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Abstract: The LHC is a large-scale particle collider experiment collecting vast

quantities of experimental data to study the fundamental particles, and forces, of

nature. Theoretical predictions made with the SM can be compared with observables

measured at experiments. These predictions rely on the use of Monte Carlo event

generators to simulate events which demand the evaluation of a matrix element. For

high multiplicity processes this can take up a significant portion of the time spent

simulating an event. In this thesis, we explore the usage of machine learning to accel-

erate the evaluation of matrix elements by introducing a factorisation-aware neural

network model. Matrix elements are plagued with singular structures in regions of

phase-space where particles become soft or collinear, however, the behaviour of the

matrix element in these limits is well-understood. By exploiting the factorisation

property of matrix elements in these limits, the model can learn how to best rep-

resent the approximation of the matrix elements as a linear combination of singular

functions. We examine the application of the model to e−e+ annihilation matrix

elements at tree-level and one-loop level, as well as to leading order pp collisions

where the acceleration of event generation is critical for current experiments.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) at CERN has been colliding particles since 2009,

with each successive run increasing the centre-of-mass energy of the collision, from 7

TeV in Run 1 to 13.6 TeV at the time of writing. As the experiment has operated for

over a decade, there is a vast quantity of experimental data collected that has to be

compared with theoretical predictions. Currently, the theory predictions are made

with the Standard Model (SM) of particle physics which describes the fundamental

particles of nature and their interactions.

The standard paradigm for comparing theory and experiment is to simulate the

particle collisions from the initial collision all the way through to the detection of the

hundreds of particles produced in the collision. General purpose Monte Carlo event

generators are the de facto tool designed to generate these simulated events. With

the large number of scattering events collected at the LHC already, and with even

more expected at the High Luminosity LHC (HL-LHC), the ability to generate the

large simulated event samples required for theory predictions within the available

computing budget presents a very real challenge.

The process of generating simulated events can be broadly split up into three seg-

ments: the highly energetic hard scattering process, the subsequent cascading of

particles (parton shower), and the formation of bound states detected (hadronisa-

tion), which makes their way to the detectors. While hadronisation is based on
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phenomenological models, the hard scattering and parton shower are derived from

the SM and are perturbatively defined.

The hard scattering cross-section can be formulated as a probability for particles to

collide, represented by matrix elements. These matrix elements are formally calcu-

lated order-by-order in perturbation theory, with each order leading to increasingly

difficult computations at each order. In practice, these matrix elements are provided

in libraries interfaced to the event generators and evaluation is largely automated for

many of the most important processes. However, the evaluation time for these com-

plex expressions becomes problematic when generating the large samples required to

compare with experiments. Especially when a significant portion of the time spent

simulating an event is spent on evaluating matrix elements.

The focus of this thesis will be on applying modern machine learning methods to

accelerate the evaluation of matrix elements in order to speed up the event generation

process. Machine learning algorithms have become ubiquitous in many fields, and

their applicability to a wide range of problems have made them a popular choice

in the high energy physics community as well. By combining the well understood

behaviour of matrix elements in specific kinematic regions with powerful machine

learning algorithms, the construction of physics-inspired machine learning models

unlocks higher levels of accuracy than would otherwise be achievable.

The structure of this thesis is as follows: in this chapter I will recap the necessary

concepts from the SM, in particular quantum chromodynamics (QCD), the sector

which governs the behaviour of quarks and gluons. Furthermore, I will elaborate

on the relationship between theory and experiment with the introduction of cross-

sections, and their relation to matrix elements. In Chapter 2, I will discuss the

challenges that arise in fixed-order perturbative calculations and the current methods

that have been adopted in the community to deal with them. I will briefly introduce

Monte Carlo event generators in Chapter 3, where the theory discussed in the first two

chapters is applied in practice. In Chapter 4, I discuss how bottlenecks in traditional

event generator techniques motivates the usage of machine learning based approaches,
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with particular attention placed on using neural networks as emulators for matrix

elements. The construction of this neural network emulator is described in detail

in Chapter 5 for tree-level electron-positron annihilation matrix element emulation.

A similar philosophy is applied in Chapter 6 where next-to-leading order QCD k-

factors are emulated for the same processes. These two chapters discuss in detail

the procedure for constructing emulators for electron-positron annihilation, however,

the more relevant processes for the LHC are in proton-proton initiated collisions.

The extension to this scenario is detailed in Chapter 7 where I also explore using

the emulator in a novel implementation to accelerate event unweighting in the event

generator SHERPA. Finally, I will summarise and conclude the thesis in Chapter 8.

1.1 The Standard Model of particle physics

The Standard Model of particle physics is our current best working theory to describe

all known elementary particles, as well as three of the four fundamental forces.

Developed predominantly in the latter half of the 20th century, it is one of the most

well tested theories that we have in science today. Some highlights include the highly

precise predictions of the anomalous magnetic moment of the electron, which agrees

with experimental measurements to more than 10 significant figures [8], and the

discovery of the Higgs boson in 2012 by the ATLAS [9] and CMS experiments [10]

at the LHC, which was theorised decades prior.

The SM is a gauge quantum field theory (QFT) where particles are described as

excitations of quantum fields. The symmetry group of the SM is

SU(3)c × SU(2)L × U(1)Y , (1.1.1)

where subscripts denote the charges of the gauge groups. The first gauge group with

colour charge c describes the interactions of the strong force within the theory of

quantum chromodynamics, which we will elaborate more on in Section 1.2. The

second and third gauge groups represent the electroweak sector of the SM, where
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L denotes left-chiral fields that carry weak isospin, whilst Y denotes the weak

hypercharge. Under electroweak spontaneous symmetry breaking (EWSB), this

product becomes

SU(2)L × U(1)Y
EWSB−−−→ U(1)EM , (1.1.2)

giving rise to the electromagnetic and weak forces that we observe. The explanation

of gravity in a QFT is an open problem and cannot currently be included in the

SM as any Lagrangian including gravity cannot be renormalised. Fortunately, the

effect of gravity is considered to be negligible on the scales considered at high energy

colliders, and so it is ignored. Each of the three fundamental forces described by

the SM is mediated by the exchange of a gauge boson. The massless gauge bosons

mediating the strong and EM forces are the gluon g and photon γ, respectively. For

the weak force the gauge bosons are the W± and Z0 bosons, which attain a mass

through the Higgs mechanism [11–13] during EWSB, elucidating the Higgs boson

H.

The matter content of the SM consists of fermions, which can be split into quarks

and leptons. Quarks are massive and experience the strong, weak, and EM forces.

Leptons are defined by their lack of colour charge, meaning they do not experience the

strong force. Leptons can be separated into charged leptons (electron e, muon µ, tau

τ and their antiparticles) which experience the weak and EM force, and neutrinos

(electron neutrino νe, muon neutrino νµ, tau neutrino ντ and their antiparticles)

which only experience the weak force. Neutrinos are massless in the SM, however,

they have been observed to have mass [14, 15]. This prompts physics beyond the

Standard Model (BSM) to describe these observed masses.

The particle content of the SM is summarised in Figure 1.1, which shows the quarks,

leptons and bosons along with their masses, charges and spin. The interactions of
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Figure 1.1: Particle content of the SM, split into quarks, leptons, gauge bosons
and scalar bosons. The columns for the fermions depict the three
different generations. The masses, electric charge, and spin are given
for each particle. The yellow contours indicate the coupling of bosons
to fermions, illustrating the forces experienced by the fermions inside
the contour. Figure reproduced from [1].
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these fields are governed by the SM Lagrangian1 which can be written as

LSM = Lgauge + Lfermion + LHiggs + LYukawa + LGF + Lghost , (1.1.3)

where Lgauge describes the gauge fields, Lfermion describes how fermions interact with

gauge fields as well as their kinetic terms, LHiggs describes the Higgs field, LYukawa

describes the interactions between the Higgs field and fermions, LGF is a gauge

fixing term, and Lghost is a ghost term. The last two terms are required to remove

unphysical degrees of freedom when gauge fixing the theory. All terms in the SM

Lagrangian are invariant under local transformations of the gauge group in Eq.

(1.1.1).

In the following section we will focus on the gauge, fermion, gauge-fixing and ghost

Lagrangian terms in the framework of QCD, which is the most relevant sector for

this thesis. The remaining terms are discussed at length in standard reference

texts [16–18].

1.2 Introduction to quantum chromodynamics

1.2.1 The QCD Lagrangian

Quantum chromodynamics is the sector of the SM that describes the strong interac-

tion. QCD is a non-Abelian gauge theory with gauge group SU(Nc = 3) where the

charge is named colour. The gauge and fermion part of the QCD Lagrangian is

LQCD = −1
4F

a
µνF

a, µν +
∑

f

ψ̄f
i (i /Dij − δijmf )ψf

j , (1.2.1)

where repeated indices are summed over. The fields ψf
i are the fermions field

operators, representing quarks and antiquarks with flavours f : up u, down d, strange

s, charm c, top t, and bottom b, with masses mf . The field operators transform

1Technically Lagrangian density but we use the terms Lagrangian and Lagrangian density
interchangeably.
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under the fundamental representation with indices i, j ∈ {1, 2, 3}, named colour

indices. The gauge fields Aa
µ, corresponding to gluons, appear in the quark covariant

derivative

(Dµ)ij = δij∂µ − igsT
a
ijA

a
µ , (1.2.2)

and the gauge field strength tensor

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν . (1.2.3)

Gauge fields transform under the adjoint representation, which is an N2
c − 1 dimen-

sional representation such that the adjoint indices a, b, c ∈ {1, ..., 8}. T a
ij are the

group generators in the fundamental representation. In SU(3) it is common to write

the group generators as

T a
ij = 1

2λ
a
ij (1.2.4)

where λa
ij are the Gell-Mann matrices [19]. The generators of the group obey the

Lie algebra

[T a, T b] = ifabcT c , (1.2.5)

where fabc are the structure constants of SU(3). By convention, the generators are

normalised to be

Tr(T aT b) = δabTR , where TR = 1
2 . (1.2.6)

This normalisation sets the values of the Casimirs of the group as

T a
ijT

a
jk = δikCF , CF = N2

c − 1
2Nc

,

fabcfabd = δcdCA , CA = Nc ,

(1.2.7)

where CF = 4/3 and CA = 3 for QCD. These are collectively referred to as colour

factors.

The gauge coupling of the group gs is a dimensionless free parameter of the theory.

It is common to use the strong coupling constant instead,

αs = g2
s

4π . (1.2.8)
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The strong coupling constant is in fact not constant, and depends on the energy scale

of the process. This is due to the process of renormalisation, which will be discussed

in Section 2.1.2. The implication of this is that at collider experiments where

collisions occur at extremely high energy, the strong coupling constant becomes

small, a property known as asymptotic freedom. A consequence of this is that

predictions made in QCD can be expressed in the form of perturbative expansions

in αs (see Section 1.4).

To remove unphysical degrees of freedom from the theory we need to fix the gauge

and add a ghost Lagrangian. The gauge-fixing term in the Rξ gauge is written as

LGF = − 1
2ξ (∂µAa

µ)2 , (1.2.9)

where ξ = 1 corresponds to the Feynman-’t Hooft gauge. Ghosts and antighosts

are anti-commuting fields introduced for each gauge field as a way to conveniently

compute determinants occurring in the gauge fixing procedure. The ghost Lagrangian

is most commonly written in the Faddeev-Popov procedure as

Lghost = (∂µc̄
a)(δac∂µ + gsf

abcAb
µ)cc , (1.2.10)

where ca (c̄a) are Faddeev-Popov ghosts (antighosts). Ghosts are particles that

subtract the longitudinal degree of freedom from gluons, and as such it is usual

to use them to cancel the longitudinal degree of freedom of gluon propagators. It

should be noted that ghosts could in principle be included as external states as well

for the same purpose, however, it is more conventional to use the usual physical

polarisation sum instead.

1.2.2 QCD Feynman rules

Now that we have written down the QCD Lagrangian, we can examine the terms that

govern the interactions between bosons and fermions, and especially important for

QCD, the gauge boson self interactions. A convenient way to do this is by deriving
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the Feynman rules of the theory, which can be pieced together to form Feynman

diagrams. We will see that Feynman diagrams are a simple but powerful tool to

systematically build up all the possible ways in which a process can occur.

Expanding Eq. (1.2.1) and extracting the terms that mix the gauge and fermion

fields, we get an interaction Lagrangian

Lint = gsA
a
µψ̄

f
i γ

µT a
ijψ

f
j − gsf

abc(∂µA
a
ν)Ab, µAc, ν − g2

s

4 f
abcAb

µA
c
νf

adeAd, µAe, ν , (1.2.11)

which we can interpret as follows: the first term is an interaction between a gluon

and two fermion field operators, the second term is a three gluon self-interaction,

and the third term is a four gluon self-interaction. These mixing terms can be recast

into Feynman rules representing interaction vertices.

To connect vertices we require propagators, which we can read off from the kinetic

Lagrangian where we collect terms from Eqs. (1.2.1) and (1.2.9),

Lkin = −1
4(∂µA

a
ν − ∂νA

a
µ)2 − 1

2ξ (∂µA
a
µ)2 + ψ̄f

i (i/∂ −mf )ψf
i , (1.2.12)

where the first two terms corresponds to a gluon propagator and the third term

corresponds to a quark propagator.

From these Lagrangians, we can read off the QCD Feynman rules which we have

collected in Figure 1.2. Note that we have only written down the vertices and

propagators for the physical gluons and quarks. Ghosts also have associated Feynman

rules but we do not specify those here. A full list of Feynman rules in the SM can

be found in Ref. [18].

From these Feynman rules, we identify that each fermion-gluon and three gluon

vertex is associated with one power of αs (due to squaring gs), and the four gluon

vertex is associated with two powers of αs. This relationship between vertices and

αs allows us to systematically build up Feynman diagrams that correspond to a

fixed-order in αs. This point will be elaborated on in Section 1.4 where we discuss

scattering amplitudes and how they are related to Feynman diagrams.
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p

µ, a ν, b = −iδab

[
gµν

p2 + iε
− (1− ξ)

pµpν

(p2)2

]

p

=
i(/p+mf )

p2 −m2
f + iε
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p3

ji
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= −igsγ
µT a

ij

µ, a
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abc

[
gµν(p1 − p2)

ρ

+gνρ(p2 − p3)
µ

+gρµ(p3 − p1)
ν
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]

Figure 1.2: QCD Feynman rules with the Minkowski metric gµν =
diag(1,−1,−1,−1).
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1.3 Factorisation theorem

At the LHC collisions occur between two protons, which have constituent quarks and

gluons, collectively named partons. The application of QCD to describe phenomena

in these proton-proton collisions rests on the use of the factorisation theorem, which

enables the separation of low and high energy scales (so-called soft and hard). Within

the proton, there are quarks-antiquark pairs and gluons that are constantly absorbed

and emitted on a timescale inversely proportional to the mass of the proton. The

timescale of this fluctuation is much longer than the timescale of the interaction

between a parton and a highly energetic probing parton from another proton. This

is the scenario that occurs in collisions at the LHC. During the collision, or the hard

scattering, the probe is able to interact with a parton that is effectively frozen. The

probing parton knows nothing of the proton being probed, except for the fact that it

collided with a parton carrying a fraction of the proton momentum. The distribution

of partons within a proton is process independent and a fundamental property of the

proton, meaning it can be separated from the actual scattering between the partons.

This heuristic argument motivates the form of the factorisation equation, where

the cross-section, which is proportional to the production rate of particles from a

hadronic collision, can be written as

σAB→n =
∑
a,b

∫ 1

0
dxadxb fa/A(xa, µF )fb/B(xb, µF ) σ̂ab→n(Q, µF , µR) +O

(
ΛQCD

Q

)
,

(1.3.1)

where a is the parton from hadron A, and b is the parton from hadron B. The sum

over initial-state partons a and b indicates the sum over flavours, which depends on

the hadron composition in general. This factorisation is not exact as indicated by the

correction term, which is inversely proportional to the characteristic hard scale Q.

The other scale involved, ΛQCD, the QCD scale, is the scale at which αs becomes large

enough that perturbation theory breaks down. However, for high energy collisions,

where Q ≫ ΛQCD, this term and higher order terms are suppressed. In fact, the

factorisation equation has only been proven for a few specific cases [20–23].
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The parton distribution functions (PDFs), fa/h(x, µ), depend on the momenta frac-

tion x carried by parton a, with respect to its parent hadron h, at a scale µ, usually

taken to be the factorisation scale µF . The factorisation scale is the interface between

soft and hard physics. The interpretation of PDFs at leading order are as probability

distributions: fa/h(x, µ) is the probability of finding parton a within h carrying a

momentum fraction x at the energy scale µ. PDFs are non-perturbative objects

that encapsulate the soft effects of the scattering occurring below energy µF . They

are non-perturbative because they are determined by fitting to experimental data,

instead of being calculated in perturbation theory.

For a review of PDFs and how they are determined see Refs. [24,25]. In practice, these

PDF fits are accessed through the LHAPDF interface [26] which provides PDF sets

from multiple working groups [27–30]. The evolution of PDFs between factorisation

scales is possible through the use of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) equations [31–34],

µ2
F

∂

∂µ2
F

fq/h(x, µF )

fg/h(x, µF )

 = αs(µF )
2π

∫ 1

x

dz
z

Pqq(x
z
) Pqg(x

z
)

Pgq(x
z
) Pgg(x

z
)


fq/h(z, µF )

fg/h(z, µF )

 , (1.3.2)

where Pab(x
z
) are splitting functions representing parton b emitting a parton a, that

carries a momentum fraction x. These splitting functions are calculable as a power

series in αs where they have been computed up to three-loops [35, 36]. At leading

order they are [34]

P (0)
qq (z) = CF

[
1 + z2

(1− z)+
+ 3

2δ(1− z)
]
,

P (0)
qg (z) = TR

[
z2 + (1− z)2

]
,

P (0)
gq (z) = CF

[
1 + (1− z)2

z2

]
,

P (0)
gg (z) = 2CA

[
z

(1− z)+
+ 1− z

z
+ z(1− z)

]
+
(

11CA − 4TRnf

6

)
δ(1− z) ,

(1.3.3)

where the divergences at z = 1 have been regulated with the ‘+’-prescription, which
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is defined as ∫ 1

0
dz [g(z)]+f(z) =

∫ 1

0
dz g(z)(f(z)− f(1)) . (1.3.4)

With this prescription, the divergence at g(z = 1) is cancelled, given that the

function f(z) is sufficiently smooth at z = 1. At leading order, there is a physical

interpretation of the splitting kernels as the probability of finding a parton a in

parton b carrying a momentum fraction x of the parent parton.

The momentum fractions, x, also link the squared centre-of-mass energies of the

hadronic collision, denoted as s, to the partonic equivalent as

ŝ = xaxbs . (1.3.5)

The partonic cross-section, σ̂ab→n(Q, µF , µR), describes the interaction of partons a

and b scattering into n particles, where the scattering occurs at energy scale Q, which

is often taken to be ŝ. Notice that the partonic cross-section depends on both the

factorisation scale, µF , and the renormalisation scale, µR (see Section 2.1.2). This

dependence will be discussed in Section 3.4 in the context of theoretical uncertainties.

The discussion so far has been focused on hadron-hadron initiated scattering, however

a similar argument can be made about electron-positron annihilation, where the

electron-positron annihilates to form a photon or Z boson which decays into a quark-

antiquark pair. For a sufficiently high energy collision, these interactions can be

calculated in perturbation theory. Although electrons and positrons are fundamental

particles and not composite particles, the cross-sections in electron-positron collisions

have contributions from the initial-state radiation, which also reduces the energy

of the hard scattering. One method to capture these effects is through the use of

process-independent structure functions [37] which are analogous to PDFs. Therefore,

the discussion presented in this section applies to electron-positron cross-sections as

well.

We have seen that cross-section computations involve the convolution of PDFs with

partonic cross-sections, σ̂ab→n, which are calculated in perturbation theory. The
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details of how partonic cross-sections are computed is discussed in the next section.

1.4 Scattering amplitudes and cross-sections

At collider experiments we typically collide two beams consisting of bunches of ener-

getic particles and analyse the resulting products of these collisions. The predictions

that we make from our theoretical model are the partonic cross-sections. To arrive

at an expression for the partonic cross-section, we need to first consider the hard

scattering of particles. To model the hard collisions in a collider experiment, we look

at the specific case of two particles colliding and producing n particles. Scattering

amplitudes are used to mathematically describe these scattering processes. For an

initial-state |i⟩ and final-state |f⟩ the scattering amplitude can be written as the

overlap between the states

⟨f |S|i⟩ , (1.4.1)

where the scattering matrix, or S-matrix can be decomposed into an identity matrix

and a transfer matrix T ,

S = 1 + iT . (1.4.2)

The S-matrix encodes all the information about how the initial-state will evolve over

time. By writing the S-matrix in this way, all the interactions are separated into

the transfer matrix T , as the identity matrix describes the free theory. By imposing

a momentum conservation constraint on the S-matrix, the matrix element, M, is

defined in the following expression

⟨f |T |i⟩ = (2π)4δ4

pa + pb −
n∑

f=1
pf

M , (1.4.3)

where we take pa and pb to be the momenta of the two colliding particles in the initial-

state, and pf to be the momenta of the n particles in the final-state. The probability
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of this process occurring is the modulus squared of the scattering amplitude2

P = |⟨f |S|i⟩|2 ∝ |⟨f |M|i⟩|2 (1.4.4)

where |⟨f |M|i⟩|2 ≡ |M|2 is the matrix element squared3.

An observable that can be measured at experiments is the cross-section, σ, as

introduced in Eq. (1.3.1). The cross-section is a property of the particles being

scattered, and is independent of the way the experiment is carried out (disregarding

energy scale of experiment). Since the hadronic cross-section factorises the low

energy effects into the non-perturbative PDFs, which are determined once, for all

processes, the object of interest now becomes the partonic cross-section, σ̂, which

encodes the scattering information of the specific process considered.

Given that cross-sections are measurable quantities, the partonic cross-section dir-

ectly relates the matrix elements which we calculate in our QFT to measurable

observables at experiments. In practice, it is more useful to consider the differen-

tial cross-section, dσ̂, where the cross-section can be differential in quantities such

as energies and angles. This is because individual events at experiments will be

measured to be in a specific interval of the differential quantity, meaning differential

cross-sections can be plotted as histograms. Predictions can then be made on the

theory side by binning simulated events.

The differential partonic cross-section can be written as

dσ̂ = 1
F |Mab→n|2dΦn , (1.4.5)

where the flux factor, F , is given by

F = 4
√

(papb)2 −m2
am

2
b . (1.4.6)

In the massless limit the flux factor reduces reduces to

F = 2(pa + pb)2 = 2ŝ . (1.4.7)

2Neglecting the case of scattering with no interactions taking place.
3Henceforth we refer to the matrix element squared as matrix element, unless stated otherwise.
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It is common to use the massless limit because the centre-of-mass energy of a collider

experiment is much greater than the mass of the colliding particles, and so we can

neglect the masses.

The Lorentz-invariant phase-space, dΦn, contains all the possible configurations of

the n-particle final-state. Absorbing the momentum conserving δ-function from Eq.

(1.4.3), we can write it as

dΦn = (2π)4δ4

pa + pb −
n∑

f=1
pf

 n∏
f=1

d4pf

(2π)3 δ(p
2
f −m2

f )θ(Ef ) , (1.4.8)

where the second δ-function restricts the final-state particles to be on mass-shell

(on-shell), and the step function selects only the positive energy solution. This gives

an intuitive picture of the partonic cross-section as the probability of a 2→ n process

occurring, summed over all the possible valid final-state configurations.

From the definition of the transition probability Eq. (1.4.4), it becomes clear that

the matrix element is the object which relates back to the Lagrangian of the theory as

it encodes the interactions of the particles. We saw in Section 1.2.2 that interactions

could be codified into Feynman rules which are pieced together to construct Feynman

diagrams. In this picture, matrix elements are exactly the sum over all Feynman

diagrams4 for a particular process. However, for a given process the exact matrix

element is a sum over infinitely many Feynman diagrams. Fortunately, because αs is

small in high energy collisions, we can expand the matrix element as a perturbative

series in αs to write

|M|2 = αm
s |M|2LO + αm+1

s |M|2NLO + αm+2
s |M|2NNLO +O(αm+3

s ) , (1.4.9)

where m corresponds to the powers of αs in the simplest Feynman diagrams for the

process of interest. Since each term of this expansion is at a fixed-order in αs, it is

possible to systematically compute the diagrams which contribute at the given order

of αs. The set of diagrams that contribute at the lowest order in αs are |M|2LO, where

LO stands for leading order. The next term in the expansion corresponds to the
4Since we are working on the level of |M|2, this would be the sum of all interference terms.
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leading order diagrams with an additional loop, or external leg, which contributes

an extra factor of αs. This term is dubbed NLO for next-to-leading order in αs,

and the following term next-to-next-to-leading order has again an additional loop

or leg. In general, we have terms NkLO where each additional power of αs increases

complexity of the computations, however, because αs is small, each additional term

should contribute less and less. In principle, this means that the first terms dominate

the expansion, and it should be sufficient to terminate the series after a few terms

to reach an acceptable level of accuracy.

In summary, the partonic cross-section of a collision reduces to the computation

of the matrix elements up to a fixed-order in the coupling parameter, which is

then integrated over the valid phase-space of final-state particle configurations. For

hadronic collisions the partonic cross-section also needs to be convolved with the

PDFs to obtain the hadronic cross-sections.

With the introduction of matrix elements and cross-sections complete, we will move

the discussion onto more practical aspects of computations within the QCD frame-

work. More specifically, we will discuss the divergent structure of matrix elements

and the machinery developed to tackle these unphysical singularities.





Chapter 2

Quantum chromodynamics in

practice

In the previous chapter we introduced the basic concepts of QCD and setup the

framework of calculating cross-sections. Cross-sections are the most relevant quant-

ities to compute as they can be measured experimentally, and are a property of the

particles being collided, rather than depending on the specifics of the experimental

procedure. This provides a bridge to compare theoretical predictions and experi-

mental measurements. The relevant quantity calculated in perturbation theory is

the partonic cross-section which is the matrix element integrated over the relevant

final-state phase-space, normalised by a flux factor. The matrix elements are cal-

culated order-by-order in the strong coupling αs (c.f. Eq. 1.4.9), where each order

corresponds to a set of Feynman diagrams that have the appropriate number of

vertices, as each QCD vertex brings along a factor of αs.

In this chapter we will discuss the challenges that arise when evaluating these

Feynman diagrams and outline some solutions that have been widely adopted to

circumvent these issues in order to provide real-world applicable predictions. We

will consider the divergent nature of matrix elements and introduce the most widely

used techniques to tame these singularities. This chapter forms the theoretical

foundations upon which this thesis is built on.
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2.1 Divergent structures

The computation of matrix elements essentially reduces to evaluating Feynman

diagrams which are analytical expressions built up from the Feynman rules of a

theory (c.f. QCD Feynman rules in Figure 1.2). In evaluating certain topologies of

Feynman diagrams, integral expressions containing unconstrained momenta will give

rise to singularities. The divergences associated with high energy modes are called

ultraviolet (UV) divergences, and on the opposite end of the energy spectrum, there

are infrared (IR) divergences associated with low energy modes.

The de facto methods to alleviate these divergences are through renormalisation for

UV divergences, and through subtraction schemes for IR divergences. Both of these

methods will be discussed in this chapter.

