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Abstract

Variations in the shape of the human right ventricle (RV) have previously been shown to
be predictive of heart function and long term prognosis in Pulmonary Hypertension (PH), a
deadly disease characterised by high blood pressure in the pulmonary arteries. The extent to
which ventricular shape is also affected by non-pathological features such as sex, body mass
index (BMI) and age is explored in this thesis. If fundamental differences in the shape of
a structurally normal RV exist, these might also impact the success of a predictive model.
This thesis evaluates the extent to which non-pathological features affect the shape of the RV
and determines the best ways, in terms of procedure and analysis, to adapt the model to con-
sistently predict PH. It also identifies areas where the statistical shape analysis procedure is
robust, and considers the extent to which specific, non-pathological, characteristics impact
the diagnostic potential of the statistical shape model. Finally, recommendations are made on
next steps in the development of a classification procedure for PH. The dataset was composed
of clinically-obtained, cardiovascular magnetic resonance images (CMR) from two indepen-
dent sources; The University of Pittsburgh Medical Center and Newcastle University. Shape
change is assessed using a 3D statistical shape analysis technique, which topologically maps
heart meshes through an harmonic mapping approach to create a unique shape function for
each shape. Proper Orthogonal Decomposition (POD) was applied to the complete set of
shape functions in order to determine and rank a set of shape features (i.e. modes and cor-
responding coefficients from the decomposition). MRI scanning protocol produced the most
significant difference in shape; a shape mode associated with detail at the RV apex and ven-
tricular length from apex to base strongly correlated with the MRI sequence used to record
each subject. Qualitatively, a protocol which skipped slices produced a shorter RV with less
detail at the apex. Decomposition of sex, age and BMI also derives unique RV shape descrip-
tors which correspond to anatomically meaningful features. The shape features are shown to
be able to predict presence of PH. The predictive model can be improved by including BMI as
a factor, but these improvements are mainly concentrated in identification of healthy subjects.
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Chapter 1

Introduction

Over a lifetime, the heart constantly changes its shape and function to maintain level cardiac

output; the total amount of blood pumped out of each ventricle of the heart, in a process

known as remodelling (Cohn et al., 2000). Remodelling can be adaptive, for example, during

physiological growth, or when undergoing athletic training, (e.g. Mihl et al., 2008; Weiner

& Baggish, 2012), or adverse, which can indicate disease progression. The World Health

Organisation (WHO) reports that cardiovascular diseases are the leading global cause of death,

taking an estimated 17.9 million lives each year which representing ∼32% of total lives lost

(WHO 2021). It is therefore unsurprising that research has focused on identifying pathological

shape trends which hasten diagnosis and thereby improve the prognosis of deadly diseases.

The left ventricle (LV), for example, undergoes dilatation at the early stages of myocardial

infarction to maintain blood supply to the circulatory system (Suinesiaputra et al., 2018).

This thesis focuses specifically on prediction of Pulmonary Hypertension (PH), a type of high

blood pressure which primarily affects the arteries of the lungs and the right side of the heart.

PH is a progressive cardiovascular disease that significantly impacts the mechanical properties

of the right ventricle (RV) as compensatory morphological changes take place to overcome the

elevated blood pressure. PH is associated with high morbidity and mortality, in part because

non-specific early disease symptoms often lead to delayed diagnosis (Vonk-Noordegraaf et
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al., 2013; Xu et al., 2021).

The most common compensatory shape changes are an increased wall thickness and flat-

tening of the ventricular base in response to the increased afterload caused by high blood

pressure in the pulmonary arteries (Haddad et al., 2008; Vonk-Noordegraaf et al., 2013) (af-

terload is the pressure that the heart must work against to eject blood during systole and is

described in greater detail in Section 1.2). However, such an approach still leaves the unknown

component of natural variation. Separating out our understanding of shape features related to

patient-specific factors, such as demography, age, obesity, or sex, has the potential to enhance

our understanding of pathological shape trends by establishing the bounds of normal varia-

tion and determining whether any natural shape characteristics enhance or protect against the

development of heart disease. Furthermore, the acute response of cardiac remodelling to a

pathological event is often protective and beneficial (Suinesiaputra et al., 2018).

Biological shape change is especially challenging to measure given its multivariate, het-

erogeneous nature (Badrick, 2021). Therefore it is important to consider what a clinician

or anatomist might define as ‘normal’ for an organ or structure. To recognise variation in

anatomy, first, it is necessary to identify commonalities across individuals in size, form, rela-

tive position, appearance and function (Ambellan et al., 2019). Such knowledge is key in the

context of the heart, where slight anatomical deviations can be either indicative of or the root

cause of systemic heart failure and, ultimately, death. It is also essential to consider whether

a fundamental shape difference is expected between individuals. If we take our definition of

shape from Dryden and Mardia (2016), ‘shape’ is what remains after removing the effects of

rotating, scaling and translating in space. For example, it might be expected for the female

heart to be a smaller-scaled version of the male heart in accordance with observations in many

other anatomical structures, for example in the lungs (LoMauro & Aliverti, 2018). Equally, we

might expect slight differences in heart orientation (translation/rotation within the chest) be-

tween individuals of different sizes and fitness levels. However, a crucial unanswered question

relates to whether there is a more fundamental difference inherent to population categories,
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and if such variations exist, whether they contribute to impaired organ function in a way that

should be accounted for in treatment design. Tight control of heart morphology during fetal

development is necessary to ensure correct cardiac function (Tan & Lewandowski, 2019), as

abnormalities can affect the overall viability of an organism. So, at first consideration, it is

unlikely that significant deviations from a standard structure occur.

Developing our understanding of characteristic or integral shape differences could be a

crucial ingredient in creating tailored medical tools. On the other hand, if no pattern between

shape features and any biological or patient-specific factors is identifiable, this could point to

a unique biometric signature. Such non-specificity could have exciting implications in other

fields such as security (Rinaldi, 2015), in the same manner as the work by Duta (2009) on

biometric technology based on hand-shape.

Non-surgical intervention is preferable in the vast majority of cases, both as preventa-

tive tests are more likely to be recommended, and clinically fragile individuals recover more

swiftly. In addition to the already routine use of echocardiography in initial testing (NHS,

2020; Pamboucas & Nihoyannopoulos, 2006), over several decades, considerable evidence

has accrued in support of Cardiac Magnetic Resonance (CMR) as a standard for the eval-

uation of many common medical conditions, and this has been reflected in the most recent

cardiovascular care guidelines. The precision of measurement is superior to TTE, leading to

improved inter- and intra-observer agreement. Similarly, the cost saving of using such a pre-

cise and reproducible test is significant, and this fact has been appreciated in clinical practice

(Swift et al., 2014). However MRI is still not the most recommended protocol. The lagging

recommendations are largely due to two factors (in the United Kingdom, but these experi-

ences are common internationally): first that the previous guidelines were published in 2010,

when CMR was not widely used in mainstream clinical practice, and secondly because there

is wide geographic inequality in provision and infrastructure (Treibel et al., 2022).

Increased uptake of medical imaging methods such as Magnetic Resonance Imaging (MRI)

and Computed Tomography (CT), combined with associated developments in post hoc image
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processing techniques, have been instrumental in enabling observation of the nature of shape

changes and other indicative markers of pathology in a research environment. Yet, in clinical

practice, shape and structural analysis is carried out using much simpler morphometric anal-

yses on 2D images. Traditional anatomical descriptors such as lengths, diameters and angles

are taken from a single image slice, as described in the Standardised Image Interpretation

and Post-processing Guidelines of Schulz-Menger et al. (2020). Such methods are fast and

provide the means to make largely accurate clinical decisions. However, they do not fully

exploit the shape information in 3D techniques at the state of the art. Rodero et al. (2021)

investigate the extent to which large changes in function are caused by large changes in shape

and conclude that using only the modes of shape which capture the most variance (the first

9 modes explain 90% of variance) does not produce accurate synthetic models of heart func-

tion. Their research created a 3D model of the healthy heart integrating CT images of all four

chambers with a series of rules to define the motion of muscular fibres. These methods might

be considered to describe ‘local’ shape information, contrasting with the global approach of

statistical shape analysis. It is important to strike a balance between practicality and superior

information retrieval. For example, bringing computational tools from engineering and sta-

tistical analysis fields is often hindered by the complexity of the approaches, and the reliance

on mathematical terms which are difficult to interpret by non-experts (Bruse, 2017).

This chapter will introduce the study by discussing essential background and context under

four main subheadings. First, the symptoms of Pulmonary Hypertension will be described

in depth; secondly, an overview of the role and anatomy of the RV will be given, thirdly,

a brief description of non-invasive imaging techniques will be provided, and finally several

statistical shape analysis techniques will be introduced and discussed. The remainder of the

introduction is devoted to outlining the research aims and objectives and describing the overall

structure of the thesis. The final section will discuss the scope of the work and highlight novel

contributions to the literature. Each chapter is also accompanied by relevant literature review

and therefore the effect of non-pathological factors on RV shape, and robustness methods will
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be reviewed in greater detail later in the thesis.

1.1 Pulmonary Hypertension

Pulmonary Hypertension (PH) is a severe and progressive cardiopulmonary disease that sig-

nificantly affects the shape, mechanical properties and overall mechanical function of the

heart. Left untreated, PH can be deadly, as it can lead to right sided heart failure and ulti-

mately, death. PH describes high blood pressure in the arteries of the lungs, and was initially

defined as an increase in mean Pulmonary Arterial Pressure (PAP) beyond 25mmHg at rest

(Galiè, Manes, et al., 2009), as assessed by Right Heart Catheterisation (RHC). For reference,

resting PAP in healthy individuals is 14 ±3 mmHg (Kovacs et al., 2009). The definition has

been extended in recent years to include subjects with a mean PAP of above 20mmHg at rest,

in conjunction with pulmonary vascular resistance greater than or equal to 3 Wood Units, as

assessed by RHC (Simonneau et al., 2019). Wood Units are a measure of pulmonary vascular

resistance, and average resistance amongst healthy controls is 2 (Kovacs et al., 2009).

The blood pressure in the pulmonary arteries is much lower than in systemic circulation,

and therefore cannot be accurately or reliably measured by a cuff. RHC also allows for a more

accurate, direct measurement of PAP. There has been some debate in the clinical literature

regarding the efficacy of RHC. A randomised, controlled trial of the use of pulmonary artery

catheters in high risk surgical patients found no benefit to therapy over standard care in high

risk, elderly patients (Sandham et al., 2003). The ability of the RV to adapt to increased

pulmonary pressures is the main determinant of clinical outcomes in patients with PH. Some

RV responses to elevated pulmonary pressures are clearly adaptive, whereas others are thought

to be maladaptive. Early recognition of the components of maladaptive change will hopefully

enable timely interventions to prevent deterioration of RV function (Lahm et al., 2018).

The modern classification for PH was established in 1998 (Simonneau et al., 2004), and is

updated every five years in line with the latest research and clinical practice (Simonneau et al.,
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2009, 2013, 2019). A series of different pathological features characterise five diverse clinical

PH groups identified by the WHO (2008). Despite all sitting under the broader PH umbrella,

each group has distinct pathological and haemodynamic characteristics (Rich & Rich, 2014).

Therefore, it is of critical importance to determine the underlying cause of PH, as prognosis

and management strategies are often WHO group-dependent (Simonneau et al., 2013; Grünig

& Peacock, 2015). Table 1.1 briefly describes each PH category. Despite heterogeneous

underlying aetiologies, all forms of PH share similar clinical and haemodynamic findings.

Affected individuals often present with shortness of breath, chest pain, fatigue and fainting,

especially after intense exercise (Hambly et al., 2016); symptoms which can be associated

with a wide array of other cardiac and lower-respiratory problems. This presents challenges

to follow-up of suspected cases, as an absence of clear biomarkers for disease progression

reflects the underlying complexity of PH pathophysiology (Vachiery & Gaine, 2012).

The non-specificity of early PH symptoms coupled with the disease’s relative rarity leads

to a tendency for PH to be confused with other, less serious, conditions such as anaemia

(Hyduk et al., 2005). The earliest PAH (Group 1) symptoms, for example, often manifest as

shortness of breath during exercise (van Wolferen et al., 2008; Rich & Rich, 2014). Conse-

quently, patients tend to be diagnosed only after significant disease progression. This delay in

the commencement of effective therapy, in conjunction with the debilitating and progressive

nature of PH is extremely detrimental to long-term patient outcomes; the median survival time

after diagnosis for untreated PAH was reported as 2.8 years in 1991 (D’Alonzo et al., 1991).

Prognosis has not improved substantially despite significant research funding since the early

1990s. Chang et al. (2022) report that contemporary mortality rates for patients with PAH

(Group 1), are 8% after one year, 16% after 2 years and 21% after 3 years.

After initial consultation, where symptoms, family history and interactions with other

medication are considered, the accepted diagnostic process for PH consists of combination

of non-invasive and invasive tests. Through the NHS, this is most commonly an echocardio-

gram, followed by invasive RHC to directly measure PAP (NHS, 2020). Other recommended
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Table 1.1: The five PH classification groups defined by the WHO

Group Type Description

1
Pulmonary Arterial Hyper-
tension (PAH)

PH caused by the distal pulmonary arteries be-
coming narrowed, thickened and stiff; in partic-
ular those less than 500𝜇m in diameter. PAH
can be idiopathic, inherited, induced by drugs or
toxins, or caused by connective tissue disease.

2 PH caused by left heart dis-
ease

PH caused by disease in the left heart. Patho-
logical changes in this group include enlarged
and thickened pulmonary veins, dilatation of the
pulmonary capillaries and interstitial oedema.
The most common and lethal type (68.5% of a
recent population-based study (Wijeratne et al.,
2018).

3
PH caused by lung disease
and or hypoxaemia

PH hypoxic vasoconstriction, mechanical stress
of hyperinflated lungs, inflammation and the
toxic effect of cigarette smoke, The second most
common type, around 47.0% of PH patients. Pa-
tients experience Group 2 & 3 PH simultane-
ously.

4
PH caused by chronic throm-
boembolism (CTEPH)

Occurs if the body is unable to dissolve blood
clots in the lungs, which later undergo fibrosis
producing scar tissue which can mechanically
obstruct the pulmonary arteries. (9.0% of cases)

5 PH caused by unclear or mul-
tifactorial mechanisms

PH is secondary to other diseases in ways that
are not well understood.

tests include an electrocardiogram (ECG) , often accompanied by exercise tests including a

six-minute walk, and lung function tests, ventilation-perfusion scans and chest x-rays (Galiè,

Hoeper, et al., 2009; NHS, 2020), all of which serve to help identify PH type.

Increasingly, CMR-based protocols have been introduced for screening, and can be used

in conjunction with RHC for diagnostic purposes. RHC is still required to directly measure

PAP (Pamboucas & Nihoyannopoulos, 2006). The hypertensive state can also be proxied by

several metrics, most notably PAP and pulmonary capillary wedge pressure (PWCP). Clini-
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cal guidelines notwithstanding, MRI has several inherent advantages in the diagnosis of PH,

especially given recent advances in imaging quality and acquisition time (Peng et al., 2016).

CMR is an accurate, reproducible tool for the quantification of ventricular mass and volumes

in healthy subjects and those with PAH (WHO Group 1). It has been used successfully to

establish normal ranges in healthy subjects (Pamboucas & Nihoyannopoulos, 2006). Since

2007, CMR-based research has led to significant developments in our understanding of PH and

right ventricular remodelling, see Torbicki (2015). Specific CMR findings can be suggestive

of, and consequently instrumental in, diagnosing the underlying cause of a particular PH case

(Bradlow et al., 2012). For example, the presence of shunts and aberrant pulmonary veins may

indicate PAH (Group 1). Alternatively, LV hypertrophy, or other wall motion abnormalities

may indicate PH due to left heart disease (Group 2). Despite significant advances in the de-

velopment of non-invasive imaging techniques and the identification of potential non-invasive

indicators (Vonk-Noordegraaf & Galiè, 2011), RHC remains the clinically recommended pro-

cedure and is essential for confirmatory testing and diagnosis (Galiè et al., 2015).

Although there has been substantial progress in the understanding of both PH pathogenesis

and treatment, right ventricular (RV) failure remains the most common fatal pathway in PH.

Sitbon et al. (2015) undertook an important inter-study collaboration between the French Pul-

monary Hypertension Network (FPHN) and the Registry to Evaluate Early and Long-term

Pulmonary Arterial Hypertension Disease Management (REVEAL). This study took PAH

survival algorithms developed in both studies and cross-applied them. Both the REVEAL

risk score calculator (Benza et al., 2010) and the FPHN predictive algorithm (Humbert et al.,

2010) were both proven accurate and well-calibrated when applied to the opposing dataset.

Therefore, it is likely that prognostic generalisation across cohorts and continents is possible.

In recent years, predictive models for when fatality is most likely to occur have been pro-

posed (Mauger et al., 2019; Xu et al., 2021). Many, if not all of these models have made

use of advances in image processing, and a more holistic view of the modes of RV failure

are likely to require advanced imaging and machine learning. Thus far, machine learning has
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been limited in diagnostic models. However, Dawes et al. (2017) have published a survival-

based model, noted in a 2019 review of best practice in PH diagnostics (Frost et al., 2019) as

a helpful starting point.

Several PH-specific shape changes have been recorded. Broadly, shape change can be

considered as adaptive or mal-adaptive, with the most common shape changes being a round-

ing out, or flattening of the base of the ventricle in response to high PAP and hypertrophy of

the RV wall. An additional, widely observed example is that in RV failure secondary to PH,

the septal wall position is shifted towards the left side of the heart with intact LV function

(Friedberg & Redington, 2014; Dwivedi & Axel, 2017).

1.2 Structure and Function of the Right Ventricle

Understanding typical RV structure and function is significant to appreciating the impact and

severity of observed variations in ventricular shape. The RV structure has several features

which define its function. The RV pumps oxygen-poor, carbon dioxide-rich blood to the lungs

via the pulmonary arteries, where it then becomes oxygenated and can be pumped around the

body. Under normal conditions, the right and left ventricles (LV) are connected in series and

therefore pump, on average, the same effective stroke volume (Haddad et al., 2008). The RV

is the most anteriorly situated cardiac chamber, sitting directly behind the sternum at the front

of the chest. The basic structure of the RV is displayed in diagrammatic form in Figure 1.1a

and also in the two annotated screenshots of MRI imaging planes, Figures 1.2 and 1.3. The

main structure of the organ consists of the apical body, inflow tract and outflow tract (Peng et

al., 2016), and these regions are shown graphically in Figure 1.1c. The muscular wall which

is shared with the LV is referred to as the septum, whereas the opposite wall is denoted as the

free wall. These are marked on the diagram in Figures 1.1a and 1.1b.

Until recently, the RV was considered relatively unimportant as a component in the circu-

latory system, both in terms of its contribution to overall heart function and as a contributor to
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(a) (b)

(c)

Figure 1.1: a) Cross-sectional schematic of the healthy heart. The RV is shown in the blue region
on the left side of the heart, and the LV is depicted in red on the right side. b) The same heart cross-
section, but showing the effects of PH-associated flattening and hypertrophy of the base of the RV. Both
Figures are depicted at end-Diastole. c) An expanded view of the RV, labelling the three main regions
of the ventricle: the inflow tract, the apical body and the outflow tract.
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hypertensive heart failure (Sheehan & Redington, 2008). This general apathy originated from

early studies (Starr et al., 1943; Kagan, 1952) which showed effectively no increase in venous

pressure after sustaining significant damage to the RV free wall, leading to an underestimation

of the importance of RV function in overall heart performance and in heart failure. Additional

experiments in animals (Rose et al., 1955) showed that replacement of the RV-free wall was

well tolerated and did not cause a reduction in cardiac output. These initial studies led to a

general belief that the laws defining cardiac mechanics, and the therapeutic techniques derived

from them, were as equally applicable to the RV as the LV (Walker & Buttrick, 2013) and,

since overall pressures were lower ( mean peak systolic RV pressure is 25mmHg vs 130mmHg

in the LV (Fowler, 1980)), the RV was not considered worthy of significant research attention.

In contrast to the LV, which is near conical in shape, the RV is triangular when viewed

from the front and, since it curves over the LV, crescent-shaped in a cross-sectional view (Ho,

2006). The RV’s complex, irregular shape exists because its septal contour is indented by the

more dominant LV (Sheehan & Redington, 2008). The irregular shape is difficult to see in

the cross-sectional view in Figure 1.1a, but can be clearly observed in the top down (short-

axis) view in Figure 1.2. In this MRI scan the RV is marked 1 and the LV is marked 2. The

RV displays increased variability between short-axis MRI segments as compared to the LV,

owing to its twisted shape (Haddad et al., 2008), and this increased variability has an impact

on non-invasive imaging, which is discussed further in Section 1.3.

The large difference in RV volume and shape between each short axis slice makes in silico

analysis more difficult than for the LV, since the intervening geometry between slices is more

complex to infer. The ventricle’s position in the chest also produces a poor acoustic window

for 3D echo-cardiography and can cause low-quality images (Bernardino et al., 2021); the

acoustic window is the location from which an ultrasound probe scans. Several factors, in-

cluding obesity and the presence of foreign objects, can limit this window and the resulting

scan quality. There are also challenges associated with evaluating right heart function us-

ing a standard short-axis MRI image stack, as was required in this thesis (Chaturvedi et al.,
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Figure 1.2: Annotated MRI scan of the RV of a healthy subject from the dataset used in this thesis.
The slice is taken in the short axis orientation, and represents the RV at end-Diastole.

Figure 1.3: Annotated MRI scan of the RV of a healthy subject form the dataset used in this thesis. The
slice is taken in the long axis orientation, and represents the RV at end-Diastole. The heart depicted
is the same as in Figure 1.2. RV and LV mark the right and left ventricles, and RA and LA mark the
right and left atria. The subject is lying supine on the scanning bed, with their head pointing into the
page.
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2016).This is because substantial through-plane, or horizontal motion occurs during systolic

contraction, and it is difficult to distinguish the tricuspid valve and the thin wall of the RV

from the right atrium in short-axis orientation.

In order to understand likely adaptive or maladaptive RV shape changes, it is first impor-

tant to consider the function requirements of the RV. Afterload represents all the factors that

contribute to total myocardial wall stress (or tension) during systolic ejection (Norton, 2001).

It can be thought of as the amount of force or load against which the heart has to contract. It

therefore represents pressure that the heart must generate in order to eject the blood during the

contraction of ventricles (LaCombe et al., 2022). When, for example, there is constriction of

the pulmonary arteries which leads to high PAP, the afterload increases. There is an inverse

relationship between afterload and systolic performance which means that as cardiac output

increases, afterload decreases and vice versa (i.e. vasodilation, or widening of the arteries de-

creases vascular resistance and therefore reduces afterload). Recall that cardiac output is the

amount of blood ejected by the heart each minute, which also represents the total blood flow

through the pulmonary circuit (Vincent, 2008). The exact equation for afterload depends on

the shape of the cardiac chamber (LaCombe et al., 2022), and is therefore complex and subject

to noticeable variation between individuals. The shape of the ventricle is significant because

the pressure imparted to the blood is not the same as the tangential stress in the RV wall, and

the mathematical relationship would be vastly simplified if the RV was of a regular geometric

shape (Milnor, 1975).

As the RV is “coupled" to its low-impedance vascular bed, acute changes in afterload lead

to major changes in overall RV pressure-volume relationships, and can cause a noticeable

decline in ventricular performance; resulting in reduced cardiac output and oxygen delivery

as the ability of the RV to pump blood into the pulmonary artery is impaired (Meyer et al.,

2019). Conversely, a progressive rise in pulmonary arterial impedance, leads to a more pro-

gressive change towards an "LV" pressure-volume loop pattern (Redington et al., 1990).The

RV to pulmonary artery coupling describes the relationship between RV contractility and RV
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afterload. This may be affected in heart failure patients due to increased LV filling pressures

that lead to PH and increased RV afterload.

Although the RV pumps the same stroke volume as the LV, it uses just 25% of the stroke

work owing to the lower resistance of the pulmonary vasculature in comparison to that of the

central vasculature system in the rest of the body (Voelkel et al., 2006). As a result, the RV wall

can be thinner and more compliant. The RV free wall and septum contribute equally to RV

performance (Badano et al., 2009). As might be expected from the RV’s thinner wall structure,

the RV is designed to function by displacing volume rather than generating pressure. Thus,

abnormalities that cause pressure overload result in remodelling of the ventricle in response

to this load (Vonk-Noordegraaf et al., 2013). As the RV changes shape, the interventricular

septum becomes distorted (Méndez et al., 2011). RV stroke volume and wall motion depend

on the interaction of the RV free wall, septal wall and outflow tract, all of which markedly

differ in geometric and contractile properties (Innelli et al., 2008). The septal wall is shared

with the LV, and contributes to the contractile function of both ventricles (Nguyen-Truong

et al., 2021). Although evidence states that the septal wall is structurally and mechanically

different on its left and right sides (Holland et al., 2010), the overall layered structure on the

right side remains thicker and more muscular than the surrounding regions.

The RV typically has a circumferential moderator band (marked on the schematic in Figure

1.1c, however, unlike the LV, it lacks a middle layer and therefore, must rely more heavily

on longitudinal shortening than the LV (Sheehan & Redington, 2008). The RV undergoes

torsion as it contracts owing to its shape, curved around the LV. The lack of a middle layer in

the RV means that there is a lack of continuity of fibres between the inlet and outflow valves.

MRI tagging studies have documented the heterogeneity of normal RV motion and confirmed

greater longitudinal shortening than that in the short-axis (Childs et al., 2011).

Dissection studies have demonstrated the differences in fibre architecture between the two

ventricles (Sanchez-Quintana et al., 1996). Apart from the aforementioned septal wall dif-

ferences, the muscle fibres in the RV generally form two layers; the outer - or superficial- ,

14



CHAPTER 1. INTRODUCTION 1.2. RV STRUCTURE AND FUNCTION

Figure 1.4: Schematic of the RV at end-Diastole, the relaxed state, and end-Systole, the contracted
state. This schematic shows the longitudinal orientation of the deeper fibres, and the circumferential
layer of the outer, or more superficial fibres.

circumferential layer of fibres and a deeper longitudinal layer of fibres running from the apex

to the base (indicated in Figure 1.4). The outer, superficial layer of fibres continue on to the

LV after reaching the RV apex. This continuity of fibres contributes to ventricular interde-

pendence (Ho, 2006; Walker & Buttrick, 2013).

There are several other unique RV features which contribute to its contractile function

and the ability to demarcate the ventricle on non-invasive images. For example, the tricus-

pid valve (marked in Figure 1.1a), which separates the RV from the right atrium, has the

largest diametered annulus of all the cardiac valves, and is held in place by three papillary

muscles. This ‘top heavy’ design feature renders the RV more vulnerable to structural defor-

mation than the other cardiac chambers, especially under sustained pressure or volume load

(Walker & Buttrick, 2013). The RV is characterised by coarser trabeculae (a complex mesh

of muscular strands that protrude into the centre of both ventricular chambers) in comparison

to the LV. The role of the trabeculae in adults is not yet fully understood, but they are hypoth-

esised to influence vortex formation and promote mechanical efficiency (Dawes et al., 2018).

These trabeculae often make identifying the RV endocardial border difficult when marking

out anatomical regions from clinical images.
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The initial (mal)adaptive response to pressure overload, such as that caused by PH, is

myocardial hypertrophy, or the thickening of the muscular wall of the RV, and this is followed

by gradual but progressive contractile impairment (Dias et al., 2002). Several mechanisms

have been proposed to be involved in the progression of this dysfunction, including ischaemia;

a decrease of blood supply to tissues, leading to a decrease in oxygen and nutrients to the

affected area, changes in the gene expression of sarcomere proteins; the sarcomere is the basic

contractile unit of muscle fibre, and is composed amongst others of actin and myosin proteins,

which form cross bridges, the breaking of which is the basis of the muscular power stroke,

and activation of the myocardial renin-angiotensin system which is involved in the regulation

of tissue function.

RV septal curvature is the most commonly studied aspect of RV shape (e.g. Beyar et al.,

1993; Sciancalepore et al., 2011). Abnormal septal motion is a commonly attributed sign of

raised pulmonary arterial pressure. However, it is not routinely used to quantify the severity

of PH (Sciancalepore et al., 2011). In the past, proxy measurements for ventricular shape and

function based on both curvature (e.g. Reisner et al., 1994) and sphericity (Tischler & Niggel,

1993) have been considered, although all of these have been based on the LV. Reisner et al.

(1994) made the assumption that the wall stress of the septal wall was proportional to that of

the right ventricular free wall, thus creating a practical framework.

Having described some standard physiological characteristics, it is worth considering

some of the classic responses to various RV diseases, and how these might impact the shape of

the ventricle. The RV can respond in diverse ways to a pathological increase in pressure load.

The relative success of its compensation depends on the stage of life, as well as the severity

of the problem. Problems that occur earlier in life tend to be better tolerated than those which

onset in adulthood.

Changes in RV shape associated with sex and obesity are discussed in greater detail in

the Introduction to Chapter 3. The effect of oestrogen is purported to be responsible for the

higher incidence of PH in this demographic; referred to as the oestrogen paradox, oestrogen
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has also been shown to exert a protective effect in acute and hypoxia-induced PH in female

patients (Earley & Resta, 2002). Statistical links could be inferred between patients of certain

ages or risk factors, and their RV shape.

1.3 Imaging Techniques

Imaging techniques form a common part of all medical assessment, and are often employed

early on as screening tests to determine the necessity of undergoing a Gold Standard diagnos-

tic test (e.g. mammography, prior to biopsy in breast cancer (Maxim et al., 2014)). Although

imaging is used in all aspects of medicine, the literature review in this section will focus on

cardiac-specific imaging. Up until recently, invasive tests have been the Gold Standard and

requirement for diagnosis of cardiac problems; specifically PH. Nevertheless, there is signif-

icant demand (e.g. Treibel et al., 2022) within routine clinical settings for the development

of a Gold Standard for non-invasive diagnostic imaging in PH. Opinion pieces over the past

decade have argued persuasively for the introduction of such a standard, yet clinical prac-

tice lags behind (e.g. Wood, 2009; Simonneau et al., 2019; Abman et al., 2015; Truong et

al., 2020); so much so that the American College of Cardiology Foundation and American

Heart Association (McLaughlin et al., 2009) together with the European Paediatric Pulmonary

Disease Network (Latus et al., 2016) now recommend both MRI and CT for deriving prog-

nostic information about the RV. However, the recently published United Kingdom standards

for non-invasive cardiac imaging (Treibel et al., 2022) note that there have been alterations

in mainstream clinical practice and a consequent increase in demand for routine diagnostic

imaging in medical practice.

Grünig and Peacock (2015) reviewed non-invasive imaging and concluded that the de-

velopment of more advanced imaging tools would increase pathophysiological factors which

culminate in RV failure in PH, and that integrating such tools into diagnostic algorithms would

optimise PH detection and management. There have been substantial advances in the avail-
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(a)

(b) (c)

Figure 1.5: Schematics describing three common cardiac imaging techniques: a) Echocardiography,
b) Cardiac CT (taken from Wright and Grey (2016)) and c) Cardiac MRI (reproduced with permission
from Haynes and Holmes (2013))

ability and quality of imaging techniques, even since 2015.

A recent market simulation study revealed that breathing manoeuvre-enhanced CMR (a

form of breath-hold CMR that intersperses periods of hyperventilation with a long breath-hold

to increase oxygenation (Guensch et al., 2013)) had the highest shares of preference amongst

both patients (59.6%) and physicians (32.7%) (Bertrand et al., 2022). The study concluded

that a patient’s preference for a particular cardiovascular test was most determined by the risks

and side-effects, and that they prescribed highest value to tests which minimised side effects,

while doctors prioritised less costly tests for their patients.
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1.3.1 Echocardiography

Echocardiography (Echo) uses ultrasound waves to create real-time 2D or 3D images. Dur-

ing an echocardiogram, a transducer (a handheld device, capable of emitting and receiving

ultrasound waves) is placed on the patient’s chest (Figure 1.5a). The transducer emits high-

frequency sound waves that penetrate the chest and bounce off cardiac structures. The echoes

produced by these sounds are detected by the transducer and used to create an image of the

heart. Although used in a wide variety of cardiac applications, including the detection of

congenital heart disease, heart murmur and abnormal heart valves (Otto, 2013), Echo is of

specific benefit to screening for PH, and forms a routine first step towards diagnosis (Galiè,

Hoeper, et al., 2009).

Images of cardiac structures are most commonly obtained non-invasively, in the context

of transthoracic echo (TTE). However, higher definition images of the heart can be obtained

by inserting an echo probe directly into the oesophagus in transoesophageal echocardiography

(TOE) (Treibel et al., 2022). Echocardiography has an advantage over other cardiac imaging

techniques of possessing both high temporal and spatial resolution, making it most appli-

cable for visualising small and fast-moving structures, such as valves (Treibel et al., 2022).

Machines are also highly portable and allowing tests to be performed in a wide variety of

healthcare settings, including emergency scanning for rapid diagnosis. As with CMR, it does

not use ionising radiation.

Limitations of echocardiography include the potential for low-quality images owing to

poor acoustic windows in some patients. In echo scans there can be a greater range of image

quality as compared to CT or MRI. Bernardino et al. (2021) have developed a technique for

regionally assessing the volume of three relevant RV regions (apical, inlet and outflow) using

a parcellation method based on geodesic distances to anatomical landmarks.
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1.3.2 Computed Tomography

Computed Tomography (CT scanning) is commonly used in clinical practice. Cardiac CT

scanning uses x-rays to image the heart. It works by using a specialised x-ray machine that

rotates around the subject’s body taking multiple images from different angles (Iranmanesh &

Rubin, 2019). The x-ray machine emits a series of x-rays, and detectors within the machine

measure the proportion which have passed through the patient’s body (Figure 1.5b). These

images are then combined by a computer to produce 3D images. Each snapshot is timed

with heartbeat to avoid motion blurring from the heart’s movement. CT can be performed

with contrast-enhancement or in a non-contrast environment. Non-contrast cardiac CT uses

only x-rays to create images of the heart while contrast-enhanced CT injects contrast dye to

highlight the blood vessels and heart structures.

CT is advantageous due to the high quality images produced in a short study time (15-

20 minutes) (Kwong & Yucel, 2003). CT has the disadvantage of exposing the patients to

ionising radiation. However, the method can replace MRI for volumetric measurements in

those patients for whom MRI scanning is more difficult, for example when the patient has a

foreign body or metallic implant, or in cases of severe claustrophobia. CT is commonly used in

oncological scanning (e.g. Zhao et al., 2016; van Timmeren et al., 2016). The requirement for

contrast dye makes CT scanning unsuitable for individuals with poor kidney function (Kwong

& Yucel, 2003).

1.3.3 Magnetic Resonance Imaging

Cardiac Magnetic Resonance (CMR) is the reference imaging modality for assessment of car-

diac structure and function and accordingly, its use in clinical practice has become increasingly

widespread (Raisi-Estabragh, Izquierdo, et al., 2020). CMR uses a strong magnetic field and

radio waves to create detailed images of the heart and blood vessels. The technique works by

aligning protons in the water molecules within the body’s tissues with a magnetic field, then

applying a brief pulse of radio waves to alter their alignment. As the protons return to their
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original alignment, they emit signals that are picked up by the MRI machine, and which can

be used to create an image of the heart (Hundley et al., 2010). A schematic of an MRI scanner

is shown in Figure 1.5c.

MRI is capable of imaging the heart from any angle, does not use radiation and in general

offers a more complete, and therefore accurate picture of the anatomical feature of interest

(Kwong & Yucel, 2003). Further advantages of MRI include that it is not constrained by

body size, which can be advantageous in older patients with limited ranges of motion, those

with poor acoustic windows or surgical scars. (Truong et al., 2020). There are several crucial

disadvantages of MRI, including the comparatively long study time (30-90 minutes (NHS,

2022b), compared to 10 minutes for CT (NHS, 2021) and 20-40 minutes for an echocar-

diogram (NHS, 2022a)) and the confined space. Approximately 12.5% of the population is

claustrophobic (Vadakkan & Siddiqui, 2022) and the nature of the MRI scanner means that

this modality is likely to be unsuitable for such patients. Similarly, a number of conditions

may yet preclude subjects from undergoing MRI. Pacemakers and other intra-cardiac devices

have varying levels of MRI compatibility and other metal objects, including reconstructive

pins in the chest can obscure imaging. More specifically to PH, an MRI-based approach re-

quires a longer scanning time and this can exclude subjects whose cardiopulmonary illness

prevents them from long periods of breath-holding. The trade off to reduce scanning time is

to take thicker short axis slices. Gilbert et al. (2018) and Hudsmith et al. (2005) both note that

substantial slice thickness (5-10mm) leads to partial voluming near the apex and base of the

RV, increasing error in boundary placement. There are no specific MRI sequences, preferred

for the diagnosis of PH, but several cardiac MRI sequences are commonly used. These include

SSFP Cine Imaging for function and volumetric assessments. Other common types include

phase contrast velocity encoded imaging, late gadolinium enhancement and T1/T2 mapping.

The latter two techniques can be used to assess prognosis (Sharma et al., 2021).

Kocaoglu et al. (2020) argue that retrospectively cardiac gated 2D segmented k-space cine

balanced steady state free precession is the preferred CMR sequence for quantitatively assess-
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ing cardiac function. The high intrinsic contrast between blood and myocardial muscle, in

addition to a high signal to noise ratio makes this scan sequence the preferred option . How-

ever, short axis scans using this sequence are routinely acquired using breath-holds because

the steady state free precession sequence is susceptible to artefacts from respiratory motion

and disruption of magnetisation (Scheffler & Lehnhardt, 2003).

Compared to traditional echocardiography CMR does not suffer from speckle artefacts and

produces good contrast between soft tissues (Peng et al., 2016). Images can be obtained in a

wide variety of orientations which allows researchers to specify the image planes to optimise

their view of required anatomical structures. All structures in the heart can be imaged without

having to alter the acoustic window (Gilbert et al., 2018). MRI can offer high temporal and

spatial resolution without exposure to ionising radiation (Farrell et al., 2022). MRI temporal

resolution is a flexible parameter, which can be adjusted as a trade-off to lower imaging time

(Lin & Alessio, 2009). Multiple studies have noted the high reproducibility of MRI-derived

ventricular measures including volumes which have led to the modality’s acceptance as the

reference standard for non-invasive volumetric and functional measures (Geva, 2014; Truong

et al., 2020).

A 2017 review by Ptaszyńska-Kopczyńska et al. (2017) found that commonplace non-

invasive procedures allowed only approximate estimation of parameters derived from RHC

and the current medical consensus is that CMR can be helpful in the diagnosis of PH only

when used in conjunction with other techniques, including RHC and echocardiography (Grünig

& Peacock, 2015; Galiè et al., 2015). It is, however, accepted that the development of more ad-

vanced imaging tools will increase our understanding of the pathophysiological features that

contribute to RV failure in PH (Grünig & Peacock, 2015). Developing a reliable, clinically-

accepted, non-invasive gold standard for confirmation of PH would be a landmark in auto-

mated disease diagnostics, and would pave the way for totally non-invasive diagnostic proce-

dures.

As alluded to in Section 1.2, the RV has a complex crescent shape, which spans both slices
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and phases in CMR scans (Luo et al., 2016) and also sees high variability in shape between

subjects and between different phases of the cardiac cycle (Moolan-Feroze et al., 2016), which

can be heightened in the event of cardiac pathology (Simon et al., 2009). Consequently, seg-

menting the RV has proved challenging compared to the LV and has seen comparatively little

research. Poor contrast on cavity borders further hinders attempts to segment the RV compu-

tationally. However, increasing evidence of the importance of RV function to cardiac health

(e.g. Caudron et al., 2012) has led to several attempts to automate the segmentation process.

The most notable example was the MICCAI 2012 RV Segmentation Challenge (Grosgeorge

et al., 2013; Petitjean et al., 2015). Whilst the outcome of the Segmentation Challenge failed

to produce any clinically acceptable solutions, substantiating claims that it is difficult to ac-

curately and automatically produce a 3D segmentation model from a series of 2D scan slices,

the segmentation challenge provided cardiac MRI datasets which have been instrumental in

more recent segmentation studies (e.g. Zuluaga et al., 2020).

As segmentation defines the shape of the initial mesh representing the ventricle, accu-

racy is paramount. Consequently, interactive drawing of the desired segmentation by trained

medical practitioners, rather than the use of automated techniques, has historically been con-

sidered the only acceptable method for partitioning regions of anatomical interest (Warfield et

al., 2004). However, this manual approach suffers from the typical drawbacks associated with

human error, including inter and intra-expert variability as well as a significantly increased

time and cost (Bonnemains et al., 2011); it is estimated that it takes an experienced clinician

15 minutes per patient to perform an RV segmentation (Petitjean et al., 2015). Automating

the segmentation process would assist with designing a more complete shape analysis frame-

work. Until 2016, no computational attempt had equalled manual performance (Peng et al.,

2016). In the past five years, there have been several proposed. Avendi et al. (2017), for ex-

ample uses convolutional neural networks and stacked autoencoders for automatic detection

and initial segmentation of the RV. They trained the algorithm on 16 cardiac MRI datasets

from the MICCAI 2012 RV segmentation challenge database.
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1.4 Statistical Shape Analysis

Statistical shape analysis, as the the name perhaps implies, is the use of statistical methods

to model variations in shape which may not be observable by eye. Shape is defined as the

remaining geometric information, once translation, rotation and scaling has been removed

(Dryden & Mardia, 2016). Statistical shape methods can quantify shape differences, gener-

ate shapes that are representative of cohorts or extract and correlate shape to other relevant

measurements. Statistical shape analysis is widely applicable to many disciplines where there

may be a quantifiable difference in profile, whether prognostic or demographic (Dryden &

Mardia, 1998).

While much of the shape analysis research conducted to date has focussed on the often-

imaged brain and heart; Thompson et al. (2004) studied changes of shape the hippocampus

in Alzheimer’s patients, and Meda et al. (2012) observed hippocampal changes associated

with schizophrenia, techniques have been applied to a vast array of areas, both medical and

non-medical fields. For example, Verwaerde et al. (2021) use statistical shape analysis to

monitor the shape of pregnant uteri throughout the duration of the pregnancy. Statistical

shape models have also been used to diagnose liver disease, (e.g. Kohara et al., 2010) and

to create a tuneable model predicting foot shape deviations based on subject-specific shape

and demographic parameters (Stanković et al., 2020). Other applications are in archaeology

(Woods et al., 2017) and computer-aided design (Kozic et al., 2010; Joskowicz, 2018).

The heart’s capacity for remodelling; both adaptive and maladaptive, makes it a com-

pelling candidate for shape analysis study. There has been investigation into adverse cardiac

remodelling in response to Repaired Tetralogy of Fallot (e.g. Mansi et al., 2011; Sheehan &

Redington, 2008; McLeod et al., 2013) and this has provided opportunity for the implemen-

tation of statistical shape analysis.

Statistical shape analysis frameworks for classification purposes typically involve building

a correspondence between the shapes in the given set, statistically decomposing a group of

models into fundamental shape components, and then building features from the shape com-
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ponents that can cluster the shape set into various groupings (da Fontoura Costa & Cesar Jr.,

2010). The statistical shape analysis method may also build a classifier associated with the

application of interest. A wide variety of shape have been deployed within statistical shape

analysis frameworks, tailored to the specific features, restrictions, and objectives necessitated

by specific applications. Furthermore, the statistical shape analysis work to-date has primar-

ily focused on developing the mathematical representation of the shapes in a given set along

with the preprocessing methods necessary to build a correspondence between these shapes,

including aspects of topological mapping, shape alignment/registration, and parameterisation,

while much less consideration has been given to the method of statistically decomposing the

shape set once this correspondence is set.

Historically, statistical studies of morphology were based on pre-defined measurements

of size, area and volume (Thompson, 1917). These studies can indicate anomalies between

individuals, however they do not fully capture the complexity of a shape and can not neces-

sarily distinguish normal anatomical variation from pathological alterations. Thus, with the

improvement of medical imaging techniques based on both ultrasound and MR, statistical

methods have come to the fore. Whereas previously pre-defined morphological features were

examined, it is now possible to use statistical methods to tell us what the features of interest

are from the data. Statistical Shape Analysis has gained traction as a method for computa-

tionally aided disease diagnosis through its potential to precisely locate the morphological

changes between healthy and pathological structures (Styner et al., 2006). Shape analysis at

its core can be thought of in the pattern recognition context, and the process can be divided

into two phases: first, to identify and extract features from measured data, in this case med-

ical images and secondly, to measure the correlation between these features and variables of

interest. This second step could also be extended to create a classification tool capable of

predicting variables of interest, such as blood pressure, for diagnostic purposes from those

features. The fundamental features could also assist with improving future image processing

endeavours (Heimann & Meinzer, 2009). Shape Analysis generally operates by obtaining a
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representation of a biological structure’s shape from medical image data, then performing sta-

tistical analysis on such images to study the geometrical variations and correlate these with

symptoms.

Before shape features can be derived using statistical shape analysis, an applicable and

robust method must be selected. This is crucial since differences in analysis methodology are

a key cause of variation in obtained results. Several shape analysis frameworks have been pro-

posed, both discrete and continuous (Wu et al., 2014) and such procedures can be categorised

based on a series of criteria, including whether the method is applied globally or locally. A

global method searches for features that describe the entire shape of the object, whereas lo-

cal methods attempt to extract a feature from some part of the total shape. Global methods

are the most suitable for analysing RV shape, as examining complete 3D representations best

describes ventricular shape and hence provides better data to approximate pathological shape

changes. It is possible to subcategorise shape analysis methods based on whether the method

uses pre-defined features or features derived from the analysis. Global examples of prede-

fined features include volume and size, whereas derived features could be Proper Orthogonal

Decomposition (POD) modes. Many methods create an atlas which could later be used for

semi-automated model generation. Three main approaches for capturing shape information

are: using skeletonisation and the medial axis; spherical harmonics, and the direct mapping

POD method. Direct mapping POD was first developed in earlier work by this research group

(Wu et al., 2012, 2013).

The first step of a statistical shape analysis approach is the extraction of shape features from

a set of input images. Several shape descriptors have been proposed for application in medical

image analysis, and the precise choice of representation depends on the application (Golland

et al., 2005). Popular approaches are discussed in Zhang and Golland (2016) and include using

anatomical landmarks to represent the geometrical features of a region (Stegmann & Gomez,

2002). Landmarks capture the shape of the object’s outside contour or boundary, however

can be limited by a lack of available features. Frangi et al. (2002) used a landmark-based
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representation of both the LV and RV at end-diastole and was the first to introduce the concept

of statistical shape analysis for cardiac structures. A landmark approach to representing 3D

surfaces always introduces loss of detail (Zhang et al., 2010). If such errors can be minimised

or the landmarking loss is shown not to impact important shape regions, this approach can

substantially decrease shape selection time.

