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Abstract

It is typically assumed that the total γ-H2AX foci produced in a sample of blood cells
is Poisson distributed, whose expected yield can be represented by a linear function
of the absorbed dose. However, in practice, because of unobserved heterogeneity in
the cell population, the standard Poisson assumption of equidispersion will most likely
be contravened which will cause the variance of the foci counts to be larger than their
mean. In both whole and partial body exposure this phenomenon is perceptible, unlike
in the context of the dicentric assay in which overdispersion is usually considered only
to be linked to partial exposure. For such situations, and as we will demonstrate, it is
suitable to utilise a model that can handle overdispersion such as the quasi-Poisson or
negative binomial regression.

The scenarios of most radiation accidents result in partial-body exposures or non-
uniform dose distribution, leading to a differential exposure of lymphocytes in the body.
Subsequently for the exposed individuals, their blood will contain a mixture of cells
showing no radiation impact at all and cells featuring a distribution of counts according
to dose of exposure. For such exposure scenarios, it remains that there are no statistical
procedures to follow for the γ-H2AX assay. Part of this work will focus on updating
the contaminated Poisson method, traditionally used in conjunction with cytogenetic
biomarkers, to enable an estimate of the radiation dose and irradiated fraction to be
found in the presence of both zero-inflation and overdispersion. As an extension, we
discuss and compare how to measure the uncertainty associated with a given dose
estimate via the delta, Merkle and ISO methods. We illustrate their applications firstly
via simulated zero-inflated Poisson and NB1 data, with the non-inflated part being
generated using an external γ-H2AX whole-body calibration curve, before applying the
methodology to practical data.
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ȳ Yield over k slides
U Papworth test statistic
S Sum of observations over k slides
l Dummy subscript
h Dummy subscript



xiv List of symbols

N0 Total number of zeros (aberration-free cells) over k
slides

n0 Total number of zeros per slide
Φ(.) Cumulative density function
zi Zero-inflation index
g(.) Canonical link function
µ Distribution mean
λ Mean yield (via the calibration curve)
L(.) Model likelihood
ρ Constant used to represent degree of exposure
X2 Pearson goodness-of-fit statistic
ν Residual degrees of freedom
w Number of model parameters
α Overdispersion parameter
c Index to identify form of NB/ZINB distribution
Γ(.) Gamma function
m Dummy subscript
p Zero-inflation parameter
ℓ(.) Model log-likelihood
I(.) Indicator function
γ0 Constant to infer type of radiation and cell damage
γ1 Constant to infer proprtion of irradiated blood
SD(.) Standard deviation
tW Welch test statistic
tM Mann-Whitney/Wilcoxen test statistic
κ(.) Dose-dependent function describing the survival rate

of irradiated cells
D Constant for absorbed dose
R Likelihood ratio test statistic
W Wald test statistic
ϵ Level of significance for hypothesis testing
π0 Probability of a zero observation
p0 Total proportion of zeros over N cells
Sc(.) Score function
det(.) Matrix determinant
F Irradiated fraction
q Probability constant
u Random effect
σ2

r Random effect variance
σ2

ϵ Residual variance



List of symbols xv

Z Random indicator variable
τ Constant for length of correlated strings





List of figures

1.1 Red arrows indicating the two centromeres on the dicentric chromosome
[27]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 γ-H2AX immuno-stained cells following irradiation by an array of syn-
chrotron microbeams at a dose of 283 Gy. DNA double strand breaks
are visualized via γ-H2AX staining in cultured human glioma cells (A)
and human fibroblasts (C). Boxed regions are shown in (B) and (D)
highlighting the difference in the number of γ-H2AX foci between the
peak and valley regions for both cell types. [10] . . . . . . . . . . . . . 4

1.3 A screenshot showcasing a segment of the raw data included in the
PHE-Foci2 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Foci distributions of 4h PHE-Foci1 samples. . . . . . . . . . . . . . . . 9
1.5 Foci distributions of 4h PHE-Foci2 samples (note: the 1.5Gy/100%

sample contains a single cell consisting of 37 foci but x-axis range is
chosen to reflect the second highest recorded frequency of 20 foci). . . . 10

1.6 Distribution of the number of observed foci, for three selected slides
from BfS-Foci dataset with dose levels 0.1Gy, 0.5Gy and 1Gy, respectively. 12

1.7 BfS-Foci slide-wise dispersions (left) and foci yields (row-means) (right)
recorded for various levels of dose. The three points highlighted as
triangles indicate the specific slides which have been displayed in Fig. 1.6. 13

2.1 Poisson linear (solid) and quadratic (dashed) calibration curves fitted
to 4h (black) and 24h (red) PHE-Foci1 data. Error bars represent ±2×
Poisson sampling error [see Appendix A.2]. . . . . . . . . . . . . . . . . 17

2.2 Linear (solid) and quadratic (dashed) combined calibration curves. . . . 18
2.3 95% HPD interval of the calibrative density of the 0.5Gy test data for a

normal mean prior and a U(0,∞) dose prior. . . . . . . . . . . . . . . . 25

3.1 Dispersion index behaviour for PHE-Foci1 4h data against exposure,
dose and proportion of zeros. Clearly, as one reaches a higher level of
dose, the number of foci tends to increase, yielding a reduced percentage
of zero counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



xviii List of figures

3.2 Dispersion index behaviour for PHE-Foci2 dataset. . . . . . . . . . . . 30

4.1 A comparison of 4h calibration curves reported from various laboratories.
Average γ-H2AX foci per cell as a function of 250kVp X-ray (red and
blue lines) and Co-60 gamma-ray (green, orange and purple lines). . . 46

4.2 Pair of plots with equal scales illustrating the foci counts (each count
represented here by an index number) (top) and in the form of histograms
(bottom) recorded for the PHE-Foci1 (left panels) and PHE-Foci2 (right
panels) 4h 0Gy dose samples. . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Dose vs dispersion behaviour for PHE-Foci1 (top) and PHE-Foci2 (bot-

tom) comparing QP with ZIP (1st column), NB1 with ZINB1 (2nd
column) and NB2 with ZINB2 (final column). . . . . . . . . . . . . . . 53

4.6 Fitted zero–inflation (mixture) parameters pi as a function of dose, xi,
to full- and partial-exposure calibration data for PHE-Foci1 (top panels)
and PHE-Foci2 (bottom panels). Solid lines correspond to modelling
the mixture parameter as logit(pi) = γ1xi and dashed lines correspond
to logit(pi) = γ0 + γ1xi. Solid dots indicate the fitted probabilities when
logit(pi) = γ0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Fitted vs observed proportion of zeros and means in each dose sample
for the Poisson, NB and ZI (pi modelled as a constant) models. Circular
points represent PHE-Foci1 4h samples and triangles the PHE-Foci2
0/100% exposure data. The dashed identity line is the Poisson base.
Under the Poisson, the probability of a zero is inversely proportional to
the mean, hence it is plausible for a large fraction of zeros with a small
mean to maintain compatibility under a Poisson. . . . . . . . . . . . . . 63

6.1 Quasi-Poisson model estimates of the BfS-Foci linear calibration curve:
E(yi) = 2.011 + 5.746xi. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Dispersion estimates based on the bootstrap simulation. The solid red
line represents the random-effect model dispersion ϕ̂ = 1.141 and the
dashed line indicates the quasi-Poisson dispersion ϕ̂ = 1.223 for the
original data as reported in Tables 6.1 and 6.2. . . . . . . . . . . . . . . 73

6.3 Parameter standard errors for the bootstrap simulation (left: intercept;
right: slope). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 For fixed λ1 = 1, λ2 = 2, we plot the non-linear functions (6.3.2) and
(6.3.9), using a string size of τ = 100. Note the substantially different
scales in the vertical axes of the two plots. . . . . . . . . . . . . . . . . 77



List of figures xix

7.1 A comparison of the individual number of foci per cell produced in
equidispersed (left) and overdispersed (right) whole-body samples of
equal mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.1 Plots of s∗ against D̂CP (top) and F̂CP (bottom) for the 0.75Gy/60%
sample. The blue line is used to indicate estimated values while the
green line represents the true values. The scenario of both non-zero dose
estimates and F ≤ 100% (red line) is achieved when s∗ ≥ 875. . . . . . 97

8.2 Observed vs expected proportion of zeros for the PHE-Foci2 dataset.
The dashed horizontal lines at 40% and 70% observed zeros indicate
the structural zeros expected from the 60% and 30% partially-exposed
samples respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.3 Trend of dose (top), fraction (middle) and α (bottom) estimates over
increasing 5% proportions of single-foci cells divided into 0s and 2s for
the 0.75Gy/60% sample. . . . . . . . . . . . . . . . . . . . . . . . . . . 100





List of tables

1.1 Dicentric distribution under whole-body irradiation. . . . . . . . . . . . 7
1.2 Dicentric measurements under 50% partial-body exposure conditions. . 7
1.3 Dicentric measurements under 75% partial-body exposure conditions. . 7

3.1 Results from PHE-Foci1 dataset. P-values for estimates supporting a
Poisson distribution are given in paranthesis. . . . . . . . . . . . . . . . 33

3.2 Results from PHE-Foci2 dataset. . . . . . . . . . . . . . . . . . . . . . 34
3.3 Results from PHE-Dicentric dataset. . . . . . . . . . . . . . . . . . . . 34

4.1 Fitted models to the PHE-Foci1 full-exposure data showing fit type,
timepoint, Poisson/quasi-Poisson coefficient values and the corresponding
standard errors and dispersion values for the quasi-Poisson regression.
We note that standard errors are presented as opposed to t statistics to
allow comparison with alternative estimators in later tables. . . . . . . 45

4.2 Welch and Mann-Whitney/Wilcoxen test statistic values and 95% confi-
dence intervals (CI) for comparison of the individual dose samples and
complete data. Associated p-values are given in parenthesis. . . . . . . 49

4.3 Results of fitting various models to 4h post-exposure whole-body cali-
bration data for datasets PHE-Foci1 and PHE-Foci2. . . . . . . . . . . 50

4.4 % difference between constant and non-constant dispersions evaluated
at dose levels considered (PHE-Foci1). . . . . . . . . . . . . . . . . . . 54

4.5 % difference between constant and non-constant dispersions evaluated
at dose levels considered (PHE-Foci2). . . . . . . . . . . . . . . . . . . 54

4.6 99% confidence intervals for γ1 and κ(x) for PHE-Foci1 data (omitting
control/0Gy sample). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 99% confidence intervals for γ1 and κ(x) for PHE-Foci2 data (omitting
control/0Gy sample). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 99% confidence intervals for γ1 and κ(x) for PHE-Dicentric data. . . . . 59

5.1 Likelihoods and model criterion from fitting various models to 4h whole-
body calibration data for datasets PHE-Foci1 and PHE-Foci2. . . . . . 66



xxii List of tables

5.2 Results from the Wald, likelihood ratio and score tests. For testing ZIPa
vs ZINB1a the score test is calculated under the log-link. . . . . . . . . 67

6.1 Parameter estimates along with their associated standard errors and
dispersion estimates obtained from each model. The last row gives the
critical value that ϕ̂ would be compared with in a Poisson goodness-of-fit
test at the 5% level of significance. . . . . . . . . . . . . . . . . . . . . 71

6.2 Parameter estimates of the fitted random effect models. Results above
the dashed line are extracted directly from the output of function
glmmTMB. The values below the dashed line give the estimated resid-
ual variance, σ̂2

ϵ , and the resulting ICC values. . . . . . . . . . . . . . . 72
6.3 Mean parameter standard deviations based on 100 simulation runs. . . 73
6.4 Dispersion indexes from simulated data under scenarios (A), (B) and (C). 78
6.5 Dispersion indexes from simulated data under simulation scenarios as

described in Section 6.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1 Scenario A (top) and B (bottom) mean dose estimates and standard
deviations based on 100 simulation runs. The brackets in µ̂CP column
read (PSE, QPSE, SE(µ̂CP )) and the reported α̂ values are an average
of the ZINB-1 MLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Scenario A (top) and B (bottom) mean fraction estimates and standard
deviations based on 100 simulation runs. . . . . . . . . . . . . . . . . . 89

7.3 75% partially-irradiated sample dose estimation uncertainties from the
Poisson (top) and NB1 (bottom) simulation for the CP (first row) and
CNB (second row, italic), expressed in the form of 95% confidence intervals. 90

8.1 Dose and fraction estimates corresponding to 30%, 60% and full-exposure
conditions. The brackets in µ̂CP column read (PSE, QPSE, SE(µ̂CP )). . 93

8.2 95% confidence limits for the dose estimates obtained from CP (first
row) and CNB (second row, italic) as reported in Table 8.1. . . . . . . 94

8.3 Dose and fraction estimates corresponding to 50%, 75% and full-exposure
conditions for PHE-Dicentric dataset. . . . . . . . . . . . . . . . . . . . 95

8.4 Estimated dose and fraction based on the method of moments and using
the re-fitted calibration curve (replacing 3Gy sample and the 37 scored
foci cell omitted from 1.5Gy sample). . . . . . . . . . . . . . . . . . . . 96

8.5 Values for s∗ for which both D̂CP > 0 and F̂CP ≤ 100% (min(s) column)
and when true dose and fraction are obtained. The results in this table
assume the same calibration curve (8.1.1) is used and that the observed
zeros remains constant. Note that it is not possible to replicate this
analysis for the CNB method since α̂ would require the individual foci
frequencies (which total s∗). . . . . . . . . . . . . . . . . . . . . . . . . 98



List of tables xxiii

8.6 Dose and fraction estimates using a slope-only curve, λ = 3.735D. . . . 101
8.7 Results from the ZOIP. Dose estimates are based on using the Poisson

calibration curve (8.1.1) and reported F̂ values are calculated via 1 − p̂0.
A value of p̂1 > 1 was obtained for the 100/0.75Gy sample (a consequence
of q̂1 > q̂0) and was therefore omitted. . . . . . . . . . . . . . . . . . . . 104

A.1 Dose and fraction estimates following procedures as outlined in Chapter
7 using the calibration curve λ = 0.766 + 1.700D. An asterisk * is used
to indicate values < 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . 132





Chapter 1

Introduction

Today, there remains a crucial shortage of methods capable of determining the extent of
exposures of human beings to ionising radiation (IR). However, knowledge of individual
exposures is essential for early triage during radiological incidents to provide optimum
medical procedures to each person. Members of the public will usually not be carrying
a personal dosimeter, thus other procedures to rapidly and reliably determine the level
of exposure and contracted dose are required.

The main purpose of biological dosimetry is to assess the amount of induced
radiation damage at a cellular level. The quantification of the radiation dose absorbed
is particularly useful to distinguish those deemed to be “critically exposed”, who
should be prioritised, from the “worried well”, people who have (comparatively) been
minimally exposed and unlikely to need urgent treatment [74]. As well as this, it can
provide us with useful information regarding probable future health consequences, both
stochastic and deterministic, for victims of radiation incidents [101]. Of course, it is
natural to continue developing novel and more powerful medical precautions, therefore
necessitating in the discovery of new biomarkers [61, 19, 50] but also in efforts to
explore the maximum potential of existing biomarkers.

1.1 Role of radiation biomarkers

Current diagnostics are based on radiation biodosimetry, a field that has seen enormous
progress within the last decade. Considerable effort has been put into the development
of radiation exposure biomarkers, which would provide information about the effective
radiation dose [9, 79]. The biodosimetric system is capable of identifying radiation
exposure by application in mass screening settings [100, 99].

The ideal radiation biomarker (or dosimeter) should provide information about dose
and time and should be independent of environmental and confounding factors such
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Fig. 1.1 Red arrows indicating the two centromeres on the dicentric chromosome [27].

as smoking, drug therapy, age, etc. [80, 55, 69]. Such a biomarker obviously does not
exist, however for suitability in triage it is desirable for a biomarker to possess (at least)
some of the following qualities; present low background, low donor variability, ease of
sampling, low cost, rapid analysis and work as a "risk-marker". Although biomarkers
based on gene-expression and micronuclei have proven to be competitive and gained
popularity in recent years [105, 78], in this thesis we will dedicate our attention to the
γ-H2AX biomarker, and to a limited extent, the dicentric biomarker.

1.1.1 The dicentric assay

Depending on the dose and the amount of exposure to IR, there may be significant
consequences for the victims. The main target of IR is DNA, which can be damaged
indirectly through reactive oxygen species (ROS) or directly through double-strand
breaks [51]. Due to their lack of inter-individual variation [29], the "gold standard"
method for the detection of double strand breaks (DSBs) is based on the scoring
of dicentric chromosomes. Specifically, this is a chromosome with two centromeres
(“crossings”) instead of the usual one as shown in Fig 1.1. It is formed by an exchange
between the centromeric pieces of two broken chromosomes, and in the complete form
the resultant dicentric chromosome is accompanied by an acentric fragment which is
composed of the remaining pieces of the broken chromosomes and does not contain a
centromere [53].

It was first proposed by Bender and Gooch [13] that the dicentric counts observed
in metaphases from peripheral lymphocytes could be used for dose evaluation of
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human radiation exposures. A further significant development of the method was the
introduction of the fluorescence plus Giemsa (FPG) staining [81]. With this process it
became possible to distinguish between the first and following mitotic divisions after
culture initiation, which is important as dicentric chromosomes are lost at cell division.

For decades, the analysis of dicentrics has been considered to be the most reliable
cytogenetic endpoint for biological dosimetry, since dicentrics are easily scorable and
the control level is low [53]. Due to the amount of research that has been conducted and
the widespread utilisation of this assay, the dicentric chromosome should be considered
to be a “best possible” albeit imperfect choice of biomarker, as it has a few primary
limitations. Firstly, reliable samples cannot be taken immediately after exposure as it
takes at least 2 days to obtain suitable metaphase spreads following irradiation and
subsequent stimulation of lymphocytes [94]. The analysis itself is both time-consuming
and requires experienced cytogeneticists in order to produce an accurate assessment of
the level of radiation damage. As a result, the total number of cases that can be assessed
globally in any given week is approximately 3000 [94]. This means in a large-scale
radiation incident, triage of casualties may well be dangerously slow, potentially posing
long-term harm to victims’ health. Therefore, other biomarkers should be investigated
which allow faster assessment.

1.1.2 Protein-based biomarkers

Chromosomes in an organism are made of a substance called chromatin, which itself
consists of nucleosomes in more complex, higher order structures. These nucleosomes
are composed of both DNA and octamers of histones, groups of eight proteins that are
used to package the DNA double helix. Specifically, DNA is wrapped around the eight
protein structure. Each octamer is made from four types of histone, H2A, H2B, H3,
and H4, and each type of histone is represented twice [89]. The H2A histone has four
subtypes, which are grouped into three subfamilies: H2A1-H2A2, H2AZ, and H2AX.
The focus of this thesis will be on H2AX, which can account for anything from 2% to
20% of the H2A histones found in human cells.

The H2AX histone is a DNA-repair protein; that is, once a cell gets exposed to
ionising radiation and a DSB has occurred, it coordinates the repair of the damaged
DNA and in this process phosphorylates, becoming γ-H2AX [89]. This phosphorylation
leads, after addition of fluorophore-labelled antibodies, to fluorescent dots which can be
counted under a microscope. The phosphorylation is only visible for up to approximately
24 hours after radiation exposure. DSBs are spontaneously induced at a very low rate,
and very few other biologically relevant processes induce them, so the presence of a
significant amount of DSBs implies that an organism has been exposed to ionising
radiation.
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Fig. 1.2 γ-H2AX immuno-stained cells following irradiation by an array of synchrotron
microbeams at a dose of 283 Gy. DNA double strand breaks are visualized via γ-H2AX
staining in cultured human glioma cells (A) and human fibroblasts (C). Boxed regions
are shown in (B) and (D) highlighting the difference in the number of γ-H2AX foci
between the peak and valley regions for both cell types. [10]

Background levels of γ-H2AX foci vary between cell types. In peripheral blood
lymphocytes, reported base levels are between 0.05 and 0.5 foci per cell. As γ-H2AX
formation depends on an enzymatic process, analysis should take place approx 1 hour
after a full body exposure, as at this point the vast majority of the induced foci are
both present and at a size and intensity where they can be scored reliably. For a
triage situation with a mass number of potential casualties, samples should be taken as
soon as possible, ideally within 24 hours, with a potential upper limit for feasibility
of approximately 3 days post-exposure [90]. In addition, the initial kinetics of foci
formation and loss are inconsistent [57]. The main problem with quantifying early foci
induction is that the intensity and size of each focus grow over time. The detection of
foci is affected by a range of parameters, including the cell type (as illustrated in Fig
1.2) and the individual scoring criteria for manual as well as automated scoring [92].
This means, for the same biological sample, variation in foci scores is more prevalent at
earlier timepoints after exposure.
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The suitability of this histone as a biomarker for DSBs [60, 11], and by extension,
ionising radiation exposure [70, 88, 92, 93], has long been established in the literature.
However, statistical work to quantify this relationship and facilitate the actual dose
estimation has only been carried out quite recently [6, 3, 28]. It should be noted that
γ-H2AX foci data is not only used for biological dosimetry but much more prominently
for several research questions in radiation biology [58, 56, 85, 40]. The γ-H2AX assay
has also been used to quantify DNA damage induced in peripheral blood lymphocytes
during diagnostic CT examinations [12, 39, 91] as well as radiotherapy [63, 95].

However, while studies reported the use of γ-H2AX foci induction following exposure
to therapeutic doses of ionising radiation [68, 59], how the assay would perform at
higher doses, particularly in humans, remained unclear for a while. In a study using
nonhuman primates subjected to total-body irradiation in the non-lethal to lethal dose
ranges [86], the authors showed that γ-H2AX analysis in lymphocytes and plucked hair
follicles (eyebrows and whiskers) may be useful for estimation of radiation dose at times
at least 4-days post-exposure at doses of 3.5Gy and above. In addition, the development
of the RABIT (Rapid Automated Biodosimetry Tool), to respond to major radiological
accidents, enabled throughput γ-H2AX analysis for radiation biodosimetry of up to
30,000 blood samples a day. Its purpose was to fully automate the γ-H2AX assay,
from the isolation of human blood lymphocytes to the immunolabeling of γ-H2AX and
image acquisition [37].

Given blood samples provided from an exposed patient, foci will be scored either
manually in a process called immunofluorescence microscopy, or automatically through
flow cytometry using machinery such as MetaCyte [16]. However, automated scoring
can have consistency issues [93], so the data we are looking at has been manually scored.
The main control issues to consider when scoring samples are the point at which dim
foci are classified as background noise, due to their low intensity or small size, and the
potential for groups of foci in close proximity to each other that can easily be perceived
as fewer in number than they actually are. Both of these may be affected by differences
in the optical resolution and light efficiency of the microscope and camera used for
the imaging of the foci, as well as the discretion of the individual scorer. The H2AX
datasets we will be using in this thesis are from 2 separate scorers (scored under the
same conditions), however we identified differences in their observed foci; one recorded
consistently higher foci counts than the other.

1.1.3 Motivation for H2AX as a DNA damage sensor

When comparing the γ-H2AX histone biomarker with its dicentric counterpart, we must
first be aware that they are two different types of biomarker. The dicentric biomarker is
very well established in the literature, with clear and comprehensive statistical methods,
whilst the γ-H2AX histone is not. A key strength of the dicentric biomarker is that it
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has very little inter-individual variation. This is not true for the γ-H2AX biomarker,
which has, as well as potential inter-individual variation, far stronger inter-laboratory
variation [28]. However, the time required between sampling and analysis is far shorter
for γ-H2AX foci (a few hours) than for the dicentric biomarker (2-3 days). The dicentric
biomarker also has a lower throughput than the γ-H2AX histone and is more labour
intensive, requiring experienced and skilled cytogeneticists. As a result of this the
global weekly capacity for analysis of the dicentric biomarker in “triage mode” (scoring
only 50 cells per sample and with a detection limit of 0.5Gy) is approximately 3000
samples [94], clearly not practical for a situation with a high number of potential
casualties. There is no currently stated upper limit for the number of γ-H2AX histone
samples scored per week, but it is reasonable to assume that any such limit would be
far larger than 3000.

The γ-H2AX histone biomarker operates within comparatively strict time limits:
the phosphorylated foci initially form within minutes of exposure, but are typically only
visible until approximately 24 hours after [35]. In comparison, while a blood sample
can be taken within a few hours of a whole body exposure for the dicentric biomarker,
delaying taking a sample until over 24h later is “advisable” if a non-uniform or partial
body exposure is suspected. Otherwise, IAEA guidelines suggest that blood samples
for analysis of this biomarker be obtained “promptly” but give no strict upper limit,
suggesting that aberration yields will drop after four weeks, increasing uncertainty [53].

1.2 Presenting dicentric and H2AX data

The dicentric dataset, which hereafter we refer to as "PHE-Dicentric", consists of
blood samples irradiated with three doses; 0.5, 0.7 and 1Gy of 2.1 MeV neutrons. The
proportion of irradiated blood is 100% (whole-body irradiation) and 50% and 75%
(partial-body irradiation) under densely ionising radiation. For reference, each of these
exposure scenarios are labelled as "D1", "D2" and "D3" respectively in Tables 1.1, 1.2
and 1.3. In each case, frequencies of dicentrics and centric rings are recorded. Data are
also available from [76] and correspond to a culture time of 72h.

Although the maximum number of dicentrics observed in a single cell is 7, larger
counts are possible but it is fairly uncommon to score more than 10 dicentrics per cell.
By contrast, the range of foci counts will typically be on a wider scale. We will make
use of three H2AX datasets. The first dataset entitled "PHE-Foci1" is part of a much
larger dataset whereby focus counts are based on small examined samples of 200 cells
for 4h and 24h timepoints. Blood was divided into 30/70%, 40/60%, 60/40%, 80/20%
and 100/0% irradiated/non-irradiated ratios. For the second dataset "PHE-Foci2",
foci were scored over 1000 cells, counted manually 4h post exposure. The proportions
of blood irradiated were 30%, 60%, and 100%. In both datasets, foci were scored in an
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(D1) Dicentrics
Dose 0 1 2 3 4 5 6 7 Total Sample Size
0.1 2281 130 21 1 0 0 0 0 175 2433
0.3 847 127 19 6 1 0 0 0 187 1000
0.5 567 165 49 16 2 0 0 0 319 799
0.7 356 167 62 9 5 1 0 0 343 600
1 169 131 72 18 9 0 0 1 372 400

Table 1.1 Dicentric distribution under whole-body irradiation.

(D2) Dicentrics
Dose 0 1 2 3 4 5 Total Sample Size
0.5 875 88 30 7 0 0 169 1000
0.7 679 88 23 8 1 1 167 800
1 480 75 27 13 5 0 188 600

Table 1.2 Dicentric measurements under 50% partial-body exposure conditions.

(D3) Dicentrics
Dose 0 1 2 3 4 5 6 Total Sample Size
0.5 633 118 37 10 1 1 0 231 800
0.7 455 98 37 9 1 0 0 203 600
1 263 88 36 11 1 0 1 203 400

Table 1.3 Dicentric measurements under 75% partial-body exposure conditions.
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Fig. 1.3 A screenshot showcasing a segment of the raw data included in the PHE-Foci2
dataset.

in-vitro setting at Public Health England following irradiation of blood lymphocytes
with 250kVp X-rays using dose levels of 0, 0.75, 1.5 and 3Gy. For clarity, the results
from the 0Gy dose make up the control data i.e. foci scored under 0% exposure/no
irradiation or background foci.

For the reasons stated above, it is not particularly convenient for raw H2AX data
to be provided in the same manner as dicentric data (as in Tables 1.1-1.3 or similar)
but rather in electronic format. To illustrate, an example of inputting PHE-Foci2 raw
data using Excel software is shown in Fig 1.3. Histograms to show the breakdown of
foci measurements in each sample at 4h post-exposure are displayed in Figures 1.4 and
1.5. Immediately we identify that the PHE-Foci2 irradiated samples provide larger foci
counts which can only be concretely explained through a change of technology in the
scoring process. If both datasets were conducted under the exact same conditions then
it is reasonable to suggest that some counts from the PHE-Foci1 dataset should be in
proximity to 20 (ignoring for now the anomalous cell of 37 scored foci).



1.2 Presenting dicentric and H2AX data 9

0G
y/

0%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0200

4h
 s

am
pl

es
0.

75
G

y/
30

%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100

1.
5G

y/
30

%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100

3G
y/

30
%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100

0.
75

G
y/

40
%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100

1.
5G

y/
40

%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100

3G
y/

40
%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100

0.
75

G
y/

60
%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100
1.

5G
y/

60
%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100

3G
y/

60
%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100

0.
75

G
y/

80
%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100

1.
5G

y/
80

%

F
oc

i P
er

 C
el

l

Frequency
0

2
4

6
8

10
12

0100

3G
y/

80
%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100

0.
75

G
y/

10
0%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100

1.
5G

y/
10

0%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100

3G
y/

10
0%

F
oc

i P
er

 C
el

l

Frequency

0
2

4
6

8
10

12

0100

Fi
g.

1.
4

Fo
ci

di
st

rib
ut

io
ns

of
4h

PH
E-

Fo
ci

1
sa

m
pl

es
.



10 Introduction

0G
y/

0%

F
oc

i P
er

 C
el

l
Frequency

0
5

10
15

20

0200400600800

0.
75

G
y/

30
%

F
oc

i P
er

 C
el

l

Frequency

0
5

10
15

20

0200400600800

1.
5G

y/
30

%

F
oc

i P
er

 C
el

l

Frequency

0
5

10
15

20

0200400600800

3G
y/

30
%

F
oc

i P
er

 C
el

l

Frequency

0
5

10
15

20

0200400600800

0.
75

G
y/

60
%

F
oc

i P
er

 C
el

l
Frequency

0
5

10
15

20

0200400600800

1.
5G

y/
60

%

F
oc

i P
er

 C
el

l

Frequency

0
5

10
15

20

0200400600800

3G
y/

60
%

F
oc

i P
er

 C
el

l

Frequency

0
5

10
15

20

0200400600800

0.
75

G
y/

10
0%

F
oc

i P
er

 C
el

l

Frequency

0
5

10
15

20

0200400600800

1.
5G

y/
10

0%

F
oc

i P
er

 C
el

l
Frequency

0
5

10
15

20

0200400600800

3G
y/

10
0%

F
oc

i P
er

 C
el

l

Frequency

0
5

10
15

20

0200400600800

Fi
g.

1.
5

Fo
ci

di
st

rib
ut

io
ns

of
4h

PH
E-

Fo
ci

2
sa

m
pl

es
(n

ot
e:

th
e

1.
5G

y/
10

0%
sa

m
pl

e
co

nt
ai

ns
a

sin
gl

e
ce

ll
co

ns
ist

in
g

of
37

fo
ci

bu
t

x-
ax

is
ra

ng
e

is
ch

os
en

to
re

fle
ct

th
e

se
co

nd
hi

gh
es

t
re

co
rd

ed
fre

qu
en

cy
of

20
fo

ci
).



