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Abstract

Due to their unparalleled performance and versatility, deep learning has become
the de facto standard for building natural language processing (NLP) applications.
Compared with conventional machine learning approaches, deep learning replaces
extensive hand-engineered features in every task with end-to-end representation
learning. Several concerns, however, have been raised in the research communi-
ties regarding their robustness, trustworthiness, explainability, and interpretability.
Although these limitations of deep learning methods are widely acknowledged, work
in methods and applications to alleviate these concerns in NLP is contrastingly lim-
ited. To address this research gap and explore a more robust approach for building
NLP applications with deep learning, in this thesis, we studied deep latent vari-
able models (DLVMs) in terms of methods (under supervised and semi-supervised
learning settings) and applications (natural language understanding and generation)
perspective for building natural language processing applications. We demonstrate
the strength and benefits of DLVMs for NLP applications and discuss their effec-
tiveness in addressing some of these concerns later in this thesis.

For contributions from a methods perspective, we studied the benefits of deep
latent variable models in supervised and semi-supervised learning settings. These
studies suggested that deep latent variable models are competitive in performance
against standard deep learning methods; while offering additional robustness, trust-
worthiness, explainability and interoperability in various applications. For semi-
supervised learning, particularly, we achieve state-of-the-art performance and prove
the great potential of using deep latent variable models for semi-supervised learning
problems.

For contributions from an applications perspective, we first presented two appli-
cations for language understanding problems, followed by two more applications for
language generation problems. Our first application concerns a binary text classifica-
tion task in the educational domain and pioneers the first research on how Bayesian
deep learning can be applied to this text-based educational application. Our sec-
ond application focuses on multilabel text classification tasks, and we present an
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efficient uncertainty quantification framework as our contribution. We demonstrate
the effectiveness and generalisation of this framework with diverse architectures and
present the first research on using deep latent variable models for efficient uncertainty
quantification purposes in multilabel text classification tasks. Our third application
deals with multiple explanation generation for an explainable artificial intelligence
(XAI) task, and we present a first study on how deep latent variable models can be
used to generate multiple explanations in the Stanford natural language inference
task. In our last application, we explore paraphrase generation tasks and present
the first study of DLVMs in a semi-supervised learning setting in paraphrase gen-
eration tasks; the DLVMs can enhance paraphrase generation performance when
incorporating unlabelled data in a semi-supervised manner.

The findings in this thesis are of practical value to deep learning practitioners,
researchers, and engineers working on a variety of problems in the field of natural
language processing and deep learning.

iii



Declaration

The work in this thesis is based on research carried out within the Artificial Intelli-
gence and Human Systems (AIHS) group at the Department of Computer Science,
Durham University, United Kingdom. No part of this thesis has been submitted
elsewhere for any other degree or qualification, and it is all the author’s work unless
referenced to the contrary below.

Note on Publications Included in This Thesis: At the time of submission,
four chapters of this thesis are heavily based on papers submitted for publication or
published in conferences and journals:

Chapter4: Yu, J., Alrajhi, L., Harit, A., Sun, Z., Cristea, A.I. and Shi, L.,
2021, June. Exploring Bayesian Deep Learning for Urgent Instructor
Intervention Need in MOOC Forums. In International Conference on Intel-
ligent Tutoring Systems (pp. 78-90). Springer, Cham.

Chapter5: Yu, J., Cristea, A.I., Harit, A., Sun, Z., Aduragba, O.T., Shi,
L. and Al Moubayed, N., 2022, July. Efficient Uncertainty Quantification
for Multilabel Text Classification. In 2022 International Joint Conference on
Neural Networks (IJCNN) (pp. 1-8). IEEE.

Chapter6: Yu, J., Cristea, A.I., Harit, A., Sun, Z., Aduragba, O.T., Shi,
L. and Al Moubayed, N., 2022, July. INTERACTION: A Generative XAI
Framework for Natural Language Inference Explanations. In 2022 Inter-
national Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

iv



Chapter7: Yu, J., Cristea, A.I., Harit, A., Sun, Z., Aduragba, O.T., Shi, L.
and Al Moubayed, N., 2022. Language as a Latent Sequence: Deep Latent
Variable Models for Semi-Supervised Paraphrase Generation. Under re-
view (PLOS One journal). PLOS.

Note on Publications Not Included in This Thesis: As well as the above
papers, the following works have been published during the period of research for
this thesis; they have helped my deeper understanding of the work towards this
thesis; however, these publications do not fit into the narrative of this thesis and
have not been included in the text.

• Aljohani, T., Yu, J. and Cristea, A.I., 2020. Author profiling: predic-
tion of learners gender on a MOOC platform based on learners
comments. International Journal of Computer and Information Engineer-
ing, 14(1), pp.29-36.

• Yu, J., Aduragba, O.T., Sun, Z., Black, S., Stewart, C., Shi, L. and Cristea,
A., 2020, August. Temporal Sentiment Analysis of Learners: Pub-
lic Versus Private Social Media Communication Channels in a
Women-in-Tech Conversion Course. In 2020 15th International Con-
ference on Computer Science & Education (ICCSE) (pp. 182-187). IEEE.

• Aduragba, O.T., Yu, J., Cristea, A.I., Hardey, M. and Black, S., 2020, Au-
gust. Digital Inclusion in Northern England: Training Women
from Underrepresented Communities in Tech: A Data Analytics
Case Study. In 2020 15th International Conference on Computer Science &
Education (ICCSE) (pp. 162-168). IEEE.

• Aduragba, O.T., Yu, J., Senthilnathan, G. and Crsitea, A., 2020, December.
Sentence contextual encoder with BERT and BiLSTM for auto-
matic classification with imbalanced medication tweets. In Proceed-
ings of the Fifth Social Media Mining for Health Applications Workshop &
Shared Task (pp. 165-167).

• Sun, Z., Harit, A., Yu, J., Cristea, A.I. and Shi, L., 2021, June. A brief
survey of deep learning approaches for learning analytics on MOOCs.
In International Conference on Intelligent Tutoring Systems (pp. 28-37).
Springer, Cham.

• Sun, Z., Harit, A., Yu, J., Cristea, A.I. and Al Moubayed, N., 2021, July. A
Generative Bayesian Graph Attention Network for Semi-Supervised
Classification on Scarce Data. In 2021 International Joint Conference
on Neural Networks (IJCNN) (pp. 1-7). IEEE.

v



• Aduragba, O.T., Yu, J., Cristea, A.I. and Shi, L., 2021. Detecting Fine-
Grained Emotions on Social Media during Major Disease Out-
breaks: Health and Well-being before and during the COVID-19
Pandemic. In AMIA Annual Symposium Proceedings (Vol. 2021, p. 187).
American Medical Informatics Association.

• Sun, Z., Harit, A., Cristea, A.I., Yu, J., Shi, L. and Al Moubayed, N., 2022,
July. Contrastive Learning with Heterogeneous Graph Attention
Networks on Short Text Classification. In 2022 International Joint
Conference on Neural Networks (IJCNN) (pp. 1-6). IEEE.

• Sun, Z., Harit, A., Cristea, A.I., Yu, J. and Al Moubayed, N., 2022, December.
Is Unimodal Bias Always Bad for Visual Question Answering?
A Medical Domain Study with Dynamic Attention. In 2022 IEEE
International Conference on Big Data (Big Data) (pp. 5352-5360). IEEE.

• Aduragba, O.T., Yu, J., Cristea, A.I. and Yang, L., 2023, April. Improving
Health Mention Classification Through Emphasising Literal Mean-
ings: A Study Towards Diversity and Generalisation for Public
Health Surveillance. In the Web Conference 2023 (accepted). ACM.

Copyright c© 2022 by Jialin Yu.
“The copyright of this thesis rests with the author. No quotations from it should be
published without the author’s prior written consent and information derived from
it should be acknowledged”.

vi



Acknowledgements

This thesis would not be possible without the support of many people. First, I would
like to thank my esteemed supervisor, Prof. Alexandra I. Cristea, for her invaluable
supervision, support, and tutelage during my PhD study over the past few years.
Her continuous support and encouragement give me the strength to explore the
challenges and help me through the difficulties.

My gratitude extends to my review teams, Prof. Boguslaw Obara, Dr. Noura
Al Moubayed, and Dr. Tom Friedetzky, for their time and insightful comments
on my yearly research progress. Special thanks to all my friends, lab mates, col-
leagues and co-authors, and research collaborators, especially Mr. Zhongtian Sun,
Miss. Anoushka Harit, Mr. Jack Barker, Mr Olanrewaju Tahir Aduragba, Mr Brian
Kostadinov Shalon Isaac-Medina, Dr. Yona Falinie Abd. Gaus and Dr. Neelanjan
Bhowmik for providing me with generous support, helpful suggestions, inspiration,
contributions, and directions. Special thanks also to the members of our research
groups and department for all the insightful discussions and advice, especially to
my co-authors: Mr. Zhongtian Sun, Miss. Anoushka Harit, Mr. Olanrewaju Tahir
Aduragba, Dr. Tahani M. M. Aljohani, and Mrs. Laila Alrajhi, Dr. Noura Al
Moubayed, and Prof. Alexandra I. Cristea. Additionally, special thanks to my ad-
visers, Dr. Lei Shi and Dr. Noura Al Moubayed, for providing me with helpful
suggestions and academic advice. Special thanks to my girlfriend, Miss. Meng Yan,
for supporting me with food for both my thoughts and stomach. I would also like to
express my gratitude to the Faculty of Science for hosting the prestigious Durham
Doctoral Studentship (DDS) funding opportunity for my studies at the Department
of Computer Science, Durham University. Additionally, I would like to express my
gratitude to my PhD thesis examiners: Prof. Yulan He from King’s College London
and Prof. Effie Lai-Chong Law from Durham University, for their kinds sugges-
tions and insightful discussions during my viva, which helped me to improve the
presentation of this thesis.

vii



Last but not least, my appreciation also goes out to my family, especially my
amazing parents, Mr. Hongwen Yu and Mrs. Hongzhe Xu, for their encouragement
and support through my studies over the past decays.

viii



Contents

Abstract ii

Declaration iv

Acknowledgements vii

List of Figures xv

List of Tables xvii

Nomenclature xix

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Review 13

2.1 Deep Learning based Natural language Processing . . . . . . . . . . . 13

2.2 Deep Latent Variable Models for Text . . . . . . . . . . . . . . . . . . 18

ix



3 Technical Background and Methodology 22

3.1 Probabilistic Machine Learning . . . . . . . . . . . . . . . . . . . . . 22

3.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Exchangeability and Representation Theorem . . . . . . . . . . . . . 27

3.4 Learning and Inference for Deep Latent Variable Models . . . . . . . 29

3.4.1 Variational Family . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Statistical Assumptions for Local Latent Variable . . . . . . . 34

3.4.3 Optimise the model parameter for ELBO . . . . . . . . . . . . 35

3.4.4 Optimise the variational parameter for ELBO . . . . . . . . . 36

3.5 Sampling Based Inference Strategy . . . . . . . . . . . . . . . . . . . 37

3.5.1 Score Function Gradient Estimator . . . . . . . . . . . . . . . 37

3.5.2 Reparameterisation Technique . . . . . . . . . . . . . . . . . . 40

3.5.3 Score Function V.S. Reparameterisation Technique . . . . . . 41

3.6 Advanced Techniques for Machine Learning . . . . . . . . . . . . . . 41

3.6.1 Gumbel-softmax . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.2 Straight Through Gradient . . . . . . . . . . . . . . . . . . . . 43

3.6.3 Approximated Bayesian Computation Method . . . . . . . . . 43

3.7 Methodology and Justifications . . . . . . . . . . . . . . . . . . . . . 44

4 Exploring Bayesian Deep Learning for Text Classification:

A Case Study of AI in Education 49

Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Urgent Intervention Need in MOOCs . . . . . . . . . . . . . . 51

4.2.2 Bayesian Neural Networks . . . . . . . . . . . . . . . . . . . . 52

4.2.3 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Baseline Deep Learning Model . . . . . . . . . . . . . . . . . . 54

4.3.2 Model Uncertainty with Monte Carlo Dropout . . . . . . . . . 56

4.3.3 Model Uncertainty with Variational Inference . . . . . . . . . 57

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

x



4.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.2 Experiment Setup and Evaluation . . . . . . . . . . . . . . . . 60

4.5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Efficient Uncertainty Quantification Framework for

Multi-label Text Classification Tasks 64

Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Deep Learning Approach (Baseline) . . . . . . . . . . . . . . . 70

5.3.3 Modelling Epistemic Uncertainty . . . . . . . . . . . . . . . . 71

5.3.4 Modelling Heteroscedastic Aleatoric Uncertainty . . . . . . . . 74

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 Vocabulary and Sampling . . . . . . . . . . . . . . . . . . . . 76

5.4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.4 Experimental Run . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.5 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.1 Experiment 1: Posterior Collapse . . . . . . . . . . . . . . . . 80

5.5.2 Experiment 2: Uncertainty Modelling . . . . . . . . . . . . . . 81

5.5.3 Discussion on Entropy as Uncertainty Estimation . . . . . . . 84

5.5.4 Analysis on Run Time Efficiency . . . . . . . . . . . . . . . . 86

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 A Deep Generative XAI Framework for Natural Language Infer-

ence Explanations Generation 88

xi



Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Explainable Artificial Intelligence for Natural Language Pro-

cessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.2 Supervised Deep Generative Models for Natural Language

Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Technical Background . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.1 Conditional Variational Autoencoder . . . . . . . . . . . . . . 92

6.3.2 Transformer Architecture . . . . . . . . . . . . . . . . . . . . . 93

6.3.3 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Preliminary Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.1 Architecture Selection and Spurious Correlation . . . . . . . . 96

6.4.2 Premise-Agnostic and Full Generation . . . . . . . . . . . . . 97

6.5 Proposed Deep Generative XAI Framework . . . . . . . . . . . . . . . 100

6.5.1 Neural Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5.2 Neural Inferer . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5.3 Neural Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5.4 Neural Predictor . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6.1 Baseline Models . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.6.3 Diverse Evidence Generation via Interpolation . . . . . . . . . 105

6.6.4 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . 106

6.6.5 Model Complexity . . . . . . . . . . . . . . . . . . . . . . . . 106

6.7 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.7.1 Explanation Generation Only . . . . . . . . . . . . . . . . . . 106

6.7.2 Explanation Generation and Label Prediction . . . . . . . . . 107

6.7.3 Diversity of Explanation . . . . . . . . . . . . . . . . . . . . . 109

6.7.4 Data-driven Template for Explanation . . . . . . . . . . . . . 109

6.7.5 Limitations and Future Works . . . . . . . . . . . . . . . . . . 111

xii



6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Deep Latent Variable Models for Semi-Supervised

Paraphrase Generation 114

Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Variational Sequence Auto-Encoding Reconstruction (VSAR) . . . . . 117

7.2.1 Weak Supervision . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.2 Target Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.3 Source Reconstruction . . . . . . . . . . . . . . . . . . . . . . 120

7.2.4 Learning and Inference for VSAR . . . . . . . . . . . . . . . . 120

7.3 Dual Directional Learning (DDL) . . . . . . . . . . . . . . . . . . . . 121

7.3.1 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3.2 Parameter Sharing . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Combining VSAR and DDL for Semi-supervised Learning . . . . . . . 123

7.4.1 Knowledge Reinforced Learning . . . . . . . . . . . . . . . . . 124

7.4.2 Effect of Language Model Prior . . . . . . . . . . . . . . . . . 124

7.4.3 Semi-supervised Learning Setup . . . . . . . . . . . . . . . . . 126

7.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5.1 Paraphrase Generation . . . . . . . . . . . . . . . . . . . . . . 127

7.5.2 Deep Latent Variable Models for Text . . . . . . . . . . . . . 127

7.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.6.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 129

7.6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.6.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 130

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xiii



8 Conclusions and Future Work 138

8.1 Thesis Summary and Contributions . . . . . . . . . . . . . . . . . . . 138

8.2 Answers to Research Questions . . . . . . . . . . . . . . . . . . . . . 139

8.3 Limitations of This Research . . . . . . . . . . . . . . . . . . . . . . . 142

8.4 Lessons and Future Directions . . . . . . . . . . . . . . . . . . . . . . 144

xiv



List of Figures

3.1 Chapter 3: Example of different representations based on a simple

machine learning classification problem that we would like to draw a

line between two categories of data. On the left, we represent data

with Cartesian coordinates, and the task is impossible. On the right,

we represent the data with polar coordinates, and the task becomes

simple to solve. (Figure taken from [1].) . . . . . . . . . . . . . . . . 24

3.2 Chapter 3: A visual example of representation captured in different

neural network layers. (Figure taken from [2].) . . . . . . . . . . . . . 25

3.3 Chapter 3: An illustration of an artificial neuron. Source from Be-

coming Human . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Chapter 3: Demonstration of how temperature τ impacts the sampled

distribution when the ’Gumbel-softmax’ technique is used. (Figure

taken from [3].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Chapter 3: A visual demonstration of the straight-through gradient

of representation captured in different neural network layers. Source

from Tech Blog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Chapter 3: A visual example of representation captured in different

neural network layers. Source from Amazon AWS . . . . . . . . . . . 45

xv

https://becominghuman.ai/artificial-neuron-networks-basics-introduction-to-neural-networks-3082f1dcca8c
https://becominghuman.ai/artificial-neuron-networks-basics-introduction-to-neural-networks-3082f1dcca8c
https://www.hassanaskary.com/python/pytorch/deep%20learning/2020/09/19/intuitive-explanation-of-straight-through-estimators.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/mc-dropout.html