Skeletonisation to create 2D and 3D medial shape descriptions, (e.g. Jang et al., 2019;

Golland et al., 1999) has also been used to analyse shape. In these methods, the medial axis

of a model is created from the set of all points which have more than one closest point to the

object’s boundary. A medial description can decouple extraneous features such as thickness

and position from shape. However, medial shape analysis struggles to reliably compute a

stable model in the presence of variability in biological shape (Styner et al., 2003) and a medial

axis often fails to convey the complexity of biological structures. This method has fallen out

of favour in recent years owing to the availability of more powerful modelling computers.

SPHARM, a series of packages utilising spherical harmonics initially showed some promise

and received much early attention (Gerig et al., 2001; Shen et al., 2003). SPHARM is approx-

imated by breaking the object into a string of linear harmonics. All of these linear harmonics

store degrees of information; the lower order harmonics store information about the basic

shape, whereas the higher order harmonics store finer details of the shape. Nitzken (2015)

notes that using a traditional SPHARM expansion, a standard least-squares fitting model does

not accurately approximate the 3D shape of the brain cortex, which may result in some loss

of shape. The use of an iterative fitting model on brain cortical surfaces (Chung et al., 2008)

allowed for a much more accurate shape approximation.

An alternative approach to modelling shape boundaries is to consider the space in which

the shape sits. These models, where the space surrounding the shape is deformed to match the

target image are considered ‘atlases’ (Davies, 2002). A simple shape atlas shows the average

structural information as a mean shape, and considers variations around that mean (Bookstein,

1989).
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Young and Frangi (2009) take the definition of an atlas to be “an alignment of data maps

from different domains, either population or individualized, which enables querying of rela-

tions ... to construct the big picture’. An atlas, therefore, can be taken more broadly than in

Dawes’ definition, as a statistical method of integrating information from different sources.

Recent attention is focused on using point clouds and the creation of continuous meshes

to obtain shape descriptions. Wu et al. (2013), for example, used mesh-based continuous

descriptions of the right ventricular endocardial surface (RVES) throughout 9 phases of the

cardiac cycle and then applied a harmonic mapping method to convert the surfaces into relative

shape change functions to build correspondences. The success of any given shape analysis

method largely depends on the number of degrees of freedom used, as the intent of process

is to discretise the shape and consequently it is desirable to retain as much information as

possible. The advantage of such continuous, mesh-based techniques is that in excess of 3000

individual points are mapped, giving a much more nuanced description of the shape. On the

other hand, Styner et al. (2003) used just 60 spherical harmonics and measurements of volume

and consider only one degree of freedom. Wu et al. (2013) used an approach for quantitative

analysis and statistical decomposition that was both straightforward to implement and well

suited to medical image analysis. This was particularly true of images where at least one

clearly identifiable anatomical reference line could be determined.

The basic idea of harmonic shape image mapping is to map a 3D surface patch to a 3D

domain and encode the shape information of this 3D shape onto the 2D image. This simplifies

the surface matching problem to a 2D image matching problem. Harmonic shape images are

beneficial because they preserve the shape and continuity of the underlying surfaces (Zhang

& Hebert, 1999). Shape analysis, particularly of the RV, has yet to transition into standard

medical practice, and is only now being considered as part of larger-scale clinical research

(Zhang & Golland, 2016). This is in large part a result of the complex shape of the RV and

the observed variations both between and within subjects. The recent attention to develop-

ing statistical shape analysis methods both in the heart and in other organs is very promising
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for the classification of pathologies and for the development of non-invasive diagnostic tools.

However, these research papers have approached the analysis in a variety of ways, using dif-

ferent mathematical methods at all stages of the analysis process, from image registration

to statistical decomposition techniques without much justification for the selection of their

methods, or for why one method supersedes another.

Open-source SSM tools rely on different modelling approaches and make different as-

sumptions to establish surface correspondence. It is therefore difficult to evaluate the success

of shape models. Davies (2002) suggests that shape models can be intrinsically evaluated

using quantitative metrics representing correspondence quality. However, this method has

been criticised since relevant shape information can be lost whilst retaining strong evaluation

measures (Ericsson & Karlsson, 2007).

1.5 Scope of the Thesis

The scope of this thesis is to improve a clinically applicable statistical shape analysis method-

ology, first developed in Wu et al. (2013), and extended to MRI in Xu et al. (2021), which

would enable rapid, accurate and non-invasive assessment of the degree of PH pathology

based on CMR scanned images. The methodology applied and extended a previously de-

veloped statistical shape analysis method to a new dataset, containing 96 subjects from two

hospitals; University of Pittsburgh Medical Center and Newcastle University.

The particular focus of this work is to determine whether there are specific RV shape

features that differ based on the biological, or population-based characteristics; sex, age and

obesity status, independent of disease-induced changes. This thesis will also assess the robust-

ness of the statistical shape analysis pipeline to four common sources of input discrepancy;

variations to the dataset size, alteration of the anatomical reference points used to orient the

ventricles before the initial parameterisation, assessment of inter and intra-observer variabil-

ity and variation of the degree of recursive gaussian smoothing filter, and determine a new,
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diagnostic procedure for PH, accounting for any population-based features which improve

identification of PH sufferers, based on RV shape features. The thesis will make recommen-

dations for optimal categorisation of PH, based on the results obtained in Chapters 3 and 4.

The scope of the thesis does not extend to the proposition of a definitive diagnostic pro-

cedure for PH. Although recommendations will be made for improving diagnostic success in

a clinical environment, the sample size is not yet sufficient to apply this method directly to a

hospital setting. With the exception of quality of life improvements, adaptations of the code

to combine analyses of new and existing segmentations and several minor fixes, no devel-

opments to the fundamental mathematics or implementation of the statistical shape method

have been made. The scope of this thesis will not include any development of non-linear,

machine learning-based models to assess diagnosis of PH. The available haemodynamic data

differed between the two centres and therefore direct comparisons of certain metrics; specifi-

cally traditional measures of the state of PH in the Newcastle dataset such as PAP and PCWP

were impossible between the cohorts. The RV models in this thesis were segmented in the

short-axis only, as long-axis images were unavailable for the 50 RVs derived from Pittsburgh.

1.5.1 Structure of the Thesis

This thesis is comprised of six chapters.

* Chapter 1 introduces the background to the problem, discusses the thesis scope and

outlines the novel contribution of this PhD.

* Chapter 2 sets out the methodology adopted to produce the results presented in this

thesis. It outlines initial data preparation and describes the statistical shape analysis

and visualisation methods utilised in all data chapters. Methods specific to a given

chapter are described within that chapter.

* Chapter 3 applies shape analysis techniques to a dataset of 96 subjects to determine

whether non-pathological shape features cause measurable differences in right ventric-
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ular shape between dichotomous groups. This chapter also characterises the differences

between groups and plots the mean RVs for each category.

* Chapter 4 determines the robustness of the method when the input data is altered, in-

cluding by increasing and decreasing the size of the input dataset, changing the place-

ment of the anatomical poles and dateline which form the boundary conditions, altering

the smoothing parameters and assesses inter and observer variability.

* Chapter 5 combines the results from the population-based analysis in Chapter 3 and the

robustness analysis in Chapter 4 to establish a diagnostic metric for Pulmonary Hyper-

tension, which takes into account inherent population-based differences. This chapter

also performs an SVM analysis to determine the efficacy of a non-linear model.

* Chapter 6 concludes the thesis and presents recommendations for the application of

statistical shape analysis in a clinical setting.

1.6 Novel Contribution

In this section, novel contributions to the literature derived from the thesis are individually

summarised. Overall, the significant contribution of this work was extension of a proof of

concept shape analysis methodology from Wu et al. (2012) and Xu et al. (2021) to determine

that shape characteristics unique to the natural features; sex, age and BMI exist. The approach

focuses on non-hypertensive individuals, which enabled these unique signatures to be identi-

fied, free from any pathological interactions. The initial analysis incorporated 46 never before

segmented RVs, along with 50 RVs from Xu et al. (2021) to create a new twin-centre dataset;

some healthy, some with generalised hypertension and some with PH. The statistical shape

analysis method was found to be sensitive to methodological attributes; the most significant

shape feature (Mode 1) correlated strongly with the MRI scanning protocol used, and no other

feature. Therefore, there is potential to calibrate the shape analysis procedure to remove arte-
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facts of the technique. Methods which do not change the underlying finite element mesh,

including altering the size of the dataset and the location of the anatomical poles and dateline,

demonstrate the most significant robustness to changes in input. The shape analysis method

was able to separate individuals with PH from those without (including 33 individuals with

generalised hypertension). Accounting for BMI in the model increased the overall classifica-

tion percentage of PH from non-PH, however this result often sacrificed correct diagnosis of

PH, and the percentage gains were achieved from improved identifications of healthy ageing

subjects.

1.6.1 Evaluates the Impact of Non-Pathological Characteristics on RV

Shape

Chapter 3 evaluates the effects of three biological characteristics on RV shape using an anatom-

ically consistent statistical shape model (first developed in Wu et al. (2012) and improved in

Xu et al. (2021)). The analysis outputs a series of ranked features (modes), and a linear com-

bination of these features describes each individual RV, with the amount of each shape mode

exhibited by the modal coefficient.

This chapter examines correlations of mode coefficients to biological features and also

assesses the possibility of separating non-hypertensive RVs into dichotomous groups using

a linear discriminant function; thereby showing, through their mathematical separation, that

there is a difference in overall shape between the groups.

The most important finding is that several non-pathological features affect the shape of the

RV, independent of hypertension. Notably, the MRI scanning protocol used; specifically the

choice of slice thickness, used to create the initial diagnostic images accounted for a significant

shape component. The MRI scanning protocols used are described in Section 2.2. The impact

of scanner was concentrated into a single shape feature, which means that this impact can

be easily isolated and excluded, leaving the biological or population-based shape features.

One benefit related to the potential of extraction of method-based features in this manner is
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that several datasets with disparate origins can be combined and analysed together, and that

there is potential to identify and ultimately calibrate for other shape features introduced by the

procedure.

This chapter identifies that all three biological feature categories tested; male and female

individuals, younger and older individuals (split by the mean age of 60.5 years) and obese and

non-obese individuals (separated by a BMI of 28𝑘𝑔∕𝑚3), demonstrated quantifiable difference

in RV shape. BMI was not subject to age-based correction, as this information was available

only for the Newcastle dataset. The categories were assessed on non-hypertensive subjects, to

ensure that the unique features that were derived exist independently of hypertension. Unique

shape features were identified at both cardiac phases; end-Diastole and end-Systole, as in

all cases, the linear discriminant model was capable of separating the dichotomous feature

groups with greater than 72.5% accuracy. Sex, which was best categorised by coefficient

values for Mode 19 in end-Systolic RVs, and obesity, best described by Modes 20, 11 and 2

at end-Diastole resulted in the most significant impact on RV shape. In each case, the best

combination of shape features could correctly separate RVs 77.5% of the time. The shape

features most prominent in the obese RV showed rounding and hypertrophy. Non-obese RVs

did not show the same hypertrophy, and exhibited enhanced RV curvature. Male RVs at end-

Systole displayed basal flattening, which is similar to that exhibited in hypertensive hearts.

1.6.2 Determines Procedural Constraints Required to Achieve Consis-

tent Shape Features

This thesis assesses robustness of the statistical shape analysis procedure (outlined in Chapter

2). Four targeted perturbations were made to the input; altering the dataset size, altering

the placement of user-identified anatomical location points, including MRI segmentations

by a new observer to compare inter- and intra-observer variability and finally, altering the

stringency of the recursive gaussian smoothing filter. Robustness is examined by assessing

how sensitive the extracted shape features (modes) are to external modification, and also by
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evaluating how sensitive the mode coefficients (or how much of each individual shape feature

is required to reconstruct any given RV).

All four tested interventions derive the same overall mode shapes from the input dataset,

suggesting that the procedure produces an accurate deconstruction. However, the mode co-

efficients are more sensitive to alterations in input value. Changing the dataset size, was the

least sensitive to changes in modal coefficient, followed by changing the image segmentation.

While still robust over the first 13 modes, altering the anatomical reference points for the

harmonic mapping (poles and dateline) was more sensitive. Adjusting the smoothing filter

caused substantial differences in recorded modal coefficient, demonstrating only two statisti-

cally significant correlations.

Overall, the statistical shape analysis method is largely insensitive to changes which do

not alter the underlying RV models. This includes changing the dataset size, and selecting

new anatomical data points. Conversely, the greatest differences occurred in situations where

shape of the models were altered, for example when altering the smoothing filter, or from

scanners using different scanning protocols; particularly those which alter MRI slice thickness

and/or continuity.

Several practical recommendations can be made based on the robustness analysis. Scans

from varying origins can be combined without issue; the specific shape features are contained

within a single mode and can be isolated, as is demonstrated in Chapter 3. Additionally,

dataset size can be altered without substantially changing the modal coefficients, the remain-

ing methodological parameters should remain untouched to ensure the consistency of derived

shape features.

1.6.3 Proposes and Evaluates Approaches to Use the Shape Features to

Predict PH

This thesis explored classification strategies with the aim of providing guidance on how to use

RV shapes in conjunction with biological characteristics to predict the state of PH. Clinically
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accepted shape-based descriptors of PH were identified when the statistical shape analysis was

applied to all 96 subjects. It was possible to separate individuals with PH from the remain-

der of the cohort using a combination of four shape features for end-Diastolic RVs and five

shape features for end-Systolic RVs, thus creating a baseline descriptor. When reconstruc-

tions of these shape features are plotted they qualitatively correspond to medical descriptions

of the effect of PH on the RV described in the literature, including a rounding of the ventricle.

This remains the case despite the inclusion of 46 new subjects of varying ventricular health,

combining two different datasets with varied scanning parameters.

One specific mode in this dataset; Mode 15, consistently correlated with the presence of

PH, and is also associated with BMI. Accounting for BMI in the model increased the over-

all classification percentage of PH from non-PH, however this result often sacrificed correct

diagnosis of PH, and the percentage gains were achieved from improved identifications of

healthy ageing subjects. Age and sex had a substantially smaller impact on predictive models

for PH.

Chapter 5 also briefly explores the possibility of using a non-linear method to predict PH

using RV shape features. Given the complexity of heart shape it was anticipated that a more

complex classification boundary might improve diagnosis of PH. Applying non-linear, ma-

chine learning models (Support Vector Machines) do not improve the classification potential

of the model, and also are more computationally expensive, leading to the conclusion that

linear models are sufficient to predict PH in this dataset.
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Chapter 2

Methodology

The shape analysis framework used in this thesis was developed by Wu et al. (2012) but has

been altered and extended, first by Xu et al. (2021) and then as part of this work. The flow

chart in Figure 2.1 shows the overall workflow. Each step of the process, from image segmen-

tation, registration and meshing to the statistical decomposition and production of results will

be discussed in depth in Sections 2.3-2.9. Given a dataset of medical images, first, a three-

dimensional closed-surface representation of the shape of interest (the human right ventricle)

is segmented or extracted from an MRI image stack. Subsequently, the set of shapes is aligned

using an image registration algorithm, and correspondence is established between hearts by

topologically mapping each shape to a common reference domain. Lastly, the set of mapped

shapes is statistically decomposed to identify a set of common shape features and the corre-

sponding significance of their representation in each shape in the dataset.

2.1 Demographic Information

A total 121 subjects were considered in this thesis; 50 subjects from the University of Pitts-

burgh and 71 subjects from Newcastle University. Of those, 96 were used in the initial statis-

tical shape analysis (Chapter 4), and in the appraisal of a diagnostic metric for PH (Chapter

5). The remaining 25 subjects were considered for robustness tests (Chapter 4). Table 2.1
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Figure 2.1: Flowchart depicting the overall shape analysis workflow which was first established in Xu
et al. (2021) and has been improved upon as a part of this thesis.

Table 2.1: Demographic breakdown of the subjects considered as part of this thesis.

Original 96 121 Total
Sex Female Male Female Male

44 52 54 67
BMI <28 >28 <28 >28

47 48 68 52
Age <60.5 >60.5 <60.5 >60.5

41 55 46 75
Centre Newcastle Pittsburgh Newcastle Pittsburgh

46 50 71 50
Diagnosis PH Non-PH PH Non-PH

33 63 33 88

provides a breakdown of the subjects on the basis of demographics. More detailed subject

information is provided in Sections 3.3, 4.3 and 5.3, the relevant Chapter Methodologies).

2.2 Data Acquisition

Double-blind anonymised haemodynamic patient data was obtained from two institutions;

Newcastle University and the University of Pittsburgh Medical Center (UPMC) . Double-blind

refers to the divorce of meta-data from the images. The UPMC dataset is composed of clin-

ically obtained cardiovascular magnetic resonance (CMR) images from patients who under-
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Table 2.2: A comparison of the scanning protocols employed at the Newcastle and Pittsburgh MRI
centres.

Feature UPMC Newcastle
Coil Channels 32 6
Slice Thickness 6mm 8mm
Slice Skip 4mm 0mm
Phases per R-R 25 30
Flip Angle 51◦ 40◦

Matrix 256×144 256×256
FOV 270mm 350mm
TE 1.11 ms 3.7∕1.9ms

went both CMR and right heart catheterisation. Images were obtained using a 1.5T Siemens

Magnetom Espree machine equipped with a 32-channel cardiac coil. Standard breath-held

cine imaging was acquired with steady-state free precession in the short-axis orientation, span-

ning base to apex. Image stacks were taken in 6mm thick slices, skipping 4mm between each

slice. Typical imaging parameters included 30 phases per R-R interval, matrix 256 by ∼ 144,

flip angle 51◦, TE= 1.11 ms, acceleration factor 3. MRI images were extracted at two distinct

cardiac phases for each patient; end-Diastole and end-Systole. Figure 2.2 shows examples of

an end-Systolic RV and an end-Diastolic RV in the short axis orientation. At end-Systole,

the RV is at its most contracted, and the muscular ventricle wall is thicker, whereas at end-

Diastole, the RV is relaxed, the cavity volume is greater and the muscular wall is thinner.

The Newcastle University dataset formed part of an ageing study. Images were acquired

using a 3T Philips Intera Achieva scanner. A dedicated 6-channel cardiac coil (Phillips) was

used to obtain a stack of balanced, breath-held, steady-state free precession images in the

short axis view. 14 slices were taken over 25 phases with a slice thickness of 8mm and a 0mm

inter-slice gap. FOV = 350mm, TE= 3.7∕1.9ms, turbo factor 17, flip angle 40◦, resolution

1.37, temporal duration ∼ 40ms per phase, dependent on heart rate.

Steady-state free-precession refers to an MRI pulse sequence that is commonly used to
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(a) (b)

(c)

Figure 2.2: Top-down, cross-section illustration of the shape of the ventricles in a healthy patient
which shows the contractile pattern at a) end-Systole and b) end-Diastole. The location of the dateline
on this slice is marked by an arrow. This slice is located at the widest point. c) Provides an alternative
view, which shows the location of these cross-sections in the heart.
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image tissues. ‘Steady-state’ refers to the fact that the magnetic signal produced by the tissues

remains constant over time, and free-precession to the fact that the signal precesses ‘freely’

(like a spinning top) in response to the magnetic field applied by the scanner. There are a

series of alternative pulse sequences available, and the choice of pulse sequence is related to

the specific imaging goals, the type of tissue being imaged and the presence of certain medical

conditions.

The matrix size is the number of frequency encoding steps (in one direction) and the

number of phase encoding steps in the other direction of the image plane. When all other

factors remain constant, increasing the number of frequency encodings or the number of phase

steps improves the image resolution. The frequency encoding depends on how rapidly the

scanner samples the free-induction-decay signal. Increasing the sampling rate does not cause

a time penalty, but increasing the number of phase steps results in a proportional increase in

image acquisition time. Hence, in breath-held MRIs for symptomatic patients, the number of

phase steps is reduced to ensure patient comfort. The magnetic resonance echo containing the

frequency- and phase-encoded spatial information which is necessary to construct a cardiac

image is decomposed using a Fourier transform.

K-space is a mathematical representation of the raw data collected during an MRI scan.

It is a 2D or 3D grid in which each point represents a unique combination of mathematical

gradients applied during a scan. During MRI, a strong magnetic field is applied to the patient’s

body which causes protons in the tissues to align with the magnetic field. Subsequently, a

sequence of radio-frequency pulses is used to manipulate the alignment of those protons,

which generates a complex signal containing information about the tissues being imaged.

The information encoded within this complex signal is then encoded into k-space using

magnetic field gradients. Each point in k-space represents a different combination of the mag-

netic field gradients applied during the scan. The amplitude and phase of the signal at each

k-space point represents the amount of signal coming from different spatial locations. After

the data is collected in k-space, it is transformed into an image using a Fourier transform. The
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complex signal at each point in k-space is therefore transformed into a corresponding pixel in

the final image. The shape and size of k-space determines the resolution and contrast of the

final image. The Field of View (FOV) is the size of the area covered by the matrix. Dividing

the FOV by the matrix size defines the in-plane voxel size: decreasing the FOV improves im-

age resolution, whereas increasing the FOV in either direction increases the size of the voxels

and decreases image resolution.

Slice thickness determines voxel depth. The slice thickness is almost always the largest

dimension of the voxel in 2D imaging. The resolution perpendicular to the image plane is

the poorest. This factor relates to the maximum strength of the z-gradient coils as well as

time constraints, and limits the number of slices available. 3D imaging using z-direction

phase encoding is capable of smaller slice thickness than 3D imaging but again carries a time

penalty proportional to the number of slices taken.

2.3 Segmentation

Segmentation is the process of creating a mask to partition particular regions of an image. RV

surfaces were obtained by manually segmenting short-axis images of the RVES. Boundaries

were decided in consultation with a combination of short-axis and long-axis image stacks in

the case of the UPMC images, however long-axis images were not available for the Newcastle

University image data.

Surfaces were segmented by hand to ensure that the most anatomically accurate represen-

tations of RVES shape were segmented within the constraints of the medical image quality.

Image segmentation was performed in ITK-SNAP (Yushkevich et al., 2016), using the

polygon tool to accurately select points along the endocardial surface, tracing the shape of

the RV. This procedure is depicted in Figure 2.3 and an example completed trace of a single

slice is depicted in Figure 2.4a. ITK-SNAP outputs a metaimage (.mha) file which retains the

selected region of interest in addition to a fixed slice-depth related to the MRI slice thickness.
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Figure 2.4b demonstrates how a 2D selection on each slice produces the overall 3D model,

by incorporating slice thickness. The 2D selection made in ITK-SNAP is shown in red, and

the green segments illustrate how the 2D slice is extended downwards to produce a basic 3D

representation of the RV. Newcastle segmentations were undertaken by the author, whereas

Pittsburgh segmentations were part of a pre-existing dataset and were performed by summer

student Erin Sarosi. All segmentation was overseen by the same trained cardiologist to control

for quality and the segmentation process was blind to population and haemodynamic data.

The endocardial surface was chosen over the epicardial surface for segmentation owing to

the relatively higher contrast of the blood-tissue boundary layer, which makes the inner wall

easier to identify on MRI images, and therefore leads to a more accurate surface extraction.

This was particularly important at end-Diastole when the ventricle was fully relaxed and the

features of interest were most difficult to distinguish. Manual segmentation was used to give

the most accurate surface representations of ventricular shape, within the constraints of MRI

image quality. Other similar shape analysis studies use semi-automatic segmentation (Mauger

et al., 2019; Leary et al., 2012) to save processing time, however, at the time of writing the

semi-automatic methods available required such a significant amount of manual intervention

to accurately segment the human RV, that an entirely manual approach appeared superior.

Despite careful attention to accuracy during the segmentation process, the reliance on short-

axis images, especially in the University of Pittsburgh dataset which was generated using a

4mm skip MRI scanning protocol, leaves a small possibility that the scan was curtailed before

the apical slice resulting in the tip of the apex being missed. The Newcastle University MRI

scans were filtered to ensure total RV coverage, so this issue was less prevalent.

2.4 Mesh Generation

Closed 3D surfaces of each heart surface were obtained by creating a mask to isolate the seg-

mented surface, resampling the slices to even the pixel spacing to 1x1x1mm using Nearest
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Figure 2.3: Screenshot of segmentation slice at end-Diastole for a subject from the University of
Pittsburgh dataset. Selections are made in the short-axis orientation using the polygon tool in ITK-
SNAP.

(a) (b)

Figure 2.4: Description of the segmentation process. a) Screenshot of segmentation slice at end-
Diastole. Selections are made in the short-axis orientation using the polygon tool in ITK-SNAP. The
point used for dateline selection is marked in white. b) A 3D graphic of the selections made for each
slice, taken from ITK-SNAP but coloured green to differentiate the 2D slice selections from the 3D
volume. The RV is oriented with the septal wall facing into the page to emphasise how the RV slices
contours selected as part of the relate to the 3D representation. Depth is defined by the MRI slice
thickness. The imaging planes are labelled x, y and z.
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(a) (b)

Figure 2.5: a) an example input RV at end-Diastole, from a non-Hypertensive RV from the Newcastle
Dataset. This segmentation shape is exported from ITK-SNAP, where the initial segmentation as a
.mha file, which is then imported into the commercial software package Simpleware. This figure is a
direct screenshot from ITK-SNAP, and is equivalent to the graphic shown in Figure 2.4b). b) output of
the same RV from Simpleware. At this stage, the RV has been smoothed using a discrete Gaussian filter
and converted to a triangular FE mesh in .inp format, ready for import into ABAQUS FE Software.

Neighbour interpolation and smoothing the interpolated surfaces using a standard recursive

Gaussian filter within the commercial imaging software package Simpleware ScanIP (Syn-

opsys Ltd., Exeter, UK). The nearest neighbour interpolation algorithm is a relatively simple

method of resampling an image by assigning the value of the nearest pixel in the original

image to the corresponding pixel in the new image.

A 𝜎3 smoothing filter was selected to strike the balance between introducing unwanted

artefacts of the 3D model and removing too much material, leading to an inaccurate model.

Internal cavity volume measurements were also taken from Simpleware at this stage. The 3D

finite element models of each ventricular surface are saved as Abaqus input (.inp) files.

2.5 Anatomical Boundary Selection

Four reference points on the RV mesh were chosen as boundary conditions; the north and south

poles, the dateline and the west elements, with the aim of making the analysis anatomically

consistent across the dataset.
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During the harmonic mapping step (described in Section 2.7), each mesh is mapped to the

unit sphere such that the location of the pulmonary valve (the valve that separates the top of

the RV from the pulmonary artery) aligns to the north pole of the sphere and the apex (located

at the bottom of the chamber and which describes the region where all the walls converge) is

positioned at the south pole of the sphere. The north and south poles form the endpoints of the

third selected region; the dateline. As shown by the red line on the example mesh in Figure

2.6, the dateline traces the anterior border between the free wall and the septum of the RV.

The dateline is the split-line during the calculation of spherical coordinates and represents the

boundary between 0 and 2𝜋 radians. Finally, the west elements are selected (those on the left

hand side of the border), which denote the direction of the split.

The location of the poles and datelines were selected manually using ADAMCUS (Leach,

2019) to ensure that the most anatomically accurate representation was obtained. Each region

was selected with reference to the MRI stacks in ITK-SNAP, and the location of the anterior

border was identified in each slice, however exact placement was limited by the location of

the nearest node on the mesh. The apex is defined with respect to the left ventricle, and, as

the RV sits at an oblique angle relative to the LV, it should be noted that the most basal part

of the ventricle is not always at the very tip (which can be observed in Figure 2.6).

ADAMCUS is custom-made software written in the Godot game engine (version 3.2.1)

which was developed in consultation with the author. The author has also made minor quality

of life improvements to the original code, such as the addition of a reset button.

ADAMCUS imports the Abaqus .inp files which were saved in Section 2.4. These are data

files in ASCII format which define the mesh geometry by describing elements and nodes.

ADAMCUS provides a user interface which enables the user to select and save the poles,

dateline and west elements, ready for downstream analysis.

ADAMCUS saves separate text (.txt) files containing the nodes and elements which make

up the 3D surface, as well as the selected poles, dateline and west-elements. ADAMCUS

determines the dateline by calculating the distance between the selected north and south pole,
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Figure 2.6: A graphical representation of the unit sphere is displayed on the left in addition to an
example FE mesh which represents the input into the harmonic mapping step. The sphere is annotated
to indicate the localisation of the north pole, which corresponds to the pulmonary valve during the
harmonic mapping and the south pole, which corresponds to the RV apex. The line joining them
represents the dateline. The dateline, north and south poles are also labelled on the FE mesh to
confirm the location of these anatomical regions.

and plotting a hamiltonian line with the shortest path between nodes. The user is able to define

midpoints through which the dateline must pass, giving finer control over final path selection.

Figure 2.7 demonstrates the user interface for the selection of the two poles, dateline and west

elements.

2.6 Image Registration

An Iterative Closest Point (ICP) rigid registration algorithm (Bergstroem & Edlund, 2014) was

applied in MATLAB to align the set of RV shapes and remove the effects of organ-level size,

orientation and position from the shape analysis. This was achieved by rotating, translating

and scaling the point clouds against a template heart. The template RV for image registration

was taken as the first Systolic heart (Newcastle, age 50, non-hypertensive), and all RVs were

aligned to this surface.

The template heart was centred prior to registration by finding the mean x, y and z coor-

dinates and then subtracting those from each point. Before the ICP algorithm was applied,

point clouds were first scaled using RV mesh volumes taken from Simpleware ScanIP. Each

point cloud was scaled relative to the volume of the template RV, after the resampling and
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Figure 2.7: User-interface of ADAMCUS, the specialised software designed to select anatomical ref-
erence points for mapping. The red sphere is used to select the North pole, the blue sphere to select
the South pole. The yellow sphere is used to select any number of midpoints to guide the dateline.

smoothing stages had taken place. ICP iteratively fits the data to the template by minimising

the sum of square errors between the closest template and data points. Figure 2.8b demon-

strates a successful alignment using the ICP algorithm. The ICP algorithm determines a [3x3]

rotation matrix (R) and a [3x1] translation vector (T) which aligns each RV surface to the tem-

plate in the following way: the registered data = R × point cloud + T. A manual correction

was applied by the author to minimise the difference between the two pulmonary valves and

apexes in cases where this was not achieved using the ICP algorithm. In the most disparate

RVs, the closest mathematical match between the point clouds did not orient the ventricles

anatomically (e.g. Figure 2.8a). In Figures 2.8a and 2.8b the template RV is depicted in blue

and the registration candidate is depicted in orange.
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(a) (b)

Figure 2.8: Point clouds depicting example outputs in success and failure of the ICP rigid registration
algorithm. a) Example failure of the iterative closest point algorithm to match correct anatomical
points before manual correction. b) Example of a successful iterative closest point matching. Manual
correction was not required in this case.
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(2.1)

Equation 2.1 shows the rotation matrix used to manually rotate heart surfaces in 3D space

to find the closest correspondence between apex and pulmonary valves.

2.7 Topological Mapping

A harmonic mapping method (as described in Wu et al. (2012)) was applied to create a cor-

respondence between all RVES shapes in the dataset. The harmonic mapping approach takes

advantage of the fact that the closed RVES surface is topologically equivalent to a sphere

(genus-0) to enable each RVES to be uniquely mapped to the surface of a unit sphere. The

term genus refers to the number of “holes” an orientable surface has. The correspondence
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between any 3D location on the surface of a given heart mesh and the 2D location on the unit

sphere is determined from the solution to the following two Laplace’s equations (shown here

in the theoretical form), which give the spherical coordinates, 𝜃 (latitude) and 𝜙 (longitude):

∇2𝜃(𝑥⃗) = 0, ∀ 𝑥⃗ ∈ Ω𝑘 ∇2𝜙(𝑥⃗) = 0, ∀ 𝑥⃗ ∈ Ω𝑘 (2.2)

where Ω𝑘 ⊂ R3 is the kth continuous, 3D, non-overlapping closed RVES surface domain

and 𝑥⃗ are the standard Cartesian coordinates with respect to the origin, for the given heart sur-

face. This method was chosen because of its ability to maintain high anatomical consistency.

The problem is discretised using the finite element method to approximate solutions defining

the shape using the nodal values and associated element interpolation. The harmonic mapping

requires at least two reference points, the north pole (Γ𝑛) and south pole (Γ𝑠) for the latitude

mapping, and an additional reference line, referred to as the dateline (Γ𝑑), for the longitude

mapping. These define the boundary conditions for the Laplace’s equation.

The dateline represents the line where the longitude passes 360°(2𝜋 radians) and therefore

has a non-unique mapped value on the sphere. In other words, the nodes with a longitude of 0

and a longitude of 2𝜋 have the same value. To solve this, the surface is cut along the dateline

and ‘unwrapped’ to create two independent, non-overlapping boundaries (and disjoint values

of 0 and 2𝜋): an east dateline (Γ𝑑) and a west dateline (Γ𝑜
𝑑). The values of the spherical

coordinates along these reference lines are assigned as:

𝜃 = 0, ∀ 𝑥⃗ ∈ Γ𝑛, 𝜃 = 𝜋, ∀ 𝑥⃗ ∈ Γ𝑠, (2.3)

𝜙 = 0, ∀ 𝑥⃗ ∈ Γ𝑑 , 𝜙 = 2𝜋, ∀ 𝑥⃗ ∈ Γ𝑜
𝑑 . (2.4)

Standard finite element analysis (FEA) through the commercial FEA software ABAQUS

was used to solve the Laplace’s equations for each RVES. To do this, each segmented RVES
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was converted into a continuous non-overlapping mesh of linear triangular membrane ele-

ments using Simpleware (described in Section 2.4), and an in-house script was used to identify

the values of 𝜙 or 𝜃 corresponding to the given boundary conditions (Equations 2.3 and 2.4

respectively) for each of the two respective finite element analyses (to solve the two Laplace’s

equations in Equation 2.7). Specifically, static heat transfer analyses with unit conductivity

were used within ABAQUS, with the temperature field providing the distribution of 𝜙 and 𝜃

from the analyses, with their corresponding boundary conditions as applied temperature. Note

that element size was determined to be sufficient through mesh convergence with representa-

tive examples in prior work (e.g. Wu et al., 2013). The nodal values of 𝜙 and 𝜃 throughout

the meshes were then exported for further processing.

After mapping, the one-to-one correspondence can be inverted, which involves swapping

the geometrical and field parameters, replacing the nodal coordinates with the 𝜙 and 𝜃 values

and replacing the vector field with the original spatial coordinates (x, y and z) for each node.

Therefore, any given RVES (𝑥⃗ ∈ Ω𝑘) can be described continuously as a shape function, with

respect to a common domain for all surfaces:

𝑥⃗ = 𝑥⃗(𝜃,𝜙), ∀𝜃 ∈ [0,𝜋] and 𝜙 ∈ [0, 2𝜋]. (2.5)

The position vector on the RVES becomes a three-dimensional vector of real-valued func-

tions, representing points in cartesian space, over the spherical coordinates, 𝜙 and 𝜃. As such,

every RVES in the dataset can be compared in a quantitatively consistent manner. Figure 2.9

shows example output of the harmonic mapping process, plotted on the RV shape. Figure 2.9a

displays the latitude mapping (i.e. solving for 𝜃) and 2.9b displays the longitude mapping (i.e.

solving for 𝜙).

Figure 2.10 shows the spherical coordinates plotted on a 2D grid, after the harmonic map-

ping process has taken place. The longitude (𝜙) is plotted on the x axis and the latitude (𝜃) on

the y axis. Each point on the RV mesh is now represented by a (𝜃, 𝜙) coordinate. It is apparent

that a higher density of points exists around the equator than at the poles (along the horizontal
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(a) (b)

Figure 2.9: Exemplar results from the latitude and longitude shape mappings using Laplace’s equa-
tions. a) Latitude shape mappings for Patient 11 at end-Diastole. Note the North and South Poles are
included in this analysis. b) Longitude shape mappings for Patient 11 at end-Diastole. Note that the
split occurs at the dateline. North and South poles are removed from this analysis.

edges). To correct this and to develop a finer resolution for the purposes of statistical decom-

position, a linear interpolation was performed to plot points on a 400x200 grid. The input grid

refers to the mesh intersection points. This grid size was selected as it was sufficiently small

to capture the variations between mappings while also giving the elements a fixed square size

in the (𝜙,𝜃) domain. Each interpolated RVES is comprised of 80,601 points in total. Figure

2.11 shows an example coordinate mesh after interpolation

2.8 Statistical Decomposition

The Proper Orthogonal Decomposition (POD) method was applied to statistically decompose

shape features. POD is a well-established technique that allows a higher-dimensional system

to be approximated by a low-dimensional one. It involves finding the dominant patterns, or

modes, that describe the variability in the data, and then re-representing the data using a

smaller number of these modes. The modes are a linear combination of orthonormal basis

functions which capture the most important features of the data. The POD modes are ranked

in order of their contribution to variability in the data; the first few modes capture the largest

variability, while the lower order modes capture progressively smaller amounts of variability
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Figure 2.10: Example 2D mapped x coordinate mesh before interpolation. There is a higher density
of points around the equator than the poles. The x axis represents longitude coordinates, ranging from
0 to 2𝜋 radians and the y axis represents latitude coordinates, ranging from 0 to 𝑝𝑖 radians.

Figure 2.11: Example 2D-mapped x coordinate mesh after interpolation. The interpolation step places
these points on a regular 400x200 grid. The x axis represents longitude coordinates, ranging from 0
to 2𝜋 radians and the y axis represents latitude coordinates, ranging from 0 to 𝑝𝑖 radians.
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(Chatterjee, 2000).

POD can also, interchangeably, be referred to as Principal Component Analysis (PCA).

However the term POD is used in this application to the continuous form of the mapped

shape function (as defined here by the finite element nodal values and associated element

interpolation), in comparison to the finite optimal axes associated with PCA output. The

form of decomposition applied assumes that any shape function from the dataset could be

decomposed as follows:

𝑥⃗𝑘(𝜃,𝜙) = 𝑥⃗𝜇(𝜃,𝜙) +
𝑚󳴇
𝑖=1

𝑎𝑘𝑖𝜈𝑖(𝜃,𝜙), (2.6)

where the translation function, 𝑥𝜇 is the mean of all RVES shapes, and 𝑎𝑘𝑖 is the real-valued

coefficient that approximates the 𝑘𝑡ℎ shape function with the 𝑖𝑡ℎ mode, 𝜈𝑖. POD identifies the

basis (i.e modes) that minimises the average of the 𝐿2-norm of the difference between each

dataset and the best approximation of the dataset using that basis. This leads to the following

optimisation problem:

min
𝑣𝑖(𝜃,𝜙)𝑚𝑖=1

⟨󳵀󳵀𝑥⃗𝑘(𝜃,𝜙) − 𝑥⃗∗
𝑘(𝜃,𝜙)󳵀󳵀

2
𝐿2
⟩, (2.7)

where 𝑥⃗∗
𝑘(𝜃,𝜙) is the best approximation to 𝑥⃗𝑘(𝜃,𝜙) through Equation 2.6, which can be

obtained using the projection operator.

The method of snapshots was applied to form the following 𝑚-dimensional eigenvalue

problem, where𝑚 is the number of RVES shapes in the dataset, which can be solved to identify

the set of POD modes.

1
𝑛

𝑛󳴇
𝑘=1

𝐴𝑗𝑘𝐶
(𝑖)
𝑘 = 𝜆(𝑖)𝐶 (𝑖)

𝑗 (2.8)

where

𝐴𝑗𝑘 = 󳔾
2𝜋

0 󳔾
𝜋

0
(𝑥⃗𝑗 − ⃗̄𝑥) ⋅ (𝑥⃗𝑘 − ⃗̄𝑥) sin(𝜃)𝑑𝜃𝑑𝜙 (2.9)
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Figure 2.12: Example cumulative modal energy curve corresponding to each of the shape modes
included in the analysis. The eigenvalue corresponding to each mode is a measure of the relative
contribution of that particular shape feature to the overall RV shape when reconstructing all shapes
in the dataset. The two dotted red lines indicate the number of modes which cover 90% and 99% of the
total modal energy respectively.

and

𝐶 (
𝑘𝑖) = 󳔾

2𝜋

0 󳔾
𝜋

0
𝑝𝑘(𝜃,𝜙)⋅ (2.10)

The eigenvalue corresponding to each mode is a measure of the relative contribution of that

particular shape feature to the overall RV shape when reconstructing all shapes in the dataset.

Therefore, a typical rule is to consider the modes with the largest corresponding eigenvalues,

such that the summation of the eigenvalues of the created modes is in the range of 99% of the

total sum of all eigenvalues in the set. The statistical decomposition was performed using the

FEniCS suite of packages (Logg et al., 2012; Logg & Wells, 2010).
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2.9 Output and Visualisation

The process to visualise the 3D shapes of the POD modes was the reverse of the process

to produce patientsthe 2D shape functions (Equation 2.5) from the 3D RVES meshes and

mapping results. The geometric and field parameters were simply swapped again so that the

nodal coordinates of the mode were replaced by the x, y and z field coordinates.

As described in Section 2.8, the POD shape analysis produces a mean RVES shape. Each

RVES can be reconstructed from this mean RV plus each shape mode (feature) multiplied by

some coefficient which represents the ‘amount’ of each shape contained in any given individ-

ual’s RV. The output can be interpreted qualitatively, by plotting the mean shape ± any given

shape mode or quantitatively by using statistical metrics to determine correlations between

those shape features and biological metrics. Equation 2.11 describes how the reconstructions

are formed from the mean RV ± each coordinate multiplied by 2 × the standard deviation of

the range of modal coefficients for each mode.

𝑥⃗𝜇(𝜃,𝜙) ± 𝑥⃗𝑖(𝜃,𝜙) ∗ 2

󳴦∑
𝑘(𝑎𝑘𝑖 − 𝑎̄𝑘𝑖)

𝑁

2

(2.11)

Figure 2.13 gives a graphical representation of the qualitative mode reconstruction, using

the mean and the first four modes as examples.

This method is used to derive mode shapes and coefficients in the three subsequent data

chapters (Chapters 3, 4, 5). Any chapter-specific variations to the methodology are discussed

in their respective Methodology sections (Sections 3.3, 4.3 and 5.3).
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Figure 2.13: Example qualitative reconstructions of the mean RV ± 2 × SD, used to visualise each
shape feature.
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Chapter 3

Evaluation of Population-Based

Differences in Ventricular Shape

3.1 Introduction

The RV of the human heart exhibits quantifiable shape variation between individuals, both

genetic and in response to environmental factors (Mauger et al., 2019). Cases where shape

changes are indicative of pathology have been well documented, especially when related to

cardiopulmonary disease. It has long been recognised that RV shape alters in response to

variations in pressure and volume loading.

However, natural variation in heart shape which is not indicative of pathology or related to

an impairment in function is poorly understood. It is hypothesised that variations in RV phe-

notype are also affected by benign genetic and environmental factors such as sex, geographic

region and age, and that novel correlations also exist between such demographic features and

RV shape. Shape variation attributable to a broad spectrum of demographic characteristics

and risk factors is likely to play an important role in modulating the cardiovascular response

to disease and therefore can be crucially integrated into a predictive metric for detecting car-

diopulmonary disease. The impact of three main phenotypes will be examined in this chapter:
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sex, obesity (as defined by a Body Mass Index (BMI) of > 28𝑘𝑔∕𝑚2) and age (as defined by

an age greater than the group mean of 60.53 years).

RV remodelling most often involves changes in size, wall thickness and regional curvature

(Addetia et al., 2018) but can also be represented by changes in sphericity and eccentricity.

Understanding of natural variation in right ventricular shape has been hampered by technical

difficulties with RV imaging and RV geometry estimates (Walker & Buttrick, 2013) owing to

the RV’s anatomical intricacies. As described in detail in Section 1.2, the RV shape is very

complex in contrast to the conical LV. It is triangular when viewed from the front and curves

over the LV, whereas when viewed in cross-section, as in short-axis MRI scans, its appearance

is crescent shaped (Ho, 2006).

There are inherent distinctions in RV shape between the sexes (as noted by Tandri et al.,

2006; Kawut et al., 2011). However, there is very limited literature comparing RV shape

in healthy individuals. With the exception of Addetia et al. (2018), the literature is focused

on shape changes as part of a disease state. Lakatos et al. (2020) examined the effects of

sex amongst other demographic factors, on RV motion in healthy volunteers. Past studies

have described superior RV systolic function in healthy females (Martínez-Sellés et al., 2015;

Keen et al., 2021) which persisted even after adjustment for body size and left ventricular

function (Tandri et al., 2006; Kawut et al., 2019). In the Multi-Ethnic Study of Atherosclero-

sis (MESA), a prospective study of men and women aged 45-84 years old who were screened

to be clear of cardiovascular disease, it was found that men have 8% higher RV mass (p <

0.001) and 7% higher ventricular volumes (p < 0.001) (Kawut et al., 2011), where relation-

ships where characterised by bivariate and multivariate linear regression. Men also have lower

RV ejection fractions (absolute decrease of 4%, p < 0.001) as determined by CMR. This trend

was consistent across all ethnic groups (Caucasians, African Americans, Hispanics and Chi-

nese Americans) and mirrors the trend observed in the left ventricle in both volume (Salton et

al., 2002) and ejection fraction (Chung et al., 2006). A recent collaboration between Queen

Mary University of London, the University of Barcelona and the University of Southamp-

58



CHAPTER 3. POPULATION-BASED DIFFERENCES 3.1. INTRODUCTION

ton (Raisi-Estabragh, 2020; Cetin et al., 2020) used CMR to assess the LV structure of 667

healthy individuals (309 men and 358 women) from the UK Biobank Imaging study. Male

heart muscle was found to be dominated by coarser textures, whereas the female ventricle was

predominated by finer muscle grains. The same study also identified significant differences in

overall shape, including larger heart surface area in male hearts even after controlling for body

size. Sex-based differences in heart shape became less prominent with increasing age, while

texture differences persisted across all age groups (45-54, 55-64, 65-74) and were most pro-

nounced in the oldest individuals. Addetia et al. did not identify any inter-gender differences

in regional curvature (Addetia et al., 2018).

