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Abstract 

Learning analytics (LA) provides the ability to understand the patterns of students' behaviour 

and improve their educational outcomes. Today, the capacity to retain more data has 

contributed significantly to the rapid growth of the field of LA. For instance, Massive Open 

Online Course (MOOC) platforms offer free courses for millions of students worldwide. 

Therefore, students who cannot afford the expense of higher education may benefit 

significantly from the available knowledge in MOOCs. This opens a door for educators and 

academic researchers with a fascinating variety of learning behaviour data that could be used 

to analyse students' activities and improve their outcomes. 

While MOOCs platforms provide knowledge in a new and unique way, the very high number 

of dropouts is a significant drawback. Several variables are considered to contribute towards 

learner attrition or lack of interest, which may lead to disengagement or total dropout. In the 

past decade, many researchers have sought to explore the reasons behind learner’s attrition 

in MOOCs. The jury is still out on which factors are the most appropriate predictors; 

nevertheless, the literature agrees that early prediction is vital to allow for a timely 

intervention. 

This thesis aims to investigate the early prevention of dropout phenomenon in MOOCs by 

analysing the gaps in the current literature, identifying the under-researched areas, and 

developing continuous predictive models that can be used in real-time to identify students at 

risk of dropingout out of MOOCs. The current thesis explores a light-weight approach based 

on as little data as possible – since different MOOCs store different data on their users – and 

thus strive to create a truly generalisable method. Several features (e.g., registration date, 

students' jumping activities, and the times spent on every single task) have been proposed to 

predict at-risk students from an early stage. This goal was successfully achieved using 

different approaches such as statistical data analysis, machine learning and data visualisation. 

The second aim of this thesis is to employ motivational theories, mapping online student 

behaviour onto them, to analyse the drives and triggers promoting student engagement. This 

thesis further contributes by building an Engage Taxonomy of MOOC engagement tracking 

parameters, mapped over four engagement theories: Self-Determination Theory (SDT), 
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Drive, Engagement Theory (ET), and Process of Engagement. The present thesis shows for 

the first-time metrics for measurable engagement in MOOCs, including specific measures 

for Autonomy, Relatedness and Competence. It also evaluates the parameters based on 

existing (and expanded) measures of success in MOOCs: Completion rate, Correct Answer 

ratio and Reply ratio. 
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1 

Chapter 1 : Introduction 

Prologue 

This chapter begins with (i) a brief introduction to the topic, (ii) followed by presenting the 

problem statement, (iii) describing the rationale for exploring this area, (iv) posing research 

questions, (v) discussing the aim and objectives, and (vi) detailing the research contributions 

and the thesis’s outline. 

1.1  Introduction 

There is no doubt that the global digital revolution and the growing availability of broadband 

internet have paved the way for new forms of education (Phillips, 2005). These include, but 

are not limited to, online learning, digital educational content production and delivery, and 

mobile learning. The recent advent of massive online open courses (MOOCs, relatively short 

online courses), which target large student numbers and international audiences, has raised 

the interest of students, educators and researchers alike (De Freitas et al., 2015). MOOC as 

a term was first coined in 2008, followed by the naming of 2012 as the ‘Year of the MOOC’, 

when MOOC providers, such as Coursera, Udacity, edX and FutureLearn, were all launched 

(Bothwell and Havergal, 2016).  

The goal of MOOCs is to provide open-access courses via the internet, regardless of the 

number of enrolled students (Ipaye, 2013). The vast potential of MOOCs has provided 

learning opportunities for millions of learners across the world (Kloft et al., 2014).  This 

potential has engendered the creation of many MOOC providers (e.g. FutureLearn, Coursera, 
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edX, and Udacity),1 all of which aim to deliver well-designed courses to a mass audience. 

MOOCs provide many valuable educational resources to learners who can connect and 

collaborate with each other through discussion forums (Yang et al., 2013). 

In general, MOOCs have become a key mainstream approach to democratise knowledge 

(Atenas, 2015). 

1.2  Problem Statements  

Leading universities and colleges, which provide a wide variety of accredited degree and 

certificate programmes, sponsor the courses offered on MOOC platforms. This opens up a 

fantastic possibility for students from disadvantaged backgrounds who want to pursue high-

quality education (Agrawal, 2018). While MOOC courses can scale their delivery to many 

tens of thousands of students (or more (Vivian et al., 2014)),  only a small percentage of 

those students actually complete the course. Completion rates typically range from 3% to 

15% (Jordan, 2015, Coffrin et al., 2014). This situation undermines the goal of making 

educational resources available to enable mass access and learning.  

MOOCs’ widespread adoption during their short history, has offered the opportunity for 

researchers and scientists to study them; with a specific focus given to their low rate of 

completion. Thus, there has been a great deal of interest and research in the reasons for the 

dropouts among these students and in developing strategies to keep students engaged with 

the course until completion (Balakrishnan and Coetzee, 2013, Hair et al., 2011, Koller et al., 

2013). This has resulted in the creation of several predictive models that determine student 

success, with a substantial rise in the literature since 2014 (Gardner and Brooks, 2018). 

Predicting students' likelihood to complete (or not to complete) a MOOC course, especially 

from very early weeks, has been one of the hottest research topics in the area of learning 

 

1 https://www.mooclab.club/resources/mooclab-report-the-global-mooc-landscape-2017.214/  
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analytics. The main aim of these productive models is to provide systematic insight for 

instructors to target learners most in need of intervention (Xing, 2016). 

1.3  Motivation 

In the field of education, decision-support-related activities (e.g. predicting students at risk 

and student learning outcomes) primarily focus on easing access to early intervention 

preventative measures. This indicates that such predictive activities are highly important in 

improving the results for students, enhancing the performance of education services, 

reducing delays in supporting students with additional needs, and reducing education-related 

expenditures (Cui, 2019, Essa and Ayad, 2012, Gardner and Brooks, 2018). 

 In recent years, education analytics powered by data from online learning (and prediction 

tasks in particular) has emerged as a promising field of study, with significant improvements 

across various educational systems. In addition, the abundance of electronic learning record 

data is a gold mine of information that may be used to enhance prediction models and 

learning performance(Amane et al., 2020, Alharbi and Jacobsen, 2014).  

Although MOOCs have emerged as a significant educational resource, they still have 

shortcomings and need significant advancements, especially in the area of the identification 

of at-risk students (see section 0). 

1.4  MOOC dropout and associated factors  

Identifying at-risk learners in a reasonable time frame might support instructors in delivering 

educational interventions and improving course structures (Hung et al., 2015). The 

researchers identified several causal factors that influenced MOOC dropout rates. These 

factors can be categorised into two groups: a) student-related factors and b) MOOC-related 

factors. 
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1.4.1 Student-related factors 

• Insufficient  background  knowledge  

Students may drop out of MOOCs if they do not have enough background knowledge or the 

skills needed. For example, students' inability to finish a course could be caused by the lack 

of knowledge in the mathematics required to complete the course (Belanger and Thornton, 

2013). Furthermore, students must have strong reading and writing skills in addition to 

technical skills, as most interactions in MOOCs are text-based. There is a widespread belief 

that a lack of these abilities contributes to students dropping out (Murray, 2001). 

• Lack of motivation 

One of the most important reasons that prevent students from finishing a MOOC is 

insufficient motivation levels. Student motivation is impacted by a wide variety of factors 

such as the potential for future financial gain and the opportunity to grow personally and 

professionally. This makes investigating the factors that motivate students to participate in 

MOOCs quite intriguing (Dalipi et al., 2018).  

According to a previous survey by Belanger and Thornton (2013), a general interest in a 

subject is considered a significant reason for registering in a MOOC, as indicated by 87% of 

students. However, only 15% of the participants signed up for the MOOC to pursue higher 

education. 

• Time constraints 

Time commitment is another aspect with a major effect on whether or not students drop out 

of a MOOC before finishing the course. According to a previous survey (Belanger and 

Thornton, 2013), students stop participating in MOOCs because they do not have enough 

time to attend online sessions, complete homework, and study for exams.  

1.4.2  MOOC-related factors 

• Course design 

The design of a course is a primary reason for students to stop participating in the MOOC. 

Every course design has three main parts: the material covered in the course, the format in 
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which that material is presented, and the means through which students get information. The 

course content is one of the most crucial factors that affect students' decision to drop out of 

MOOCs (Hone and El Said, 2016, Dalipi et al., 2018). 

• Lack of discussions 

The other aspects that have been demonstrated to influence students dropping out of MOOCs 

are the sense of isolation and lack of course participation. According to a survey conducted 

by (Hone and El Said, 2016), the low levels of contact and inadequate feedback between the 

teacher and the students are also reasons for students dropping out of MOOCs. In addition, 

the surveyed students mentioned that the lack of collaboration and teamwork contributed to 

the atmosphere of isolation. 

• Hidden expenses 

Hidden expenses may contribute to the high student withdrawal rate in MOOCs. For 

example, in some MOOCs, students are required to pay money to receive course certificates 

or for the expensive textbooks suggested by instructors (Khalil and Ebner, 2014). 

1.5  Research Questions  

The research challenge and gaps found in the existing literature (detailed in more depth in 

section 0) were used as the basis for developing the research questions. The umbrella 

research question that directed this research is: How can students’ (interactional) data in 

a MOOC be used to identify and discover educational bottlenecks affecting student 

success? 

As the overarching research question is quite broad, the following sub-questions were 

formulated to help answer the umbrella question: 

RQ1: Can a limited number of student data types be used for the prediction of success (as in 

completion)? 

Here we interpret success as completion, as this is a preponderant way in learning systems 

(Moreno-Marcos, 2020a, Mubarak, 2020, Alami, 2021, Radovanović, 2021). We start by 

analysing a limited number of student data types, to understand if we can obtain the desired 



 

6 

results with limited computational effort. This research question is answered in Chapter 5, 

and its methodology is explained in Chapter 4 and Chapter 5.  

RQ2: Can learning path visualisation of student interactional data be used to inform on 

student success (also seen as completion)? 

Student success is not a simple variable, and often it is left to the instructor to interpret (Sunar 

et al., 2016). This is the approach we take in this research question, where we visualise 

student interactional data for an instructor, who would be making decisions based on their 

visual interpretation of the likelihood of student success. 

RQ3: How does the time of student interactional data collection influence student success 

(completion) prediction and can early prediction be achieved?   

One of the goals in student success prediction is to have timely (i.e. early) predictions. With 

this research question we tackle this problem, whilst returning to the simpler definition of 

student success as being completion (Moreno-Marcos, 2020a, Mubarak, 2020, Alami, 2021, 

Radovanović, 2021).  

RQ4: Can engagement theories be applied to student interactional data, to help identify 

student success? 

In the final research question of this thesis, we aim at generalising both the notion of student 

success which is automatically machine computable, as well as relating student interactional 

data to its underlying psychological causes, as described by engagement theories.  

1.6  Research Aim and Objectives  

The first aim of this research is to develop a continuous predictive model that can be used in 

real-time to identify students at risk of dropping out of MOOCs. The second aim is to employ 

motivational theories, mapping online student behaviour onto them, to analyse the drives 

and triggers promoting student engagement. 

The following objectives were addressed in this research to answer the identified research 

questions: 
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• O1 To conduct research on students’ enrollment dates and evaluate the data for 

insights into their completion likelihood; 

• O2: To investigate the possibility and efficacy of developing a system that sends 

automated, personalised messages to students depending on their enrollment dates; 

• O3: To conduct a study utilising visualisation analytics to discover and compare the 

learning routes for those who completed and those who did not complete the course; 

• O4: To conduct a study using statistical modelling approaches to examine and 

compare the educational paths of students who successfully finished their course 

with those who did not; 

• O5: To perform a study on the utilisation of diverse visualisation approaches, such 

as fish-eye and bird’s eye visualisations, to show students’ learning routes at varying 

levels of granularity; 

• O6: To conduct a study on the deployment of dynamic predictive models for dropout 

prediction, including both weekly and whole-course scenarios, and to assess their 

accuracy in predicting student dropout; 

• O7: To conduct a study examining the impact of student jumping behaviours and 

catch-up learning patterns on the prediction accuracy of models used to detect future 

course dropouts; 

• O8: To undertake research focusing on the development of predictive models for 

dropout using the student’s number of accesses and time spent per access; 

• O9: To undertake research focusing on mapping multimodal student behaviours and 

data according to temporal, action, and language modes in MOOCs over several 

motivational theories; 

• O10: To conduct research to group students based on engagement factors and assess 

the link between these groups and performance indicators. 
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1.7  Research Contributions 

 {Chapter 4 } 

• A collection and analysis of new educational data for 344,783 students across time 

(several runs over several years), subjects, universities, countries, and cultures. 

The data were obtained from two UK universities that delivered different courses 

in the FutureLearn MOOC platform and from the most massive Arabic MOOC 

(Rwaq). 

{Chapter 5} 

• An investigation of several approaches to predict dropout only from the very first 

interaction with the MOOCs system, the registration. 

{Chapter 6} 

• New insights into early learning behaviours exhibited by course completers and 

non-completers through bird- and fish-eye visualisations of partial or full learning 

graphs, with different levels of information disclosure. 

• A proposal of a visual graph analysis as a pre-step to ML and prediction, here 

illustrated by discovering linear or catch-up behaviours, which then can be reliably 

predicted. 

• A demonstration that theme-based visualisation (which can also be at bird- or fish-

eye level) can detect other relations in the course, such as the effect of forums. 

{Chapter 7} 

• The implementation of eight ML algorithms. 

• A comparison of the prediction of weekly and whole-course dropouts. 

• A new feature incorporating students' learning patterns, specifically jumping 

behaviours, into the weekly predictive model and demonstrating its effectiveness. 

• A lightweight approach based on tracking two early fine-grain learner activities 

(accesses to the content pages and time spent per access) to predict student non-

completion. 
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{Chapter 8 } 

• A map of multimodal student behaviours over several motivational theories. 

• Engagement measures for MOOCs. 

• Identification and semantically labelling student clusters using the engage 

taxonomy, specifically SDT mapping. 

• A large-scale evaluation of the SDT theory for online learning and MOOCs, based 

on success measures. 

• Application of ML techniques using SDT constructs as inputs. 

1.8  Thesis Outline 

The thesis is structured with ten chapters as follows: 

Chapter 1: This chapter describes the research's area, motivation, and problems. In addition, 

it presents the research questions, the objectives required to conduct this research, and the 

contributions of the thesis. 

Chapter 2: This chapter provides an overview of distance learning methods such as 

education through postal services, radio, TV, and E-learning. In addition, this chapter 

highlights the background of MOOCs, public datasets in MOOCs, Machine Learning (ML) 

techniques and Theories of Engagement. 

Chapter 3: This chapter provides a review of the literature on ML approaches to identify 

students at-risk of dropping out from MOOCs. Moreover, this chapter presents related works, 

including the most influential works from the engagement literature. 

Chapter 4: This chapter provides an overview of methodology used to answer each research 

question. Moreover, this chapter explains the dataset and tools used to achieve the aim of 

this thesis (e.g., feature extraction process, features selection, sentiment analysis, statistical 

analysis, visualisation tools, and predictive machine-learning techniques). 

Chapter 5: This chapter presents the results of a study that was aimed at discovering factors 

(registration date) that can be identified before the students even start the course to predict 

which enrolled participants will not complete the MOOC. 
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Chapter 6: This chapter presents the results of visualising and comparing the different 

learning paths of completers and non-completers across four MOOCs and the learning theme 

from which learners tend to drop out. It shows how different granularity visualisations (fish 

eye and bird eye) allow both researchers and teachers to understand where issues occur and 

patterns emerge, supported by a statistical analysis. 

Chapter 7: This chapter focuses on innovations in predicting student dropout rates by 

examining their next-week-based learning activities and behaviours. The study presented in 

this chapter aimed to build a generalised early predictive model for the weekly prediction of 

student completion using ML algorithms. Moreover, this chapter shows the ML prediction 

results (lightweight approach) based on two easily obtainable features (number of times 

content pages were accessed and time spent per access). This allows for easy and reliable 

implementation across various courses from different domains. 

Chapter 8: This chapter proposes a novel, systematic way of analysing engagement, starting 

from multimodal tracking parameters, following established engagement and motivational 

theories. In addition, it proposes a concrete mapping between the tracking parameters and 

four of the most used theories of, or related to, engagement in digital systems, generating the 

engage taxonomy. Finally, it shows how such mapping can be practised by analysing the 

engaged and disengaged MOOC student behaviours in relation to the SDT theory. 

Chapter 9: This chapter discusses the contributions and overall findings of the studies 

presented in this thesis ( Chapter 5, Chapter 6, Chapter 7, and Chapter 8 ). This includes the 

limitations of a) proposed models to predict dropout students, b) MOOCs datasets, and c) the 

approach used to map large-scale student behaviour onto motivational theories.  

Chapter 10: This chapter provides a general summary and conclusion the findings of the 

works presented in this thesis. Finally, it presents ideas for further research in this area. 

1.9  Thesis Conceptual Structure 

This thesis tackles the research topics described above. Its primary objective was to 

investigate the usage of the MOOC dataset to address the challenges of early identification 

of students at risk of dropping out from MOOCs. Figure 1.1 provides a visual representation 

of the overall conceptual structure of this thesis. 
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Figure 1.1 Overall conceptual structure 

Finally, it is worth mentioning that the four main chapters  (Chapter 5, Chapter 6, Chapter 7, 

and Chapter 8) that answer the thesis research questions are considered independent research 

regarding their goals, datasets, and methodologies. 
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Chapter 2 : Background  

Prologue 

This chapter outlines the background of distance learning technologies by discussing their 

development, advantages and challenges. In addition, we outline the background of MOOCs 

and public datasets in MOOCs. Finally, this chapter presents engagement theories. 

2.1  Distance Learning 

Whilst a variety of definitions have been used to describe ‘distance learning’, the use of 

technology is usually included in most definitions. For instance, Greenberg (1998) defined 

distance learning as ‘a planned teaching/learning experience that uses a wide spectrum of 

technologies to reach learners at a distance and is designed to encourage learner interaction 

and certification of learning’(Greenberg, 1998). However, postal correspondence is an 

example of an older distance learning paradigm. Therefore, Moore did not mention the use 

of technology in his definition, ‘Distance Learning is a learning environment in which 

students and teachers are separated by distance and sometimes by time’ (Moore and 

Kearsley, 1996).  

When a new technology becomes useful for educational purposes, educators, practitioners, 

and decision-makers debate its efficacy in comparison with previous methods. This was the 

situation with film studies from the 1940s and 1950s, educational television (ETV) in the 

1960s, computer studies in the 1970s, and teleconferencing studies in the 1990s (Smith and 

Dillon, 1999). 

2.1.1 Postal services  

Distance learning became possible only after postal services improved, allowing learning 

materials and student replies to be sent by post. As an early example, in 1728, Caleb Phillips 
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published an advertisement in the Boston Gazette newspaper, offering distance education 

services by sending weekly shorthand learning contents (Holmberg, 2005).  

In 1844, Isaac Pitman (known as the Father of Distance Learning) started the first 

correspondence education in Europe, which took advantage of the new postal service in the 

United Kingdom, which provided faster and cheaper delivery than ever before across the 

country (Tait, 2003, Archibald and Worsley, 2019). Pitman's method was unique, as teachers 

could communicate, post resources, and receive students' answers by post. In the same time 

frame, several projects appeared in Germany that used Pitman's method to provide 

communication links between teachers and students by using the postal service (Tait, 2003).  

Historically, the introduction of various external study programmes by the University of 

London was a crucial transition in the history of distance learning. The University of London 

is known as the first open university in the world. In 1858, the university offered a range of 

academic programs that did not require physical attendance. As a result, many students from 

different countries applied to study remotely (Bell and Tight, 1993).  

Another example of distance learning is the tutoring team established by Thomas J. Foster 

in 1880 to assist in grading the tasks in booklets to help industrial workers understand mine 

safety (MacKenzie and Christensen, 1971). Foster expanded his project by opening the 

International Correspondence Schools, which offer various subjects. More than four million 

students registered in more than forty courses during the following half-century (Holmberg, 

2005).  

2.1.2 Radio 

Over time, the educational community started exploring a new communication technology 

to reach out to more students. Therefore, distance learning took another turn with the advent 

of the radio. Educators transmitted information and courses via radio waves to broadcast to 

a vast audience (Buckland and Dye, 1991). The University of Wisconsin obtained the first 

license issued in the United States for a radio station dedicated to educational broadcasting. 

The university established an amateur wireless station to deliver lessons for students in 1919 

(Engel, 1936). In the following three years, seventy-three educational establishments were 

granted broadcasting licences (Wood and Wylie, 1977). 
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The radio was and continues to be a powerful platform for informing and educating students 

in many countries owing to its low-cost and immediate ability to reach a considerable number 

of people (Kentnor, 2015). 

2.1.3 Educational television (ETV) 

Koenig and Hill defined ETV as “a medium which disseminates programs devoted to 

information, instruction, cultural or public affairs, and entertainment” (Koenig and Hill, 

1967). The extensive use of audio-visual media in armed forces education has proved its 

educational efficacy; thus, the usage of video in the classroom has grown in popularity 

(Kentnor, 2015). Between 1932 and 1937, in the United States, the University of Iowa was 

the first to utilise television transmission for educational purposes. The University of Iowa 

has produced more than four hundred programs in a range of different subjects, such as 

engineering, art, drama, and botany (Koenig, 1969).  

Meanwhile, educational television was gaining popularity in Europe and Asia. In the 1950s, 

BBC pioneered the introduction of enrichment ETV programmes for schools in the United 

Kingdom. During the same period, RTF–French Radio and Television Broadcasting 

produced many educational programmes for schools in France (Wallin, 1990). Between 1958 

and 1962, education television was given considerable importance in several European 

countries such as Italy, the Soviet Union, Yugoslavia, and Poland. In China, in 1962, the 

Shanghai Television station started providing university-level education (Wallin, 1990). 

2.1.4 Online Education  (E-Learning)  

The twenty-first century started with a change in the public perceptions of online learning 

(e-learning) (Harasim, 2000). The knowledge-based economy has seen a widespread and 

ever-increasing need for new methods of providing education in recent years, resulting in 

significant developments in learning technologies and organisations. These dramatic shifts 

in learning requirements have motivated educators to use information communication 

technologies to provide education over the internet, often known as online education or e-

learning (Shea, 2002). 
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The term online education is described or defined as “a form of distance education that uses 

computers and the internet as the delivery mechanism, with at least 80% of the course content 

delivered online” (Allen and Seaman, 2011, Shelton and Saltsman, 2005). 

Online education can provide new opportunities for academics to use artificial intelligence 

to investigate students’ progress. In addition, online teaching strategies may become more 

successful than traditional approaches when teachers become more aware of their students’ 

requirements in an online environment (Al-Shabandar, 2019, Ghaznavi et al., 2011). 

2.1.5 Learning Management systems 

The fast advancements in information and communication technology have greatly helped 

distance education by providing various frameworks and tools for delivering teaching 

material. ‘Learning management systems (LMSs)’ is the name given to these frameworks. 

LMS is a software application that helps administer one or even more courses for a group of 

students, such as the Blackboard system, which was launched in 1995 (Gallagher, 2008). The 

LMS provides a viable alternative to conventional methods of evaluating students, as it aims 

to alleviate the inherent constraints of traditional approaches (Al-Shabandar, 2019). 

Through computer technology, teachers and students may participate in an online class at the 

same time. Nowadays, LMSs are extensively used as paradigm-integrated online education 

platforms in many universities and academic organisations worldwide (Weaver et al., 2008). 

 A good LMS provides several features that may contribute to the creation of a good learning 

environment in different ways. For example, providing a real-time report to monitor student 

performance and offering social learning tools such as chat, email, and forums, which help 

students share knowledge (Kulshrestha and Kant, 2013). In addition, teachers can benefit 

from using an LMS to create online exams. Whilst online assessments allow teachers to see 

students' responses and give instant and dynamic feedback to learners, these assessments also 

enable teachers to track students' progress (Botički et al., 2008). Although there are some 

free and open-source LMSs available, most LMSs options are designed for profit, with 

licencing fees(Gallagher, 2008).  

In 2021, the LMS market was estimated to be valued at more than $15.72 billion. In the 

United States, 42% of the top 500 public businesses currently utilise educational technology 
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to train their workers. Hence, there is a growing need for LMSs to deploy and manage e-

learning (Pappas, 2020). 

2.1.6 Massive open online courses (MOOC) 

 Massive open online courses (MOOC) can be defined as “online courses that aim to have a 

wide appeal to people who are interested in learning about a specific subject on a course 

guided by subject experts as learning facilitators” (Atenas, 2015). MOOC as a term was first 

coined in 2008, followed by the naming of 2012 as the ‘Year of the MOOC’, when most 

popular MOOC platforms were launched and reached millions of learners across the globe 

(Dumouchel, 2015).  

MOOCs can deliver learning content online to anyone interested to take a course, especially 

relatively short online courses with easy access, especially during the Covid-19 pandemic, 

MOOCs were the de facto platform for self-learning. MOOCs provide many valuable 

educational resources to learners, who can connect and collaborate with each other through 

discussion forums (Yang et al., 2013). 

2.1.6.1 cMOOCs and xMOOCs 

MOOCs can be classified into two main learning paradigms. The first paradigm is known as 

cMOOCs, which stands for connectivist MOOCs. The other is known as eXtended MOOCs 

(xMOOCs) (Sanchez-Gordon and Luján-Mora, 2014).  

Although cMOOC was the first to be made available in 2011, it does not have the same 

degree of popularity as xMOOC (Gamage et al., 2016). The concept of cMOOC mimics the 

idea of the internet itself, as students learn by exchanging knowledge and engaging with each 

other through several channels such as discussions, collaborations, and discoveries (Sanchez-

Gordon and Luján-Mora, 2014). The connectivism approach, in which the teacher does not 

give out the course learning content but allows students to ask questions and find answers 

among themselves. Therefore, learners do not gain knowledge via the transmission of 

information from the teacher directly but rather through the exchange of knowledge among 

participants (Siemens et al., 2015). cMOOCs allow students to have complete control over 

their learning experiences and the ability to be autonomous and build their own network of 
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peers. In addition, students can choose how much time they want to devote to the course 

(Wang et al., 2017). 

However, academic institutions do not recognise cMOOCs as formal courses because of the 

lack of learning evaluations such as exams or coursework. Moreover, it is difficult to assess 

the student requirements in cMOOCs, as the course materials change regularly (Al-

Shabandar, 2019). 

Over the past decade, many cMOOCs have been introduced by scholars. For example, Dr 

Jim Groom offered a course in digital storytelling as a cMOOC at the University of Mary 

Washington in 2011. ‘Social Media & Open Education’ is another example of a cMOOC, 

which was offered by Dr Alec Couros (Sanchez-Gordon and Luján-Mora, 2014).  

In contrast to cMOOCs, xMOOCs use the traditional lecture style, but courses are distributed 

via the internet in the form of downloadable recorded videos. Usually, a new video lecture 

series goes out every week for 10 to 13 weeks. In the past, many xMOOCs consisted of long 

50-minute lectures, but owing to learning from previous experiences, some instructors now 

deliver videos that are just 15 minutes long. Nonetheless, the course duration is steadily 

shrinking over time; nowadays, some courses run for five weeks or less (Martín-Monje et 

al., 2018).  

The multiple-choice test format is one of the most frequently utilised tools to evaluate student 

knowledge in xMOOCs. Thus, students can view their computer-marked results instantly 

after completing an online test (Lackner et al., 2014). Peer assessment is another technique 

used to evaluate student knowledge by placing students in small groups for peer evaluation 

(Elizondo-Garcia and Gallardo, 2020).  

Although xMOOCs provide various communication tools (e.g. discussion forums, emails, 

and instant messaging), it is difficult for teachers to answer every single question because of 

the large number of student comments. Consequently, students depend on one another to 

answer questions and share knowledge (Dipinto and Principi, 2015). 

Many xMOOCs have been introduced by academics during the last decade. For example, 

Sebastian Thrun and Peter Norvig performed an experiment with an online course titled, 

‘Introduction to Artificial Intelligence’. Approximately 160,000 learners from more than 190 
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countries participated in the course (Young, 2021). In 2012, MIT and Harvard University 

founded edX as a new learning platform that offers high-quality courses (xMOOCs) in 

collaboration with the world's top universities and institutions (Breslow et al., 2013). Up until 

November 2022, edX had introduced more than 3,600 courses for over 110 million learners2. 

MOOCs are still in their early stages of development, and many researchers are trying 

different approaches to improving learning and teaching in online courses. Thus, several 

examples of new MOOCs have appeared during the last few years. Table 2.1 provides a 

summary of  MOOC types (c: cMOOCs, x: xMOOCs) 

Table 2.1 Massive Open Online Couse  

 

2 https://www.edx.org/about-us 

MOOC Learning approach Year Type 

CCK08 Connectivism and Connective knowledge offered by 

the University of Manitoba in 2008 (Uddin, 2021) 

2008 c 

EC&I 831 Social media and open education offered by 

University of Regina (Uddin, 2021) 

2008 c 

Project-based 

MOOC (pMOOC) 

Typically requires students to submit a project and get 

feedback from other students to complete the course 

(Kjærgaard et al., 2013).  

2012 x 

Synchronous 

massive online 

course (SMOC) 

Delivers live online classes for many students 

(Altinpulluk and Kesim, 2016). 

2013 x 
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2.2  Learning Analytics and Educational Data Mining  

Learning analytics (LA) is defined as “the measurement, collection, analysis and reporting 

of data about learners and their contexts, for purposes of understanding and optimising 

learning and environments in which it occurs” (Long, 2011).  

Adaptive MOOC 

(aMOOC) 

 

A MOOC that customises learning styles to suit each 

student. Content is organised in learning patterns that may 

meet diverse learner preferences, and real-time 

personalised feedback is provided (Blanco et al., 2013). 

2013 x 

PLENN Personal Learning Environments, Networks and 

Knowledge’’ offered by the Athabasca University 

(Uddin, 2021) 

NA c 

Distributed Online 

Collaborative 

Course (DOCC) 

Allows all participants to contribute their expertise rather 

than having a single, centralised curriculum (Sanchez-

Gordon and Luján-Mora, 2014).  

2013 c 

Vocational Open 

Online Course 

(VOOC) 

An online course designed to assist younger students in 

making decisions about their future career paths 

(Sanchez-Gordon and Luján-Mora, 2014) 

2014 x 

Self-paced Online 

Course (SPOC) 

These courses are available at any time throughout the 

year. Therefore, students should learn independently, as 

they have less chance to communicate with the teacher 

and other students (Southard et al., 2015). 

2015 x 

Personalised Open 

Online Course 

(POOC) 

Provides a unique learning path for each student based on 

a continuous evaluation of student learning (Pilli and 

Admiraal, 2016). 

2016 x 

JMOOC and 

KMOOC 

Named after specific countries such as Japan and Korea, 

respectively (Soraya et al., 2019). 

2017 x 

file:///C:/Users/hmoody/AppData/Local/Temp/Temp1_ISD_2018_paper_59.zip/Paper_59.docx%23page10


 

20 

Educational data mining (EDM) is the process of applying computerised methods, such as 

machine learning and data mining, to an enormous volume of educational data. EDM and 

LA both use educational data to provide recommendations and advice to stakeholders (Liñán 

and Pérez, 2015).  

Thus, LA is arguably mainly aimed at human consumption, whereas EDM is mainly aimed 

at computer processing. However, the boundaries are not very strict. In terms of applicable 

techniques for educational data, most are appropriate for both EDM and LA and encompass 

statistical methods, data mining, machine learning, network analysis and visualisation. The 

four techniques often used by both are as follows (Liñán and Pérez, 2015). Clustering 

methods are used to categorise groups of learners according to similar features. Prediction 

techniques are used to estimate a target variable on the basis of existing data of other 

variables. Relationship mining techniques are used to identify the relationships between 

variables such as learner behaviour and difficulties. Text mining is used to go through, 

extract, and analyse valuable contents from texts in, for example, web pages, documents, 

chats, and forums (Romero and Ventura, 2020).  

In terms of popularity, the research trend is gradually moving towards LA rather than EDM, 

although both areas are still growing (Liñán and Pérez, 2015)  (see Figure 2.1 and Figure 

2.2). 

 

Figure 2.1 Number of papers and main events about EDM and LA according to (Romero and 

Ventura, 2020). 
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Figure 2.2 Main areas related to Learning Analytics and Educational Data Mining (Romero and 

Ventura, 2020) 

2.3  MOOCs Datasets  

MOOC platforms generate enormous datasets, which contribute significantly to the 

expansion of knowledge in the field of educational data mining (EDM). The data from 

MOOC platforms can be invaluable sources of information to assist researchers, educators, 

practitioners, and decision-makers in improving the quality of online learning (Alharbi and 

Jacobsen, 2014).  

Generally speaking, educational data are subject to stringent privacy laws, which are 

designed to secure the confidentiality of student information. Therefore, researchers are often 

prevented from making their data publicly accessible under legal restrictions (Andres-Bray, 

2021).  
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Table 2.2 An overview of the features provided by different MOOC platforms (Thakkar and Joshi, 

2015) 

 Learning Methods edX Coursera Udacity MEC FutureLearn Canvas 

Network 

Video with audio  ✔  ✔  ✔  ✔  ✔  ✔ 

Audio only × × × ×  ✔ × 

Articles  ✔  ✔ × ×  ✔  ✔ 

Projects × ×  ✔ × × × 

Discussions  ✔  ✔  ✔  ✔  ✔  ✔ 

Assignments  ✔  ✔  ✔  ✔  ✔  ✔ 

Quiz Tests  ✔  ✔  ✔  ✔  ✔  ✔ 

Transcripts  ✔ ×  ✔ ×  ✔ × 

Video with 

interactive transcripts 
 ✔ × × ×  ✔ × 

Certificate  ✔  ✔  ✔  ✔  ✔  ✔ 

Adaptive Learning × × × × ×  ✔ 

Another challenge for researchers is the lack of a consistent data format across MOOCs. 

Here, we provide a quick overview of the raw data that can be pre-processed and used to 

predict student performance in a MOOC, including its typical forms, structure, and 

behavioural patterns. However, the raw data types (e.g. videos, quizzes, and adaptive 

learning) are not supported or generated by all MOOCs platforms ( Table 2.2).  

Each MOOC platform provides different features and uses different formats to represent its 

data. For example, Table 2.2 shows that all platforms have video together with audio, 

discussions, quizzes, assignments, and certificates. Articles are available on edX, 

FutureLearn, Coursera, and Udacity, while projects are available on Udacity. FutureLearn 

provides audio-only content, while transcripts are available on FutureLearn, edX, and 

Udacity. FutureLearn and edX deliver video with interactive transcripts. However, the only 

platform that provides adaptive learning is Canvas. 

Therefore, analysing the data gathered from MOOC platforms can be challenging, as it 

requires many pre-processing steps (Gardner and Brooks, 2018). Consequently, in 2013, 

Veeramachaneni issued a call in his article, ‘Moocdb: Developing data standards for MOOC 

data science’, to develop data extraction techniques that would overcome the problem of data 

sharing. The author estimated that MOOC raw data processing takes up to 70% of the time 
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spent on analysis, which is much higher than the time spent on model development. To 

address this issue, the author developed a method known as MOOCdb. The aim was to 

develop data extraction tools that would operate with a regulated MOOC database schema 

(Veeramachaneni et al., 2013, Lohse et al., 2019). However, there is still a low number of 

publicly available datasets relevant to the field of MOOC research. Table 2.3 shows the 

publicly available datasets for MOOCs. 

Table 2.3 Summary of publicly available datasets for MOOCs 

2.4  Machine Learning (ML) 

Artificial intelligence (AI) is a component of computer science that attempts simulate the 

mental processes of humans. Machine learning (ML) is a subset of artificial intelligence, 

which is a subject that encompasses a wide range of technologies. Fundamentally, machine 

learning is the act of providing a computer or model with access to data and allowing it to 

learn on its own. The aim of machine learning is to have a computer 'learn' via data or 

experience and then utilise that knowledge to solve a specific issue (Ciolacu et al., 2017). 

Since its inception, machine learning algorithms have been built specifically to tackle 

medical data sets (Adamopoulos et al., 2009). But over the past several years, many useful 

applications of machine learning appeared across various industries due to the digital 

MOOCs data Dataset description #Students # Courses 

Standford MOOCPosts Forum Discussion 

(students' posts) 

29,604 6 

KDD Cup 2015 Students learning log for 

30 days 

120,542 39 

Khan Academy Students exercises 47,495 - 

OULAD Learning Analytics 32,592 22 

Coursera Forums Forum Discussion 

(831,576 posts) 

- 73  
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revolution that made data collection and storage more widely accessible (Ciolacu et al., 

2017). 

Since electronic computers began to be used in the 1950s and 1960s, algorithms were created 

that allowed for the modelling and analysis of enormous amounts of data. The starting point 

was when machine learning evolved into three main branches. The first branch is the neural 

networks by Rosenblatt in 1962; Rosenblatt is sometimes known as the “Father of Deep 

Learning”. The second type is the statistical method by Nilsson in 1965. The third is symbolic 

learning by Hunt in 1966. Over time, all three branches came up with ever more sophisticated 

techniques; Table 2.4 provides examples for each type (Kononenko, 2001). 

 Table 2.4 Examples of Statistical, Neural Networks and Symbolic learning methods 

Statistical Methods Neural Networks Symbolic learning in  

k-nearest neighbours Feedforward neural network with 

backpropagation learning 

Decision trees and 

Bayesian classifiers Hopfield’s associative memory Decision rules 

Discriminant analysis Kohonen’s self-organising 

network 

Induction of logic programs 

It is more challenging to investigate possible solutions to particular problems when people 

make decisions during the analysis phase or more precisely, investigate the relationship 

between numerous features in a large dataset. Therefore, machine learning may often be used 

effectively to increase system efficiency and solve these issues (Muhammad and Yan, 2015). 

Statistics methods and machine learning have the same objective, but the two approaches 

vary. Statistical methods are considered to be mathematical models based on a hypothetical 

test where human judgment is needed to conclude the correlation between variables. On the 

other hand, machine learning allows computers to learn without direct human input (Al-

Shabandar, 2019). 

The ability to learn a task by adopting a specific learning algorithm is a fundamental 

characteristic of machine learning. Generally, the dataset contains various kinds of features, 
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such as binary, continuous, and categorical. Therefore, the machine learning approach should 

be chosen based on the type of dataset (Muhammad and Yan, 2015).  

In machine learning, the data is typically split into two or more datasets. A subset of the 

dataset set is generally used to develop the machine learning model (training phase), while 

the remaining data is used to evaluate the model (testing phase) (Livingston, 2005). 