2.1.1 Ultraviolet divergences

During intermediate steps of calculations, such as the computation of loop diagrams

seen in Figure 2.1, we have to evaluate integrals of the form

IUV =
∫ Λ

0

d4ℓ

(2π)4
1

ℓ2(ℓ+ p)2 ∼ log Λ , (2.1.1)

where a cut-off scale Λ has been introduced to capture the divergence as the loop

momenta ℓ→∞. It is clear that the integral diverges in this high energy limit, hence

the name ultraviolet divergence. These divergences can be systematically removed

by replacing the bare masses and fields of the theory with their measured physical

values, a process named renormalisation. In practice, this amounts to introducing

counterterms that exactly cancel the corresponding UV divergences at the same

order in perturbation theory.

Before we introduce these counterterms, we first consider the procedure of regular-

isation which makes these infinities explicitly manifest. The most widely adopted

method of regularisation is dimensional regularisation (DR) [38] which is based on
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Figure 2.1: Massless bubble diagram which is an example of where unconstrained
loop momenta can lead to UV divergences.

the observation that the integral in Eq. (2.1.1), which is carried out in d = 4

space-time dimensions, would be finite if we move away from d = 4 dimensions5.

In DR we define d = 4 − 2ϵ such that after Feynman parametrisation Eq. (2.1.1)

becomes

IUV =
∫ ddℓ

(2π)d

1
ℓ2(ℓ+ p)2 = i

(4π)2

(
−p2

4π

)−ϵ Γ(1− ϵ)2

Γ(2− 2ϵ) Γ(ϵ) , (2.1.2)

where the divergence for d = 4, or equivalently ϵ→ 0, is now captured in the Gamma

function, Γ(ϵ). This becomes clear once we expand Γ(ϵ) around small ϵ

Γ(ϵ) = 1
ϵ
− γE + 1

2

(
γ2

E + π2

6

)
ϵ+O(ϵ2) , (2.1.3)

where γE ≈ 0.577 is the Euler-Mascheroni constant, meaning the divergence is now

regularised as a pole in ϵ.

2.1.2 Renormalisation

With the UV divergence regularised by dimensional regularisation, it is now pos-

sible to construct the counterterms order-by-order in αs to explicitly cancel the

divergences.

A subtlety with adjusting the dimension of the theory from d = 4 to arbitrary

dimensions is that the mass dimension of the Lagrangian has to change accordingly to
5In dimensional regularisation it is possible to regulate the integral regardless of if d > 4 or

d < 4, it would amount to a sign difference.
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retain a dimensionless action in natural units. We can account for this by introducing

an arbitrary energy scale µR, the renormalisation scale, into the gauge coupling

constant to modify the mass dimension of the Lagrangian. For QCD this is done

via the modification

gs → gsµ
ϵ
R . (2.1.4)

where it is understood that the original gauge coupling is dimensionless. The order

of µR is determined by examining the dimensions of the gauge and fermion fields in

the Lagrangian in Eq. (1.2.1). We see that this introduces a scale dependence on

the coupling constant αs, a point we will return to in Section 2.1.3.

The inclusion of counterterms into the theory can be thought of as redefinitions of

the bare fields and couplings in the QCD Lagrangian to restore predictive power to

the theory. The renormalised fields and couplings can be given as (see for instance

Ref. [39])

ψbare =
√
Z2ψR ,

Aµ
bare =

√
Z3A

µ
R , (2.1.5)

gs,bare = Zgµ
ϵ
Rgs,R ,

where it is conventional to define Z1 = ZgZ2
√
Z3 such that we can set Zn = 1 + δn

for n ∈ {1, 2, 3}. In this way we can write the renormalised Lagrangian as

Lrenorm = Lbare + Lc.t. , (2.1.6)

where the counterterms appearing in Lc.t. are determined by calculating δn. There is

freedom in the choice of the finite part of δn which gives rise to different regularisation

schemes. The minimal subtraction (MS) scheme subtracts only the epsilon pole

appearing in loop integrals. However, the most commonly used regularisation scheme

is the modified minimal subtraction (MS) scheme which subtracts the epsilon pole

along with a universal constant appearing in all loop integrals.

In an all-orders calculation of an observable, there would be no dependence on the
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renormalisation scale as it is a remnant of the regularisation prescription. However,

because in perturbative QCD observables are calculated order-by-order, there will

be a residual dependence on the renormalisation scale stemming from the missing

higher order terms. The conventional way that theoretical uncertainties associated

with this residual dependence are determined is by carrying out a scale variation

(see Section 3.4).

2.1.3 Running of the coupling constant

The renormalisation scale introduced during regularisation is a mathematical artifact

and should not impact any measurable quantities. Therefore, the bare coupling

should not depend on the renormalisation scale,

dgs,bare

dµR

= 0 , (2.1.7)

or said another way, the renormalisation process is independent of the actual value of

the renormalisation scale. The consequence of this is that the renormalised coupling,

αs(µR), has to depend on the renormalisation scale instead.

The renormalisation scale dependence of αs is governed by the Callan-Symanzik

β-function [40,41]

µ2
R

∂αs(µ2
R)

∂µ2
R

= β(αs) , (2.1.8)

where the β-function can be written as a perturbative expansion in αs

−β(αs) = αs

∞∑
n=0

(
αs

4π

)n+1
βn (2.1.9)

where the coefficients βn have been computed up to β4 [42, 43]. The solution to Eq.

(2.1.8) to first order is

αs(µ2
R) = 1

β0
4π

log
(

µ
2
R

Λ2
QCD

) , (2.1.10)

where β0 = (11CA − 4TRnf)/3. In QCD, CA = 3 and TR = 1
2 , meaning for nf <

33
2

the sign of β0 is positive. In nature we have observed six flavours of quarks, so

β0 > 0. In fact all β-coefficients computed to date are positive, meaning that αs
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35 9. Quantum Chromodynamics

more than three jets in the final state. A selection of results from inclusive jet [429, 443, 600–605],
dijet [451], and multi-jet measurements [385, 387, 388, 429, 606–610] is presented in Fig. 9.3, where
the uncertainty in most cases is dominated by the impact of missing higher orders estimated through
scale variations. From the CMS Collaboration we quote for the inclusive jet production at

√
s = 7

and 8 TeV, and for dijet production at TeV the values that have been derived in a simultaneous
fit with the PDFs and marked with “*” in the figure. The last point of the inclusive jet sub-field
from Ref. [605] is derived from a simultaneous fit to six datasets from different experiments and
partially includes data used already for the other data points, e.g. the CMS result at 7 TeV.

The multi-jet αs determinations are based on 3-jet cross sections (m3j), 3- to 2-jet cross-section
ratios (R32), dijet angular decorrelations (RdR, RdPhi), and transverse energy-energy-correlations
and their asymmetry (TEEC, ATEEC). The H1 result is extracted from a fit to inclusive 1-, 2-,
and 3-jet cross sections (nj) simultaneously.

All NLO results are within their large uncertainties in agreement with the world average and
the associated analyses provide valuable new values for the scale dependence of αs at energy scales
now extending up to almost 2.0 TeV as shown in Fig. 9.4.

αs(MZ2) = 0.1179 ± 0.0009

August 2021

α s
(Q
2
)

Q [GeV]

τ decay (N3LO)

low Q2 cont. (N3LO)

HERA jets (NNLO)

Heavy Quarkonia (NNLO)

e+e- jets/shapes (NNLO+res)

pp/p-p (jets NLO)

EW precision fit (N3LO)

pp (top, NNLO)
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Figure 9.4: Summary of measurements of αs as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of αs is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

11th August, 2022

Figure 2.2: The running of the strong coupling constant αs, as determined by
experiments, with QCD theory prediction in black. Figure reproduced
from [2].

decreases with increasing energy due to the minus sign in Eq. (2.1.9). This property

is known as asymptotic freedom [44, 45], and is the justification for treating QCD

perturbatively when the energy scale is high, such as at collider experiments. The

running of the coupling constant has been observed experimentally as illustrated in

Figure 2.2.

At low energies, quarks and gluons cannot exist as free particles and are forced to

form composite, colourless particles. This phenomenon, named confinement, is com-

patible with the observation of the running coupling, but the perturbative calculation

predicting the running coupling does not necessarily lead to the non-perturbative

phenomenon of confinement. This means that at low energies, perturbative QCD

is not an accurate description of nature, and the behaviour of hadrons cannot be

predicted from perturbation theory. Instead phenomenological models have to be
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used to describe these processes. This will be briefly touched on in Section 3.3.

2.1.4 Infrared divergences

In Section 2.1.1 we saw how divergences stemming from high energy behaviour

would occur in loop diagrams. On the other end of the energy spectrum we also

have divergences from low energy modes. Since these divergences emerge from low

energy behaviour they are called infrared divergences. There are two cases in which

these divergences arise:

• virtual divergences in loop integrals,

• real-emission divergences when an emission of an extra particle has vanishing

energy (soft), or becomes parallel to an external leg (collinear).

Virtual IR divergences can be understood by looking at an integral of the form

IV =
∫ d4ℓ

(2π)4
1

ℓ2(ℓ+ p1)2(ℓ− p2)2 , (2.1.11)

which is encountered when calculating the one-loop virtual correction to the gluon-

fermion vertex as shown in Figure 2.3. It is clear that the denominator vanishes

when ℓ→ 0 or when either (ℓ+ p1)2 or (ℓ− p2)2 → 0. These situations correspond

to the gluon in the loop propagator going soft, or collinear to the external quarks,

respectively. These divergences are regulated in DR to give

IV = i
(4π)2Q2

(
−Q2

4π

)−ϵ Γ(1 + ϵ)Γ(1− ϵ)2

Γ(1− 2ϵ)

[ 1
ϵ2

]
, (2.1.12)

where Q = (p1 + p2). In this expression, there is a double ϵ pole manifest, corres-

ponding to the associated soft and collinear divergences in real emission corrections.

Real IR divergences arise when integrating matrix elements over the phase-space of

external state momenta. Matrix elements can be written as functions of Mandelstam

variables

sij = (pi + pj)2 massless−−−−→
limit

2EiEj(1− cos θij) , (2.1.13)
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Figure 2.3: One-loop vertex correction for the gluon-quark-antiquark vertex which
diverges for ℓ→ 0.

where pi and pj are the 4-momenta of two partons i and j in the hard scattering.

When either of the partons become soft, Ei,j → 0, or when they go collinear to each

other, θij → 0, the matrix element will diverge if sij appears in the denominator.

These scenarios correspond to an external particle becoming unresolved.

In Section 2.1.2, we removed UV divergences through the use of counterterms to

renormalise the theory, making predictions from the theory physical. IR diver-

gences, on the other hand, arise even after the theory has been renormalised. The

resolution to IR divergences is given by the Block-Nordsieck [46,47] and Kinoshita-

Lee-Nauenberg (KLN) theorems [48, 49] which states that for sufficiently inclusive

quantities, at each order of perturbation theory, the divergent parts of the real and

virtual contributions exactly cancel out, leaving only finite corrections. This cancel-

lation occurs because the infrared pole structure is identical in the real and virtual

corrections, but with an opposite sign.

At a detector of a collider experiment, there is a finite energy resolution of the

calorimeter. This means that it is not physically possible to observe arbitrarily soft

particles. It is also not possible to distinguish two particles at arbitrarily small

angles from one particle with the combined momenta. These limitations along

with the KLN theorem means that any physical observable that we wish to predict

with fixed-order perturbation theory must be insensitive to the emissions of soft or
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collinear particles. Any observable obeying this criteria is an infrared and collinear

(IRC) safe observable. This requirement of being insensitive to additional emissions

or arbitrarily soft emissions must also be met by jet definitions. Jet definitions

allow theorists and experimentalists to systematically combine partons, hadrons, or

energy deposits, into collimated clusters called jets. Jets provide a way to relate the

produced hadrons back to the partons produced in the hard scattering as they are

broadly collimated in a similar direction. For a review on jets see Ref. [50].

In DR, the singularities from soft and collinear divergences are manifest as ϵ poles

which makes the cancellation simple between the real and virtual parts. However,

in practice, the phase-space integrals of the matrix elements are rarely carried out

analytically due to the high dimensionality of the integral, rendering them intractable.

Instead they are done numerically through the use of Monte Carlo methods (see

Chapter 3), which requires the integral to be in integer dimensions. Therefore,

techniques have been developed to deal with these IR divergences as well. The most

common technique, subtraction, will be discussed in more detail in Section 2.3.

2.2 Factorisation of matrix elements

In the previous section we examined the IR divergences that can arise in matrix

elements, either explicitly through loop diagrams, or implicitly when carrying out

the phase-space integral over the external state momenta. In this section we will

discuss how these IR singularities are universal and how the divergences associated

with real emissions can be factorised out of the matrix element. This property is

exploited extensively in Chapters 5, 6, and 7 where the research of this thesis is

presented.

The regions of phase-space in which real emission matrix elements diverge are when

the emission is soft and/or collinear. It can be shown that in these regions of

phase-space, the matrix element factorises into a process-independent singular factor,

multiplied by a matrix element with the unresolved parton being absorbed by an
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emitting leg – we call this the reduced matrix element. This factorisation, however,

is not exact in QCD where there are spin and colour correlations.

Schematically, the (n+ 1)-body matrix element factorises as

|Mn+1|2 → Sijk ⊗ |Mn|2 , (2.2.1)

where Sijk is a universal singular factor capturing the IR divergent behaviour and

|Mn|2 is the reduced matrix element. The ⊗ represents the colour and spin correla-

tions existing between the singular function and the reduced matrix element. The

indices of Sijk already hints at the fact that the singular functions only depends on

three partons, and not all of the external states. This singular factor is not unique

and can be represented by different approximations as long as they reproduce the

correct IR behaviour. In this thesis we discuss two approximations: Catani-Seymour

dipoles [51] in Section 2.4 and antenna functions [52] in Section 2.5. The indices ijk

will be given specific assignments in these two different approximations.

We will inspect the soft and collinear limits separately to see how the matrix element

factorises in these respective limits. The following section will follow the conventions

of Ref. [51], namely that the colour and helicity summed n-body matrix element can

be written as

|Mn|2 = n⟨1, . . . , n|1, . . . , n⟩n (2.2.2)

where |1, . . . , n⟩n is a vector in colour + helicity space (see Appendix A for a more

thorough explanation on notation).

2.2.1 Soft limits

Consider a tree-level matrix element |Mn+1|2 with a final-state gluon j. Note that

reduced matrix elements associated with taking a quark soft have to vanish due to

violation of quark number, therefore only gluons are considered. The limit of the

soft gluon with momentum pj can be parametrised as

pµ
j = λqµ , λ→ 0 , (2.2.3)
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where qµ is an arbitrary four-vector and λ is a scale parameter. In this limit the

matrix element can be written as

|Mn+1|2 →−
1
λ2 8πµ2ϵαs

∑
i

1
piq

∑
k ̸=i

pkpi

(pi + pk)q

n⟨1, . . . , j − 1, j + 1, . . . , n+ 1|Tk · Ti|1, . . . , j − 1, j + 1, . . . , n+ 1⟩n ,

(2.2.4)

where terms less singular than 1/λ2 have been neglected. The reduced matrix element

represented by the colour + helicity vector inner product is obtained by removing

the soft gluon, j, from the (n + 1)-body matrix element. The indices i, j, and k

label partons involved in the factorisation process: i is the emitter parton, j is the

emitted parton, and k is a parton accounting for the colour correlations. The scale

µ can be identified as the renormalisation scale, and Ti is the colour-charge operator.

These operators act on the colour space in the reduced matrix element to give rise

to matrices, hence this factorisation is not exact. The properties of these operators

are given in more detail in Appendix A.

The matrix elements in Eq. (2.2.4) are unambiguously defined only when momentum

conservation is fulfilled. This is only true in the strict λ = 0 limit. Away from the

limit, care has to be taken to conserve momentum conservation and keep the relevant

partons on-shell. This can be done through the use of momentum mappings [51,53].

2.2.2 Collinear limits

For the collinear limit, consider partons i and j in the matrix element |Mn+1|2.

Their momenta can be decomposed as

pµ
i = zpµ + kµ

⊥ −
k2

⊥

z

nµ

2p · n

pµ
j = (1− z)pµ − kµ

⊥ −
k2

⊥

1− z
nµ

2p · n ,
(2.2.5)

where pµ denotes the collinear direction of the two partons, kµ
⊥ specifies the transverse

direction perpendicular to the collinear direction (p · k⊥ = 0), and nµ is an auxiliary
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vector satisfying the conditions n2 = 0 and k⊥ · n = 0. z is the fraction of momenta

carried away from the collinear momentum by parton i.

The collinear limit can then be defined as

2pipj = sij = − k2
⊥

z(1− z) , k⊥ → 0 . (2.2.6)

In this limit the matrix element can be written as

|Mn+1|2 →
1
pipj

4πµ2ϵαs n⟨1, . . . , ij, . . . , n+ 1|P̂ij(z, k⊥)|1, . . . , ij, . . . , n+ 1⟩n ,

(2.2.7)

where terms less singular than 1/k2
⊥ have been neglected. This reduced matrix

element is obtained by replacing the partons i and j with a single parton ij, as

explicitly shown in the reduced matrix element. This composite parton carries the

momentum pµ and suitable quantum numbers depending on the partons i and j.

For example, if i = quark and j = gluon, then ij = quark, or if i = quark and

j = antiquark, then ij = gluon. P̂ij are the d-dimensional Altarelli-Parisi splitting

functions that depend on the momentum fraction z for the splitting ij → i+ j and

the transverse momentum k⊥. Each splitting function is a matrix acting on the

spin indices of ij. Due to these spin correlations the reduced matrix element does

not factorise from the splitting functions exactly. P̂ij become the more recognisable

Altarelli-Parisi splitting functions in Eq. (1.3.3) once spin-averaged and the ϵ→ 0

limit is taken.

In general, it is possible for a final-state parton i to become collinear with an initial-

state parton a. This is described by the splitting process a → ai + i. In this case

only momenta pi needs to be modified as

pµ
i = (1− x)pµ

a + kµ
⊥ −

k2
⊥

1− x
nµ

2pa · n
, (2.2.8)

with the collinear limit defined as

2pipa = sia = − k2
⊥

1− x , k⊥ → 0 . (2.2.9)
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The analogous expression of Eq. (2.2.7) for initial-state splitting is

|Mn+1|2 →
1
x

1
pipa

4πµ2ϵαs n⟨1, . . . , n+ 1; ai, . . . |P̂ai(x, k⊥)|1, . . . , n+ 1; ai, . . .⟩n ,

(2.2.10)

where the replacement of partons a and i have been made explicit by the presence of

the parton ai in the colour + helicity vectors. The specific type of parton ai depends

upon the types of a and i.

Similar to Eq. (2.2.4) where the factorisation was only true in the strict soft limit,

Eqs. (2.2.7) and (2.2.10) are only true in the strict collinear limit. Away from these

limits, care has to be taken to conserve momenta via the use of momenta mappings.

2.2.3 Factorisation of colour-ordered amplitudes

The factorisation formulae expressed in Eqs. (2.2.4), (2.2.7), and (2.2.10) were not

exact because of colour and spin correlations. It can be shown that the factorisation

of matrix elements in the soft and collinear limits becomes exact once the colour

structure of the gauge group is separated from the kinematics.

In general, any QCD amplitude can be colour-decomposed, that is the colour struc-

ture is separated from the kinematics. Consider the process e+e− → qq̄ + n g6, the

amplitude can be written as a product of hadronic and leptonic currents [54]

M(q1, q̄2; 1, . . . , n) = Ŝn+2
µ (q1; 1, . . . , n; q̄2)V µ , (2.2.11)

where V µ is the leptonic current and the hadronic current is

Ŝn+2
µ (q1; 1, . . . , n; q̄2) = iegn

s

∑
P (1,...,n)

(T a1 . . . T an)c1c2Sµ(q1; 1, . . . , n; q̄2) . (2.2.12)

In this expression we have the electromagnetic gauge coupling e and the strong gauge

coupling gs appearing. The colour structure has been factorised into a product of

fundamental group generators where the indices ai ∈ {1, . . . , N2
c − 1} and ci ∈

6For the scope of this thesis it is sufficient to consider colour decomposition of electron-positron
annihilation into a single quark pair plus gluons, and not the more general case of multiple quark
flavours in the final-state.
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{1, . . . , Nc}. This leaves the colour-ordered partial amplitude Sµ(q1; 1, . . . , n; q̄2)

depending only on kinematic variables. In this partial amplitude, the gluons are

emitted in an ordered fashion from the quarks, meaning the quarks have a fixed

position in the partial amplitude. The sum over P (1, . . . , n) represents the sum over

all permutations of gluon emissions which accounts for all Feynman diagrams and

colour structures.

Upon squaring the amplitude in Eq. (2.2.11), we get

∣∣∣Ŝn+2
µ V µ

∣∣∣2 = e2
(
g2

sNc

2

)n (
N2

c − 1
Nc

) ∑
P (1,...,n)

(∣∣∣Sµ(q1; 1, . . . , n; q̄2)V µ
∣∣∣2 +O

(
1
N2

c

))
,

(2.2.13)

where the sub-leading colour terms proportional to 1/N2
c have been omitted. The

left-most term in the sum is the leading colour term and is the dominant term in

the colour expansion.

With the amplitude written in terms of the colour-ordered partial amplitudes, it

is now possible to factorise Eq. (2.2.13) exactly in the soft and collinear limits.

Consider the limit where a final-state gluon j is soft, we have

∣∣∣Sµ(q1; 1, . . . , i, j, k, . . . , n; q̄2)V µ
∣∣∣2 → Sijk

∣∣∣Sµ(q1; 1, . . . , i, k, . . . , n; q̄2)V µ
∣∣∣2 , (2.2.14)

where the factor

Sijk = 4 sik

sijsjk

, (2.2.15)

is the well-known eikonal factor. We see that the colour-ordered amplitude on the

RHS of Eq. (2.2.14) has gluon j removed but the ordering of all hard partons remain

unchanged.

In the collinear limit where partons i and j become collinear to form parton k, the

matrix element factorises as

∣∣∣Sµ(q1; 1, . . . , i, j, . . . , n; q̄2)V µ
∣∣∣2 → 2

sij

Pij(z)
∣∣∣Sµ(q1; 1, . . . , k, . . . , n; q̄2)V µ

∣∣∣2 ,
(2.2.16)

where Pij(z) are the spin-averaged Altarelli-Parisi splitting functions with the colour
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factors removed. In this expression it is understood that the indices i, j, and k

have to be self-consistent for the different types of partonic splittings. For partons

which are not colour connected (are not neighbouring partons in the colour-ordered

amplitude), there will be no singular behaviour as sij → 0.

In Eqs. (2.2.14) and (2.2.16), the colour-ordered amplitude factorises exactly into

a colour-ordered amplitude with one parton removed, multiplied by a universal

singular factor. This singular factor depends on the unresolved parton and the two

neighbouring hard particles. Interpreting this as the two hard particles forming an

antenna which radiates the unresolved parton gives rise to the antenna functions

which will be discussed further in Section 2.5.

2.2.4 One-loop matrix element factorisation

The discussion of matrix element factorisation so far has been focused on tree-level

matrix elements. It has been shown that one-loop colour-ordered amplitudes also

factorise in the soft and collinear limits [55–58]. At the one-loop level, there are

new universal singular functions and the factorisation formulae are modified. The

structure of these modified formulae are of the form: tree-level splitting function

multiplied by a one-loop amplitude, plus a one-loop splitting function multiplied

by a tree-level amplitude. The loop level of amplitude and splitting functions are

denoted by superscripts, (0) for tree-level and (1) for one-loop level.

In the soft limit, a one-loop colour-ordered amplitude factorises as

M
(1)
n+1(. . . , i, j, k, . . .)→ S

(0)
ijk M

(1)
n (. . . , i, k, . . .) + S

(1)
ijk(ϵ)M (0)

n (. . . , i, k, . . .) , (2.2.17)

where S
(0)
ijk is the eikonal factor in Eq. (2.2.15), and S

(1)
ijk(ϵ) is the one-loop soft

radiation function [59].

A similar factorisation formula for the collinear limit is

M
(1)
n+1(. . . , i, j, . . .)→

1
sij

[
P

(0)
ij (z)M (1)

n (. . . , k, . . .) + P
(1)
ij (z, ϵ)M (0)

n (. . . , k, . . .)
]
,

(2.2.18)
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where P (0)
ij (z) are the tree-level splitting functions in Eq. (1.3.3) and P

(1)
ij (z, ϵ) are

the one-loop splitting functions [59].

In Section 2.5 we will give a brief overview of antenna functions where these one-loop

factorisation formulae were used to obtain universal singular functions at the one-

loop level for squared matrix elements. These antenna functions are then applied

in the context of NLO QCD k-factor emulation for electron-positron annihilation in

Chapter 6.

2.3 Subtraction

In Section 2.1.4 we discussed the structure of IR divergences and how the KLN the-

orem enforced the cancellation of IR divergences arising from the virtual corrections

and real-emission matrix elements once integrated over soft and collinear regions of

phase-space, at each order in perturbation theory.

Over the past few decades there has been a vast amount of research into devising

methods to systematically isolate these singularities such that it is possible to make

finite predictions of physical quantities. To tackle this problem, three main methods

have been proposed: phase-space slicing [60–62], sector decomposition [63,64], and

subtraction [65].

By now the method of choice at NLO QCD is subtraction, and is the method we will

focus on in this section. The main idea behind subtraction methods is to define local

counterterms that exactly replicate the IR divergent behaviour of matrix elements.

While there is not one single subtraction scheme that is universally used, the general

form of a subtraction term must fulfil the requirements of replicating the matrix

element behaviour in all IR singular limits, and be analytically integrable over the

regions of phase-space corresponding to these IR limits.

To illustrate the idea behind the subtraction method, first consider the calculation
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of a LO partonic cross-section

σLO =
∫

dΦn Bn , (2.3.1)

where Bn is the Born (tree-level) matrix element and Φn is the n-body phase-space.

At the next order in perturbation theory, we have the NLO cross-section which

receives contributions from the real and virtual corrections

σNLO =
∫

dΦn [Bn + Vn] +
∫

dΦn+1 Rn+1 , (2.3.2)

where Vn is the virtual matrix element (renormalised to remove UV divergences

as described in Section 2.1.1) which lives in the same n-body phase-space as the

Born matrix element. The real-emission matrix element, Rn+1, lives in the (n+ 1)-

body phase-space, Φn+1, due to the emission of an additional external particle. The

integrals over Φn and Φn+1 are separately divergent but their sum is finite. To carry

out a numerical calculation, it is therefore necessary to regulate these divergences to

make them explicit. Using dimensional regularisation these divergences are mapped

to poles in ϵ.

The motivation behind the subtraction method is that the divergences in Eq. (2.3.2)

can be cancelled upon the insertion of a counterterm evaluated in Φn+1, Cn+1, and

an integrated counterterm evaluated in Φn, In, such that the condition

∫
dΦn In −

∫
dΦn+1 Cn+1 = 0 , (2.3.3)

holds. Here phase-space factorisation is utilised: Φn+1 → ΦnΦ1 when using an

appropriate 3→ 2 momentum mapping [51,66] such that

In =
∫

Φ1 Cn+1 , (2.3.4)

where Φ1 is the one-parton phase-space leading to ϵ poles once Cn+1 is integrated

over. The counterterm Cn+1 should be a proper pointwise approximation of Rn+1

to cancel all IR divergences such that Rn+1 − Cn+1 is integrable finite. Additionally,

since the pole structure in Vn is identical to Rn+1 but with an opposite sign, Vn +In
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will be finite by construction. Inserting the subtraction terms into Eq. (2.3.2) we

get

σNLO =
∫

dΦn [Bn + Vn + In] +
∫

dΦn+1 [Rn+1 − Cn+1] , (2.3.5)

where each integral can now be carried out numerically in integer dimensions by

taking the ϵ→ 0 limit. This is possible as the integrals are all separately finite now.