RV shape differences are magnified in several RV-centric diseases which can have im-

portant prognostic implications. Studies of heart failure patients have consistently found a

survival benefit in females, which is more pronounced in ischaemic patients (those with re-

duced blood flow to the heart as a result of partial or complete blockage of the coronary

arteries) and that this effect is explained by the RV (Jacobs et al., 2014). One of the best-

researched sex based divergences in the RV is related to survival in idiopathic Pulmonary

Arterial Hypertension (PAH). Although the incidence of hypertension is greater in female pa-

tients, the survival rates far exceed that of their male counterparts. A pair-matched controlled

study to characterise right ventricular shape differences in patients with idiopathic PAH found

that when correcting for both age and sex, RV mass tended to be higher in female individu-

als (Swift et al., 2015). These findings indicate that the female RV with PAH undergoes the

same, if not more hypertrophy than male ventricles. Moreover, some interesting recent anal-

ysis (Tello et al., 2020) documents that women with PAH have improved RV contractility

and RV-pulmonary artery coupling; women have an effective median arterial elastance [Ea]

of 0.85 compared with 0.52 in male subjects. Pulmonary effective arterial elastance is the

ratio of RV end-Systolic pressure and stroke volume, better described in Brener, Burkhoff,

and Sunagawa (2020), and represents a concise overview of both steady and pulsatile compo-

nents of the arterial load. Females also exhibit a better RV response to medical therapy which
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further contributes to their improved survival.

Female LVs adapt to pressure overload differently, exhibiting more prominent concentric

(rather than eccentric) remodelling (Kuch et al., 1998). They also suffer a more profound

response to hypertension and obesity than men. There is reasonable evidence to suggest that

sex hormones directly modulate RV function in PAH, and that this is a contributing factor to

the differing responses between the sexes. Keen et al. (2021) report links between oestrogen

(the main female-predominant sex hormone), testosterone (the main male-predominant sex

hormone), and dehydroepiandrosterone (a precursor for multiple sex hormones in both males

and females) with RV dysfunction. Rider et al. (2015) found that obese subjects show sex-

specific differences in right ventricular hypertrophy. However, in this study (n=739), there

was no correlation between end-Diastolic volume and BMI in men. Some interaction effects

between the shape and function-related impacts of various characteristics are evident.

Obesity is a known risk factor for cardiovascular diseases as higher body mass increases

cardiac workload by increasing total blood volume and cardiac output (Sokmen et al., 2013).

Sokmen et al. (2013) examined RV shape change in obese, but otherwise healthy, young adults

(<40 years) using echocardiography and tissue Doppler imaging. This study found that obe-

sity was associated with RV and right atrial dilatation, indicated by increased diameter and

increased RV free wall thickness. Isolated obesity is associated with subclinical impairment

in RV function at both end-Systole and end-Diastole, and with dilatation of right cardiac

chambers in young, otherwise healthy subjects. These unfavourable changes were more pro-

nounced in severely obese subjects and appear linked to the degree of obesity. Chahal et al.

(2012) also investigated the relationship between obesity and RV structure and function using

patients from the MESA RV study (mean age 61.5 years). RV mass and volumes were greater

in overweight and obese participants compared with lean ones (6% greater in overweight and

14% greater in obese) after adjusting for other demographic factors and LV mass.

Right ventricular ejection fraction (RVEF) showed an inverse relationship to both waist

circumference and waist to hip ratio both before and after adjusting for left ventricular ejection
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fraction (LVEF) (i.e. larger waist circumference was associated with poorer RVEF). Ejection

Fraction (EF) is a measure of cardiac efficiency and represents the percentage of blood pumped

out of a filled ventricle with each heart beat. A normal LVEF is around 50-70%.

They report results that were independent of body size indicators, such as height and the

corresponding LV parameter, and therefore conclude that the relationship between obesity

and RV morphology cannot solely be attributed to the presence of morbidities such as hyper-

tension or diabetes (Chahal et al., 2012). Danias et al. (2003) used CMR to identify a similar

relationship in a cohort of 25 obese men and 25 slim men (mean age approximately 30 years)

and argued that a relationship between elevated RV mass, end systolic volume and end dias-

tolic volume indicated that obesity was independently associated with RV remodelling. The

results from Danias et al. (2003) on the other hand did not persist after accounting for height,

although this effect could be related to the relatively small sample size. Various studies have

therefore revealed conflicting data regarding the effects of obesity on the RV and much still

remains unknown about RV structure and function variations in obese subjects (Chahal et al.,

2012; Wong et al., 2006; Otto et al., 2004; Yildirimturk et al., 2011). Sphericity (associated

with a width to height ratio) is known to be associated with adverse remodelling processes in

both asymptomatic populations and patients with cardiovascular disease. Mauger et al. (2019)

identified that increases in the sphericity shape mode were found in patients with obesity and

angina.

There is a substantial overlap of size based RV parameters with those detected in patho-

logical conditions which makes evaluation of the normal effects of increased size challenging.

D’Andrea et al. (2014) noted this while assessing RV adaptive remodelling in highly trained

athletes. The main changes associated with exercise are cardiac enlargement with preserved

compliance and contractility and an increase in free wall thickness. The same authors had

previously described a disproportionate load on the RV during exercise.

The heart has a tendency to undergo structural changes as individuals age. The majority

of analysis of age-related shape change is conducted on the left ventricle (e.g. Kuch et al.
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(1998)). For example, Strait & Lakatta (2012) describe the significant structural change in

the heart and vasculature associated with ageing. Such changes include arterial stiffening,

leading to increased systolic and pulse pressure; an increase in myocardial thickness as a

result of increased cardiomyocyte size and an increase in the size of the various changes. The

heart’s overall shape transitions from elliptical to spheroid (Strait & Lakatta, 2012) because of

an asymmetrical change where the interventricular septum is affected more than the free-wall

(Hees et al., 2002). However, there has been some recent studies which focus specifically on

the RV. A community-based cohort study found that subclinical RV dysfunction was present

in nearly one fifth of elderly individuals (mean = 76 years, STDEV = 5) (Nochioka et al.,

2018). After adjustment for a series of factors including age, sex and ethnicity, it was found

that each 5% decrease in RVEF was associated with a 20% increase in hazard for death or

hospitalisation for heart failure (Nochioka et al., 2018).

Addetia et al. (2018) used 3D echocardiography to derive curvature indices for shape anal-

ysis in healthy individuals with the aim of facilitating future 3D echocardiographic study of

adverse remodelling in the right ventricle. In previous work (Addetia et al., 2016), this group

have described the action of RV contraction as “bellows-like” . They found no statistically

significant difference in curvature between genders, but that in older subjects (here classified

as ⩾ 55 years of age) the RV free wall and RV outflow tract were flatter. They also found

that the inflow tract became less flattened and the apex less pointed during the transition from

diastole to systole and concluded that these changes are related to increased stiffness of the

RV in older subjects. One study observed a slight but significant decrease in end-systolic and

end-diastolic volume, associated with a significant increase in LVEF and RVEF as patient

age increased (Fiechter, 2013). Changes in ventricular structure and function attributable to

the ageing process may play an important role in modulating the cardiovascular response to

disease (Innelli et al., 2008). Innelli et al. (2008) also evaluated the influence of age on RV

tricuspid annulus measurements in a population of healthy subjects and proposed reference

values across various age bands, split by decade. Exclusion criteria for this study were: smok-
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ing and history of any acute or chronic cardiopulmonary disease.

The central hypothesis of this work is that multiple physical traits of an individual are

encoded within the shape of their RV, and that the effects of these traits on RV shape can be

measured and isolated. It follows, therefore, that natural (or non-pathological) variations can

be discriminated from pathological variations.

Taking the framework established by Wu et al. (2013) for statistical shape analysis of the

RV, the aim of this study is to evaluate a dataset of clinically obtained CMR images from two

centres and assess correlation of shape features extracted from the RV to a range of demo-

graphic measures, including subject sex and age as well as the centre they were assessed in. It

was hoped that shape information associated with the origin of the subjects could be isolated.

The flowchart in Figure 3.1 demonstrates the analytical steps conducted in this Chapter in

order to identify key shape features which differ between populations. Section 3.3.1 describes

the clinically obtained CMR dataset, Section 3.3.2 briefly details the methodology of the

statistical shape analysis, while Section 3.4 presents and discusses the shape analysis results,

along with a linear discriminant investigation of the uniqueness of specific RV features, in

relation to their separation potential. This is followed by concluding remarks.

3.2 Aims and Hypotheses

This chapter will investigate the following hypotheses:

1. A measurable difference will exist in RV shape, as measured by modal coefficients

between the two datasets (Newcastle and Pittsburgh).

2. Differences between groups will be most pronounced at end-Diastole, owing to greater

coverage by the MRI scanner.

3. There will be no significant difference in shape between male and female RVs, as mea-

sured by the ability to categorise individuals using Linear Discriminant Analysis, since

63



3.2. AIMS AND HYPOTHESES CHAPTER 3. POPULATION-BASED DIFFERENCES

Figure 3.1: Flowchart describing the shape analysis workflow
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the POD method removes the effect of size and volume. There will be no fundamental

shape difference between the sexes once size is controlled for.

4. A measurable difference will exist between RVs in the young and old groups, based on

evidence that there is a less pronounced sex-based difference in older patients. This is

suggestive of shape features that are specific to the ageing hearts.

5. There will be a significant shape difference observed across all groups when a form

analysis is undertaken. However, this will relate to the inclusion of RV volume (‘size’).

Notably, because the end-Systolic and end-Diastolic phases are decomposed together,

leading to two different morphs per individual.

3.3 Methodology

The overall statistical shape analysis process used to determine key shape features is detailed

in Chapter 2, and summarised in Figure 3.1. To briefly recapitulate, first short-axis MRI scans

are manually segmented, and then smoothed and meshed to produce 3D finite element models

of the RV shape. Each model is scaled and then registered to a common reference using an

ICP algorithm. The RV shape models are topologically mapped to the unit sphere using a

harmonic mapping process, thus creating a unique shape function for each RV. The complete

set of shape functions are then statistically decomposed using POD to determine and rank a

set of shape features (i.e. modes and corresponding coefficients from decomposition). Having

derived these modes and coefficients, the modal coefficients can be utilised to determine which

shape features are significant to the patient population.

At the same time, an exploratory form analysis (Dryden & Mardia, 1998; Mitteroecker

et al., 2013) was also undertaken (considering both shape and size) to assess whether the

inclusion of volume-related information, in addition to shape, made an impactful difference

to the ability to discriminate between traits. The form analysis included an additional step at

the ICP registration, which removed the mesh scaling effects after centring had taken place.
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3.3.1 Population Characteristics

Ninety-six individuals at two phases were used in this study (n=50 from UPMC and n=46

from Newcastle University) giving a total of 192 heart shapes. There were 44 females and

52 males in the cohort. The mean BMI was 28.7 (SD 7.42) and the mean age was 60.53.

Healthy and remodelled RVs were decomposed together as part of this dataset, and similarly

both end-Systole and end-Diastole were included in the statistical decomposition. The bene-

fit of including both phases in the statistical decomposition is to allow the potential isolation

of phase-independent shape features. Similarly, to understand the nature of the dataset, and

therefore identify disease-specific shape features, the POD modes must capture a range of

diseased and healthy features, and decomposing both phases together increases the number

of shape features included in the total analysis, and produces a neutral mean. Analysis of

the mode coefficients is undertaken separately for each phase, so that specific Systolic and

Diastolic features can be identified, however these could be combined to give a better overall

picture of ventricular shape throughout the motion of the heart cycle. Despite different load-

ings at the two cardiac phases, the POD method should identify and capture these features as

part of its dimension reduction.

Tables 3.1 and 3.2 give some descriptive statistics, including mean, median and standard

deviation of the 96 subjects included in the statistical shape analysis. From Table 3.1it is evi-

dent that the BMI was higher in male individuals than female (29.7, vs 27.7), and was higher

in individuals below mean age compared to those above mean age (30.3 in subjects younger

than 60.5 years compared to 27.6 in subjects greater than 60.5 years). Mean BMI was also

greater in the Pittsburgh cohort as compared to Newcastle (30.3 vs 27.1). The most pro-

nounced difference in mean BMI was between Hypertensive subjects and non-Hypertensive

subjects (31.2 vs 25.4).

All factors were characterised as dichotomous variables. Age was defined as those above

or below the mean age (60.53 years). Obesity was defined as those who are clinically over-

weight (BMI of > 28𝑘𝑔∕𝑚3). Groups were selected to align with medical literature, while en-
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Table 3.1: Descriptive statistics based on subject BMI. BMI statistics are reported for a series of di-
chotomous categories: the two sexes (female and male), those below and above average age (based
on an age threshold of 60.5 years), between the two centres (Newcastle and Pittsburgh) and between
healthy and diseased subjects (Hypertensive and Non-Hypertensive). These descriptive statistics in-
clude all 96 subjects, regardless of hypertensive or non-hypertensive status.

BMI F M Age < 60.5 Age > 60.5 Newc Pitt Non-Hyp Hyp
Mean 27.7 29.7 30.3 27.6 27.1 30.3 25.4 31.2
Median 25.7 28.3 28.6 26.8 26.7 28.9 24.8 30.7
St Dev 7.88 6.96 9.19 5.64 4.88 8.90 4.27 8.27
Min. 15.0 19.9 18.8 15.0 18.9 15.0 18.81 15.0
Max. 58.3 61.3 61.3 39.1 38.0 61.3 36.3 61.3

Table 3.2: Descriptive statistics based on subject age. Age statistics are reported for a series of di-
chotomous categories: the two sexes (female and male), those below and above average BMI (based on
a BMI threshold of 28𝑘𝑔∕𝑚3), between the two centres (Newcastle and Pittsburgh) and between healthy
and diseased subjects (Hypertensive and Non-Hypertensive). These descriptive statistics include all
96 subjects, regardless of hypertensive or non-hypertensive status.

Age F M BMI < 28 BMI > 28 Newc Pitt Non-Hyp Hyp
Mean 59.0 61.0 63.1 57.9 63.6 57.7 59.0 61.7
Median 59.9 63.0 61.7 60.0 61.4 60.1 60.2 63.4
St Dev 10.8 14.6 10.3 15.0 8.47 15.5 11.3 14.0
Min. 34.3 18.4 27.7 18.4 50.4 18.37 27.7 18.4
Max. 79.5 80.0 79.5 80.0 80.0 79.2 79.2 80.0
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suring that the groups remained roughly equal in size. Correlation was assessed using Pearson

Product-Moment correlation coefficients for continuous variables and Point Biserial correla-

tions for categorical variables. The Pearson coefficient is given by:

𝑟𝑑𝑓 =
∑

(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)
√∑

(𝑥𝑖 − 𝑥̄)2
∑

(𝑦𝑖 − 𝑦̄)2
, (3.1)

and assigns a value between -1 and 1, where 0 indicates no correlation, 1 is total positive

correlation and -1 is total negative correlation. 𝑥𝑖 represents the initial mode coefficient values

in a test (the results obtained in Chapter 3), 𝑦𝑖 represents the comparison mode coefficient

values, .̄ represents the mean of those groups and df represents the number of degrees of

freedom, where df = n-2.

All exploratory analysis was performed using IBM SPSS 27 (IBM, Armonk NY), while

Figures were produced using ggplot2 (Wickham, 2016); R version 4.1.2 (2021-11-01).

3.3.2 Statistical Analysis

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) (Fisher, 1936) was applied to the mode coefficient values

produced using POD (procedure described in Section 2.8) to build classifiers which attempt

to separate RVs based on their population characteristics.

LDA is a dimensionality reduction technique; it helps to reduce high dimensional data onto

a lower dimensional plane. Although their aims are similar, LDA approaches dimensionality

reduction in a different way to Principal Component Analysis (PCA)/ POD (the technique used

to derive the shape features in this thesis). Figure 3.2 shows a simplified diagram to emphasise

how LDA works in comparison to PCA in its achievement of dimensionality reduction. LDA

performs well as a classification tool, since it takes labelled groups, and maximises variance

between those groups. In other words, LDA searches for those vectors in the underlying space
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Figure 3.2: A comparison between PCA and LDA projections. PCA maximises the variance of all
values, whereas LDA maximises the distance between individual groups, thereby enabling separation
of values into pre-defined categories. Figure adapted from Muraleedharan (2021)

that best discriminate among classes, rather than those vectors which best describe the data.

On the other hand, PCA maximises the variance of all values in a dataset, by choosing new

axes for the dimensions. The new axes are an orthogonal projection into lower dimensional

space and most clearly separate the groups, i.e. the data is rotated in such a way as to align the

directions in which the data is most spread out with the principal axes of the graph. This is a

useful tool for dimensionality reduction in most cases, and is used to derive the shape modes

earlier in the methodology, but as those separations do not necessarily fall across desired group

boundaries, PCA is not an efficient tool for classifying labelled data (Martinez & Kak, 2001).

LDA can be described mathematically in the following way. Given the set of 𝑘 samples

(in this case mode shapes), 𝑚1,𝑚2, ...,𝑚𝑘 where each sample is represented by 𝑎 features (con-

taining an individual modal coefficients for each subject) 𝑎𝑘𝑖1 , 𝑎𝑘𝑖2 ...𝑎𝑘𝑖𝑛 , where each sample

contains 𝑎𝑘𝑖𝑖 belongs to one of c classes, 𝑦1, 𝑦2, ...𝑦𝑐 . In this Chapter, each class is a dichoto-

mous feature, for example above and below mean age. The goal of LDA is to find an 𝑎󳶡-

dimensional feature space, where 𝑎󳶡 < 𝑎, and where the classes are well separated. This is
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achieved using a three step process. The first step is to calculate the separability between dif-

ferent classes (i.e. the difference between the means of the different classes); this is known

as the between-class variance. The second step is to calculate the distance between the mean

and the samples of each class, which is called the within-class variance, and the third step

is to construct the lower dimensional space which maximises the between-class variance and

minimises the within-class variance.

As a first step, the mean vectors are computed for each class:

𝜇𝑗 =
1
𝑛𝑗

𝑛𝑗󳴇
𝑖=1

𝑎𝑘𝑖𝑖 (3.2)

for 𝑗 = 1, 2...c, where 𝑛𝑗 is the number of samples in class 𝑗. The second step is to compute

the within-class scatter matrix:

𝑆𝑊 =
𝑛𝑗󳴇
𝑗=1

(𝑎𝑘𝑖𝑖 − 𝜇𝑗)2 (3.3)

and then the between-class scatter matrix, which represents the distance between the mean

of the 𝑖𝑡ℎ class (𝜇𝑖) and the total mean (𝜇):

𝑆𝐵 =
𝑐󳴇

𝑗=1
𝑛𝑗 ∗ (𝜇𝑗 − 𝜇)(𝜇𝑗 − 𝜇)𝑇 (3.4)

where

𝜇 = 1
𝑛

𝑛󳴇
𝑖=1

𝑎𝑘𝑖𝑖 (3.5)

and

𝑛 =
𝑐󳴇

𝑗=1
𝑛𝑗 (3.6)

Compute the eigenvectors of the scatter matrices:
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𝑆 (−1)
𝑤 ∗ 𝑆𝑏 ∗ 𝑊 = 𝜆𝑊 (3.7)

where W is a matrix of eigenvectors, and 𝜆 is a diagonal matrix of eigenvalues.

Select k eigenvectors, where k is c-1, and form a new feature space:

𝑍 = 𝑊 𝑇 ∗ 𝑋, (3.8)

where X is a matrix of feature vectors in the original feature space. Then it is possible to

use the new feature space for classification. For example, given a new sample x, compute its

feature vector in the new feature space, 𝑍 = 𝑊 𝑇 ∗ 𝑥, and assign it to the class whose mean

vector is closest to it in the new feature space.

Implementation Strategy

Cumulative modal energy was plotted to determine the number of shape and/or form modes

which accounted for 99% of the total shape variation. These modes were taken forward for

further analysis. Preliminary tests applied LDA to the modal coefficients (derived in Equation

2.6) obtained for all non-Hypertensive individuals using the modes which accounted for the

first 99% of the cumulative total modal energy, and which met the cutoff threshold.

Each preliminary test identified the five shape modes/features with the largest standardised

structure matrix coefficients, i.e. those factors with the highest correlations to the discriminant

function. Each element of the structure matrix is the correlation between a predictor variable

(or mode number in this analysis) and a discriminant function, after adjusting for the correla-

tions between the predictor variables. The larger the absolute value of an element, the stronger

the correlation between that variable and the corresponding discriminant function. The struc-

ture matrix therefore provides a valuable method of identifying the most important modes,

based on their ability to separate the RVs (modal coefficient values) into the demographic

groups specified in the input. The discriminant function in LDA is a linear combination of
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the predictor variables which defines a hyperplane separating the groups in p-dimensional

feature space, where p is the number of predictor variables.

Five modes were selected in particular, as up until the fifth mode, adding in a factor to the

LDA model improved discrimination between groups, however, after adding in a sixth mode

as a factor there was no improvement in the ability of the LDA model to discriminate between

groups, indicating that five modes was sufficient to capture the salient modes in separating the

majority of dichotomous variables. A second round of LDA was then applied using subsets

of these five modes to find the combination which gave the best classification result.

In many cases creating the initial LDA model caused over-fitting (near perfect class separa-

tion on the training data, with chance performance on the test data). Overfitting is a commonly

reported drawback of the LDA process (e.g. Luo et al., 2011). In high dimensions LDA has

a tendency towards overfitting as the computations rely on the inversion of the within-class

covariance matrix. For high dimensional matrices, inversion is a sensitive operation that can

only be reliably performed if the estimate of within-class covariance is very accurate. In high

dimensions, it is much more difficult to obtain a precise estimate of within-class covariance,

and in practice, far more datapoints than dimensions are required, otherwise the within-class

covariance matrix will be almost singular (the eigenvalues will be very low), which will cause

overfitting.

To reduce the impact of overfitting, the initial LDA results were used to identify five

modes with the largest standardised structure matrix coefficients, i.e. the modes with the

strongest correlations to the discriminant function. A second round of LDA was then applied

testing every combination, and all subsets, of the top five modes to find the combination which

gave the best classification result. The linear classifier was then applied to the remaining 56

hypertensive subjects to observe how the separation changes when subjects with a disease

known to change RV shape are introduced. Separate classifiers were produced for hearts at

end-systole and end-diastole. The success of this classifier was compared to a separate LDA,

generated using the 56 hypertensive subjects.

72



CHAPTER 3. POPULATION-BASED DIFFERENCES 3.3. METHODOLOGY

Results are displayed by reporting the highest successful separation percentage after leave

one out cross-validation, and by plotting the density of LDA function value against dichoto-

mous variable group. Leave one out cross-validation operates by splitting the dataset into a

training set and a testing set, using all but one observation to form part of the training set. The

model is then used to predict the response value of the single observation that has been left

out, and calculate the mean squared error:

MSE = 1
𝑛
󳴇

(𝑦𝑖 − 𝑓 (𝑥𝑖))2 (3.9)

where 𝑛 is the total number of observations, 𝑦𝑖 is the response value of the 𝑖𝑡ℎ observation

and 𝑓 (𝑥𝑖) the predicted response value of the 𝑖𝑡ℎ observation. The closer the prediction is to

the observation, the smaller the mean squared error. This process is then repeated for each

subject in the dataset, leaving out a different observation from the training set each time. The

test mean squared error is taken as the average of all the leave one out tests:

Test MSE = 1
𝑛
󳴇

𝑀𝑆𝐸𝑖 (3.10)

where 𝑛 is the total number of observations in the dataset and MSE𝑖 is the test MSE for

the 𝑖𝑡ℎ iteration of fitting the model. Leave one out cross-validation is implemented in SPSS

(IBM, Armonk NY).

Qualitative images of the effect of key modes were also produced by plotting a 3D mesh

of the mean heart and adding each mode eigenvector multiplied by the coefficient of the in-

dividual with the most extreme positive and negative LDA function values for the population

characteristic in question.

3.3.3 Qualitative Reporting

The combined qualitative impact of shape modes on subject RVs was visualised by plotting

the overall mean RV shape (encompassing both healthy and diseased subjects) plus the modal
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Figure 3.3: Labelled diagram of the RV, depicting the septal wall, free wall, apex and base regions
and the position of the dateline.

coefficients of the RV identified as having the most ‘extreme’ discriminant function value (i.e.

the most positive and the most negative).

Discriminant function values are derived from the linear combination of factors (the se-

lected Mode coefficients) and their canonical weightings, as determined by the LDA. As such,

the greatest negative value will be held by the RV that most closely resembled the character-

istics. The discriminant function values were ranked, and the largest and smallest numbers

were selected. 3D models were created by multiplying the modal coefficient values held by

that RV for the salient modes.

General trends in RV shape across categories were determined by plotting group means.

3D visualisations were created by plotting the non-hypertensive mean, created from 40 non-

hypertensive RVs in addition to individual subgroup means, which were displayed alongside

the overall mean. Mean values are calculated by averaging x, y and z coordinates separately

over each point (80601 locations) for each individual included in the required category (e.g.

58 non-obese RV shapes, as end-Systole and end-Diastole are plotted together). The x, y and

z co-ordinates were then plotted in 3D space to produce mean RV shapes.

Figure 3.3 shows a labelled diagram of the RV, which depicts various terms used to de-

scribe shape change throughout this Chapter. The septal and free wall are marked, in addition

to the apex and basal regions.
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Figure 3.4: Cumulative modal energy corresponding to each of the 192 shape modes and form modes
decomposed from their respective POD decompositions. Shape modes are depicted by white circles
and form modes by black squares. Dotted lines mark the number of modes required to cover 90% and
99% modal energy, respectively. 7 shape modes and 7 form modes cover 90% of the cumulative modal
energy, whereas 30 shape modes and 28 form modes cover 99% of the cumulative modal energy.

3.4 Results and Discussion

3.4.1 Modal Decomposition

Figure 3.4 shows the cumulative modal energy of the 192 modes (snapshots) obtained from

the statistical shape analysis and form analysis procedures. Recall that Form Analysis in-

cludes volume information, as well as shape information. The modal energy represents the

summation of the eigenvalues up to the specified number, divided by the sum of all 192 eigen-

values produced from the modal decomposition in both tests. The eigenvectors are a ranked

representation of the variance in the dataset, and the corresponding eigenvalues are ordered

from highest to lowest.

As is typical, based on the cumulative modal energy, a relatively small number of modes
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are required to capture the shape variation present in the dataset of the RVES of 96 subjects at

end-systole and end-diastole. Only the first 7 modes are required to capture over 90% of the

cumulative modal energy and the first 30 modes capture 99% of the total modal energy. The

form analysis results share a similar energy profile with the decomposition into shape modes;

again only the first 7 modes are required to capture over 90% of the cumulative modal energy,

and the first 28 modes capture 99% of the cumulative modal energy (Figure 3.4). The first

mode in the form analysis covers a smaller percentage modal energy than the first mode in the

shape analysis (36.5% vs. 42.5%).

Heimann and Meinzer (2009) comment that a good model should be able to capture 90%

of the total variance in the training set with less than 12 modes. The objective of the shape

analysis is to search for shape features that uniquely describe specific subject characteristics,

such as age and sex, regardless of their importance to the overall reconstruction of the shape.

Therefore, it was necessary to consider more modes than strictly needed to accurately recon-

struct the ventricle shape, even if such modes represent a relatively small component of that

overall shape. In this study, the first 30 modes were selected for further evaluation. Compared

with previous statistical shape analysis procedures performed by this group (Xu et al., 2021)

which required just 15 modes from 100 snapshots to capture 99% of the shape information,

important shape features are more widely distributed across the earlier modes. This delo-

calisation or dilution of features is perhaps related to the two different scanners and centres

which make up the dataset. Variance in scanner settings, could result in a separate set of shape

features being identified for each half of the dataset.

3.4.2 Modal Coefficient Correlation with Traits

The heatmaps in Figure 3.5 present key Pearson correlation results when shape modal co-

efficients are correlated against subject characteristics. Modal coefficients are derived from

Equation 2.6, and represent the ‘amount’ of a given shape mode (eigenvalue) contained within

any given individual’s RV. The absolute correlation is given, and only rows containing statis-
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(a)

(b)

Figure 3.5: a) The absolute values of the magnitude of the Pearson correlation coefficient between each
of the first 30 modal coefficients corresponding to the end-Diastole shape and subject characteristics.
b) The absolute value of the magnitude of the Pearson correlation coefficient between each of the first 30
modal coefficients corresponding to the end-Systole shape and subject characteristics. Exact Pearson
values are reported for correlations that exceed 0.2. Only rows containing statistically significant
values have been included in the analysis.
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Figure 3.6: A. shows the magnitude of Mode 1 values superimposed on the mean RV (in both free-wall
and septal view). Red areas indicate areas with the greatest motion and blue areas indicate areas with
no motion. B. shows the mean RV shape ± 2 × SD of the modal coefficient of Mode 1 (𝑥𝜇𝑘𝑖) added
and subtracted from the mean. This mean is a composite of end-Systolic and end-Diastolic RVs, and
therefore contains phase information.

tically significant results are reported for ease of interpretation. Exact coefficient scores are

reported for coefficients which exceed 0.2. Several Modal Coefficients correlated with sub-

ject characteristics: for example, Mode 10 correlates with ejection fraction and end-diastolic

volume at end-diastole (𝑟94 = 0.36 and 𝑟94 = 0.43, respectively) and Mode 21 correlates with

Sex at end-Systole (𝑟94 = 0.34). Mode 1 coefficient correlates with subject dataset only. This

contrasts with the other modes, which all associate significantly with a much wider array of

factors as might be expected, given the heterogeneous nature of ventricle shape.

Mode 1 is more strongly correlated to dataset than any other factor tested at both end-

Systole (𝑟94 = 0.419, 𝑝 = 0.000) and end-Diastole: (𝑟94 = 0.654, 𝑝 = 0.000) (Figure 3.5). This

finding, in conjunction with the fact that the only other significant association with Mode 1

is a weak positive correlation with height (𝑟94 = 0.232, 𝑝 = 0.024) (a factor which itself does

not significantly correlate with dataset), suggests that the relationship is largely explained by
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factors related to the analysis procedure. Figure 3.6 shows the mean right ventricle produced

from this dataset and the mean RV ± the modal coefficient of Mode 1 multiplied by two times

the standard deviation of coefficients. This method of reporting shape change is beneficial,

because it the modal coefficient is a measure of the ‘amount’ of Mode 1 experienced by each

RV in the dataset. Therefore, using this value ± 2 × SD gives an accurate representation of

the shape features encoded by that mode, exaggerated for visualisation purposes in a way that

aligns with the variance in the dataset (see Section 2.9 for a more detailed description). It can

be observed qualitatively from this figure that increasing the Mode 1 coefficient is congruent

with an elongation of the right ventricle, and with an increase in captured detail at the apex

of the ventricle.

The scanning protocol in Newcastle used 8mm slice thickness, skipping 0mm between

slices, whereas the Pittsburgh scanner protocol was 6mm skipping 4mm. Figure 3.7 indicates

that RVs from the Newcastle dataset have a higher Mode 1 coefficient (mean = 20.2, SD =

4.86) than subjects in the Pittsburgh dataset (mean = -8.87, SD = 4.38). This information,

together with the fact that adding Mode 1 to the mean RV leads to greater detail at the apex,

and a longer, thinner body overall, whereas removing Mode 1 results in a rounder RV with

less detail at the apex, suggests involvement of MRI scanner and/or scanning protocol. The

continuous scans performed on the individuals in the Newcastle dataset (i.e. with no skipped

geometry between slices), would ensure that the apex is captured in the scanning window in a

greater number of subjects. This is also suggested by the longer shape, as more of the ventricle

is covered. The longer RV when Mode 1 is added to the mean (depicted in Figure 3.6) also

explains the weakly significant correlation with height, as a taller subject possibly suggests a

longer RV.

As the relationship is explained by the experimental procedure, no further conclusions can

be drawn about the impact of nationality or related anthropological measures on the shape of

the RV. Moreover, as shown in Figure 3.8, the strength of the relationship is such that it is also

the highest ranked shape mode in a form analysis, where heart volume was not controlled in
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Figure 3.7: A box plot showing the distribution of Mode 1 coefficients for the end-Diastolic RVES shape
between subjects scanned in Newcastle and those scanned in Pittsburgh. RVES from the Newcastle
cohort exhibited larger, positive Mode 1 coefficient values, whereas Pittsburgh RVES exhibited lower,
negative coefficients. The horizontal bars represent the mean.

the analysis.

Having established one strongly significant subject-related factor from the Pearson Corre-

lation coefficient analysis, there were a series of other notable correlations: for example Mode

10 with volume-related measures at end-Diastole, and Mode 21 with sex at end-Systole, al-

though none of these were as singly nor as strongly associated with one subject-related factor.

Clearly, interactions between several shape modes are of importance. To further explore these

promising but complex, shape-based correlations, the next step was to use LDA to produce

a function which maximises the separation between dichotomous groups using combinations

of the modes. It is important to note that the higher modes contain very little energy (often

less than 1% of the cumulative energy), and although they may contain a clear shape signal,

their variance may be less than other uncertainties, for example the accuracy of the initial

segmentation.

Exploratory Pearson correlations were performed using RVs from all 96 subjects included
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Figure 3.8: The first two shape features produced as output from Form Analysis, where the RVES
shapes were not scaled. The top (blue) shows Mode 1 results from Form Analysis, where the left hand
is the mean RVES shape + 2 × SD of modal coefficients and the right hand side shows the mean - 2
× SD of the modal coefficients. The bottom (green) depicts Mean Mode 2 result from Form Analysis.
The left hand side shows the mean + 2 × SD of Mode 2 coefficients and the RHS shows mean - 2 × SD
of Mode 2 coefficients. Both mode effects are shown in the septal view. Mode 2 is clearly a volume
related mode, and Mode 1 is a scanner related to shape feature.
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Table 3.3: Classification scores (% accuracy) of the best overall mode combinations for separating
BMI, age and sex categories. The best combination of modes, identified using LDA, is reported for
each characteristic and cardiac phase. The percentage accuracy after cross-validation is reported in
the ‘Score’ column. The ‘Hyp’ column notes the percentage accuracy when the same LDA discrimi-
nant function, used to generate the accuracy score, was applied to hypertensive subjects only, and the
‘Applied Modes’ column reports the percentage accuracy of a new LDA, conducted on the hypertensive
individuals.

Characteristic Phase Best Combination Score Hyp Applied Modes
Sex Diastole 6, 23 72.5 53.6 60.7
Sex Systole 19 77.5 53.6 42.8
Obesity Diastole 20, 11, 2 77.5 54.5 61.8
Obesity Systole 15, 16, 6; 15, 29, 16 & 16, 13, 20 72.5 47.2 36.4
Age Diastole 6, 3, 13; 6, 3, 2 & 6, 13, 17 75.0 44.7 64.3
Age Systole 9, 5 & 9, 18 72.5 48.2 57.1

in the statistical decomposition. However, to clearly identify whether a shape signal exists

without any co-morbidity associated with hypertension, LDA was applied to non-Hypertensive

subjects in the first instance. Having examined whether population-based modes impact RV

shape, the discriminant function was then applied to hypertensive individuals, in order to

determine whether any population based shape differences were also observable in diseased

subjects.

3.4.3 Linear Discriminant Analysis

Relationship of Sex to Ventricular Shape

Table 3.3 reports the best overall combinations, in terms of percentage accuracy, of modes

(LDA features) to classify non-hypertensive subjects based on the three main characteristic

groups. As referenced in the Methodology (Section 3.3), all subjects were decomposed to-

gether in the initial POD, but the resultant mode coefficients were assessed separately both

for end-Systolic and end-Diastolic RVs, and for non-hypertensive and hypertensive groups.

The best overall mode combination for separating 40 non-hypertensive subjects by their cat-

egorised sex at end-Diastole used Modes 6 and 23, as determined by the ability of an LDA

model constructed from these features to separate the groups. This combination was able
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to separate the sexes with 72.5% accuracy after cross-validation. Table 3.3 also shows that

applying the same linear discriminant function (also referred to as model) generated using

these modes to the remaining 56 hypertensive individuals achieved 53.57% accuracy in clas-

sifying hypertensive subjects at end-Diastole. To further isolate the impact of specific shape

features, independent of adverse remodelling associated with hypertension, the model was

subsequently applied to the two hypertensive sub-categories (subjects with PH and those with

generalised hypertension). In this case, the model was 52.17% accurate when separating 23

hypertensive subjects and 54.54% accurate when separating the 33 individuals with PH. Thus,

there is no difference in the model’s aptitude for assessing pulmonary hypertensive subjects

as opposed to generalised hypertensive individuals.

At end-Systole, Mode 19 alone was best classifier of sex and able to separate 77.5% sub-

jects into the correct categories. Applying the cut-off to hypertensive individuals achieved

53.6% separability. Creating a new model directly on the 56 hypertensive subjects was less

successful still; separating just 42.8% of individuals. When the original model was assessed

on the two sub-categories of hypertensive RV, it was apparent that Mode 19 was most effective

at separating the 23 individuals from Newcastle: 65.2% of these subjects were successfully

separated using the model, whereas only 45.5% of individuals with PH were successfully sep-

arated. These facts taken together point to the fact that Mode 19 is especially prevalent and

able to separate individuals of different sexes in Newcastle individuals, but that this effect is

not observed to the same extent in subjects from Pittsburgh. As the modes are ranked in order

of their contribution to the total shape energy, Mode 19 alone contributes just 0.16% of that

total modal energy. Nevertheless, its over-emphasised importance to RV separation by sex,

suggests that this mode in particular is a strong contributor to that shape.

Figure 3.9 a) shows the combined qualitative impact of Modes 6 and 23 on the shape of

the RV. This visualisation is produced from the decomposition of the entire 96 subject dataset,

including diseased subjects. Of these, the left-most RV is composed of the mean heart plus the

combined coefficients of a subject that is at an extreme LDA function value (in other words,
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‘the most female’) and the right RV exhibits the extreme LDA function value for male subjects.

The combined effect of Modes 6 and 23 indicates a rounding out of the ventricular free wall

in women, and a flattening of the same region in men. In particular, end-Diastolic male hearts

show a flattened basal surface, and then a dipped region in the free-wall (see Figure 3.3 for a

depiction of these regions). There is also a notch at the apex in females. The rounding effect

observed in male individuals is also seen in diseases such as PH (Wu et al., 2012), whereas this

effect is not as noticeable in female RVs. The shared effect may mask sex-based differences

in hypertensive subjects and explains why separation is less successful when applying the

model to hypertensive individuals. Analysis in Chapter 5 of this thesis further explores the

relationship between hypertension and sex. The RHS of Figure 3.9 shows the impact of Mode

19 on RVs in the two categories. The left of these images indicates the qualitative effect of

adding the Mode 19 coefficient of the female RV with the greatest absolute LDA discriminant

function score to the mean RV, whereas the right image shows the impact of adding the mode

19 coefficient of the male RV with the greatest absolute discriminant score to the mean. It is

notable that, at end-Systole, it is the female RV that experiences notching, and that this occurs

further down the free-wall, away from the base, whereas the male RV exhibits the triangular

bulge shape. The seemingly ‘swapped’ shapes could be indicative of an earlier contraction

phase in female RVs.

Table 3.3 demonstrates that, when the same modes were used to create a new LDA model

specifically trained on hypertensive subjects, the separation was somewhat more successful.

This model was able to separate subjects with 60.7% accuracy. These findings suggest that

Modes 6 and 23 are able to separate subjects when hypertension is introduced as a factor,

although not as successfully as when trained only on non-hypertensive individuals. This re-

sult is unsurprising given the clear shape features associated with hypertension (observed in

Xu et al., 2021), which are likely to overpower any sex-specific impacts. Finally, the same

algorithm was used to identify Modes and create a new LDA model, specifically trained on

all 56 hypertensive subjects. The overall best separator of sex at end-Diastole used Modes
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Figure 3.9: A. the qualitative impact of Modes 6 and 23; the best modes for separating non-
hypertensive RVES shapes by sex at end-Diastole, as determined by the LDA analysis. B. the impact of
Mode 19; the best mode at end-Systole, as determined by LDA. The left-most RV shape on both sides
depicts the modal coefficients of the most extreme LDA function value for a female RV plotted on the
mean (which includes healthy and diseased subjects) and the right side shows the same but for a male
individual. The RVs are orientated with the septal wall facing out of the page.

17, 24, 13 and 8. which was 76.8% accurate after cross-validation. Figure 3.10 b) shows that

the best combination for splitting hypertensive subjects results in increased septal curvature

in female subjects, and that male individuals exhibit slight septal flattening and also flattening

in the mid to basal region of the free wall.

Comparing the modes that best separate sex in non-hypertensive individuals with those

that best separate in those who are hypertensive indicates that the shape of the female ven-

tricle is broadly similar in both cases, but that the male heart exhibits a flatter septal wall in

hypertensive right ventricles.

The overall best mode combination for separating the 56 hypertensive individuals at end-

Systole used Modes 6, 17 and 3 and was 75.5% effective after cross-validation. Figure 3.10

shows that in hypertensive RVs, female individuals have a noticeably rounder free wall region

compared to male individuals. This region is central between base and apex.

Figure 3.11 displays the overall mean RV, the mean male RV and the mean female RV.

This figure is produced with the intention of comparing the statistical shape analysis recon-

structions to real life counterparts. Here, the mean male RV (encompassing both systolic and
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Figure 3.10: A. the qualitative impact of Modes 17, 24, 13 and 8; the best modes for separating the
56 hypertensive RVES shapes by sex at end-Diastole. The female RV at end-Diastole exhibits greater
rounding of the septal wall, indicated by the double-headed arrow, whereas a flattening is seen in the
same location in male RVs, which is illustrated by the two crossed arrows. Basal flattening in the male
RV is also indicated by an asterisk. B. the impact of Modes 6, 17 and 3; the best modes at end-Systole.
At end-Systole, the female RV exhibits basal bulging, marked by ’+’, and the male RV displays basal
flattening marked by an asterisk, and emphasised by the arrow. The left-most RV shape on both sides
depicts the modal coefficients of the most extreme LDA function value for a female RV plotted on the
mean (which includes healthy and diseased subjects) and the right side shows the same but for a male
individual. The RVs are orientated with the septal wall facing out of the page.

Figure 3.11: The mean RVES shape of all female RVs (in yellow), the overall mean RVES shape (in
blue), and the mean male RVES shape (in red). These qualitative depictions contain both end-Systolic
and end-Diastolic shape information. The mean female RVES displays greater septal wall curvature,
whereas the mean male shape is flatter in the same region.

diastolic shapes) and the mean female heart were separately plotted to examine notable vari-

ations in shape features across the groups as a whole. The annotated plots show the same

shape patterns as those illustrated in the statistical shape analysis, thus adding credence to

the statistical shape analysis methodology in determining key features associated with demo-

graphic descriptions. Figure 3.11 clearly illustrates the flatter septal wall shape in male RVs
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Figure 3.12: Density plots showing the separation of LDA function values between male and female
subjects. Female RVES shapes are depicted in pink, and male RVES in blue. A. shows the function
value density at end-Diastole (using Modes 6 & 23) and B. shows the function value density at end-
Systole (Mode 19). At both cardiac phases, there is a clear split peak between the sexes.

compared to female RVs, and the mean female right heart displayed a smaller overall mean

shape (despite the initial registration algorithm controlling for volume), which indicates more

that the male ventricle bulged out in these areas, and also exhibited a slight flattening, or “drop

off" in the basal region. Conversely, male hearts have a slight bulge in this same region. The

effect can also be seen in the density plots at end-Systole and end-Diastole (Figure 3.12). In

both cases, there is clear separation between the peak female LDA function score and the peak

male function score, with the male score being largely concentrated above 0 and the female

score largely concentrated below 0. At end-Diastole (Modes 6 & 23), the female peak density

is greater indicating a smaller distribution of female LDA function values, and at end-Systole

(Mode 19), the male peak density is greater.

All non-hypertensive subjects can be separated with over 70% accuracy, which indicates

that there is a clear difference in RV shape between males and females. This evidence is
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further corroborated in Figure 3.11 where the effect of subject sex on ventricular shape can

be observed qualitatively.

Relationship of Obesity to Ventricular Shape

Figure 3.13: 3D plots of the mean RV and the effect of obesity-related modes on RV shape in non-
hypertensive RVs. A. the qualitative impact of Modes 20, 11 and 2; the best modes for separating RVES
shapes by obesity at end-Diastole in non-hypertensive subject. The RHS shows that three combinations
of Modes, A. B. C. separated by obesity at end-Systole with equal success when all combinations of
the top five modes were tested. The left-most RV shape on both sides depicts the modal coefficients of
the most extreme LDA function value for a subject with BMI>28 plotted on the mean (which includes
healthy and diseased subjects) and the right side shows the same but for subjects with BMI<28. At
end-Diastole, the obese RVES shapes exhibit significant hypertrophy. At end-Systole, the non-obese
RVs show greater septal curvature. The RVs are orientated with the septal wall facing out of the page.

Individuals were separated based on a BMI cut-off of 28𝑘𝑔∕𝑚3. This value falls at the cen-

tre of the “clinically overweight” category (Eveleth, 1996). The best combination for separa-
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tion at end-Diastole was Modes 20, 11 and 2, which was able to separate subjects with 77.5%

accuracy after cross-validation (Table 3.3). Successful separation fell to 54.5% when apply-

ing the same model to 56 subjects exhibiting hypertension. Sub-divisions based on obesity

show that the 23 generalised hypertensive individuals were almost as successfully separated

(72.7%) and subjects with PH were separated with 42.4% accuracy. Therefore, the combina-

tion of modes trained on BMI in non-hypertensive individuals were much more successful

at separating individuals in the Newcastle cohort. Figure 3.13 shows that the most extreme

LDA function based on the combination of Modes 20, 11 and 2 caused a significant free-wall

expansion. Using these modes to create a new model, trained directly on hypertensive indi-

viduals was more successful, and correctly identified 61.8% of subjects (Table 3.3), which

suggests that the modes may interact in different ways when applied specifically to hyperten-

sive subjects.

The best combination identified when applying the algorithm directly to the hypertensive

individuals was Modes 6, 30, 12, 11, which accurately classified 78.2% of individuals after

cross-validation (Table 3.3). Mode 11 is common amongst both groups. The most extreme

obese subject by this marker is part of the Newcastle group, which exhibited a lower mean

BMI overall (Table 3.1).

