower

than 0.95 and 0.90 nominal coverage probabilities. Also, they provide coverage

proportions that are at least 5.2% below their nominal coverage probabilities with

Gamma(6,3).

The performance of different bootstrap methods is also compared based on MT

prediction intervals. The wide average width of intervals in both PP-B and NPI-

B leads to over-coverage for all cases. The MT method improves the coverage
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Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B

CPLC 0.9300 0.9480 0.9450 0.9420 0.8670 0.8910 0.8980 0.8830

CPMT 0.9750 0.9840 0.9840 0.9770 0.9390 0.9530 0.9530 0.9490

AWLC 1.0694 0.7646 0.5456 0.3875 0.8631 0.6272 0.4520 0.3228

AWMT 1.3956 0.9715 0.6804 0.4787 1.1071 0.7890 0.5621 0.3989

NPI-B

CPLC 0.9630 0.9750 0.9650 0.9660 0.9200 0.9410 0.9310 0.9250

CPMT 0.9900 0.9930 0.9960 0.9900 0.9680 0.9780 0.9720 0.9700

AWLC 2.2296 1.3233 0.8047 0.5070 1.5779 0.9800 0.6180 0.4025

AWMT 3.6831 2.0642 1.1798 0.6992 2.3717 1.3936 0.8430 0.5272

PB

CPLC 0.8810 0.8980 0.8920 0.8800 0.8180 0.8320 0.8320 0.8110

CPMT 0.9510 0.9560 0.9480 0.9440 0.8920 0.9090 0.9030 0.8890

AWLC 0.9109 0.6378 0.4500 0.3176 0.7517 0.5302 0.3755 0.2664

AWMT 1.1492 0.7909 0.5526 0.3890 0.9399 0.6564 0.4630 0.3264

EB

CPLC 0.8310 0.8640 0.8730 0.8730 0.7550 0.8080 0.8090 0.8010

CPMT 0.8960 0.9190 0.9200 0.9340 0.8340 0.8760 0.8790 0.8860

AWLC 0.7936 0.5934 0.4317 0.3102 0.6773 0.5020 0.3631 0.2612

AWMT 0.9565 0.7193 0.5244 0.3778 0.8137 0.6092 0.4431 0.3186

Table 3.17: Coverage of 100(1−2α)% prediction interval for the variance of m future

observations from Gamma(6,3), when m = n/2.

proportions of PB and EB, but PB is at least 4.4% below their nominal coverage

probabilities with Beta(3,1) when n = 50, 100, 200 as shown in Table 3.16. Also,

the EB method gives a result of 5.4% under-coverage below the nominal level of

95% and 6.6% lower than the nominal level of 90% with Gamma(6,3) when n = 50

as shown in Table 3.17. We observe that the MT method improves the coverage

probability of PB and EB, however we can obtain a coverage proportion that is close

to the nominal coverage probability using PP-B and NPI-B with the LC method.

For example, the coverage of PP-B and NPI-B with Beta(3,1) based on LC method

is closer to the nominal coverage probabilities when n = 50 than PB and EB with

MT method. The MT method enhances the coverage proportions of PB and EB
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by expanding the prediction interval width, but it provides under-coverage results

in some cases. It is obvious that the PP-B method performs best for LC prediction

intervals, as it is developed for predictive inference in line with the NPI-B method.

3.7 Concluding remarks

This chapter introduced a new bootstrap method, the parametric predictive boot-

strap (PP-B). It has been applied to a variety of scenarios that have been used with

other bootstrap methods, to investigate its performance in estimation and predic-

tion. First, we studied the estimation performance of different bootstrap methods

using some measures of statistical accuracy: standard error, bias, root mean squared

error, and mean absolute error. The smaller values of statistical accuracy measures

are considered to be good characteristics of an estimator. A sampling method for

PP-B and NPI-B that involves adding the sampled observation to the data before

sampling the next observation, thereby increasing the variation of their bootstrap

samples. Consequently, the values of statistical accuracy measures are generally

greater in PP-B and NPI-B than in the other bootstrap methods.

Confidence intervals are used to compare the performance of different bootstrap

methods as an estimation approach. We consider the BCa and percentile methods to

construct confidence intervals based on a bootstrap technique for several statistics:

mean, variance and median. The PP-B and NPI-B methods have an over-coverage

tendency due to wider intervals arising from greater variability in their bootstrap

samples. However, the over-coverage of PP-B disappears for the median when the

BCa interval is applied to all distributions that were considered in the studies, as well

as the variance associated with Exp(4). The PB method also shows worse under-

coverage in the same situations as the PP-B method which shows under-coverage

with a BCa interval. The BCa interval is specifically designed for nonparametric

problems, and it depends on bias-correction and acceleration values. We notice that

the bias-correction values are large when we use the PP-B and PB methods, in

particular for the median. The BCa interval endpoints have been adversely affected

by these large values. It is not surprising that PP-B does not provide confidence
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intervals with the right coverage, as it is developed for predictive inference.

Finally, we evaluated the prediction performance of different bootstrap methods

by considering two prediction intervals: the LC and MT methods. A proportion

of coverage close to nominal coverage probability is desirable, along with a shorter

average interval width. The method for sampling observations in PP-B leads to

variation in different bootstrap samples, reflecting uncertainty regarding the pre-

dictions consistent with NPI-B. Predictive bootstrapping methods, such as PB-B

and NPI-B, perform well for the LC method and lead to giving good coverage. A

major advantage of PP-B is that it provides good coverage with a shorter average

width of intervals than NPI-B, as shown in all simulation studies we have conducted.

Conversely, PB and EB perform poorly and produce under-coverage results that are

far from nominal coverage probabilities in all cases. The MT prediction interval

enhances the coverage proportions of PB and EB by expanding the interval width.

However, they do not perform well in some cases for the variance of m = n/2 future

observations with the MT method.



Chapter 4

Reproducibility using Bootstrap

4.1 Introduction

The reproducibility of test outcomes is an important characteristic of practical statis-

tics. The reproducibility probability (RP) has gained considerable attention in the

literature, with some contributions indicating that the definition and interpretation

of RP are not uniquely determined in classical frequentist statistics. In Section 2.3,

we discussed the definitions of RP and some different methods to estimate it. Here,

we consider the basic idea of RP, which is that the probability of the event that,

if the experiment were repeated in the same way as the original experiment, would

lead to the same test outcome. We regard assessing test reproducibility as a problem

to be solved by predictive inference.

In this chapter, we introduce the PP-B method for the reproducibility of some

parametric tests. We also compare this approach with a similar predictive bootstrap

method for test reproducibility, NPI-B. The explicitly predictive nature of PP-B

and NPI-B which consider future observations provides a natural formulation of

inferences on RP. Test reproducibility is naturally viewed as a prediction problem

rather than an estimation problem, which is well aligned with these approaches.

PP-B-RP and NPI-B-RP are acronyms for the reproducibility value based on PP-B

and NPI-B methods, respectively. It is important to emphasize that we primarily

focus on the conclusion of the future test with respect to the null hypothesis based

on the actual data of the first test. We do not consider an exact repetition in terms

62
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of the same value of the test statistic or the actual observations, nor do we rely only

on the result of the first test that the null hypothesis was rejected or not. Inferring

the reproducibility of the test result using actual data seems logical because the

strength of the first test’s conclusion depends on those data. A prediction of the

test result in a future test is more naturally reflected in the final conclusion in terms

of rejection or non-rejection of the null hypothesis. We should point out that the

bootstrap approaches do not require that sample sizes be the same for actual and

future tests, but this assumption is natural for reproducibility.

This chapter is organized as follows: A brief review of basic parametric tests is

provided in Section 4.2. The PP-B method is employed for test reproducibility by

considering these parametric tests in Sections 4.3, 4.4, and 4.5. We also compare

this approach with a similar predictive bootstrap method for test reproducibility

with those parametric tests, the NPI-B. In Section 4.6, we provide a comparison

between the Bootstrap-RP and NPI-RP methods for the likelihood ratio test. The

final section of this chapter ends with some concluding remarks.

4.2 Overview of some parametric tests

In this section we provide an overview of some parametric tests: The one-sample

t-test, two-sample t-test, Welch’s t-test, and F-test. Reproducibility of these tests

will be considered later in this chapter. A statistical hypothesis test is a method

of statistical inference employed by the analyst to evaluate the plausibility of a

hypothesis about the population using sample data. Typically, a hypothesis test

involves a pair of opposing hypotheses. The null hypothesis, H0, assumes that

any kind of difference between the chosen characteristics that you see in a set of

data is due to chance. The alternative hypothesis, Ha, is contradictory to the null

hypothesis which states that a difference in the population characteristic is not due

to a chance occurrence. Researchers test for a significant effect by computing the

probability of rejecting H0 with the value of the test statistic under the assumption

that the null hypothesis is correct. The computed probability is known as p-value

or attained significance level, if it is less than a predetermined level of significance,
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then the null hypothesis is rejected [58].

In the hypothesis testing procedure, the significance level α has a predetermined

value typically chosen to be 0.05 or 0.10. The p-value is a different approach from

the critical value, but they lead to the same conclusion in terms of rejection or non-

rejection of the null hypothesis. The probability of rejecting a true null hypothesis

is a type I error, and the probability of non-rejection of a false null hypothesis is a

type II error. These error probabilities are denoted by α and β, respectively. There

is an inverse relationship between Type I and Type II errors, meaning that when

one increases the other decreases. The power is the probability of rejecting the false

null hypothesis when a specific alternative hypothesis is true. It can be thought

of as the probability of making a correct decision about the false null hypothesis,

this probability is 1 − β. The power increases with the α level associated with the

hypothesis testing procedure and with the sample size of the experiment [58].

4.2.1 One-sample t-test

The one-sample t-test is a statistical test that can be used when comparing the mean

of one group to a value. The purpose of the test is to determine whether an unknown

population mean differs from a specific value. The test statistic of t-test follows a

t-distribution, also known as Student’s t-distribution due to William Gosset who

developed and published the distribution under the pseudonym “Student” [70]. The

one-sample t-test can only be applied to data that follow a normal distribution [41].

Suppose X1, X2, . . . , Xn ∼ N(µ, σ2) is random sample from normal population with

unknown variance σ2. Generally, the hypotheses of interest are

H0 : µ = µ0 versus Ha : µ ̸= µ0, µ > µ0, µ < µ0

Under the assumption that the one sample comes from a normal distribution, the

test statistic can be computed under the null hypothesis by the following formula:

T =
x̄− µ√
s2/n

∼ tn−1 (4.1)

where tn−1 represents the Student’s t-distribution with n− 1 degree of freedom and

x̄, s2 are the mean and variance of sample X.
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The null hypothesis H0 is rejected in favour of the two sided test Ha : µ ̸= µ0

with the level of significant α if and only if |T | > t
(1−α/2)
n−1 , where t

(1−α/2)
n−1 is the

(1− α/2)th percentile of the Student’s t-distribution with n− 1 degree of freedom.

For one sided upper tail test Ha : µ > µ0, we rejects H0 if T > t
(1−α)
n−1 , and reject H0

if T < t
(α)
n−1 for one sided lower tail test Ha : µ < µ0.

4.2.2 Two-sample t-test

Clinical studies typically assign patients randomly to two groups: the treatment

group and the control group. In the treatment group, patients receive the treat-

ment or a test drug while patients in the control group receive the placebo. The

researcher measures the patients’ responses from both groups as part of evaluat-

ing the effectiveness of the treatment to investigate whether there is a significant

difference in the mean values between the two groups. The two-sample t-test is

used to compare the means between two groups, which is considered one of the

most commonly used statistical hypothesis tests in pain studies [50]. It is frequently

used in health research to determine whether a treatment actually has an effect

on the population of interest or not, also to compare the differences between two

groups. The two-sample t-test (also known as pooled variance t-test) can be carried

out for a comparison of two means when both samples meet certain requirements

of statistical assumptions as it is a parametric test. It is required that two sam-

ples are normally distributed with equal variances and independent of each other

[69]. Suppose X1, X2, . . . , Xn ∼ N(µ1, σ
2) and Y1, Y2, . . . , Ym ∼ N(µ2, σ

2), are two

independent random samples from normal populations with unknown (common)

variance σ2. Generally, the hypotheses of interest are

H0 : µ1 = µ2 versus Ha : µ1 ̸= µ2, µ1 > µ2, µ1 < µ2

Under the assumption that the two samples are independent and come from a normal

distribution with equal variances, the test statistic can be computed under the null

hypothesis by the following formula:

T =
x̄− ȳ√
s2p(

1
n
+ 1

m
)
∼ tn+m−2 (4.2)
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where tn+m−2 represents the Student’s t-distribution with n+m−2 degree of freedom

and x̄ , ȳ , s21 , s
2
2 are the means and variances of two samples X and Y , respectively.

A pooled variance of the two samples is defined as follows:

s2p =
(n− 1)s21 + (m− 1)s22

n+m− 2

For the one sided upper tail test H0 : µ1 = µ2 versus Ha : µ1 > µ2 with the level

of significant α, we reject H0 if T > t
(1−α)
n+m−2, where t

(1−α)
n+m−2 is the (1−α)th percentile

of the Student’s t-distribution with n+m− 2 degree of freedom, while reject H0 if

T < t
(α)
n+m−2 for one sided lower tail test Ha : µ1 < µ2. If we use the two sided test

Ha : µ1 ̸= µ2, we reject H0 if |T | > t
(1−α/2)
n+m−2 .

4.2.3 Welch’s t-test

Welch introduced another version adapted from the Student’s t-test, which can be

used when there is a significant difference between the variances of the two sam-

ples [1, 67]. Welch’s t-test (also known as non-pooled variance t-test and unequal

variance t-test) assumes that the sample means being compared for two popula-

tions are normally distributed, but it is designed for unequal population variances.