Two main methods are widely used in machine learning: supervised learning and 

unsupervised learning. Supervised learning is often used when there is a target variable for 

each instance in the dataset — for example, classifying whether a student passed the exam 

or not. In contrast, unsupervised learning is the best option for unlabeled samples, such as 

clustering techniques (e.g. grouping students by using their learning behaviour into various 

groups) (Muhammad and Yan, 2015).  

2.5  Engagement in MOOCs 

Engagement is a complex concept, and there are several definitions for it (Alarcon and 

Edwards, 2011); indeed, some authors claim that there is no single definition suitable for all 

contexts (Witchel, 2013). One possible definition of the engagement of students in their 

learning is as the behavioural, cognitive, emotional and social connections that MOOC 

participants make with the course content, the instructor and/or other learners (Deng et al., 

2020). Engagement, regardless of its definition, has been shown to be a significant attribute 

towards students’ learning success (Kuh, 2003). Challengingly, engagement is notoriously 

difficult to be achieved, especially in learning environments (Willms, 2003, Shernoff et al., 

2017). In MOOCs, sustaining engagement is even more difficult, as reflected by the higher 

rates of dropout (Jordan, 2015, Shi and Cristea, 2018b).  

2.5.1 Theories of Engagement 

A classic work on Engagement Theory (ET) stated that students are engaged, when they are 

intrinsically motivated to learn, and the activities they perform involve active cognitive 

processes, such as problem-solving. The ET framework promotes three main principles: 

Relate, which emphasises social interactions, mainly collaborating with other peers; Create, 

i.e. making learning a purposeful activity, related to the students’ own pace; and Donate, 
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where the student makes useful contributions while learning, applying the knowledge onto 

something practical (Kearsley and Shneiderman, 1998). 

Another highly influential conceptual framework for user engagement with technology,  

Process of Engagement, proposed four phases tied to the engaged state: Point of engagement, 

where the user gets acquainted with the application; the Period of engagement, where the 

user is using the tool; the Disengagement, where they present reasons on why the user would 

stop using the tool; and the Reengagement, which is an iterating process that returns to the 

first phase, Point of engagement. At the Point of engagement, the users start to use an 

application based on its aesthetics, novelty, extrinsic motivation to accomplish a task, 

interest, immersive experience with the product and the Autonomy provided to use the 

application. The users continue using the system during the Period of engagement, where the 

users' experience with the system is one of the engaging factors, as are realism, customisable 

interfaces, fun, time perception, connection with other people and feedback. They also 

conceptualised some attributes that are related to the disengagement factor, such as the 

inability to interact, or the lack of challenges and frustration within the system (O'Brien and 

Toms, 2008). 

Another fundamental book of high influence and extensive implementation, by Deci & Ryan, 

proposed the Self-Determination Theory (SDT) (Deci and Ryan, 2013). This theory 

suggested that human motivation is sustained by three main constructs: Autonomy, which is 

related to the user control over their actions; Competence, related to the skills obtained and 

used to perform a certain task; and Relatedness, concerned with the users’ interactions with 

others, as they perform the given task. The theory helps investigate why humans engage in 

certain activities and the purpose of those activities (Hofer and Busch, 2011). The use of 

SDT has become commonplace in the educational domain, as the theory supports the idea 

that the students' intrinsic motivation is a primary determinant in their engagement (Zhou, 

2016).  

A similar theory, Drive, described also in a recent, authoritative book, by Pink (Pink, 2011), 

brings to the fore similar constructs to SDT, like Autonomy and Mastery (the latter related 

to Competence); however, instead of Relatedness, the author proposes the construct of 

Purpose, which is tied to the personal desire of the user to do something meaningful for 
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themselves or the community. However, SDT has far more and deeper studies and 

instruments that can be used, e.g., for intrinsic motivation. 

One of the latest proposals by Marczewski (Marczewski, 2015) merges the above two 

theories into a new intrinsic motivation theory, where all four concepts are supported 

(Autonomy, Mastery, Purpose and Relatedness). However, this theory has yet to gain much 

support (in terms of citations).  
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Epilogue 

In this chapter, we have presented the background of distance learning and discussed its 

development, advantages and challenges. Furthermore, we provided an overview of MOOCs' 

platforms, data formats and the publicly available dataset. Finally, we discussed the theories 

of engagement. In the next chapter, we will review the current predictive models employed 

in the literature to predict at-risk students in MOOCs. In addition, we will present motivation 

studies in MOOCs.  
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Chapter 3 : Related works 

Prologue 

This chapter provides an overview and discussion of the current predictive models employed 

in the literature to predict students at-risk of dropping out from MOOCs (see section 3.1). In 

addition, this chapter presents engagement and motivation studies (see section 3.3). Finally, 

this chapter critically evaluates the published literature (see section 0). 

3.1  Machine learning application in MOOCs 

How to measure success in MOOCs is a debatable issue (Davis et al., 2013). Whilst 

completion is the most frequently used parameter for success (Mohamed and Salleh, 2021, 

Loizzo et al., 2017), it is not unanimously agreed upon as the best way of measuring the 

perceived, or even the actual success of MOOC students. Students may have different 

objectives when they embark on a MOOC-journey. Students may wish to learn a new topic 

in its entirety, but also, they may wish to use the obtained knowledge for different aims. 

3.2  Related works 

This thesis places significant importance on conducting a literature review pertaining to the 

use of ML methods for the purpose of predicting students who are at risk of dropout. In 

addition, the review has the potential to identify prospective directions for further 

investigation and the enhancement of more efficacious predictive models. 

3.2.1 Previous literature surveys on MOOCs 

Earlier literature surveys on MOOCs have covered a variety of pedagogical concerns, 

including the modelling of learning and evaluating in MOOCs (Joksimović et al., 2018). In 

a comprehensive evaluation of MOOC research in Mainland China (Cheng et al., 2022). Zhu 

et al. (2022) conducted a survey study focusing on trends and concerns in the empirical study 
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of MOOC learning analytics, providing a comprehensive mapping review of MOOC 

recommendation systems (Uddin, 2021). Saadatdoost (2015) carried out a survey study to 

explore MOOCs from the perspectives of education and information systems. There are 

several surveys focusing on machine learning methods for student dropout prediction in 

MOOCs. For example, Albreiki (2021) conducted a comprehensive assessment of the 

research on machine learning approaches for predicting student performance. The author 

exploited six research databases and collected 78 studies from 2009 to 2021. The study 

focused on different methodologies, such as early prediction, recommender systems, and 

dynamic approaches. 

Dalipi et al. (2018) provided an overview of current studies on applying machine learning to 

predict, understand, and address the issue of student dropout in MOOCs. Only 25 studies 

conducted between 2013 and 2017 were reviewed in this survey.  

In another survey paper by Moreno-Marcos (2019), the author used ISI Web of Knowledge 

and Scopus as data sources to extract 82 articles between 2014 and 2017. 

3.2.2 Differences between the present and previous 

surveys. 

One of the primary distinctions between the current survey and its predecessors is that the 

number of studies included in this review is larger than that of the previous reviews. A total 

of 950 studies were extracted from eight databases for education research, including 

Education Research Complete, Web of Science, Scopus, Emerald Insight, ERIC, Taylor & 

Francis, IEEE Digital Library, and ScienceDirect, resulting in 127 articles that were qualified 

for inclusion in the review. This enabled us to identify patterns and trends in the literature. 

A further difference between this survey and its antecedents is that we classified the 

evaluated studies into four categories based on their prediction targets (completion, 

performance, comments, and certificate). This approach offers a more comprehensive 

analysis of the literature and compares studies of machine learning methods for the prediction 

of at-risk students based on the prediction targets. 

Moreover, to evaluate the temporality of prediction, we assessed the studies’ prediction 

targets based on the timing of the prediction. This is an essential point, as previous literature 
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indicates that participants in MOOCs are more likely to opt out of a course during its initial 

weeks (Codish et al., 2019, Hung et al., 2015). Consequently, early intervention is essential 

to identify at-risk students early on, preferably within the first week of the course. Finally, 

another difference between this survey and previous ones is the evaluation of predictive 

models based on the possibility of putting them into practice in real-world settings (see 

Section 3.2.9). Assessing predictive models in real-world environments can shed light on the 

practicability and efficacy of implementing these models. This helps us evaluate the 

predictive models based on their applicability in real-world contexts, which is essential for 

strengthening their effectiveness and applicability. 

3.2.3 Inclusion and Exclusion Criteria 

In this section, we present a comprehensive review of the literature on the application of 

machine learning techniques to predict students at risk of dropping out from MOOCs.  

A total of 950 studies were extracted from eight databases for education research. The 

filtering procedure removed 823 studies, leaving 127 that satisfied the inclusion criteria. The 

search keywords (‘MOOC’, ‘dropout’, ‘machine learning’, and ‘prediction’) were entered 

into each database.  

This survey consists of academic journal articles and conference papers that satisfy particular 

requirements, such as being published in English and being peer-reviewed, to preserve 

rigorous research standards and credibility. Forming criteria for the inclusion and exclusion 

of studies in a review paper is a crucial step in ensuring that the final outcome is based on 

high-quality research. 

In this review, the following procedures were employed to identify and select the most 

relevant studies: After conducting the initial search, along with eight additional database 

searches, there were a total of 950 papers. After this, the researcher eliminated any duplicate 

records. This phase is essential for avoiding duplication of records and ensuring that the 

results are based on original research. We used the EndNote reference management 

application to eliminate duplicates from the results. This step eliminated 253 duplicates, 

leaving a total of 697 studies. 
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Review papers were excluded, as generally speaking, they do not demonstrate a high level 

of originality, as their aim is to introduce the reader to the existing literature, including its 

gaps and limitations(Yarbrough, 1991). Therefore, we excluded any review papers that were 

identified during the search. This step resulted in the removal of 57 studies, leaving 640 

studies for further screening. Finally, we scanned the abstracts of the research papers to 

determine those that employed machine learning algorithms to predict at-risk students in 

MOOCs by obtaining data from MOOC platforms. We concentrated on four primary factors 

to select the studies: (a) prediction of at-risk students in MOOCs based on their prediction 

targets (completion, performance, comments, and certificate), (b) data sources, (c) prediction 

models and evaluation metrics, and (d) temporal prediction techniques (see Sections 3.2.6, 

3.2.7, 3.2.8, 3.2.10). All studies that did not include machine learning, experimentation, or 

technique validation were excluded from this review. The screening procedure eliminated 

513 studies, leaving 127 that satisfied the inclusion criteria.. Figure 3.1 shows the flow of 

the studies through the review process. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 Flow chart of the review process 

Identified studies through database searches N = 950 
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3.2.4 Students’ at-risk predictions in MOOCs 

ML models have shown the abilities to analyse and interpret complicated data in a broad 

range of applications. As MOOCs and other e-learning platforms provide a wealth of data 

unavailable in conventional school environments, many scholars have taken an interest in 

the prediction of at-risk students using ML (Dalipi et al., 2018, Chen et al., 2022). 

In this survey, we reviewed works that contributed to predicting students at risk of dropping 

out from MOOCs using ML. The main focus was to compare the prediction targets and tools, 

methods, and datasets used. However, several factors complicated the head-to-head 

comparisons of predictive performance reported in the reviewed studies. For example, all 

researchers should use the same dataset, metrics, and protocols and predict the same output. 

In addition, many researchers cannot share their datasets because of legal limitations. 

Therefore, researchers on MOOCs have focused heavily on feature engineering from various 

data sources, and many breakthroughs in predictive modelling have relied on state-of-the-art 

feature extraction approaches. 

3.2.5 Predictive models of students at-risk of dropping 

out from MOOCs: input features, ML, outcome, and 

dataset 

Several works have attempted to answer the question of how to identify students potentially 

at risk of dropping out from MOOCs. For example, Monllaó used ML and extracted the 

learning behaviours (e.g. attempting a quiz and forum posting activities) of 46,895 students 

from eight courses to predict whether the students would participate in the last quarter of the 

course. This study focused on predicting dropout students in three phases: after the first 

quarter of the course, at the middle of the course, and at three-quarters of the course (Monllaó 

Olivé, 2020). 

Another study conducted by Ye (2015) defined dropouts as students who accessed fewer 

than 10% of the course and did not have assessment activities. The author extracted data on 

the learning activities from the first week of the course (e.g. video, quiz, and peer-graded 

assignments data) and applied several ML models such as logistic regression (LR), support 

vector machines (SVM), and decision trees (DTs). 
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A small-scale study by (Xing, 2019b) presented a dataset from one course for 2084 students. 

The author focused only on the students' activities in the discussion forum and the emotional 

polarity of the students' posts (e.g. students' comments, positive comments, negative 

comments, and thread started). The target was to predict students who did not post comments 

in the last week of the course. This study used several ML modes such as naive Bayes (NB), 

LR, SVM, and DTs. 

Sun et al. (2019) applied random forest (RF), gradient boosting (GBM), and XGBoost 

models to a longitudinal dataset for 12,847 students. The authors used different input features 

(e.g. number of access times, online time, session time, duration of watching the video, and 

forums visited) to predict the percentage of the course content completed for each student. 

This study identified students at risk of dropping out from an early stage by using a weekly 

prediction technique (prediction from weeks 1 to 12). 

Many researchers (Şahin, 2021, Alsolami, 2020, Teruel, 2018, Mubarak, 2021c, Hong, 2017, 

Jin, 2021, Ardchir, 2020) have proposed different prediction models by using a public dataset 

known as XuetangX/KDD Cup 2015, which was provided by a Chinese MOOC learning 

platform initiated by Tsinghua University. In this dataset, students were considered dropouts 

if they did not have activities after 30 days from the official starting date of the course. 

In another study, Xing et al. (2019) proposed a framework to predict whether a student will 

drop out in the following week on the basis of the weekly prediction technique (from weeks 

1 to 7). The authors used a dataset extracted from eleven courses for 3,617 students with 

several input features such as the number of times course contents were accessed, number of 

assignments visited, number of assignments submitted, number of times the calendar was 

accessed, and number of times quizzes were accessed. 

A study by Chen et al. (2016) used three classification algorithms (LR, RF, and k-nearest 

neighbours [KNNs]) to predict student dropouts in week 5. The dataset was extracted from 

two courses for more than 34,000 students. The predictive models were trained according to 

the students' activities in the first month of the course. In this study, the author used several 

features such as the number of watched videos, number of active days, number of rewatching 

records, number of skip records, and number of posts. 
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Drousiotis et al. (2021) extracted a dataset for more than 32,000 students from seven courses 

and applied three predictive models (RF, DTs, and BART) to predict four classes: 

withdrawn, fail, pass, and distinction. In addition, the author transferred multi-class datasets 

to binary classification problems using the one-versus-rest method. Several features were 

used in this study based on learning activity and demographic attributes (e.g. number of 

clicks until the course starts, first assignment mark, registration date, age, disability, and 

gender). In a recent study, Nitta et al. (2021) used the same dataset as that used in the study 

by Drousiotis et al. (2021) but implemented different ML models. The author applied graph 

convolutional networks to predict two classes: completion (distinction or pass) and dropout 

(fail or withdrawn). 

Kim et al. (2018) used a dataset extracted from the Udacity platform for two courses and 

10,154 students. In their study, the authors applied a deep learning model (long short-term 

memory) to predict whether the student will graduate from an early stage by using a weekly 

prediction technique (from weeks 1 to 8). The predictive models rely on the student's learning 

activities (e.g. number of videos watched, number of reading a text page, number of quiz 

attempts and grade) in previous weeks. 

Babu et al. (2017) proposed a framework to predict whether the student will participate in 

the course until the last week and solve the final exercises. Selected predictors were used, 

such as the number of days of access, number of access times in the last two weeks, number 

of events in the final week, number of pages closed, and number of videos watched. In this 

study, the author gathered data for more than 200,000 students from 39 courses and then 

applied several ML classifiers (e.g. RF, DTs, NB, LR, SVM, DTs, GBM, and ensemble 

models). 

Another study by Vitiello et al. (2017) applied SVM to predict whether the student will 

complete the final project and exam on the basis of a weekly prediction technique (from 

weeks 1 to 8). The authors used student tracking and discussion forum data extracted from 

11 courses for 3,213 students. 

Bote-Lorenzo et al. (2017) aimed to determine whether students' levels of engagement in the 

next chapter would be (higher/lower) than that in previous chapters. The authors extracted 

data for 26,947 students from one course and applied a set of ML algorithms such as the 
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stochastic gradient descent, RF, LR, and SVM. These predictive models were trained 

according to the students' learning behaviours (e.g. percentage of videos watched in each 

chapter, percentage of assignments submitted, and total grade of assignments). 

A recent study by Alami et al. (2021) used the OULAD dataset, which included 32,593 

students extracted from 7 courses. The authors used students' demographic and clickstream 

data as input features to predict four categories (withdrawn, fail, pass, and distinction). 

Another study by Xia et al. (2020) used part of the OULAD dataset (6,360 students from one 

course) to predict three categories (withdrawn, fail, and pass). However, the authors used 

only the clickstream features to train the predictive model in this study. 

Cobos et al. (2017) applied LogitBoost, GBM, XGBoost, and KNN models to a longitudinal 

dataset for 12,465 students extracted from two platforms (FutureLearn and edX). The main 

task was to predict whether the student would complete 50% of the course on the basis of 

the weekly prediction technique (from weeks 1 to 7). This research used students' 

behavioural data such as number of access times, number of active days, total time spent on 

quizzes, and number of interactions in discussion forums. 

In their study, Yu et al. (2021) used a dataset extracted from the OpenEdu platform for one 

course and 1,387 students. The authors proposed a framework to predict students' learning 

performance. First, they classified students' grades into a binary class (pass/fail) and then 

applied three classification algorithms (e.g. SVM, artificial neural network [ANN], and 

recurrent neural networks [RNN]). These predictive models were trained according to 

students' learning behaviours such as the numbers of videos watched, paused, and stopped, 

and clicking speed and correct answers. 

A study by Moreno-Marcos et al. (2020) used a large dataset of 142,733 students. The dataset 

was extracted from three sources: 1) forums (e.g. the number of posts and votes, the positivity 

of the messages, threads a learner started, and the average number of characters in posts), 2) 

exercises (e.g. exercises attempted, exercises opened, correct exercises), and 3) learners' 

activities (e.g. number of video repetitions; number of times of access from a PC and during 

the weekend; number of videos watched, paused, and stopped; and clicking speed). They 

then applied five classification algorithms (DTs, RF, multi-layer perceptron [MLP], 

AdaBoost, and NB) to predict learners' performance in assignments (pass/fail). 
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Qu (2021) used data extracted from one course (C programming) for 1,528 students. The aim 

of the study was to investigate the usefulness of students' programming activities (e.g. invalid 

use of ‘struct data’, syntax error, and illegal statement in code). The author applied four 

prediction models (NB, LR, SVM, and MLP) to predict whether the student would pass the 

course. 

Qiu et al. (2016) proposed the LadFG (latent dynamic factor graph) model, which takes into 

account the demographics, forum activity, and learning style of students. The author used a 

dataset from XuetangX, one of the largest MOOCs in China. The aim of their study was to 

predict students' performance on assignments and which students will obtain a certificate by 

the end of the course. 

Another study by Wang (2016) used a dataset from the same source (XuetangX) for 2,633 

students. The back-propagation neural network and linear regression algorithms were applied 

to predict students' grades on the basis of the weekly prediction technique (prediction from 

weeks 1 to 14). The author used students' demographics, videos, and exercise data (e.g. age, 

gender, watching ratio, and submission times). 

A study by Kameas et al. (2021) used a dataset from DevOps MOOC for 936 students. The 

dataset consisted of students' clickstream and demographic features (e.g. number of video 

views, gender, educational level, number of posts, and number of assignments). The author 

applied several ML models such as AdaBoost, GBoost, Extra Trees (ExTree), LR, DT, linear 

discriminant analysis, and LightGBM to predict whether the student will pass the final exam 

and obtain the certificate. This study focused on predicting students in three phases. The first 

phase (week 0) was based on information collected before the beginning of the course, whilst 

the second and third phases (weeks 1 and 2) were based on information collected by the end 

of weeks 1 and 2. 

Another study by Rawat( 2021) sought to develop a predictive model for determining 

whether a student would complete a course. Several algorithms, such as deep learning, 

decision tree, logistic regression, and gradient boosting, were employed in this study. The 

prediction model included the variables start time, age, number of active days, gender, and 

forum posts. The dataset used in the study was obtained from two universities, Harvard and 

MIT, and included information from 367,375 students enrolled in 13 different courses. 
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Yu's study 2021 sought to construct a prediction model to predict students’ course grades by 

using deep learning and machine learning algorithms, including ANN, KNN, and SVM. The 

research used a dataset from the OpenEdu platform that included 1,387 students who 

registered for one specific course. The study’s prediction features included watching videos, 

pausing and stopping them, clicking speed, taking tests, and providing correct answers. 

Edalati (2022) conducted a study to develop a prediction model for classifying student 

reviews into positive, negative, and neutral categories, using different machine learning and 

deep learning models, including RF, SVM, DT, CNN, and BERT. The study utilised a dataset 

obtained from the Coursera platform, consisting of reviews from 15 different courses. 

Zhang (2021) carried out research to develop prediction models for identifying active 

students 30 days after the start of a course, using several machine learning and deep learning 

models, including RF, CNN, and LSTM. The study used a dataset from XuetangX, 

containing information regarding 120,542 students enrolled in 39 courses. 

Qu (2021) conducted a study to build prediction models using various deep learning and 

machine learning algorithms, including NB, LR, SVM, and MLP, to predict whether students 

would pass or fail a C programming MOOC. The study extracted features from the 

programming activity of 1,528 students, such as invalid use of struct data, syntax errors, and 

illegal statements. The dataset was divided into a training set consisting of 80% of the data 

and a test set consisting of 20% of the data. 

Hlioui (2021) carried out research by using the OULAD dataset, which consisted of data 

from 1,303 students enrolled in a single course, with the goal of building prediction models 

to predict withdrawal from the course. The study used demographic data, assessment scores, 

and four behavioural indicators: perseverance, autonomy, commitment, and motivation 

based on student interaction. The study employed various machine learning algorithms and 

deep learning algorithms, such as RF, DT, SVM, Bayesian classifier, and MLP, and assessed 

the performance of the algorithms using the F1 score metric. The results were validated using 

a five-fold cross-validation method. 

Table 3.1 provides a comprehensive summary of the above-mentioned studies and additional 

studies that have been conducted in the area of predicting at-risk students in MOOCs from 

2015 to 2022.  
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Table 3.1 Summarises the reviewed studies to predict at-risk students based on machine learning techniques from 2015 to 2022. 

 Author Platform

/ dataset 

#stud

ents 

#Co

ur 

ses 

Input features ML methods Perform

ance 

Metrics 

Train/ 
Test sets 

Prediction target 
Temporal 

1 (Şahin, 

2021) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

NN, FIS PR, 

REC, F1, 

ACC 

5 fold CV Predict active students 

after 30 days. 
 

✘ 

2 (Ai, 

2020) 

Xuetang

X 

1205

42 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

SVM, 

AdaBoost, NB 

Rec ,F1 , 

Auc 

NA Predict active students 

after 30 days. 
✘ 

3 (Chen, 

2021) 

Xuetang

X 

1205

42 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

CNN LSTM, 

LR, SVM .DT 

AUC, Pr NA Predict students who do 

not participate in the 

following week. 

From the first 

week up to 

week 5 

4 (Mrhar, 

2020) 

Edx 1160

7 

 

1 Clickstream and sentiment features (eg. 

Answered , comments, pages viewed, 

subsection viewed ) 

KNN, SVM 

,DT, ANN 

 

ACC, 

AUC 

 

NA Predict students who do 

not participate in the 

following week. 

Prediction from 

week 1 to week 

12 

5 (Alsolami

, 2020) 

Xuetang

X 

NA 10 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

LR,NB,DT,RF, 

SVM, GBoost 

PR, REC 

AUC 

10-fold CV Predict active students 

after 30 days. 

 

  ✘ 

6 (Olmos, 

2018) 

edX 

UAM 

 

1091

9 

 

3 

 

Clickstream num events, connected 

days, video, forum events, forum time) 

LR, RF, 

GBoost,NB, 

XGBoost, 

NR,SVM, KNN 

AUC 75% TR_Set 

25 % TS_set 

 

Dropout prediction 

(Student tagged as a 

dropout when the number 

of activity days is less than 

six days). 

Prediction from 

day 1 to day 60 

7 (Ahmad, 

2021) 

OULAD 

 

NA NA Demographic and Assessment Data 

Age, Gender, Region, Assessment 

Scores And Date of Submission 

ANN ACC, 

PR, RE, 

F1 

10-fold  CV Predict the final result 

(Distinction, Pass or Fail). 
✘ 

8 (Mourdi, 

2021) 

OpenEdx 3585 1 Performance data, navigation data, 

forum interaction data. 

MLP, LR, NB, 

KNN, DT 

ACC, 

PR, RE, 

F1 

70% TR_Set 

30 %TS_set 

Predict students who do 

not participate in the 

following week. 

Prediction from 

week 1 to week 

9 
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9 (Wang, 

2016a) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

LR, LR, LSTM 

and NSSM 

AUC 70% TR_Set 

30% TS_set 

Predict students who do 

not participate in the 

following week. 

Prediction from 

week 1 to week 

5 

10 (Batool, 

2021) 

OULAD- 

schools 

data 

2408

6 

 

NA Demographic attributes (gender, age, 

family, parents' jobs, travel time to 

school, study time, health status etc.) 

RF 

 

F1, ACC 

 

80% TR_Set 

20% TS_set 

Predict whether the student 

will Pass or Fail the 

course. 

✘ 

11 (Rong, 

2019) 

China 

MOOC 

platform 

NA NA Textual data 19,148 comments NTUSD, BERT 

HAN, CNN, 

Transformer 

ACC,F1 

 

64% TR_Set 

16%,validate 

20%TS_set 

Predict the sentiment 

polarity of students' 

comments. 

✘ 

12 (Monllaó 

Olivé, 

2020) 

Moodle 

 

46,89

5 

8 Learning activity data, textual data LR 

 

average 

ACC ,F1 

80% TR_Set 

20% TS_set 

Students who do not 

participate in the last 

quarter of the course. 

25%,50% and 

75% of the 

course 

13 (Rawat, 

2021) 

Harvard 

and MIT 

3673

75 

13 Start time age, ,ndays_act, gender , 

forum posts etc) 

DL, DT, LR and 

GBoost 

ACC 

 

75% TR_Set 

25 % TS_set 

Whether a student has 

completed the course. 
✘ 

14 (Hlioui, 

2021) 

OULAD 1303 1 Demography, Assessments Scores and 

Behaviour(Four Behavioural 

Indicators, Such As Perseverance, 

Autonomy, Commitment, And The 

Motivation Based On Student 

Interaction) 

RF, DT, SVM,  
Bayesian 

classifier, MLP 

F1 

 

5-fold CV Withdrawal /completion. ✘ 

15 (Liu, 

2020a) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

NB, DT, LR, 

MLP, GBoost, 

XGBoost 

 

F1, ROC 

5 fold CV Predict active students 

after 30 days. 

Prediction from 

week 1 to week 

4 

16 (Yu, 

2021) 

OpenEdu 1387 1 Learning activity data( video viewing, 

pause, stop, clicking speed, trying tests, 

correct answers etc) 

ANN, KNN, 

and SVM 

ACC 

 

70% TR_Set 

30% TS_set 

Course grade. ✘ 

17 (Okereke, 

2020) 

Moodle 

 

3617 

 

6 Posts, video pages,quiz attempts, time 

spent on quizzes, views on lecture 

pages, views on assignment pages, 

view on wiki pages 

RNN, GRU, 

LSTM 

ACC 

 

80% TR_Set 

20% TS_set 

Predict whether a student 

will take the next activity 

or not. 

✘ 

18 (Narayan

asamy, 

2020) 

OUs of 

China 

2216

0 

1 Self-characteristics and academic 

performance (gender, marriage 

status,age ,country,studied courses, 

average test results etc) 

SVM, RF, CRF ACC, 

PR, 

REC, 

and F1 

60% TR_Set 

40% TS_set 

Dropout prediction. ✘ 
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19 (Bote-

Lorenzo, 

2018) 

edX 

 

2694

7 

1 Video watching activity regarding 

exercises assignments activity 

LR AUC In situ 

prediction 

models 

Predict if the engagement 

indicator decreases at the 

end of each chapter. 

Chapter 1 to 

Chapter 11 

20 (Tubman, 

2018) 

OULAD 3259

3 

7 Clickstream Data ( Lecture Video and 

Forum Data) 

TSF ACC 10-fold CV Predict students' 

withdrawal from the 

course. 

Start prediction 

with the first 5% 

of the data, then 

sequentially add 

5% until the end 

of the course. 

21 (Periwal, 

2017) 

edX 

(MITx 

and 

Harvard

X) 

1,69,

621 

- 

66,15

1 

2 Learning Activity Data and 

Demographic Attributes ( Last Degree , 

Country ,  year of birth , Nchapters, 

Nforum, Ndays, Nvideos, Nevents, 

Ndays, Etc) 

KNN. NB, DT, 

LR 

ACC,con

fusion 

matrix 

10-fold CV Dropout prediction ✘ 

22 (Liu, 

2018) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

LR, SVM, RF AUC PR, 

REC, F1 

10-fold CV Predict active students 

after 30 days. 
✘ 

23 (Pei, 

2021) 

OULAD 5182 4 Demographic and Learning Activity( 

Age, Gender Educational Level, 

Region, Attempts) 

RF,SVM,DT ACC, 

PR, 

REC, 

and F1 

80% TR_Set 

20% TS_set 

Predict students who do 

not participate in the 

following week. 

Start prediction 

from week 5 up 

to week 35. 

24 (Moreno-

Marcos, 

2018b) 

edX 4358 1 Learning activity, graded assignments, 

forum data ( main posts, reply posted, 

average positivity / negative messages) 

RG,SVM, DT 

,RF 

AUC, F1 
10-fold CV 

Predict whether the student 

will Pass or Fail the 

course. 

Predict seven 

graded 

assignments 

 

25 (Moreno-

Marcos, 

2020b) 

edX Java 

Program

ming 

1427

33 

2 Posts, Reply,Characters of Posts, 

Positivity, %Exercises Attempted, 

Completed Videos, Video Pauses, 

%Accesses During Weekend. 

RG,SVM,DT 

,RF 

AUC 10-fold CV Predict learners’ 

performance in assignment 

grades 

✘ 

26 (Panagiot

akopoulo

s, 2021) 

DevOps 

MOOC 

 

961 1 Logins First Two Days  and 

Demographic (Gender, Age, 

Nationality, Country, Mother Tongue, 

Education Level,Current Job) 

DT, RF, MLP, 

AdaBoost, NB, 

LR 

ACC 
10-fold CV Predict whether students 

will start a MOOC 
✘ 
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27 (Wenqing

, 2020) 

XueTang

X 

NA 28 Posts,%Video View, %Video Has 

Completed, Average Pauses of A 

Video, Average Repetitions of A 

Video. 

DT, RF, SVM, 

LR, MLP, XGB 

AUC 70% TR_Set 

30% TS_set 

Predict whether the student 

will Pass or Fail the 

course. 

✘ 

28 (Dascalu, 

2021) 

Moodle 319 2 Learning activity data/forum posts RNN RMSE, 

R2 

10-fold CV Student’s grades. ✘ 

29 (Qu, 

2021) 

C 

program

ming 

MOOC 

1528 1 Features from programming activity 

(invalid use of ‘struct data, syntax 

error, illegal statement in code) 

NB, LR SVM 

MLP 

ACC, 

REC 

80% TR_Set 

20% TS_set 

Predict whether the student 

will Pass or Fail the 

course. 

✘ 

30 (Ye, 

2015) 

Coursera NA 2 Learning activity data(video, quizzes, 

peer-graded assignments) 

LR, SVM, DT F1 NA Predict Students who 

accessed fewer than 10% 

of the course and do not 

have assessment activities. 

✘ 

31 (Xing, 

2019b) 

Coursera 2084 1 Fourm data (avg post, avg positive & 

negative posts, avg thread started) 

NB, LR, SVM, 

DT 

ROC_A

UC, 

Kappa 

10-fold CV Predict students who do 

not post comments in the 

last week. 

✘ 

32 (Zheng, 

2016) 

Edx 2000

00 

39 Enrollment Feature, User Feature,  and 

Coursefeature 

LR, SVM, RF, 

GBoost 

AUC 5-fold CV Predict active students 

after 30 days. 
✘ 

33 (Lai, 

2020) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

ANN ACC 10-fold CV Predict active students 

after 30 days. 
✘ 

34 (d'Invern

o, 2017) 

Coursera 

program

ming 

course 

993 1 Weekly activities of students( play 

videos, view set of shared files, view 

thread, comment when a video is 

playing etc) 

SVM ACC 50% TR_Set 

50% TS_set 

Predict whether the student 

will Pass or Fail the 

course. 

Prediction from 

week 1 to week 

7 

35 (Khodeir, 

2021) 

Stanford  NA 11 29604 posts BERT AUC Transfer 

learning 

Predict students’ urgent 

posts. 
✘ 

36 (Wei et 

al., 2017) 

Stanford  NA 11 29604 posts CNN and 

LSTM 

ACC Transfer 

learning 

Predict (Confusion, 

Urgency, Sentiment)   of 

students’ posts. 

✘ 

37 (Yang, 

2021) 

icoursel6

3 

NA NA

a 

20000 posts Glove, 

Word2vec, 

Skip-Gram 

ACC 80% TR_Set 

20% TS_set 

Predict the emotional 

polarity of students’ posts. 
✘ 
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38 (Tóth, 

2018) 

NA 1370 1 Mouse  Behaviours  (Move,  Scroll,  

Click ),  Video  Watching Attitudes  

and Text Inputs 

MLP,KNN 

,NB, RF, 

XGBoost, SVM, 

ctree 

ACC, 

PR, 

REC, 

and F1 

leave-one-out 

cross 

Predict whether the student 

will Pass or Fail the final 

exam. 

✘ 

39 (Wu, 

2019) 

Xuetang

X 

1205

42 

 

39 Learning activity data CNN-LSTM-

SVM 

AUC, 

PR, 

REC,F1 

80% TR_Set 

20% TS_set 

Predict active students 

after 30 days. 
✘ 

40 (Fu, 

2021) 

Xuetang

X 

1200

0 

39 Learning activity data CNN, LSTM ACC, 

PR, 

REC, F1 

80% TR_Set 

20% TS_set 

Predict active students 

after 30 days. 
✘ 

41 (Teruel, 

2018) 

Xuetang

X 

1205

42 

 

39 Learning activity data LSTM AUC,RS

ME, R2 

70%TR_Set 

10%,validatio

n 20%TS_set 

Predict active students 

after 30 days. 
✘ 

42 (Liu, 

2020b) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

DT ,NB, LDA, 

LR, SVM, RF, 

GBoost 

ACC, 

PR, 

REC, F1 

NA Predict active students 

after 30 days. 

Four stages of 

prediction, each 

stage includes 

ten days. 

43 (Siddique

, 2020) 

OULA 3259

3 

7 Demographic Info, Assessment Info  

and Interaction Data 

DT,RF, 

KKN,LR 

PR, 

REC, F1 

and AUC 

NA Predict whether the student 

will Pass or Fail the 

course. 

✘ 

44 (Mubarak

, 2021c) 

Xuetang 

/ 

Stanford 

 

1991

65 

44 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

CNN-LSTM , 

DNN, SVM, LR 

AUC, 

PR, 

REC, F1 

65%TR_Set 

15%,Val_Set 

20%TS_set 

Predict active students 

after 30 days. 
✘ 

45 (Ren, 

2021) 

Xuetang/

MOOCC

ube2020 

1042

1 

1 Video clickstream data (number of 

views, play back, video start time, 

video end time etc) 

CNN-SVM- 

LR-DNN 

ACC, F1 

REC 

NA Dropout prediction. ✘ 

46 (Sun, 

2019) 

Xuetang

X 

 

1284

7 

1 Total online time, Eession Time, 

Duration of watching the video, 

Forums Visited, Access etc) 

RF, GBoost, 

XGBoost 

squared 

(R2) 

80% TR_Set 

20% TS_set 

Percentage of course 

content completed in the 

whole course. 

Prediction from 

week 1 to week 

12 

47 (Wang, 

2017) 

Xuetang

X 

1205

42 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

SVM, LR, RF, 

DT, AdaBoost, 

Gboost, CNN 

AUC, 

PR, 

REC, F1 

80% TR_Set 

20% TS_set 

Predict active students 

after 30 days. 
✘ 



 

44 

48 (Hong, 

2017) 

Xuetang

X 

1205

42 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

RF, SVM, MLR AUC, 

PR, 

REC, F1, 

ACC 

80% TR_Set 

20% TS_set 

Predict active students 

after 30 days. 
✘ 

49 (Qiu et 

al., 2016) 

xuetangx 8811

2 

11 Gender, age, education level, post, 

replies received, replies received from 

well-performed students, chapters 

accessed, total time spent on videos, 

total time spent on assignments) 

LR,SVM, FM 

LadFG 

PR, 

REC, F1, 

Acc and 

AUC 

60%TR_set 

40%TS_set 

1) Predicts students’ 

performance on an 

assignment. 

2) Predict whether the 

student will obtain a 

certificate. 

✘ 

50 (Ortigosa, 

2018) 

edX 3353 1 Videos, time watching a video, videos 

backward movements, correct answer, 

comments etc.) 

NB, DT, SVM, 

LSTM 

ACC NA Predict whether the student 

will Pass or Fail the course 
✘ 

51 (Xing, 

2019a) 

Canvas 

 

3617 11 Acess the course access assignments,  

submit assignments,  view the calendar, 

quizzes) 

KNN,SVM, 

DT,NN 

AUC,AC

C 

70% TR_Set/ 

30% TS_set 

Predict whether next week 

is the dropout week. 

Prediction from 

week 1 to week 

7 

52 (Jin, 

2021) 

Xuetang

X 

5359

6 

6 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

DT LR, RF , 

AdaBoost and 

SVM 

AUC 67% TR_Set 

33% TS_set 

Predict active students 

after 30 days. 
✘ 

53 (Fauziati, 

2019) 

Xuetang

X 

4249

0 

5 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

Ensemble  

Learning 

PR, 

REC, F1 

70% TR_Set 

30% TS_set 

Predict active students 

after 30 days. 

Prediction in 5 

different time 

periods. 

54 (Zhang, 

2020b) 

NA 2696

2 

5 View course progress times, posts 

videos watched,replies etc 

LR ACC 10-fold CV Predict whether the student 

will Pass or Fail the 

course. 

✘ 

55 (Y. Chen; 

Q. Chen; 

Mingqian

, 2016) 

Edx/ 

Coursera 

3406

4 

2 Watched videos, active days, play 

records, rewatched records, skipped 

records, posts etc. 