At end-Systole, three mode combinations (Modes 15, 29 and 16; Modes 15, 16 and 6 and

Modes 16, 13 and 20) separated individuals by their BMI category with equal success. When

applying the model to 56 hypertensive subjects, the combination of Modes 16, 13 and 20 per-

formed the best, albeit with only 47.2% accuracy. When applying this combination to more

refined sub-categories (i.e. to the generalised hypertensive subjects and those with PH), the

model correctly classified 45.4% of generalised subjects and 48.5% of PH subjects. Creating a

new discriminant function using Modes 16, 13 and 20 also had a poor success rate, classifying

just 36.4% of individuals after cross-validation. Clearly, the obesity-related shape signatures

at end-Systole are masked in hypertensive individuals, whereas the unique features exhibited

at end-Diastole are maintained even in subjects showing symptoms of hypertension. There
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is no direct physiological reason why RV shape at end-Systole should correlate with BMI,

excepting obesity-related structural changes. It could also therefore be argued that the lack of

classification power reflects an overall lack of difference in shape in this cardiac phase. How-

ever, the presence of shape-related differences in the non-hypertensive group instead points

towards complex interactions between pathological shape change and that associated with

obesity, which could be explored further with a larger sample size.

The qualitative impact of higher or lower BMI on individuals is shown in Figure 3.13.

Again, the modes multiplied by coefficients of most characteristic individuals in each cate-

gory are plotted on the mean heart, giving a graphical indication of the combined effect of

the identified shape features. At end-Diastole, Modes 20, 11 and 2 were the key separating

modes. In the overweight category, the most characteristic overweight individual exhibits a

clear rounding out, or hypertrophic effect. This roundness is evident throughout the ventricu-

lar free-wall, and makes the shape appear ‘larger’, although this is an illusion, as all ventricular

meshes were registered against a template shape to remove any scaling effect. Chahal et al.

(2012) reported a similar effect, with increased RV mass and volume in overweight individ-

uals, even after controlling for heart size. At end-Systole, the representative individuals with

a BMI > 28 clearly showed increased septal curvature, as compared to the mean. This was

most noticeable in the combination of Modes 15, 29 and 16, and Modes 15, 16 and 6. This

effect matches that observed in (Mauger et al., 2019), where the sphericity shape mode was

found to increase in subjects with obesity and angina.

Table 3.3 indicates that the best overall combination of modes for separating hypertensive

individuals at end-Systole was: 22, 28 and 4. This combination was able to separate 80% of the

hypertensive subjects after cross-validation. Interestingly, this case led to a rounder ventricle

in the subject with a BMI below 28 and a thinner RV in the overweight subject. As this is an

end-Systolic effect, the relationship could possibly be attributed to relatively improved systolic

function. The qualitative shape change produced by these modes is displayed in Figure 3.14.

Figure 3.15 gives a qualitative representation of the mean overall RV, as well as the mean
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Figure 3.14: A. the qualitative impact of Modes 6, 30, 12, 11; the best modes for separating the 56
hypertensive RVES shapes into obesity groups at end-Diastole. B. the impact of Modes 22, 28 and
4; the best separating modes at end-Systole. The left-most RV shape on both sides depicts the modal
coefficients of the most extreme LDA function value for a non-obese subject, plotted on the mean (which
includes healthy and diseased subjects), and the right side shows the same but for an obese individual.
The RVs are orientated with the septal wall facing out of the page.

non-obese and the mean obese right ventricles. The mean obese heart clearly shows a similar

effect to the combined Modes and coefficients 20, 11 and 2. Again, the shape exhibits signifi-

cant rounding around the base and free wall. Whereas the mean non-obese heart more closely

resembles the greater septal curvature effect observed in the end-Systolic hearts.

Figure 3.15: The mean RVES shape of all subjects with a BMI less than 28 (in green), the overall
mean RVES shape (in blue) and the mean RVES of subjects with a BMI greater than 28 (in purple).
These qualitative depictions contain both end-Systolic and end-Diastolic shape information. The mean
non-obese RVES exhibits greater septal curvature, whereas the mean obese RVES shows evidence of
hypertrophy.

Figures 3.16 and 3.17 depict the density of LDA function scores achieved by the classified
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Figure 3.16: Density distributions for the separation of LDA function values between obese and non-
obese individuals at end-Diastole. BMI values below 28 are shown in pink, and BMI values greater
than or equal to 28 are shown in yellow.

individuals. It should be noted that these reflect the subjects as classified by the algorithm,

and not just the correctly classified RVs. At end-Diastole (Figure 3.16), there is a greater

density of similar LDA function values in the higher BMI category, whereas there is a greater

spread of function values in the lower BMI group. At end-Systole, Modes 15, 29 and 16, the

most concentrated peak is in the lower BMI group.

The greater number of different modes that are able to separate obesity amongst sub-

categories suggests that there are many shape features impacted by weight and that it may

be impossible to segregate specific features using a linear method. This may be resolved

by creating a non-linear classifier, however, it also seems intuitive that there are many other

pathologies, inter-related with BMI that could be obscuring any given linear signal. From

Figure 3.13 it can be observed that there is a common curvature (increased concavity) of the

septal wall in subjects with a BMI below 28, and a flatter (“D-shape”) in overweight subjects.

The same effect is noticeable when plotting the effect of the three top Mode combinations.
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Figure 3.17: Density distributions for the separation of LDA function values between obese and non-
obese individuals at end-Systole. BMI values below 28 are shown in pink, and BMI values greater than
or equal to 28 are shown in yellow. The top left image shows Modes 15, 16 and 6, the top right image
shows Modes 15, 29 and 16 and the bottom image shows Modes 16, 13 and 20. Modes 15, 29 and 16
shows a concentrated peak of LDA values between -1 and 0 for non-obese individuals, but a disperse
distribution of LDA values in obese individuals.
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Figure 3.18: A. the qualitative impact of Modes 9 and 5 and Modes 9 and 18; the joint two best mode
combinations for separating non-hypertensive RVES shapes into groups based on age at end-Systole.
B. three combinations of Modes are equally good at separating RVES by age at end-Diastole. The
left-most RV shape on both sides depicts the modal coefficients of the most extreme LDA function value
for a subject younger than the mean age of 60.5, plotted on the mean RV (which includes healthy and
diseased subjects), and the right side shows the same but for subjects older than the mean age. The
RVs are orientated with the septal wall facing out of the page.

Relationship of Age to Ventricular Shape

At end-Diastole, three Mode combinations were equally successful at separating individuals

into groups based on age. These were: Modes 6, 3, 2; 6, 13, 17 and 6, 3, 13, which were able

to classify young and old subjects with 75% accuracy (Table 3.3). The equal weighting of

three separate mode combinations suggests that there is a complex relationship between age-

ing and shape at end-Diastole and that it cannot be easily isolated using a linear classifier.

Nevertheless, the high initial separation accuracy demonstrates that population-based shape

differences do exist. The same subject was identified by all models as being the exemplar
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older RV, i.e. that this specific RV had the highest linear discriminant score in all three cases,

an indication that it was the ‘most typical old’ RV.

The same inputs and discriminant cut-off, created using the non-hypertensive individuals

was then applied to the hypertensive subjects. All modal coefficients were produced during the

initial POD, but in this case, only coefficients from the 56 diseased individuals were included

in the analysis. The best of the combinations was Modes 6, 13 and 17, although it correctly

classified only 44.7% of hypertensive subjects (Table 3.3). The success was fairly evenly split

across the two centres; 47.8%Newcastle subjects successfully identified, and 42.4% Pittsburgh

subjects. Figure 3.18 shows that the three different mode combinations have varying effects

on the shape of the RV, including increased septal curvature in younger subjects, a widening

of the RV in older subjects, and basal flattening in older subjects. Creating a new model

using Modes 6, 3 and 17 produces a classifier that can separate 64.3% of subjects by age after

cross-validation. The best combination at separating hypertensive subjects at end-Diastole

was Modes 4, 13, 9, which correctly separated 73.2% of individuals after cross-validation.

Figure 3.19 suggests that there is a slight, but insubstantial increase in septal curvature in

non-hypertensive younger subjects.

At end-Systole, two mode combinations were equally good at separating the 40 non-

hypertensive hearts into two average age groups. These were Modes 9 and 5, identified

through building up the best combinations from the Newcastle/Pittsburgh subgroups and Modes

9 and 18, identified from applying the preliminary LDA algorithm directly to the 40 subjects.

Both combinations successfully separated 72.5% of individuals. Neither combination was

successful when the model was applied to the 56 hearts at end-Systole. Modes 9 and 5 suc-

cessfully categorised just 37.5% of individuals. Modes 9 and 18 were more successful, lin-

early separating 48.2% individuals into age categories, but both remained worse than chance.

Modes 9 and 5 were able to separate 53.6% of individuals into the correct age categories

when the model was specifically trained on that group. Modes 9 and 18 similarly were able

to separate 57.1% of individuals into the correct age categories. Modes 9 and 18 are 45.5%
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successful at separating the PH subgroup and 52.1% effective at separating the generalised hy-

pertensive group. On the other hand, Modes 9 and 5 only separated 39.1% of individuals with

generalised hypertension and 36.4% of individuals with PH. It is clear from this analysis that

Mode 9 plays a large part in the separation of sub-groups at end-Systole in non-hypertensive

individuals. The two pairs of modes separate equally successfully, but produce such different

shapes at the extreme - with Mode 5 seemingly contributing to a stretch and Mode 18 to a

hump.

Figure 3.19: A. the qualitative impact of Modes 4, 13 and 9; the best modes for separating the 56
hypertensive RVES shapes by age at end-Diastole, B. the impact of Modes 8, 16 and 22; the best
modes at end-Systole. The left-most RV shape on both sides depicts the modal coefficients of the most
extreme LDA function value for a younger subject plotted on the mean (which includes healthy and
diseased subjects) and the right side shows the same but for an older individual. At end-Systole, the
older individuals exhibit lengthening of the RV basal region, which is marked by the double headed
arrow and also show generalised flattening in that area. The RVs are orientated with the septal wall
facing out of the page.

The best mode combination, assessed by building up from the hypertensive sub-groups,

was Modes 8, 16 and 22, which successfully separated a cross-validated 71.4% of individuals

by age. The older subject with the most extreme LDA function value was incorrectly clas-

sified, which indicates an imperfect classification function for assessing subject age. Figure

3.19 shows an increase in length of the RV basal region, in addition to flattening in the same

area.

To confirm the results of the shape analysis, Figure 3.20 shows the overall mean RV, the

mean young RV (individuals below the mean age for the cohort, of 60.53 years), and the mean
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Figure 3.20: The mean RVES shape of all subjects below the mean age of 60.5 years (in mint green),
the overall mean RVES shape (in blue), and the mean RVES of subjects older than the mean age of
60.5 years (in pink). These qualitative depictions contain both end-Systolic and end-Diastolic shape
information. The mean younger RVES exhibits greater septal curvature, marked by the longer double-
headed arrow and greater detail at the apex, marked by the shorter arrow, whereas the mean older
RVES shows basal flattening, marked by an asterisk.

older RV. The mean young heart exhibits a notable increase in basal rounding, as compared to

the mean old heart, and perhaps more strikingly shows apex curvature. In both Figure 3.18 and

Figure 3.20, younger individuals exhibit greater septal curvature in non-hypertensive subjects

than their older counterparts. Therefore, similar shape features are observable by examining

sub-group means as were picked out by the LDA classifier.

The specific shape features displayed suggest that the mean young heart more often con-

tains apex geometry that can be detected by the MRI scanner. This could indicate that the

younger heart is longer. There is some evidence in the literature (Strait & Lakatta, 2012) that

suggests that older hearts often display flattening of the RV free-wall, which can be observed

in these qualitative images (Figure 3.18, Figure 3.20).

LDA density plots are shown in Figures 3.21 and 3.22. At end-Diastole, the clearest di-

vision of peaks was displayed by the model created by Modes 6, 3, and 2, and shows a peak

density of older RVs. At end-Systole, there is an observable density peak in the below-mean-

age individuals when Modes 9 & 5 are used to create the model, whereas the older individuals

have function values extending across the entire range. The implication is perhaps that this

particular model is able to identify younger hearts, but that detecting older individuals is more

difficult.
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Figure 3.21: Density Plot showing the LDA function value distribution of classified subjects at end-
Diastole based on whether their age fell above or below the mean. Subjects below the mean age are
depicted in pink, and subjects above the mean age are depicted in green. A. shows Modes 6, 3 & 13,
B. shows Modes 6, 13 & 17 and C. shows Modes 6, 3 & 2. The older subjects show a concentrated
peak around an LDA function value of 1 when separated by Modes 6, 3 & 2, and the younger subjects
appear dispersed across the range.

Figure 3.22: Density Plot showing the LDA function value distribution of classified subjects at end-
Systole, based on whether their age fell above or below the mean. Subjects below the mean age are
depicted in pink, and subjects above the mean age are depicted in green. A. shows Modes 9 & 5. and
B. shows Modes 9& 18. There is a concentrated peak of younger individuals when separated by Modes
9 & 5.

The effect observed in Figure 3.18, where the optimal end-Systolic modes (Modes 9 &

18 and Modes 9 & 5) share a common ventricular shape in the younger age group (below

‘mean’), but exhibit considerable variation in older subjects is mirrored in the LDA density

plots in Figure 3.22. This implies that there is no uniform shape-trait associated with age

related change and/or dysfunction, but that a series of different Modes affect individuals at

different stages of the healthy and dysfunctional ageing process. The relatively small sample
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size of 96 subjects means that it is difficult to isolate specific features.

3.5 Conclusions

This chapter sought to investigate whether normal, non-pathological characteristics, such as

sex, age, BMI and centre affect RV shape. The first key conclusion is that it is possible to

separate subjects into groups based on statistically-decomposed shape features, suggesting

that unique shape features encoded in individuals exist.

The initial hypotheses were that it would be possible to differentiate between the ventric-

ular shape of obese and non-obese individuals (BMI above and below 28) and age (above and

below the cohort mean of (60.5 years), but that it would not be possible to distinguish male and

female hearts, nor would it be possible to distinguish between the two demographic regions

on account of there being too many confounding factors. The results presented in this chapter

show that it is possible to separate hearts into two groups on the basis of sex, BMI and age

using a tailored combination of shape modes and therefore indicate that these shape modes are

associated with specific RV features. All of the above cases achieved a cross-validated per-

centage score of between 72.5% and 77.5% in both cardiac phases, which might be considered

a ‘good’ score within the context of this data.

The coefficient of one mode for the end-Systole RV shape (Mode 19) was found to be

associated with sex. This mode coefficient classified individuals into groups based on their sex

with 77.5% accuracy, which was an improvement over any other combination of the top five

shape features in the LDA, indicating that, for this dataset, the shape feature encoded by this

mode is the best predictor of sex. This mode also has a relevant qualitative impact on the free

wall of the right ventricle, which accords with observations in the literature. The same impact

that sex has on the RV can be viewed from the mean female and mean male surfaces. Obesity

can be classified with the same success rate as sex (77.5%), but using a much wider array of

Modes. Three separate triplets of Modes are all equally accurate at linearly separating the
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obese from the non-obese subjects. The fact that more groups were equally successful means

that different combinations of individuals were captured using the linear separator, and that

there are a series of different features that trained the split. It would be interesting to compare

the results obtained in obese subjects to those of an athletic build. Obesity is considered a

pathological condition and therefore cannot optimally assess the impact of increased RV size

on ventricular shape and function in the absence of a known source of dysfunction. Whereas,

those of athletic build will also have a corresponding increase in right ventricular volume, but

may have other compensatory shape changes that exclude them from a blanked risk category

such as might be drawn up by including shape information only.

Age is separable using two different pairs of Modes at end-Systole and three combinations

of three Modes at end-Diastole. Similar to obesity, this indicates that there are specific differ-

ences in shape in ageing subjects but they are complex and difficult to isolate with a dataset

of just 96 hearts. The mode coefficients at end-Diastole which best separate age when applied

to a group of hypertensive subjects only were able to separate 64.3% of the dataset accurately.

This implies that the RV undergoes age-specific shape changes, independent of hypertension.

One substantial benefit of statistical shape analysis that has been demonstrated in this

chapter is that it is possible to identify and extract shape information associated with the

method. The technique identified statistical differences associated with scanning protocol

over and above any other differing factors. The most obvious shape difference between any

tested group was associated with the scanning protocol (8mm skip 0mm vs 6mm skip 4mm),

this demonstrates a tangible effect of scanning centre on model shape. However, the effect

is constrained almost exclusively within a single shape mode (Mode 1) which means that the

relevant shape information can be easily removed from the model when applied in a clinical

setting. This effect is of such importance that the form analysis results, which did not control

for RV volume, also produced this shape feature as Mode 1. In addition to the clinical value

associated with the knowledge that although scanning information is responsible for the largest

concentration of shape information, it can also be removed from the analysis. This result
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demonstrates that two different data sources, with different MRI scanner protocol settings can

be combined and compared with the same parameters.

Overall, applying the LDA classifier trained on non-hypertensive individuals to those with

hypertension was unsuccessful at separating hypertensive subjects. The best case classifiers

(Sex at both heart cycle stages and obesity at end-Diastole) were just over 50% accurate.

However, when generating a new LDA model using the same key Modes for separating non-

hypertensive subjects, the classification percentages differed more substantially. This indi-

cates that the shape modes themselves can be important classifiers, but that the LDA function

must be generated with the specific dataset in order to provide useful results. Here, there was

a noticeable difference between the most successful classifier of hypertensive subjects; age at

end-Diastole and the least successful classifier; obesity at end-Systole (64.3% vs 36.4%).

One potential problem might lie with the selected values used for classification cutoffs.

These are influenced by the very high BMI values (> 50𝑘𝑔∕𝑚3) and the young individuals

(< 20 years) in the PH group. The non-hypertensive individuals may not be adequately split

by this biased classification metric. Future steps will aim to link these specific shape features

to outcome data so that specific pathological shape changes can be isolated. With such a small

sample size, there is always concern related to overfitting the model, but the cross-validation

mechanism is intended to counter this.

It is clear from Pearson Correlation coefficients and from the LDA separation that subject

characteristics can have varying effects at the two main heart cycle stages. It is therefore

of clinical value to assess end-Systolic and end-Diastolic shape change separately (i.e. both

phases can be statistically decomposed at the same time, but statistical analysis conducted

on modal coefficients from each group). Analysing the modal coefficients separately ensures

that phase specific shape features are more easily isolated. Notably, the effects of obesity at

end-Diastole are more apparent and are shared between hypertensive and non-hypertensive

subjects, whereas there is no clear signal at end-Systole.
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Chapter 4

Robustness Testing of Shape Results

Using Targeted Interventions

4.1 Introduction

Biological data can be highly variable and difficult to reproduce, even in controlled environ-

ments. Reviews into the importance of biological variation (Simundic et al., 2015; Badrick,

2021; Voelkl et al., 2020) indicate that this variability, once controlled for, gives rise to the

central sources of variation which impact function, rather than peripheral noise. The shape

analysis method utilised in this thesis involves a series of different steps in which additional

variation can be introduced; for example, through the selection of the anatomical reference

poles and datelines and through altering the size and composition of the input datasets. It

is therefore, beneficial to understand the processes which contribute the greatest variability

in the system and also to consider the relative benefits of reducing this variability in critical

areas.

The increased availability of high-resolution in-vivo anatomical images in a clinical set-

ting has led to a new generation of open-source computational tools designed to utilise these

images to model structure shapes and their variability within populations. Despite the pub-
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lication of many new pipelines both in a cardiac context (e.g. Mauger et al., 2019; Rodero

et al., 2021; McLeod et al., 2012), and otherwise; for example Crawford et al. (2019) in

glioblastoma research and Lu et al. (2013) in modelling liver damage in car crash victims,

there has been remarkably little research into the replicability of such procedures. This has

been noted by Gao et al. (2014) in particular, who have argued that shape analysis is a field

in need of careful validation. Upon undertaking a substantive literature review, they found no

reports on the evaluation and affirmation of shape analysis frameworks; although their work

was largely focused on mapping human brain structures. Gao et al. (2014) proposed their own

validation method, where defined deformations are applied to a series of shapes, and then the

various shape analysis algorithms are applied to compute the mean shape and capture defor-

mations. To record results, they calculated P-value maps and plotted them onto the respective

mean shape. Goparaju et al. (2018) also systematically assesses the outcome of widely-used

off-the-shelf SSM tools. Although recent research efforts have turned to the evaluation of

methods, there is more that could be achieved, especially with regard to mapping variation in

the input pipelines to the success and consistency of the output. There are potential areas for

discrepancy in the MRI scans, segmentation process, the selection of appropriate boundaries

for the harmonic mapping process (i.e. determining which anatomical features correspond to

the top of the unit sphere). Rodero et al. (2021) comment on the impact of imaging modality

on shape analysis output. They suggest that the first modes are the most likely to be consis-

tent between different input values and even imaging modalities. This is because modes are

ranked in order of the degree of shape information they explain. The first few modes are likely

to be shared even in divergent inputs. Heimann and Meinzer (2009) have also previously re-

viewed statistical shape models for 3D medical image analysis. As part of the discussion, they

identified several challenges associated with transitioning from a research to a commercial or

clinical environment. Training data must be sufficiently general so that it can be applicable

across a series of sites. As has been noted earlier in this thesis, many research environments

train and test on the same dataset, whereas practical applications involve the combination of
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a variety of sources, all of which introduce their own idiosyncrasies.

A series of different components of the analysis procedure have the potential to impact

shape analysis results. Such aspects include variations in scanner protocol, individual deci-

sions on RVES boundaries in the manual segmentation process, the selection of fiducial points

on the mesh, the stringency of the smoothing filter applied to the RV mesh and the potential

for randomness introduced in the numerics. Different methods may be more or less suscepti-

ble to variations due to the implementation of the various approaches. Literature relevant to

each of these components will now be discussed.

Imaging Modality

First, the largest potential for disparity of results relates to the imaging modality, as well

as the wide array of available image scanners and scanning protocols. It has already been

demonstrated in Chapter 3 that the statistical shape analysis is sensitive to slice thickness,

with more detail at the apex being identified in the 8mm skip 0mm scanning protocol, as

compared to 6mm skip 4mm. Unfortunately, owing to the retrospective nature of the data

collection in this thesis, more in depth robustness tests, such as repeats of the same subject in

different labs or scanners could not be performed in this investigation. Some literature review

is conducted, however, for the sake of completeness.

MRI reproducibility, in particular, is an active research area. As MRI has become a rou-

tine diagnostic modality, several studies aimed towards quantifying the impact of variability

in scanner protocol on shape feature extraction (e.g. Raisi-Estabragh, Gkontra, et al., 2020).

Raisi-Estabragh et al. (2020) assessed the repeatability of CMR images across multiple cen-

tres and scanning vendors in a test-retest study using a varied mix of cases. Test-retest studies,

where the same test is performed on the same sample at a different time point, are the rec-

ommended form of reproducibility studies. Images in the study were segmented according

to a specific, predetermined protocol which selected three regions of interest; the RV, the

LV and the left ventricular myocardium at both cardiac phases. They extracted 280 radiomics
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(voxel-level) features in total, and ranked them according to intra-class correlation coefficient.

Repeatability of RV blood pool shape features ranged from moderate to excellent, with mean

intra-class correlation ranging from 0.556 to 0.941. The most robust RV features were minor

axis length and volume features. Jang et al. (2020) also considered repeatability of cardiac

texture features, albeit focusing on the LV. They conclude that only a small subset of myocar-

dial radiomic features are reproducible. They also comment that MRI protocols can be set

up to provide reasonable contrast for differentiating between soft tissues, but imaging homo-

geneity still exists, which can present a challenge for automatic segmentation, in addition to

that posed by the geometric complexity of the heart.

Aside from cardiac studies, a series of recent efforts have been devoted to the robustness

of oncological imaging using standard test-retest studies (e.g. Zwanenburg et al., 2019). Most

are based on a CT modality, which presents different challenges to MRI scanning. Image fea-

tures need to be robust to differences in patient positioning within the scanner, acquisition

method and segmentation to ensure reproducibility. Although test-retest studies are the rec-

ommended form of reproducibility studies, it is often impossible to test specific phenotypes of

interest using this method, and they also preclude the use of retrospective images from clinical

use, which cuts off a valuable data source. This is especially important since clinical testing

does not benefit from the same set up time and resources available in research scans, and can

introduce artefacts into the data. For this reason and also with the goal of increasing sample

size, Zwanenburg et al. (2019) investigated combinations of image perturbations to determine

feature robustness. They performed five separate types of image perturbation: noise addition,

translation, rotation volume/growth shrinkage and super voxel-based contour randomisation

on an oncological dataset.

Segmentation Variability

The next most important source of input variability is image segmentation. After accounting

for variation associated with imaging guidelines and protocols, the extraction of 3D surfaces
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provides further opportunity for method-based variations to occur. There is a possibility for

the introduction of uncertainty of interpretation when creating the geometric models using

segmentation. This is particularly the case in cardiac models, and more specifically the right

ventricle, owing to the requirement for user judgment and/or complete manual input. The

complex 3D shape of the RV; crescent-shaped in top-down view, but more triangular in side

profile as it curves around the LV, means that automatic segmentation methods do not always

adequately capture the shape, especially at the base and apex. Resultantly, manual segmenta-

tion protocols remain common in the literature (Tate et al., 2020), despite automatic segmen-

tation becoming the standard for other tissues. Manual segmentation methods do increase

uncertainty regarding both inter- and intra-observer variability, and this must be quantified.

Sardanelli et al. (2008) compared manual segmentation between a beginner reader (25 car-

diac segmentations performed in preparation for the study) and an experienced radiologist and

found that both readers obtained a bias ranging between 8.0% and 9.9% for the RV when using

both semi-automated and manual contouring methods. A small but significant difference in

segmentation time was found between readers using the semi-automated method.

Tate et al. (2020) used shape analysis to assess segmentation variability. They note that

despite the emergence of simulation pipelines into clinical use, variability in clinical inter-

pretation remains largely unquantified. Tate et al. (2020) found high areas of variability at

the RV apex and outflow tract. Although the area of largest standard deviation can occur at

different locations along the annulus of the pulmonary valve. This study generated a param-

eterised shape model that can be used in cardiac modelling pipelines to compute uncertainty.

Additionally, Peng et al. (2016) review segmentation techniques with a view to better under-

standing the role of cardiac segmentation in the final clinical assessment. Peng et al. (2016)

also examine the use of long-axis images in cardiac segmentation, as these are important in

the clinical use of CMR. The manual delineation of heart structures from MRI is very time

consuming and subject to previously established inter-and intra-observer variability. With the

exception of Tate et al. (2020), there has been very limited assessment of how altering the
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shape meshes specifically impacts the output. If statistical shape analysis is to be employed

in mainstream settings, whether clinical or commercial, an understanding of the degree of

acceptable variation in input is crucial.

Lamata et al. (2014) tested the segmentation fitting accuracy of their automatic ventricular

mesh personalisation algorithm using a Euclidean distance, expressed in millimetres from the

nodes of the isosurface of the image to the closest point of the external surface of their mesh.

They then integrated the error through the surface of the mesh using Gaussian quadrature.

They found the regions of greatest fitting error to be at the open-faced basal site and also at

the apex. This agrees with similar findings in Mauger et al. (2019).

Zhang et al. (2010) randomly divided 4D datasets in healthy and repaired Tetralogy of

Fallot populations into 5 groups, each containing 5 datasets. They compared millilitre vol-

umes of LV blood pool, myocardium mass and RV, in addition to calculating the overlap ratio

and percentage volume difference and determined the mean and standard deviation of average

surface positioning errors, overlap ratios and percentage volume differences.

Several studies have used two-way random-effects ANOVA and Bland-Altman plots to

quantify inter and intra-observer differences (e.g. Kiefer et al., 2018). In addition to these

statistical measures addition to mean absolute differences were calculated and presented as

mean plus or minus standard deviation. Bland-Altman plots provide an approach of assess-

ing agreement between two quantitative measures without assuming that either is the gold

standard (Morey et al., 2009). This technique is performed as standard in many clinical ro-

bustness analyses, for example (Raisi-Estabragh, Gkontra, et al., 2020) which is described

above. However, in this Chapter only a small subset of inputs are altered which means that

alternative methods of testing agreement must be assessed. Taha et al. (2014) describe a for-

mal method for selecting the most suitable metric for evaluating segmentation depending on

use-case and then expand upon it in Taha and Hanbury (2015) to provide a set of guidelines

based on interim results. The recommendation is to use distance-based metrics rather than

overlap-based methods when the aim is to test the general alignment of the segments, espe-
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cially when the difference between the two shapes is likely to be small. However, in this case,

this thesis will use a Jaccard Indices, which are an overlap metric to compare pixel selections

on a per-slice basis. Although it is highly likely that the central part of the RV will demon-

strate a strong overlap, the unusual shape of the RV in the apex and outflow tract regions

implies that there will be some slices where only a very small overlap is observed. Inter- and

intra-observer comparisons will also examine overall volume.

Anatomical Reference Selection

The next significant source of variability associated with the shape analysis method employed

in this thesis is the choice of poles and datelines; the anatomical boundary conditions which

ensure that the correct anatomical regions of each heart (the apex and base) are situated on

the north and south pole of the unit sphere, and that the same ‘edge’, which traces the anterior

boundary between the septal wall and the free wall is assigned as the ‘dateline’, which repre-

sents the [0, 𝜋] coordinate boundary after harmonic mapping (see Section 2.5). Anatomical

consistency at the point of harmonic mapping is one of the unique features associated with the

statistical shape analysis in this work, and therefore, there is not as much relevant literature to

draw upon.

Wu (2013), who performed the underpinning work for this thesis, examined a combina-

tion of different dateline possibilities on a CT-derived right ventricular mesh. The different

options included prescribing three different anatomical options for dateline selection as well

as performing a series of systematic perturbations to the reference points themselves, includ-

ing moving the north and south poles by 6 and 9mm respectively, shifting the entire dateline

to the east or to the west and shifting one half of the dateline, to create an s-shaped pertur-

bation. The conclusion from Wu’s thesis was that the selection of the anatomical region was

significant to the modal results, but that errors in dateline selection changed the 𝐿2-norm (the

chosen error metric) of the original mapping results by less than 0.5%.

Shi et al. (2008) mapped 3D surfaces using a similar harmonic mapping approach. They
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have developed an automatic stable landmark detection algorithm, which finds features that

are intrinsic to the surface geometry of the test subject; in this case, structures in the sub-

cortex of the brain, and then uses these to guide harmonic maps to the sphere in a similar

fashion to the poles and dateline in this analysis. To test the robustness of their method Shi et

al. (2008) created an atlas by averaging shapes from the control group and then computed the

displacement from each vertex on the surface to the corresponding vertex on the atlas. In or-

der to correct for multiple comparisons, they applied 1 million permutations. They projected

a chequerboard pattern on the original unit sphere and on the initial and final maps to con-

firm that the correct mapping regions occurred, which represents an innovative visualisation

solution, and report a P value of 0.000076.

In other statistical shape analysis procedures, the boundary conditions are not as pre-

scribed. Bowman et al. (2015) provides an in-depth analysis using two case studies (breast

tissue identification and sexual dimorphism in human lips) of anatomical curve creation. This

is an extension of a landmark-based method which better enables 3D shape description. The

modified harmonic mapping method employed in this thesis combines the benefits of land-

mark shape analysis guiding the shape with the added degrees of freedom for shape associated

with using the full shape information available with a point cloud. There is also very little

literature associated with alteration of boundary condition placement, which renders the topic

worthy of investigation.

Smoothing Filters

One final source of input variation tested involves the degree of Gaussian smoothing applied

to the finite element meshes before the mapping and statistical decomposition steps. To the

author’s knowledge, there have been no direct assessments of the impact of altering the level

of smoothing in a shape analysis procedure.
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4.2 Aims and Hypotheses

4.2.1 Aims

The experimental focus of the work presented is to characterise the robustness of the statistical

shape analysis based method when various modifications are made to the input. These modi-

fications will be: changing the size of the input dataset (i.e. the number of input meshes) up

to a maximum of 121 subjects and down to an extreme minimum of 20 subjects; introducing

inter- and intra- observer differences in RV manual segmentation; altering the position of the

poles and datelines, which locate the meshes on the unit sphere according to their anatomy

and increasing and decreasing the stringency of the recursive Gaussian smoothing filter.

4.2.2 Hypotheses

1. In general, although inputs are likely to differ, as these are being altered as part of the

robustness test, the output modes will remain unchanged, since recognised anatomical

features have been identified in Chapter 3.

2. The same shape features will be extracted using the statistical shape analysis procedure,

but these will not necessarily be in the same order of precedence as was determined in

the initial 96 subject set.

3. The process will be robust to addition of subjects, since the same methods of data pro-

cessing are used. Reducing the size of the dataset will decrease robustness at the lowest

extremes. There may be fluctuations in robustness depending on which subjects are

included in the random subject dataset.

4. Small changes to the dateline selections induced by different observers will not substan-

tially change the overall mapping results.

5. The statistical shape analysis results will be robust to segmentation by a different ob-

server. The same images are used, and each individual performing the segmentation
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received advice from a cardiologist, so it would be expected that the inputs will not be

substantially different, and therefore should not impact the coefficient results. Testing

the difference in segmentation involves making alterations to both the mesh and the

dateline. A larger difference in input should correspond to a larger difference in output.

6. Alterations to the strictness of the smoothing filter will substantially change statistical

shape analysis results. Too stringent a smoothing filter will eradicate important shape

features, while too relaxed a filter will maintain the ‘steps’ in the mesh, which are created

as an artefact of the segmentation.

7. The coefficients experienced by different surfaces are likely to exhibit greater variation

but a larger percentage difference in coefficient will not affect the order of the mode

shapes.

4.3 Methodology

To assess the aims of this chapter (described in Section 4.2), robustness analysis included

identifying the difference in input data as well as the resultant effect on shape features at the

point of output. Keeping one parameter constant while perturbing other properties enables us

to observe how sensitive the statistical shape analysis is to the implemented changes. While

the shape analysis methodology to assess output remains as described in Chapter 2, the meth-

ods related to data acquisition and statistical analysis are described in this section.

The differences in initial input will be assessed mathematically, using a series of methods;

Jaccard Indices and volume differences for comparing segmentations and Hausdorff distances

for comparing dateline selection. In addition, the resultant difference in output will be tested

by correlating the mode coefficients using a Pearson correlation to determine whether they

still code for the same modes; by qualitatively comparing the modes that have been isolated

and by comparing the mean squared difference between the modes themselves. The following

sections will describe the specific perturbations made in more detail.
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4.3.1 Data Acquisition

The set of 96 subjects described in Subsection 3.3.1 was combined with an additional set of 25

non-hypertensive hearts was acquired from Newcastle University. These further RVES were

segmented, smoothed and meshed in accordance with the methodology outlined in Chapter

2. These hearts were added to the 96 subjects assessed in Chapter 3 to form a total dataset

of 121 subjects and 242 hearts. All of the additional subjects included to increase the dataset

size are non-hypertensive subjects from the Newcastle dataset. They were initially excluded

as the scan images were not quite as clear as the initial 46 subjects. Nonetheless, they are a

valuable test of the non-hypertensive results.

4.3.2 Segmentation

MRI images were segmented twice each by two observers in two separate sessions. There was

no formal blinding of the dataset to reduce recall bias, however, each set of segmentations was

performed after a minimum one month gap, and subjects were not able to refer to their previous

segmentations. This was considered sufficient to prevent alterations in the segmented shapes

based on memory. Further detail related to the statistical assessment of variability between

observers is given in Subsection 4.3.5 (Statistical Analysis).

For the inter- and intra-observer variability tests, two independent observers each seg-

mented a series of ten hearts, five from the Pittsburgh dataset and five from the Newcastle

dataset. Although, ultimately only subjects from the Newcastle dataset were analysed in this

robustness test. All selected RVs were from non-Hypertensive individuals. Two hearts were

chosen on the basis of being clear visualisations of the RV, two on the basis of being ‘unclear’

visualisations of the RV and one was randomly selected. Cross-sections of the five selected

RVs are displayed in Figure 4.1. Although neither observer received formal medical training,

all segmentation was overseen by a trained cardiologist. Segmentations were performed us-

ing ITK-SNAP software (Yushkevich et al., 2016), on images in the short axis only to ensure

consistency across the centres, since no long axis images were available for the images from
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the Pittsburgh dataset. Meshing, smoothing and anatomical reference point selection on the

new meshes were all performed by the author. Additional detail on assessing the robustness

of pole and dateline selection is included in Subsection 4.3.3. The images were all registered

to the same template, as described in the Methodology section (Chapter 2) in an effort to

maintain consistency.

4.3.3 Dateline selection

Robustness to changes in dateline was assessed using blind sampling. The same observer

blindly marked datelines on five heart meshes, selected according to the description in Sub-

section 4.3.2, i.e. by identifying the location of the anterior border of the RV in each slice,

and using the custom software, ADAMCUS, to select the closest corresponding node on each

mesh. Dateline selection also included selecting new end-points, which correspond to the

pulmonary valve and apex on the RV segmentation, which then become the north and south

poles of the unit sphere after harmonic mapping. The statistical shape analysis procedure was

then applied using these alternate datelines. Figure 4.2 gives an example of the difference

between two separate dateline selections on the same RV mesh.

4.3.4 Smoothing criteria

In the population-based analysis, discussed in Chapter 3, a recursive Gaussian filter with a

sigma smoothing factor of 𝜎3 was applied to the RV mesh. This filter is a standard option

as part of the Simpleware ScanIP software, but the stringency can be adjusted manually. The

Gaussian smoothing operator performs a weighted average of surrounding pixels based on

the Gaussian distribution, where central pixels are given more weight than neighbouring pix-

els; the standard deviation 𝜎 determines the amount of smoothing. The number 3, therefore

refers to the standard deviation of the recursive smoothing algorithm. To assess the impact

of varying the level of smoothing which was applied, that 𝜎 value was adjusted to 2 and 4,

where 2 reduced the amount of smoothing and 4 increased it. Figure 4.3 demonstrates the
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(a) (b)

(c) (d)

(e)

Figure 4.1: Screenshots of the short axis MRI scans of five RVs at end-Diastole. a) and b) were selected
on the basis of being clear MRI representations of the RV. c) and d) were selected on the basis of being
unclear representations of the RV, and e) was selected randomly.
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Figure 4.2: Comparison between the two dateline selections plotted on the mesh of an example RV
mesh (Patient 2). The mesh is presented in a different orientation compared to other RV mesh Figures
to best exhibit the distance between the datelines, with the apex and south pole pointing out of the page.

effect of the three smoothing filters on the finite element mesh. Too little smoothing leaves

an artefact of the artificial slice thickness included in the initial segmentation and too much

risks eliminating vital shape features. In the Newcastle subjects, as an example, the MRI scan

includes approximately 14 slices of 8mm thickness. As the short-axis MRI scans produce a

series of 2D images, the segmentation image a 2D polygon traced on each slice and then ex-

trudes it in the z-direction by 8mm. Thus, a series of ‘steps’ are created in the pre-smoothed

model which do not reflect reality. There is also a risk that the smoothing does not identify

the twisted shape, as it curves around the LV. The degree of smoothness, and therefore this

trade-off was judged by eye, but was informed by previous publications using this method

(e.g. Xu et al., 2021).

4.3.5 Statistical Analysis

A series of statistical metrics were applied to compare the differences between the modified

and unmodified groups at the point of input into the model, and their subsequent effect on

the shape analysis output. In all cases, with the exception of perturbations to dataset size,
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Intervention Input Tests Output Tests
• Inspect Modal energy plots

NA • Inspect 3D reconstructions
Dataset Size • Pearson Correlations

• Percentage Difference
• Sum of Squared Difference
• Application of LDA

• Hausdorff Distance • Inspect Modal energy plots
• Inspect of 3D reconstructions

Dateline Selection • Pearson Correlations
• Percentage Difference
• Sum of Squared Difference
• Application of LDA

• Jaccard Indices • Inspect of Modal energy plots
• Volume Percentage Difference • Inspect 3D reconstructions

Segmentation Differences • CV% • Pearson Correlations
• Percentage Difference
• Sum of Squared Difference
• Application of LDA

• Comparison of mesh elements • Inspect Modal energy plots
• Inspect 3D reconstructions

Smoothing Differences • Pearson Correlations
• Percentage Difference
• Sum of Squared Difference
• Application of LDA

Table 4.1: Statistical Tests performed to evaluate the robustness of each of the four targeted interven-
tions. The same output tests were performed for each intervention, but input tests varied based on the
nature of the input data.
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(a) (b)

(c)

Figure 4.3: Visualisation of the different levels of smoothing applied when different pixel filters are
applied. a) depicts a less stringent recursive Gaussian filter (𝜎2), b) depicts the standard smoothing
filter described in the Methodology and utilised in Chapter 3 (𝜎3). c) shows a more stringent recursive
Gaussian filter (𝜎4).

five subjects (ten ventricle shapes since both cardiac phases are included) were subjected to

altered conditions, as described in this methodology section, as part of the robustness test. A

small number of meshes were changed, to ensure that the overall shape analysis is capable of

withstanding alteration of a small number of hearts first before extending to a wider range,
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which is outside the scope of this thesis. Retaining the majority of meshes also provides

a point of comparison, where the impact can be measured against the unchanged meshes.

Changing just five subjects precludes the use of common medical robustness measures, such

as Bland-Altman plots as it gives too few input data points to produce a comparison.

While measurement error should ideally be independent of the actual sample, in biology

this is almost never the case. Popović and Thomas (2017) describe an extreme case where

the error in systolic strain rate measurement widens dramatically with decreasing animal size.

This is particularly notable in this dataset, where although all ventricle meshes were registered

to the same template, there are substantial differences in the size of the mesh between end-

Systolic and end-Diastolic shapes. Off the back of this, the recommendation is that error

reporting should be expressed as a percentage.

The conclusions drawn from Chapter 3 regarding the impact on population are only rele-

vant if they are repeatable in different conditions, and with different MRI scanners (although

test-retest repeats are outside the scope of this thesis) and therefore, this chapter aims to quan-

tify changes in robustness of the data when it is perturbed in different ways. This is with a

view to assessing whether the results can be interpreted accurately in a clinical setting and

to determine specific mitigations that could improve the diagnostic potential of a statistical

shape analysis based diagnostic. The specific changes that will be assessed are the size of

the dataset; both reducing and increasing the number of subjects, altering meshes created by

changing the individual performing the segmentation, altering the dateline reference points

for the harmonic mapping, and changing the level of smoothing applied.

Recommendations can then be made on the requirements for reproducibility and the ef-

fectiveness of the current method without further intervention.

Quantifying Input Differences

Hausdorff Distances The variation in the nodes selected as the north pole, south pole and

dateline inputs was quantified using a Hausdorff distance. The Hausdorff distance is a point to
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Figure 4.4: Reproduction of Figure 4.2 with datelines coloured by selection attempt. The original
dateline nodes are depicted in red, the second attempt nodes in dark blue, and those nodes which
overlap between the two selection attempts are shown in purple. The Hausdorff distance calculates the
longest minimum distance between nodes selected in the first group and the second group. Again, the
mesh is presented in a different orientation to other depictions of the RV, in order to better visualise
the dateline placement, since it is located on a boundary between the free wall and the septal wall.
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point matching method that is commonly used in shape comparison strategies. The distance

defines the maximum deviation between two models, and this method finds the maximum of

the closest pairings between all points on the dateline (see, for example, Figure 4.4). Assuming

that 𝐷𝑖 is the set of points on the original dateline 𝐷𝑖 = 𝑑𝑖1....𝑑𝑖𝑚 and 𝐷𝑗 is the set of points on

the new dateline 𝐷𝑗 = 𝑑𝑗1....𝑑𝑗𝑛 where m and n are the number of dateline nodes in each set

respectively, d represents individual coordinates of points on the dateline in cartesian space

and ‖⋅‖ denotes the the Euclidean norm. The Hausdorff distance is given by:

𝐻(𝐷𝑖,𝐷𝑗) = max(ℎ(𝐷𝑖,𝐷𝑗), ℎ(𝐷𝑗 ,𝐷𝑖)) (4.1)

with

ℎ(𝐷𝑖,𝐷𝑗) = max
𝑑𝑗∈𝐷𝑗

min
𝑑𝑖∈𝐷𝑖

󳵀󳵀󳵀𝑑𝑖 − 𝑑𝑗
󳵀󳵀󳵀 , (4.2)

where both ℎ and 𝐻 are in mm.

Segmentation volumes were recorded from Simpleware (Synopsys, Exeter, UK) after the

Gaussian smoothing step, but before meshing in all cases where the overall mesh was altered

as part of the robustness assessment (i.e. when testing inter- & intra-observer variability and

smoothing).

Calculating the percentage difference in segmentation volume is a simple way to assess the

overall difference between two RV segmentations since volumes are evaluated in Simpleware

before the application of Gaussian smoothing filter. However, this calculation can often give

an inaccurate picture of the extent of the disparity. For example, if one observer chooses

not to segment an apical slice, the resultant change in the volume is proportionally greater

than the impact on the shape. Therefore, two additional measures; Jaccard indices and means

of coefficient of variation (CV%) were calculated in an attempt to more fairly quantify the

differences in input RVES.
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Jaccard Indices were calculated as a method of describing the similarity of the starting

sample sets, before the shape analysis procedure was applied. The Jaccard index is defined

as:

𝐽 (Slice 1,Slice 2) =
󳴼Slice 1 ∩ Slice 2󳴼
󳴼Slice 1 ∪ Slice 2󳴼 , (4.3)

where Slice 1 is an MRI slice from the first segmentation and Slice 2 is the equivalent

slice from the second segmentation. This method was used to quantify pixel overlap between

the MRI image slices and thereby determine areas on each sample slice where there was

agreement between both segmentations. Separate Jaccard Indices were produced to compare

the difference in pixels selected between observers, and to compare between the initial and

repeat measurements taken by each assessor on a slice by slice basis. Per slice overlap is

calculated in MATLAB by assigning a value of 0 to pixels not selected in either MRI slice, a

value of 1 to those selected in one segmentation, but not the other, and a value of 2 to those

selected in both slices. The intersection over union calculation is then performed dividing the

number of pixels assigned exactly 2 by the number assigned either 1 or 0. Both percentage

overlap, and overlap on a slice by slice basis are reported. Total percentage overlap is reported

as an average of all slices for each RV.

Means of coefficient of variation (CV%) of mesh volume were calculated as a further

method of analysing variability in the initial sample data when comparing two observers. The

CV% is the standard deviation of paired measurements divided by the mean value computed

for each subject, calculated as follows:

𝐶𝑉 % = 𝜎
𝜇
× 100 (4.4)

where 𝜎 is the standard deviation of a pair of measurements (e.g. the volume recorded by

Observer 1’s segmentation and that recorded by Observer 2 for the same RVES), and 𝜇 is the

mean of those volumes which is then averaged over the five test subjects and reported as a per-
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centage. For each case, four CV% were calculated and compared: two repeated measurements

of volume by Observer 1; two repeated measurements by Observer 2; the first measurements

of Observer 1 and 2 and the second measurements of the observers. This method is commonly

used in literature for assessing semi-automated segmentation methods (Bae et al., 2009), and

reports a single, informative percentage value. Bland-Altman plots, which depict the differ-

ence between two measures over their average, are commonly used to assess segmentation

difference. It was decided not to produce such plots in this work, since a subset of just 5 sub-

jects were altered in each test, which would give an insufficient sample size to provide useful

data.