1.2 Presenting dicentric and H2AX data 11

Taking the maximum recorded count in each PHE-Foci1 sample, we investigated
the proportion (out of 1000) of cells in the PHE-Foci2 samples (of the same exposure
fraction) which were greater than this count. For the 0.75Gy samples, this translates to
0.7% (30%), 0.4% (60%) and 1.2% (100%). Since these proportions are very small, then
in a sample of 200 we would expect only 1 or 2 count(s) to be greater than 7. Aside
from the 1.5Gy/30% sample, the proportions for the remaining samples range from
9.6% to 37.9%. Given the same number of cells analysed for both datasets, it could be
speculated that their distributions become alike, however one can only proceed with
what is available to them.

The aggregation of count data prior to analysis or modelling is a very common
procedure in several fields, including for instance the aggregation of clickstream data
in e-commerce [42], or of species counts in ecology [41]. Furthermore, in biodosimetry,
it is common to aggregate counts of certain biomarkers over samples of blood cells and
use the aggregated count for the estimation of dose-response curves, or the estimation
of dose given an existing curve.

In order to establish dose-response calibration curves, laboratory experiments are
carried out where blood samples are exposed to known degrees of radiation. The data
arising from a series of such experiments conducted at the Bundesamt für Strahlenschutz
(BfS), Germany, are displayed in Figures 1.6 and 1.7. Henceforth we will refer to this
dataset as "BfS-Foci". For the production of this data, whole blood samples were
irradiated with one of six design doses (0.1, 0.2, 0.3, 0.4, 0.5 and 1Gy), always with
195kV X-radiation. One hour after exposure, blood samples consisting of approximately
2000 cells were then placed on slides under an immunoflourescence microscope, and
the number of foci on each slide was counted in a semi-automatic way using MetaCyte
software. (Additional information on the generation of this dataset is deferred to
Appendix A.4).

In total, measurements from 116 slides are available, corresponding to a total of
233220 frequencies of foci per cell. Fig. 1.6 gives an excerpt of the raw data, in the
form of a frequency distribution of foci counts for three specific slides. One sees clearly
how the distribution of the foci counts is shifted to the right for increasing doses, in
a similar manner to Figures 1.4 and 1.5, underlining their suitability as a radiation
biomarker (note again that all cells on a given slide always share the same design dose).
The full BfS-Foci dataset is displayed in Fig. 1.7 in aggregated form, with each point
corresponding to the mean foci count for a specific slide. From this one can deduce
some sort of empirical dose-response relationship, which appears roughly linear over a
considerable dose range, noting a saturation effect [74] for higher doses.
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Breakdown of measurements for the 0.1Gy dose

Foci Per Cell

F
re

qu
en

cy

0 5 10 15 20

0
20

0
60

0

Breakdown of measurements for the 0.5Gy dose

Foci Per Cell

F
re

qu
en

cy

0 5 10 15 20

0
10

0
30

0

Breakdown of measurements for the 1Gy dose

Foci Per Cell

F
re

qu
en

cy

0 5 10 15 20

0
10

0
20

0
30

0

Fig. 1.6 Distribution of the number of observed foci, for three selected slides from
BfS-Foci dataset with dose levels 0.1Gy, 0.5Gy and 1Gy, respectively.
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Fig. 1.7 BfS-Foci slide-wise dispersions (left) and foci yields (row-means) (right)
recorded for various levels of dose. The three points highlighted as triangles indicate
the specific slides which have been displayed in Fig. 1.6.

1.3 Outline of the thesis

In this chapter we have discussed the advantages and disadvantages of both the H2AX
and dicentric assay, as well-established biomarkers in the field of biodosimetry. The
main focus of this thesis will be the H2AX assay, however some of our analysis will
make use of the PHE-Dicentric data presented in Section 1.2. In the following Chapter
we will review some of the existing approaches to dose estimation, based on frequentist
and Bayesian methods. Some work on the implementation of the zero-inflated Poisson
and NB1 models using MCMC (via the R package rjags) can be found in [30], where
we concluded that there is no "strong" preference in selecting between a frequentist or
Bayesian framework for the purpose of fraction estimation. We note that these results
were conditional to the use of a uniform prior which suggests any exposure scenario is
equally likely. Although beyond the scope of our work, the choice of prior could be
updated, with weights or probabilities assigned to certain exposures, to reflect the case
that some partial-exposures are more likely than others. We note that this thesis will
draw focus from the frequentist perspective.

In Chapter 3, we will introduce separably the concepts of dispersion and zero-
inflation which will allow us to critically assess the adequacy of the Poisson in describing
a scored foci or dicentric distribution. This will serve as a preliminary to Chapter 4, in
which we define statistical count data models for handling overdispersion in a formal
manner as well as the notion of likelihood and maximum likelihood. We conclude this
chapter through the analysis of calibration data, exploring in detail the behaviour of
dispersion and zero-inflation against dose level and fraction of exposure.



14 Introduction

A distinct property of maximum likelihood is that it allows the standard likelihood
tests to be implemented. In Chapter 5, we discuss further how the overdispersion
parameter (estimated in Chapter 4) can be used as information against the Poisson
model via the likelihood ratio and Wald test. We then proceed to compare these tests
with score tests proposed by Dean and Lawless which have the advantage over the
likelihood ratio and Wald tests in that they only require the parameter estimated under
the null hypothesis. In addition, model selection based on information criterion will be
employed.

In the event that a calibration curve has been constructed based on a range of
dose values involving multiple experiments or slides, it is convenient for a laboratory
to supply such data in aggregated format. In Chapter 6, we make full use of the
BfS-Foci dataset which conveniently allows us to compare the dispersions in the raw
and aggregated data. We will show through both theory and simulation that relatively
small deviations from the independence assumption in the raw data (say, the presence
of strings of correlated observations) can increase the dispersion of the aggregated data
dramatically. Although this is not entirely novel, the behaviour of dispersion estimates
under aggregation is under-reported, almost certainly in the field of biodosimetry. We
finish this chapter by highlighting the pros and cons of aggregated data with respect to
raw data.

Following a potential radiation incident, a clinician will often be provided with
only one exposed patient’s blood sample. As opposed to using calibration data (as
in Chapters 4 and 5), Chapters 7 and 8 are focused on dose and fraction estimation
in the case of a single sample. We begin by outlining the contaminated Poisson
method before making a novel attempt to update this method in order to account
for additional overdispersion which is not attributable to zero-inflation. Part of this
work is discussed in [31]. We will see that certain data characteristics, for example an
excessive frequency of low (non-zero) counts, can create problems for these methods.
The aim of Chapter 8 is then to define alternative procedures or steps which can be
taken in such circumstances to improve estimates.

Finally in Chapter 9, we conclude this thesis. We discuss our findings and issues
while investigating the problem.



Chapter 2

Current procedures for dose

estimation

One of the biggest challenges in biological dosimetry is the satisfactory conversion
of a measured quantity of radiation damage, such as a dicentric or foci yield, into
an estimate of dose. All biodosimetric methods require a calibration curve in order
to translate the observed yield of damage in cells into a radiation dose estimate. In
addition, the choice of radiation biomarker used to quantify the contracted dose through
the caused cellular damage, is important in assessing the radiation sensitivity in a
patient blood sample. The aim of this chapter is to review and compare frequentist and
Bayesian processes of arriving at a whole-body dose estimate and, given this estimate,
how exactly its uncertainty can be quantified.

2.1 Generalised linear models

We begin this chapter by outlining some terminology. We refer to a set of aberration
counts (constituting a specific histogram such as in Figures 1.4, 1.5 and 1.6) as a slide.
The j-th observation in the i-th slide is denoted as yij, for k slides with respective size
ni, i = 1, . . . k. Averaging over the i-th slide, we obtain the means yi = ∑

yij/ni, which
are also referred to as yields in the dosimetry literature. The convention to speak of
slides and yields is simply with reference to the data considered, and is not implying a
restriction of the validity of the results to this particular field of application.

Fixing terms, we can relate the yields to dose via the expression:

yi = E(yij|xi) = β0 + β1xi + [β2x
2
i ] (2.1.1)



16 Current procedures for dose estimation

where, under this framework, the predictor xi (here, representing the design doses) will
never depend on j. For whole-body exposure, the distribution of foci (and dicentrics)
among the irradiated cell population is assumed to be Poisson. The modelling strategy
for the Poisson distribution is set out more formally in the following section.

For many years, the usage of generalised linear models (GLMs) [71] has become
standard for the construction of dose-response calibration curves. By definition, GLMs
are a class of models that generalise linear regression where the response variable is
expected to follow an exponential dispersion family (EDF) with mean µ. In general,
there are 3 components needed to define a GLM:

1. Random component:

Given covariates xi, the responses yij are iid with an EDF density of the form

f(y; θ, ϕ) = exp
{
θy − b(θ)
a(ϕ) + c(y, ϕ)

}
(2.1.2)

,

where θ ∈ R is the ’natural parameter’, ϕ > 0 is the ’dispersion parameter’
(discussed in further detail in the following chapter) and a, b : R → R and
c : R × R+ → R are functions.

2. Systematic component:

ηi = x′
iβ, the linear predictor, where β is the vector of unknown regression

parameters.

3. Parametric link component:

The link function g(µi) = ηi = x′
iβ combines the linear predictor with the mean

µi of yij. Here, the canonical link function is used, so that θ = η holds.

In our context, classical linear regression is deemed inappropriate for fitting dose–response
curves since responses are the mean of Poisson counts and the assumption of homoscedas-
ticity is violated due to the biological process which leads to dependence of the variance
on the dose. As a first model for count data, we initially consider the Poisson regression.

2.2 Poisson models

While models based on the Gaussian distribution, such as the common linear model, are
usually not applicable to count data, this is not a big obstacle as count data regression
models are now well developed. The most basic of all count data models is the Poisson
model, which postulates

yij ∼ Pois(µi), (2.2.1)
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Fig. 2.1 Poisson linear (solid) and quadratic (dashed) calibration curves fitted to 4h
(black) and 24h (red) PHE-Foci1 data. Error bars represent ±2× Poisson sampling
error [see Appendix A.2].

that is
f(yij|xi) = e−µi

µ
yij

i

yij!
,

where

µi = g−1(x′
iβ), (2.2.2)

with µi > 0, for some link function g and β = (β0, β1, [β2])′ ∈ R as in (2.1.1). This
means we assume that all observations from a particular sample or slide will share the
same predictors, and hence the same µi.

The Poisson density can be rewritten in the form of the exponential family (2.1.2)
as f(yi) = exp {−µ+ yln(µ) − ln(y!)} with a(ϕ) = 1, θ = ln(µ), b(θ) = µ and c(y, ϕ) =
−ln(y!). The canonical link function typically used is the log-link function η = ln(µ),
however, in the context of dosimetry, one will usually use the identity link function
g(µ) = µ. This choice is motivated by physical considerations and the shape of the
dose-response curve, despite the fact that the log-link is, from a statistical viewpoint,
a natural choice for count data. For the sole purpose of fitting dose-response curves
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Fig. 2.2 Linear (solid) and quadratic (dashed) combined calibration curves.

to calibration data (typically whole-body), it is standard to relate the mean yield of
aberrations, λi, to dose xi via the linear [or quadratic] model [28]

λi = E(yij|xi) = β0 + β1xi + [β2x
2
i ]. (2.2.3)

For clarity, when we speak of calibration data, we refer to data arising from multiple
experiments conducted using various doses as shown in Table 1.1 for example. In some
cases, this may also include the 0Gy control samples i.e. aberrations scored under
no exposure, as depicted in both Figures 2.1 and 2.2 for the PHE-Foci1 4h and 24h
whole-body calibration data.

It is clear from Figures 2.1 and 2.2 that counts of γ-H2AX increase with level of
dose but decrease with time. The presence of foci indicates that DSBs have occurred
and are initiating a cellular response to repair the damage. During the early stages
of DSB repair, the number of H2AX foci per cell increases as the DNA damage
response is activated and the foci accumulate at sites of DNA damage. It is believed
that measurements of γ-H2AX peak at approximately 30 minutes following exposure.
Subsequently, as repair mechanisms begin to repair the DSBs, the foci yield gradually
decreases (hence the reason we see smaller yields at 24h post exposure) before returning
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to baseline levels within 24-48 hours. Due to the variability in foci counts over time,
calibration curves are commonly constructed separately for various times post exposure,
as in Fig 2.1.

Assuming the data yij to be conditionally independent given xi, the model likelihood
can be written as

L =
∏
i,j

f(yij|xi) =
∏
i,j

e−µi
µ

yij

i

yij!
∝
∏

i

e−niµiµ

∑
j

yij

i .

We recall that for inferential purposes concerning the model parameters, the required
information for the likelihood is fully provided by the sums si = ∑

j yij , or equivalently
by the yields yi = si/ni. This property, known as ’sufficiency’, implies that the
aggregated data (i.e. when referring either to yi or si) contain sufficient information
for inference on µi, and, hence, β. Notably, this does not only hold for the parameter
estimates but also their standard errors; in other words, given the aggregated data, no
improvement in either accuracy or precision is possible by considering the raw data.

One can interpret the intercept parameter in (2.2.3) as the ’background yield’
constant, that is, the expected yield under zero dose. However, in the absence of
radiation exposure it is meaningless to speak of ’time after irradiation’, hence this
constant should be identical for each calibration curve. Assuming data are obtained
under the same experiment conditions, we can define a combined model of the form:

E(yij|xi) = β0 + β1xi + [β2x
2
i ] + β3xi1{time = 24h} + [β4x

2
i 1{time = 24h}], (2.2.4)

displayed in Figure 2.2. As a further extension, if the degree of exposure is known then
it is possible to extend (2.2.4) such that

E(yij|xi) = β0 +ρ(β1xi +[β2x
2
i ]+β3xi1{time = 24h}+[β4x

2
i 1{time = 24h}]), (2.2.5)

where ρ ∈ [0, 1] with ρ = 0 and ρ = 1 representing non-irradiation and whole-body
exposure respectively.

2.2.1 Poisson mean-variance relationship

A main principle of the Poisson regression is that of equidispersion. For all i and j,

Var(yij|xi) = E(yij|xi) = µi, (2.2.6)
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implying trivially that

Var(yij|xi)
E(yij|xi)

= 1. (2.2.7)

Another important characteristic of the Poisson model is that the equidispersion carries
over from the raw to the aggregated data model,

E(si|xi) = nig
−1(x′

iβ). (2.2.8)

This property, along with the sufficiency property, makes a compelling case for the
use of the aggregated data in Poisson models: They contain all required information
but require less storage space, less computational time to fit the models, and allow for
simplified data display.

In application to practical radiation biomarker data, the equidispersion property will
most often be violated. In such cases, a Poisson model may underestimate parameter
uncertainty and therefore overstate the significance of those parameters. For the
avoidance of misleading inference, we require models, for example as outlined later in
Chapter 4, which do not possess the same restriction of mean-variance equality.

2.3 Frequentist methodology

We consider now the scenario that a given calibration curve (2.1.1) is available. A
blood sample has been taken from a potentially exposed individual, and a number n∗

of cells of this sample have been examined. These n∗ cells deliver a total focus count s∗

and hence a yield y∗ = s∗/n∗. From (2.1.1), the whole-body equivalent dose estimate
can be obtained through inverse regression i.e.

x∗ = y∗ − β̂0

β̂1
(2.3.1)

or for the quadratic case (as commonly used with cytogenetic biomarkers):

x∗ = −β̂1 ±
√
β̂1

2
− 4β̂0β̂2

2β̂2
. (2.3.2)

For the γ-H2AX assay, it is not convenient to include the quadratic term (for reasons
discussed later in Chapter 4) hence the following section is based on (2.3.1).
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2.4 Uncertainty quantification

Only recently has the question of how to assess quantitatively the uncertainty related
with a radiation dose estimate started gaining interest. When we speak of uncertainty,
we refer to the variability resulting from both the sampling process and fitted calibration
curve. The aim is to ultimately express uncertainty in terms of a confidence interval
and it is standard practice to calculate 95% limits. The 95% confidence limits define an
interval that will encompass the true dose on at least 95% of occasions. The following
methods can be used to calculate uncertainty for a given dose estimate:

1. Delta approximation (’Multibiodose method’)

Firstly, the uncertainty (expressed in the form of standard errors) attached to a
dose estimate x∗ can be decomposed via [see Appendix A.5]

SE2(x∗) =
(
∂x∗

∂β̂0

)2

SE2(β̂0) +
(
∂x∗

∂β̂1

)2

SE2(β̂1) +
(
∂x∗

∂y∗

)2

SE2(y∗). (2.4.1)

The partial derivatives in (2.4.1) can be worked out to be

∂x∗

∂β̂0
= − 1

β̂1

∂x∗

∂β̂1
= β̂0 − y∗

β̂1
2

∂x∗

∂y∗ = 1
β̂1
.

.

The quantities in (2.4.1) are immediately known from either the calibration curve
or sample information except the error associated with the yield, SE(y∗). For
yij assumed to be Poisson distributed, this quantity is equivalent to the Poisson
sampling error [Appendix A.2].

2. Merkle’s method

Merkle’s method [73] assumes the error of both the aberration yield and calibration
curve coefficients is of Poisson nature. The method is detailed in IAEA manual
and is well-established for use with the dicentric biomarker. In summary, it
involves calculating upper and lower 95% confidence limits on the yield (y∗

U and
y∗

L) using the following equations:
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y∗
U =

0.5χ2
0.025,2y∗n∗+2

n∗ y∗
L =

0.5χ2
0.975,2y∗n∗

n∗ . (2.4.2)

The upper and lower confidence limits on the curve are then calculated according
to

y∗
U/L(x∗) = β̂0 + β̂1x

∗ ± CF
√
SE2(β̂0) + SE2(β̂1)x∗2, (2.4.3)

where CF = 2.45 is the regression 95% confidence factor of the Chi-squared
distribution with 2 degrees of freedom (linear model). To obtain a 95% confidence
interval of the "true" dose, we determine the dose at which the yield y∗

L intersects
with y∗

U(x∗) to provide the lower confidence limit on the dose, and evaluate the
dose at which y∗

U crosses with y∗
L(x∗) to give the upper confidence limit on the

dose.

A proposed refinement to this method to reduce possible overestimation of
uncertainty is to instead use an 83% confidence interval. However, there is little
point in shrinking the interval size without first checking whether this method
works for the γ-H2AX histone. In order for the method to be successful, the
expectation was that almost 95% of the intervals produced should contain the
real doses. An attempt to apply Merkle’s method for generating 95% confidence
intervals to γ-H2AX data with known real doses has previously been made in
[36]. They concluded that the method was insufficient, with a very low success
rate of only 7% of measured yields providing intervals containing the real dose.

3. IAEA simplification

This method also relies on using the upper and lower confidence limits on the
yield, as computed in (2.4.2). However, in comparison to Merkle’s method, the
dose confidence limits are found by simply substituting y∗

U and y∗
L directly into

the dose estimator (2.3.1).

4. Monte Carlo propogation of errors

A distinct advantage of Monte Carlo (MC) simulation is that uncertainty cal-
culations can be accomplished by non-statisticians using standard spreadsheet
applications (such as Excel) rather than requiring technically demanding math-
ematical procedures. To apply the method, we assume the input quantities
(y∗, β̂0, β̂1) are normally distributed. Based on these distributions, trial values
can be generated for each of these input variables using a combination of the
NORMINV (for calculating Gaussian-distributed values) and RAND (for generat-
ing pseudo-random values) functions, according to the procedure outlined in [33].
We note in the instance a negative value is drawn for β̂0, a corrected value of
β̂0 = 0.001 is used. The estimated dose x∗ is then calculated using (2.3.1). The
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above process constitutes a single MC simulation. The idea is to perform multiple
simulations, providing an overall mean and standard deviation to construct a
95% confidence interval.

2.5 A probabilistic approach

In parallel to the classical, frequentist convention, Bayesian methods are becoming
increasingly popular in the field of biological dosimetry [46, 17, 4]. Key to the Bayesian
concept is the application of the inversion theorem in its continuous version, i.e.

P (x∗|y∗) = P (y∗|x∗)P (x∗)∫
P (y∗|x∗)P (x∗)dx∗

Thus, the posterior dose distribution (or calibrative dose density), P (x∗|y∗), scales with
the product of the likelihood (or predictive density) and the prior P (x∗):

P (x∗|y∗) ∝ P (y∗|x∗)P (x∗).

With respect to uncertainty analysis, the Bayesian approach does not require
additional considerations, since the resulting distribution P (x∗|y∗) inherently provides
quantification of the uncertainty within the dosimetric model. Consequently, Bayesian
uncertainty intervals for the dose parameter are accurate.

Apart from the intrinsic inclusion of uncertainty within the posterior model, addi-
tional information besides the number of aberrations can be used through the chosen
prior distribution(s). The choice of the prior could be sensitive, since well chosen,
informative priors should guide noisy data towards the true dose, whereas incorrect
priors may drive the estimate away from the true dose. Higueras also showed that if an
appropriate prior is applied, the actual choice of prior in fact does not greatly impact
the overall dose assessment in some scenarios [46].

Higueras et al.[45] also discussed the reasonable set-up of Poisson and compound
Poisson models (Neyman A, negative binomial, Hermite) with parameterisation based
on using the "dispersion index" (which we will discuss in the following Chapter) for
biodosimetry. Furthermore, the authors also presented a guide for analysis of partial-
body exposure for a zero-inflated Poisson model [46].

For biological dosimetry, it can be concluded that the Bayesian methodology is
certainly coherent, but at the same time it is far more technically challenging than
the frequentist dose and uncertainty assessment methods currently recommended and
used by most practitioners [53]. In particular, the potential pitfall of incorrectly chosen
priors needs careful consideration. Software-based solutions, however, can certainly
help bridge the gap between the necessary mathematical skills and the users.
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2.5.1 Software and web-based applications

Over the years, several software packages have been developed to help assist with curve
fitting and dose estimation. Until recently, the two most frequently used software
packages were CABAS [25] and Dose Estimate [2]. Due to their simplicity, there is an
increasing popularity in the usage of web-based applications, for example DoseEsti-
mateH2AX [28] and BiodoseTool [43]. In addition to curve fitting and deriving dose
estimates together with the associated uncertainty and probability parameters, there
are also statistical tools which allow for partial body calculations, genome equivalents
etc.

Since they allow inclusion of previous information about the circumstances of
exposure [5], more user-friendly software platforms based on Bayesian modeling have
been developed to estimate radiation exposures including CytobayesJ and radir [45].
The latter package is able to plot calibrative dose densities as well as provide relevant
summary statistics including best dose estimate, standard deviation and credibility
interval. Figure 2.3 provides the resulting calibrative dose density upon application to
dataset D1, omitting the 0.5Gy row as test data. This can be reproduced in RStudio
as follows

dose <- c(0.1,0.3,0.5,0.7,1)
freq <- matrix(c(2281,847,567,356,169,130,127,165,167,131,21,19,49,62,
72,1,6,16,9,18,0,1,2,5,9,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1),5,8)
d <- dim(freq)[1]
ndic <- dim(freq)[2]-1
ncel <- rowSums(freq)
X <- as.vector(freq%*%(0:ndic))
dic <- dosevec <- numeric()
for(i in 1:d){

for (j in 0:ndic){
dic <- c(dic,rep(j,freq[i,j+1]))
dosevec <- c(dosevec,rep(dose[i],freq[i,j+1]))

}}
datavecD1 <- data.frame(dic,dosevec,dosevec2=dosevec^2) # raw data
dataggrD1 <- data.frame(X,ncel,dose,dose2=dose^2) # aggregated data
fit <- glm(X~-1+I(ncel)+ I(ncel*dose) + I(ncel*dose^2), family=
poisson(link = "identity"), data=dataggrD1[-3,]) # Poisson curve with
0.5Gy row removed

install.packages("radir")
library(radir)
f <- expression(b0+b1*x+b2*x^2)
pars <- c("b0","b1","b2")
beta <- fit$coef
cov <- summary(fitb2)$cov.unscaled
ex1 <- dose.distr(f, pars, beta, cov, cells=ncel[3], dics=X[3],

m.prior="normal", d.prior="uniform",
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Fig. 2.3 95% HPD interval of the calibrative density of the 0.5Gy test data for a normal
mean prior and a U(0,∞) dose prior.

prior.param=c(0, 10))
plot(ex1, ci=T, cr=0.95)

where, if necessary, one can also specify a gamma prior as input for the mean and dose
priors. We see clearly that the 95% interval just slightly covers the 0.5Gy dose (not
encompassed by a 90% interval), producing an expected dose of 0.55Gy. Although
this remains a reasonable estimate, particularly in the circumstance of needing a quick
value, the package only takes into account the total number of cells as well as the total
aberration count and therefore no information of the sample’s distribution (i.e. many
foci-free or single-foci cells, present overdispersion?). Additionally, this approach would
not be suitable for calibration data consisting of only 3 design doses with a single
sample per dose, as is the case with our H2AX datasets, since it becomes meaningless
to re-fit a calibration curve with only 2 dose points.

The assessment of the absorbed dose is particularly reliable in cases of acute, uniform
and whole-body exposures. However, the scenarios of most radiation accidents result
in partial-body exposures or non-uniform dose distribution, leading to a differential
exposure of lymphocytes in the body. Subsequently for the exposed individuals, their
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blood will contain a mixture of cells showing no radiation impact at all and cells
featuring a distribution of counts according to the dose of exposure. As a consequence,
the produced yield of dicentric or foci aberrations in a patient blood sample will become
overdispersed and therefore no longer conform to the Poisson distribution. For this
reason, the uncertainty methods discussed in Section 2.4 for the purpose of whole-body
exposures will need to be updated to account for this overdispersion.

In the context of dicentrics, there do exist some methods to infer the degree of
partial body exposure from the overdispersion. However, it remains in such exposure
scenarios that there are no statistical procedures to follow for the γ-H2AX assay. Part
of the challenge resides in pinpointing the exact cause(s) of the overdispersion. For
instance, experimental factors which generate variability in the scoring process of
cells are all absorbed by the dispersion value. Such dispersion-generating effects are
generally present for both manual and automated scoring of γ-H2AX foci. To motivate
the developments which are to come, in the following chapter we begin by defining
explicitly what dispersion means for biomarker data before understanding its relevance
to the Poisson mean-variance assumption and its behaviour across various levels of
dose and exposure.



Chapter 3

Dispersion in count data

The goal in biological dosimetry is to estimate the dose of ionising radiation absorbed
by an exposed individual by using chromosome damage in peripheral lymphocytes
as a biomarker of exposure. The radiation dose that an overexposed individual has
received is estimated by means of a dose response calibration curve which is created
by exposures of human blood cells to different and appropriate doses of radiation. In
addition, it is equally desirable to quantify the fraction of exposure at which the dose
has been delivered. In either case, the endpoint of interest is the number of aberrations
(in this context dicentrics or H2AX foci) observed. It has been reported in the literature
that the foci distribution in scored blood cells becomes overdispersed in both WB
(whole-body) and PB (partial-body) irradiation scenarios. In this chapter, we attempt
to explain the significance of a dispersion index (the ratio of the sample variance to
the mean) and its magnitude in relation to the detection of inhomogeneous exposures.

3.1 What is dispersion?

Typically when we speak of dispersion, we are referring to the variance divided by the
mean. More precisely, and ignoring (for now) the presence of covariates, dispersion is
defined by

ϕ = Var(yij)
E(yij)

(3.1.1)

which can be estimated through the dispersion index

δ̂ = 1
ȳ

∑k
i=1

∑ni
j=1(yij − ȳ)2

N − 1 ,
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where N = ∑k
i=1 ni is the total number of observed counts, and ȳ =

N−1∑k
i=1

∑ni
j=1 yij is their overall mean. Similarly, the slide-wise dispersion index

can be computed via

δ̂i = 1
yi

∑ni
j=1(yij − yi)2

ni − 1 .

If δ̂ > 1 one speaks of overdispersion, while for δ̂ < 1 one has underdispersion.
Underdispersed data are unusual in the field of biodosimetry, and their observation is
sometimes indicative that something during the experiment did not work, or perhaps
due to other mechanisms currently not very well-known [83]. There are several possible
factors which may contribute to overdispersion. A certain role is played by technical
variations, such as in the intensity filter used for the foci scoring. Specifically, for
low foci rates the semi-automated imaging software which aids the foci scoring tends
to produce spurious foci by over-enhancing background signals. Other sources of
overdispersion may relate to physical issues with the slides, issues with the radiation
source itself or the placement of the samples, issues relating to the antibodies used
to produce foci, the microscope, and the scorer. Furthermore, it is likely to assume a
‘learning effect’ for the scorer who may be tempted to discard samples which do not fit
the previously observed pattern. In some circumstances, the cause of the overdispersion
may be apparent from the nature of the data collection process. In most cases, however,
it is often difficult to infer the precise cause leading to the overdispersion.

3.2 Testing for overdispersion

Early evidence has suggested that the distribution of γ-H2AX foci among the scored
blood cells can be analysed by employing the same methods used for the dicentric
assay [52, 85]. According to the manual of the IAEA, the standard procedure to detect
PBI uses the well-known Papworth U -test to determine whether the sample dispersion
index is significantly different from 1. The test statistic remains

U =
(
δ̂ − 1

)√√√√ N − 1
2
(
1 − 1

S

)
where S = ∑k

i=1
∑ni

j=1 yij = Nȳ or for some slide i,

Ui =
(
δ̂i − 1

)√√√√ ni − 1
2
(
1 − 1

si

) .
in which si = ∑ni

j=1 yij = niyi.
For testing at the 5% significance level, values of U greater than 1.64 indicate

rejection of the null hypothesis H0 : ϕ = 1 in preference for H1 : ϕ > 1. We note that
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Fig. 3.1 Dispersion index behaviour for PHE-Foci1 4h data against exposure, dose and
proportion of zeros. Clearly, as one reaches a higher level of dose, the number of foci
tends to increase, yielding a reduced percentage of zero counts.
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Fig. 3.2 Dispersion index behaviour for PHE-Foci2 dataset.
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this test is usually only applied in the context of cytogenetic biomarker data, in which
any significant overdispersion would normally be used as evidence for the presence
of PBI. It is clear from Figures 3.1 and 3.2 that the distribution of H2AX foci can
become overdispersed in the case of both PBI and WBI, noting that the majority of
data points do not follow the unity line (i.e. δ̂i > 1 in the top-left panels). In the next
section we compare the magnitude of U for H2AX and dicentric data based on similar
levels of exposure.

3.3 Detecting zero-inflation

It can be speculated from the bottom-right panels of Figures 3.1 and 3.2 that data
which exhibit a high proportion of aberration-free cells tend to have an increased
variance and therefore a larger dispersion. It is desirable to clarify whether the data
are zero-inflated or not, that is, to check the proportions for excess zeros. It is known
that zero-inflation can lead to the rejection of the Poisson hypothesis, in cases where
this is not rejected when just the U -test is applied. Accordingly, it is suggested to use
an exact zero-inflation test.