Suppose X1, X2, . . . , Xn ∼ N(µ1, σ
2
1) and Y1, Y2, . . . , Ym ∼ N(µ2, σ

2
2), are two inde-

pendent random samples from normal populations with unequal variances. Under

this assumption, the test statistic can be computed under the null hypothesis by the

following formula:

T =
x̄− ȳ√
s21
n
+

s22
m

∼ tv (4.3)

The degrees of freedom v associated with this variance estimate can be approximated

based on the sample size and variance of each sample as follows:

v =
(s21/n+ s22/m)2(

s21
n

)2
/(n− 1) +

(
s22
m

)2
/(m− 1)

The Student’s t-test devised by Gosset assumes variances of two samples are

equal. Therefore, we estimate the common variance as a weighted average of two

sample variances (pooled variance). Welch’s t-test is suitable when the assumption
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of equal variance is not met. The degrees of freedom associated with Welch’s t-

test are a random variable dependent on the sample sizes and the variances of the

samples. Welch’s test always has degrees of freedom less than or equal to the degrees

of freedom used in the Student’s t-test [27]. The approximate degrees of freedom

used in Welch’s test are more conservative than the degrees of freedom used in the

two-sample t-test. The null hypothesis H0 is rejected in favour of the one sided

upper tail test Ha : µ1 > µ2 with the level of significant α if T > t
(1−α)
v , where t

(1−α)
v

is the (1− α)th percentile of the Student’s t-distribution with v degree of freedom,

and reject H0 if T < t
(α)
v for one sided lower tail test Ha : µ1 < µ2. For two sided

test Ha : µ1 ̸= µ2, We rejects H0 if and only if |T | > t
(1−α/2)
v .

4.2.4 F-test

The F-test of equality of variances is a test for the null hypothesis that the variances

of two normal samples are the same. It is known as the F-ratio test due to the

way of computing test statistics by the ratio of two sample variances. The F-

test is valid for equality of variances under the assumption of normality for two

samples and when this assumption is in doubt we should use alternative test to

compare variances between two samples [48]. However, the two-sample t-test and

Welch’s t-test required normality assumption of two samples to be performed which

is agreed with the F-test. Suppose X1, X2, . . . , Xn ∼ N(µ1, σ
2
1) and Y1, Y2, . . . , Ym ∼

N(µ2, σ
2
2), be two independent random samples from normal populations. Generally,

we test the hypotheses:

H0 : σ
2
1 = σ2

2 versus Ha : σ
2
1 ̸= σ2

2, σ2
1 > σ2

2, σ2
1 < σ2

2

The F-test is a test for the null hypothesis that the two samples from normal distri-

butions have the same variance and the test statistic can be computed as the ratio

of the two variances by the following formula:

F =
s21
s22

∼ Fn−1,m−1 (4.4)

where Fn−1,m−1 represents the F distribution with n−1 and m−1 degree of freedom.

The test statistics of F-test is greater than or equal to zero. The decision rule for



4.3. Bootstrap-RP for the one-sample t-test 68

two sided test is to reject H0 at significance level α if and only if F < F
(α/2)
n−1,m−1 or

F > F
(1−α/2)
n−1,m−1, where F

(α/2)
n−1,m−1 is (α/2)th percentile of the F-distribution with n− 1

and m − 1 degrees of freedom. The null hypothesis H0 is rejected in favour of the

one sided upper tail test Ha : σ
2
1 > σ2

2 with the level of significant α if F > F
(1−α)
n−1,m−1,

and reject H0 if F < F
(α)
n−1,m−1 for one sided lower tail test Ha : σ

2
1 < σ2

2.

4.3 Bootstrap-RP for the one-sample t-test

In this section, we study the RP of one-sample t-test using the bootstrap method.

The PP-B method is employed for RP by considering the one-sample t-test and

comparing its performance with a similar predictive bootstrap method for RP, the

NPI-B. Test reproducibility is naturally considered as a predictive inference problem

and the explicitly predictive nature of PP-B and NPI-B provides an appropriate

formulation for inferring RP. We provide a comparison through simulation studies

to get an insight into the performance of the two bootstrap methods with the RP

of one-sample t-test. These are performed as follows:

1. Apply the one-sample t-test to the original sample X of size n to obtain the

value of the test statistic, then decide whether or not the null hypothesis is

rejected based on this test value.

2. Draw a bootstrap sample of size n from the sample X and apply the same test

to obtain the decision of this test.

3. Perform Step 2 in total B times and record the test result each time whether

the null hypothesis is rejected or not.

4. The estimate of the RP is the ratio of B times in which the original sample

and the bootstrap samples have the same conclusion.

5. Perform all these steps N times in order to obtain RP values for both rejection

and non-rejection cases of the null hypothesis.

The one sided one-sample t-test is considered, H0 : µ = µ0 versus Ha : µ > µ0,

with level of significance α = 0.10. We simulate N = 50 samples of size n = 5 under
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both H0 and Ha. The data are generated from the Normal distribution with mean 0

under H0 and mean 0.5 under Ha, both with standard deviation 1. All values of RP

were determined based on the PP-B and NPI-B methods as described above using

B = 1000 bootstrap samples. For each N = 50 sample, the observed test statistic

and Bootstrap-RP were calculated. The same data sets for each sample are used

to compute the RP value of one-sample t-test based on the two bootstrap methods.

It is important to emphasize that the bootstrap samples for each method have the

same size as the original sample. Figure 4.1 presents the results of RP values using

the two bootstrap methods under H0 and Ha for samples of size n = 5. The boxplots

of RP values are displayed for the two bootstrap methods in both cases of rejection

and non-rejection. The red circles in all figures in this thesis refer to rejection cases

of H0 while the blue circles represent non-rejection cases.

We first examine the relationship between Bootstrap-RP and the test statistic

for one-sample t-test in the simulations. The values of RP for the two methods tend

to increase when the test statistic moves away from the test thresholds, as expected,

regardless of the decision on H0. The worst-case scenario gives RP of about 0.5

when the original test statistic is close to the test threshold. In the absence of

further information, one would expect a repeat experiment to produce a second test

statistic whose value is equally likely to be larger or smaller than the original test

statistic, and therefore the same conclusion would be reached with a probability of

0.5. A repetition of an experiment that had an original test statistic far away from

the test threshold is likely to produce a second test statistic that is also far away

from the test threshold. Therefore, the RP values tend to increase when the test

statistic moves away from the test thresholds. Simulation studies show that RP

values based on PP-B have less variability than NPI-B because of the parametric

model assumed for PP-B. There is a clear fluctuation observed in the values of RP

based on NPI-B because this bootstrap method does not assume a parametric model

and the sample size is quite small. The fluctuation of RP values based on NPI-B

is more visible when simulations are conducted under Ha due to more cases of test

statistics close to the test threshold.

We also compare PP-B-RP and NPI-B-RP in both cases when the null hypothesis
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Figure 4.1: Simulations under H0 and Ha: values of PP-B-RP and NPI-B-RP for

one-sample t-test, where n = 5.
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is rejected and not rejected. It is obvious that the PP-B-RP tends to be higher in

cases of rejection (red cases in the figures) than in cases of non-rejection (blue cases)

when the test statistic is close to the test threshold. Conversely, NPI-B-RP tends

to be lower in case of rejection than in non-rejection when the test statistic is close

to the test threshold. The RP is computed by generating B bootstrap samples

from the original sample and then applying the one-sample t-test for each of these

bootstrap samples. Thereafter, the ratio of the B times that have the same decision

as the original sample is the RP value. The test statistic of the one-sample t-

test is computed using Formula (4.1), which includes the sample variance in the

denominator. In general, PP-B has a smaller variance compared to NPI-B due to

the assumption of a parametric model in PP-B. In the case of non-rejection, the

PP-B-RP tends to be lower due to the computed test statistic from PP-B samples

tending to lie in the rejection region. This occurs because PP-B samples lead to

larger test statistic values than NPI-B samples, as a result of a smaller variance

value in the denominator. Hence, we obtain more cases that reject H0 due to a test

statistic value being larger than the test threshold. As a result, the PP-B-RP value

tends to be lower in the case of non-rejection compared to NPI-B-RP. In contrast,

PP-B-RP tends to be higher in the case of rejection than NPI-B-RP. It is the same

reason in the case of non-rejection, where we obtain more cases of the same decision

of an original sample that does reject H0.

Additionally, we analyze the impact of increasing sample size on the patterns

of Bootstrap-RP values. The results of RP values based on the two bootstrap

methods for samples of size n = 15 under H0 and Ha are presented in Figure

4.2. The boxplots of RP values based on PP-B and NPI-B are shown for both

rejection and non-rejection cases. As the sample size increases, the Bootstrap-RP

value becomes closer to 0.5 when the observed test statistics are close to the test

threshold in both cases of rejection and non-rejection. Also, the fluctuation in

NPI-B-RP values is decreased when the sample size increases. The power of the

test is positively correlated with sample size, which means a larger sample size

gives greater power. It is because a larger sample size narrows the distribution

of the test statistic, so the false null hypothesis can be distinguished more clearly



4.3. Bootstrap-RP for the one-sample t-test 72

0.00

0.25

0.50

0.75

1.00

−2 0 2
test statistic

P
P

−
B

−
R

P

Hypothesis Not rejected rejected

(a) PP-B-RP, under H0

0.00

0.25

0.50

0.75

1.00

0 2 4 6
test statistic

P
P

−
B

−
R

P

Hypothesis Not rejected rejected

(b) PP-B-RP, under Ha

0.00

0.25

0.50

0.75

1.00

−2 0 2
test statistic

N
P

I−
B

−
R

P

Hypothesis Not rejected rejected

(c) NPI-B-RP, under H0

0.00

0.25

0.50

0.75

1.00

0 2 4 6
test statistic

N
P

I−
B

−
R

P
Hypothesis Not rejected rejected

(d) NPI-B-RP, under Ha

0.00

0.25

0.50

0.75

1.00

Not rejected rejected
Hypothesis

P
ro

b
a

b
ili

ty

Method PP−B−RP NPI−B−RP

(e) RP, under H0

0.00

0.25

0.50

0.75

1.00

Not rejected rejected
Hypothesis

P
ro

b
a

b
ili

ty

Method PP−B−RP NPI−B−RP

(f) RP, under Ha

Figure 4.2: Simulations under H0 and Ha: values of PP-B-RP and NPI-B-RP for

one-sample t-test, where n = 15.
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(a) Under H0

Sample Test statistic n Test threshold H0 PP-B-RP NPI-B-RP

1 1.588

5

1.533

R 0.613 0.528

2 1.551 R 0.589 0.441

3 1.221 NR 0.497 0.648

4 1.153 NR 0.525 0.645

1 1.382

15 1.345

R 0.536 0.508

2 1.377 R 0.533 0.483

3 1.333 NR 0.481 0.494

4 1.226 NR 0.478 0.546

(b) Under Ha

Sample Test statistic n Test threshold H0 PP-B-RP NPI-B-RP

1 1.705

5 1.533

R 0.656 0.543

2 1.689 R 0.675 0.528

3 1.516 NR 0.442 0.563

4 1.449 NR 0.453 0.553

1 1.435

15 1.345

R 0.555 0.490

2 1.378 R 0.541 0.402

3 1.176 NR 0.529 0.567

4 1.126 NR 0.521 0.553

Table 4.1: Simulation under H0 and Ha: values of RP of one-sample t-test using

PP-B and NPI-B methods with four observed samples of sizes n = 5 and n = 15.

from the true null hypothesis. For simulations under Ha, increasing sample size

leads to more cases rejecting H0, which simply results from the test becoming more

powerful with a larger sample size. The pattern of RP values based on the two

bootstrap methods changes when simulations are performed under the alternative

hypothesis, resulting from changes in the observed test statistics with respect to
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the test threshold. Table 4.1 presents four samples close to the test threshold that

reject and do not reject H0 with sample sizes n = 5 and n = 15 for simulations

under both the null and alternative hypotheses. This table includes the observed

test statistics, test thresholds, PP-B-RP and NPI-B-RP. In the case of rejection, the

PP-B-RP values tend to be higher than the NPI-B-RP values. Conversely, the values

of PP-B-RP seem to be lower compared to the NPI-B-RP values in non-rejection

cases. However, increasing n tends to reduce the differences between PP-B-RP and

NPI-B-RP.

4.4 Bootstrap-RP for the two-sample t-test and

Welch’s t-test

In this section, we consider the RP of the two-sample t-test when both samples are

normally distributed with equal variances. We also study the RP of Welch’s t-test

for two samples when there is a difference between the variances of the two samples.

There are some technical differences and similarities between the Student’s t-test

and Welch’s t-test. The t-values, degrees of freedom, and the p-values are the same

in Student’s t-test and Welch’s t-test when both sample sizes and variances are the

same in each sample [26]. The differences appear in both tests when variances and/or

sample sizes are different. The most important difference that led to the development

of Welch’s t-test is when both variances and sample sizes differ between Student’s

t-test and Welch’s t-test. In this case, the t-value, degrees of freedom, and p-value

all differ in both tests due to the differences in both the variances and sample sizes.

The t-value remains identical, but the degrees of freedom differ when the variance

or sample size is different in both samples, so as a result, the p-value differs. Welch’s

t-test can be generalized to more than two samples, but we will focus on the case of

the two samples [68]. Welch’s t-test differs from Student’s t-test in that it does not

assume equal variances.

There are several tests for the assumption of equal variances such as Levene’s

test, the F-test, Bartlett test and Box-Andersen test [52, 53]. The F-test of equality

of variances is commonly used by researchers because it is available in popular statis-
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tical software. The two-sample t-test is considered here for equal sample sizes. The

simulation studies are conducted to evaluate the performance of the two bootstrap

methods for RP of the two-sample t-tests through the following steps:

1. Apply the t-test on the two original samples with equal sample sizes n, X and

Y , to obtain the value of the test statistic, then drew a conclusion about the

null hypothesis for this test whether it is rejected or not.

2. Draw a bootstrap sample of size n from sample X and a bootstrap sample of

size n from sample Y . Apply the two-sample t-test to these two bootstrapped

samples to obtain the test conclusion.

3. Perform Step 2 in total B times and record the test outcome each time whether

or not the null hypothesis is rejected.

4. The ratio of B times that the two original samples and these two bootstrap

samples have the same conclusion is the estimate of the RP.

5. Perform all these steps N times in order to obtain RP values for both rejection

and non-rejection cases of the null hypothesis.

We first investigate the RP for the two-sample t-test when the variances of

the two normally distributed populations are assumed to be equal. The two sided

two-sample t-test is considered, H0 : µ1 = µ2 versus Ha : µ1 ̸= µ2, and level of

significance α = 0.10. We simulate two samples of size n = 5 under H0 in total

N = 50 times. The data are generated for the two original samples from the same

Normal distribution with mean 2 and standard deviation 1. The RP value for the

two-sample t-test is computed based on the two bootstrap methods as demonstrated

above using B = 1000 bootstrap samples. The observed test statistic and Bootstrap-

RP were determined for each of N = 50 samples. Also, we study the impact of

increasing sample size to n = 20 on Bootstrap-RP values for the two-sample t-test.

It is important to emphasize that the same data sets are used to compute the RP

values for the two-sample t-test based on PP-B and NPI-B. The results of RP values

based on the PP-B and NPI-B methods with samples of size n = 5, 20 under H0 are
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Figure 4.3: Simulations underH0: values of PP-B-RP and NPI-B-RP for two-sample

t-test, where n = 5, 20.
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presented in Figure 4.3. The boxplots of RP values are shown for the two methods

in both cases of rejection and non-rejection.