LR, RF,KKN ACC 80% TR_Set 

20% TS_set 

Predict dropout students in 

week five. 
✘ 

56 (Raj, 

2021) 

OULAD NA 2 Learning activity data, demographic 

attributes 

CNN ACC 70% TR_Set 

30% TS_set 

Predict two classes, Pass 

and Withdrawn. 
✘ 

57 (Drousiot

is, 2021) 

OULAD 3259

3 

7 Learning activity, demographic 

attributes (first assignment mark, clicks 

DT,RF,BART PR, 

REC, F1, 

and ACC 

70% TR_Set 

30% TS_set 

Predict four classes 

Withdrawn, Fail, Pass, and 
✘ 



 

45 

till course starts, age, disability, gender 

etc 

Distinction using “one-vs-

rest”. 

58 (Ding, 

2019b) 

edX 5739 1 Playing video, load video, navigate-

backward, pausing video, showing 

subtitles. 

LSTM,LR, 

CNN, MLP 

MSEs NA Predicting student grades 

in the next chapter. 

Grade 

Prediction from 

chapter 2 to 

chapter 11 

59 (Niu, 

2018) 

icourse1

63 

1767

3 

1 Clickstream, forum data, demographics 

(login, post, reply, video, age etc.) 

XGBoost, RF, 

LR MLP, SVM, 

KKN, 

AdaBoost 

AUC, 

ACC 

70% TR_Set 

30% TS_set 

Predict students who do 

not access for more than 

14 days. 

✘ 

60 (Li, 

2018) 

Coursera NA 3 Video views,forum views, video start-

stop,video backward jump, indicator of 

the device, country, browser used, 

operating system,etc 

SVM, ANN ACC, 

REC, 

Kappa 

NA Predict students who do 

not participate in the 

following week. 

Prediction from 

week 1 to week 
19 

61 (Robinso

n, 2016) 

Harvard

X 

4194

6 

1 Demographics  and Pre-Course 

Survey( Age, Previous Moocs 

Enrolled, Previous Moocs Completed, 

Bachelor’s Degree, Parent Degree, 

Region) 

NLP model AUC 20-fold CV Dropout prediction. ✘ 

62 (Er, 

2020) 

Canvas 

Network 

1244

7 

3 Discussion forum data, assignment 

data, quiz data, and peer-review data. 

LR,RF, MLP AUC Transfer 

learning 

Predict engagement levels 

in peer reviews. 
✘ 

63 (Wang, 

2016b) 

xuetangx 2633 1 Demographics, video watching, 

exercise data (age, gender, 

Watching ratio, submit times, etc.) 

Backprop, 

Linear 

regression 

MSE NA Grade prediction. Grade 

Prediction from 

week 1 to week 

14 

64 (Nitta, 

2021) 

OULAD 3259

3 

7 Graph representation of clickstream 

data 

GCN PR, 

REC, F1, 

ACC, 

AUC 

80% TR_set 

20% TS_set 

Completion = (Distinction 

or Pass), Dropout= ( Fail 

or Withdrawn). 

✘ 

65 (Kim, 

2018) 

Udacity 1015

4 

2 Learning activity data (video, reading a 

text page, attempting a quiz, grade) 

LSTM AUC 5-fold CV Predict whether the student 

will graduate. 

Prediction from 

week 1 to week 

8 



 

46 

66 (Prenkaj, 

2021) 

Xuetang

X/ 

1495

42 

71 Clickstream (navigational, video, 

homework, forum) 

LR,NB,DT,SV

M,KNN RF, 

DNN, CNN, 

LSTM, GRU 

AUCPR 70% TR_set 

10%,Val_set%

20 TS_set 

Predict Passing the final 

examination. 

Prediction in 

different time 

windows ( day: 

(7,14,20,25,60,1

2, 180) 

67 (Sheng, 

2021) 

Xuetang

X 

2023

8 

1 Video Clickstream (Video View, 

Watch Time, %Watch, Access Time, 

Forward, Backward, Pause  and Leave) 

LR, DT, SVM, 

K-means 

AUC NA Predict whether the student 

will not continue to watch 

future videos. 

✘ 

68 (Babu, 

2017) 

Edx 2000

00 

39 Events in the last week, days from 

access to the end of the course, 

accesses in the last two weeks, page 

closes, videos watched 

DT ,NB, RF, 

LR, SVM, 

GBoost, 

Ensemble model 

AUC 80% TR_set 

20% TS_set 

Predict whether the student 

will participate until the 

last week and solve the 

final exercises. 

✘ 

69 (Ardchir, 

2020) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

LR, AdaBoost, 

RF GBoost, 

AUC 60% TR_set 

40% TS_set 

Predict active students 

after 30 days. 
✘ 

70 (Getoor, 

2020) 

Coursera NA 7 View posts, posts, vote in forums, take 

quizzes, view lectures, sentiment in 

posts, replies etc.) 

LR, MLP, DT, 

Linear 

Regression 

AUCPR Transfer 

learning 

1)  Predict the students 

who will earn a certificate. 

2) Predict the students who 

will follow the course until 

the end. 

Prediction in 

three stages 

(33%, 67%, and 

100% of course) 

71 (Kameas, 

2021) 

DevOps 

MOOC 

936 1 Demographic  and Clickstream Dataset 

(Assignments, Video Views, Gender, 

Education Level, Posts) 

AdaBoost, DT, 

ExTree, LR, 

LDA, 

LightGBM, 

GBoost 

PR, 

REC, F1, 

MCC, 

AUC and 

Kappa 

10-fold CV Predict whether the student 

will pass the final exam 

and obtain the certificate. 

Prediction in 

three stages 

Week 0, week 1, 

week 2 

72 (Sehaba, 

2020) 

OULAD 3259

3 

7 Attempts, access, avg score, 

submission data, region, gender, level 

of education, disability 

DT, NB, SVC, 

KNN 

PR 5-fold CV Predict the final result 

(Fail, Pass or Excellent) 
✘ 

73 (Wang, 

2019) 

NA 1122

7 

5 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

LR, SVM, 

GBoost, RF,DT, 

LSTM 

AUC 10-fold CV Dropout prediction. ✘ 

74 (Liang, 

2016) 

Xuetang

X 

1205

42 

 

39 Clickstream (such as watching video, 

posting a thread etc) 

LR, SVM, RF, 

GBoost 

ACC 60% TR_set 

40% TS_set 

Predict active students 

after 30 days. 
✘ 
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75 (Radi, 

2017) 

Harvard

X-MITx 

597,6

92 

15 Behavioural and Demographic Features 

(Interact With The Chapter, Gender, 

Date Of Birth, and GPA). 

DT ,RF, SVM, 

NB, NN, LR, 

LAD, SOM 

Kappa, 

AUC, 

Acc,Spec

, Sensy 

10-fold CV Predict whether the student 

will obtain a certificate. 

 

✘ 

76 (Kashyap

, 2018) 

Harvard

X-MITx 

5200 NA Behavioural and Demographic Features 

(Video Days, Access, Start Date, 

Gender, Date Of Birth Etc). 

DT, SVM, NB, 

RF 

PR, 

REC, F1, 

MCC, 

AUC 

10-fold CV Predict whether the student 

will obtain a certificate. 

 

✘ 

77 (Zhu, 

2021) 

Xuetang 7684

3 

12 Behavioural features (quizzes, 

homework, team participation, project 

milestones etc. 

LR, DT, SVM, 

RF 

PR, 

REC, F1, 

AUC 

75% TR_set 

25% TS_set 

Predict whether the student 

will pass. 
✘ 

78 (Chen, 

2019a) 

Xuetang

X 

NA 10 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

DT-ELM AUC NA Predict students who do 

not participate in the 

following week. 

Prediction from 

week 1 to week 

5 

79 (Fu, 

2020) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

LR, NB, RF, 

SVM, DT, CNN 

PR, 

REC, F1, 

ACC 

80% TR_set 

20% TS_set 

Predict active students 

after 30 days. 
✘ 

80 (Whitehil

l, 2017) 

Harvard

X 

NA 40 Behavioural features(answers to the 

quiz, play/pause/rewind events videos 

etc.) 

LR AUC Train on 

another course 

from the same 

field 

Dropout prediction. Prediction from 

week 1 to week 

8 

81 (Vitiello, 

2017) 

Telescop

e 

platform 

3213 11 Learning Behaviour Records  and 

Discussion Forum Data 

SVM PR, 

REC, 

and F1 

75% TR_set 

25% TS_set 

Predict whether the student 

will complete the final 

project and exam. 

Prediction from 

week 1 to week 

8 

82 (Kőrösi, 

2020) 

Stanford 1201

5 

1 Learning behaviour records XGBoost, GRU, 

RidgeRegressio

n, 

XGBregression 

ACC, 

RMSE 

4-fold CV Predict the final 

assessment quiz responses 

from 0–100%. 

Prediction from 

week 1 to week 

5 

83 (Jin, 

2020) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

LR, SVR, ELM,  
Backprop 

Acc, 

AUC, F1 

67% TR_set 

33% TS_set 

Predict Dropout week (one 

week after the learner last 

generating). 

Prediction from 

week 2 to week 

5 

84 (Liu, 

2020c) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

DT,NB, LDA, 

RF, SVM, CNN 

-GRU 

PR, 

REC, F1 

and ACC 

NA Predict active students 

after 30 days. 
✘ 
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85 (Zhang, 

2020a) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

GBoost, 

XGBoost, 

LightGBM,CatB

oost and 

AdaBoost 

F1, AUC 

and ACC 

75% TR_set 

25% TS_set 

Predict active students 

after 30 days. 
✘ 

86 (Umer, 

2017) 

Coursera 167 1 Clickstream  and Demographics (Age, 

Gender, Weekly Quiz, Attempts, 

Access) 

NB, RF, LR, 

KNN 

AUC, F1 10-fold CV Predict whether the student 

will Pass or Fail the 

course. 

Prediction from 

week 1 to week 

8 

87 (Goel, 

2020) 

Xuetang

X 

6853

87 

NA Clickstream  and Demographics 

Information ( Videos, Posts, Problems 

Solved, Gender, Education,  Date Of 

Birth, Influence From Friends) 

NN F1 Score 80% TR_set 

20% TS_set 

Dropout prediction. ✘ 

88 (Pulikotti

l, 2020) 

Xuetang

X  

4030

57 

285 Clickstream ( access, problem, pages 

close, delete a comment, load video, 

pause video, problem check, seek 

video, stop video, correct answers, 

wrong answers) 

LR ,RF, SVM, 

Gboost, GRU 

AUC and 

F1 score 

80%TR_set 

10%,Val_set 

10%TS_set 

Predict active students 

after 30 days. 
✘ 

89 (He, 

2020) 

OULAD 3259

3 

7 Students’ Demographics Feature  and 

Their Time-Series Logs 

RNN-GRU PR and 

REC 

80% TR_set 

20% TS_set 

Predict whether the student 

will Pass or Fail the 

course. 

Prediction from 

5 weeks to week 

39 

90 (Jha, 

2019) 

OULAD 3259

3 

7 Clickstream Demographic Info,  and 

Interaction Data Assessment Scores. 

RF,GBoost, DL, 

GLM 

AUC 10-fold CV 1) Predict whether a 

student will drop out from 

the course, and 2) Predict 

whether a student will 

pass. 

✘ 

91 (Borrella, 

2019) 

MITx 1171

5 

5 Learning behaviour records (grade 

achieved, access, time spent during the 

past seven days, missed assignments, 

posts during the last seven days, 

problem attempts etc.) 

LR, RF PR and 

REC 

older runs for 

training and 

recent runs for 

testing 

Predict students who 

would skip the Midterm or 

Final Exam. 

✘ 

92 (Waheed, 

2020) 

OULAD 3259

3 

7 Demographics Feature  and Logs Data ANN, SVM, LR PR , 

REC and 

ACC 

10-fold CV Predict 1)(PASS vs Fail), 

2) (Distinction vs Fail), 

3)(PASS vs Distinction), 

4)(PASS vs Withdrawn) 

✘ 
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93 (Khan, 

2021) 

OULAD 3259

3 

7 Demographics Feature  and Logs Data RF, SVM, K-

NN, ANN, 

EextraTree, 

AdaBoost, 

GBoost 

PR, 

REC, F1 

and ACC 

10-fold CV Predict four categories ( 

Withdrawn, Fail, Pass, 

Distinction ) 

Prediction in 

five stages 

(20%, 40%, 

60%,80%, and 

100% of course) 

94 (Lemay, 

2020) 

EdX 

 

1043

2 

2 Video features (rewind, fast-forward, 

pause, the play of  each video) 

LR, SMO, NB, 

J48 

ACC, 

AUC, 

KAPPA 

10-fold CV To predict assignment 

submission. 
✘ 

95 (Radovan

ović, 

2021) 

OULAD 3259

3 

7 Demographic features, learning 

behaviour records 

LR AUC and 

AUPRC 

10-fold CV 1) Dropout prediction 

 2) Predict whether the 

student will Pass or Fail. 

Prediction in 

eight stages 

during the 

course (days 

number 0,7, 15, 

30, 45, 60,90, 

and 120) 

96 (Yu, 

2019) 

OpenEdu 977 1 Learning behaviour (video, rewatching, 

skipping, fast watching, attempts, 

answers,  test score etc.) 

KNN, ANN, 

SVM 

ACC 70% TR_set 

30% TS_set 

Predict whether the student 

will Pass or Fail 
✘ 

97 (Wu, 

2020) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

SVM, CNN-

RNN, GBoost, 

LR, DT, RF, 

AdaBoost, NB 

PR, 

REC, F1 

and AUC 

80% TR_set 

20% TS_set 

Predict active students 

after 30 days. 
✘ 

98 (Qu, 

2019) 

C 

program

ming 

MOOC 

course 

1528 1 Assignment-related behaviour MLP, LSTM 

 

ACC, 

REC 

5-fold CV Predict whether the student 

will Pass or Fail the Final 

exam. 

✘ 

99 (Imran, 

2019) 

edX 

(MITx 

and 

Harvard

X) 

6411

38 

NA Clickstream(Viewed,  Event, Days, 

Play Video,Chapters  and Forum Posts) 

DNN 

 

PR, REC 

and AUC 

60%TR_set 

25%,Val_set 

15%TS_set 

Predicting certified 

students. 
✘ 
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100 (Chiu, 

2018) 

EDX 1313 9 Learning behaviour (video,avg video 

watched, median video watched, avg 

time spent, the median time spentm 

post like, days participating in the 

course 

LR PR, REC 

and ACC 

10-fold CV Predict whether the student 

will Pass or Fail. 

Prediction from 

week 1 to week 

5 

101 (Bote-

Lorenzo, 

2017) 

edX 2694

7 

1 Learning behaviour (%videos watched 

in each chapter, % assignments 

submitted, total grade of assignments 

etc) 

RF, SVM, LR 

and SGD 

AUC 10-fold CV Predict whether the level 

of student engagement in 

the next chapter will be 

lower than in previous 

chapters. 

Prediction from 

chapter 1 to 

chapter 11 

102 (Alami, 

2021) 

OULAD 3259

3 

7 Demographic features, learning 

behaviour records. 

SVC, LR, KNN, 

RF, AdaBoost 

PR ,F1 

and ACC 

NA Predict four categories ( 

Withdrawn, Fail, Pass, and 

Distinction ) 

✘ 

103 (Xia, 

2020) 

OULAD 6360 1 Learning behaviour RF ACC 70%TR_set 

30%TS_set 

Predict three categories 

(Withdrawn, Fail and Pass) 
✘ 

104 (Zhang, 

2021) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

RF-CNN- 
LSTM 

AUC NA Predict active students 

after 30 days. 
✘ 

105 (Mubarak

, 2020) 

OULAD 3259

3 

7 Learning Behaviour and Discussion 

Forum Data 

LR, SVM, DT, 

RF 

PR ,F1, 

ACU and 

ACC 

5-fold CV Predict students who do 

not participate in the 

following week. 

Prediction in 

four stages 

(week 8, 16, 21 

and final week) 

106 (Doleck, 

2020) 

EDX 6241 1 Clickstream ( videos viewed per week, 

stops, pauses, fast forwards, avg time 

spent watching, avg playback etc.) 

SVM, NB, LR, 

KKN 

ACC NA Predict students' 

performance in the 

assignment. 

✘ 

107 (Mubarak

, 2021a) 

Universit

y of 

Stanford 

1300 2 Clickstream events (play, search, 

pause, etc.) 

LSTM, ANN, 

SVM, LR 

PR, 

REC, F1, 

AUC and 

ACC 

60%TR_set 

10%,Val_set 

30%TS_set 

Predict  students' 

performance  (weekly 

quiz) 

Prediction from 

week 1 to week 

7 

108 (Boyer 

and 

Veerama

chaneni, 

2016) 

edX 

/Courser

a 

2321

74 

15 Learning behaviour RF, LR, SVM, 

NN 

AUC Transfer 

learning 

Predict whether the student 

will be online next week. 

Average AUC 

overall 

prediction 
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109 (Qiu, 

2019) 

Xuetang

X 

5359

6 

6 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

LR, DT, GBoost 

AdaBoost, RF, 

NB, SVM, CNN 

PR, 

REC, 

and AUC 

75% TR_set 

25% TS_set 

Predict active students 

after 30 days. 
✘ 

110 (Moreno-

Marcos, 

2020a) 

Coursera 2035 1 Demographics  and Learning 

Behaviour ( Days, Time Spent, Videos 

Watched, Uncomplicated Video, 

attempts, Educational Level, 

Completed Assessments, Age, Gender, 

Job etc.) 

DT, GLM, RF, 

SVM 

AUC 10-fold CV Predict dropout (if the 

student is not active for 

four weeks, considered as 

dropout). 

Prediction from 

week 1 to week 

5 

111 (Qi, 

2018) 

icourse1

63 

1439

3 

5 Learning behaviour RNN and 

LSTM,LR and 

SVM 

AUC 60%TR_set 

20%,Val_set 

20%TS_set 

1) Predict whether the 

student will be online next 

week. 2) Predict whether 

the student will Pass or 

Fail. 

Prediction from 

week 1 to week 

7 

112 (Fei, 

2016) 

Coursera 

/edX 

6750

6 

2 Learning behaviour (videos 

downloaded, posts quizzes attempted, 

fourm accessed etc) 

RNN, LSTM AUC 5-fold CV Predict whether a student 

has activities in the coming 

week. 

Prediction from 

week 1 to week 

9 

113 (Xing, 

2016) 

Canvas 3617 11 Learning behaviour(days,  access,  

posts, quiz views,  fourm accessed) 

GBN, DT AUC 10-fold CV Predict whether a student 

has activities in the coming 

week. 

Prediction from 

week 1 to week 

7 

114 (Alshaba

ndar, 

2018) 

OULAD NA 2 Clickstreams data( number of activities 

during each session) 

KNN, LR AUC,F1, 

Sens, 

Spec, 

ACC 

60%TR_set 

40%TS_set 

Predict whether a student 

will submit the 

assignment. 

Prediction 

during six 

stages of the 

course. 

115 (Edalati, 

2022) 

Coursera NA 15 Students’ reviews RF,SVM ,DT, 

CNN, BERT 

PR, 

REC, F1 

70% TR_set 

30% TS_set 

Predict (Positive, Negative 

and Neutra)  of students’  

Reviews.  

✘ 

116 (Tang, 

2018) 

Xuetang

X 

7918

6 

39 Clickstream (access, problem, pages 

close, navigate, video, discussion, 

wiki) 

LR,RF,GBoost, 

RNN-LSTM 

AUC NA Predict active students 

after 30 days. 
✘ 

117 (Veerama

chaneni, 

2015) 

edX 2351

97 

1/ 3 

Run

s 

Learning behaviour (attempt, 

submissions, correct answers, time 

spent to correct problems, total time 

spent on lecture, time spent on book 

LR AUC Transfer 

learning 

Predict whether a student 

will attempt at least one 

problem in the next week. 

Prediction from 

week 1 to 

week13 



 

52 

resources, average number of 

submissions per problem) 

118 (Ding, 

2019a) 

edX 9818

5 

2/ 3 

Run

s 

Learning behaviour (play video, show 

transcript, pause video,  video speed, 

page close, stop the video, problem 

graded, etc.) 

LR, LSTM, 

CNN 

AUC Transfer 

learning 

Predict the dropout week 

of a student (Defined as 

the week after the 

student’s last video 

interaction event). 

Prediction from 

week 2 to week 

9 

119 (Itani, 

2018) 

Open-

Classroo

ms 

1949

3 

2 (Learners’ trajectory of engagement ) 

(jumping activities) 

RF, GBoost, 

DT, LR 

F1 60%TR_set 

40%TS_set 

Predict dropout.  Prediction in 

three stages 

(25% and 50%, 

of course) 

120 (Hassan, 

2019) 

OULA 3259

3 

7 Learning  and Assignment Behaviour 

(Quiz Activity, Discussion Forum, 

Video, Tutorial Sessions, PDF 

Resources,  Wikipedia Content,  

Assignment etc) 

LSTM, ANN, 

LR 

PR, 

REC, 

and ACC 

NA Predict whether the student 

will drop out. 

Prediction from 

week 5 to week 

25 

121 (Mubarak

, 2021b) 

Stanford 8368 2 Video‐watching clickstream (play 

video, pause the video, rate‐speed, stop 

the video, video forward, video back-

ward) 

LSTM, GRU, 

RNN 

ACC, 

AUC 

70% TR_set 

30% TS_set 

Predict whether the student 

will Pass or Fail. 

Prediction from 

week 1 to week 

7 

122 (Lu, 

2017) 

Coursera 6344

1 

2 Clickstream, assignment, forum 

activities ( view quiz,  view forum,  

view lecture,  video view, video pause, 

post, downvote, upvote, etc.) 

LR, SVM, 

MLP, LSTM 

AUC 5-fold CV Predict students who do 

not participate in the 

following week. 

Prediction from 

week 3 to week 

15 

123 (Li, 

2017) 

Xuetang

X 

1205

42 

 

39 Clickstream ( access, problem, pages 

close, navigate, video, discussion, 

wiki) 

SSAE, softmax 

regression, 

SVM 

AUC 5-fold CV Predict students who do 

not participate in the 

following week. 

Prediction from 

week 1 to week 

5 

124 (Hlioui, 

2021) 

OULAD 1303 1 Demographic (disability, region, 

gender, level of education, course 

previous attempts), activities related 

feature, students' performance) 

DT, RF, SVM 

,MLP ,TAN 

F1 5-folds cross Predict whether a student 

will drop out of the 

Course. 

✘ 
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125 (Gitinaba

rd, 2018) 

Edx/Cou

rsera 

6620

3 

2 Learning  and social features ( video 

download, video view, total attempts, 

total posts) 

RF, SVM, LR F1 and 

AUC 

Transfer 

learning 

Predict whether a student 

will stop engaging at some 

point. 

Prediction from 

week 1 to week 

5 

126 (Drousiot

is et al., 

2021) 

Xuetang

X 

2000 1 Learning activities (14 different types 

of unique actions) 

DT, RF, BART, 

LSTM 

PR, 

REC, F1 

ACC and 

AUC 

70% TR_set 

30% TS_set 

Predict whether a student 

will stop engaging at some 

point. 

✘ 

127 (Cobos et 

al., 2017) 

FutureLe

arn / edX 

1246

5 

2 Learning activities (access, days,  total 

time spent on quizzes,  interactions in 

discussions forums) 

KNN, GBM, 

LogitBoost, 

XGBoost 

AUC NA Predict whether a student 

will complete 50% of the 

course. 

Prediction from 

week 1 to week 

7 
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3.2.6 Prediction targets in MOOCs 

Student dropout is a complicated topic involving students' human behaviours and emotional 

and cognitive involvement (Hew, 2016). Although a considerable amount of literature has 

been published on the prediction of MOOC dropout, no formal definition of dropping out 

has been established. The intricacy of the phenomenon of students being at risk of dropping 

out from MOOCs is exacerbated by a lack of academic consensus on the dropout, success, 

completion, and certification categories. Therefore, at-risk students have been analysed from 

different perspectives, and researchers have used several targets to predict students dropping 

out from MOOCs (Sunar et al., 2016).  

During a preliminary examination of 127 selected studies, several prediction targets in 

MOOCs were identified to predict at-risk students. Therefore, we grouped the reviewed 

studies into four categories according to their prediction target (completion, performance, 

comments, and certificate). Table 3.2 provides a summary of the terminologies and concepts 

reported in the reviewed studies to predict at-risk students using ML techniques.  

Table 3.2 Summary of the prediction targets in the reviewed studies to predict at-risk students 

Prediction target Category 

Predict active students after one month. 

Completion 

Predict students who do not participate in the following week. 

Predict whether a student will complete the whole course. 

Predict withdrawal from the course. 

Predict the percentage of course content completed in the entire course. 

Predict engagement levels in peer reviews. 

Predict whether the student will not watch future videos. 

Predict whether the student will follow the course until the end. 

Predict the level of student engagement in the next chapter. 

Predict whether a student will complete 50% of the course. 

Predict students' course grades.  

 

 

Performance 

Predict students' Pass/Fail status. 

Predict students' performance in the assignment. 

Predict whether the student will succeed in the final exam of the MOOC. 

Predict students' grades in the next chapter. 

Predict the final result. 

Predict whether the student will complete the final project. 

Predict whether the student will skip the midterm or final exam. 

Predict whether the student will submit an assignment. 
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Predict whether a student will attempt problems in the following week. 

Predict the sentiment of students' posts (positive, negative or neutral).  

Comments Predict students who do not post comments. 

Predict confusion/urgency of students' posts 

Predict whether a student will obtain a certificate. Certificate 

As can be seen in Figure 3.2, among the 127 studies, 93 aimed to predict some form of 

student completion or dropout. The most common dropout definition used in 26 works was 

‘the students who do not have activities after 30 days from the course started’. This is because 

most of these works used a publicly accessible dataset known as ‘KDD CUP 2015 

Competition’, which is provided by XuetangX, the largest MOOC platform in China, and 

dropout was previously defined in the dataset. The second popular definition of a dropout is 

‘the student who does not participate in the following week’, which was used in 13 studies. 

Figure 3.2 shows that 39 studies targeted student performance, such as predicting students' 

course grades, pass/fail statuses and final project completion. However, only six studies 

targeted students' comments to indicate confusion/urgency or sentiment in students' posts 

(Positive, Neutral, or Negative). Moreover, six studies focused on predicting students who 

will obtain a certificate by the end of the course. 

 

Figure 3.2 Prediction Targets in MOOCs 
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3.2.7 Data sources for at-risk prediction In MOOCs 

Most surveyed works proposed at-risk predictive models using more than one data source 

such as clickstreams, assignments, forums, and demographic data. Figure 3.3 illustrates that 

clickstreams are the most common data source, used by more than 88% of the surveyed 

works. This is not surprising because clickstreams provide a lot of rich, detailed data that the 

research community is just starting to discover as how to represent all its complexity. 

However, clickstreams are unprocessed text files that require substantial time to interpret 

manually and computationally (Gardner and Brooks, 2018). 

In addition, it can be seen from Figure 3.3 that assignment and forum data are the second and 

third most used data (55% and 51%, respectively), and demographic information is the least 

frequently used source (used by only 24% of the surveyed works). 

 

Figure 3.3 Data sources used in reviewed studies for predictive Modelling 
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Figure 3.4 Number of courses evaluated across works surveyed 

Figure 3.4 shows that 58 studies evaluated between one and five courses, whilst more than 

half of these studies extracted datasets from only one course (32 studies). The most likely 

causes of this include the lack of available MOOC datasets (Gardner and Brooks, 2018). On 

the other hand, approximately 18% of the surveyed studies used a publicly accessible dataset 

known as KDD Cup 2015, which was provided by XuetangX, the largest MOOC platform 

in China. This dataset contains students' logs for more than 120,000 students extracted from 

39 courses. In addition, Figure 3.5 below illustrates the sizes of the datasets that have been 

explored in previous studies on MOOCs. Generally, the size of the dataset is based on the 

number of students, as well as the duration of the course. It can be seen that more than 50% 

(69 studies) of the surveyed works used a dataset that contained less than 50,000 students, 

and only 6% (8 studies) used a dataset for more than 200,000 students. 

 

Figure 3.5 Number of students across works surveyed 
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3.2.8 Prediction models and evaluation metrics 

The reviewed studies showed a long tail of modelling techniques. This also reflects that the 

research area is still in its infancy, with experts disagreeing on how best to tackle the 

challenge of making accurate predictions. Figure 3.6 compares the summary statistics for 

several predictive models in the reviewed studies. Approximately half of the proposed 

models appeared in only one study (34/64 models, represented by other). This means that 

most previous studies have emphasised novelty to present a new predictive model. On the 

other hand, some modelling algorithms such as LR, RF, and SVM have been used in more 

than 50 studies. 

 

Figure 3.6 Modelling algorithms presented in MOOC studies 

Figure 3.7 shows a substantial disagreement among the researchers on the best measures 

for evaluating models in MOOCs. Predictive effectiveness can be measured in various 

ways depending on the target of the study; thus, without a common baseline, it is 

impossible to make meaningful comparisons between studies. 
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Figure 3.7 Evaluation Metrics in MOOCs Prediction 

3.2.9 Experiments with a realistic environment 

As predictive modelling studies have become more commonplace, they provide a fertile 

setting for developing MOOC modelling techniques and experimentation. Most surveyed 

works intended to design predictive models that could be applied to improve the learning 

environment of MOOCs and provide appropriate early intervention for at-risk students. 

Nevertheless, the predictive models in most of the reviewed studies were evaluated/tested 

using a subset of data extracted from the same course data used for training the model rather 

than using future data. Therefore, these works cannot be put into practice in real-world 

settings because applying predictive models in MOOCs requires a setting that is as close to 

reality as possible, especially regarding the data that can be collected at the time of 

prediction. 
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Figure 3.8 Training and Testing techniques across all the works surveyed 

Figure 3.8 shows that more than 75% of the surveyed works split previously labeled data 

into train/test sets by using either the k-fold cross-validation or percentage-splitting 

technique. Furthermore, 20 studies did not mention the type of data they used to train and 

test the predictive models. 

On the other hand, a small body of research (only 11 studies [8.7%]) has used transfer 

learning or in situ learning to provide some approaches for predicting at-risk students in 

MOOCs. For example, a study by (Getoor, 2020) proposed a ML model to predict two 

targets: whether the student will a) follow the course until the end and b) earn a certificate. 

Getoor used the transfer learning technique by training the model on one course and testing 

the model on another course data. Another study by (Bote-Lorenzo, 2018) used an in situ 

learning approach to predict students' levels of engagement in each chapter. For example, to 

predict students' levels of engagement in Chapter 3 (unknown target at the time of 

prediction), the model was trained by using data from the second chapter (as the target 

variable is known) and then using the trained model to predict the level of engagement in 

Chapter 3. This method is based only on data accessible at the prediction point, making the 

prediction models appropriate for an ongoing MOOC. 
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3.2.10 Temporal modelling techniques 

Students' activities in MOOC courses take place during the course duration, which is several 

weeks for most courses. Therefore, student data can be collected sequentially, with limited 

data obtainable during the early stages of a course. In addition, the behaviours of learners 

change over time (Codish et al., 2019). As a result, models that consider time provide a more 

accurate illustration of students' behaviours during different periods. In our surveyed works, 

temporal prediction techniques were used in 41% of the analysed works to predict at-risk 

students at different periods of the course. For example, (Monllaó Olivé, 2020) attempted to 

predict students who did not participate in the last quarter of the course at different periods 

(25%, 50%, and 75% of the course). Another study by (Getoor, 2020) used temporal prediction 

in three stages (33%, 67%, and 100% of the course) to indicate whether the student will pass 

the final exam and obtain a certificate. In addition, a study by (Kameas, 2021) applied several 

ML classifiers at different times (weeks 0, 1, and 2) to predict whether the student would 

pass the final exam and obtain the certificate. The author established the prediction even 

before the course started by using only data accessible at the prediction time, such as students' 

demographic data. On the other hand, only 26% of the surveyed works applied prediction 

techniques from the first week of the course, where participants are most likely to drop out 

in the first few weeks. Therefore, early intervention is essential to identify those students at 

an early stage (week 1). 

 

Figure 3.9 Temporal prediction across surveyed studies 
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3.3  Engagement and Motivation  

3.3.1 Engagement and Motivation in AIED and ITS 

studies 

Engagement and motivation have been studied in the areas of AIED and ITS, where the 

connection to theories is more or less explicit. One of the earliest studies, by Arroyo (Arroyo 

et al., 2007), showed that students were more likely to get re-engaged with the system by 

providing monitoring interventions to students in between problems. In addition, negative 

feedback messages may have motivated some students to be more attentive and avoid 

receiving such feedback in the future.  

Another early study was conducted by (Cocea, 2007) to detect students’ engagement levels 

in an e-learning system. Students were labelled (engaged/ disengaged) based on their 

performance. For instance, a student who took longer or less than the necessary time to 

perform a given task was considered a disengaged student. The study showed that average 

time spent reading was the best indicator of engagement. 

Jackson divided students into two groups based on their expectations before engaging with 

the system. The first group included students who were “sure” that using the e-learning 

system would help them improve their knowledge, and the second group had students who 

were unsure whether a system could assist them. The results of the post-survey indicated that 

the students in the first group thought that the system was significantly more enjoyable and 

motivating. In contrast, the students in the second group did not like engagement and found 

it less motivating (Jackson et al., 2009).  

In the last few years, the movement has been more towards educational data mining. As such, 

there have been studies that have proposed using several machine learning techniques at the 

same time to build their prediction models. One very recent study (Khan, 2021) used seven 

different machine learning techniques, including RF, SVM, KNN, ANN, ExtraTrees, 

AdaBoost and gradient boosting to predict four categories (withdrawn, fail, pass and 

distinction). Additionally, another very recent study (Khodeir, 2021) deployed state-of-the-

art language modelling transformers (BERT) for the natural language processing task, using 

the student comments in a MOOC as input, to predict students who require urgent 
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intervention. A study (Mubarak, 2020) targeted struggling learners who needed early 

intervention – to keep the engagement – by designing a prioritising at-risk student temporal 

model to predict whether the student will drop out next week. 

3.3.2 Engagement and Motivation in MOOCs 

Here, we analyse the state-of-the-art in engagement and motivation-related studies in 

MOOCs (see Table 3.3). In a recent work conducted by (Sunar et al., 2016), the authors 

investigated how social interactions impact on course completion in MOOCs. According to 

the authors, dropout rates could be reduced by increasing the users' engagement with social 

interactions in the systems. The authors presented descriptive statistics and a literature review 

on the prediction of user behaviours in MOOCs. However, the authors did not base their 

investigation on any existing motivational theories. Their survey showed that many works 

(8 out of 15 of their reviewed studies) concerned with predicting students' behaviour, focused 

on course attrition, by analysing clickstream data and student activity within the system. 

They argued that social interaction also needed to be analysed. However, none of the 

surveyed works focused on extracting measurable engagement indicators. 

A recent work by Nam et al. (2017) predicted disengaging behaviour using data-driven 

methods on a small scale (25 students). The authors developed a model to predict when the 

students were not engaged. This resrech conducted a comparative analysis between two 

distinct families of statistical models, namely logistic Regression (LR) and mixed-effects 

logistic Regression (MLR). LR commonly utilised regression model in the field of data 

analysis for the purpose of classifying data with binary labels. The  MLR uses random effect 

variables to account for differences in repeated measurements. According to the authors, 

different attributes could be used to predict engagement and context-sensitive information 

improved the prediction accuracy. They performed a feature analysis, to select the best 

prediction features, but they only used supervised learning (with manually labelled data). 

They did not systematically employ engagement theories, but instead labelled the data 

manually as engaged/disengaged.  

Another recent work of Chen (2019b) proposed the prediction of learning outcomes through 

learning behaviour, including engagement, in short online courses.The author evaluated six 
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classifiers, namely K-Nearest Neighbour (KNN), Support Vector Machine (SVM), Linear 

Discriminant Analysis, Random Forest (RF), Forward Artificial Neural Network (ANN), and 

Gradient Boosting (XGB). In this work, the authors adopted time spent and completion rate 

to model engagement. They stated that by using social learning network features, they could 

increase the prediction accuracy over time. Although relevant, the attributes used to model 

engagement were not based on any engagement or motivational theory. 

In the study conducted by Pardo et al. (2016), the authors focused on creating an approach 

that combined data about self-regulated learning skills and online activities in a blended 

learning course. The researchers did not apply machine learning models; they opted for 

hierarchical clustering analysis to determine the factors that more effectively differentiate 

the variability in student performance. Furthermore, the selection of regression analysis was 

made to investigate the possible linear correlation between the numerical variables and 

academic achievement. In this study, engagement was measured through a self-reported 

questionnaire at the end of the course, and not in real-time, using variables from the system.  

Another study conducted by Barak et al. (2016), explored the motivation to learn in MOOCs. 

They analysed existing theories and created a model of motivational components to inspect 

the influence of language and social engagement in a MOOC. The authors developed a model 

to measure students' motivation, based on pre- and post- course questionnaires; only 325 out 

of 13,405 students participated in the questionnaire (which is not that surprising, considering 

the response rates in MOOCs are generally lower for the questionnaire (Mihalec-Adkins et 

al., 2016)). The authors defined success as students completing essay questions, 10 weekly 

quizzes and a final project. However, they did not focus on predicting success by using 

machine learning models or tying the motivation to success measures. According to their 

findings, the larger the number of posts, the higher the students' motivation.  

 Another study by Lan and Hew (2020) used self-reported questionnaires and interviews to 

measure learner engagement and motivation for both completers and non-completers. They 

also received a low response rate from participants (82 out of 693 students agreed to be 

interviewed). The authors employed a statistical methodology known as Multiple Regression 

to evaluate the predictive capacity of the three dimensions of engagement, namely behaviour, 
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emotion, and cognition, on students' perceived learning. The study showed that completers 

are more willing to participate in the social network and receive a certificate.  

Moreover, research by Stone (2021) used self-reported questionnaires with only 68 learners 

to examine "why students are motivated to enrol". The scope of this research focuses only 

on the motivation that led students to enrol in MOOC courses based on the questionnaire's 

outcome. The author did not analyse students' interaction data to explore the link between 

student activities and their motivation. Additionally, the author did not use machine learning 

techniques; only statistical methods, such as Correlation coefficients, were used to measure 

the association of input and output variables. 

 In the same line of research, de Barba et al. (2016) focused on using student motivation as 

a predictor for learning performance. However, the authors didn't use machine learning to 

predict learning performance. Instead, descriptive statistics and Spearman correlations were 

used for data analysis. 