The CR-test of goodness-of-fit for the Poisson distribution was firstly presented by
Rao and Chakravarti on the basis of a problem related to occupancy distributions [84].
The CR-test to contrast the null hypothesis H0: Data are Poisson distributed, against
the alternative H1: Data are zero-inflated consists of calculating a p-value P (N0 ≥ n0),
where here N0 is the random variable representing the number of aberration-free cells.
Concretely, the p-value for some slide i is computed as follows [34]

P (N0 ≥ n0) =
ni∑

h=n0

ni∑
l=h

(−1)l−h

(
ni

l

)(
l

h

)(
1 − l

ni

)si

=
ni∑

h=n0

(−1)h−n0

(n0 − 1)!(h− n0)!

(
ni

h

)(
1 − h

ni

)si
(3.3.1)

where it is assumed that foci are randomly distributed between cells with the same
probability 1/ni. For dealing with large values of ni and si, [84, 34] suggests to use an
asymptotic approximation of (3.3.1) based on a normalised N0. It follows that

P (N0 > n0) ≈ 1 − Φ(z0), (3.3.2)

where Φ(z0) is the CDF of the standard normal evaluated at z0 = (n0−E(N0))/
√

Var(N0).
The expectation and variance of N0 can be computed directly through
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E(N0) = ni

(
ni − 1
ni

)si

,

Var(N0) = ni(ni − 1)
(
ni − 2
ni

)si

+ ni

(
ni − 1
ni

)si
(

1 − ni

(
ni − 1
ni

)si
)
.

The reason why the CR-test is particularly suitable to the Poisson distribution is
because it allows us to evaluate the problem of zero-inflation in the data, which cannot
be identified using only the U -test. For measuring the degree of zero-inflation, however,
Puig and Valero [82] proposed to use a zero-inflation index zi. In the case of a single
slide, it is defined as

zi = 1 +
log

(
n0
ni

)
yi

. (3.3.3)

If the sample is Poisson distributed then one has e−yi = n0/ni or zi = 0, with zi > 0
meaning it is zero-inflated. It is clear that both N0 and the associated index zi seem to
be suitable measures for exploring whether or not data stem from a Poisson distribution.

Tables 3.1 and 3.2 show the results obtained using the U -test and the CR-test for
both PBI and WBI scenarios for H2AX scored datasets. Accordingly, both tests are
one-tailed since we are interested in testing a Poisson distribution against overdispersed
or zero-inflated distributions, respectively. Reasonably, for a one-side U -test at the 5%
significance level, the null hypothesis is rejected when U ≥ 1.64. Firstly for the PHE-
Foci1 dataset, data seem to be overdispersed with the exception of strong evidence for
equidispersion (p-values >> 0.05) in the 0.75Gy and 3Gy WB samples. However, both
the p-values of the CR-test and zi indices indicate all samples are hugely zero-inflated.
This is also evident by comparing the difference in proportions between the actual
zeros and the expected zeros under a Poisson (i.e. n0/ni >> e−yi). Furthermore, this
suggests that the apparent overdispersion is mostly due to observed excess foci-free
cells.

Upon drawing particular attention to the 100% exposure data, it would appear
that the foci distribution adheres well to a Poisson (albeit some evidence in favour of
rejecting H0 for the 1.5Gy sample). The Poisson assumption of equidispersion means
under H0 we would expect

δ̂ ∼
χ2

ni−1

ni − 1 . (3.3.4)

Again, the null hypothesis is accepted only for the 0.75Gy and 3Gy WB samples when
comparing δ̂ with the critical value χ2

0.95,199
199 = 1.170. In summing over k slides, one has
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Exposure (%) Dose (Gy) n0/ni si e−yi δ̂ U CR p-value zi

30
0.75 0.525 276 0.252 2.430 14.283 < 0.001 0.533
1.5 0.515 303 0.220 2.561 15.592 < 0.001 0.562
3 0.530 417 0.124 3.580 25.770 < 0.001 0.696

40
0.75 0.445 367 0.160 2.255 12.539 < 0.001 0.559
1.5 0.520 306 0.217 2.758 17.568 < 0.001 0.573
3 0.510 409 0.129 3.648 26.447 < 0.001 0.671

60
0.75 0.405 382 0.148 1.953 9.520 < 0.001 0.527
1.5 0.435 377 0.152 2.283 12.814 < 0.001 0.558
3 0.440 541 0.067 2.905 19.017 < 0.001 0.696

80
0.75 0.270 491 0.086 1.592 5.907 < 0.001 0.467
1.5 0.365 497 0.083 2.236 12.346 < 0.001 0.594
3 0.295 718 0.028 2.408 14.056 < 0.001 0.660

100
0.75 0.145 554 0.062 1.022 0.221* < 0.001 0.303

(0.413)
1.5 0.195 702 0.030 1.414 4.137 < 0.001 0.534
3 0.070 1034 0.006 1.023 0.227* < 0.001 0.486

(0.410)
* Indicates the U test statistic is non-significant at the 5% significance level.

Table 3.1 Results from PHE-Foci1 dataset. P-values for estimates supporting a Poisson
distribution are given in paranthesis.

δ̂ ∼
χ2

N−k

N − k
. (3.3.5)

Initial consideration of the merged samples (i.e. calibration data) reveals a non-Poisson
nature (δ̂ = 2.724, U = 29.847) and for k = 3 in (3.3.5), this leads to supporting the
decision made from the U -test to reject H0 (δ̂ = 2.724 > χ2

0.95,597
597 = 1.097).

The results presented in Table 3.2 for the PHE-Foci2 dataset are more complex to
deal with. For the 3Gy/WB sample, we detect the rare eventuality of underdispersion
(U ≤ −1.64). Although the zi index and p-value confirm zero-inflation, this is mostly
a consequence of higher counts producing a larger mean and hence it is likely that
there is an alternate source/mechanism contributing to the foci distribution of this
particular sample. We can only assume this has occured due to a saturation (3Gy being
a high dose) of what could be scored i.e. too many (and/or overlapping) foci in such
a small cell - lymphocytes combined with some caveats (e.g. magnification, staining
quality etc.). From the zero proportions, we examine a surprising 14 foci-free cells in
the PHE-Foci1 3Gy/WB sample but half this amount from the PHE-Foci2 sample. For
WBI, and particularly for large doses, it is expected that the number of zeros should be
minimal and on this basis it would seem initially that the results from the PHE-Foci2
provide a more accurate representation (despite the unusual underdispersion).
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Exposure (%) Dose (Gy) n0/ni si e−yi δ̂ U 1 − Φ(z0) zi

30
0.75 0.653 1012 0.363 2.997 44.652 < 0.001 0.579
1.5 0.636 1740 0.176 4.936 87.997 < 0.001 0.740
3 0.648 3060 0.047 8.131 159.40 < 0.001 0.858

60
0.75 0.417 1682 0.186 2.133 25.339 < 0.001 0.480
1.5 0.349 3676 0.025 3.253 50.353 < 0.001 0.714
3 0.321 6516 0.001 4.484 77.882 < 0.001 0.826

100
0.75 0.069 3014 0.049 1.039 0.882 < 0.001 0.113

(0.189)
1.5 0.028 5773 0.003 1.261 5.837 < 0.001 0.381
3 0.007 11360 <0.001 0.712 -6.444 < 0.001 0.563

Table 3.2 Results from PHE-Foci2 dataset.

Exposure (%) Dose (Gy) n0/ni si e−yi δ̂i U CR p-value zi

50
0.5 0.875 169 0.845 1.436 9.773 < 0.001 0.210
0.7 0.849 167 0.812 1.548 10.980 < 0.001 0.214
1 0.800 188 0.731 1.711 12.334 < 0.001 0.288

75
0.5 0.791 231 0.749 1.432 8.646 < 0.001 0.189
0.7 0.758 203 0.713 1.353 6.134 < 0.001 0.182
1 0.658 203 0.602 1.383 5.418 < 0.001 0.174

100
0.5 0.710 319 0.671 1.286 5.720 < 0.001 0.141
0.7 0.593 343 0.565 1.182 3.163 0.002 0.086
1 0.423 372 0.395 1.153 2.171 0.032 0.074

Table 3.3 Results from PHE-Dicentric dataset.

On noting that the samples produced for the PHE-Foci2 dataset are five times
larger than those in the PHE-Foci1 dataset, we would anticipate the PHE-Foci2 data to
be less error-prone and more reliable. We were informed by PHE that the PHE-Foci2
samples were from a more experienced scorer, as compared to the scorer who conducted
the experiments of the PHE-Foci1 data. Since an inexperienced scorer will tend to
want to see cells similar to each other, this can have the impact of under-reporting foci
(cells with more damage are more difficult to score) thereby reducing the dispersion
towards 1. Only through experience will a scorer be able to recognise patterns as well
as distinguish between innate and radiation-induced variability.

On further comparison of the same exposure fractions we identify that the estimates
of δ̂ are larger in all the overdispersed PHE-Foci2 samples except the 1.5Gy/WB sample.
Based on the critical value 1.075, computed from (3.3.4), it remains that H0 is retained
only for the 0.75Gy/ and 3Gy/WB samples. For the combined WB data, however, one
has U = 66.33 and δ̂ = 2.713 > χ2

0.95,2997
2997 thus a Poisson fit would be deemed unsuitable.
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As a result of the increased dispersions, one can also deduce a positive correlation
between dose level and U -value in the partially-irradiated samples, thus the higher the
dose the further that sample’s distribution deviates from a Poisson.

The results for the PHE-Dicentric dataset are provided in Table 3.3, where immedi-
ately we identify that the values of δ̂i, U and zi for the partially-irradiated samples
are all smaller in contrast to the H2AX datasets. For WBI, however, the observed
variance-mean ratios are larger than expected (all samples being significant), with the
merged data also rejecting H0 (U = 5.497 and δ̂ = 1.286 > χ2

0.95,1798
1798 = 1.055). Since the

n0/ni are relatively close to e−yi then for this dataset, zero-inflation is most likely not
the main contributor to the overdispersion.



Chapter 4

Modelling overdispersed radiation

biomarkers

While for the dicentric assay it is assumed that any significant overdispersion would
be used as evidence for the presence of partial exposure, this would be incorrect in
our context since we have seen that the Poisson distribution of dicentrics can become
overdispersed in the case of whole-body exposure. A suitable way to deal with such
overdispersion for count data is based on the generalised linear model framework
outlined in Section 2.1, where the most common approach is a "quasi-likelihood", with
Poisson-like assumptions (which we refer to as a quasi-Poisson from hereafter) [104]
or alternatively through a negative binomial model. In this chapter we intend to
summarise the statistical and conceptual basics of the quasi-Poisson and negative
binomial models, including the estimation of the dispersion parameter as well as their
variance.

4.1 Quasi-Poisson

The violation of the mean-variance assumption can be described by generalising (2.2.7),

Var(yij|xi)
E(yij|xi)

= ϕ (4.1.1)

for some constant dispersion, ϕ > 0, which is also the ’dispersion parameter’ which
we refer to in (2.1.2). If ϕ > 1 one speaks of overdispersion, while for ϕ < 1 one has
underdispersion. Poisson regression models can be easily adapted to allow for situation
(4.1.1), since the dispersion cancels out from the score equations and so the estimates
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of regression parameters are unaffected (i.e. one obtains identical calibration curves,
for example to those shown in Figures 2.1 and 2.2). One speaks then of quasi-Poisson
(QP) regression models, which have gained some interest specifically in the field of
biodosimetry [28].

Under the quasi-Poisson model, the dispersion parameter presented in (4.1.1) can be
estimated by equating the Pearson X2 goodness-of-fit statistic to the residual degrees
of freedom ν = N − w, that is

ϕ̂ = X2

ν
= 1
ν

k∑
i=1

ni∑
j=1

(yij − µ̂i)2

µ̂i

(4.1.2)

where w is the number of model parameters and µ̂i = g−1(x′
iβ̂). McCullagh and Nelder

[71] discuss the advantage of basing the estimation of the dispersion parameter on
(4.1.2) as opposed to using the residual deviance. The standard errors associated with
the estimated coefficients, β̂, will be the same as for the non-dispersed Poisson model
but instead inflated by the factor

√
ϕ̂.

A key question is how does dispersion behave under aggregation? For the aggregated
counts, one has

Var(si|xi) = Var
 ni∑

j=1
yij|xi

 ∗=
ni∑

j=1
Var(yij|xi)

=
ni∑

j=1
ϕE(yij|xi) = ϕ

ni∑
j=1

E(yij|xi) = ϕE(si|xi), (4.1.3)

where the step (*) is a consequence of conditional independence assumption; so once
again Var(si|xi)/E(si|xi) = ϕ so that the dispersion is, theoretically, invariant to
aggregation. In other words, we assume that the true dispersion, ϕ, is indeed the same
for the raw and aggregated data. For aggregated counts si = ∑ni

j=1 yij, i = 1, . . . , k
(equivalently expressed through the yields yi = si/ni), with aggregated data model as
specified in (2.2.8), the value of the dispersion can be estimated by

ϕ̂agg = 1
ν

k∑
i=1

(si − niµ̂i)2

niµ̂i

= 1
ν

k∑
i=1

ni
(yi − µ̂i)2

µ̂i

, (4.1.4)

where here ν = k − w and µ̂i is as above.
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4.1.1 Dispersion variability

If indeed our fitted model is assumed to be correct then we would expect X2/ϕ to have
a χ2

ν distribution implying that
E(X2) = ϕν

and
Var(X2) = 2ϕ2ν .

It follows that

E(ϕ̂ν) = 1
ν
E(X2)

= ϕ,
(4.1.5)

so both the raw and aggregated dispersion estimate are unbiased, and the variance of
ϕ̂ is given by

Var(ϕ̂ν) = 1
ν2 Var(X2)

= 2ϕ2

ν
.

(4.1.6)

Provided that one has a suitable estimate for ϕ, (4.1.6) can be used to obtain an
estimate for the dispersion variance.

While (4.1.1) is already a considerable generalisation of the ‘plain’ Poisson model,
it should be said for completeness that in practice the dispersion may depend on
covariates xi, that is ϕ = ϕ(xi). Covariate-dependent dispersion cannot be expressed
by quasi-Poisson regression and requires fitting more advanced models. Several models
have been developed for this purpose which include the generalised Poisson [23], Hermite
[44], and more recently COM-Poisson [20]. In this work, we dedicate our attention to
the negative binomial and zero-inflated models.

4.1.2 Dispersion confidence interval

It is possible to construct a 100(1− ϵ)% confidence interval for the dispersion parameter
ϕ. Assuming that

X2

ϕ
∼ χ2

ν ,

then one has
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1 − ϵ = P
[
χ2

ν,1−ϵ/2 ≥ X2

ϕ
≥ χ2

ν,ϵ/2

]

= P

 1
χ2

ν,ϵ/2
≥ ϕ

X2 ≥ 1
χ2

ν,1−ϵ/2


= P

 X2

χ2
ν,ϵ/2

≥ ϕ ≥ X2

χ2
ν,1−ϵ/2

 .
Therefore one can obtain separate confidence intervals for the raw and aggregated
dispersion using the following:

X2

χ2
N−w,ϵ/2

≥ ϕ ≥ X2

χ2
N−w,1−ϵ/2

X2

χ2
k−w,ϵ/2

≥ ϕagg ≥ X2

χ2
k−w,1−ϵ/2

.

4.2 Negative binomial regression

The quasi-Poisson estimation handles overdispersion by moving away from a complete
distributional specification. Alternatively, it is possible to define a distribution that
permits more flexible modelling of the variance than the Poisson. The standard
parametric model to account for overdispersion is the negative binomial (NB) whose
probability mass function is defined by

P (Yij = yij|µi, α) =
Γ(yij + µ1−c

i

α
)

yij!Γ(µ1−c
i

α
)

(1 + αµc
i)−

µ1−c
i
α (1 + µ−c

i

α
)−yij (4.2.1)

where α > 0 is an overdispersion parameter and the index c ∈ (0, 1) identifies the form
of the underlying NB distribution. An estimated c can be obtained using maximum
likelihood estimation [48], however, here we consider only the models given by c = 0
and 1. For c = 0, we have a linear-variance NB regression, with Var(Yij) = µi(1 + α),
denoted by NB1. Taking c = 1 gives the more usual quadratic-variance NB model, with
Var(Yij) = µi(1 + µiα), which is denoted by NB2. For both models, we will continue to
model µi through (2.2.2) using the identity link function. We conclude this subsection
by noting that the overdispersion in the NB1 case is the multiplicative factor 1 + α

which does not depend on µi, unlike the NB2. This is particularly convenient in our
context since it is desirable to relate the irradiated fraction to a single constant/value
which is independent of covariates such as dose. The NB1 dispersion can be viewed
as an alternative to the quasi-Poisson, replacing ϕ with 1 + α in (4.1.1). In contrast,
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despite both the NB1 and NB2 not being members of the exponential family, they have
the distinct advantage that their likelihood function can be formally defined.

4.2.1 NB MLE

For observations yij ∼ NB(µi, α), the general NB log-likelihood function, ℓ, can be
written as

ℓ(µi, α) =
k∑

i=1

ni∑
j=1

yij−1∑
m=0

ln
(
m+ µ1−c

i

α

)− ln(yij!)

− µ1−c
i

α
(1 + αµc

i) − yijln
(

1 + µ−c
i

α

)
.

For the gamma function, Γ(.), we make use of the property Γ(a+ b)/Γ(b) = ∏a−1
m=0 m+ b,

assuming a and m are integers [14]. The maximum likelihood estimates (α̂, β̂) are then
the solutions to the following first-order conditions

k∑
i=1

ni∑
j=1

yij−1∑
m=0

1 − c

αµc
i + µi

− (1 − c)ln(1 + αµc
i)

αµc
i

− c

1 + αµc
i

= 0

k∑
i=1

ni∑
j=1

−
yij−1∑
m=0

µi

mα2µc
i + αµi

+ µi((µ−c
i + α)ln(1 + αµc

i) − α)
α2(1 + αµc

i

) = 0.
(4.2.2)

For use with the construction of confidence intervals for α and β, the model output will
implicitly produce standard errors (SE(α̂) and SE(β̂)) through the Fisher information
matrix. Furthermore, given these quantities, a 95% confidence interval for the dispersion
ϕ can be found through

ϕ̂± z0.975SE(ϕ̂) (4.2.3)

where ϕ̂ = 1 + α̂ for the NB1 or ϕ̂(µ̂i) = 1 + α̂µ̂i for the NB2 and z0.975 is the 97.5th
quantile of the standard normal distribution (1.96).

4.3 Zero-inflated models

A commonly observed characteristic of count data is the number of zeros in the sample
exceeding the expected number of zeros generated by a Poisson distribution having
the same mean. This phenomenon, known as zero–inflation, is frequently related to
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overdispersion. Count datasets with excessive zeros are extensive in a wide variety
of disciplines, such as public health and environmental science. To account for a
preponderance of zero counts, zero-inflated models can be used which describe the data
as a combination of two distributions: a distribution which takes a single value at zero
and a count distribution such as the Poisson or NB. These models are particularly
useful in the context of partial-body irradiation scenarios, which feature a mixture of
populations of non-irradiated and irradiated cells.

4.3.1 Zero-inflated Poisson

The zero-inflated Poisson (ZIP) regression model was first introduced by Lambert [62]
who applied the model to data gathered from a quality control study. After which, the
ZIP regression model has been well-studied in the literature [15, 22]. The probability
mass function for the ZIP model is defined as:

P (Yij = yij|µi, pi) =

pi + (1 − pi)e−µi , for yij = 0
(1 − pi) e−µi µ

yij
i

yij ! , for yij > 0
(4.3.1)

where 0 ≤ pi ≤ 1 and µi > 0, possibly depending on covariates such as dose. Here, µi

refers to the mean of the underlying Poisson distribution and pi is the zero-inflation
parameter. The ZIP model has the properties: E(yij|xi) = (1 − pi)µi = λi and
Var(yij|xi) = (1 − pi)µi(1 + piµi) and reduces to a Poisson when pi = 0. Following the
notation in (4.1.1), the ZIP dispersion is given by

Var(yij|xi)
E(yij|xi)

= (1 − pi)µi(1 + piµi)
(1 − pi)µi

= 1 + piµi. (4.3.2)

A ZIP model takes into account that the zero observations have two different origins:
zeros which are produced at random by the Poisson distribution, while some others,
with proportion pi, are considered structural. The structural zeros are dependent on
the nature of data, in our case by non-irradiated lymphocytes following partial-body
exposure.

The ZIP log-likelihood function is

ℓ(µi, pi) =
k∑

i=1

ni∑
j=1

(
I(yij=0)ln

[
pi + (1 − pi)e−µi

]
+ I(yij>0)ln

[
(1 − pi)

e−µiµ
yij

i

yij!

])
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with corresponding score equations given by

∂ℓ

∂pi

=
ni∑

j=1

(
I(yij=0)

[
1 − e−µi

pi + (1 − pi)e−µi

]
+ I(yij>0)

[
−1

1 − pi

])

= N0(1 − e−µi)
pi + (1 − pi)e−µi

− N −N0

1 − pi

;
(4.3.3)

∂ℓ

∂µi

=
ni∑

j=1

(
I(yij=0)

[
− (1 − pi)e−µi

pi + (1 − pi)e−µi

]
+ I(yij>0)

[
−1 + yij

µi

])

= − N0(1 − pi)e−µi

pi + (1 − pi)e−µi
− (N −N0) + S

µi

.

(4.3.4)

By equating (4.3.3) to zero, the MLE of pi is found to be

p̂i = N0 −Ne−µ̂i

N (1 − e−µ̂i) . (4.3.5)

It is acceptable to model the mean of the corresponding zero-inflated distribution, λi,
via the linear predictor in equation (2.2.3) as opposed to modelling the mean of the
underlying Poisson distribution, µi, which are related via

µi = λi

1 − pi

. (4.3.6)

By substituting either (4.3.6) into (4.3.5) or (4.3.5) into (4.3.4) set to zero, the MLE of
µi is the solution to the expression:

µ̂i(N −N0) − S
(
1 − e−µ̂i

)
= 0. (4.3.7)

From the ZIP property Var(yij) ≥ E(yij) = λi, zero-inflation can be seen as a special
form of overdispersion. However, the non-zero part of the foci-count distribution may
still be overdispersed even after accounting for zero-inflation. For this reason, for data
which stem from full- or partial-body exposure, it is sensible to consider overdispersion
and zero–inflation as two separately identifiable model properties.

4.3.2 Zero-inflated NB

When overdispersion is both due to data heterogeneity and the excess of zeros, the
zero-inflated negative binomial (ZINB) regression model proposed by [38] is often more
appropriate than the ZIP. The ZINB probability mass function is given by
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P (Yij = yij|µi, pi, α) =


pi + (1 − pi)(1 + αµc

i)−
µ1−c

i
α , for yij = 0

(1 − pi)
Γ(yij+

µ1−c
i
α

)

yij !Γ(
µ1−c

i
α

)
(1 + αµc

i)−
µ1−c

i
α (1 + µ−c

i

α
)−yij , for yij > 0.

(4.3.8)
This model shares the same mean as the ZIP, but has variance Var(yij|xi)=(1−pi)µi(1+
αµc

i +piµi). As α → 0, it can be shown that the ZINB reduces to the ZIP. The variance
suggests that the ZINB exhibits overdispersion when α > 0 or pi > 0. In contrast to
(4.3.2), the ZINB dispersion is represented by

Var(yij|xi)
E(yij|xi)

= (1 − pi)µi(1 + αµc
i + piµi)

(1 − pi)µi

= 1 + αµc
i + piµi. (4.3.9)

The ZINB log-likelihood can be expressed as

ℓ(µi, pi, α) =
k∑

i=1

ni∑
j=1

(
I(yij=0)ln

[
pi + (1 − pi)(1 + αµc

i)−
µ1−c

i
α

]
+

I(yij>0)ln

(1 − pi)
Γ(yij + µ1−c

i

α
)

yij!Γ(µ1−c
i

α
)

(1 + αµc
i)−

µ1−c
i
α (1 + µ−c

i

α
)−yij

.
It follows that the score equation for pi is then

∂ℓ

∂pi

=
ni∑

j=1

I(yij=0)

 1 − (1 + αµc
i)

−µ1−c
i
α

(1 − pi)(1 + αµc
i)

−µ1−c
i
α + pi

− I(yij>0)

[
1

1 − pi

]

=
N0

(
1 − (1 + αµc

i)
−µ1−c

i
α

)

(1 − pi)(1 + αµc
i)

−µ1−c
i
α + pi

− N −N0

1 − pi

,

yielding the MLE for pi as

p̂i = N(1 + α̂µ̂c
i)

−µ̂1−c
i
α̂ −N0

N

(
(1 + α̂µ̂c

i)
−µ̂1−c

i
α̂ − 1

) . (4.3.10)

In the same manner as for the ZIP MLE of µi, substituting (4.3.6) into (4.3.10) provides
the equation:
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µ̂i(N −N0) − S

(
1 − (1 + α̂µ̂c

i)
−µ̂1−c

i
α̂

)
= 0, (4.3.11)

where an estimate for the overdispersion parameter, α̂, can be obtained through
optimisation methods or extracted from the ZINB function. By direct comparison,
we may notice similarities between (4.3.7) and (4.3.11). One can show through the

limit of (1 + α̂µ̂c
i)

−µ̂1−c
i
α̂ that (4.3.11) converges to (4.3.7) as α̂ → 0. This can also be

observed through the ZINB density in (4.3.8) which becomes equivalent to a ZIP for
infinitesimal values of α.

4.3.3 Purpose of the zero-inflation parameter for PBI

The zero-inflation parameter, pi, will be modelled according to three different scenarios.
Firstly, through a logistic regression but with the proportion of the mixture assumed
to be constant:

logit(pi) = γ0, (4.3.12)

secondly, pi modelled as a linear function of the dose

logit(pi) = γ1xi, (4.3.13)

and finally as in (4.3.13) but with an intercept included:

logit(pi) = γ0 + γ1xi. (4.3.14)

The value of γ1 depends on the type of radiation and its capacity to damage the cells
whereas γ0 is related to the fraction of irradiated blood. Estimates for pi and SE(pi)
can be obtained through maximum likelihood estimation. In the case of a single patient
dose sample, i.e. p̂i ≡ p̂ modelled through (4.3.12), the proportion of irradiated scored
cells (fraction of exposure), which we denote by F , can be estimated via

F̂ = 1 − p̂, (4.3.15)

where clearly SE(F̂ ) = SE(p̂). We note that (4.3.15) is a simplifying assumption
as it ignores certain effects (such as cell death) which prevent irradiated cells being
observable at the time of scoring. We will investigate this claim further in Section 4.4.
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Example: Application to whole-body H2AX calibra-

tion data

For the construction of calibration curves, and from a modelling perspective, the
quantity of interest is always the aberration yield (or aberration/cell). Figures 2.1
and 2.2 depict examples of Poisson dose-response curves, fitted separately as in (2.2.3)
and combined using (2.2.4), to PHE-Foci1 H2AX whole-body 4h and 24h calibration
data. The resulting parameter estimates and their associated QP standard errors are
reported below in Table 4.1. The computation of the standard errors in the combined
models is shown in Appendix A.1. This procedure leads to smaller parameter standard
errors as compared to the separate models. The dispersion estimates indicate present
overdispersion for both timepoints (much greater at 24h post-exposure) but not mass
overdispersion (ϕ̂ < 2). The square root of the dispersion magnitudes are reflected in
the increased quasi-Poisson parameter uncertainties, as compared with their Poisson
equivalents.

Fit type Time β̂ ± SEQP (β̂) ϕ̂

Linear (sep) 4h (0.766 ± 0.042, 1.700 ± 0.058) 1.444
24h (0.333 ± 0.032, 1.034 ± 0.050) 1.932

Quadratic (sep) 4h (0.700 ± 0.040, 2.703 ± 0.175, −0.412 ± 0.065) 1.411
24h (0.311 ± 0.031, 1.623 ± 0.151, −0.251 ± 0.057) 1.915

Linear (comb) 4h (0.541 ± 0.027, 1.840 ± 0.061) 1.693
24h (0.541 ± 0.027, 0.920 ± 0.046)

Quadratic (comb) 4h (0.499 ± 0.026, 3.017 ± 0.185, −0.496 ± 0.070) 1.665
24h (0.499 ± 0.026, 1.400 ± 0.141, −0.196 ± 0.053)

Table 4.1 Fitted models to the PHE-Foci1 full-exposure data showing fit type, timepoint,
Poisson/quasi-Poisson coefficient values and the corresponding standard errors and
dispersion values for the quasi-Poisson regression. We note that standard errors are
presented as opposed to t statistics to allow comparison with alternative estimators in
later tables.

It is well-reported that the relationship between experimental dose and focus counts
is assumed to be linear, since increasing the dose linearly increases the number of
electron tracks and ionisations that produce double–strand breaks [52]. However,
for larger doses, H2AX foci have an increasing propensity to overlap, leading to a
saturation effect [74]. It is clear from the negative parameter estimates of the quadratic
terms that this is indeed the case, particularly at the 4h timepoint where foci yields
per unit dose are higher. While there remains evidence for significance (all p-values
< 10−4), the variance contribution made by these quadratic terms can lead to imprecise
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uncertainty of dose estimates [96]. For this reason, further analysis will be based on
linear calibration curves only.
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Fig. 4.1 A comparison of 4h calibration curves reported from various laboratories.
Average γ-H2AX foci per cell as a function of 250kVp X-ray (red and blue lines) and
Co-60 gamma-ray (green, orange and purple lines).

A comparison between our 4h dose–response curves, based on X-irradiation induced
foci, with those from similar published studies that used γ-irradiation [94] revealed
a sizable range of foci yields (as shown in Figure 4.1). Firstly, it can be seen that
there is a significant difference in the estimated background level of foci between
the PHE-Foci1 (refer to intercept term in first row of Table 4.1) and PHE-Foci2
(λi = 0.197±0.014+(3.724±0.029)xi) dataset. Additionally, this difference carries over
to the dispersions, noting an estimated ϕ̂ = 1.079 for the PHE-Foci2 calibration data
(in contrast to ϕ̂ = 1.444 as reported for the PHE-Foci1 data). The average background
foci per cell for the Co-60 manually scored curves was found to be 0.32, suggesting the
PHE-Foci1 background is perhaps relatively large. Secondly, and including the PHE
datasets, foci yields were found to be largest on average for manual scoring, closely
followed by automated then semi-automated. These findings are consistent with [103].
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here by an index number) (top) and in the form of histograms (bottom) recorded for
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In a similar manner to (4.1.2), dispersion can also be computed using a deviance
based estimation, that is

ϕ̂Dev = residual deviance
ν

.

For the PHE-Foci1 and PHE-Foci2 datasets, these turn out to be ϕ̂Dev = 1.624 and
1.029 respectively. As a rule of thumb, since SD(χ2

ν/ν) =
√

2/ν, we say there is clear
evidence of overdispersion if ϕ̂Dev exceeds 2 standard deviations of 1. This appears
only to be true for the PHE-Foci1 dispersion, while the PHE-Foci2 dispersion remains
within 1 SD (1 +

√
2/ν = 1.041). We may wish to learn more information on the

variability associated with the QP dispersion. Substituting our estimates for ϕ̂ into
(4.1.6), we find that Var(ϕ̂) = 2 × 1.4442

1200 − 2 = 0.003 and Var(ϕ̂) = 2 × 1.0792

4000 − 2 = 0.001

providing ϕ̂ ∈ (1.328, 1.560) and ϕ̂ ∈ (1.031, 1.126). We note that the above computed
ϕ̂Dev lie just outside these intervals suggesting slight disagreement between the QP and
deviance-based dispersions.