The values of RP for both methods tend to increase as the test statistic moves

away from the test thresholds, regardless of the decision on H0. It is expected and

rational, as we discussed previously in Section 4.3. Increasing the size of samples

leads to PP-B-RP and NPI-B-RP becoming close to 0.5 in both cases of rejection and

non-rejection when the observed test statistics are close to the test thresholds. Also,

the values of NPI-B-RP fluctuate narrowly as the sample size increases. These results

happen with increasing the size of samples due to the variability of the bootstrap

samples decreasing and the power of the test increasing. Simulation studies show

that values of PP-B-RP have less variability than NPI-B-RP values, in particular

when the sample size is small, as a result of the parametric model assumed for PP-B.

There is a tendency for PP-B-RP to be higher in cases of rejection than in

non-rejection, whereas NPI-B-RP seems to be lower in cases of rejection than non-

rejection. The reason for this is that the sample variance is included in the de-

nominator of the test statistic for the two-sample t-test. The variance of PP-B is

generally less than NPI-B due to the assumption of a parametric model in PP-B.

For the upper tail test, PP-B samples lead to larger test statistic values than NPI-B

samples, as a result of a smaller variance value in the denominator. Therefore, the

PP-B-RP tends to be lower in non-rejection cases due to the computed test statistic

from PP-B samples tending to lie in the rejection region. Conversely, PP-B-RP

tends to be higher in the case of rejection than NPI-B-RP because we obtain more

cases that reject H0. It is similar to what was discussed in Section 4.3 for the upper

tail one-sample t-test. We can observe a similar impact on patterns of RP values

based on PP-B and NPI-B for the lower tail test. It is important to note that the

lower tail two-sample t-test has negative values, which implies that PP-B samples

lead to smaller test statistic values compared to NPI-B samples. Hence, we obtain

a similar result to the upper tail test for PP-B-RP and NPI-B-RP.

Now, we consider the RP of the two-sample t-test when both samples are nor-

mally distributed with unequal variances. The procedure for determining the RP

of Welch’s t-test follows the same steps as for the two-sample t-test, except that we
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Figure 4.4: Simulations under H0: values of PP-B-RP and NPI-B-RP for Welch’s

t-test, where n = 5, 20.
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draw two original samples from Normal distributions with different standard devi-

ations. Two samples of size n are simulated from two Normal distributions with

different standard deviations, σ1 = 1 and σ2 = 2, but both with mean 2. A critical

value of the test statistic for Welch’s t-test is computed using the degrees of free-

dom which are random variables dependent on the size and variance of the sample.

Therefore, we use the p-value for better visualization of figures rather than the crit-

ical value because each simulated sample has a different critical value even though

all samples have the same size. The p-values and critical values are two different

approaches that lead to the same result regarding whether the null hypothesis is

rejected or not. Figure 4.4 shows the results of RP values for Welch’s t-test using

the two bootstrap methods with samples of size n = 5, 20 under H0. The boxplots

of RP values based on PP-B and NPI-B are displayed in both cases of rejection and

non-rejection.

The values of RP for both methods tend to increase with increasing distance

between the observed p-value and the test threshold, whatever the H0 decision. We

observe similar results as for the two samples with the Student’s t-test presented

before in this section. The parametric model assumed for PP-B results in lower

variability of PP-B-RP values than NPI-B-RP values, especially when the sample

size is small. The PP-B-RP seems to be greater in rejection cases than in non-

rejection. In contrast, NPI-B-RP tends to be lower in the case of rejection compared

to non-rejection. As the sample size increases, PP-B-RP and NPI-B-RP become

closer to 0.5 in both cases of rejection and non-rejection when the observed p-value

is close to the test threshold. The fluctuation in NPI-B-RP values is reduced with

the increasing size of samples.

4.5 Bootstrap-RP for the F-test

In this section, we study the RP of the F-test using two bootstrap methods. The

two-sample t-test requires random sampling from two normal populations with equal

variances, while Welch’s t-test is used in the case of unequal variances. The F-test is

conducted to test the assumption of equal variances between two normal populations
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and, based on the results, a two-sample t-test or Welch’s t-test can be used. A

normal distribution of data is a prerequisite for conducting these parametric tests.

The two sided F-test is considered, H0 : σ2
1 = σ2

2 versus Ha : σ2
1 ̸= σ2

2, and level of

significance α = 0.10. Simulation studies are conducted to evaluate the performance

of the two bootstrap methods for RP of the F-test by following the same steps as

for the two-sample t-test in Section 4.4. We simulate two samples of size n = 5

under both H0 and Ha in total N = 50 times. Under H0 we generate data for the

two original samples from the same Normal distribution with mean 0 and standard

deviation 1. Under Ha we generate data from the two Normal distributions with

different standard deviations, σ1 = 1 and σ2 = 1.5, but both with the same mean

0. For each of N = 50 samples, the observed test statistic and Bootstrap-RP were

determined. It is important to note that the same data sets are used to compute the

RP values for the F-test based on the two bootstrap methods, each with B = 1000

bootstrap samples. Also, the bootstrap samples for each method are the same size

as the original sample. Figure 4.5 shows the results of RP values using PP-B and

NPI-B methods under H0 and Ha for samples of size n = 5. The boxplots of RP

are presented for both rejections and non-rejections based on the two bootstrap

methods.

The Bootstrap-RP values tend to be higher at the lower test threshold for both

rejection and non-rejection cases as the impact of F-test follows F-distribution with

small degrees of freedom. The simulations were performed by sampling under the

alternative hypothesis due to more cases of test statistics close to the lower test

threshold. This helps us to observe how the bootstrap methods perform for the

RP of the F-test as test statistics become closer to the lower test threshold. The

PP-B-RP becomes close to 0.5 in both cases of rejection and non-rejection when

the observed test statistics are very close to the lower test threshold. The NPI-

B-RP is substantially below 0.5 in some cases of non-rejection when test statistics

are extremely close to the lower test threshold. The parametric model assumed for

PP-B reduces the variability of RP values as shown in simulation studies. The RP

value based on NPI-B fluctuates clearly because a parametric model is not assumed

in this bootstrap method.
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Figure 4.5: Simulations under H0 and Ha: values of PP-B-RP and NPI-B-RP for

F-test, where n = 5.
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Figure 4.6: Simulations under H0 and Ha: values of PP-B-RP and NPI-B-RP for

F-test, where n = 30.
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A larger sample size is considered in order to study the effect of increased sample

size on Bootstrap-RP values for the F-ratio test. Figure 4.6 presents the results of

RP values using the PP-B and NPI-B methods for samples of size n = 30 under H0

and Ha. The boxplots of RP values for the two bootstrap methods are shown in both

cases of rejection and non-rejection. As the size of samples increases, the pattern of

RP values changes under both the null and alternative hypotheses. We observe a

change in the pattern of the RP values obtained through simulations under H0 as the

impact of F-test follows F-distribution with larger degrees of freedom. Increasing

the size of samples leads to increasing the power of the test, so we obtain more cases

rejecting H0 when simulations are performed by sampling under the alternative

hypothesis. Simulations under Ha show changes in the pattern of the RP values as

a result of changes in the observed test statistics in relation to the test threshold,

as well as the effects of the F-test following the F-distribution with larger degrees

of freedom. It is noteworthy that the variability of NPI-B-RP values is not reduced

by increasing the size of samples. Additional simulation results for the NPI-B-RP

of the F-test are provided in Appendix B, showing that the NPI-B-RP has high

fluctuation even with increasing the size of samples. The test statistic for the F-test

is computed from only the ratio of two sample variances. The NPI-B method has

higher variability compared to the PP-B method because it does not use an assumed

parametric model. Consequently, the fluctuation in NPI-B-RP values for the F-test

does not decrease with the increasing size of samples due to the test statistic used

is only the ratio of two sample variances.

4.6 NPI-RP and Bootstrap-RP for the likelihood

ratio test

In this section, we study the RP of the likelihood ratio tests using the bootstrap

method to compare with NPI-RP. The reproducibility probability of a test based on

the NPI approach (NPI-RP) considers the test result for a predicted future sample

of the same size as the original sample, this method is described in detail in Section

2.3. The exact NPI lower and upper reproducibility can only be computed for small
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data sets. Coolen and Marques [17] propose an alternative computational method

to approximate NPI-RP for larger sample sizes via sampling of future orderings

instead of considering all different possible orderings. They introduced sampling of

orderings for the likelihood ratio test in order to overcome computational difficulties.

In our work, we do not compute lower and upper reproducibility probabilities for

the tests because it is hard to derive the minimum and maximum values of some

test statistics, such as the test statistic of t-test, which depend on both the sample

mean and variance. However, we can construct the confidence interval for the single

value of Bootstrap-RP using formula p̂±z(1−α/2)
√
p̂(1− p̂)/n, where the proportion

p̂ is the predictied Bootstrap-RP value. Here we investigate whether or not the

Bootstrap-RP tends to provide a value within the lower and upper NPI-RP.

Coolen and Marques [17] introduced sampling of future orderings for likelihood

ratio tests with the test criterion in terms of the sample mean. The likelihood ratio

test in the following test criterion involves the mean of the observed values. The null

hypothesis H0 is considered with a one sided alternative hypothesis, H0 : µ ≤ µ0 vs

Ha : µ > µ0, leading to the test criterion, H0 being rejected if and only if

1

n

n∑
i=1

xi > c (4.5)

where c dependent on the significance level of the test and the assumed statistical

model.

We cannot derive a precise value for the mean of a specific ordering Oj of the n

future observations in the NPI approach because we do not assume precise values

within the intervals (x(i−1), x(i)). Therefore, the maximum lower bound and mini-

mum upper bound for the mean corresponding to Oj can only be derived, which are

denoted by mj and mj, respectively. These are derived as follows

mj =
1

n

n+1∑
i=1

sjix(i−1) (4.6)

mj =
1

n

n+1∑
i=1

sjix(i) (4.7)

Suppose that the original data sample of size n led to rejection of H0, so its

mean exceeds c. In this case, the test result is reproduced if the future sample also
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rejects H0. This occurs certainly for ordering Oj if mj > c, while it certainly does

not occur if mj ≤ c. However, we are unable to decide whether or not the original

test result is reproduced if mj ≤ c < mj. The NPI lower and upper probabilities for

test reproducibility is derive for the case that the original data reject H0 as

RP =

(
n+m

n

)−1∑
j

1{mj > c} (4.8)

RP =

(
n+m

n

)−1∑
j

1{mj > c} (4.9)

where j = 1, . . . ,
(
n+m
n

)
and 1{A} is the indicator function which is equal to 1 if A

is true and 0 else.

The similar arguments are followed when the original data do not reject H0 to

derive NPI lower and upper probabilities for test reproducibility as

RP =

(
n+m

n

)−1∑
j

1{mj ≤ c} (4.10)

RP =

(
n+m

n

)−1∑
j

1{mj ≤ c} (4.11)

The decision rule may be expressed with the test criterion in terms of the sample

mean X for the likelihood ratio test as test criterion (4.5), which rejects the null

hypothesis for a significance level α if

X > q(1−α) (4.12)

where q(1−α) is the (1−α) quantile of X. It is well known that for independent and

identically distributed Xi ∼ N(µ, σ2), i = 1, . . . , n, the distribution of the mean is

X ∼ N(µ, σ2/
√
n)

We consider likelihood ratio tests for the mean value underlying the Normal pop-

ulation. For distributions with infinite range we have to define bounds of possible

values for the future observations, which we denote by x(0) = L and x(n+1) = R.

It is obvious that we must assume values L < x(1) and x(n) < R such that the

observations are within this range [L,R], where L and R can depend on the actual
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Figure 4.7: Simulations under H0: values of PP-B-RP, NPI-B-RP and NPI-RP for

likelihood ratio test, where n = 25.

data observations. For n data observations x1 < x2 < . . . < xn, the lower and upper

limits may be defined as L = x(1) −
x(n)−x(1)

n−1
and R = x(n) +

x(n)−x(1)

n−1
.

We simulated N = 50 samples of size n = 25 from the Normal distribution with

mean 2 and standard deviation 3 under H0. We approximate NPI-RP for larger

sample sizes via sampling of orderings instead of considering all different possible

orderings. To achieve reasonable results, Coolen and Marques [17] suggest that the

number of orderings sampled should be at least 2000. Considering the number of

orderings sampled equal to 2000, the upper and lower RP for each of N = 50 samples

were calculated based on the decision rule given in (4.12) with the level of significance
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α = 0.10. The NPI lower and upper reproducibility probabilities are calculated

for rejection cases using Equations (4.8) and (4.9). In the case of non-rejection,

we compute the NPI lower and upper reproducibility probabilities using Equations

(4.10) and (4.11). We investigate whether or not the Bootstrap-RP methods tend to

provide values that fall within the lower and upper NPI-RP for the likelihood ratio

test. The RP for each of N = 50 samples was computed based on the PP-B and

NPI-B methods using B = 1000 bootstrap samples. For each simulated sample, we

compute RP values based on the bootstrap method and repeat the procedure 100

times, so we obtain RP1, . . . , RP100. Then, we examine whether these values are

between the corresponding lower and upper NPI-RP results. The same simulated

samples are used to compute the RP values of the likelihood ratio test based on

different bootstrap methods and NPI-RP. The observed likelihood ratio statistic,

Bootstrap-RP, and NPI-RP were determined for each of N = 50 samples.

Figure 4.7 presents RP values using different bootstrap methods and NPI-RP

under H0 for samples of size n = 25. The minimum, mean and maximum values

of 100 Bootstrap-RP for each simulated sample are computed. The boxplots of RP

are displayed for both rejections and non-rejections based on the mean of PP-B-RP

and NPI-B-RP, as well as the lower and upper NPI-RP. We found 90% of PP-B-RP

values and 88% of NPI-B-RP values are included in the bounds of NPI-RP. We

conclude that both PP-B-RP and NPI-B-RP results are consistent with NPI-RP

because most of these values are located in the corresponding NPI-RP boundaries.

The PP-B-RP and NPI-B-RP are in line with NPI-RP in terms of investigating

test reproducibility as a prediction problem rather than an estimation problem.

Further simulations were performed under Ha leading to similar results as for the

case presented under H0.