The counterterm Cn+1 has been kept general but specific examples of subtractions

schemes include Catani-Seymour (CS) [51,67], Frixione-Kunszt-Signer (FKS) [68,69],

and antenna subtraction [53,54,70].

Beyond NLO QCD, the algorithms available have not reached the maturity of the

automated methods widely use at NLO. However, this is an active area of research.

See Reference [71] for a review of methods that have been applied to NNLO QCD.

In the next sections we will describe in detail two sets of functions that are used to

build subtraction terms: Catani-Seymour dipoles, and antenna functions. We are

interested in the approximations of the matrix elements in the soft and collinear limits

as these are universal and can be applied to any process, and not the subtraction

terms themselves. These functions will become instrumental during our construction

of matrix element emulators in Chapters 5, 6, and 7.

2.4 Catani-Seymour dipoles

Catani-Seymour dipoles introduced in Ref. [51] are process-independent functions

that reproduce the IR singular behaviour of matrix elements. They depend on the

momenta and quantum numbers of three partons in the real-emission phase-space.

These three partons are identified by indices i, j, and k where i is the emitting parton,

j is the unresolved emitted parton, and k is a spectator parton. In order to map out

all the singular limits in a process, it is necessary to construct all permutations of

the dipole functions since each dipole function only depends on three partons.

Dipole functions can be separated into four categories depending on whether the
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emitter and spectator are in the initial-state or the final-state, as illustrated in

Figure 2.4. Namely, there are final-final (FF) dipoles, final-initial dipoles (FI),

initial-final (IF) dipoles, and initial-initial (II) dipoles where the nomenclature refers

to the emitter-spectator dipole. For electron-positron annihilations only FF dipoles

are required since electrons and positrons do not carry any colour charge and so

there is no initial-state radiation. However, for any hadronic collision the inclusion

of the remaining dipoles are required to capture all IR-singular behaviour arising

from the initial-state emissions.

In the following we will describe in detail the FF dipoles and the associated matrix

element factorisation formula, but only give a brief description of the remaining di-

poles as the structure of the terms and factorisation formulae generalise analogously.

2.4.1 Final-final dipoles

The utilisation of dipoles is encapsulated in the dipole factorisation formula where

matrix elements in the limit pipj → 0 can be written as

n+1⟨1, . . . , n+ 1|1, . . . , n+ 1⟩n+1 =
∑
i,j

∑
k ̸=i,j

Dij,k(p1, . . . , pn+1) + . . . , (2.4.1)

where terms not singular in the limit pipj → 0 are denoted by the ellipsis, and the

dipole is

Dij,k(p1, . . . , pn+1) = − 1
2pipj

n⟨1, . . . , ĩj, . . . , k̃, . . . , n+ 1|Tk · Tij

T 2
ij

Vij,k|1, . . . , ĩj, . . . , k̃, . . . , n+ 1⟩n ,

(2.4.2)

where Ti are the colour-charge operators and Vij,k is a matrix in the helicity space

of the emitter embedding the IR divergent behaviour. The sum in Eq. (2.4.1) can

be understood as summing over all possible three leg permutations to capture all

the soft and collinear limits. The reduced matrix element on the RHS of Eq. (2.4.2)

is obtained by replacing the partons i and j with a single parton ĩj, and replacing
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Dij,k

i

j

k

ĩj

pi

pj

pk

(a) FF dipole

Da
ij

i

j

a

ĩj

pi

pj

pa

(b) FI dipole

Dai
k

a i

k

ãi
pa

pi

pk

(c) IF dipole

Dai,b

a i

b

ãipa

pi

pb

(d) II dipole

Figure 2.4: Schematic diagrams of the four classes of Catani-Seymour dipoles,
D. The dipoles are named according to whether the emitter and
spectator are in the initial (upper indices) or final-state (lower indices).
Each dipole consists of a composite particle (denoted by tilde) that
decays into two partons, and a spectator that recoils to conserve
momentum. The grey blob represents the hard scattering process,
with incoming and outgoing lines representing initial- and final-state
partons, respectively. The black circle represents the splitting function
within the dipole function which contains the divergent behaviour.
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parton k with a parton k̃. The parton k̃ has all the same quantum numbers as

k, whereas the partonic nature of ĩj depends on the specific splitting process (c.f.

Section 2.2.2). The momenta of these particles are modified in the following way

p̃µ
ij = pµ

i + pµ
j −

yij,k

1− yij,k

pµ
k , p̃µ

k = 1
1− yij,k

pµ
k , (2.4.3)

where yij,k, the recoil parameter, is a dimensionless variable given as

yij,k = pipj

pipj + pipk + pjpk

. (2.4.4)

Eqs. (2.4.3) and (2.4.4) are a 3 → 2 momenta mapping that maps pi + pj + pk →

p̃ij + p̃k. The mapping ensures momentum conservation is maintained across all of

phase-space and all particles are kept on-shell:

pµ
i + pµ

j + pµ
k = p̃µ

ij + p̃µ
k ,

p̃2
ij = p̃2

k = 0 .
(2.4.5)

The matrices Vij,k are functions of yij,k and the splitting variables z̃

z̃i = pipk

pipk + pjpk

, z̃j = pjpk

pipk + pjpk

= 1− z̃i . (2.4.6)

These splitting variables are analogous to the z from Altarelli-Parisi splitting func-

tions. Vij,k acts on the spin indices of the composite particle ĩj, but is independent

of the type of the spectator. Making the spin-dependence on parton ĩj explicit (s

and s′ for ĩj = fermion, and µ and ν for ĩj = gluon) we list all the kernels here

⟨s|Vqigj ,k|s′⟩ = 8πµ2ϵαsCF

[
2

1− z̃i(1− yij,k) − (1 + z̃i)− ϵz̃j

]
δss

′ ,

⟨µ|Vqi,q̄j ,k|ν⟩ = 8πµ2ϵαsTR

[
−gµν − 2

pipj

(z̃ip
µ
i − z̃jp

µ
j )(z̃ip

ν
i − z̃jp

ν
j )
]
,

⟨µ|Vgigj ,k|ν⟩ = 16πµ2ϵαsCA

[
−gµν

(
1

1− z̃i(1− yij,k) + 1
1− z̃j(1− yij,k) − 2

)

+(1− ϵ)
pipj

(z̃ip
µ
i − z̃jp

µ
j )(z̃ip

ν
i − z̃jp

ν
j )
]
.

(2.4.7)

A key feature of these kernels is that they smoothly interpolate between the soft and
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collinear limits, meaning they do not double count any limit. Additionally, they only

contain divergences in the pipj → 0 limit and not for any other pair of momenta.

In the soft and collinear limits, the dipole function Dij,k correctly reproduces the

matrix element factorisation behaviour seen in Eqs. (2.2.4) and (2.2.7), respectively.

In particular, Vij,k becomes proportional to the eikonal factor and Altarelli-Parisi

splitting functions in these respective limits.

In this thesis we will be focussing on the emulation of colour- and spin-averaged

matrix elements. Therefore the spin-indices are not explicitly available. It is possible

to average over the spin indices in Eq. (2.4.7) to obtain the spin-averaged splitting

functions

⟨Vqigj ,k⟩ = 8πµ2ϵαsCF

[
2

1− z̃i(1− yij,k) − (1 + z̃i)− ϵz̃j

]
,

⟨Vqiq̄j ,k⟩ = 8πµ2ϵαsTR

[
1− 2z̃iz̃j

1− ϵ
]
,

⟨Vgigj ,k⟩ = 16πµ2ϵαsCA

[
1

1− z̃i(1− yij,k) + 1
1− z̃j(1− yij,k) − 2 + z̃iz̃j

]
. (2.4.8)

2.4.2 Final-initial dipoles

For the case of final-state emitter and initial-state spectator we have the dipole

factorisation formula

n+1⟨1, . . . , n+ 1; a, . . . |1, . . . , n+ 1; a, . . .⟩n+1 =∑
i,j

∑
k ̸=i,j

Dij,k(p1, . . . , pn+1; pa, . . .)

+
∑
i,j

∑
a

Da
ij(p1, . . . , pn+1; pa, . . .) + . . . ,

(2.4.9)

where the new dipole contribution appears on the second line. The initial-state

parton is denoted by a. The dipole term Da
ij is given by

Da
ij(p1, . . . , pn+1; pa, . . .) = − 1

2pipj

1
xij,a

n⟨1, . . . , ĩj, . . . , n+ 1; ã, . . . |Ta · Tij

T 2
ij

V a
ij |1, . . . , ĩj, . . . , n+ 1; ã, . . .⟩n .

(2.4.10)
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where ĩj is the composite emitter in the final-state, and the spectator ã is in the

initial-state. The momentum mapping for pi + pj + pa → p̃ij + p̃a is given as

p̃µ
ij = pµ

i + pµ
j − (1− xij,a)pµ

a , p̃µ
a = xij,a p

µ
a , (2.4.11)

such that momentum conservation and on-shell conditions are met:

pµ
i + pµ

j − pµ
a = p̃µ

ij − p̃µ
a ,

p̃2
ij = p̃2

a = 0 .
(2.4.12)

The recoil parameter xij,a and splitting variables z̃ are given by

xij,a = pipa + pjpa − pipj

(pipa + pjpa) ,

z̃i = pipa

pipa + pjpa

, z̃j = pjpa

pipa + pjpa

= 1− z̃i .

(2.4.13)

The spin-averaged splitting functions are given as

⟨Vqigj ,a⟩ = 8πµ2ϵαsCF

[
2

1− z̃i + (1− xij,a) − (1 + z̃i)− ϵz̃j

]
,

⟨Vqiq̄j ,a⟩ = 8πµ2ϵαsTR

[
1− 2z̃iz̃j

1− ϵ
]
,

⟨Vgigj ,a⟩ = 16πµ2ϵαsCA

[
1

z̃j + (1− xij,a) + 1
z̃i + (1− xij,a) − 2 + z̃iz̃j

]
. (2.4.14)

2.4.3 Initial-final dipoles

For the case of initial-state emitter and final-state spectator, the dipole factorisation

formula is given as

n+1⟨1, . . . , n+ 1; a|1, . . . , n+ 1; a⟩n+1 =
∑
a,i

∑
k ̸=i

Dai
k (p1, . . . , pn+1; pa) + . . . , (2.4.15)

where there is only one initial-state parton. The dipole is given by

Dai
k (p1, . . . , pn+1; pa) = − 1

2papi

1
xik,a

n⟨1, . . . , k̃, . . . , n+ 1; ãi|Tk · Tai

T 2
ai

V ai
k |1, . . . , k̃, . . . , n+ 1; ãi⟩n .

(2.4.16)
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where the emitter is the initial-state parton ãi and the spectator is the final-state

parton k̃. The momenta mapping for pa + pi + pk → p̃ai + p̃k is

p̃µ
ai = xik,a p

µ
a , p̃µ

k = pµ
k + pµ

i − (1− xik,a)pµ
a , (2.4.17)

such that

pµ
i + pµ

k − pµ
a = p̃µ

k − p̃µ
ai ,

p̃2
ai = p̃2

k = 0 .
(2.4.18)

Note that the momentum p̃ai is parallel to pa, therefore the modified spectator

momentum p̃k has to recoil the transverse momentum. This leads to xik,a acting as

a splitting variable. With xik,a taking the role of z̃, there is another parameter, ui,

appearing in the splitting functions. These variables are given as

xik,a = pkpa + pipa − pipk

pipa + pkpa

, ui = pipa

pipa + pkpa

. (2.4.19)

The spin-averaged splitting functions are

⟨V qagi
k ⟩ = ns(q)

ns(q̃)
8πµ2ϵαsCF

[
2

1− xik,a + ui

+ (1 + xik,a)− ϵ(1− xik,a)
]
,

⟨V gaq̄i
k ⟩ = ns(g)

ns(q̃)
8πµ2ϵαsTR

[
1− 2xik,a(1− xik,a)

1− ϵ

]
,

⟨V gagi
k ⟩ = ns(g)

ns(g̃)
16πµ2ϵαsCA

[
1

1− xik,a + ui

+ 1− xik,a

xik,a

− 1 + xik,a(1− xik,a)
]
,

⟨V qaqi
k ⟩ = ns(q)

ns(g̃)
8πµ2ϵαsCF

[
(1− ϵ)xik,a + 21− xik,a

xik,a

]
, (2.4.20)

where ns(a) is the number of polarisations of particle a. For fermions ns(q) = ns(q̄) =

2 and for gluons ns(g) = d − 2. In the limit ϵ → 0 all ratios of ns cancel to give

unity.

2.4.4 Initial-initial dipoles

In the case of two initial-state partons, a and b, there is an additional dipole contri-

bution compared to the initial-final case.
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The dipole factorisation is given by

n+1⟨1, . . . , n+ 1; a, b|1, . . . , n+ 1; a, b⟩n+1 =∑
a,i

∑
k ̸=i

Dai
k (p1, . . . , pn+1; pa, pb)

+
∑
a,i

∑
b̸=a

Dai,b(p1, . . . , pn+1; pa, pb) + . . . ,

(2.4.21)

where the new contribution is the dipole Dai,b given by

Dai,b(p1, . . . , pn+1; pa, pb) = − 1
2papi

1
xi,ab

n⟨1̃, . . . , ñ+ 1; ãi, b|Tb · Tai

T 2
ai

V ai,b|1̃, . . . , ñ+ 1; ãi, b⟩n .

(2.4.22)

The initial-state parton ãi is the emitter and the other initial-state parton b is the

spectator. Notice that the momenta not involved in the dipole term have been

modified with only parton b remaining unchanged. The momentum mapping for this

case has p̃ai parallel with pa and also modifies the momenta for all other final-state

momenta (even non-QCD particles) kj:

p̃µ
ai = xi,ab p

µ
a ,

k̃µ
j = kµ

j −
2kj · (K + K̃)

(K + K̃)2 (K + K̃)µ + 2kj ·K
K2 K̃µ , (2.4.23)

xi,ab = papb − pipa − pipb

papb

.

where K and K̃ are the total momenta of the dipole before and after the mapping,

respectively. They are given by

Kµ = pµ
a + pµ

b − pµ
i ,

K̃µ = p̃µ
ai + pµ

b .

(2.4.24)

This mapping conserves momentum and keeps mapped momenta on-shell

pµ
a + pµ

b − pµ
i −

∑
j

kµ
j = p̃µ

ai + pµ
b −

∑
j

k̃µ
j = 0 ,

p̃2
ai = k̃2

j = 0 .
(2.4.25)
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The spin-averaged splitting functions are proportional to the Altarelli-Parisi splitting

functions which we quote here for completeness

⟨V qaqi,b⟩ = ns(q)
ns(g̃)

8πµ2ϵαsCF

[
1 + (1− xi,ab)2

xi,ab

]
,

⟨V qagi,b⟩ = ns(q)
ns(q̃)

8πµ2ϵαsCF

[
1 + x2

i,ab

1− xi,ab

]
,

⟨V gaq̄i,b⟩ = ns(g)
ns(q̃)

8πµ2ϵαsTR

[
x2

i,ab + (1− xi,ab)2
]
,

⟨V gagi,b⟩ = ns(g)
ns(g̃)

16πµ2ϵαsCA

[
xi,ab

1− xi,ab

+ 1− xi,ab

xi,ab

+ xi,ab(1− xi,ab)
]
.

(2.4.26)

2.4.5 Master factorisation formula

The combination of all types of dipole contributions can be combined into a master

dipole factorisation formula

n+1⟨1, . . . , n+ 1|1, . . . , n+ 1⟩n+1 =∑
i,j

∑
k ̸=i,j

Dij,k(p1, . . . , pn+1; pa, pb) +
∑
i,j

∑
a

Da
ij(p1, . . . , pn+1; pa, pb)

+
∑
a,i

∑
k ̸=i

Dai
k (p1, . . . , pn+1; pa, pb) +

∑
a,i

∑
b ̸=a

Dai,b(p1, . . . , pn+1; pa, pb) + . . . ,

(2.4.27)

where it is understood that for a given partonic process, the matrix element in

the different soft and collinear limits will be reproduced by summing over all the

relevant dipoles, meaning that the dipole functions can be used as a set of functional

behaviours for approximating the matrix elements for arbitrary SM processes. This

will be put into practice in Chapters 5 and 7. The terms represented as ellipses in

the dipole factorisation formulae are non-divergent in all of phase-space.

2.4.6 Treatment of massive partons

The dipoles described in this section so far have treated all partons to be massless.

Since quarks are massive particles it is not always possible to treat them as massless.

This is especially true for the top quark which has a mass of 172.69 GeV in the
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on-shell mass scheme [2], the most massive SM particle. In the case of partonic

processes involving top quarks, it is therefore necessary to include mass effects into

the dipole functions.

The universality of infrared divergent structure extends to massive quarks [72]. In

Ref. [67] the authors derive dipole functions for massive partons which are used in

Chapter 7, but will not be written here as the procedure of constructing the massive

dipole functions is similar to their massless counterparts.

The extension to massive quarks necessitates the straightforward modification of the

master dipole factorisation formula in Eq. (2.4.27) to replace any massless dipole

with its massive counterpart whenever there is a massive parton in the dipole.

2.5 Antenna functions

Another set of functions that can be used to construct subtraction terms in NLO

[53,54] and NNLO QCD [52,73] are the antenna functions. They are derived from

physical matrix elements and so by construction contain the correct IR behaviour in

the soft and collinear limits. More specifically, they are derived from colour-ordered

matrix elements so they follow the colour-ordered factorisation properties outlined

in Section 2.2.3. In the factorisation formulae, the colour-ordered matrix elements

factorises exactly into a colour-ordered matrix element with one parton removed

multiplied by a singular factor. Since this factorisation is exact, and the IR behaviour

is universal, it is possible to extract these singular factors once and for all.

In contrast to the dipole functions, where there is an identified emitter, antenna

functions can have the unresolved parton radiate from either of the two hard partons

in the antenna. In this sense, an antenna is a linear combination of two dipoles.

The discussion in this section will be limited to the situation of an off-shell colour-

neutral boson decaying to massless QCD partons, suitable for multi-jet production

in electron-positron annihilation. Additionally, we assume that there will only ever
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be at most one unresolved parton in the final-state. The antenna formalism has

been extended to more general cases than this [74–78].

Antenna functions are constructed from a ratio of colour-ordered matrix elements.

For the case of one unresolved parton, the three-parton tree-level antenna function

is given by

X0
3 (i, j, k) = Sijk,IK

|M (0)
n+1(i, j, k)|2

|M (0)
n (I,K)|2

(2.5.1)

where |M (ℓ)
n |2 is the n-body colour-ordered matrix element at loop-level ℓ. Sijk,IK

is a symmetry factor accounting for identical particles in the final-state and for

the presence of multiple antennae in the two-parton process. I and K are hard

partons forming a colour connected antenna that radiates particle j. The identities

of i/I and k/K defines the specific class of the antenna function. There are three

classes corresponding to the three underlying two-parton processes: quark-antiquark,

quark-gluon and gluon-gluon. Therefore, there will be an antenna for every radiative

correction to these two-parton processes. The physical matrix elements used to the

derive the antenna functions for each class are as follows:

• Quark-antiquark: γ∗ → qq̄ + (partons), the decay of a virtual photon into a

quark-antiquark pair with QCD radiation from the quark pair [73].

• Quark-gluon: χ̃ → g̃g + (partons), the decay of a heavy neutralino into a

gluino and gluon with QCD radiation from the gluon-gluino pair [79].

• Gluon-gluon: H → gg + (partons), the decay of a Higgs boson into a pair of

gluons with QCD radiation from the gluon pair [80].

Along with the tree-level antennae, there are also the one-loop antennae. For the

three-parton case these are given by

X1
3 (i, j, k) = Sijk,IK

|M (1)
n+1(i, j, k)|2

|M (0)
n (I,K)|2

−X0
3 (i, j, k) |M

(1)
n (I,K)|2

|M (0)
n (I,K)|2

, (2.5.2)

where X1
3 are defined such that they are proportional to the one-loop singular

functions mentioned in Section 2.2.4. Since the one-loop factorisation formulae, Eqs.



2.5. Antenna functions 71

(2.2.17) and (2.2.18), are of the form |M (1)
n+1|2 → S(0)|M (1)

n |2 + S(1)|M (0)
n |2, the term

proportional to S(0), that is X0
3 , has to be removed in Eq. (2.5.2) to fulfil this

requirement. The antenna functions are summarised in Table 2.1, where they are

categorised by their class and radiative processes.

Class Radiation
Antenna functions

Tree-level One-loop

Quark-antiquark qq̄ → qgq̄ A0
3 A1

3, Ã1
3, Â1

3

Quark-gluon qg → qgg D0
3 D1

3, D̂1
3

qg → qQQ̄ E0
3 E1

3 , Ẽ1
3 , Ê1

3

Gluon-gluon gg → ggg F 0
3 F 1

3 , F̂ 1
3

gg → gqq̄ G0
3 G1

3, G̃1
3, Ĝ1

3

Table 2.1: Three-parton antenna functions at tree-level, X0
3 , and one-loop level,

X1
3 . The different antenna functions at one-loop level correspond to the

leading colour (X1
3 ), sub-leading colour (X̃1

3 ), and closed quark loop
(X̂1

3 ) contributions.

Another requirement in constructing a subtraction term is that the functions have

to be analytically integrable over the unresolved phase-space. For one unresolved

parton, this requirement is met with a suitable 3 → 2 momentum mapping that

allows the (n+1)-body phase-space to factorise into a product of the mapped n-body

phase-space and the antenna phase-space. The antenna phase-space is independent

of the n-body phase-space and depends only on the momenta of partons i, j, k

appearing in the antenna. In the case of antenna functions, the mapping of choice

is the Kosower mapping [66] which maps pi + pj + pk → pI + pK . It reads

pI = xpi + rpj + ypk ,

pK = (1− x)pi + (1− r)pj + (1− y)pk ,

(2.5.3)
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(a) Quark-antiquark antenna, A3 (b) Quark-gluon antenna, D3

(c) Gluon-gluon antenna, F3

Figure 2.5: Three-parton antenna functions where the loop order is implicitly illus-
trated by the grey circle, and the grey ellipse represents all diagrams
that give rise to the given external states. The hard radiators are
depicted in red, where as the unresolved parton is coloured in blue.
External fermion lines have been drawn without an arrow to depict
the equivalence of quark and antiquark antenna functions.

where the mapping variables are given as

sijk = sij + sik + sjk ,

r = sjk

sijsjk

,

ρ =
√

1 + 4r(1− r) sijsjk

sijksik

,

x = (1 + ρ)sijk − 2rsjk

2(sij + sik) ,

y = (1− ρ)sijk − 2rsij

2(sjk + sik) .

(2.5.4)

This momentum mapping maintains momentum conservation and keeps the mapped

partons on-shell

pi + pj + pk = pI + pK ,

p2
I = p2

K = 0 .
(2.5.5)

In the following, we list the antenna functions relevant for multi-jet production
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in electron-positron annihilation with a single quark flavour, namely the partonic

channel e−e+ → qq̄ + n g. For this process we require the A, D, and F antenna

functions, which are illustrated in Figure 2.5. The i, j, k indices will be fixed such

that q = 1, q̄ = 2, and g ∈ {3, 4, 5}, in view of using the antenna functions with the

momenta represented as an array with partons having fixed indices.

It will be useful to define the Poles and Finite operators to extract the singular and

finite contributions from an antenna function. However, there are remaining finite

terms from Poles(X) coming from the ϵ-expansion of the IR singularity operators

given below. Therefore, care has to be taken to extract all the finite contributions

from the antenna functions when trying to use them as part of an approximation

for the finite part of the one-loop matrix element.

For the one-loop antenna functions, there are three different functions corresponding

to the leading colour, sub-leading colour, and closed quark loop contributions. It

is sufficient to consider the leading colour structure in this thesis as the remaining

contributions are sub-leading. Ignoring sub-leading terms in colour is equivalent to

taking the large Nc limit. For QCD where Nc = 3, neglecting sub-leading colour

terms amounts to an approximately 10% effect.

The antenna functions have some functions in common, namely the singularity

operators

I(1)
qq̄ (ϵ, sqq̄) = − eϵγ

2Γ(1− ϵ)

[
1
ϵ2 + 3

2ϵ

]
Re(−sqq̄)−ϵ ,

I(1)
qg (ϵ, sqg) = − eϵγ

2Γ(1− ϵ)

[
1
ϵ2 + 5

3ϵ

]
Re(−sqg)−ϵ ,

I(1)
gg (ϵ, sgg) = − eϵγ

2Γ(1− ϵ)

[
1
ϵ2 + 11

6ϵ

]
Re(−sgg)−ϵ ,

I(1)
gq̄ (ϵ, sgq̄) = I(1)

qg (ϵ, sgq̄) ,

(2.5.6)

and dilogarithms which are embedded in the function

R(y, z) = log (y) log (z)− log (y) log (1− y)− log (z) log (1− z)

+ π2

6 − Li2(y)− Li2(z) .
(2.5.7)
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It will also be useful to introduce the variables yij = sij/sijk.

2.5.1 Quark-antiquark antenna functions

The quark-antiquark antenna functions are derived by normalising the colour-ordered

QCD radiative corrections to γ∗ → qq̄ at NNLO.

Three-parton tree-level antenna function

A0
3(1q, 3g, 2q̄) = 1

s123

(
s13
s23

+ s23
s13

+ 2s12s123
s13s23

)
+O(ϵ) (2.5.8)

Three-parton one-loop antenna function

Poles
(
A1

3(1q, 3g, 2q̄)
)

= 2
(
I(1)

qg (ϵ, s13) + I(1)
qg (ϵ, s23)

−I(1)
qq̄ (ϵ, s123)

)
A0

3(1q, 3g, 2q̄) , (2.5.9)

Finite
(
A1

3(1q, 3g, 2q̄)
)

=−
(
R(y13, y23) + 5

3 log y13 + 5
3 log y23

)
A0

3(1q, 3g, 2q̄)

+ 1
s123

+ s12 + s23
2s123s13

+ s12 + s13
2s123s23

− s13
2s123(s12 + s13)

− s23
2s123(s12 + s23)

+ log y13
s123

(
2− 1

2
s13s23

(s12 + s23)2 + 2s13 − s23
s12 + s23

)

+ log y23
s123

(
2− 1

2
s13s23

(s12 + s13)2 + 2s23 − s13
s12 + s13

)
. (2.5.10)

2.5.2 Quark-gluon antenna functions

The quark-gluon antenna functions are obtained by considering the QCD real radi-

ation corrections in the process χ̃→ g̃g.

Three-parton tree-level antenna function

D0
3(1q, 3g, 4g) = 1

s2
134

(
2s2

134s14
s13s34

+ 2s2
134s13
s14s34

+ s14s34 + s2
34

s13

+s13s34 + s2
34

s14
+ 2s13s14

s34
+ 5s134 + s34

)
+O(ϵ) .

(2.5.11)
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Three-parton one-loop antenna functions

Poles
(
D1

3(1q, 3g, 4g)
)

= 2
(
I(1)

qg (ϵ, s13) + I(1)
qg (ϵ, s14) + I(1)

gg (ϵ, s34)

−2I(1)
qg (ϵ, s134)

)
D0

3(1q, 3g, 4g) , (2.5.12)

Finite
(
D1

3(1q, 3g, 4g)
)

= −
(
R(y13, y34) +R(y14, y34) +R(y13, y14) + 5

3 log y13

+ 5
3 log y14 + 11

6 log y34

)
D0

3(1q, 3g, 4g) + 1
3s34

.

(2.5.13)

2.5.3 Gluon-gluon antenna functions

The gluon-gluon antenna functions are obtained from the QCD real radiation cor-

rections in the process H → gg.