3.7 Chapter 3: An illustration of the general framework for building NLP

applications in this thesis, based on the VAE learning and inference

framework [4–6].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Chapter 3: An illustration of the general framework for building NLP

applications with deep learning.) . . . . . . . . . . . . . . . . . . . . 46

4.1 Chapter 4: A visual demonstration of model architecture for baseline

model (symbol ⊕ refers to the concatenation operation). . . . . . . . 55

4.2 Chapter 4: A visual demonstration of the BNN with Monte Carlo

Dropout in the test phase. We run the model for M times for M

different prediction results and then calculate their average as the

prediction layer output. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Chapter 4: A visual demonstration of our DLVM architecture using

the VI method, based on our baseline model. . . . . . . . . . . . . . . 58

5.1 Chapter 5: Graphical illustrations of the differences between ‘typi-

cal’ Deep Learning (DL), Bayesian Deep Learning (BDL) and Deep

Bayesian Learning (DBL). Note that for BDL, the prior is placed

upon the weight of the neurons. . . . . . . . . . . . . . . . . . . . . . 67

5.2 Chapter 5: Graphical model for generation network (left) and infer-

ence network (right) for CVAE, using amortised VI [4]. . . . . . . . . 72

6.1 Chapter 6: Graphical overview of architectures used in section 6.4.1.

(a) Separate Transformer Encoder; (b) Premise Agnostic Encoder;

and (c) Mixture Transformer Encoder. . . . . . . . . . . . . . . . . . 96

6.2 Chapter 6: Graphical overview of architectures used in section 6.4.2.

(a) Agnostic Generation; (b) Full Generation. . . . . . . . . . . . . . 98

6.3 Chapter 6: Graphical overview of our framework, INTERACTION,

introduced in section 6.5. . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 Chapter 7: Variational Sequence Auto-Encoding Reconstruction Model.118

7.2 Chapter 7: Knowledge Reinforced Learning. . . . . . . . . . . . . . . 123

xvi



List of Tables

4.1 Chapter 4: Results compare deep learning baseline model and Bayesian

deep learning approaches in accuracy, precision, recall, and F1 score. . 61

4.2 Chapter 4: Results compare mean and variance of deep learning and

Bayesian deep learning approach based on 10 runs, reported in mean

and variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Chapter 5: Dataset summary . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Chapter 5: Token length statistics, all numbers round to integer. . . . 77

5.3 Chapter 5: Posterior Collapse Experiment on LSTM, CNN and Trans-

former architectures. Results presented in Macro F1-score based on

the test dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Chaper 5: Uncertainty modelling results for LSTM model, results

presented in Macro F1-score and entropy based on the test dataset. . 82

5.5 Chapter 5: Uncertainty modelling results for CNN model, results

presented in Macro F1-score and entropy based on the test dataset. . 83

5.6 Chapter 5: Uncertainty modelling results for Transformer model, re-

sults presented in Macro F1-score and entropy based on the test dataset. 83

5.7 Chapter 5: High versus Low aleatoric uncertainty examples for Yelp-

P dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xvii



5.8 Chapter 5: Run Time Results for Uncertainty modelling for LSTM,

CNN and Transformer models, results presented in seconds based on

the test dataset (in brackets the number of times it is faster, compared

to its respective baseline model). . . . . . . . . . . . . . . . . . . . . 86

6.1 Chapter 6: Token length statistics for the e-SNLI dataset, all numbers

round to integer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Chapter 6: Architecture Selection and Spurious Correlation Experi-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Chapter 6: Premise Agnostic Generation Experiments. . . . . . . . . 98

6.4 Chapter 6: Selected spurious correlation examples. . . . . . . . . . . . 98

6.5 Chapter 6: Selected non-spurious correlation examples. . . . . . . . . 99

6.6 Number of parameters for each model, with separate counts for pre-

diction and generation component. . . . . . . . . . . . . . . . . . . . 106

6.7 Chapter 6: XAI with natural language processing Results ( ‘−−’

refers to results not applicable). . . . . . . . . . . . . . . . . . . . . . 107

6.8 Chapter 6: Selected diverse evidence generation examples. . . . . . . 108

7.1 Chapter 7: Semi-Supervised Learning Experiment Results for Quora. 131

7.2 Chapter 7: Semi-Supervised Learning Experiment Results for MSCOCO.131

7.3 Chapter 7: Main Experiment Results for Quora. . . . . . . . . . . . . 132

7.4 Chapter 7: Main Experiment Results for MSCOCO. . . . . . . . . . . 132

7.5 Chapter 7: Complement Results for Quora. . . . . . . . . . . . . . . . 132

7.6 Chapter 7: Complement Results for MSCOCO. . . . . . . . . . . . . 133

7.7 Chapter 7: Selected paraphrase generation results for Transformer

(TRANS) versus DDL model with different amounts of labelled data

(denoted in brackets), represented in the case of Quora dataset. . . . 134

7.8 Chapter 7: Selected paraphrase generation results for semi-supervised

model (DDL+VSAR) when incorporating different amounts of unla-

belled data (denoted in brackets) and the same amount of labelled

data (20K), represented in the case of Quora dataset. . . . . . . . . . 136

xviii



Nomenclature

Roman Symbols

A Matrix

a Vector

a Scalar

θ Parameter Matrix

φ Approximated Parameter Matrix

D Dataset

X Dataset Inputs i.e. X = (x1,x2, ...,xN)>

Y Dataset Outputs i.e. Y = (y1,y2, ...,yN)>

xn Input Data Point for Model

yn Output Data Point for Model
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CHAPTER 1

Introduction

1.1 Background and Motivation

Deep learning refers to a new paradigm that solves machine learning problems with

deep neural network models [1, 7] and has revolutionised natural language pro-

cessing (NLP) in recent years [8–10]. Compared with traditional machine learning,

deep learning delivers powerful and superior performance in a wide range of NLP

applications and has been adopted to create profitable products in industries123.

Over the past decade, the great advancements and success of deep learning have

triggered an explosion in artificial intelligence (AI) investment, industrial and

scientific applications, hardware, startups, and education4. As an important AI ap-

plication, NLP tasks require an understanding of complex human languages, such

as sentiment analysis [11], text classification [12], machine translation [13], sum-

marisation [14], information extraction [15] and paraphrase generation [16], are all

now dominated by deep neural networks [9]. Almost every NLP task falls into one

1https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
2https://blog.google/products/search/search-language-understanding-bert/
3https://ai.facebook.com/blog/heres-how-were-using-ai-to-help-detect-misinformation/
4https://www.stateof.ai/
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of the following categories [8, 10]: natural language understanding, which assigns

one or multiple labels, given associated inputs; and natural language generation,

which generates a piece of text, given associated inputs. In this thesis, we explore

natural language understanding problems in Chapter 4 and 5 and natural language

generation problems in Chapter 6 and 7.

Deep learning approaches rely on end-to-end representation learning and have

discarded many decades of hand-crafted feature engineering [1, 7]. Representation

learning refers to not only learning the representations that map features to results

but also the representation of the features themselves [1, 7]. In the context of NLP,

deep learning learns the parameter from the raw symbolic representation of text,

which is modelled with a one-hot form vector dictionary, to final numerical out-

puts [8]. Deep learning utilises deep neural networks to learn rich, highly non-linear

data representations through numerical optimisation techniques such as stochastic

gradient descent [1,7,8]. For each training data instance, consisting of an input and

an associated output, a scalar error value called the loss is computed by passing

through multiple layers of complex data transformations with their associated pa-

rameters [1,7,8]. This loss reflects the difference between the predicted and ground

truth output and is then differentiated with respect to each parameter in each layer

with the back-propagation (BP) algorithm [17]. The BP algorithm allows us to

nudge the parameters in a direction that will, on average, result in a lower loss the

next time the same input is encountered.

This rapid growth and early success of deep learning for NLP have been primar-

ily driven by the emergence of large-scale publicly available benchmark datasets,

distributed word representations, and high-performance parallel computing hard-

ware [9]. Despite remarkable advancements having been made in these benchmark

tasks, many practical concerns are raised on whether deep learning models under-

stand the tasks themselves [18–20] instead of exploiting bias, and spurious corre-
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lations in data [21]567. Deep learning methods result in a stationary set of model

parameters that fail to provide legitimate uncertainty measurements. Hence, deep

learning models are often considered as ‘black-box’ methods with less interpretabil-

ity and explainability when compared with traditional statistical models [22]. These

practical issues raise concerns about the robustness, trustworthiness, explainability

and interpretability of deep learning [23–25]. Although the limitations of deep learn-

ing methods are widely acknowledged, work on practical solutions to address these

concerns in NLP applications is contrastingly limited. These obstacles still stand

in the way of applying neural networks to real-world problems, especially applica-

tions in critical fields such as healthcare, finance, and education. Overcoming these

obstacles is necessary for machine learning researchers, engineers and practitioners

to allow deep learning methods to create a meaningful impact on the economy and

society.

On the contrary, these obstacles are not observed in the human learning process:

humans possess an explainability and interpretability understanding of the world

(equivalent to a model) and can perform robust and trustworthy decision-making

(based on this model). The premise that humans possess a model-based explainable,

and interpretable understanding of the world, is substantiated by the theories put

forth by Daniel Kahneman in the field of decision-making under uncertainty [26,27].

Kahneman argues that individuals engage in two distinct cognitive processes in

the decision-making process, the ”associative” and the ”reasoning”. The ”associa-

tive” process links current observations to previous experiences (possibly through a

learned model). In contrast, the ”reasoning” process allows for informed decision-

making based on the present context (based on the model). By integrating these

two processes, individuals can form an understandable and explicable understand-

ing of the world, which serves as a model to facilitate the creation of robust and

trustworthy decision-making.

5https://sitn.hms.harvard.edu/flash/2020/racial-discrimination-in-face-recognition-
technology/

6https://hbr.org/2019/10/what-do-we-do-about-the-biases-in-ai
7https://www.forbes.com/sites/forbestechcouncil/2021/02/04/the-role-of-bias-in-artificial-

intelligence/?sh=78584326579d
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Based on the above analysis, one key difference between human learning and deep

learning is that humans not only invest the effort to understand the data observed

but also to figure out how the data is generated . For deep learning methods, how-

ever, the learning process only involves understanding the data observed. The crit-

ical distinction here motivates us to seek for more generative approach for deep

learning: methods that can infer cause from observations8. In this thesis, we adopt

a well-established computational framework to mimic the human cognition process

and understand the world in a generative manner [28, 29]. Using the language of

probability together with this framework, we can represent our belief with proba-

bility distributions and update our belief with the Bayes rule given the evidence

observed [28,29]. The process of understanding the world with Bayesian methods is

known as Bayesian inference.

In this thesis, we explore methods that perform Bayesian inference in deep learn-

ing, a field referred to as Bayesian deep learning (BDL) or deep Bayesian learn-

ing (DBL). The benefits of introducing the Bayesian side into deep learning allow

the models to invest the effort to understand the data observed (via deep learning)

and also to figure out how the data is generated (via Bayesian inference). Further-

more, the incorporation of Bayesian methodology in deep learning models holds the

potential to address some concerns, such as robustness, trustworthiness, explainabil-

ity, and interpretability in NLP applications. This is achieved by introducing latent

variable assumptions that help explain and represent the underlying causes of the

data, as demonstrated in the methodology Chapter 3 and later in Chapters 4, 5, 6

and 7 with various NLP applications. In particular, we focus on a specific set of

model families, known as the deep latent variable models (DLVMs), which is

widely adopted for performing Bayesian deep learning in the research community.

Latent variable models assume there exist unobserved latent variables that gener-

ate the data we observed. For latent variable models in Bayesian deep learning,

the central task concerns the posterior inference for latent variables. In this thesis,

the variational inference (VI) method and, in particular, neural variational

8Here, the cause refers to the statistical association instead of causality.
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inference (NVI) [4–6] is adopted as the Bayesian inference technique. NVI can

be seamlessly integrated into deep learning along with DLVMs, as explained later

in Chapter 3 and can be used to build various NLP applications, as described in

Chapter 4, 5, 6 and 7.

1.2 Research Questions

The main research questions of this thesis can be summarised as follows:

Research Theme 1: Exploring Bayesian Deep Learning for Urgent In-

structor Intervention Needs Identification in MOOCs Forums.

Our first research theme pertains to exploring Bayesian deep learning for ur-

gent instructor intervention needs identification in massive open online courses

(MOOCs) forums. MOOCs have become a popular choice for e-learning thanks to

their great flexibility. However, due to the large number of learners and their diverse

backgrounds, it is taxing to offer real-time support. Learners may post their feel-

ings of confusion and struggle in the respective MOOC forums, but with the large

volume of posts and high workloads for MOOC instructors, it is unlikely that the

instructors can identify all learners requiring intervention. This problem has been

studied as an NLP task with deep learning recently and is known to be challenging,

due to the imbalance of the data and the complex nature of the task. However, the

performance of deep learning is known to be unstable with regard to random weight

initialisation and has limited capability to incorporate uncertainty. One way to ad-

dress these problems is to apply probabilistic modelling techniques in deep learning,

and thus, in Chapter 4, we focus on the research question:

Research Question 1: How do Bayesian methods, in particular, deep

latent variable models, benefit deep learning for a user needs prediction

task in education?

Research Theme 2: Proposing an Efficient Uncertainty Quantification

Framework for Multilabel Text Classification.
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In our first research theme, we empirically show the benefits of two Bayesian

deep learning methods (DLVMs and BNNs) to improve robustness and trustwor-

thiness for urgent user intervention prediction in MOOCs. The conclusions from

our first research theme lead to the following question: Does this solution popularise

from an education-specific domain to a more general natural language understanding

domain? Hence, our second research theme explores the application of DLVM for

efficient uncertainty quantification in multi-label text classification tasks910. Despite

rapid advances of modern AI, there is a growing concern regarding its capacity to

be explainable, transparent, and accountable. One crucial step towards such AI

systems involves reliable and efficient uncertainty quantification methods. Existing

approaches to uncertainty quantification in NLP rely on Monte Carlo dropout

(MCD) technique, which is known to not be computationally efficient in testing

time due to layer-wised sampling; and hinders its applicability in real-time rending.

Thus, in Chapter 5, we focus on the research question:

Research Question 2: How do we use deep latent variable models to

achieve efficient uncertainty quantification in multi-label text classifi-

cation tasks?

Research Theme 3: Proposing a Deep Generative XAI Framework for

Natural Language Inference Explanation.

To summarise our first two research themes, we have shown the benefits of DLVM

in natural language understanding problems, leading to a natural question: How can

DLVM address these concerns in natural language generation problems? Reflecting

on this question, our third research theme explores an application of DLVM for

explainable artificial intelligence (XAI) multiple explanation generation task.

XAI with natural language processing aims to produce human-readable explanations

as evidence for AI decision-making, which addresses explainability and transparency.

9https://www.ibm.com/blogs/watson/2020/11/nlp-vs-nlu-vs-nlg-the-differences-between-
three-natural-language-processing-concepts/

10https://huggingface.co/tasks/text-classification
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However, from an HCI perspective, the current approaches only focus on delivering

a single explanation, which fails to account for the diversity of human thoughts and

experiences in language. Thus, to address this gap, in Chapter 6, we focus on the

research question:

Research Question 3: How do we use deep latent variable models to

generate multiple explanations for a natural language inference task?

Research Theme 4: Semi-Supervised Deep Latent Variable Models for

Paraphrase Generation.

Up to this point, our first three research themes focus on supervised machine

learning setup; however, for NLP problems, the availability of large-scale annotated

data is often not possible. To address this challenge, we present another question:

Can we use DLVM for semi-supervised machine learning problems in natural lan-

guage generation tasks? In responding to this question, our fourth research theme

explores DLVM for semi-supervised learning problems in paraphrase generation

tasks, where the missing target pair for unsupervised learning is modelled as a

latent paraphrase sequence. Additionally, in our previous three contributions, we

have utilised an assumption that the latent variable can be represented as a smooth

and continuous distribution (diagonal multivariate Gaussian); however, for NLP ap-

plications, the continuous latent variable is inherently less interpretable. Thus, in

Chapter 7, we explore the usage of the discrete latent variable in DLVM and focus

on the research question:

Research Question 4: How to perform semi-supervised learning with

deep latent variable models for paraphrase generation tasks?