The two-sided for the likelihood ratio test, H0 : µ = µ0 vs Ha : µ ̸= µ0, may

be implemented in a similar procedure. The test criterion based on sample mean X

reject the null hypothesis at a significant level if

X < q(α/2) ∨ X > q(1−α/2) (4.13)

where q(α/2) and q(1−α/2) are the (α/2) and (1− α/2) quantile of X.
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The minimum upper bound and maximum lower bound for the mean correspond-

ing to Oj are remain unchanged as in Equations (4.6) and (4.7), respectively. In the

case of a two-sided test, the NPI lower and upper probabilities are different because

it needs to account for the two rejection regions. If the original data reject H0, then

the lower and upper RPs are derived as follows

RP =

(
n+m

n

)−1∑
j

1{mj > q(1−α/2) ∨ mj < q(α/2)} (4.14)

RP =

(
n+m

n

)−1∑
j

1{mj > q(1−α/2) ∨ mj < q(α/2)} (4.15)

If the decision for the original data is not rejected the null hypothesis, we have

RP =

(
n+m

n

)−1∑
j

1{mj > q(α/2) ∧ mj < q(1−α/2)} (4.16)

RP =

(
n+m

n

)−1∑
j

1{mj > q(α/2) ∧ mj < q(1−α/2)} (4.17)

We have simulated N = 50 samples of size n = 25 from the Normal distribution

with mean 2 and standard deviation 3 underH0. For each case, we compute the lower

and upper RPs for two sided test based on the decision rule given in (4.13) with the

level of significance α = 0.10 by considering the number of orderings sampled equal

to 2000. The lower and upper reproducibility probabilities of the NPI are computed

for rejection cases using Equations (4.14) and (4.15). In the case of non-rejection, we

calculate the NPI lower and upper reproducibility probabilities based on Equations

(4.16) and (4.17). The same simulated samples are used to compute the RP values

based on the bootstrap and NPI methods. We compute RP values for the two sided

test based on the bootstrap method and repeat the procedure 100 times for each

simulated sample as we did with the one sided test. Figure 4.8 shows RP values for

the likelihood ratio test with two sided alternative using different bootstrap methods

and NPI-RP under H0 for samples of size n = 25. For each simulated sample, the

minimum, mean, and maximum Bootstrap-RP values are computed. The boxplots

of RP are shown in both cases of rejection and non-rejection based on the mean

of PP-B-RP and NPI-B-RP, along with the lower and upper NPI-RP. All values
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Figure 4.8: Simulations under H0: values of PP-B-RP, NPI-B-RP, and NPI-RP for

likelihood ratio test, where n = 25.

of PP-B-RP and NPI-B-RP are included in the bounds of NPI-RP, indicating that

these bootstrap methods are in line with the reproducibility probability based on

the NPI approach. Further simulations were performed under Ha yielding similar

results to the case presented under H0.

4.7 Concluding remarks

In this chapter, we present the PP-B method for the reproducibility of some para-

metric tests. We also provide a comparison through simulation studies with a similar
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predictive bootstrap method for test reproducibility, NPI-B. The test reproducibility

is more naturally considered as a prediction problem than as an estimation problem.

The explicit predictive nature of PP-B and NPI-B, which consider future observa-

tions, aligns well with the nature of test reproducibility. The reproducibility of tests

has been studied using the PP-B and NPI-B methods via simulation studies. The

RP values obtained with PP-B have less variability than those obtained with NPI-

B, as a result of using an assumed parametric model for PP-B. Increasing sample

size reduced the fluctuation of NPI-B-RP values because bootstrap samples became

less variable and the power of test increased. However, the variability of NPI-B-RP

values for the F-test is not reduced with increasing the size of samples because the

test statistic for the F-test is calculated using only the ratio of two sample variances.

We consider PP-B and NPI-B for the reproducibility of some parametric tests, but

they can be applied to a wide range of parametric statistical tests.

The use of the bootstrap to predict RP avoids the hard calculations of the lower

and upper boundaries in NPI-RP, as well as it is a flexible approach to use when

considering large sample sizes. The Bootstrap-RP uses the point estimate to present

the RP instead of the lower and upper values of NPI-RP, but we can construct the

confidence interval for the single value of Bootstrap-RP. We explore whether or not

the RP values using PP-B and NPI-B tend to be between the lower and upper NPI-

RP for the likelihood ratio test. The predicted values of PP-B-RP and NPI-B-RP for

the likelihood ratio test are mostly included within the bounds of NPI-RP, meaning

these bootstrap methods are consistent with the NPI-RP approach. The PP-B-RP,

NPI-B-RP, and NPI-RP consider test reproducibility from a predictive standpoint,

which provides an appropriate formulation for inferring the RP of a test. It seems

logical and natural to study the RP of a test with the same size of samples and sig-

nificance level as in the actual test. Senn [64] discussed the circumstances in the real

world may vary among different tests, including the size of samples. The bootstrap

method for the reproducibility of tests can be extended to consider future sample

sizes that are different from the data sample size or use varying levels of statisti-

cal significance. However, the use of the same sample sizes and significance levels

as in the actual test is logical from the perspective of theoretical reproducibility,
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particularly within a frequentist statistical framework.



Chapter 5

Misspecification of Parametric

Predictive Bootstrap

5.1 Introduction

The parametric predictive bootstrap method relies on assumed parametric models.

This method samples all bootstrap observations based on an assumed distribution

with estimated parameters from the available data. In real-world applications, data

sets are never perfect and could suffer from several problems, one of these problems

is model misspecification. We refer to the misspecified PP-B model for situations

that occur when the distribution of data sets used is incorrectly specified. As a

consequence, the behaviour of PP-B may be different from the one that we would

expect on the basis of a well-specified model. In this chapter, three different sce-

narios are considered to examine the performance of PP-B regarding the assumed

parametric model. In the first scenario, the PP-B samples are generated from the

same distribution as the original data set, meaning the distribution assumed for the

PP-B method is well-defined. This scenario is referred to as PP-B(1). In the second

scenario, we generate PP-B samples from a different distribution than that used for

the original data set, but they are closely related to one another. This scenario is

referred to as PP-B(2). In the third scenario, the PP-B samples are generated from

a completely different distribution than that used to sample the original data set.

This scenario is referred to as PP-B(3).

92
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This chapter is organized as follows: In Section 5.2, we investigate the impact of

the misspecified PP-B model on the performance of the LC prediction interval. In

Section 5.3, the performance of PP-B is compared with different bootstrap methods

using confidence regions. Also, we study the effect of the misspecified PP-B model

on the performance of the confidence regions. In Section 5.4, we illustrate how to

apply Banks’ comparison method for prediction intervals to compare PP-B with

other bootstrap methods. We then examine the effect of a misspecified PP-B model

the performance of the prediction regions. In Section 5.5, we study how the fixed

bootstrap variance of PP-B impacts the reproducibility probability of one-sample

t-test. In the final section, some concluding remarks are provided.

5.2 LC prediction interval

The aim of this section is to study the effect of the misspecified PP-B model on the

performance of the LC prediction interval. In Chapter 3, we illustrated how to con-

struct LC prediction intervals for the mean and variance of m future observations,

as well as for a single future observation. Those intervals can be used to evaluate

the prediction performance of different bootstrap methods. It has been shown that

predictive bootstrapping methods, such as PB-B and NPI-B, perform well and pro-

vide a good proportion of coverage for LC prediction intervals. It is desirable to

have a proportion of coverage that is close to nominal coverage probability, along

with a shorter interval width. PP-B has the advantage of providing good coverage

with a shorter average width of intervals than NPI-B.

We consider three different scenarios to examine PP-B’s performance based on

the assumed parametric model with LC prediction interval. These scenarios are

examined for a variety of original sample sizes n = 50, 100, 200, 400 with confidence

levels 95% and 90%. The original data sets are simulated from an Exponential

distribution with rate parameter λ = 5. In the first scenario, the PP-B samples

are generated using the same distribution as the original data set, which means the

distribution assumed for the PP-B method is well-defined. In the second scenario,

we generate PP-B samples from the Gamma distribution with two parameters α and
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β. In statistics, there are several relationships among probability distributions can

be categorized in various ways such as one distribution is a special case of another

with a broader parameter space. The Exponential distribution is a special case of

the Gamma distribution with shape α = 1 and rate β = λ. In the third scenario,

the PP-B samples are generated from the Normal distribution with parameters µ

and σ2. The Normal distribution differs greatly from the Exponential distribution,

including the fact that it is symmetric about the mean, has a bell-shaped curve,

and has a domain of all real numbers. The second and third scenarios illustrate

the performance of the PP-B method when the model assumed in PP-B is different

from the actual model assumed in the original data. An evaluation of each scenario

is based on the coverage proportion and the average width of intervals. It is not

necessarily better to have narrower intervals, but the width is only important if the

coverage proportion are accurate.

The simulation study is carried out to investigate the proportion of coverage and

the average interval widths under the three scenarios. The PP-B method involves

estimating the parameters of an assumed distribution using available data. In each

scenario, we estimate parameters based on the model assumed for PP-B. The LC

prediction intervals are constructed for the mean of m = n, n/2 future observations.

A past sample of size n and a future sample of size m are generated independently

from Exp(5), then we compute the mean of the m future observations. In each

scenario, we draw B = 1000 bootstrap samples of size m from the past sample

and compute the mean of each bootstrap sample. After that, we use Equation

(2.32) to construct the LC prediction interval for the mean of m future observations.

Then, we determine if this interval contains the observed mean of the m future

observations. This procedure is repeatedN = 1000 times in order to see the coverage

proportion and the average interval widths for each scenario. We also study the LC

prediction intervals for a single future observation under three scenarios in terms

of the coverage proportion and average width of intervals. The prediction interval

for a single future observation is constructed as discussed in Section 2.6. Table 5.1

presents the coverage proportions and average interval widths for three different

scenarios.
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(a) m = n

Scenario measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B(1)

CPLC 0.9380 0.9630 0.9480 0.9480 0.8780 0.9160 0.8950 0.9050

AWLC 0.1553 0.1101 0.0778 0.0552 0.1294 0.0922 0.0653 0.0464

PP-B(2)

CPLC 0.9260 0.9540 0.9410 0.9400 0.8590 0.9060 0.8840 0.8960

AWLC 0.1520 0.1091 0.0777 0.0549 0.1262 0.0910 0.0650 0.0461

PP-B(3)

CPLC 0.9280 0.9610 0.9420 0.9400 0.8710 0.9130 0.8810 0.8970

AWLC 0.1533 0.1094 0.0776 0.0550 0.1282 0.0917 0.0652 0.0462

(b) m = n/2

Scenario measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B(1)

CPLC 0.9370 0.9340 0.9580 0.9460 0.8800 0.8740 0.9070 0.8980

AWLC 0.1898 0.1348 0.0952 0.0675 0.1582 0.1127 0.0799 0.0567

PP-B(2)

CPLC 0.9290 0.9270 0.9550 0.9490 0.8690 0.8670 0.9050 0.9010

AWLC 0.1864 0.1333 0.0950 0.0673 0.1546 0.1113 0.0795 0.0565

PP-B(3)

CPLC 0.9230 0.9410 0.9580 0.9470 0.8800 0.8740 0.9100 0.9010

AWLC 0.1875 0.1340 0.0952 0.0673 0.1568 0.1123 0.0798 0.0566

(c) m = 1

Scenario measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B(1)

CPLC 0.9340 0.9340 0.9360 0.9410 0.8920 0.8860 0.8920 0.8900

AWLC 0.7312 0.7305 0.7279 0.7290 0.5900 0.5893 0.5874 0.5882

PP-B(2)

CPLC 0.9260 0.9280 0.9370 0.9390 0.8760 0.8740 0.8900 0.8860

AWLC 0.7200 0.7228 0.7259 0.7274 0.5804 0.5824 0.5840 0.5863

PP-B(3)

CPLC 0.9290 0.9250 0.9330 0.9360 0.9060 0.9080 0.9130 0.9150

AWLC 0.7711 0.7761 0.7784 0.7794 0.6483 0.6524 0.6544 0.6552

Table 5.1: Coverage of 100(1 − 2α)% prediction interval for the mean of m =

n, n/2 future observations and for a single future observatio m = 1 under the three

scenarios.



5.2. LC prediction interval 96

0

3

6

9

0.1 0.2 0.3 0.4
Bootstrap means

D
e

n
s
it
y

Normal curve

(a) PP-B(1), m = 50

0

3

6

9

12

0.10 0.15 0.20 0.25 0.30 0.35
Bootstrap means

D
e

n
s
it
y

Normal curve

(b) PP-B(2), m = 50

0

5

10

0.10 0.15 0.20 0.25 0.30
Bootstrap means

D
e

n
s
it
y

Normal curve

(c) PP-B(3), m = 50

0.0

2.5

5.0

7.5

0.1 0.2 0.3 0.4
Bootstrap means

D
e

n
s
it
y

Normal curve

(d) PP-B(1), m = 25

0.0

2.5

5.0

7.5

0.1 0.2 0.3 0.4
Bootstrap means

D
e

n
s
it
y

Normal curve

(e) PP-B(2), m = 25

0

3

6

9

0.1 0.2 0.3
Bootstrap means

D
e

n
s
it
y

Normal curve

(f) PP-B(3), m = 25

0

1

2

3

0.0 0.5 1.0
Bootstrap

D
e

n
s
it
y

Normal curve

(g) PP-B(1), m = 1

0

1

2

3

4

0.0 0.5 1.0 1.5
Bootstrap

D
e

n
s
it
y

Normal curve

(h) PP-B(2), m = 1

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5
Bootstrap

D
e

n
s
it
y

Normal curve

(i) PP-B(3), m = 1

Figure 5.1: The bootstrap histograms of different scenarios for the future sample

mean and single future observation, where n = 50 and m = 50, 25, 1.
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It is apparent that all different scenarios provide coverage that is close to the

nominal coverage probability with similar average interval widths. These results

occur for future sample means due to the central limit theorem (CLT), which states

that the sampling distribution of the sample mean becomes closer to a Normal

distribution as the sample size gets larger, regardless of the distribution from which

we are sampling [49]. The CLT ensures a good approximation with a sample size

of 30, meaning that the distribution of the sample mean is close to the Normal

distribution. The single future observation has the largest average interval widths

compared to the future sample mean with different sizes m = n, n/2 due to the

fact that the larger samples produce narrower intervals. As a result, all different

scenarios have good coverage for a single future observation. Figure 5.1 shows a

histogram of B = 1000 bootstrap replications of the future sample means and single

future observation obtained by the three scenarios, with n = 50 and m = 50, 25, 1.

The normal density curve is superimposed on each histogram. As the sample size

grows, the histogram of the future sample means leads to graphed results that are

closer to the normal density curve. In the case of a single future observation, the

shape of the bootstrap histogram depends on the assumed distribution for each

scenario from which PP-B is sampled.