Three-parton tree-level antenna function

F 0
3 (3g, 4g, 5g) = 2

s2
345

(
s2

345s34
s35s45

+ s2
345s35
s34s45

+ s2
345s45
s34s35

+ s34s35
s45

+ s34s45
s35

+ s35s45
s34

+ 4s345 +O(ϵ)
)
. (2.5.14)

Three-parton one-loop antenna functions

Poles
(
F 1

3 (3g, 4g, 5g)
)

= 2
(
I(1)

gg (ϵ, s34) + I(1)
gg (ϵ, s35) + I(1)

gg (ϵ, s45)

−2I(1)
gg (ϵ, s345)

)
F 0

3 (3g, 4g, 5g) , (2.5.15)

Finite
(
F 1

3 (3g, 4g, 5g)
)

=−
(
R(y34, y35) +R(y35, y45) +R(y34, y45)

+ 11
6 log y34 + 11

6 log y35 + 11
6 log y45

)
F 0

3 (3g, 4g, 5g)

+ 1
3s34

+ 1
3s35

+ 1
3s45

+ 1
3s345

. (2.5.16)
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2.5.4 Limiting behaviour of antenna functions

Examining Eq. (2.5.8) more closely, it becomes clear that the correct IR behaviour is

exhibited by the antenna function. The first two terms correspond to the gluon going

collinear with the quark and antiquark, respectively. The final term encapsulates

the singularity in the limit of the gluon going soft. The other antenna functions

have similar limiting behaviour, collapsing to the single collinear and soft splitting

functions in the relevant regions of phase-space.

Utilising this property of the antenna functions, and the fact that they naturally

interpolate between the soft and collinear limits due to being derived from physical

matrix elements, they can be combined in an ansatz for approximating matrix

elements. The emulation of the NLO QCD k-factors for electron-positron annihilation

is explored in Chapter 6.



Chapter 3

Monte Carlo Event Generators

At particle collider experiments, the collisions between incoming particles can lead to

highly complex final-states with a large number of particles. In any collider involving

QCD processes, the particles we observe are not the constituents of the proton, the

quarks and gluons. Instead we observe hadrons which are the bound states of these

partons due to the property of confinement at low energy scales.

In order to describe the entire process from the initial energetic collision to the

production of the lower energy hadrons, it is customary to split up the process into

stages characterised by their kinematic hardness (c.f. Section 1.3). The standard

tools used to simulate these stages of an event are general-purpose Monte Carlo

event generators, see Ref. [81] for a review. These are indispensable tools that help

bridge the gap between theoretical predictions and experimental measurements with

nearly all analyses made at the ATLAS and CMS experiments involving some form

of event generator usage. General-purpose event generators such as HERWIG [82,83],

PYTHIA [84, 85], and SHERPA [86, 87] all broadly share the same features at a high-

level, but each framework carries subtle differences. Hence, it is common to use many

different event generators in one analysis to obtain an estimate of the uncertainty

due to the different approaches in each framework.

In the following we will motivate the usage of Monte Carlo methods and give a

brief overview of the main stages involved in simulating an event. We will give
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particular attention to the concept of event unweighting which is required to compare

probabilistically generated events to experimental results.

3.1 Monte Carlo integration

As seen in Section 1.4, the task of computing partonic cross-sections boils down

to integrating the matrix elements over the final-state phase-space. Whilst it is

possible to carry out these integrals analytically for the simplest cases, the integral

quickly becomes intractable when the final-state multiplicity becomes large. For an

n-body final-state the dimensionality of the integral scales as d = 3n − 4, where

momentum conservation and on-shell conditions have already been applied to reduce

the dimensionality. Therefore, instead of carrying out the integrals analytically,

numerical methods become more attractive. The current prevailing method is Monte

Carlo integration as the integration error has no scaling with the dimensionality of

the integral, and so can be used for arbitrarily high multiplicity final-states with no

performance penalty compared to lower multiplicities. The purpose of this chapter is

to give a brief overview of Monte Carlo integration in the context of event generation,

a more in-depth treatment of the specifics of Monte Carlo methods can be found in

Ref. [88].

The basic idea of Monte Carlo integration is to approximate the integral of a function

f(x) by sampling it in d-dimensional parameter space points x

I =
∫

V
dx f(x) ≈ IN = V

1
N

N∑
i=1

f(xi) = V ⟨f⟩x , (3.1.1)

where the points x are randomly, uniformly sampled in the volume V . Given a

sample of N points {x1, . . . ,xN} ∈ V , ⟨f⟩x denotes the average of f over these

uniformly sampled points. The law of large numbers ensures that the estimator

IN will converge to the true value I for N → ∞. As a result of the central limit

theorem, the function evaluations f(xi) will follow a Gaussian distribution with

mean IN , meaning an error estimate on the estimator is given by the standard error
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of the mean

σI = V

√
⟨f 2⟩x − ⟨f⟩2x

N − 1 (3.1.2)

which falls as 1/
√
N , with no dependence on d.

An algorithm that samples points x is called an integrator. To make use of the

random numbers sampled, they need to be mapped to quantities that are useful

in a simulation setting. The most commonly used mapping is to map the random

numbers to four-momenta. An example of a simple integrator is the RAMBO algorithm

[89, 90] which samples four-momenta space uniformly in a phase-space integration.

Since the integrator now effectively samples in momentum space, we refer to the

points generated as phase-space points and so the terms integrator and phase-space

generator are used interchangeably.

Whilst Monte Carlo integration is independent of the dimensionality of the integral,

meaning convergence is guaranteed for large enough N , there are variance reduction

methods to more rapidly reduce the error on the estimator. These methods aim to

reduce the numerator in Eq. (3.1.2).

One such method is importance sampling which aims to reduce the variance via

a remapping of the uniformly sampled variables x to a more suitable non-uniform

distribution. In the context of particle physics, this corresponds to using a mapping

of random numbers to four-momenta that captures the distribution of the matrix

elements and their divergences, i.e. samples more frequently in regions where the

matrix element is large in magnitude. Integrators inspired by the pole structure of

multi-parton QCD processes have been studied in Refs. [91, 92].

Another common variance reduction technique is stratified sampling which divides

the integration volume into sub-volumes, or bins. The overall integral and variance

are the sums of the partial results in each bin. The overall variance is minimised

when the contributions from each bin are equal. This is achieved by sampling more

from bins where the integral is rapidly fluctuating (and not necessarily large), and

less from bins where the integral has fewer fluctuations.
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In practice, state of the art event generators combine the concepts of import-

ance sampling and stratified sampling with adaptive sampling [93, 94] and multi-

channelling methods [95,96] to achieve faster rates of convergence.

3.2 Event unweighting

Once a suitable configuration of momenta has been found by the integrator, this

phase-space point forms the basis of an event. The matrix element of interest can be

evaluated at this phase-space point at the desired order in perturbation theory (see

Section 3.3). Additionally, there will be an associated Jacobian from the mapping

from random variables to the four-momenta. This Jacobian, along with the PDF

weights and flux factors, are referred to as the phase-space weight, JPS. Taking this

phase-space weight together with the matrix element forms the event weight7

w = |M|2JPS . (3.2.1)

The event weight can be interpreted as the probability of the event occurring at

an experiment [97]. By generating a number of events in this manner a sample of

weighted events is created. Cross-sections and distributions can then be calculated

by histogramming these weights.

The generation of weighted events is generally undesirable as many events will have

small weights with only a few events making sizeable contributions to predictions.

Furthermore, these small weights still have to be run through expensive detector

simulations, making the usage of weighted events highly inefficient. Therefore, it has

become customary to generate events with equal relative weight, so-called unweighted

events.

An additional reason to generate unweighted events is that experimentalists would

like the probability of events occurring at colliders to be described only by their
7For the more sophisticated sampling methods employed in event generators there will be

additional weights involved.
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frequency and not with any additional weights. Since unweighted events have equal

relative weight, they satisfy this criteria.

The process of generating unweighted events is known as unweighting and is typically

carried out using a rejection sampling algorithm. Events are accepted or rejected by

comparing the ratio w/wmax to a uniform random number, r, sampled in the interval

[0, 1], where wmax is the maximal event weight in the integration volume. Events

are then accepted if w/wmax > r. This can be interpreted as converting the event

weights into a probability of being accepted or rejected as small event weights will

have a low probability of being accepted, whereas the opposite is true for large event

weights. The rejection algorithm is outlined explicitly in Algorithm 1.

Algorithm 1: Rejection sampling for unweighting events
1 while unweighting do
2 generate random phase-space point x;
3 evaluate event weight w ← w(x);
4 generate uniform random number r ← Random(0, 1);
5 if w/wmax > r then
6 return x and w̃ ← 1;
7 end
8 end

From this description, it is clear that the number of accepted events will generally

be lower than the number of total events generated. This is encapsulated in the

unweighting efficiency

ϵ = Naccepted

Ntotal
, (3.2.2)

whose inverse is the average number of trial events required to obtain a single

unweighted event. Unweighting efficiencies for high-multiplicity processes are often

well below 1% [98, 99]. The development of methods to improve the efficiency are

an active area of research [100,101], wherein the authors explore an algorithm that

adaptively splits up the integration region in order to systematically reduce the ratio

of the maximum event weight to the average event weight. This leads to increased

unweighting efficiency when carrying out the rejection sampling algorithm. These

low efficiencies lead to most of the yearly event generator CPU budgets of LHC
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experiments to be spent on unweighting events [102].

An alternative to improving the unweighting efficiency is to accelerate the process

of unweighting itself. This was explored in Ref. [103] wherein a novel two-stage

unweighting procedure employing a surrogate8 model of the exact event weight was

used to decrease the amount of time spent unweighting events. This idea will be

elaborated on in Chapter 7 where we build upon Ref. [103] by increasing the fidelity

of the surrogate model.

3.3 Anatomy of an event

The simulation of an event can be split up into three main stages: the hard scattering

process, followed by the parton shower, and finally hadronisation. This is motivated

by the factorisation theorem (c.f. Section 1.3) which separates the high energy

regimes from the low energy regimes.

Hard scattering

The first stage of an event simulation begins with the computation of the matrix ele-

ment. The partonic channel of interest sets the multiplicity of the process, therefore

informing the integrator on how to sample the phase-space accordingly.

As seen in Eq. (1.4.9), the exact matrix element is approximated by a perturbative

series in a coupling parameter. By now it is standard to have at least the LO

and NLO contributions in this expansion. The calculations of tree-level [104–109]

and one-loop [110–123] matrix elements are now largely fully automated in NLO

QCD and electroweak corrections. Many of the modern matrix element providers

are supplied with a common generic interface to event generators, the Binoth Les

Houches Accord [124, 125]. For more information on the machinery developed to

8The authors of Ref. [103] refer to their model approximating the event weight as a surrogate
model, whereas in this thesis we have used the term emulator. We will use these two terms
interchangeably henceforth.
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compute matrix elements at tree-level and one-loop level required for SM predictions,

see Ref. [126]. NNLO and N3LO QCD corrections have been computed for select

processes but have yet to reach the level of automation of NLO. For a review of

recent advancements see Refs. [127,128].

Matrix element calculations account for a large portion of the total event generation

time [129]. Reducing the time spent in this stage of the event generation therefore

represents a sizeable increase in the number of events generated given a fixed com-

puting budget [102]. This thesis presents a novel technique to accelerate matrix

element calculations by building accurate emulation models from modern machine

learning techniques.

Parton shower

Fixed-order calculations of matrix elements are limited to relatively few final-state

particles due to the complexity of analytical expressions and their phase-space in-

tegrals. They are also only accurate at high energy scales. For low transverse

momentum emissions, large logarithms appearing at every order breaks the αs per-

turbative expansion. To describe these kinematic regions, and to evolve from the

fixed-order calculation to the non-perturbative regime where hadrons are formed,

parton showers are employed in event generators.

Parton showers are implemented as algorithms that iteratively emit radiation (gluons

and quarks in QCD parton showers) described by splitting functions. By repeat-

ing this procedure of emissions, parton showers produce a cascade of partons that

naturally evolves the energy scale from the hard process to an infrared scale where

non-perturbative effects begin to set in. In doing so, parton showers account for

potentially large logarithms that arise in these kinematic regimes at all orders in the

coupling parameter, this is known as resummation [81].

In event generators, fixed-order matrix elements and parton showers have to be

utilised together to describe the many different observables at experiments. In order



84 Chapter 3. Monte Carlo Event Generators

to combine the two stages of event generation in a consistent manner there are

matching [130–132] and merging [133,134] schemes.

Hadronisation

The simulation of the formation of hadrons in the low-energy regime of an event

generator follows phenomenological models, which are non-perturbative and consist

of many parameters fitted to data. These hadronisation models require the combin-

ation of quarks and antiquarks to form colourless hadrons. The two main classes of

models used to simulate hadronisation are the cluster models [135, 136] and string

models [137]. For more discussion on hadronisation see Ref. [138].

3.4 Estimation of theoretical uncertainties

The partonic cross-section, σ̂(µF , µR), has a dependence on both the factorisation

scale and the renormalisation scale. Although these scales are unphysical, and so

any observable should not depend on them, there is a residual dependence on them

in fixed-order calculations due to missing higher order terms.

The most widely adopted approach to estimate the theoretical uncertainties asso-

ciated with these missing higher order terms is to carry out a seven point scale

variation. Typically in a calculation, µ0 = µF = µR where µ0 depends on the specif-

ics of the process of interest. Taking the value of the partonic cross-section at this

scale as the central value, the seven variations correspond to multiplying (µF , µR)

by the factors

S ∈ {(1, 1), (1/2, 1/2), (2, 2), (1/2, 1), (1, 1/2), (2, 1), (1, 2)} , (3.4.1)

and re-evaluating the cross-section at these scales. The deviations from the central

cross-section value forms an estimate of the uncertainty in the perturbatively com-

puted cross-section, when compared to the central cross-section value. This can be
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written as

σ̂(µF , µR) = σ̂(µ0, µ0)± δ , (3.4.2)

where δ is determined from the scale variations. However, there is no single, well

agreed upon definition of δ [139]. The rationale behind taking this approach is that

δ is approximately the same order of magnitude as the true missing higher order

terms. This is true if the size of the perturbative coefficients remains similar, which

would be violated if, for example, a new important channel opens up by increasing

the perturbative order.





Chapter 4

Machine learning in high energy

physics

4.1 Rise of machine learning in high energy

physics

In high energy physics, where analyses depend on making use of large computing

clusters and international grid efforts [140], advancements in technology and more

efficient methods are required to keep up with the needs of the experimental and

theoretical communities. However, the computational resources needed are at risk of

outpacing the growth in these research areas [129], especially with HL-LHC projected

to begin operating at the end of this decade [141]. Therefore new techniques and

algorithms from machine learning have been adopted to augment the ongoing efforts

in high energy physics. Machine learning is a category of artificial intelligence

concerned with the design of algorithms that automates learning from data. By now,

machine learning is ubiquitous in particle physics analysis, from collection of data

from experiments, all the way to novel applications on the theory side.

Around the turn of the last decade the culmination of advancement in hardware and

training algorithms led to an explosion in research in the machine learning community,
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specifically in the utilisation of very large neural networks. The accuracy of these

deep neural networks greatly outperformed the previous state of the art [142,143] and

lead to the widespread use of neural networks across a range of tasks [144]. This led

to the rise of programming frameworks such as scikit-learn [145], TensorFlow [146],

PyTorch [147], and XGBoost [148] to name a few which implement neural networks,

alongside other mainstay algorithms such as decisions trees. These algorithms are

now extremely commonplace in many domains, including in particle physics.

Collisions at the LHC can produce hundreds of particles with complex final-state

configurations. This leads to the design of the ATLAS and CMS experiments to

contain of the order 100 million detection elements in an attempt to disentangle

these events. With these large arrays, petabytes of data are recorded every year

across all LHC experiments. This presents a practical challenge for data collection

where machine learning could provide a solution. Indeed, boosted decision trees have

been used to enhance triggers [149] to accept or reject data before being saved to

disk.

In view of the upgrades at the LHC and the upcoming HL-LHC providing unpre-

cedented integrated luminosity, it is important that the generation of simulated

samples is accelerated. This prompted the explosion of research in machine learning

applications on the theory side. Studies have been carried out on many stages of

the event generation process. To name just a few examples of active research areas:

phase-space sampling [150–154], matrix element modelling [4,5,155–157], hadronisa-

tion modelling [158–160], and end-to-end event generation [99,161–164]. For a more

complete overview of active research, a living review that is archiving advancements

in the field is available at Ref. [165]. For more traditional reviews, see Refs. [166–168].

The research carried out in these areas have shown promising results but a challenge

that remains is to interface these novel machine learning methods to existing event

generators for real-world use. There is scepticism regarding the use of machine

learning algorithms in production due to their lack of interpretability [169], as well

as their use as black-boxes which precludes predictability [170]. Along similar lines,
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the quantification of the uncertainties associated with these algorithms are not well

defined [171].

In this chapter we give an overview of neural networks: how they are constructed,

how they are trained, and how their parameters are optimised. We will then proceed

to discuss their application to modelling matrix elements with a review of the current

state of the art methods.

4.2 Neural networks

Neural networks are a machine learning algorithm inspired vaguely by the structure of

the human brain. That is to say they are an interconnected network of neurons used

for analysing data. Here, we will introduce the densely-connected neural network

which will be the main workhorse algorithm used in this thesis, and frame the

discussion around a regression task. Namely, how to use sampled training data from

a target function g(x) to create a surrogate model with a neural network algorithm.

In a machine learning context, the fitting of a model to data is termed training the

model. Once the model is fitted, it is customary to use an unbiased dataset that is

distinct from the training set, the test set, to evaluate the final model performance.

4.2.1 Model of a neuron

In this context, a neuron is described by

y = ϕ(wT x + b) = ϕθ(x) (4.2.1)

where the model inputs, x, are multiplied by the model weights, w, before being

summed with a bias term, b. Collectively, the model weights and biases are the

model parameters, θ. This combination of terms is then modified by an activation

function, ϕ, which is carefully chosen to perform a non-linear transformation. The
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Figure 4.1: A schematic diagram of a neuron. The model inputs x and weights
w are vectors, whereas the bias b is a scalar. The weighted inputs are
summed with the bias before passing through an activation function
to give the scalar output y.

Activation Functional form Gradient
Linear f(x) = x f ′(x) = 1

Sigmoid f(x) = 1
1 + e−x f ′(x) = f(x)(1− f(x))

Tanh f(x) = tanh(x) f ′(x) = 1− f(x)2

ReLU f(x) =
0 , for x ≤ 0
x , for x > 0

f ′(x) =
0 , for x ≤ 0

1 , for x > 0
9

swish f(x) = x

1 + e−x f ′(x) = 1
x
f(x) [(1 + x)− f(x)]

Table 4.1: Functional forms of common activation functions and their gradients.

notation ϕθ represents an activation function acting on x which has been combined

with parameters θ. A neuron is illustrated in Figure 4.1.

Some of the more well-known activation functions are the sigmoid function, hyper-

bolic tangent, and the rectified linear unit (ReLU) [172]. A less familiar class of

activation functions are the sigmoid linear units (SiLU) [173], of which swish [174] is

an example. The functional forms of these functions and their gradients are summar-

ised in Table 4.1. There is no single activation function that is the best for any given

task, and it is common practice to choose activation functions on a case-by-case

basis.
9The gradient of ReLU is not defined at x = 0 but for a numerical implementation, defining it

to be 0 at this point is sufficient.
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Input Layer ∈ ℝ³ Hidden Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ⁵ Output Layer ∈ ℝ¹

Figure 4.2: An example of a densely-connected neural network with two hidden
layers. Each node on this image represents a neuron and the con-
nections between them represents the inputs/outputs to neighbouring
neurons.

4.2.2 Densely-connected neural networks

In order to build a neural network, the neurons have to be connected in some fashion.

Perhaps the most straightforward method is to create layers of neurons, and then

connect every neuron in a layer with every neuron in neighbouring layers. This is

illustrated in Figure 4.2. Such a configuration is called a fully-connected, or densely-

connected neural network. The constituents of this network structure are: the input

layer where model inputs enter; hidden layers, where the bulk of model parameters

live; and the output layer which outputs the model prediction(s). The training data

only provides concrete, desired outputs for the overall model, and does not specify

anything about the layers preceding, hence the term hidden. The neural network is

free to change the parameters in these hidden layers to best approximate the target

function g(x). Output layers are functionally the same as hidden layers, except that

their outputs are taken as the model prediction and so can be compared with the

truth value.

The depth of a neural network is generally denoted by the number of hidden layers,
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or alternatively, the number of activation functions between the input and output

layers. Similarly, the width of a neural network is generally referring to the number

of nodes in the hidden layers.

The output of a densely-connected neural network can be formulated by repeatedly

applying Eq. (4.2.1) to give

f(x; θ) = ϕ
(n)
θ ( . . .ϕ(2)

θ (ϕ(1)
θ (x)) ) , (4.2.2)

where ϕ
(n)
θ denotes the outputs and parameters of layer n, where the output layer is

included in this notation. By chaining together activation functions, and especially

non-linear activation functions, neural networks become good function approximators

f(x; θ) ≈ g(x) . (4.2.3)

The universal approximation theorem states that neural networks are able to rep-

resent any continuous function, g(x), with one hidden layer and a finite number of

neurons [175]. However, it is very difficult to achieve this due to practical constraints

such as limited data and network size. It is much more common to link together a

larger number of hidden layers, leading to deep neural networks since better learning

algorithms have been found for this case [176].

4.2.3 Loss functions and optimisation of parameters

To summarise so far, neural networks are a vast network of connected nodes with a

large number of parameters that can be tuned for the problem at hand. The task of

optimising the parameters is the main challenge in training a neural network and is

a key area of research.

In order to quantify the performance of a network for a given task it is useful to

define a loss function. For regression tasks, such as approximating a function, a

commonly used loss function is the mean squared error

LMSE = 1
N

N∑
i=1

(g(xi)− y(xi; θ))2 , (4.2.4)
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where g(xi) and f(xi; θ) are samples from the target distribution, and model pre-

dictions for inputs, xi, belonging to a data set with N samples. The loss function

encodes the discrepancy between the truth value and the model prediction. There-

fore, the task of finding an acceptable set of parameters can be reframed as an

optimisation of the loss function. It should be noted that minimisation of the loss

function is simply a proxy for maximising neural network predictive accuracy. Due

to the training and testing datasets being finite, the generalisation of the neural

network is not guaranteed for the true underlying function from which the datasets

are sampled from. This problem is generally referred to as overfitting. We will refer

back to this problem in the context of fitting matrix elements in Section 4.3.

Since neural networks are generally aimed at learning non-linear functions, the loss

surface corresponding to Eq. (4.2.4) is a function of many variables, and is likely

highly non-convex with many local minima. The methods of choice for traversing

these loss surfaces are all iterative gradient-based methods with modifications to

improve convergence. Broadly speaking, the algorithms iteratively update the neural

network parameters based on the gradient of the loss with respect to these parameters

with some step size (or learning rate) η. The update rule is given by

θ ← θ − η · ∇θL(xbatch; θ) , (4.2.5)

where ∇θL(xbatch; θ) is the gradient of the loss with respect to the parameters of the

model, averaged over the batch of inputs xbatch. The initial state of the parameters

are usually distributed according to normal or uniform distributions [177,178]. This

variation of gradient descent is referred to as mini-batch gradient descent because the

gradient ∇θL is averaged over a mini-batch of samples xbatch. Mini-batch gradient

descent strikes a balance between stochastic gradient descent (estimating gradient

with one sample at a time), and batch gradient descent (calculating gradient with

respect to entire training set) by having an efficient estimation of the gradient that

is accurate enough for practical applications. In modern machine learning libraries,

the updating of weights in Eq. (4.2.5) is carried out via matrix multiplications
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which are highly efficient on graphics-processing units (GPUs), and the gradients

are computed numerically with the aid of automatic differentiation tools. For these

reasons, deep neural networks have become much more widespread due to the ease

of constructing and training them, as well as their good predictive performance for

general problems.

The basic gradient descent algorithm described above is the basis upon which many

of the most widely adopted optimisers [179–181] are based on. For an overview of

these optimisers, see for instance Ref. [182].

4.2.4 Optimisation of hyperparameters

Another set of parameters that need to be optimised are the model hyperparameters.

Hyperparameters are parameters that are not explicitly trainable parameters of

the model, instead they control the speed and quality of the training process. For

instance, the learning rate in Eq. (4.2.5) is an important hyperparameter whose

initial value has to be chosen carefully to observe a good rate of convergence. Some

other examples would be the number of hidden layers, the choice of activation

function, or the mini-batch size.

The choice of hyperparameters is an important factor during the training process as

a suboptimal set of hyperparameters can perform significantly worse than a more

carefully chosen set. The process of tuning hyperparameters is often computationally

expensive for two reasons. Firstly, the dimensionality of parameter space to choose

from is large, meaning the number of samples required to effectively explore the

parameter space grows rapidly – this is the so-called curse of dimensionality. Secondly,

there is no exact a priori way to evaluate the final performance of a neural network

given a set of hyperparameters, meaning training has to take place for some steps

before the final model performance can be estimated.

Some of the simplest methods of hyperparameter optimisation are grid search and

random search. Grid search is simply an exhaustive scan of parameters systematic-
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ally sampled in a grid-like fashion, whereas random search replaces this systematic

sampling with random sampling. Whilst these methods are quick to implement, the

number of trials to land on a good set of hyperparameters could potentially be very

large. Methods which aim to reduce the number of trials have been proposed in the

literature, see Ref. [183] for a review. Below we discuss two paradigms of hyperpara-

meter optimisation that aim to reduce number of trials when doing hyperparameter

searches.

Bayesian optimisation methods have been explored to carry out hyperparameter

optimisation [184, 185]. The method begins with the construction of a Bayesian

probabilistic model. This model is a mapping from hyperparameter sets to the

performance of a neural network, as evaluated by a loss function. This Bayesian

model collects evidence through successive trainings of the neural network, and so

iteratively becomes more informed on the hyperparameter space. By selecting prom-

ising hyperparameter sets based on the successively updated model, the exploration

of hyperparameter space is much more efficient.

Another group of methods are based on the principle that the first few epochs of

training are indicative of the final model performance [186]. This in combination with

a fixed time budget gives rise to multi-armed bandit strategies [187,188] that allocate

more budget to better performing models whilst simultaneously dropping poorly

performing models. By iterating this procedure only the best performing models

remain. Recently, there have been proposals of combining Bayesian optimisation

and the bandit-based approaches [189].

In practice, the area of hyperparameter optimisation is still extremely computa-

tionally expensive even with the more advanced methods outlined above. Given a

sensible set of hyperparameters, one has to balance the additional time spent tun-

ing with the relatively incremental improvements in performance. For this reason,

the hyperparameter tuning in novel machine learning experiments in high energy

physics is not of paramount importance. Instead more focus is spent on the model

building itself, as more sophisticated models represent a more substantial increase
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in performance.

4.3 Neural networks as matrix element surrogate

models

Motivated by the ability of neural networks to model non-linear functions, as well

as the rise in GPU usage in high energy physics, it seems natural to leverage neural

networks to build surrogate models for matrix elements. There are multiple ad-

vantages to this: the time taken to evaluate matrix elements remains a bottleneck

in event generation, and so building a fast surrogate model would accelerate this

process. Once a fast and accurate surrogate model has been built, it can supplement

traditional matrix element generators to increase statistical power of the sample by

evaluating on many more phase-space points efficiently. This requires the accumu-

lated error in the surrogate model predictions to be lower than the statistical error

in the integration of matrix elements, which is a key motivation for building an

accurate surrogate model.

Related to the problem of modelling matrix elements, in recent years there has

been work in applying machine learning methods to learn: event weights [103],

cross-sections [190, 191], analytic expressions of squared amplitudes [192], contour

deformations for multi-loop integrals [193], and simplifying polylogarithms [194].