They created a theory-rooted predictive model, to estimate students' intrinsic motivation and 

participation, and found that the number of attempts in answering quizzes was a good 

predictor of their final grades. However, this study included only students who were active 

during the last three weeks of the course and responded to the questionnaire on the last week. 

Meanwhile, the majority of participants in MOOCs will drop out much earlier. As a result, 

analysing such learners at an early stage is critical, in order to give early assistance and 

maintain engagement.  

Wang et al. (2015) analysed comments within a MOOC and aimed at creating a predictive 

model that relates the learning gains with social interactions. The author employed a logistic 

regression model and a 10-fold cross-validation approach to assess the model. The authors 

defined a taxonomy for the comments and concluded that students that present active (who 

actively practiced the learning material via quizzes) and constructive discussions (who 

produced content, e.g. explanations and examples, based on the course material) had 

significant learning gains. According to the authors, constructive behaviours produced more 

learning gains than active behaviour.  

The study conducted by Brinton et al. (2014) focused on providing statistical evidence and a 

Generative Model for extracting important topics in each forum (by considering two models 
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naive Bayes (NB) and support  vector machine (SVM)) based on user interaction within a 

MOOC). The authors performed a large-scale study (73 courses) and found that teachers' 

participation within forums was positively associated with the level of interaction (e.g. 

increased discussion threads), but did not affect the decline rate of participation in the course. 

By conducting this analysis, the authors focused on improving social learning in MOOCs. 

Another similar work, conducted by Wen et al. (2014b), focused on sentiment analysis in a 

MOOC, aiming to understand the relationship between students' comments and course 

success. The authors developed a model to identify motivated students based on their 

comments in a course forum using logistic regression for binary classification. According to 

the authors, it would be difficult  to categorise each forum post made by a student as a 

motivational statement. Numerous online postings lack discernible indications of user 

motivation. The statsical analysis shows that students who had positive behaviour towards 

the course (according to their motivation model) had lower rates of dropping out from the 

course.  

3.4  Critical Evaluation  

Although the literature identifies several variables that contribute to student dropout on 

MOOC platforms, few researchers have investigated how these issues influence at-risk 

students. Moreover, most solutions involve a large number of parameters and are what we 

call ‘heavy weight’. While such approaches may provide higher accuracy, they are less 

applicable in real life, as they require real-time processing of large quantities of data and may 

provide results too late in the course cycle to be of real effect. To the best of our knowledge, 

none of the previous studies attempted to forecast attrition based only on the participant’s 

first point of contact with the educational system, which is the registration date. In addition, 

there have been no controlled studies visually comparing the differences in the learning 

paths of completers and non-completers for the entire course session and investigating the 

performance of weekly prediction models with and without students’ jumping behaviours.  

Additionally, Research is still undergoing on whether the low rate of completers indicates a 

partial failure of MOOCs, or whether the diversity of MOOCs learners may lead to this 

phenomenon world (Kloft et al., 2014). In the meantime, this problem has attracted more 
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attention from both MOOC providers and researchers, whose goal is to investigate methods 

for increasing completion rates. This starts by determining the indicators of student dropout. 

Previous research has proposed several indicators. Ideally, the earlier the indicator can be 

employed, the sooner the intervention can be planned (Ye and Biswas, 2014). Often, 

combining several indicators can raise the precision and recall of the prediction (Coates et 

al., 2011); however, such data may not always be available. For example, a linguistic analysis 

of discussion forums showed that they contain valuable indicators for predicting non-

completing students (Wen et al., 2014c). Nevertheless, these features are not applicable to 

the majority of the student population, as only five to ten percent of the students post 

comments in MOOC discussion forums (Wen et al., 2014a). 

 Therefore in this thesis, we present a first of its kind research into a novel, light-weight 

approach based on tracking two (accesses to the content pages and time spent per access) 

early, fine grained learner activities to predict student non-completion. Specifically, the 

machine learning algorithms take into account the first week of student data and thus are able 

to ‘notice’ changes in student behaviour over time. It is noteworthy that we apply this 

analysis on a MOOC platform firmly rooted in pedagogical principles, which has seen 

comparatively less investigation. Based on an in-depth feature analysis, we found that time 

spent and number of accesses are important attributes, not only because they are simple to 

obtain for the majority of courses but also because the data demonstrates that the amount of 

time spent at every step is a significant factor in predicting student completion (see Section 

7.3.3). 

Finally, It is important to examine the relationship between the levels of students’ motivation 

and cognitive learning outcomes. One of the most significant limitations of previous studies 

is the absence of a methodology for evaluating motivation levels in an online environment. 

In most cases, researchers use questionnaires or interviews as tools for data collection to 

assess students’ motivation in MOOCs. To the best of our knowledge, to date, no studies 

have systematically employed motivational theories, mapping online student behaviour onto 

them, to analyse the drives and triggers promoting student engagement. The work in this 

thesis is pioneering in that there are no works that create an engagement taxonomy with 

measurable engagement parameters and allowing for an engagement theory (here, SDT) to 

be evaluated on a large scale. A comparison of the state-of-the-art in engagement and 
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motivation-related studies in MOOCs and our work depicted in this thesis can be observed 

in Table 3.3.  

Table 3.3 Summary of comparison of our Engage Taxonomy with related work and state of the art. 

 

The proposed method, the Engage Taxonomy (see definition in sections 4.5.2 and  8.2), 

brings together all these strands: theory-driven and data-driven approaches, as well as the 

important motivation and engagement analysis, prediction in terms of learning outcomes and 

success, as well as emotional engagement (via sentiment analysis). This is done in a focused 

attempt to express motivational engagement theories via data-driven approaches, and then 

evaluate them.  

  

Study 
Theory-

driven 

Data-

driven 

Motivation and 

engagement 

analysis 

Prediction 

(Learning 

outcomes and 

Success) 

Sentimen

t analysis 

(Sunar et al., 2016)  X X X  

 (Nam et al., 2017)  X X X  

(Chiang, 2019)  X X X  

(Pardo et al., 2016) X  X   

(Barak et al., 2016)  X X   

(de Barba et al., 2016) X X X X  

(Wang et al., 2015)  X X X  

(Brinton et al., 2014)  X X   

(Moreno-Marcos, 2018a, 

Moreno-Marcos et al., 2018, 

Kloos, 2018) 

 X X  X 

(Adamopoulos, 2013)  X  X X 

(Wen et al., 2014b)  X X X X 

(Arroyo et al., 2007)  X X   

(Cocea, 2007)   X X  

(Jackson et al., 2009)  X X   

(Khan, 2021)  X  X  

(Khodeir, 2021)  X   X 

(Mubarak, 2020)  X  X  

Our Engage Taxonomy X X X X X 
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Epilogue 

This chapter provides an overview and discussion of the current literature to predict students 

at-risk of dropping out from MOOCs. Furthermore, this chapter presented motivation-related 

studies in MOOCs. The following chapter will give a summary of the approach taken to 

achieve the aim of this thesis.   
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Chapter 4 : Methodology 

Prologue 

This chapter provides an overview of the methodology used to answer each research 

question. Moreover, this chapter explains the dataset and tools used to achieve the aim of 

this thesis (e.g., the feature extraction process, feature selection, sentiment analysis, 

statistical analysis, visualisation tools, and predictive machine-learning techniques). 

4.1  Introduction 

The driving force behind this research was the need to discover and extract latent data 

patterns and solve complicated issues using MOOC datasets. This thesis was driven by a 

desire to enhance student outcomes in MOOCs by addressing several categorisation 

challenges linked to high student dropout rates.  

To achieve the aim of this thesis and answer the research questions posed in Chapter 1, 

several methods have been proposed, including machine ML algorithms, visualisation 

techniques, and statistical methods to detect at-risk students in MOOCs. Chapters 5–8 are 

the four main chapters of this thesis; they fit together and help us reach our primary goal. 

Figure 4.1 shows the emphasis of each of these core chapters. Firstly in chapter 5, we will 

analyse the first interaction data with the MOOC system – the registration date to predict 

students' completion using statistical methods (see sections 4.6, 5.3 and 5.4).  After that, in 

chapter 6, the power of visualisation will be used to analyse students' learning patterns in the 

course and compare the differences between completers and non-completers. Next, in 

chapter 7, we focus on innovations in predicting student dropout rates by building a 

generalised early predictive model for the weekly prediction of student dropout using 

machine learning algorithms (see sections 4.5.2, 4.8, 7.3.1, and 7.3.2). The final contribution 

(chapter 8), we propose a concrete mapping between the tracking parameters and four of the 

most used theories related to engagement in digital systems, generating the engage 
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taxonomy. It will show how such mapping can be practised by analysing the engaged and 

disengaged MOOC student behaviours in relation to the SDT theory (see section 8.3). 

 

 

Figure 4.1 Thesis' core chapters 

4.2  Addressing Research Questions 

Each core chapter in this thesis will focus on one of the main research questions. For 

example, Chapter 5 explores the correlation between student success and the registration 

date. In this chapter, we answer the first research question (RQ1): ‘Can a limited number of 

student data types be used for the prediction of success (as in completion)?’ 

 This initial question is divided into two sub-questions:  

• RQ1.1: Can the date of registration (in terms of distance from the course start) of 

students predict their completion (or non-completion)?  

Chapter 5

•Non-completer students' identification based on the date of the registration 

Chapter 6

•Visualising and comparing different learning paths (jumping behaviour) of 
completers and non-completers

Chapter 7

•Prediction of weekly dropout and dropout of the whole course

•Weekly predictive model based on students' jumping behaviours

•Weekly predictive model based on number of accesses and time spent per 
access.

Chapter 8

•Mapping multimodal student behaviour over several motivational theories

•Evaluation of the SDT theory for online learning and MOOCs, based on 
success measures.
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• RQ1.2: How can dropout rates be alleviated based on the registration date?  

Therefore, we extracted one feature (the registration date) as a calculated value which 

presents the number of days between the registration date and the starting date for a given 

student. RQ1.1 will be addressed using statistical methods (see sections 4.6, 5.3, and 5.4), 

and RQ1.2 will be answered by implementing rules to automatically deliver personalised 

messages to students according to their registration dates ( see section 5.4).  

Chapter 6 further illustrates different granularity visualisations for learning patterns to 

compare the differences between completers and non-completers. This chapter aims to 

answer the second research question (RQ2): ‘Can learning path visualisation of student 

interactional data be used to inform on student success (also seen as completion)?’. 

Accordingly, RQ2 is split into three sub-questions: 

• RQ2.1: How can learning paths be visualised to differentiate between completers’ 

and non-completers behaviours (to inform teachers for early interventions)? 

• RQ2.2: Are there (significant) differences in the learning paths of completers and 

non-completers and can they be deduced from visualisation early on in the course? 

• RQ2.3: What kind of level of granularity is necessary for the visualisation of 

significant differences between completers and non-completers? 

RQ2.1 will be answered using the visualisation technique (see section 4.7). We will visualise 

and compare the different learning paths of completers and non-completers. For RQ2.2, a 

statistical test will be used to determine whether there is a significant difference between 

completers and non-completers in terms of learning paths (see sections 4.6 and 6.2.3). 

Finally, RQ2.3 will be answered by visualising different granularities (fish eye, bird eye) of 

of students’ activities (see section 6.3). 

The aim of Chapter 7 is to answer the third research question (RQ3), : How does the time 

of student interactional data collection influence the student success (completion) prediction, 

and can early prediction be achieved? We will explore the predictability of students’ 

completion based on students’ weekly learning activities. Several ML algorithms will be 

used to build generalised early predictive models. Therefore, three sub-questions have been 

formulated: 
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•   RQ3.1: Are there (high) differences in the prediction of weekly dropouts and 

whole-course dropouts? 

• RQ3.2: Will the weekly predictive model be more accurate after considering 

students’ jumping behaviours and catch-up learning patterns during the course?  

• RQ3.3: Can MOOC dropout be predicted within the first week of a course, based on 

the learner’s number of accesses and time spent per access? 

For RQ3.1, we will compare two prediction methods: whole-course dropout prediction (CP) 

and weekly dropout prediction (WP). For the CP, the students are labelled as dropouts if 

they do not access 80% of the steps in the whole course. For the WP, the focus will be only 

on students who will drop out in the near future (next week) (see section 7.3.1). To address 

RQ3.2, we will incorporate the students’ learning patterns (jumping behaviours) into the 

weekly dropout predictive model and compare the model’s performance with and without 

students’ jumping behaviours (see section 7.3.2). 

To answer RQ3.3, we will investigate students’ access features and the time spent on each 

access (see section 4.5.2) and, using a lightweight approach for prediction, build a predictive 

model based exclusively on those two features. 

The final research question of this thesis RQ4 (Chapter 8) is as follows: ‘Can engagement 

theories be applied to student interactional data, to help identify student success?’. This 

question is quite broad, so the following sub-questions were formulated : 

• RQ4.1: How are engagement theories applicable in MOOCs? 

• RQ4.2: Can engagement theories help identify student success in MOOCs?  

RQ4.1 can be answered with the help of three experts by mapping the motivation concepts 

and the potential indicators within MOOCs. Moreover, Fleiss’ kappa will be applied to 

measure the rate of agreement between experts (see section 8.3.2 and Table 8.1). To address 

the second question (RQ4.2), students will be clustered based on their engagement and 

analysed via the connection to their success. In addition, ML will be used to evaluate the 

predictability of the extracted SDT constructs as early predictors of student activity (see 

sections 8.4.1, 8.4.2 and 8.4.3).  
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Finally, it is worth mentioning that the methodology of each study in this thesis are presented 

in more detail in each chapter. 

4.3  Datasets  

Unlike most of the surveyed works (see 3.2.7), this thesis analysed a massively large dataset 

across time (several runs over several years), subjects, universities, countries, and cultures. 

The data were obtained from two UK universities that delivered different courses in the 

FutureLearn MOOCs. In addition, another type of student activity data were acquired from 

the most massive Arabic MOOC (Rwaq). 

We obtained interactional educational data (not publicly available) for 344,783 students. The 

data contained students' activities such as social interactions, topic access, quiz attempts, 

correct answers, and wrong answers. The studied courses had lengths ranging from 3 to 10 

weeks and were delivered between 2013 and 2019. 

4.3.1 MOOC Dataset Challenges 

Although several MOOC datasets have been used in the literature, we could not identify a 

dataset that is open to the public and has a data structure comparable to ours. This is mostly 

due to the fact that each MOOC platform stores student behaviour differently, making it 

challenging to locate datasets that are similar to one another (Veeramachaneni et al., 2013, 

Lohse et al., 2019). 

Numerous researchers have used the KDD Cup 2015 competition dataset to predict student 

dropout in MOOC. In this thesis, we cannot use the KDD Cup 2015 dataset, as several factors 

prevent us from using our dataset for comparison with the findings of the KDD Cup 2015 

dataset. 

Initially, it is essential to note that our dataset’s structure exhibits dissimilarities compared 

to the KDD Cup 2015 dataset, potentially resulting in our prediction model’s incompatibility. 

For the purpose of applying our model to different datasets, it is crucial to acquire data that 

is structured in a comparable manner to our original dataset so that we can ensure reliability 

and the consistency of outcomes. 
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In addition, our research aims to examine the sentiment of students in the context of 

predicting student attrition. The KDD Cup 2015 dataset lacks the inclusion of students’ 

comments. The insufficient availability of the requisite data may render the utilisation of the 

KDD Cup 2015 dataset unsuitable for our research investigation. 

Finally, the utilisation of the KDD Cup 2015 dataset without appropriate permissions may 

give rise to ethical and legal issues, as the dataset was removed from the official website 

after the end of the competition. Unauthorised utilisation of the dataset may result in 

contravention of ethical regulations and data usage policies. 

4.3.2  FutureLearn 

FutureLearn is one of the youngest massive online learning platforms (since 2012) and the 

European counterpart of the United States's Coursera, EdX, and so on. FutureLearn started 

as a partnership between several UK universities, the BBC, and the British library, expanding 

later to include courses from international institutions, non-government organisations, and 

businesses, which now supports 2,400 courses created by 175 partners and reached 10 

million students by (Chastney, 2019).  

As it is a newer platform, fewer studies have been conducted on it. We fill this gap by 

selecting courses delivered through the platform. FutureLearn courses are delivered by two 

universities in the United Kingdom (University of Warwick and Durham University). 

The first dataset was obtained from 25 runs of 7 FutureLearn-delivered courses via the 

University of Warwick between 2013 and 2017. The number of enrolled students reached 

276,491. 

The second dataset was extracted from two FutureLearn courses delivered by the Business 

School at Durham University. The dataset was obtained from 7 runs between 2016 and 2018, 

with 16,488 students. The dataset format is similar to the Warwick dataset, as the courses 

were delivered through the same learning platform. 
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4.3.3  Rwaq dataset 

Rwaq3 is the most massive Arabic MOOC provider, with more than 882 active courses. Well-

known professors and teachers deliver Rwaq courses from all over the Arab world (Khan et 

al., 2022). Considering the breadth of the course offering, very little research has been done 

to analyse the success of Rwaq. Indeed, a quick literature search on Google Scholar4 (since 

2012) on ‘Rwaq analytics’ rendered only 395 results, as opposed to 55,000 on the ‘Coursera 

analytics’ and 20,200 on the ‘Udacity analytics’. Thus, a further contribution of this thesis is 

to study a popular and growing platform, albeit less explored. 

The third dataset used in this thesis was acquired from the Rwaq platform, which, to the 

author's best knowledge, has not been used in previous research in relation to completion 

predictability based on ML. The dataset contains students' activities such as students' 

comments, correct answers, wrong answers, and accessed topics that were extracted from 

three courses. The number of enrolled students in the three courses was 51,804. 

4.4   Dataset Formats 

The dataset acquired comprises raw data regarding students’ learning behaviours in MOOCs 

extracted from their log files. The data is explained in detail in Sections (4.4.1, 0, 4.4.3, and 

4.4.4), which present information on students’ behaviours and the format in which the 

educational contents were delivered (e.g. videos, articles, quizzes, assignments, and 

comments). Despite the unavailability of educational materials or course content, it is still 

possible to conduct an analysis based on the presentation format of the educational materials 

for each course. One possible approach is to conduct an analysis of various metrics related 

to student engagement, such as the time spent viewing videos or reading articles, the number 

of attempts made to answer quizzes or assignments, the number of correct and wrong 

 

3 www.rwaq.org 
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answers, and the number of comments provided by each student. In addition, sentiment 

analysis can be applied to review the students’ comments. 

The following sections provide an overview of the raw logged data used in this thesis that 

can be pre-processed and analysed, including their typical forms, structures, and behaviour 

patterns. 

4.4.1 Clickstream data 

This kind of data commonly includes every integration with the web server of the platform 

offering the course. Clickstream data are a record of the course navigational footprints left 

by students. Most of the time, clickstream data provide information about how students 

interacted with the learning platform, including clicks and page views of course materials 

such as videos and quizzes. The clickstream data are the most popular source of information 

for predicting student performance in MOOCs (Gardner and Brooks, 2018) (see Section 

3.2.7). However, the clickstream data cannot be used directly as input data for most 

prediction models; consequently, the pre-processing stage becomes critical to extracting the 

features for prediction. The screenshots in Figure 4.2 and Figure 4.3 provide examples of 

students' clickstream data stored in two different MOOC platforms (FutureLearn and Rwaq). 

 

Figure 4.2 Example of student’s clickstream data (FutureLearn platform) 

 

Figure 4.3 Example of student’s clickstream data (Rwaq platform) 
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The screenshots show that the structure of FutureLearn courses is based on a weekly learning 

unit (week_number). Every learning week includes so-called steps (step_number), which 

cover images, videos, articles, and quizzes. Having joined a given course, students can access 

(first_visited_at) these steps and optionally mark them as completed (last_completed_at). 

These steps also allow comments, replies, and likes on these comments from different users 

enrolled in the course.  

Rwaq platform provides similar information about the students' activities, such as the student 

ID (learner_id), steps (lecture_id), visited time, and completion time. On the other hand, the 

structure of Rwaq courses is not based on a weekly learning unit. Therefore, to match the 

Rwaq dataset with the FutureLearn dataset, we grouped every 14 steps (the average number 

of weekly steps in FutureLearn courses) in 1 week. 

 

Figure 4.4 shows the number of weeks in each course and shows the lengths of each course. 

By analysing the duration of the courses with respect to the courses’ provider, it can be 

observed that the courses delivered by Durham University show a relativity shorter period 

compared to the courses offered by Rawaq and Warwick University. Durham University 

provides two courses, Open Innovation in Business and Leading and Managing People-

Centred Change, which contain 38 and 30 steps, respectively. 

Warwick University provides a variety of courses, including Shakespeare and His World, 

which comprises 134 steps, and Babies in Mind, which consists of 75 steps, making it the 
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shortest course offered. Rawaq offers courses of varying length: Java Programming 

comprises the longest course with 95 steps, while the Excel and Self Confidence courses 

consist of 78 and 75 steps, respectively. 

Table 4.1 presents the number of steps in each course.  

 

 

Figure 4.4 Number of weeks in each course. 
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Figure 4.4 shows information about the duration of various MOOCs provided by different 

sources, such as Warwick University, Durham University, and the Rawaq platform. The 

figure illustrates the number of weeks for each of the listed courses. The duration of the 

courses offered differs in length. The Leading and Managing People-Centred Change course 

and Open Innovation course have a shorter time frame of three weeks each, while 

Shakespeare and His World has the longest duration (ten weeks). The remaining courses 

exhibit varying durations: the Babies in Mind course spans four weeks, while the rest of the 

courses extend for six to nine weeks. The number of steps listed in shows the lengths of each 

course. By analysing the duration of the courses with respect to the courses’ provider, it can 

be observed that the courses delivered by Durham University show a relativity shorter period 

compared to the courses offered by Rawaq and Warwick University. Durham University 

provides two courses, Open Innovation in Business and Leading and Managing People-

Centred Change, which contain 38 and 30 steps, respectively. 

Warwick University provides a variety of courses, including Shakespeare and His World, 

which comprises 134 steps, and Babies in Mind, which consists of 75 steps, making it the 

shortest course offered. Rawaq offers courses of varying length: Java Programming 

comprises the longest course with 95 steps, while the Excel and Self Confidence courses 

consist of 78 and 75 steps, respectively. 

Table 4.1 shows the lengths of each course. By analysing the duration of the courses with 

respect to the courses’ provider, it can be observed that the courses delivered by Durham 

University show a relativity shorter period compared to the courses offered by Rawaq and 

Warwick University. Durham University provides two courses, Open Innovation in Business 

and Leading and Managing People-Centred Change, which contain 38 and 30 steps, 

respectively. 

Warwick University provides a variety of courses, including Shakespeare and His World, 

which comprises 134 steps, and Babies in Mind, which consists of 75 steps, making it the 

shortest course offered. Rawaq offers courses of varying length: Java Programming 

comprises the longest course with 95 steps, while the Excel and Self Confidence courses 

consist of 78 and 75 steps, respectively. 

Table 4.1 Number of Steps in each course 
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Source of the Data Course Number of steps 

Durham University Leading and Managing People Centred 30 steps 

Open Innovation in Business  38 Steps 

Rawag Excel 78 Steps 

Java programming 95 Steps 

Self confidence 75 Steps 

Warwick University Babies in Mind 75 steps 

Shakespeare and his world 134 steps 

Supply Chains 118 steps 

The Mind is flat 93 steps 

Literature and Mental Health 88 steps 

Leadership for Healthcare Improvement and 

Innovation 

79 steps 

Big Data 105 steps 

 

4.4.2 Discussion forum data 

In MOOC platforms, students may engage in social interactions with one another and 

participate in discussions that are either specifically relevant to the content of the course or 

more general in scope. In addition to the main course material, MOOC forums could be a 

great place for students to ask and respond to questions from their peers. 

Discussion forum data include students' postings, responses to those posts, ‘likes’ and 

‘dislikes’ of other comments, and timestamps for these activities. These data are the third 

most frequently used by researchers to predict at-risk students (see Section 3.2.7). Figure 4.5 

and Figure 4.6 show an example of the discussion forum data extracted from the FutureLearn 

and Rawq platforms. Some pieces of information have been intentionally blurred for privacy. 
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Figure 4.5 Example of discussion forum data (FutureLearn platform). 

 

Figure 4.6 Example of discussion forum data (Rwaq platform) 

4.4.3 Assignment data 

Like traditional classroom settings, MOOCs generally include coursework and save 

information about student submissions in the database. Such information may be 

automatically gathered via the use of tools such as multiple-choice quizzes or manually 

collected by uploading written assignments such as essays. Taking into consideration the 

massive number of students enrolled in MOOCs, peer review has become an increasingly 

common practice on many platforms, rather than relying only on the course instructors to 

evaluate students' works (Er et al., 2020). Figure 4.7 shows an example of peer review data 

extracted from the FutureLearn platform. Each student received feedback comments from 

three reviewers. Figure 4.8 and Figure 4.9 show an example of multiple-choice quiz data 

from both the Rwaq and FutureLearn platforms. 

 

Figure 4.7 Example of peer review data (FutureLearn platform) 
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Figure 4.8 Example of multiple-choice quiz data (FutureLearn platform) 

 

Figure 4.9 Example of multiple-choice quiz data (Rwaq platform) 

4.4.4 Demographics data 

Learners are often asked to enter their demographic information during registration for a 

MOOC. This information may include gender, age range, and occupation. Nonetheless, 

because these details are mostly voluntary, MOOC demographic data are hardly obtained in 

a considerable percentage compared with automatically collected data such as clickstream 

data (Morris et al., 2015). However, the unavailability of this kind of data has lately 

motivated several research studies to profile learners and anticipate their demographics using 

other data types such as students' clickstreams and forum data (ALJOHANI and MUSLIH, 

2022). Figure 4.10 and Figure 4.11 show examples of demographic data obtained from the 

Rwaq and FutureLearn platforms. 

 

Figure 4.10 Demographic data on the Rwaq platform. 
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Figure 4.11 Demographic data on the FutureLearn platform.  

4.4.5 Questionnaire data 

When researchers aim to collect data, questionnaires are beneficial ‘to obtain information 

about the thoughts, feelings, attitudes, beliefs, values, perceptions, personality, and 

behavioural intentions of research participants (Johnson and Christensen, 2019). For 

example, administering questionnaires is one method for gauging how students feel about 

the course being offered (Liyanagunawardena et al., 2015). Several researchers studying 

MOOCs have used questionnaires to collect data from students; for example, (Barak et al., 

2016) conducted a pre- and post-course questionnaire survey to investigate the influence of 

motivation on MOOCs. Another study by (Arnavut et al., 2019) used a questionnaire to 

evaluate the perspectives of students who participated in MOOCs and viewed the videos. 

 

Figure 4.12 A screenshot of a short post-course questionnaire on the Rwaq platform. 
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4.5  Extracting Raw and Computing Aggregated MOOC Indicators 

4.5.1 Sentiment analysis 

Sentiment analysis has become valuable to solving a wide range of problems, extracting 

opinions, and making decisions across different disciplines and fields, including sociology, 

marketing and advertising, psychology, economics, and political science (Bakharia, 2016). 

Only relatively few studies have employed sentiment analysis in MOOCs. In this thesis, we 

used the outcomes of sentiment analysis to generate potential indicators of student 

behaviours, such as the number of positive/negative/neutral comments or replies. To achieve 

this, a natural language processing (NLP) tool called TextBlob4 has been employed to 

classify students' comments into three categories: positive, neutral, and negative. TextBlob 

is an NLP-oriented Python library trained on a movie review corpus. TextBlob offers a 

simple API to measure the polarity and subjectivity of a textual dataset for certain tasks such 

as sentiment analysis and more complex text processing tasks (Saha et al., 2017, Gujjar and 

HR, 2021). The tool has been widely used on similar datasets extracted from several social 

media platforms and proved to be an effective tool for sentiment analysis (Vyas and Han, 

2019, Dutta, 2021, Lohar et al., 2021, Gryllos et al., 2017). In addition, the TextBlob tool 

can be used for Arabic text classification (Hadwan et al., 2022). This would help in 

understanding student expectations and overall satisfaction with the course contents and 

outcomes in FutureLearn and Rwaq platforms. 

4.5.2 Features extraction 

We have considered it best to analyse each course independently, merging only the data from 

different runs of each course, as some courses offer quizzes every week on subjects of 

 

4 https://textblob.readthedocs.io/en/dev/ 
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different nature and/or difficulty levels, whereas others skip some weeks. The latter was 

made possible, as all courses had runs (within that course) of similar structure. 

From the first interaction with the platform, each student's activities were logged, along with 

a timestamp, into our dataset, with the unique student ID. Our longitudinal dataset, which 

consisted of the repetitions of the 12 courses delivered over consecutive years, has enabled 

a deep exploration of student behaviours. In this in-depth analysis, we used multi-modal data 

from many perspectives. First, we use time-related, numerical, and textual data. Second, we 

used data of different granularity. From a time-related perspective, we analysed data at the 

level of a timestamp: a day, a week, several weeks, or the whole course. In total, we extracted 

21 features to be used in different experiments and gathered the following: 

1. Registration day: as students can register before or after the course's official starting 

date, this feature presents how many days between the registration date and the 

starting date for a given student. 

2. Number of accesses steps per week: how many steps are accessed by a given student 

per week.  

3. Number of days: how many days the student accessed the course per week. 

4. Number of correct answers per week: questions within quizzes answered correctly 

by a given student. 

5. Number of wrong answers per week: as students can have multiple attempts to a 

question, before they get it right, this counter controls how many of those wrong 

attempts were made by a given student. 

6. Number of attempts per week: number of wrong answers per week plus the number 

of correct answers per week. This is a measure of the total activity of a student in 

terms of quizzes per week, showing their engagement along this axis.  

7. Time spent: this feature measures the time spent by given student to complate each 

step accessed.  
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8. Number of comments per week: as students can comment on any 'step', they can 

produce varying numbers of comments each week. This is the most straightforward 

way to measure their social contribution and engagement.  

9. Number of likes received per week: this is a clearly positive social construct; it is a 

measure of the influence, popularity, as well as of engagement of other students with 

a given student. 

10. Number of positive comments per week: this is an aggregate measure, derived based 

on sentiment analysis, to measure the (positive) nature of engagement of a student 

with peers.  

11. Number of negative comments per week: this is a similar measure as the one above, 

measuring (negative) nature of engagement of a student with peers.  

12. Number of neutral comments per week: this is a similar measure as the one above, 

measuring (neutral) nature of engagement of a student with peers. 

13. Number of replies posted per week: to incorporate part of the social interactive 

engagement element, we track how many replies a student places to others, thus 

where they go beyond uttering their opinions in public, but instead, consider the 

opinions of others. 

14. Number of replies received per week: this is a social construct, but also a measure 

of the popularity, and hence influence of a given student on their peers - receiving 

comments shows how engaged other students are with this particular one. 

15. Number of positive replies posted per week: this is based on sentiment analysis, a 

measure of the nature of the social engagement of the current student with their 

peers. 

16. Number of negative replies posted per week: this is a similar measure as the one 

above, measuring negative engagement.  

17.  Number of neutral replies posted per week: this is a similar measure as the one 

above, measuring neutral engagement.  
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18. Number of positive replies received per week: measure of the impact of a student on 

others, as well as of the nature of this impact. 

19. Number of negative replies received per week: this is a similar measure as the one 

above, for negative engagement.  

20. Number of neutral replies received per week: this is a similar measure as the one 

above, for neutral engagement.  

21. Number of jumping activities: to incorporate students’ learning patterns element, 

we track how many jumping activities a student made per week (non-sequential 

movement between the course contents). 

 

4.6  Statistical Analysis and visualisation  

The Shapiro test is used to determine whether or not data are normally distributed. For 

normally distributed data, a p-value of  ≥ 0.05. Otherwise, the data are not normally 

distributed (Zhou, 2022). 

In this thesis, the Shapiro test was used to determine the normal distribution of the variables 

in each group (completers and non-completers). Depending on this, we then used a T-test for 

the normally distributed data or the Wilcoxon rank-sum/Mann-Whitney test for the non-

normally distributed data (Massimiani et al., 2019).  

Moreover, the Pearson correlation coefficient test (Benesty et al., 2009) was used to assess 

the relationship between the SDT constructs and the success measures. 

4.7  Visualisation tools  

Graphviz is an open-source graph drawing tool in Python. Graphviz can be used to construct 

graph objects composed of various nodes and edges (Ferreira, 2017). In this thesis, the 

Graphviz package was used to create graphical representations of students' activities in 

MOOCs. For example, by using Graphiz, the thickness of the edge can be modified according 

to the total number of transitions. This will be useful in visualising students' activities, 

specifically jumping behaviours, according to the corresponding transition count. 
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Figure 4.13 Example Graphviz transition graph  based on the transition count (Ferreira, 

2017) 

4.8  Predictive Machine Learning Approaches  

According to the no free lunch (NFL) theory, there is no one model that is optimal for 

resolving all types of problems (Adam et al., 2019). Therefore, the determination of machine 

learning algorithms depends on several factors, including the data type, the number of input 

attributes, and the complexity of the prediction task (Hafez et al., 2017). Borisov et al. (2022) 

conducted a survey of machine learning techniques for tabular data across different real-

world datasets. The results indicate that classical machine learning models exhibit superior 

performance compared to deep neural network-based methods for datasets of small and 

medium sizes (less than 1 million samples). 

The dataset used in this thesis is a tabular dataset with numeric features, and the records 

range between 6,071 and 83,543; therefore, this thesis focuses on classical machine learning 

models, given their compatibility with tabular datasets. The decision to put more emphasis 

on conventional machine learning models is consistent with recent research indicating that 

advanced deep learning models may not necessarily exhibit superior performance compared 

to traditional machine learning algorithms in MOOC prediction.. For example, Aljohani and 

Cristea (2021) and Sebbaq and El Faddouli (2022) have reported that implementing complex 

deep-learning models may not necessarily result in improved prediction performance. 

On the other hand, Fu (2021) used a dataset with more features extracted from students’ 

activities in the first 30 days of the course to predict active students after one month. The 

author shows that the deep-learning model (which combines CNN and LSTM) outperformed 

MOOC’s baseline model for dropout prediction. Despite the fact that using more features 

enhances the performance of the prediction models, these models cannot be put into practice 

in real-world settings because participants are most likely to drop out in the first few weeks. 

Therefore, early prediction should take place in Week 1 of the courses. 
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Another study from 2018 highlighted that a predictive model’s efficacy is not directly related 

to its level of complexity. The author showed that shallow algorithms, such as decision tree 

models, exhibited better performance in predicting dropout rates in MOOCs compared to 

long short-term memory (LSTM) (Ortigosa, 2018).  

Furthermore, the efficacy of the shallow machine learning model was observed in the KDD 

Cup 2015 competition to predict dropout students in MOOC. In this competition, a shallow 

machine learning model (XGBoost) was utilised by all the winning teams in the top 10 (Chen 

and Guestrin, 2016).   

Additionally, shallow machine learning models require lower computational resources and 

exhibit faster training and prediction capabilities compared to deep learning algorithms, 

making them easier to apply in real-life scenarios, which was a consideration for our research 

(Velu et al., 2023, Yang et al., 2021, Özdaş et al., 2022).  

For comparison with deep learning models, we will apply multilayer perceptron (MLP). This 

is one of the most popular deep-learning models, so it is well-suited for tabular data (Balles 

et al., 2021, Si, 2022).  

The machine learning models that are most frequently employed for tabular datasets have 

been chosen based on the review conducted in Section 5.2. These models include random 

forest (RF) (Breiman, 2001), gradient boosting machine (gradient boosting) (Friedman, 

2001), adaptive boosting (AdaBoost) (Freund and Schapire, 1997), XGBoost (Chen and 

Guestrin, 2016), ExtraTrees (Geurts et al., 2006), logistic regression (LR) (Rawlings et al., 

1998), K-nearest neighbour (Anchalia and Roy, 2014), and multi-layer perceptron (MLP) 

(Gardner and Dorling, 1998). These models have been widely applied and have demonstrated 

good results across different (see section 3.2.5). The following sections present a summary 

of the predictive machine learning techniques used to achieve the goals of this thesis. 
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4.8.1 Decision Tree 

A decision tree is one of the most frequently used algorithms for prediction purposes 

(Mazraeh et al., 2019). It relies on a set of question-and-answer processes to categorise data 

(Aitkenhead, 2008). The algorithm is built in the form of a tree structure with three major 

elements: the root node, the internal node, and the leaf node (Yu et al., 2010). 

 The root node is the starting point of the tree, where the data is divided into different subsets 

depending on specific feature values (known as cutoff or threshold values); each subset 

contains distinct instances (Molnar, 2020). The feature in the root node is chosen based on 

Attribute Selection Techniques (e.g. Gini index technique) (Dorfman, 1979).  

The internal nodes are in the middle of the tree between the root node and the leaf nodes. 

Through splitting, all instances are distributed among various subsets until they reach the last 

point. The leaf node (also called the terminal) is the last point on the tree; at this point, there 

is no more branching on the decision tree (Chauhan, 2019). Figure 4.14 shows an example 

of a decision tree structure. 

 

Figure 4.14 Example of a Decision Tree structure 

4.8.2 Random Forest and Extra Tree algorithm 

The random forest (RF) algorithm is known as a part of the supervised ML group of 

algorithms that use the bagging technique. It is used to handle regression and classification 
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problems by employing an ensemble methodology that involves multiple classifiers (Azar et 

al., 2014). The idea of creating  RF is derived from the decision tree algorithm by combining 

a large number of decision trees (Mishina et al., 2015). However, since no optimal number 

of trees applies in all models, the number of trees should be chosen on a trial-and-error basis 

until satisfactory performance is obtained. Typically, the starting point for the number of 

trees used by most developers is 100 – the default number (Oshiro et al., 2012).  

In contrast to the decision tree, the features are chosen randomly during the splitting of the 

nodes, and the training dataset is extracted randomly from the original dataset; this process 

is known as bootstrap aggregation (Chauhan, 2019). The random features and the random 

dataset are repeated with all trees until a forest is built. Consequently, each decision tree in 

the forest is unique in terms of the tree’s structure and the dataset used to train the tree. The 

final decision for classification problems is determined based on the majority vote of each 

decision tree (Liaw and Wiener, 2002). Figure 4.15 shows an example of an RF structure 

and a voting system, where N refers to the number of trees. 