Now, we consider the variance of m = n, n/2 future observations to evaluate the

PP-B method under three scenarios. Simulations are conducted with the variance

by applying the same scenarios, past samples, and confidence levels that were used

in the future sample mean studies. Table 5.2 shows the results of coverage pro-

portion and average width of intervals for the future sample variance based on the

three scenarios. The first and second scenarios lead to good coverage proportions

with similar average interval widths for all future sample sizes and confidence levels.

In contrast, the third scenario performed poorly with under-coverage far from the

nominal coverage probabilities for all cases considered. Figure 5.2 displays a his-

togram of B = 1000 bootstrap replications of the future sample variance for these

three scenarios, with n = 50 and m = 50, 25. Histograms for the first and second

scenarios are markedly non-normal, especially for smaller samples when m = 25,

with a long tail toward the right. The shape of the bootstrap histogram for future
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(a) m = n

Scenario measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B(1)

CPLC 0.9370 0.9560 0.9430 0.9470 0.8820 0.9040 0.8950 0.9040

AWLC 0.0759 0.0538 0.0380 0.0270 0.0612 0.0442 0.0316 0.0226

PP-B(2)

CPLC 0.9140 0.9330 0.9360 0.9490 0.8370 0.8770 0.8790 0.8870

AWLC 0.0835 0.0610 0.0437 0.0310 0.0649 0.0485 0.0355 0.0255

PP-B(3)

CPLC 0.6650 0.6840 0.6790 0.6760 0.5830 0.5790 0.6030 0.5810

AWLC 0.0437 0.0310 0.0220 0.0156 0.0362 0.0258 0.0184 0.0131

(b) m = n/2

Scenario measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B(1)

CPLC 0.9440 0.9420 0.9500 0.9420 0.8810 0.8870 0.9130 0.8840

AWLC 0.0953 0.0686 0.0486 0.0348 0.0757 0.0557 0.0401 0.0289

PP-B(2)

CPLC 0.9160 0.9260 0.9420 0.9380 0.8570 0.8590 0.8890 0.8780

AWLC 0.1008 0.0733 0.0531 0.0379 0.0777 0.0582 0.0430 0.0311

PP-B(3)

CPLC 0.6960 0.6730 0.6800 0.6700 0.5950 0.5950 0.5970 0.5980

AWLC 0.0537 0.0381 0.0269 0.0191 0.0443 0.0317 0.0225 0.0160

Table 5.2: Coverage of 100(1 − 2α)% prediction interval for the variance of m =

n, n/2 future observations under the three scenarios.

sample variance depends on the assumed distribution for each scenario from which

PP-B is sampled.

According to the central limit theorem, the sampling distribution of the sample

mean approximately follows a normal distribution for large sample sizes. Therefore,

the inference procedures for the mean were robust to violations of the normality

assumption, in particular for large samples. Inference procedures for variance based

on the assumption of a Normal distribution can perform very badly when this as-
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Figure 5.2: The bootstrap histograms of different scenarios for the future sample

variance, where n = 50 and m = 50, 25.

sumption is violated, even with large sample sizes. The original data sets come from

an Exponential distribution, but for the PP-B method in the third scenario, we

assume incorrectly that these data come from a Normal distribution. Therefore, we

obtain coverage proportions that are far from nominal coverage probabilities for all

cases of variance. In the second scenario, we generate PP-B samples from a differ-

ent distribution of the original data sets, but they are closely related. Consequently,

we achieve good coverage proportions, but the performance in the first scenario is

mostly better for variance when the distribution assumed for the PP-B method is

well-defined.
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5.3 Confidence regions

In this section, we illustrate how to apply Banks’ comparison method to evaluate

the estimation performance of the different bootstrap methods using the confidence

regions technique. We then examine the impact of the misspecified PP-B model

on the performance of the confidence region. The main requirement for confidence

regions is that the true coverage probability is close to the nominal coverage proba-

bility. This has motivated several simulations to focus on accuracy at custom sizes,

such as 0.99, 0.95 and 0.90. Banks [4] investigated the global measure of coverage

accuracy to compare different bootstrap methods. A total of 20 confidence regions

are created, each with a nominal coverage probability of 0.05 by

CRL(i) =
(
q(αi+1

2
), q(αi

2
)

)
(5.1)

CRR(i) =
(
q(1−αi

2
), q(1−αi+1

2
)

)
(5.2)

where i = 1, 2, . . . , 10, αi+1 = αi − 0.10, α1 = 1 and q(z) is the zth quantile of

statistical values, so CRL(i) and CRR(i) are the confidence regions presenting the

left tail and right tail of the global measure of coverage accuracy, respectively. The

10 confidence regions with a nominal coverage probability of 0.10 can be obtained

using Equations (5.1) and (5.2) as follows:

CR(i) = CRL(i) ∪ CRR(i) (5.3)

Both divisions of confidence regions are used to show the best bootstrap method

that have the closest true coverage probability to the nominal coverage probability

for a specific parameter of interest. Banks [4] used a chi-squared test of goodness

of fit to assess the discrepancy in coverage proportion with different parameters,

distributions and sample sizes, to compare his bootstrap method to other bootstrap

techniques, e.g. Efron’s method [30], Rubin’s Bayesian bootstrap [63] and smoothed

Rubin’s bootstrap [4]. He considered the best bootstrap method to be the one having

the lowest chi-squared (χ2) values. We here intend to use the confidence regions

technique for comparison of PP-B with other methods of bootstrap, described in

Section 2.2. Also, we study the effects of the misspecified PP-B model on the

performance of the confidence region.
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The coverage proportions are estimated at 10 and 20 confidence regions of the

bootstrap confidence interval for the mean with a sample size of 50 from Beta(3,1).

A total of N = 1000 data sets are generated from Beta(3,1) with sample size n = 50.

The different bootstrap methods are applied to each data set B = 1000 times. The

means of the bootstrap samples are computed, and then we compute the 10 and 20

confidence regions using Equations (5.1), (5.2) and (5.3). Thereafter, we determine

which confidence regions contain the true mean of the Beta(3,1) distribution. By

repeating this procedure across all N = 1000 generated data sets, we are able to

find the coverage proportions for the true mean in the 10 and 20 confidence regions.

In Tables 5.3 and 5.4, we present the coverage proportions for the true mean in the

10 and 20 confidence regions, respectively.

The PP-B and NPI-B methods lead to coverage proportions far from the nominal

level of 0.10 in most of the 10 confidence regions, and far from 0.05 in most of the

20 confidence regions. They produce wider confidence regions than other bootstrap

methods due to the greater variability in their bootstrap samples. Therefore, the

PP-B and NPI-B methods have over-coverage results for many confidence regions.

In contrast, the PB and EB methods illustrate their superiority in making coverage

proportions in each of the 10 and 20 confidence regions close to 0.10 and 0.05,

respectively. The chi-square test can be used to assess the discrepancy between

the nominal coverage probabilities and coverage proportions at distinct confidence

levels based on different bootstrap methods. The first row of Table 5.5 shows the

chi-squared values for the different bootstrap methods. The PB and EB methods

are clearly superior at achieving the lowest discrepancy between nominal coverage

probabilities and coverage proportions in both divisions of the confidence regions.

Simulations were repeated several times and the results were consistent, as shown

in Table 5.5. The PP-B method achieves lower chi-squared values than NPI-B for

all cases, but the PB and EB methods are performing better.

We consider a variety of sample sizes to explore whether or not sample size

affects the performance of different bootstrap techniques. Table 5.6 outlines the

chi-squared values obtained from the coverage proportions for the mean at various

sample sizes n based on different bootstrap methods. The chi-squared values for all
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CR(i) PP-B NPI-B PB EB

1 0.136 0.153 0.103 0.107

2 0.136 0.148 0.097 0.087

3 0.142 0.139 0.104 0.110

4 0.135 0.149 0.113 0.098

5 0.134 0.121 0.107 0.113

6 0.098 0.110 0.104 0.110

7 0.094 0.078 0.102 0.104

8 0.059 0.054 0.091 0.094

9 0.037 0.028 0.099 0.088

10 0.029 0.020 0.080 0.089

Table 5.3: The coverage proportions for the mean in the 10 confidence regions, where

n = 50.

bootstrap methods show consistent results for all cases of different sample sizes in

both confidence region divisions. As the sample size increases, the corresponding

chi-squared values of the NPI-B method decrease in both divisions of the global

measure of coverage accuracy. However, it still has a higher chi-squared value in all

cases of confidence region divisions compared to the other bootstrap methods. In

both the PP-B and the NPI-B methods, the chi-squared values are large because

of the large discrepancies between the nominal coverage probabilities and coverage

proportions. It appears that both the PB and EB methods achieve good coverage

accuracy since their chi-squared values are low.

Additionally, we evaluate different bootstrap methods using confidence regions

of the bootstrap confidence interval for the variance. The chi-squared goodness of fit

values are computed based on the coverage proportions of the four bootstrap meth-

ods for variance at different sample sizes n. Several sample sizes are considered, to

investigate whether there is an influence of sample size on the performance of dif-

ferent bootstrap methods or not. Table 5.7 shows the chi-squared values obtained
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method PP-B NPI-B PB EB

i CRL(i) CRR(i) CRL(i) CRR(i) CRL(i) CRR(i) CRL(i) CRR(i)

1 0.073 0.063 0.072 0.081 0.055 0.048 0.062 0.045

2 0.072 0.064 0.078 0.070 0.055 0.042 0.049 0.038

3 0.074 0.068 0.073 0.066 0.055 0.049 0.050 0.060

4 0.072 0.063 0.070 0.079 0.054 0.059 0.057 0.041

5 0.074 0.060 0.054 0.067 0.063 0.044 0.058 0.055

6 0.057 0.041 0.055 0.055 0.049 0.055 0.056 0.054

7 0.053 0.041 0.034 0.044 0.059 0.043 0.054 0.050

8 0.034 0.025 0.020 0.034 0.045 0.046 0.047 0.047

9 0.025 0.012 0.012 0.016 0.054 0.045 0.050 0.038

10 0.017 0.012 0.008 0.012 0.048 0.032 0.054 0.035

Table 5.4: The coverage proportions for the mean in the 20 confidence regions, where

n = 50.
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Repetition
10 CR 20 CR

PP-B NPI-B PB EB PP-B NPI-B PB EB

1 171.90 233.44 6.10 6.06 184.76 245.64 21.16 14.16

2 174.92 229.76 12.36 8.08 188.00 238.60 23.00 16.92

3 170.06 235.52 5.28 9.90 183.72 247.80 13.92 23.24

4 174.36 233.94 10.44 7.46 189.76 243.60 25.88 18.36

5 180.8 229.06 9.28 8.00 192.76 236.92 16.36 19.64

6 172.84 234.66 7.66 5.36 184.24 243.60 17.92 16.16

7 169.10 229.40 6.34 7.08 183.32 236.76 16.24 17.20

8 174.20 234.88 9.20 4.28 187.76 249.60 18.12 15.84

9 174.30 228.46 11.58 10.28 188.60 240.60 20.08 19.16

10 174.74 235.70 9.56 4.86 186.16 253.24 19.16 12.60

Table 5.5: The chi-squared values obtained from coverage proportions for the mean,

where n = 50.
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n measures
10 CR 20 CR

PP-B NPI-B PB EB PP-B NPI-B PB EB

30
χ2 161.42 230.56 14.80 16.98 187.08 249.648 27.72 29.76

p-value 0.000 0.000 0.097 0.049 0.000 0.000 0.089 0.055

100
χ2 116.40 154.10 6.26 6.78 132.52 168.88 25.44 21.64

p-value 0.538 0.000 0.714 0.660 0.000 0.000 0.147 0.303

200
χ2 137.78 145.28 3.16 2.18 156.04 157.20 16.84 14.60

p-value 0.000 0.000 0.958 0.988 0.000 0.000 0.601 0.748

300
χ2 115.92 129.14 10.24 11.00 125.84 142.16 22.60 25.72

p-value 0.000 0.000 0.331 0.276 0.000 0.000 0.255 0.138

Table 5.6: The chi-squared values for the mean and their p-values with different

sample sizes n.

from the coverage proportions for the true variance based on the different bootstrap

procedures. As a result of the high discrepancy between the nominal coverage prob-

abilities and coverage proportions, the χ2 values for both the PP-B and the NPI-B

methods are large. The PB method distributes the coverage proportions well over

the 10 and 20 confidence regions, which is reflected in the low chi-squared value.

This method performs better than other bootstrap methods in terms of reducing

the discrepancy between nominal coverage probabilities and coverage proportions.

The EB method leads to a high chi-squared value in the 20 confidence regions due

to the large discrepancies between the nominal coverage probabilities and coverage

proportions. For the variance, EB exhibits a noticeable decrease in its ability to

distribute coverage proportions close to the nominal level of 0.05 in most of the 20

confidence regions. However, the corresponding chi-squared values of EB decrease

as the sample size increases in the 20 confidence regions. It has been observed that

when the sample size increases, the pattern of chi-squared values corresponding to

NPI-B decreases in both confidence region divisions for the mean and variance.

However, the chi-squared values of NPI-B are the largest in both divisions of the
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n measures
10 CR 20 CR

PP-B NPI-B PB EB PP-B NPI-B PB EB

50
χ2 133.62 302.88 11.26 29.14 200.24 349.04 49.56 107.44

p-value 0.000 0.000 0.258 0.001 0.000 0.000 0.000 0.055

100
χ2 119.14 199.36 12.46 20.02 158.48 245.32 54.64 86.40

p-value 0.538 0.000 0.189 0.018 0.000 0.000 0.000 0.000

200
χ2 156.16 190.90 3.06 7.42 175.24 240.72 33.68 37.28

p-value 0.000 0.000 0.962 0.593 0.000 0.000 0.020 0.007

300
χ2 122.62 155.38 14.80 16.06 147.20 183.12 26.24 35.88

p-value 0.000 0.000 0.097 0.066 0.000 0.000 0.124 0.011

Table 5.7: The chi-squared values for the variance and their p-values with different

sample sizes n.

confidence regions, followed by the PP-B method.