The task of building a surrogate model for matrix elements is in principle straight-

forward. The dataset usually consists of phase-space kinematics in the form of

four-momenta and the targets are the corresponding matrix elements for the process

of interest, at the desired order in perturbation theory. As already discussed in

Sections 3.1 and 3.3, phase-space samplers and matrix element generators are now

widely available so the acquisition of data is only limited by available computing

time. Even then, this is a bottleneck only for the most expensive of processes as

generation of data is trivial to parallelise. In the ideal case, the surrogate model
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would be faster than the matrix element generators, and sufficiently accurate. Neural

network predictions are fast by virtue of them being simple matrix multiplications,

and because they are predicted in batches, vectorisation is automatic10. Therefore

the difficulty in building a good surrogate model is in controlling the accuracy.

The complication in accurately emulating matrix elements on a per-point basis arises

due to the infrared divergent behaviour, as discussed in Section 2.1.4, which occurs in

corners of the phase-space (UV divergences have been removed via renormalisation).

Outside of these soft and collinear limits, the matrix element is a well-behaved

function that varies smoothly with phase-space. However, once these infrared regions

are approached, small changes in the kinematics can lead to very large changes in

the matrix element. This rapid response in the target function makes it difficult

to accurately model the non-divergent regions simultaneously with the divergent

regions, due to the disparity in scales. This problem becomes more apparent for

higher multiplicity final-states as there are more regions in phase-space for which

the matrix element diverges.

Emulation of matrix elements directly have been carried out in recent years in various

projects. Bishara and Montull showed [155] that it was possible to build a boosted

decision tree model to reproduce the matrix elements of the loop induced process

gg → ZZ with good accuracy – below 0.1% errors for fully differential distributions.

However, for this 2→ 2 process it was already demonstrated that training a single

model on the entire phase-space sampled was suboptimal compared to training a

number of regressors on subdomains of the phase-space.

This trend was observed in a future work by Aylett-Bullock and Badger [4] where the

authors emulated tree-level matrix elements and NLO QCD k-factors for e+e− → qq̄

+ up to 3 gluons. With a higher final-state multiplicity, controlling the infrared diver-

gences became a crucial challenge. Their approach was to first partition phase-space

into divergent and non-divergent regions, then subsequently weight the divergent
10Event generators currently generate events one at a time, however, neural network predictions

are still highly performant for single predictions.
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regions further according to partition functions based on FKS subtraction. In each

weighted partition, the authors trained a separate neural network, meaning that

their model was an ensemble of neural networks. The performance of this method

was shown to be an improvement over a single neural network trained on the unpar-

titioned phase-space, with good agreement in histogrammed distributions. However,

the per-point agreement was lacking.

This FKS partitioning method was applied in Ref. [156] for diphoton plus jet produc-

tion, where the authors presented a use case of the emulator with a novel interface

to the SHERPA event generator. This work was revisited in Ref. [157], where partic-

ular attention was paid to quantifying the uncertainty associated with the neural

network prediction. This uncertainty was modelled with a Bayesian neural network

which enabled the boosted training on regions of phase-space that were lacking in

accuracy. Additionally, the authors showed that accuracy was improved with a

more careful preprocessing of the training data compared to the previous treatment.

However, both of these works showed that increasing multiplicity from 2 → 3 to

2→ 4 represented a large decrease in accuracy.

To summarise, the current state of matrix element emulation has to trade-off higher

multiplicity processes with accuracy. The research in this thesis attempts to tackle

both of these problems by exploiting the factorisation property of matrix elements

(Sections 2.2, 2.2.3, and 2.2.4), to build into the emulator the universal singular

functions that describe the matrix elements in the soft and collinear limits (Sections

2.4 and 2.5). Since this method relies on the factorisation of matrix elements,

we collectively refer to these family of models as factorisation-aware models. In

Chapter 5, we show that by forming an ansatz out of a linear combination of Catani-

Seymour dipoles with fitted coefficients, tree-level matrix elements for e+e− → qq̄

+ up to 3 gluons can be emulated accurately to well below 1% per-point accuracy,

even for the highest multiplicity. Extending this study to the one-loop level is

done in Chapter 6, where antenna functions replace Catani-Seymour dipoles as the

ingredients in the ansatz. Accuracy was observed to be of the order 1% for the 5
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parton case, with good scaling to higher multiplicities.

The question of uncertainty of the neural network prediction is important as it

directly contributes to the total theoretical uncertainty. An alternative to quantifying

the uncertainty of the neural network prediction is to use the prediction in an

intermediary step of a full calculation, where the final prediction comes from the

accustomed matrix element providers. This was explored in Ref. [103], where it

was shown that with a surrogate model of the event weight it was possible to use a

double unweighting algorithm to increase the rate of event unweighting. In Chapter 7

we examine replacing the original emulator in that work with a factorisation-aware

model to study the potential gain factors with a more accurate model. As previously

mentioned, a consequence of this two-stage unweighting algorithm is that the exact

event weight has to be evaluated at some point, meaning the uncertainty of the

surrogate model is practically irrelevant.





Chapter 5

Emulation of tree-level e+e− to

jets matrix elements

5.1 Motivation

The capacity of neural networks to approximate intricate functions have already

been used to provide fast calculations of production cross-sections [190,191]. In this

chapter we investigate whether NNs can approximate production cross-sections more

differentially by replacing computationally expensive matrix element calculations.

The challenge with this endeavour is that matrix elements are plagued with numer-

ous divergences that arise from infrared divergences. In previous works [4, 156] a

combination of individual neural networks were used to approximate matrix elements.

In order to deal with the complex structure of the matrix elements the authors of

these studies divided the phase-space into sectors according to the infrared singu-

larities and trained networks on these sectors, thereby limiting the complexity of

the fit by isolating a single divergence per sector. All sectors were then combined

to make the final prediction. While the authors of the initial study for electron-

positron annihilation showed good agreement between the total cross-section and

histogrammed distributions both at LO and NLO, we note that the accuracy of the

interpolation at the level of individual points was a lot worse than when averaged
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in the histograms. In addition, the performance of the extrapolation outside of its

training phase-space (i.e. more singular configurations than those considered to fit

the model) is problematic.

In this chapter we present a different approach to the emulation of matrix elements

that incorporates the factorisation properties of the matrix elements in the interpol-

ation model and therefore is able to safely extrapolate the matrix element in regions

more singular than that covered by the data used for the training of the emulator.

We find that our interpolator also displays a much improved pointwise accuracy.

This chapter is organised as follows. Section 5.2 introduces our factorisation-aware

deep neural network model, Section 5.3 showcases our results with a comparison with

the model from Ref. [4] in Section 5.3.1, and an analysis of the performance of our

model in Section 5.3.2. To show that the neural network is both interpolating and

extrapolating well we show its behaviour on random trajectories in phase-space in

Section 5.3.3. Finally, the findings of this chapter will be summarised in Section 5.4.

Some discussion of specific details are collected in Appendix B so as not to distract

from the main discussion.

Computer code to reproduce the methodology detailed in this chapter is provided

at [195].

5.2 Fitting framework

For this work we consider the e+e− → Z/γ∗ → qq̄ + ng matrix elements for n up

to and including 3, which corresponds to events with up to 5 jets. We denote the

number of jets in the final state as nj.

We formulate the problem of emulating matrix elements as a supervised regression

task with a set of phase-space points’ kinematic information as input and the values

of the matrix element for each of these phase-space points as the targets. Section 5.2.3

describes how these matrix elements were obtained.
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A neural network can be seen as a function f(x; θ) = y, where f : Rd → R maps a

d-dimensional vector x of inputs onto the vector of outputs y, and where θ are the

parameters of the neural network which we aim to optimise such that the outputs y of

the neural network match the target as well as possible. The simplest implementation

of an emulator would be to take the input as the kinematic information of the phase-

space point and the output to be the full matrix element. Our approach modifies

both the input of the NN and its target, as described in the following sections.

5.2.1 Infrared divergences and dipole factorisation formula

It is well known that in soft and collinear limits the matrix element in (n+ 1)-body

phase-space factorises into a singular factor and a reduced matrix element in n-

body phase-space [34, 196] (Section 2.2). This factorisation was used by Catani and

Seymour [51] to construct subtraction terms for the real radiation part of an NLO

calculation (Section 2.4). They introduced a factorisation formula with universal

dipoles that smoothly interpolates between the soft and collinear limits to capture

the singular structure in these regions of phase-space. The dipole factorisation

formula can be written schematically as

|Mn+1|2 → |Mn|2 ⊗Vij,k , (5.2.1)

where Vij,k is a process independent, singular factor. It depends on the momenta

and quantum numbers (colour and spin) of partons i, j, k, where i is the emitter

parton, j is the emitted parton, and k is the spectator parton. For singly unresolved

limits, this factorisation isolates all the divergent behaviour in Vij,k and the factor

|Mn|2 is free of divergences, which makes it more amenable to emulation through

a neural network. The dipole factorisation formula forms the basis of our fitting

ansatz which we present in detail in Section 5.2.2.
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5.2.2 Fitting coefficients of Catani-Seymour dipoles

Instead of using a neural network to fit the matrix element directly, we use the

dipole factorisation formula to build an ansatz of the colour and helicity summed

(n+ 1)-body matrix element,

⟨|Mn+1|2⟩ =
∑

{ijk}
CijkDij,k , (5.2.2)

where Dij,k = ⟨Vij,k⟩/sij are the spin-averaged Catani-Seymour dipoles divided by the

corresponding Mandelstam invariant and Cijk are the coefficients we train the neural

network to fit. Cijk can be interpreted as the reduced matrix element in n-body phase-

space. Since the input for the Cijk function is the full (n+1) phase-phase information,

the neural network will also model the phase-space mappings usually introduced

in the factorisation formula. A schematic diagram illustrating our ansatz is given

in Figure 5.1. The sum over {ijk} denotes the sum over relevant permutations

of the external outgoing legs. More detail on this is given in Section 5.2.4. The

representation in Eq. (5.2.2) is not unique but through appropriate training, the

neural network takes advantage of the right ingredients to model the divergent soft

and collinear behaviour of the matrix elements.

This form of the ansatz allows the neural network to avoid fitting a rapidly varying

function over the phase-space, leaving the Catani-Seymour dipoles to reproduce the

correct singular behaviour, meaning a single neural network can interpolate a now

relatively smooth function over the phase-space.

5.2.3 Data generation

For all multiplicities, phase-space is sampled uniformly using the RAMBO algorithm [89]

with a centre-of-mass energy√scom = 1000 GeV. Phase-space points are subsequently

clustered using FastJet [197, 198] with the e+e− kt algorithm [199]. Global phase-

space cuts are applied according to the criterion ycut ≤ yij where yij are the Man-

delstam invariants normalised by scom. Jets are clustered exclusively where dcut was
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Figure 5.1: Schematic diagram of our neural network architecture. We have a
densely-connected neural network with inputs phase-space points, p,
and recoil factors, yij,k, propagated through hidden layers to the out-
put layer which outputs Cijk. These coefficients are combined with
their corresponding spin-averaged dipoles as in (5.2.2) to produce an
approximation of the matrix element. Diagram of neural network gen-
erated with the aid of [3].

supplied to FastJet. We took dcut = max(2× ycut, 0.01× scom). We explore three

different values of the global phase-space cut parameter, ycut = [0.01, 0.001, 0.0001],

to demonstrate the ability of the factorisation-aware neural network to effectively

interpolate in more and more singular regions of phase-space.

The generated phase-space points are fed to the NJet package [119] to calculate

colour and helicity summed tree-level matrix elements. All external legs have been

considered to be massless. The strong coupling constant has been set to αs = 0.11811,

and the electromagnetic coupling constant has been set to αe = 1.0/132.5070. The

mass of the Z-boson is taken to be mZ = 91.188 GeV. Below we quote the full set

of parameters entering the computer code used to evaluate matrix elements. We

do not quote the renormalisation scale as it does not affect the value of tree-level

matrix elements.

The phase-space points generated form the basis of our inputs to the neural network

with the matrix elements as our fitting targets. As with most machine learning
11This choice of the coupling is only valid for µ2

R = m2
Z and ideally, αs should have been evaluated

at the scale µR = 1000 GeV. This change would result in slightly different plots, but does not affect
the validity of the key findings of this chapter.
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Parameters

Masses

mb = 4.7 GeV
mt = 173 GeV
mτ = 1.777 GeV
mZ = 91.188 GeV
mW = 80.419 GeV
mH = 125 GeV

Couplings
αs = 0.118
αe = 1/132.507
GF = 1.166390× 10−5 GeV−2

Decay widths

Γt = 1.4915 GeV
ΓZ = 2.441404 GeV
ΓW = 2.0467 GeV
ΓH = 6.382339× 10−3 GeV

Table 5.1: List of parameters used for matrix element generation for all processes.
Masses and decay widths not listed explicitly have been set to zero.

applications, we need to demonstrate that our neural network emulator has managed

to generalise outside of the training dataset. We do this by firstly testing on an

independent testing dataset that is never exposed to the network during training, and

secondly by predicting on random trajectories in phase-space. Generation of phase-

space trajectories is described in Appendix B.1. We believe that accurate predictions

on random phase-space trajectories demonstrates the ability of the neural network

to extrapolate to never before seen data that is of a different nature to both the

training and testing datasets.

5.2.4 Neural network emulator

We construct our emulator using a densely-connected neural network built using the

Keras API [200] with the TensorFlow back-end [146] with GPU support. A simple

model architecture such as a densely-connected neural network allows for quicker

training and inference compared to more complicated setups.
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Inputs and outputs

Inputs to neural network As mentioned in Section 5.2.3, phase-space points

form the basis of the inputs to our neural network. We input the 4-momenta of

each outgoing parton as an (nj × 4) array with each component of its 4-momenta

standardised to zero mean and unit variance across the training dataset. Although

it would be feasible to omit the energy component of the momenta or leave one

outgoing parton out of the training due to our datasets being generated with a fixed

centre-of-mass energy, we find that keeping all momenta information to improve

the network’s performance. With the acceleration of training of neural networks on

GPUs, the slowdown in keeping all outgoing momenta components is negligible.

Along with the 4-momenta, we also include the recoil factors

yij,k = pipj

pipj + pjpk + pipk

, (5.2.3)

as input for relevant permutations of {ijk}. We take the natural logarithm of yij,k

before standardising them to a zero mean and unit variance across the training

dataset. We find that the addition of these recoil factors significantly improves

performance of our neural network emulator during training and testing. This

can be attributed to the fact that the coefficients Cijk rely heavily on the mapped

momenta in n-body phase-space, where yij,k is usually required when performing the

momentum mapping, see e.g. Ref. [51].

Following our ansatz in Eq. (5.2.2), we must provide spin-averaged Catani-Seymour

dipoles to the neural network. These dipoles are computed for all phase-space points

before training begins, but they are not passed directly to the neural network as

input features. Instead, they are only included in our custom loss function which

will be explained in the next subsection.

Accounting for spin-correlation in g → gg In addition to the Catani-Seymour

dipoles, we include other functions to account for the spin-correlations of g → gg
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and g → qq̄ splittings which are present in the factorisation formula but averaged

out in the spin-averaged dipoles. This effect becomes relevant when there are two

or more gluons in the final state. We seek to capture this behaviour by introducing

a pair of terms of the form

Sij sin
(
2ϕij

)
+ Cij cos

(
2ϕij

)
(5.2.4)

in the fitting ansatz for each gluon pair. The coefficients Sij and Cij are fitted by the

neural network along with the dipole coefficients. The angle ϕij is the azimuthal angle

of the decay particles in the plane perpendicular to the parent particle momentum.

The procedure to obtain this angle is described in Appendix B.2.

Outputs of neural network Denoting the raw output of our neural networks as

cijk, they are transformed to Cijk according to

Cijk = Scoef × sinh (cijk) (5.2.5)

where Scoef = Spred/Sdipole. Spred is the prediction scale, taken to be the minimum

of the matrix elements in the training set and Sdipole is the dipole scale, taken to

be the mean of all dipoles in the training set. These scaled coefficients are then

multiplied with their corresponding Catani-Seymour dipole Dij,k, and then summed

to produce an estimation of the matrix element. The targets are the matrix elements

corresponding to the phase-space point inputs in the training dataset. We transform

the targets according to

y = arcsinh
(
⟨|Mn+1|2⟩
Spred

)
, (5.2.6)

to reduce the orders of magnitude the matrix elements span. This performs a

similar transformation to taking the natural logarithm except that it remains a valid

transformation for negative arguments. We require this transformation to allow

negative values as arguments because the coefficients Cijk will not be restricted

to only positive values, meaning that during training there is a possibility for the
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outputs of the network to go negative. By reducing the span of the targets, the

neural network is able to more effectively pick out patterns across the entire training

dataset rather than a smaller region, helping it to generalise. This technique is

employed in other studies, see for example [201,202]. We would like to stress that we

do not expect, and have not observed, negative predictions for the matrix element

from the neural network, as this would be unphysical. y is finally standardised to a

zero mean and unit variance.

Training, validation, and testing datasets In Ref. [4], the authors used 500k

training samples to train their models. For a fair comparison of our respective

methods, we follow their methodology closely by constructing our models to be as

close as possible to theirs and generate training data by using code from their project

repository [203]12. Our model architectures will not be identical due to the difference

in our methods, details of our model architecture are given in Section 5.2.4. Results

of this comparison are presented in Section 5.3.1.

While training on 500k samples gives acceptable performance for the total cross-

section, per-point accuracy is lacking. We find that increasing the size of the training

dataset drastically improves the per-point prediction accuracy. Neural networks have

been shown to scale well with large datasets [204] and given that they only need to be

trained one time, it is useful to provide neural networks which have been pre-trained

with maximum accuracy in mind. In addition to improving the per-point accuracy,

we aim to overcome the problem of extrapolating to more singular regions. It is

well known that neural networks in general do not extrapolate well [205, 206], but

with our factorisation-aware model we show that letting the models learn about the

infrared structure of QCD alleviates this problem.

To demonstrate the scaling performance of our model, we present our main results

with models trained on more training samples where details of data generation are

given in Section 5.2.3. For each multiplicity and global phase-space cut we generate
12For our main results we generate all data using our own code
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a dataset consisting of 60 million phase-space points and their corresponding recoil

factors, dipoles, and matrix elements. We then split this dataset into training,

validation and testing datasets in a ratio of 4:1:1, meaning we have 40 million training

samples, 10 million validation, and 10 million testing samples. The validation dataset

is used to monitor model performance after each epoch of training, whereas the

testing dataset is used as an out-of-sample check of the model’s performance after

training is complete.

Architecture

We have a fixed base to our neural network architecture that is used for all processes

considered in this work, with variations in the number of nodes in the input and

output layers due to the change in number of outgoing partons. Our base neural

network consists of one input layer, eight hidden layers consisting of (64, 128, 256,

512, 768, 386, 128, 64) nodes, and one output layer.

The number of nodes in the input and output layers scales with the number of jets

in the final state. The input layer has (nj × 4) + nrel nodes, and the output layer

has nrel + (2 × nϕ) nodes, where nrel is the number of relevant permutations and

nϕ denotes the number of ϕij angles. Relevant permutations, {ijk}, are the set of

permutations for which their corresponding dipole could have the possibility to have

a meaningful contribution to the matrix element for a given process. They are a

subset of all the possible permutations for a given multiplicity, P (nj, 3). Relevant

permutations exclude any permutation where a quark or anti-quark are emitted (i.e.

j = q or q̄), as low energy quarks do not give rise to singularities in our processes

of interest. Furthermore, we can remove degenerate permutations where swapping

i = g and j = g has no effect as they have identical Catani-Seymour dipoles, e.g.

D34,1 = D43,1, so we only keep D34,1. The omission of these redundant permutations

speeds up training of the neural networks as we have fewer inputs, fewer dot products

to compute in the loss function, as well as speeding up inference due to there being

fewer dipoles to compute. For reference, we list the number of input and output
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Number of final state jets Input nodes Output nodes
3 (3× 4) + 2 = 14 2 + (2× 0) = 2
4 (4× 4) + 10 = 26 10 + (2× 1) = 12
5 (5× 4) + 27 = 47 27 + (2× 3) = 33

Table 5.2: List of the number of input and output nodes for every process we
consider.

nodes for each multiplicity we consider in Table 5.2.

The neural network weights are initialised according to the ‘Glorot uniform’ dis-

tribution as described in [177]. We use the tanh activation function for all nodes

in the hidden layers, and have a linear activation function for nodes in the output

layer. Initial learning rate is set to 0.001 and training mini-batch size is set to

4096. During training, we reduce the learning rate by a factor of 0.7 whenever

there is no improvement in validation loss for 20 epochs. We use the Keras callback

ReduceLROnPlateau to achieve this. Model training is terminated after the valid-

ation loss does not improve after 40 epochs of training using the EarlyStopping

callback in Keras. We find that reducing the learning rate during training helps

the model to converge to more optimal parameter sets. Since there are periods

during training where the validation loss stagnates, reducing the learning rate helps

to reach minima which otherwise wouldn’t be accessible due to a too large learning

rate. There is a possibility to reduce the learning rate too rapidly causing the model

to have suboptimal optimisation, but this is countered by the high patience we set

for the ReduceLROnPlateau callback.

These choices of hyperparameters were not results of extensive scanning of parameter

space and were chosen heuristically. Hyperparameters can be tuned more optimally

using more sophisticated methods as described in Section 4.2.4, but they all rely

on training a large number of models which is computationally expensive and time-

consuming.

Custom loss function To assess the model’s performance when training we need

to compare the network predictions with the targets. Our metric for the model’s
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regression performance is the mean squared error (MSE)

LMSE = 1
N

N∑
i=1

(yi − p(xi; θ))2 , (5.2.7)

where yi is the target for the i-th sample out of N samples, and p(xi; θ) is the

corresponding prediction obtained by combining the dipole factors and the azimuthal

dependency terms multiplied by their NN-learned coefficients. In order to correct

for the scale difference, we need to apply the transformation from Eq. (5.2.6) on the

neural network prediction first, with the same Spred that was used for scaling the

targets. We choose the mean squared error to measure the network’s performance

because it is sensitive to outliers in the target distribution. This is useful because even

though we have taken measures to reduce the span of the targets, the distribution

still contains a tail towards larger values which correspond to soft and collinear

configurations. These points have large contributions to the cross-section when

integrating over phase-space, meaning it is important that we accurately predict

these points. It is also convenient that the mean squared error tends to learn the

mean of the target distribution which, in our case, corresponds to the cross-section.

In addition to the MSE, we introduce a regularisation term to penalise non-sparse

representations of the matrix element. We know that in soft and collinear limits

there will be dominant dipoles that have large contributions to the matrix element

and there will be other dipoles with minimal contribution. We try to suppress the

coefficients associated with these minimally contributing dipoles with the penalty

term

Lpen = J
∑

i

D−2
i∑

j D
−2
j

|CiDi| (5.2.8)

where the sum over i replaces the sum over {ijk} for brevity, and ∑
j D

−2
j is the

sum over all dipoles for a phase-space point, acting as a normalisation factor. J is a

tunable parameter that scales the importance of Lpen versus LMSE. We found that

models perform the best when Lpen < LMSE, so J is tuned accordingly. It is possible

for the product CiDi to be large due to Di alone, so to penalise this we regularise
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the product rather than just the coefficient, since it is the product that contributes

to the matrix element.

The form of Lpen is reminiscent of the usual L1 regularisation which promotes sparse

models. Regularisation is usually included to prevent overfitting by making the

model make decisions on the most important features, reducing other features to

zero. In our case we would like the neural network to learn about the universal

factorisation property in QCD by making it choose a minimal amount of dipoles to

represent the matrix element in singular regions. In addition to preventing overfitting,

Eq. (5.2.8) helps the neural network to extrapolate to more soft and collinear regions

as it has learnt to choose which dipoles are relevant in specific configurations. For

non-singular configurations, the neural network is free to interpolate as there is not

a clear set of dipoles that dominate, meaning Lpen is small.

Combining the regression loss term and the regularisation term, our expression for

the total loss is

L = LMSE + Lpen , (5.2.9)

which is minimised through mini-batch gradient descent [207] with the Adam optim-

iser [181] to find optimal parameters θ for the neural network.

Ensemble of models Due to the random initialisation of weights in the neural

network, and the fact that the optimisation procedure is carried out on mini-batches

of the full training dataset, every neural network trained will be similar but non-

identical, even with identical model architecture. This is partly because the loss

surface is unlikely to be a completely smooth surface with a single global minimum,

instead it is likely to contain multiple local minima, meaning it would be optimistic

to believe that a single neural network is able to find the most optimal set of

parameters. Given that we don’t expect a single network to perform optimally, we

train a number of models and aggregate their predictions to create an ensemble of

models. Ensembling models is a well-known technique within machine learning, for
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a review see [208].

Each model in the ensemble is initialised with different weights according to the

‘Glorot uniform’ distribution, and trained on the same but randomly shuffled dataset,

resulting in models that have been exposed to different distributions of the training

data. After sufficient training, each model will have a distinct set of parameters

that have similar predictive power. The prediction for the matrix element is then

the mean of the outputs of all models in the ensemble13. Taking the mean will give

a more accurate and robust prediction as averaging over the different models will

reduce variance due to over/underfitting in the training phase. We choose to have 20

models in our ensembles because we begin to see diminishing returns in the accuracy

of per-point predictions after this. Another advantage of training an ensemble of

models is that we have a measure of uncertainty, due to the neural networks, on the

model predictions by calculating the standard error of the mean. That is we take

the standard deviation of predictions across the ensemble and divide by the square

root of number of models in the ensemble. This would not be possible with just a

single model.

By choosing to build an ensemble, there is a performance impact because we have to

spend more resources on training, and inference is slower due to having to predict on

all models in the ensemble. However, we believe that having a more robust prediction

with a measure of uncertainty outweigh these negatives. Additionally, each model

only needs to be trained once, and slowdown during inference is alleviated with

GPUs.

5.3 Results

In this section we present results for our matrix element emulator for e+e− anni-

hilation into up to 5-jets. We first compare results obtained with our method to
13If not explicitly stated, all references to neural network predictions henceforth refers to the

prediction from the ensemble of networks
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the tree-level results of Ref. [4], then proceed to exhibit results from larger NNs

that have been exposed to larger training datasets to demonstrate the full scaling

performance of our model. We then further demonstrate our method’s capability to

generalise to unseen regions of phase-space by assessing the prediction accuracy on

random phase-space trajectories that venture well outside of the phase-space region

used for the training.

5.3.1 Comparison with previous work

We compare our method to methods for tree-level matrix elements emulation from

Ref. [4]. The authors presented two methods: ‘single’ and ‘ensemble’ models. A

‘single’ model indicates that there is one neural network trained across the entire

phase-space, and an ‘ensemble’ model indicates that there is a group of neural

networks trained together with weighting functions that focus individual networks on

a specific divergent region of phase-space. In order to conduct a fair comparison, we

have made attempts to follow their training methodology closely by constructing the

neural networks at the centre of our model with a similar structure (e.g. same hidden

layer structure, same activation functions, same random initial weight distribution),

training methodology (same EarlyStopping criteria, same initial learning rate),

and have generated training datasets using code available on the authors’ project

repository with the relevant cuts. For the testing data, we thank the authors for

providing the same testing set used in their publication.

We compare the distribution of errors for the matrix elements predictions on 3 million

phase-space points. The distribution of errors is crucial because it informs us of the

performance of our emulators at the matrix element level. It is well known that a

neural network optimised with the mean squared error loss function has tendencies

to learn the mean of the target distribution [209], meaning the quality of the cross-

section prediction can potentially belie the point-to-point accuracy of emulators. In

Figure 5.2, we plot the distribution of errors for matrix element predictions where
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our method is labelled ‘Dipole NN’. We compare against the ‘single’ and ‘ensemble’

methods by training and testing using the corresponding datasets. Note that the

height of the peak for the dipole histograms are not illustrated in the figure as it

would not fit on the current axes but that is not important for this comparison.