 

 

Figure 4.15 Random Forest structure 

The ‘extremely randomised tree’ is another name for the ‘extra tree’ algorithm. Extra tree 

also creates a prediction model for classification and regression problems. It is similar to the 

RF algorithm because it constructs several trees (Ekanayake et al., 2022). Nevertheless, extra 

trees and RF may be distinguished from one another in two ways: the extra tree algorithm 

does not use bootstrap replicas, and the nodes are separated using randomised feature 

selections (Shang et al., 2022). 
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4.8.3 Boosting algorithms 

The boosting approach refers to a set of algorithms that merge many weak models into a 

single robust model (McDonald et al., 2003). In contrast to many other ML models that 

concentrate on just one model performance, boosting algorithms seek to obtain a more robust 

prediction capability by training a series of models. Therefore, each model helps its 

predecessor by correcting errors. For example, during the data training phase, when the first 

decision tree is built, the wrongly categorised records in this tree are given precedence over 

other records before they are sent to the second tree. Therefore, each tree focuses on high-

weight instances from the previous tree to classify them correctly(Schapire, 1999, Nikolaou 

et al., 2016).  

Figure 4.16 illustrates the structure of boosting algorithms. This figure shows that the 

instances from the first model are sent to the next model as inputs with new weights. The 

procedure continues until the specified condition is met. This is the basic concept for all 

kinds of boosting algorithms, such as AdaBoost, gradient boosting, and extreme gradient 

boosting (Schapire, 1999, Sigrist, 2018). 

 

Figure 4.16 Boosting Algorithms 

4.8.3.1 AdaBoost 

AdaBoost is part of the boosting algorithms family. AdaBoost is known as an adaptive 

algorithm because the weights are redistributed to each instance (Mazini et al., 2019, Kumar 

et al., 2011).  
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By comparing the RF algorithm with the AdaBoost algorithm, RF creates many different 

decision trees that vary in size. However, AdaBoost makes a forest of trees of only one size, 

known as ‘stumps’ or ‘weak learners’, that consist of only one node linked with two or more 

leaves (Wang et al., 2016, Hu et al., 2008). Figure 4.17 shows the structure of the AdaBoost 

algorithm, where W denotes the weighted instances that are sent to the next stump. For the 

sake of illustration, each stump’s size in the figure refers to the influence in making the final 

decision. 

 

Figure 4.17 AdaBoost Algorithm 

The first step of Adaboost is to measure the impurity of each feature in the dataset; the 

attribute with the least impurity is chosen as the first stump in the chain and in the initial 

stump, and all instances have equal weight (Cahyana et al., 2019).  

The wrongly classified instances by the earlier stump obtain a higher weight than the correct 

ones. Thus, the following stump emphasises instances with higher weight to avoid making 

the same errors (Shen and Bai, 2004). The instance weight on the first stump can be 

calculated using Equation 4.1 where N refers to the total number of instances (Rojas, 2009).  

w = 
1

𝑁
 ϵ [1,0] 

 (4.1) 

 The power to make the final decision in the AdaBoost algorithm is based on the 

misclassification rate (sum of all errors) for each stump. Therefore, the stumps with a high 

weight have more influence than others on the final decision of the model. The stump’s 

weight (SW) is calculated using Equation 4.2, where TR refers to the sum of all errors in a 

particular stump (Rojas, 2009). 
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4.8.3.2 Gradient Boosting and XGBoost  

In 2000, Friedman established a connection between AdaBoost and vital statistical concepts, 

enabling the boosting framework to include loss functions (known as gradient boosting 

machines, or GBM)(Li et al., 2022).  

Gradient boosting is similar to AdaBoost in that it combines a large number of weak learners 

sequentially; the learners concentrate on the errors made by the preceding learners (Aldor 

and Helle, 2021). However, in gradient boosting, each learner attempts to predict the residual 

of the previous learner in order to minimise the difference between the actual and expected 

values (Cui et al., 2018).  

Extreme Gradient boosting (XGBoost) is an enhanced, efficient form of gradient boosting; 

it has been built to be a faster and more flexible method (Chen and Guestrin, 2016). The 

XGBoost algorithm possesses advantages over conventional boosting algorithms. Because 

gradient boosting is sequential, it is very difficult to synchronise the procedures. Therefore, 

XGBoost is designed to enable parallel processing using strong distributed processing 

engines such as Spark and GPU(Boehmke and Greenwell, 2019). In addition, to prevent 

overfitting, XGBoost offers a number of regularisation parameters, including gamma, alpha, 

and lambda, to avoid excessive model complexity. Moreover, unlike Gradient boosting, 

XGBoost uses the dropout approach, a commonly employed method in deep learning to 

minimise overfitting and ensure that the model does not evaluate more trees if the tress do 

not provide an improvement (Boehmke and Greenwell, 2019). 

4.8.4 Logistic Regression 

The first recorded use of the logistic regression (also known as logit regression, LR) model 

was in 1845, when it was used in mathematical analyses of population expansion (Cokluk, 

2010). LR is a statistical technique widely used in ML to estimate the likelihood that an 

instance belongs to a specific class (e.g., the probability that an email is a cyberattack). For 

SW = 
1

2
 log (

1 − TR

TR
 ) 

(4.2) 
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instances in which the estimated probability ( 𝑝̂ ) is greater than 0.50, the model predicts that 

the instance belongs to the positive class (labelled ‘1’). Otherwise, the class labelled ‘0’ 

indicates that the instance is a member of the negative class (see equations 4.3 and 4.4) 

(Géron, 2019).  

 𝑝̂ = hθ(𝑋 ) = 𝜎(𝜃𝑇. 𝑥) 

Where hθ is the hypothesis function and σ(·) is a sigmoid function 

(4.3) 

 ŷ = {
0  𝑝̂ < 0.5 

1  𝑝̂ ≥ 0.5 
 

Logistic Regression model prediction where outputs a number between 0 and 1 

(4.4 ) 

 

4.8.5 K-Nearest Neighbour algorithm 

The K-Nearest Neighbour (KNN) algorithm was developed by Hart in 1968 (Hart, 1968). It 

is a fundamental instance-based learning approach that is extensively used in various 

domains because of its great efficiency and robustness. KNN is a non-parametric approach 

for dealing with classification and regression issues based on the idea of the least distance 

between comparable items, which posits that objects with similar properties remain close 

together (Deekshatulu and Chandra, 2013). 

For simplicity, consider the following example, which involves a training dataset (TRD) and 

a testing dataset (TSD). The sample in the data set is represented in a vector format (x1,x2, 

...,xn,L). Each instance in the TRD is associated with a label (L). On the other hand, the class 

label (L) is not known for TSD.  

In order to predict the label for TSD, the KNN algorithm calculates the distance between 

each instance in the TSD and TRD. There are various methods for calculating the distance 

between instances; the Euclidean distance is one of the most common measure methods (see 

equation 4.5) (Triguero et al., 2016).  
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𝐷( 𝑥, 𝑥′) =  √∑(𝑥𝑖 − 𝑥′𝑖)2

𝑛

𝑖=1

 

(4.5 ) 

 

Next, the KNN algorithm groups the k samples from the TRD that are nearest to the instance 

in the TSD and ranks them in ascending order based on their distance. Finally, the algorithm 

calculates a majority vote using the class label of the closest neighbours to assign the label 

(L) to an unlabelled instance (Triguero et al., 2016).  

Figure 4.18 shows the KNN algorithm when k = 3 and when k = 5. The value of k may have 

an effect on the overall performance of the algorithm. 

 

Figure 4.18  Nearest Neighbour Classification (k=3and k =5) 

4.8.6 Multi-Layer Perceptron (MLP) 

One of the most popular deep learning algorithms is the Multi-Layer Perceptron (MLP). It’s 

primarily used to deal with supervised learning issues. It predicts unknown data by 

determining the relationship between input and output variables (Cunningham et al., 2008). 

Most  MLP models are constructed based on a layered network architecture ( an input layer, 

one or more hidden layers, and an output layer). The MLP structure is illustrated briefly in 

Figure 4.19 for a binary classification problem.  
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Figure 4.19 Example MLP with 1 Input Layer, 3 Hidden Layers, and 1 Output Layer 

The primary goal of the fully connected layers in the middle of the model (hidden layers) is 

to determine the relationships between the input features (input layer) and the classification 

layer (output layer). Neurons in each layer communicate with neurons in the preceding and 

following layers through means of weight and function. The MLP employs a 

backpropagation technique to continuously adjust the weights and biases inside the hidden 

layers in order to reduce output error (ALHASSAN and NASSER, 2021).   
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Epilogue 

In this chapter, we have introduced the methodology used to answer the research questions. 

In addition, we have presented the dataset and tools used to achieve the aim of this thesis. 

The employed technologies include feature selection, sentiment analysis, statistical analysis, 

visualisation, and predictive machine learning algorithms.  

The following chapter will be the first core chapter of this thesis. We will explore the 

predictability of students’ completion based on students’ registration dates. 
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Chapter 5 : Earliest Predictor of 

Dropout in MOOCs: A Longitudinal 

Study of FutureLearn Courses 

Prologue 

This chapter presents the results of the analysis of data set of FutureLearn MOOC users over 

several runs, focusing specifically on non-completion, to determine if there are factors that 

can be identified before the students even start the course, that can guide teachers to target 

and support these students, so that they do not disengage from their learning.  

5.1  Introduction 

To analyse students’ non-completion, various variables can be considered, such as student 

profile data (e.g., age, gender, country), behavioural patterns related to the consumption and 

generation of data when interacting with the course (e.g., reading, watching, writing, taking 

quizzes). This research instead, however, uses only one relatively simple variable, which, to 

the best of our knowledge, has not been studied in prior research in relation to completion 

predictability: the registration date. 

 The advantage is that this data is available, in most of cases, even before the course starts; 

thus, if completion can be predicted from it, very early intervention is possible. Hence, this 

research targets the following research questions: 

- RQ1.1: Can the date of registration (in terms of distance from the course start) of 

students predict their completion (or non-completion)? 

- RQ1.2: How can dropout rates be alleviated based on the registration date? 
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5.2  MOOCs Analytics and Mining  

The work presented in this chapter is closest related to the area of retention-versus-dropout 

in MOOCs. The issue of massive open online course systems (MOOCs) having high dropout 

rate, as said, by many researchers (Dillon et al., 2016, Jordan, 2015, Liang et al., 2016). 

Various solutions have been proposed, such analysing a students’ activity in online forums 

(Wen et al., 2014a), or analysing the students’ click-stream (Kloft et al., 2014, Sinha et al., 

2014), classification methods of longitudinal engagement trajectories (Coffrin et al., 2014)  

and  monitoring video views (Guo et al., 2014). However, most of these approaches are only 

able to predict retention or dropout once a student has started learning and, importantly, 

interacting with a MOOC. For example, in (Kloft et al., 2014), correlation was observed 

between activities in the latter part of the course and dropping out. Also (Wen et al., 2014a) 

investigated the relationship between learner sentiments expressed on forums and the chance 

of dropping out.  

To the best of our knowledge, none of the published evaluation studies attempts to predict 

dropout only from the very first interaction with the system – the registration. 

Moreover, the FutureLearn platform has not been studied as frequently as other MOOC 

platforms (e.g., Coursera and edX) (Vigentini et al., 2017). Recent work on FutureLearn data 

exploration includes social aspects (Chua et al., 2017a), dashboard development (Vigentini 

et al., 2017), pedagogies on MOOCs (Mohamed and Hammond, 2018),  and reviews of 

empirical MOOC literature(Sinha et al., 2014, Zhu et al., 2018). 

Another common point for prior researches is that they have analysed only a few courses in 

a MOOC (e.g. (Guo et al., 2014) claims to be the largest study, with only 4 courses, with 

only one run each; one MOOC with one run in (Barba et al., 2016); three courses used in 

(Atapattu et al., 2016)). They have often only analysed courses on the same, or similar, 

subjects (Chua et al., 2017b).  

This research performed comparative longitudinal studies of several runs of a large number 

of different courses on varied subjects.  
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5.3  Setup: Terms and Methodology  

Firstly, a few definitions are required, as follows. Here we are studying MOOC courses 

which have an official starting date (considered as date 0) and which are expected to run over 

a specific number of weeks, after which they end. Non-completing students are students who 

have not completed the course. Enrolled students are students that completed enrolment. 

Note however that these can be also students who have never logged into the course, but just 

have enrolled for it. Completing students are students who have completed the course.  

To address the research questions set in this chapter RQ1.1 and RQ1.2, we analyse six 

courses on different subjects delivered by the University of Warwick (from literature to 

computer science to social sciences: Literature and Mental Health, Shakespeare and His 

World, Big Data, Supply Chains, Babies in mind, The Mind is Flat), each with several runs, 

for a total of 23 runs, for a total of 240,568 students, employing a variety of statistical 

methods. These courses were freely available for anyone and allowed for enrolment at any 

time.  

5.4  Results  

Results show that out of 240,568 registered students, only 7,437 (~3%) complete (see Table 

5.1); thus, this highlights an extreme MOOC non-completion issue, at the lower end of the 

boundary of 3-15% (Jordan, 2015, Coffrin et al., 2014). We further analyse the normality of 

the registration data, results showing that registration is not normally distributed (p < 2.2e-

16). Thus, the T-test cannot be applied. Thus, we have applied the non-parametric Wilcoxon 

test instead – firstly, to all data across all courses and runs (column ‘Total’ in the table 

below). We notice that students register, on average, 1 month (30.47 days) in advance of 

their FutureLearn courses start. We can also see that non-completers tend to register, possibly 

non-intuitively, around 3.5 days earlier, on average, than completers (see more discussion on 

this in section 5.5 and that this difference is statistically significant. We also can estimate 

that non-completers are the ones influencing the overall average (due to their larger number) 

and the large variance (with a maximum of 256 days in advance, up to 809 days after the 

course starts).  
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Table 5.1 Initial analysis of impact of registration date (Reg.) versus course starting date (here, 0), 

onto completion. 

   Total Reg. > 90 90 >= Reg. >= -30 Reg. < -30  

A
L

L
 

 

Data size 240568 16522 214676 9370 

Avg. 30.47 142.14 25.37 -49.39 

Var. 2142.46 1160.13 1008.42 893.49 

Max. 256 256 90 -31 

Min. -809 91 -30 -809 

C
o

m
p

le
te

rs
 

 

Data size 7437 279 7016 142 

Avg. 27.06 126.85 24.54 -44.69 

Var. 1459.73 1206.21 990.29 131.03 

Max. 210 210 90 -31 

Min. -83 91 -30 -83 

N
o

n
-

co
m

p
le

te
rs

 
 

Data size 233131 16243 207660 9228 

Avg. 30.58 142.4 25.39 -49.46 

Var. 2163.86 115.33 1009.01 904.9 

Max. 256 256 90 -31 

Min. -809 91 -30 -809 

Who registers 

earlier?  
Non-

Completers 
Non-

Completers Non-Completers Completers 

Wilcoxon’s p p = 0.0010 p =1.94e-13 p = 0.093 p = 0.033 

 

 

☐ Before the course starts - ☐ After the course starts -✮Official starting day 

Figure 5.1 Initial periods of the registration date 

This large spread becomes more obvious in the box diagram ( Figure 5.2). The figure shows 

that non-completers are responsible for most outliers, as well as the largest spread. It becomes 

visible from the figure that registering too early - or too late - will possibly result in non-

completion; this is studied further, below, in order to quantify what ‘too late’ or ‘too early’ 

means in this context. 
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 Figure 5.2 Box diagram for registration date for completers and non-completers across all courses 

and runs, in absolute values. 

 A further visual analysis of the spread of registration dates is shown in Figure 5.3 where the 

number of completers (in small green dots) and non-completers (in large red dots) are placed 

side-by-side, for each registration date. Beside the larger spread of the non-completers in 

terms of date, it can be clearly seen that their numbers are much larger as well (visually 

confirming that only less than 3% of the students actually complete). As these two spreads 

are at such very different scales, this data is further analysed separately in Figure 5.4 (for 

completers) and Figure 5.5 (for non-completers). The images show that, surprisingly, the 

shapes of the two graphs are relatively similar: beside the peak around the actual course 

starting date, there is a peek somewhere around 90-100 days before the course starting date. 
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Figure 5.3 Completers (green) versus non-completers (red) across all courses and runs, in absolute 

values. 
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Figure 5.4 Completers and their registration dates. 
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Registration Day 

Figure 5.5 Non-completers and their registration dates. 

Thus, we analyse this data further, taking 90 days later as one transition point, and using its 

symmetrical counterpoint of 90 days earlier as another. The latter results from Figure 5.4, 

where completers tend to disappear around that date. Thus, we specifically look at very early 

registrations (initially about 3 months – 90 days – in advance), late ones (1 month – 30 days 

– after course start) as well as the period in-between (see Figure 5.1). Table 5.1 further shows 

these initial results for the overall cohort for all registrations. It can be seen that the averages 

shift considerably, with early registrations averaging at 142.4 days before course start for 

non-completers, who register a significant 15 days earlier than completers; late registrations 

averaging at 49.46 days after course start, with non-completers registering about 5 days later, 

on average, than completers (significant at p<0.05). The overwhelming majority of 

completers, however, are in the middle region (7016/7437 or 94.34%). They register, on 

average, 24.54 days in advance, with completers registering about 1 day later than non-

completers (but this is not significant). Figure 5.6 helps visualise this data, for the three 

periods. The total numbers are less informative (Figure 5.6, a), as the number of non-

completers dominates the overall numbers. Thus, we use the percentage view (Figure 5.6, 

b), which shows that there is a larger percentage of completers than non-completers who 

register closer to the course starting time, and a smaller percentage of completers who 

register very early, or very late. However, the figure also shows that the majority of both 

completers and non-completers register in the identified central period.  
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(a) Total Numbers 

 

 (b) Percentage

 

Figure 5.6 Completers (in blue) and non-completers (in orange) visualised as total numbers (a) and 

as a percentage (b) for the initial three periods identified in Table 5.1 

Thus, it is clear that the central period needs further analysis, as additionally, the statistical 

results (as shown in Table 5.1). Also, the labels ‘early’ and ‘late’ have been applied based 

on visual information only. Thus, we considered defining periods more rigorously, based on 

the features of the data, starting with Avg.=30.47, the overall average number of days in 

advance of the course start that students register on, as well as the overall standard deviation, 

σ (see Figure 5.7). Interestingly, the ‘early’ (P1) and ‘late’ (P5) periods remain relatively 

similar - albeit better supported by the data - at 99.9 days in advance and 38.96 days after, 

respectively, confirming our initial intuition. The results for these periods also remain 

relatively similar, as can be seen in Table 5.2.  
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Table 5.2 Periods identified based on σ, the standard deviation; ‘Reg.’ stands for registration date; 

‘Avg.’ stands for average. 

 

☐ Before the course starts ☐ after the course starts ⚫Avg.= 30.47 ✮Official starting day  

Figure 5.7 Early (P1) and Late (P5) periods 

However, now we can analyse in more details the middle period by splitting it into three 

parts: the centre is half a deviation (1/2 σ) from the overall average Avg. both ways, and the 

sides contain the remaining periods, up to 3/2 σ, each way (as shown in Figure 5.7).  

Avg 

 30.47 

P1 
Reg.> Avg. + 

3/2σ =~99.9 

P2 [99.9, 53.6] 
Avg.+3/2σ 
 >=  Reg.> 

Avg. + 1/2σ 

P3[53.6, 7.33] 
Avg. + 1/2σ 
>= Reg.> 

 Avg. - 1/2σ 

P4 [7.33, -

38.96] 
Avg.-1/2σ 

>=  Reg.> 

Avg. - 3/2σ 

P5 

Reg. <  Avg.-

3/2σ 

=~-38.96 σ 46.29 

A
L

L
 

Data 
size 13941 52744 74489 93264 6130 

Avg. 151.25 74.27 27.97 -4.59 -57.17 

Var. 842.91 143.78 170.81 99.97 1187.73 

Max 256 99 53 7 -39 

Min. 100 54 8 -38 -809 

C
o

m
p

le
te

r
s 

 

Data 
size 198 1669 2392 3091 87 

Avg. 140.75 75.5 25.44 -2.92 -51.24 

Var. 1030.78 133.96 166.96 72.96 99.58 

Max. 210 99 53 7 -39 

Min. 100 54 8 -38 -83 

N
o

n
-

co
m

p
le

te
r
s 

 

Data 
size 13743 51075 72097 90173 6043 

Avg. 151.4 74.23 28.06 -4.65 -57.26 

Var. 838.67 144.06 170.72 100.8 1202.9 

Max. 256 99 53 7 -39 

Min. 100 54 8 -38 -809 

Who registers 
earlier?  

Non-
Completers Completers 

Non-
Completers Completers Completers 

Wilcoxon’s p p =1.29e-06 p=4.75e-05 p=  2.2e-16 p=  2.2e-16 p=  0.041 
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Here, we see some very interesting and potentially surprising fine-grained results: P2 

completers and non-completers have only 1, however, significant, day, on average, between 

them. Interestingly, P3 and P4 show strong significant differences between the completers 

and non-completers, of opposite signs (2.62 and -1.73, respectively). Thus, completers 

register earlier in P2, later in P3 and earlier in P4. Figure 5.8 shows that, for all three middle 

periods, the percentage of completers is consistently larger than the percentage of non-

completers. However, it shows that, for both completers and non-completers, both their 

absolute numbers (left) and their percentages (right) grow steadily between periods P2, P3 

and P4, with their peak in P4.  

 

Figure 5.8 . Completers (in blue) and non-completers (in orange) visualised as total numbers (left) 

and as a percentage (right) for the five periods identified in Table 5.2. 

5.5  Discussion and Extracted Rules  

The results obtained are worthy of discussion, because some were not as straightforward as 

we initially expected. As in previous research by (Balakrishnan and Coetzee, 2013, Cristea 

et al., 2018, Hair et al., 2011, Jordan, 2015, Kloft et al., 2014, Koller et al., 2013, Rosé et al., 

2014), in our Warwick courses, there are a substantial number of students who don’t 

complete. In answering RQ1.1, indeed, registration time is a significant predicting factor. 

However, there is, for instance, not a simple answer to the question if the students should 

register early or late. Whilst we initially expected that “the early bird catches the worm” and 

thus students who register early would have a higher chance of completion, the general 

answer is in fact that, on average, registering later seems to be more advisable. Specifically, 
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and interestingly, we were able to find explicit periods of time, related to the course starting 

date, for which this question can be answered in a statistically significant way, i.e.: P1 (99.9 

days before the start of the course); P2 (99.9 to 53.6 days before); P3 (53.6 to 7.33 days 

before); P4 (7.33 before to 38.96 days after).  

Intuitively, if students register too early (here, above 3 months in advance, covering P1), this 

is not very beneficial, as they may possibly forget that they have done so in the first place, 

so it is ‘better’ during this period to be one of the ones who register later, rather than earlier. 

Thus, being somewhat closer to the actual start of the course, when registering, is more 

desirable. On the other hand, if students register during a slightly closer time to the start 

(between 3 and above 2 months before the course has started), then, students completing or 

not are close, whilst it is slightly better to register earlier. However, even closer to the starting 

point (about 2 months before course start, up to about one week before), students enrolling 

slightly later are again more likely to complete. Interestingly, just around course start (1 week 

before course start up to about 1 month after course start) it suddenly becomes better to enrol 

slightly earlier. This surprising result may be explained by noting that, for most of the time, 

it translates to registration being more likely to lead to a successful outcome if it is closer to 

the course starting date. The only exception is period P2, which would need further analysis 

in future research. Finally, for students enrolling too late (over 1 month after the course has 

started), it is again better for students who enrol closer to the starting date (thus earlier). 

Based on these results, we can further address RQ1.2 as follows. The teacher could analyse 

the data very early on, and give specific customised feedback to students. As the registration 

time is known before or just after the start date, students could be advised to only register 

when they are quite sure about attending the course, and as close as possible to the start of 

the course. They should possibly be also given the choice to deregister, if they have lost the 

interest, to give a teacher a better and more realistic picture of the actual cohort to follow the 

course. For students who are registering too late, they should possibly be notified of further 

times the course is run, and let known in advance that they would have to put in an additional 

effort, if they really want to complete the course - possibly offering them simplified material, 

or other type of support, to catch up.  
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Alternatively (or at the same time with the tutor intervention), an intelligent tutoring MOOC 

extension could implement some rules to automatically deliver such messages to the students 

(e.g., Table 5.3). The table shows also that students can not only be given messages, but also 

be supported with additional resources, or more tailored resources, when they are starting, 

for instance, late. For early registration, storing the course information as soon as possible in 

the agenda of the students and ensuring that no other overlap is occurring by omission is 

important (of course, other overlaps outside the influence of the students may still exist). 

Further development of such adaptation rules remains for future research, although defining 

periods centred on the start date, and moving standard deviations from it, seems promising. 

Finally, whilst the research questions posed are answered, further answers can be sought in 

future work.  

Table 5.3 Rules in pseudo-code based on registration date. 

IF registration_date > 3 months before start date (BSD) 

THEN recommend (“Please consider registering closer to the start of 

the course. Would you like to be reminded of this a couple of months 

before the course starts? Would you like to have the date 

automatically registered to your calendar?”) 

IF registration_date in (2 months BSD to 1 week BSD) 

THEN recommend (“Please consider confirming your registration closer 

to the course start. Would you like a reminder a week before the 

course starts? Would you like to have the date automatically 

registered to your calendar?”) 

IF registration_date in (After start date (ASD)to 1 month ASD) 

THEN recommend (“As you have registered to the course after its 

start, please note that you would have to put in much more focussed 

work in order to complete. If you prefer to opt to enrol the next 

time this course starts, please let us know. Please also consider 

visiting these links for additional support.”) 

IF registration_date > 1 month ASD 

THEN recommend (“You have registered very late to the module. You are 

strongly recommended to consider taking this course at a later 

date.”) 
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Epilogue 

In this chapter, we analysed a large data set of FutureLearn MOOC users over several 

courses, each with several runs. Our results show that completion can be predicted based on 

the date of the registration. We were able to identify specific periods when it was likelier for 

the students registered (relatively) early to complete, as well as periods for which the 

opposite was true. In the following chapter, we will investigate the clickstream data to 

visualize students' learning patterns and compare the differences between completers and 

non-completers.   
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Chapter 6 : Is MOOC Learning 

Different for Dropouts? A Visually-

Driven, Multi-granularity Explanatory  

Prologue 

This chapter presents different granularity visualisations for learning patterns to compare the 

differences between completers and non-completers. It shows how different granularity 

visualisations (fish eye and bird eye) that allow both researchers and teachers to understand 

where issues occur and patterns emerge, supported by a statistical analysis. 

6.1  Introduction  

Since MOOC platforms offer free courses for millions of students, the retention rate of 

learners is notoriously low. The majority of the research work on this issue focuses on 

predicting the dropout rate, but very few use explainable learning patterns as part of this 

analysis. However, visual representation of learning patterns could provide deeper insights 

into learners’ behaviour across different courses. 

Thus, this chapter proposes and compares different granularity visualisations for learning 

patterns (based on clickstream data) for both completers and non-completers. In the large-

scale MOOCs we analysed, across various domains, our fine-grained, fish-eye visualisation 

approach showed that non-completers are more likely to jump forward in their learning 

sessions, often on a ‘catch-up’ path, whilst completers exhibit linear behaviour. For coarser, 

bird-eye granularity visualisation, we observed learners’ transition between types of learning 

activity, obtaining typed transition graphs. The results, backed up by statistical significance 

analysis, provide insights for course instructors to maintain the engagement of learners by 

adapting the course design to not just ‘dry’ predicted values, but explainable, visually viable 

paths extracted.  
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This chapter addresses the following research questions: 

RQ2.1: How can learning paths be visualised to differentiate between completers’ and non 

completers behaviours (to inform teachers for early interventions) ? 

RQ2.2: Are there (significant) differences in the learning paths of completers and non-

completers and can they be deduced from visualisation early on in the course? 

RQ2.3: What kind of level of granularity is necessary for the visualisation of significant 

differences between completers and non-completers?  

Existing studies on MOOCs analytics mostly focus on finding reliable completion indicators 

from learner behaviour patterns, using data of forum activities(Santos et al., 2014), 

clickstreams(Kloft et al., 2014), assignment activities (Coffrin et al., 2014) to name a few. 

Other predictive studies (Ye and Biswas, 2014, Greene et al., 2015),(Li et al., 2017) attempt 

to forecast the performance, including final grade and pass/fail in exams. Overall, existing 

research usually does not disregard the potential of using visualisation as an initial step before 

prediction, nor do they consider the granularity of visualisation as a factor. 

6.1.1  Visualisation 

The explanatory power of visualisation has been stated to be crucial to provide more insights 

for module instructors and designers, next to completion prediction (Davis, 2016). A learning 

path is defined as the learning trajectory through a course by learners; according to (Guo and 

Reinecke, 2014), participants generally study web courses in a non-linear manner. We are 

specifically interested in comparing the transition behaviour between completers and non-

completers, as suggested by (Jiang et al., 2014). Wen and Rosé (2014) investigated the 

typical learning activity sequences across two MOOC datasets and mined the difference in 

learning themes among groups with different grades, by visualising the distribution. 

However, they mainly focused on which topics were more popular, instead of visualising the 

entire learning paths of their four groups of learners (none, fail, pass and distinction). Later 

(Davis, 2016) visualised log traces of learners across four edX MOOC datasets, using 

discrete-time Markov Models and observed that learners were more likely to jump forward 

than backwards from video content. Additionally, they found that non-passing learners were 

more likely to exhibit binge video watching, i.e., transit from one video to another without 
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answering questions, deviating from the designed linear learning path. However, they only 

visualised the video interaction activity of passing and non-passing learners, instead of the 

whole learning sessions, like in our work.  

Recently, (Shih, 2019) used visualisation software, Gephi, to visualise clickstream-based 

learning paths. They observed that learners are more likely to skip the quizzes at the end of 

each chapter, by watching the beginning videos of the next chapter, but learn linearly within 

chapters. However, neither did such previous studies explore the phenomenon in-depth, nor 

provided a convincing explanation.  

This chapter validates that completers behave differently from dropout learners by 

visualising the entire learning paths of participants. We also statistically analyse students’ 

movements by combining courses’ themes and content. 

6.1.2 Statistical Analysis 

According to (Zheng and Yin, 2015), statistical analysis can be divided into descriptive 

statistics, to summarise the demographics information of learners and inference statistics, to 

explore behaviours exhibited by participants. For instance, (Zhao et al., 2017) firstly 

examined if there is any impact on the behaviour of learners, after they reached the passing 

state. They examine weekly quiz score distribution for all learners by K-means clustering, 

which showed that early passers obtained relatively lower scores immediately after passing, 

compared with their previous performance. Later, (Watted and Barak, 2018) investigated the 

motivation of two groups of completers: university students and general participants, using 

Mann–Whitney U test, and concluded that as participants’ ages increased, earning a 

certificate was less significant. Recently, (Peng and Xu, 2020) explored different behaviours 

of course completers and non-completers from a discourse perspective on course content 

review, via a chi-square test. They found that completers were more likely to post original 

and less negative opinions, whilst non-completers were more willing to reply to and criticise 

others’ posts. Inspired by their work, we implement a Wilcoxon test for completers and non–

completers to learn their transition behaviours among different learning themes, separately.  
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6.2  Methodology 

To explore if completers and non-completers behave differently, we apply visualisation 

analytics firstly, to identify the different learning paths executed by these groups and then 

implements statistical modelling to analyse their learning behaviour (transition from themes 

such as video, quiz, discussion, review and article) across different courses. Additionally, by 

comparing dropout learners’ transition from different learning activities across different 

courses, this research offers insights into the impact of the designed course learning path on 

the learning behaviour of participants. 

6.2.1 Dataset 

The dataset of learner activities has been extracted from 8 runs of 4 Future Learn-delivered 

courses from The University of Warwick between 2013 and 2017, with over than 106,036 

learners. We investigate learner activities across different domains: Psychology (The Mind 

is Flat and Babies in Mind), Literature (Shakespeare and His World) and Computer Science 

(Big Data). The learner activities include watching videos, taking a quiz, discussion, 

submitting assignments, viewing assignment feedback, reviewing another learner’s 

assignment and giving feedback.  

Table 6.1 The dataset of learner activities 

Course Title Run Enrolled  Accessed  Dropout  Completers 

Babies in 

Mind  

Run 1 12651 5841 4634 1207 

Run 2 9740 4924 4030 894 

Big data Run 1 11281 4715 4202 513 

Run 2 5761 3840 3583 257 

Shakespeare 

and His World  

Run 1 15914 9050 7170 1880 

Run 2 12692 6902 5804 1098 

The Mind is 

Flat  

Run 1 22929 8198 6858 1340 

Run 2 15068 6760 5743 1017 

Of all participants, 50,230 learners have accessed at least one step of the course, but over 

half, 53%, have never accessed the course after registration. The 42,024 learners who 

accessed less than 80% are defined as dropout learners. The 8206 learners who accessed 
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80% or more of the materials in one run are defined as completers. The 80% threshold (as 

opposed to, e.g., 100% completion), the total number of those who completely accessed 

100% of the steps was relatively low. Completers represent 7% of the total and 16% of the 

learners who accessed at least once.  

6.2.2 Visualisation of High & Low Granularity Levels 

After analysing the learning path of learners, we have divided the dataset of learners’ 

activities into two components: linear and catch-up (see Figure 6.1). The former shows the 

linear path between two sequential steps and the latter shows the catch-up activities, i.e., 

jumping behaviour. This research implements a flow network analysis, to present the 

learning pattern for linear movem( from source: xi, to destination: xi+1) and catch-up (from 

source: xi, to destination ≠ xi+1). Depending on the granularity, the learning pattern is further 

identifiable as bird’s eye view, i.e., high granularity (a node representing multiple steps), and 

fish-eye view, i.e., low granularity view (step-level representations). In addition, course 

activities have been grouped by different colours based on their themes see Figure 6.2.  

 

 

Figure 6.1 Examples:     a) Linear activities                                   b) Catch-up activities 

The size of the circle represents the number of learners who accessed the course content, and 

the thickness of the arrow shows the percentage of learners’ movements. 

Video  Quiz  Discussion  Reflection  Assignment  Review  Test  Article  

Figure 6.2 Colour codes indicating the type of course content 

6.2.3 Statistical Analysis  

We further analyse the normality of the data, we report results as percentages instead of the 

total number of learners to eliminate the effects of having different numbers of learners for 
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each group. The results show that learners’ learning paths were not normally distributed (p 

< 2.2e-16). Thus, we have applied the non-parametric Wilcoxon test instead.  

6.3  Results and Discussion 

The flow network analysis shows that completers are more likely to complete the courses 

linearly (see Figure 6.3 and Figure 6.5), whilst non-completers are more likely to skip quizzes 

and assessments (the catch-up learning pattern); which mainly shows the overall learning 

pattern instead of providing a clear view in details due to the course length). For instance, 

non-completers have various learning paths; some of them may directly jump to lessons in 

week two after accessing the first lesson Figure 6.6. Instead, completers are much more 

“obedient”, as they mainly follow the designed learning path, compared with dropout 

learners; interestingly, this holds true across different domains - as shown in the bird eye 

view in Figure 6.4. The Statistical analysis results in Table 6.2 further confirm that these 

learning paths are significantly different.  

 

Table 6.2 P-values of linear and catch-up learning activities 

 

Courses/ Run 

P-value 

Catch-Up activities Linear activities 

Babies in Mind Run 1 1.13E-13 (p<0.001) 2.46E-85 (p<0.001) 

Babies in Mind Run 2 7.74E-14 (p<0.001) 2.32E-62 (p<0.001) 

Big Data Run 1 2.66E-018 (p<0.001) 5.97E-110 (p<0.001) 

Big Data Run 2 1.35E-68 (p<0.001) 2.66E-18 (p<0.001) 

Shakespeare Run 1 1.130E-13 (p<0.001) 2.09E-23 (p<0.001) 

Shakespeare Run 2 7.73E-14 (p<0.001) 1.87E-09 (p<0.001) 

Mind is Flat Run 1 2.66E-018 (p<0.001) 5.21E-74 (p<0.001) 

Mind is Flat Run 2 6.62E-63 (p<0.001) 2.51E-16 (p<0.001) 
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(a) Babies in Mind 

 

 

 

 

 

 

 

(b) Big Data 
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(c)  The Mind is Flat  

 

 

 

 

 

 

(d) Shakespeare 

 

Figure 6.3 Completers learners learning path (Bird eye view (a-d)). 
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Figure 6.4 Completers learning path, first week (The Mind is Flat) fish eye view 

 

 

 

 

 

 

 

 

 

 

(a) Babies in Mind 
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(b) Big Data 

 

 

 

 

 

 

 

 

(c)  The Mind is Flat 
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(d) Shakespeare 

 

Figure 6.5 Dropout learners learning path (Bird eye view (a-d)). 
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Figure 6.6 Dropout learning path, first week (The Mind is Flat course) fish eye view 
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Then, we compared dropouts after their last accessed activity: video, discussion, quiz and 

article for the four courses. Figure 6.7 illustrates that learners are more likely to drop out 

after articles and videos. Interestingly, participants drop out the least after discussion. The 

attraction of discussion has been confirmed by our analysis across courses. The reason may 

be that participants feel encouraged to share their knowledge and can gain support (Warren 

et al., 2014). In the Literature course, Shakespeare, participants were more likely to drop out 

after the assignment. The reason may be the difficulty of the creative writing at the final 

week that learners are required to write their film, book, ballet or musical; this is useful 

feedback for the course designers to change assignments potentially. The figures also suggest 

that the dropout patterns, according to themes are similar across runs.  

(a) First run                                                 

 
                    ( b) Second run  

 Figure 6.7Average number of dropout per topic ( course contents type)   
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Epilogue 

In this chapter, we used data visualisation to examine and compare the learning routes for 

completers and dropouts across four MOOCs (8 Runs). We focused on which learning theme 

students likely tend to drop out. The results of this research show that students who 

completed the course are more likely to learn in a linear way, whereas students who drop out 

are more likely to engage in what we term the "catch-up" learning pattern.  

In the next chapter, we will use students’ activities to predict the non-completers by using 

machine learning algorithms. In addition, we will examine the effect of using learners’ 

jumping behaviour ("catch-up" learning pattern ) as a feature to predict non-completers 

students. 
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Chapter 7 : Next week MOOC dropout 

prediction: Weekly assessment time and 

learning patterns 

Prologue 

This chapter focuses on innovations in predicting student dropout rates by examining their 

weekly learning activities. This study is based on three MOOC platforms, including 303,466 

students from 10 courses with 41 runs spanning 2013–2019. This study aims to build a 

generalised early predictive model for the weekly prediction of student dropout using 

machine learning algorithms.  

7.1  Introduction 

Moocs researchers intend to find the most predictive feature(s) of students' dropout activity 

and thus enable early intervention. One usual way is to identify learning behaviour indicators 

to raise the accuracy of MOOCs' completion prediction (Prenkaj et al., 2020). However, data 

is not always available for such indicator analysis. For instance, non-completion can be 

predicted by a linguistic analysis of discussion forum data (Wen et al., 2014b). Nevertheless, 

as students’ comments only amount to 5-10% of posts in discussion forums, this feature is 

not applicable universally and more features are needed (Rose and Siemens, 2014). 