Now, we study the impact of the misspecified PP-B model on confidence regions’

performance. Three scenarios are considered to examine PP-B’s performance based

on the assumed parametric model. These scenarios are investigated for several sam-

ple sizes n = 50, 100, 200, 400 from an Exponential distribution with rate parameter

λ = 5. For each scenario, we compute the chi-squared goodness of fit values obtained

from the coverage proportions for the mean and variance. We specify the parameters

of the assumed distribution for each scenario in order to find the coverage propor-

tion for the mean and variance. It is important to emphasize that the PP-B method

generates the bootstrap sample by estimating the distribution parameters from the

available data. In the first scenario, we assume that these data come from the Ex-

ponential distribution with rate parameter λ = 5, meaning that the distribution

assumed for the PP-B method is well-defined. In the second scenario, we assume

incorrectly that these data follow the Gamma distribution with parameters α = 1

and β = 5. In the third scenario, these data are incorrectly assumed to come from

the Normal distribution with parameters µ = 1/5 and σ2 = 1/25. It is important to
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(a) mean

n measures
10 CR 20 CR

PP-B(1) PP-B(2) PP-B(3) PP-B(1) PP-B(2) PP-B(3)

50
χ2 139.38 99.08 105.28 168.80 123.04 147.56

p-value 0.000 0.000 0.000 0.000 0.000 0.000

100
χ2 179.16 150.00 157.00 194.16 167.80 178.44

p-value 0.000 0.000 0.000 0.000 0.000 0.000

200
χ2 163.78 154.44 158.00 177.04 169.32 177.64

p-value 0.000 0.000 0.000 0.000 0.000 0.000

300
χ2 147.56 137.80 143.68 156.80 150.16 164.88

p-value 0.000 0.000 0.000 0.000 0.000 0.000

(b) variance

n measures
10 CR 20 CR

PP-B(1) PP-B(2) PP-B(3) PP-B(1) PP-B(2) PP-B(3)

50
χ2 203.44 17.20 254.34 332.68 294.4 459.72

p-value 0.000 0.046 0.000 0.000 0.000 0.000

100
χ2 281.98 76.52 208.3 376.96 248.20 318.24

p-value 0.000 0.000 0.000 0.000 0.000 0.000

200
χ2 313.80 109.12 197.20 370.24 222.00 244.00

p-value 0.000 0.000 0.000 0.000 0.000 0.000

300
χ2 309.94 102.50 252.08 340.36 181.20 292.92

p-value 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.8: The chi-squared values for the mean and variance with their p-values

under the three scenarios.

note that the parameters are estimated based on the distribution assumed for PP-B

in each scenario.
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Table 5.8 presents the chi-squared values obtained from the coverage proportions

for the true mean and variance based on the three scenarios. It is apparent that

the chi-squared values of all different scenarios are large with only one exception for

variance in the second scenario when n = 50 and the confidence level is divided into

10 confidence regions. It is not unexpected that PP-B does not lead to coverage

proportions close to nominal levels of most confidence region divisions, as it is not

developed for estimating population characteristics, but for predictive inference.

5.4 Prediction regions

In this section, we consider Banks’ comparison method for prediction intervals to

explore the performance of different bootstrap methods in predictive inference. Here,

we intend to investigate the global measure of coverage accuracy for prediction

intervals, which are called prediction regions. We then focus on studying how the

performance of the PP-B method is affected when the assumed model for PP-B is

incorrectly specified. We create the prediction regions using percentile points as

we have done in confidence regions. Then, we use a chi-squared test of goodness

of fit to assess the discrepancy in coverage probability for the bootstrap prediction

intervals. The 20 prediction regions with a nominal coverage probability of 0.05 can

be obtained by

PRL(i) =
(
q(αi+1

2
), q(αi

2
)

)
(5.4)

PRR(i) =
(
q(1−αi

2
), q(1−αi+1

2
)

)
(5.5)

where i = 1, 2, . . . , 10, αi+1 = αi − 0.10, α1 = 1 and q(z) is the zth quantile of

statistical values, so PRL(i) and PRR(i) are the prediction regions representing the

left tail and right tail of the global measure of coverage accuracy, respectively. A

total of 10 prediction regions are created, each with a nominal coverage probability

of 0.10 can be obtained using Equations (5.4) and (5.5) as follows:

PR(i) = PRL(i) ∪ PRR(i) (5.6)

The following processes are used to study the coverage proportions in the 10 and

20 prediction regions for the future sample statistic based on the bootstrap method:
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PR(i) PP-B NPI-B PB EB

1 0.096 0.108 0.073 0.068

2 0.106 0.097 0.071 0.070

3 0.090 0.119 0.072 0.077

4 0.094 0.091 0.076 0.077

5 0.104 0.087 0.078 0.072

6 0.102 0.112 0.072 0.065

7 0.110 0.113 0.090 0.098

8 0.103 0.092 0.100 0.106

9 0.090 0.103 0.144 0.130

10 0.105 0.078 0.224 0.237

Table 5.9: The coverage proportions for the mean in the 10 prediction regions, where

n = 50.

1. Draw a sample X = (x1, . . . , xn) of n observations from a specific distribution

to be the past sample and then draw a sample Y = (y1, . . . , ym) of m observa-

tions from the same distribution to be the future sample. The samples X and

Y are assumed to be independent samples.

2. Compute the statistic of the Y sample, Tm.

3. Draw B bootstrap samples of size m from the X sample and compute the

statistic T ∗
m for each bootstrap sample to obtain a list of T ∗

m(j) for j = 1, . . . , B.

4. Create the 10 and 20 prediction regions for Tm by Equations (5.4), (5.5) and

(5.6).

5. Determine if these prediction regions include the statistic Tm.

6. Steps 1-5 are performed in total N times in order to find the coverage propor-

tions.

A simulation study is carried out as described above using different bootstrap
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methods to compute the coverage proportions in the 10 and 20 prediction regions.

Simulations are performed N = 1000 times for the mean with a sample size of 50

from Beta(3,1) and the bootstrap methods are applied to each past sample B =

1000. The coverage proportions for the mean in the 10 and 20 prediction regions

are outlined in Tables 5.9 and 5.10, respectively. The PP-B and NPI-B methods

illustrate their superiority in achieving coverage proportions in each of the 10 and

20 prediction regions close to 0.10 and 0.05, respectively. In contrast, the PB and

EB methods lead to coverage proportions far from the nominal level of 0.10 in

most of the 10 prediction regions, and far from 0.05 in most of the 20 prediction

regions. We use the chi-square test to assess the discrepancy between the nominal

coverage probabilities and coverage proportions in order to show the best bootstrap

method. The resulting χ2 values are presented in the first row of Table 5.11. The

PP-B and NPI-B methods achieve good coverage accuracy, which is reflected by

the low chi-squared value in both divisions of the prediction regions. They make

the discrepancies between coverage proportions and nominal coverage probabilities

lower than the other bootstrap methods. Simulations were repeated several times

and consistent results were obtained, as illustrated in Table 5.11. It is obvious

that the PP-B method shows its superiority to the other bootstrap methods in

achieving the smallest chi-squared values. It distributes the coverage proportions

more accurately in most of the prediction region divisions than the other bootstrap

methods and this is apparent from having the lowest chi-squared values.

A variety of sample sizes are considered to determine whether the size of the

sample affects the performance of different bootstrap methods. Table 5.12 presents

the chi-squared values obtained from the coverage proportions for the mean using

different bootstrap methods at different sample sizes n. The chi-squared values for

all bootstrap methods show no clear pattern as the sample size increases. In both

prediction regions, chi-squared values are consistent across all bootstrap methods

regardless of sample size. The PP-B method performs better in both prediction

region divisions at different sample sizes than any other bootstrap method, followed

by NPI-B. For both the PB and the EB methods, the chi-squared values are large

because of the great discrepancies between the nominal coverage probabilities and
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method PP-B NPI-B PB EB

i PRL(i) PRR(i) PRL(i) PRR(i) PRL(i) PRR(i) PRL(i) PRR(i)

1 0.051 0.045 0.057 0.051 0.042 0.031 0.039 0.029

2 0.056 0.050 0.047 0.050 0.040 0.031 0.038 0.032

3 0.043 0.047 0.058 0.061 0.034 0.038 0.038 0.039

4 0.049 0.045 0.042 0.049 0.039 0.037 0.038 0.039

5 0.055 0.049 0.045 0.042 0.042 0.036 0.041 0.031

6 0.051 0.051 0.053 0.059 0.034 0.038 0.030 0.035

7 0.054 0.056 0.055 0.058 0.046 0.044 0.050 0.048

8 0.057 0.046 0.033 0.059 0.050 0.05 0.051 0.055

9 0.044 0.046 0.044 0.059 0.066 0.078 0.060 0.070

10 0.052 0.053 0.028 0.050 0.113 0.111 0.119 0.118

Table 5.10: The coverage proportions for the mean in the 20 prediction regions,

where n = 50.
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Repetition
10 PR 20 PR

PP-B NPI-B PB EB PP-B NPI-B PB EB

1 4.42 15.54 216.10 247.00 7.12 30.96 220.36 250.84

2 3.90 9.14 225.62 252.12 13.44 25.16 233.08 259.00

3 5.46 9.34 236.24 253.40 10.88 27.96 241.12 261.44

4 5.48 10.72 234.06 246.24 11.52 27.64 236.24 251.92

5 4.70 11.70 246.48 262.76 11.28 32.64 258.04 265.60

6 4.72 10.42 233.60 241.06 9.80 32.16 238.00 246.12

7 5.34 15.40 227.66 254.52 12.36 32.64 230.64 261.84

8 6.96 10.24 227.04 248.82 18.24 25.56 233.08 253.96

9 6.88 15.76 239.58 238.62 12.48 36.40 243.04 240.52

10 3.18 10.76 227.48 261.34 9.04 33.52 229.96 265.16

Table 5.11: The chi-squared values obtained from coverage proportions for the mean,

where n = 50.

n measures
10 PR 20 PR

PP-B NPI-B PB EB PP-B NPI-B PB EB

30
χ2 7.36 16.30 235.78 266.18 25.32 45.60 261.28 287.96

p-value 0.600 0.061 0.000 0.000 0.150 0.001 0.000 0.000

100
χ2 7.50 7.56 303.52 314.24 15.32 18.76 306.64 321.48

p-value 0.585 0.579 0.000 0.000 0.702 0.472 0.000 0.000

200
χ2 9.66 22.28 281.50 289.32 16.56 31.80 287.28 296.24

p-value 0.379 0.008 0.000 0.000 0.620 0.033 0.000 0.000

300
χ2 5.44 6.32 244.30 250.02 13.60 14.48 250.20 252.92

p-value 0.794 0.708 0.000 0.000 0.806 0.755 0.000 0.000

Table 5.12: The chi-squared values for the mean and their p-values with different

sample sizes n.
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coverage proportions.

We also evaluate different bootstrap methods based on the global accuracy of

prediction intervals for the variance. The chi-squared goodness of fit test is used as

the basis for comparing the performance of the bootstrap method. We consider sev-

eral sample sizes to investigate whether or not sample size affects the performance of

different bootstrap techniques. In Table 5.13, we present the chi-squared values ob-

tained from the coverage proportions for the variance based on different bootstrap

methods. The results of this table are computed in the same manner as before,

to demonstrate the performance of these bootstrap techniques. The results of χ2

values in both prediction region divisions indicate that PP-B and NPI-B are both

performing better than any other bootstrap methods. The reason for this is that

both methods are able to distribute coverage proportions more accurately across 10

and 20 prediction regions. In contrast, the χ2 values of PB and EB are high due

to the great discrepancies between the nominal coverage probabilities and cover-

age proportions. The PP-B method has the lowest chi-squared value among these

bootstrap methods, which indicates its superiority in achieving coverage proportions

close to nominal levels in most of the prediction region divisions.

We investigate how the misspecified PP-B model affects the performance of pre-

diction regions. We consider three different scenarios to evaluate the performance

of PP-B in relation to the assumed parametric model. The chi-squared goodness

of fit values are computed for the mean and variance with several sample sizes

n = 50, 100, 200, 400 from an Exponential distribution with rate parameter λ = 5.

In the first scenario, we generate PP-B samples from an Exponential distribution,

so the distribution assumed for the PP-B method is well-defined. In the second

scenario, the PP-B samples are generated based on the Gamma distribution with

parameters α and β. In the third scenario, the PP-B samples are generated using

the Normal distribution with parameters µ and σ2. We generate PP-B samples in

the second and third scenarios based on a different distribution from the actual dis-

tribution assumed in these data. Table 5.14 shows the chi-squared values obtained

from the coverage proportions for the mean and variance under the three scenarios.

The results of χ2 values for the mean indicate that all different scenarios are able
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n measures
10 PR 20 PR

PP-B NPI-B PB EB PP-B NPI-B PB EB

50
χ2 16.20 28.82 220.08 327.56 53.20 88.24 232.84 367.44

p-value 0.063 0.001 0.000 0.000 0.000 0.000 0.000 0.000

100
χ2 11.56 19.44 257.24 325.08 45.80 53.20 288.64 383.48

p-value 0.239 0.022 0.000 0.000 0.001 0.000 0.000 0.000

200
χ2 13.64 15.14 177.42 193.54 23.84 46.04 182.96 205.48

p-value 0.136 0.087 0.000 0.000 0.005 0.000 0.000 0.000

300
χ2 7.12 13.02 242.42 268.70 22.32 31.80 267.08 292.52

p-value 0.625 0.162 0.000 0.000 0.269 0.033 0.000 0.000

Table 5.13: The chi-squared values for the variance and their p-values with different

sample sizes n.

to distribute the coverage proportions well over the 10 and 20 prediction regions.

These results occur for the mean due to the central limit theorem, as discussed in

Section 5.2. The central limit theorem (CLT) states that the sampling distribution

of the sample mean becomes closer to a normal distribution when the sample size

increases irrespective of the distribution from which we sample. However, the differ-

ence between the χ2 values for the variance appears very clearly in the third scenario

at both prediction region divisions. The PP-B samples are generated in the second

scenario using a distribution that differs from the actual distribution assumed in

these data, but they are closely related to one another. Consequently, we achieve

lower χ2 values compared to the third scenario. However, the performance in the

first scenario is mostly better when the distribution assumed for the PP-B method

is well-defined.
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(a) mean

n measures
10 PR 20 PR

PP-B(1) PP-B(2) PP-B(3) PP-B(1) PP-B(2) PP-B(3)

50
χ2 23.62 22.98 14.32 37.40 31.80 59.92

p-value 0.005 0.006 0.111 0.007 0.033 0.000

100
χ2 14.16 8.16 8.14 21.32 14.44 28.60

p-value 0.117 0.518 0.520 0.319 0.757 0.073

200
χ2 6.70 4.46 10.16 15.48 21.68 26.08

p-value 0.668 0.879 0.338 0.692 0.300 0.128

300
χ2 8.92 14.26 7.50 21.28 20.04 28.28

p-value 0.445 0.113 0.585 0.322 0.392 0.078

(b) variance

n measures
10 PR 20 PR

PP-B(1) PP-B(2) PP-B(3) PP-B(1) PP-B(2) PP-B(3)

50
χ2 20.26 64.80 1152.76 36.52 166.56 1202.2

p-value 0.016 0.000 0.000 0.009 0.000 0.000

100
χ2 34.90 20.74 1167.04 55.60 76.48 1183.88

p-value 0.000 0.014 0.000 0.000 0.000 0.000

200
χ2 6.54 11.34 1016.22 19.44 59.52 1027.8

p-value 0.685 0.253 0.000 0.429 0.000 0.000

300
χ2 10.06 9.66 898.74 26.12 55.84 916.20

p-value 0.346 0.379 0.000 0.127 0.000 0.000

Table 5.14: The chi-squared values for the mean and variance with their p-values

under the three scenarios.