Inter-laboratory differences can emanate from multiple sources such as the type
and intensity of irradiation energy used (further research required), range of doses,
technical or methodical variances, and scoring criteria, and the professional experience
of the scorers. From initial information, we were made aware that a different scorer
was responsible for the results from the latest PHE-Foci2 dataset. Previously noting
the difference in foci backgrounds, in Figure 4.2 we plot separately the measured foci
counts in the non-irradiated samples. Upon inspection, it appears that there exists
some variation between the two scorers. The second scorer’s maximum count is 3 foci,
recorded just 6 times from 1000 cells, while the first scorer records a count greater than
3 much more than 6 times - they also have a maximum recorded count of 5 foci (based
on the analysis of 3 × 200 cells 0Gy samples). For reference we will refer to the two
scorers as "scorer A" and "scorer B" respectively.

To determine whether or not the variation between the two scorers is significant, we
firstly carry out a Welch’s two sample t-test for each level of dose. The test statistic
remains

tW = ȳA − ȳB√
σ2

A

nA
+ σ2

B

nB

,
where our null hypothesis is that the population means of A and B are equal. From
Table 4.2 all the |tW | correspond to p-values < 0.05, except slight evidence to retain
the null hypothesis for the 0.75Gy samples. In addition, we also use the Mann-
Whitney/Wilcoxen test statistic tM to investigate the difference in population medians
denoted by ỹA and ỹB. Again, it appears that only the 0.75Gy samples share a similar
mean and median. We note that for the 0Gy samples, although it can be seen from
Fig. 4.2 that both distributions are positively skewed, they behave differently for foci
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Dose (Gy) |ȳA − ȳB| |ỹA − ỹB| |tW | Welch 95% CI |tM |

0 0.494 0 10.59 (0.402, 0.586) 230767
(2.2 × 10−16) (2.2 × 10−16)

0.75 0.244 0 1.856 (-0.015, 0.503) 105747
(0.065) (0.192)

1.5 2.263 2 12.63 (1.911, 2.615) 147803
(2.2 × 10−16) (2.2 × 10−16)

3 6.19 6 33.32 (5.825, 6.555) 191603
(2.2 × 10−16) (2.2 × 10−16)

Overall 2.832 2 28.08 (2.635, 3.030) 3221705
(2.2 × 10−16) (2.2 × 10−16)

Table 4.2 Welch and Mann-Whitney/Wilcoxen test statistic values and 95% confidence
intervals (CI) for comparison of the individual dose samples and complete data. Asso-
ciated p-values are given in parenthesis.

counts larger than 0 (most evident in comparing cells consisting of 1 and 2 foci) and it
is preferable in such cases to summarise any difference based on the means rather than
medians.

We are now interested to see how the estimates obtained from the Poisson regres-
sion and quasi-Poisson differ when we employ the NB models and their zero-inflated
counterparts. Estimates for these models are shown in Table 4.3 under their individual
assumptions about the variance of yij, where it is assumed that the conditional mean
is correctly specified as in (2.2.2). Results obtained under ZIPa/ZINB1a/ZINB2a,
ZIPb/ZINB1b/ZINB2b and ZIPc/ZINB1c/ZINB2c are based on the zero-inflation
parameter being modelled as in (4.3.12), (4.3.13) and (4.3.14) respectively.

Comparing the previously estimated calibration curves and their standard errors
from the quasi-Poisson with the various estimators in Table 4.3, it appears that they
are mostly in agreement. The sensitivity analysis in Figures 4.3 and 4.4 (note: the base
model is displayed on the horizontal axis while the compared model is on the vertical
axis, for example we found for the PHE-Foci1 dataset that β̂0 = 0.728 from NB1 model
is within 2.53 SEs of β̂0 = 0.842 from ZIPa model - as highlighted in solid red in Figure
4.3(a) - note the differing scales used for the degree of SEs between Figs 4.3(a), 4.3(b),
4.4(a), 4.4(b)) is within given showcases some deviations in coefficient values, mainly
the ZIPa and ZINB2a models for the PHE-Foci1 data and the ZINB2b being the least
comparable for the PHE-Foci2 data. In both datasets, the ZIPa model provided the
largest intercept and smallest slope terms. To the best of our knowledge, zero–inflated
regression models have not been employed for the construction of dose–response curves,
neither for partial nor whole body exposure scenarios. For the NB1, we find that the
value of α̂ in PHE-Foci1 is almost 10 times the reported estimate in PHE-Foci2. This
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Model β̂ ± SE(β̂) α̂± SE(α̂) γ̂0 γ̂1

PHE-Foci1

NB1 (0.728 ± 0.044, 1.743 ± 0.062) 0.619 ± 0.084
NB2 (0.744 ± 0.038, 1.772 ± 0.068) 0.173 ± 0.033
ZIPa (0.842 ± 0.045, 1.481 ± 0.070) -1.533
ZIPb (0.758 ± 0.042, 1.650 ± 0.057) -1.021
ZIPc (0.775 ± 0.048, 1.644 ± 0.058) -0.086 -0.973

ZINB1a (0.790 ± 0.048, 1.589 ± 0.080) 0.153 ± 0.182 -1.785
ZINB1b (0.758 ± 0.043, 1.651 ± 0.057) < 0.001 -1.021
ZINB1c (0.775 ± 0.048, 1.645 ± 0.058) < 0.001 -0.086 -0.973
ZINB2a (0.842 ± 0.045, 1.481 ± 0.070) < 0.001 -1.534
ZINB2b (0.758 ± 0.043, 1.650 ± 0.057) < 0.001 -1.024
ZINB2c (0.779 ± 0.047, 1.647 ± 0.058) < 0.001 -0.187 -0.957

PHE-Foci2

NB1 (0.191 ± 0.014, 3.729 ± 0.027) 0.064 ± 0.022
NB2 (0.197 ± 0, 3.725 ± 0) < 0.001
ZIPa (0.199 ± 0.014, 3.712 ± 0.029) -4.093
ZIPb (0.193 ± 0.015, 3.729 ± 0.029) -3.086
ZIPc (0.197 ± 0.014, 3.725 ± 0.029) -2.724 -0.724

ZINB1a (0.198 ± 0.014, 3.713 ± 0.030) 0.006 ± 0.247 -4.101
ZINB1b (0.193 ± 0.015, 3.728 ± 0.029) < 0.001 ± 0.084 -3.061
ZINB1c (0.197 ± 0.014, 3.725 ± 0.029) < 0.001 ± 0.200 -2.667 -0.758
ZINB2a (0.191 ± 0.013, 3.741 ± 0.030) < 0.001 -4.161
ZINB2b (0.167 ± 0.013, 3.790 ± 0.029) < 0.001 -2.412
ZINB2c (0.188 ± 0.013, 3.745 ± 0.029) < 0.001 -1.658 -1.775

Table 4.3 Results of fitting various models to 4h post-exposure whole-body calibration
data for datasets PHE-Foci1 and PHE-Foci2.
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Fig. 4.5 Dose vs dispersion behaviour for PHE-Foci1 (top) and PHE-Foci2 (bottom)
comparing QP with ZIP (1st column), NB1 with ZINB1 (2nd column) and NB2 with
ZINB2 (final column).

can be viewed as a consequence of the underdispersion in the 3Gy sample which we
observed in Chapter 3.

It is particularly convenient to compare the dispersion from an NB1 model with ϕ̂

acquired from a quasi-Poisson. Interestingly, the PHE-Foci1 NB1 dispersion is greater
(1.619 > 1.444) but is smaller for PHE-Foci2 (1.064 < 1.079). Comparing further the α̂
from the ZINB1a models, a value of 0.153 indicates that there must be some unobserved
heterogeneity, in addition to zero-inflation, contributing to the PHE-Foci1 dispersion.
The PHE-Foci2 estimate of 0.006 suggests the majority of PHE-Foci2 dispersion is
attributed to zero-inflation, as somewhat explained by the more negative γ̂0. We note
here that since α̂ operates on the boundary of the parameter space, the corresponding
standard errors are considered unreliable and are merely stated for completeness, where
possible. It is evident in both datasets that when the zero-inflation is modelled with the
γ1 constant (i.e. with dependence on covariate dose), the dispersion is fully explained
by pi, rendering α insignificant.

Due to their covariate-dependent dispersions, the remaining models presented in
Table 4.3 are not easily comparable with the NB1 and quasi-Poisson model. Figure
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4.5 attempts to show the dispersion behaviour of the QP, NB1 and NB2 as compared
to their zero-inflated counterpart models. Due to the small γ̂0, we notice that those
models based on (4.3.13) and (4.3.14) produce similar dispersions for the PHE-Foci1
data (also noting similarities between the NB2 and ZINB2a). On the other hand, it
is clear that the PHE-Foci2 dataset provides more distinct dispersion patterns. One
could possibly argue that the behaviour of the model dispersions under (4.3.12) and
(4.3.14) can be roughly captured by the QP and NB1 dispersions.

Let us assume that a laboratory provides a Poisson/QP or NB1-fitted calibration
curve along with their dispersions, then it is desirable to see how they compare if a
different model had been employed. To compliment Figure 4.5, Tables 4.4 and 4.5 can
be used to assess the constant dispersion against dose-dependent dispersion estimated
at each level of dose. It is evident from the values of δ̂ in Chapter 3 that dispersion
increases with dose in PBI, however this relationship does not occur for WBI. At
0.75Gy, we see for the PHE-Foci1 that the QP dispersion almost replicates that of the
ZIPa and ZINB2a while the NB1 dispersion is most close to the ZINB1a. Interestingly,
for both datasets the highest dispersion was recorded for the 1.5Gy samples, however
all panels in Figure 4.5 reveal that the dispersion either peaks early (around a dose of
0.5Gy) or continues to increase with dose. The ZIPc and ZINB1c dispersions in the
PHE-Foci2 are the only exceptions, both reaching a maximum at approx 1.5Gy.

It can be observed from the estimates of γ0 and γ1 that the behaviour of the
zero-inflation parameter pi can vary depending on the specified model. Figure 4.6 shows
the fitted values of pi after fitting ZIP, ZINB1 and ZINB2 regression models to the
aforementioned whole-body calibration data and the partially-exposed calibration data
(for the exposure levels considered in Tables 3.1 and 3.2). The solid dots represent the
fitted pi when these do not depend on covariates, and the dashed and solid lines signify
pi modelled through a logit link as a linear function of the dose with and without
intercept respectively. It is clear the value of pi is influenced by the percentage of
unirradiated blood. Moreover, in all models, pi takes very similar values for larger
doses. However, this is not the case for the lowest doses, particularly for the PHE-Foci2
data. The dashed lines in top panels suggest that for non–irradiated blood samples,
the probability of extra zeros is quite similar. However, the dashed lines in the bottom
plots show that the probability takes very different values at dose 0Gy. We discover
that only in the case of 30% exposure for PHE-Foci2 that a positive γ̂1 is obtained,
hence pi increases (as opposed to decreases) with dose.

When we identify the possible presence of overdispersion, what are the consequences
of failing to take it into account? We observed that the standard errors obtained from a
Poisson model will be incorrect and may be seriously underestimated and consequently
we may incorrectly assess the significance of individual regression parameters. To
overcome this, it is preferable to utilise either a quasi-Poisson or a NB model. Often
choosing between the quasi-Poisson and NB1 is attributed to preference, however
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differences can arise in their dispersions. A distinct advantage of the NB is that the
maximum likelihood approach allows the standard likelihood tests to be implemented.
In Chapter 5 we will introduce tests for overdispersion, specifically we discuss how the
overdispersion parameter, α, can be used as information against a Poisson fit.

4.4 Impact of cell death

Early research has suggested that radiation overexposure accidents where the doses are
up to 0.5Gy, the question of differences in transformation and survival between non-
irradiated cells and those irradiated is not a complicating factor. However, for higher
doses it has been reported that some allowance for cell death should be considered
when acute partial body irradiation is known to have occurred [67]. For the γ-H2AX
biomarker, cells are usually scored after a few hours, which leaves much less time for
cell death than for the dicentric biomarker, where at least 48 hours need to pass until
mitosis [47]. While it appears, on this basis, reasonable to assume that for the γ-H2AX
biomarker the original irradiated fraction corresponds to the fraction of irradiated cells
at the time of scoring, we still would like to investigate this claim further.

We recall from [47] that the corrected fraction of irradiated cells can be written as

F = 1 − p

1 − p+ pκ
(4.4.1)

where κ = κ(D) is a dose-dependent function describing the survival rate of irradiated
cells. According to Lloyd and Edwards [66], this rate follows a decreasing exponential
function of the dose x,

κ(x) = e−γ1x. (4.4.2)

In Hilali et al’s context [47] of dicentric chromosomes, they denote γ1 = 1/x0, where x0

can be interpreted as the initial dose required to reduce the number of irradiated cells
to 37% due to interphase death or mitotic delay. The range of plausible values for x0

for this biomarker has been postulated in the literature, without much justification, to
be between 2.7 and 3.5Gy [67].

From (4.4.1) it is clear that we have F = 1 − p exactly when κ = 1, i.e. when
the survival rate is approximately 100%. From (4.4.2), this implies γ1 approaching 0
(or x0 tending to infinity). Oliveira et al. [76] demonstrated that when modelling the
proportion p via (4.3.14), then the constant γ1 in (4.4.2) corresponds to γ1 in (4.3.14).
So, it remains to show that, γ1 is not statistically different from 0. From the zeroes
contained in the γ̂1 confidence intervals quoted in Table 4.6, it is clear that effects
such as cell death at the time of scoring can be considered negligible and therefore
provides sufficient evidence for the exposed fraction to be estimated through F̂ = 1 − p̂
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in the case of a single sample. The right-hand column of the table states the individual
confidence intervals for κ(x) for each dose. Substituting any of the three doses leads to
confidence intervals for κ(x) which encompass a value of 1.

Table 4.7 reveals the above conclusions made for the PHEFoci1 dataset hold only
in the case of the ZIP and ZINB2 models fitted to the 30% exposure samples from the
PHEFoci2 dataset. The remaining ZINB1 yields positive confidence limits for γ̂1 and
hence κ(x) < 1, implying dose and fraction estimates will need to be updated using
(4.4.1) to justify for some cell deterioration. From a biological perspective, it remains
that γ1 (and x0) should be strictly positive. In reference to (4.4.2), the maximum
survival rate is achieved when γ1 = 0 and we therefore interpret the observed negative
γ̂1 values for the 60% exposure as κ(x) = 1. Furthermore, the reported confidence
intervals in Table 4.8 indicate here we do not need to worry about cell death in our
dicentric data.
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Table 4.6 99% confidence intervals for γ1 and κ(x) for PHE-Foci1 data (omitting
control/0Gy sample).

F (%) Model γ̂1 κ(x)
x = 0.75 x = 1.5 x = 3

30
ZIP (-0.148, 0.316) (0.789, 1.117) (0.622, 1.248) (0.387, 1.557)

ZINB1 (-0.136, 0.347) (0.771, 1.108) (0.594, 1.227) (0.353, 1.505)
ZINB2 (-0.142, 0.336) (0.777, 1.112) (0.604, 1.238) (0.365, 1.533)

40
ZIP (-0.092, 0.376) (0.754, 1.071) (0.569, 1.148) (0.324, 1.318)

ZINB1 (-0.088, 0.400) (0.741, 1.068) (0.548, 1.141) (0.301, 1.301)
ZINB2 (-0.089, 0.397) (0.742, 1.069) (0.551, 1.143) (0.304, 1.307)

60
ZIP (-0.104, 0.368) (0.759, 1.081) (0.576, 1.169) (0.331, 1.368)

ZINB1 (-0.105, 0.367) (0.760, 1.082) (0.577, 1.172) (0.332, 1.373)
ZINB2 (-0.105, 0.368) (0.759, 1.081) (0.576, 1.170) (0.331, 1.368)

80
ZIP (-0.192, 0.312) (0.791, 1.155) (0.627, 1.335) (0.393, 1.782)

ZINB1 (-0.197, 0.307) (0.794, 1.160) (0.631, 1.345) (0.398, 1.809)
ZINB2 (-0.199, 0.306) (0.795, 1.161) (0.632, 1.348) (0.400, 1.816)

Table 4.7 99% confidence intervals for γ1 and κ(x) for PHE-Foci2 data (omitting
control/0Gy sample).

F (%) Model γ̂1 κ(x)
x = 0.75 x = 1.5 x = 3

30
ZIP (-0.067, 0.119) (0.915, 1.052) (0.837, 1.106) (0.700, 1.223)

ZINB1 (0.056, 0.300) (0.798, 0.959) (0.637, 0.919) (0.406, 0.845)
ZINB2 (-0.009, 0.205) (0.857, 1.007) (0.735, 1.014) (0.540, 1.028)

60
ZIP (-0.275, -0.080)

ZINB1 (-0.228, -0.020)
ZINB2 (-0.246, -0.042)

Table 4.8 99% confidence intervals for γ1 and κ(x) for PHE-Dicentric data.

F (%) Model γ̂1 κ(x)
x = 0.5 x = 0.7 x = 1

50
ZIP (-1.979, -0.324)

ZINB1 (-2.197, 0.333) (0.847, 2.999) (0.792, 4.653) (0.717, 8.995)
ZINB2 (-2.421, -0.179)

75
ZIP (-3.106, -1.046)

ZINB1 (-3.534, -0.289)
ZINB2 (-3.726, -0.825)



Chapter 5

Model-based overdispersion tests

The failure of the Poisson assumption of equidispersion has similar consequences to
failure of the assumption of homoskedasticity in the linear regression model. However,
the effect on reported standard errors and t statistics can be much larger. Practical and
reliable tests for overdispersion are important to justify the need for models beyond
the standard Poisson regression. Various tests have been developed, and [49] provides
a good review on this topic. In the Poisson regression framework, [64] developed a
unifying theory and derived score tests for overdispersion with respect to both Poisson
and binomial regression models, while the explicit forms of the test statistics are only
given in certain special cases. The score statistics developed by [21] specifically for
comparing the Poisson model against the negative binomial model, is a special case of
the general score statistics later developed by [24]. Likelihood-based tests which make
use of p̂i and α̂, as previously estimated in Chapter 4, and model selection criteria are
discussed and compared.

5.1 Test statistics for ZINB models

By noting that the ZINB distribution is a general model for counts which nests the ZIP,
NB, and Poisson models, test statistics can be formed to detect either overdispersion,
or zero-inflation or both simultaneously using the likelihood ratio test (LRT), Wald test,
or score test. We will concentrate on the score test as this has the superior advantage
of simpler calculation, in not requiring the model under the alternative hypothesis
to be fitted and also leading to composite test statistics for the zero-inflation model.
However, the other common test statistics will be summarised briefly.
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5.1.1 Comparing ZIP and ZINB models

For testing a ZIP regression against ZINB alternatives the relevant hypothesis test is

H0 : α = 0 against H1 : α > 0.

The corresponding likelihood ratio test (LRT) statistic for detecting overdispersion in
a ZIP model is given by:

Rαc = −2 (ℓ(µ̂0, p̂0) − ℓ(µ̂, α̂, p̂)) (5.1.1)

where ℓ(µ̂0, p̂0) and ℓ(µ̂, α̂, p̂) are the maximised log-likelihoods under the ZIP regression
and the ZINB regression models, respectively. The associated Wald test statistic is

Wαc = α̂2

V̂ar(α̂)
(5.1.2)

where V̂ar(α̂) is the relevant diagonal element of the inverse ZINB Fisher information
matrix, I−1(µ̂, α̂, p̂). The subscript c = 0, 1 here is used to identify the form of the
NB model, for example Rα0 is the LRT for testing a ZIP regression against the ZINB1
model.

Under the null hypothesis, both Rαc and Wαc might be expected to have a χ2
1

distribution. Some care is required here as the null hypothesis is on the boundary
of the parameter space (e.g. the null distribution of the LRT is not the usual χ2(1)
distribution), and also the alternative hypothesis is one-sided as we are only testing
for overdispersion. With a notable exception being Lawless [64], this complexity is not
usually discussed. A solution of hypothesis testing at boundary values was documented
by Moran [75]. It is suggested that the asymptotic distribution associated with the
LRT statistic has probability mass of one half at zero and a half χ2(1) distribution
above 0. If we are testing at level ϵ, where ϵ > 0.5, one rejects H0 if the test statistic
exceeds 1

2(χ2
1−ϵ(0) + χ2

1−ϵ(1)) rather than χ2
1−ϵ(1). The Wald test is usually expressed

as a t-test statistic, which is defined as having a mass of one half at zero and a normal
distribution for values greater than zero. This means we continue to use the same
critical value as for the LRT. For α operating on the boundary of the parameter space,
the reference distributions of Rαc and Wαc are a mixture of a degenerate distribution
at zero and a χ2

1(α > 0), with p-values for the LRT given by 1
2P(χ2

1 ≥ Rαc).

5.1.2 Comparing NB regression with ZINB models

Comparing NB models and ZINB regression corresponds to testing the hypotheses

H0 : pi = 0 against H1 : pi > 0.
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For a general ZINB regression, the LRT for zero-inflation is

Rpic
= −2 (ℓ(µ̂0, p̂0) − ℓ(µ̂, α̂, p̂)) (5.1.3)

where here ℓ(µ̂0, p̂0) and ℓ(µ̂, α̂, p̂) are the maximised log-likelihoods under the NB and
ZINB regression models. The associated Wald test statistic is

Wpic
= p̂′

i{Cov(p̂i)}−1p̂i. (5.1.4)

Under the null hypothesis, both Rpic
and Wpic

are asymptotically χ2 distributed. In
the case of constant (5.1.4) reduces to the usual Wald test statistic

Wpic
= p̂2

i

V̂ar(p̂i)
. (5.1.5)

under the null hypothesis pi is on the boundary of the parameter space and again
the appropriate reference distribution for Rpic

and Wpic
is an equal mixture of a

constant at zero and a χ2
1 distribution, so for a test based on Wpic

p-values are given
by 1

2P(χ2
1 ≥ Wpic

). For testing a Poisson against the ZIP, the variance of p can be
computed via

Var(p̂) = n0ȳ(n0 − n(µ̂− ȳ)e−µ̂)
n2µ̂ [(1 − e−µ)(n0 − n(µ̂− ȳ)e−µ̂) − nµ̂e−2µ̂] ,

of which the derivation is given in Appendix A.4.

5.2 Score tests for detecting zero-inflation

We learned from Chapter 3 that the present overdispersion in both datasets is mostly
as a result of the excess zeros, suggesting a Poisson fit unsuitable. However, in order
to investigate the degree of adequacy of the Poisson regression model in dealing with
the incidence of zero counts, in Figure 5.1 we assess the probability of a zero, π0, for
various models with respect to the Poisson. For the NB1 and NB2 models the fitted
zero probabilities are π̂0(µ̂i, α̂) = 1/(1 + α̂)

µ̂i
α̂ and π̂0(µ̂i, α̂) = (1 + α̂µ̂i)− 1

α̂ ≥ e−µ̂i

respectively, where µ̂i (and α̂) have been estimated from that model.
To test whether an over-dispersed count distribution is zero-inflated, that is H0 :

pi = 0, a score test can be used. Its test statistic defined as

Sc(θ0) = Sc(θ0)I(θ0)−1Sc(θ0)′,

where Sc() is the score function, I() is the Fisher information and θ0 is the MLE of the
parameter set θ under H0. In the considerations which follow we note that these tests



5.2 Score tests for detecting zero-inflation 63

0.
0

0.
4

0.
8

0.00.20.40.60.81.0

P
oi

ss
on

O
bs

er
ve

d 
P

ro
po

rt
io

n 
of

 Z
er

os

Fitted Probability of Zero

0.
0

0.
4

0.
8

0.00.20.40.60.81.0

N
B

1

O
bs

er
ve

d 
P

ro
po

rt
io

n 
of

 Z
er

os

0.
0

0.
4

0.
8

0.00.20.40.60.81.0

N
B

2

O
bs

er
ve

d 
P

ro
po

rt
io

n 
of

 Z
er

os

0.
0

0.
4

0.
8

0.00.20.40.60.81.0

Z
IP

a

O
bs

er
ve

d 
P

ro
po

rt
io

n 
of

 Z
er

os

0.
0

0.
4

0.
8

0.00.20.40.60.81.0

Z
IN

B
1a

O
bs

er
ve

d 
P

ro
po

rt
io

n 
of

 Z
er

os

0.
0

0.
4

0.
8

0.00.20.40.60.81.0

Z
IN

B
2a

O
bs

er
ve

d 
P

ro
po

rt
io

n 
of

 Z
er

os

0
2

4
6

8
12

024681012

O
bs

er
ve

d 
M

ea
ns

Fitted Means

0
2

4
6

8
12

024681012

O
bs

er
ve

d 
M

ea
ns

0
2

4
6

8
12

024681012

O
bs

er
ve

d 
M

ea
ns

0
2

4
6

8
12

024681012

O
bs

er
ve

d 
M

ea
ns

0
2

4
6

8
12

024681012

O
bs

er
ve

d 
M

ea
ns

0
2

4
6

8
12

024681012

O
bs

er
ve

d 
M

ea
ns

Fi
g.

5.
1

Fi
tt

ed
vs

ob
se

rv
ed

pr
op

or
tio

n
of

ze
ro

s
an

d
m

ea
ns

in
ea

ch
do

se
sa

m
pl

e
fo

r
th

e
Po

iss
on

,N
B

an
d

ZI
(p

i
m

od
el

le
d

as
a

co
ns

ta
nt

)
m

od
el

s.
C

irc
ul

ar
po

in
ts

re
pr

es
en

t
PH

E-
Fo

ci
1

4h
sa

m
pl

es
an

d
tr

ia
ng

le
s

th
e

PH
E-

Fo
ci

2
0/

10
0%

ex
po

su
re

da
ta

.
T

he
da

sh
ed

id
en

tit
y

lin
e

is
th

e
Po

iss
on

ba
se

.
U

nd
er

th
e

Po
iss

on
,t

he
pr

ob
ab

ili
ty

of
a

ze
ro

is
in

ve
rs

el
y

pr
op

or
tio

na
lt

o
th

e
m

ea
n,

he
nc

e
it

is
pl

au
sib

le
fo

r
a

la
rg

e
fra

ct
io

n
of

ze
ro

s
w

ith
a

sm
al

lm
ea

n
to

m
ai

nt
ai

n
co

m
pa

tib
ili

ty
un

de
r

a
Po

iss
on

.



64 Model-based overdispersion tests

assume that pi ≡ p across observations. Furthermore, all tests require that the mean is
modelled through a log-link function.

In 1995, van den Broek [102] presented a score test to determine whether the number
of zeros in a sample is too large for a Poisson. The test statistic is

Sc(ȳ, N, p0) =
√

N

eȳ − 1 − ȳ

(
p0e

ȳ − 1
)
, (5.2.1)

where p0 = N0/N and for Sc(ȳ, 0) > 1.645, the Poisson hypothesis is rejected in
favour of the ZIP model at 5% significance level. We note that this test is usually
only considered for the purpose of cytogenetic-based dose estimation. More recently,
Oliveira [76] developed a variant of (5.2.1) for use with the identity link, furthermore
showing that the resulting test statistic was similar to that obtained under the log-link.

For the log-likelihood of a ZINB model without zero-inflation, ℓ(µi, α, 0), let us
assume that the MLE of the population mean can be approximated by the mean ȳ and
the MLE of α is obtained maximising ℓ(µi, α, 0). Therefore the score evaluated under
H0, (ȳ, α̂, 0), yields

Sc(ȳ, α̂, 0) =
(
∂ℓ0

∂µi

,
∂ℓ0

∂α
, 0
)

(ȳ, α̂, 0) =
(

0, 0, p0

π̂0(ȳ, α̂) − 1
)
.

The corresponding Fisher information matrix is then calculated as the negative expecta-
tion of the second derivatives with respect to each parameter in θ of the log-likelihood
of the sample. The second derivatives of ℓ0 with respect to p are

∂2ℓ0

∂p∂θ
(µi, α, p) = −N0

p+ (1 − p)π0(µi, α) + (1 − p)(1 − π0(µi, α))
(p+ (1 − p)π0(µi, α))2

∂π0(µi, α)
∂θ

,

∂2ℓ0

∂p2 (µi, α, p) = −N0
(1 − π0(µi, α))2

(p+ (1 − p)π0(µi, α))2 − N −N0

(1 − p)2 .

The Fisher information under H0 (p = 0) is then

I(θ0) = I(ȳ, α̂, 0) =


I(ȳ, α̂) N

π̂0(ȳ,α̂)
∂π̂0(ȳ,α̂)

∂µi

N
π̂0(ȳ,α̂)

∂π̂0(ȳ,α̂)
∂α

N
π̂0(ȳ,α̂) −N,


where I(, ) is the information matrix of the model without zero-inflation. The score
test for zero-inflation is given by
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Sc(ȳ, α̂, p0) = Var(p̂)∂ℓ0

∂p
(ȳ, α̂, 0)2

= det(I(ȳ, α̂))
det(I0(ȳ, α̂, 0))

(
p0

π̂0(ȳ, α̂) − 1
)2

,

(5.2.2)

where the asymptotic distribution under H0 is a χ2
1. We are interested in a one-tailed

test which can be done by using a signed version of (5.2.2) i.e.

√
Sc(ȳ, α̂, p0) =

√√√√ det(I(ȳ, α̂))
det(I0(ȳ, α̂, 0))

(
p0

π̂0(ȳ, α̂) − 1
)
, (5.2.3)

which is asymptotically distributed as a standard normal. A score test for a ZIP
regression model against ZINB alternatives was introduced by [87]. The test is presented
in a linear form and has a standard normal distribution if the model under the null
hypothesis is true, however the computations are very complex and not compatible
under the identity link.

5.3 Poisson vs NB

It is clear from the variance functions of both the NB1 and NB2 that they reduce
to a Poisson when α = 0. Therefore, testing the Poisson assumption against the NB
alternative corresponds to testing:

H0 : α = 0 against H1 : α > 0

A likelihood ratio test or Wald test can be used, as conducted in Section 5.1, but the
score test has the advantage that we only need to fit the Poisson model. The explicit
forms for a score test were given by Dean [64]. For testing a Poisson regression against
NB1 we have [77]:

1
2N

 k∑
i=1

ni∑
j=1

(yij − µ̂i)2 − yij

µ̂i

2

and for a Poisson against NB2:

(∑k
i=1

∑ni
j=1((yij − µ̂i)2 − yij))2

2∑k
i=1 µ̂i

2

Under the hypothesis of the Poisson model, the limiting distribution of the score
statistic is χ2

1. The test statistics are found to be 117.12 and 6446.02 for PHE-Foci1
and 12.18 and 7517.66 for PHE-Foci2, which means the null hypothesis is rejected
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in favour of both NB models. Note that all three tests are asymptotically equivalent
and all of the test statistics indicate evidence against the fit of the Poisson model to
the data, yet we notice there is quite a difference in their realised values. A probable
explanation is that the likelihood ratio and score tests are both strongly dependent on
the sample size, more so for the latter, therefore using a relatively small sample may
result in a larger test statistic.