Additionally, numerous variables can be considered for non-completion analysis, such as 

student profile data (e.g., country, age, gender) (Kameas, 2021, Hlioui, 2021, Moreno-

Marcos, 2020a, Robinson, 2016) and course-attended related data (e.g., reading, watching, 

writing, taking quizzes) (Ding, 2019a, Gitinabard, 2018, Qiu, 2019, Mubarak, 2020, Doleck, 

2020).  
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This research investigates different methods of targeting dropout students by comparing the 

prediction of student dropout in the whole course (CP) and the prediction of student dropout 

in the following week (WP).   

In addition, based on the visualisation findings in Chapter 6, students’ learning path is an 

insightful dropout prediction feature, as successful learners will follow the instructed path 

and exhibit ‘linear learning behaviours’. Conversely, learners may jump forward and 

backward in their learning sessions (Gardner and Brooks, 2018), which is defined as 

exhibiting jumping behaviour, and they are likely to quit in the process. To the best of our 

knowledge, this research is the first to consider participants’ learning paths and the associated 

behaviours in weekly dropout prediction.  

Moreover, we conducted a first-of-its-kind study of a novel, lightweight approach based on 

tracking two features (accesses to the content pages and time spent per access), fine-grained 

learner activities to predict student non-completion. Hence, our research questions are 

formulated as follows: 

RQ3.1 Are there (high) differences in the prediction of weekly dropout and whole course 

dropout? 

RQ3.2 Will the weekly predictive model be more accurate after considering student jumping 

behaviours and catch-up learning patterns during the course?  

RQ3.3 Can MOOC dropout be predicted within the first week of a course, based on the 

learner’s number of accesses and time spent per access? 

This chapter presents three experiments as shown in Figure 7.1. First, we will compare two 

methods for predicting dropout students from an early stage: we will compare the weekly 

prediction (WP) approach with the more traditional approach to predicting student dropout 

in the whole course (CP). For example, with WP, we will only indicate students’ completion 

of the second week by using their previous learning behaviours in the first week. The model 

will also predict students’ completion of the fifth week by using their previous four weeks’ 

learning pattern. This experiment aims to find the most accurate method of predicting 

dropout students, so we compare the prediction performance for two methods ( CP vs WP). 



 

129 

In the second experiment, building on the previous work in Chapter 6, we will investigate 

jumping behaviours of completers and non-completers in MOOCs. We will incorporate the 

students’ learning patterns (jumping behaviours) into the weekly dropout predictive model 

and gauge the impact in the model's performance with and without students’ jumping 

behaviours. 

 In the third experiment, the prediction model will be based on only two independent 

variables (the number of accesses and the time spent on a page). Importantly, unlike our 

approach, most prior research has used many independent features (see Table 3.1). For 

example, (Kloft et al., 2014) employed 19 features, including technical features and those 

that captured the activity level of learners. Promisingly, our model, despite using only two 

features from the first week of each course, can also achieve a ‘good enough’ performance, 

as shall be further shown. 

 

Figure 7.1 Dropout prediction experiments 

7.2  Methodology 

This study analysed a massively large dataset of 41 runs (each course has run several times 

over the years) of 10 multidisciplinary courses, which fall under four main categories – 

computer science, literature, business and psychology. The FutureLearn courses were 

delivered by two universities in the United Kingdom (University of Warwick and Durham 

University), and Rwaq courses were delivered by well-known professors and teachers from 

all over the Arab world.  

The courses studied were three to ten weeks long and were delivered between 2013 and 2019. 

The structure of these courses was based on a weekly learning unit. Every learning week 

included ‘steps’ covering images, videos, articles and quizzes. Having joined a given course, 

(Experiment 1)

Prediction of weekly 
dropout (WP) and 

dropout of the whole 
course (CP).

(Experiment 2)

Weekly predictive 
model based on 

students jumping 
behaviours.

(Experiment 3)

Weekly predictive 
model based on the 
number of  accesses 

and time spent.
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learners can access these steps and optionally mark them as completed. These steps also 

allow comments, replies and likes on these comments from different users enrolled in the 

course. Moreover, quizzes can be frequently attempted until the correct answer is obtained.  

Table 7.1 Courses’ Summary 

 

 

 

 

 

 

 

 

Overall, we have acquired educational data that is not open to the public for 303,466 students, 

(shown above in Table 7.1). Enrolled refers to registered students, and accessed refers to 

students who have accessed the course at least once. It can be seen from the data that about 

half of enrolled students in MOOC do not access the course contents after the course has 

started. 

Based on the data, it can be observed that the Open Innovation course exhibited the highest 

rate of attrition at 54%, followed closely by Shakespeare and His World at 53.70% and The 

Mind Is Flat at 52%. The Leading and Managing People-Centred Change and Excel courses 

exhibited the lowest rates of student attrition, with figures of 37.0% and 43.30%, 

respectively. However, each course has several runs, as they are popular and held for more 

than one term. The Mind Is Flat is the largest of the courses in terms of enrolled students, 

student accesses, and number of runs. 

7.2.1 Data pre prossing  

To begin with, the raw dataset was refined, removing all students who enrolled but never 

accessed any material. We dealt with those learners separately, based on even earlier 

Course Enrolled Accessed %  Dropout Run 

Open Innovation in Business (OI) 6071 2792 54.0% 4 

Leading and Managing People-Centred Change  10417 6566 37.0% 3 

Babies in Mind (BIM) 48771 26175 46.3% 6 

Big Data (BD) 33427 16272 51.3% 3 

Shakespeare and His World (SHK) 63625 29432 53.7% 4 

Supply Chains (SUP) 5808 2912 49.9% 2 

The Mind is Flat (THM) 83543 39894 52.2% 7 

Java Programing (JAV) 22419 10862 51.6% 4 

Self Confidence (SLC) 14757 8242 44.1% 4 

Excel (EXC) 14628 8297 43.3% 4 

Total 303,466 151,444  41 
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parameters (such as the registration date, see  Chapter 5). Subsequently, there were 151,444 

remaining learners to be studied. The reason of selecting 80% completion as a sufficient level 

of completion (as opposed to, e.g., 100% completion) is because some course steps include 

optional reading lists. Moreover, the total number of those who completely accessed 100% 

of the steps was relatively low.  

Regarding early prediction, we have opted to start the prediction from the first week, as this 

methodology is one of the most difficult and least accurate approaches when compared with 

the current state of the art in the literature. Alternatively, a relative length (e.g., 1/n days of 

the total length of each course) could have been used. However, in practice, this tends to use 

later prediction data than our approach (e.g., 1/4th of a course is one week for Babies in Mind, 

but 2.5 weeks for Shakespeare and his Work). 

7.2.2 Prediction targets  

Although, about 3-15% of participants complete their courses in MOOC (Coffrin et al., 

2014), dropout is a gradual process. Therefore, we are interested in analysing and predicting 

those weekly dropouts in the first experiment. Figure 7.2 presents the number of weekly 

dropouts and persisting students over time. Clearly, participants are most likely to drop out 

in the first few weeks in all courses. Therefore, identifying those early dropouts is important 

for prediction. 

 

 

 

 

 

 

 

 

(a) BD 
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(b) SHK 
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(d) SUP 

 

(e) BIM 
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 (f) OI 

(g) LMPCC 

Figure 7.2 Remaining students over time in different courses (a-g) 
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In the current research, we prepared a dataset based on the WP technique to determine at-

risk students at an early stage. It is believed that predicting at-risk students from their 

previous weeks’ activities may improve the model’s prediction performance. Therefore, to 

address the first research question (RQ3.1), we implemented weekly dropouts and whole-

course dropout prediction models based on students’ activities. For the whole course dropout 

prediction (CP), the students were labelled as dropouts if they did not access 80% of the 

topics in the whole course. On the other hand, for the weekly dropout prediction (WP), we 

focussed only on students who would drop out in the near future (next week). Therefore, the 

students were labelled as dropouts if they did not access 80% of the topics in the next week. 

We compared our WP method (see equation 7.1) with the more traditional method of 

predicting student dropout from the whole course (the students who did not access 80% of 

the whole course) (see equation 7.2 ). 

𝑾𝑷(𝐬, 𝐰) = {
𝟏, 𝒊𝒇 𝑻𝑨𝑺(𝒔, 𝒘) < 𝑻𝑺(𝒘) ∗ 𝟎. 𝟖 

𝟎, 𝒓𝒆𝒔𝒕
 

𝑻𝑨𝑺(𝒔, 𝒘) =  ∑  𝑨𝑺(𝒔, 𝒘, 𝒋)

𝒋=𝟎..𝑻𝑺(𝐰)

  

𝑨𝑺(𝒔, 𝒘, 𝒋)  =  {
𝟏, 𝒊𝒇 𝒔𝒕𝒖𝒅𝒆𝒏𝒕 𝐬 𝒂𝒄𝒄𝒆𝒔𝒔𝒆𝒅 𝒔𝒕𝒆𝒑 𝒋 𝒊𝒏 𝒘𝒆𝒆𝒌 𝐰 

𝟎, 𝒓𝒆𝒔𝒕
  

Where s: student, TAS(s,w): total steps accessed by student s in week w; TS(w): total 

course steps available in week w; AS(s,w,j): step j accessed by a student. 

Where TAS(s,w)<= TS(w), as the maximum number of steps a student could access in 

week w are all available ones.  

(7.1 ) 

Example ofWP : 

Given a student s, and student’s activities from the current week (week w=1), predict if the same 

student s is a dropout in the following week (i.e., week w+1=2). 

 

 

𝑪𝑷(𝒔) = {
𝟏, 𝒊𝒇 𝑻𝑨𝑺𝑪(𝒔) < 𝑻𝑺𝑪 ∗ 𝟎. 𝟖 

𝟎, 𝒓𝒆𝒔𝒕
 

𝑇𝐴𝑆𝐶(𝒔) =  ∑  𝑨𝑺𝒄(𝒔, w, 𝒋)

𝒋=𝟎..𝑻𝑺𝑪

  

𝑨𝑺𝒄(𝒔, 𝒘, 𝒋)  =  {
𝟏, 𝒊𝒇 𝒔𝒕𝒖𝒅𝒆𝒏𝒕 𝒔 𝒂𝒄𝒄𝒆𝒔𝒔𝒆𝒅 𝒔𝒕𝒆𝒑 𝒋  

𝟎, 𝒓𝒆𝒔𝒕
 

Where s: student, TASC(s): total steps accessed by student s in the whole course; TSC: 

total course steps available; ASc(s,w,j): step j accessed by a student. 

 Where TASC(s) <= TSC, as the maximum number of steps a student could access are 

all available ones in the whole course.  

(7.2) 
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Example of CP: 

Given a student s, and student’s activities from the current week (week w=1) predict if the same 

student s is a dropout from the whole course ((i.e., accessed less than 80% of steps available in the 

whole course). 

 

7.2.3 Jumping behaviours 

To address the second research question (RQ3.2), we incorporated students’ learning 

patterns, specifically jumping behaviours, into the weekly predictive model by adding a new 

column that presented the number of jumping activities for each student each week. We will 

compare the performance of weekly dropout prediction (WP) and weekly dropout prediction 

with jumping activities (WPWJ) to demonstrate the effectiveness of jumping behaviours.   

7.2.4 Sentiment Analysis 

In this research, the power of Natural Language Processing (NLP) has been used to analyse 

student comments and use them as features to predict their dropout activities. Textblob tool 

has been employed to classify students' comments into three categories: positive, neutral and 

negative (see section 4.5.1).  

7.2.5 Time spent feature 

To address the third research question (RQ3.3), we employed Time Spent feature (TimeS) 

that reflects a calculated value (rather than a log parameter within the collected data set). 

This feature defines the difference between the access time to a certain step by a particular 

student and the point at which that student completes that step (see equation  7.3). 

TimeS(st, s)  =   CMT(st, s)  − ACT(st, s)  7.3 

Where s is student, TimeS(st,s): is the total time spent by a given student s in step st, 

CMT(st,s): is the first time stamp for a given student s accessing step st,  ACT(st,s): is the 

completed time stamp for a given student s completed step st (by clicking the button 

labelled ‘Mark as Completed’). 

7.2.6 Feature Selection 

The methods of feature extraction have been explained in section 4.5. Table 7.2 shows the 

set of features used in each experiment to train the dropout prediction model. 
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Table 7.2 Features used  for Dropout prediction 

Input Feature Experiment Number 

1.       Number of access steps per week  1,2,3 

2.       Number of correct answers per week  1,2 

3.       Number of wrong answers per week  1,2 

4.       Number of attempts per week  1,2 

5.       Number of comments per week  1,2 

6.       Number of likes received per week  1,2 

7.       Number of positive comments per week 1,2 

8.       Number of negative comments per week 1,2 

9.       Number of neutral comments per week 1,2 

10.   Number of replies posted per week  1,2 

11.   Number of replies received per week 1,2 

12.   Number of positive replies posted per week  1,2 

13.   Number of negative replies posted per week 1,2 

14.   Number of neutral replies posted per week 1,2 

15.   Number of positive replies received per week  1,2 

16.   Number of negative replies received per week 1,2 

17.   Number of neutral replies received per week 1,2 

18.   Number of Jumping activities per week 2 

19. Time spent  3 

7.2.7 Proposed Machine Learning Model 

We proposed several models to predict students’ future activities, such as next week's 

dropout. The first phase is to clean the datasets, by removing the blank values and missing 

data. To build our model, we employed several competing ML methods, as follows: Random 

Forest (RF) (Breiman, 2001), Gradient Boosting Machine (GBM), (Friedman, 2001), 

Adaptive Boosting (AdB) (Hastie et al., 2009), Logistic regression (LR) (Cokluk, 2010), K-

Nearest Neighbor (KNN) (Hart, 1968), Extra Tree (EX)(Geurts et al., 2006), Multi-layer 

perceptron (MLP) (Gardner and Dorling, 1998) and XGBoost (Chen and Guestrin, 2016).  

Please note that all these classification algorithms have been explained in section 4.8. 
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Still, the literature has reported that class imbalance can affect ML algorithms’ performance. 

Due to the massive different completers’ ratio to non-completers in our dataset, we set the 

class weight (Sozykin et al., 2018, Rasouli et al., 2022) to the inverse of the frequency of 

different classes. 

As we have used a massive data set for different courses, we have prepared the training and 

testing sets based on the last Run of the course. For example, in The Mind Is Flat course, we 

extracted data from several runs (1-6), with students' activities between 2013 to 2016, to train 

our models, and to test the model, we used a new data set from a different Run (Run 7) that 

contains students’ activities in 2017 - see Figure 7.3- which is similar to some extent to 

Transfer learning models (Getoor, 2020, Bote-Lorenzo, 2018). 

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 

                           Training set                                         Testing set 

Figure 7.3 The Mind Is Flat course training and testing sets 

The current research used the F1 score to measure the performance of the models as it 

depends on precision and recall; this metric is widely used to evaluate the model's 

performance when dealing with an imbalanced dataset, by preventing the majority of 

negative samples from biasing the result (Dutta et al., 2018, Kodiyan et al., 2017). 

7.3  Results and Discussion 

This section shows the performance results generated by our eight chosen ML algorithms. 

As mentioned before, we examine students' learning patterns and accessing time for the 

coming week's dropout prediction. Figure 7.4 shows that participants are more likely to 

complete the weekly learning activities at the beginning and drop out as time has passed. 

Around 7500 students have completed the first week of the Big Data course. In contrast, only 

2223 completed week 5. Therefore, weekly prediction is a reasonable approach to 

determining at-risk students at an early stage.  
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Figure 7.4 Number of completers students in each week (Big Data course) 

7.3.1 Results of Weekly Prediction  

We selected eight of the most successful methods for classification problems, applying them 

in the domain of learning analytics in general and on completion prediction in particular. 

Another candidate was SVM (Mahesh, 2020), which was less successful. Table 7.3 shows 

the models’ performances for both CP (if the learner did not access 80% of the topics in the 

whole course) and WP (if the learner did not access 80% of the topics in the next week). In 

this experiment, we used students’ activities in the first week to predict students’ dropping 

out. The classification performance was evaluated using the F1 score. 

 In general, the most robust model is RF, as it outperforms in four courses in WP: ‘SLC, 

‘BIM, ‘BD, and ‘SUP. The results show that all eight models performed better with weekly 

predictions (WP ) using the same input features and achieved higher accuracy.  

It is worth mentioning that the grey highlighted values indicate a higher F1 score between  

CP and WP (see Table 7.3). In addition, the table shows the prediction results differences 

(∆) between the two methods.  
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Table 7.3 Results (F1 score ) for prediction models in week 1 for both “weekly dropout prediction” 

and “dropout from the whole course” 

 

C
o
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rses 

Prediction 

Method 

 Testing F1-Score Accuracy (F1) 

 AdB ∆ EX ∆ GB ∆ KNN ∆ LR ∆ MLP ∆ RF ∆ XGB ∆ 
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 WP 77.19% 77.59% 78.63% 69.27% 77.82% 70.16% 78.66% 78.60% 

In answering RQ3.1, the results clearly show how the WP method contributed to increasing 

the F1 score of the classifiers’ performance from an early stage (week 1). The WP technique 

generally performed better than the CP method in all courses. One reason may be that the 

students who drop out in later weeks behave similarly to completer students in the first week. 
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However, this is not a problem with the WP method, as the model here only predicts dropout 

students in the upcoming week (week 2). We concluded that the early prediction model 

should focus only on students who drop out soon. Therefore beyond this section, we will use 

only the WP method to predict dropout students. 

Next, we present the prediction results for more weeks. Figure 7.5 (a–e) shows the most 

robust prediction models of WP and CP. It can be seen that the F1 score of CP increases in 

the later weeks of the course.  

a) SHK 

 

b) TMF 

 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9

CP 57.18% 70.92% 77.32% 84.25% 87.82% 0.910248 0.940789 0.981469 0.994444

WP 82.87% 92.33% 91.49% 94.40% 94.38% 0.950877 0.942295 0.951403 0.921331
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RF

RF
GB

RF

AdB
GB XGB

LR
AdB

GB

GB

AdB

AdB

AdB AdB

AdB

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

CP WP

Week 1 Week 2 Week 3 Week 4 Week 5
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GBAdB
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c) BIM 

 

d) EXC 

 

e) JAV 

 

Figure 7.5 weekly prediction vs entire course prediction per week with the best-performing model 

Week 1 Week 2 Week 3

CP 55.53% 85.01% 94.77%

WP 67.92% 87.09% 86.39%
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 Week 1 Week 2 Week 3 Week 4 Week 5
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7.3.2 Weekly Prediction with Jumping Activities 

Building on the previous experiment, this section compares the performance of weekly 

dropout prediction (WP) and weekly dropout prediction with jumping activities (WPWJ). 

In answering RQ3.2, we verified the improved prediction performance after considering 

learners’ jumping behaviour in 10 courses. These results are supported by a strong inter-

model consensus, with the prediction performance of 71 out of 80 models increasing between 

0.07% and 15.98%. For example, after incorporating the jumping learning pattern as a new 

feature into the dataset, the F1 score increased by 12.25%, from 78.99% to 90.91%, in the 

RF model in the Supply Chains (SUP) course. In the Shakespeare and His World (SHK) 

course, accuracy improved by nearly 1.55% to 83.72% for the XGB classifier. This weekly 

dropout prediction improvement was even more generalised in four courses, where all eight 

models implemented were more insightful, and the highest F1 score was 90.91% after 

considering the jumping learning behaviours. Table 7.4 shows the prediction results based 

on the first-week activities. In light of this analysis, module instructors could implement 

early interventions, judged on a weekly basis, to improve students’ engagement at risk for 

the upcoming week’s dropout. 

 

Table 7.4 Results (F1) of prediction models in week 1 for both weekly dropout prediction (WP) and 

weekly dropout prediction with jumping activities (WPWJ) 
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Following this, we analysed the most important features to predict students who did not 

access 80% of the topics in the second week. Figure 7.6 shows the feature importance (Gini 

importance) (Dorfman, 1979) for the most robust model in each course. We present the seven 

most important features. 

From the figure, it can be seen that the number of jumping activities feature is ranked as 

number one in terms of its importance in predicting student dropout in three courses (SLC, 

EXC and SUP) and the second most important feature in four courses (LMPCC, TMF, BD 

and SHK). 
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a) BD 

 

b) SHK 

 

c) TMF 

 

d) SUP 

 

e) BIM 

 

f) OI 
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g) LMPCC 

 

h) EXC 

 

i) JAV 

 

j) SLC 

Figure 7.6 Importance of predictive features (a-j) 

 

7.3.3 Two easily obtainable features 

One of the goals of this research was to create a simple model. From the data in Figure 7.6, 

it is apparent that the number of accesses feature is considered significant, as it ranked at the 

top among the six courses. Therefore, to answer RQ3.3, we will investigate students’ access 

features and the time spent on each access. In addition, we focussed on specific features that 

could be used for various MOOCs – this was done to enhance the generalisation and 

applicability of the findings for the providers. 

Therefore, we first applied all the features to predict dropout students in the second week 

(see Figure 7.7 Gini importance for five courses. Due to space limitations, Appendix C 
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presents the other courses). In this experiment, we included time spent as a feature that 

represents the total time spent completing each step (see Section 7.2.5).  

We concluded that time spent and number of accesses are vital features not only because they 

are easy to obtain for most courses, but also because the results show that time spent in each 

step plays a critical role in predicting student completion. Moreover, the number of accesses 

was, in general, an essential feature of all the courses. Furthermore, it should be taken into 

consideration that some courses do not have quizzes every week, and only 5% to 10% of 

students posted comments in MOOC discussion forums (Wen et al., 2014a); in this case, the 

wrong answers, correct answers and all the features related to students’ comments did not 

play an important role in predicting student completion in those courses (see Big Data (a) 

and Self Confidence (b) courses in Figure 7.7). Finally, all features in Figure 7.7 that begin 

with “week_1_steps_” represent the total time spent by a given student in that step.  

a) Big data 
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b) SLC 

 

c) Java 
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d)  LMPCC 

 

e)   EXL 

Figure 7.7 Gini-importance for five courses (a-e) 
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The figure below (Figure 7.8) illustrates the mean of the time spent by completers and non-

completers on the first step of the first week across all ten courses. Results show that non-

completers spent 39% more time than completers in the Java course and 21% more time in   

EXC course. On the other hand, the completers spent between 4% to 25% more time than 

non-completers in the first step of eight courses. 

 

 Figure 7.8 Time spent (in second) on the first step by the completers and non-completers. 

Table 7.5 below shows the results for 10 courses. The prediction F1 score varied between 

69% and 87%. We can see that the best-performing course across all models applied was the 

Self-Confidence (SLC) course. The worst-performing course, on the other hand, ‘Babies in 

Mind’, was the shortest (4 weeks). In general, the most robust model is random forest (RF), 

as it outperforms seven out of 10 courses. 

Table 7.5 Prediction performance using the time spent and number of access  

 

AdB EX GB KNN LR RF XGB 

SLC 87.44% 81.32% 87.31% 85.15% 82.86% 87.44% 87.44% 

EXC 87.78% 86.81% 89.10% 75.02% 83.48% 89.21% 89.13% 

JAV 68.84% 69.70% 71.18% 55.12% 62.97% 73.08% 70.12% 
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OI 82.10% 81.36% 80.70% 61.45% 81.17% 82.76% 77.93% 

IMPCC 80.54% 80.23% 78.88% 60.11% 77.05% 80.62% 76.97% 

BIM 68.71% 68.49% 64.36% 41.61% 66.86% 69.31% 63.88% 

BD 78.45% 77.62% 77.98% 58.17% 75.07% 79.07% 77.36% 

SHK 81.68% 80.44% 81.92% 66.11% 78.04% 81.68% 81.76% 

TMF 80.51% 79.03% 79.90% 60.93% 76.00% 80.51% 80.63% 

SUP 79.09% 75.95% 77.93% 62.50% 73.25% 78.76% 74.64% 

The method of using only time spent and the number of accesses features showed 

competitive results compared to the WP method but utilised far fewer indicators to achieve 

success much earlier. This is due to the careful selection process of the two features, which 

are both generic and informative. One important reason the two early, first-week features 

were enough for such good prediction is the fine granularity of the mapping of these features 

– for each ‘step’ (or piece of content), we could compute both the number of accesses as 

well as the time spent. Thus, the application of the features for the first week transformed 

into a multitude of features, which would explain the increased prediction power. 

Nevertheless, this method is widely applicable and does not detract from the generalisability 

of our findings.  

7.3.4 Early prediction performance  

In the previous three experiments, based on the first week of the course, we managed to 

predict only what the outcome would look like. For some courses, this represented a 

prediction based on a quarter of the course (e.g., for ‘Babies in Mind’). For others, the 

prediction was based on one-tenth of the course data, which was a short time to draw 

conclusions.  

A few further important remarks need to be considered. First, data pre-processing is vital. 

For such extremely skewed datasets as encountered when studying MOOC completion, 

where averages of 10% completion of the whole course are the norm, prediction can ‘cheat’ 
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easily: for example, by just predicting that all students fail, we would obtain a 90% 

completion rate. To avoid such blatant bias (e.g. using overall average accuracy), we used 

the F1 score, a commonly used metric for the binary classification of an unbalanced dataset.  

As shown above, the difficulty in the problem we were tackling was the prediction of the 

completers; thus, it would be easy to hide the poor prediction in this ‘hard’ category by using 

overall accuracy.  
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Epilogue 

This chapter presents three experiments to predict dropout students from an early stage, 

starting in week one. The first experiment compared the prediction of weekly dropouts and 

whole-course dropouts. The second experiment was to build a dropout predictive model 

based on students’ jumping behaviours. Finally, the third experiment was to predict dropout 

students from an early stage based on two easily obtainable features (the number of accesses 

and the time spent). 

In the next chapter, we propose a concrete mapping between the tracking parameters and 

four of the most frequently used theories related to students’ engagement in digital systems. 
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Chapter 8 : The Engage Taxonomy: 

SDT-based measurable Engage-ment 

Indicators for MOOCs and their 

Evaluation  

Prologue 

This chapter shows how Self Determination Theory (SDT) can be mapped onto concrete 

features extracted from tracking student behaviour on MOOCs. We map the dimensions of 

Autonomy, Relatedness and Competence, leading to methods to characterise engaged and 

disengaged MOOC student behaviours, and exploring what triggers and promotes MOOC 

students’ interest and engagement. 

8.1  Introduction 

Recently, the dynamics of engagement and motivation in MOOC systems has been especially 

targeted (Ferguson et al., 2015). However, to the best of our knowledge, there are no works 

to date, which systematically employ motivational theories, mapping online student 

behaviour onto them, to analyse the drives and triggers promoting student engagement. 

Moreover, in the past, engagement theories have been created often based on theoretical 

findings from psychology, or small-scale experiments (Moreno-Murcia et al., 2013, Shen et 

al., 2009, Langdon et al., 2014). We advocate that, in addition, it is vital to provide numerical, 

tested engagement measures, for direct application in MOOCs and numerical comparisons. 

We consider the advent of ‘big data’ as a chance to evaluate these theories at scale. 

To address these gaps, we use raw multimodal, multi-dimensional data from comprehensive 

tracking of student behaviour, as well as aggregate features - such as those extracted from 

natural language processing (NLP) - to cluster students, then analysing the engagement 

parameters of these clusters, based on solid motivational theories - starting with one of the 

most well-known, cited and used one, especially in the education domain - the Self-
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Determination Theory (SDT ) (Zhou, 2016, Duncan et al., 2020, Deci and Ryan, 2013). Many 

previous works focus only on some particular aspects of the student behaviour (Cristea, 2018, 

Shi and Cristea, 2018a). Instead, here, we triangulate multimodal tracking data at various 

granularity levels - temporal mode (time-stamp, day, week, course), action mode (where we 

compute frequencies of student actions for a given time interval), natural language mode 

(where we analyse the language exchange content, including its sentiment mode, etc.) - 

resulting in 17 indicators. To obtain significant, generalisable results, we perform this 

engagement analysis on a large longitudinal dataset (6 MOOC courses with 26 runs, 

spanning 2013-2018, delivering to 218,235 students).  

This research targets the following research questions: 

RQ4.1: Can engagement theories help in identifying student success on MOOCs? 

RQ4.2: How are engagement theories applicable in MOOCs? 

8.2  Engage Taxonomy: Mapping of MOOC indicators onto  
engagement theories  

8.2.1 Extracting raw and computing aggregated MOOC 

indicators 

As we have observed, most of the motivational theories discussed in Section 2.5 have 

relatively similar concerns about what triggers student engagement and motivation. The 

challenge is, then, to map their respective engagement concepts onto MOOC behaviour, 

available as tracked data, to extract concrete measures that address them. Thus, our next step 

is to have a collection of potentially relevant data that can be tracked from MOOCs in 

general. The point being that the more available the data is across different MOOC types and 

platforms, the more likely it is that this process is generalisable. Most MOOCs track access 

to the material, answers to any quizzes, and store chats of their students. Based on indicators 

used by prior MOOC research for clustering (Oyelade et al., 2010, Rana and Garg, 2016), 

prediction (Ding, 2019a, Gitinabard, 2018, Qiu, 2019, Mubarak, 2020, Doleck, 2020), data 

analytics (Moreno-Marcos et al., 2020, Shorfuzzaman et al., 2019), we gather the following 

indicators: 
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1. Number of accesses steps 

per week  

7. Number of positive comments 

per week 

13Number of negative replies posted 

per week 

2. Number of correct 

answers per week  

8. Number of negative comments 

per week 

14.Number of neutral replies posted per 

week 

3. Number of wrong 

answers per week  

9. Number of neutral comments 

per week 

15. Number of positive replies received 

per week  

4. Number of attempts per 

week  

10Number of replies posted per 

week  

16. Number of negative replies received 

per week 

5. Number of comments per 

week  

11. Number of replies received 

per week 

17. Number of neutral replies received 

per week 

6. Number of likes received 

per week  

12. Number of positive replies 

posted per week  

 

Please note that feature extraction has been introduced in section 4.5.2. 

8.2.2 Mapping Indicators to Engagement Theories 

Next, the mapping between the engagement and motivation concepts and the potential 

indicators within MOOCs was done independently by three experts (see details on the 

procedure in Section 8.3.2). Table 8.1 presents the mapping performed by our experts 

between the engagement and motivation concepts and the potential indicators within 

MOOCs that can be tracked, resulting in the Engage Taxonomy. 

 As can be seen from the table, due to the generic nature of the MOOCs indicators selected, 

our Engage Taxonomy is available to the research community for further exploitation of 

other motivational theories. In fact, Table 8.1 shows mapping onto four popular motivational 

theories, SDT, Drive, Engagement Theory and Process of Engagement. Thus, this research 

can be used to showcase how to tackle this exploitation and continue using both SDT and 

the other motivational theories. 

Analysing the expert mapping, for example, experts found that MOOC learners’ 

independent, voluntary activities, such as #Accessed Steps, could be related to their 

‘Autonomy’ (AUT). Any activity showcasing users’ skills, such as #Correct Answers, could 

be related to the ‘Competence’ (COM) construct in the SDT theory, and the ‘Mastery’ (MAS) 

construct in the Drive theory, respectively. User's skills in MOOCs could be tracked by 

storing numbers - such as the number of quizzes answered. Similarly, the users’ social 

interactions address the ‘Relate’ (REL) concept in the Engagement Theory, the ‘Relatedness’ 

(REL) concept in SDT and other social attributes within the ‘Period of Engagement’ (PER); 
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this may be represented in MOOCs by indicators, such as the number of # Main Comments 

posted and interactions within those comments, or replies and likes.  

Please note that similar constructs, such as AUT in SDT and Drive, have a similar mapping. 

‘Create’ (CRE) in the Engagement Theory is somewhat related to autonomy, but it is more 

concerned with the process of creating a students’ own path, or, even more interestingly, 

creating new information via comments. On the other hand, none of the indicators were 

considered appropriate for the ‘Point of Engagement’ (POI). All constructs regarding 

comments and replies were considered to be a good mapping for ‘Relatedness’ (REL) in both 

SDT and Engagement Theory. However, ‘Competence’ (COM) in SDT was only showcased 

in Quiz by # Correct Answers, # Wrong Answers, Comments by the #Likes Received and in 

Replies by positive replies posted or received – although the #Replies Posted also was 

considered a measure of competence, possibly as the ones feeling ready to answer other 

learners’ questions would show a degree of competence.  

Still, this research proposed mapping (according to our experts), whilst potentially of use to 

the research community, evaluated in various ways in the rest of the research and showed to 

be performant, is not claiming to be optimal, but can be further improved upon. Moreover, 

the process of obtaining and testing it are, we believe just as useful as the final product.  

Next, we explain why and how we select SDT, for the evaluation of the expert mapping. 
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Table 8.1 Engage Taxonomy: Motivational Theories Mapped onto students’ Activities (indicators) in 

MOOCs 

8.2.3 SDT as illustrator of the Engage Taxonomy 

We only work with Self-Determination Theory (SDT) (Deci and Ryan, 2013), as it is 

arguably the most well-known engagement theory, and is well-supported by socio-

psychological literature (Gerber and Anaki, 2021). SDT is a macro-theory linking 

personality, human motivation, and optimal functioning. It stems from research on two main 

 

Theories: 
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types of motivation —intrinsic and extrinsic— that are further thought to shape human 

behaviour (Deci and Ryan, 2013). SDT posits that humans become self-determined when 

their needs for Competence, Relatedness and Autonomy are fulfilled. Self-determined 

individuals believe they are in control of their lives, take responsibility for their behaviours, 

are self-motivated and determine their actions based on internal values and goals. SDT has 

led to various sub-theories, such as organismic integration theory and causality orientation 

(Hagger and Hamilton, 2021). In education, students are more likely to learn and succeed 

when they are intrinsically motivated by their need for Competence, than when extrinsically 

motivated (Standage et al., 2005). Studies within SDT provide strong psychological evidence 

to support a more interactive, multidimensional picture of human nature in various 

sociocultural contexts (Chirkov, 2009). SDT has been used in musical education (Evans, 

2015), physical education (Vasconcellos et al., 2020), science education (Lavigne et al., 

2007), medical education, amongst others. It is worth mentioning that SDT is further 

connected with the self-regulated learning (Littlejohn et al., 2016) method – which is the 

predominant approach in MOOCs, and thus we consider SDT an excellent choice of a first 

analysis of motivational theory application and testing for MOOCs. 

Whilst SDT is, as mentioned, well-known and frequently applied. Nevertheless, SDT and 

other motivational theories have not yet been evaluated on large-scale data. This opportunity 

is given to us in the context of online learning and MOOCs. Finding out to what extent SDT 

is really applicable is thus a useful endeavour. Hence, SDT represents a good starting point 

to experiment with mapping MOOC features onto motivational theories. 

In this rsearch, we propose and use early measurable indicators of engagement (the Engage 

Taxonomy for SDT) from the first week activities (see Sections 8.2.2), as mapped by experts 

(see Section 8.3.2), and apply these onto the concrete data from our MOOCs to all student 

clusters. These early behavioural clusters are analysed in terms of their semantics derived 

from SDT, on the axes of Autonomy, Competence and Relatedness. The idea being that, if 

we find semantically relevant clusters, build based on SDT variables, and then further find 

that they are correlated to the success parameters, this confirms that the motivational theory-

rooted methodology can be applied to characterise students’ success. After performing the 

SDT mapping, we need to establish how to measure its success. This is further explained in 

Section 8.2.5. Next, we tackle how to compute the engagement measures. 
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8.2.4 Engagement Measures: Computing SDT aggregate 

constructs 

As mentioned, we proceed in our further analysis with the SDT model and mapping. Thus, 

we analyse the following SDT-related constructs, proposing hereby also numerical ways of 

computing them: 

Autonomy (per week): we created this aggregate construct, based on a generalised version of 

the data in Table 8.1, computed as a normalised value, Aut[0,1], as follows:  

𝑨𝒖𝒕(𝒔, 𝒘) =  

∑ (𝒘𝒆𝒄 ∗
𝒄𝒘

𝒔

𝒎𝒂𝒙𝒔𝒔𝐒(𝐰) 𝒄𝒘
𝒔𝒔)𝒘

𝒄𝑪𝑨𝒖𝒕
 

∑  𝒘
𝒄𝑪𝑨𝒖𝒕

 
(8.1) 

Here 𝐶𝐴𝑢𝑡 are all constructs (extracted from tracking data) usable for establishing the 

Autonomy of students; where 𝑐𝑤
𝑠 is the value of construct c𝐶𝐴𝑢𝑡for student sS(w) in week 

w, normalised by dividing it by the maximum of all values of c in that week w, for all students 

ssS(w) in week w; 𝑤𝑒𝑐 is the weight of construct c in the computation of the Autonomy, 

and should be a value between [0,1]; this weight allows to have different constructs to 

influence the result in a different way; currently, we used 𝑤𝑒𝑐 = 1, although further 

experimentation could render more exact results. Finally, to ensure Aut(s,w) [0,1], we 

normalise the result by dividing it by the number of constructs in 𝐶𝐴𝑢𝑡. E.g., if in week w1 

there are 6 steps in total, 3 quizzes, and students have posted together 5 comments (out of 

which, 2 are positive, 2 neutral and 1 negative), and there have been in total 2 replies; a 

student s1 has accessed 3 out of the max 6 steps, answered 1 of the 3 quizzes, and, for 

simplicity, 0 out of 5 comments in week w1, as ∑  𝑤
𝑐𝐶𝐴𝑢𝑡

= 7 as we have 7 features on 

Autonomy for SDT in Table 8.1. Then Aut(s1,w1) = (3/6+1/3+0/5+0/2+0/1+0/2+0/1)/7= 

0.119. A student s2 performing the maximum number of activities related to autonomy 

constructs would have a total of Aut(s2,w1) = (6/6+3/3+5/5+2/2+1/1+2/2+1/1)/7= 1, 

representing the maximum value of the autonomy computable in that week. 

Competence (per week): is also our created aggregate construct, on Table 8.1, defined 

similarly to the Autonomy construct above (Eq. (8.1)), but summing only over 𝐶𝐶𝑜𝑚, the 

Competence-related constructs (formed of tracked data). For example, if a student s3 has 1 
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correct answer out of a maximum of 3, 2 wrong answers out of 3, 1 like received out of 2, 2 

replies posted out of 6, 1 positive reply posted out of 3 and 2 positive replies received out of 

a maximum 2, in week w1, as ∑  𝑤
𝑐𝐶𝑐𝑜𝑚

= 6, as we have 6 features on competence for SDT 

in Table 8.1, 𝐶𝑜𝑚(s3,w1) = (1/3+2/3+1/2+2/6+1/3+2/2)/6= 0.53. 