1.3 Research Objectives

Based on the research questions in section 1.2, the corresponding research objectives

with respect to each research question are listed below:
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Research Question 1: How do Bayesian methods, in particular, deep

latent variable models, benefit deep learning for a user needs prediction

task in education?

This research question is addressed by the following objectives:

RO1.1: Explore learner-based text posts for an intervention need prediction task

with two Bayesian methods in deep learning;

RO1.2: Compare Bayesian deep learning models to its baseline deep learning models

under similar circumstances;

RO1.3: Present results and analysis of the benefits of Bayesian deep learning on

adding more trust and robustness to AI in education;

RO1.4: Propose methods to achieve similar or better performance compared to

non-probabilistic neural networks and are more robust with random initialisation.

Research Question 2: How do we use deep latent variable models to

achieve efficient uncertainty quantification in multi-label text classifi-

cation tasks?

This research question is addressed by the following objectives:

RO2.1: Propose methods of representing epistemic and aleatoric uncertainties con-

ditional on text with deep latent variable models;

RO2.2: Propose efficient uncertainty quantification methods with posterior analysis

in the (approximated) latent and data space;

RO2.3: Conduct extensive experiments and studies on diverse neural network ar-

chitectures;

RO2.4: Prove the benefits of explicitly modelling uncertainty in neural networks.

Research Question 3: How do we use deep latent variable models to

generate multiple explanations for a natural language inference task?

This research question is addressed by the following objectives:
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RO3.1: Propose a deep generative XAI framework based on the Transformer archi-

tecture;

RO3.2: Show that the proposed framework can generate multiple explanations in

two steps;

RO3.3: Conduct experiments and analysis on the proposed framework to validate

its effectiveness.

Research Question 4: How to perform semi-supervised learning with

deep latent variable models for paraphrase generation tasks?

This research question is addressed by the following objectives:

RO4.1: Study semi-supervised learning with DLVMs for paraphrase generation task;

RO4.2: Propose a novel unsupervised model named variational sequence auto-

encoding reconstruction (VSAR);

RO4.3: Propose a novel supervised model named dual directional learning (DDL);

RO4.4: Combine VSAR and DDL model for semi-supervised learning in paraphrase

generation tasks;

RO4.5: Empirically show the effectiveness of the combined model.

1.4 Main Contributions

This thesis contributes to the field of deep learning and natural language processing;

the main contribution of this thesis can be summarised as follows:

Exploring and proposing novel methods (supervised and semi-supervised)

and applications (natural language understanding and generation) with

deep latent variable models for natural language processing.

Further contributions are as follows:

• Studied both supervised learning and semi-supervised learning paradigms with

deep latent variable models:
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– Studied the benefits of deep latent variable models against their corre-

sponding deep learning models (equivalent in model architectures and the

number of trainable parameters) under supervised learning paradigm in

Chapter 4, 5 and 6. These studies suggested that deep latent variable

models are competitive in performance against deep learning methods

while offering additional robustness, trustworthiness, explainability and

interpretability.

– Studied the benefits of deep latent variable models against their corre-

sponding deep learning models (equivalent in model architectures and the

number of trainable parameters) under semi-supervised learning paradigm

in Chapter 7. This study showed that semi-supervised deep latent vari-

able models are able to achieve state-of-the-art performance in paraphrase

generation tasks and have great potential for semi-supervised learning

settings.

• Proposed novel NLP applications for both natural language understanding and

natural language generation problems with deep latent variable models:

– Propose novel Bayesian deep learning models for urgent instructor in-

tervention need identification in MOOCs Forum, in Chapter 4, as a

natural language understanding problem. This is the first research on

how Bayesian deep learning can be applied to a text-based learning ana-

lytics application.

– Propose novel deep latent variable models for multilabel text classification

tasks, in Chapter 5, as a natural language understanding problem. This

is the first research on using deep latent variable models for efficient

uncertainty quantification purposes in multilabel text classification tasks.

– Propose novel deep latent variable models for the natural language infer-

ence explanations generation task, in Chapter 6, as a natural language

generation problem. This is the first research on how deep latent variable

models can be applied to generate multiple explanations in the Stanford

natural language inference task.
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– Propose novel deep latent variable models for paraphrase generation tasks,

in Chapter 7, as a natural language generation problem. This is the first

study on how deep latent variable models can be used for semi-supervised

learning in paraphrase generation tasks.

1.5 Thesis Structure

This thesis contains in total of 8 Chapters and is organised as follows:

• Chapter 1 presents the general background and motivation, research ques-

tions and their corresponding research objectives, main contributions, as well

as the structure of this thesis.

• Chapter 2 introduces relevant literature in deep learning, natural language

processing, and deep latent variable models, which are associated with this

thesis, and align our contributions with the literature.

• Chapter 3 provides the technical knowledge and general methodology for

readers to understand the content and contributions of this thesis.

• Chapter 4 presents an exploratory study on Bayesian deep learning methods,

in particular, deep latent variable models for text classification, using MOOC

forum data from an educational domain (RQ1).

• Chapter 5 presents a reliable and efficient Bayesian uncertainty quantification

framework for both epistemic and aleatoric uncertainty on multi-labelled text

classification tasks (RQ2).

• Chapter 6 moves on from natural language understanding to the genera-

tion task and presents a novel conditional deep generative XAI framework for

multiple natural language explanations generation (RQ3).

• Chapter 7 further explores the natural language generation field and presents

a novel semi-supervised deep generative framework for paraphrasing genera-

tion tasks (RQ4).
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• Chapter 8 summarises the works presented in this thesis, answers the research

questions and outlines future research venues.
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CHAPTER 2

Literature Review

This chapter starts by introducing the general categories of natural language pro-

cessing, with a special focus on deep learning, and then points out the associated

contributions in this thesis in the field of natural language processing. Next, this

chapter presents recent works on deep latent variable models for text applications,

which is the main focus of this thesis. Specifically, this chapter reviews the main

lines of research on deep latent variable models for texts from an application per-

spective and demonstrates how the work in this thesis identifies existing gaps and

presents new solutions and contributions.

2.1 Deep Learning based Natural language Pro-

cessing

Natural language processing (NLP) concerns the field of study on the inter-

actions between computational processing, and human languages [30], involves the

engineering of computational models and processes to solve practical problems in

order to understand human languages. The origin of research on NLP can date back

to 1950 [31] when Alan Turing at that time published the well-known article and
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proposed the Turing test. The Turing test involves the automated interpretation

and generation of natural language by a computer agent, hence can be considered

an early form of NLP task. In the 1950s, early work of NLP research prelimi-

nary relied on rule-based approaches; from the 1980s, the NLP field moved towards

using data-driven computation methods involving techniques borrowed from statis-

tics, probability, and machine learning [32,33]. In recent years (especially the 2010s

onwards), a major shift in NLP research technique was the introduction of deep

learning [1, 7], harnessed by computational advancements in graphical processing

units [34, 35] and more recently tensor processing units [36]. Another important

factor resulting in the blossom of deep neural network based models is the increas-

ing amount of data available [9]. Up to this point (year 2022), deep learning is

no doubt the dominant approach for natural language processing and has achieved

state-of-the-art performance in almost all NLP tasks [10,37].

For decades, solutions for NLP problems have been based on machine learning

approaches with shallow models (e.g. support vector machine (SVM) [38], and

logistic regression [39]) trained on very high dimensional and sparse features, and

liaised heavily on hand-crafted features [40]. Early works of NLP research using

neural network models have produced superior results on various NLP tasks, with

the success of distributed word embeddings [41,42] and deep learning technique [7].

The success of deep learning triggered a revolution in NLP research and has made

deep learning the most popular choice of machine learning approaches. However,

even before deep learning was widely adopted, back in 2011, Collobert et al. [43]

already demonstrated that a simple deep learning framework could reach state-of-

the-art performance with raw text data in various NLP tasks, such as named entity

recognition (NER), semantic role labelling (SRL), and part-of-speech (POS)

tagging. In the year 2022, deep learning is no doubt the state-of-the-art method for

NLP [10,37].

Research for NLP and deep learning can be divided into two general aspects:

distributed representation and deep learning architecture. The first aspect, dis-

tributed representation, is often used as the first data processing layer in a deep

learning model to convert text into numerical representations [40]. For distributed
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representation, motivation date back to [44], which aimed to learn semantic repre-

sentations in lower dimensions. Successful instances of distributed representations

at word-level include word2vec [41, 42] and Glove [45]. Limitations of such word-

level representations include the inability to represent phrases when combining two

individual works, later addressed by region embedding [46]; and sentiment ambi-

guity as a result of small window size [47], later addressed by sentiment-specific

embedding [48]. For word-level representations, however, an inherent limitation of

these representations for language with a large vocabulary is the problem of out-

of-vocabulary (OOV) [40]. One solution to this is character embedding which

considers each word as the composition of individual characters [49] and has shown

significant benefits [50, 51] in various NLP applications. In recent years, contextual

representations have raised attention in NLP research and have been found essential

to improving the performance of NLP tasks. One important challenge for word-level

and character-level distributed representation is that no context-specific represen-

tation is considered, while for downstream tasks in NLP, understanding the actual

context is necessary [52]. Some popular types of contextual embeddings include

Embeddings from Language Models (ELMO) [53], and other pre-trained em-

beddings such as Bidirectional Encoder Representations from Transformers

(BERT) [54] and Generative Pre-Training (GPT) model family [55,56].

The second aspect of NLP research with deep learning concerns model architec-

tures, three main categories of deep learning model architectures are convolutional

neural networks (CNNs), recurrent neural networks (RNNs), and attention-

mechanism neural networks (Transformer); for general introduction with these ar-

chitectures please refers to section 3.2. For NLP, the motivation for using CNNs is

to extract higher-level features from constituting words or n-grams [40]. The use

of CNNs for sentence modelling is pioneered by [43] and is later proliferated to the

NLP community by [57, 58]. With pooling operations such as max, min and sum,

deep CNNs models can grasp a high-level abstraction of a sentence. Apart from a

single abstract representation, architectures based on CNNs can work in word-based

prediction tasks such as NER, POS tagging, and SRL with window approach [59]

or combine with structured prediction techniques such as conditional random
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field (CRF) [60]. For application-wise, CNNs have been applied to text classi-

fication [57, 58, 61], representation learning [62, 63], information retrieval [64] and

many other NLP applications [65]. In Chapter 5 and 6, we use architecture based

on CNNs, motivated by [57, 58] for text classification and latent variable inference

purpose, respectively.

The CNNs model architecture is wired in a way to capture the essence of infor-

mation, as the pooling operation results in representation in a translation-invariant

form; however, this might not be helpful in tasks such as text generation where

sequential information needs to be preserved. In the NLP field especially, most

tasks can generally be framed as sequential modelling problems. The motivation

for RNNs model architecture is to capture the inherent sequential nature preserved

in language, where units can be characters, words, or even sentences [40]. From a

linguistic perspective, words in a language develop their semantical meaning based

on the previous words and current context in the sentence [66]. These linguistic

aspects grant a strong motivation for researchers to use RNNs over CNNs for the

NLP domain. Another factor to support RNN’s suitability for sequence modelling

tasks comes from its ability to handle variable lengths of text, including very long

sentences, paragraphs and even documents [67]. The modelling capability for un-

bounded context [68] is the main selling point of why RNNs model architecture is

adopted widely in the thesis, and hence are used in Chapter 4 and 5. These moti-

vations, however, do not lead to a conclusion on the superiority of RNNs over other

deep learning architectures [69, 70]. For application-wise, RNNs have been applied

to word-level classification tasks, such as NER [71] and language modelling [72,73];

sentence-level classification tasks, such as sentiment analysis [74] and text classifi-

cation [12, 75]; and language generation tasks, such as machine translation [13, 76],

conversation modelling [77,78] and visual question answering [79].

One potential problem when using RNNs model architecture is that it is hard

to encode information-rich and long sequences in a fixed vector [80], which inspires

the attention mechanism. The attention mechanism attempts to provide dynamic

attention weights to all the hidden state vectors in the sequence and conditions on a

context vector [40]. A recent milestone for attention mechanism is the invention of
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Transformer architecture [81], which is primarily based on the self-attention mech-

anism and achieved state-of-the-art performance in sequence-to-sequence learning

problems. With the development of self-supervised learning [82, 83], pre-trained

language models with transformer architectures represent the state-of-the-art for

NLP [10, 37]. In Chapter 6 and 7, we use the Transformer-based encoder-decoder

architecture for explainable artificial intelligence (XAI) explanation generation

and paraphrase generation, respectively.

In this thesis, we mainly focus on end-to-end deep learning models for NLP

applications, which consider distributed representations and deep learning architec-

ture as complete components. Broadly speaking, from an applications perspective,

the problem of natural language processing1 can be further separated as natural

language understanding, and natural language generation [84, 85]. We explore the

problem of natural language understanding application in Chapter 4 and 5, and the

problem of natural language generation application in Chapter 6 and 7.

In Chapter 4, we explored a domain-specific natural language understanding

application in education, which automatically identifies the intervention needs of

learners from online forum data. A short review of work related to identifying user

intervention needs is presented in section 4.2.1. In Chapter 5, we further explore the

application of natural language understanding with multilabel classification tasks.

We present a novel uncertainty quantification framework and conduct extensive

experiments to understand its effectiveness in improving results across diverse neural

network architectures. A brief review of uncertainty quantification literature for

NLP is presented in section 5.2. In Chapter 6, we explore a relatively recent natural

language generation task, named explainable-NLP, which aims to present structured,

human-readable text-form explanations as evidence to support deep neural network

decisions. A short review of XAI techniques applied to NLP is presented in section

6.2.1. In Chapter 7, we explore semi-supervised learning of paraphrase generation

tasks with deep latent variable models and a relevant review for work associated

with paraphrase generation is presented in section 7.5. In summary, in this thesis,

1Note here we do not consider the field of research associated with spoken language processing.
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we present various NLP applications as our contributions to both text understanding

and generation problems.

2.2 Deep Latent Variable Models for Text

Latent variable models (LVMs) and probabilistic graphical models2 (PGMs),

more generally, are rooted in statistics [28,86,87] and are primarily based on the as-

sumption of the presence of latent unobserved variables which are used to account for

overdispersion or to implicitly model association structures. [87] suggests that many

of the existing statistical models can be fitted within the general unified framework

of LVMs. As the latent variables are never observed in data, the central task for

LVMs is concerned with the posterior inference for latent variables [86–88]. Tradi-

tional Bayesian inference for posterior inference methods in these models utilises the

power of exponential family and conjugate priors for exact inference [89], which at

the same time requires less consideration for potential issues with computation com-

plexity and computation cost [90]. However, for complex real-world problems and

data coming from rich, expressive classes, the exact inference methods may not even

exist and suffer from their limited expressiveness [91]. Hence, approximate inference

methods are used to compute the complicated intractable posterior distributions

and have become a hot spot in the machine learning research community [9, 92].

There are mainly two families of approximation methods in Bayesian research,

which are the stochastic approximation and the deterministic approximation [28].

The stochastic approximation refers to the sampling-based methods, and a large

family of these algorithms have been proposed in the rich history of Bayesian statis-

tics, the most famous one named as Monte Carlo Markov Chain (MCMC) [29].

For stochastic approximation, we need to carefully design and define a good sam-

pler, and transformation matrices for the Markov chain in order to converge to the

true posterior [28, 29]. The deterministic methods are mainly developed based on

the variational inference (VI) [28, 93], which introduces the latent variable to

2Note here we implicitly refer to directed graphical models with latent variables in the scope of
PGMs.
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represent the generation process of data and utilises an approximated posterior to

estimate the intractable posterior distribution. In this thesis particularly, we explore

the problem of Bayesian inference through the lens of VI, as a key technique for per-

forming approximate posterior inference [94]. For VI in deep learning, in particular,

neural variational inference (NVI) [4–6] is adopted as it allows scalable learning

with stochastic gradient optimisation algorithms initially designed for deep learning.

Combining NVI with deep learning results in a new type of modelling framework

called the deep latent variable models (DLVMs), which represents the central

focus of our research in this thesis.

Before the deep learning era, LVMs are widely adopted for NLP applications.

LVMs offer a flexible and unified framework to declare prior knowledge and struc-

tural relationships in complex datasets [94] and have a long and rich history in

building NLP applications, such as statistical alignment for translation [95], topic

modelling [96], unsupervised part-of-speech tagging [97], grammar induction [98],

document modelling, document clustering, topic modelling and parsing [29]. With

recent advancements in deep learning for NLP applications, such as language mod-

elling, machine translation, and question answering [9], DLVMs offer a natural in-

terface to combine the advantages of LVMs on probabilistic modelling and the ad-

vantages of deep learning on its performance. In recent years, DLVMs have been

widely studied for NLP applications [99–103]. Prior research for NLP applications

with DLVMs can be generally placed into one of two categories: the first category

focus on the assumptions and properties of the latent variable, whether continuous

or discrete; the second category focuses on specific NLP applications with DLVMs.