5.4 Model selection

Often the presence or type of violation of the Poisson model will not always be obvious
from the fitted calibration curve and if the response distribution is incorrectly specified,
the uncertainty assessment will also be incorrect. In order to compare the performance
of NB and zero-inflated models with the Poisson model, classical likelihood measures
of goodness of fit can be used: the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC). The AIC [7] penalises a model with a larger number
of parameters, and is defined as AIC= −2ℓ + 2w. The BIC [98], defined as BIC =
−2ℓ+wlogN , works similarly to AIC but increases the penalty with increasing sample
size. According to these criteria, models with smaller values of AIC and BIC are
considered preferable.

PHE-Foci1 PHE-Foci2
Model w −2ℓ AIC BIC −2ℓ AIC BIC
Poisson 2 4175.61 4179.61 4189.79 14868.01 14872.01 14884.60

NB1 3 4064.67 4070.67 4085.94 14858.72 14864.72 14883.60
NB2 3 4126.10 4132.10 4147.37 14868.00 14874.00 14892.89
ZIPa 3 3968.85 3974.85 3990.12 14716.97 14722.97 14741.85
ZIPb 3 3837.17 3843.17 3858.44 14775.79 14781.79 14800.67
ZIPc 4 3836.49 3844.49 3864.85 14703.36 14711.36 14736.54

ZINB1a 4 3963.79 3971.79 3992.15 14716.88 14724.88 14750.06
ZINB1b 4 3837.23 3845.23 3865.60 14775.86 14783.86 14809.04
ZINB1c 5 3836.55 3846.55 3872.01 14703.41 14713.41 14744.88
ZINB2a 4 3968.85 3976.85 3997.21 14718.02 14726.02 14751.19
ZINB2b 4 3837.17 3845.17 3865.54 14825.89 14833.89 14859.06
ZINB2c 5 3837.79 3847.79 3873.24 14725.23 14735.23 14766.70

Table 5.1 Likelihoods and model criterion from fitting various models to 4h whole-body
calibration data for datasets PHE-Foci1 and PHE-Foci2.

Table 5.1 show the values of the maximised log–likelihood as well as the information
criteria, with the best model in each column provided in bold face. Firstly, we observe
for the PHE-Foci1 dataset that the Poisson model provides the (by far) worst fit.
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PHE-Foci1 PHE-Foci2
Link Test W R Score W R Score

Identity P/ZIPa 74.11 206.76 457.90 32.05 151.04 189.84
P/NB1 53.92 110.94 117.12 8.13 9.29 12.18
P/NB2 27.37 49.51 6446.02 < 10−3 0.01 7517.66

NB1/ZINB1a 39.82 100.88 1527.24 31.28 141.84 2734.36
NB2/ZINB2a 74.16 157.25 14406.41 30.79 149.98 15354.47
ZIPa/ZINB1a 0.70 5.06 19.72 < 10−3 0.09 4476.84

Table 5.2 Results from the Wald, likelihood ratio and score tests. For testing ZIPa vs
ZINB1a the score test is calculated under the log-link.

According to the log-likelihood, the ZIPc is considered the preferred model, however
the ZIPb is selected by both the AIC and BIC. This is not concerning since the ZIPc
is the second best of each criteria. By contrast, it appears that the NB2 and ZIPc
(closely followed by the ZINB1c in terms of AIC and ZIPa for BIC) is the least and
most adequate model respectively for the PHE-Foci2 dataset. Although our results in
Table 5.2 from the NB vs ZINB tests indicate that the overdispersion in both datasets
can mostly be explained by zero-inflation, confirming the p-values found in Chapter 3,
it is preferable to utilise a ZINB model to account for any excess heterogeneity (albeit
some evidence from the Wald and likelihood ratio tests suggesting suitability of the
ZIPa model).



Chapter 6

The effect of data aggregation on

dispersion estimates in count data

models

For the modelling of count data, aggregation of the raw data over certain subgroups or
predictor configurations is common practice. This is, for instance, the case for count
data biomarkers of radiation exposure. Under the Poisson law, count data can be
aggregated without loss of information on the Poisson parameter, which remains true
if the Poisson assumption is relaxed towards quasi-Poisson. However, in biodosimetry
in particular, but also beyond, the question of how the dispersion estimates for quasi-
Poisson models behave under data aggregation have received little attention. Indeed, for
real data sets featuring unexplained heterogeneities, dispersion estimates can increase
strongly after aggregation, an effect which we will demonstrate and quantify explicitly
for some scenarios. The increase in dispersion estimates also implies an inflation of the
parameter standard errors, which, however, by comparison with random effect models,
can be shown to serve a corrective purpose. The phenomena are illustrated for the
BfS-Foci data, based on a smaller dose range. This chapter corresponds to the contents
of [32].

6.1 Motivation

We have observed that both overdispersion (with the exception of underdispersion in
the PHE-Foci2 3Gy sample) and zero-inflation are present in H2AX-foci data so that,
for instance, quasi-Poisson or negative binomial models appear adequate. However,
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a simple practical question arising is whether the model fitting can be carried out
without loss of information using only the aggregated data, as displayed in Fig. 1.7,
or whether the raw data, as exemplified in Fig. 1.6, should be used. This question is
of greater depth than one would expect: While we demonstrate in the next Section,
that, in theory, one would anticipate the dispersion to be unaffected by the aggregation,
for the BfS-Foci dataset the dispersion estimate resulting from a quasi-Poisson fit
using the raw data is 1.223, while the one resulting from the fit to the aggregated
data is 147.99! In a further twist, we will also see that the inflated dispersion of the
aggregated model is not necessarily useless: it is a manifestation of a problem which
lies elsewhere, namely dependency structures within the raw data, and eventually leads
to the estimation of parameter standard errors which are more correct than those of the
raw data model. Even though the connection of data aggregation to overdispersion is
not an unknown phenomenon (in fact, in the ecological literature, the term ‘aggregated’
is often used synonymous to ‘overdispersed’ [41]), we believe that the implications of
count data aggregation on dispersion estimates and ensuing inferential purposes, are,
so far, poorly appreciated in the biodosimetric community, and also lack explicit study
in the statistical literature.

6.2 Fitting aggregated data models

With reference to the raw linear model (2.2.3), the corresponding aggregated (linear)
model becomes

E(si|xi) = β0 × ni + β1 × (nixi). (6.2.1)

Under the assumption of independent foci counts, we anticipate the dispersion under the
raw data model should, in theory, remain systematically the same following aggregation.
After fitting the aggregated models, we note that the coefficients of the quasi-Poisson
models do not change between the two data types. Hence, the calibration curves of
expected foci yield given dose, as displayed in Fig. 6.1, will remain exactly the same if
estimated through raw or aggregated data models. However, a significant difference
is observed in their dispersions, where for the PHE-Foci1 data we obtain estimates
of ϕ̂ = 1.444 and ϕ̂agg = 37.70 using the formulations presented in (4.1.2) and (4.1.4)
respectively. For the BfS-Foci data, we observe a smaller raw dispersion of ϕ̂ = 1.223
but a much larger aggregated dispersion of ϕ̂agg = 147.99. We note that all these
dispersions would lead to a rejection of the Poisson hypothesis with a χ2 goodness
of-fit-test.

A possible source of increased dispersion for the aggregated data model as compared
to the raw data model could be an increased variance of the estimates under the former.
Immediately from (4.1.6), it is clear under the aggregated model, where ν is much
smaller, Var(ϕ̂) is larger. Firstly, substituting ϕ̂ = 1.223 in the right hand side of
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Fig. 6.1 Quasi-Poisson model estimates of the BfS-Foci linear calibration curve: E(yi) =
2.011 + 5.746xi.

(4.1.6), with degrees of freedom adjusted according to Table 6.1, leads to SE(ϕ̂) ≈ 0.004
for the raw model and SE(ϕ̂agg) ≈ 0.16 for the aggregated model. However, this effect

— to which we refer as variance effect henceforth — is certainly not sufficient to explain
a value of, say, ϕ̂agg = 147.99, for the dispersion of the linear fit to the aggregated data.
We notice the standard error associated with the PHE-Foci1 aggregated dispersion is
just the reported ϕ̂, which is simply a consequence of the aggregated data consisting of
only k = 4 slides i.e. a slide per dose (in contrast to the BfS-Foci dataset which has
k = 116 slides with multiple slides per dose). In such circumstances, it is difficult to
infer the variance as the pinpoint cause for the increased dispersion without further
data. Indeed, this highlights the importance of raw data being made available. For
these reasons, we dedicate further attention to the BfS-Foci data in the sections which
follow.

6.2.1 Random effect models

Since the data yij do possess a two-level structure, with the slides i corresponding to
the upper level, and the foci frequencies within slides corresponding to the lower level, it
appears adequate to contrast the previous results with an alternative modelling strategy
where within-slide correlation is explicitly accounted for by an additive random effect,
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Raw Aggregated
PHE-Foci1 BfS-Foci PHE-Foci1 BfS-Foci

(β̂0, β̂1) (0.766, 1.700) (2.011, 5.746) (0.766, 1.700) (2.011, 5.746)
(SE(β̂0), SE(β̂1)) (0.042, 0.058) (0.009, 0.023) (0.213, 0.298) (0.102, 0.248)

ϕ̂ 1.444 1.223 37.70 147.99
SE[ϕ̂] 0.049 0.004 37.70 0.16
ν 1198 233218 2 114

χ2
ν,0.95/ν 1.068 1.005 2.996 1.227

Table 6.1 Parameter estimates along with their associated standard errors and dispersion
estimates obtained from each model. The last row gives the critical value that ϕ̂ would
be compared with in a Poisson goodness-of-fit test at the 5% level of significance.

also called random intercept, operating on the upper level. Hence, we consider a mean
function of type µ̃i = µi + ui, where µi is as in (2.2.2), and ui ∼ N(0, σ2

r ) is a Gaussian
random effect. For the response distribution, we consider two scenarios, namely a
Poisson mixed model yij ∼ Pois(µ̃i), and a NB1 regression model, yij ∼ NB1(µ̃i, α)
where ϕ = 1 + α. That is, the NB1 model allows the parameter ϕ to capture any
dispersion not accounted for by the slide-wise random effect.

The models are fitted with R function glmmTMB [18], and results are provided in
Table 6.2. We firstly observe that both models behave similarly, and that their standard
errors lend, on comparison with Table 6.1, interestingly, support to the aggregated data
model. This can be interpreted as that the dispersion estimate of the aggregated model
has successfully captured the between-slide heterogeneity described by the random
effect model. Informally, the presence of this heterogeneity is visible from the small
but non-zero intra-class correlations (ICC). More formally, one can carry out statistical
tests for the significance of the random effect term, with H0 : σ2

r = 0. For the Poisson
model, the likelihood ratio statistic of models with and without the random effect
term is 2(513385.3 − 505138.5) = 16493.6, clearly indicating rejection of H0 when
contrasting with a 0.5(χ2

0 + χ2
1) distribution. For the NB1 model, the conclusion is

identical with LR = 2(511119.5−503979.3) = 14280.4. One can test for the significance
of overdispersion (H0 : ϕ = 1) by comparing ϕ̂ = 1.141 with χ2

0.95,233217/233217 = 1.005,
also yielding significance. So, albeit just above 1, the value of 1.141 represents genuine
overdispersion (over and above the one explained by the random effect model). In
summary, this provides evidence of heterogeneities existing both between and within
slides. It is furthermore noted that the coefficient estimates of β̂0 and β̂1 for the random
effect model differ by about three standard errors from the raw and aggregated data
models.
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Mixed Poisson Mixed NB1
(β̂0, β̂1) (2.331, 4.974) (2.327, 4.983)

(SE(β̂0), SE(β̂1)) (0.114, 0.242) (0.114, 0.243)
ϕ̂ = 1 + α̂ 1.141

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
σ̂2

r 0.334 0.337
σ̂2

ϵ 4.998 4.998
ICC 0.063 0.063

Table 6.2 Parameter estimates of the fitted random effect models. Results above the
dashed line are extracted directly from the output of function glmmTMB. The values
below the dashed line give the estimated residual variance, σ̂2

ϵ , and the resulting ICC
values.

6.2.2 Non-parametric bootstrap

Having seen the evidence for heterogeneities in the data, the models fitted in Section
6.2 can be considered misspecified. In order to understand better the impact of this
misspecification on the fitted raw and aggregated data models, we carry out a bootstrap
simulation, with the mixed NB1 model fitted in Section 6.2.1 as base model, and
examine the dispersion estimates, and resulting standard errors, of all models.

The sampling process of this bootstrap is built in two stages (with all estimates
taken from Table 6.2):

1. Generate slide-wise random errors u∗
i by sampling from N(0, σ̂2

r);

2. Simulate bootstrap data y∗
ij ∼ NB1(β̂0 + β̂1xi + u∗

i , α̂).

Repeat 1. and 2. B times to obtain B bootstrap samples. Then, for each of the B
iterations, we fit three models:

(i) A quasi-Poisson regression model with identity link, applied on the bootstrapped
raw data y∗

ij, i.e. model (2.2.3).

(ii) A quasi-Poisson regression model with identity link, applied on the bootstrapped
aggregated data s∗

i = ∑
j y

∗
ij i.e. model (6.2.1).

(iii) A NB1 regression model with identity link, applied on the bootstrapped raw data
y∗

ij; with an additive random effect representing slides.

For each fitted model and bootstrap iteration, dispersion estimates for models (i)
and (ii) are computed according to (4.1.2) and (4.1.4), respectively, with standard
errors arising as explained in Section 4.1. For model (iii), this dispersion estimate is
obtained by adding 1 to the ‘overdispersion’ parameter, α̂, reported in the summary
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Fig. 6.2 Dispersion estimates based on the bootstrap simulation. The solid red line
represents the random-effect model dispersion ϕ̂ = 1.141 and the dashed line indicates
the quasi-Poisson dispersion ϕ̂ = 1.223 for the original data as reported in Tables 6.1
and 6.2.
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output of R function glmmTMB [18]. Standard errors are extracted directly from this
output.

Boxplots of the dispersion estimates for the bootstrap simulation are displayed
in Fig. 6.2. The left hand panel in this figure gives a comparison of the dispersion
estimates for the raw, random, and aggregated models, whereas the right panel gives a
zoomed comparison of the raw and random effect models. We see from this that the
dispersion estimates for the raw data model are positioned close to the correct mean
value at 1.223. However, the boxplot for the dispersion estimates from the aggregated
model now sits at about 160, which is of similar magnitude as in our initial analysis in
Table 6.1. While the variability of these estimates is also larger than for the raw data
model, it is clear that something much more drastic (than just inflation of variance) has
occurred here, shifting the bulk of the dispersion estimates from the magnitude 1-2 to
much larger values. The dispersion estimates from the random effect model are slightly
smaller than for the raw data model, centering correctly at the value 1.141 from which
the data were generated, as visible from the right panel. The slight difference between
these two models is plausible, as some of the original overdispersion has been captured
by the random effect.

Raw Random Aggregated
SD(β̂0) 0.109 0.103 0.109
SD(β̂1) 0.226 0.211 0.226

Table 6.3 Mean parameter standard deviations based on 100 simulation runs.

We investigate now the consequences of this inflated dispersion. Therefore, let us
firstly consider the boxplots in Fig 6.3. It is clear from this that, for the raw data model,
the reported standard errors of β̂0 and β̂1 are very small. However, we deduced from
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Fig. 6.3 Parameter standard errors for the bootstrap simulation (left: intercept; right:
slope).
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Tables 6.1 and 6.2 that either of aggregation, or the use of a random effect, transports
the standard errors to a much higher level. The values reported in Table 6.3 reveal
that, over all estimation methods, the actual standard deviation of the bootstrapped
estimates of regression coefficients is very similar, and is for all three models, including
the raw data model, of the (high) magnitude reported by the aggregated and random
effect models. This, in turn, implies that the standard errors of regression parameters
for the raw data model, as reported in Table 6.1 and Fig. 6.3, are wrong. We arrive,
hence, at the intriguing conclusion that the large dispersion produced by the aggregated
data model serves eventually a good purpose — namely to adjust the standard errors of
the parameter estimates so that these match the magnitude of those from the random
effect model. For later reference, we will refer to this effect, i.e. the tendency of
aggregated data models to inflate dispersion estimates in order to account for violations
of the independence assumption in the raw data, as a dependency effect.

6.3 Special case: mixture-induced heterogeneity

In this section we will make the “dependency effect” more explicit by mathematically
deriving the inflation factors for an important special case: The case of a mixture
model without covariates.

6.3.1 A two-component model inducing heterogeneity

Consider a scenario in which we generate k rows (slides), each consisting of ni ≡ n

Poisson foci counts (cells), but for fixed covariate dose (in other words, in the absence
of covariates). However, we assume that there exists heterogeneity, that is some counts
are from a Pois(λ1) distribution with probability q (the Bernoulli parameter which
selects the Poisson mean) and others from a Pois(λ2) with probability 1 − q. In general
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terms, the Poisson means come from a two-point mixture; i.e. each raw count yij is
generated as

yij ∼ ZijPois(λ1) + (1 − Zij)Pois(λ2) (6.3.1)

where Zij ∼ B(1, q). The resulting heterogeneity creates overdispersion which, under
model (6.3.1), can be exactly quantified as

ϕ = Var(yij)
E(yij)

= 1 + q(1 − q)(λ1 − λ2)2

qλ1 + (1 − q)λ2
. (6.3.2)

See Appendix A.7.2 for proof of this statement and Fig. 6.4 (top) for a visual represen-
tation of ϕ as a function of q; note also that the dependence on xi is now suppressed
as there are no covariates. Expression (6.3.2) holds true even if there are correlation
structures within the Zij . However, we will see that, for the dispersion of the aggregated
data, it makes a crucial difference whether the heterogeneity is entirely random (i.e.
the indicators Zij are independently generated for all i and j), or whether there is some
correlation structure.

Consider, for instance, a scenario in which

Zij ≡ Zi for all j = 1, . . . , n, (6.3.3)

that is all counts within each slide are generated from a Poisson distribution with the
same mean, but there is 2-component heterogeneity between slides. Then, one finds for
j ̸= l by the law of total covariance,

Cov(yij, yil) = E(Cov(yij, yil)|Zi) + Cov(E(yij|Zi), E(yil|Zi))
= λ2

1Var(Zi) + λ2
2Var(1 − Zi) + 2λ1λ2Cov(Zi, 1 − Zi)

= q(1 − q)(λ1 − λ2)2 (6.3.4)

so for λ1 ̸= λ2 the independence assumption in (*) in (4.1.3), Section 4.1 is clearly
violated. Depending on the mechanism generating the Zij, this expression will look
different, but the point is that any dependency structures within the Zij will render
these covariances non-zero.

6.3.2 Theoretical dispersion of aggregated data

Aggregated data are obtained as before as si = ∑n
j=1 yij. The object of interest in this

subsection is ϕagg = Var(si)/E(si), where we have now made notationally explicit that
it may be different from ϕ. Through the law of total expectation and variance one can
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show that (see Appendix A.7.2), under model (6.3.1)

E(si) = n(qλ1 + (1 − q)λ2); (6.3.5)

Var(si) = n(qλ1 + (1 − q)λ2) + nq(1 − q)(λ1 − λ2)2 +
n∑

j ̸=l

Cov(yij, yil). (6.3.6)

This gives a general expression for the aggregated dispersion,

ϕagg ≡ Var(si)
E(si)

= 1 + q(1 − q)(λ1 − λ2)2

qλ1 + (1 − q)λ2
+

∑n
j ̸=l Cov(yij, yil)

n(qλ1 + (1 − q)λ2)
. (6.3.7)

In the simplest case that all covariances are identical to 0, the third term disappears
and one sees immediately that ϕagg corresponds to the expression for ϕ given in (6.3.2).
In the previously discussed case of slide-wise dependencies (6.3.3), one finds by using
expression (6.3.4) and then referring to (6.3.2) that

ϕagg = 1 + nq(1 − q)(λ1 − λ2)2

qλ1 + (1 − q)λ2
= 1 + n (ϕ− 1) . (6.3.8)

We discuss a third scenario which we consider of practical relevance. Assume there
are correlated strings of length τ < n, each sharing the same Poisson mean. One can
consider this as a special case of model (6.3.1) where the indicators Zij share the same
value for blocks of length τ < n, in terms of the index j. Then one can show (Appendix
A.5.2) that

ϕagg = 1 + τ (ϕ− 1) , (6.3.9)

neatly extending (6.3.8). Note that both ϕ and ϕagg can be considered as functions
of the mixing proportion, q. This is visualised in Fig. 6.4 (bottom). We take note of
the non-symmetry in terms of the mixing parameter, with a maximum at q = 2 −

√
2.

Furthermore, we observe that for q = 0 or q = 1 there is no overdispersion since there
is no heterogeneity.

Equations (6.3.8) and (6.3.9) provide some insight into how the presence of different
types of heterogeneity, for example through correlation within rows or strings within
rows, affect the dispersion of the aggregated data. From direct inspection of both (6.3.8)
and (6.3.9), we deduce that if one increases either the row length or the string size then
the dispersion of the aggregated data continues to grow larger. We also notice that if
there is no overdispersion of the raw counts, i.e. ϕ = 1, then we have equidispersion for
the aggregated data as expected. If one has only clusters of size 1 (τ = 1 or n = 1; that
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Fig. 6.4 For fixed λ1 = 1, λ2 = 2, we plot the non-linear functions (6.3.2) and (6.3.9),
using a string size of τ = 100. Note the substantially different scales in the vertical
axes of the two plots.

is, the heterogeneity is entirely random) then ϕagg = ϕ, so in this case the aggregated
data dispersion does not inflate.

6.3.3 Experiment

We carry out a simulation experiment as described in Section 6.3.1 using λ1 = 1, λ2 = 2
and q = 0.5. The mechanisms presented in Section 6.3.1 and the theoretical derivations
in Section 6.3.2 mean that the heterogeneity resulting from the mixture will trigger
overdispersion, but that the overdispersion for the aggregated data will depend on
the correlation structure of the heterogeneity-inducing mechanism. This leads us to
distinguish the following three cases:

(A) Random heterogeneity: For each slide and cell, the Zij in (6.3.1) are generated
independently;

(B) Slide-wise heterogeneity: The Zij are generated once for each slide and kept
constant for all cells in that slide, i.e. Zij = Zi as in (6.3.3);
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(C) String-wise heterogeneity: The Zij share the same value for blocks of size τ = 100
within each slide, but different blocks are generated independently.

For each of (A), (B) and (C), k = 1000 slides of length n = 1000 are generated. Since
no covariates are involved in this study, we do not need to fit any models to estimate
dispersion. For the raw data, the dispersion is estimated by the overall dispersion index
(3.1.1). For the aggregated data, this would be replaced by ∑k

i=1(si − s̄)2/[(k − 1)s̄].
The resulting dispersion values are reported in Table 6.4, with corresponding R code
detailed in Appendix A.7.1.

(A) (B) (C)
Raw data 1.167 1.168 1.166

Aggregated data 1.070 168.97 16.85

Table 6.4 Dispersion indexes from simulated data under scenarios (A), (B) and (C).

We can see that for case (A) the dispersion of the aggregated data does not increase
at all, while in (B) we observe the strongest inflation. To reiterate, “aggregated data"
signifies here row-wise (slide-wise) sums. Our BfS-Foci dataset best corresponds to (C)
rather than (B), although the basis of the effect is the same.

Verifying these results through our theoretical derivations from Section 6.3.2, one
obtains for case (B) via (6.3.8) that

ϕagg = 1 + 1000 (1.168 − 1) = 169,

which agrees closely with the simulated value of 168.97. Under scenario (C), where
slides are split into 10 clusters each containing 100 cells (τ = 100), one gets from (6.3.9)

ϕagg = 1 + 100 (1.166 − 1) = 17.6,

again in reasonable agreement with our simulation result of 16.85.

6.3.4 3-component Poisson mixture

Let us assume instead that some observations are from a Pois(λ1) distribution with
probability q1, some from a Pois(λ2) with probability q2 while others are from a Pois(λ3)
with probability q3 = 1 − q1 − q2. Each raw count yij is generated as

yij ∼
3∑

m=1
ZijmPois(λm),
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where Zijm ∼ B(1, qm). The over-dispersion in this case is given by:

ϕ = Var(yij)
E(yij)

= 1 +
∑3

m=1 qm(1 − qm)λm − 2q1q2λ1λ2 − 2q1q3λ1λ3 − 2q2q3λ2λ3∑3
m=1 qmλm

.

For the aggregated data, defined before as si = ∑n
j=1 yij, one arrives at the same

expressions as in (6.3.8) and (6.3.9). The resulting dispersion values corresponding to
the three heterogeneity scenarios with λ1 = 1, λ2 = 2 and λ3 = 3 and equal probabilities
i.e. q1 = q2 = q3 = 1/3 are reported below in Table 6.5. For comparison, under case
(B) with n = 1000 one obtains from (6.3.8) that

ϕagg = 1 + 1000 (1.328 − 1) = 328

and for scenario (C) with τ = 100 in (6.3.9)

ϕagg = 1 + 100 (1.335 − 1) = 34.5

therefore in fairly good agreement.

(A) (B) (C)
Raw data 1.334 1.328 1.335

Aggregated data 1.326 332.38 33.04

Table 6.5 Dispersion indexes from simulated data under simulation scenarios as described
in Section 6.3.3.

6.3.5 Generalisation of the model

We have provided this analysis for a 2-component mixture. Even if this constitutes a
gross simplification of reality, we believe that this scenario represents the character of
the phenomenon accurately. To underline this point, we included in the previous section
a corresponding analysis for a 3-component mixture. In practice, and especially for our
data, counts are likely to originate from more than two or three Poissons, however we
do not expect the results to change in substance under a mixture of M ≥ 3 Poisson
random variables.

As the Multinomial model is often not suitable when there is observed overdispersion,
the Dirichlet multinomial distribution model can be used as an alternative [54]. For
further consideration, one may consider a model of type yij = ∑

m ZijmPois(λm) where
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variations among the component probabilities qm = P (Zijm = 1) follow a Dirichlet
distribution, i.e. qm ∼ Dir(α), m = 1, . . . ,M , indicating that yij belongs to component
m with probability qm.

6.4 Summary for the practitioner

In many applied sciences, the use of aggregated count data is common, since they
contain all relevant information to estimate Poisson models. Aggregated data are also
usually less expensive to store and analyse than individual data. Another reason for the
use of aggregated data is just convenience: While for biomarkers based on chromosomal
aberrations, such as the dicentric assay, where counts larger than 7 or 8 are rarely
observed, the full count distributions can still be conveniently displayed [76], this is
is not necessarily the case for H2AX foci data where this count may be much higher.
The data analyst may never get to see the raw data, and then has to work with the
aggregated data simply as this is all that is available to them [28].

Under the presence of overdispersion, a conditional independence assumption of the
responses given covariates guarantees, in theory, equality of the raw and aggregated data
dispersion. However, we have seen that dispersion estimates for raw and aggregated
data can differ dramatically for practical data sets. We distinguished that there are
two effects which jointly result in an increased dispersion for the aggregated data
model; a (relatively minor, but still significant) variance effect and a (potentially
huge) dependency effect. We have demonstrated the latter phenomenon via example,
simulation, and theory, uncovering in this process that the causes for the dependency
effect reside in correlations between or within the slides being aggregated over. Another
way of putting these findings is: The presence of unobserved heterogeneity will cause
overdispersion in the raw data. If this heterogeneity follows dependency patterns (within
or between slides), then this will lead to inflated overdispersion for the aggregated data.
While the theoretical derivations, in Section 6.3, only cover the covariate-free case, they
still give useful insights into the relationship of raw and aggregated data dispersion;
specifically the aggregated dispersion increases linearly with the length of correlated
strings within the data set, attaining a maximum if the string size corresponds to the
full slides.

The relevant question is then whether the raw data should have been used if they
were available, and if so, using which model. Under the presence of, say, slide-wise
correlations in the raw data, the statistically sound model would be the use of a mixed
model for the raw data which features a random intercept for each slide. It appears that
such a model produces roughly similar parameter standard errors than the aggregated
data model, whereas the raw data model produces much smaller standard errors. This
appears to indicate that the high dispersion produced by the aggregated model is an
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attempt by the model to solve a problem which resides somewhere else (namely in the
between-slide-correlations), which the raw data model is not able to address (without
the inclusion of random effects). Putting it into other words, the aggregated model
finds a way to produce roughly correct uncertainty quantification by using incorrect
dispersion estimates.

Random effects, however, have some practical limitations. For H2AX data, the
main drawback of utilising a model with slide-specific random effect is that this random
effect would be unknown for a newly exposed individual, which constitutes a major
limitation as far as dosimetry is concerned. Furthermore, they can only account for
between-slide correlations, but not within-slide correlations.

A practical advice to laboratories is to reduce heterogeneities to an absolute mini-
mum, as they inflate dispersions and standard errors, and may also shift the actual
calibration curve parameters. We do advise against using raw data models without
adjustment by a random effect, but we do not advise against using the aggregated
data models. Aggregation on the slide level does account for the correlations just
as the random effect model would do, albeit using a much simpler model. On the
contrary, our findings appear to justify their use in dosimetry to some extent, due to
the implicit correction of standard errors. However the data analyst should be aware
that the resulting dispersion estimates may be far from the underlying true dispersion
of the raw data. This is of particular importance with view to the detection of partial
body exposures through dispersion estimates, as is a common approach for dicentric
chromosomes [47]. Inflated dispersions of the magnitude as observed would certainly
render any attempt at identifying partial body exposure ineffective, unless one finds
a way of working backwards to recover the raw data dispersion, for instance using
equations such as derived in Section 6.3.

For known dispersions ϕ̂ > 1 and ϕ̂agg, one can estimate the size of the correlated
sub-strings within each slide by rearranging (6.3.9) such that

τ ≈ ϕ̂agg − 1
ϕ̂− 1

. (6.4.1)

For the BfS dispersions of ϕ̂ ≈ 1.2 and ϕ̂agg ≈ 150, we have correlated sub-strings of
size τ = 745 within each slide of n ≈ 2000. For ϕ̂ < 2 (as is commonly the case for
H2AX), it is clear from (6.4.1) that τ > ϕ̂agg − 1. To the best of our knowledge, we are
concerned only with values of τ based on 1 < ϕ̂ ≤ 1.5 (i.e. small overdispersion). For
multilevel H2AX data, the ICC (as calculated in Table 6.2) corresponds exactly to the
correlation of two cells drawn randomly from the same slide. For randomly drawn cells
from different slides, this correlation would be zero. Further work would be required to
seek a possible relation between τ and the correlation coefficient (or ICC).