We can see that the prediction-to-truth ratio distribution for our method is much

narrower and consistently peaked around the ideal accuracy, indicating our model

performs better on a per-point basis for all multiplicities. Even with this reduced

NN size we can see that incorporating the known divergent structure explicitly in the

model gives better results, as it uses the NN representation to learn a function that is

more suitably approximated by a NN. For example, even though the three jet matrix

element has a fairly trivial analytical structure, a standard fitting approach using a

NN typically struggles to reproduce divergences. In our approach the NN only needs

to emulate a non-singular modulation on top of the main divergent behaviour and

is therefore more suited to the task.

5.3.2 Main results

Here we present our main results which are obtained using the larger NNs described

in Section 5.2.4 along with larger training datasets described in Section 5.2.3. In

Figure 5.3, we show the error distributions on 10 million matrix element predictions

for each multiplicity and global phase-space cut.

Predicting on a large number of phase-space points allows us to explore singular

regions with higher statistics. The ratios (right) clearly highlight the symmetry of

the errors with Gaussian-like distributions tightly centred around 0. We have also

included the absolute percentage difference distribution for more easily interpretable

errors where the bulk of predictions are below the 0.1% error level. With increasing

multiplicity, the fitting gets more challenging due to the rise in the number of singular

regions in phase-space and the dimensionality of the phase-space, which can be seen

in the decrease in accuracy as we increase multiplicity. Although the errors do
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Figure 5.2: Error distribution compared to Figure 3 in Ref. [4], where data to
reproduce the histograms were provided by the authors. We plot the
log ratio of the matrix element as predicted by the neural network
ensemble and the value from NJet on the main axes for comparison.
The blue and orange dipole histograms representing our method are
cut off at the top on the main axes, but the most important feature is
the narrowness of the peak centred around the ideal value of 0. The
insets show the detailed distribution of our result on a linear scale.
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Figure 5.3: Error distributions for all three multiplicities (rows) and global phase-
space cuts. Left: absolute percentage difference between NN prediction
and NJet. Right: ratio of matrix elements from NN and NJet.
Axis scales have been fixed for each column of subplots for ease of
comparison between multiplicities.
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increase, practically all matrix element predictions are below the 1% error level

even for the most challenging scenario. Relaxing the global phase-space cut for the

training and testing set is also expected to decrease model performance as allowing

more singular regions of phase-space stretches the span of the target distribution

making it difficult to fit with a single neural network. Our method manages to retain

good performance while global phase-space cuts have been relaxed by a factor of 100

with only a small decrease in accuracy as illustrated in the left column of Figure 5.3.

This is because most of the span is accounted for by the dipole factors, while the

coefficients themselves vary less. In the 3-jet case there is negligible difference

between the different phase-space cuts while the 4 and 5 jet cases see less than a

factor of 10 difference in the peaks of the absolute percentage difference distributions

going from ycut = 0.01 to ycut = 0.0001.

By increasing the size of the training datasets we aim to expose the neural network

to more samples of the phase-space, thereby increasing accuracy on predictions

on as much of the phase-space as possible. Along with increasing the number of

training samples, the neural network architecture has been expanded to include more

hidden nodes and hidden layers. The extra hidden nodes and layers introduces more

parameters into the model allowing the neural network to utilise the additional data.

We found that to get good performance, we had to balance the size of the training

dataset used and the size of the network. i.e. a small network is not expected to

capture all the variations in a large dataset as easily as a larger network would, due

to the smaller number of parameters available to the network. Of course, we also

had to consider more physical constraints such as the time spent on training the

neural networks which limits both the size of training datasets and architecture. In

Figure 5.4, we show the improvements in accuracy of our main NNs compared to

the smaller NNs from Section 5.3.1. Although the training and testing data for the

smaller NNs are not identical due to differences in code used to generate the sets14,
14Although RAMBO is used for phase-space generation in both works, the selection criteria is

different (JADE algorithm vs kt algorithm).
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Figure 5.4: Comparison of error distributions of 10 million matrix element predic-
tions between NNs used in Section 5.3.1 labelled as ‘Small’ and our
larger NNs labelled as ‘Large’. Note that ‘small’ and ‘large’ NNs were
trained on 500k and 40m training samples, respectively. The testing
data is identical to those shown in Figure 5.3, for the relevant global
phase-space cuts.

for this comparison it suffices to show that the larger NNs are orders of magnitude

more accurate than the smaller NNs.

Improvements in per-point accuracy translate to improved total cross-section pre-

dictions. In Figure 5.5 we show the percentage differences of the NN cross-section

predicted compared to those from NJet. There is a similar trend of errors increasing

with increasing multiplicity and more inclusive phase-space cuts. All total cross-

section predictions are well below 0.1% error. There is a small systematic offset of

the neural network cross-section compared to the NJet cross-section that becomes

apparent under closer inspection. This was discussed in Ref. [4] and we provide an

additional explanation in Appendix B.3.

We also show in Figure 5.5 the estimated statistical Monte Carlo integration relative
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error for comparison. The fact that the accumulated error on the matrix element

is much lower than the MC error on the cross-section opens up the possibility to

use the knowledge the network has gathered on the matrix element to augment

the dataset to reduce the statistical error. Using such an augmentation technique

would introduce a new systematic error on the prediction related to the accumulated

network interpolation/extrapolation error, which would have to be balanced with

the reduction in the MC integration error. Figure 5.5 suggests that the dataset

could be augmented in such a way by a large factor before reaching a minimal

overall uncertainty. This opportunity might not seem very useful for this particular

example of leading order matrix elements where evaluations are relatively cheap

computationally, but if a similar degree of accuracy in the emulation can be obtained

for higher order matrix elements, this procedure could reduce the resource cost of

matrix element calculation significantly. We defer the study of this augmentation

method to future work.

Since we retain good performance by relaxing the global phase-space cut, we carry

out a simple test of generalisability by using the 5-jet ycut = 0.0001 model to infer

on the two datasets with harsher cuts. This is shown in Figure 5.6 where we see

that accuracy is comparable to the reference (blue) in both cases. In the case of

ycut = 0.01 (left), the model trained with more of the phase-space reduces errors

in the right-hand tail of the distribution. This proves that enlarging the training

phase-space can be done without having a large detrimental effect on the overall

accuracy, and can significantly reduce the number of large prediction errors.

5.3.3 Random trajectories

As another test of our emulator we assess the accuracy of our predictions on random

phase-space trajectories. These random phase-space trajectories are generated by

connecting two random points in phase-space continuously without excluding any

region of phase-space. This presents an interesting and challenging test of the
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Figure 5.5: Absolute percentage differences between NN and NJet cross-section
predictions in solid lines. Dashed lines represent the Monte Carlo error
expressed as a percentage error relative to the NJet cross-section cal-
culated with the corresponding number of phase-space points. Cross-
sections have been calculated at intervals of 100k points up to the full
10 million phase-space points in the test set. Axis scales have been
fixed to highlight the differences between multiplicities.
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Figure 5.6: Left: error distribution on the ycut = 0.01 testing dataset as predicted
by ycut = 0.01 and ycut = 0.0001 models. Right: error distribution
on the ycut = 0.001 testing dataset as predicted by ycut = 0.001 and
ycut = 0.0001 models. We use a logarithmic vertical axis to highlight
the right-hand tail of the error distributions.
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interpolation and extrapolation abilities of the NNs as some parts of the trajectories

may lie outside of the phase-space region of the training datasets. We show the results

for 5-jet trajectories as this is the highest multiplicity we considered, predictions

on lower multiplicities are better-behaved. We investigated 50 different random

trajectories. For the discussion in this section we chose one that contains many

interesting features, namely the matrix elements span many orders of magnitudes

and there are distinct peaks in the trajectory. In Figure 5.7 we show the predictions

by the three 5-jet models trained on data with different global phase-space cuts for

this trajectory. The left column shows the actual matrix element prediction and

the right column shows the ratios of the prediction to NJet. We analysed the

predictions for the 50 random trajectories and measured the fraction of their length

where the accuracy falls within given intervals. Table 5.3 shows the result for the

regions of phase-space where training data was available, and those falling beyond

the data available to the model.

NN predictions are depicted as coloured scatter plots where the colour indicates the

value of the minimum sij between any pair of final-state particles at that phase-space

point. To more easily visualise the extrapolation performance of the NNs we highlight

the regions where the minimum sij goes below the global phase-space cut applied

to the training set the models were trained on, for each cut made. The regions of

the plots where this occurs have been coloured in red. With these trajectories being

completely randomly selected in phase-space there is a possibility for there to be

doubly singular points or worse. To check for this we used FastJet to cluster the

phase-space points in the same way we did for data generation, see Section 5.2.3.

The pink regions indicate points which have two separate single unresolved limits, we

label this configuration ‘Single+single’. The purple regions indicate points which have

a double unresolved limit (i.e. three particles in one jet), we label this configuration

‘Double’. Although not seen in Figure 5.7, there are points which have both a double

unresolved limit and a separate single unresolved limit, we label this configuration
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Figure 5.7: Left: matrix element prediction of random phase-space trajectory.
Right: ratio of NN and NJet. NN predictions are coloured by min-
imum sij pair. Red bands indicate min(sij) is smaller than ycut. Pink
bands indicate where there are two separate single unresolved limits.
Purple bands indicate double unresolved limits, i.e. three particles in
one jet. The pink, and purple bands represent regions of phase-space
which would have been excluded by FastJet.
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Region ycut Frac. of pts Pts outside 0.1% Pts outside 1% Pts outside 5%

White
0.01 36.5% 1.9% 0.0% 0.0%
0.001 74.8% 0.98% 0.0% 0.0%
0.0001 78.4% 1.9% 0.0% 0.0%

Pink
0.01 27.6% 58.2% 25.2% 12.9%
0.001 13.5% 31.7% 6.5% 0.53%
0.0001 13.5% 38.9% 9.3% 2.8%

Purple
0.01 7.2% 69.1% 32.1% 20.3%
0.001 3.6% 31.3% 7.9% 4.5%
0.0001 3.6% 30.5% 1.6% 0.0%

Blue
0.01 1.5% 79.3% 41.6% 0.77%
0.001 0.4% 29.2% 0.0% 0.0%
0.0001 0.4% 76.4% 0.0% 0.0%

Red
0.01 52.5% 76.2% 38.6% 20.5%
0.001 7.0% 69.9% 25.2% 9.5%
0.0001 1.1% 90.8% 33.8% 1.5%

Table 5.3: The performance of trajectory predictions separated for white, pink,
purple, blue, and red regions. We present the percentage of points
that lie outside 0.1%/1.0%/5.0% errors. Fraction of points indicates
the percentage of points that lie in the region of interest, out of all
phase-space points from the 50 random trajectories we examined.

‘Double+single’ and indicate is as a blue region15. We do not include the quark-anti-

quark invariant in defining these regions as there is no associated infrared divergence.

The pink, purple, and blue bands indicates regions of points which would have been

discarded for our training and testing datasets.

Accuracy is high when the minimum sij of the trajectory is not below any ycut, i.e.

when the NN prediction curve is blue. This is demonstrating that the NNs are

interpolating well. Performance generally declines in the red, pink, purple, and blue

regions, which is not unexpected as the NNs are extrapolating. Given that this

trajectory has regions which go more collinear than any points the networks have

been exposed to before, we would expect the networks which have been trained with

the smallest ycut parameter to perform best. We see that this is the case as accuracy

is acceptable in the ycut = 0.0001 models, including in the regions where the NN is

extrapolating.
15Another random phase-space trajectory is presented in Appendix B.4 which contains these

‘double+single’ regions.
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In summary, we have shown that the neural networks show acceptable performance

on random phase-space trajectories which are of different nature to the datasets

used to train and test the networks. Given that the general performance of the

NNs of all three phase-space cuts are similar, it would make sense to use the models

trained with the most inclusive phase-space cuts as it has been exposed to more of

the complete phase-space.

5.4 Conclusion

In this chapter we presented a new strategy to emulate matrix elements using a neural

network. By leveraging the knowledge of the factorisation properties of the matrix

elements our model is able to extrapolate well outside of its training range. We

showed that using this method we obtain significantly improved per-point accuracy

than obtained in previous works. We also showed that the per-point accuracy of

the model is not significantly affected by the generation cut for the training, which

means that it would be possible to train our emulator on very inclusive cuts, allowing

them to be applied in a multitude of settings.

The accuracy of the emulation could allow users to augment the training dataset to

reduce the MC error of cross-sections or distributions while using fewer computing

resources compared to the original calculation. We leave the investigation of this

aspect to further work.

Our method was demonstrated in this chapter using a tree-level process, but it could

be generalised to higher order matrix elements by adapting the set of ingredients

made available to the network for the interpolation. This is explicitly shown in the

next chapter for the same process at NLO QCD.



Chapter 6

Emulation of e+e− to hadrons

NLO k-factors

6.1 Motivation

In the previous chapter we described in detail the strategy for emulating tree-level

e+e− annihilation matrix elements by exploiting the factorisation property of matrix

elements. The inclusion of the dipole functions in the ansatz meant that the infrared

divergent behaviour did not have to be learnt solely by the neural network itself,

instead the task was reduced to learning the more well-behaved coefficients of the

dipole functions.

A natural extension to the work presented in the previous chapter is to examine

the emulation of the one-loop matrix elements for the same family of processes. In

general, loop matrix elements are computationally much more expensive than their

tree-level counterparts, meaning that the potential time saved by using a fast and

accurate emulator over a more traditional one-loop provider is much higher than

in the tree-level case. In this chapter we explore this avenue by using a similar

procedure to Chapter 5 to construct a factorisation-aware model in order to emulate

NLO QCD k-factors.
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The layout for this chapter is as follows. In Section 6.2 we detail the fitting procedure.

Namely, we briefly recap antenna functions, as well as describe factorisation of matrix

elements within the antenna function framework in order to arrive at an ansatz of

the NLO k-factor. The construction of the neural network emulator is described

in Section 6.3, along with the process of training, testing and deploying the model.

In Section 6.4 we present the results of the emulator demonstrating its speed and

accuracy, where we see significant speed gains whilst keeping the accuracy to the 1%

level. We conclude this chapter by summarising in Section 6.5.

6.2 Fitting framework for one-loop matrix

element

In this chapter we consider the emulation of one-loop e+e− → Z/γ∗ → qq̄ + ngg

matrix elements for ng up to and including 3, which corresponds to events with up

to 5 partons. We denote the number of final-state partons as n. Instead of emulating

the matrix element itself we build a surrogate for the related so-called k-factor

kn =
2ℜ

{
M(n,0)M(n,1) ∗

}
|M(n,0)|2

≡ |M
(n,1)|2

|M(n,0)|2
, (6.2.1)

whereM(n,ℓ) denotes the amplitude for a process with n final-state partons, at loop-

order ℓ. We will refer to the interference term in the numerator as the one-loop matrix

element henceforth and introduce this notation for brevity. The sum/averaging over

colour and helicity is implicit for both the one-loop matrix element and the tree-level

matrix element. The numerator in Eq. (6.2.1) is the finite part16 of the interference

between the tree-level and one-loop level matrix element, where the conventional

dimensional regularisation (CDR) scheme is used.

We choose to emulate the k-factor instead of the one-loop matrix element directly

because the division of the tree-level matrix element cancels the infrared divergences
16See Section 3.2 and Appendix A.1 in Ref. [114] for explicit definitions.
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occurring for soft and collinear external particles. However, there are still logarithmic

divergences that remain from the loop integral. Another advantage is that the scale of

the k-factors is naturally of the order unity, making it more amenable for emulation.

In the following, we describe how we apply the same approach as the factorisation-

aware formalism introduced in Chapter 5 to encapsulate the more complex structure

of the one-loop matrix element to construct an accurate emulator for the one-loop

k-factors that is robust against single collinear or soft divergences.

An additional complication with one-loop matrix elements is that they are evaluated

at a given renormalisation scale. This dependence can be derived from first prin-

ciple, but we choose to instead incorporate this dependence into our neural network

emulator as an input. This method, so-called parametric neural networks, has been

utilised in other contexts [210,211].

6.2.1 Antenna functions

In building an emulator for tree-level matrix elements in Chapter 5, Catani-Seymour

dipoles [51] are sufficient to explain all single divergences arising in phase-space. For

one-loop matrix elements we utilise antenna functions (see Section 2.5) which fulfil

a similar purpose of providing a set of functional behaviours to build the matrix

element out of.

Antenna functions as given in Ref. [52] are derived from physical colour-ordered

matrix elements and by construction have the correct infrared behaviour when

specific sets of particles become unresolved. For our purposes we require the set of

antenna functions describing the scenario of one particle becoming unresolved at

tree-level and one-loop level. Namely, following the notation of Ref. [52], these are

the leading colour three-parton antenna functions X0
ijk and X1

ijk, respectively. X0
ijk

describes all configurations where parton j becomes unresolved, where i and k are the

hard partons. The one-loop counterpart, X1
ijk, correctly reproduces the single soft

and collinear singularity structure appearing in the one-loop singular functions (see
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Section 2.2.4). From this description it is clear that the antenna functions depend

on the momenta in the full (n+ 1)-body phase-space.

In one antenna function, there are two hard partons which can both radiate off one

unresolved parton. This is in contrast to the dipole function which only has an

unresolved parton emitting from one parton. In that sense, a single antenna function

is a linear combination of two dipole functions where the emitter and spectator are

swapped. The advantage of this is that there are generally fewer antenna functions

to consider, especially when the multiplicity increases.

Although the one-loop matrix elements data that we use for fitting are not colour-

ordered, the antenna functions nevertheless provide a set of useful functions that

allow the neural network emulator to form accurate approximations of the one-loop

k-factor.

Since we are emulating the finite part of the one-loop matrix element we need to

take care to extract all the finite parts from the one-loop antenna functions X1
ijk.

The full expression for the one-loop antenna we use is given as

X1,F
ijk = Finite(X1

ijk) + 11
6 log

(
µ2

R

sijk

)
X0

ijk + F(I(1)
ij (ϵ, sij))X0

ijk . (6.2.2)

where the superscript F in X1,F
ijk denotes the one-loop antenna function with all finite

parts extracted17. Most of the finite parts of the antenna function are extracted in

the term Finite(X1
ijk). The second term adjusts the renormalisation scale of the

antenna function from the invariant mass of the antenna partons, sijk = sij +sik +sjk,

to the renormalisation scale the one-loop matrix element is evaluated at, µ2
R. The

final term extracts the remaining finite parts from the singularity operators, where

their expressions are explicitly given below for different partonic splittings. The

finite part of the singularity operators can be written as

F(I(1)
ij (ϵ, sij)) = ϵ0 + ϵ1ℜ(z) + 1

2ϵ2ℜ(z2) , (6.2.3)

17Henceforth we refer to X1,F
ijk as the one-loop antenna function, unless explicitly stated otherwise.
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where

z = zlog(µ2
R)− zlog(−sij) (6.2.4)

and coefficients are given as

ϵ0 = π2

24 ,

ϵ1 =



−5
6 , if ij = qg or gq

−3
4 , if ij = qq

−11
12 , if ij = gg

(6.2.5)

ϵ2 = −1
2 .

The zlog function extends the logarithm for all real-values

zlog(x) =


log(x), if x ≥ 0

log(|x|)− iπ, otherwise .
(6.2.6)

6.2.2 Factorisation of matrix elements

In the following, we recap the factorisation of matrix elements as seen in Sections 2.2

and 2.2.4 within the antenna function framework.

Tree-level matrix elements in (n+1)-body phase-space can be factorised in the single

soft and collinear limits as

|M(n+1,0)|2 −→ X0
ijk|M(n,0)|2 , (6.2.7)

where |M(n,0)|2 is the reduced matrix element in n-body phase-space and X0
ijk is

the three-parton tree-level antenna function introduced in Section 2.5. The one-loop

matrix element similarly exhibits factorisation in the soft and collinear limits. This

has been extensively studied [53, 55, 56, 58, 59] with the splitting kernels computed

[52,53,66]. Schematically, in the single soft and collinear limits, the one-loop matrix
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Figure 6.1: Diagram illustrating factorisation of one-loop matrix element. In a
singly unresolved limit, the (n + 1)-body one-loop matrix element
tends to the sum of a n-body one-loop matrix element multiplied by
a tree-level splitting kernel and an n-body tree-level matrix element
multiplied by a one-loop splitting kernel. The tree-level elements are
drawn as a fully filled in circle, while the one-loop elements are drawn
as a donut shape.

element can be deconstructed into

|M(n+1,1)|2 −→ X0
ijk|M(n,1)|2 +X1,F

ijk |M(n,0)|2 , (6.2.8)

where X1,F
ijk is the three-parton one-loop antenna function. This equation can be

thought of as a tree-level splitting kernel multiplied by a one-loop reduced matrix

element, plus a one-loop splitting kernel multiplied by a tree-level reduced matrix

element. This is illustrated pictorially in Figure 6.1.

6.2.3 Ansatz for the k-factor

Given that both the tree-level and one-loop level matrix element factorise in the soft

and collinear limits, we can rewrite the (n+ 1)-body k-factor in these limits as

kn+1 −→
X0

ijk|M(n,1)|2 +X1,F
ijk |M(n,0)|2

X0
ijk|M(n,0)|2

kn+1 −→
|M(n,1)|2

|M(n,0)|2
+
X1,F

ijk

X0
ijk

(6.2.9)

kn+1 −→ kn +
X1,F

ijk

X0
ijk

,

where we see that the k-factor tends to a sum of the reduced k-factor, kn, and a ratio

of antenna functions. By summing over ratios of antenna functions for all limits of

a given process, we can construct an ansatz for the k-factor over all of phase-space.
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n Tree-level antenna One-loop antenna {i,j,k} permutations
3 (qq̄g) A0

3(q, g, q̄) A1
3(q, g, q̄) (1, 3, 2)

4 (qq̄gg) A0
3(q, g, q̄)

D0
3(q, g, g)

A1
3(q, g, q̄)

D1
3(q, g, g)

(1, 3, 2), (1, 4, 2)
(1, 3, 4), (2, 3, 4)

5 (qq̄ggg)
A0

3(q, g, q̄)
D0

3(q, g, g)
F 0

3 (g, g, g)

A1
3(q, g, q̄)

D1
3(q, g, g)

F 1
3 (g, g, g)

(1, 3, 2), (1, 4, 2), (1, 5, 2)
(1, 3, 4), (1, 3, 5), (1, 4, 5),
(2, 3, 4), (2, 3, 5), (2, 4, 5),

(3, 4, 5)

Table 6.1: List of antenna functions we use for each process, and the full list of
{i,j,k} permutations, where q = 1, q̄ = 2, g = 3, 4, 5.

This informs our ansatz for the k-factor, which is given as

kn+1 = C0 +
∑

{ijk}
Cijk

X1,F
ijk

X0
ijk

(6.2.10)

where C0 and Cijk are coefficients fitted by the neural network. C0 is an additive

term aiming to model the reduced k-factor, and Cijk are multiplying the ratio of

antenna functions to fit the single collinear, and soft limits in multiple regions of

phase-space. The sum over {ijk} denotes the sum over the relevant permutations

of final-state partons, accounting for all the relevant singular limits of the k-factor.

This sum allows the neural network to make use of all the provided antenna functions

to make an approximation of the colour-summed matrix element. The full set of

antenna functions which we implement into our model is detailed below.

The antenna functions are generically written as Xℓ
ijk, which in practice is replaced

with specific antennae containing either qgq̄, qgg (q̄gg), or ggg, which are referred to

as A, D, and F antennae, respectively. The antennae listed in Table 6.1 are sufficient

to describe all infrared singularities in the partonic processes we consider.

Since the k-factor has infrared divergences arising from unresolved partons in the

final-state being removed, and with the appropriate antenna functions accounting

for the logarithmic divergences from the loop momenta, the challenging task of

fitting a rapidly varying function over phase-space is reduced to fitting a group of

well-behaved coefficients that dictate how to suitably utilise the antenna functions.
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6.3 Building the neural network emulator

Dataset generation

Phase-space is sampled uniformly using the RAMBO algorithm [89] with a centre-of-

mass energy √scom = 1000 GeV. The global phase-space generation cut is set to

ycut = 0.0001. We have shown in [5] that the accuracy of the emulation is not greatly

affected by the generation cut, but the extrapolation performance is increased with

a more inclusive cut, so we have chosen this value. FastJet [197, 198] is used to

exclusively (dcut = 0.01 × scom) cluster final-state jets with the e+e− kt algorithm

such that there is at most a single unresolved parton.

For each phase-space point generated, we sample a renormalisation scale, log(µR),

from a uniform distribution with end points at [log(√scom/4), log(4√scom)]. In other

words, we sample the renormalisation scale logarithmically. We observe that the

neural network manages to learn the renormalisation scale dependence well therefore

opt to sample µR in a wider range than is usually used for the conventional scale

variations which varies µR up and down by factors 2.

Generated phase-space points are fed to MADGRAPH [114, 115] to compute the

tree-level and one-loop level matrix elements. For each phase-space point, we use

the corresponding renormalisation scale sampled and evaluate the strong coupling

constant at this scale using the NNPDF-4.0 NNLO PDF set [30] with the LHAPDF6

interface [26]. The full set of parameters used to evaluate the matrix elements are

quoted in Table 6.2.

We generate 1100k data points in total, using 100k points for training and validation,

leaving 1 million points for independent evaluation of model performance. Training

on a limited dataset is a realistic scenario for processes which are prohibitively

expensive, and we show that it is possible to build an accurate emulator with the

relatively small number of data points. Note that because we are sampling µR

along with phase-space simultaneously, there is an extra dimension in the sampled
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Parameters
Scales µR sampled logarithmically in range [log(√scom/4), log(4√scom)]

Masses

mb = 4.7 GeV
mt = 173 GeV
mτ = 1.777 GeV
mZ = 91.188 GeV
mW = 80.419 GeV
mH = 125 GeV

Couplings
αs = αs(µ2

R)
αe = 1/132.507
GF = 1.166390× 10−5 GeV−2

Decay widths

Γt = 1.4915 GeV
ΓZ = 2.441404 GeV
ΓW = 2.0467 GeV
ΓH = 6.382339× 10−3 GeV

Table 6.2: List of parameters used for matrix element generation for all processes.
αs is evaluated with the NNPDF-4.0 NNLO PDF set. Masses and
decay widths not listed explicitly have been set to zero.

space. This means that the 100k training points we have are not comparable to

100k training points if we had not sampled over µR. In practice, we have found that

sampling over µR has a small impact on accuracy but opt to go this route to have

the flexibility to predict over a range of µR.

Inputs to model

As inputs to the neural network we provide the 4-momenta of all final-state partons.

The renormalisation scale enters the network as log(µR) as we expect the dependence

on µR to be in the form of a logarithm. Following Ref. [5] we include the phase-

space mapping variables to aid the network in learning the reduced matrix element

information. Namely, we include as inputs r and ρ from Ref. [53]

rijk = sjk

sij + sjk

, (6.3.1)

ρijk =

√√√√1 + 4r(1− r)sijsjk

sijksik

, (6.3.2)
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where i and k are the hard radiating partons, and j is the unresolved parton. We

include the subscript ijk on r and ρ to represent the explicit dependence on the

specific set of momenta used to calculate them. To improve training, we transform

these variables as r → log(r) and ρ→ log(ρ− (1− ε)), where ε is a small constant

added to improve the numerical stability. It is taken to be ε = 10−8. An additional

input that we have observed to increase accuracy of the emulator are the Mandelstam

invariants. These are fed into the model as log(sij) for all pairs of final-state particles.