5.5 PP-B-RP with fixed variance for the one-sample

t-test

In this section, we study the reproducibility probability of one-sample t-test using

the PP-B method with a fixed variance parameter. The Normal distribution of data



5.5. PP-B-RP with fixed variance for the one-sample t-test 116

is a prerequisite for applying the one-sample t-test. The PP-B method assumes that

the data come from a known distribution with unknown parameters. We obtain

the PP-B sample by estimating the parameters of the assumed distribution, then

drawing one value from the assumed distribution with the estimated parameters

from the available data and adding this value to the data. This is continued m

times, where each drawn observation is added to the data and the parameters are

re-estimated before sampling the next observation. We illustrated in Section 4.3

how to derive the reproducibility probability for the one-sample t-test using the

PP-B method. We will explore how the fixed bootstrap variance of PP-B impacts

on the RP patterns of one-sample t-test through simulations. The PP-B samples

are generated by estimating the mean parameter only from the available data and

fixing the variance parameter. The PP-BF-RP is an acronym for the reproducibility

value based on fixed bootstrap variance for PP-B. Note that we do not consider the

three scenarios when studying the RP of a test, as we may reject the null hypothesis

when it is true because we unknowingly reject another wrong assumption. Also,

parametric tests require statistical assumptions to apply, e.g. the t-test can only be

applied to data that follow a Normal distribution.

The one sided one-sample t-test is considered, H0 : µ = µ0 versus Ha : µ > µ0,

with level of significance α = 0.10. We simulate N = 50 samples of size n = 5 from

the Normal distribution with mean 0 and variance 1 under H0. The values of RP is

determined for each of N = 50 simulated sample as explained in Section 4.3. The

PP-B samples are generated by fixing the variance parameter to a specific value and

estimating the mean parameter from the available data. In these simulations, we

compare the RP values when the PP-B variance is fixed at 1 with those without

a fixed variance. The same simulated samples are used to calculate the RP value

based on PP-BF-RP and PP-B-RP. We also study the impact of increasing sample

size to n = 20 on PP-BF-RP values for the one-sample t-test. It is important to note

that the fixed bootstrap variance for PP-B method and the variance of the simulated

samples are the same. Figure 5.3 shows the results of RP values using the PP-B

method with fixed and non-fixed bootstrap variance under H0 for samples of size

n = 5, 20. The boxplots represent RP values for both methods in cases of rejection
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Figure 5.3: Simulation under H0: values of the RP of one-sample t-test using PP-B

with fixed and non-fixed bootstrap variance, where n = 5, 20.
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Sample s2 Test statistic n Test threshold H0 PP-BF-RP PP-B-RP

1 0.216 2.211

5 1.533

R 0.418 0.764

2 0.926 1.953 R 0.676 0.752

3 0.236 1.592 R 0.332 0.604

4 0.683 1.217 NR 0.605 0.519

5 1.114 1.042 NR 0.540 0.525

6 0.517 0.940 NR 0.679 0.580

1 0.949 2.209

20 1.328

R 0.739 0.769

2 0.947 1.383 R 0.502 0.529

3 0.877 1.364 R 0.494 0.530

4 1.279 1.048 NR 0.511 0.53

5 0.873 1.007 NR 0.582 0.552

6 1.186 0.975 NR 0.546 0.563

Table 5.15: Simulation under H0: values of RP of one-sample t-test using PP-B

with fixed and non-fixed bootstrap variance for six observed samples of sizes n = 5

and n = 20.

and non-rejection of the null hypothesis. It is interesting to note that there is a high

fluctuation of the RP values with fixed bootstrap variance for a small sample of size

n = 5, particularly when the observed test statistics are close to the test threshold.

We observed that increasing the sample size impacts on the patterns of RP values

for fixed bootstrap variance. When the sample size increases to n = 20, the RP

values based on fixed bootstrap variance seem to be similar to those with non-fixed

bootstrap variance.

Table 5.15 presents six samples close to the test threshold that reject and do not

reject H0 with samples of sizes n = 5 and n = 20 for simulations under H0. For each

sample in this table, we present the observed sample variance, test statistics, test

threshold, PP-BF-RP and PP-B-RP. The small samples are somewhat more likely

to underestimate the population variance as appears from sample variances when
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n = 5. A larger sample size improves the estimation of the population variance and

becomes closer to the true variance of the population as shown when n = 20. The

PP-BF-RP tends to be lower in the case of rejection when the simulated sample has

a small variance such as sample 1 when n = 5. In contrast, it tends to be higher

in the case of non-rejection when the simulated sample variance is small such as

sample 6 when n = 5. However, the difference between PP-BF-RP and PP-B-RP

methods is reducing as the sample size increases.

The RP is computed by generatingB bootstrap samples from the original sample,

then applying the one-sample t-test for each of these bootstrap samples. The ratio

of B times that have the same decision as the original sample is the RP value.

We compute the test statistic of the one-sample t-test using Formula (4.1), which

includes the sample variance in the denominator. In the case of rejection, the PP-

BF-RP tends to be lower when the variance of the simulated sample is small due to

the computed test statistic from these bootstrap samples tending to lie in the non-

rejection region. This occurs because the bootstrap sample with fixed variance leads

to a smaller test statistic than the test statistic of the simulated sample, as a result

of a higher variance value in the denominator. Hence, we obtain more cases that

do not reject H0 due to a test statistic value being smaller than the test threshold.

In contrast, PP-BF-RP tends to be higher in the case of non-rejection when the

simulated sample variance is small. It is the same reason in the case of rejection,

where we obtain more cases of the same decision of an original sample that does

not reject H0. The fluctuation in RP values with fixed bootstrap variance occurs

due to a contradiction between the simulated sample variance and bootstrap sample

variance.

The simulations are performed assuming the underlying populations under the

alternative hypothesis, Ha : µ > µ0, with level of significance α = 0.10. We simulate

N = 50 samples of sizes n = 5, 10 from the Normal distribution with mean 0.5 and

variance 1 under Ha. The values of RP are determined for each of N = 50 simulated

samples using PP-B with fixed and non-fixed variance. We compare the RP values

when the PP-B variance is fixed at 1 with the non-fixed bootstrap variance. The

same data sets for each sample are used to compute the RP value based on PP-B
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Figure 5.4: Simulation under Ha: values of the RP of one-sample t-test using PP-B

with fixed and non-fixed bootstrap variance, where n = 5, 10.
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Sample s2 Test statistic n Test threshold H0 PP-BF-RP PP-B-RP

1 0.263 1.828

5 1.533

R 0.374 0.670

2 1.427 1.811 R 0.712 0.661

3 0.531 1.744 R 0.470 0.652

4 0.727 1.504 NR 0.519 0.418

5 0.924 1.464 NR 0.491 0.434

6 2.310 1.376 NR 0.299 0.450

1 1.662 1.662

10 1.328

R 0.595 0.613

2 0.962 1.514 R 0.556 0.591

3 1.941 1.424 R 0.706 0.577

4 2.759 1.294 NR 0.249 0.475

5 0.396 1.267 NR 0.642 0.477

6 0.789 1.247 NR 0.541 0.473

Table 5.16: Simulation under Ha: values of RP of one-sample t-test using PP-B

with fixed and non-fixed bootstrap variance for six observed samples of sizes n = 5

and n = 10.

with fixed and non-fixed variance. The results of RP values based on the PP-BF-

RP and PP-B-RP methods with samples of size n = 5, 10 under Ha are presented

in Figure 5.4. The boxplots of RP values are displayed for the two methods in

both cases of rejection and non-rejection. The fluctuation in RP values with fixed

bootstrap variance is more visible when simulations are conducted under Ha due to

more cases of test statistics close to the test threshold.

A total of six samples close to the test threshold that reject and do not reject

H0 with samples of sizes n = 5 and n = 20 for simulations under Ha are shown in

Table 5.16. From this table, we see that some simulated samples overestimate the

population variance. When the simulated sample has a large variance, the PP-BF-

RP is completely opposite the small variance of the simulated sample. In the case

of rejection, the PP-BF-RP tends to be higher when the simulated sample variance
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Figure 5.5: Simulation under H0 and Ha: values of the RP of one-sample t-test

using PP-B with fixed and non-fixed bootstrap variance, where n = 5 and variances

of all simulated samples lie between 0.98 and 1.02.
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is large, such as in sample 3 when n = 10. Conversely, it has a lower RP value in

the case of non-rejection when the variance of the simulated sample is large such as

sample 4 when n = 10. In the case of the simulated sample with large variance, the

bootstrap sample with a fixed variance of 1 leads to larger test statistics, as a result

of a smaller variance value in the denominator. Hence, we obtain more cases that

reject H0 due to a test statistic value being larger than the test threshold.

In the following simulations, we repeat the same procedure to compare the RP

values for a one-sample t-test using PP-B with fixed and non-fixed variance. The

simulations are conducted under H0 and Ha for samples of size n = 5, but with

restricted variances of all simulated samples between 0.98 and 1.02. Consequently,

the variances of all simulated samples are very close to the fixed bootstrap variance.

Figure 5.5 shows the simulation results of both PP-BF-RP and PP-B-RP methods

under H0 for samples of size n = 5. The boxplots of RP values are presented for

both methods in cases of rejection and non-rejection of the null hypothesis. It is

obvious that both methods produce similar RP values due to the variances of the

simulated samples and bootstrap samples are close. This approves the fluctuation

in PP-BF-RP values occurring because of a discrepancy between the variances of

the simulated sample and bootstrap sample.

5.6 Concluding remarks

This chapter examines the impact of the misspecified PP-B model in a range of sce-

narios, as well as how the fixed bootstrap variance of PP-B affects RP for one-sample

t-test. Misspecification of models can result in several undesirable consequences and

may lead to unexpected behaviour. A misspecified PP-B model refers to situations

in which the distribution of data sets used is incorrectly specified. The performance

of PP-B is examined under three different scenarios regarding the assumed paramet-

ric model. The first scenario generates PP-B samples from the same distribution as

the original data set, indicating that the distribution assumed for the PP-B method

is well-defined. The second scenario generates PP-B samples from a different distri-

bution than that used to sample the original data set, but they are closely related to
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one another. The third scenario generates PP-B samples from a completely different

distribution than that used for the original data set.

We investigate the influence of an incorrectly specified PP-B model on the per-

formance of the LC prediction interval through simulation studies. All different

scenarios for the mean provide coverage that is close to the nominal coverage prob-

ability due to the central limit theorem. The difference appears clearly in the third

scenario for the variance, which performed poorly with under-coverage far from the

nominal coverage probabilities. Banks’ comparison strategy of the bootstrap confi-

dence interval is used to compare PP-B with other bootstrap methods. PP-B and

NPI-B provide wide confidence regions that arise from greater variability in their

bootstrap samples, so they have over-coverage in many confidence regions. As a

result, the chi-squared value for these bootstrap methods is high due to the large

discrepancy between the nominal coverage probabilities and coverage proportions.

In contrast, the PB and EB methods perform well in achieving low discrepancies

between the nominal coverage probabilities and coverage proportions.

We illustrate how to apply Banks’ comparison method for the bootstrap pre-

diction interval, which is called prediction regions. The performance of PP-B is

compared to other bootstrap methods, as well as the impact of the misspecified PP-

B model on the prediction region’s performance. The PP-B method performs best

with the lowest chi-squared values, followed by the NPI-B method. These bootstrap

methods are able to distribute coverage proportions more accurately across predic-

tion regions divisions. The chi-squared values of PB and EB methods are large

because of the great discrepancies between the nominal coverage probabilities and

coverage proportions. The performance of prediction regions is examined in relation

to the misspecified PP-B model. The results of chi-squared values for the mean

show that all different scenarios are able to distribute the coverage proportions well

across prediction regions divisions due to the central limit theorem. The difference

between the χ2 values appears clearly for the variance, in particular for the third

scenario. The PP-B samples are generated in the second scenario using a different

distribution than that used for the original data set, but they are closely related to

one another. Consequently, the PP-B method performs much better in the second
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scenario compared to the third scenario. However, the performance of the PP-B

method is mostly better when the distribution assumed for the PP-B method is

well-defined. Finally, we investigate the reproducibility probability of one-sample

t-test using PP-B with a fixed variance parameter. The fixed bootstrap variance

of PP-B has a negative impact on the RP value for one-sample t-test. This occurs

because of violating the RP definition which states an experiment is performed in

the same way as the original experiment.



Chapter 6

Conclusions

In this chapter, we summarize the main results of this thesis and conclude with

some future research topics. A new version of bootstrap is presented in this thesis,

namely parametric predictive bootstrap (PP-B). It has been applied in a range of

scenarios in order to evaluate its performance with other bootstrap methods. The

PP-B method is used to predict the reproducibility probability of hypothesis tests.

In Chapter 3, we presented the main concept of the parametric predictive boot-

strap. The procedure depends on estimating the parameters of the assumed dis-

tribution from the original data set of size n, then drawing one observation from

the assumed distribution based on the estimated parameters and adding it to the

original data. So, the first sampled observation is added to the data set, leading to

n + 1 observations. The second observation is then drawn from the same underly-

ing distribution with estimated parameters anew from n + 1 observations. This is

continued to sample m further values in the same manner, each one adding to the

data and re-estimating parameters before sampling the next one. These sampled

values represent the observations of PP-B which of course does not include the n

original data observations. As a result of the method of sampling observations, PP-

B has more variation than PB and EB. The PP-B method does not perform well

in estimation using some measures of statistical accuracy and confidence intervals.

PP-B has generally greater values of statistical accuracy measures for estimators.

Also, it has an over-coverage tendency for percentile confidence intervals due to

wide intervals arising from greater variability in their bootstrap samples. However,

126
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it performs very well with prediction when we test its performance with the LC

percentile prediction interval. An advantage of the PP-B method is that it gives a

good coverage probability with a narrower average width of intervals compared to

the NPI-B method, as shown in our simulation studies.