Chapter 7

The contaminated negative binomial

method for estimation of radiation

dose and exposure fraction

Many situations can be envisaged for which radiation casualties would only result in
partial exposures to radiation. In this type of situation, even if personal dose meters are
available or physical dosimetry methods [3], the intrinsic localisation of these dosimeters
means that total body exposures may be vastly under- or over-estimated. Methods have
been developed to adapt the dicentric assay for detection of partial body exposures.
The IAEA manual recommends either the contaminated Poisson method or the QDR
method. For estimating the irradiated fraction size, it has been reported that the
QDR approach was generally found to be less accurate than the contaminated Poisson
algorithm [97]. While an attempt to apply the contaminated Poisson to H2AX data
has been made, it still remains that there are no methods to potentially allow for the
detection of partial body exposures for biomarkers which per se produce overdispersed
count distributions. In any partial exposure scenario, it is important to correctly
quantify the fraction of exposure as otherwise the resulting dose estimates will also be
incorrect thereby leading to potentially severe consequences for the exposed individual.

7.1 Proposed methodology

In Chapter 4 we considered the analysis of calibration data, in particular the purpose
of whole-body calibration data for estimation of dose-response curves. However, in
practice, following a potential radiation incident, a clinician or practitioner will usually
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only be provided with a single exposed patient’s blood sample for examination, in which
a reference laboratory whole-body generated curve would then be used (in conjunction
with the contaminated Poisson) to determine the contracted radiation dose and fraction
of exposure. Here, we will make use of our own estimated Poisson/quasi-Poisson curves.
We note that a calibration curve is needed as a preliminary to the considerations which
follow.

7.1.1 The contaminated Poisson

For dose estimation, if data are consistent with a Poisson distribution then the recom-
mendation is to report an averaged whole-body estimate. For unpicking a part-body
exposure in the case of an overdispersed distribution of aberration counts, the current
procedure as outlined in the IAEA manual is to follow Dolphin’s method also named
the "Contaminated Poisson" (CP) method. This method, which can be derived from
the score equations of a ZIP, considers that the observed overdispersed distribution of
counts can be expressed as the sum of two components;

1. A Poisson distribution representing the irradiated part of the body and

2. the remaining unexposed, and hence undamaged, fraction.

The following expression can be used to estimate a value µ̂ representing the yield of the
irradiated part which is then substituted into a calibration curve (2.2.3) to estimate
the contracted dose [26, 47]:

µ̂

1 − e−µ̂
= s∗

n∗ − n∗
0

(7.1.1)

where e−µ̂ indicates the expected number of undamaged cells in the irradiated fraction
according to the Poisson model. The left hand side of (7.1.1) represents the expectation
of the zero-truncated Poisson distribution. We note that (7.1.1) is simply a rearranged
version of (4.3.7), here updated for the case of a single inhomogeneous sample using the
notation described in Section 2.3. An estimate for the variance of µ̂ can be obtained
using the following expression (see Appendix A.4 for the derivation)

Var(µ̂) = n0µ̂
2(1 − e−µ̂))

nȳ [(1 − e−µ̂)(n0 − n(µ̂− ȳ)e−µ̂) − nµ̂e−2µ̂] ,

where the 95% confidence limits for both µ̂ and p̂ (modelled via (4.4.12)) can be found
in the usual way,

µ̂U/L = µ̂± 1.96
√

Var(µ̂),
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p̂U/L = p̂± 1.96
√

Var(p̂).

In the partial exposure scenario in which 25% blood has been exposed, it is clear
that the remaining 75% will contribute very little foci. There does exist a background
prevalence, for instance caused by naturally occurring ionising radiation, but this rate
is usually considered to be very low which contradicts our motivations in later sections
and certainly the following chapter. Hence, one naturally would assume that 75% of the
sample consists of ’structural’ zeros. However, even after accounting for zero-inflation,
the overdispersion resulting from experimental factors cannot always be removed. We
therefore require an alternative procedure which can be used to cover overdispersion
arising from excess zeros and other sources.

7.1.2 The contaminated negative Binomial

The deficiencies of the contaminated Poisson method may be overcome by assuming
that the scored foci in the irradiated fraction follow a negative binomial distribution.
Recalling from (4.3.11), the MLE of µ for the ZINB1 can be found solving numerically

µ̂(n∗ − n∗
0) = s∗

(
1 − (1 + α̂)

−µ̂
α̂

)
, (7.1.2)

which we refer to as the "Contaminated NB" or "CNB". Unlike for the CP method,
there does not exist simplifed forms for Var(µ̂) and Var(p̂) but these quantities can be
estimated using the code provided in Appendix A.4. In Section 7.2 we will attempt to
showcase through simulated Poisson and overdispersed H2AX data the differences in
dose and fraction estimates between the CP and the proposed CNB method, before
applying these techniques to our practical data.

7.1.3 Estimation step

Given a blood sample consisting of n∗ foci counts observed under a certain level of
dose and known "whole-body" calibration curve as in (2.2.3), of which can be validated
through [28], the task is to arrive at an estimate for the absorbed dose D and exposed
fraction F . For the CNB method motivated by (7.1.2), the steps of the procedure are
as follows:

S1 Compute the dispersion parameter α by fitting a ZINB1 regression (with identity
link) to the sample.

S2 Extract the zero-inflation parameter estimate, p̂ZINB1, from the model output.

S3 The corresponding fraction FCNB can be estimated using (4.3.15).
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S4 Given s∗ and n∗
0 (and α̂), solve (7.1.2) to obtain an estimate for µCNB.

S5 One can now proceed to find a dose estimate D̂CNB by replacing the sample
mean, λ, with µ̂CNB in the dose response-curve (2.2.3). The linear case of the
calibration curve motivates the dose estimator

D̂ = µ̂CNB − β̂0

β̂1
. (7.1.3)

In the event that β̂0 > µ̂CNB (i.e a negative dose is produced), then D̂CNB is set
to zero.

For the calculation of F̂CP and D̂CP in the CP method, we begin from S2 (ZIP model
is replaced in S2 for p̂ZIP and instead we solve (7.1.1) for µ̂CP ).

7.1.4 Method of moments

To complement the previous section, the moments-based estimation offers a model-free
approach and makes complete use of the sample summary statistics by using the
relation:

µ̂M = y∗

1 − n∗

n∗
0

,

which leads to

D̂M = µ̂M −β̂0
β̂1

and F̂M = 1 − n∗

n∗
0

= y∗

µ̂M
.

7.1.5 Uncertainty under overdispersion

We recall that the uncertainty methods outlined in Section 2.4 are for the purpose of
whole-body exposures, where it is assumed that the sampling data are Poisson. We
have gathered sufficient evidence to backup the claim that γ-H2AX data (and in some
cases dicentric data) no longer conform to the Poisson in both partial and whole-body
exposures, therefore continuing with but failing to update these standard methods
will likely to lead to grossly underestimated uncertainties. Both the delta and MC
methods are advantageous in that they consider the sampling distribution via the error
associated with the yield. Normally one would use the Poisson sampling error (PSE)
for SE(y∗) in (2.4.1), however it is reasonable to replace this with either the QPSE or√

Var(µ̂) as calculated separately for the CP and CNB.
To represent a more rigorous approach with Merkle’s method (and hence the

simplification method), it has been suggested to use a correction factor for confidence
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intervals of overdispersed WBI data. Given a sample with mean y∗ and dispersion
index δ̂ (note that this is equivalent to the QP dispersion from an intercept-only model),
the limits in (2.4.2) should be adjusted according to [3]

˜̂µU/L = µ̂U/L

(
µ̂U/L

y∗

)√
δ̂

.

In the case of PBI there remains no adjustments, however we propose to use the
expression in Section 7.1.1 to calculate the confidence limits µ̂U/L as opposed to (2.4.2)
since it allows Merkle’s and the simplification method to capture the yield uncertainty.

7.2 Simulation study

In the context of dicentrics, assumed to be Poisson, the contaminated Poisson can be
used to infer the degree of partial body exposure from the overdispersion. However,
experimental factors which contribute variability in the scoring process of cells are
all absorbed by the dispersion value. Although we have seen our datasets are heavily
zero-inflated, such dispersion-generating effects cannot simply be ignored. In this
section we aim to showcase the effect of disentangling dispersion from zero-inflation on
both dose and fraction estimates.

In order to simulate H2AX-type foci count samples, we make use of an existing
whole-body calibration curve reported in the literature [94]:

λ = 0.35(±0.26) + 1.48(±0.26)D. (7.2.1)

Assuming a fixed dose D for this simulation, n∗ = 1000 observations were taken
separately from two scenarios:

A. Poi(λ)

B. NB1(λ; α = 1)

with ‘base’ dispersion ϕ = 1 + α, providing an equidispersed (A) and an overdispersed
(B) whole-body sample (as exemplified in Figure 7.1). By "base dispersion" we refer
to dispersion arising from possible bias in the sampling (or scoring) procedure and
not from structural zeros due to some underlying physical reason. Additionally, we
would like to showcase specifically how the CNB method can be used to disentangle
dispersion and zero-inflation which will arise as a result of partial-body exposures. To
mimic the 75% and 50% partial exposure scenarios, a proportion (corresponding to
the fraction of exposure) of observations were randomly removed and then zeros were
added to these samples. Hereafter, we make the assumption that information regarding
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Fig. 7.1 A comparison of the individual number of foci per cell produced in equidispersed
(left) and overdispersed (right) whole-body samples of equal mean.
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True Fraction F (%) True Dose D (Gy) F̂CP F̂CNB SD(F̂CP ) SD(F̂CNB)
75 1 0.753 0.760 0.014 0.018

±0.020 ±0.024
3 0.750 0.750 0.002 0.003

±0.014 ±0.014
5 0.750 0.750 0.001 0.001

±0.014 ±0.014
50 1 0.502 0.507 0.012 0.014

±0.020 ±0.023
3 0.500 0.501 0.002 0.002

±0.016 ±0.016
5 0.500 0.500 0.001 0.001

±0.016 ±0.016
75 1 0.603 0.754 0.015 0.046

±0.018 ±0.020
3 0.728 0.749 0.005 0.007

±0.014 ±0.015
5 0.746 0.750 0.002 0.002

±0.014 ±0.014
50 1 0.403 0.504 0.012 0.037

±0.017 ±0.040
3 0.485 0.500 0.004 0.005

±0.016 ±0.017
5 0.498 0.500 0.002 0.002

±0.016 ±0.016

Table 7.2 Scenario A (top) and B (bottom) mean fraction estimates and standard
deviations based on 100 simulation runs.

dose level and fraction used to generate this data is unknown. The whole process was
repeated 100 times. Average-based estimates following the steps in Section 7.1.3 are
displayed in Tables 7.1 and 7.2.

For Scenario A, we notice from Table 7.1 (top) that the CP and CNB appear to
produce similar dose estimates which are almost identical to the true absorbed dose.
Similarly, the fraction estimates from Table 7.2 (top) seem to be in agreement. By
comparison, one could argue that the CP provides slightly better results, however the
CNB estimates can be viewed as the corrected estimates after adjusting for the slight
overdispersion (or underdispersion in the 3Gy sample). We note that each simulation
explicitly produces an estimate for α̂, the mean of these values is stated in Table 7.1.
For Poisson data it is expected that there should be no significant differences between
the two methods.

The impact of the inclusion of extra zeros (or cells containing zero counts) for each
dose in the whole-body sample (100% exposure data) can be immediately observed by
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The contaminated negative binomial method for estimation of radiation dose and

exposure fraction

F (%) D (Gy) *Merkle MBD/Delta *IAEA Simplified MC (10000 trials)
75 1 (0.462, 2.016) (0.500, 1.482) (0.936, 1.048) (0.489, 1.503)

(0.453, 1.998 ) (0.490, 1.470 ) (0.925, 1.037 ) (0.481, 1.490 )
3 (1.970, 5.512) (1.913, 4.109) (2.921, 3.103) (1.845, 4.321)

(1.970, 5.511 ) (1.903, 4.099 ) (2.919, 3.103 ) (1.843, 4.323 )
5 (3.373, 9.022) (3.240, 6.762) (4.886, 5.119) (3.134, 7.161)

(3.373, 9.022 ) (3.240, 6.762 ) (4.886, 5.118 ) (3.135, 7.160 )
1 (0.715, 2.545) (0.732, 1.880) (1.243, 1.369) (0.714, 1.927)

(0.470, 2.032 ) (0.507, 1.495 ) (0.946, 1.058 ) (0.500, 1.513 )
3 (2.032, 5.664) (1.971, 4.223) (3.006, 3.191) (1.905, 4.443)

(1.963, 5.496 ) (1.904, 4.098 ) (2.911, 3.094 ) (1.841, 4.309 )
5 (3.393, 9.072) (3.259, 6.801) (4.914, 5.147) (3.116, 7.229)

(3.376, 9.030 ) (3.240, 6.774 ) (4.891, 5.123 ) (3.093, 7.203 )

Table 7.3 75% partially-irradiated sample dose estimation uncertainties from the Poisson
(top) and NB1 (bottom) simulation for the CP (first row) and CNB (second row, italic),
expressed in the form of 95% confidence intervals.

the decrease in fraction estimates. As expected, these only slightly deviate from the
true value. We note that the dose estimates from each method remain constant and
therefore are independent of zero-inflation. This is simply due to the number of zeros
manually incorporated in the total number of observations, hence the value stays the
same. The same holds true for the total focus count, in which only zeros are added.

The results from Scenario B are displayed in Table 7.1 (bottom). It is suggested,
as a generalised criterion, that a dose estimate within 30% of the "true" localised dose
is sufficiently accurate for radiological protection purposes [1]. This claim appears to
be valid for all dose levels except for the 1Gy dose estimated from the CP method,
lying slightly outside the interval. On the other hand, it is clear (also from the fraction
estimates in Table 7.2 (bottom)) that the CNB method has accounted for both the base
dispersion and additional dispersion as a result of zero-inflation, noting the difference
in estimates between both methods in comparison to those from the simulated Poisson
data. Seemingly, this appears to be most apparent for smaller doses, in our case the
1Gy samples.

As an extension, Table 7.3 details the 95% confidence limits for the dose estimates
obtained from the simulated 75% exposed samples. It is evident that the uncertainties
produced from the MBD and MC methods are of similar magnitude, while Merkle’s
method naturally provides larger upper limits. The results from the IAEA simplified
approach are in accordance with the standard deviations reported in Table 7.1. Both
the simulation and IAEA simplified do not consider the calibration curve standard
errors, subsequently providing a narrow confidence interval. Initially, it would seem
here that the simplified approach is most favourable, however we see from both the



7.2 Simulation study 91

overdispersed 1Gy and 3Gy CP dose intervals its drawbacks when dealing with a poor
estimate.

A major limitation of our simulation setup is the exclusion of biological effects.
In practice, the expected amount of "structural zeros" is likely to be smaller (i.e.
less foci-free cells observed than expected), especially for lower exposures prone to
background noise. Biological problems which can often arise from higher doses are also
not captured by the simulation. To better understand the drawbacks of the simulation,
in the following chapter we make the attempt to utilise the CP and CNB methods for
purpose with practical H2AX and dicentric data.



Chapter 8

Application of CP and CNB

methods

Following a major radiation accident, the estimated dose and fraction are crucial for
the segregation of exposed patients into triage categories. Typically, these categories
will consist of low dose (less than 1Gy), moderate dose between 1Gy and 3Gy and high
doses above 3Gy. Despite the biological drawbacks, the results from the simulation
in the previous Chapter still motivates the use of the contaminated negative binomial
method to provide estimates accurate enough and thus confirm the triage placement of
patients, in cases of an overdispersed aberration distribution. In this chapter, we will
see that problems relating to the background level can contribute to poor estimates
obtained from the CP and CNB methods. Adjustments which attempt to resolve these
issues are discussed and compared.

8.1 Practical data analysis

We recall from Chapter 4 that the PHE-Foci2 Poisson calibration curve was found to
be:

λ = 0.197(±0.014) + 3.725(±0.029)D, (8.1.1)

where the intercept value of 0.197 represents the background level of foci. Table 8.1
provides both the dose and fraction estimates as compared to their physical quantities
for each sample. Upon inspection, it is clear that the CP method was able to produce
estimates which are closer to the true values, in respect, contradicting the results from
our simulation. Furthermore, for the partially-exposed samples, it appears here that α̂
has made a insignificant contribution to the dose and fraction estimates from the CNB
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F (%) D (Gy) MBD/Delta *Merkle *IAEA Simplified MC (10000 trials)
30 0.75 (0.626, 0.731) (0.634, 0.725) (0.652, 0.706) (0.627, 0.730)

(0.585, 0.685 ) (0.591, 0.680 ) (0.609, 0.662 ) (0.586, 0.683 )
1.5 (1.155, 1.283) (1.161, 1.279) (1.183, 1.256) (1.155, 1.284)

(1.037, 1.201 ) (1.063, 1.177 ) (1.084, 1.154 ) (1.036, 1.201 )
3 (2.194, 2.366) (2.202, 2.361) (2.232, 2.330) (2.191, 2.370)

(2.082, 2.382 ) (2.154, 2.311 ) (2.184, 2.280 ) (2.080, 2.383 )
60 0.75 (0.627, 0.711) (0.624, 0.715) (0.642, 0.697) (0.629, 0.709)

(0.611, 0.689 ) (0.606, 0.695 ) (0.623, 0.677 ) (0.612, 0.688 )
1.5 (1.405, 1.511) (1.394, 1.523) (1.419, 1.497) (1.403, 1.512)

(1.390, 1.508 ) (1.385, 1.514 ) (1.410, 1.488 ) (1.388, 1.510 )
3 (2.456, 2.590) (2.441, 2.607) (2.472, 2.575) (2.455, 2.592)

(2.440, 2.604 ) (2.440, 2.606 ) (2.471, 2.574 ) (2.439, 2.606 )
100 0.75 (0.741, 0.813) (0.729, 0.826) (0.748, 0.806) (0.744, 0.810)

(0.742, 0.812 ) (0.729, 0.826 ) (0.748, 0.806 ) (0.744, 0.810 )
1.5 (1.491, 1.583) (1.472, 1.604) (1.497, 1.578) (1.488, 1.587)

(1.489, 1.583 ) (1.471, 1.603 ) (1.496, 1.577 ) (1.486, 1.587 )
3 (2.957, 3.081) (2.928, 3.110) (2.963, 3.075) (2.952, 3.083)

(2.956, 3.082 ) (2.928, 3.110 ) (2.963, 3.075 ) (2.952, 3.083 )

Table 8.2 95% confidence limits for the dose estimates obtained from CP (first row)
and CNB (second row, italic) as reported in Table 8.1.

method. We deduce from the simulation and both Tables 8.1 and A.1 (Appendix A.8
- estimates for the PHE-Foci1 samples) that always D̂CP ≥ D̂CNB and F̂CP ≤ F̂CNB.
Being most apparent for the 30% samples, the attempt by the CNB method to account
for any additional overdispersion can be viewed as having a reverse effect in the case
when F ≤ F̂CP ≤ F̂CNB. After considering the uncertainty, we observe from Table
8.2 that only the 1.5Gy/60% (IAEA simplified excluded) and 100% samples yield
confidence intervals which encompass the true dose. Nevertheless, D̂CP and D̂CNB

appear to be within the suggested 30% margin of D.
By contrast, it can be observed from the dicentric results displayed in Table 8.3

that the fraction estimates have improved using the CNB in cases where α̂ is large
(noting here that all F̂CP < F ). For some samples, most notably the 50%/0.7Gy, one
has to subsequently settle for worse estimates of D̂CNB. It should be highlighted that
the doses used for the calibration curve range between 0.1-1Gy, with doses less than
1Gy considered very small. Estimation of such low doses in PBI scenarios is a subject
which continues to receive ongoing attention [8]. It is plausible, in addition to only
3 dose levels (of wide range) used for construction of the calibration curve, that this
could also explain some of the ambiguity in estimates from the 0.75Gy samples of the
foci datasets.
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F (%) D (Gy) D̂CP D̂CNB F̂CP F̂CNB α̂

50 0.5 0.755 0.755 0.265 0.266 0.043
0.7 0.795 0.519 0.306 0.537 0.369
1 1.023 0.918 0.321 0.375 0.198

75 0.5 0.800 0.707 0.420 0.496 0.134
0.7 0.822 0.821 0.473 0.474 0.002
1 0.925 0.850 0.600 0.676 0.128

100 0.5 0.788 0.757 0.592 0.623 0.046
0.7 0.829 0.767 0.788 0.874 0.096
1 1.070 1.024 0.892 0.948 0.093

Table 8.3 Dose and fraction estimates corresponding to 50%, 75% and full-exposure
conditions for PHE-Dicentric dataset.

Certainly, it is evident that the implications made from the simulation setup do not
smoothly carry over to practical biomarker data. The consequence of the CP method
overestimating the fraction of exposure leads to the CNB method being unable to
make any improvements. This is also reflected in the dose uncertainties, in which we
are unable to see the advantages of the MBD and MC methods in partial-exposures.
However, it remains somewhat reassuring from Table 8.1 that all F̂ do not deviate
too greatly from F , with all estimates contained within F ± 10%. Assuming the true
fraction is unknown, as initially implied, then we still require alternative procedures to
firstly identify the cause(s) of fraction overestimation from the data characteristics (i.e.
problem with the background level or too many zeros) and secondly if the estimates
can at all be rectified.

8.2 Anomalies

Before making any attempt to modify our samples and/or apply alternative models,
there are a few considerations to reflect upon. Firstly, the calculation of our PHE-Foci2
curve involves using an underdispersed sample, in turn, presenting some complications
with its validity. As a solution, one could replace this sample with the corresponding
3Gy PHE-Foci1 sample or by using its dispersion index (with the PHE-Foci1 curve) to
generate a new sample via NB1(n∗ = 1000, λ = 0.766 + (1.700 × 3); ϕ = 1.023) then
re-fit the calibration curve.

We observed in Chapter 1 that the 1.5Gy/100% sample contains a cell of 37 foci which
can be considered extreme when compared with the next highest recorded cell of 20 foci.
Indeed, remaining as true as possible to the data is important but equally it could be
detrimental if one fails to identify any potential obscurities/outliers and make suitable
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F (%) D (Gy) µ̂M D̂M F̂M D̂CP RE
D̂CNBRE

30
0.75 2.916 0.731 0.347 0.769 0.718
1.5 4.780 1.232 0.364 1.390 1.274
3 8.693 2.284 0.352 2.610 2.553

60
0.75 2.885 0.723 0.583 0.758 0.735
1.5 5.647 1.465 0.651 1.664 1.653
3 9.596 2.527 0.679 2.889 2.887

100
0.75 3.237 0.817 0.931 0.881 0.881
1.5 5.939 1.544 0.972 1.747 1.747
3 11.44 3.023 0.993 3.458 3.458

Table 8.4 Estimated dose and fraction based on the method of moments and using the
re-fitted calibration curve (replacing 3Gy sample and the 37 scored foci cell omitted
from 1.5Gy sample).

adjustments. Removing this cell from the sample yields λ = 0.197 + 3.719D (a slightly
smaller slope means dose estimates for the other samples would barely differ) with QP
dispersion of ϕ̂ = 1.038. Additionally, the dispersion index δ̂ significantly decreases
from 1.261 to 1.100 and now α̂ < 10−4 from the ZINB1 model. This results in the same
fraction estimates but moderately smaller dose estimates of D̂CP = D̂CNB = 1.532, as
compared with Table 8.1. Additionally, replacing the 3Gy sample with the corresponding
3Gy PHE-Foci1 sample, the calibration curve becomes λ = 0.234 + (3.241D) with
ϕ̂ = 1.314. The re-calculated dose estimates are stated in Table 8.4 (indicated by "RE"
subscript). Certainly, we see improved estimates for the partially-irradiated samples
(some exception for the 1.5Gy/60% sample) but now overestimation in the WBI samples.
Alternatively we could have used a non-Poisson/QP fitted curve, however we found
there was relatively small deviation in resulting dose estimates (as expected from the
similar coefficients reported earlier in Table 4.3).

From Table 8.4, it is reasonable to suggest for PBI that D̂M could serve as a lower
bound for D and an upper bound in the case of WBI, remaining within the 30%
discrepancy interval. Conversely, F̂M could be viewed as being an upper bound for F
such that if F̂CP ≥ F̂M then this is an indication of fraction overestimation in PBI.

In Chapter 4 (Table 4.7) we discovered some evidence of cell death for the 30%
exposure samples under the ZINB1, suggesting the estimated CNB fractions should
be updated accordingly. Assuming the value for γ̂1 is known, then replacing D with
D̂CNB in expression (4.4.2) and substituting into (4.4.1) provides increased fractions of
F̂CNB = 0.422, 0.448 and 0.456 respectively. Subsequently, accounting for cell death will
result in worse estimates in the case of fraction overestimation, however our evidence
from Chapter 4 suggests we can have trust in the estimates presented in Tables 8.1
and 8.3.
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Fig. 8.1 Plots of s∗ against D̂CP (top) and F̂CP (bottom) for the 0.75Gy/60% sample.
The blue line is used to indicate estimated values while the green line represents the
true values. The scenario of both non-zero dose estimates and F ≤ 100% (red line) is
achieved when s∗ ≥ 875.
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F (%) D (Gy) min(s∗) s∗ when F̂CP = F Converging F̂CP s∗ when D̂CP = D

30
0.75 427 0.347 1093
1.5 453 0.364 2113
3 434 0.352 4004

60
0.75 875 2138 1836
1.5 1053 0.651 3778
3 1137 0.679 7721

100
0.75 2673 2673 2932
1.5 3576 3576 5640
3 4962 4962 11292

Table 8.5 Values for s∗ for which both D̂CP > 0 and F̂CP ≤ 100% (min(s) column) and
when true dose and fraction are obtained. The results in this table assume the same
calibration curve (8.1.1) is used and that the observed zeros remains constant. Note
that it is not possible to replicate this analysis for the CNB method since α̂ would
require the individual foci frequencies (which total s∗).

It is clear from the expressions for the CP and CNB that the addition or subtraction
of zeros does not alter µ̂ since the quantity n∗ − n∗

0 remains unchanged. However,
µ̂ is dependent on the total aberration count, s∗. From Table 8.5 we see that the
0.75Gy/60% sample is the only partially-irradiated sample in which both D and F can
be reached by changing s∗, as shown in Figure 8.1, which alludes us to the fact that
the problem with the remaining samples is primarily associated with the proportion
(or lack) of zeros. With reference to the aforementioned 0.75Gy/60% sample, and
recalling that always D̂CP ≥ D̂CNB and F̂CP ≤ F̂CNB, at some value s∗ >> 2138
(dependent on the breakdown of s∗ and hence the value of α̂) one eventually has both
D̂CP > D̂CNB > D and F̂CP < F̂CNB ≤ F .

8.3 Adjusting for background exposure

8.3.1 Sensitivity of single-foci cells

As made evident from the values of F̂M , we identify in Figure 8.2 (overleaf) that only
the 0.75Gy/60% sample contains the minimum number of foci-free cells to possibly
distinguish between the structural zeros and sampling zeros. A feasible reason for
observing less zeros is that low numbers of foci tends to trick the imaging software
into detecting spurious foci background noise, by falsely enhancing the signals of minor
granularities in the image which do not constitute foci. As a consequence there is a
possibility that cells with reported small foci frequencies may have been under- or
over-scored, depending on how experienced the scorer is. However, this does not directly
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Fig. 8.3 Trend of dose (top), fraction (middle) and α (bottom) estimates over increasing
5% proportions of single-foci cells divided into 0s and 2s for the 0.75Gy/60% sample.

answer the question as to why the CP method remains favourable in the case of the
0.75Gy/60% sample.

We investigate this particular sample further by means of ’data sharpening’. We
choose to amend by splitting a proportion (in gradual intervals of 5%) of single-foci
cells into zeros and twos with probabilities q and 1 − q. To reflect the scenario that
a single-foci cell is equally likely to be under- or over-scored and to keep the total
numbers of foci in the modified samples to be roughly the same as in the original
sample, we set q = 0.5. From a Bayesian perspective, q = 0.5 is equivalent to assuming
no prior information is known relating to the scoring process. The mean estimates
(based on 100 runs) for D̂, F̂ and α̂ are displayed above in Figure 8.3. We first notice
that D̂CP and D̂CNB become identical when ≥ 35% single-foci cells are split and the
true dose is achieved at ≈ 70% split. Similarly, F̂CP and F̂CNB share similar quantities
for ≥ 30% split. As we increase the proportion of ones split, the behaviour of α̂ is not
monotonic decreasing but tends to a miniscule value greater than 0 (here 10−5).

When carrying out the same analysis on the remaining 30% and 60% exposed
samples, we observed that D̂CNB were either closer to the true dose D or identical
to D̂CP only when D̂CP ≥ D̂CNB > D. In contrast, it holds true that the F̂CNB
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F (%) D (Gy) D̂CP D̂CNB F̂CP F̂CNB α̂

30 0.75 0.622 0.561 0.324 0.357 0.574
1.5 1.243 1.196 0.320 0.332 1.127
3 2.334 2.322 0.322 0.324 1.637

60 0.75 0.635 0.613 0.580 0.599 0.226
1.5 1.416 1.408 0.636 0.639 0.381
3 2.513 2.513 0.661 0.661 0.341

100 0.75 0.744 0.744 0.949 0.949 0.001
1.5 1.494 1.492 0.968 0.969 0.125
3 2.965 2.965 0.993 0.995 *

Table 8.6 Dose and fraction estimates using a slope-only curve, λ = 3.735D.

were either closer to the true fraction F or similar to F̂CP when F̂CP ≤ F̂CNB < F

(50%/0.7Gy does contradict this could be related to small exposure/dose problem?).
This is simply due to the fact that the CNB method will implicitly produce µ̂CNB which
are always smaller than µ̂CP for α̂ > 0. We note that for some samples (particularly
3Gy dose), we were unable to deduce such conclusions (rather that the estimates from
both the CP and CNB methods remain almost the same irrespective of the proportion
split and values of α̂) due to the insufficient amount of single-foci cells to convert into
zeros for the true dose and fraction to be reached.

8.3.2 Slope-only model

Ideally, instead of splitting zeros between cells of low counts, it is desirable to remove
the background level of foci more randomly while maintaining roughly the original
data structure. We subtract Poi(0.197) from each count then re-combine at random
any produced negative counts with the positive non-zeros. Table 8.6 provides the dose
and fraction estimates for each sample by means of such data sharpening process, using
the calibration curve in (8.1.1) with intercept removed. By comparison with Table 8.1,
all dose and fraction (exception of 100%/3Gy sample) estimates have now reduced and
therefore improved in cases where either were overestimated.