𝑪𝒐𝒎(𝒔, 𝒘) =  

∑ (𝒘𝒆𝒄 ∗
𝒄𝒘

𝒔

𝒎𝒂𝒙𝒔𝒔𝐒(𝐰) 𝒄𝒘
𝒔𝒔)𝒘

𝒄𝑪𝑪𝒐𝒎
 

∑  𝒘
𝒄𝑪𝑪𝒐𝒎

 

(8.2) 

To further illustrate the usefulness of the weights, it is possible that, instead of using the same 

weight overall, we would consider in a further iteration of this research (not further explored 

here beyond this section) that, for the Competence construct, quiz results are much more 

important than comments and replies. Thus, with the rest of the data as above, instead of 

𝑤𝑒𝑐 = 1 for all, we could have :  

𝒘𝒆# 𝑳𝒊𝒌𝒆 𝑹𝒆𝒄𝒆𝒊𝒗𝒆𝒅 =𝒘𝒆# 𝑹𝒆𝒑𝒍𝒊𝒆𝒔 𝑷𝒐𝒔𝒕𝒆𝒅 = 𝒘𝒆# 𝐏𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑹𝒆𝒑𝒍𝒊𝒆𝒔 𝒑𝒐𝒔𝒕𝒆𝒅 = 𝒘𝒆# 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒆𝒑𝒍𝒊𝒆𝒔 𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒅 =0.5; 

𝒘𝒆# 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑨𝒏𝒔𝒘𝒆𝒓𝒔 = 𝒘𝒆# 𝑾𝒓𝒐𝒏𝒈 𝑨𝒏𝒔𝒘𝒆𝒓𝒔 = 𝟏 

Thus, if student s4 would have the maximum number of correct answers and no other 

competence-related accomplishments in week w1, whereas student s5 would have the 

maximum number of comments liked during the same week but no other accomplishments, 

in this case, we would have 𝐶𝑜𝑚(𝑠4, 𝑤1) > Com(s5, w1), as: 

𝐶𝑜𝑚(𝑠4, 𝑤1) =
(

3

3
)∗1+(

0

3
)∗1+(

0

2
)∗.5+(

0

6
)∗.5+ (

0

3
)∗.5+(

0

2
)∗.5

6
= 0.167 > Com(s5, w1) = 

(
0

3
)∗1+(

0

3
)∗1+(

2

2
)∗.5+(

0

6
)∗.5+ (

0

3
)∗.5+(

0

2
)∗.5

6
= 0.083 

Relatedness (per week): is our final aggregate construct, again based on Table 8.1, and 

defined similarly to the Autonomy and Competence constructs (Eq. (8.1) (8.2)), summing 

here over 𝐶𝑅𝑒𝑙, the Relatedness-related constructs (formed of tracked data): 

𝑹𝒆𝒍(𝒔, 𝒘) =  

∑ (𝒘𝒆𝒄 ∗
𝒄𝒘

𝒔

𝒎𝒂𝒙𝒔𝒔𝐒(𝐰) 𝒄𝒘
𝒔𝒔)𝒘

𝒄𝑪𝑹𝒆𝒍
 

∑  𝒘
𝒄𝑪𝑹𝒆𝒍

 

(8.3) 
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From the generic way we have created these formulas, one could see that they are 

immediately applicable onto the other theoretical engagement and motivation approaches 

analysed in Table 3.3, such as Drive, Engagement Theory, and Process of Engagement. 

Please note that we do not claim this model to be optimal; it is, however, a simple one, thus 

an Occam-razor based approach. 

The overall connection between the definitions above, the mapping in Section 8.2.2 (Table 

8.1) and the indicators in Section 8.2.1 are further shown in Figure 8.1. For instance, raw 

data, such as course contents, maps, via pre-processed data #Accessed_steps (number of 

steps accessed by the current student), to the construct on Autonomy in the SDT mapping. 

Similarly mapped to Autonomy are #Attempts to answer questions, #Main Comments 

posted, etc.). Based on this mapping, the Aut(s,w) measurable, SDT-related construct, is 

defined. Thus, Figure 8.1 illustrates how we can obtain measurable motivational theory 

constructs from raw student tracking data. It shows the sequence of operations for extracting 

these features and turning them into the input data used for clustering and machine learning. 

Figure 8.1 SDT Theory, mapped to students’ activities in MOOCs 
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8.2.5 Computing SDT Success 

Thus, besides completion, it is useful to look at other measures of success. We do this here 

in two ways: one, by using a new, rigorous methodological approach based on engagement 

and motivation theory - and mapping SDT constructs onto track data (raw or derived) of the 

students, from 17 features, including lower used features, such as sentiment-related ones (as 

described in Sections 8.2.1,8.2.2). The second way is in measuring the success in terms of 

the other ways a student can interact with a MOOCs, beside reading (and completing) pages: 

by answering quizzes and posting comments. Thus, we measure the student's success 

additionally via the Correct Answer ratio and the Reply ratio from week 2 to the last week 

(Figure 8.2 and see also Section 8.3.5). In terms of completion itself, various studies 

proposed different formulas to estimate the completion (Sunar, 2017). We use here the 80% 

threshold to define Active students in the following week as in (see Section 8.3.6).  

We use the measures of student success, as defined in Section 8.3.4, to evaluate the clustering 

(as explained in Section 8.3.3) and ML prediction based on the proposed SDT theory and the 

Engage Taxonomy, as illustrated in Section 8.3.6. Figure 8.2 shows the input values (SDT 

elements from Students’ activities in the first week) and output results from both the Success 

measures from clusters analysis and Active students prediction from Machine learning. 

                   Input                                                                                 Output  

Figure 8.2: SDT constructs versus success measures 

Clusters 
Analysis 
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8.3  Methodology   

8.3.1 Data Preparation and Pre-processing 

We started with 6 courses with 26 runs with 2038 steps in total (an average of around 78.3 

steps per run), and 136 quizzes (on average, about 5.2 quizzes per run). The courses are: 

Course 1, ‘Ope n Innovation in Business (OI)’; Course 2, ‘Leading and Managing People-

Centred Change (LMPCC)’; Course 3, ‘Babies in Mind (BIM)’; Course 4, ' Shakespeare 

(SHK)’; Course 5, ‘Supply Chains (SUP)’; Course 6, ‘The Mind is Flat (THM)’ as shown in 

Table 8.2.  

Table 8.2 FutureLearn courses’ summary 

Originally, 218,235 students enrolled on these courses. The first step of the data preparation 

refined the raw data, by removing all students who had enrolled on one of the courses, but 

never viewed (accessed) any of the materials (steps). These students clearly never engaged 

and thus are irrelevant for our online course behaviour analysis with track data. As a result, 

we were left with analysing 107,771 students, which is still a large number, to extract 

behavioural patterns from (tracking data as above).  

8.3.2 Expert Mapping  

To map the features extracted (indicators) from MOOCs onto the set of chosen popular 

Engagement Theories and, importantly for this study, the SDT theory, we used expert 

labelling. We put forward some requirements to ensure the annotation quality. Therefore, we 

selected annotators who held at least a PhD degree and were experts in the domain of learning 

analytics (LA). The mapping between the engagement and motivation concepts and the 

Course Enrolled Accessed Run 

Open Innovation in Business (OI) 6071 2792 4 

Leading and Managing People-Centred Change 

(LMPCC) 

10417 6566 3 

Babies in Mind (BIM) 48771 26175 6 

Shakespeare (SHK) 63625 29432 4 

Supply Chains (SUP) 5808 2912 2 

The Mind is Flat (THM) 83543 39894 7 

Total 218235 107,771 26 
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potential indicators within MOOCs was done independently by the experts (two professors 

and one Post-doctoral research assistant). In terms of our experts being LA experts, this was 

considered necessary, as LA experts understand the need for labelling data for any kind of 

neural network-based automatic machine learning. Additionally, they also had the 

educational expertise to understand what motivates students (as per the target of this study). 

In terms of their knowledge of the purpose of the study, the mapping was done independently 

of, and at a stage prior to the evaluation study. To further increase the quality of the 

categorical labelling, in the case where two experts disagreed on mapping a specific 

behaviour onto the theory's constructs, the mapping from the third expert was considered to 

determine the decision. Moreover, the inter-rater Fleiss’ Kappa agreement test has been used 

to assess the inter-rater agreement between experts' mapping. The test resulted in k = 0.72, 

which is interpreted as a substantial agreement (Fleiss et al., 1981). The Engage Taxonomy 

constructed thus is described in detail in Section 8.2. Please note that, beside the efforts taken 

as described here to ensure the quality of the process, further validation of the experts’ 

mapping is indirectly provided by measuring the success of students based on their SDT 

values (as further explained in Sections 8.3.4, 8.3.5 and 8.3.6, and evaluated in Sections 8.4.2 

and 8.4.3). Additionally, the stronger, established and effective ‘gold standard’ measurement 

of criterion validity (Amirkhan, 1994) is provided by calculating the correlation between the 

results of the mapping and the results of the criterion measurement (here, the success 

measurement, as introduced in Section 8.3.4 and with results in Sections 8.4.2). The usage 

of the resulting 3 SDT constructs in practice for a prediction of active students in the 

following week provides further ‘in-practice’ proof of the usefulness of the SDT mapping 

(see  Figure 8.2 and Sections 8.3.6 and 8.4.3). However, whilst we took great care with all 

steps in our and innovative process of evaluating motivational theories via data-driven 

approaches, and have had promising results (see Section 8.4), we do not claim each step is 

optimal; indeed, this process illustrated here is provided to the research community to further 

improve upon and explore, as also discussed in Section 8.5.  
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8.3.3 Clustering Students  

As we wish to explore commonalities of students, Clustering seems like the most appropriate 

technique to employ first (Rana and Garg, 2016). In terms of student clustering, we analyse 

data at the level of individual students and  all students for all runs of a course.  

We have applied  K-means clustering, K-Means clustering technique is an unsupervised 

machine learning algorithm and one of the most popular clustering techniques in data 

analytics (Xu and Wunsch, 2005). Previous research used this technique for related tasks - 

e.g., (Moreno-Marcos, 2018a) used sentiment analysis and k-means clustering to analyse 

discussion patterns on FutureLearn. K-means produces a pre-specified number k of clusters. 

To find the optimal k, we used the means silhouette coefficient, i.e., running clustering on a 

range of values of k (2 ~ 10, in our case). Thus, we used it to partition students based on their 

behaviour. 

We use raw data and aggregate data, i.e. data composed from different raw data sources. 

We use data generated with various techniques: e.g., generated by 'simple' tracking of 

students, by applying motivational theories, by applying sentiment analysis on student 

information exchange, etc. Considering the multiple sources and complexity of the data 

processed, and to limit it somewhat for the current research, we have decided to perform a 

first aggregation step based on the weekly learning unit, which is used as a synchronisation 

point in instructor-led FutureLearn courses. 

This approach further allows for early prediction (see Section 8.3.6) – starting by analysing 

clustering in week 1. Additionally, we ensure that tracking data covers all aspects of the 

motivational theories involved (see Section 8.2) - especially the SDT theory, which is studied 

here, as being the most widely used one (see Section 8.2.3).  

8.3.4 Student Success Measure Definitions 

Although a considerable amount of literature has been published on student success in a 

MOOC, there is no formal definition of student success. The concept of MOOC success is 

multidimensional and the researchers in the domain have been using a variety of definitions 

such as Course completion, Pass/Fail, certificate earners and final exam grade (Gardner and 

Brooks, 2018). 
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To measure student success in MOOCs, in the clusters we identify as explained in Section 

8.3.3, we use an extended set of parameters (besides the 'basic' Completion ratio), as 

proposed by (Shi et al., 2020) (as explained at a generic level in Section 8.2.5). 

• Completion ratio: this is the most often used success measure in learning in general 

and in online learning in particular: did the student complete the course? Here, 

instead of obtaining a binary value based on various criteria, we instead use the 

actual (normalised) proportion as a target; we normalised the Completion rate for 

each student by dividing the number of completed steps by the total course steps 

available, which had the effect of scaling all scores between 0 and 1.  

• Correct Answer ratio: often, completion is not sufficient for estimating the success 

of a student. (Shi et al., 2020) have thus proposed to use other measures on a different 

'axis', that of quizzes, and to explore how many answers have been correctly 

answered by a student, from all answers delivered by that student during the same 

period.  

• Reply ratio: similarly, the social activity of a student may be considered another type 

of measure of success, which is here represented by the number of replies a student 

receives for their comments (Shi et al., 2020).  

8.3.5 Analysing Student Clusters 

To analyse the student subpopulations in the clusters obtained, we performed statistical 

analysis of the input parameters: the SDT constructs (Autonomy, Competence and 

Relatedness), defined via the Engage Taxonomy, see Section 9.3.1 In addition, the success 

measures (Completion ratio, Correct Answer ratio and Reply ratio, see Section 8.4.2) have 

been analysed in each cluster. For this purpose, we computed the mean and standard 

deviation of these parameters. Additionally, the highest two clusters in terms of the mean of 

the success measures (Completion Ratio, Correct Answers Ratio and Reply Ratio) are further 

compared pairwise via a Mann-Whitney U test, for each of the success measures. Moreover, 

the Pearson correlation coefficient test (PCC) (Benesty et al., 2009) has been employed to 

assess the relation between SDT constructs and success measures. 
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8.3.6 Machine Learning Prediction 

To illustrate the power of the extracted SDT constructs, we evaluate if they can be used 

directly as early predictors of student activity. For this, we define Active students as those 

that did access 80% of the course material (80%=0.8 of the number of #steps; see also 

Section 8.2.5), and the rest as Non-Active students (Eq (8.4)):  

NA(s, w) = {
1, 𝑖𝑓 𝑇𝐴𝑆(𝑠, 𝑤) < 𝑇𝑆(𝑤) ∗ 0.8 

0, 𝑟𝑒𝑠𝑡
 

𝑻𝑨𝑺(𝒔, 𝒘) =  ∑  𝑨𝑺(𝒔, 𝒘, 𝒋)

𝒋=𝟎..𝑻𝑺(𝐰)

  

𝑨𝑺(𝒔, 𝒘, 𝒋)  =  {
𝟏, 𝒊𝒇 𝒔𝒕𝒖𝒅𝒆𝒏𝒕 𝐬 𝒂𝒄𝒄𝒆𝒔𝒔𝒆𝒅 𝒔𝒕𝒆𝒑 𝒋 𝒊𝒏 𝒘𝒆𝒆𝒌 𝐰 

𝟎, 𝒓𝒆𝒔𝒕
  

(8.4) 

s: student, TAS(s,w): total steps accessed by student s in week w; TS(w): total course steps 

available in week w; AS(s,w,j): step j accessed by a student.Where TAS(s,w)<= TS(w), as the 

maximum number of steps a student could access in week w are all available ones.  

As we aim at early prediction, we use machine learning to predict Non-Active Students (NA) 

in week 2, by using SDT constructs (defined via the Engage Taxonomy, see Section 8.2) as 

input, which were extracted from week 1. Thus our prediction problems is:  

Given a student s, and student’s SDT constructs from the current week (𝐰𝐞𝐞𝐤 𝒘 = 𝟏) predict if 

the same student s is non-active (NA(s,w+1)) in the following week (𝐢. 𝐞. , 𝐰𝐞𝐞𝐤 𝒘 + 𝟏 = 𝟐). 

For a comprehensive analysis, we employed several competing ML ensembles methods, as 

follows: Random Forest (RF) (Breiman, 2001), Gradient Boosting Machine (Gradient 

Boosting) (Friedman, 2001), Adaptive Boosting (AdaBoost) (Freund and Schapire, 1997), 

XGBoost (Chen and Guestrin, 2016), (ExtraTrees) (Geurts et al., 2006), Logistic Regression 

(LR) (Rawlings et al., 1998) and (K-nearest Neighbour) (Anchalia and Roy, 2014).  

The current study used a balanced accuracy score (BA) to evaluate the performance of the 

models; this metric is widely used to calculate accuracy for imbalanced datasets, by 

preventing the majority of negative samples from biasing the result (Brodersen et al., 2010). 

Please note that, although we applied and compared various classifiers, our aim here was not 

to optimise the prediction of Active students in week 2, but to showcase how the SDT theory, 

and our mapping of indicators onto SDT constructs, can be used directly as a predictor.  
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As we have used a massive dataset for different courses, we have prepared the training and 

testing sets based on the last Run of the course. For example, in the Mind Is Flat course, we 

trained our ML models by using students' data extracted from early runs ( Runs 1 to 6) for 

students who registered between 2013 to 2016. However, for testing the models, we used a 

new data set extracted from the last run (Run 7) that contains students’ activities in 2017- 

see - which is similar to some extent to Transfer learning models (Getoor, 2020, Bote-

Lorenzo, 2018). 

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 

                                             Training set                                              Testing set 

Figure 8.3 The Mind Is Flat course (Training and Testing set) 

In addition, we combined all datasets (Runs) together for each course to predict Active and 

Non-Active Students in week 2 by using the 10-fold cross-validation, a widely used 

technique to evaluate a predictive models (An et al., 2007).  

8.4  Results  

8.4.1  Student Clusters  

The indicators are aggregated, to obtain 6 datasets corresponding to the 6 courses. Further 

aggregation would not be applicable, as the structure of the courses varied in length, number 

of steps, quizzes, resources, etc., available, whereas within each course, these were 

(relatively) constant, thus progress would have been expected to be equal for each student - 

all other parameters being equal. As it is difficult to compare data from different courses, we 

normalised the indicators, by dividing each value by the highest value in the column 

(activity) within each course, which had the effect of scaling all scores between 0 and 1. 

We first clustered the students in the 6 courses for the 26 runs and obtained the main clusters 

for students, based on the SDT variables from students’ activities in the first week. The 

silhouette coefficient analysis showed that k=3 for K-Means is the most appropriate, when 

clustering the behavioural indicators. Hence, we obtain 3 clusters (Table 8.3). 
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Table 8.3 Number of students and percentages in each cluster for each course 

Course Cluster 1 Cluster 2 Cluster 3 Total 

BIM 2055 (8%) 10155 (39%) 13965 (53%) 26175 

SHK 1454 (5%) 12247 (42%) 15731 (53%) 29432 

SUP 96 (3%) 631 (22%) 2185 (75%) 2912 

THM 1410 (3%) 12522 (31%) 25962 (65%) 39894 

OI 164 (6%) 786 (28%) 1842(66%) 2792 

LMPCC 314 (5%) 2255 (34%) 3997 (61%)  6566 

Table 8.3 shows an overview of students’ distribution in each cluster. As can be seen from 

the table, cluster 3 contains the majority of the students: more than the other two clusters for 

all six courses. Approximately two-thirds of the students have been clustered in cluster 3 in 

Supply Chains and 66% of the students have been grouped in cluster 3 in Open Innovation 

in Business (OI). On the other hand, cluster 1 comprises the minority of the students (3%-

8% of the students) and cluster 2 is mid-ranged (28% and 42%). Table 8.4 shows the number 

and percentage of the outlier students for each SDT element in each cluster.  

Table 8.4 Number and percentage of the outlier students for each SDT element in each cluster 

Course Cluster AUT COM REL 

 

BIM 

Cluster 1 N=53-%2.5 N=127-%6.18 N=92-%4.4 

Cluster 2 N=1902-%18.7 N=439-%4.32 N=599-%5.8 

Cluster 3 N=0-%0.0 N=496-%3.55 N=484-%3.4 

 

SHK 

Cluster 1 N=18-%1.2 N=44-%3.02 N=47-%3.2 

Cluster 2 N=829-%6.7 N=579-%4.72 N=2750-%22.4 

Cluster 3 N=86-%0.5 N=573-%3.64 N=418-%2.6 

 

SUP 

Cluster 1 N=0-%0.0 N=3-%3.12 N=6-%6.2 

Cluster 2 N=68-%10.7 N=40-%6.33 N=120-%19.0 

Cluster 3 N=239-%10.9 N=57-%2.60 N=114-%5.2 

 

THM 

Cluster 1 N=14-%0.9 N=27-%1.91 N=45-%3.1 

Cluster 2 N=1221-%9.7 N=953-%7.61 N=2579-%20.5 

Cluster 3 N=191-%0.7 N=1069-%4.11 N=897-%3.4 

OI Cluster 1 N=0-%0.0 N=6-%3 N=4-%0.2.4 

Cluster 2 N=102-%13 N=22-%3 N=88-%11 

Cluster 3 N=0-%0.0 N=41-%2.2 N=44-%2.3 

 

LMPCC 

Cluster 1 N=4-%1.2 N=10-%3.18 N=15-%4.7 

Cluster 2 N=220-%9.7 N=104-%4.61 N=281-%12.4 

Cluster 3 N=227-%5.6 N=69-%1.72 N=76-%1.9 

 

Outliers: Values greater than the third quartile (Upper Bound (Q3 +(1.5 * IQR)) or less than the 

first quartile (Lower Bound (Q1 - (1.5 * IQR)) are considered outliers. Where Q1 is the middle 

number between the lowest and the median values of the dataset, Q3 is the middle number between 

the median and the maximum value in the dataset(Cho et al., 2008). 
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8.4.2 Student Cluster Analysis 

To semantically analyse the clusters, Table 8.5 illustrates the three elements of SDT extracted 

from week 1 activities only, versus the success measures of student activities from week 2 

to the last week (with highest values in bold). This cluster analysis thus allows us to estimate 

if the SDT values of week 1 would be a good predictor for success in the rest of the course.  

Table 8.5 Mean and Standard Deviation for the 3 SDT construct-based clusters aggregated over the 6 

courses, versus the success measures (highlighted in green) 

Course 
 

 
Cluster 1 Cluster 2 Cluster 3 

Mean/SD Mean/SD Mean/SD 

B
a
b

ie
s in

 M
in

d
(B

IM
) 

 SDT elements from 

Students’ activities in the 
first week  

 

Autonomy 0.37 / 0.08 0.19 / 0.04 0.04 / 0.04 

Competence 0.2 / 0.09 0.09 / 0.03 0.0 / 0.01 

Relatedness 0.16 / 0.08 0.02 / 0.03 0.0 / 0.0 

 Success measures from 

Students’ activities 
between week 2 to the last 

week 

Completion Ratio 0.55 / 0.4 0.40 / 0.4 0.02 / 0.09 

Correct Answers 
Ratio  

0.39 / 0.36 0.27 / 0.34 0.01 / 0.05 

Reply Ratio 0.02 / 0.06 0.0 / 0.01 0.0 / 0.0 

S
h

a
k
e
sp

e
a

re
(S

H
K

) 

SDT elements from 
Students’ activities in the 

first week 

Autonomy 0.39 / 0.07 0.22 / 0.03 0.04 / 0.04 

Competence 0.35 / 0.09 0.20 / 0.03 0.0 / 0.01 

Relatedness 

 

0.19 / 0.09 0.01 / 0.03 0.0 / 0.01 

 Success measures from 

Students’ activities 

between week 2 to the last 
week 

Completion Ratio 0.62 / 0.38 0.44 / 0.39 0.02 / 0.09 

Correct Answers 
Ratio  

0.45 / 0.31 0.31 / 0.31 0.01 / 0.05 

Reply Ratio 0.02 / 0.07 0.0 / 0.01 0.0 / 0.0 

S
u

p
p
ly

 C
h

a
in

s(S
U

P
) 

SDT elements from 

Students’ activities in the 

first week 

Autonomy 0.48 / 0.09 0.23 / 0.04 0.04 / 0.04 

Competence 0.33 / 0.12 0.19 / 0.05 0.0 / 0.01 

Relatedness 0.23 / 0.11 0.02 / 0.04 0.0 / 0.01 

 Success measures from 

Students’ activities 

between week 2 to the last 
week 

Completion Ratio 0.63 / 0.43 0.49 / 0.42 0.03 / 0.13 

Correct Answers 
Ratio 

0.4 / 0.33 0.32 / 0.31 0.0 / 0.02 

Reply Ratio 0.04 / 0.11 0.0 / 0.03 0.0 / 0.02 

T
h

e M
in

d
 is F

la
t(T

H
M

) 

SDT elements from 

Students’ activities in the 

first week 

Autonomy 0.4 / 0.08 0.21 / 0.04 0.05 / 0.04 

Competence 0.34 / 0.1 0.18 / 0.03 0.0 / 0.01 

Relatedness 0.21 / 0.1 0.01 / 0.03 0.0 / 0.01 

 Success measures from 

Students’ activities 
between week 2 to the last 

week 

Completion Ratio 0.56 / 0.36 0.45 / 0.37 0.01 / 0.08 

Correct Answers 
Ratio 

0.41 / 0.3 0.33 / 0.3 0.0 / 0.04 

Reply Ratio 0.03 / 0.06 0.0 / 0.01 0.0 / 0.0 

O
p

e
n

 In
n

o
va

tio
n

 in
 

B
u

sin
e
ss (O

I) 

SDT elements from 

Students’ activities in the 
first week 

Autonomy 0.37 / 0.08 0.18 / 0.04 0.04 / 0.03 

Competence 0.26 / 0.09 0.07 / 0.04 0.0 / 0.01 

Relatedness 0.24 / 0.09 0.02 / 0.04 0.0 / 0.01 

 Success measures from 

Students’ activities 

between week 2 to the last 
week 

Completion Ratio 0.55 / 0.39 0.45 / 0.41 0.01 / 0.04 

Correct Answers 
Ratio 

0.27 / 0.23 0.19 / 0.22 0.0 / 0.02 

Reply Ratio 0.02 / 0.11 0.0 / 0.0   0.0 / 0.0 
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L
e
a
d

in
g

 a
n

d
 M

a
n

a
g

in
g

 

P
e
o
p

le
-C

e
n

tred
 C

h
a

n
g
e
 

(L
M

P
C

C
)  

SDT elements from 

Students’ activities in the 
first week 

Autonomy 0.35 / 0.07 0.18 / 0.02 0.04 / 0.04 

Competence 0.2 / 0.09 0.1 / 0.03 0.0 / 0.01 

Relatedness 0.16 / 0.08 0.01 / 0.02 0.0 / 0.0 

 Success measures from 
Students’ activities 

between week 2 to the last 

week 

Completion Ratio 0.68 / 0.37 0.53 / 0.38 0.02 / 0.12 

Correct Answers 

Ratio 

0.4 / 0.24 0.33 / 0.28 0.0 / 0.05 

Reply Ratio 0.02 / 0.1 0.0 / 0.01 0.0 / 0.0 

The most striking result to emerge from the table is that there is a clear positive correlation 

between the SDT constructs (Autonomy, Competence and Relatedness) and the success 

measures (Completion Ratio, Correct Answers Ratio and Reply Ratio). This has further been 

proven statistically by using the Pearson correlation coefficient test. The results revealed a 

positive correlation (r >0), as shown in Table 8.6. The table shows that the Relatedness 

construct is the most correlated construct, strongly correlated with the Reply-Ratio measure 

in the six courses, whereas Autonomy and Competence constructs are less correlated. On the 

other hand, the Competence construct, in the Shakespeare, LMPCC, Supply Chains and 

THM courses, is the most correlated construct with the Answer Ratio measure, and the 

Autonomy is the most correlated construct with the Completion Ratio measure in four 

courses. 

Table 8.6 Correlation between the SDT constructs and the success measures over the 6 courses 

 
Completion Rate Answer Rate Reply Rate 

SHK Autonomy 0.60 0.56 0.17 

Competence 0.61 0.59 0.22 

Relatedness 0.29 0.29 0.36 

BIM Autonomy 0.57 0.50 0.24 

Competence 0.54 0.49 0.31 

Relatedness 0.30 0.29 0.32 

LMPCC Autonomy 0.68 0.62 0.15 

Competence 0.66 0.63 0.21 

Relatedness 0.26 0.23 0.30 

OI Autonomy 0.62 0.57 0.14 

Competence 0.57 0.54 0.24 

Relatedness 0.29 0.29 0.25 

SUP Autonomy 0.64 0.59 0.18 

Competence 0.63 0.65 0.18 

Relatedness 0.28 0.26 0.25 

TMF Autonomy 0.64 0.60 0.26 

Competence 0.66 0.64 0.29 

Relatedness 0.26 0.25 0.40 

Please note that this is even more important, as SDT are measured as early variables, 

potentially usable for prediction (week 1, as said) and success measures are collected week 
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2 till the last week. Thus, we can arguably claim that SDT motivational theory constructs can 

be used as early informer for success towards the end of the course. Therefore, it is an 

important result that we could confirm, via a data-intensive approach, that most motivated 

and engaged students, as defined by the SDT motivational theory, turn out to be the most 

successful. Interestingly, our clustering succeeded to showcase this, by grouping these 

students in cluster 1. Likewise, cluster 2 has naturally resulted in assembling the intermediate 

students, who have statistically significantly (p<0.05) lower results in terms of both SDT 

constructs as well as success (see Table 8.7 ). Cluster 3 gathers, on the other hand, a large 

number of users who are not very engaged, as per SDT parameters (which is not that 

surprising, considering clustering was done based on SDT parameters). A good example of 

this can be found in the ‘Babies in Mind’ course, as the mean of cluster 1 was 0.37 in 

Autonomy, 0.2 in Competence and 0.16 in Relatedness; the Completion rate was 0.55. On 

the other hand, cluster 2 reported lower values than cluster 1 in all SDT parameters (0.19 in 

Autonomy, 0.09 in Competence and 0.02 in Relatedness; with a Completion rate of 0.4 (0.15 

less than cluster 1)). We can notice the same pattern for all other courses (see Table 8.5).  

Table 8.7 Statistical significance analysis (p<.05) of the difference between the highest two clusters 

(cluster1 vs cluster2) 

 

Table 8.8 further shows the mean, standard deviation and maximum values for the three SDT 

construct over six courses. For all students, the Autonomy construct has the highest mean 

score (ranging from 0.133 to 0.096). The autonomy mean score in Table 8.5 for students in 

cluster 1 (ranging from 0.48 and 0.35) represents a high degree of autonomy, compared to 

students in cluster 2 and 3. The Competence construct ranked as the second highest, with a 

mean score ranging from 0.102 to 0.036. Finally, the Relatedness construct had the lowest 

mean score (from 0.021 to 0.01). 

 

Course Completion Ratio Correct Answers Ratio Reply Ratio 

BIM 4.30947e-54 1.97756e-46 0.0 

SHK 1.35573e-69 7.74394e-53 0.0 

SUP 0.004673 0.02695 2.45989e-30 

THM 1.34367e-24 1.54078e-23 0.0 

OI 6.440039e-4 5.668406e-06 8.801509e-63 

LMPCC 4.544427e-15 0.000159 9.613372e-74 
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Table 8.8 Mean, Standard Deviation and maximum value for the 3 SDT constructs for all students 

  
Autonomy  Competence  Relatedness 

 

SHK 

Mean  0.13 0.10 0.01 

Std  0.11 0.11 0.04 

Max  0.73 0.74 0.70 

 

BIM 

Mean  0.13 0.04 0.01 

Std  0.10 0.06 0.05 

Max  0.67 0.62 0.70 

 

LMPCC 

Mean  0.10 0.04 0.01 

Std  0.09 0.06 0.04 

Max  0.66 0.66 0.75 

 

OI 

Mean  0.09 0.03 0.02 

Std  0.10 0.07 0.06 

Max  0.56 0.59 0.61 

 

SUP 

Mean  0.09 0.05 0.01 

Std  0.11 0.10 0.05 

Max  0.74 0.73 0.68 

 

TMF 

Mean  0.11 0.06 0.01 

Std  0.10 0.10 0.04 

Max  0.82 0.79 0.82 

A follow-up analysis additionally shows that there is a significantly high correlation between 

Autonomy and Competence (ranging from 86 to 93), and a lower correlation between 

Relatedness and both Autonomy and Competence (ranging from 57 to 84) over the six 

courses (see Table 8.9). Section 8.5 further discusses these findings. 

Table 8.9 Correlation between SDT constructs (Autonomy, Competence and Relatedness) over the 6 

courses 

 
Autonomy Competence Relatedness 

SHK Autonomy - 0.93 0.60 

Competence 0.93 - 0.57 

Relatedness 0.60 0.57 - 

BIM Autonomy - 0.87 0.73 

Competence 0.87 - 0.75 

Relatedness 0.73 0.75 - 

LMPCC Auton  omy - 0.89 0.61 

Competence 0.89 - 0.62 

Relatedness 0.61 0.62 - 

OI Autonomy - 0.86 0.75 

Competence 0.86 - 0.84 

Relatedness 0.75 0.84 - 

SUP Autonomy - 0.87 0.69 

Competence 0.87 - 0.56 

Relatedness 0.69 0.56 - 

TMF Autonomy - 0.92 0.62 

Competence 0.92 - 0.58 

Relatedness 0.62 0.58 - 

 



 

175 

As previously mentioned, the clusters were created based on the SDT constructs (Autonomy, 

Competence and Relatedness) from students’ activities in the first week (analysing basically 

if these newly proposed early engagement parameters would be good potential early 

predictors of success). Table 8.7 shows the results of the statistical analysis of the success 

measures for the highest two clusters in terms of SDT (cluster 1 versus cluster 2). We can 

see that a significant difference exists for all success measures between the highest two 

clusters for all six courses, meaning their differences are not due to chance. 

Figure 8.4 (a-f) allows for further visual analysis of the results, by showing the 3D-plots of 

the 6 courses, the relevance of SDT constructs being clearly visualised in the plots for each 

cluster. Clusters are well separated, with cluster 1 containing the higher SDT values (in 

green), cluster 2 the intermediate (in yellow) and cluster 3 the low values (in red). Cluster 1 

contains the most motivated and engaged students whereas, cluster 3 identified the very low 

engagement students. Please note that cluster 3 contains students with very low SDT values 

and their data points are very close to each other. The visualisation for the students with 

similar SDT values are overlapping giving a ‘feel’ that the red cluster is smaller, whereas it 

is the largest. 

a) Babies in Mind (BIM) 
b) Shakespeare and His World (SHK) 
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c) Supply Chains (SUP) 
d) The Mind is Flat (THM) 

e)  Open Innovation in Business (OI) f) Leading and Managing People-Centred 

Change (LMPCC) 

Figure 8.4 (a-f) The three clusters mapped onto the Self-Determination Theory (SDT) 

(Cluster 1: green; Cluster 2: yellow; Cluster 3: red) 

To better understand the usefulness of the SDT constructs with respect to the impact on the 

success measures, the centroids of each cluster are further represented as a point in the radar 

plot in Figure 8.5 (a-f); clusters with the same colouring convention as in Figure 8.4. It is 

clear that the students with higher values of the SDT features in the first week activities have 

a higher chance to be the most successful. Indeed, the wider spread of the green cluster 1 

area shows for all SDT values (Autonomy, Competence and Relatedness) show a respective 

widespread for the success values (Answer Rate and Completion Rate). Similarly, the yellow 

cluster 2 is wider for all these when compared with the red cluster 3, for which all these 

values (SDT and success) are so low, it almost appears as a small dot.  
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Figure 8.5 (a-f) Values of the SDT features versus success measures (Completion Ratio and Correct 

Answers Ratio (Cluster 1: green; Cluster 2: yellow; Cluster 3: red) 

 

a) Babies in Mind  b) Shakespeare 

c) Supply Chains d) The Mind is Flat 

e) Open Innovation in Business (OI) 
f) LMPCC  
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We have repeated the experiment for one course “The mind is flat” using only one dimension 

of the SDT constructs (“Relatedness”) and compare it with the results obtained by using all 

SDT constructs. The clusters with one construct look worse than using all SDT constructs. 

The results showed that 93% of students were clustered in cluster 3 (was 65% when we used 

all SDT constructs), which means that a lot of high achievers’ students in cluster 1 and 2 

moved to cluster 3. Therefore, the mean completion rate for Cluster 3 increased from 0.01 to 

0.15 please see Table 8.10.    

Table 8.10  k-means clustering for The Mind is Flat course using only one dimension of  

the SDT constructs (“Relatedness”) 

   Cluster 1 Cluster 2 Cluster 3 

T
h

e M
in

d
 is F

la
t (T

H
M

) 

 Relatedness from 

Students’ activities in 

the first week 

 Mean/SD Mean/SD Mean/SD 

 0.21 / 0.1 0.01 / 0.03 0.0 / 0.01 

 Success measures 

from Students’ 

activities between 

week 2 to the last 

week 

Completion Ratio 0.55 / 0.37 0.43 / 0.39 0.15 / 0.29 

Correct Answers 

Ratio 

0.41 / 0.31 0.31 / 0.31 0.1 / 0.22 

Reply Ratio 0.04 / 0.08 0.01 / 0.03 0.0 / 0.0 

8.4.3 Machine learning prediction 

 Table 8.11 shows the performance of the predictive models, evaluated by the Balanced 

Accuracy score (Brodersen et al., 2010), a commonly used metric for binary classification of 

unbalanced datasets (see Section 8.3.6). Moreover, several measures, such as Precision, 

Recall and F1-Score have been also used to evaluate the prediction performance (full results 

provided in Appendix A, due to the extensive size of the table). In addition, Appendix B 

shows more results for using 10 fold cross-validation by combining all datasets (Runs) 

together for each course to predict Active and Non-Active Students in week 2. 

In general, all algorithms achieved good results, indicating that, regardless of the employed 

model, the SDT constructs extracted from the first week in this study proved to be powerful 

in predicting Active and Non-Active students in the second week. Whilst all models' 

performances are generally relatively good; the most robust model is the ExtraTrees model, 
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as it outperforms in two courses: ‘The Mind is Flat’ 91.70%, and ‘Leading and Managing 

People-Centred Change (LMPCC)’ 90.13%.  

Table 8.11 Prediction of Active and Non-Active Students in week 2 based on week 1 SDT constructs 

Thus, we have computed the Gini index (GI) (Dorfman, 1979) for the ‘winning’ ExtraTrees 

algorithm, to evaluate the feature importance of each feature used to predict non-active 

students in the following week (see Table 8.12). Briefly, results show that Competence is 

ranked as the most important construct in the classification (importance value ranging from 

0.43 and 0.50). Autonomy is ranked as the second important construct (importance value 

ranging from 0.27 to 0.34). Finally, the Relatedness construct is ranked as the least important 

factor (importance value ranging from 0.20 to 0.23).  

Table 8.12 The constructs importance values for the ExtraTrees algorithm 

 

Table 8.13 shows the prediction results of Active and Non-Active Students in week two 

based on one of the SDT constructs ( the Relatedness); the prediction accuracies were 

considerably lower (between 50%-63%) compared to using all SDT constructs (between 

67%- 92% (see Table 8.11) ). 