From the first category, the most common and widely adopted DLVM for NLP

application is the standard VAE [4] model with a Gaussian prior [104] published

by Bowman et al. in 2015, also known as the sentence VAE [94]. Since then,

sentence VAE has been used as a powerful tool for unsupervised representation

learning and also later extended for conditional representation learning [105–109].

However, DLVMs, in general, suffer from posterior collapse [110, 111]. In this the-

sis, we presented a study on posterior collapse when using DLVMs for uncertainty

quantification purposes in Chapter 5. In literature, multiple studies have been con-
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ducted to combat this issue [111–117], in particular β-VAE [112] presents a simple

but effective solution and introduces a penalty term to balance the reconstruction

term and prior-posterior regularisation term intuitively and is adopted as one of our

baselines in Chapter 7. While much of the research focuses on continuous latent

variable models, the text is naturally presented in discrete form and may not be

well represented with continuous latent variables [99, 118]. Early work on discrete

deep latent variable models [118–121] adopted the REINFORCE algorithm [6,122];

however, it suffers from very high variance [99, 123]. With the recent advancement

in statistical relaxation techniques, Gumbel-Trick [3, 124] was utilised, to model

discrete structures in the latent variable model of the text [123,125–127].

The second category of study for DLVM focuses on particular novel NLP ap-

plications. As stated in Chapter 1, natural language processing applications can

be further separated as natural language understanding and natural language gen-

eration. For natural language understanding tasks, DLVMs have been used for

sequence labelling [128], dialogue classification [129], language modelling [130–133],

document modelling [134], question and answering [134], topic modelling [135] and

unsupervised parsing [136]. For natural language generation tasks, DLVMs have

been used for machine translation with missing words [137], dynamic sentence con-

struction [138], dialogue generation [119,139,140], content selection [141], summari-

sation [118,142], data-to-text generation [143] and machine translation [144].

In this thesis, we explored DLVMs with a continuous latent variable assumption

in Chapter 4, 5 and 6; and adopted Gumbel-Trick with subset sampling [145] for

discrete latent variable assumption in Chapter 7. However, the main focus is to use

DLVMs to construct novel NLP applications. We explored the problem of natural

language understanding application in Chapter 4 and 5, and the problem of natural

language generation application in Chapter 6 and 7. In Chapter 4, we explored the

usage of DLVMs for reducing variance against random initialisation (robustness)

and providing uncertainty measurement (trustworthiness) for an AI in education

application which automatically identifies the intervention needs of learners from

online forum data. In Chapter 5, we explored the usage of DLVMs as a component

to efficiently model uncertainty (trustworthiness) via analytical solution in latent
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space for general text understanding tasks. In Chapter 6, we explored the usage

of DLVMs for an XAI explanation generation task, which used a latent variable

to model the semantic content for explanations (explainability and interpretabil-

ity). In Chapter 7, we explored the usage of DLVMs for semi-supervised learning in

paraphrase generation tasks. The latent variable sequence represents the associated

missing paraphrase label for each data used for unsupervised learning (explainabil-

ity), and we additionally use the discrete latent variable to represent tokens from the

vocabulary (interpretability). Our contributions provide insights into how DLVMs

can be constructed and used for NLP applications.
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CHAPTER 3

Technical Background and Methodology

This chapter provides the necessary technical background and methodology for read-

ers to understand this thesis. It begins with an introduction to probabilistic machine

learning and the deep learning paradigm. It follows with a description of the Repre-

sentation Theorem, leading to our assumption on modelling data. Then, this chapter

introduces learning and inference in deep latent variable models. Later, this chapter

describes some advanced techniques for probabilistic machine learning. Finally, this

chapter ends with a description of the general methodology for the implementation

of the research included in this thesis and justifies why the methodology is adopted

in this thesis. The actual model implementation details for each application are

presented in the later chapters of this thesis.

3.1 Probabilistic Machine Learning

Machine learning (ML) concerns the study of computer algorithms that leverage

data to improve their performance on some set of tasks [146]. A formal definition

of machine learning, borrowed from [147], based on [146], states that:

“A computer program is said to learn from data D with respect to some class of
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tasks T , and performance measure P ; if its performance at tasks in T , as measured

by P , improves with data D.”

Machine learning algorithms build mathematical models M (either determin-

istic or probabilistic [148]) to represent the tasks T information based on sample

data Dtrain observed (training set1) to make predictions or decisions on new data

Dtest (test set) without much explicit supervision [149]. Based on the category of

model M , machine learning could be interpreted from two perspectives: (1) from

an optimisation perspective, where the ultimate aim is to seek an optimal function

for data; and (2) from a probabilistic perspective, where the ultimate goal is to find

a probability distribution for data.

In this thesis, the focus lies on the interpretation from Bayesian (or more gener-

ally probabilistic) perspective. In this perspective, we treat all unknown quantities

as random variables, that are endowed with probability distributions. There are two

main reasons we adopt a probabilistic approach [147]. First, this allows decision-

making under uncertainty, which is critical in many applications such as finance,

healthcare and education. The first reason is justified with research presented in

Chapter 4 and 5. Second, probabilistic modelling is the language used by most

other areas of science and engineering, and thus provides a unifying framework be-

tween these fields. The second reason is justified when we use Bayesian statistics as

a tool to analyse and model data, as presented in Chapter 5, 6 and 7. The advan-

tages of these two reasons also strengthen the reason for us to choose a Bayesian

(probabilistic) interpretation, as the scope of this thesis aims to study and provide

insights concerning the robustness, trustworthiness, interpretability and explainabil-

ity of deep learning. For the philosophy behind Bayesian statistics, the readers may

refer themselves to [150] and [151] for more information.

1In standard machine learning setting, a small portion of the training dataset is used for model
comparison and selection, known as the validation set.
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3.2 Deep Learning

Deep learning (DL) is a sub-field of machine learning which is primarily based on

neural networks, and representation learning [1, 152]. Traditional machine learning

methods heavily rely on expert hand-craft features [153], known as feature engi-

neering. The performance of these traditional machine learning algorithms pre-

dominantly depends on the feature representation of the raw data provided. This

dependence on the quality of data representations is a general phenomenon through-

out computer science and even in our daily life. Take an example from computer

science; operations such as searching a target file from a data collection can proceed

exponentially faster if the data is structured and organised. Take an example in

daily life; people can efficiently perform arithmetic calculations with Arabic num-

bers but find the same operations on Roman numbers much more time-consuming.

Hence, it is not surprising that the choice of representation has an enormous impact

on the performance of machine learning algorithms. A simple visual example, as

suggested in [1], is presented in Figure 3.1.

Figure 3.1: Chapter 3: Example of different representations based on a simple
machine learning classification problem that we would like to draw a line between two
categories of data. On the left, we represent data with Cartesian coordinates, and
the task is impossible. On the right, we represent the data with polar coordinates,
and the task becomes simple to solve. (Figure taken from [1].)

Many machine learning tasks can be solved by designing the right set of features

to extract from data. For many complex tasks, however, it is often an ill-defined
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problem2 to know what features should be extracted automatically (even for experts

sometimes). For example, suppose that we would like to write a machine learning

algorithm for machine translation purpose, which translate English to French. The

solution to this problem is to use machine learning to discover not only the rep-

resentation of English to French but also the representation of English and French

themselves. This approach is known as representation learning [152]. However, for

an ill-defined problem, it can be difficult to extract high-level, complex, abstract

features from raw data directly, especially when it is nearly as difficult to obtain a

representation as to solve the original problem.

Deep learning solves this central problem (i.e. extracting high-level abstract

features from raw data directly) in representation learning by introducing repre-

sentations that are expressed in terms of other, simpler representations [2]3, as

demonstrated with a computer vision example in Figure 3.2. It has been suggested

that similarly, phenomenons appear in natural language processing, deep learning

model can capture structural information about language [154] and linguistic knowl-

edge [155] in different layers of the model.

Figure 3.2: Chapter 3: A visual example of representation captured in different
neural network layers. (Figure taken from [2].)

The quintessential example of a deep learning model is the feed-forward deep

network, or so-called multilayer perceptrons (MLPs). An MLP consists of at

2In the study of problem-solving, any problem in which either the starting position, the allowable
operations, or the goal state is not clearly specified or a unique solution cannot be shown to exist
is called an ill-defined problem; also known as an ill-structured problem.

3Please also check: https://microscope.openai.com/models
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least three layers of nodes: an input layer, a hidden layer, and an output layer [156].

Except for the input nodes, each node is a neuron that uses a nonlinear activation

function. Each neuron can be considered as an instance of the perceptron learning

algorithm [157], invented in 1958 at the Cornell Aeronautical Laboratory. An illus-

tration of a neuron node is presented in Figure 3.3. An MLP can be interpreted

as a mathematical function mapping some set of input values X to output values

Y . The complex function is formed by composing many simpler functions, layer

by layer. As shown in [91, 158–160], MLPs are universal function approximators:

with enough neurons in the hidden layer, they are capable of approximating arbi-

trary functions between finite dimensional vector spaces with arbitrary accuracy.

Hence, MLPs can be used to create mathematical models for regression analysis

problems. As classification is a special case of regression when the response variable

is categorical [156], MLPs are equivalently applicable to classification problems.

Figure 3.3: Chapter 3: An illustration of an artificial neuron. Source from Becoming
Human

For deep learning, many other types of network architectures are developed, and

we will briefly describe some classical ones here. The first type of architecture is

the convolutional neural networks (CNNs), which are inspired by the receptive

field [161] in visual cortex [162] and initially invented for image processing tasks

[163,164]. In 2012, a CNN model called AlexNet [165] won the ImageNet large-scale

visual recognition challenge and triggered attention and interest in deep learning

techniques [1]. CNN models are later extended to solve natural language processing

problems with applications such as semantic parsing [166], sentence modelling [57],
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and text classification [58]. CNN models are used in this thesis in Chapter 5 and 6.

The second type of architecture is the recurrent neural networks (RNNs)

[164,167], which are designed specialised at modelling temporal dynamic behaviour

in data. Three main adopted RNN models are Elman network [168], Long Short

Term Memory network [169] and Gated Recurrent Unit network [170]. RNN models

have been found in many applications such as natural language understanding [171],

natural language generation [13,172], handwriting recognition [173,174] and speech

recognition [72,175]. RNN models are used in this thesis in Chapter 4 and 5.

The last type of architecture is the Transformer [81], which is primarily based

on the self-attention mechanism, initially introduced from the machine translation

field [80, 176]. The Transformer architecture significantly advanced the artificial

intelligence (AI) field and is currently the backbone for most of the state-of-the-

art models in both computer vision [177], and natural language processing [10].

Transformer models are used in this thesis in Chapter 5, 6 and 7. In the scope of

this thesis, we do not focus on designing novel neural network architectures, but

rather consider them as parameterised functions with a structural inductive bias

to approximate the underlying probability distribution of the observed and unob-

served random variables. For a detailed description of the network architectures,

the readers are recommended to refer to [1] for MLP, CNN and RNN; and [81,178]

for Transformer4.

3.3 Exchangeability and Representation Theorem

In previous sections, we have introduced the advantages of the probabilistic machine

learning and deep learning paradigm which is used in this thesis. Before moving

towards mathematical expressions of probabilistic deep learning and other technical

details, we would like to briefly discuss our assumptions about how a sequence of

data is represented.

Given a sequence of random variables (X 1,X 2, ...,XN) as observations, to rep-

resent the statistical belief concerning this sequence in the form of probability dis-

4Please also check: https://jalammar.github.io/illustrated-transformer/
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tributions, more assumptions need to be enforced to alleviate the impact of the

order information for the random variables in this sequence. A commonly appro-

priate assumption in statistical machine learning is that the order of the random

variables contains no information. In other words, the statistical belief should be

invariant to the permutation of the random variables in this sequence. Hence, a nat-

ural assumption follows this is that the observations are independent and identically

distributed (i.i.d.). However, this assumption implies mutual independence between

random variables in an observed sequence, which is an extreme assumption. Many

of the random variables and their associated values we observe for machine learning

problems might be correlated.

An alternative, more generalised form of independent and identically distributed

assumption for the sequence of random variables is that it may instead consider as

an exchangeable sequence:

(X 1,X 2, ...,XN)
d
= (X p(1),X p(2), ...,X pn) ∀p ∈ S∞ (3.1)

where
d
= denotes equality in distribution, and S∞ is the set of all permutations

of the natural numbers, from 1 to N , which permute at most a finite number of

elements (bounded by N).

De Finettis Theorem [179], also known as Representation Theorem, suggests

that a sequence of random variables can be considered as an exchangeable sequence,

if and only if there exists a probability measure for θ, such that X 1:N
i.i.d.∼ θ. In

other words, observations are conditionally independent and identically distributed

given the probability measurement θ. In mathematical terms, the Representation

Theorem is defined as:

P (X 1,X 2, ...,XN) =

∫ N∏
i=1

P (X i|θ)P (θ)dθ (3.2)

The Representation Theorem explains why we have model parameters θ in the

first place, and there is no constraint on the dimension of the probability measure θ.

Hence it can have either finite (parametric model) or infinite (non-parametric model)

dimensions. Another insight from the Representation Theorem is that Bayesian in-
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ference is a natural selection for statistical modelling as it is based on more gener-

alised assumptions about data. This further strengthens the reason for us to choose

a Bayesian (probabilistic) interpretation, as suggested in section 3.1.

3.4 Learning and Inference for Deep Latent Vari-

able Models

Given the background introduced so far, here we briefly describe parameter learning

and latent variable inference problem in deep learning in mathematical language. In

the first part, we introduce the general method for parameter learning under the deep

learning paradigm. Based on our introduction about the De Finettis Theorem

in section 3.3, from a statistical learning perspective, we seek for an estimation of

the parameter set θ. In deep learning, the estimation of the parameter set θ is

conducted through defining the maximum likelihood function, L(θ;X), which is

based on observed data X = (x1,x2, ...,xN)> and parameter set θ. The objective

here is to find the optimal parameter set θ∗ that maximises the likelihood of the

data, as:

θ∗ = arg max
θ

L(θ;X)

For deep learning problems in general, the likelihood function for a sequence of

observations can be factorised as follows:

L(θ;X) = logP (X ;θ) =
N∑
n=1

logP (xn;θ)

In practice, it is optimised through minimising the negative likelihood function

as the loss l(θ) with gradient-based stochastic optimisation algorithms [180–182], as

a standard practice in deep learning [1]:

l(θ) = −L(θ;X) = −
N∑
n=1

logP (xn;θ)

These gradient-based stochastic optimisation algorithms perform parameter learn-
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ing in the following general form:

θ(i+1) = θ(i) − η5 l(θ(i))

Where i is the current optimisation step, η is a hyper-parameter called the learn-

ing rate, and 5l(θ(i)) is the gradient of θ(i) given the likelihood function l((θ)),

calculated via back-propagation algorithm [17]. To scale up parameter learning for

large-scale data, in deep learning, we alternatively perform optimisation on mini-

batch (size of M � N) [183], as:

L(θ;X) ≈
M∑
n=1

logP (xn;θ)

When M is big enough, we essentially optimise the original objective; however,

some research [184] suggests that small batch training leads to better results and

generation in deep learning.

In the second part, we introduce the general method for inference in deep latent

variable models. In the deep learning paradigm, by default, we make the assumption

that our data X is fully observed, as a random variable X . In reality, however, this

might not be true most of the time as the dataX we observed only count for a subset

of the population. Hence we assume that there exists an unobserved latent variable

Z = (z1, z2, ...,zN)5, which is relevant to our data observed. The probability of X

given parameter θ can be retrieved via marginalising out the latent variable Z from

the joint probability distribution P (X ,Z;θ).

For latent random variable Z with discrete probability, it is:

P (X ;θ) =
∑
Z

P (X ,Z;θ)

Where for latent random variable Z with continuous probability, it is:

P (X ;θ) =

∫
Z
P (X ,Z;θ)dZ

5This thesis mainly focus on local latent variables, derivation of variational inference applied to
the graphical model with both local and global latent variables can be found in [9].
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The difference in the latent variable assumption leads to further considerations in

optimisation, as suggested in section 3.5.1 later; however, here, we use the continuous

case for the latent variable Z for formula derivation in the rest of this section. In

order to marginalise out the latent variable from the joint probability distribution

P (X ,Z;θ), we need to infer Z based on observed X via Bayesian inference:

P (Z|X ;θ) =
P (X |Z;θ)P (Z)

P (X ;θ)
=

P (X |Z;θ)P (Z)∫
Z P (X |Z;θ)P (Z)dZ

However, in general, it is intractable to calculate the normalising constant P (X ),

due to marginalise out all possible Z from the joint probability P (X ,Z). With

latent variable Z, the deep learning training objective becomes:

L(θ;X) = logP (X ;θ) = log(

∫
Z
P (X ,Z;θ)dZ)

Parameter learning with this new training objective is difficult when latent vari-

able Z is introduced, due to the integration inside the log-probability; hence we

alternatively use a well-developed approximated Bayesian inference technique called

the variational inference (VI) [93, 185] to perform Bayesian inference over the

training data X. The origins of variational inference date back to the 1980s and are

rooted in statistical physics [9]. Classical variational inference is restricted to con-

jugate or conditional conjugate exponential family models, as discussed in [93,185].