8.3.3 Zero-and-one inflated Poisson

As opposed to attempting to remove the background level of foci in a sample, one
could speculate that our problem resides with the small non-zero counts. In addition to
zero, it is not uncommon for biomarker data to simultaneously contain inflated counts
for an additional count value r>0. For such purposes, Lin and Tsai [65] proposed a
zero-and-r inflated Poisson (ZrIP) regression model. The ZrIP has pmf
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P (Yij = yij|µi, pi0, pi1, pi2) =


pi0 + pi2e

−µi , for yij = 0
pi1 + pi2

e−µi µr
i

r! , for yij = r

pi2
e−µi µr

i

r! , when yij ≥ 1, yij ̸= r

(8.3.1)

where 0 ≤ pil ≤ 1, l = 0, 1, 2 such that ∑2
l=0 pil = 1. The ZrIP contains the ZIP model

when pi1 = 0 and the Poisson model if pi0 = pi1 = 0. A special case of the ZrIP model
is the zero-and-one inflated Poisson model (r = 1) with pmf defined by

P (Yij = yij|µi, pi0, pi1) =


pi0pi1 + (1 − pi0)e−µi , if yij = 0,
pi0(1 − pi1) + (1 − pi0)µie

−µi , if yij = 1,
(1 − pi0)e−µi

µ
yij
i

yij ! , if yij ≥ 2.

(8.3.2)

We denote (8.3.2) as ZOIP (pi0, pi1, µi). When pi0 = 0, the model is a Poisson model
and for pi1 = 1, returns the ZIP model. The ZOIP distribution was first used by
Melkersson and Olsson [72] to analyse the annual number of dentist visits for a sample
of adult Swedes. Zhang et al. [106] later studied the properties and likelihood-based
inference methods of the ZOIP model.

Denoting qi0 and qi1 as the probability of the random variable Yij being zero and
one respectively, the pmf in (8.3.2) becomes

P (Yij = yij|µi, qi0, qi1) =


qi0, if yij = 0,
qi1, if yij = 1,

(1−qi0−qi1)
1−e−µi −µie−µi

e−µi
µ

yij
i

yij ! , if yij ≥ 2,

(8.3.3)

where qi0 ≥ 0, qi1 ≥ 0 and qi0 + qi1 ≤ 1. The likelihood function of (qi0, qi1, µi) is then

L(qi0, qi1, µi) ∝ qN0
i0 q

N1
i1 (1 − qi0 − qi1)N−N0−N1

µT
i

(1 − e−µi − µie−µi)N−N0−N1
e−(N−N0−N1)µi .

(8.3.4)
Here, N1 = #{i : yij = 1} and T = ∑

yij≥2 yij. Under the notation presented in (8.3.3),
the mean and variance can be shown to be

E(yij|xi) = qi1 + (1 − qi0 − qi1)µi

1 − e−µi − µie−µi
(1 − e−µi), (8.3.5)
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Var(yij|xi) = qi1 + (1 − qi0 − qi1)µi

1 − e−µi − µie−µi
(1 + µi − e−µi)

−
(
qi1 + (1 − qi0 − qi1)µi

1 − e−µi − µie−µi
(1 − e−µi)

)2

.

(8.3.6)

It therefore follows that

Var(yij|xi)
E(yij|xi)

=

(
qi1 + (1−qi0−qi1)µi

1−e−µi −µie−µi
(1 + µi − e−µi)

)
(
qi1 + (1−qi0−qi1)µi

1−e−µi −µie−µi
(1 − e−µi)

)
−
(
qi1 + (1 − qi0 − qi1)µi

1 − e−µi − µie−µi
(1 − e−µi)

)
.

(8.3.7)

Based on the likelihood function in (8.3.4), the maximum likelihood estimates in the
case of a single inhomogeneous sample for q0 and q1 are

q̂l = nl

n
, l = 0, 1 (8.3.8)

and the MLE of µ, µ̂, can be found by solving the following equation:

T (eµ − µ− 1) − (n− n0 − n1)(eµ − 1)µ = 0, (8.3.9)

which can be solved numerically through optimisation/root-solver methods. (8.3.9)
suggests that there is always a unique solution for µi if n− n0 − n1 > 0 (i.e. at least
one count greater than 1). Given µ̂, one can obtain MLEs for p0 and p1 by using the
transformation in (8.3.3), providing

p̂0 = q̂0 + q̂1 − (1 + µ̂)e−µ̂i

1 − (1 + µ̂)e−µ̂
, p̂1 = q̂0 − (1 − p̂0)e−µ̂

p̂0
. (8.3.10)

In our context, the ZOIP allows to determine the degree of inflation arising from
both foci-free and single-foci scored cells. Although one could extend the ZOIP to
allow the modelling of excess cells for a range of lower frequencies (say cells consisting
of 0-3 foci) and to account for overdispersion not due to zero- and r-inflation (ZrINB),
both of these methods would require computational implementation with support for
the identity link function. The ZOIP is advantageous in the sense that estimates for µ̂,
p̂0 and p̂1 (and hence D̂ and F̂ ) can easily be found using (8.3.9) and (8.3.10).

Comparison of Table 8.1 with Table 8.7 reveals a significant improvement in contrast
to the CP method, albeit an exception of the 1.5Gy/60% sample in which a slightly
worse dose estimate but a less deviating fraction estimate is observed. Interestingly,
application of the ZOIP now results in both under- and over-estimation of the dose
and fraction in the partially-irradiated samples. It can be seen from Table 8.7 that
both the 1.5Gy samples provide D̂ > D while F̂ > F is identified only in the case
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F (%) D (Gy) µ̂ q̂0 q̂1 p̂0 p̂1 D̂ F̂

30 0.75 2.984 0.653 0.086 0.673 0.946 0.748 0.327
1.5 5.926 0.636 0.090 0.721 0.881 1.538 0.279
3 10.334 0.648 0.062 0.710 0.913 2.722 0.290

60 0.75 2.864 0.417 0.137 0.428 0.898 0.716 0.572
1.5 6.152 0.349 0.073 0.413 0.842 1.599 0.587
3 10.232 0.321 0.047 0.368 0.873 2.694 0.632

100 0.75 3.085 0.069 0.136 0.022 0.775 0.978
1.5 5.960 0.028 0.022 0.033 0.782 1.547 0.967
3 11.449 0.007 0.001 0.008 0.889 3.021 0.992

Table 8.7 Results from the ZOIP. Dose estimates are based on using the Poisson
calibration curve (8.1.1) and reported F̂ values are calculated via 1 − p̂0. A value of
p̂1 > 1 was obtained for the 100/0.75Gy sample (a consequence of q̂1 > q̂0) and was
therefore omitted.

of the 0.75Gy/30% and 3Gy/60% samples. The increased values for D̂ is simply a
consequence of a larger µ̂ after accounting for the proportion of ones. Assuming no
background irradiation, it is expected that q̂0 → 1 as F → 0. It is clear there is some
discrepancy in the q̂1 between the 0.75Gy/60% and 0.75Gy/100% sample. We note
that the latter is the only sample in which q̂1 ≥ q̂0. Although we anticipate that the
proportion of foci-free cells should be relatively small, it is logical that q̂1 ≥ q̂0 should
hold in any WBI scenario.



Chapter 9

Discussion

The gamma-H2AX assay as a biomarker for DSBs and radiation exposure has been
firmly established in the literature. Compared to the "gold-standard" dicentric assay,
where dose estimates can only be obtained in a costly and time-intensive process
(chromosomes need to be cultured to metaphase which takes 2-3 days), the gamma-
H2AX assay has the advantage that foci appear at the sites of DSBs within minutes
which would allow for much quicker triage in the case of a large-scale radiation incident.
However, only a relatively limited amount of work has been carried out towards
enhancing the analysis methods in order to improve the accuracy and reliability of this
assay.

Statistical concepts developed to deal with detecting partial body exposure in the
context of the dicentric assay will not immediately carry over to protein-based assays
as one will observe overdispersion irrespective of the exposure pattern in the latter. As
an exception to this, we introduced in Chapter 1 the PHE-Dicentric dataset which also
exhibited overdispersion in both partial and whole body irradiated samples. This means
there is a need to consider how the dispersion index (or model dispersion) can be used
to support estimates of partial body exposure, with emphasis on the gamma-H2AX
assay. In addition, part of this thesis was to determine the nature of the overdispersion,
that is, separating the contribution due to zero-inflation, and the consequences on dose
(and fraction) estimates when using the standard methodology.

In Chapter 2 we discussed the uncertainty estimation techniques traditionally used
in conjunction with whole-body exposures, in which the aberration distribution is
assumed to be Poisson. Given present overdispersion in both PBI and WBI, as verified
both through the dispersion indices in Chapter 3 and model dispersions in Chapter
4, these methods become invalid and no longer applicable (particularly for the H2AX
assay).

In Chapter 4 we reviewed some of the alternative count data regression models to
the Poisson which can be used to handle overdispersion and/or zero-inflation. Poisson
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estimates are consistent when the variance is proportional (not just equal) to the mean.
Therefore, and as we have shown, Poisson standard errors tend to be conservative in the
presence of overdispersion. Choosing to disregard overdispersion in the analysis leads
to underestimation of the calibration curve coefficient standard errors, and consequent
overstatement of significance in hypothesis testing. If the Poisson is the chosen model
and if we are sure that the lack of fit is not due to poor specification of the systematic part
of the model, the standard errors need to be corrected by employing a quasi-likelihood
approach. Another possibility is to utilise the negative binomial models (NB1 and
NB2), which are based on maximum likelihood methods. A comparison of the intercept
and slope parameter estimates along with their standard errors showed that there were
some slight notable differences between the two approaches. A primary advantage
of utilising a negative binomial regression is that it does not assume homogeneous
variances but instead models heterogeneity in variance via the dispersion parameter α.

Upon computation of the QP (and NB1) dispersions for both H2AX PHE-Foci
datasets, we identified a significance difference in their realised quantities. Based on
knowledge from the literature, a reported ϕ̂ > 1 for H2AX whole-body calibration data
would be viewed as being correct, however this could easily be misinterpreted since
one may assume present overdispersion across all samples used in the fitting of the
calibration curve (as is the case for the PHE-Foci1 dataset). We also note that our data
consists of only 3 dose points (excluding 0Gy samples) - a more accurate curve (and
hence dispersion estimate) requires an extended range of doses, ideally with multiple
samples per dose. For this reason, if laboratories were to provide estimates of ϕ̂ and α̂
then it should be necessary to report not only the doses but also the summary statistics
of those samples used.

The relationship between dispersion and dose is a subject which requires further
attention. While for PBI we have seen from Chapter 3 that dispersion increases with
dose (and decreases with exposure for exposure levels > 30%), it appears more complex
to determine the exact behaviour in the case of WBI. For zero-inflation modelled as
constant, the non-constant dispersion pursues a positive linear association with level
of dose. Meanwhile, when the zero-inflation parameter is variable, dispersion appears
to peak at some dose less than 1Gy before decreasing with dose, eventually becoming
equivalent and smaller than the constant QP/NB1 dispersion. Depending on the type
of zero-inflated model being used, the maximum dispersion could potentially serve as a
cutoff point for classification of a small and large dose. Certainly, this remains an area
for further investigation, however it is natural to consider separate calibration curves
for low and larger dose estimation. Although additionally in Chapter 4 we observed
some evidence for cell death in the PHE-Foci2 30% exposure data using the ZINB1, the
resulting dose estimates did not greatly change - generally cell death can be assumed
negligible for the H2AX assay.



107

In Chapter 5 we discussed further how the dispersion parameter can be used as
information against the Poisson model through the use of the likelihood ratio and Wald
test. Since it can be shown that the negative binomial regression is a special case of
the Poisson when α = 0, this is equivalent to testing the null hypothesis H0 : α = 0
against the alternative H1 : α > 0. As expected, both tests indicated sufficient evidence
against equidispersion and hence a Poisson fit. Additionally, we carried out tests for
zero-inflation, that is, the null hypothesis H0 : p = 0 against the alternative H1 : p > 0,
which supported the results from Chapter 2. We then proceeded to compare these
tests with score tests proposed by Dean and Lawless which have the advantage over
the likelihood ratio and Wald test in that it only requires the parameter estimated
under the null hypothesis. A consequence of its simplicity meant the test statistics
associated with the score test were found to be much larger in comparison to the
likelihood ratio and Wald test. Despite this, all three tests were in favour of the NB
and zero-inflated models over the Poisson. As an extension to strengthen the analysis
in this chapter, a simulation study could be used to examine the properties of each test,
in terms of nominal level attainment and statistical power, whereby a higher proportion
of rejections of the null hypothesis at a given significance level would signify better
power for that test.

In Chapter 6, we conducted analysis on the BfS-Foci dataset which, in comparison
to the PHE H2AX datasets, consists of multiple experiments per slide. When applying
a quasi-Poisson regression to both the raw foci distribution and aggregated counts, we
discovered a very interesting phenomena. The aggregated dispersion was found to be
ϕ̂agg = 147.99 but this estimate is much larger than the "correct" raw dispersion value of
ϕ̂ = 1.22. We attempted to uncover what is causing this mass inflation by investigating
the behaviour of the aggregated dispersion when violating the independence assumption
of foci counts. We distinguished that there are two effects which jointly impact on the
estimated dispersion; an increased variance effect and a dependency effect. The increased
variance effect was explained for both the parametric and non-parametric bootstrap
simulation method by the larger dispersion variances observed after aggregation. The
dependency effect describes any unobserved variance between cells for a given dose.

We further presented, for a single dose, three heterogeneity scenarios to explain the
significance of this dependency effect on the aggregated dispersion estimates. In our
context, there are many experimental factors in the scoring of cells which can contribute
to unobserved variance and hence an increase in dispersion when using aggregated
foci counts. Wherever possible, the consensus appears to be that one should always
try to use the full frequency distribution as lower dispersion values enable potential
detection of partial-exposures. If we have only yields available (not raw counts), then
of course one needs to work with a higher dispersion magnitude. It would be of interest
in future work to explore these effects in more detail for other biomarkers such as the
gene-expression and micronuclei assays.
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Chapters 7 and 8 focus on the scenario in which a practitioner is provided with a
random blood sample and the steps thereafter the practitioner needs to take in order
to estimate the irradiated dose and fraction for which the patient has been exposed to.
We note that part of the analysis involves fitting the ZIP or ZINB1 model meaning the
scored raw counts must be used. The data type that is used for generating the Poisson
calibration curve remains irrelevant, however, for reasons discussed in Chapter 6, the
data type should be stated when working with uncertainty and hence the parameter
standard errors and/or variance-covariance matrix (adjusted for overdispersion).

We illustrated successfully through simulated H2AX data the ability of the novel
contaminated negative binomial to provide more accurate dose and fraction estimates,
as compared to those resulting from the traditional contaminated Poisson. Upon
application to real data, we identified that problems begin to materialise which relate to
the background level. More specifically, it became clear that when the fraction has been
overestimated then the attempt by the CNB to account for additional overdispersion
will skew estimates in the wrong direction. In cases where the fraction had been
underestimated (for example the 80% exposure PHE-Foci1 samples), we were unable
to see any improvement by the CNB method (hence estimates remained the same as
those from the CP) due to very small α̂. The results from the PHE-Dicentric samples
were able to showcase better fraction estimates for larger values of α̂ but at the cost of
worse dose estimates.

In Chapter 8, we investigated eliminating the background level via data sharpening
techniques and employing a slope-only model. While these approaches did improve
estimates, we believe our problem resides not only with the quantity of aberration-free
or single-aberration cells but generally with the frequency distribution of lower counts.
For this reason, we exercised the ZOIP model which was able to significantly amend
dose and fraction estimates and, in the process, fix the issue of fraction overestimation
in most samples. One could possibly extend the ZOIP to simultaneously account for
larger inflated counts, say cells containing two and three aberrations, but extra care is
required in separating natural to radiation-induced foci/dicentrics for larger counts.



Appendix A

A.1 Regression slope standard error

Once the fitted model has been implemented in R, the variance-covariance matrix for
the quasi-Poisson response can be found by:

fit.li.poi1 <- glm(Foci~I(Dose) + I(dTime24),
family="quasipoisson"(link="identity"), data=PHE1calidata1) #24h
#linear combined
coef(fit.li.poi1) # Parameter estimates

(Intercept) I(Dose) I(dTime24)
0.54141 1.83993 -0.92002

vcov(fit.li.poi1) # Covariance matrix

(Intercept) I(Dose) I(dTime24)
(Intercept) 7.203263e-04 -0.0003910566 1.079257e-05
I(Dose) -3.910566e-04 0.0036630097 -3.456569e-03
I(dTime24) 1.079257e-05 -0.0034565689 5.395024e-03

Extracting the relevant elements above, the standard error of the 24h linear combined
slope can be computed through:

sqrt(c(1,1)%*%vcov(fit.li.poi1)[2:3,2:3]%*%c(1,1))
0.04631303
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A.2 Poisson and QP sampling error

Recall from Chapter 2 that the Poisson likelihood is defined by

L =
∏
i,j

f(yij|xi) =
∏
i,j

e−µi
µ

yij

i

yij!
∝
∏

i

e−niµiµ

∑
j

yij

i ,

thus the log-likelihood is

ℓ =
k∑

i=1

ni∑
j=1

[yijln(µi) − µi − ln(yi!)]

Differentiating with respect to µi and equating to zero yields the MLE

∂ℓ

∂µi

=
ni∑

j=1

[
yij

µ
− 1

]
= 0

yini − µ̂ni = 0
µ̂ = yi,

i.e. the slide-wise mean. This now allows to implement its standard error, namely

SE(µ̂i) =
√
µ̂i = √

yi

and so

SE
 ni∑

j=1
yij

 =
 ni∑

j=1
SE2(yij)

 =
√√√√ ni∑

j=1

1
ni

ni∑
j=1

yij =
√√√√ ni∑

j=1
yij.

The variance associated with the foci/dicentric yield is then

Var(yi) = SE2

 1
ni

ni∑
j=1

yij

 =
(

1
√
ni

√
ni

)2

= yi

ni

,

therefore the sampling error remains

SE(yi) =
√

Var(yi) =
√
yi

ni

.

However, this does ignore the overdispersion stemming from intra– and inter–individual
variation. From the theory of the simple exponential family, under the presence of
dispersion one has

Var(µi) = ϕSE2(µi).
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therefore the QPSE is defined by

QPSE(yi) =

√√√√ ϕ̂QPyi

ni
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A.3 ZIP and ZINB MLE with covariates

It is clear that being a finite mixture, the ZIP distribution is not a member of the
exponential family distribution and so standard glm fitting procedures will not be
adequate. To obtain the parameter estimates of ZIP regression models, β and p̂i, the
Newton-Raphson method or the method of Fisher scoring can be used. Given the
log-likelihood function in Section 4.3.1, the derivatives with respect to β and p are

∂ℓ

∂βt

= ∂ℓ

∂µi

∂µi

∂βt

=
ni∑

j=1

(
I(yij=0)

[
− (1 − pi)e−µi

pi + (1 − pi)e−µi

]
+ I(yij>0)

[
−1 + yij

µi

])
∂g(µi)
∂βt

,

for t = 0, 1, ..., v;

∂ℓ

∂pi

=
ni∑

j=1

(
I(yij=0)

[
1 − e−µi

pi + (1 − pi)e−µi

]
+ I(yij>0)

[
−1

1 − pi

])
;

and

∂2ℓ

∂βt∂βu

=
k∑

i=1

ni∑
j=1

(
I(yij=0)

[
−e−µi [(1 − µi)pi + (1 − pi)e−µi ] (1 − pi)µi

(pi + (1 − pi)e−µi)2

]

+ I(yij>0)[−µi]
)
∂2g(µi)
∂βt∂βu
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∂2ℓ
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µie
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Given that

E
[
I(yij=0)

]
= P (Yij = 0) = pi + (1 − pi)e−µi , (A.3.1)

E
[
I(yij>0)

]
= P (Yij > 0) = (1 − pi)(1 − e−µi), (A.3.2)

we have
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Hence the estimates of β and pi at the (m + 1)th iteration, denoted by β(m+1) and
p(m+1), are given by

β(m+1)

p(m+1)

 =
β(m)

p(m)

+
[
I(m)(β, p)

]−1
Sc(m)(β, p),

where the score vector and expected information matrix are evaluated at β = β(m) and
p = p(m). With good starting values for β(0), p(0), the iterative scheme converges in
a few steps, with the asymtotic variance-covariance matrix for (β̂, p̂) automatically
provided in the final iteration.

For the ZINB regression, the first-order derivatives with respect to β̂, p and α are
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i)−

µ1−c
i
α

(
1 + µ−c

i

α

)−yij

ψ(0)
(
µ1−c

i

α

)
Γ
(
µ1−c

i

α
+ yij

)

+ (1 − c)(1 − pi)µ−c
i (1 + αµc

i)−
µ1−c

i
α

(
1 + µ−c

i

α

)−yij

ψ(0)
(
µ1−c

i

α
+ yij

)
Γ
(
µ1−c

i

α
+ yij

)

+ c(1 − pi)yijµ
−c−1
i (1 + αµc

i)−
µ1−c

i
α

(
1 + µ−c

i

α

)−yij−1

Γ
(
µ1−c

i

α
+ yij

)]]])
;
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∂ℓ

∂βt

= ∂ℓ

∂µi

∂g(µi)
∂βt

;

∂ℓ

∂α
=

k∑
i=1

ni∑
j=1

(
I(yij=0)


(1 − pi)(1 + αµc

i)−
µ1−c

i
α

(
− µi

α(1+αµc
i ) + µ1−c

i ln(1+αµc
i )

α2

)
pi + (1 − pi)(1 + αµc

i)−
µ1−c

i
α

+ I(yij>0)

[

(1 + αµc
i)

µ1−c
i
α

(1 − pi)Γ
(

µ1−c
i

α
+ yij

)
Γ
(

µ1−c
i

α

) (1 + µ−c
i

α

)yij

Γ
(
µ1−c

i

α

) [
(1 − pi)

(1 + αµc
i)−

µ1−c
i
α

(
1 + µ−c

i

α

)−yij
(

− µi

α(1 + αµc
i)

+ µ1−c
i ln(1 + αµc

i)
α2

)
Γ
(
µ1−c

i

α
+ yij

)

+ 1
α2

[
(1 − pi)µ1−c

i (1 + αµc
i)−

µ1−c
i
α

(
1 + µ−c

i

α

)−yij

ψ(0)
(
µ1−c

i

α

)
Γ
(
µ1−c

i

α
+ yij

)

− (1 − pi)µ1−c
i (1 + αµc

i)−
µ1−c

i
α

(
1 + µ−c

i

α

)−yij

ψ(0)
(
µ1−c

i

α
+ yij)

)
Γ
(
µ1−c

i

α
+ yij

)

+ (1 − pi)yijµ
−c
i (1 + αµc

i)−
µ1−c

i
α

(
1 + µ−c

i

α

)−yij−1

Γ
(
µ1−c

i

α
+ yij

)]]])
;

∂ℓ

∂pi

=
ni∑

j=1

I(yij=0)

 1 − (1 + αµc
i)

−µ1−c
i
α

(1 − pi)(1 + αµc
i)

−µ1−c
i
α + pi

− I(yij>0)

[
1

1 − pi

] .
.

The second-order derivatives are

∂2ℓ

∂p2
i

= −
ni∑

j=1

I(yij=0)

 (1 − (1 + αµc
i)

−µ1−c
i
α )2

((1 − pi)(1 + αµc
i)

−µ1−c
i
α + pi)2

+ I(yij>0)

[
1

(1 − pi)2

] ;
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∂2ℓ

∂µ2
i

=
k∑

i=1

ni∑
j=1

(
I(yij=0)

[(1 − pi) (1 + αµc
i)

−
µ1−c

i
α

(
αc2µc−1

i

(1+αµc
i)2 − (1−c)c

µi(1+αµc
i) + (1−c)cµ−c−1

i ln(1+αµc
i)

α

)

(1 − pi) (1 + αµc
i)

−
µ1−c

i
α + pi

−
(1 − pi)2 (1 + αµc

i)
−

2µ1−c
i
α

(
− c

1+αµc
i

− (1−c)µ−c
i ln(1+αµc

i)
α

)2

(
(1 − pi) (1 + αµc

i)
−

µ1−c
i
α + pi

)2

+
(1 − pi) (1 + αµc

i)
−

µ1−c
i
α

(
− c

1+αµc
i

− (1−c)µ−c
i ln(1+αµc

i)
α

)2

(1 − pi) (1 + αµc
i)

−
µ1−c

i
α + pi

]
+ I(yij>0)

[

µ
−2(c+1)
i

α2 (1 + αµc
i)

2

[(
2α3c2µ3c+1

i − α3c2yijµ
3c
i − α3c2µ3c+1

i ln (1 + αµc
i) − α3cµ3c+1

i − α3cyijµ
3c
i

+ α3cµ3c+1
i ln (1 + αµc

i) + α2c2µ2c+1
i + α2c2µ2c+2

i ψ(1)
(
µ1−c

i

α
+ yij

)
−

α2c2µ2c+2
i ψ(1)

(
µ1−c

i

α

)
− 2α2c2µ2c+1

i ln (1 + αµc
i) − α2cµ2c+1

i − α2cyijµ
2c
i +

α2µ2c+2
i ψ(1)

(
µ1−c

i

α
+ yij

)
− 2α2cµ2c+2

i ψ(1)
(
µ1−c

i

α
+ yij

)
− α2µ2c+2

i ψ(1)
(
µ1−c

i

α

)

+ 2α2cµ2c+2
i ψ(1)

(
µ1−c

i

α

)
+ 2α2cµ2c+1

i ln (1 + αµc
i) + 2αc2µc+2

i ψ(1)
(
µ1−c

i

α
+ yij

)

− 2αc2µc+2
i ψ(1)

(
µ1−c

i

α

)
+ c2µ2

iψ
(1)
(
µ1−c

i

α
+ yij

)
− c2µ2

iψ
(1)
(
µ1−c

i

α

)
−

αc2µc+1
i ln (1 + αµc

i) + 2αµc+2
i ψ(1)

(
µ1−c

i

α
+ yij

)
− 4αcµc+2

i ψ(1)
(
µ1−c

i

α
+ yij

)

− 2αµc+2
i ψ(1)

(
µ1−c

i

α

)
+ 4αcµc+2

i ψ(1)
(
µ1−c

i

α

)
− 2cµ2

iψ
(1)
(
µ1−c

i

α
+ yij

)
+

µ2
iψ

(1)
(
µ1−c

i

α
+ yij

)
+ 2cµ2

iψ
(1)
(
µ1−c

i

α

)
− µ2

iψ
(1)
(
µ1−c

i

α

)
+

αcµc+1
i ln (1 + αµc

i) + α (c− 1) cµc+1
i (1 + αµc

i)
2 ψ(0)

(
µ1−c

i

α
+ yij

)
−

α (c− 1) cµc+1
i (1 + αµc

i)
2 ψ(0)

(
µ1−c

i

α

)])
,

where ψ is the polygamma function,
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∂2ℓ

∂α2 =
k∑

i=1

ni∑
j=1

(
I(yij=0)

[(1 − pi)
(

µ1+c
i

α((1+αµc
i))2 + 2µi

α2(1+αµc
i) − 2µ1−c

i ln(1+αµc
i)

α3

)

((1 + αµc
i))

µ1−c
i
α

 1−pi

((1+αµc
i))

µ1−c
i
α

+ pi


−

((1 − pi))2
((

−
(

µi

α(1+αµc
i)

)
+ µ1−c

i ln(1+αµc
i)

α2

))2

((1 + αµc
i))

2µ1−c
i
α


 1−pi

((1+αµc
i))

µ1−c
i
α

+ pi




2 +

(1 − pi)
((

−
(

µi

α(1+αµc
i)

)
+ µ1−c

i ln(1+αµc
i)

α2

))2

((1 + αµc
i))

µ1−c
i
α

 1−pi

((1+αµc
i))

µ1−c
i
α

+ pi


]

+ I(yij>0)

[

1
α4µ2c

i ((1 + αµc
i))

2

[
2α2µ1+2c

i + 3α3µ1+3c
i − α2µ2c

i yij − 2α3µ3c
i yij−

2αµ1+c
i ln (1 + αµc

i) − 4α2µ1+2c
i ln (1 + αµc

i) − 2α3µ1+3c
i ln (1 + αµc

i) −

2αµ1+c
i ((1 + αµc

i))
2 ψ(0)

(
µ1−c

i

α

)
+ 2αµ1+c

i ((1 + αµc
i))

2 ψ(0)
(
µ1−c

i

α
+ yij

)

− µ2
iψ

(1)
(
µ1−c

i

α

)
− 2αµ2+c

i ψ(1)
(
µ1−c

i

α

)
− α2µ2+2c

i ψ(1)
(
µ1−c

i

α

)
+

µ2
iψ

(1)
(
µ1−c

i

α
+ yij

)
+ 2αµ2+c

i ψ(1)
(
µ1−c

i

α
+ yij

)
+ α2µ2+2c

i ψ(1)
(
µ1−c

i

α
+ yij

)])
;

∂2ℓ

∂pi∂α
= ∂2ℓ

∂α∂pi

= −
ni∑

j=1

(
I(yij=0)

[(1 + αµc
i)

−
µ1−c

i
α

(
µ1−c

i ln(1+αµc
i)

α2 − µi

α(1+αµc
i)

)
(1 − pi) (1 + αµc

i)
−

µ1−c
i
α + pi

+

(1 − pi)
(

1 − (1 + αµc
i)

−
µ1−c

i
α

)
(1 + αµc

i)
−

µ1−c
i
α

(
µ1−c

i ln(1+αµc
i)

α2 − µi

α(1+αµc
i)

)
(

(1 − pi) (1 + αµc
i)

−
µ1−c

i
α + pi

)2

])
;

∂2ℓ

∂pi∂µi

= ∂2ℓ

∂µi∂pi

= −
ni∑

j=1

(
I(yij=0)

[(1 + αµc
i)

−
µ1−c

i
α

(
− c

1+αµc
i

− (1−c)µ−c
i ln(1+αµc

i)
α

)
(1 − pi) (1 + αµc

i)
−

µ1−c
i
α + pi

+

(1 − pi)
(

1 − (1 + αµc
i)

−
µ1−c

i
α

)
(1 + αµc

i)
−

µ1−c
i
α

(
− c

1+αµc
i

− (1−c)µ−c
i ln(1+αµc

i)
α

)
(

(1 − pi) (1 + αµc
i)

−
µ1−c

i
α + pi

)2

])
;
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For the ZINB1, one obtains

∂2ℓ

∂µi∂α
= ∂2ℓ

∂α∂µi

=
k∑

i=1

ni∑
j=1

(
I(yij=0)

[
−(pi − 1)

(1 + α)ln(1 + α) − α)(αpi((1 + α)
µi
α − 1) − µipi(1 + α)

µi
α ln(1 + α) + α)

α3(1 + α)(pi((1 + α)
µi
α − 1) + 1)2

]
+ I(yij>0)

[
−αψ(0)

(
µi

α
+ yij

)
+ µi(ψ(1)

(
µi

α

)
− ψ(1)

(
µi

α
+ yij

)
) + αψ(0)

(
µi

α

)
+ α( 1

1+α
+ ln(1 + α) − 1))

α3

]
,

and for the ZINB2

∂2ℓ

∂µi∂α
= ∂2ℓ

∂α∂µi

=
k∑

i=1

ni∑
j=1

(
I(yij=0)

[
(1 − pi)

α2µi(1 − pi) + pi(1 + αµi)
1
α (µi(α2 + α(1 − ln(1 + αµi))) − ln(1 + αµi))

α2(1 + αµi)2(pi((1 + αµi)
1
α − 1) + 1)2

]

+ I(yij>0)

[
µi − yij

(1 + αµi)2

]
.