 

 

Courses AdaB ExtrTr GBoost KNN LR RF XGBoost 

BIM 82.87% 80.33% 62.48% 75.13% 83.01% 82.87% 67.50% 

SHK 87.11% 87.29% 87.33% 80.57% 87.24% 87.26% 87.24% 

SUP 91.35% 92.46% 92.73% 83.74% 90.74% 92.11% 92.73% 

THM  91.11% 91.70% 91.16% 86.54% 91.31% 91.65% 91.17% 

OI 90.09% 89.75% 84.70% 87.39% 83.35% 88.07% 89.08% 

LMPCC 89.86% 90.13% 89.63% 87.12% 88.18% 89.57% 89.32% 

 
Autonomy Competence Relatedness 

SHK 0.31 0.48 0.20 

BIM 0.34 0.43 0.23 

LMPCC 0.29 0.48 0.23 

OI 0.33 0.45 0.22 

SUP 0.32 0.47 0.21 

THM  0.27 0.50 0.22 
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Table 8.13 Prediction of Active and Non-Active Students in week 2 based on one of SDT construct 

(Relatedness); evaluated by the Balanced Accuracy score 

 

8.5  Discussion 

In this study, we propose the Engage Taxonomy, a mapping of ‘bottom-up’ MOOC data to 

‘top-down’ high level concepts from motivational theories. To create it, we have mapped the 

engagement and motivation concepts and the potential indicators within MOOCs, with the 

help of three experts, onto these theories. Moreover, the Fleiss’ Kappa agreement test has 

shown a high rate of agreement (substantial agreement) between experts (see Section 8.3.2 

and Table 8.1). However, this process illustrated here is provided to researchers to further 

improve upon and explore. Indeed, a similar mapping can be extended to incorporate further 

MOOC variables, if other MOOCs provide additional behavioural meta-data. Additionally, 

our weighted model as in Section 8.2.4 can be further improved: weight optimisation sought 

- e.g. searching optimal values between [0,1]; or even proposing negative values. For 

instance, negative replies are considered here to influence positively the relatedness (in the 

sense of ‘any news is good news’, and any interaction and replies is affecting the relatedness). 

However, another model may consider this relation as a negative one. Our methodology can 

be seen as a shell to be applied to different MOOCs, or onto different motivational theories 

(as already started in Table 8.1, where we have not just SDT, explored further in-depth in 

this research, but also the Drive Theory, Engagement Theory and Process of Engagement 

Theory).  

In terms of MOOC completion, although about 10% of participants complete their courses 

in MOOC, clearly many more students quit over time. Figure 7.2 presents the number of 

remaining students over time, showing that the curve of dropouts is itself dropping speedily. 

Hence, participants are most likely to drop out in the first few weeks. Therefore, identifying 

Courses AdaB ExtrTr GBoost KNN LR RF XGBoost 

BIM 
50.00% 58.21% 55.53% 55.22% 58.85% 60.47% 55.45% 

SHK 63.00% 61.44% 62.94% 61.89% 62.43% 63.00% 63.00% 

SUP 55.26% 56.97% 55.77% 56.22% 57.13% 57.12% 54.90% 

THM 59.81% 59.70% 59.51% 58.60% 61.55% 59.70% 59.75% 

OI 50.68% 56.07% 54.55% 51.86% 56.24% 56.24% 51.35% 

 LMPCC 
57.27% 56.40% 55.95% 55.68% 58.62% 56.38% 55.65% 
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those students at an early stage is important, to provide early intervention, to keep the 

engagement going. In this study, we used SDT constructs extracted from the first week as 

input features for machine learning. This provides an opportunity to deal with at-risk students 

at an early stage (week 2, which we identified as a critical period). Future work will explore 

how using week-by-week prediction affects the prediction accuracy and gain (in terms of 

number of students dropping out at later stages). 

The correlation results between the SDT constructs and the success measures (Table 8.6) 

point to Relatedness being the best construct to measure the Reply Rate of students, as it 

shows higher correlation values. Both Autonomy and Competence constructs have similar 

correlation patterns with success measures. For the Completion Rate, the Autonomy was the 

most correlated construct in four courses and Competence was the highest in two courses. 

Finally, Competence was the most correlated construct to the Answer Rate in four courses.  

This finding led us to further explore the direct correlation among the SDT constructs. The 

three SDT constructs are thought to represent different traits conceptually, so some 

independence is expected. This is confirmed by Figure 8.1, in that at least one feature 

uniquely maps to each SDT construct. However, the linear trend of the distribution of 

students in Figure 8.4 suggests that the Autonomy, Competence, and Relatedness dimensions 

from the expert mapping may be correlated. An additional analysis (Table 8.9), shows that a 

significantly high correlation between Autonomy and Competence, ranging between (.86-

.93). Returning to Figure 8.1, this corresponds to experts allocating sometimes the same 

feature to more than one Engagement dimension. Whilst these findings correspond with the 

literature, which shows a positive correlation between Autonomy and Competence 

(Wangwongwiroj and Bumrabphan, 2021, Vlachopoulos and Michailidou, 2006, Qin, 2021, 

Gangire et al., 2021), data-driven approaches such as ours may be further explored to feed 

back to the theories and potential further improvement thereof.  

Furthermore, it can be seen from the data in Table 8.5 that there is some consistency in the 

way the clusters appear, regardless of the course. As the bold, highest values for the means 

show, cluster 1, for all 6 analysed courses, tends to have the highest level of Autonomy, 

Competence and Relatedness (so SDT values), on one hand, as well as the best distribution 

of student success, taking into consideration the success measures from students’ activities 
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(Completion Ratio, Correct Answers Ratio and Reply Ratio) between week 2 to the last week 

presented. We can observe that cluster 1 comprises the high achievers, cluster 2 contains the 

intermediate students, and cluster 3 comprises the students who probably end up dropping 

out. This is clearly seen in Figure 8.5 (a-f), which shows the centroids of each cluster as a 

point in the radar plot. In other words, the students with higher Autonomy, Competence and 

Relatedness in week 1 tend to be the students with higher success measures in later weeks. 

Thus, we can say relatively confidently that our process extracts in cluster 1 the most 

motivated and engaged students, who also turn out to be the most successful. Interestingly, 

for all these parameters, the mean is statistically significantly higher than for the next best 

cluster (p <.05) see Table 8.7.  

Cluster 3 gathers a large number of users who are not very engaged, as per SDT parameters, 

nor are they very successful (as per our three success measures). The mean silhouette 

coefficients in all courses range from 68 to 78, which shows that our early collected SDT 

features worked as expected.  

Figure 8.4 further supports these findings and shows that our SDT features can be used to 

separate the students into three distinct clusters, with distinct success, as per Figure 8.5. 

Our proposed SDT-based approach has thus been validated by leading to semantically 

relevant clusters. Indeed, we have clearly confirmed, with this method, facts known from 

literature (but from theory only, from small-scale studies, mainly using face-to-face data) via 

our large-scale study on online data, from different angles – such as the fact that engaged 

students have higher success (and have found them all as members of cluster 1). We have 

also identified the very low engagement students (cluster 3), who also were confirmed to be 

the least successful. Interestingly, we have identified via cluster 2 students who have some 

good results, but perhaps lower motivation. This is a very interesting find, because it may 

show students who would have the potential to complete, to succeed, but may fail, as being 

less motivated. Thus, some intervention towards motivating these students would have a 

better chance of an effect than on those in, e.g., cluster 3. Whereas cluster 1 students may 

come with intrinsic motivation and do not need much ‘hand-holding’.  

Analysing the outliers (see Table 8.4), we have noticed some nuances in the students’ 

behaviours related to the SDT constructs and success measures. It turns out that, contrary to 
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the general trend, there are not only the high-achievers from cluster 1 who have higher 

Autonomy, Competency and Relatedness, the intermediate students from cluster 2 who have 

intermediate values of the SDT features and the non-completers from cluster 3 who have low 

values of the SDT features. In fact, there are also students who have intermediate or low 

Relatedness and were assigned to cluster 2 or cluster 3, but are high-achievers, according to 

the success measures. Such students belong to a group that are not engaged in participating 

in forums or commenting on the pedagogical materials, but are still committed to learning 

the course content and completing it. These trends can be seen for the other SDT features, 

that is, a student might not have a high Autonomy or Competence, but be a high- or 

intermediate achiever, as per our success measures. On the other hand, there are a few 

students who have high values for the SDT constructs, but do not achieve good results. 

Nevertheless, this is not the general pattern, but the exception. 

We have two possible explanations about these outliers. First, we are collecting data from a 

very early stage (only the first week data) for each course and, hence, it is natural to have 

outliers, since student behaviour might change during the course. That is, a student might 

begin the course with positive attitudes and behaviours - however, end up failing or dropping 

out due to personal reasons or something that we cannot control. The opposite is possible as 

well, students might start with apparently bad attitudes and behaviours, e.g. due to personal 

problems, but may succeed in concluding the course, due some attitude or circumstances 

change after the first week. 

The second potential reason is that we are dealing with big data and, thus, it is typical to find 

behaviours that do not follow the general trend. Indeed, this is a characteristic of the human-

being, as reported by many authors (Hawkins, 1980, Rambo-Hernandez and Warne, 2015). 

This leads to the need of further adaptive systems in MOOCs, to consider such nuances of 

learning and engaging and how they can influence students’ achievement. For further work, 

we can explore finding optimal subsets (or supersets) of features which would express the 

SDT (as currently we use the whole set of available features). We could also explore if there 

are essential features, which lead to a high drop in prediction power for the success variables, 

and optional features, which only lead to minimal increase in success.  
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It can be seen from the data in Table 8.11 that the SDT values (Autonomy, Relatedness and 

Competence) could be used directly, as good indicators for prediction to enable early 

interventions for students at-risk (Non-Active student) in the following week. Alternatively, 

different definitions of active students may lead to different results, and other predictions, 

such as completion of course, could be further attempted based on the SDT mapping 

proposed (Monllaó Olivé, 2020, Rawat, 2021, Alamri, 2019, Tóth, 2018, Kameas, 2021, 

Alamri, 2021); however, these are beyond the scope of this study. The seven classical 

machine learning algorithms achieved relatively good results. However, advanced data 

mining techniques, such as deep learning models have not been used in this study, due the 

low number of input features (three features), while deep machine learning models are used 

to find complex and hidden correlations in large input spaces and datasets (Wischmeyer and 

Rademacher, 2020). 

Further to note in terms of the prediction, that whilst the Autonomy construct has the highest 

mean score (ranging from 0.133 to 0.096) compared to the Competence (ranging from 0.102 

to 0.036) and Relatedness (ranging from 0.021 to 0.01) (see Table 8.8), the Competence 

construct is ranked as the most important construct in the classification to predict non-active 

students in the following week (see Table 8.12). 

Indeed, mapping large-scale student behaviour onto motivational theories opens the way to 

inform student models and create appropriate pedagogical interventions to improve students’ 

outcomes. For instance, students could be brought from cluster 3 to cluster 2, or the desirable 

cluster 1, by appropriate recommendations. This leads to further avenues of research, 

bringing together measurable, data-driven metrics for engagement, and classical adaptive 

learning.   

Finally, however, any research on MOOCs and its engagement needs to note the caveat that 

MOOCs are not just for traditional students, and many working professionals use them to 

touch up on certain skills or to explore new areas of knowledge. Once that goal is 

accomplished, which may occur before the natural end of a registered course, these 

individuals may quit, having learned and met their goals. The balance between motivation 

and success would need to take this further into account. Indeed, conducting a pre-survey is 

one way to identify the students who do not intend to complete the whole course. However, 
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the response rates in MOOCs are generally lower for surveys. For example in (Mihalec-

Adkins et al., 2016), only 1,624 completed responses, out of 22,000 students who were 

enrolled. Therefore, it is likely that MOOC statistics derived from surveys with low response 

rates would not accurately reflect the real population. Other methods may need to be devised 

to extract these ‘hidden agendas’.  
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Epilogue 

This chapter has proposed mapping between the tracking parameters and four of the most 

used theories related to engagement in digital systems, generating the engage taxonomy. 

Finally, we showed how such a mapping can be put into practice by analysing the engaged 

and disengaged MOOC student behaviours in relation to SDT theory. The following chapter 

discusses the contributions of the studies presented in this thesis and their limitations.  
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Chapter 9 : Discussion  

Prologue 

This chapter discusses the contributions and overall findings of the studies presented in this 

thesis (Chapter 5, Chapter 6, Chapter 7, and Chapter 8). In addition, we will discuss the 

limitations of this thesis.  

9.1  Introduction 

As described in Chapter 2, the availability and use of MOOC platforms have increased 

dramatically during the last decade. MOOC platforms provide massive datasets that greatly 

aid in the advancement of knowledge in the area of learning analytics (LA). This kind of data 

can assist in gaining knowledge of a student’s behaviour and provide insights into what 

works to help a learner improve (Watkins, 2017). Furthermore, LA is useful for ensuring 

students’ progress more effectively, doing in-depth analyses of their activities and gauging 

the impact of these variables. LA is also useful for visualising students’ activities to enhance 

education (Oliva-Cordova et al., 2021). 

The poor completion rate is a fundamental problem associated with MOOCs. Researchers 

have shown that, most students who enrol in MOOCs, drop out before completing the course 

(Yang et al., 2013). One way to improve the low completion rate in MOOCs is to identify 

students who are at risk of dropping out at an early stage of the course. Detecting at-risk 

learners within a reasonable timeframe might support instructors in delivering educational 

interventions and improving course structures (Hung et al., 2015). Together, machine 

learning and LA can be used to identify potentially at-risk students (Al-Shabandar, 2019). 

The research questions in this thesis aimed to exploit MOOC data to help early detection of 

at-risk students using several approaches, such as statistical data analysis, machine learning, 

data visualisation, and a concrete mapping between students tracking data and four of the 

most used theories. This includes exploiting the MOOC dataset to I) analyse the very first 
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interaction data with the MOOC system – the registration to predict students' completion, II) 

implement rules to automatically deliver personalised messages to students based on a 

statistical behaviour analysis of their registration date, III) propose visual multimodal graph 

analysis to discover linear or catch-up behaviours of completers and non-completers, IV) 

analyse completer and non-completer’ learning paths, V) present students’ learning paths 

with different granularity visualisations, VI) apply machine learning to compare the 

prediction of weekly and whole-course dropouts, VII) incorporate students’ learning 

patterns, specifically jumping behaviours into the weekly predictive model, and demonstrate 

their effectiveness, VIII) provide a lightweight approach to predict dropout students based 

on two features (time spent and number of accesses),  IX) map multimodal student behaviour 

over several motivational theories and conducting a large-scale evaluation of SDT for online 

learning and MOOCs based on success measures and X) cluster students and analyse the 

engagement parameters based on success measures. 

9.2  Completion based on registration data  

The first study of this thesis (Chapter 5) tackles the important and challenging issue of 

predicting student dropout and completion, which are the most targeted issues in research 

relating to MOOCs. However, most studies (rather predictably) analyse the course while it 

is running. We argue here that, in some cases, this might be too late. Thus, importantly, this 

work presents the results of a study aiming to discover if there are factors that can be 

identified before the students even begin the course, to predict which enrolled participants 

will not complete the MOOC and, possibly, take actions. This study is based on the analysis 

of a large dataset of FutureLearn MOOC users over several courses, each with several runs. 

Our results show that completion can be predicted based on the date of registration. We 

performed a fine-grain analysis of this phenomenon based on our preliminary findings. 

Interestingly, we detected specific periods when it was likelier for the students registered 

(relatively) early to complete, as well as periods for which the opposite was true. We show 

that these periods are intrinsically linked to the course start date. We show how these findings 

can lead to personalisation strategies based on the earliest possible detection of potential 

issues. Additionally, this research is applied to a less explored MOOC platform, FutureLearn. 

Unlike many of its counterparts in other parts of the world, FutureLearn has arguably been 
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based, from the beginning, on solid pedagogical foundations, which makes it specifically 

interesting for education-related research. However, for this research, the results we obtained 

were founded on features shared by all MOOCs, such as the information on the date of 

student registration. Thus, we can claim that our results have a more generic impact. 

Furthermore, as we addressed the research question via a genuinely large-scale experiment 

involving several subjects in a truly longitudinal study, reaching over several iterations of all 

the courses considered, we further ensured the generality of our claims. 

The results in this work are interesting and, to the best of our knowledge, have not been 

tackled before. However, as in any research, they come with caveats that need to be 

mentioned. First and importantly, the variances for the five periods (P1 to P5) in Table 5.2 

(especially for P1 and P5), as well as in Table 5.1, were huge. This was consistent with the 

data spread, as can be seen in  Figure 5.2. In the latter, it can be clearly seen that, especially 

for non-completers, the spread of the registration date is quite wide. However, this is less so 

for the completers, as can be seen on the left side of  Figure 5.2. 

However, only Warwick University data was used in this study, as this was the first dataset 

acquired in 2017, and it was available when the research was carried out. The other two 

datasets, obtained from Durham University and the Rawaq platform in 2019, were 

unavailable for use in this study. 

9.3  Different granularity visualisations for learning patterns  

The second study of this thesis (Chapter 6) was to visualise and compare different learning 

paths of completers and non-completers across four MOOCs and explore the learning theme 

from which learners tend to drop out.  

We have shown how different granularity visualisations (fish eye, bird eye) allow both 

researchers, and potentially teachers, to understand where issues occur and where patterns 

emerge, backed up by statistical analysis. Specifically, we have shown that course completers 

are likelier to learn linearly, while dropout learners are likelier to jump forward to a later 

activity, which we dubbed here as a ‘catch-up’ learning pattern. Moreover, we show how 

this type of analysis can generate fine-grained ideas for instructors and course designers; for 
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example, to improve retention, instructors (and online course designers) should enable more 

discussion on support mechanisms.   

Only the University of Warwick dataset was taken into consideration for analysis in this 

study. This is because the study’s main objective was to examine how students interacted 

with the course material, and this dataset was accessible for four courses via the FutureLearn 

website. Due to their lack of availability at the time the study was conducted, the additional 

datasets from Durham University and the Rawaq platform were not used. 

9.4  Weekly prediction of at-risk students  

Chapter 7 presents three different experiments. The First experiment is to compare two 

methods for predicting dropout students from an early stage (CP vs WP). Second, the 

students’ jumping activities were incorporated into the weekly completion predictive model. 

In the third experiment, predictive models were implemented based on only two independent 

variables (the number of accesses and the time spent on a page). 

The first experiment’s results showed that the WP method outperformed the CP method 

across all courses. One possible explanation for this disparity was that students who dropped 

out in subsequent weeks behaved similarly to completers in the first week. Therefore, it is 

challenging to predict for these students from an early stage. According to the results of our 

analysis, we found that the early prediction models should primarily emphasise predicting 

students who would withdraw from their courses soon (next week).  

In the second experiment, we used student jumping activities as a feature to predict student 

dropout. According to the data visualisation presented in Chapter 7, a learning route is an 

informative feature because successful learners will follow the guided path and display 

behaviours that are referred to as ‘linear learning behaviours’. We showed that using 

students’ jumping behaviour as an input feature to predict at-risk students enhanced the 

prediction performance. For example, after considering the jumping activity, the F1 score 

rose by 12.25% – from 78.99% to 90.91% – in SUP. This might be used to enhance the 

learning environment of MOOCs and provide suitable early intervention for students who 

are at risk of dropping out. Finally, in the third experiment, we have shown that we can 

provide reliable, very early (first week) prediction based on two easily obtainable features 
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only, using a lightweight approach for prediction, which allows for easy and reliable 

implementation across various courses from different domains. Such an early and accurate 

predictive methodology does not yet exist beyond our research, and as such, this is the first 

in this class of models. We have shown that these two features can provide a ‘good enough’ 

performance. The advantage of such an approach is clear: it is easier and faster to implement 

across various MOOC systems and does require the existence of only a limited amount of 

information. The implementation itself is lightweight, is much more practical when 

considering an on-the-fly response and has limited expenditure in terms of implementation 

resources and, more importantly, time. 

9.5   Engage Taxonomy 

Chapter 8 presented a way to confirm SDT theory (and potentially any motivational theory) 

via practical experimentation, which we believe is groundbreaking, as it has not been done 

before in the MOOC online context at this scale. For this purpose, we have proposed a novel, 

systematic way of analysing engagement, starting from multimodal tracking parameters and 

following established engagement and motivational theories. We proposed a concrete 

mapping between the tracking parameters and four of the most used theories of, or related 

to, engagement in digital systems, generating an engaged taxonomy.  

We have also showcased how such a mapping procedure can be put into practice by analysing 

the engaged and disengaged MOOC student behaviours in relation to the SDT theory. We 

clustered students based on their engagement and analysed them via the connection to their 

success. This connection showed that the results support the SDT theory, along with its 

dimensions of autonomy, relatedness and competence. Thus, it validates the fact that 

mapping onto concrete features extracted from tracking student behaviour provides reliable, 

measurable (and thus directly comparable) variables tested against independent success 

variables for the student.  

These findings are based on a large-scale, data-driven study where similar consistent results 

were obtained over several runs of the courses. This clearly supports a theoretically rooted 

approach on how to characterise engaged and disengaged MOOC student behaviours and 

explore what triggers and promotes MOOC students’ interest and engagement. Finally, we 
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used these extracted SDT constructs directly as early predictors of active versus non-active 

students, showing successful results with several machine learning methods. 

9.6  Beneficiaries of the Research Findings  

The research effort in this thesis focused on identifying indicators for the early identification 

of dropout students in MOOCs. The findings of this research hold considerable advantages 

for different people involved in the field of education. For example, teachers may derive 

advantages from the research findings presented in Chapter 5 by implementing personalised 

approaches that rely on early predicting. Therefore, teachers can proactively intervene with 

at-risk students to promote their engagement and retention in the MOOC by sending them 

personalised recommendations.  

To find problems and spot patterns in learning routes, platform providers may also employ 

other granularity visualisations, such as fish eye and bird’s eye, as shown in Chapter 6. 

Students would gain advantages from a more engaging and supportive learning environment, 

which would contribute to higher success and completion rates. 

The results from Chapter 7 might also help teachers increase retention rates by enabling more 

discussion. The utilisation of machine learning techniques by MOOC platform providers to 

predict student attrition based on their initial week activities is a feasible option. MOOC 

platform providers can initiate this process by integrating a monitoring mechanism that 

gathers information on student actions, including login frequency, jumping activities, 

duration of platform usage, and interaction with course materials.  

Chapter 8 showed how the mapping between the students’ tracking parameters and 

motivation theories could be put into practice by grouping engaged and disengaged students 

in different clusters. This could potentially facilitate teachers in promptly intervening with 

students who are at risk so that they can motivate these students. 

9.7  Students emotion analysis  

In this thesis, we aimed to extract more insights from the messages left by students by using 

sentiment analysis techniques. Through the identification of nine distinct features related to 

the sentiments of students’ posts and mapping these to constructs of motivation theories by 
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three experts, we were able to evaluate the level of students’ motivation and group them into 

three different clusters. The incorporation of sentiment analysis yielded valuable insights for 

understanding the driving forces that impact student engagement and attrition. 

With respect to the prediction of student dropout, our results showed that the characteristics 

extracted from students’ comments did not significantly contribute to dropout prediction. 

However, it is noteworthy that positive comment posts were identified as one of the most 

important indicators for predicting attrition in certain instances, as in the Shakespeare and 

His World and Excel courses (see Appendix C). This highlights the varied influence of 

sentiment analysis on student attrition prediction in different contexts.  

9.8  Limitations for head-to-head Comparison 

The thesis did not incorporate a head-to-head comparison of prediction models with other 

study outcomes for a number of valid reasons. The first problem is that much of the published 

work on MOOC prediction models is based on private datasets that are inaccessible to 

academics. This restriction prevents a direct comparison of the findings with those of other 

research since the datasets utilised may have different sample sizes, demographics, and data-

gathering techniques. 

Second, comparing prediction models among MOOC providers is complicated by the fact 

that their dataset structures may differ. For example, some researchers have utilised the 

actions of students in videos as a predictive feature, but such information is not available in 

the dataset used for this thesis. This difference in data format makes it even more difficult to 

make meaningful head-to-head comparisons with the findings of other investigations. 

Moreover, the lack of openly accessible datasets from the FutureLearn and Rawaq platforms 

constrains the feasibility of employing the devised methodology to examine such data for 

comparative purposes. 
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9.9  Limitations 

As in any research, especially when breaking new ground, some limitations need to be 

highlighted that may help enlighten future research paths. 

Despite the fact that MOOC platforms were designed to enhance educational outcomes, 

MOOC data is not usually stored in the database expressly for research purposes. As a result, 

the data is often irregular, incomplete, noisy and unbalanced. Therefore, addressing these 

challenges requires significant time for data extraction, understanding and preparation. In 

addition, data standardisation is a critical issue, as discussed in Chapter 2. Problems with 

data standardisation in MOOCs might be an obstacle to the validation of completion 

prediction models.  

Although we used a large dataset with more than 340,000 students, the data did not contain 

all students’ activities on the platform, such as video-related activities (e.g. video pause, 

video speed, video stops, rewatch records, video backward jumps) and mouse behaviours 

(e.g. move, scroll and click). Exploring this kind of data may enhance the prediction 

performance. 

For the registration data analysis, the large variance could diminish the value of the statistical 

significance of the results obtained; this could be further indirectly affected by the large size 

of our sample. However, as Figueiredo Filho et al. (2013) recommended, we also visualised 

the data (as in  Figure 5.2), and saw that completers were less spread than non-completers. 

What this means is that statements about completion are likelier to be statistically significant 

than statements about non-completers. Possible further research could look into eliminating 

the outliers; however, this needs to be done with care, as important information should not 

be lost in the process. For the latter reason, and to avoid sampling errors, we opted for this 

research to keep all students in. 

It is possible that the date of registration was not the cause of the completion or non-

completion of the students. For instance, it could be that a certain type of student, more 

inclined to complete the course, tends to register at a certain time. Thus, suggesting that 

students alter their registration behaviour might not be enough. 
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This research included the time spent (a calculated value) as a feature to predict dropout 

students. This feature defined the difference between the access time to a certain step and the 

point at which the student clicked a button labelled ‘Mark as Completed’. However, this did 

not entirely reflect learners’ true engagement time (as some students may click the 

completion button before they complete the step).  

Additionally, we considered only the first access to the course content (first_visited_at) due 

to our data limitations, which may have underestimated the jumping patterns of dropout 

learners. Other learning features could be considered. 

The mapping of student behaviour onto the theory has been done here also for the first time, 

to our knowledge. Whilst we were careful on checking our mapping with the help of several 

experts in education and motivational theories, it is possible that we may have missed 

something (either a construct not being included where needed, or a construct not needed but 

included). The current results seem to point to our mapping being successful. However, as 

this large-scale evaluation of the SDT, and mapping of metrics over engagement theories, is 

a completely new direction of research, this opens the way for further analysis and possible 

extension of these findings, including increasing the accuracy of the prediction, or looking 

into ways in which adaptation or intervention built on the motivation-based prediction 

outcomes. Additionally, on a final note on SDT, only three coarse-grained constructs were 

considered and mapped. Further mappings and evaluations can look into more refined model 

mapping.  
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Epilogue 

This chapter has discussed the outcomes of the previous four chapters. In addition, we 

highlighted the limitations and challenges of using the MOOCs dataset as well as the 

limitation of each study.  In the next chapter, we will provide a general summary and 

conclusion of this thesis. Finally, we conclude by offering suggestions for further research 

in this area. 
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Chapter 10 Conclusion and Future 

Work 

This thesis presented some factors underlying student disengagement in online learning 

(MOOC platforms). The primary focus of all the efforts in this work was on students who 

participated in massive open online courses (MOOCs) but ultimately disengaged from the 

course. This work aims to contribute to the development of efficient intervention strategies 

to deal with at-risk students at an early stage.  

This research attempted to use data from MOOCs to help in the early detection of at-risk 

students. This was achieved through the use of several methods, such as statistical analysis, 

data visualisation, machine learning and mapping between the tracking parameters and 

motivational theories. 

In fact, data quality is considered an essential element in building successful predictive 

models (Hall and Smith, 1998). We collected student behaviour data from the MOOCs of 

344,783 students, which is not accessible to the general public. The collected data contained 

the activities of the students, such as their social interactions, the topics they accessed, the 

quizzes they attempted and their correct/incorrect responses. The duration of the courses 

ranged from 3 to 10 weeks, and they were offered at various times between 2013 and 2019. 

The first three core chapters (Chapter 5, Chapter 6 and Chapter 7) successfully achieved the 

first aim posed at the beginning of this thesis, which was to develop a continuous predictive 

model that can be used in real-time to identify the students at risk of dropping out of MOOCs. 

The findings showed that students’ completion can be predicted even before the course starts 

based on the registration date. This can help implement some rules to automatically deliver 

personalised messages to the students based on a statistical analysis of their registration date.  

Also, the visualisation results showed that students who completed the course were likelier 

to learn linearly, whereas students who dropped out were likelier to engage in the ‘catch-up’ 

learning pattern. This type of analysis can generate fine-grained ideas for instructors by 

providing a clearer view to monitor students’ activities and highlight at-risk students. Also, 
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the visualisation can provide important feedback for the instructor to redesign the course for 

the optimum participation of students. 

 Moreover, the comparison results of the two weekly prediction methods (CP vs WP) 

showed that the models' performance in predicting students who will withdraw from their 

courses (next week) outperformed the models that predicted dropout students in subsequent 

weeks. In addition, the performance of weekly prediction models improved by utilising 

students’ jumping behaviour as an input feature. In the third experiment, we proposed a 

lightweight approach for early prediction that can be reliably applied to different types of 

MOOCs with little effort. The results of this prediction show that the two features (the 

number of accesses and the time spent) provided a satisfactory performance level. 

The second aim was to employ motivational theories and map online student behaviour onto 

them. In this thesis, Chapter 8 proposed a mapping methodology of engagement, including 

designing, mapping, measuring and evaluating, which can be further applied not only to 

MOOCs and e-learning systems when exploring engagement along the SDT constructs but 

also in terms of the mapping of other engagement theories, such as Drive (Pink, 2011), 

Engagement (Kearsley and Shneiderman, 1998), and Process of Engagement (O'Brien and 

Toms, 2008) onto data-intensive applications. This research shows how this kind of mapping 

can be used by analysing the engaged and disengaged MOOC student behaviours with 

respect to SDT theory. 

This thesis contributes significantly to the early detection of students at risk in MOOCs. The 

research addresses the dropout issue in an online environment by providing useful insights 

and suggestions. Developing accurate predictive models as an alerting tool might help 

education service providers proactively predict at-risk students in ongoing courses. This may 

assist educators and decision-makers in the process of planning for measures to be taken in 

advance to help these students. Moreover, it may assist education providers in developing 

plans for the subjects that will be offered in the future.  
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10.1  Future work 

Potential future work has several dimensions; for example, another dataset from different 

platforms with new longitudinal behaviour over extended periods could be used to predict 

dropout students.  

In addition, more reliable and advanced machine learning classifiers (e.g. Explainable 

Artificial Intelligence (Speith, 2022)) can be used. This kind of prediction technique is not 

only accurate at making predictions but also has the ability to describe the reasoning behind 

such predictions. 

In addition,  we have opted to analyse motivation from the point of view of the SDT theory. 

There are many other motivational theories out there. We have opted for SDT as being one 

of the most well-known and the use of SDT has become commonplace in the educational 

domain (Zhou, 2016).  

 The mapping of metrics over engagement theories is a new direction of research; this opens 

the way for further analysis and possible extension of these findings, including increasing 

the accuracy of the prediction. This approach can also help in validating theories from a data-

intensive point of view, which is interesting for the future. However, for future research, we 

will explore others as well. 
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Appendix 

Appendix A Prediction of Active and Non-Active Students in week 2 measured over the 6 courses 

BA: Balanced Accuracy, ACC: Accuracy, PR: Precision, Re: Recall, F1-Score  

  
C

o
u

rse 

Classifier Active 1/ Non-
Active 0 

Precision Re F1 ACC BA 

T
h

e M
in

d
 is F

lat  
  

KNeighbors 0 94.60% 91.69% 93.12% 89.43% 86.54% 
1 73.39% 81.40% 77.19% 

LogisticRe 0 98.01% 89.05% 93.31% 90.04% 91.31% 
1 70.64% 93.57% 80.51% 

XGBClassif 0 97.65% 90.04% 93.69% 90.53% 91.17% 

1 72.29% 92.31% 81.08% 
AdaBoostCl 0 97.84% 89.21% 93.33% 90.04% 91.11% 

1 70.82% 93.01% 80.41% 

GradientBo 0 97.69% 89.88% 93.62% 90.44% 91.16% 
1 72.00% 92.45% 80.96% 

ExtraTrees 0 98.14% 89.41% 93.57% 90.41% 91.70% 
1 71.41% 93.99% 81.16% 

RandomFore 0 98.06% 89.60% 93.64% 90.50% 91.65% 
1 71.73% 93.71% 81.26% 

 
S

u
p
p

ly
 C

h
ain

s 
  

KNeighbors 0 94.25% 93.73% 93.99% 90.16% 83.74% 
1 71.95% 73.75% 72.84% 

LogisticRe 0 98.47% 87.74% 92.80% 88.81% 90.74% 

1 62.50% 93.75% 75.00% 
XGBClassif 0 98.81% 90.46% 94.45% 91.28% 92.73% 

1 68.47% 95.00% 79.58% 
AdaBoostCl 0 98.22% 90.19% 94.03% 90.60% 91.35% 

1 67.27% 92.50% 77.89% 
GradientBo 0 98.81% 90.46% 94.45% 91.28% 92.73% 

1 68.47% 95.00% 79.58% 

ExtraTrees 0 98.80% 89.92% 94.15% 90.83% 92.46% 
1 67.26% 95.00% 78.76% 

RandomFore 0 98.52% 90.46% 94.32% 91.05% 92.11% 

1 68.18% 93.75% 78.95% 

O
p

en
 In

n
o

v
atio

n
 in

 B
u

sin
ess (O

I) 

KNeighbors 0 94.98% 88.93% 91.85% 88.16% 87.39% 
1 72.03% 85.86% 78.34% 

LogisticRe 0 92.58% 87.92% 90.19% 85.64% 83.35% 
1 68.42% 78.79% 73.24% 

XGBClassif 0 96.03% 89.26% 92.52% 89.17% 89.08% 
1 73.33% 88.89% 80.37% 

AdaBoostCl 0 98.43% 84.23% 90.78% 87.15% 90.09% 

1 66.90% 95.96% 78.84% 
GradientBo 0 92.78% 90.60% 91.68% 87.66% 84.70% 

1 73.58% 78.79% 76.10% 
ExtraTrees 0 96.39% 89.60% 92.87% 89.67% 89.75% 

1 74.17% 89.90% 81.28% 
RandomFore 0 95.34% 89.26% 92.20% 88.66% 88.07% 

1 72.88% 86.87% 79.26% 

S
h

ak
esp

eare 

KNeighbors 0 87.88% 84.06% 85.93% 81.72% 80.57% 

1 70.99% 77.09% 73.91% 
LogisticRe 0 96.58% 80.09% 87.57% 84.90% 87.24% 

1 70.58% 94.39% 80.77% 
XGBClassif 0 96.17% 80.83% 87.84% 85.14% 87.24% 

1 71.20% 93.65% 80.89% 
AdaBoostCl 0 96.45% 80.02% 87.47% 84.78% 87.11% 
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1 70.47% 94.19% 80.62% 
GradientBo 0 96.33% 80.74% 87.85% 85.17% 87.33% 

1 71.17% 93.92% 80.97% 
ExtraTrees 0 96.47% 80.38% 87.69% 85.02% 87.29% 

1 70.84% 94.19% 80.86% 
RandomFore 0 96.49% 80.30% 87.65% 84.98% 87.26% 

1 70.76% 94.22% 80.82% 

L
ead

in
g

 an
d

 M
an

ag
in

g
 P

eo
p

le
-

C
en

tred
 C

h
an

g
e (L

M
P

C
C

) 

KNeighbors 0 95.36% 85.76% 90.31% 86.48% 87.12% 
1 69.22% 88.47% 77.67% 

LogisticRe 0 96.95% 83.63% 89.80% 86.05% 88.18% 
1 67.21% 92.73% 77.94% 

XGBClassif 0 97.73% 84.04% 90.37% 86.85% 89.32% 
1 68.20% 94.61% 79.27% 

AdaBoostCl 0 99.07% 81.86% 89.64% 86.11% 89.86% 
1 66.13% 97.87% 78.93% 

GradientBo 0 98.24% 83.40% 90.21% 86.71% 89.63% 
1 67.64% 95.86% 79.32% 

ExtraTrees 0 98.66% 83.40% 90.39% 86.98% 90.13% 
1 67.87% 96.87% 79.81% 

RandomFore 0 97.99% 83.90% 90.40% 86.91% 89.57% 
1 68.16% 95.24% 79.46% 

B
ab

ies in
 M

in
d
 

KNeighbors 0 91.26% 81.88% 86.31% 79.19% 75.13% 
1 48.35% 68.37% 56.64% 

LogisticRe 0 97.51% 73.59% 83.88% 77.34% 83.01% 
1 46.47% 92.43% 61.85% 

XGBClassif 0 86.96% 88.45% 87.70% 80.12% 67.50% 
1 50.00% 46.55% 48.21% 

AdaBoostCl 0 97.76% 72.43% 83.21% 76.58% 82.87% 
1 45.64% 93.32% 61.30% 

GradientBo 0 84.70% 91.77% 88.09% 80.12% 62.48% 
1 50.00% 33.18% 39.89% 

ExtraTrees 0 95.60% 74.48% 83.73% 76.80% 80.33% 
1 45.58% 86.19% 59.63% 

RandomFore 0 97.76% 72.43% 83.21% 76.58% 82.87% 
1 45.64% 93.32% 61.30% 

 

Appendix B Prediction of Active and Non-Active Students in week 2 based on week 1 SDT 

constructs (10 fold cross validation); evaluated by the Balanced Accuracy score 

 

 

 

 

Courses 
AdaB ExtrTr 

GBoos

t 
KNN LR RF 

XGBoos

t 

Babies in Mind 83.93% 81.90% 70.13% 70.34% 84.17% 83.93% 72.69% 
Shakespeare 86.76% 86.67% 87.01% 83.81% 86.84% 86.87% 86.96% 
Supply Chains 91.30% 91.12% 88.88% 86.93% 91.22% 91.32% 90.69% 

The Mind is Flat 90.08% 89.99% 90.13% 85.36% 90.23% 90.07% 90.51% 
Open Innovation 

in Business (OI) 90.74% 90.14% 87.52% 87.24% 88.04% 90.27% 91.36% 
 (LMPCC) 89.55% 89.34% 88.97% 84.89% 87.59% 89.36% 89.57% 
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Appendix C Gini-importance for all courses (a-j) 

a) Big data 
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b) SLC 

 

c) BIM 
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SHK 
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LMPCC 
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Java 
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  EXC  
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a) TMF 
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