Stochastic variational inference [186] is first proposed to allow variational inference

performed on batch sampled data, which improves the scalability of the algorithm.

The restriction on conjugate models is lifted with the development of black box

variational inference [187], which allows Bayesian inference performed via gradient

calculation with respect to data. Recent advances in amortised variational infer-

ence [4–6] further limit restrictions and allow using complex function approximation

with deep neural network and efficient inference of local latent variables condition

on data. Readers could refer to [9, 92] for a more comprehensive review of the

variational inference technique.

In this thesis, we particularly draw our attention to the application of both

black box and amortised variational inference, as our focus is in the context of
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deep learning. The variational inference is a deterministic Bayesian approximation

technique which introduces an extra parameter set φ to approximate the real pos-

terior distribution P (Z|X ;θ). It decompose the negative likelihood function into

two components: evidence lower bound (ELBO) and gap between true poste-

rior P (Z|X ;θ) and approximated posterior q(Z;φ) measured by KullbackLeibler

(KL) divergence.

L(θ;X) = ELBO(θ,φ) + KL(θ,φ)

For any approximated posterior distribution q(Z;φ) over Z which satisfied the

condition of supp(q(Z;φ) ⊂ supp(P (Z|X ;θ)), we can write the likelihood function

L(θ;X) in the following form:

L(θ;X) = Eq(Z;φ)[log
P (X ,Z;θ)

q(Z;φ)
] + KL[q(Z;φ)||P (Z|X ;θ)] (3.3)

Where

ELBO(θ,φ) = Eq(Z;φ)[log
P (X ,Z;θ)

q(Z;φ)
]

And

KL(θ,φ) = KL[q(Z;φ)||P (Z|X ;θ)]

Since the value for KL term is always non-negative, thus we have L(θ;X) ≥

ELBO(θ,φ). A step by step derivation of the ELBO and KL term is given as the

following:

L(θ;X) = logP (X ;θ) = Eq(Z;φ)[logP (X ;θ)] = Eq(Z;φ)[log
P (X ,Z;θ)

P (Z|X ;θ)
]

= Eq(Z;φ)[log
P (X ,Z;θ)q(Z;φ)

P (Z|X ;θ)q(Z;φ)
]

= Eq(Z;φ)[log
P (X ,Z;θ)

q(Z;φ)
] + Eq(Z;φ)[log

q(Z;φ)

P (Z|X ;θ)
]

= Eq(Z;φ)[log
P (X ,Z;θ)

q(Z;φ)
] + KL[q(Z;φ)||P (Z|X ;θ)]

(3.4)
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The ELBO can be written as a function of data X with generative model param-

eter θ from the jointly probability P (X ,Z;θ) and variational parameter φ from the

variational family probability distribution q(Z;φ); where both parameters θ and φ

need to be learnt from data X. Since the real likelihood function L(θ;X) can not

be directly calculated and we have KL[q(Z;φ)||P (Z|X ;θ) ≥ 0, the maximisation

of the likelihood function essentially turns into maximisation of the ELBO(θ,φ).

The learning objective function for the fully observed data can be replaced with the

problem of finding a set of two optimal parameters:

(θ∗,φ∗) = arg max
θ,φ

ELBO(θ,φ) = arg max
θ,φ

N∑
n=1

ELBO(θ,φ;xn)

= arg max
θ,φ

N∑
n=1

Eq(Z;φ)[log
P (xn, zn;θ)

q(zn;φ)
]

3.4.1 Variational Family

The variational family q(Z;φ) plays an essential role in the variational inference

procedure; it is flexible in choosing the type of variational family q(Z) and its

associated parameter φ. However, different selections of the q(Z) will lead to various

choices and designs of the inference algorithm [92]. Note that the variational family

q(Z;φ) does not necessarily have to condition on data; in the context of deep

learning, we discuss here briefly two general forms of variational family, based on

whether the inference method takes data as input: black box posterior form and

amortised form. In this thesis, our works are mainly based on the assumption of

amortised posterior form.

Black Box Posterior Form

In the black box posterior form, the variational parameter φ = (φ1,φ2, ...,φN) is a

concatenation of local variational parameter φn, and it increases with the size of the

available data. Each local variational parameter φn is not inferred from its associated

data xn. To infer such approximated posterior distribution, we random initialise

the value for each local variational parameter φn and perform stochastic gradient

optimisation until convergence of the evidence lower bound. This is primarily the
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form of latent variable assumption (local latent variable) we have in the scope of the

thesis 6.

Amortised Posterior Form

Amortised variational inference [4–6], also known as neural variational inference, is

invented to further reduce the complexity of optimisation via introducing a global

neural network (as encoder or inference network) to approximate the local variational

parameter given data X. The amortised form is mainly adopted in deep learning

and formalises one of the most successful frameworks for deep generative models,

called variational auto-encoder [4]. Under the amortised form, the neural network

is used to run over data X = (x1,x2, ...,xN) to produce its associated local latent

variable Z = (z1, z2, ...,zN) with a shared variational parameter φ. Note that

although the amortised form is usually used for a local latent variable, as in [4],

they can be amended to work for a global latent variable; however, this is not in the

scope of this thesis.

3.4.2 Statistical Assumptions for Local Latent Variable

We have briefly discussed the black box posterior form and the amortised form for

variational families based on whether the posterior is conditional on the data. Here,

we discuss further concerns about the statistical assumptions of the local latent

variable, and we briefly describe two types of approaches adopted in this thesis:

mean-field form and auto-regressive (structural) form.

Mean-field Form

The mean-field form in variational family [28, 188] has been extensively adopted

and studied in the literature, where the dimensions of the local latent variable zn

are assumed to be mutually independent. This assumption greatly simplifies the

complexity of the optimization process, especially in high dimensions. A generic

6For global latent variable, please check [9].
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form of the mean-field variational family for a local latent variable zn with a total

of m dimensions is represented as:

q(zn) =
m∏
j=1

qj(zj) (3.5)

The mean-field form is the preliminary assumption we take in this thesis, as

suggested in Chapter 4, 5 and 6.

Auto-regressive Form

Another form of popular choice for the variational family is the auto-regressive

form, which assumes that each distinct dimension of the variable depends on the

previous dimension of the variable. The auto-regressive form assumes that there

exist correlations between the dimensions of each local latent variable. A generic

form of the auto-regressive variational family for a local latent variable zn with a

total of m dimensions is represented as:

q(zn) = q1(z1)
m∏
j=2

qj(zj|z1:j−1) (3.6)

The auto-regressive form is explored in Chapter 7.

3.4.3 Optimise the model parameter for ELBO

If we tried to optimise the model parameters separately, maximising the ELBO over

θ is equivalent to maximising the likelihood function of θ given random draws from

q(Z|X ;φ):
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θ∗ = arg max
θ

ELBO(θ,φ) = arg max
θ

N∑
n=1

Eq(Z;φ)[log
P (xn, zn;θ)

q(zn;φ)
]

= arg max
θ

N∑
n=1

Eq(Z;φ)[logP (xn, zn;θ)]

= arg max
θ

N∑
n=1

Eq(Z;φ)[logP (xn|zn;θ) + logP (zn)]

= arg max
θ

N∑
n=1

Eq(Z;φ)[logP (xn|zn;θ))]

(3.7)

Since q(Z;φ) is not dependent on θ, we can get an unbiased estimate of the

gradient with respect to θ given data xn:

5θELBO(θ,φ;xn) = 5θEq(Z;φ)[log p(xn|zn;θ))]

= Eq(Z;φ)[5θ log p(xn|zn;θ))]
(3.8)

The gradient of this term is measured through samples from q(Z;φ), and in

practice, a single sample is sufficient for most cases.

3.4.4 Optimise the variational parameter for ELBO

Optimising the ELBO over φ is more challenging compared to θ, the optimisation

over φ is equivalent to minimising the gap between the actual posterior distribution

P (z|x;θ) and the approximate variational family distribution q(Z;φ):

φ∗ = arg max
φ

ELBO(θ,φ)

= arg max
φ

N∑
n=1

logP (xn;θ)−
N∑
n=1

KL[q(zn;φ)||P (zn|xn;θ)]

= arg min
φ

N∑
n=1

KL[q(zn;φ)||P (zn|xn;θ)]

(3.9)

However, the problem for optimisation over φ is that the gradient calculation

under the Eq(Z;φ) is difficult when q(Z;φ) is prameterised by φ. Hence, the 5φ can

not move inside the Eq(Z;φ) given data xn:
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5φELBO(θ,φ;xn) = 5φEq(Z;φ)[log
P (xn, zn;θ)

q(zn;φ)
]

6= Eq(Z;φ)[5φ log
P (xn, zn;θ)

q(zn;φ)
]

In order to calculate the gradient under this circumstance, many methods were

proposed. In this thesis, our focus concerns sampling-based methods which can be

integrated into the deep learning optimisation paradigm. The two types of sampling-

based methods we discuss later in section 3.5 are: the score function and the repa-

rameterisation technique.

3.5 Sampling Based Inference Strategy

The problem with the naive sampling algorithm is that we fail to get a non-zero

gradient when calculating the following term:

5φELBO(θ,φ;xn) = 5φEq[log
P (xn, zn;θ)

q(zn|xn;φ)
]

= 5φEq[logP (xn, zn;θ)]−5φEq[log q(zn|xn;φ)]

When we have J number of samples z(1), z(2), ...,z(J) ∼ q(zn|xn;φ), we always

have:

5φ
1

J

J∑
j=1

[logP (xn, z
j
n;θ)] = 0

3.5.1 Score Function Gradient Estimator

One way to overcome the zero gradient problem is to use the policy-gradient training

methods, or so-called the reinforce algorithm or the score function gradient estimator

[189] as the following:

5 log(q) =
5q
q
⇒5q = q5 log(q) (3.10)

The first term can be derived as (we ignore the subscript n for clarity):
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5φEq[logP (x, z;θ)] = 5φ
∑
z

q(z|x;φ) logP (x, z;θ)

=
∑
z

5φq(z|x;φ) logP (x, z;θ)

=
∑
z

q(z|x;φ)5φ log(q(z|x;φ)) logP (x, z;θ)

= Eq(z)[logP (x, z;θ)5φ log(q(z|x;φ))]

The second term can be derived as (also ignore the subscript n):

5φ Eq[log(q(z|x;φ))] =
∑
z

5φ[q(z|x;φ) log(q(z|x;φ))]

=
∑
z

[5φq(z|x;φ) log(q(z|x;φ)) + q(z|x;φ)5φ log(q(z|x;φ))]

=
∑
z

[log(q(z|x;φ))q(z|x;φ)5φ log(q(z|x;φ)) + q(z|x;φ)
5φq(z|x;φ)

q(z|x;φ)
]

=
∑
z

[log(q(z|x;φ))q(z|x;φ)5φ log(q(z|x;φ)) +5φq(z|x;φ)]

=
∑
z

[log(q(z|x;φ))q(z|x;φ)5φ log(q(z|x;φ))] +
∑
z

[5φq(z|x;φ)]

=
∑
z

[log(q(z|x;φ))q(z|x;φ)5φ log(q(z|x;φ))] +5φ
∑
z

q(z|x;φ)

=
∑
z

[log(q(z|x;φ))q(z|x;φ)5φ log(q(z|x;φ))] +5φ1

= Eq(z)[log(q(z|x;φ))5φ log(q(z|x;φ))]

Put these two terms together, we have:

5φELBO(θ,φ;xn) = 5φEq[log
P (xn, zn;θ)

q(zn|xn;φ)
]

= Eq(Z;φ)[log
P (xn, zn;θ)

q(zn|xn;φ)
5φ log(q(zn|xn;φ))]

= Eq(Z;φ)[<θ,φ(xn, zn)5φ log(q(zn|xn;φ))]

(3.11)

Now the gradient is inside the expectation; thus we can have J samples z(1), z(2), ...,z(J) ∼
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q(zn|xn;φ) and get an unbiased estimator with Monte Carlo sampling:

Eq(Z;φ)[<θ,φ(xn, zn)5φ log(q(zn|xn;φ))]

≈ 1

J

J∑
j=1

[<θ,φ(xn, z
(j)
n )5φ log(q(z(j)

n |xn;φ))]
(3.12)

The <θ,φ(xn, zn) term here is essentially the reward function seen in reinforce-

ment learning. When a sample zn have high reward <θ,φ(xn, zn), the probability of

sample zn occur again is increased by moving along the gradient of5φ log(q(z
(j)
n |xn;φ)).

The score function gradient is generally applicable regardless of the distribution over

the approximated latent variable q(Z;φ); however, this generality comes with a cost

of high variance as a result of the “black-box” reward. In practice, we apply a control

variable B inside the expectation to reduce the variance, as the following:

5φ ELBO(θ,φ;xn)

= Eq(Z;φ)[(log
P (xn, zn;θ)

q(zn|xn;φ)
−B)5φ log(q(zn|xn;φ))]

= Eq(Z;φ)[(<θ,φ(xn, zn)−B)5φ log(q(zn|xn;φ))]

≈ 1

J

J∑
j=1

[(<θ,φ(xn, z
(j)
n )−B)5φ log(q(zn|xn;φ))]

(3.13)

The control variable B can also be estimated with another neural network [6].

To show that the control variable has no impact on the gradient estimator, we have:

Eq(Z;φ)[(B)5φ log(q(zn|xn;φ))]

= (B)
∑
z

q(z|x;φ)5φ log(q(zn|xn;φ))

= (B)
∑
z

5φq(zn|xn;φ)

= (B)5φ (
∑
z

q(zn|xn;φ))

= (B)5φ 1 = 0

39



3.5.2 Reparameterisation Technique

Another useful method is the reparameterisation technique, which is developed based

on the assumption that we can find a deterministic, differentiable function trans-

former g with parameter φ that maps a random noise ε to the latent variable Z:

ε ∼ U;Z = g(ε,φ)

The gradient can be calculated through sampling:

Draw samples:

ε(1), ε(2), ..., ε(J) ∼ U[0, 1]

And we have the gradient calculated as follows:

5φ ELBO(θ,φ;xn)

= 5φEq(Z)[log
P (xn, zn;θ)

q(zn|xn;φ)
]

= 5φEε∼U[log
P (xn, g(ε,φ);θ)

q(g(ε,φ)|xn;φ)
]

= Eε∼U[5φ log
P (xn, g(ε,φ);θ)

q(g(ε,φ)|xn;φ)
]

≈ 1

J

J∑
j=1

[5φ log
P (xn, g(ε(j),φ);θ)

q(g(ε(j))|xn;φ)
]

=
1

J

J∑
j=1

[5φ log
P (xn, z

(j)
n ;θ)

q(z
(j)
n |xn;φ))

]

The reparameterisation technique offers an unbiased estimator, like the score

function but with less variance. In practice, a single sample of zn is often sufficient.

The limitation of the reparameterisation technique is that it only allows continuous

latent variable z. However, as suggested later in section 3.6, the reparameterisation

technique can be extended to use for discrete latent variable inference. In this thesis,

we adopt the reparameterisation technique as it is empirically reported to be more

stable than the score function estimator [99,100].
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3.5.3 Score Function V.S. Reparameterisation Technique

In this section, we briefly discuss some insights on why the reparameterisation tech-

nique produces better results than the sore function; recall that:

<θ,φ(xn, zn) = log
P (xn, zn;θ)

q(zn|xn;φ)

For the score function, we have:

5φELBO(θ,φ;xn) = Ez∼q(z)[<θ,φ(xn, zn)5φ log(q(zn|xn;φ))]

For the reparameterisation technique, we have the following:

5φELBO(θ,φ;xn) = Eε∼N(0,1)[5φ<θ,φ(xn, g(ε;φ))]

The reparameterisation technique allow gradient differentiation over the reward

<θ,φ(xn, zn), which contain information on both P (xn, zn;θ) and q(zn|xn;φ); on

comparison with only information about q(zn|xn;φ) in the score function. This

thus grants the reparameterisation technique a better knowledge about the latent

variable and the observed variable compared to the score function.