.
Provided one has good starting values for β̂

(0), p(0) and α(0), the estimates for β, i and
α at the (m+ 1)th iteration are given by


β(m+1)

p(m+1)

α(m+1)

 =


β(m)

p(m)

α(m)

+
[
I(m)(β, p, α)

]−1
Sc(m)(β, p, α),

where the elements of I make use of the following expressions (from the ZINB pmf)

E
[
I(yij=0)

]
= pi + (1 − pi)(1 + αµc

i)−
µ1−c

i
α ,

E
[
I(yij>0)

]
= (1 − pi)

(
1 − (1 + αµc

i)−
µ1−c

i
α

)
.
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A.4 ZIP and ZINB MLE in the absence of covariates

Given observations (y1, ..., yj) for j = 1, ..., n such that s = ∑n
j=1 yj = nȳ, the resulting

score equation for p in the ZIP case becomes

∂ℓ

∂µ
= − n0(1 − p)e−µ

p+ (1 − p)e−µ
− (n− n0) + s

µ
, (A.4.1)

and
∂ℓ

∂p
= n0(1 − e−µ)
p+ (1 − p)e−µ

− n− n0

1 − p
. (A.4.2)

Setting each of these to zero yields

n0(1 − p̂)e−µ̂

p̂+ (1 − p̂)e−µ̂
+ (n− n0) = s

µ̂
, (A.4.3)

and
n0(1 − e−µ̂)
p+ (1 − p̂)e−µ̂

= n− n0

1 − p̂
. (A.4.4)

Substituting (A.4.4) into (A.4.3) gives

e−µ̂(n− n0)
1 − e−µ̂

+ (n− n0) = s

µ̂

(n− n0)
(
e−µ̂ + 1 − e−µ̂

1 − e−µ̂

)
= s

µ̂

µ̂

1 − e−µ̂
= s

n− n0

µ̂ =
s
(
1 − e−µ̂

)
n− n0

, (A.4.5)

thus independent of p. From (A.4.4), one has

n0(1 − e−µ̂) − p̂n0(1 − e−µ̂) = p̂(n− n0) + (1 − p̂)(n− n0)e−µ̂

p̂(n− n0) − p̂(n− n0)e−µ̂ + p̂n0(1 − e−µ̂) = n0(1 − e−µ̂) − (n− n0)e−µ̂,

giving

p̂ = n0 − ne−µ̂

n(1 − e−µ̂) .
(A.4.6)
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For the ZINB model, the score equation for p becomes

∂ℓ

∂p
=

n0

(
1 − (1 + αµc)−µ1−c

α

)
(1 − p)(1 + αµc)−µ1−c

α + p
− n− n0

1 − p
. (A.4.7)

Equating (A.3.8) to zero gives the MLE

p̂ = n(1 + α̂µ̂c)−µ̂1−c

α̂ − n0

n
(

(1 + α̂µ̂c)−µ̂1−c

α̂ − 1
) . (A.4.8)

The MLE of µ can be found by substituting (A.4.8) into (4.3.6) which provides the
expression

µ̂ =
s
(

1 − (1 + α̂µ̂c)−µ̂1−c

α̂

)
n− n0

, (A.4.9)

again which is independent of p. The remaining derivatives for the ZINB are as for
covariate case in A.3 without the i subscript.

The estimated covariance of µ̂ and p̂, Cov(µ̂, p̂), can be found using the Fisher
information matrix I, that is Cov(µ̂, p̂) = I−1(µ̂, p̂), where

I(µ̂, p̂) =


Iµµ Iµp

Ipµ Ipp

 ∣∣∣µ=µ̂,p=p̂
.

The elements Iµµ, Iµp = Ipµ and Ipp are computed respectively via

−E
[
∂2ℓ

∂µ2

]
,−E

[
∂2ℓ

∂µp

]
and − E

[
∂2ℓ

∂p2

]
.

For the ZIP, the second derivatives are

∂2ℓ

∂µ2 = n0p(1 − p)e−µ

(p+ (1 − p)e−µ)2 − s

µ2 ;

∂2ℓ

∂µp
= ∂2ℓ

∂pµ
= n0e

−µ

(p+ (1 − p)e−µ)2 ;

∂2ℓ

∂p2 = − n0(1 − e−µ)2

(p+ (1 − p)e−µ)2 − n− n0

(1 − p)2 .

Given that



120

E
[
I(yij=0)

]
= P (Yij = 0) = pi + (1 − pi)e−µi ,

E
[
I(yij>0)

]
= P (Yij > 0) = (1 − pi)(1 − e−µi)

we have

Iµµ = −E
[
∂2ℓ

∂µ2

]
= n

[
(1 − p)
µ

− p(1 − p)e−µ

p+ (1 − p)e−µ

]
;

Iµp = Ipµ = −E
[
∂2ℓ

∂µp

]
= ∂2ℓ

∂pµ
= − ne−µ

p+ (1 − p)e−µ
;

Ipp = −E
[
∂2ℓ

∂p2

]
= n(1 − e−µ)

(1 − p)(p+ (1 − p)e−µ) .

Var(µ̂) and Var(p̂) can be extracted from I−1(µ̂, p̂), using the inverse of the partitioned
matrix as follows

Var(µ̂) = (Iµµ − IµpI−1
pp Ipµ)−1

∣∣∣
µ=µ̂,p=p̂

(A.4.10)

Var(p̂) = (Ipp − IµpI−1
µµIpµ)−1

∣∣∣
µ=µ̂,p=p̂

. (A.4.11)

In our case, these quantities become

(Iµµ − IµpI−1
pp Ipµ)

∣∣∣
µ=µ̂,p=p̂

= n(1 − p̂)
[(p̂+ (1 − p̂)e−µ̂)(1 − e−µ̂) − µ̂e−2µ̂

µ̂(p̂+ (1 − p̂)e−µ̂)(1 − e−µ̂)

− µ̂(1 − e−µ̂)p̂e−µ̂

µ̂(p̂+ (1 − p̂)e−µ̂)(1 − e−µ̂)

]

(Ipp − IµpI−1
µµIpµ)

∣∣∣
µ=µ̂,p=p̂

= n
[ (1 − e−µ̂)
(1 − p̂)(p̂+ (1 − p̂)e−µ̂)

− µ̂e−2µ̂

(1 − p̂)(p̂+ (1 − p̂)e−µ̂)(p̂+ (1 − p̂)e−µ̂ − p̂µ̂e−µ̂)

]
.

Since p̂+ (1 − p̂)e−µ̂ = n0
n

and 1 − p̂ = λ̂
µ̂

= ˆ̄y
µ̂
, the above simplifies to

Var(µ̂) = n0µ̂
2(1 − e−µ̂))

nȳ [(1 − e−µ̂)(n0 − n(µ̂− ȳ)e−µ̂) − nµ̂e−2µ̂] (A.4.12)

and
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Var(p̂) = n0ȳ(n0 − n(µ̂− ȳ)e−µ̂)
n2µ̂ [(1 − e−µ)(n0 − n(µ̂− ȳ)e−µ̂) − nµ̂e−2µ̂] (A.4.13)

For the ZINBc, the following code can be used to estimate the 3x3 covariance matrix
I−1(µ̂, p̂, α̂):

zinbmatrix <- function(c,mu,alpha,p,ydata) {

n <- length(ydata)
expy0 <- n*(p+ (1-p)*(1+alpha*mu^(c))^(-mu^(1-c) /alpha))
expy1 <- n*((1-p)*(1-(1+alpha*mu^(c))^(-mu^(1-c) /alpha)))
expy <- n*mu*(1-p)

Ipp <- expy1*(1 - p)^(-2) + expy0*(1 - (1 + alpha*mu^c)^(-(mu^(1 - c)
/alpha)))^2 /((1 - p)*(1 + alpha*mu^c)^(-mu^(1 - c)/alpha) + p)^2
Ipm <- Imp <- expy0*(((1 + alpha*mu^c)^(-mu^(1 - c) /alpha) *(-c/
(1 + alpha*mu^c) - ((1 - c) *mu^(-c) *log(1 + alpha*mu^c))/alpha))/
((1 - p)*(1 + alpha*mu^c)^(-mu^(1 - c)/alpha) + p) + ((1 - p) *(1 -
(1 + alpha*mu^c)^(-mu^(1 - c)/ alpha)) * (1 + alpha*mu^c)^(-mu^(1 - c)/
alpha) *(-c/(1 + alpha*mu^c) - ((1 - c) *mu^(-c) *log(1 + alpha*mu^c))
/alpha))/ ((1 - p)*(1 + alpha*mu^c)^(-mu^(1 - c)/ alpha) + p)^2)
Ipa <- Iap <- expy0*(((1 + alpha*mu^c)^(-mu^(1 - c)/alpha) *((mu^(1 - c)
*log(1 + alpha*mu^c))/alpha^2 - mu/(alpha *(1 + alpha*mu^c))))/
((1 - p)*(1 + alpha*mu^c)^(-mu^(1 - c)/alpha) + p) + ((1 - p)*
(1 - (1 + alpha*mu^c)^(-mu^(1 - c)/alpha)) *(1 + alpha*mu^c)
^(-mu^(1 - c)/alpha)* ((mu^(1 - c) *log(1 + alpha*mu^c))/alpha^2 -
mu/(alpha*(1 + alpha*mu^c))))/((1 - p) *(1 + alpha*mu^c)^
(-mu^(1 - c)/alpha) + p)^2)

y1data <- ydata[ydata>0]
if(c==0){
sum = 0
for (j in 1:length(y1data)){

sum = sum - (psigamma(y1data[j]+ mu/alpha, deriv = 1))/alpha^2
}
Immprt1 <- expy1*(psigamma(mu/alpha, deriv = 1))/alpha^2
Immprt2 <- -expy0*(p*(p-1)*(1+alpha)^(mu/alpha)*(log(1+alpha))^2)/
((alpha*p)*((1+alpha)^(mu/alpha) -1) +alpha)^2
Imm <- sum + Immprt1 + Immprt2
}
else {
sum = 0
for (j in 1:length(y1data)){

sum = sum + y1data[j]/(mu^2 *(alpha*mu + 1)^2) + (2*alpha* y1data[j])
/(mu* (alpha*mu + 1)^2)

}
Immprt2 <- expy0*(((p-1)*p*(1+alpha)^(mu/alpha) *(log(1+alpha))^2))/
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(alpha*p*((1+alpha)^(mu/alpha) -1) +alpha)^2
Immprt3 <- -expy1*alpha/(alpha*mu + 1)^2
Imm <- sum + Immprt2 + Immprt3
}

if (c==0){
sum = 0
for (j in 1:length(y1data)){

sum = sum - mu*(2*alpha*psigamma(y1data[j]+mu/alpha, deriv = 0) +
mu*(psigamma(y1data[j] + mu/alpha, deriv = 1)))/alpha^4

}
Iaaprt1a <- -((1-p)^2 *(alpha+1)^(-(2*mu)/alpha) *((mu*log(alpha+1))/
alpha^2 - mu/(alpha*(alpha+1)))^2)/((1-p)*(alpha+1)^(-mu/alpha) + p)^2
Iaaprt1b <- ((1-p)*(alpha+1)^(-mu/alpha) *((mu*log(alpha+1))/alpha^2 -
mu/(alpha*(alpha+1)))^2)/((1-p)*(alpha+1)^(-mu/alpha) + p)
Iaaprt1c <- ((1-p)*(alpha+1)^(-mu/alpha) *(-(2*mu*log(alpha+1))/alpha^3
+ (2*mu)/(alpha^2 *(alpha+1)) + mu/(alpha*(alpha+1)^2)))/
((1-p)*(alpha+1)^(-mu/alpha) +p)
Iaaprt1 <- -expy0*sum(Iaaprt1a+Iaaprt1b+Iaaprt1c)
Iaaprt2 <- (1+2*alpha)*expy/(alpha^2 *(1+alpha)^2)
Iaaprt3 <- expy1*(mu*(2*(1+alpha)^2 *log(1+alpha) -alpha*(3*alpha +2)))/
((alpha^3)*(1+alpha)^2)
Iaaprt4 <- expy1*(mu*(mu*psigamma(mu/alpha, deriv = 1) +
2*alpha*psigamma(mu/alpha, deriv = 0)))/alpha^4
Iaa <- sum + Iaaprt1 + Iaaprt2 + Iaaprt3 + Iaaprt4

}
else {
sum = 0

for (j in 1:length(y1data)){
sum - (2*alpha*psigamma(1/alpha + y1data[j], deriv=0) +
psigamma(1/alpha + y1data[j], deriv=1))/alpha^4 - y1data[j]/
(alpha^4 *mu^2 *(1+1/(alpha*mu))^2) + 2*y1data[j]/(alpha^3 *mu
*(1+1/(alpha*mu)))

}
Iaaprt1 <- -expy0*(-((1 - p)^2 *(alpha*mu + 1)^(-2/alpha) *(log(
alpha*mu + 1)/alpha^2 - mu/(alpha *(alpha*mu + 1)))^2)/((1 - p)
*(alpha*mu + 1)^(-1/alpha) + p)^2 + ((1 - p) *(alpha*mu + 1)^(-1/alpha)
*(log(alpha*mu + 1)/alpha^2 - mu/(alpha *(alpha*mu + 1)))^2)/((1 - p)*
(alpha*mu + 1)^(-1/alpha) + p) + ((1 - p) *(alpha*mu + 1)^(-1/alpha) *
(-(2* log(alpha*mu + 1))/alpha^3 + (2*mu)/(alpha^2 *(alpha*mu + 1)) +
mu^2/(alpha *(alpha*mu + 1)^2)))/((1 - p)* (alpha*mu + 1)^(-1/alpha) + p))
Iaaprt2 <- -expy1*(-2*alpha*psigamma(1/alpha, deriv=0) -
psigamma(1/alpha, deriv=1))/alpha^4
Iaaprt3 <- -expy1*(-2*log(1+ alpha*mu)/alpha^3 + 2*mu/(alpha^2 *
(1+alpha*mu)) + mu^2 /(alpha*(1+alpha*mu)^2))
Iaa <- sum + Iaaprt1 + Iaaprt2 + Iaaprt3

}
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if (c==0){
sum = 0
for (j in 1:length(y1data)){

sum = sum + (mu*psigamma(y1data[j]+ mu/alpha, deriv = 1) +
alpha*psigamma(y1data[j]+ mu/alpha, deriv = 0))/alpha^3

}
Iamprt1 <- -expy0*(1-p)*(alpha*(log(1+alpha)-1)+log(1+alpha))*
(p*(1+alpha)^(mu/alpha) *(alpha- mu*log(1+alpha)) +alpha*(1-p))/
(alpha^3 *(1+alpha)*(p*((1+alpha)^(mu/alpha) -1)+1)^2)
Iamprt2 <- -expy1*(log(1+alpha)-(alpha/(1+alpha)))/alpha^2
Iamprt3 <- -expy1*(mu*psigamma(mu/alpha, deriv = 1) +
alpha*psigamma(mu/alpha, deriv = 0))/alpha^3
Ima <- Iam <- sum + Iamprt1 + Iamprt2 + Iamprt3

}
else{

sum = 0
for (j in 1:length(y1data)){

sum = sum + y1data[j]/(1 + alpha*mu)^2
}
Iamprt1 <- -expy1*(mu/(1 + alpha*mu)^2)
Iamprt2 <- -expy0*(((1-p) *(alpha^2 * mu*(1-p) + p*
(alpha*mu + 1)^(1/alpha) *(mu *(alpha^2 + alpha*
(1 - log(alpha*mu + 1))) - log(alpha *mu + 1))))/
(alpha^2 *(alpha*mu + 1)^2 *(p *((alpha*mu + 1)^(1/alpha) - 1) + 1)^2))
Ima <- Iam <- sum + Iamprt1 + Iamprt2

}
Hessian <- t(matrix(c(Imm,Imp,Ima,Ipm,Ipp,Ipa,Iam,Iap,Iaa),nrow = 3,
ncol = 3))
return(solve(Hessian))

}
zinbmatrix(c=0/1, \hat{\mu}, \hat{\alpha}, \hat{p}, data sample)[1,1]
zinbmatrix(c=0/1, \hat{\mu}, \hat{\alpha}, \hat{p}, data sample)[2,2]
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A.5 The delta method

For a vector of parameter estimates θ, let us assume a real-valued function h(θ). The

multivariate Taylor Expansion tells us that h(θ) : Rw → R for θ =


θ1

θw

. Given the

MLE, θ̂, with Var(θ̂) = Σ, applying Taylor’s theorem to h(θ̂) provides

h(θ̂) = h(θ) + ∇h(θ)′(θ̂ − θ),

Var(h(θ̂)) = ∇h(θ)′Var(θ̂ − θ)∇h(θ)
= ∇h(θ)′Var(θ̂)∇h(θ)
= ∇h(θ)′Σ∇h(θ).

Using the estimated gradients as approximations, one has

Var(h(θ̂)) = ∇h(θ̂)′Σ∇h(θ̂)

=
(
∂h

∂θ1
, ...,

∂h

∂θw

)
|θ=θ̂


Σ11 ∗

∗ Σww




∂h
∂θ1

∂h
∂θw

 |θ=θ̂.

Assuming the covariance components have very small magnitude [6], i.e. Σij ≈ 0 for
i ̸= j, the above expression reduces to

Var(h(θ̂)) = ∇h(θ̂)′Σ∇h(θ̂)

=
(
∂h

∂θ1
, ...,

∂h

∂θw

)
|θ=θ̂


Σ11

∂h
∂θ1

Σww
∂h

∂θw

 |θ=θ̂

=
w∑

j=1

(
∂h

∂θj

)2

|θ=θ̂Σjj

which is the multibiodose simplifcation. In our context, where θ̂ =


β̂0

β̂1

µ̂

 and h(θ̂) is

the dose estimator D̂, we have
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Var(D̂) =
3∑

j=1

(
∂h

∂θj

)2

|θ=θ̂Σjj

=
(
∂D̂

∂β̂0

)2

Σβ̂0β̂0
+
(
∂D̂

∂β̂1

)2

Σβ̂1β̂1
+
(
∂D̂

∂µ̂

)2

Σµ̂µ̂.

It is almost certain that laboratories will not state the covariance terms with the
reported calibration curve, therefore restricting the delta method to the non-covariance
form.
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A.6 BfS data generation and cleaning

Blood was collected from healthy donors via an 18- or 20-gauge indwelling cannula
(Vasofix Safety IV; B. Braun Melsungen AG, Melsungen, Germany) into 7.5ml lithium
heparin monovettes (S-Monovette; Sarstedt AG & Co, Nümbrecht, Germany), mixed
and portioned into 15ml centrifuge tubes (Falcon; Fisher Scientific GmbH) prior to
irradiation on an X-ray high-protection device RS225 (195kV, 10mA, 0.5mm Cu filter,
sample distance from X-ray tube 500 FSD, dose rate of 0.59Gy per minute, room
temperature). All tubes were placed in the middle of the center in a horizontal position
(X-Strahl Limited, UK). After irradiation, samples were incubated at 37°C for 60
min, kept at 5°C until isolation of peripheral blood leucocytes by density gradient
centrifugation (10 min, 1000g, 5°C) using 12ml separation tubes (Leucosep Tube;
Greiner Bio-One GmbH, Frickenhausen, Germany) and separation medium (Histopaque-
1077; Sigma Aldrich Chemie GmbH, Taufkirchen, Germany). After centrifugation,
leucocytes were transferred into 5ml cell culture medium (RPMI 1640; Pan-Biotech
GmbH, Aidenbach, Germany). Cell suspension was centrifuged again (10 min, 250g,
5°C), and cells pellet was fixed in 2% paraformaldehyde (PFA; Sigma Aldrich) /
phosphate buffered saline (Dulbecco’s PBS; Biochrom GmbH, Berlin, Germany) solution
for 15 min at 5°C before centrifugation (10 min, 250g, 5°C).

Lymphocytes were concentrated to one million cells per ml in PBS and stored at 5
°C. 100µl of cell suspension was spotted onto glass slides by cytospin centrifugation
for 5 min at 54g. Slides were washed three times in fresh PBS containing 0.15%
TritonX-100 (Sigma Aldrich) each time for 5 min, followed by three washing steps in
blocking solution (1g bovine serum albumin (BSA; Sigma Aldrich) mixed with 0.15g
glycine (Sigma Aldrich) in 100ml PBS each for 10 min. 75µl blocking solution with
anti-phosphohistone H2A.X (Ser139) rabbit mAb (Cell Signaling Technology Europe
B.V., Frankfurt a.M. Germany) in the dilution 1:200 was transferred on each slide and
incubated at 4°°C for at least 16 hours. Slides were washed (5 min in PBS, for 10 min
in PBS/Triton and for 5 min in PBS). Before incubating with the secondary antibody,
an anti-rabbit IgG (H+L), F(ab’)2 fragment conjugated to Alexa Fluor 555 fluorescent
dye (Cell Signaling Technology Europe), in the dilution 1:1000 in blocking solution in
a humid chamber for 45 min at room temperature slides were treated with blocking
solution (7 min.). After antibody binding, slides were washed twice in PBS/Triton (5
min each), PBS (10 min and 7 min). Cell nuclei were counterstained with Hoechst
33342 (Bisbenzimide H 33342 trihydrochloride; Sigma Aldrich) for 2 min and slides were
washed twice in PBS (2 min). Finally, slides were covered by 16µl antifade mounting
medium (Vectashield; Vector Laboratories Inc., Burlingame, USA).

Search and image acquisition of cell nuclei on the slides was performed by automatic
fluorescence microscopy using a scanning and imaging platform (Metafer 4, version
V3.13.1; Meta-Systems Hard & Software GmbH, Altlussheim, Germany) equipped
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with an objective (ZeissPlan-Neofluar 40× 0.75; Carl Zeiss Microscopy GmbH, Jena,
Germany) yielding a 400-fold magnification. For foci analysis a Spectrum Orange band-
pass filter (excitation: center wavelength/bandwidth = 546/10 nm, emission: 580/30
nm; Chroma 31003; Chroma Technology, Olching, Germany) and for counterstaining a
DAPI bandpass filter (excitation: 350/50 nm, emission: 460/50 nm; Chroma 31000;
Chroma Technology) was used. A foci specific Classifier 2.0.1 was created and used in
all experiments.

The data set discussed in this paper is part of an even larger data set, consisting
originally of 672 slides with a total of 1251882 foci counts, collected at the BfS in the
six month period from July 2018 to January 2019. To arrive at the data presented here,
all slides corresponding to any level of dose less than 0.1Gy were removed. In addition,
the following cleaning steps had been carried out (post-scoring): (i) removed all slides
with less than 800 foci counts, as a lower count indicates problems with the processing
of the slide; (ii) removed slides which contained obvious data entry or measurement
errors which could not be corrected; (iii) removed slides which were based on samples
from a different experimental setup.
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A.7 Violation of QP independence

A.7.1 Simulation

In Section 6.3, we verified through simulation the dependency effect (for a fixed covariate
value dose) through three different heterogeneity cases. The R code to reproduce the
results in Table 6.5 is presented below.

intercepts <- c(1,2) # these are the two possible Poisson means
# lambda_1 and lambda_2
q <- c(0.5, 0.5) # probability q = 0.5
jmax = 1000
j<-1
yM <- matrix(0, 1000, jmax)
while (j <=jmax){

# Run one of the following three commands:
# (A) all Poisson means are independently chosen
# r.intercepts <- sample(intercepts, 1000, replace=TRUE, prob=q)
# (B) all Poisson means are the same for a fixed row
# r.intercepts <- sample(intercepts, 1, replace=TRUE, prob=q)
# (C) within each row, strings of size 10 share the same
# mean
# r.intercepts <- rep(sample(intercepts, 10, replace=TRUE, prob=q),
# each=100)
xM <-rep(0,1000) # dose = 0
yM[,j]<- rpois(1000, r.intercepts) # generates Poisson counts
j<-j+1
if ((j %%10) ==0 ){print(j)}

}

# (A)
var(as.vector(yM))/mean(as.vector(yM)) # raw dispersion
# [1] 1.16772
var(colSums(yM))/mean(colSums(yM)) # aggregated dispersion
# [1] 1.070203

# (B)
var(as.vector(yM))/mean(as.vector(yM))
# [1] 1.168
var(colSums(yM))/mean(colSums(yM))
# [1] 168.9676

# (C)
var(as.vector(yM))/mean(as.vector(yM))
# [1] 1.166621
var(colSums(yM))/mean(colSums(yM))
# [1] 16.85397
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A.7.2 Theoretical derivation

We now present the theory behind the dispersion estimates for the two-component
mixture model (6.3.1). We begin with deriving (6.3.5) and (6.3.6). Recall that yij

denotes the j-th count (cell) for slide i with j = 1, .., n, and that Zij ∼ B(1, q), where
yet no assumptions on the dependency structure of the Zij are being made. Then,

E(yij) = E(E(yij|Zij))
= E(Zijλ1 + (1 − Zij)λ2)
= qλ1 + (1 − q)λ2

and

Var(yij) = E(Var(yij|Zij)) + Var(E(yij|Zij))
= E(Zij

2λ1 + (1 − Zij)2λ2) + Var(Zijλ1 + (1 − Zij)λ2)
= qλ1 + (1 − q)λ2 + q(1 − q)(λ1 − λ2)2.

By dividing these two expressions, the dispersion index for the individual counts
becomes (6.3.2). Now consider aggregated counts si = ∑n

j=1 yij. Then

E(si) =
n∑

i=1
E(yij) = n(qλ1 + (1 − q)λ2)

and

Var(si) = Var
(

n∑
i=1

yij

)

=
n∑

i=1
Var(yij) +

n∑
j ̸=l=1

Cov(yij, yil)

= n(qλ1 + (1 − q)λ2 + q(1 − q)(λ1 − λ2)2) +
n∑

j ̸=l=1
Cov(yij, yil)

which after division gives (6.3.7).
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Consider now the special case Zij ≡ Zi (6.3.3). Then from (6.3.7) and (6.3.4),

ϕagg = 1 + q(1 − q)(λ1 − λ2)2

qλ1 + (1 − q)λ2
+
∑n

j ̸=l q(1 − q)(λ1 − λ2)2

n(qλ1 + (1 − q)λ2)

= 1 + q(1 − q)(λ1 − λ2)2

qλ1 + (1 − q)λ2
+ n(n− 1)q(1 − q)(λ1 − λ2)2

n(qλ1 + (1 − q)λ2)

= 1 + nq(1 − q)(λ1 − λ2)2

qλ1 + (1 − q)λ2

which proves (6.3.8).
Now assume the slide with n cells consists of b = n

τ
sub-groups (or strings) of size

τ , where all yij in each batch are generated from the same distribution (either Pois(λ1)
with probability q or Pois(λ2) with probability 1 − q). (In terms of the experiment in
Section 6.3.3, this setup corresponds to scenario (C) but covers scenario (B) in the case
τ = n, and scenario (A) in the case τ = 1). This general model is hence formulated as

yij ∼ ZijPois(λ1) + (1 − Zij)Pois(λ2)
= TigPois(λ1) + (1 − Tig)Pois(λ2)

where j ∈ (τ(g − 1) + 1, τg), Zi,τ(g−1)+1 = ... = Zi,sg ≡ Ti,g and Tig ∼ B(1, q) with
g = 1, ..., b independent; i.e., g is the index of the subgroup.

The only required modification as compared to the previous derivation is to work
out the covariances in the third term of (6.3.6). Observe here that the result (6.3.4)
remains true but only for the observations within each string, that is

Cov(yij, yil) =
 q(1 − q)(λ1 − λ2)2 if j and l from the same string;

0 otherwise.
(A.7.1)

This implies

∑
j ̸=l

Cov(yij, yil) =
b∑

g=1

n∑
j,l∈(τ(g−1)+1,τg)

Cov(yij, yil)

= bτ(τ − 1)q(1 − q)(λ1 − λ2)2

= n(τ − 1)q(1 − q)(λ1 − λ2)2

so that
Var(si) = n(qλ1 + (1 − q)λ2) + nτq(1 − q)(λ1 − λ2)2.
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Hence,

ϕagg = n(qλ1 + (1 − q)λ2) + nτq(1 − q)(λ1 − λ2)2

n(qλ1 + (1 − q)λ2)

= 1 + τq(1 − q)(λ1 − λ2)2

qλ1 + (1 − q)λ2

which is just (6.3.9).
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A.8 CP/CNB applied to PHE-Foci1 samples

In relation to the estimates from the PHE-Foci2 dataset provided in Table 8.1, we notice
from the reported α̂ in Table A.1 that the overdispersion in the PHE-Foci1 samples is
mostly due to zero-inflation, most notably for exposures ≥ 60%. Consequently, this
means that the CNB method was unable to improve on the dose and fraction estimates
from the CP method in cases where F̂CNB < F .

F (%) D (Gy) µ̂CP µ̂CNB D̂CP D̂CNB F̂CP F̂CNB α̂

30 0.75 2.712 2.664 1.145 1.117 0.509 0.518 0.144
±0.182 ±0.164 ±0.038 ±0.042

1.5 2.962 2.912 1.292 1.263 0.511 0.520 0.168
±0.186 ±0.170 ±0.038 ±0.040

3 4.381 4.312 2.126 2.086 0.476 0.484 0.439
±0.221 ±0.240 ±0.036 ±0.037

40 0.75 3.167 3.167 1.412 1.412 0.579 0.579 0.001
±0.178 ±0.150 ±0.037 ±0.037

1.5 3.034 2.913 1.334 1.263 0.504 0.525 0.397
±0.189 ±0.184 ±0.037 ±0.042

3 4.105 3.912 1.964 1.851 0.498 0.523 0.925
±0.210 ±0.242 ±0.036 ±0.040

60 0.75 3.059 3.059 1.349 1.349 0.624 0.624 *
±0.170 ±0.097 ±0.037 ±0.037

1.5 3.200 3.200 1.432 1.432 0.589 0.589 0.001
±0.177 ±0.168 ±0.037 ±0.037

3 4.790 4.790 2.367 2.367 0.565 0.565 *
±0.210 ±0.222 ±0.035 ±0.035

80 0.75 3.230 3.230 1.450 1.449 0.760 0.761 *
±0.157 ±0.139 ±0.033 ±0.033

1.5 3.828 3.828 1.801 1.801 0.649 0.649 0.001
±0.179 ±0.160 ±0.035 ±0.035

3 5.060 5.060 2.526 2.526 0.710 0.710 0.001
±0.192 ±0.186 ±0.032 ±0.032

100 0.75 3.093 3.093 1.369 1.369 0.895 0.895 *
±0.142 ±0.034 ±0.027 ±0.027

1.5 4.301 4.301 2.080 2.080 0.816 0.816 *
±0.167 ±0.118 ±0.028 ±0.028

3 5.537 5.537 2.807 2.807 0.934 0.934 *
±0.174 ±0.099 ±0.018 ±0.018

Table A.1 Dose and fraction estimates following procedures as outlined in Chapter 7
using the calibration curve λ = 0.766 + 1.700D. An asterisk * is used to indicate values
< 10−3.
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