Quantifying Output Differences

Statistical decomposition (described in Section 2.8) produces eigenvectors representing the

strongest shape descriptors within the dataset (‘the modes’) which have associated modal co-

efficients; values which describe how much of any given mode produces the best reconstruc-

tion of a particular RVES (the strength of the shapes). Each subject is reconstructed from the

summation of the mean heart and each of the 192 shape modes multiplied by a representative

modal coefficient, as was described in Equation 2.6.

To assess the impact of altering the input parameters on the overall shape features derived

from the shape analysis (the output); a series of tests were conducted which fall into two broad

categories. The first group directly compares the mode shapes produced through the statistical

decomposition. This was achieved by comparing the modal energy plots from each subsequent

statistical shape analysis; through calculating the sum of squared difference between the shape

modes, and through inspection of 3D reconstructions of the mode shapes, when these are

added to the mean (±2× SD), as described in Equation 2.11, and Figure 2.13.

The second category of tests compares the mode coefficients, i.e. whether the represen-

tation of each shape feature within individual subjects has altered. Pearson correlations were

computed to determine whether the mode coefficients are statistically correlated with one an-
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other, or with cognate modes. A second test analysed percentage differences to directly the

compare mode coefficient values. Finally, LDAs were performed using a selection of the best

identified test combinations in Chapter 3 to contrast key Linear Discriminant scores and de-

termine the clinical applicability of the Population Analysis. The LDA procedure followed

that described in Subsection 3.3.2. Specifically, Mode 19, which correlated with subject sex,

Modes 9 & 5, and Modes 9 & 18, which correlated with Age at end-Systole, Modes 20, 11, 2

which correlated with Obesity at end-Diastole.

Pearson product-moment correlation coefficient values were calculated to measure the

strength of the linear relationship between the output mode coefficients. The Pearson coeffi-

cient is defined in Equation 3.3.1 and assigns a value between -1 and 1, where 0 indicates no

correlation, 1 is total positive correlation and -1 is total negative correlation. The subscript

represents the number of degrees of freedom, where df = n-2.

The sum of squared differences was calculated to compare the mode eigenvectors di-

rectly. This method calculates the squared difference between every point on the interpolated

400x200 grid as follows:

𝐷 =
󳴈

(𝜇𝑘𝑖 − 𝜇𝑘𝑗)2 𝑜𝑟 𝐷 =
󳴈

(𝜇𝑘𝑖 + 𝜇𝑘𝑗)2 (4.5)

where 𝜇𝑘𝑗 is a point on the original grid, and 𝜇𝑘𝑗 is a point on the new grid.

As briefly outlined in the methodology (Chapter 2), since the mode shapes are eigenvec-

tors, they provide only direction and their magnitude is arbitrary, including whether positive

or negative. This means that the same mode might have the opposite sign without changing

the significance or effect. Therefore, there is a possibility that two modes which are in actual-

ity the same appear to have a larger difference. This would not be accounted for by just taking

the absolute value. To combat this, an addition is performed instead of a subtraction in cases

where the signs differ.

The second step is then to calculate a second total distance between them, which was
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implemented as follows:

Total Distance = 1
𝑛

󳴈󳴇
𝐷2, (4.6)

where 𝑛 is the total length of the mode vector.

4.4 Results and Discussion

In this section, the results of the four specific interventions described in the Introduction (Sec-

tion 4.1) will be described. Each section will first include analysis of the impact that the

methodological change has introduced to the input. This is assessed in different ways depend-

ing on the specific assessment. Then, the impact of changes to the overall shape analysis output

will be reported. The shape analysis procedure will be evaluated using a series of different

metrics; examining the modal energy curves, assessing Pearson Product-Moment correlation

coefficients, through examination of the qualitative mode shapes produced, through inspection

of the raw modal coefficients and through exemplar LDA analyses, which compare a selection

of classification scores.

4.4.1 Robustness to Changes in Dataset Size

To assess the robustness of the mode generation system in response to alterations to the dataset

size, the original 96 subject dataset was also reduced to 80 subjects, 60 subjects, 40 subjects

and 20 subjects. The composition of each of these reduced test sets was selected by a random

number generator. The selections were overlapping, but each was taken as a subset of the

original 96 subjects, so the choices are not subsets of one another, and the 40 subject set was

not necessarily a subset of the 60 subject set.
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(a)

(b)

Figure 4.5: Difference in Modal energy distribution between the datasets. a) Modal energy profiles for
shape analyses conducted when an additional 25 subjects were added and when the dataset size was
reduced to 80, 60, 40 and 20 subjects respectively. The vertical dashed lines indicate Mode 7, which
covers 90% of the total modal energy, and Mode 30, which describes 99% of the total modal energy.
b) Difference between the original modal energy curve and those for shape analyses conducted an
additional 25 subjects were added and when the dataset size was reduced to 80, 60, 40 and 20 subjects
respectively.
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Impact of Changes to Dataset Size Output

Figure 4.5 shows the modal energy curve profiles for the decomposition when dataset size is al-

tered. As described in Section 2.8, the end-Systolic and end-Diastolic shapes are decomposed

together. Figure 4.5a demonstrates that the modal energy curve profiles are very similar when

the dataset size is both increased to 121 subjects and systematically reduced. Seven modes are

needed to capture 90% of the modal energy in all but the most extreme scenario (dataset size

reduced to 20 subjects), which only requires 6 modes. The 80 subject dataset uses 29 modes

to capture 99% of the modal energy; the 60 subject set requires 28 modes; the 40 subject set

requires 24 modes and the 20 subject dataset needs 19 modes to capture 99% of the modal

energy. In most scenarios, the distribution of modal energy would not be expected to change,

but the fact that such change is minimal even after the addition and removal of large numbers

of individuals from the analysis is a promising indicator of robustness. Figure 4.5b indicates

that the maximum percentage difference between the tests was just 7.5%, even at 20 subjects.

Tables 4.2 and 4.3 report Pearson correlations of the modal coefficients between the 96

subject dataset used in Chapter 3 and the altered set of shape analyses. At end-Diastole, there

is a relatively small change in the information conveyed by the shape modes. The modal

coefficients are strongly correlated for the first 17 Modes when the dataset size is reduced

from 96 subjects to 80 subjects. The mode shapes are also qualitatively similar (Figure 4.6).

Tables 4.2 and 4.3 also provide evidence that the shapes encoded by Modes 6 and 7 have

interchanged in the 80 subject analysis. The comparatively low (although still statistically

significant) absolute Pearson correlations of 0.597 and 0.451 respectively are corroborated

when considering the qualitative mode shapes in Figure 4.6. When correlating the Mode 6

coefficients from the 96 subject analysis to the Mode 7 coefficients from the 80 subject analysis

the absolute correlation is an improved 𝑟78 = 0.839. Likewise, correlating 96 subject Mode 7

coefficients to 80 subject Mode 6 gives a correlation of 𝑟78 = 0.810.

At end-Diastole, when the dataset size is increased to 121 individuals, the correlation is

very strong and does not fall below 𝑟96 = 0.878 for the first 16 modes. The first 4 modes are
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Table 4.2: Absolute Pearson correlation coefficients comparing the first 20 modes in the 96 subject
dataset to cases where dataset size from the original 96 subjects is changed by adding in or removing
individuals at end-Systole.

Mode No. 121 Subjects 80 Subjects 60 Subjects 40 Subjects 20 Subjects
1 0.999 0.999 0.998 0.999 0.995
2 0.998 0.995 0.983 0.985 0.942
3 0.986 0.996 0.990 0.948 0.937
4 0.988 0.997 0.980 0.981 0.968
5 0.989 0.994 0.992 0.132 0.232
6 0.959 0.467 0.801 0.424 0.386
7 0.951 0.576 0.886 0.417 0.011
8 0.986 0.975 0.875 0.479 0.414
9 0.964 0.962 0.882 0.875 0.445
10 0.878 0.973 0.887 0.355 0.245
11 0.972 0.966 0.329 0.230 0.755
12 0.929 0.941 0.488 0.887 0.174
13 0.948 0.963 0.900 0.610 0.274
14 0.969 0.937 0.915 0.667 0.295
15 0.958 0.926 0.902 0.803 0.312
16 0.930 0.914 0.702 0.458 0.438
17 0.651 0.931 0.701 0.143 0.205
18 0.435 0.523 0.782 0.588 0.155
19 0.175 0.002 0.697 0.153 0.443
20 0.322 0.579 0.312 0.019 0.110
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Table 4.3: Absolute Pearson correlation coefficients comparing the first 20 modes in the 96 subject
dataset to cases where dataset size is changed by adding in or removing individuals at end-Diastole.

Mode No. 121 Subjects 80 Subjects 60 Subjects 40 Subjects 20 Subjects
1 0.999 0.999 0.996 0.999 0.976
2 0.998 0.996 0.991 0.993 0.971
3 0.982 0.996 0.991 0.962 0.940
4 0.982 0.995 0.976 0.983 0.880
5 0.985 0.991 0.989 0.866 0.658
6 0.977 0.597 0.866 0.748 0.372
7 0.955 0.451 0.846 0.528 0.636
8 0.976 0.955 0.814 0.602 0.198
9 0.950 0.948 0.922 0.781 0.533
10 0.940 0.990 0.888 0.008 0.336
11 0.950 0.954 0.380 0.184 0.435
12 0.958 0.949 0.319 0.850 0.159
13 0.959 0.963 0.953 0.585 0.570
14 0.956 0.905 0.903 0.539 0.259
15 0.953 0.928 0.859 0.547 0.091
16 0.913 0.890 0.685 0.432 0.699
17 0.527 0.926 0.605 0.159 0.339
18 0.510 0.552 0.733 0.560 0.229
19 0.274 0.080 0.735 0.183 0.298
20 0.319 0.455 0.065 0.529 0.140
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robust in all dataset size perturbations tested (with the weakest correlation being 𝑟96 = 0.968

at end-Systole, and 𝑟96 = 0.880 at end-Diastole), including reducing the dataset size to just 20

subjects. This highlights that the key shape descriptors are captured even in a much reduced

dataset. After Mode 4 at end-Systole, there is a dramatic reduction in Pearson correlation

when the dataset is reduced to 40 subjects and 20 subjects, indicating that the mode shapes are

not shared after this point. The same mode robustness patterns are shared at both end-Systole

and end-Diastole. This is a helpful indication for future analysis, because the dataset was de-

composed together, but systolic and diastolic components are assessed separately. Therefore,

the similar robustness patterns demonstrate that both heart phase shapes are captured equally.

Mode 19, which was found to be a mode associated with sex-based differences at end-

Systole in Chapter 3, does not correlate significantly with the 96 subject dataset in any test

except for the 60-subject dataset. This cautions the user to be careful with the lower-energy

modes, unless a significantly larger dataset is used as such modes may be encoding different

shape features between analyses. Although, conclusions regarding separation into sex-based

groups do not directly translate to different dataset sizes, the similarity of the decomposed

shape feature and the relative correlations insinuates that a correction could easily be ap-

plied. This would enable direct comparisons of meaningful shape features. On the other hand,

Modes 9 & 6 both correlate strongly with their equivalent coefficient values in all dataset sizes,

indicating that these age-based predictor modes remain the same across all perturbations to

dataset. Perhaps the main outcome from these findings is that, despite evidence from the

modal energy curve (Figure 4.7a), the higher order modes (above 16/17) do not convey useful

shape information beyond a specific dataset and are prone to noise. A key component of the

statistical shape analysis method is that the features are ranked; therefore, this outcome is not

unexpected.

Figure 4.6 depicts visualisations of the mean RV ± 2 × standard deviation for a series of

modes, selected because of their ability to classify non-medical subject characteristics in the

previous chapter, at 121 subjects, 80 subjects, 60 subjects, 40 subjects and 20 subjects. This
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image demonstrates that there is very little qualitative difference between the mode shapes

when increasing and decreasing the size of the dataset, and provides convincing evidence that

perturbations related to dataset size do not substantially change the derived mode features, at

least over the first 9 modes. It is imperative to highlight that Mode 1 retains the distinctive

shape features seen in the original population-based analysis, affecting ventricle length and

apex detail. The 20 subject dataset (depicted in olive green) clearly differed in all cases but

Mode 1. Mode 9 differed when the dataset size increased to 121 subjects - in the 121-subject

sample, it appears to represent greater curvature at the base, whereas in the 96-subject sample

the bulging is closer to the apex. Mode 19 only correlated with the 60-subject dataset. It is

clear from Figure 4.6 that this statistical relationship is based on the distinctive ‘hump’ shape

at the base of the RV, near the pulmonary valve. The Mode shapes for the 20 subject dataset

clearly diverge after Mode 1.

A further way of validating the robustness of the method to fluctuations in Dataset size

was to look directly at the mode eigenvectors shapes themselves. Table 4.4 compares the sum

of squared difference at Mode 1 between 96 subjects and the various 80-40-60-20 extremes.

This method is described by Equation s 4.3.5 and 4.3.5. As expected, there is a small overall

mean squared difference between 96 and 95 subjects (1.31×10−5), and the difference increases

in the more extreme datasets (e.g. 96 vs 20). Subjects 96 vs 40 show a relatively small sum of

squared differences (9.32 × 10−5), despite a substantial change in input, which is surprising.

The addition of 25 subjects to form the 121-subject group causes an approximately similar

change in the sum of squared difference value to the 80-subject comparison. This suggests

that increasing the difference in input value causes a similar change to the output modes.

Nevertheless, the surprisingly small difference between 96 and 40 subjects indicates that the

sum of squared differences may not always be the best metric for comparing statistical shape

analysis measures. These values are for Mode 1 only, which as has been shown in previous

Tables (4.2, 4.3 & 4.7) to have remained largely static.

Table 4.5 lists a comparison of percentage differences across the dataset sizes. The mean,
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Figure 4.6: Qualitative depiction of the RVES shapes when Modes 1, 6, 9 and 19 in the 121, 96
(original), 80, 60, 40 and 20 subject datasets are plotted on the Mean ±2 × SD. Mode 1 appears to
encode the same qualitative shape for all dataset sizes. Mode 6 encodes a similar shape feature when
the dataset for all except the 20 subject test. Mode 9 diverges when the dataset is increased to 121
subjects, and when the dataset is reduced to 20 subjects. Finally, Mode 19 differs in most comparisons,
although the 60 subject test shares many similarities with the original. As the modes are eigenvectors,
they provide only direction and their magnitude is arbitrary, including whether positive or negative.
Hence, a mode can be observed to encode the same shape whether that mode is added or subtracted
from the mean.
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Table 4.4: Sum of squared difference between the Mode 1 eigenvector when the dataset size is reduced
from 96 subjects to 80, 40, 60 and 20 subjects, and increased to 121 subjects. This method accounts
for a difference in sign of the mode.

Dataset Difference Dataset Difference Dataset Difference
96 vs 95 1.31 × 10−5 121 vs 96 6.18 × 10−5 80 vs 60 6.63 × 10−5

96 vs 94 1.66 × 10−5 121 vs 80 7.06 × 10−5 80 vs 40 7.66 × 10−5

96 vs 80 5.52 × 10−5 121 vs 60 1.07 × 10−4 80 vs 20 1.28 × 10−4

96 vs 60 1.00 × 10−4 121 vs 40 1.01 × 10−4 60 vs 40 1.11 × 10−4

96 vs 40 9.32 × 10−5 121 vs 20 1.40 × 10−4 60 vs 20 1.01 × 10−4

96 vs 20 1.50 × 10−4 40 vs 20 1.76 × 10−4

minimum, maximum and standard deviation of the percentage differences are reported. The

percentage difference calculation uses absolute mode coefficient values to account for the fact

that the sign is not relevant, and takes into account the size of the dataset.

The results in Table 4.5 in general accord with the Pearson correlations shown in Tables

4.2 and 4.3. The smallest mean percentage difference is between the two datasets which are

closest in size. The two shape analyses where the size was only very slightly altered: from 96

to 95 subjects and from 96 to 94 subjects, show the smallest mean percentage difference. The

percentage difference between the original values and the altered dataset sizes is the smallest

at Mode 1. This again can be explained through the fact that the modes are ranked, meaning

that Mode 1 explains the largest proportion of modal energy, and therefore would be expected

to be most similar. The standard deviation of percentage difference is always smaller at end-

Diastole than at end-Systole. Again, this is unsurprising since the end-Diastolic hearts, on

average are larger and are also much easier to capture in the segmentation process.

Table 4.6 shows a subset of raw mode coefficient values to give an example of coefficient

sizes and the absolute impact that altering input dataset size has on these values. There is a

greater difference in raw values in the more extreme datasets, but it is clear that there is an

overall trend of mode features in all cases.
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Table 4.5: Mean, minimum, maximum and standard deviation of the percentage difference values
which compare results from selected modes across the different dataset sizes against the original 96
subject dataset from Chapter 3

Mode 1 Mode 6 Mode 9 Mode 19
Dia Sys Dia Sys Dia Sys Dia Sys

121 Mean 44.7 159.7 39.4 73.1 65.0 92.3 282.1 267.6
Min 0.2 0.2 0.1 0.6 0.0 0.0 4.2 3.2
Max 991.2 13318.4 2355.2 5134.8 2503.8 5967.9 5718.9 6096.1
SD 122.6 1357.6 252.0 523.9 291.3 611.5 913.4 945.9

95 Mean -0.3 32.8 -0.2 4.6 9.5 119.6 13.6 16.9
Min 0.1 0.0 0.0 0.0 0.0 0.8 0.2 0.0
Max 44.4 3141.6 95.5 622.8 428.7 7998.1 547.5 573.3
SD 7.3 320.3 14.3 64.2 59.6 820.1 76.7 80.2

94 Mean 2.8 37.3 8.1 17.6 22.6 113.3 110.9 128.1
Min 0.0 0.0 0.0 0.0 0.1 0.8 0.1 0.9
Max 154.7 3452.0 455.6 1500.7 806.1 6973.2 2955.0 3826.2
SD 20.3 353.9 55.9 155.3 122.1 720.8 416.2 543.4

80 Mean 9.6 12.8 185.4 444.2 105.8 245.6 271.9 223.6
Min 0.3 0.1 1.7 1.7 0.3 0.7 6.7 1.7
Max 560.0 712.9 6329.7 26016.1 2629.9 16402.3 4953.1 4052.9
SD 86.4 80.0 786.7 2909.3 480.0 1821.7 787.2 716.4

60 Mean 42.4 241.3 33.9 103.7 56.1 72.5 134.7 362.8
Min 0.1 0.2 2.2 1.9 0.1 1.1 0.8 0.5
Max 1999.3 14477.9 1857.8 2059.2 1295.3 697.6 2410.6 10986.1
SD 267.0 1851.7 237.7 353.6 185.3 153.0 380.1 1512.0

40 Mean 4.5 1.2 51.0 635.1 278.8 95.9 139.8 44.1
Min 0.8 0.6 5.0 5.6 0.3 4.3 8.1 7.0
Max 143.1 72.9 1041.5 15927.8 5248.0 1269.2 1882.9 809.4
SD 28.3 13.0 189.5 2521.2 977.2 262.7 425.5 148.1

20 Mean 14.3 5.8 -30.1 126.2 269.2 1318.4 352.8 87.4
Min 1.2 0.1 5.0 9.5 19.3 13.1 1.6 1.4
Max 499.9 116.5 107.9 580.5 4299.6 24137.7 3138.5 1131.6
SD 103.2 26.0 33.0 161.9 921.0 5234.1 807.4 294.1133
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Table 4.6: Representative raw mode coefficient values for Mode 1 comparing results for different
dataset sizes. As the dataset size reduction was performed using a random number generator, the
NA values refer to cases where that subject did not form part of the smaller dataset. Six consecutive
subjects are shown.

Subject No. 121 96 95 94 80 60 40 20
6 -20.8 -16.4 16.2 15.2 -21.5 -20.8 -17.7 -25.8
7 66.5 67.8 -68.1 -68.2 66.7 70.1 NA 67.0
8 -63.3 -58.0 57.9 56.8 -64.4 -64.9 -62.1 NA
9 2.4 5.2 -5.3 -6.1 1.7 2.3 NA -2.6
10 82.8 84.1 -84.0 -84.6 NA NA NA NA
11 -12.0 -7.5 7.0 NA -11.1 -10.2 -6.2 NA
12 70.2 72.0 NA NA 69.3 71.5 NA NA

Application of LDA

Next, the conclusions obtained in Chapter 3 were assessed by applying them to these new

robustness analyses. LDA analyses were performed on selected groups to determine the im-

pact of dataset size on the classification results obtained in Chapter 3. The intention of this

test was to determine whether altering the dataset size and the accompanying differences to

the derived modal coefficients impacted the ability of a linear discriminant model to classify

based on features, as was performed in Chapter 4. The strong Pearson correlations and visi-

ble qualitative agreement outside of the extreme changes to dataset size suggest that the best

mode combinations for classification in the original 96 subject analysis should be similarly

successful here. The selected combinations were 121 subjects; 95 subjects, to determine the

impact of making only a very small adjustment; 80 subjects and 40 subjects. The 20-subject

dataset analysis was not included since testing more covariates (i.e. the top 30 Modes) than

input subjects is not recommended. Table 4.7 displays this selection of LDA classification re-

sults with the reduced and increased dataset sizes. Of the 40 subject group, 17 subjects were

non-hypertensive, and of the 80 subject group, 37 subjects were non-hypertensive.

Applying Mode 19 alone, which, by itself was the most distinctive shape feature for sepa-

rating sex in non-hypertensive subjects, did not separate any dataset well (range 54.1%-64.7%
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successful classification). The highest classification accuracy (64.7%) was in the 40-subject

test, and the lowest classification accuracy was in the 80-subject dataset (54.1%). The clas-

sification rate was also poor (55.4%) when the input size was increased to 121 individuals.

However, in this category, Mode 18 was a stronger predictor of the dataset, able to correctly

identify 60% of the 121 subjects after cross-validation. Therefore, it could be argued that

although adding more subjects has slightly altered the specific mode number, the identified

shape features are not changing. There is also a possibility that adding in 25 additional non-

hypertensive subjects has diluted the specific features and that Mode 19 does capture shape

features related to hypertensive individuals.

The best overall alignment with the original data was in categorising obesity. In the origi-

nal 96 subject dataset, Modes 20, 11 and 2 were the optimal separators based on obesity. The

classification range was 58.8%-74.4%, with the best classification percentage in the 95-subject

category, where just one subject was removed. Modes 20, 11 and 2 were able to correctly

separate 62.5% of the 121 subject dataset, and 67.6% of the 80 subject dataset and the dis-

criminant analysis is statistically significant in these cases. In general, it can be discerned that

the percentage of correctly separated individuals is greater when the best separator modes are

included in the list of ‘Top Five’ by structure matrix (as described in Section 3.3.2).

Removing a single subject from the analysis in the 95-subject dataset produced an unex-

pectedly different result at end-Systole. One specific test stood out as producing significantly

poorer results than the others. Modes 9, 5 and 9, 18, which were the best classifiers by age,

could only separate 35.9% and 30.8% of the individuals correctly, whereas the same modes

correctly classified 72.5% of the original 96 individuals. However, looking at the most accu-

rate classifier column indicates that Modes 10 and 19 are the two most important classifier

modes in terms of their structure matrix value; the structure matrix value reports correlation

to the discriminant function, and can be interpreted as factor loadings to identify the largest

absolute correlations to the discriminant function. It is therefore plausible that Modes 9 and

10 and Modes 18 and 19 have been switched in this case. The ‘Top Five’ modes indicate a
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Table 4.7: Exemplar LDA Analyses comparing a selection of classification results between the orig-
inal analysis (non-hypertensive only) and the dataset alterations. Test Combination reports the com-
bination of modes used as inputs in the LDA. Where more than one combination was found equally
successful in Chapter 3, both were tested. ‘Classification %’ reports the best accuracy percentage after
cross validation. ‘Top Five’ lists the best five modes identified using a new LDA, created based on the
new coefficients from the robustness test.

Dataset Trait Phase Test Combination Classification
%

Top Five

40 Subject Sex Systole 19 64.7 3, 9, 15, 8, 7
40 Subject Age Systole 9, 5 58.8 29, 9, 3, 4, 2
40 Subject Obesity Systole 15, 16, 6 & 15, 29, 16 52.9 9, 10, 3, 8, 4
40 Subject Sex Diastole 6, 23 64.7 15, 5, 7, 6, 8
40 Subject Age Diastole 6, 13, 17 & 6,3,13 64.7 6, 7, 13, 8, 11
40 Subject Obesity Diastole 20, 11, 2 58.8 2, 15, 11, 23, 12
80 Subject Sex Systole 19 54.1 23, 20, 28, 22, 27
80 Subject Age Systole 9, 5 59.5 9, 20, 22, 6, 29
80 Subject Obesity Systole 15, 16, 6 67.6 15, 20, 30, 16, 13
80 Subject Sex Diastole 6, 23 56.8 6, 5, 25, 29,20
80 Subject Age Diastole 6, 3, 2 73.0 6, 3, 5, 28, 17
80 Subject Obesity Diastole 20, 11, 2 67.6 2, 11, 3, 13, 26
95 Subject Sex Systole 19 64.1 29, 27, 24, 19, 22
95 Subject Age Systole 9, 5 35.9 10, 19, 24, 6, 7
95 Subject Obesity Systole 15, 29, 16 64.1 16, 17, 30, 14, 19
95 Subject Sex Diastole 6, 23 69.2 6, 22, 7, 23, 30
95 Subject Age Diastole 6, 13, 17 76.9 6, 3, 29, 15, 7
95 Subject Obesity Diastole 20, 11, 2 74.4 2, 20, 11, 13, 24
121 Subject Sex Systole 19 55.4 18, 29, 28, 21, 26
121 Subject Age Systole 9, 5 & 9,18 41.5 20, 4, 7, 23, 10
121 Subject Obesity Systole 15, 29, 16 63.1 20, 15, 18, 13, 16
121 Subject Sex Diastole 6, 23 50.8 15, 7, 6, 11, 14
121 Subject Age Diastole 6, 3, 13 64.6 27, 7, 14, 6, 8
121 Subject Obesity Diastole 20, 11, 2 61.5 2, 26, 13, 24, 27
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close relationship between the shape features of importance, even if the classification percent-

ages do not reflect such a close agreement. Nevertheless, it is surprising that the omission of

a single subject caused such a noticeable impact on the age classification results. A likely ex-

planation relates to the relatively small amount of modal energy captured by these lower order

modes. Although they clearly contribute important age-related shape information, describing

such a small amount of the total modal energy (less than 1%) increases the possibility that

small changes result in specific modes encoding different shape features between tests.

4.4.2 Robustness to Changes in Dateline Selection

The next test was to compare robustness to the selection of new poles and a new dateline.

As with the analysis in Subsection 4.4.1, firstly the distance between the input values were

assessed, before considering that impact on the output. Figure 4.2 gives a qualitative example

of the degree of variability of point selection.

Impact of Changes to Dateline Input

Table 4.8 contains the Hausdorff Distances in mm between the original dateline selection

and the second dateline selection at both end-Systole and end-Diastole. Hausdorff distance

represents the largest distance between any point on the two datelines, so is indicative of

a worst case scenario. The greatest distance between dateline selections was 6.56mm, and

the smallest distance observed was 2.09mm. Overall, the distance between the initial and

repeat datelines was greater at end-Diastole (range 3.81-6.56) than end-Systole (range 2.09-

3.27). This variation is likely to be associated with the greater size of the diastolic ventricle,

and is also influenced by the differences in the lengths of the selected datelines, which is

dependent on each observer’s determination of apex positioning. In the case of Subject 2

at end-Diastole, the second attempt to select the south pole led to the dateline containing 2

fewer points. Although the short-axis images provide a frame of reference, user input was

still required regarding mapping the segmentation edge in ITK-SNAP to the smoothed finite
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Table 4.8: Hausdorff Distance between the two datelines at both end-Systole and end-Diastole.

Subject Diastole Systole
2 6.56 2.88
3 4.97 2.09
4 3.81 3.27
10 3.95 2.32
22 5.13 2.62

element mesh. Selection is also constrained by the location of nodes on the mesh; by necessity,

it is limited to the nearest available node.

Impact of Changes to Dateline Output

Having established that the differences between dateline selection can be up to 6.5mm, Tables

4.9, 4.10 and 4.11, now examine the impact of that dateline selection on the final statistical

shape analysis results, since altering the dateline alters the position of the anatomical boundary

when mapping to the unit sphere. Figures 4.7a and 4.7b show the modal energy curve for the

shape analysis conducted after the new dateline selection was made. There is extremely close

alignment in percentage modal energy between the modes derived in the original dataset and

after the new dateline selection. Changing the selected dateline impacts the shape mapping.

This accords with expectation, since the meshes themselves were not altered.

Table 4.9 compares the Pearson correlation coefficients between the original and replaced

dateline shape analyses at end-Systole and end-Diastole. The first 13 modes are strongly

correlated (the weakest correlation is 𝑟94 = 0.817, and all others are above 𝑟94 = 0.9). It is

possible that Modes 14 and 15 encode the same features and have interchanged, since they

both show uncharacteristically weak correlation coefficients in comparison to adjacent modes

(𝑟94 = 0.384 for Mode 14 and 𝑟94 = 0.355 for Mode 15). Therefore, as with the robustness

to dataset size analyses, if this swap is taken into account, the first 16 modes are matched to

cognates.

The sum of the squared difference between modes derived from the original and the new

138



CHAPTER 4. ROBUSTNESS 4.4. RESULTS

(a)

(b)

Figure 4.7: Difference in modal energy distribution between dateline sets. a) Modal energy profiles for
shape analyses conducted when a new dateline selection was made. The vertical dashed lines indicate
Mode 7, which covers 90% of the total modal energy, and Mode 30, which describes 99% of the total
modal energy. b) Difference between the original modal energy curve and those for shape analyses
conducted when the new dateline selection was made.
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Table 4.9: Absolute Pearson correlation values for the first 20 modes when comparing the 96 original
subject mode coefficient values with the results obtained during a test where five of the 96 subjects had
their datelines replaced.

Mode No. Replaced Dateline
Systole Diastole

1 0.988 0.993
2 0.943 0.936
3 0.961 0.974
4 0.817 0.991
5 0.946 0.974
6 0.942 0.984
7 0.914 0.992
8 0.944 0.953
9 0.967 0.981
10 0.953 0.986
11 0.969 0.965
12 0.938 0.975
13 0.958 0.995
14 0.384 0.347
15 0.355 0.316
16 0.971 0.960
17 0.133 0.026
18 0.027 0.133
19 0.453 0.564
20 0.509 0.457
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Table 4.10: Sum of squared difference between the top 5 modes and Modes 6, 9 and 19 when comparing
the original mode eigenvectors to those created when 5 new datelines were included.

Comparison Sum Squared Diff.
Mode 1 3.34 × 10−5

Mode 2 8.46 × 10−5

Mode 3 8.46 × 10−5

Mode 4 1.04 × 10−4

Mode 5 1.09 × 10−4

Mode 6 7.14 × 10−5

Mode 9 4.71 × 10−5

Mode 19 5.89 × 10−4

dateline selections is shown in Table 4.10. These values were calculated for the first 5 modes

in addition to Modes 6, 9 and 19; assessed as a result of their importance in defining sex and

age-based differences, respectively. This analysis diverges slightly from the comparison of

dataset sizes in Subsection 4.4.1, largely owing to the number of dataset analyses conducted

in that section. Interestingly, the difference in relative value for Modes 6 and 9, which are key

shape modes for determining sex and age-based differences, was much smaller than Modes 4

and 5, suggesting that these noteworthy shape features are preserved. Although, as posited in

Subsection 4.4.1, it appears that the sum of squared difference is a less useful metric for de-

termining the robustness of results; such differences are not upheld in the Pearson correlation

analysis in Table 4.9.

Table 4.11 shows the Mode 1 coefficient values for the first 15 subjects and their associated

percentage differences. The raw coefficient values are more prone to change than measures of

mode similarity, which accounts for some very large percentage difference values. It is note-

worthy that, while overall, the two shape analysis runs are similar, the subjects with altered

datelines (Subjects 2, 3, 4 and 10 in this sample) exhibit substantially larger percentage dif-

ferences. Subject 3, in particular, differs by 132%. The average percentage difference for the

five replaced datelines is 69.7%, whereas the average for the remaining subjects is just 4.47%.

It is surprising to note that the greatest percentage difference was not observed in Subject 4;
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Table 4.11: Mode coefficient values at Mode 1 when comparing the original 96 subject mode coefficient
values at end-Systole to the five subjects with redrawn datelines.

Subject Number Original Result Replaced Dateline Percent Difference
1 56.6 -55.2 2.5
2 -32.5 24.4 24.8
3 24.3 -56.3 132
4 36.3 -49.6 36.7
5 89.1 -89.9 0.9
6 50.8 -49.7 2.3
7 54.1 -54.4 0.6
8 -16.4 18.4 12.5
9 17.9 -16.5 7.5
10 33.3 -61.9 86.0
11 30.8 -31.9 3.5
12 22.9 -22.5 1.8
13 52.6 -52.7 0.2
14 12.7 -10.9 14.3
15 -18.1 18.7 3.1

the individual with the largest Hausdorff distance (and thereby the largest absolute difference

in the dateline selections).

Table 4.12 shows the mean, maximum, minimum and standard deviation values of the

percentage differences calculated for Modes 1, 6, 9 and 19. This information is also displayed

as a box plot in Figure 4.8. The box plots are transformed onto a 𝐿𝑜𝑔10 scale to ensure that

all points are recorded, since there are a significant number of outliers and removing them

would preclude a true representation of the data. Table 4.12 suggests that the mean percentage

differences of Modes 1, 6 and 9 are comparable at end-Diastole (range: 16.0%-19.6%), and

end-Systole (range: 44.2%-74.2%). The mean of Mode 19 is substantially greater at both

phases (248.5% at end-Diastole and 330.0% at end-Systole). Figure 4.8 also demonstrates

that all tests show a substantial spread across the range of 0-10,000%. Overall the percentage

difference values for the dateline analyses are more closely clustered than those for the dataset

tests, with the exception of the very minor 95 and 94 subject changes.
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Table 4.12: Mean, minimum, maximum and standard deviation of the percentage difference values
which compare results from selected modes from the new dateline dataset against the original 96 sub-
ject dataset from Chapter 3.

Mode 1 Mode 6 Mode 9 Mode 19
Dia Sys Dia Sys Dia Sys Dia Sys

Mean 19.6 57.4 16.0 44.2 18.2 74.2 248.5 330.0
Min 0.1 0.0 0.3 0.1 0.1 1.0 1.3 0.4
Max 908.7 4140.7 928.2 2144.4 810.8 3944.8 6892.4 9549.8
SD 120.0 424.0 100.4 250.6 112.6 435.5 951.6 1364.2

Figure 4.8: Box plots showing the distribution of the percentage difference values at end-Systole and
end-Diastole for the four example modes. Plots are on a Log10 scale to enable the display of outliers
without distorting the data.
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Figure 4.9: Qualitative depiction of the RVES shapes when four key modes: 1, 6, 9 and 19 in original
and new dateline datasets are plotted on the Mean ±2 × SD. The original RVES shapes are coloured
blue, whereas the dateline replacement sets are coloured red. Modes 1, 6 and 9 appear to encode
similar shape features when the dateline replacement sets. Mode 19 does not appear to encode the same
shape in the dateline replacement set. As the modes are eigenvectors, they provide only direction and
their magnitude is arbitrary, including whether positive or negative. Hence, a mode can be observed
to encode the same shape whether that mode is added or subtracted from the mean.

Figure 4.9 depicts the mode shapes for Modes 1, 6 9 and 19 in both the original and new

datasets plotted on the mean ± 2× standard deviation of the modal coefficients experienced

by every subject. Mode 1 again exhibits characteristic increased length and detail in the apex

region, which is associated with the MRI scanning protocol. Modes 1, 6 and 9 all show the

same shape in the original (red) and dateline-replaced (blue) sets. However, Mode 19 does

not appear to encode the same mode features. This qualitative result agrees with the Pearson

correlation coefficients which are shown in Table 4.9. The shape modes remained robust for

the first 16 ranked features in terms of their Pearson correlation coefficients, assuming that

Modes 14 and 15 are switched.
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Table 4.13: Exemplar LDA Analyses comparing classification results between the original analysis
and the tests which include a new dateline.Test Combination reports the combination of modes used
as inputs in the LDA. Where more than one combination was found equally successful in Chapter 3,
both were tested. ‘Classification %’ reports the best accuracy percentage after cross validation. ‘Top
Five’ lists the best five modes identified using a new LDA, created based on the new coefficients from
the robustness test.

Characteristic Phase Test Combination Classification % Top Five
Sex Systole 19 25.0 27, 8, 17, 7, 18
Age Systole 9, 5 70.0 5, 19, 23, 9, 14
Obesity Systole 15, 16, 6 65.0 19, 29, 13, 18, 6
Sex Diastole 6, 23 60.0 6, 23, 28, 7, 24
Age Diastole 6, 13, 17 & 6, 3, 13 65.0 6, 22, 18, 7, 29
Obesity Diastole 20, 11, 2 72.5 11, 24, 13, 2, 26

Application of LDA

LDA analyses comparing classification results between the initial 96 subjects and the date-

line replacement analysis are displayed in Table 4.13. Obesity at end-Diastole (Modes 20,

11 & 2) proves the most discriminatory characteristic. The dateline robustness test shows a

72.5% classification rate, compared to 77.5% in the initial decomposition (c.f. Table 3.3). In

the dateline comparison, Modes 11 and 2 feature in the top five modes based on structure

matrix value. Overall, the classification percentages recorded in Table 4.13 are closer to the

original test results, with the notable exception of sex at end-Systole (of which the best initial

discriminator was Mode 19 only). In this test, only 25% of hearts were successfully classi-

fied. The conspicuously poor performance of the LDA classifier could be attributed to several

causes. The conclusions of Chapter 3 and the qualitative images shown in Figure 4.9 display

a prominent ‘hump’ feature encoded by Mode 19. This feature is not replicated in the date-

line robustness test. Although, Mode 18’s presence in the ‘Top Five’ selection indicates that

again, this noticeable basal feature was represented, even if not described by exactly the same

mode. Such switches become increasingly likely in the higher order modes, and therefore the

identification of matching features, still shows the usefulness of this decomposition.

Wu et al. (2013) determined that the harmonic mapping method was sensitive to dateline
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selection. This also appears to be true in the following analysis too, as a relatively small shift

in dateline positioning (of the magnitude observed in Figure 4.2) has a large effect on modal

coefficient results in those subjects which were changed. However, there is no large difference

in the overall shape analysis result, especially not on the scale of the inter- and intra-observer

variability analyses.

4.4.3 Robustness to Inter and Intra-observer Variability

Neither of the interventions implemented up until this point have made specific alterations

to the finite element mesh. This Subsection will introduce a much more substantial change

to the hearts included in the analysis. Differences in the input when the initial MRI image

segmentations are performed by the same observer after a long hiatus or by an entirely new

observer are assessed using three measures. The first, a Jaccard Index, is designed to look at

the overlap of the selections on a per-pixel basis; the second is a volume calculation, examining

the overall impact of the segmentation choice on the size of the RV mesh and finally a CV%

compares the relative variation between and within observers. Jaccard Indices and CV% are

described in detail in Section 4.3.5.

Impact of Changes to Observer Input

First, Jaccard Indices for each slice are displayed in the heatmaps in Figure 4.10. These figures

draw attention to the regions with the greatest and smallest differences in pixel overlap be-

tween the two MRI slices. Specifically, it is evident from Figures 4.10a, 4.10b and 4.10c that

pixel selection is much more consistent in diastolic hearts than systolic hearts. Darker green

and blue shades are indicative of an overlap 50%-70% of pixels, whereas areas in yellow are

in the region of 90% overlap across segmentation slices. The consistency at end-Diastole is

almost certainly based on the larger coverage area at end-Diastole, in combination with the

more obscure and difficult to identify apical slices at end-Systole, especially in the subjects

from UPMC. An overall Jaccard index is also reported in Table 4.14 for each heart surface
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that was tested.

Table 4.14 reports overall Jaccard Indices, which are a measure of pixel overlap comparing

slice by slice segmentations for each RVES tested. The table displays overall percentage

overlap, averaged across all slices. The range of recorded Jaccard Index values was 48.0-

81.3%. The lowest overall Jaccard overlap was 45.6%, indicating a total match of less than half

of the selection. This value was observed at end-Systole, comparing the two observers’ initial

segmentation attempts. Table 4.14 demonstrates that, in general, pixel overlap is greater in

end-Diastolic segmentations than end-Systolic segmentations. The combined data from Table

4.14 and Figure 4.10) provides strong evidence that manual segmentation can be extremely

subjective.

Table 4.14: Overall Jaccard indices comparing pixel overlap across 5 subjects when comparing Ob-
server 1 and Observer 2’s initial and repeat segmentations. This value is calculated by averaging
Jaccard Indices across all slices for each subject; the denominator is the number of slices.

Observer Subject 2 Subject 3 Subject 4 Subject 10 Subject 22
Dia Sys Dia Sys Dia Sys Dia Sys Dia Sys

1 Initial vs 1 Repeat 77.3 66.0 71.9 69.8 76.7 63.9 72.5 63.3 70.7 55.2
2 Initial vs 2 Repeat 74.3 64.1 78.4 52.5 76.8 70.3 79.8 65.6 65.5 48.0
1 Initial vs 2 Initial 75.3 62.9 78.2 49.6 78.0 68.4 73.2 71.9 68.9 54.5
2 Initial vs 1 Repeat 77.5 64.9 79.9 45.6 72.0 58.1 81.3 61.2 77.5 59.6

Subject 10, overall was the most consistently matched RV across all repeats at end-Systole,

with a Jaccard Index range of 63.3%-71.9%; the highest overall index for an end-Systolic sub-

ject, and Subject 22 was the least consistently matched across all repeats, with a maximum

overlap of less than 60% (range 48.0%-59.6%) (Table 4.14), although Subject 3 depicted the

overall lowest degree of similarity (45.9%). The noticeably lower Jaccard Index scores ex-

hibited by Subject 22 can be explained by the relatively poor quality MRI scan, which made

the segmentation choice difficult. Figure 4.11 depicts a single slice of this segmentation, and

the initial segmentations by Observer 1 and Observer 2. The differences in the segmentations,

even in a central slice demonstrate how impact of scanning conditions can affect an observer’s

decision on segmentation boundaries. In the central image, the observer has interpreted the
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dark, trabeculated region around the free-wall border as being within the endocardial surface,

and has thus selected that region in the segmentation, whereas the observer in the right hand

image has interpreted that same region as being part of the RV wall, and has therefore drawn

a more conservative boundary. The segmentation standard is to include RV trabeculations in

the ventricular cavity, i.e. within the segmentation (Petitjean et al., 2015). Subject 3 at end-

Systole demonstrated the smallest degree of similarity between repeat segmentations. The

first segmenter appears to have produce more internally consistent results (overlap range of

55.2%-77.3% compared to 48.0%-79.8%). It is notable that the experience level of the two

segmenters in this analysis was more comparable to the beginner reader in Sardanelli et al.

(2008), and therefore consistency could be improved by the employment of more experienced

professionals if manual segmentation is to be used as the standard input. Further, a set of

‘ground rules’ could be established to avoid inconsistencies such as that described above and

observed in Figure 4.11. For example, any trabeculation should be considered to be within

the endocardial surface.

Figure 4.12 shows two attempts to segment Subject 4 at end-Systole; the surface with

the largest pre-shape analysis variation between individuals. Although many of the same

anatomical attributes are identified by both observers, for example the noticeable twist half

way down the septal wall, there is some disagreement (and therefore lack of pixel overlap) in

the base region. This is marked by an arrow on Figure 4.12. The central (6th and 7th) slices

are most similar in the repeat analyses performed by the first observer.

Table 4.15 compares measurements of mesh volume obtained from Simpleware. The table

reports raw values and percentage differences. Inter-observer variability was greater at end-

Systole than at end-Diastole, and this was especially evident in the first set of comparisons.

For example, there was a 91.6% difference in end-Systolic segmentation volume for Subject

22, as compared to a 24.9% difference at end-Diastole. Overall, there was a more substantial

inter-observer difference in the first set of segmentations by each observer (range 1.83-91.6%),

in comparison to the second set, which exhibited a range of 0.38-22.61% difference. In terms
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(a) Observer 1 Initial vs Repeat

(b) Observer 2 Initial vs Repeat

of intra-observer variability, Observer 2 demonstrated greater intra-observer variability than

Observer 1. For example, the percentage difference in volume for Subject 22 was 56.8%
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(c) Observer 1 vs Observer 2

Figure 4.10: Heatmaps displaying the calculated Jaccard Indices between Observer 1 and Observer
2 for inter and intra-observer. A white region indicates no pixel overlap between slices, dark blue
indicates a low overlap (20-30%), teal indicates a 50% overlap and yellow indicates a percentage
pixel overlap in excess of 90%. Columns represent individual subject RVs, and rows represent slices
of those RVs. The vertical black lines are trace lines. The distance of each line from the centre of the
cell is proportional to the size of the measurement.

Figure 4.11: Example of a segmentation on a poor contrast MRI slice. The LHS shows an unmarked
slice, the central image shows an attempt by Observer 1 and the RHS shows a segmentation attempt
Observer 2.
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between the two segmentations performed by the second observer, as compared to 5.34%

when segmented by the first observer. All of these volume differences accord with regions

of poor overlap identified using Jaccard Indices (Table 4.14), although the Jaccard Indices, in

general show higher agreement than would be suggested through consideration of the volumes

alone.

The difference in volume is likely exacerbated by the way in which ITK-SNAP (Yushkevich

et al., 2016) deals with slice thickness. If no pixels are selected on a particular slice, then 8mm

depth in the z axis is automatically lost in that region. This is depicted in Figure 4.12, which

shows 3D models selected by both observers where one segmentation unintentionally missed

the apex or bottom most slice, thereby reducing overall volume. Such a loss could amount to

a volume change of approximately 2% by itself. Removing the bottom slice segmentation of

Subject 4 in ITK-SNAP resulted in a volume change, as recorded in that software, of 1.15cm3

or 1.39% of the total volume. As can be observed by the Jaccard Index heatmaps, the low

overlap was concentrated in these tricky top and bottom slices, whereas the agreement was

much greater in the central regions, where the yellow colour indicates a pixel overlap in ex-

cess of 90%. Personal correspondence with one of the cardiologists involved in the initial data

collection at UPMC, confirmed that the pulmonary valve region is an area of low frequency

of pathological shape change. Therefore, the segmentation of this region could be excluded

to prevent unnecessary differences.