In Chapter 4, we discussed the PP-B method of the RP of some parametric tests

(PP-B-RP). It has been noted that, there is no single definition of RP within the

classical frequentist statistics framework. We consider the main idea of RP, which

is how likely it is that the same test result would be obtained if the experiment were

repeated under identical conditions as the original experiment. Test reproducibility

is more naturally viewed as a prediction problem than as an estimation problem,

which is in line with the PP-B’s predictive nature. Simulation studies are used to

compare the RP of tests based on PP-B with a similar predictive bootstrap method,

NPI-B. As a result of the assumption of a parametric model in PP-B, RP values

based on PP-B have less variability than those obtained with NPI-B. We found

the PP-B-RP method tends to provide a value within the lower and upper NPI-RP

for the likelihood ratio test, meaning this bootstrap method is consistent with the

NPI-RP approach. The employment of the bootstrap approach with RP has the

advantage of avoiding the complexities involved in computations of the lower and

upper bounds in NPI-RP.

In Chapter 5, we study the effect of the misspecified PP-B model in a range of

scenarios. Also, we explore how the fixed bootstrap variance of PP-B impacts on

the value of RP for one-sample t-test. Three different scenarios are investigated to

evaluate the performance of PP-B regarding the assumed parametric model. In the

first scenario, the model used in PP-B is the same model assumed in the original

data set. The second and third scenarios illustrate how PP-B performs when the

model assumed for PP-B is different from the actual model assumed in the original

data. The distribution assumed for PP-B is closely related to the distribution of

the original data in the second scenario, but it is a completely different distribution

than that used for the original data set in the third scenario. All different scenarios

for the mean provide similar performance as a result of the central limit theorem.

The difference appears clearly in the third scenario for variance because the model
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assumed for PP-B is completely different from the actual model assumed to sample

the original data. The PP-B method does not perform well in confidence regions of

the bootstrap confidence interval, as it is not developed for estimating population

characteristics. It is explicitly aimed at predictive inference, with variability in

different bootstrap samples reflecting uncertainty. The PP-B method performs best

in prediction regions, as evidenced by achieving the lowest chi-squared values. The

large chi-squared values refer to great discrepancies between the nominal coverage

probabilities and coverage proportions. The PP-B method is able to distribute the

coverage proportions more accurately in most of the prediction region divisions than

the other bootstrap methods. It is apparent that the fixed bootstrap variance of

PP-B adversely affected the RP value of one-sample t-test. The reason is that

it violates the definition of RP by performing an experiment differently from the

original experiment.

Many future research directions can be explored based on the work presented in

this thesis. The PP-B method was developed by starting with only one dimension

of real-valued data, but it can be extended to include two or more dimensions. One

important topic for future work is to study the influence of outliers in the data

on the proposed PP-B method. We present the PP-B method to determine the

reproducibility probability of some parametric tests. This method can be applied

to a wide range of parametric statistical tests and extended in different ways, such

as using future sample sizes that are different from the data sample size or using

different significance levels. Bootstrap methods have been widely used in many

statistical situations for precise inferences. They may be extended for imprecise

inferences to provide lower and upper bounds rather than just one single value.

Future research into the PP-B method can be based on these suggestions.
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Confidence intervals

We use the BCa interval in Chapter 3 to evaluate the performance of different

bootstrap methods as an estimation approach. Simulation studies are conducted to

find the coverage proportion and average width of intervals for three statistics: mean,

variance, and median. We use the Exponential distribution with rate parameter λ

to generate data. The probability density function of the Exponential distribution

is as follows

f(x) = λe−λx ; x ∈ [0,∞) (A.1)

The original sample size n is generated from Exp(4), then different bootstrap

methods are applied B = 1000 times. For each bootstrap sample, we compute the

statistics in order to construct BCa intervals based on Equation (2.27). Follow-

ing this, we identify which BCa confidence intervals include the true statistics of

the Exp(4) distribution. We repeated this procedure N = 1000 times to find the

coverage proportions of different bootstrap methods with different original sample

sizes n = 50, 100, 200, 400 and confidence levels 95% and 90%. Table A.1 shows the

coverage proportions and average interval widths for several statistics based on the

four bootstrap procedures. Note that the bootstrap samples for each method are

the same size as the original samples.

PP-B and NPI-B intervals lead to wider confidence intervals than the other

bootstrap methods due to the greater variability in their bootstrap samples. Conse-

quently, the NPI-B method has over-coverage in all cases of the three statistics, as

well as for the mean in the PP-B method. In the case of the mean, the PB and EB

129
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(a) mean

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9910 0.9970 0.9960 0.9950 0.9740 0.9850 0.9770 0.9770

AW 0.2100 0.1437 0.0994 0.0698 0.1737 0.1196 0.0832 0.0585

NPI-B
CP 0.9920 0.9960 0.9940 0.9960 0.9730 0.9850 0.9760 0.9770

AW 0.2178 0.1482 0.1019 0.0709 0.1770 0.1222 0.0849 0.0592

PB
CP 0.9470 0.9570 0.9440 0.9490 0.9020 0.9080 0.9040 0.8980

AW 0.1429 0.0994 0.0696 0.0491 0.1193 0.0833 0.0584 0.0412

EB
CP 0.9330 0.9500 0.9360 0.9460 0.8850 0.9100 0.9050 0.8940

AW 0.1386 0.0980 0.0691 0.0488 0.1160 0.0822 0.0580 0.0410

(b) variance

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.8730 0.8780 0.8780 0.8790 0.8030 0.8130 0.8130 0.8100

AW 0.1563 0.0985 0.0645 0.0430 0.1313 0.0826 0.0546 0.0365

NPI-B
CP 0.9870 0.9880 0.9910 0.9930 0.9460 0.9720 0.9740 0.9750

AW 0.2503 0.1506 0.0950 0.0615 0.1569 0.1037 0.0696 0.0472

PB
CP 0.7940 0.7980 0.8080 0.7910 0.7220 0.7260 0.7190 0.7040

AW 0.1156 0.0744 0.0499 0.0335 0.0974 0.0627 0.0423 0.0285

EB
CP 0.8460 0.9070 0.9240 0.9210 0.7900 0.8500 0.8700 0.8730

AW 0.0909 0.0680 0.0493 0.0353 0.0764 0.0566 0.0411 0.0293

(c) median

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.8680 0.8590 0.8460 0.8570 0.7820 0.7920 0.7650 0.7830

AW 0.1667 0.1153 0.0804 0.0568 0.1416 0.0983 0.0684 0.0484

NPI-B
CP 0.9960 0.9940 0.9940 0.9940 0.9820 0.9790 0.9820 0.9750

AW 0.1997 0.1402 0.0983 0.0690 0.1667 0.1173 0.0825 0.0581

PB
CP 0.7700 0.7750 0.7510 0.7700 0.6860 0.6790 0.6850 0.6870

AW 0.1274 0.0896 0.0633 0.0450 0.1092 0.0768 0.0540 0.0385

EB
CP 0.9420 0.9560 0.9500 0.9410 0.8990 0.9070 0.8890 0.8880

AW 0.1355 0.0972 0.0685 0.0485 0.1135 0.0817 0.0572 0.0407

Table A.1: Coverage of 100(1 − 2α)% confidence interval using BCa for different

statistics when the original sample from Exp(4).
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have good coverage with smaller average interval widths. EB provide the nominal

coverage probability 0.95 for the mean when n = 100. The coverage proportions

of the PP-B for variance and median are better than the PB, but both methods

show under-coverage results in all cases. It is interesting to note that PP-B some-

times shows under-coverage results despite its wide intervals with the BCa method.

PP-B and PB produce large values of bias-correction when the BCa method is used

for the variance and median. These large values have adversely affected the BCa

interval endpoints. The EB achieves better coverage proportions than other boot-

strap methods for most cases of variance and all cases of median. However, it shows

worse undercoverage results for variance when sample sizes are small. For example,

the coverage proportions of EB are almost 11% below their 95% and 90% nominal

confidence levels when n = 50.

We study PP-B and PB with the BC interval to discover if the bias-correction

value is indeed responsible for the under-coverage of the variance and median with

Exp(4). We present the results of coverage and average interval widths using PP-B

and PB with the BC method in Table A.2. The same original sample sizes are used

with the BC and BCa methods, also the same seeds are also applied to all bootstrap

methods. The median results for PP-B and PB using the BC method are identical

to those using the BCa method in Table A.1 because the acceleration value for the

median is zero, but they are different for the variance. Coverage of the variance

is slightly increased in some cases with the BC method, but they are still far from

nominal coverage probabilities.

We examine the performance of different bootstrap methods using the percentile

interval in Equation (2.17) and compare it with the BCa interval. We conduct

simulations using the same original samples of Exp(4) that were used in the BCa

interval studies. The results of coverage and average interval widths for the mean,

variance, and median with Exp(4) are shown in Table A.3. There is a considerable

difference between the two interval methods with PP-B and PB when comparing

variance and median with Exp(4). The BCa method provides under-coverage results

in all cases of variance and median. In contrast, the percentile method has over-

coverage with PP-B and PB in all cases of variance and median. The percentile
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(a) variance

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.8740 0.8790 0.8790 0.8730 0.8060 0.8140 0.8190 0.8120

AW 0.1344 0.0884 0.0603 0.0413 0.1125 0.0743 0.0511 0.0351

PB
CP 0.8000 0.8040 0.8080 0.7930 0.7090 0.7180 0.7220 0.7110

AW 0.1021 0.0682 0.0471 0.0324 0.0858 0.0576 0.0402 0.0277

(b) median

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.8680 0.8590 0.8460 0.8570 0.7820 0.7920 0.7650 0.7830

AW 0.1667 0.1153 0.0804 0.0568 0.1416 0.0983 0.0684 0.0484

PB
CP 0.7700 0.7750 0.7510 0.7700 0.6860 0.6790 0.6850 0.6870

AW 0.1274 0.0896 0.0633 0.0450 0.1092 0.0768 0.0540 0.0385

Table A.2: Coverage of 100(1− 2α)% confidence interval using BC method for the

variance and median with original sample from Exp(4).

method achieved similar results as the BCa method for the mean with all bootstrap

methods, also for variance and median when using NPI-B and EB. It occurs due to

the BCa method having smaller bias-correction and acceleration values, which leads

to the endpoints of the BCa interval being close to the percentile interval.
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(a) mean

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9900 0.9960 0.9930 0.9950 0.9720 0.9830 0.9760 0.9790

AW 0.1942 0.1376 0.0973 0.0690 0.1617 0.1153 0.0816 0.0580

NPI-B
CP 0.9920 0.9960 0.9970 0.9980 0.9770 0.9830 0.9800 0.9830

AW 0.2227 0.1513 0.1036 0.0717 0.1831 0.1255 0.0864 0.0600

PB
CP 0.9350 0.9570 0.9460 0.9500 0.8910 0.9100 0.8980 0.8980

AW 0.1384 0.0977 0.0690 0.0489 0.1161 0.0821 0.0580 0.0411

EB
CP 0.9260 0.9470 0.9410 0.9460 0.8860 0.9010 0.9030 0.8880

AW 0.1344 0.0963 0.0685 0.0485 0.1131 0.0810 0.0576 0.0408

(b) variance

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9950 0.9990 0.9990 0.9990 0.9810 0.9970 0.9930 0.9960

AW 0.1187 0.0841 0.0594 0.0422 0.0956 0.0691 0.0493 0.0353

NPI-B
CP 0.9940 0.9920 0.9950 0.9960 0.9720 0.9760 0.9790 0.9810

AW 0.2194 0.1428 0.0948 0.0630 0.1602 0.1085 0.0739 0.0501

PB
CP 0.9850 0.9970 0.9940 0.9940 0.9660 0.9790 0.9720 0.9760

AW 0.0985 0.0693 0.0487 0.0345 0.0802 0.0572 0.0406 0.0289

EB
CP 0.8160 0.8780 0.9060 0.9160 0.7630 0.8150 0.8600 0.8620

AW 0.0760 0.0590 0.0444 0.0327 0.0654 0.0501 0.0376 0.0275

(c) median

Bootstrap measures

Confidence level

95% 90%

n = 50 n = 100 n = 200 n = 400 n = 50 n = 100 n = 200 n = 400

PP-B
CP 0.9990 1.0000 1.0000 0.9990 0.9910 0.9970 0.9960 0.9970

AW 0.1700 0.1196 0.0840 0.0595 0.1415 0.1000 0.0705 0.0500

NPI-B
CP 0.9970 0.9950 0.9940 0.9960 0.9790 0.9830 0.9830 0.9740

AW 0.1997 0.1403 0.0982 0.0691 0.1667 0.1174 0.0825 0.0581

PB
CP 0.9900 0.9970 0.9960 0.9970 0.9740 0.9880 0.9760 0.9810

AW 0.1375 0.0974 0.0688 0.0488 0.1152 0.0818 0.0578 0.0410

EB
CP 0.9430 0.9550 0.9430 0.9450 0.9050 0.9090 0.8940 0.8840

AW 0.1383 0.0979 0.0688 0.0486 0.1159 0.0823 0.0575 0.0408

Table A.3: Coverage of 100(1 − 2α)% confidence interval using percentile method

for different statistics with original sample from Exp(4).
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NPI-B-RP for the F-test

We study the RP of the F-test using NPI-B with a variety of sample sizes. This

helps us to observe how the NPI-B method performs for the RP of the F-test as

the size of samples increases. The two sided F-test is considered, H0 : σ2
1 = σ2

2

versus Ha : σ2
1 ̸= σ2

2, and level of significance α = 0.10. We simulate two samples

of size n under H0 in total N = 50 times. The data are generated for the two

original samples from the same Normal distribution with mean 0 and standard

deviation 1. In Section 4.5, we discussed how to determine the RP of the F-test

based on the bootstrap method. We perform simulation studies for two samples of

size n = 40, 60, 80, 120, 140 to explore whether there is an influence of sample size on

the variability of NPI-B-RP values for the F-test. The observed test statistic and the

Bootstrap-RP were determined for each of the N = 50 samples. It is important to

note that the bootstrap samples for each method have the same size as the original

sample. Figure B.1 shows the results of RP values using NPI-B methods under H0

with a variety of sample sizes. Simulation studies show that the NPI-B-RP values

fluctuate clearly even with increasing the size of samples.
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(e) NPI-B-RP, n = 120
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(f) NPI-B-RP, n = 140

Figure B.1: Simulations under H0: values of NPI-B-RP for F-test.
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