All inputs are standardised to zero mean and unit variance.

Outputs of model

The outputs of the neural network are the fitted coefficients C0 and Cijk in Eq.

(6.2.10), which when combined with the antenna functions produces an approxima-

tion of the k-factor. We then recover the one-loop matrix element by multiplying by

the corresponding tree-level matrix element. We do not provide the tree-level matrix

element in the emulator as the evaluation time is generally much lower than that

of the one-loop matrix element, and it is usual for one-loop matrix elements to be

evaluated at phase-space point sets where the tree-level matrix element has already

been unweighted, so that only the k-factor is required.

To train the network we compare the target k-factors from MADGRAPH to the

predictions from the neural network in the loss function by providing the network

with the antenna functions. The target distribution is standardised to zero mean

and unit variance. Since the k-factors are of order unity we do not need to do any

additional pre-processing to aid the network in training.

Neural network architecture

A schematic of the neural network model is given in Figure 6.2. We build the neural

network emulator with Keras [200] and TensorFlow [146]. The emulator is a dense

neural network with three hidden layers of 64 nodes each. This network size was
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Figure 6.2: A schematic diagram of the neural network emulator. The emulator
is a dense neural network with inputs: phase-space points, p, mo-
menta mapping variables, rijk and ρijk, kinematic invariants, sij, and
renormalisation scale µR. The outputs of the network are the fitted
coefficients, C0 and Cijk, as given in Eq. (6.2.10).

chosen with consideration given to the number of training samples and to reduce the

discrepancy between training and validation loss (i.e. a larger network is more prone

to overfitting on the training set if there is insufficient data to fit the additional

weights). For the remaining hyperparameters we summarise the network architecture

in Table 6.3.

We choose to use the mean absolute error (MAE) as the loss function for training

because it is precisely the error measure we would like to minimise. The error for

one prediction is given as

ktrue − kpred = |M
(n,1)|2true − |M(n,1)|2pred

|M(n,0)|2true
= ∆ , (6.3.3)

where the error in the one-loop matrix element normalised by the tree-level matrix

element is what we want the neural network to minimise. Since k-factors are a ratio

of matrix elements, the numerical values it can take are not unique for a given value

of the tree-level matrix element and/or one-loop matrix element. For example, for

two similar values of the k-factor, the scales of the matrix elements going into each

ratio may be vastly different. To ensure that the network remains accurate for large
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Table 6.3: Hyperparameters of the neural network and their values.

Parameter Value
Hidden layers 3
Nodes in hidden layers [64, 64, 64]
Activation function swish [173,174]
Weight initialiser Glorot uniform [177]
Loss function MAE (k-factor), MSE (one-loop matrix element)
Batch size 256
Optimiser Adam [181]
Learning rate 10−3

Callbacks EarlyStopping, RatioEarlyStopping
ReduceLROnPlateau

values of the tree-level matrix element, where corresponding corrections contribute

more to the total cross-section, we weight the training points by

wi = log
(
|M(n,0)|2i

min(|M(n,0)|2i )

)
, (6.3.4)

where the i index denotes training samples. Although we use the MAE on the k-

factors as the training loss, we terminate model training based on the one-loop matrix

element accuracy. This is done by monitoring the mean squared error (MSE) between

the model prediction and corresponding truth value at the end of each training epoch.

This takes advantage of the compact k-factor distributions for training purposes, but

bases model selection on the accuracy for the physical one-loop matrix elements.

To reduce the effects of overfitting we have two EarlyStopping criteria: the first is to

stop training once the validation loss has not improved in 100 epochs, and the second

is a RatioEarlyStopping which terminates training if the ratio of training loss to

validation loss drops below a certain threshold. We take this threshold to be 0.9.

We also use the ReduceLROnPlateau callback as a way to adapt the learning rate

during training. The learning rate is reduced by a factor of 0.7 whenever validation

loss plateaus with a patience of 20 epochs. We find that with these hyperparameters

we achieve a balance of reducing overfitting and quick training times. On average

the models train in approximately 20 minutes on an Nvidia P100 GPU.
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Although we build and train our model using TensorFlow, we deploy the model using

the Open Neural Network Exchange (ONNX) runtime [212] with the CUDA execution

provider to run predictions on an Nvidia P100 GPU. With the optimised operations

in the ONNX runtime, we see that compared to TensorFlow the model inference time

is reduced by an order of magnitude or more. Another advantage is that it gives

users the flexibility to move the pipeline away from TensorFlow on Python to a more

generic interface to the neural network model. One example would be to integrate

the ONNX model into a C++ workflow for use with current event generators to replace

the one-loop provider with a neural network emulator.

In addition to the CUDA execution provider, we will use the ONNX runtime CPU

execution provider to compare with MADGRAPH for a comparison of single CPU

core performance. This will be the closest to a real world benchmark as event

generators typically generate events on a single core.

Although we find that the neural network models converge well, to account for

stochasticity in the training, the random initialisation of model parameters, and to

reduce variance on predictions, we initialise 20 models for training and use the mean

of these models as our model prediction. This ensembling will also give a measure

of the uncertainty due to the neural network optimisation, by using the standard

deviation of the 20 replica model predictions.

We plot in Figure 6.3 the losses of the 20 replica models for the 5 jet process, where we

have plotted the loss for the k-factor (MAE) and the one-loop matrix element (MSE).

We can see that the models have all converged to a similar point when training is

terminated. The noise in the validation loss at the beginning of training can be

attributed to the fitting of the coefficients: when the model is learning how to pick

the relevant combination of antenna functions there can be large variations in the

prediction, however, the variations become much smaller once the model learns the

factorisation properties and converges. We can see the variations in the validation

loss are small at the end of training, and that there is not a large discrepancy between

the training and validation losses, as enforced by the RatioEarlyStopping callback.
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Figure 6.3: Training and validation losses of the 20 independent initialisations of
the ensemble replicas plotted as individual curves for the 5 parton
model. We plot the MAE loss for the k-factor and the MSE loss for
the one-loop matrix element. The scale difference between the MAE
and MSE losses is a consequence of the form of the loss functions and
is not surprising. We see that the replica models all converge to a
similar point with the validation loss being close to the training loss
when training is terminated. The step feature in the training loss is
due to the ReduceLROnPlateau callback.

6.4 Results

6.4.1 Error distributions

In this section we present results for our NLO QCD k-factor emulator for e+e−

annihilation into up to 5-jets. First we show a comparison between our model

described in Section 6.3 which we label ‘antenna’, and a ‘naive’ model with no

factorisation properties built into the emulator: a densely connected neural network

with the parameters given in Table 6.3 that directly predicts the k-factor. For the

‘naive’ models we train with the MAE loss on the k-factors with no modifications

and terminate training based on this loss. As with the ‘antenna’ models, we also

ensemble 20 individual replica models for the ‘naive’ model predictions. In Figure 6.4

we compare histograms of ∆ for all final-state multiplicities between these two

models. It is immediately clear that building in the factorisation structure of the

matrix elements greatly increases accuracy, with increasing relative improvements

for the higher multiplicity cases. The ‘antenna’ error distributions are symmetric,
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Figure 6.4: Error distribution in terms of ∆ for all multiplicities. ‘Antenna’ model
is as described in this article, and ‘naive’ model is a simple densely
connected neural network model without any factorisation properties
built in. We keep the horizontal axis scale fixed for all subplots to
make it easier to compare accuracy across the different multiplicities.

strongly peaked around the ideal value of 0, and with tails falling off rapidly. We see

the general trend of increasing multiplicity decreases accuracy, however we observe

that the bulk of the 5 jet final-state is within percent accuracy and with the lower

multiplicities well below this.

To show that we are accurate across the entire span of the tree-level matrix elements,

and to have a closer inspection of the tails of the ∆ distribution, we plot a 2d

histogram of ∆ against the value of |M(5,0)|2 in Figure 6.5. The bulk of phase-space

points are contained in the high population bins depicted in yellow, representing the

peaked distribution seen in Figure 6.4, whereas the green to purple coloured bins

represent the tails of the low population ∆ distribution. We see that the accuracy

stays contained inside a band and does not flare out as the magnitude of the tree-level

matrix element increases. This shows that we manage to fit the k-factor even in the

infrared and collinear limits where the tree-level matrix element becomes large. On
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Figure 6.5: Left: ∆ error distribution plotted against the tree-level matrix ele-
ment. Yellow bins indicates high density regions of points and purple
bins indicates single points. Right: marginal distribution of tree-level
matrix elements. This illustrates that the network is able to reproduce
a good approximation across all sampled phase-space.

the right-hand side subplot we plot the distribution of the tree-level matrix elements

where we can see that that even with relatively few training points in the tails, the

emulator is still able to predict these regions as well as where there is more abundant

data.

6.4.2 Renormalisation scale dependence

In Figure 6.6 we show that our emulator has learned the renormalisation scale

dependence, independent of the antenna functions. To produce a trajectory we first

sample a phase-space point with the same cuts as described in Section 6.3, then

we evaluate the k-factor at this phase-space point with µR varying from √scom/8

to 8√scom. We choose to sample from a wider range than used for training to

examine the µR extrapolation performance. After subtracting the sum of the antenna
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Figure 6.6: Renormalisation scale trajectories for all multiplicities. These traject-
ories are predictions of the k-factor with the sum of antenna functions
subtracted to show renormalisation scale dependence in the remainder.
Each trajectory is at one phase-space point sampled from RAMBO, with
µR spanning the range [√scom/8, 8

√
scom]. Each trajectory is com-

posed of 1000 points. The region that µR was uniformly sampled from
for training is indicated as a red band. The error bands on the NN
predictions are too small to be seen.
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functions we see that the remainder still has a dependence on the renormalisation

scale that is accurately captured by the neural network. As with the ∆ distribution

plots in Figure 6.4, there is a slight decrease in accuracy as we increase the multiplicity,

however, the ratios and differences are well-behaved throughout the entirety of the

trajectories inside the range of training data. The only anomaly occurs when the

trajectories cross zero, causing spikes in the ratios, but the difference in truth and

prediction remains well-behaved around these regions. Outside of the training range

we see an acceptable extrapolation, but given that the training range is wider than

the range in which the renormalisation scale is normally varied for scale variations,

we do not find this problematic.

6.4.3 Total cross-section predictions

In Figure 6.7 we show that we reproduce the total cross-sections over an integration

of 1M phase-space points, for all multiplicities, at three different values of the

renormalisation scale representing the nominal value (µR = √scom = 1000 GeV)

and the two variations usually used to estimate scale uncertainties. Note that these

phase-space points were generated independently of those in Figure 6.4, and that

we are integrating the tree-level and one-loop interference, not the k-factor. We

multiply our NLO k-factor prediction with the MADGRAPH tree-level matrix element

to reproduce the loop-matrix element for integration. The neural network errors are

well below the statistical Monte Carlo integration error.

By neural network error we are referring to the absolute percentage difference to the

cross-section, and not the errors due to neural network optimisation. For that, we

examine the variations in the 20 replica model predictions in Figure 6.8 where we

plot the total cross-section predictions as a scatter plot. The blue band illustrated

is one standard deviation of the 20 predictions made. We see that the true value of

the total cross-section is within the one standard deviation band. Not shown in the

figure is the Monte Carlo statistical error which as seen in Figure 6.7 dominates the
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Figure 6.7: Error on the total cross-section across an integration of 1 million phase-
space points. For each multiplicity, we evaluate the matrix elements
at the three values of the renormalisation scale as reported. The solid
lines are the absolute percentage error in the true total cross-section
and the neural network predicted value. The dashed line represents
the statistical Monte Carlo integration error which falls as 1/

√
N . The

jumps in error are due to large values of the matrix element being
integrated.
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Figure 6.8: Scatter plot showing the variation in predictions of the e+e− → qq̄ggg
total cross-section for the 20 replica models, where the plotted cross-
section is normalised by the truth value provided by MADGRAPH. Total
cross-sections in each subplot are evaluated at the renormalisation
scale quoted in the upper right. The mean prediction of the 20 replica
models is drawn as the horizontal blue line with one standard deviation
illustrated by the blue band. The total cross-section as predicted by
MADGRAPH is plotted as the horizontal black line.

absolute error between the NN predictions and the true value.

Since the discrepancy between the true total cross-section and NN predicted total

cross-section is so small, this strongly indicates that once we fit on the relatively

small training set, we can predict with good confidence on many more phase-space

points to get a prediction of the cross-section before reaching the same level of error

as the Monte Carlo integration error. This can also be seen from the shape of the

NN error, it is relatively constant once enough points have been integrated.
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6.4.4 Model evaluation time

In Figure 6.9, we plot the evaluation time of the emulator for both the CPU and CUDA

(GPU) execution providers in the ONNX runtime, as well as the reference time from

MADGRAPH. For the NN (GPU) predictions we predict on 1M phase-space points

concurrently, whereas for the NN (CPU) predictions, we predict on one point at a

time. The times reported are then the mean of the total evaluation times. We see

that compared to MADGRAPH, our NN emulator is faster for all multiplicities, with

the advantage being largest for the 5 jet case, with speed gains of over four orders

of magnitude when utilising GPU acceleration. The advantage of using the GPU

is not only from being able to batch process the predictions, it is also to leverage

the auto-vectorisation tools provided by TensorFlow to accelerate the model input

computations.

While the evaluation time of the GPU accelerated NNs are by far the quickest, and

would be the ideal scenario for a NN emulator to be used, event generation typically

occurs on CPUs where phase-space points are evaluated one at a time. This is

precisely why our NN (CPU) predictions were made on single phase-points and not

over batches, to showcase what the performance would be like when embedded in

a typical production workflow. We observe that even with this constraint, the NN

emulator is much quicker in the higher multiplicity cases.

One of the main bottlenecks in the NN (CPU) prediction is using the NN ensemble to

infer on single phase-space points, this is illustrated by the weak scaling in multiplicity

in the left subplot of Figure 6.9 and is illustrated explicitly in Figure 6.10. Since the

model architecture is identical for all multiplicities other than the final output layer,

there will not be much difference in cost. Another bottleneck is the computation

of model inputs which contain large, complex expressions with many evaluations of

logarithms and dilogarithms. In our Python implementation, the computation time

of these inputs is comparable to the model inference time in the 5 jet case, as shown

in Figure 6.10. Time taken to compute model input scales with final-state partons



148 Chapter 6. Emulation of e+e− to hadrons NLO k-factors

3 4 5
Final state particles

10−2

10−1

100

101

102

103

E
va

lu
at

io
n

ti
m

e
/

m
s

3 4 5
Final state particles

10−4

10−3

10−2

10−1

100

R
at

io
to

M
ad

G
ra

p
h

MadGraph NN (CPU) NN (GPU)

Figure 6.9: Left: evaluation time in milliseconds of a single phase-space point.
Times quoted for MADGRAPH are averaged over 1000 random phase-
space points. Times quoted for NN are averaged over 1M random
phase-space points. Right: ratio of evaluation times to MADGRAPH.
GPU used is Nvidia P100 16GB, and CPU is Intel(R) Xeon(R) Gold
6126 CPU @ 2.60GHz.

because of the increase in number of antenna functions in the ansatz to account for

the larger number of singular configurations, as well as a larger number of the other

input variables.

By moving away from a Python oriented workflow to a C++ workflow, we anticipate

the model inputs can be computed much more quickly, potentially reducing the total

prediction time by a factor of 2 for the 5 jet case. However, the model prediction

time is already highly optimised by the ONNX runtime, so we do not expect much

improvement to be possible on that front.

For the NN (GPU) predictions, the model inference time is negligible compared to

the model input computations since we take advantage of predicting on the entire

batch of 1M phase-space points at once, and so once averaged across this dataset each

single point takes an insignificant amount of time. The model input computations

are vectorised on the GPU and so we see an order of magnitude reduction in time

taken to calculate them compared to computing them on a single core of a CPU.

We note that our emulator retains good performance even when we go to higher

multiplicity. In Ref. [157] the authors expressed concern about the fact that the

accuracy of the surrogate model is decreasing with the multiplicity of the process. We
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Figure 6.10: Breakdown of the total time taken to predict on a phase-space point
(averaged over 1M predictions) into model input computations and
the actual model inference for both GPU and CPU model deploy-
ments. The model inference portions in the NN (GPU) subplot are
very small.

show that by incorporating suitable physically motivated functions in the ansatz that

the network accuracy drops off much less rapidly when going to higher multiplicities.

6.5 Conclusion

In this chapter we presented the extension of Chapter 5, where we introduced the

factorisation-aware model. By adapting the ingredients provided to the neural

network model to a more suitable set, we have been able to move from the emulation

of tree-level matrix element to NLO k-factors. We have shown that the philosophy of

incorporating relevant physics information into the model greatly improves accuracy

of predictions even for matrix elements with a more complex divergent structure.

The results presented demonstrate that predictions are at the percent level for

the most demanding process, with accuracy in the infrared regions of phase-space

being well-behaved. We have also shown that for relatively few training points,

the model is able to learn the target function well enough to evaluate many more

phase-space points before the accumulated error matches the statistical integration

error. Furthermore, the uncertainty of cross-section predictions associated with
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optimisation of model parameters was shown to contain the truth value. This

provides evidence that the neural network model can be used to augment existing

samples with additional phase-space points with confidence given that the absolute

error of the cross-section prediction is relatively constant.

In addition to being accurate, we have given evidence that the model, although

optimally deployed on a GPU, is orders of magnitude quicker than traditional loop

providers on a single CPU. By deploying the model with the ONNX runtime a generic

interface to the neural network model is available in many programming languages,

allowing it to be embedded into modern event generators which are mainly written

in C++.



Chapter 7

Emulation of hadron-hadron

initiated matrix elements

7.1 Motivation

In the previous two chapters, we detailed the emulation of e+e− annihilation tree-level

matrix elements and NLO QCD k-factors. We have shown that in e+e− annihilation

processes we are able to construct emulators that accurately reproduce the matrix

elements, whilst keeping the evaluation time much lower than existing matrix element

providers.

The Large Electron Positron collider (LEP) was the last high energy e+e− collider

to be in operation with data collection terminating in 2000 to prepare for the LHC.

Lepton-lepton colliders planned for the future [213] are not scheduled to begin

operating for at least another decade. Therefore, we turn our focus to researching

techniques to make predictions more efficient for the LHC, which will be collecting

data until the end of the 2030s, namely, adapting the factorisation-aware model for

hadronic collisions. To showcase the extension to hadronic collisions, we consider

several partonic channels contributing to Z+4 and 5 jets production, and tt̄+3 and 4

jets at leading order. These high-multiplicity processes are of particular importance
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for physics at the LHC as they contribute to the background of BSM searches.

Furthermore, these processes typically have very low unweighting efficiencies.

In Ref. [103] a novel two-stage unweighting procedure was introduced that used

a lightweight neural network as a surrogate model for the full event weight. This

procedure utilises the rapid evaluations of the surrogate model to first unweight a

trial event, then correct for the mismatch by re-weighting with the full event weight,

where this second re-weighting step has a much higher efficiency. The authors

showed that it was possible to accelerate event unweighting with this procedure but

found that for some processes this procedure was slower than the standard one-step

rejection sampling (see Section 3.2). In this chapter we explore whether a more

accurate emulation of matrix elements via the use of the factorisation-aware neural

network model would lead to further acceleration of event unweighting and realise

an improvement for the cases where it did not.

The layout of this chapter is as follows. In Section 7.2 we detail the extension of

the model applied in Chapters 5 and 6 to hadronic collisions. The novel two-step

unweighting procedure introduced in Ref. [103] is recapped in Section 7.3. The

application of the factorisation-aware model in this two-step procedure, and imple-

mentation in the SHERPA event generator framework will be discussed in Section 7.3.1.

In Section 7.4 we will showcase the emulator accuracy and display the acceleration

in the generation of unweighted events. Finally, we will conclude the chapter in

Section 7.5 by summarising our findings.

7.2 Neural network emulator framework

7.2.1 Extension of ansatz to hadronic collisions

The methodology introduced in Chapter 5 for emulating e+e− annihilation matrix

elements can be straightforwardly adapted to hadronic collisions by accounting for

the radiation coming from the initial-state partons. This is achieved by extending
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the set of dipole functions in the ansatz of the colour and helicity summed (n+ 1)-

body matrix element. The ansatz is a sum over all permutations of dipole functions

relevant for a given channel, each coming with a corresponding coefficient. It is given

by

|Mn+1|2 =
∑

{ijk}
CijkDij,k , (7.2.1)

where emitter and spectator partons, denoted by i and/or k, can now be initial- and

final-state partons. Therefore, the set of dipoles Dijk now includes the final-final

(FF), final-initial (FI), initial-final (IF), and initial-initial (II) dipoles, as opposed

to just the FF dipoles for e+e− annihilation. The coefficients Cijk, which are more

well-behaved than the matrix element in the soft and collinear limits, are fitted

by the neural network and can be interpreted as reduced matrix elements. These

coefficients are the outputs of the neural network, which forms an approximation of

the matrix element once combined with the appropriate dipole functions.

An additional extension that we study in this chapter is the inclusion of massive

dipoles in the ansatz of the matrix element. This enables the examination of pure

QCD processes with massive particles which is of particular importance for top quark

pair production with jets. To that end, we include the massive FF, FI, and IF dipoles

into the ansatz in Eq. (7.2.1). The massive dipole functions are generalisations of

their massless counterparts, meaning it would be possible to only use the massive

dipole functions for simplicity. However, only using the massive dipoles when a

dipole contains a massive parton saves on computational costs as the massless dipole

functions are cheaper to evaluate.

To showcase these extensions, we emulate a selection of partonic channels at tree-

level for Z+4 and 5 jets, and tt̄+3 and 4 jets production at the LHC. We summarise

the partonic channels considered in Table 7.1. Together, these processes allow us

to examine the performance of the extensions detailed above. We note that with

all massless and massive dipoles implemented into the modelling framework, it is

in principle possible to take advantage of the factorisation-aware model to cover
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Process Partonic channel(s)
Z + 4j gg → e−e+ggdd̄

Z + 5j gg → e−e+gggdd̄

tt̄+ 3j uū→ tt̄gdd̄
gg → tt̄ggg

tt̄+ 4j ug → tt̄gggu

Table 7.1: List of partonic channels considered in this chapter.

QCD-enhanced behaviour at tree-level.

7.2.2 Generation of data

Data is generated using the SHERPA event generator with the AMEGIC matrix element

generator. Below we list the selection criteria for the phase-space sampling and

document the parameters used for matrix element evaluation in Table 7.2.

Z+jets

For Z boson production in association with jets, we consider the partonic channels

gg → e−e+ggdd̄ and gg → e−e+gggdd̄ at leading order, representing tree-level

contributions to Z + 4 jets and Z + 5 jets production at the LHC, respectively.

The phase-space sampled for generating training and testing data is constrained by

requiring a dilepton invariant mass m
e

−
e

+ > 66 GeV and four or five anti-kt jets [214]

with radius parameter R = 0.4 and pT,j > 20 GeV. We consider a proton-proton

centre-of mass energy of
√
s = 13 TeV and use the NNPDF-3.0 NNLO PDF set [215].

tt̄+jets

For top quark pair production, we consider three partonic channels that contribute

to tt̄ + 3 jets and tt̄ + 4 jets in proton-proton collisions. These are pure QCD

processes with massive particles which pose a challenge due to the top quarks carrying

colour charge, meaning there is a significant proliferation of Feynman diagrams when
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Parameters

Scales µR = µF = 91.188 GeV for Z+jets
µR = µF = 175 GeV for tt̄+jets

Masses

md = 0.01 GeV
mu = 0.005 GeV
ms = 0.2 GeV
mc = 1.42 GeV
mb = 4.8 GeV
mt = 173.21 GeV
me = 0.511 MeV
mµ = 0.105 GeV
mτ = 1.777 GeV
mZ = 91.1876 GeV
mW = 80.385 GeV
mH = 125 GeV

Couplings αs set by PDF
αe = 1/137.03599976

Decay widths

Γt = 2 GeV
Γτ = 2.26735× 10−12 GeV
ΓZ = 2.4952 GeV
ΓW = 2.085 GeV
ΓH = 4.07× 10−3 GeV

Table 7.2: List of parameters for the matrix element generation of all partonic
channels. αs is set by the NNPDF-3.0 NNLO PDF set. Masses and
decay widths not listed explicitly have been set to zero.

considering their jet-associated production. For the processes contributing to tt̄+ 3

jets we require three anti-kt jets with R = 0.4 and pT,j > 20 GeV. The phase-space

of the process ug → tt̄gggu contributing to tt̄+4 jets is constrained by requiring four

staggered anti-kt jets with R = 0.4, pT,1 > 100 GeV, pT,2 > 50 GeV, pT,3 > 40 GeV,

and pT,4 > 20 GeV. We do not impose phase-space cuts for the external top quarks.

They are treated as on-shell in the matrix element calculation, p2
t = p2

t̄ = m2
t with

mt = 173.4 GeV, and only decayed a posteriori.

7.2.3 Constructing the emulator

The emulator is a dense neural network built using the Keras API to the TensorFlow

backend, and is deployed using the ONNX runtime. The network consists of four
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Table 7.3: Summary of hyperparameters for the neural network employed to emu-
late matrix elements for all partonic channels in Table 7.1.

Parameter Value
Hidden layers 4
Nodes in hidden layers 128
Activation function swish [173,174]
Weight initialiser Glorot uniform [177]
Loss function MSE
Batch size 512
Optimiser Adam [181]
Initial learning rate 10−3

Callbacks EarlyStopping, ReduceLROnPlateau

hidden layers, each containing 128 nodes. We use the swish activation function for

all layers, and initialise node weights according to the Glorot uniform distribution.

We use the data generated from the SHERPA event generator (described above in

Section 7.2.2) to fit the neural network by minimising the mean squared error.

Training is optimised with the Adam optimiser with an initial learning rate of 10−3.

Learning rate is reduced by a factor of 0.7 during training when validation loss

shows no improvement for 30 epochs, and model training is terminated once there

is no improvement in the validation loss after 60 epochs. We summarise the neural

network hyperparameters in Table 7.3.

As inputs to the neural network, we feed in: the 4-momenta of initial- and final-

state particles, the phase-space mapping variables for each class of dipole function18,

and the kinematic invariants sij for all pairs of particles in the process. We refer

to all phase-space mapping variables as yij,k for brevity, following the notation of

Eq. (7.2.1). To aid the network in training, we preprocess the phase-space mapping

18The mapping variables for FF, FI, IF, II dipoles are yij,k (Eq. (2.4.4)), xij,a (Eq. (2.4.13)),
xik,a (Eq. (2.4.19)), and xi,ab (Eq. (2.4.23)), respectively.



7.2. Neural network emulator framework 157

variables in the following manner19

yij,k →



log(yij,k) if massive FI dipole ,

log(1− yij,k) if massless FI, IF, or II dipole ,

log(yij,k) otherwise (massless FF dipole) ,

(7.2.2)

such that their distributions have similar shape and width. The kinematic invariants

are also transformed with the logarithm as they can span many orders of magnitude.

All inputs are standardised to zero mean and unit variance, with each component of

the 4-momenta being standardised separately.

The target matrix elements are preprocessed by the transformation

|Mn+1|2 → arcsinh
(
|Mn+1|2
Spred

)
, (7.2.3)

where Spred is the prediction scale taken to be the minimum matrix element in the

training set. The raw outputs of the neural network, cijk, are transformed to the

coefficients appearing in the ansatz via the transformation

Cijk = Scoef × sinh(cijk) (7.2.4)

where Scoef is the coefficient scale, defined as Spred/Sdipole. The dipole scale, Sdipole,

is the representative value of a dipole, which we take to be the median of all dipoles

in the training set. A schematic diagram of the neural network is given in Figure 7.1.