It is important to consider that the volume measurements in Table 4.15 were recorded

after smoothing had taken place. Calculating robustness metrics using the post-smoothing

volumes gives a closer representation of the size of ventricular meshes in the statistical shape

analysis procedure, but also means that the smoothing process has the potential to remove

more material in some areas than others, especially near the apex and base of the ventricle. The

recursive Gaussian filter applied in this particular analysis operates by applying the smoothing

filter to three adjacent pixels. Assessment of the impact of smoothing filters is discussed

in greater detail in Subsection 4.4.4, as altering the number of impacted pixels can remove
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Table 4.15: Raw inter- and intra-observer segmentation volume measurements (cm3) reported for
Observer 1 and Observer 2 and their associated percentage differences, reported for selected subjects.

Observer 1 Observer 2 Inter-Obs Sys Inter-Obs Dia
Set 1 Systole Diastole Systole Diastole Set 1 % Diff % Diff
2 113.9 242.7 134.5 220.8 18.09 -9.02
3 78.1 171.8 93.3 166.0 19.46 -8.78
4 84.6 138.9 93.0 126.7 9.93 -3.38
10 62.8 147.7 83.2 145.0 32.48 -1.83
22 26.2 64.3 50.2 80.3 91.60 24.88

Set 2 Systole Diastole Systole Diastole Set 2 % Diff % Diff
2 101.1 217.5 83.7 236.4 -17.21 8.69
3 95.1 178.8 73.6 165.4 -22.61 -7.49
4 63.8 130.7 77.5 131.2 21.47 0.38
10 72.5 138.7 69.0 142.2 -4.83 2.52
22 27.6 72.6 21.7 67.3 -21.38 -7.30

% Diff % Diff
Systole Diastole Systole Diastole

Intra-Obs 1 Intra-Obs 2
-11.24 -10.38 -37.77 7.07
21.77 4.07 -21.11 -0.36
-24.59 -5.90 -16.67 3.55
15.45 -6.09 -17.07 -1.93
5.34 12.91 -56.77 -16.19

required geometry.

The volume comparisons and CV% displayed in Tables 4.15 and 4.16 indicate a rela-

tively large difference in volume measurement, both between the two observers and within

their two separate measurements. Both observers were less consistent at end-Systole than

at end-Diastole. Inter-observer variability was greater than the intra-observer variability: a

mean difference of 34.3% at end-Systole, and 28.0% at end-Diastole was achieved in the first

set, compared to a mean intra-observer variability of 15.7% at end-Systole and 7.87% at end-

Diastole for Observer 1, and 29.9% at end-Systole and 5.82% at end-Diastole for Observer
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(a)

(b)

Figure 4.12: Example 3D segmentation volumes produced from ITK-SNAP. These volumes are pro-
duced prior to smoothing. Both surfaces depict segmentation attempts of the same RVES. a) is the seg-
mentation attempt by Observer 1 and b) is the attempt by Observer 2. The sharp twist half way down
is observable in both attempts and is marked by the curved arrow on the 3D surface in b) . Notable
differences between the two segmentations also exist, and are also marked by arrows. For example,
there is a greater transverse difference between the dateline region and the apex in the segmentation
attempt by Observer 2, and there is a broader RV outflow tract vehicle in the same segmentation. If no
region is selected on a given slice, then 8mm of volume in the z-direction is not included.
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2. It is noteworthy that the data was skewed with particularly large values in individual seg-

mentations, e.g that of Subject 22 which suffered from unclear MRI images. The smallest

overall percentage difference was the intra-observer difference between Observer 2’s sets at

end-Diastole. There was a noticeable improvement in inter- observer variability in the sec-

ond set of segmentations, which perhaps alludes to an improvement in skill. The difference

in input data for these segmentations was larger than seen elsewhere in the literature. Most

notably in the intra/inter-observer volume values reported in Couto et al. (2020) where the

mean difference in end-Diastolic volume did not exceed 1.1% and the mean difference in ESV

did not exceed 1.9%. This paper did have the advantage of simultaneously comparing the

long-axis, 4 chamber view which increased difficulty of observing the boundaries at the apex

and base. This problem has been debated in the literature (e.g. Clarke et al., 2012; Alfakih et

al., 2003). Although, Couto et al. (2020) did not find a significant difference between a four-

chamber segmentation method and short-axis only. Their imaging protocol involved a 6mm

skip 0mm slice selection, which may have improved similarity at the apex slices. Sardanelli

et al. (2008) compared manual contouring between two readers with vastly differing levels

of experience and concluded that RV systolic volume agreement was lower for both the be-

ginner segmenter (an engineer who had performed 25 cardiac segmentations in preparation)

and the radiologist. They report a bias of -3.9% for the less experienced reader and 2.3%

for the interobserver value, although the experienced radiologist reported an intra-observer

bias value of 0.0%, where bias is the mean of the differences between the two measurements.

The scanning protocol was very similar to the Newcastle University setup, with an 8mm slice

thickness and 0mm inter-slice gap. One clear outcome, illustrated from all of the pre-shape

analysis measures was that the segmentation process employed in this thesis yielded far less

consistent segmentation results than observed in the literature.

Table 4.16 reports the mean, median and range of means of coefficient of variation (CV%)

for each individual segmentation attempt. CV% is defined in Section 4.3.5, and reports the

standard deviation of a pair of measurements, divided by the mean value for each subject. The
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Table 4.16: Means of coefficient of variation (CV%) for inter- and intra-observer variability. The re-
ported values constitute the mean, median and range across the five subjects assessed by each observer.

Observer 1 Observer 2 Obs 1 vs Obs 2
Diastole
Mean CV % 9.20 7.88 6.05
Median CV % 9.2 6.3 3.49
Range CV % 20.3 8.13 17.3
Systole
Mean CV % 11.2 26.3 19.0
Median CV % 10.1 16.7 20.9
Range CV % 16.1 43.2 23.6

values reported in this table show that both observers have a lower median CV% than mean

CV% (10.1% vs 11.2% for Observer 1, and 16.7% vs 26.2% for Observer 2), which indicates

that the results are influenced by a few large outliers. The ranges of CV% again demonstrates

that Observer 2 is less consistent than Observer 1 in their input segmentations. The CV% val-

ues for inter- and intra- observer comparisons, suggest that these are slightly more consistent

than the repeats performed by Observer 2. End-Diastolic measurements are more accurate

than end-Systolic measurements in all cases, which again is likely related to the larger blood

pool volume, especially in the central segmentation slices. These values are somewhat worse

than the literature, although in most cases this was largely a result of outliers, particularly

in those RV scans with boundaries that were difficult to interpret. Caudron et al. (2012), for

example, report an end-Diastolic range of CV% between 9.3-13.1% at end-Diastole and 12.0-

16.7% at end-Systole for intra-observer variability using a similar methodology. Their inter-

observer variability ranges were 11.9-14.5% at end-Diastole and 12.4-20.9% at end-Systole.

This study enrolled 60 consecutive RVs, and assessed the inter and intra-observer variability

of three observers of differing experience. One significant cause of lower accuracy in the

results obtained in this thesis is likely to relate to segmentation using short-axis images only,

whereas Caudron et al. (2012) had access to long axis and 4-chamber views.
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Impact of Changes to Observer Output

Having established that there is a larger than anticipated variation in ventricular input mesh

both between and within observer, the following tables (Tables 4.17, 4.18, 4.19, 4.20 and 4.21)

document the impact of this variability on the output. The results demonstrate the effect of this

variation both qualitatively, through examining similarities between the results obtained in the

population analysis conducted in Chapter 3, and quantitatively through examining the modal

energy profile. The percentage difference in output coefficients and the statistical correlation

between the modal values obtained when the different segmentations are also included.

Figure 4.13 reports the modal energy curves achieved when the segmentations are per-

formed by different observers. As with the robustness to changes in dataset size, the curves

indicate that there is only a small difference in modal energy curve profile when segmentations

are performed by different observers or as repeats by the same observer. The first 7 modes

still describe 90% of the modal energy and the first 30 modes describe 99% of the modal en-

ergy. The first three modes of the Observer 1 and Observer 2 repeats have a slightly higher

cumulative eigenvalue total than the original, but this does not affect the results. Figure 4.13b

plots the percentage difference in cumulative modal energy between the original and the two

Observer repeats. This plot seeks to clarify the differences between shape analysis results.

In both cases, the maximum percentage difference from the original values does not exceed

1.2%. The modal energy difference for Observer 1 is very slightly greater between Modes 4

and 8 as compared to Observer 2, although these variations are on the order of 0.1%.

Table 4.17 reports the sum of squared difference values between the mode eigenvectors

obtained by each observer for a series of modes, which were found to be relevant to specific

population features in Chapter 3, a form of direct comparison between the mode shapes. The

difference was smallest between the Mode 1 eigenvectors across all Observer trials. This result

is consistent with expectation, given that the Modes are ranked in order of their contribution

to the overall shape, and also since that Mode 1 clearly represents the impact of MRI scanner

protocol, which was found to be the most dominant effect on ventricle shape in this thesis.
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(a)

(b)

Figure 4.13: Distribution of modal energy when comparing segmentations from two observers. a)
Modal Energy Curve Displaying the Cumulative Modal Energy required to explain the shape in the
initial shape analysis and when including five subjects re-segmented by each observer. b) Plot showing
the difference between the original modal energy curve and the repeats with each observer. Observer
1 differences are marked with an X and Observer 2 differences are marked by a triangle.
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Table 4.17: Sum of squared difference between Modes 1, 6, 9, 19 and the various observers to the
original shape analysis result.

Comparison Sum Squared Difference
Mode 1 Mode 6 Mode 9 Mode 19

Observer 1 - Observer 1 2.13 × 10−5 9.54 × 10−5 1.03 × 10−4 2.62 × 10−4

Observer 2 - Observer 2 2.76 × 10−5 8.23 × 10−5 8.99 × 10−5 1.68 × 10−4

Observer 1 - Observer 2 2.16 × 10−5 6.16 × 10−5 8.31 × 10−5 2.82 × 10−4

Similarly, the general trend is that the sum of squared difference increases as the mode number

increases. However, evidence from the analysis where the dataset size was reduced by 1, from

96-95 individuals (Table 4.4) indicates that the sum of squared difference values plateaus at

the value, even when an almost imperceptible change is made to the dataset.

Table 4.18 compares Pearson correlation values for the first 20 modes between the two

observers and also when each Observer’s segmentation values are correlated with the original

data.

The Pearson Correlation values delineated in Table 4.18 provide strong evidence that,

despite a large difference in the individual modal coefficient values in the replaced RVs, this

has had no impact on the shape modes produced. The Pearson correlation values remain

greater than ± 0.9 with the exception of a few individual cases, and no value is less than

𝑟94 = 0.765. There is a strong correlation between those values identified as Mode 19 r94 =

0.873 in Observer 2’s segmentation attempt. The Pearson correlations remain both consistent

and very strong throughout the 20 modes included in this assessment. This is contrary to

expectation, since it was anticipated that large changes such as introducing a new individual

to perform the segmentation would result in larger changes in modal coefficient, and therefore

weaker correlations. Equally, as shown in the Jaccard Heatmaps (Figure 4.10), there appeared

to be a relatively large difference in the input to this shape analysis result.

Table 4.19 reports the raw mode coefficient values for Mode 1 obtained as part of the

statistical shape analysis procedure. The table shows the modal coefficient values when Ob-

server 1 is compared against the original, Observer 2 is compared against the original and
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Table 4.18: Absolute Pearson correlation values for the first 20 modes when comparing the 96 original
mode coefficients with those obtained during tests where 5 of the RVs were replaced by new segmen-
tations.

Mode No. Observer 1 Observer 2 Obs 1 vs 2
1 0.926 0.988 0.968
2 0.933 0.977 0.955
3 0.986 0.981 0.977
4 0.972 0.994 0.988
5 0.951 0.987 0.966
6 0.971 0.978 0.959
7 0.958 0.959 0.980
8 0.971 0.975 0.940
9 0.946 0.973 0.968
10 0.972 0.987 0.987
11 0.831 0.993 0.858
12 0.936 0.996 0.943
13 0.981 0.977 0.996
14 0.898 0.871 0.854
15 0.952 0.861 0.932
16 0.964 0.949 0.956
17 0.765 0.918 0.887
18 0.779 0.892 0.887
19 0.907 0.905 0.930
20 0.962 0.928 0.929

when the two repeats are compared against one another. As the Newcastle subjects included

in the original analysis were segmented by the first observer, the Observer 1 repeat analysis

can also be taken as a comparison to the original 96 subject dataset used in Chapter 3. While

the overall correspondence between shape analyses is good over the 96 subject comparison,

the coefficients themselves are significantly different in the replaced hearts (Subjects 2, 3, 4,

10 and 22). The smallest percentage difference in one of the replaced segmentations was -

37.9% (range 37.9% - 133.3%), and this is substantially greater than the largest percentage

difference in a case where the mesh was not altered (13.9%).

It is obvious from Table 4.19 that the segmentation models Subjects 2, 3, 4 and 10 were
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Table 4.19: Raw coefficient values for Mode 1 obtained in the statistical shape analysis procedure for
when comparing the original 96 subject mode coefficients with those obtained when 5 repeat subjects
were included by each observer.

Subject Number Original Result Observer 1 Observer 2 % Diff. 1 % Diff. 2
1 56.6 -55.2 -57.2 -2.4 1.2
2 -32.5 -0.5 -14.6 -98.4 -55.0
3 24.3 -15.1 -51.5 -37.9 112.2
4 36.3 -11.2 -74.2 -69.1 104.5
5 89.1 -87.8 -91.1 -1.4 2.2
6 50.8 -49.4 -51.5 -2.8 1.3
7 54.1 -52.4 -55.9 -3.1 3.3
8 -16.4 17.7 16.1 7.7 -1.7
9 17.9 -16.3 -18.7 -8.7 4.6
10 33.3 -77.6 -56.2 133.3 69.0
11 30.8 -30 -32.8 -2.6 6.7
12 22.9 -21.7 -24.1 -5.2 5.4
13 52.6 -50.9 -54.3 -3.4 3.1
14 12.7 -10.9 -13.2 -13.9 3.5
15 -18.1 20.3 17 12.2 -5.9

included by the new observer, and these show a much larger percentage difference in correla-

tion than the other hearts. This suggests that the process of mode generation can be replicated,

but that the coefficients themselves are quite sensitive to change based on segmentation. It is

difficult to isolate whether this change is also related to dateline selection, since the genera-

tion of an entirely new mesh necessitates the selection of new dateline points. However, the

impact of dateline selection assessed in 4.3.3 suggests that this effect is only minor. Never-

theless, Table 4.19 demonstrates that often there are examples where there is close agreement

between the raw coefficient values (e.g. the three absolute Mode 1 coefficient values: 56.6 vs

55.2 vs 57.2).

Table 4.20 describes mean, minimum, maximum values of percentage difference between

raw modal coefficients as well as the standard deviation for the series of four ‘marker modes’

described earlier in the results section as contributing towards a particular feature in Chapter

160



CHAPTER 4. ROBUSTNESS 4.4. RESULTS

Table 4.20: Mean, minimum, maximum and standard deviation of the percentage difference values
comparing the original 96 subject dataset with the shape analysis run between the two observers for
Modes 1, 6, 9 and 19.

Mode 1 Mode 6 Mode 9 Mode 19
Dia Sys Dia Sys Dia Sys Dia Sys

Observer 1 Mean 61.4 83.0 14.7 38.7 14.9 89.1 0.1 96.4
Min 0.4 0.4 0.0 0.7 0.0 0.1 0.5 0.0
Max 1649.3 6859.1 971.8 1997.7 576.6 4697.4 8583.9 4903.6
SD 263.0 698.1 105.2 213.8 89.2 514.1 935.1 543.9

Observer 2 Mean 24.0 37.5 20.2 30.0 14.5 85.7 0.1 137.2
Min 0.1 1.2 0.2 0.1 0.6 0.1 0.9 0.2
Max 1197.6 2942.0 868.2 1375.0 771.7 4740.6 9478.1 7485.7
SD 133.0 301.1 108.4 165.9 95.9 510.6 1039.5 785.8

3. These results report the difference between the first segmentation attempt by each ob-

server and the original. From these output values, it appears that the output coefficient results

for Observer 1 show greater difference than those reported for Observer 2 (e.g. a mean of

61.4% vs 24.0% for Mode 1 at end-Diastole). The same values are plotted on a 𝐿𝑜𝑔10 scale

in Figure 4.14 to enable observation of the general trends and outliers. In all cases, Mode

1 demonstrates the highest degree of consistency, and the lowest percentage difference. The

most substantial takeaway from this specific form of analysis, however, is that there are often

very large deviations in modal coefficient value (9478% for Mode 19 at end-Diastole), and

that resultantly raw modal coefficient values should not be taken by themselves as a record of

the success of a statistical decomposition.Therefore, the percentage difference in coefficients

cannot alone be used to assess the reproducibility of the shape analysis method under different

input conditions.

Figure 4.15 shows the same important mode shapes (1, 6, 9 and 19) in the original shape

analysis, for the Observer 1 repeat segmentation and for both Observer 2 analyses. In all

four examples, the mode shapes are almost identical. The recurrence of such shapes indicates
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Figure 4.14: Box plots showing the distribution of the percentage difference values at end-Systole (top)
and end-Diastole (bottom) for the four example modes. Plots are on a Log10 scale to enable the display
of outliers without distorting the data.
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Figure 4.15: Qualitative depiction of the RVES shapes when four key modes: 1, 6, 9 and 19 in original
and the Observer 1 and Observer 2 repeats are plotted on the Mean±2× SD. The original RVES shapes
are coloured blue, whereas the dateline replacement sets are coloured red, the mode shapes from
Observer 1 are coloured green and the mode shapes from Observer 2 are coloured yellow. Modes 1, 6,
9 and 19 appear to encode similar shape features across all three trials. As the modes are eigenvectors,
they provide only direction and their magnitude is arbitrary, including whether positive or negative.
Hence, a mode can be observed to encode the same shape whether that mode is added or subtracted
from the mean.

that, qualitatively at least, the shape analysis results are robust to alterations in the segmented

volume, and resultant mesh. This result accords with the Pearson Correlation coefficients

shown in Table 4.18, where the absolute Pearson Correlation values exceed 0.9; including at

Mode 19. The close Pearson correlation values raise an interesting point regarding relative

differences, as the maximum percentage differences from Table 4.20 (specifically for Mode

19 at end-Diastole) are in excess of 8000%, yet remain correlated to one another.
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Table 4.21: Exemplar LDA Analyses comparing classification results between the original analysis and
the repeats testing inter and intra-observer variability. For the sake of brevity, this analysis depicts
just one of the shape analysis results between observers. Test Combination reports the combination
of modes used as inputs in the LDA. Where more than one combination was found equally successful
in Chapter 3, both were tested. ‘Classification %’ reports the best accuracy percentage after cross
validation. ‘Top Five’ lists the best five modes identified using a new LDA, created based on the new
coefficients from the robustness test.

Characteristic Phase Test Combination Classification % Top Five
1 Sex Systole 19 60.0 23, 24, 20, 21, 28
1 Age Systole 9, 5 & 9, 18 52.5 26, 8, 17, 21, 4
1 Obesity Systole 15, 29, 16 57.5 27, 2, 26, 17, 19
1 Sex Diastole 6, 23 27.5 17, 26, 14, 16, 18
1 Age Diastole 6, 13, 17 67.5 19, 7, 6, 11, 12
1 Obesity Diastole 20, 11, 2 40.0 12, 14, 9, 3, 21
2 Sex Systole 19 57.5 8, 6, 28, 7, 21
2 Age Systole 9, 5 70.0 29, 9, 17, 23, 27
2 Obesity Systole 15, 16, 6 & 15, 29, 16 65.0 15, 17, 13, 29, 20
2 Sex Diastole 6, 23 67.5 23, 28, 6, 7, 22
2 Age Diastole 6, 3, 2 67.5 6, 3, 15, 29, 25
2 Obesity Diastole 20, 11, 2 72.5 20, 11, 24, 13, 2

Application of LDA

Finally, an LDA analysis was performed to identify the ability of this new statistical model

to linearly classify the important modes which were identified in the Population Analysis

Chapter (Chapter 3), the results of which are shown in Table 4.21.

There are several examples of close agreement, where the top separating modes identified

in Chapter 3 achieved similar degrees of success in the Observer trials. This is particularly

evident for Observer 2 at end-Systole, where Modes 9 and 5 were able to correctly separate

70.0% of individuals into age-based groups, which indicates that the subjects in the dataset

are constructed from similar amounts of these shape modes. Modes 20, 11, 2 at end-Diastole

were able to identify 72.5% of cross-validated cases correctly by obesity status. The LDA

using Modes 9 and 5 as inputs successfully separated 70.0% of ventricles by age, but Modes

9 and 18 separated 60% of individuals by age. Mode 19 was able to successfully classify just
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57.5% of non-hypertensive hearts into groups based on sex after cross-validation.

Comparatively, when Observer 1’s attempts were analysed using LDA, Mode 19 at end-

Systole successfully separated 60% of subjects by sex. The two best classifiers based on age

(Modes 9 & 5 and Modes 9 & 18) together separated just 52.5% of individuals. Mode 19 at

end Systole was just 27.5% successful at separating individuals by sex. Modes 20, 11 and 2 at

obesity could separate 40% of individuals and Modes 6, 3 and 13 for obesity could separate

60% of right ventricles. Mode 19 did not correlate significantly with any cognate modes in

the new model by Observer 1. There is a very low degree of successful classification of sex

at end-Diastole in the Observer 1 repeats. Therefore, the internal consistency of Observer 1,

demonstrated by the Jaccard Indices, is not reproduced in the output. In general, the effect

of sex on RV shape is better elucidated in these inter- and intra-observer variability trials as

compared to in dataset size or dateline selection.

It is important to note that this test has only replaced 5 subjects, rather than a whole sample.

Therefore, it is now pertinent to consider the impact that adding or reducing the number of

subjects included in the analysis will have on the outputs using the same measurement criteria.

Given the non-trivial inter and intra- observer variability scores, it is surprising how robust

the qualitative and quantitative shape analysis results are in comparison.

4.4.4 Robustness to Changes in Smoothing

The final perturbation assessed in this chapter was the degree of smoothing filter applied.

The number of pixels impacted by the recursive Gaussian smoothing filter implemented in

Simpleware ScanIP (Synopsys, Exeter, UK) was reduced to 2 pixels at each step, and increased

to 4 pixels.

Impact of Changes to Smoothing Input

The recursive Gaussian smoothing filter applied during the meshing process has a substantial

qualitative impact on the mesh structure. Figure 4.16 displays the qualitative mode shapes,
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when the smoothing filters are altered. It is apparent that the least stringent smoothing filter 𝜎

2 contains significantly more detail at the apex, there appears to be a small cleft at the bottom,

whereas the apex detail is lost entirely at the equivalent region when the strictest smoothing

filter, 𝜎4 is applied. This is reflected in the degree of mesh complexity, where the 𝜎2 contains

6162 elements; significantly more than the 3682 elements required to mesh the runs with

the largest amount of smoothing. While reducing the smoothing coefficient minimises data-

loss, particularly around the apex slices, it also maintains the ‘step-like structure’ which is an

artefact of the slice-based imaging protocol and is not reflective of the true-life shape of the

right ventricle. Conversely, a more stringent smoothing filter removes features critical to the

shape analysis.

It should be noted that the visualisations rendered in Simpleware (Figure 4.16) are often

reflections of the true RV segmentations. The software is unable to determine the correct

orientation of the slices produced in ITK-SNAP (whether to infer the 2D image as top down

or bottom up), which can result in the RV segmentations appearing to be inverted. This has

no bearing on the production of the final mesh or to downstream application to shape analysis.

Impact of Changes to Smoothing Output

Having established that there is a significant qualitative impact associated with altering the

rigour of the smoothing filter, the impact of these alterations to the shape analysis output

were then assessed. Figures 4.17a and 4.17b compare the modal energy curves of the original

96 subjects with the 𝜎3 smoothing filter to the 𝜎2 and 𝜎4 smoothing tests. Yet again, it is

clear that the three tests share a very similar modal energy profile. Although, there is a small

amount of variation in the first three modes (more so than with interventions that did not

impact the shape of the mesh), 7 modes are still required to cover 90% modal energy. As with

the changes to dataset size, the smoothing is causing a substantive difference to the shape,

as the filter is necessarily adding or removing shape features as it resolves the pixel slices.

Therefore, it is yet again an endorsement of the robustness of the procedure that such little
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(a) (b)

(c)

Figure 4.16: Visualisation of the different levels of smoothing applied when the three different pixel
filters are included. a) 𝜎2 smoothing contains 6162 elements, b) 𝜎3 smoothing contains 4378 elements
and c) 𝜎4 smoothing contains 3682 elements. This Figure was reproduced in the methodology as
Figure 4.3, to demonstrate the effect of smoothing filters.

.

difference in the modal energy profile exists. The higher variation in the first three modes is

perhaps indicative of the addition/removal of shape information that comes from impacting

the Gaussian smoothing filter.

To assess impact on the modal coefficients (the strength of the shape feature), Table 4.22
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(a)

(b)

Figure 4.17: Distribution of modal energy when different smoothing filters are applied. a) Modal
energy profiles for shape analyses conducted when the recursive smoothing filter was altered to 𝜎2
pixels and 𝜎4 pixels. b) Plot showing the difference between the original modal energy curve and
those for shape analyses conducted when the recursive smoothing filter was altered to 𝜎2 pixels and
𝜎4 pixels.
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shows Pearson correlation values for the first 20 modes produced from an analysis where the

recursive Gaussian smoothing filter stringency is increased to 𝜎4 and when the stringency is

reduced to 𝜎2. The output shape analysis differs much more substantially in this test than in

all previous cases. There is no statistically significant case at end-Systole (with the best cor-

relation coefficient value being 0.255). At end- Diastole, only Modes 6 and 7 are statistically

significant, and even then only weakly so (Mode 6 for 𝜎2 is 0.363, and Mode 7 for 𝜎2 is 0.344).

Even Mode 1, which would be expected to correlate the most strongly since the modes are

ranked does not show a statistically significant Pearson correlation between either smoothing

variant and the original. This suggests that the choice of smoothing filter is very important

to the ability to draw conclusions on the role of shape features across various datasets, espe-

cially since, what appear to be cognate shapes are not being conclusively matched when the

smoothing filter is altered. Although it can be argued that smoothing filter is too important a

parameter to be arbitrarily chosen when intending to use this method to reflect intrinsic char-

acteristics, the fact that results remain stable when different filters are applied instead suggests

that the comparative shape analysis remains robust, so long as the same smoothing filter is

applied to all meshes.

Figure 4.18 further bolsters this position by showing the mode shape features for key

modes. There is clear, qualitative evidence that Mode 1 still affects RV length and apex detail

in this robustness test. In fact, qualitatively, Modes 1, 6 and 9 encode the same shape features

as their counterparts in the original shape decomposition. It is therefore surprising, given this

evidence of similarity, that there is such a substantial difference in robustness as recorded by

the Pearson correlations in Table 4.22).

One explanation for this unusual result is that the shape of Mode 1 (which encodes the

largest proportion of variation) is substantially altered upon the inclusion of 𝜎2 and 𝜎4 sub-

jects, which would then have a substantial knock on effect to all subsequent modes. However,

Figure 4.18 demonstrates, at least qualitatively, that there is no change in the features captured

by Mode 1. The most plausible explanation, therefore, is that higher order Modes, such as
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Table 4.22: Absolute Pearson correlation values for the first 20 modes when comparing the 96 original
subject mode coefficient values with those obtained during a test where the smoothing coefficients of
five of the 96 subjects were altered to 𝜎2 and to 𝜎4. Pearson Correlations were calculated to compare
the 𝜎2 case to the original 96 subjects, the 𝜎4 case to the original 96 subjects, and finally 𝜎2 to 𝜎4.

Systole Diastole
Mode No. 𝜎2 𝜎4 𝜎2 vs 𝜎4 𝜎2 𝜎4 𝜎2 vs 𝜎4
1 0.209 0.255 0.986 0.149 0.093 0.986
2 0.015 0.003 0.985 0.044 0.035 0.985
3 0.139 0.093 0.986 0.053 0.027 0.986
4 0.219 0.224 0.957 0.016 0.018 0.957
5 0.036 0.031 0.970 0.135 0.125 0.970
6 0.237 0.225 0.967 0.363 0.347 0.967
7 0.224 0.192 0.960 0.344 0.321 0.960
8 0.029 0.040 0.981 0.037 0.007 0.981
9 0.102 0.114 0.975 0.027 0.007 0.975
10 0.024 0.002 0.956 0.144 0.160 0.956
11 0.026 0.030 0.938 0.153 0.141 0.938
12 0.039 0.063 0.930 0.153 0.112 0.930
13 0.084 0.012 0.937 0.276 0.269 0.937
14 0.016 0.089 0.114 0.164 0.032 0.114
15 0.113 0.101 0.179 0.007 0.005 0.179
16 0.129 0.077 0.930 0.118 0.089 0.930
17 0.269 0.260 0.925 0.045 0.123 0.925
18 0.023 0.041 0.903 0.125 0.082 0.903
19 0.018 0.047 0.928 0.140 0.118 0.928
20 0.032 0.019 0.933 0.170 0.218 0.933
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Figure 4.18: Qualitative depiction of the RVES shapes when four key modes: 1, 6, 9 and 19 in original
and the 𝜎2 and 𝜎4 shape analysis repeats are plotted on the Mean ±2 × SD. The original RVES shapes
are coloured blue, the more stringent recursive Gaussian smoothing filter (𝜎4) replacement sets are
coloured mint green, and the less stringent smoothing filter (𝜎2) shapes are coloured pink. Modes 1, 6
and 9 appear to encode the same shape features in all smoothing trials. The shape features encoded by
Mode 19 share some similarities across the three smoothing filters (e.g. the flattened base, leading to a
‘triangular’ shape), however, there are also clear differences in the effect of the Mode. As the modes are
eigenvectors, they provide only direction and their magnitude is arbitrary, including whether positive
or negative. Hence, a mode can be observed to encode the same shape whether that mode is added or
subtracted from the mean.
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Modes 17 and 18 encode shape features related to the level of smoothing, and this then affects

the modal coefficients experienced by individual subjects. Such an explanation addresses why

the qualitative, and direct mathematical comparisons of mode shape are very similar, but that

the comparisons of mode coefficient are different. Although 𝜎2 and 𝜎4 have opposing effects

(increasing or decreasing smoothing), they have similar global impacts on RV shape, and are

therefore likely to impact other modal coefficients in the same way, leading to much higher

observed correlations between 𝜎2 and 𝜎4, than between the altered smoothing tests and 𝜎3.

Mode 1 still affects RV length and apex detail in this robustness test. There is greater detail

at the apex in 𝜎2 (the heart with less smoothing), which is in agreement with expectation, since

less material was removed when the filter was applied. Mode 1 encodes the same shape even

when a greater or lesser level of smoothing is applied to the five subject sample. Furthermore,

the lower energy modes clearly display the sharp shelves in the 𝜎2 analysis (with Modes 17 and

18 being representative examples). The alteration of certain lower energy modes to reflect the

unsmoothed or over-smoothed shapes may, as a consequence, impact the relative amount of

each mode contained within a given subject’s RV. This would provide a plausible explanation

as to why the Pearson correlations in Table 4.22 are very weak, but those between the 𝜎2 and

𝜎4 trials are similar to each other, i.e. that the same regions are affected by the smoothing

level. It is very interesting that the end-Systolic and end-Diastolic Pearson correlations are

identical in the 𝜎2-𝜎4 comparisons.

Correlation coefficient values for Mode 1 across the three smoothing levels were directly

compared in Tables 4.23 and 4.25. The large percentage differences between Mode 1 and

the original 96 subject case (with the exception of Subjects 1 and 15) corroborates the lack

of significant correlation observed in Table 4.22. However, interestingly, the raw Mode 1

coefficients from the 𝜎2 and 𝜎4 repeats are very similar to one another. This does not align

with any expectation related to the input files, since visually the original smoothing filter is

closer to either 𝜎2 or 𝜎4 than the two extremes of smoothing are to each other. A maximum

absolute percentage difference of 11.3% when comparing the two altered trials, e.g 240.3%
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Table 4.23: Correlation coefficient values at Mode 1 when comparing the original 96 subject mode
coefficient values at end-Systole to those where the smoothing values of five subjects were altered to 2
and 4 pixels

Subject Number Original Result 𝜎2 𝜎4
1 -55.2 55.6 -56.2
2 -32.5 89.3 -90.0
3 24.3 50.0 -50.8
4 36.3 53.7 -55.2
5 89.1 -17.9 17.2
6 50.8 16.8 -17.7
7 54.1 31.5 -32.1
8 -16.4 22.7 -23.1
9 17.9 52.4 -53.5
10 3.3 11.2 -12.5
11 30.8 -18.8 17.5
12 22.9 34.5 -35.7
13 52.6 12.4 -13.5
14 12.7 -30.6 29.3
15 -18.1 -18.0 16.8

when 𝜎2 is compared with the original, and 278.8% when 𝜎4 is compared to the original.

Figure 4.19 displays box plots which show the distribution of the percentage difference

values at both end-Systole and end-Diastole. They are reported on a Log10 scale to enable

the display of outliers without distorting the data. This scaling factor is particularly impor-

tant when assessing the impact of smoothing filter, since there are substantial differences in

modal coefficient between the altered smoothing trials and the original result. The general

trend shown from these box plots is that at end-Diastole, the percentage difference between

shape analyses increases with increasing mode number, with Mode 1 exhibiting the lowest

percentage difference, and Mode 19 the greatest. Although all direct measurements of raw

modal coefficient reported in this thesis have demonstrated large changes between analyses

(see Tables 4.6, 4.11, 4.20 by way of example.)

Table 4.25 reports the percentage differences between the raw mode coefficients described
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Figure 4.19: Box plots showing the distribution of the percentage difference values at end-Systole (top)
and end-Diastole (bottom) for the four example modes. Plots are on a Log10 scale to enable the display
of outliers without distorting the data.
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Table 4.24: Mean, minimum, maximum and standard deviation of the percentage difference values
which compare results across the different smoothing filters for Modes 1, 6, 9 and 19.

Mode 1 Mode 6 Mode 9 Mode 19
Dia Sys Dia Sys Dia Sys Dia Sys

𝜎 2 Mean 234.4 850.6 318.8 342.0 704.7 281.8 431.2 239.8
Min 0.5 0.4 1.9 0.4 3.9 5.3 0.4 0.0
Max 6073.9 56904.0 10886.4 19092.0 21653.7 6061.8 18775.7 4410.1

SD 726.1 5990.9 1365.5 1968.1 3003.1 842.9 2071.9 756.6

𝜎 4 Mean 230.1 889.2 304.0 317.6 684.9 305.3 416.7 258.3
Min 1.2 0.6 0.1 0.1 0.6 2.1 2.9 0.0
Max 6096.1 61067.1 9798.0 18520.7 19219.5 7127.3 16838.6 5537.1

SD 729.3 6388.6 1230.6 1905.8 2824.6 952.9 1913.0 857.3

in Table 4.24. The combined evidence from these tables demonstrates that Mode 9 exhibits a

greater percentage difference at end-Diastole than end-Systole at both extremes of smoothing.

Table 4.26 shows the sum of squared difference values for 4 example modes, across three

smoothing filters, selected on the basis of their capability to classify age (Modes 6 and 9)

and sex (Mode 19). The sum of the squared difference between Mode 1 values does not dif-

fer across robustness assessment of the three smoothing filters (Table 4.26). The difference

between smoothing levels is the smallest at Mode 1, which accords with the sum of squared

difference results presented in Table 4.10, whereas the distance between the mode eigenvec-

tors in Mode 19 is much larger (e.g. 4.60 × 10−4 when comparing 𝜎2 and 𝜎3). Again, this

result appears reasonable since the mode features are ranked in order of their contribution to

the total modal energy.

The 𝜎2 smoothing and 𝜎4 smoothing values retain a similar profile when compared to the

original 96 subjects (𝜎3), but are quite different to each other. Considering Mode 1 alone,

the sum of squared difference between the different smoothing levels is smaller than all cases

of changing the dataset size (with the exception of the 96-95 subject case, which we would

expect to be almost identical (see Table 4.4)).
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Table 4.25: Percentage Difference associated with the correlation coefficient values at Mode 1 when
comparing the original 96 subject mode coefficient values at end-Systole.

Subject No. % Diff Original - 𝜎2 % Diff Original - 𝜎4 % Diff 𝜎2- 𝜎4
1 -0.7 -1.8 -1.1
2 -174.8 -176.9 -0.8
3 -105.8 -109.1 -1.6
4 -47.9 -52.1 -2.8
5 80.0 80.7 3.6
6 67.0 65.2 -5.7
7 41.8 40.7 -1.9
8 -38.4 -40.9 -1.8
9 -192.6 -198.9 -2.1
10 -240.3 -278.8 -11.3
11 39.0 43.2 6.9
12 -50.6 -55.9 -3.5
13 76.5 74.3 -9.1
14 -140.6 -130.7 4.1
15 0.6 7.2 6.7

Table 4.26: Sum of squared difference between Modes 1, 6, 9 and 19 when comparing the two smooth-
ing levels to the original shape analysis result, which used a smoothing coefficient of 𝜎3

Comparison Sum Squared Diff.
Mode 1 Mode 6 Mode 9 Mode 19

𝜎2 - 𝜎3 2.91 × 10−5 9.31 × 10−5 8.01 × 10−5 4.60 × 10−4

𝜎4 - 𝜎3 2.05 × 10−5 9.49 × 10−5 6.34 × 10−5 3.55 × 10−4

𝜎2 - 𝜎4 2.27 × 10−5 1.38 × 10−4 1.10 × 10−4 2.37 × 10−4
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Table 4.27: Exemplar LDA Analyses comparing classification results between the original analysis
and the 𝜎2 and 𝜎4 smoothing cases. Test Combination reports the combination of modes used as
inputs in the LDA. Where more than one combination was found equally successful in Chapter 3, both
were tested. ‘Classification %’ reports the best accuracy percentage after cross validation. ‘Top Five’
lists the best five modes identified using a new LDA, created based on the new coefficients from the
robustness test.

Characteristic Phase Test Combination Classification % Top Five
𝜎2 Sex Systole 19 47.5 23, 20, 25, 10, 16
𝜎2 Age Systole 9, 18 57.5 17, 8, 30, 4, 26
𝜎2 Obesity Systole 15, 29, 16 60.0 27, 3, 26, 29, 17
𝜎2 Sex Diastole 6, 23 32.5 17, 26, 15, 16, 12
𝜎2 Age Diastole 6, 13, 17 65.0 7, 19, 8, 6, 11
𝜎2 Obesity Diastole 20, 11, 2 45.0 12, 15, 9, 3, 22
𝜎4 Sex Systole 19 52.5 23, 10, 20, 27, 16
𝜎4 Age Systole 9, 18 52.5 17, 26, 8, 21, 4
𝜎4 Obesity Systole 15, 16, 6 62.5 27, 3, 17, 16, 29
𝜎4 Sex Diastole 6, 23 50.0 17, 16, 26, 18, 14
𝜎4 Age Diastole 6, 3, 13 67.5 7, 19, 12, 8, 5
𝜎4 Obesity Diastole 20, 11, 2 52.5 14, 12, 9, 11, 3

Application of LDA

Table 4.27 shows the application of a linear discriminant model to the two alternate smoothing

cases. As expected based on the Pearson Correlation Results reported in Table 4.22, none of

the exemplar LDA analyses resulted in successful classifications of any of the population

characteristics. The best achieved correlation was 67.5% (separation of age at end-Diastole

when using a 𝜎4 filter). However, none of the top five identified modes from Chapter 3 appear

in this separation. Modes 17 and 18 appear in many of the top five identified selections for

both of the smoothing filter tests (e.g. 𝜎2 age and obesity at end-Systole and 𝜎4 sex at end-

Diastole, amongst others). The least successful percentage accuracy based on shape modes

was in the attempt to separate sex at end-Systole in the 𝜎2 trial.

177



4.5. CONCLUSIONS CHAPTER 4. ROBUSTNESS

4.5 Conclusions

This chapter presents and evaluates the impact of a series of interventions on the input and

output data presented in Chapter 4. The intention was to determine the constraints on the

statistical shape analysis process necessary to produce consistent shape features and, in doing

so, to infer useful details from their characterisation. The results reported in this chapter first

assess the difference in input data when the dataset is perturbed in four specific ways, and then

consider how that difference translates both to the shape modes produced at output, and to the

composition of modes within individuals.

Robustness is examined by assessing how sensitive the extracted shape features (modes)

are to external modification, and also by evaluating how sensitive the mode coefficients (or

how much of each individual shape feature is required to reconstruct any given RV). For

the sake of interpretation, Pearson correlations are used to demonstrate relative agreement

between the various analyses, and 3D reconstructions to consider robustness of the mode

shapes.

All four tested interventions derive the same overall mode shapes from the input dataset.

This suggests that the direct-mapping statistical shape analysis procedure produces an accurate

deconstruction, whereas, the mode coefficients are more sensitive to alterations in input value.

Changing the dataset size, was the least sensitive to changes in modal coefficient, followed by

changing the segmentation. While still robust over the first 13 modes, altering the anatomical

boundaries was more sensitive. Adjusting the smoothing filter caused substantial differences

in recorded modal coefficient, demonstrating only two statistically significant correlations.

The results of the statistical shape analysis are robust to perturbations in the size of the

dataset, both when it is increased to 121 subjects and when it is reduced systematically. The

qualitative mode shapes in particular encode features of similar appearance for Modes 1, 6 and

9. This suggests that once a ‘correct’ segmentation has been identified, accurate diagnoses can

be made on the basis of these shapes. The fact that Mode 19 does not produce the same shape,

qualitatively, nor does it correlate strongly with any intervention based on dataset size (with
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the exception of the 60 subject dataset at both phases (𝑟58 = 0.697 at end-Systole, 𝑟58 =0.735),

is indicative that caution should be used when interpreting the results associated with the lower

order modes if intending cross-comparability of specific mode numbers between datasets. The

modal energy profiles in all cases have shown that at least 30 modes are required to cover 99%

of the shape information contained in this dataset. Therefore, these modes are still crucial

to the identification of interesting shape features, but that there is likely to be a substantial

difference in the specific features that they encode.

The second intervention, controlling the placement of the poles and dateline, also showed

agreement in relative mode coefficient throughout the first 13 modes directly, and up to the

first 16, when several direct substitutions are made (𝑟94 >0.914). It appears that the roles of

Modes 14 and 15 may have been swapped. Therefore, the statistical shape analysis method

can also be considered insensitive to alteration of anatomical boundary placement. Dateline

alteration resulted in a more sizeable impact both on mode shapes and on modal coefficients

than was observed in any dataset alteration above 40 subjects. At the outset, it was anticipated

that a significant flaw in this shape analysis framework would be related to the level of personal

judgement involved in selecting the points along the septal-free wall boundary, beneath the

pulmonary valve, as there is a Hausdorff Distance difference of up to 6.5mm, even in selections

made by the same observer.

The third intervention was to assess differences in segmentation. Alterations to the seg-

mentation, despite showing more substantial difference at the point of input than had been

observed in previous literature (Sardanelli et al., 2008; Caudron et al., 2012), showed agree-

ment in the output coefficients as far as the first 16 modes. The number of correlated modes

is not quite as large as in the agreement between analyses where the dataset size was varied,

but represents a small improvement over the dateline results. These similarities suggest that

when different individuals segment the initial MRI scans, the variations in the first 15 or so

modes produce shape features that do not impact the most common shape features. The fun-

damentally different shape features, those which may impact a categorisation or a diagnostic
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result, are likely to be concentrated in the higher order modes, those between Modes 16-30.

This could limit the applicability of shape analysis based selection, as the relatively large

differences in observer variability could render manual segmentation insufficiently accurate.

Therefore, the recommendation would be to continue to develop highly accurate automatic

segmentation protocols and to focus on producing optimally contrasted MRI images. In the

short-medium term this may translate to semi-automatic methods with manual checking.

The final intervention involved assessing the impact of alterations to the smoothing filter.

The shape filter was anticipated to have the largest impact on the shape analysis output, ow-

ing to the introduction of vertical steps from the sharp sides of crude 3D models produced

in ITK-SNAP, or from the removal of important shape features owing to an overly rigorous

filter. Therefore, it is unsurprising that these input differences have changed the results of

the decomposition. While the sum of squared difference between the individual modes is

very low (especially at Mode 1), there is no significant linear correlation between the origi-

nal mode coefficients and those derived from the smoothing tests. In contrast to the Pearson

coefficients, the qualitative evidence from the plotted mode shapes indicates that the funda-

mental components still look similar. The lower energy modes (particularly Modes 17 and

18) encode the aforementioned steps. It is possible that these features are also concentrated

and could be removed from overall analysis. Nonetheless, they appear to have impacted the

modal coefficients for all of the other modes, leading to poor statistical correlations (i.e. one

subject, especially where significant twisting has occurred may have a more jagged edge,

which is usually removed using the smoothing filter, which may influence all other modal co-

efficients). Therefore, it is necessary to conclude that direct comparison of mode coefficients

between individuals cannot be controlled sufficiently for clinical use. When considering shape

analysis output, the correlation between coefficients for each mode suggests that the output

shape analysis differs much more substantially in this test than in all previous cases (see Table

4.22). The smoothing parameter must be kept constant, as the alteration of smoothing factor

caused the most significant fall in Pearson coefficient.
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Several other notable observations can be derived from examination of this dataset. The

first is that Mode 1 encoded the same shape feature across all four analyses, as evidenced

through directly comparing the mode shapes using the sum of squared differences, and also

through direct comparison of the mode coefficient values. This continuity confirms scanning

protocol as the most substantial factor affecting RV shape in this dataset. Additionally, as

a consideration of the differences in dateline, dateline is set at a location of the geometry

where there is more natural variation, whereas the opposite septal/free-wall boundary is more

consistent between slices. Therefore, there could be an argument for establishing the dateline

on the opposite side for the sake of improved consistency. The fact that dateline selection

caused more substantial variation points to the fact that controlling for anatomy (in the form

of segmentation) is an important finding, and is a benefit of the particular (direct-mapping)

POD approach to statistical shape analysis used in this thesis.