3.6 Advanced Techniques for Machine Learning

3.6.1 Gumbel-softmax

Gumbel-softmax [3, 124] extends the reparameterisation technique [4] and allow it

to be used for discrete latent variable. It is developed based on the ”Gumbel-max”

trick [190], which can be used to sample variables following a discrete distribution

from a continuous distribution. To sample from a K categorical distribution, follows:

P (zk = 1;α) =
αk∑K
j=1 αj

Where z = [0, 0, ..., 1, ..., 0] is a one-hot vector with K dimensions. Then we can

draw samples from P (z;α) by:
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• Draw independent Gumbel noise ε = ε1, .., εK

εk = − log(− log(µk));µk ∼ U[0, 1]

• Add εk to logµk, getting the softmax

zk = softmax( logαk+εk
τ

)zk

Here, τ is a temperature term, which interpolates between discrete one-hot-

encoded categorical distributions and continuous categorical densities, as shown in

Figure 3.4. In sub-figure (a), for low temperatures (such as τ = 0.1, τ = 0.5), the

expected value of a Gumbel-Softmax random variable approaches the expected value

of a categorical random variable with the same logits. As the temperature increases

(such as τ = 1.0, τ = 10.0), the expected value converges to a uniform distribution

over the categories. In sub-figure (b), samples from Gumbel-Softmax distributions

are identical to samples from a categorical distribution as τ approaching 0. at higher

temperatures, Gumbel-Softmax samples are no longer one-hot and become uniform

as τ approaches ∞. By using the Gumbel-softmax, we can calculate the gradient

for parameterised technique:

5φ ELBO(θ,φ;xn) = Eq(zn|xn;φ)[5φ<θ,φ(xn, zn)]

≈ Eε∼Gumbel[5φ<θ,φ(softmax(
logαk + εk

τ
))]

The ’Gumbel-softmax’ technique empirically has low variance, but it is a bi-

ased estimator for the gradient, and we explore the ’Gumbel-softmax’ technique in

Chapter 7.

Figure 3.4: Chapter 3: Demonstration of how temperature τ impacts the sampled
distribution when the ’Gumbel-softmax’ technique is used. (Figure taken from [3].)
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3.6.2 Straight Through Gradient

Straight-through gradient technique [191] is proposed to ‘back-propagate’ stochastic

neurons with discrete distribution and is considered as an alternative approach to

high variance gradient from the score function method introduced in section 3.5.1.

From a probabilistic perspective, the sampling process is replaced with the expec-

tation of the distribution in its first-order form. With the straight-through gradient

technique, we are able to handle non-differentiable gradients over discrete distribu-

tion, such as binary variables, as shown in Figure 3.5.

During the forward pass, the straight through gradient estimator, use the thresh-

old function to estimate the expectation of the discrete distribution and use this

expected value as the input; and during the backward pass, the straight through

gradient estimator use the gradient of the original variable. We explore the straight-

through gradient estimator as a method to obtain discrete latent variables and for

reducing variance in Chapter 7.

Figure 3.5: Chapter 3: A visual demonstration of the straight-through gradient of
representation captured in different neural network layers. Source from Tech Blog

3.6.3 Approximated Bayesian Computation Method

Approximate Bayesian computation constitutes a class of computational methods

rooted in Bayesian statistics that aims to estimate the posterior distributions of
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model parameters. In model-based statistical inference, the likelihood function plays

a central role since it expresses the probability of the observed data under a par-

ticular statistical model. This allows us to handle uncertainty and perform model

selection, given data. However, an analytical formula of the likelihood function

might be intractable for complex models, such as deep neural networks. In this

way, approximate Bayesian computation methods offer an approach to widen the

realm of models to which statistical inference can be applied. Approximate Bayesian

computation methods are mathematically well-founded, but they inevitably make

assumptions and approximations whose impact must be carefully assessed. In the

scope of deep learning, one particular well-known instance is the Monte Carlo

Dropout (MCD) [192,193].

The MCD use one particular stochastic regularisation technique, called Dropout

[194], to estimate the posterior distribution of deep learning models. The Dropout

technique is initially proposed to solve over-fitting problems in deep learning. With

a proper setup of the Dropout technique in deep neural network models, the models

can be considered as Bayesian neural networks (BNNs) 7. With Dropout turned

on, each forward pass through the network can be considered as a single sample

of the posterior distribution [193], as shown in Figure 3.6. MCD method is used

in Chapter 4 as one of the Bayesian deep learning methods we explored in the

educational domain, and as one of the baseline algorithms in Chapter 5.

3.7 Methodology and Justifications

In this section, we briefly describe our methodology in the form of a general frame-

work, which we used for the implementation of our research included in this thesis.

As shown in section 3.4.3 and 3.4.4, the model parameter and variational parameter

need to be optimised individually with coordinate descent, as suggested in [28, 29].

Thankfully with the development of amortised inference [4–6], as introduced in sec-

tion 3.4.1, the coordinate descent optimisation can be bypassed when we use a sur-

rogate function to approximate the variational parameter. Under the variational

7For more about Bayesian neural networks, please see Chapter 5.
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Figure 3.6: Chapter 3: A visual example of representation captured in different
neural network layers. Source from Amazon AWS

autoencoder (VAE) framework [4], the variational parameter and model param-

eter can be jointly optimised together with standard stochastic gradient descent

algorithms, which are widely adopted in the deep learning community [1]. Although

this does not equivalent to performing coordinate descent, however, the quality of

the resulting models from the VAE framework and their results can be regarded

as a good approximation. In this thesis, we adopt this surrogate approximation as

the general framework and methodology used for the implementation of our various

NLP applications.

Based on this general framework, DLVMs can be interchangeably viewed from the

lens of an encoder-decoder framework, and we continue using encoder and decoder in

this thesis when explaining our NLP applications. An illustration of the framework is

presented in Figure 3.7 below. The encoder and decoder correspond to the inference

and learning in the DLVMs, respectively. In later Chapters (4, 5, 6 and 7), we build

our NLP applications generally follow this framework. In comparison, the standard

deep learning model can be illustrated in Figure 3.8, with no explicit latent variable

and no inference process.

When comparing these two frameworks, we can identify why DLVMs can nat-

urally address the concerns on robustness, trustworthiness, interpretability and ex-

plainability, which justified the link between our methodology and our research

motivation (in section 1.1):
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Input Encoder (  ) Latent
Space Decoder (  ) Output

Figure 3.7: Chapter 3: An illustration of the general framework for building NLP
applications in this thesis, based on the VAE learning and inference framework
[4–6].)

Input Deep Neural Network Layers(  ) Output

Figure 3.8: Chapter 3: An illustration of the general framework for building NLP
applications with deep learning.)

• Robustness: Compared with deep learning models, the variations of represen-

tation distribution in the latent space of DLVMs during training enhance model

robustness. Later in Chapter 4, when comparing with a non-probabilistic deep

learning model (using a very strong RNN model architecture as the baseline),

we show that deep latent variable models grant more robust learning during

training with random weight initialisation. This further enhances the justifi-

cation that deep latent variable models enhance robustness during training.

• Trustworthiness: Compared with deep learning models, DLVMs naturally

handle uncertainty with probabilistic modelling when making predictions. Later

in Chapter 4 and 5, deep latent models allow an additional metric, entropy, as

an uncertainty quantification measurement; together with the standard deep
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learning metrics as a part of the model outputs. This uncertainty quan-

tification measurement contains more information on the confidence of our

model and improves the trustworthiness of deep learning models, especially

for decision-making purposes.

• Interpretability: Compared with deep learning models, the encoder in DLVMs

allows model interpretability from input space to its associated latent space.

The latent space naturally encodes the cause of the input space. Later in

Chapter 6, we learn a direct mapping from the premise and hypothesis input

text pair in the Stanford natural language inference tasks to the explanation

semantic space. And in Chapter 7, we learn a direct mapping from the source

sentence to the unseen target sentence for semi-supervised learning, where the

unseen target is a sequence of probability across the distribution of words in

the directory. In both of the applications, deep latent variables models, in

principle, enhance the interpretability of the models.

• Explainability: Compared with deep learning models, shared latent space in

DLVMs allows individual points to support the explainability of each other.

Later in Chapter 6, by interpolating through the latent space, we are able to

create multiple semantic equivalent explanations, in which each explanation

support explainability of each other else. And in Chapter 7, we are able to

recover the unobserved target text from the source text in the form of a discrete

sequence form, which the latent target sequence ensures its explainability. In

both of the applications, deep latent variables models, in principle, enhance

the explainability of the models.

The distinction between interpretability and explainability continues to be a

subject of disagreement across various research fields. The rise of deep learning

techniques, known for their ‘black-box’ nature, has spurred a new area of research

in explainable AI, which aims to make AI models more transparent and hence more

explainable. Despite several attempts to provide definitions and taxonomies for

these terms from the perspective of explainable AI [195,196], a universally accepted

view is yet to be achieved.
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In the scope of this thesis, our definitions of interpretability and explainability

draw largely from the perspective outlined in [195]. Interpretability, in this con-

text, refers to the characteristics of the model and involves using latent variables to

understand the underlying causes of the observed data. On the other hand, explain-

ability focuses on the human aspect and concerns how the model outputs assist and

support human understanding of the results.

Despite the ongoing debate surrounding these terms, it is widely acknowledged

that the recent advancements in deep learning techniques have heightened the im-

portance of interpretability and explainability in AI models (e.g. with the surprising

performance of large-scale language models). As AI increasingly permeates various

aspects of our lives, it is imperative to develop models that not only produce accurate

results but also provide insights into their workings (some of the works in Chapter 6

and 7 of this thesis tried to address this aspect). This is particularly important for

applications in critical domains such as healthcare, finance, and education, where

the consequences of errors can be significant.
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CHAPTER 4

Exploring Bayesian Deep Learning for Text Classification:

A Case Study of AI in Education

Prologue

In Chapter 3, we have provided a basic introduction to Bayesian deep learning with

a particular focus on deep latent variable models (DLVMs), variational in-

ference (VI) algorithms and some associated advanced techniques for probabilistic

machine learning. This knowledge will be vital to understanding the contributions

we develop in this and subsequent chapters. In this chapter, we present a contribu-

tion in exploring Bayesian deep learning for a text classification task, in the form

of a case study in education domain applications, on the task of identifying urgent

intervention needs in Massive Open Online Courses (MOOCs) forums.

This chapter presents the first research on how Bayesian deep learning can be

applied to a text-based learning analytics application. Here, the aim is to predict

instructor intervention needs in the educational domain and is studied as a natural

language processing (NLP) problem. We explore, for the first time, not only

one but two Bayesian deep learning methods on the task of classifying learners’
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posts based on their urgency, namely Monte Carlo Dropout (MCD) and VI.

These two methods subsequently convert our original deep neural networks into a

Bayesian neural network (BNN) and a DLVM. We empirically show the benefits

of Bayesian deep learning for this task and discuss the differences between our two

Bayesian approaches (BNN and DLVM). We achieve competitive results in this task

and obtain a lower variance when training with small-size data samples. We apply

this approach to text-based processing on posts in MOOCs - a source generally

available across all MOOC providers. Thus our approach is widely applicable -

generalisable to foresee instructors’ intervention needs in MOOCs and to support

the elusive problem of MOOC dropout.

Declaration: This chapter is based on the following publication:

Yu, J., Alrajhi, L., Harit, A., Sun, Z., Cristea, A.I. and Shi, L., 2021, June.

Exploring Bayesian Deep Learning for Urgent Instructor Intervention

Need in MOOC Forums. In International Conference on Intelligent Tutoring

Systems (pp. 78-90). Springer, Cham. (Core A Ranked Conference, Accepted for

Full Paper)

This chapter is presented largely as accepted, although referencing and notation

have been altered and cross-referencing added for consistency across this thesis.

Some stylistic changes have been made for consistency. The majority of the text is

verbatim, with some minor wording and formatting changes.

4.1 Introduction

MOOCs are well-known for their high dropout rates [197, 198]. Whilst learners

may discuss their problems in the forums before actually dropping out, the sheer

volume of posts renders it almost impossible for instructors to address them. Thus,

many of these urgent posts are overlooked or discarded. Hence, a few researchers

proposed [199, 200] automated machine learning models for need prediction based

on learners’ posts in MOOC forums. Such an approach would allow instructors to
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identify learners who require urgent intervention, in order to, ultimately, prevent

potential dropouts (see our following research, where we have shown only 13% of

learners passing urgent intervention messages complete the course [201]).

More recently, techniques for applying deep neural networks to interpret texts

from the educational field have emerged [202], including identifying learners’ needs

based on their posts in forums [203–205]. Despite their success, standard deep learn-

ing models have limited capability to incorporate uncertainty. Another challenge is

that post data is notoriously imbalanced, with urgent posts representing a very low

percentage of the overall body of posts - the proverbial ’needle in the haystack’. The

imbalanced nature of the data tends to make a neural network overfit and ignore

the urgent posts, resulting in a large variance in model predictions.

To address the above two challenges, we apply Bayesian probabilistic modelling

to standard neural networks. Recent advances in Bayesian deep learning offer a

new theory-grounded methodology to apply probabilistic modelling using neural

networks. This important approach is yet to be introduced in the Educational

Data Mining (EDM) and Learning Analytics (LA) field.

4.2 Related Work

4.2.1 Urgent Intervention Need in MOOCs

Detection of the need for urgent instructor intervention is arguably one of the most

important challenges in MOOC environments. The problem was first proposed

and tackled [206] as a binary prediction task on instructors’ intervention histories

based on statistical machine learning. A follow-up study [200] proposed the use

of L1 regularisation techniques during the training and used an additional feature

about the type of forum (thread), besides the linguistic features of posts. Another

study [199] tried to build a generalised model, using different shallow ML models

with linguistic features extracted by NLP tools, metadata and term frequency. In

general, this problem was attempted based on two types of data formats: text-only

[204,205,207–209] or a mixture of text and post features [199,200]. From a machine

learning perspective, both traditional machine learning methods [199, 200, 207] and
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deep learning based methods [204, 205, 208, 209] were proposed and explored; with

more recent studies being in favour of deep neural network-based approaches [202].

However, one critical problem for deep neural networks is that they do not offer

a robust estimation of the prediction values. Also, we can not perform efficient

learning on small sample size data. Thus, in this paper, we explore the benefits of

Bayesian deep learning to predict learners who require urgent interventions from an

instructor. We use text-only features in our study, as it is the first study to explore

the benefits of this new approach, and we leave future optimisation for further work.

To the best of our knowledge, this is the first study of Bayesian deep learning

methods for learners’ urgent intervention need classification. Our research sheds

light on a new direction for other researchers in the fields of EDM and LA.

4.2.2 Bayesian Neural Networks

Modern neural networks are self-adaptive models with a learnable parameter set

θ. In a supervised learning setting, given data D = (xi,yi)
N
i=1, we aim to learn a

function through the neural network y = fNN(x) that maps the inputs x to outputs

y. A point estimation version of the model parameter set θ∗ is obtained through a

gradient-based optimisation technique and with a respective cost function.

Bayesian neural networks (BNNs) [210–212], alternatively, consider the prob-

ability of the distribution over the parameter set θ and introduce a prior over the

neural network parameter set P (θ). The posterior probability distribution P (θ|D)

is learnt in a data-driven fashion through Bayesian inference. BNNs grant us a dis-

tribution over the parameter set θ other than a static point estimation, which allows

us to model uncertainty in the neural network prediction. In the prediction phase,

we sample model parameters from the posterior distribution i.e. θ(j) ∼ P (θ|D)

and predict results with fθ
(j)

NN (x) for the corresponding y. We marginalise the

θ samples and obtain an expected prediction. Due to the complexity and non-

linearity of neural networks, exact inference for BNNs is rarely possible; hence vari-

ous approximation inference methods have been developed [193,213–215]. The most

widely adopted approximation method is the Monte Carlo Dropout (MCD) [193],

with applications in natural language processing, data analytics, and computer vi-
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sion [18,192,216–218]. In this paper, we adopt the same idea and use MCD [193] to

approximate the neural network as a BNN.

4.2.3 Variational Inference

Variational inference (VI) [28, 93, 185] is a general framework for Bayesian sta-

tistical modelling and inference under a maximum likelihood learning scheme. It

introduces an unobserved random variable as the generative component to model

the probabilistic uncertainty. Given fully observed data D = (xi,yi)
N
i=1, we consider

them as random variables and use capital letters X and Y to represent them. The

unobserved random variable introduced with VI is denoted as Z and passes the

information from X to Y . It can be marginalised out with Bayes’ rule as:

P (X ,Y ;θ) =
∑
Z

P (X ,Y ,Z;θ) = P (Y |Z,X ;θ)P (Z|X ;θ) (4.1)

Under a mean-field assumption [188] over the unobserved random variable Z,

we can factorise it as local random variables:

P (Z;θ) = P (z1, ...,zN ;θ) =
N∏
i=1

P (zi;θ) (4.2)

Hence for each pair of data, x and y, the maximum likelihood learning method

delivers the following objective with respect to θ:

logP (y|x;θ) = log

∫
z

P (y|z,x;θ)P (z|x;θ)dz (4.3)

Given observed data D = (xi,yi)
N
i=1, we can not directly model the distribution

of unobserved z and hence the probability distribution P (z|x;θ) is intractable for

data-driven models, such as neural networks. With VI, an additional variational

parameter φ with its associated variational family distribution q(z;φ) is introduced,

to approximate the real probability P (z|x;θ). During the learning process, we

minimise the distance between q(z;φ) and P (z|x;θ) through the KullbackLeibler

divergence, a term that measures the distance between two probability distributions.