In Chapters 5 and 6, the final predictions made for the matrix elements were the

mean of an ensemble of independent replica models. Here we train 10 replica models

to monitor the convergence of training, however, we select only the model with

lowest validation loss for predictions. As a demonstration of model convergence, the

training and validation loss of 10 replica models for the gg → e−e+ggdd̄ channel is

shown in Figure 7.2. This convergent behaviour is also seen in the other partonic

channels.
19Since we do not have top quarks in the initial-state, we do not mention massive IF, or II dipoles

in Eq. (7.2.2).
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Figure 7.1: Schematic diagram of neural network architecture showing inputs:
phase-space points p, phase-space mapping variables yij,k and kin-
ematic invariants sij. The outputs are the fitted coefficients Cijk.
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Min training loss = (3.85± 0.08)× 10−4

Min validation loss = (7.8± 0.1)× 10−4

gg → e−e+ggdd̄
Training loss

Validation loss

Figure 7.2: Training and validation loss for the models emulating gg → e−e+ggdd̄
matrix elements. We have plotted the mean of the 10 losses as the
solid line, with the bands indicating the standard error across these
10 models. The minimum training and validation loss quoted is for
the best performing model.
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The rationale behind using an ensemble of models is to dampen the effects of random

model initialisation, to reduce the effects of stochasticity of the training process,

and to provide an estimation of the uncertainty of the neural network prediction.

Additionally, the ensembling approach has the advantage of providing, in general,

a more robust prediction than a single model, however, that comes at the price of

greater evaluation times. In this chapter where we intend to use the trained network

in an application where speed is a bottleneck, we have observed that using a single

neural network is most performant. This can be attributed to the fact that there is

diminishing returns in ensembling models, as there is overlapping information from

each replica model. On the other hand, the evaluation time grows linearly with the

number of models in the ensemble, meaning a single accurate model strikes a good

balance between speed and accuracy. Additionally, the uncertainty associated with

the network predictions is not relevant for the application presented in this chapter

as the network is used in an intermediary step of a larger calculation.

Since we are interested in reducing evaluation time of the neural network, it is natural

to wonder whether it is worth trading off even more accuracy for speed in the form of

reducing the size of the neural network. A smaller network with fewer nodes/layers

would reduce the size of the weight matrices used during predictions, representing

an increase in throughput. However, the neural network is deployed using the highly

optimised ONNX runtime where we have observed that more compact networks do not

reduce evaluation time by very much at all, whereas there is an appreciable decrease

in accuracy, leading to lower efficiency of the second unweighting step described

below.

7.3 Novel two-stage unweighting algorithm

Generation of unweighted events is carried out via rejection sampling, as outlined

in Section 3.2, where event weights are normalised by the maximal event weight,

wmax, before being compared to a uniform random number r ∈ [0, 1]. If w/wmax < r
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then events are accepted and assigned a unit-weight. This procedure means that

small event weights have a lower probability of being accepted, whereas larger event

weights are more likely to be accepted. An issue with unweighting is that the number

of accepted events, N , is generally much lower than the number of trial events, N trials.

This is encapsulated in the unweighting efficiency

ϵ = N

N trials ≈
⟨w⟩

N
trials

wmax
for large N trials , (7.3.1)

where ⟨w⟩
N

trials is the mean event weight over all trials. The inverse 1/ϵ gives

the average number of trial events required to accept one unit-weight event. The

rejection sampling algorithm depends on the maximal event weight, wmax, which

cannot usually be exactly determined given finite statistics. Furthermore, it is

possible to have large outlier event weights which when taken to be wmax would lead

to excessively low unweighting efficiencies.

One method to avoid this issue is to define a reduced wmax and accept overweights,

meaning weights with w > wmax are accepted but are assigned with a correction factor

w̃ = w/wmax. This process leads to partially unweighted events and is summarised

in Algorithm 2. It is the default method to generate unweighted events in the

SHERPA framework. A systematic approach to reducing wmax is the per-mille quantile

reduction method which defines wp.m.
max such that overweights contribute at most 0.1%

to the total cross-section.

Algorithm 2: Rejection sampling for generating partially unweighted
events.
1 while unweighting do
2 generate random phase-space point x;
3 evaluate event weight w ← w(x);
4 generate uniform random number r ← Random(0, 1);
5 if w/wmax > r then
6 return x and w̃ ← max(1, w/wmax);
7 end
8 end

Whilst the partial unweighting approach increases overall unweighting efficiency, it

remains low for high-multiplicity processes. A novel two-step unweighting procedure
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was introduced in Ref. [103] to accelerate unweighted event generation. This proced-

ure is formed of two separate unweighting steps. The first unweighting step uses a

lightweight surrogate neural network model, which approximates the event weight,

to rapidly unweight the trial event. Given that the surrogate model is in general

imperfect, the second unweighting step corrects for this by calculating the exact

event weight and applying a correction factor, meaning the final event accepted is

exact and has unit-weight. This second step is similar to the process of dealing with

overweights described above. The advantage of this approach is that the expensive

exact event weight is only evaluated once the first step accepts a trial event. This

means that the number of expensive exact event weight computations is drastically

reduced for a sufficiently accurate surrogate model, hence accelerating unweighted

event generation. In Ref. [103], the authors used a surrogate model to approximate

the full event weight, w = JPS|M|2. In this chapter we explore the possibility to

emulate only the matrix element using the factorisation-aware model detailed in the

previous section, whilst keeping the phase-space weight computation exact.

The two-stage algorithm is outlined in Algorithm 3, where we have denoted the

matrix element approximation as |M |2 in line number 3. This two-step approach

introduces an additional weight, xmax, analogous to the maximal event weight wmax.

It is the maximum truth-to-prediction ratio. This could in principle be a large value,

so the quantile reduction method is used to define a more practical xp.m.
max for more

efficient unweighting in the second step. This will be described in more detail in

Section 7.3.1.

The acceleration of this approach can be quantified by the effective gain factor which

is given by

feff = Tstandard
Tsurrogate

,

= N trials
full × ⟨tfull⟩

N trials
1st × [⟨tsurr⟩+ ⟨tPS⟩] +N trials

2nd × ⟨tME⟩
, (7.3.2)

= 1
⟨tsurr⟩+⟨tPS⟩

⟨tfull⟩
× ϵfull

ϵ1stϵ2nd
+ ⟨tME⟩

⟨tfull⟩
× ϵfull

ϵ2nd

.
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Algorithm 3: Two-stage rejection sampling algorithm employing a surrog-
ate model to approximate exact event weight.
1 while unweighting do
2 generate phase-space point x;
3 calculate approximate event weight s← JPS|M |2;
4 generate uniform random number r1 ← Random(0, 1);

// first unweighting step
5 if s/wmax > r1 then
6 calculate exact event weight w ← w(x);
7 determine ratio x← w/s;
8 generate uniform random number r2 ← Random(0, 1);

// second unweighting step
9 if x/xmax > r2 then

10 return x and w̃ ← max(1, s/wmax) ·max(1, x/xmax)
11 end
12 end
13 end

This effective gain factor can be understood as the ratio of the average times of the

standard unweighting approach, compared to the two-stage unweighting approach,

such that a higher feff is desirable. The time spent in the standard approach is simply

the number of trial events, N trials
full , multiplied by the average evaluation time of the

exact event weight in this sample of trials, ⟨tfull⟩. The total time of the two-stage

approach can be split up into two steps. The first step involves the evaluation of the

surrogate model (including all input computations, pre- and post-processing) and

the exact phase-space weight, ⟨tsurr⟩ and ⟨tPS⟩, for the number of trial events N trials
1st .

The second step involves the evaluation of the exact matrix element (using the

phase-space weight from the previous step to recover the exact event weight), ⟨tME⟩,

for N trials
2nd second step trial events. From the second to the final line of Eq. (7.3.2),

we divided the numerator and denominator by N trials
full × ⟨tfull⟩ and defined

ϵfull = N

N trials
full

≈ ⟨w⟩
wp.m.

max
,

ϵ1st = N trials
2nd

N trials
1st

≈ ⟨s⟩
wp.m.

max
, (7.3.3)

ϵ2nd = N

N trials
2nd

≈ ⟨x⟩
xp.m.

max
,
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where ⟨w⟩ is the mean of the weights generated during SHERPA’s integration run (see

Section 7.3.1), ⟨s⟩ is the mean of the surrogate model predictions on the test set, and

⟨x⟩ is the mean of the corresponding truth-to-prediction ratios. These efficiencies

represent the unweighting efficiencies of the standard approach, and of the two steps

in the two-step approach, respectively. From the expression of the effective gain

factor, Eq. (7.3.2), we would expect large gains for processes where ϵfull is low. Indeed,

this is the case for the high-multiplicity processes we consider. Furthermore, for a

fast and accurate surrogate model, where ⟨tsurr⟩ ≪ ⟨tfull⟩, ϵ1st ≈ ϵfull, and ϵ2nd ≈ 1,

we would also expect large gains.

7.3.1 Implementation in SHERPA

To implement the neural network emulator described in Section 7.2.3 as a surrogate

model for the matrix elements in the two-step algorithm outlined in Section 7.3, we

need to generate data for training and testing the neural network, and to use the

model to approximate the event weight during the unweighting process. Cross-section

predictions in SHERPA are made in two phases. Firstly, there is an optimisation phase

which allows the integrator to adapt to the partonic channel of interest [95]. This

is followed by an integration phase in which the integrator is used to determine the

total cross-section. During this integration phase, weighted events are generated and

wp.m.
max is determined with the quantile reduction method which we describe below.

In the standard partial unweighting procedure, the reduced maximal event weight,

wp.m.
max , is determined by first sorting weights generated during the integration phase,

{wi}, such that wi < wi+1, then requiring

wp.m.
max = min

wj

∣∣∣∣∣∣
N∑

i=j+1
wi < 0.001

N∑
i=1

wi

 , (7.3.4)

i.e. find the first weight from {wi} such that the sum of all larger weights contributes

at most 0.1% to the total cross-section.

During the integration phase, 1.5 million events are taken for training and testing
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data by saving the 4-momenta, phase-space weights, and matrix elements. In this

chapter we study the emulation of colour and helicity summed matrix elements,

which are evaluated using the AMEGIC matrix element provider in SHERPA. From

these 1.5 million events, we take 800k events for training, 200k events for validation

during training, and use the final 500k events for independent testing of the model

once it has been trained. The testing dataset is used to determine the value of

xmax. The same quantile reduction method described above can be used to define

a reduced xmax, xp.m
max, that allows for more efficient unweighting in the second step

of the two-step procedure at the expense of overweights. By sorting the sequence

of truth-to-prediction ratios, {xi}, such that xi < xi+1 and using the same sorting

order for {si}, xp.m.
max is defined as

xp.m.
max = min

xj

∣∣∣∣∣∣
N∑

i=j+1
xisi < 0.001

N∑
i=1

xisi

 . (7.3.5)

This process is repeated for each partonic channel that we study, where each channel

has its own neural network surrogate model. The ONNX runtime has a simple C++

API, meaning it is straightforward to incorporate the model into a C++ workflow.

The interface to the SHERPA framework is then a case of writing wrapper code that

takes the phase-space point generated from SHERPA to compute the model input

variables yijk and sij, make the model predictions, Cijk, and then combines them with

the appropriate dipole functions to form an approximation of the matrix element.

This setup can then be used to perform the two-stage unweighting procedure in

Algorithm 3 by calling the surrogate model for every |M |2 evaluation.

7.4 Results

In this section, we evaluate the performance of the neural network model by ex-

amining the error distributions for the predictions made with the model. Following

this, we display results for the application in the two-stage unweighting procedure

by quoting effective gain factors, feff .
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7.4.1 Emulator error distributions

In Figure 7.3, we show error distributions for the neural network predictions, by

plotting the prediction-to-truth ratio, w/s, for the 500k events in the independent

testing dataset for each channel, as indicated by the legend labels. In the left-hand

subplots, we plot w/s on a linear scale to assess the model performance in terms of

accuracy, whereas on the right-hand subplots we plot log10(w/s). This allows us to

examine the tails of the distribution which are important for the second unweighting

step, as a large right-handed tail skews the value of xp.m.
max . All error distributions

are centred around the ideal values of 1 or 0, for the left- and right-hand subplots,

respectively, with the distributions having a Gaussian-like distribution that is narrow.

We see that performance on the channels associated with Z+jets production are

generally worse than for the top quark pair production channels. This can be

attributed to the multiplicity of the channels, as increasing multiplicity generally

leads to a drop in accuracy as already discussed in Chapters 5 and 6. At the same

multiplicity, the gg → tt̄ggg channel presents a more difficult channel to model

than uū → tt̄gdd̄ due to the presence of more infrared singularities, however, the

associated accuracy with this gluon initiated channel remains higher than for the

tt̄+ 4j case, in line with the assessment above.

To inspect the tails on the right-hand subplots further, we plot 2d histograms of w/s

against the value of the event weights. This allows us to see whether the tails emerge

from large weight events, or from small weight events. This is illustrated in Figure 7.4

for the Z + 5j process as this is the channel with the lowest accuracy, meaning the

other channels are better behaved. We see that the model is generally well-behaved

for large event weights as the high population bins depicted in yellow, are centred

around the ideal value of 0, and the error distribution is generally contained inside

a band. From this plot, we also see that outlier events depicted in purple are

predominately smaller event weights.
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Figure 7.3: Error distributions for all partonic channels. All histograms are pro-
duced from 500k test events. Left: linear truth-to-prediction ratio
distributions, right: log10 truth-to-prediction ratio distributions. The
upper two subplots illustrate the Z + 4j and Z + 5j processes, with
the lower two subplots illustrating the tt̄+ 3j and tt̄+ 4j processes.
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Figure 7.4: Left: 2d histogram of log10(w/s) against the respective event weight,
w for the gg → e−e+gggdd̄ channel. Yellow bins represent high popu-
lation bins, and purple bins represent single points. Right: marginal
distribution of gg → e−e+gggdd̄ event weights.
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Process
Timings / s Efficiencies

feff⟨tME⟩ ⟨tPS⟩ ⟨tsurr⟩ ϵfull ϵ1st ϵ2nd

gg → e−e+ggdd̄ 5.4× 10−2 4.0× 10−4 1.4× 10−4 1.6× 10−2 1.4× 10−2 0.37 14
gg → e−e+gggdd̄ 1.6× 101 5.7× 10−3 2.0× 10−4 7.6× 10−4 8.5× 10−4 0.29 269

uū→ tt̄gdd̄ 5.3× 10−3 3.5× 10−5 1.4× 10−4 8.7× 10−4 2.5× 10−3 0.28 23
gg → tt̄ggg 3.3 9.0× 10−4 1.8× 10−4 8.8× 10−3 1.5× 10−2 0.50 55
ug → tt̄gggu 5.1× 101 4.0× 10−3 2.4× 10−4 1.5× 10−3 1.6× 10−3 0.57 366

Table 7.4: Unweighting performance measures for all partonic channels.

7.4.2 Unweighting gains

With the model performance validated, we move on to discussing the acceleration of

unweighted event generation by using the neural network emulator as the surrogate

model in the two-stage unweighting procedure.

The amount of acceleration is quantified by the effective gain factor, feff , which

measures the average time saved to unweight a sample of events compared to the

standard one-step rejection sampling approach. To determine feff , we run through

the procedure described in Algorithm 3 for a number of events in the testing datasets

and record ⟨tsurr⟩, ⟨tPS⟩, and ⟨tME⟩. We note that ⟨tfull⟩ = ⟨tPS⟩+ ⟨tME⟩. Depending

on the complexity of the process, between 10 and 10000 events are unweighted to get

a reliable estimate of these times. Eqs. (7.3.2) and (7.3.3) are then used to calculate

feff .

In Table 7.4 we quote the timings, efficiencies, and the computed effective gain

factors for all channels, where we can see the speed up ranges from 14 to up to 366

times compared to the standard approach. This is due to the rapid neural network

evaluation times and good predictive accuracy leading to relatively high ϵ1st and

ϵ2nd. Interestingly, the largest gains are seen for the most computationally expensive

processes, namely, the Z + 5j and tt̄ + 4j processes. This demonstrates that the

surrogate model has managed to accurately model the matrix elements, and to

produce the approximations rapidly. We can see that ⟨tsurr⟩ only scales weakly with

the multiplicity, whereas ⟨tME⟩ increases very rapidly for more complex final-states.
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7.5 Conclusion

In this chapter we have studied the extension of the factorisation-aware model from

electron-positron annihilation matrix elements explored in Chapters 5 and 6 to

hadronic collisions. The model was readily adapted by changing the ingredients in

the ansatz of the matrix element to include the full set of massless dipoles to account

for radiation from the initial-state partons. Additionally, we included the full set of

massive dipole functions to enable the accurate modelling of matrix elements with

massive partons, in this case top quark pair production. We have demonstrated that

with these additional dipole functions, it is possible to accurately approximate the

matrix elements of high-multiplicity hadronic processes with well-behaved predictions

for large event weights.

We have also showcased an application of the neural network model in the form

of accelerating event unweighting in the SHERPA framework by using the neural

network model in a novel two-stage unweighting procedure. The performance of this

unweighting procedure relied on the fast and accurate predictions of the model. We

showed that for all partonic channels considered, the unweighting procedure was

accelerated, with the largest gains coming from the most computationally expensive

channels where the effective gain factors were well over two orders of magnitude.





Chapter 8

Conclusion and outlook

In this thesis we have presented a physics-inspired neural network model to emulate

matrix elements. The application of using a neural network to fit functions is

a common scenario, however, the unique singularity structure of physical matrix

elements precludes a naive approach if accuracy is desired. Indeed, the per-point

accuracy of matrix elements is generally desired, especially in the infrared regions

of phase-space where the emergence of large weights can contribute significantly

to the total cross-section. Fortunately, matrix elements factorise in these infrared

regions of phase-space, with well-understood explicit functional forms describing the

single soft and collinear limits. By incorporating these functions into the neural

network model via an ansatz composed of a linear combination of these singular

functions, it is possible to transform the problem of fitting a potentially rapidly

changing function over phase-space to the fitting of more well-behaved coefficients.

We dubbed this family of models factorisation-aware as the neural network learns to

choose the relevant functional behaviours in specific soft and collinear limits where

the fitted coefficients are constrained. Outside of these limits, we make use of the

well documented fitting capabilities of neural networks to form an interpolation.

We first demonstrated the use of the factorisation-aware model in Chapter 5 where we

utilised the Catani-Seymour dipole functions as the singular functions in the ansatz

to model tree-level electron-positron annihilation matrix elements. It was shown that
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by building these functions into the emulator, there was drastic improvements in

per-point accuracy compared to existing methods, with accuracy well below 1% for

all processes studied. Furthermore, the inclusion of the singular functions describing

infrared behaviour of the matrix elements allowed well-behaved extrapolation of the

model into untrained regions of phase-space which were potentially more singular

than those seen previously during training.

The success of this approach prompted the study of applying the factorisation-

aware model to emulate the more expensive one-loop matrix elements for the same

family of processes, as seen in Chapter 6. It was found that by adapting the Catani-

Seymour dipole functions to the more relevant antenna functions containing one-loop

singular behaviour, the accurate emulation of NLO QCD k-factors was achieved. In

this study we also demonstrated that it was possible for the emulator to learn the

renormalisation scale dependence of the one-loop matrix elements, allowing it to

be used to carry out scale variations. We showed that e+e− → qq̄ggg NLO k-

factors could be predicted with accuracy at the 1% level, representing a speed up in

evaluation of over 3 orders of magnitude compared to MADGRAPH on a single CPU

core.

The study of electron-positron annihilation matrix elements whilst important for

planned future lepton-lepton colliders, is not critical for making predictions for the

LHC. For that, hadron-hadron initiated matrix elements are much more relevant.

In Chapter 7, we extended the factorisation-aware model to hadronic collisions by

incorporating the full set of massless and massive dipole functions. The inclusion of

these functions into the emulation model allowed us to model Z + {4, 5} jets and

tt̄ + {3, 4} jets matrix elements at leading order, which represent computationally

expensive and phenomenologically relevant processes. We found that the accuracy of

the emulator, while lower than in the cleaner e+e− environment, was not surprising

given that accuracy scales inversely with multiplicity and these were the highest

multiplicity processes considered in this thesis. However, the well-behaved predic-

tions in the infrared limits and the low population tails makes it suitable for use
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as a surrogate model for event weights in the context of event unweighting, where

stability of predictions is desirable.

We showed that using the emulator in a novel two-stage unweighting procedure,

where small mismatch from the full event weight is corrected for, could reduce the

time spent in unweighting a sample of events. We saw that the unweighting of events

could be accelerated by well over 2 orders of magnitude for the most computationally

expensive processes, Z + 5 jets and tt̄+ 4 jets.

The factorisation-aware model presented in this thesis has been demonstrated to be a

powerful tool to emulate matrix elements for a variety of processes, at tree-level and

one-loop level, owing to the flexibility of the modelling philosophy. The path forward

is clear: to reliably accelerate the generation of simulated unit-weight events required

for LHC experiments, the modelling procedure has to be extended to arbitrary SM

processes, both for colour-summed, and colour-sampled matrix elements, with an

easy-to-use interface to general purpose Monte Carlo event generators. We have

taken the first steps towards this by proving the viability of the model in a production

setting by deploying it within the SHERPA framework to successfully accelerate the

process of unweighting events.





Appendix A

Catani-Seymour notation

This appendix serves as supplementary material for Chapter 2, specifically, for the

tree-level matrix element factorisation in Section 2.2 and Catani-Seymour dipoles in

Section 2.4.

A.1 Notation

The notation for matrix elements given in Ref. [51] is repeated here for convenience.

Consider a tree-level matrix element with n partons in the final-state

Mc1,...,cn;s1,...,sn
n (p1, . . . , pn) , (A.1.1)

where {c1, . . . , cn} are colour indices, {s1, . . . , sn} are spin indices, and {p1, . . . , pn}

are momenta.

Introducing the basis {|c1, . . . , cn⟩ ⊗ |s1, . . . , sn⟩} in colour + helicity space allows

us to write

Mc1,...,cn;s1,...,sn
n (p1, . . . , pn) ≡ (⟨c1, . . . , cn| ⊗ ⟨s1, . . . , sn|) |1, . . . , n⟩n , (A.1.2)

where |1, . . . , n⟩n is a vector in colour + helicity space. The indices inside the vector

denote the spin and colour indices, while the subscript denotes the multiplicity of
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the matrix element. The matrix element squared, summed over final-state colours

and spins, can therefore be written as

|Mn|2 = n⟨1, . . . , n|1, . . . , n⟩n . (A.1.3)

In the case of partons in the initial-state the colour + helicity vector |1, . . . , n⟩ has

to be normalised by a factor √nc for each initial state parton. For hadron-hadron

collisions this amounts to

|1, . . . , n⟩n →
1√

nc(a)nc(b)
|1, . . . , n⟩n , (A.1.4)

where nc(a) denotes the number of colour states of parton a. Namely nc(q) = nc(q̄) =

Nc and nc(g) = N2
c − 1.

The colour-charge operators Ti act on colour space to give the colour-correlated

matrix element

n⟨1, . . . , n; a, b|TI · TJ |1, . . . , n; a, b⟩n =
1

nc(a)nc(b)

[
Mc1,...,cI ,...,cJ ,...,cn

n (p1, . . . , pn; pa, pb)
]∗

× T e
cIdI
T e

cJ dJ
×
[
Md1,...,dI ,...,dJ ,...,dn(p1, . . . , pn; pa, pb)

]
,

(A.1.5)

where I and J denotes initial- or final-state partons. For a parton I, the matrices

T e
cI ,dI

are defined as

T e
cIdI

=



−ifcde if I = gluon ,

T e
cd if I = final-state quark or initial-state antiquark ,

−T e
cd if I = final-state antiquark or initial-state quark .

(A.1.6)

Each colour vector |1, . . . , n; a, b⟩ is a colourless state, meaning colour conservation

can be written as ∑
I

TI |1, . . . , n; a, b⟩ = 0 . (A.1.7)

Additionally, the colour-charge operators have the following properties

TI · TJ = TJ · TI for I ̸= J ,
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T 2
q = T 2

q̄ = CF , (A.1.8)

T 2
g = CA .





Appendix B

Appendices for Chapter 5

B.1 Phase-space trajectories

We can see the RAMBO algorithm as a map from the unit hypercube in some high

dimension into the n-particle phase-space. A flat distribution in the hypercube maps

to a flat distribution in the multi-particle phase-space. To generate our phase-space

trajectories we pick two points at random in the unit hypercube and map the line

between them using the RAMBO mapping. As a result, each point on the resulting

trajectory has equal probability density in phase-space. Any other phase-space

generator that smoothly maps the unit hypercube to a multi-particle phase-space

could replace RAMBO in this procedure and could lead to trajectories with very different

characteristics. One could for example imagine a sophisticated algorithm that only

maps points close to the boundary of the hypercube to soft or collinear configurations.

Using such an algorithm would have trajectories that avoid configurations with many

particles more collinear or soft than the end-points of the trajectories. We find that

with RAMBO the trajectories tend not to avoid difficult phase-space configurations and

are therefore a good test of the extrapolation properties of our method. Figure B.1

shows the trajectory we chose in Section 5.3.3.
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Figure B.1: Left: rapidity and azimuthal angle trajectories for the five final state
particles in the trajectories used in Section 5.3.3. Right: Evolution
of the same particle energies as a function of the position along the
segment between the two random points in the unit hypercube.

B.2 Azimuthal angle ϕij calculation

To calculate the azimuthal angle ϕij for a pair of particle momenta pi and pj we first

consider the plane perpendicular to the momentum

p⃗ij = p⃗i + p⃗j . (B.2.1)

We project the unit vector in the z direction and the momentum of particle i onto

this plane20:

r⃗z = e⃗z −
(
p⃗ij · e⃗z

p⃗2
ij

)
p⃗ij , (B.2.2)

r⃗i = p⃗i −
(
p⃗ij · p⃗i

p⃗2
ij

)
p⃗ij . (B.2.3)

The angle ϕij is the angle between these two projected vectors.

sinϕij = r̂ij · (r̂i × r̂z) , cosϕij = r̂i · r̂z , (B.2.4)

where we have normalised all vectors to be unit vectors:

r̂z = r⃗z

|rz|
, r̂i = r⃗i

|ri|
, r̂ij = p⃗ij

|pij|
. (B.2.5)

20using particle j instead results in a shift of ϕij by π which makes no difference for sin 2ϕ or
cos 2ϕ.
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B.3 Jensen’s Inequality

Jensen’s inequality states that for concave functions

f(E[Y ]) ≥ E[f(Y )] , (B.3.1)

where E is the expectation value, the function f in our case is arcsinh that behaves

similarly to the natural logarithm due to the scale of the problem, and Y is a random

variable representing our target distribution. This inequality can be rewritten as

f(E[Y ])− E[f(Y )] ≥ 0 , (B.3.2)

which is known as Jensen’s gap. With a concave function, the mean of the trans-

formed target distribution will always be underestimating the actual mean, i.e.

E[Y ] ≥ sinh (E[arcsinh(y)]) , (B.3.3)

where the LHS is the actual expectation value (cross-section) of the random variable

Y and the RHS is the shifted expectation value that the neural network learns. In

our scenario the neural network reduces the variance of the residual distribution,

meaning the gap in reality is small but there will always be an offset in the mean

value learnt.

B.4 Additional random phase-space trajectory

Here we present another random phase-space trajectory similar to the one in Fig-

ure 5.7 to demonstrate that features of that figure are not unique.
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Figure B.2: Another random phase-space trajectory where the ‘double+single’
regions of phase-space are explicitly shown in blue.
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