As has been demonstrated by the statistical shape analysis results in preceding work by

Wu (2013), the location of the anatomical boundary has a significant impact on the overall

results. However, in this section, the dramatic impact on the modes themselves is not repli-

cated, despite resulting in more substantial variation than was observed in many of the dataset

size tests. The Hausdorff distance values may be exaggerating the overall difference in these

dateline selections, particularly since the selections are all made with prior anatomical knowl-

edge. Nevertheless, the implementation of an automated dateline selection algorithm could

be an important intervention if this shape analysis were to be implemented in a clinical setting,

where the individuals selecting the dateline may be less familiar with right ventricular geom-

etry, or are required to make the selections when under time pressure. Such an intervention

could be as simple as demarcating a pixel on the short-axis scan during segmentation, and

then using the 3D locations of these points to inform mesh refinement. However, it remains a

sensible choice to control the boundary manually in areas which are more prone to variation,

since it is here that the greatest benefit of human intervention is gained. Therefore, although

the development of an automated boundary selection method could improve the repeatability
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of these results, this may be detrimental to anatomical matching between the RV and the math-

ematical representation. A future analysis could determine whether the difference in shape

analysis output is reduced if the poles are maintained but the dateline is altered (i.e. ensuring

that the anatomical top and bottom of the heart are mapped to the same place, regardless of

the split selection). However, since dateline alterations, in general, affect the shape analysis

results less strongly than other pipeline changes such as altering smoothing factor, or scanner

selection, this seems unnecessary.

Overall, the statistical shape analysis method is largely insensitive to changes which do

not alter the underlying RV models. This includes changing the dataset size, and selecting

new anatomical data points. Conversely, the greatest differences occurred in situations where

shape of the models were altered, for example in smoothing, or from scanners with different

imaging parameters. Therefore, several practical recommendations can be made based on the

robustness analysis. Scans from varying origins can be combined without issue; the specific

shape features are contained within a single mode and can be isolated, as is demonstrated

in Chapter 3, and dataset size can be altered without substantially changing the modal coeffi-

cients, although the user should be wary of reducing the dataset size much beyond 40 subjects.

However, the remaining methodological parameters should remain untouched to ensure the

consistency of derived shape features. In those interventions where the mode coefficients

strongly correlate, none do so for more than the first 17 or 18 modes. This suggests, although

the first 30 shape features should continue to be assessed, as anything up to 99% of the modal

energy can be assumed to be geometrically important, it cannot automatically be assumed

that those features encode the same specific shapes, and therefore the mode number should

not automatically be assumed to encode the same feature. In other words, if visual analysis

of the mode shapes is seen in conjunction with very strong (𝑟94 > 0.9) Pearson correlation

coefficients, similarity of interpretation is highly probable.

It is likely that including large numbers of hearts selected by a variety of individuals will

change the specific features of importance, but in general it appears that the main difference
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in the dataset remains the choice of scanner, and that this difference supersedes any other dif-

ference. This is encouraging, as it suggests that once key quantitative parameters are fixed,

such as the smoothing parameter and the scan slice thickness, the protocol is robust to many of

the more subjective criteria. Inter and intra-observer variability remains an inevitable source

of variation, but as will be discussed in more detail in the application of the method to PH

(Chapter 5), key areas of anatomical variability are identified, even if there are individual

problem cases where there is a substantial difference in variability. Depending on the partic-

ular use case for this diagnostic shape analysis pipeline, there are a few different approaches

that could be taken to mitigate the impact of human error or difference in judgement. For

instance, each segmentation could be reviewed by two different individuals, and flagged if the

two choices differ by a certain threshold percentage. Or, as suggested in Subsection 4.4.3, a

series of defined segmentation rules could be established to attempt to mitigate the impact of

human choice, as compared to human error. Alternatively, an automated algorithm could be

used as a baseline, and then manually reviewed. Inevitably, if any kind of statistical shape

analysis is to be used in routine medical environment, the speed of processing must be pri-

oritised, which represents an additional argument in favour of semi-automated segmentation.

There is promising indication from the results obtained in this chapter that the shape features

are robust to targeted variations in pipeline inputs.

Regardless of other qualitative interventions, one crucial take away from this chapter is

that the parameters cannot be altered from the original without causing noticeable changes to

the statistical shape analysis output, even if that difference is obvious and categorisable. This

is the case even in this small test example, where only five subjects were altered.
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Chapter 5

Appraisal of a Diagnostic Metric that can

be applied to Pulmonary Hypertension

5.1 Introduction

PH is a progressive cardiovascular disease that significantly impacts the mechanical properties

of the heart. Remodelling of the RV occurs in response to high blood pressure in the arteries

of the lungs and causes a defined, progressive change in shape and mechanical properties,

which may be indicative of increased potential for heart failure. PH is associated with high

morbidity and mortality, in part because non-specific early disease symptoms often lead to

delayed diagnosis (Vonk-Noordegraaf et al., 2013; Xu et al., 2021). The heart is able to

compensate for RV dysfunction up to a point, where initial symptoms are indistinguishable

from a wide array of cardio-pulmonary ailments, ranging from breathlessness during exercise

to angina and heartburn. The relatively sudden onset of RV failure has cemented the disease’s

reputation as a silent killer: the mean survival rate is 2.8 years after diagnosis (D’Alonzo et al.,

1991). Despite significant research funding since the early 1990s, this figure has not improved

substantially. Chang et al. (2022) report that contemporary mortality rates for patients with

PAH are 8% after one year, 16% after 2 years and 21% after 3 years.
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Figure 5.1: Cross-section of the heart, showing the RV in blue and the LV in red. The standard RV free
wall border, in a non-PH heart is marked by the red dotted line. The hypertrophic region is exterior to
this region. This Figure is reproduced from Figure 1.1b.

PH noticeably alters the shape and function of the RV. The RV experiences hypertrophy

(an increase in volume related to increase in cell size) in response to raised PAP, and this

causes flattening of the base of the ventricle (visible in Figure 5.1, which is reproduced from

Chapter 1). Hypertensive RVs have also been shown to be more spherical, and experience

increased cross-sectional area in the middle and base-segments. Other aspects of RV shape,

including geometric shortening, have been associated with prognosis of PH suffers, and right

heart failure is associated with functional adaptation (Vonk-Noordegraaf et al., 2013).

The earlier chapters of this thesis have demonstrated that specific biological character-

istics are uniquely associated with identifiable shape changes in the RV. Examples include

the flattening of the ventricular base in male RVs, and an overall rounding or hypertrophy in

overweight subjects. What has yet to be determined is whether such discrepancies impact PH
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diagnosis. As the shape of the RV determines PH, it is critical to evaluate the ability to use

the shape metrics identified as part of this thesis, and in the literature, alone or in combina-

tion with other key individual biological characteristics to predict the presence and/or state

of PH. Improving and automating methods of recording shape change will allow for better

understanding and prediction of the effects of PH on the mechanical behaviour of the human

right ventricle. The ultimate intention of which is to bring shape analysis strategies based on

non-invasive, clinically attainable imaging techniques and measurable haemodynamics into

mainstream diagnostic medicine. Such research forms part of a continuing collaboration with

cardiologists and imaging experts. Statistical shape analysis procedures have shown promise

in characterising the shape change in the RV and in matching this change to a disease state

(Wu et al., 2012, 2014; Xu et al., 2021; Leary et al., 2012). Reported differences in response

to PH related to sex, age and obesity will be briefly reviewed in the following paragraphs.

Differences between the sexes have been reported in the prevalence, severity, treatment

response and survival rates of PH (Rodriguez-Arias & García-Álvarez, 2021). One of the most

notable differences is that PAH (WHO Group 1 disease) is more frequent in women, however,

once affected, female patients present better prognosis; a phenomenon known as the oestrogen

paradox. Swift et al. (2015) performed a pair-matched study, with subjects matched by age

and sex and concluded that male patients with idiopathic PAH have proportionally worse

RV function despite similar afterload. Swift et al. (2015) hypothesise that this difference is

caused by more effective adaptive remodelling in female hearts. Chapter 3 determined that

non-hypertensive female RVs exhibited a rounder septal wall, and that male RVs were overall

much flatter in the same region. This difference in shape may be associated with the male

RV’s difficulty in compensating.

Obesity is also associated with PH, and has been shown to modify patient outcomes (Frank

et al., 2020). In this study, multivariable regression models tested associations of BMI and

measures of pulmonary vascular haemodynamics and determined that higher BMI was inde-

pendently associated with greater odds of PH disease, and that patients with PH had greater
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risk of mortality. This cohort comprised 8940 subjects who underwent RHC in a hospital set-

ting between 2005-2016. The statistical shape analysis method employed earlier in this thesis

identified that individuals in the higher BMI group exhibit a significant rounding out of the

free wall at the base. Increased BMI is also associated with a lateral lengthening of the RV.

In the first registry-based studies, PH was thought to primarily affect younger female pa-

tients (Rich et al., 1987) with a mean age of 40. However, as more cohorts have been exam-

ined, mean and median ages at diagnosis have been steadily increasing. The main issue with

diagnosis of PH (and most notably PAH) in elderly patients is that it is difficult to discriminate

potential pulmonary vascular disease from the normal ageing process (Berra, Noble, Soccal,

Beghetti, & Lador, 2016). Age-related physiological changes of the cardiovascular and res-

piratory systems should be considered if PH is suspected in elderly patients, as the normal

ageing process could either lead to over-diagnosis of PH or alternatively an underestimation

of PAH. Truong et al. (2020) produced a comprehensive review of non-invasive imaging

methods and common biomarkers used to detect right ventricle dysfunction.

Clearly, therefore, biological features impact the incidence and severity of PH symptoms.

However, it remains to be determined whether biological features also impact RV shape in

a context that either helps or hinders the diagnostic process. This Chapter will identify the

impact of including the biological features, sex, BMI and age on the diagnostic capacity of

the model.

Precise measurement of RV function is fundamental to patient management. The RV’s

contractile pattern is distinctive and consists of three main phases. The first is a shortening

along the longitudinal axis and the traction of the tricuspid annulus towards the apex. The

second is inward (radial) movement of the RV free wall, in a process often known as the

bellows effect and finally the interventricular septum bulges during LV contraction and the

free wall stretches over the septum. This leads to shortening in the anterior-posterior axis

(Tokodi et al., 2021). Through capturing both end-Systolic and end-Diastolic shape features,

it may be possible to identify such unique contractile shapes. Measurement of RV to LV-
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diameter ratio at end-Systole in evaluating outcomes in children with PH (Jone et al., 2014),

showed that the RV/LV ratios were lower in controls as compared to PH patients and that

this ratio correlated with mean PAP and systolic PAP as a percentage of systemic pressure,

amongst other metrics. This non-invasive metric can be easily obtained in a clinical setting

and could be used in conjunction with a statistical shape analysis model. Bidviene et al.

(2021) assessed regional RV shape changes in pressure (PH) and volume (repaired Tetralogy

of Fallot) overload conditions in terms of their relations with RV function and mechanics.

They found that repaired Tetralogy of Fallot and PH patients had flatter free walls at both the

body and apex regions and a flatter RV inflow tract. Moriyama et al. (2020) used RV-specific

speckle tracking echocardiography of patients with chronic thromboembolic PH (Group 4) to

reveal that each of three regions of the RV (inlet, outlet and apex) presents a unique response

to haemodynamic changes during PH treatment, and as such, these are useful indicators for

assessing RV function. Particularly, impaired function in the outlet region was reflective of

myocardial damage indicators in non-PH conditions.

This chapter will also determine whether a linear classifier, as has been used to assess

relationships between the shape features thus far, provides the best available discriminating

properties, or whether a non-linear classifier would improve diagnostic success. The avail-

ability and easy of obtaining vast amounts of clinical data makes healthcare a strong setting

for the use of advanced data techniques. Non-linear behaviour often occurs within human sys-

tems owing to their complexity and dynamic response to a range of factors. It is highly likely

that these factors cannot be adequately described using linear models (Higgins, 2002). This

chapter examines whether non-linear classification using Support Vector Machines (SVM)

substantially improves classification of healthy from diseased subjects, and therefore is worth

pursuing.

In the past, SVM-based classifiers have been used to diagnose PH, however, to the author’s

knowledge none have used shape or texture-based components. Shang et al. (2021) created

classifiers which focused on genomic characteristics, transcriptomics and gene expression
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profiles related to PH. This study found that an optimal gene-based classifier was able to ac-

curately distinguish between healthy individuals and those with PAH as determined by ROC

(Receiver Operating Characteristic) curve analysis, which is used commonly used in machine

learning to assess overall diagnostic performance of a test. However, Shang et al. (2021) ul-

timately conclude that their SVM results are unconvincing in light of the small sample size.

Leha et al. (2019) applied five different machine learning algorithms including SVMs to a

database of 90 subjects with invasively determined PAP. They performed a 10 times repeated

3-fold cross-validation, leading to 3 folds of 28 subjects per repetition. The makeup of the

dataset was 68/90 subjects exhibiting PH, as determined by PAP. They determined that SVMs

have an AUC (area under ROC curve; the higher the AUC, the better the performance) of

0.83 and 95% CI ranging from 0.73-0.93 when based on echocardiography-derived measures.

This machine learning algorithm determined that estimated right atrial pressure was only of

minimal importance. All machine learning methods in this case recorded AUC accuracies

exceeding 78%. Narula et al. (2016) note that machine learning is not principally more ad-

vantageous in the diagnosis of PH than manual assessment by a skilled practitioner. However,

it offers a high-throughput, contemporary solution to standardise diagnostic criteria, and to

assist in assigning overall likelihood of PH.

Having established that there are important shape differences in right ventricles based on

sex, age and obesity that had not previously been considered in diagnostic pipelines, a new

diagnostic metric for identifying PH and generalised hypertension can be created. A linear

metric, using LDA will be assessed in the first instance, and then a non-linear classifier will

be implemented in an attempt to improve upon the classification that already exists.
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5.2 Aims and Hypotheses

5.2.1 Aims

This chapter will evaluate the capability of the shape analysis tools to be used to predict PH.

This chapter will identify specific features that can be applied to the diagnosis of PH. Three

methods will be used to incorporate shape and haemodynamic information from the datasets.

First, by brute force, the optimal combination of Modes for diagnosing PH will be identified.

Secondly, known demographic features will be included in such a linear model. Finally, a

non-linear model will be considered.

This chapter aims to confirm whether the specific shape changes related to PH which

have been seen in the literature are also observable in this dataset; to evaluate the impact of

determine whether it is possible to improve upon the shape analysis procedure’s ability to

categorise subjects with PH by including sex and obesity in the model.

5.2.2 Hypotheses

1. In line with findings from the literature (e.g. Mauger et al., 2019; Xu et al., 2021), there

will be a specific shape mode combination that will define anatomical shape features

that are specific to PH.

2. The shape of the RV is a determinate of PH, both in diagnosis and prognosis, and so

the aim is to evaluate the ability to use this shape metric alone, or with other important

individual features to predict the presence and/or state of PH.

3. Including obesity, sex and age parameters in a linear classifier will improve that classi-

fier’s ability to identify individuals with PH as these were found to uniquely impact RV

shape.

4. A non-linear model will be able to more accurately distinguish PH hearts from those

with generalised hypertension and healthy individuals than the more crude linear model.
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5.3 Methodology

5.3.1 Training and evaluation of the classifiers

The first step to evaluate the ability to use RV shape to predict PH is to establish how easily

PH can be predicted using LDA, using the same process as was implemented in Chapter 3.

First, a linear discriminant model was applied to the POD modal coefficients generated in

Chapter 3 for all 96 RVs. End-Systole and end-Diastole were assessed separately. LDA was

used to build classifiers to separate RVs based on their disease status, i.e. whether they were

PH sufferers. The dataset is comprised of 33 subjects with confirmed PH and 63 non-PH. The

non-PH group consists of 23 healthy ageing, 23 RVs with generalised hypertension (defined

as having a diagnosis of hypertension at a local general practice, but no other cardiovascular

diagnosis, diabetes or dialysis-dependent renal failure (Parikh et al., 2017)) and 17 non-PH

subjects from Pittsburgh.

In the same manner as described in Chapter 4, the LDA identified the five shape modes

with the largest standardised structure matrix coefficients, i.e. the modes with the highest cor-

relations to the discriminant function (see Subsection 3.4.3 for a more in-depth explanation).

A second round of LDA was then applied using subsets of these top five modes to find the

combination which gave the best classification result and separating function. The percentage

of RVs successfully categorised was recorded.

Subsequently, the same three biological factors that were included in Chapter 3; sex, age

and BMI were introduced one by one as cofactors in the analysis to determine the impact

of including this additional shape information on the ability to detect PH. Sex was a binary

parameter, and age and BMI were continuous. The LDA analysis was performed using SPSS

(Armonk, NY). Finally, the hearts were split into their sex, age and BMI categories before

applying LDA, to determine whether the same, pre-identified modes impacted the classifier.
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5.3.2 Support Vector Machines

Support Vector Machines (SVMs) are a subclass of supervised classifiers that attempt to parti-

tion a feature space into two or more groups. The machines achieve this by finding an optimal

means of separating such groups based on known class labels. In complex cases SVMs are

able to partition in a non-linear fashion, which they achieve by means of a kernel function.

SVMs are a sophisticated class of separator, but as with the linear discriminant functions are

also prone to overfitting; although arguably less so than other machine learning algorithms

such as artificial neural networks (Golland et al., 2001). Standard SVM models construct a

hyperplane or decision boundary; a line in multidimensional space that best divides the input

space into two disjoint regions. The main goal of SVM is to divide the dataset in such a way

that it finds a maximum margin hyperplane, i.e., it finds a plane that maximises the distance

between the closest pair of data points which belong to opposing classes. These points are the

“support vectors”, since they support, or determine the decision boundary.

SVMs are advantageous because they are the only model which behaves in a linear fashion

which is also capable of classifying data which is not linearly separable (using the ‘kernel

trick’, which is described in this section). Linear models have the advantage over non-linear

models such as neural networks, in that the coefficient weightings directly correspond to the

feature’s importance in the model, which makes them much easier to understand and interpret.

This is crucial when analysing already parameterised data like the POD modes, since the aim

is to correlate specific shape features to anatomical outputs. The kernel SVM decision regions

for non-linear kernels operate by creating non-linear combinations of the features of interest

to uplift these samples onto a higher-dimensional feature space, where a linear boundary can

be used to separate classes.

A hyperplane in d dimensions is given as the set of all points 𝑥𝑖 ∈ ℝ𝑑 that satisfy the

equation h(𝑥) = 0, where h(x) is the hyperplane function defined as follows:
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ℎ(𝑥⃗) = 𝑤⃗𝑇 𝑥⃗ + 𝑏

= 𝑤1𝑥1 +𝑤2𝑥2 + ... +𝑤𝑑𝑥𝑑 + 𝑏
(5.1)

𝑤⃗ is a d dimensional weight vector and b is a scalar, known as the bias. Therefore points

that lie on the hyperplane satisfy the following equation:

ℎ(𝑥⃗) = 𝑤⃗𝑇 𝑥⃗ + 𝑏 = 0. (5.2)

The hyperplane is thus defined as the set of all points such that 𝑤⃗𝑇 𝑥⃗ = −𝑏. The fundamen-

tal idea behind SVMs is to choose the canonical hyperplane, specified by the weight vector 𝑤⃗

and the bias b that yields the maximum margin among all possible separating hyperplanes. If

𝛿∗ℎ represents the margin for hyperplane ℎ(𝑥) = 0, then the maximum margin hyperplane is

found by solving the following optimisation problem:

ℎ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
󳴂
𝛿∗ℎ
󳴃
= 𝑎𝑟𝑔𝑚𝑎𝑥

󳴤
1

‖𝑤‖
󳴥

(5.3)

The kernel takes the low dimensional input space and transforms it into higher-dimensional

space to enable the successful determination of a non-linear separation line. In other words,

the kernel converts non-separable problems into separable problems by increasing the num-

ber of dimensions. A specific advantage of the SVM method is that it is able to employ a

technique known as the kernel trick. This trick allows the data to be represented only through

a set of similarity comparisons between the original data observations 𝑥, which retain their

original coordinates in the lower dimensional space, instead of explicitly applying the trans-

formations necessary to represent the features in higher dimensional space. Thus, the kernel

trick is able to avoid the potentially extreme computational costs associated with applying the

transformation.

Four of the most popular kernels will be tested in this chapter; a Linear kernel, which

predicts a new input using the dot product of the input and the support vectors:
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𝑘(𝑋, 𝑌 ) = 𝑋 ⋅ 𝑌 + 𝐶 (5.4)

where X and Y are vectors/observations in the input space and C is a regularisation pa-

rameter; a Radial Basis Function kernel (considered very similar to a Gaussian kernel):

𝑘(𝑋, 𝑌 ) = 𝑒𝑥𝑝(−𝛾 ⋅ ‖ 𝑋 − 𝑌 ‖2), 𝛾 > 0 (5.5)

where 𝛾 = 1
2𝜎2

and ‖𝑋 − 𝑌 ‖2 is the squared Euclidean norm.

a Sigmoid kernel;

𝑘(𝑋, 𝑌 ) = 𝑡𝑎𝑛ℎ(𝛾 ⋅𝑋𝑇𝑌 + 𝐶), (5.6)

and a Polynomial kernel;

𝑘(𝑋, 𝑌 ) = (𝛾 ⋅𝑋𝑇𝑌 + 𝐶)𝑑 , 𝛾 > 0 (5.7)

A Polynomial kernel is a more generalised form of the linear kernel. Degree, d, is a

parameter required only for polynomial kernels, and controls the flexibility of the curve.

All cases, except for the linear kernel include the variable parameters are C and gamma (𝛾).

C is the penalty parameter and represents the misclassification or error term. This determines

how much error is acceptable in the SVM optimisation and allows control of the trade-off

between the decision boundary and the misclassification term. When C is high it will classify

all data points correctly but at the risk of overfitting.

Gamma (𝛾): defines the distance at which points can influence calculation of the line of

separation. When the gamma value is high, only nearby points will have a large influence

whereas a low gamma value means that further away points will also be considered in the

determination of the decision boundary. As a result of this, high gamma values typically pro-

duce highly flexible decision boundaries, and low gamma boundaries produce a more linear

194



CHAPTER 5. DIAGNOSTIC METRIC 5.3. METHODOLOGY

decision boundary.

Implementation

The 96 subject dataset was randomly split into a training set and a testing set in a 75:25 ratio.

The input was Mode coefficient values generated in Chapter 3, for those modes selected as

the ‘Top Five’ based on LDA. Each SVM kernel was trained on a training set (72 subjects)

and applied to a test set (24 subjects). The SVM output was a cross-validated accuracy score,

expressed as a percentage, and this result was averaged over 100 attempts, each involving

a different 75:25 split. This produced an accurate representation of the entire dataset and

ensured that statistical power was not compromised due to the need to subdivide a relatively

small sample size. The 100 attempts were run sequentially, in a loop, and mean accuracy and

standard deviation values were reported over all the attempts.

All mode coefficient values were scaled prior to application of the SVM model, to remove

any effects associated with the decreasing standard deviation in the higher order modes. As

the modes are ranked in order of their contribution to the total shape decomposition, Mode 2

will necessarily have larger coefficient values, and a greater range than Mode 17, for instance.

Testing was performed using the caret and e1071 packages in R version 4.1.2 (Bird Hippie).

Parameter tuning was undertaken to improve the success of the SVM. A cross-validated

grid search was performed to identify combinations of SVM input parameters (C, 𝛾 , degree,

polynomial and coef0) which will separate PH from non-PH groups with the greatest accuracy.

Grid search is one method of hyperparameter tuning, and involves defining a grid of possible

values for each hyperparameter, and then exhaustively evaluating the model’s performance

on every possible combination of values within that grid. In the first instance, exponentially

growing sequences of C and 𝛾 were tested to narrow down on a useful range of values (as

demonstrated in Hsu et al., 2016). After initial exploratory analysis using the caret package,

the useful range was identified to be C=0.1:10, coef0 = 0.1:10, 𝛾=0.1:10 (this was performed

by inspection), and the parameters were tuned according to these ranges. The svm.tune()
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Table 5.1: Best Mode combinations and cross-validated percentage accuracy scores for characterising
PH using Linear Discriminant Analysis

Diagnosis Phase Mode Combination Accuracy
PH Diastole 15, 10, 20, 21 72.9%
PH Systole 2, 15, 14, 8, 5 68.8%

command in R’s e1071 package was used to tune the narrowed range of parameters and de-

termine the best combination for accurately separating PH from non-PH. The entire process,

from the sample split, training and test set division, and the parameter tuning was performed

for each iteration in the loop, so every random 75:25% split of RVs underwent a separate tun-

ing process. In practice, the kernels and parameters were applied, and the analysis performed

by specifying options in the R function svm.tune(). Owing to the long computational time

associated with some of the more complex kernels tested (e.g. sigmoid and polynomial), the

SVM analysis was performed using the Hamilton HPC service at Durham University.

5.4 Results and Discussion

5.4.1 Assessing the Diagnostic Potential of Mode Shape Features

Initial characterisations applied LDA to all 96 RVs, using the coefficients of Modes 2-30 as

inputs. The initial characterisation aimed to produce the best classifier for separating individ-

uals with PH from those without. Mode 1 coefficients are excluded from the analysis, as they

encode features related to the scanning protocol (as determined from the population-based

analysis in Chapter 3). In each case, after initial identification of the top five discriminating

shape modes based on their structure matrix scores, sub-combinations of modes were tested

to find the overall best separating combination to diagnose PH. A more in-depth description

of this process, and the mode selection criteria, is covered in the Chapter 4 Methodology

(Section 4.3).

Table 5.1 reports the successful classification percentages, after leave-one-out cross-val-
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idation, for the maximum separating mode combinations achieved at both cardiac phases. PH

can be predicted with 72.9% accuracy using a combination of 4 modes at end-Diastole; Modes

15, 10, 20, 21 (identified as the best discriminating modes using LDA). This result confirms

that a specific shape associated with PH is observable in PH-sufferers, as compared to the

rest of the group. PH sufferers were classified on the basis of PAP exceeding 25mmHg, and

were not stratified based on the severity of their illness. The categorisation of PH sufferers

was provided with the data from UPMC. At end-Systole, all five of the top modes, based

on structure matrix were required to capture 68.8% of subjects correctly (shown in Table

5.1). This classification score is not quite as strong as at end-Diastole, but still indicates

the presence of a fundamental shape difference at end-Systole in individuals with PH. There

are noticeable markers which are unique to PH at both end-Systole and end-Diastole. The

maximum diagnostic separation at End-Systole uses all five of the top identified modes to

achieve the maximum diagnostic separation, which is perhaps indicative of the fact that more

than 5 modes are involved in optimal shape characterisation.

Predictive accuracy was very slightly better at end-Diastole than at end-Systole (72.9%

vs 68.8% (Table 5.1)). Notably, Mode 15 features in both phases, which suggests that this

shape feature is a specific predictor of PH. Table 5.2 describes the top modes in the Linear

Discriminant model based on their structure matrix values, and establishes Mode 15 as the

strongest individual discriminating variable related to PH at end-Diastole (-0.680), and the

second strongest discriminating variable at end-Systole (0.441), further substantiating the

claim. As described in the overall Methodology in Chapter 2, the end-Systolic and end-

Diastolic shapes were decomposed together, although the resultant mode coefficients were

analysed separately. Therefore, Mode 15 is encoding the same feature, which is a strong dis-

criminator at both phases of the cardiac cycle. Chapter 3 identified Mode 15 as an important

factor in the classification of obesity in non-Hypertensive individuals at end-Systole. This

points to a potential inter-connection between PH and the obesity and its impact on RV shape.

It is likely, therefore, that BMI will be a confounding factor in identifying RV shape features
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Table 5.2: Structure Matrix showing the results of an LDA model built using Modes 15, 10, 20 and 21
at both end-Systole and end-Diastole

Diastole Systole
Discriminating Variable LDA Function Discriminating Variable LDA Function
Mode 15 -.680 Mode 2 -0.462
Mode 10 .566 Mode 15 0.441
Mode 20 .434 Mode 14 0.418
Mode 21 .424 Mode 8 -0.342

Mode 5 0.295

which best predict PH.

Using the shape features encoded by these four modes in combination produces an overall

shape that aligns with evidence from the literature. The qualitative shape displayed in Figure

5.2 demonstrates a rounding out and flattening of the base of the right ventricle, which aligns

with descriptions of PH-related shape change in previous shape based literature (e.g. Mauger

et al., 2019; Xu et al., 2021) and in medical descriptors of the condition (Vonk-Noordegraaf et

al., 2013). The unusual shape of the non-PH extreme RV, with a noticeable bulge at the base,

which is marked by an arrowhead in Figure 5.2, prompted the suggestion that this subject was

not reflective of the cohort as a whole. To confirm whether this result was distorted from

plotting the coefficients of one anomalous subject, the 75th and 25th percentile subjects were

also analysed in Figure 5.3).

Figure 5.3 depicts 3D reconstructions of the RV produced when plotting the mode coef-

ficients from the 75% and 25% percentile function scores when the RV is constructed using

Modes 15, 10, 20 and 21. Ventricular shapes confirm that PH patients are likely to exhibit

a ‘rounding out’ of the base of the ventricle, which can be explained by the increase in pul-

monary pressure associated with PH (as described in Simonneau et al., 2019). The area of

greatest difference between the 75% subject and the 25% subject is indicated by an asterisk.

The non-PH subject in Figure 5.3 showed bulging in the same region of the RV base as ob-

served in the extreme individual, although this effect was far less pronounced than in Figure
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Figure 5.2: The combined qualitative shape impact of the modal coefficients for Modes 15, 10, 20
and 21 of the most extreme non-PH subject, at end-Diastole, based on LDA function value, and the
combined impact of the coefficients for the most extreme PH subject. Figures are the mean RV ±2×
SD.

5.2. Therefore, it can be discerned that non-hypertensive subjects have a tendency to a slight

protrusion higher up on the free wall, nearer to the base. On the other hand, the PH patient,

as reconstructed by Modes 15, 10, 20 and 21, remains largely unchanged between the most

extreme subject’s LDA score and the 75th percentile subject’s LDA score, indicating that the

flattened shape is likely to be a prominent identifying feature of individuals with PH. Again,

these results are consistent with previous shape analysis papers (Xu et al., 2021; Mauger et

al., 2019). Thus, the best identifying mode combination shows that there is a flat region at the

base of the heart in PH sufferers.

Figure 5.4 shows the ventricular models produced when plotting the mode coefficients

from most extreme PH and non-PH RVES, as determined by the model created using the

top five modes at end-Systole. The 3D models are constructed from the mean RV shape

plus the combined Modes 2, 15, 14, 8 and 5 multiplied by the modal coefficient values for

the extreme non-PH and PH RVs. The extreme PH subject exhibits reduced septal curvature

(marked by a black arrow) as compared to its non-PH counterpart, which accord with previous

literature (Xu et al., 2021). Previous shape analyses have also found that the presence of PH

has caused a flattening of this wall. The RVES of the exemplar non-PH subject displays
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Figure 5.3: The combined qualitative impact of Modes 15, 10, 20 and 21 in subjects with the 25𝑡ℎ and
75𝑡ℎ percentile LDA scores at end-Diastole. The left side depicts the 25𝑡ℎ percentile score, indicating a
typical non-PH RVES, and the right side depicts the 75𝑡ℎ percentile score which indicates a typical PH
RVES shape. Asterisks in the basal region mark the rounding effect in the non-PH RV, as compared to
the mean, and the flattening effect in the PH sufferer. Figures are the mean RV ±2× SD.

Figure 5.4: The combined qualitative impact of Modes 2, 15, 14, 8 and 5, the five best modes for
determining PH status at end-Systole. The left side shows the most extreme non-PH function value,
and the right side shows the most extreme PH subject in terms of LDA function value. The extreme
subject exhibits reduced septal curvature as compared to its non-PH counterpart, this difference in
curvature is marked by arrows on both RVs.
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slightly increased curvature of the septal wall, especially lower down in the RV, closer to

the apex. However, these shape features were associated with end-Systole, rather than end-

Diastole. There is also evidence of characteristic flattening at the base of the ventricle in

the extreme RV with PH. Having established that this shape analysis method has identified

characteristic and distinguishing features of PH, the next step was to attempt to improve this

model by including the biological characteristics that were assessed in Chapter 3.

5.4.2 Application of Subject Characteristics to Improve the PH Model

The results from Subsection 5.4.1 establish that PH patients share shape characteristics with

obese individuals. Therefore, it seems plausible that accounting for an individual’s BMI would

improve a diagnostic classification model for PH. As the results reported in Chapter 3 (Table

3.3) demonstrate, that combinations of shape modes can be found which separate the biolog-

ical features for the three sets of biological combinations tested.

This section added BMI, sex and age as factors into the predictive models to charac-

terise their respective effects on diagnosis of PH. Sex and age were considered for the sake

of completeness despite less obvious qualitative evidence for their immediate impact. Each

population-based metric was assessed in a separate LDA, where the input was the discrimi-

natory set of shape features identified in Subsection 5.4.1: Modes 15, 10, 20 and 21 for the

end-Diastolic RVs, and Modes 2, 15, 14, 8 and 5 for the end-Systolic RVs, as well as the

feature of interest, added as an additional factor. There are 5 total inputs in each end-Diastolic

test and 6 total inputs in each end-Systolic test. Cross-validated (using leave-one-out cross-

validation) accuracy scores are reported, in addition to the best combinations, in the same

manner as the initial LDA analyses reported earlier in the chapter.

Table 5.3 reports the cross-validated percentage accuracy scores when LDA analyses are

conducted to identify the presence of PH, using the best combinations from Table 5.1 and

sex, BMI and age, in turn. In both end-Diastolic and end-Systolic RVs, the inclusion of BMI

slightly improves the LDA function’s ability to discriminate PH (from 72.9% to 74.7% and
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Table 5.3: LDA cross-validated percentage accuracy scores when the maximum mode combinations
for diagnosing PH (Table 5.1) are included and BMI, sex and age are included as factors in the analysis.

Phase Mode Combination Accuracy (%) +Sex +BMI +Age
Diastole 15, 10, 20, 21 72.9 71.9 74.7 69.8
Systole 2, 15, 14, 8, 5 68.8 67.7 70.5 65.6

from 68.8% to 70.5% respectively), whereas, adding in subject sex very slightly reduces the

ability to diagnose PH (down to 71.9% at end-Diastole, and to 67.7% at end-Systole). The

addition of age also reduces the successful classification of PH, from 72.9% to 69.8% at end-

Diastole and from 68.8% to 65.6% at end-Systole.

As a further means of evaluation, confusion matrices are reported in Figure 5.5 for end-

Diastole and Figure 5.6 for end-Systole. Comparing Figures 5.5a and 5.6a demonstrates that

the greater diagnostic potential at end-Diastole is concentrated in the correct identification

of non-hypertensive RVs, whereas the end-Systolic shape can better diagnose PH (23/33 vs

25/33 correctly classified). The improvement exhibited when BMI was included as an input

was concentrated in the greater number of ‘true negative’ values observed. This was the case at

end-Diastole (comparing 5.5a and 5.5c), where one more individual was correctly classified

as non-hypertensive, and at end-Systole (through comparing 5.6a, and 5.6c) where 5 more

subjects are correctly classified as non-hypertensive, but at the cost of a reduction in correct

identification of true positive individuals, i.e. those who suffer from hypertension.

At end-Diastole, including sex in the LDA slightly improved the overall ability of the

diagnostic model to identify the RVES of PH sufferers; correctly identified RVs rose by 1 from

23/33 to 24/33 (Figure 5.5b), whereas accounting for age slightly reduced diagnostic success

in terms of true positives and true negatives (Figure 5.5d). At end-Systole, on the other hand,

including sex in the maximal separating model slightly reduced the LDA function’s ability

to discriminate RVES without PH. The number of correctly classified individuals fell from

41/63 to 40/63 (Figure 5.6b), whereas, the model had no impact on the ability to predict PH.

Figure 5.6d demonstrates that including age in the model marginally improved identification

202



CHAPTER 5. DIAGNOSTIC METRIC 5.4. RESULTS

(a) (b)

(c) (d)

Figure 5.5: Confusion matrices depicting the results of the decomposition at end-Diastole. Figure
5.5a shows the four shape modes only, Figure 5.5b adds sex as a factor, Figure 5.5c adds BMI as a
factor and Figure 5.5d adds age as a factor. In all cases, ‘True Neg’ refers to subjects in the non-PH
group, who are correctly identified as non-PH; ‘False Neg’ refers to PH sufferers who are incorrectly
assigned to the non-PH group; ‘True Pos’ refers to PH sufferers who are correctly identified as such,
and ‘False Pos’ to non-PH individuals who are incorrectly classified as PH patients.
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Table 5.4: Confusion Matrices showing the breakdown of classification scores based on dataset and
disease status grouping when classified by a combination of Modes 15, 10, 20 and 21 at end-Diastole

Newc. Healthy Newc. Hypertensive Pitt. PH Pitt. Non-PH
Modes Correct 15 18 24 14

Incorrect 8 5 9 3
Modes Correct 17 16 24 16
+ BMI Incorrect 6 6 9 1
Modes Correct 15 20 23 13
+ Age Incorrect 8 3 10 4
Modes Correct 16 18 25 13
+ Sex Incorrect 7 5 8 4

of true negative values (those without PH), but also caused a noticeable drop in performance

when attempting to diagnose PH (25/33 vs 21/33).

Table 5.4 breaks down the specific starting cohort to which the various correctly and in-

correctly classified subjects belonged, whether Newcastle confirmed healthy, Newcastle gen-

eralised hypertensive, Pittsburgh non-hypertensive, or Pittsburgh PH. The inclusion of BMI

in the model improved classification of the non-hypertensive subjects from Pittsburgh (from

14 to 16 correct), and also in the healthy ageing group from Newcastle (from 15 to 17). There

was also a slight reduction in the ability of modes 15, 10, 20 and 21 to classify the generalised

hypertensive subjects from the Newcastle dataset (18 vs 16). Therefore accounting for BMI

led to increased classification of the non-hypertensive individuals, likely discounting those of

lower BMI.

Table 5.4 shows a breakdown of the successful and unsuccessful categorisations using a

combination of Modes 15, 10, 20 and 21; the best combination for identifying PH on the basis

of structure matrix value. In this analysis, 33 of the 96 subjects (Pitt. PH) were sufferers. From

this Table, it can be seen that including BMI in the predictive model improves the identification

of the healthy ageing RVs from the Newcastle dataset and the non-PH group from Pittsburgh

(altering the split from 15 correct, 8 incorrect to 17 correct, 6 incorrect). There is no change in

the breakdown of PH patients correctly identified, and there is a slight reduction in the number
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(a) (b)

(c) (d)

Figure 5.6: Confusion matrices depicting the results of the decomposition at end-Systole. Figure 5.6a
shows the five shape modes only, Figure 5.6b adds sex as a factor, Figure 5.6c adds BMI as a factor and
Figure 5.6d adds age as a factor. In all cases, ‘True Neg’ refers to subjects in the non-PH group, who
are correctly identified as non-PH; ‘False Neg’ refers to PH sufferers who are incorrectly assigned to
the non-PH group; ‘True Pos’ refers to PH sufferers who are correctly identified as such, and ‘False
Pos’ to non-PH individuals who are incorrectly classified as PH patients.
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of generalised hypertensive subjects from Newcastle that have been correctly identified (from

18/5 to 16/6). The slight difference in total subject number when BMI is included relates to the

fact that height and weight data is missing for one individual, preventing calculation of BMI.

However, it is important to note that these sample sizes are small and the misclassification of

two individuals, although indicative, is insufficient to confirm the existence of a trend. The

confusion matrices indicate that whilst they are unable to improve overall separability (Table

5.5), accounting for sex very slightly improves the overall ability to diagnose PH to 25 correct,

8 incorrect, and accounting for age decreases the ability of the model to detect PH. Accounting

for age does improve the correct identification of the 23 generalised hypertensive subjects.

The results reported in this section suggest that BMI can be an important distinguisher of

borderline PH cases, but that the main benefits are in the designation of confirmed healthy in-

dividuals. This result must be further explored, since the result is often achieved at the expense

of correct diagnosis. For this reason, it is critical to understand, with more granularity which

RVs are being classified or misclassified. Therefore, Figure 5.7 shows histograms which de-

scribe the distribution of BMI in correctly and incorrectly identified subjects at end-Diastole

(using Modes 15, 10, 20 and 21). Figure 5.7b in particular shows a concentration of lower

BMI scores in correctly categorised PH individuals, and that histogram peak of the incorrectly

diagnosed PH individuals (depicted in blue in these histograms) suggest that they often had

higher BMI scores. The implication of this result is that the misdiagnosis of individuals is

occurring because of obesity-related changes to the RV.

The addition of the non-pathological factors to the maximum separating combinations

was also complemented by a second test, the results of which are reported in Table 5.5. The

inclusion of each population-based metric was assessed in a separate LDA, where the input

was shape modes 2-30 as well as the feature of interest, i.e. 30 total inputs. Each analysis was

performed at both end-Systole and end-Diastole. Combinations of the top five modes were

then assessed to find the best diagnostic function. Cross-validated (using leave-one-out cross-

validation) accuracy scores are reported, in addition to the best combinations, in the same

206



CHAPTER 5. DIAGNOSTIC METRIC 5.4. RESULTS

Figure 5.7: a) Histogram showing BMI value distribution in correctly identified cases using the LDA
algorithm at end-Diastole. b) Histogram showing BMI value distribution in incorrectly identified
cases.

manner as the initial LDA analyses reported earlier in the chapter. No confusion values are

reported for the top five results, since otherwise the effects of age and sex would be unchanged

from the initial analysis, based on the shape features alone.

Table 5.5 lists the results when BMI was included as a factor in the LDA analysis. By

also accounting for BMI in the model, the successful separation percentage rose to 74.7%

after cross-validation using the top five input features: BMI, and Modes 15, 2, 10, 20. The

best combination of modes at end-Systole achieved 75.8% accuracy in separation. This was

achieved using a combination of BMI, Modes 15 and 13. Mode 15 has a role in identifying

obese individuals at end-Systole, as well as being a key in diagnosing PH. Mode 13 was

also identified in Chapter 3 as an important mode for separating older from younger non-

hypertensive individuals. It is interesting that, once BMI is included in the discriminating

LDA function, the impact of Mode 13 becomes visible. The appearance of such interactions

warrants consideration of smaller subdivisions of the dataset, to control for interactions of the
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Table 5.5: Best Combinations for characterising PH using Linear Discriminant Analysis when Modes
2-30 and BMI, sex and age are included as factors. Cross-validated percentage accuracy scores are
also reported.

Diagnosis Phase Combination Accuracy (%)
BMI Diastole BMI, 15, 10, 2, 20 74.7
BMI Systole BMI, 15, 13 75.8
Sex Diastole 15, 10, 20, 21 72.9
Sex Systole 2, 15, 14, 13; 2, 15, 5, 13; 15, 14, 5, 13 70.8
Age Diastole 15, 10, 20, 21 72.9
Age Systole 2, 15, 14, 5 67.7

population characteristics.

Adding sex as an input to the diagnostic model, in conjunction with shape modes 2-30,

correctly classifies 70.8% of the input subjects, based on their diagnosis. This represents a

slight improvement over the baseline, even though sex did not feature as one of the top five

modes. Although each subset of the input factors creates an entirely new LDA function, the

inclusion of sex interacted with Mode 13, and increased its importance to the model. Sex also

made no significant appearance in the ranked features, based on structure matrix values in the

end-Diastolic group (structure matrix coefficient of -0.124, compared to -0.482 for Mode 15).

Furthermore, the same top five modes were identified, and the optimal separating combination

for diagnosing PH remained the same as the initial results, reported in Table 5.1. Therefore,

accounting for sex as part of this LDA model worsened the diagnostic potential, as compared

to using fundamental shape features, derived from the RV.

Table 5.5 also confirms that accounting for age, the third of the three predictors, in the

discriminant model has no substantial effect. Age does not feature in the top five discriminat-

ing modes at either end-Systole or end-Diastole, nor does it alter the top five discriminating

modes. The best discriminating combinations remained: Modes 15, 10, 20 and 21 (72.9%

separation) and Modes 2, 15, 14, 8, 5 (68.8% separation) at end-Systole. Therefore, account-

ing for age in the linear discriminant model did not improve the ability to diagnose PH in any

meaningful way.
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The most substantive finding of the initial characterisation was that the shape modes which

best predicted PH were left unchanged from the initial analysis, which used shape features

only, whereas BMI emerged as the strongest discriminating component in the model at end-

Diastole. This effect was mirrored at end-Systole, although in this case a smaller subset of

features (BMI, Mode 15 and Mode 13) emerged as the optimal combination.

From the initial application of BMI, age and sex to a discriminating shape model con-

taining all 96 individuals, it appears that BMI has the most significant impact on diagnostic

potential. Notably, BMI is always a strong discriminating factor based on its correlation to the

discriminant function (or structure matrix value). There also seems to be a slight improvement

in the ability of a model to diagnose PH in diastolic subjects when sex is included. Includ-

ing age in a model alongside shape modes appears to make little difference to the diagnostic

potential.

5.4.3 Subdivision of Datasets to Control for Population Characteristics

Earlier work in this thesis has established the presence of distinctions in right ventricular shape

based on sex, age and obesity status when removed from a disease context and has established

that BMI and sex can improve shape-based separation. Such substantive shape differences

may warrant the need for separate diagnostic models for subjects, and therefore, to test this,

the final set of linear experiments performed separate LDAs for each of the dichotomous

groups, enabling any interactions between characteristics to be extracted and observed. To

evaluate the effect of non-pathological characteristics on the diagnostic potential of RV shape

features, it is important to consider two angles. First, whether including those population

factors positively or negatively impacts the ability to diagnose PH using the shape feature

baseline combinations, which were described at the opening of this chapter (Subsection 5.4.1,

Table 5.1), and secondly, what effect introducing such factors into the model has on the most

prominent separating shape features; i.e. whether the introduction of sex or age as a feature

changes which modes separate the data with the highest accuracy. To answer the first of these
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Table 5.6: Composition of each subject category, total values and division into PH and non-PH groups.
The cut-off for the age category was mean age across all subjects (60.5 years), and the cut-off for
Obesity was a BMI of 28𝑘𝑔∕𝑚3. The Non-PH category is comprised of 63 subjects; 23 healthy ageing,
23 RVs with generalised hypertension and 17 non-PH subjects from the Pittsburgh cohort.