Hence, the learning of the intractable probability distribution problem is converted
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to an optimisation problem over the evidence lower bound (ELBO), where DKL

refers to the KullbackLeibler divergence:

logP (y|x;θ) ≥ L(ELBO) = Eq(z;φ)[logP (y|x, z;θ)]− DKL[q(z;φ)||p(z|x;θ)]

(4.4)

VI was initially developed to solve a specific class of modelling problems where

conditional conjugacy is presumed, and variational parameter φ is updated through

closed-form coordinate ascent [219]. However, conditional conjugacy is not practical

in most real-world problems; thus, further advancements [4, 9, 92, 186, 187] extend

VI to large-scale datasets and non-conjugate models.

4.3 Methodology

In this section, we first introduce the baseline model built based on recurrent neu-

ral networks (RNNs) and an attention mechanism. Then we present our two ap-

proaches for applying Bayesian deep learning with our baseline model: 1) Monte

Carlo Dropout and 2) Variational Inference.

4.3.1 Baseline Deep Learning Model

In this section, we first introduce our non-Bayesian model, which serves as our

baseline model. The model consists of three different components: an embedding

layer, a two-layer recurrent neural network (RNN), and a prediction layer. We use

attention based on the output of the RNNs to create a contextual representation

over the RNN hidden outputs and then concatenate it with the last layer of RNN

outputs. The model architecture is presented in Figure 4.1.

Given the data D = (xi,yi)
N
i=1, where each sentence xi consists of a sequence of

tokens x1
i ,x

2
i , ...,x

s
i where s denotes the sequence length. For our baseline model,

given a sentence xi, we first pass it through the embedding layer and obtain a

sequence of word embeddings:
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RNN-Attention 

...Embedding 
Layer

Two Layer 
RNN

Contextualised 
Latent Output

Concatenation

Prediction 
Layer

Figure 4.1: Chapter 4: A visual demonstration of model architecture for baseline
model (symbol ⊕ refers to the concatenation operation).

E = (emb(x1
i ), emb(x2

i ), ..., emb(xsi )) (4.5)

Where emb is the embedding function we used for our experiment with d dimen-

sions. Here, xmi denotes the mth word in the sentence xi. For the initial sentence

xi ∈ Rs×1, we derive a sentence xi ∈ Rs×d after the embedding layer. Then we feed

this as a sequence input through a two-layer long-short-term memory (LSTM)

model as in [205]. The initial hidden state h0 is set to 0, and we calculate the

sequence of hidden states as:

hm = LSTM(hm−1,x
m
i ) (4.6)

Where we have m = 1, ..., s. The last layer of hidden states provides a sequence

output H ∈ Rs×h, where h here represents the hidden dimension size. In order to

utilise the contextual information through the LSTM encoding process, we calculate
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the attention score α based on the last hidden state outputs H2 (H2 = hs) and each

hidden state in the sequence of H, as:

αm =
H2 ∗ hm∑s
m=1H2 ∗ hm

(4.7)

Then we calculate the contextual H̄2 as:

H̄2 =
s∑

m=1

αmhm (4.8)

Finally, we concatenate them and feed them through a fully connected layer

with the output dimension equal to the number of classes for our task. This fully

connected layer is represented as a prediction layer in Figure 4.1.

4.3.2 Model Uncertainty with Monte Carlo Dropout

In this section, we present how to convert our baseline model into a BNN. With

MCD [193], we only need to use the dropout technique [194] right after each layer

containing the parameter set θ. In our case, we add a dropout layer after the first

and second LSTM layers, as well as after the fully connected layer, which takes the

input as the concatenation of H̄2 and H2.

Compared with the standard dropout technique, which works as a regularisation

technique in the training phase only, the MCD technique requires the dropout layer

to be activated in both the training and testing phases. This allows the standard

neural network model to work as a BNN [193]. Each dropout works as a sample

of θ from its probabilistic distribution space and hence allows us to measure the

uncertainty of the model, as shown in Figure 4.2. In the testing phase, we predict the

output through sampling M times [193] and the expectation of y can be calculated

as:

E(y|x) ≈ 1

M

M∑
i=1

fθiNN(x) (4.9)

We use this expectation as the final logits value, and in our experiments, we use

a total sample M of 50 as in [18].
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... ... ...

Figure 4.2: Chapter 4: A visual demonstration of the BNN with Monte Carlo
Dropout in the test phase. We run the model for M times for M different prediction
results and then calculate their average as the prediction layer output.

4.3.3 Model Uncertainty with Variational Inference

As discussed in the section 4.2.3, VI introduces an additional random variable z

with probability distribution q(z;φ) to the original model. This variational family

q(z;φ) here approximates the posterior distribution P (z|x;θ) as q(z|x,y;φ). The

model architecture is presented in Figure 4.3. Following [134], we define qφ(z|x,y)

as:

qφ(z|x,y) = N (z|µφ(x,y), diag(σ2
φ(x,y))) (4.10)

We have:

µφ(x,y) = l1(πφ) (4.11)

logσ2
φ(x,y) = l2(πφ) (4.12)

Where:

πφ = gφ(H2, fy(y)) (4.13)
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Figure 4.3: Chapter 4: A visual demonstration of our DLVM architecture using the
VI method, based on our baseline model.

Where fy(y) is an affine transformation from output y ∈ RK , where K repre-

senting the number of class, to a vector space size sy ∈ Rh. The H2 is the final

latent state output of the second LSTM network layer as stated in Figure 4.1. The

latent variable z ∈ Rh can be reparameterised as z = µ+σ· ε, known as the ‘repa-

rameterisation trick’ [220] with sample ε ∼ N (0, I). For the conditional distribution

Pθ(z|x), we can model it as:

P (z|x;θ) = N (z|µθ(x), diag(σ2
θ(x))) (4.14)

Where we have:

µθ(x) = l3(πθ) (4.15)

logσθ(x) = l4(πθ) (4.16)
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And:

πθ = gθ(H2) (4.17)

Where l1, l2, l3 and l4 are four affine transformation functions. Since both P (z|x;θ)

and q(z|x,y;φ) are multivariate Gaussian distributions, this allows us to have a

closed-form solution for the KullbackLeibler (KL) divergence term [4]. For the re-

construction term logP (y|x, z;θ) with Monte Carlo approximation [134], the final

total loss can be calculated as:

l = Eq(z)[logP (y|x, z;θ)] +DKL[qφ(z)||Pθ(z|x)]

≈ 1

M

M∑
m=1

logP (y|x, z;θ) +DKL[qφ(z|x,y)||Pθ(z|x)]
(4.18)

Where M is the number of samples from the posterior distribution z. We use a

single sample of M = 1 during training based on [94], and M = 20 during testing

based on [134]. In the training phase, z is sampled from q(z|x,y;φ) and in the test

phase, from P (z|x;θ).

4.4 Experiments

4.4.1 Dataset

Here, we used the benchmark posts dataset from the Stanford MOOC forum [221],

containing 29604 anonymised posts collected from 11 different courses. Each post

is manually labelled by three independent human experts and with agreements for

the gold label. Apart from the text content, each post is evaluated based on six

categories, amongst which urgency, which is the one we used here. Its range is 1 to

7, with 1 meaning no reason to read the post and 7 meaning extremely urgent for

instructor interventions.

An example urgent message is “I hope any course staff member can help us to

solve this confusion asap!!!”; whilst a non-urgent would be “Good luck to everyone.”.
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See more details on their website1. Similar to [204], we convert the problem of

detecting urgent posts to a binary classification task. A threshold of 4 is used as

in [204] to create two need categories as: 1) Need for urgent intervention (value > 4)

with label 1 ; and 2) No need for intervention (values ≤ 4) with label 0. This allows

us to obtain a total of 29,597 posts, with 23,991 labelled as 0 and 5,606 labelled

as 1. We tokenise the text and create a vocabulary based on a frequency-based

cutoff [176] of 5 and use the special token < pad > for padding and the unknown

token < unk > for out-of-vocabulary words. We initialise the embedding layer with

a 300-dimensional GloVe vector [45] if found in the pre-trained token list.

4.4.2 Experiment Setup and Evaluation

In this paper, we have implemented 3 different models: a baseline model (Base), as

shown in Figure 4.1; a baseline model converted to a BNN through Monte Carlo

Dropout (MCD), as shown in Figure 4.2; and a baseline model converted to a LDVM

with variational inference (VI), as shown in Figure 4.3. For the evaluation, we report

mean accuracy; F1 score, Precision score, and Recall score for all three models under

each class (the higher, the better); and entropy based on the prediction layer [18,218]

(the lower, the better).

We conduct two sets of experiments. For the first set, we follow the setup in [203].

At each run of the experiment, we randomly split this data into training and testing

sets, each with a ratio of 80% and 20%, respectively, with stratified sampling on a

random state. In the second set of experiments, we use fewer training examples,

since the intervention case is rare compared with non-intervention, and we compare

the robustness of our model given smaller size samples, and we use a split of 40%,

60% for training and testing. The results for the two experiments are reported in

Table 4.1 and Table 4.2, respectively, and we run both experiments 10 times. In

Table 4.1, we report the best run of the model, and in Table 4.2, we report the

mean and variance. All the evaluation metrics results reported here in this paper

are based on the test dataset only. In the first table, we use bold text to denote

1https://datastage.stanford.edu/StanfordMoocPosts/
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Non-urgent (0) Urgent (1)
Accuracy Entropy Precision Recall F1 Precision Recall F1

Text
[203]

.878 - .90 .95 .93 .73 .56 .64

Base .883 .095 .937 .918 .927 .677 .738 .697
MCD .883 .085 .939 .915 .926 .675 .742 .698
VI .873 .103 .940 .901 .919 .644 .752 .687

Table 4.1: Chapter 4: Results compare deep learning baseline model and Bayesian
deep learning approaches in accuracy, precision, recall, and F1 score.

the results that outperform results in [203] and in the second table, we use bold to

denote results outperforming the (Base) model.

4.5 Results and Discussions

Non-urgent (0) Urgent (1)

Accuracy Entropy Precision Recall F1 Precision Recall F1
Base .870+-

.0039
.1126+-
.0041

.930+-

.0039
.908+-
.0088

.918+-

.0030
.645+-
.0159

.707+-

.0215
.664+-
.0052

MCD .869+-
.0013

0.101+-
.0326

.929+-

.0128
.908+-
.0319

.917+-

.0104
.652+-
.0574

.703+-

.0693
.660+-
.0042

VI .867+-
.0019

0.078+-
.0296

.924+-

.0028
.910+-
.0058

.916+-

.0017
.642+-
.0093

.680+-

.0164
.649+-
.0034

Table 4.2: Chapter 4: Results compare mean and variance of deep learning and
Bayesian deep learning approach based on 10 runs, reported in mean and variance.

The main results are presented in Table 4.1. The baseline model (Base) performs

competitively against a strong model [203], especially in the recall and F1 score for

the ’urgent’ class and the precision score for the ’non-urgent’ class. For the Monte

Carlo Dropout (MCD) and Variational Inference (VI) models, we achieve better

performance in these measurements against the baseline model (Base). Importantly,

as an indication of the uncertainty measurement, we note that the entropy dropped

for the MCD model. In Table 4.2, we can see that Bayesian deep learning methods

generally achieve similar or better performance compared to the non-Bayesian base

model, but hold lower variance and lower entropy against small sample size data.

The imbalance of data is often the case in real-life scenarios, where the label ’need

intervention’ is scarce. A probabilistic approach works as a natural regularisation

technique when neural network models are generally over-parameterised. We can
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conclude that Bayesian deep learning mitigates this issue of over-parametrisation

with lower variance and entropy. This is especially clear for the VI methods. The

result from a Wilcoxon test shows that, compared with the Base model, the experi-

ment results of the VI model are statistically significant at the .05 level, with p=.022

for the entropy value and with p=.007 for the recall, in the ’urgent’ case. Compar-

ing MCD and VI models, the latter achieves better performance in most metrics,

as shown in both tables, especially with a higher recall score. The recall score is

preferable to precision in this task, where we have a comparatively small number of

positive examples. However, the implementation of MCD models is more accessible

to researchers interested in introducing uncertainty into their neural networks. This

should be considered in using them in practice.

In conclusion, we reinforce the importance of using Bayesian methods in con-

structing classifiers for educational domain applications. Our results demonstrate

that when classifications are correct, the use of MCD and VI yields comparable

performance against conventional deep learning models, with a reduction in entropy

score, implying a lower level of uncertainty. Additionally, we have observed that

modelling uncertainties also present additional benefits in instances where the base

model is incorrect but with high confidence. While the MCD and VI predictions in

such cases may still be erroneous, the confidence level is relatively lower, particularly

for long forum comments. The ability to decrease uncertainty when confident and

increase uncertainty when not confident underscores the potential of Bayesian deep

learning in creating AI applications that are more robust and trustworthy.

4.6 Conclusion

Identifying the need for learner interventions for instructors is an extremely impor-

tant issue in MOOC environments. In this paper, we have explored the benefits of

a Bayesian deep learning approach to this problem for the first time. We have im-

plemented two different approaches to Bayesian deep learning, namely Monte Carlo

dropout and variational inference. Both offer a critical probabilistic measurement

in neural networks. We have demonstrated the effectiveness of both approaches in
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decreasing the epistemic uncertainty of the original neural network and granting

equivalent or even better performance. We have thus provided guidelines for re-

searchers interested in building safer, more statistically sound neural network-based

models in the EDM and LA fields, where the entropy measures a classifier’s con-

fidence level. In intelligent tutoring systems, high confidence (thus low entropy)

is essential. With Bayesian deep learning, we turn NN models into probabilistic

models, allowing more explainability and trust. For future research, these can be

extended and applied in more areas.

Epilogue

The approaches presented in this chapter succeed in including uncertainty into the

deep learning model, which grants its ability to present uncertainty measurement

as an additional metric on top of the standard machine learning metrics (Accuracy,

F1, Precision, and Recall). Additionally, it showed that Bayesian methods own

advantages for training with imbalanced labelled and smaller size data (with reduced

variance given random model initialisation). To the best of our knowledge, this

exploration study is the first empirical study on Bayesian deep learning techniques

applied to the text-based educational domain. With the two approaches (BNN and

DLVM), BNN is more accessible for researchers interested in using it as a plug-

and-play tool to model uncertainty; in comparison, the DLVM method is more

customised, and generally performs better; however, it requires additional efforts in

designing model and training mechanism.

We demonstrate that Bayesian deep learning has the potential to address the

concerns over robustness (lower variance with random initialisation) and trustwor-

thiness (allowing entropy as measurement apart from standard metrics such as F1,

Precision and Recall); while maintaining the performance of deep learning. In com-

parison with the two methods, DLVM allows more interpretability due to the exis-

tence of an explicit latent variable and hence is further explored in later chapters of

this thesis (Chapter 5, 6 and 7).
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CHAPTER 5

Efficient Uncertainty Quantification Framework for

Multi-label Text Classification Tasks

Prologue

In Chapter 4, we have presented an empirical study on Bayesian deep learning meth-

ods (i.e. Bayesian neural networks (BNNs) and deep latent variable models

(DLVMs)) on a text-based AI in education application. We have shown that prob-

abilistic modelling in such applications allows us to provide an estimation of its

uncertainty and results in lower variance with random initialisation. These benefits

mitigate concerns over the robustness and trustworthiness of deep learning based

NLP applications. In this chapter, we further explore the concern of trustworthiness

in NLP applications. In particular, Chapter 4 explored only the epistemic uncer-

tainty, as a result of ignorance in model assumptions 1; another type of uncertainty

in a neural network is called aleatoric uncertainty, which comes as a result of noise

1The model assumptions are related to bias in defining the model stage based on the problem
or data observed. The hypothesis could be whether the model is linear or non-linear, how many
degrees of the polynomial, etc.

64



in data 2. In this chapter, we explore both of these uncertainties and present a

contribution in novel methods of representing epistemic and aleatoric uncertainties

conditioned on text.

We present a novel, efficient uncertainty quantification framework (both epis-

temic and aleatoric uncertainty) for multi-label text classification. This is the first

research on using deep latent variable models for efficient uncertainty quantification

purposes in multilabel text classification tasks. For epistemic uncertainty, we com-

pare the effectiveness of modelling epistemic uncertainty between DLVM and BNN,

which is based on the widely adopted technique, Monte Carlo Dropout (MCD) [18].

We show that the DLVM-based method achieves competitive performance, while the

DLVM method is around 13 to 45 times faster than the MCD method, depending

on the architecture. We discuss various strategies for training a DLVM for epistemic

uncertainty modelling in multi-label text classification tasks. For aleatoric uncer-

tainty, we extend methods in [18, 218] and use an analytical solution in the data

space. We show the benefits of modelling epistemic and aleatoric uncertainties in

three text classification tasks with diverse neural network architectures.