Category Total Non-PH PH
Male 52 32 20
Female 44 31 13
Young (< 60.5 years) 41 26 15
Old (≥ 60.5 years) 55 37 18
Non-Obese(< 28𝑘𝑔∕𝑚3) 48 38 10
Obese (≥ 28𝑘𝑔∕𝑚3 ) 47 24 23

questions, LDA was performed using the maximal separating combinations for end-Systole

and end-Diastole as inputs (see Subsectionection 3.3.2 for an overview, and Section 5.3 for

specific description of the training and evaluation of classifiers in this chapter), separately

split into the two population subgroups. Then, the two remaining factors (i.e. sex and age)

were also added into that model, in addition to the key shape modes, creating a total of five or

six input factors into each analysis. Cross-validated accuracy percentages were reported. To

answer the second question, a separate LDA test was performed, including Modes 2-30 plus

each factor in turn, to derive the top five ranked modes for each subdivided group.

Table 5.6 breaks down the PH vs non-PH individuals in each category and also describes

the number of subjects featured in each category. The numbers in the Obese and non-Obese

are almost equal (47 vs 48), as this was one decision criterion for the split at 28𝑘𝑔∕𝑚2 .

It is therefore striking how many more PH sufferers there are in the higher BMI (‘Obese’)

group compared to the non-Obese group. A smaller proportion of PH individuals are in the

old category than the young category. This is initially surprising, but can be explained by

the composition of the Pittsburgh PH dataset, where many of the referrals were for young

patients. There are more male subjects in this dataset than female (52 vs 44), but noticeably

fewer women with a diagnosis of PH.

Table 5.7 shows the best classification and modes when performing LDA on male and
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female subjects separately. This dataset consisted of 44 female subjects, of whom 13 suffered

from PH and 31 did not (Table 5.6). The results described in this table show that the maximum

separating mode combination is significantly better at identifying PH in male subjects as com-

pared to female subjects in all cases. At end-Diastole, the successful classification percentage

is only slightly above chance in female RVs (54.5%). In female individuals, accounting for

BMI improves that classification from 54.5% to 67.4%, whereas age slightly worsens it (from

54.5% to 52.5%). In male RVs, accounting for BMI improves classification of BMI to 80.8%

and adding age into the model very slightly improves the result to 75%. It is therefore evident

that the PH related shape features, identified across the whole cohort are much more strongly

represented in male hearts than female hearts. This is slightly surprising, given the overlap of

features between male RVs identified in Chapter 3 and those associated with PH. Although,

when BMI is included as a factor, that negative effect is somewhat mitigated.

Figure 5.8 displays confusion matrices, which illustrate the success of the PH prediction

by dividing out the results into true and false negatives and positives. Examining the confusion

matrices shows that the gains in female diagnosis of PH when BMI is included in the model

all occur as a result of improved categorisation of healthy female individuals: 22 correct, 8

incorrect compared to 16/15 (Figures 5.8a & 5.8b). There is a slight reduction in the suc-

cessful classification of female PH sufferers. In male individuals, the effect is similar, with

the majority of gains observed in the true negative (non-PH) category. Although the male

model successfully identifies one additional RV with PH. The inclusion of age in the model

also worsens the discriminating capacity in determining PH status. The number of correctly

assigned PH patients falls by one to 13/20 (Figure 5.8i).

At end-Systole, only 63.6% of the RVs were correctly separated based on PH. As can be

seen from Table 5.7 and the confusion matrices in Figure 5.8, including BMI in this analy-

sis slightly improved the classification from 63.6% to 65.1%. Whereas, accounting for age

reduced the successful classification percentage slightly to 61.4%. The number of correctly

identified PH sufferers was highest in the baseline classification, and adapting the model to
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Table 5.7: Top Five identified Modes, ranked in order of importance, when separate LDA analyses are
performed on Male and Female subjects. Also reported are the associated classification percentages
using these modes only, and when BMI and age are included as inputs to the model.

Phase Analysis Classification % +BMI +Age Ranked Modes
Systole Female 63.6 65.1 64.1 8, 2, 7, 26, 19
Systole Male 71.2 67.3 73.1 14, 15, 20, 2, 13
Diastole Female 54.5 67.4 52.5 5, 19, 23, 15, 18
Diastole Male 73.1 80.8 75.0 10, 15, 20, 11, 17

include BMI and age both resulted in the successful identification of PH in female subjects

falling from 8/13 to 7/13 (Figures 5.8e & 5.8f). PH status was correctly deduced in 71.2%

of the male-only group using the five top shape features. This was an improvement over

the baseline rate of 68.8% (calculated across the 96 subject group, and shown in Table 5.1).

Accounting for BMI reduced the accuracy of the LDA model in male subjects, whereas ac-

counting for age slightly improved the classification to 73.1%.

The top five modes reported for male RVs are also reported in Table 5.7 and much more

closely match the overall best classifier of PH than the female features. The ranked modes

for male RVs at end-Diastole included Modes 10, 15 and 20 and the ranked features at end-

Systole also included Modes 14, 15. On the other hand, the top features for discriminating PH

in the female RVs differed far more substantially from the baseline. BMI was important in the

classification of PH in both sexes, but was a more significant factor in females than in males.

Mode 15 also appears as an important identifier of PH in both sexes. Mode 19 and Mode

23, which are both Modes that appear in the identification of sex are important classifiers of

female subjects, as well as Mode 5 which appears in the classification of age in Chapter 3.

In all but one of the tests for either sex, including BMI in the separating model resulted in

an overall improvement in the classification result. The exception was males at end-Systole,

where a slight reduction in classification percentage was observed (from 71.2% to 67.3%).

This improvement tended to manifest itself in the correct identification of subjects without

PH and in actuality represented a worsening ability to differentiate the individuals with PH.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.8: Sex-based confusion matrices. The left hand column (Figures 5.8a, 5.8d, 5.8g, 5.8j) depicts
the results of the decomposition using shape modes only. The central column shows the results when
BMI is included as a factor, and the left hand column shows the results when age is included as a factor.
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Table 5.8: Top Five identified Modes, ranked in order of importance, when separate LDA analyses
are performed on the obese and non-obese groups. Also reported are the associated classification
percentages using these modes only, and when Sex and age are included as inputs to the model.

Phase Analysis Classification % +Sex +Age Ranked Modes
Systole Non-Obese 66.7 66.7 64.6 15, 2, 29, 26, 21
Systole Obese 63.8 66.0 66.0 6, 29, 11, 22, 26
Diastole Non-Obese 72.9 70.8 68.8 20, 11, 8, 15, 10
Diastole Obese 66.0 66.0 68.1 2, 21, 17, 27, 15

This is evident from the comparing the confusion matrices from the classification using just

shape features to those where BMI is also included in the model (e.g. the end-Diastolic female

values depicted in Figures 5.8a and 5.8b). Tests involving a larger sample size would further

clarify these relationships.

It is notable that BMI was the greatest discriminating factor in both male and female in-

dividuals, but did not improve the ability to detect PH. Having isolated BMI’s contribution

in the different sex groups, the next test considered the impact of different modes when sub-

jects were subdivided based on obesity. Table 5.8 shows the top five modes when the RV

groups were assessed separately based on their obesity status. The lower BMI group (below

28𝑘𝑔∕𝑚3) comprised 38 individuals without a PH diagnosis and 10 individuals with a PH

diagnosis. The higher BMI group consisted of 47 individuals, of whom 24 were non PH and

23 suffered from PH.

Table 5.8 shows the top five modes when the RV groups were assessed separately based on

their obesity status. The lower BMI group (below 28𝑘𝑔∕𝑚3) comprised 38 individuals without

a PH diagnosis and 10 individuals with a PH diagnosis. The higher BMI group consisted of

47 individuals, of whom 24 were non PH and 23 suffered from PH. Figure 5.9 describes BMI-

based confusion matrices. These describe the breakdown of the classification percentage into

true and false negative and positive results. The colour scheme is indicative of the percentage

concentrated in each group, with darker blue values in the region of 80%.

At end-Diastole, Modes 15, 10, 20 and 21 were able to separate non-obese RVs with PH
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with a success rate matching that achieved across the whole cohort (72.9%). The inclusion

of sex and age as inputs to the model reduced the efficacy of this classification to 70.8% and

68.8% respectively. Comparison of Figures 5.9g, 5.9h & 5.9i indicates that the poorer per-

formance of the classifier was related to a slight reduction in correctly classified PH patients

(from 7/10 to 6/10). Although this reduction in successful classification is observed when sex

or age is included in the model, it is worthy of remark that the non-obese dataset contains

notably fewer RVs than the obese dataset. In obese RVs at end-Diastole, the overall success

of the diagnostic classifier is worse: it is able to correctly categorise just 66% of individuals

based on their PH status; 16/24 non-PH and 15/23 with PH (Figure 5.9a). Including sex in a

predictive model comprised only of obese individuals has no impact on the percentage accu-

racy or the categorisation splits (Figure 5.9b), and including subject age very slightly improves

the accuracy score to 68.1%, where the improvement comes from the correct classification of

an additional PH sufferer (Figure 5.9c).

The maximum separating shape modes for identifying PH at end-Systole (Modes 2, 15,

14, 8 and 5) were a better match for the non-obese RVs than obese RVs (66.7% compared to

63.8%). Through inspecting Figures 5.9a & 5.9g, the performance gain in the non-obese RVs

is concentrated in strong identification of non-hypertensive individuals, whereas the stronger

separation performance of the LDA in obese individuals was able to correctly separate PH.

Accounting for sex in the model had no impact on non-obese individuals (66.7% accuracy),

whereas accounting for age slightly reduced the successful classification rate for PH to 64.6%

of individuals. The confusion matrices in Figures 5.9j, 5.9k & 5.9l demonstrate that a diag-

nostic model can only accurately separate 50% of hearts with PH in non-obese RVs, regardless

of intervention by including subject age or sex in the diagnostic model. The baseline shape

modes are not a clear diagnostic indicator of the presence of PH in non-obese individuals.

In obese individuals, both of the included biological factors constituted an improvement over

separating groups using the five shape modes alone; including sex or age as an input to the

LDA increased diagnostic success to 66%. However, this still remains less successful than
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Table 5.9: Top Five identified Modes, ranked in order of importance, when separate LDA analyses are
performed on the below and above mean age groups. Also reported are the associated classification
percentages using these modes only, and when BMI and Sex are included as inputs in the model.

Phase Analysis Classification % +BMI +Sex Ranked Modes
Systole Younger 68.3 75.0 73.2 28, 2, 25, 14, 10
Systole Older 63.6 60.0 63.6 15, 28, 2, 14, 8
Diastole Younger 65.9 72.5 63.4 15, 6, 7, 2, 10
Diastole Older 72.7 72.7 67.3 15, 10, 21, 2, 5

the baseline separation. Therefore, the modes identified as the best discriminators of PH at

end-Systole are not as effective in subjects that are obese, as compared to the population as

a whole. Separating out the RVs based on BMI hindered the accuracy of the baseline shape

model in most cases, again strengthening the argument of considering BMI when evaluating

a diagnostic model.

In terms of considering the important ranked modes in each of these subcategories, sev-

eral prominent Modes from the Population analysis (Chapter 3) reappear when using shape

features to predict PH. Modes 20, 11 and 2 were identified as key discriminators of obesity at

end-Diastole, and these return here. In Table 5.8, Modes 20 and 11 are the top two modes in

the obese group, and Mode 2 is the top discriminating mode for the non-obese subjects.

Finally, two separate LDAs were performed on the younger and older age groups. Table

5.9 shows the ranked mode and classification scores for the above and below-mean age groups.

The younger age group contained 41 subjects; of these, 26 did not have PH and 15 were

PH sufferers. There were 55 older individuals in the dataset, and of these, 37 did not have

PH and 18 were PH sufferers. It is important to combine these results with those from the

confusion matrices in Figure 5.10. An improved separator does not always mean that PH itself

is distinguished. The improvements might be in clarifying the boundaries of other categories.

At end-Diastole, when the four best modes used to diagnose PH across the entire cohort are

applied to the younger (below mean age) individuals, 65.9% of RVs are successfully classified.

Including BMI in the model improves the LDA model’s ability to correctly identify PH, with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.9: BMI-based confusion matrices. The left hand column (Figures 5.9a, 5.9d, 5.9g, 5.9j)
depicts the results of the decomposition using shape modes only. The central column shows the results
when sex is included as a factor, and the left hand column shows the results when age is included as a
factor. 217
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a percentage accuracy of 72.5%. Figure 5.10h suggests that this improvement is concentrated

in the non-PH group: the split in the confusion matrices showed a rise from 16/26 correctly

identified when the classifier was built using shape modes only to 19/25 upon the inclusion

of BMI. The number of correctly identified PH sufferers (‘true positives’) fell from 11/15 to

10/15. It can be stated that including BMI in a model enables younger subjects without PH to

be more accurately separated from those with PH, but has no effect, or a slightly detrimental

effect on the ability to detect those with PH. It is important to consider that accounting for

subjects with a higher BMI also makes it harder to distinguish between those individuals who

are hypertensive but who do not have PH. Finally, including sex in the model slightly reduces

the model’s ability to discriminate PH from 65.6% to 63.4% accuracy. Figure 5.10i indicates

that the additional misclassification occurs in the PH group. Therefore, it appears that BMI is

an important predictor of PH in younger subjects, whereas sex is not. Modes 15, 10, 20 and

21 have relatively better success separating the older subjects. The classification percentage

for older individuals is in line with that achieved when analysing the whole cohort (72.7%),

and this result remains unchanged when BMI is added into the model. Although comparing

Figures 5.10a & 5.10b indicates that the addition of BMI slightly improves diagnosis of PH

(from 11/18 to 12/18). The efficacy of the separation is reduced to 67.3% when sex is included

as a factor. Comparing the confusion matrix in Figure 5.10c, accounting for subject sex in the

model slightly reduced the successful classification of both the true negative and true positive

groups. It is apparent that the characteristic shape changes which are associated with PH

diagnosis in the original 96 subject group are better aligned with the shape of the older RVs

than the younger ones, but that this alignment largely manifests itself in the ability to separate

the shape of RVES without PH.

Evidence from Table 5.9 also confirms that end-Systolic modes perform better on the

younger subjects than the older subjects. The maximum separating shape features correctly

identify PH status in 68.3% of RVs. The confusion matrix in Figure 5.10j indicates that greater

percentage success was achieved in predicting individuals with PH (11/15) than predicting
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those without. Accounting for BMI in the younger group improved the LDA’s ability to sep-

arate individuals up to 75%, with no change in the number of PH identified, but an increase

from 16/26 to 19/25 non-PH (Figure 5.10k). On the other hand, accounting for BMI in the

older RVs lowered that efficacy from 63.6% to 60.0%. When sex is added to the model in

addition to the five maximum separating features, there is a slight improvement from 68.3%

to 73.2% separation in the younger subjects, albeit less so than when BMI is included. In

the older individuals, no change is observed. Therefore, it appears that including BMI in the

model is important to help distinguish PH in younger individuals (Figure 5.10k), but is often

a hindrance in older subjects. This is the same trend as was observed in evaluating the effect

of separating factors in end-Diastolic RVs. Similarly, including age in the LDA predictive

model affords a very slight benefit to detecting subjects with PH in the younger group. The

older group are much better accounted for by the end-Diastolic shape modes, compared to the

best end-Systolic shape modes when BMI is added to the model.

When evaluating the impact of the inclusion of age as a factor on the top five modes identi-

fied based on their structure matrix values, several common modes again feature prominently

in this analysis. Mode 15 is present as an important discriminator in both age categories at

end-Diastole, and in the older ventricles at end-Systole. Although crucially, not in the +BMI

test at end-Systole. As confirmed by the confusion matrices, this could still point to the im-

portance of Mode 15 in diagnosing PH. BMI also features in older end-Systolic hearts as well

as at end-Diastole.

These results suggest that BMI improves detection of non-hypertensive subjects, and their

ability to discount generalised hypertensive individuals. However, the cost is a reduced detec-

tion of PH alone. In the older group at end-Diastole, accounting for subject sex in the linear

discriminant model affords a slight benefit to detecting subjects with PH. From the wealth of

analyses conducted in this section. Two interactions in particular stand out, and both involve

the inclusion of BMI alongside shape-based features. The first of these is the separation of

male RVs using the end-Diastolic modes (Figure 5.8h) and the second is separation of the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.10: Age-based confusion matrices. The left hand column (Figures 5.10a, 5.10d, 5.10g, 5.10j)
depicts the results of the decomposition using shape modes only. The central column shows the results
when BMI is included as a factor, and the left hand column shows the results when sex is included as
a factor. 220
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younger group of end-Systolic shapes (Figure 5.10k). The linking factor between these two

successful analyses is the inclusion of BMI in the model.

The shared shape characteristics between male individuals and PH sufferers may be mask-

ing the ability to detect hypertension. In the same manner, the stronger potential of shape

modes to identify PH in obese RVs, despite an overall drop in the model’s ability to success-

fully classify individuals without PH. Therefore, a more nuanced, non-linear classifier should

be employed as this might improve differentiation. Several non-linear classifiers were con-

sidered for this analysis, including a kernel support vector machine (SVM). One advantage

of using an SVM is the ability to ‘map higher dimensions’ without dramatically increasing

computing resource.

5.4.4 Implementation of Support Vector Machines

SVMs were implemented in an attempt to improve upon the classification success of the linear

discriminant model applied in Subsection 5.4.1. Although 72.9% of the of RVs could be cor-

rectly categorised based on their PH status at end-Diastole, there is a possibility of non-linear

interactions between the shape features which would result in significantly greater diagnos-

tic success with a non-linear classification method. The default parameters were tested and

then a grid search was used to tune the optimal cost and 𝛾 hyper-parameters as described in

Subsection 5.3.2 of the methodology. The results were cross-validated and averaged over 100

attempts to ensure that the 75:25 sampling ratio did not impact the results from any given

analysis. Taking into account the impact of including the various non-pathological character-

istics in the linear discriminant models (Subsection 5.4.3), BMI has by far the greatest effect

on the ability of shape modes to divide the cohort into various categories. This was followed

by sex. Age had largely no impact, or an adverse impact on linear categorisation, so was

not included at this stage. Modes 2-30 were included as inputs to the initial SVM. Then 2

subsequent analyses were performed, in turn adding BMI and sex.

Table 5.10 shows the mean accuracy and standard deviation of the four tested SVM kernels
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at both end-Systole and end-Diastole. Table 5.11 provides the results when BMI is added,

and Table 5.12 when sex is added to the SVM. At end-Diastole using just Modes 2-30, the

best averaged result of 71.3% was achieved with a Polynomial kernel, while a straightforward

linear kernel achieved 70.0% separation accuracy. A radial kernel accomplished a slightly

lower mean accuracy of 67.6%, but with lower standard deviation than the other samples

(2.4%). Including BMI at end-Diastole (Table 5.11) resulted in a slight improvement in linear

accuracy from 71.3 to 72.6%, and in sigmoid accuracy from 67.0% to 68.0% but no substantive

difference in the performance of the polynomial or radial kernels. As with the SVMs including

the shape modes only, the radial kernel demonstrated a narrower standard deviation than the

other kernels (2.6 vs > 9). Finally, Table 5.12 shows the implementation of the four SVM

kernels when Modes 2-30 and Sex were included in the model. The best performing kernel

was linear, and the mean classification was 71.6%, which represented an improvement over the

classification using only shape modes, although not over the linear kernel’s mean accuracy

when BMI was included (Table 5.11). The sigmoid and radial kernels predicted PH with

poorer accuracy than using the 29 shape features alone. In general, the models performed

better at end-Diastole than end-Systole, mirroring a trend seen throughout this thesis. The best

average accuracy achieved using any SVM (72.6%) still did not improve upon the separation

achieved in the linear discriminant analysis.

At end-Systole, no mean accuracy score exceeded 70%. The mean accuracy and standard

deviation achieved at end-Systole when averaged across 100 training splits is contained in

Table 5.10. Using shape Modes 2-30, the best obtained mean value was achieved by imple-

menting a polynomial kernel (69.3%), the radial kernel was the second best predictor of PH

(68.5%) and this result also had the smallest standard deviation (4.2%). Tuning a polynomial

kernel took approximately 48 hours in comparison to several minutes for the linear kernel,

owing to the larger number of input parameters. Consequently, there seems to be no addi-

tional benefit to using a more complex kernel in diagnosing PH using this dataset. The linear

and sigmoid kernels were able to predict PH using RV shape with 64.2% and 62.8% accuracy,
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Table 5.10: Optimally tuned SVM results using Modes 2-30.

Kernel Accuracy (%) Std Dev

Diastole
Linear 70.0 8.1
Radial 67.6 2.4
Sigmoid 67.0 8.5
Polynomial 71.3 8.4

Systole
Linear 64.2 8.4
Radial 68.5 4.2
Sigmoid 62.8 8.0
Polynomial 69.3 8.4

Table 5.11: Optimally tuned SVM results using Modes 2-30 and BMI. BMI value is included as an
input factor to the SVM, in addition to the shape mode coefficients.

Kernel Accuracy (%) Std Dev

Diastole
Linear 72.6 9.6
Radial 68.0 2.6
Sigmoid 68.0 9.4
Polynomial 71.4 9.9

Systole
Linear 67.1 9.6
Radial 68.4 3.7
Sigmoid 62.0 8.67
Polynomial 67.8 7.8
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Table 5.12: Optimally tuned SVM results using Modes 2-30 and Sex. Sex is included as an input factor
to the SVM, in addition to the shape mode coefficients.

Kernel Accuracy (%) Std Dev

Diastole
Linear 71.6 8.1
Radial 67.0 2.1
Sigmoid 64.8 9.5
Polynomial 69.3 8.3

Systole
Linear 64.6 8.3
Radial 69.0 3.6
Sigmoid 62.7 7.12
Polynomial 67.2 8.0

respectively. When BMI was included in the SVM model, in addition to the shape modes at

end-Systole (Table 5.11), the radial kernel was the most successful at identifying individuals

with PH (68.4%), this result did not improve upon that achieved using shape modes only. The

results obtained by the linear and polynomial kernels were almost identical (67.1% and 67.8%

respectively). Including BMI resulted in an improvement in accuracy of the linear kernel, but

a slight reduction in accuracy of the polynomial kernel (albeit with a lower standard deviation

value). The sigmoid kernel remained the poorest kernel for dividing RV shape based on PH.

Table 5.12 reports the mean accuracy and standard deviation for the shape modes and Sex at

end-Systole. The best mean accuracy achieved upon the addition of sex was a mean cross-

validated accuracy score of 69.0%. Again, this used a radial kernel. The result represented

a 0.6% improvement over the analysis using shape modes only (Table 5.10), which is not a

significant bonus.

In all cases, the radial kernel exhibited the smallest standard deviation, suggesting much

closer agreement between trials using this kernel when different training and test splits were

used. Since the performance of the radial kernel was often at the higher end of the cross-
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validated, tuned scores, a radial kernel appears the best available choice. At end-Diastole,

the best overall accuracy was achieved using a linear kernel and including BMI in the model.

At end-Systole, the best possible solution was achieved using a polynomial kernel and by

separating using the shape modes only. However, overall, the results obtained in this section

do not suggest that there is a substantial benefit to using a non-linear kernel over the linear

discriminant scores that have been considered throughout the remainder of this work.

5.5 Conclusions

The hypotheses outlined at the beginning of this chapter were that 1) a specific shape mode

combination will define anatomical shape features that are specific to PH; 2) including population-

based information such as BMI or sex in the model will improve that model’s ability to distin-

guish individuals with PH given the unique shape features that could be predicted by groups

of modes in Chapter 3, and 3) utilising a non-linear model will improve overall accuracy. A

baseline predictor for RV using shape modes was identified within this dataset, and then this

was used to evaluate the impact of the three non-hypertensive characteristics.

First, the results obtained in this chapter suggest that Mode 15, which exhibits a flatten-

ing of the ventricular base congruent with PH, is involved in separating diseased individuals

from non-diseased individuals. This aligns with previous findings from the literature which

identify flattening of the RV base in addition to hypertrophic rounding, as key shape-based

features associated with PH. A four mode combination: Modes 15, 10, 20 and 21 is able

to correctly identify 72.5% of the 96 individuals with PH at end-Diastole, and a five mode

combination: Modes 2, 15, 14, 8, 5 is able to correctly predict PH in 68.8% of individuals.

The impacts of PH on the RV are easier to identify in end-Diastolic hearts than end-Systolic

hearts. However, Mode 15 is also an important determiner of PH in systolic hearts. Since the

end-Systolic and end-Diastolic RVES were all statistically decomposed together, Mode 15 is

encoding the same shape feature in both. Therefore, in accordance with the first hypothesis,
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a baseline differentiator of PH using the available shape modes was identified, which could

then be applied to evaluate the effect of accounting for the non-hypertensive characteristics.

Regarding the second hypothesis, it is possible to improve upon the detection of PH in

a statistical shape model by including a component of BMI at both end-Diastole and end-

Systole. Examination of structure matrix components show that BMI is the strongest discrim-

inator of PH. As Mode 15 was involved in classifying non-hypertensive individuals based on

their obesity (into categories of BMI > 28 and BMI < 28), BMI was included in the final

model to improve classification of PH. However, although the models which included BMI

often improved the classifier, this was often in non-PH individuals and in several analyses

reduced the successful classification of PH. The ability of the diagnostic model to correctly

identify subjects with PH was reduced in several cases; notably in the LDA assessment of all

96 individuals at end-Systole, and in some of the subcategory breakdowns, for example, the

older subject group at end-Systole. The findings associated with dividing the analyses up into

subcategories could be crucial for curating better weighted diagnostic models.

Finally, the third hypothesis was disproven in this chapter. Although in certain isolated

cases, slightly improved results were achieved when applying a polynomial SVM kernel, this

code took over 24 hours to run on Durham University’s high performance computer. The im-

provement in classification results does not warrant the vastly increased processing over use

of a linear discriminant separator or a linear kernel in an SVM. Further, it appears that the

modes identified using linear methods are sufficient to identify the strongest disease-related

features, and there is no significant benefit to the additional computing power required to un-

dertake a full cross-validated SVM sweep. There seems to be no specific added benefit, using

a SVM-based classifier at least, of non-linear classification of the statistical shape analysis

method for the purposes of disease diagnosis. Although a certain degree of caution should

be taken when recommending that one method should not be pursued in the future, since the

findings may only apply to this modestly sized Although this may be the case only for this

dataset.
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There is a possibility that in this dataset, using more shape modes would enable a more

sensitive diagnostic function to be created. The top five were taken in Chapter 3 as the smaller

sample sizes, created when only the non-hypertensive subjects were analysed, precluded the

inclusion of a large number of input parameters, owing to the probability of overfitting, and

this method was repeated to produce the baseline classifier. Nonetheless, utilising a smaller

number of modes in the baseline classifier makes it easier to observe the impact of including

the population-based characteristics.
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Chapter 6

Conclusion and Evaluation

6.1 Conclusions

This thesis presents a detailed characterisation of shape variation in the right ventricle of the

human heart using a non-invasive, anatomically consistent, statistical shape analysis proce-

dure. Shape information was derived from manually segmented, short axis MRI scans. The

aim was to determine any unique shape features associated with non-prognostic demograph-

ics, such as sex, age, obesity and nationality and to test new diagnostic models for PH which

incorporate such biological characteristics.

The overall goal was to improve non-invasive diagnosis of PH by making use of the shape

of the right ventricle along with additional biological characteristics. To achieve this, the in-

troduction to this thesis set out three primary research objectives. The first was to evaluate

the relationship between the shape of the RV and non-pathological features in order to de-

termine its capability to discern the effect of disease on RV shape, separately from the effect

of non-pathological features. The second was to assess the robustness of the shape analysis

approach to determine the constraints on the analysis process necessary to produce consistent

shape features and related characterisation. Lastly, classification strategies were explored to

provide guidance on how to use RV shapes, along with biological characteristics to predict
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the state of PH. In this thesis Chapter 1 presented the introduction and initial literature review

and established the scope of the thesis. Chapter 2 detailed the overall statistical shape analysis

procedure used to produce the shape features analysed and compared throughout the remain-

der of the thesis. Chapter 3 isolated and characterised specific shape features associated with

the three biological characteristics noted above, Chapter 4 assessed the robustness of the sta-

tistical shape method. Finally, Chapter 5 combined the results from the natural characteristic

analysis to determine the optimum diagnostic protocol achievable using the data available to

diagnose PH. Chapters 3, 4 and 5 all contain novel material directly or indirectly associated

with determining a metric that can optimally diagnose PH in this dataset.

Apart from the three primary research objectives, several other methodological targets

have been achieved. The work described in this thesis combines two cardiac datasets, whereas

previous applications of the same method used either a small dataset to demonstrate proof of

concept (Wu et al., 2012), or only took patients from the same study centre (Xu et al., 2021).

The shape analysis procedure has again shown capacity to analyse the RV in an anatomically

consistent way, irrespective of the image acquisition methodology. It has successfully decom-

posed hearts across a spectrum of variations in ventricle size, gender amongst other factors.

The applicability of the PH diagnostics across diverse ventricular shapes confirms that the

method is equally applicable across a broad spectrum of hearts from disparate origins.

The first research objective was assessed in Chapter 3, and evaluated whether RV shape

features based on characteristics, such as sex, age, BMI and demography, impact the shape of

the RV and typified specific shape changes associated with variation. Initial designation of the

relation of shape features to population characteristics used Pearson coefficients to determine

potential correspondences.

Inspection of the Pearson coefficients before LDA led to some interesting observations.

Shape information associated with the MRI scanner and scanning protocol proved to have the

strongest signal isolated using the statistical shape analysis procedure. The impact of scanner

was observed through quantifying the correlation between modal coefficients (i.e. the magni-
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tude of the shape feature) and membership of either the Newcastle or the Pittsburgh dataset.

Crucially, this shape information was constrained within a single shape mode (Mode 1, or the

best overall descriptor of the dataset), which describes elongation/shortening of the ventricle

and an increase or decrease in detail at the apex. Therefore, one of the significant advantages

of this statistical shape analysis procedure is that method-related features can be isolated and

removed, leaving only shape information directly related to the comparison feature of interest.

After ascertaining that the relationship was often more complex and multi-faceted than

could be described using a simple linear descriptor (an LDA), the relationship between non-

pathological characteristics was evaluated using an inverse problem context; ie. taking the

premise that two population characteristics can be linearly separated using shape feature com-

binations as evidence that a material difference in overall shape between those individuals ex-

ists. The LDA analyses found fundamental differences in RV shape between all dichotomous

populations tested: male and female RVs, younger and older hearts (above/below mean age

60.53) and between those with lower and higher BMIs (above/below 28 𝑘𝑔∕𝑚3). Although

all 96 subjects were included in the initial decomposition, only the modal coefficients of the

non-hypertensive RVs were included in the LDA analyses to ensure that only shape features

inherent to each of the biological groups were extracted, without concern about the interaction

of pathology. These features were all separated successfully by an LDA function when de-

fined by combinations of the top five shape modes. The maximum separation accuracy scores

ranged between 72.5% and 77.5% in all cases.

Of the biological features considered, sex had the greatest effect on RV shape at end-

Systole, and obesity had the greatest effect on RV shape at end-Diastole. In both cases, 77.5%

of non-hypertensive hearts could be categorised correctly using the shape modes of the RV.

The value of Mode 19 for the end-Systole RV shape was the best separator of sex; the qual-

itative appearance of this mode shows female individuals exhibiting a substantial cut-out or

notch at the base of the ventricle, whereas male individuals display a bulge or point in the

same region, leading to an overall triangular appearance in the RV. The RVs of obese patients
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are rounded and hypertrophic at end-Diastole, and exhibit free-wall expansion. This shape

was best described by a combination of Modes 20, 11 and 2. Conversely, the non-obese in-

dividuals were characterised by increased septal wall curvature. These shape features were

confirmed by plotting the mean obese RV and the mean non-obese RVs, which account for

both end-Systolic and end-Diastolic shapes simultaneously.

Finally, when the non-hypertensive RVs were divided into groups based on age, three

different combinations of shape modes at end-Diastole; Modes 6, 3, & 13; 6, 3 & 2 and 6, 13

& 17 had an equal effect on the shape of the RV. These modes each separated the older patients

from the younger patients with 75.0% accuracy. There were several distinguishing shape

features between the two age groups. Older patients showed a flattening of the septal wall,

which was especially evident at end-Systole. Older patients showed a much more substantial

lateral lengthening; where greater RV hypertrophy was observed nearer the base of the RV,

towards the outflow tract and pulmonary artery. Younger patients exhibited greater detail at

the RV apex at both end-Systole and end-Diastole in addition to greater septal-wall curvature.

Having determined several distinguishing characteristics in each of the patient groups,

the same separating function was then applied to a group of hypertensive individuals to help

determine whether these features could still be observed in a diseased cohort. When applying

the same discriminant cut-off to hypertensive individuals, none of the analyses could separate

the groups with an accuracy greater than 54.5%. The poor separation potential implies that

the overarching shape changes associated with hypertension mask the specific shape features

identified in non-hypertensive individuals. Again, obesity at end-Diastole, as characterised

by Modes 20, 11 and 2, stands out as the best set of separating features. This is the case both

when the same model, trained on the non-hypertensive individuals is applied to the remaining

hypertensive RVs, and when a new model, specific to the hypertensive RVs is created using

the same modes (this case separated 61.6% of RVs).

Chapter 4 varied the input data in four controlled ways; altering the size of the dataset,

moving the anatomical reference points, substituting the individual performing the initial MRI

231



6.1. CONCLUSIONS CHAPTER 6. CONCLUSION AND EVALUATION

segmentation and altering the smoothing filter. It then examined how those input variations

affected the decomposed shape information. This chapter examined how sensitive the modes

(shape features) were to external modifications, and also examined the sensitivity of the mode

coefficients (the ‘amount’) of each shape feature in each RVES. While there was some sig-

nificant variation in juxtaposing direct coefficient values, Pearson correlations were proven

to be highly consistent in cases where close qualitative alignment was observed and therefore

proved the clearest metric to determine robustness; in comparisons of tests with high Pear-

son correlations, there is confidence that the shape analyses produce the same results and are

insensitive to variation. In cases where the absolute Pearson correlation exceeded 0.9, exam-

ination of the qualitative models suggests that the two modes can be seen to encode the same

shape features. The 3D shape models indicate that the modes are encoding the same shape

(of the examples plotted Modes 1, 6 and 9 encoded the same features in almost all cases), and

the Pearson correlations give confidence that the patients are experiencing relatively similar

amounts of that feature. A combination of Pearson correlations and qualitative analysis was

therefore used to quantify robustness.

All four tested interventions produced the same overall mode shapes, as evidenced through

qualitative reconstructions and through the small sum of square difference between key eigen-

vectors. The dataset size reduction to just 20 patients demonstrated that modes can be coerced

to encode different features using a limited number of RV shapes from this dataset, thus lend-

ing credibility to the analysis.

On the other hand, the mode coefficients were more sensitive to alterations in input. For

example, changing the size of the dataset by either including patients (to increase the total

dataset size to 121 patients) or excluding them, reducing the dataset size to 80, and then

60 patients did not substantially impact the shape modes over the first 16 Modes. This in-

tervention was the most consistent of all attempts applied. Tests of both inter- and intra-

observer variability were insensitive in terms of change in modal coefficient throughout the

first 16 modes in all cases with Pearson correlations exceeding 𝑟94=0.9, and all correlations
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exceeded r=0.765. Tests which replaced the dateline, north & south poles; thereby altering

their placement on the harmonic maps was more sensitive than the previous two described

results. Alterations to the dateline did not impact the mode shapes over the first 14 modes.

Previous work by Wu (2013) altered anatomical dateline replacement in a more systematic

and substantial manner and also determined an impact on the POD results. Although inter-

and intra-observer variation was more sizeable than expected and greater than other similar

studies in the literature (e.g. Hudsmith et al., 2005; Caudron et al., 2012), the resultant im-

pact of the mode shapes, and their associated coefficients was smaller. This was surprising

given both the changes to the underlying segmentation, and the fact that such a change also

necessitated selecting dateline points. The modal coefficient values were very sensitive to

alterations in smoothing filter; only the correlation coefficients between Modes 6 and 7 were

statistically significant, and the correlation values did not exceed 𝑟94 = 0.4. A possible expla-

nation for this relates to the decomposition picking up steps or ridges in the RVs, related to the

initial segmentation in ITK-SNAP, and that they are experiencing relatively higher amounts

(coefficients) of these modes, compared to the original analysis.

It was assumed that interventions which involve making changes to the underlying seg-

mentation and the FE mesh on which the harmonic mapping is performed, would have a larger

impact on replicability than those which make smaller changes, such as moving the dateline

or mutating the size of the overall input set. In practice, this was largely true, except that the

mode coefficients were less sensitive than anticipated to changes in image segmentation. It

is likely that some of the differing mode features identified during the robustness tests are re-

lated to aspects of the method. As was determined by the ability to detect the MRI scanner in

Chapter 3, known procedural differences can be isolated in an anatomically meaningful way.

Therefore the sensitivity of the shape analysis to smoothing features and inter/intra-observer

variations could be sequestered and removed as an artefact of the process.

Based on the results from Chapter 4, several practical recommendations can be made.

While various different scanning protocols can be combined and accounted for successfully,
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the consistency of the remaining methodological parameters such as smoothing and segmenta-

tion must be maintained to prevent the risk of dissonant results. In the future, once this method

is applied to greater sample sizes and anatomical shape features relevant to both pathological

and non-pathological RV variations are confirmed, for example, further methodology-based

shape modes may be identified enabling relaxation of the requirement for the same segmenter

and boundary conditions. Furthermore, to address the challenges of wider clinical implemen-

tation, if the methodological parameters must be tightly controlled, it would be possible to

incorporate a degree of automation to the pipeline. Automation of processes sensitive to run-

by-run variation would undoubtedly achieve higher consistency. However, risks also exist in

relinquishing manual control; especially in the case of segmentation, losing crucial shape in-

formation related to the significant cross-plane motion observed at end-Systole. Nevertheless,

as automation of RV segmentation continues to improve at the current rate, as evidenced in

recent papers by Zuluaga et al. (2020) and Tran et al. (2020), it seems that a computational se-

lection might come to produce a more accurate and consistent picture of the RV, which would

focus the derived shape features on anatomical differences rather than methodological ones.

Finally, Chapter 5 proposed and evaluated approaches to use shape features to predict PH.

Four shape modes, 15, 10, 20 and 21 produced the best separation of PH. The same rounding

out and flattening of the base RV was observed in this dataset, matching observations from

Xu et al. (2021) and Mauger et al. (2019). This result was obtained even with the differences

in the dataset. This dataset is composed of RVs from two different centres which employed

different MRI scanning parameters. The inclusion of healthy ageing and generalised hyper-

tensive patients dilutes the number of PH patients in the cohort. Despite these sources of

statistical diversion in the dataset, it was still possible to separate PH.

Mode 15, in particular, stood out, both in its ability to classify patients with PH, and due to

its physical appearance, which corresponded with qualitative observations from the literature

(Mauger et al., 2019; Xu et al., 2021). This shape feature was identified in Chapter 3 as being

one of the strongest classifiers of BMI in non-hypertensive RVs. Therefore, it is likely that
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this shape feature has a pivotal role both in encoding shape differences associated with patient

obesity and in those shape features which separate the RVs of PH patients. Recall that the

Modes are ranked in order of importance to the overall shape of the RV across the 96 subjects

at 2 phases. A mode can be important or indicative of a PH-related shape feature, even if it

only captures the 15th largest amount of modal energy.

Sex, BMI and age-based information were then applied to a disease diagnostic model to

determine whether the diagnosis of PH could be improved by incorporating the differences.

Including an individual’s BMI as a predictive variable in addition to the modal coefficients was

the only modification which produced significant improvement in PH detection. However,

although BMI improved the prediction scores, this improvement was concentrated on non-

hypertensive individuals, and often the PH patient prediction was worsened when BMI was

included. This is consistent with standard expectations since the inclusion of obesity resulted

in the softening of the boundary between generalised hypertensive patients and PH patients;

in general being overweight leads to an increased risk of developing cardiopulmonary illness

and also an increased likelihood of having a larger, flatter heart.

Both LDA and non-linear analysis in the form of SVMs were used to isolate PH features.

The non-linear analysis did not provide any benefit over the linear discriminant models; the

best-achieved separation in any SVM test was 72.6%, which was very slightly worse than the

best combination of the 96 RVs at end-Diastole using an LDA. The implication of this finding

is that it is not worth the additional set-up and computational time required to run a non-linear

analysis, at least on a dataset of this size. However, a linear analysis separates meaningful,

anatomically consistent PH descriptors without requirement for non-linear analysis. Perhaps,

in a substantially larger cohort, application of machine learning techniques might identify

previously unseen diagnostic relationships.

This thesis has considered both end-Systolic and end-Diastolic shape information, to en-

sure that no phase specific shape features were missed. Especially since evidence of impaired

contractile function can present differently when the RV is fully contracted, compared to when
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if is fully relaxed, and this could manifest itself as a specific shape feature in one or other of the

phases. Nevertheless, with the exception of Mode 19 being the strongest discriminator of sex

at end-Systole, there seems to be no uniquely derived shape information that is attributable

solely to end-Systole, and therefore, for the sake of simplicity of data analysis this phase could

be omitted in future analyses.

6.2 Recommendations for Future Work

The research performed in the development of this thesis could be extended in the following

directions:

• Extending the sample size to include a much larger set of scanners and scanning pro-

tocols. A larger dataset more accurately approximates the mean shape of the heart;

anatomical consistency and closeness to the ‘normal’ RV shape are likely to give both

more stable results and produce better descriptive features. The features associated with

scanner type were very easily separated in the population-based study in Chapter 3, but

this may not always be the case when considering a more comprehensive array of scan-

ning parameters. As an example, the power of the UK Biobank (Sudlow et al., 2015),

or the Icelandic Heart Association AGES study (Harris et al., 2007) databases could be

used as a source of readily available cardiac MRI data. The UK Biobank, in particular

is running a CMR study, due to be completed in 2023, which will make 20,000 CMR

scans readily available for research purposes (for a fee). Manual segmentation of all

four cardiac chambers has been completed for the first 5000 scans (Raisi-Estabragh,

Harvey, et al., 2020). Furthermore, the Newcastle University study comprises 150 RVs

in total, of which only 71 have been segmented for use in this thesis (46 in the initial

decomposition, and a further 25 in Chapter 4). These could also be accessed to further

increase the size of the dataset. It is important to note that the Newcastle MRIs were

not focused on the RV, and that the initial 46 RVs were selected on the basis of clarity
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and completeness of the RV in the scan.

• It was noted in Chapter 4 that owing to the nature of the MRI scan collection in this

thesis, it was impossible to truly compare the robustness to scanner and scanning proto-

col. Performing studies using the same patient in different MRI scanners would provide

valuable insight into the repeatability of the shape analysis procedure in different en-

vironments. Findings from this study may mitigate the need for a uniform scanning

protocol recommendation if it is found that the precise scanning environment makes

less of a difference than found in this thesis.

• The development of a specific scanning protocol that sets a specific number of slices,

which is sensitive both to the requirement of maximising the shape information col-

lected, would be beneficial, especially in the apex region, while remaining sensitive to

the difficulties with maintaining a breath hold, experienced by patients with debilitating

cardiopulmonary symptoms.

• The analysis is currently performed using a series of software packages, both commer-

cial and open-source, including proprietary software from the MRI scanner, Simple-

ware, ABAQUS and FEniCS. A significant amount of processing time and effort is

devoted to data reformatting to allow for transition between programs and operating

systems, and furthermore, much of this software is niche and expensive. While some

headway has been made towards reducing the number of separate stages involved in the

analysis, such as the creation of ADAMCUS and the inclusion of various helper scripts.

More work is still needed to create a seamless and reproducible pipeline that could sub-

sequently be incorporated into a clinical setting. Performing the harmonic mapping

and statistical decomposition in MATLAB or an open-source alternative would also

alleviate the number of separate steps.

• The binary categories selected for evaluation shape analysis features form artificial

‘hard’ boundaries (such as the mean age of 60.5 years), which may prevent correct
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classification in borderline individuals, and therefore obscure the identification of shape

features possessed by some of the RVs near the cut off. The impact of altering these

cut offs could be explored in more detail in an additional test. Alternatively, if given

access to a larger dataset, a larger number of categories could be tested, which would

improve the resolution of the study. For instance, a particular mode might feature more

prominently the over 70s.

• As was determined by the ability to detect MRI scanner in Chapter 3, known procedural

differences can be isolated using the statistical shape analysis method in an anatomi-

cally meaningful way. Therefore in future tests, the sensitivity of the shape analysis

to smoothing features and inter/intra-observer variations could be sequestered and re-

moved as an artefact of the analysis. The same correction could be applied to as yet

unknown method-related signatures. Alternatively, such differences could be measured

and calibrated, providing opportunities to train both humans and equipment.

• Recently published advancements in automated shape segmentation (e.g Zuluaga et al.,

2020; Tran et al., 2020) could dramatically improve the throughput and speed of the

process, and this could facilitate the development of a set of standard reference seg-

mentations.

• Performing image perturbations (or ‘data augmentation’), for example, by artificially

inducing shape features would allow a relatively easy way of increasing the sample size

and honing in on shape features associated with disease. Potential algorithms could be

as described in Shorten and Khoshgoftaar (2019). Data augmentation could be per-

formed on the sample as a whole, or solely on subjects with PH, if there was a desire

to increase the number of samples in a diseased state. This would be most useful in

the PH and robustness-related chapters, as they are more confirmatory in nature than

exploratory. This could be employed in the same way as Amodeo et al. (2021), who

used data augmentation techniques in SVM analysis to cope with a small sample size.
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The techniques employed in their analysis included adding modified copies of existing

data to the dataset to strategically increase the number of hearts available, which will

be advantageous to the training of predictive models. Incidentally, it is important to

mention that Amodeo et al. (2021) employed a manual segmentation technique.

• There is scope for further robustness analysis checks now that a comparison framework

has been identified. For example, the impact of patient positioning in the scanner on

RV shape could be assessed. This represents yet another methodology-based source of

variation that this statistical shape analysis method has proven adept at identifying.

• Long-axis images of the segmentations were not available for many of the scans in

the cohort. The quality, accuracy and consistency of the manual image segmentations

would be improved by performing manual image segmentations with access to both

orientations simultaneously.

• Incorporating information from local shape calculations, such as sphericity, eccentricity

or curl, could amplify useful shape information on a per-slice basis. This information,

in conjunction with the overarching global information provided by the shape analysis

presented in this thesis, could crystallise our understanding of specific shape features.

• With slight modification, the shape analysis procedure could be applied to many other

organs, especially those where it is anticipated that there would be a pathological or

commonly observed shape change. There are several examples in the literature (e.g. Lu

et al., 2013) who use statistical shape analysis to characterise shape change in the livers

of car crash victims.
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