Declaration: This chapter is based on the following publication:

Yu, J., Cristea, A.I., Harit, A., Sun, Z., Aduragba, O.T., Shi, L. and Al

Moubayed, N., 2022, July. Efficient Uncertainty Quantification for Mul-

tilabel Text Classification. In 2022 International Joint Conference on Neural

Networks (IJCNN) (pp. 1-8). IEEE. (Core A Ranked Conference, Accepted for

Oral Presentation)

This chapter is presented largely as accepted, although referencing and notation

have been altered and cross-referencing added for consistency across this thesis.

Some stylistic changes have been made for consistency. The majority of the text is

verbatim, with some minor wording and formatting changes.

2The noise can come from missing data, lack of calibration of the data collection device, distri-
bution shift in the sample data collected, etc.
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5.1 Introduction

Deep neural networks have been successfully applied in a wide range of natural

language processing (NLP) tasks, such as text classification, question answering,

and natural language inference [54]. However, modern deep neural networks are

(mainly) discriminative models, with only point estimation. They can make predic-

tions ‘blindly’ [18], raising, in practice, concerns over AI safety and social bias [19].

In the field of AI safety, one of the critical areas of concern is the robustness and

explainability of AI systems. For example, in the case of autonomous vehicles, it

is essential to ensure that the system is able to identify situations where it lacks

confidence in making decisions, such as whether it should stop or continue driv-

ing. Furthermore, it is necessary for the system to provide an explanation for its

decision-making process to demonstrate why one decision was made over another.

This enhances the AI system’s transparency and accountability and helps build trust

in its ability to operate safely. One natural solution for such trustworthy and robust

AI systems is to combine the predictive power of Deep Learning with the statistical

robustness of Bayesian Learning [222].

Combining these two powerful tools inspires two different directions, as shown

in Figure 5.1: Bayesian Deep Learning (BDL) and Deep Bayesian Learning

(DBL). In the deep learning approach, each neuron learns a fixed value represent-

ing its parameters; in contrast, the BDL approach allows each neuron to learn a

distribution of its parameters; and the DBL approach infers a latent variable and

learns its distribution instead. A widely adopted BDL approach is the Bayesian

Neural Network (BNN) [210–212]; while a known DBL approach is the Deep

Latent Variable Model (DLVM) [4,105,106,223].

From a Bayesian modelling perspective, there exist two main types of uncer-

tainty inside a neural network [224], namely epistemic uncertainty and aleatoric

uncertainty. Epistemic uncertainty represents model uncertainty resulting from ig-

norance about model assumptions. It can be reduced when more data are observed,

as more information leads to better model assumptions. Aleatoric uncertainty is

known as data uncertainty and reflects noise inherent in the data, i.e., the deviation

between ground truth and observed values. It cannot be reduced, even if more data
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Figure 5.1: Chapter 5: Graphical illustrations of the differences between ‘typical’
Deep Learning (DL), Bayesian Deep Learning (BDL) and Deep Bayesian Learning
(DBL). Note that for BDL, the prior is placed upon the weight of the neurons.

are observed, as the deviation comes from the data itself. Aleatoric uncertainty can

be further categorised as: homoscedastic, which captures the data-invariant noise

across the whole dataset; and heteroscedastic, which captures the data-dependent

noise over each data instance [18].

BNN is widely used for quantifying epistemic uncertainty on the strength of

its robustness to the distribution shift of data [24]. However, for modern deep

neural networks, it is computationally expensive to build and train them as BNNs.

Alternatively, several works [18, 218] model epistemic uncertainty in deep learning

with BNN, via an approximation technique named Monte Carlo Dropout (MCD)

[193]. The MCD only requires performing a Dropout operation [194] before every

weight matrix in a standard neural network, hence eliminating the extra parameters

cost for BNN. However, it is still computationally expensive for real-time rendering,

due to sampling through a deep neural network many times at each layer, which is

regarded as a critical challenge [18].

Recently, amortised variational inference-based [4] DLVMs are proposed as an

alternative approach to uncertainty quantification [225, 226]. Compared to BNN, a

DLVM enables computationally tractable uncertainty quantification in the form of
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posterior analysis in the approximated latent space. Hence it avoids expensive sam-

pling as in MCD. Therefore, in this paper, we explore using DLVM for quantifying

epistemic uncertainty as an alternative replacement for MCD in four multi-label text

classification tasks. For quantifying aleatoric uncertainty, we place a distribution on

prediction outputs as in [18,218].

5.2 Related Work

Research on practical methods of quantifying uncertainty in deep learning from

a Bayesian perspective has only recently been endeavoured [227]. Methods were

initially proposed to capture either epistemic uncertainty or aleatoric uncertainty,

alone. For epistemic uncertainty, the approach involved a Bayesian approximation

technique named Monte Carlo Dropout (MCD) [193], based on a widely adopted

regularisation technique called Dropout [194]. MCD allows Dropout to be consid-

ered equivalent to applying Variational Inference (VI) [28, 93, 185] over the full

parameter set in a deep neural network. The posterior distribution can then be

approximated via multiple runs of the same model with Dropout applied, using

the same input data. This practical tool for epistemic uncertainty estimation has

been successfully used on a wide range of applications, such as semantic segmen-

tation [216], language modelling [192], diabetic retinopathy [228], transport data

analysis [217], magnetic resonance imaging (MRI) segmentation [229], text classifi-

cation [230] and learning analytics [231].

Most of the works mentioned above focused on modelling epistemic uncertainty

alone; and they overlooked the existence of the aleatoric uncertainty, which is equally

essential for real-life applications [224]. To bridge this research gap, an uncertainty

quantification framework, jointly modelling these two types of uncertainties, was

proposed and applied first to computer vision [18] and later extended to natural

language processing [218]. It modelled the heteroscedastic aleatoric uncertainty, by

placing a distribution on prediction outputs. This distribution is jointly learnt with

an additional neural network, during the training process with the original network.

The epistemic uncertainty is modelled by creating a BNN using MCD; however,
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when applying MCD to modern neural network models, the computational cost in

testing time induced by sampling is a critical challenge [18].

Recently, deep latent variable models (DLVMs) have been proposed, as an

alternative approach to uncertainty quantification. It has been successfully ap-

plied to the inverse problem [225] and to image denoising [226]. Compared with a

BNN, a DLVM enables computationally tractable uncertainty quantification in the

form of posterior analysis in approximated latent space. Hence, it avoids expen-

sive sampling, as required by MCD during testing time. DLVMs for uncertainty

quantification purposes have not been well studied in the NLP domain. To address

this research gap, we thus propose novel methods of quantifying uncertainties con-

ditioned on text. We compare the performance of a DLVM epistemic modelling on

text with the widely adopted method, MCD. We demonstrate the benefits of mod-

elling uncertainties with our novel methods on four multi-label text classification

problems. To the best of our knowledge, this is the first time uncertainty quan-

tification methods conditioned on text are proposed, allowing for efficient posterior

analysis. We apply them to diverse neural architectures on text classification tasks

with empirical experiments.

5.3 Methodology

This section presents a detailed explanation of our novel methods of modelling un-

certainties in deep neural networks. We start with defining the problem and intro-

ducing our baseline deep learning approach, and then we articulate how epistemic

uncertainty and aleatoric uncertainty can be modelled.

We use three diverse neural network architectures (LSTM, CNN, and Trans-

former) throughout our experiments. Since our methods are invariant to specific

architectures, we use an encoder network, ‘Encoder()’, to represent a generic ar-

chitecture choice. In the context of this study, it can refer to one of these three net-

work architectures; however, it is not limited to the architectures mentioned above.

Other neural networks that can produce a fixed dimensional vector representation

of a given text could be interchanged as the ‘Encoder()’.
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5.3.1 Problem Definition

A multi-label text classification task can be defined as: given training data in the

form of N data pairs {(xn, yn)}Nn=1, with each pair consisting of the text (denoted by

xn) and their associated label (denoted by yn). For the nth pair, xn = {w1, ..., wL}

denotes the set of L words from the input, where each word wl ∈ Vx is an instance

of a discrete random variable from the dictionary Vx; yn ∈ Vy, an integer, is an

instance of a discrete random variable from the set Vy. The purpose is to find the

right prediction ŷ∗, given new data x∗.

In the following descriptions, we omit the data pair index n and use bold char-

acters to represent vector form representations, i.e., x and y. These representations

will be learnt in an end-to-end fashion.

5.3.2 Deep Learning Approach (Baseline)

In a traditional deep learning (DL) approach, used here as a baseline, we build a

deep neural network to learn a deterministic function as the approximation for the

probability P (ŷ|x) of the prediction ŷ, given input x. In our experiments, we use

a standard architecture setup for text classification. Our architecture consists of an

encoder network, as explained above, followed by an affine transformation with an

output, where the dimension is equal to the associated classes.

Given an input sequence of words x = {w1, ...,wL}, the encoder network outputs

a representation:

xrep = Encoder(Ewl(x)) (5.1)

Where Ewl is the learnt word embedding for the lth word wl ∈ x; xrep is then

fed through the affine transformation for the prediction ŷ. With negative cross-

entropy loss, for a mutually exclusive K-class multinomial classification, we have

the following cost function:

θ∗ = arg min
θ

K∑
k=1

(−y(k)) log ŷ(k) (5.2)
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As suggested in [18], entropy (denoted as H) is a measurement of prediction

uncertainty3, and a low entropy indicates the neural network is confident when

making predictions. Entropy can be calculated via the logits layer values:

H(P (ŷ)) = −
K∑
k=1

P (ŷ(k)) logP (ŷ(k)) (5.3)

Note that in a standard deep learning approach, however, neither epistemic nor

aleatoric uncertainty is explicitly modelled. This entropy value is an estimate of

‘uncertainty’ for ‘in-domain’ data. A plethora of research has demonstrated that it

is easy to find or synthesise inputs for which a standard neural network is highly

confident, yet wrong [232].

5.3.3 Modelling Epistemic Uncertainty

To model epistemic uncertainty in a standard neural network model, we introduce an

additional unobserved random variable z and place a distribution on it. This essen-

tially turns our model into a conditional variational auto-encoder (CVAE) [105,106].

CVAE has been explored as a supervised generative model for text classification

[134, 233]. In this paper, we follow [225, 226], and study the effectiveness of CVAE

as a tool to model epistemic uncertainty in a deep neural network. For each ob-

served data pair {x, y} and its associated latent variable z, the joint distribution

conditional on x can be factorised as follows:

Pθ(y, z|xrep) = Pθ(y|z,xrep)Pθ(z|xrep) (5.4)

Where θ is the set of neural network parameters and xrep comes from the same

encoder architecture as for the standard deep learning approach. We use amortised

variational inference [4] and adopt the same assumption for continuous multivariate

Gaussian with diagonalised co-variance matrix as in [134, 233]. The evidence lower

bound (L(ELBO)) for the marginal likelihood is:

3We discuss the applicability of entropy as uncertainty estimation in section 5.5
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logPθ(y|x) ≥ L(ELBO) = Eqφ(z)[logPθ(y|z,xrep)]−DKL[qφ(z|xrep,y)||Pθ(z|xrep)]

(5.5)

The first term of L(ELBO) is the reconstruction loss and is measured via a

multi-class cross-entropy loss. The second term is the Kullback Leibler (KL)

divergence between Pθ(z|xrep) and qφ(z|xrep,y). The variational family qφ(z)

here approximates the posterior distribution as in Figure 5.2:

qφ(z|xrep,y) = N (z|µφ(xrep,y), diag(σ2
φ(xrep,y))) (5.6)

Where we have:

µφ(xrep,y) = l1(πφ)

logσφ(xrep,y) = l2(πφ)

πφ = gφ(xrep,y)

(5.7)

Where l1 and l2 are two separate affine transformation functions from πφ, gφ is an

MLP unit, and y is the one-hot encoding form of the label. The latent variable z can

be reparameterised as z = µ+ σ· ε, known as the ”reparameterisation trick” [220],

with sample ε ∼ N (0, I). We adopt the inference and generation network for both

P and q distributions, similar to [134,233], shown in Figure 5.2. For the conditional

distribution Pθ(z|xrep), we model it as:

X Y

Z

X Y

Z

Figure 5.2: Chapter 5: Graphical model for generation network (left) and inference
network (right) for CVAE, using amortised VI [4].
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Pθ(z|xrep) = N (z|µθ(xrep), diag(σ2
θ(xrep))) (5.8)

Where we have:

µθ(xrep) = l3(πθ)

logσθ(xrep) = l4(πθ)

πθ = gθ(xrep)

(5.9)

Similarly, l3 and l4 are two separate affine transformation functions from πθ, and

gθ is an MLP unit. The KL term in ELBO has a closed-form solution [4], and the

first term of ELBO can be calculated via a Monte Carlo approximation, as:

Eqφ(z)[logPθ(y|z, xrep)] ≈
1

M

M∑
m=1

logPθ(y|z(m), xrep) (5.10)

The Monte Carlo approximation term here is an unbiased estimator. z(m) is the

mth sample from the probability distribution P (z), and M is the total number of

samples. We use M = 1 during training as per standard practice for amortised VI [4]

and adopt maximum a-posteriori (MAP) as estimation during testing. During

training, z is sampled from qφ(z|xrep, y) and during testing, MAP is calculated

based on Pθ(z|xrep). Given our prediction ŷ, the cost function is:

θ∗ = arg min
θ,φ

K∑
k=1

(−y(k)) log ŷ(k) + βDKL[qφ(z)||Pθ(z|xrep)] (5.11)

We obtain the real L(ELBO) when β = 1. CVAE models suffer from posterior

collapse as discussed in [109]. Here, “posterior collapse” refers to the issue where

the latent variable z does not contribute much to the model output. We explore

three different methods to address this issue during our training in the later section

(as shown later in Experiment 1).
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Compared with the Monte Carlo Dropout (MCD), CVAE enables compu-

tationally tractable uncertainty quantification in the form of posterior analysis in

(approximated) latent space. To calculate the epistemic entropy, we use the same

formula as in equation 5.3. Due to the isotropic Gaussian assumption for the latent

space, the prediction entropy for a single data point can be calculated via poste-

rior analysis in the latent space. As opposed to MCD, CVAE allows more efficient

estimates, without computationally expensive sampling [18].

5.3.4 Modelling Heteroscedastic Aleatoric Uncertainty

We follow [18,218] and focus only on heteroscedastic aleatoric uncertainty. To model

the heteroscedastic aleatoric uncertainty in a standard neural network model, we

place a distribution on the network output and define the following generative pro-

cess:

µya = l5(ŷ)

σya = l6(ŷ)

ya ∼ N (µya ,σya)

y ∼ Categorical(Softmax(ya))

(5.12)

Where l5 and l6 are two separate affine transformation functions and, during

training, the empirical mean (ȳa) can be calculated based on sampling. For the

aleatoric uncertainty, we have the following loss function, where K is the number of

class labels:

θ∗ = arg min
θ

K∑
k=1

(−y(k)) log ȳa
(k) (5.13)

To quantify the aleatoric uncertainty, we can also calculate the entropy value

based on the layer value of ȳa. Note that here ya is not learnt through variational

inference, hence does not measure the epistemic uncertainty of deep learning. Thus,
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the entropy here only represents the uncertainty associated with the noise in the

data. To calculate the aleatoric entropy, we use the same formula as in equation

5.3, but replace ŷ with ya. Emulating the epistemic modelling case, we use the

analytical solution to calculate individual aleatoric uncertainty.

In this study, we adopted a simplified approach for modelling the aleatoric un-

certainty by first assuming the output ya to be a Gaussian distribution, followed by

normalizing its value using an additional softmax operation, and then retrieve a cat-

egorical distribution y. This methodology was chosen for ease of optimization, and

a more straightforward analytical solution in the data space, similar to the method-

ology presented in [218]. This method is related to statistical relaxation techniques,

such as reparameterizing Gaussian distributions as categorical distributions, which

have been explored in previous research through various techniques, such as Gaus-

sian Softmax Construction (GSM), Gaussian Stick-breaking Construction (GSB),

and Recurrent Stick-breaking Construction (RSB) [99]. A recent well-established

relaxation technique is called the Gumbel-softmax technique [3,124], which is men-

tioned in Chapter 3.6. Although we have adopted a similar idea as the GSM ap-

proach, it is worth noting that an ideal assumption would be to consider y to follow

a multinomial distribution with a Dirichlet prior, which may be explored in future

work.

For modelling the heteroscedastic aleatoric uncertainty, we have jointly trained

ŷ along with our defined neural networks with the prediction network, which takes

x as input. This joint training enables a connection between x and y, thus enabling

the capturing of aleatoric uncertainty. Our results, as shown in tables 5.4, 5.5,

5.6, and 5.7, indicate that aleatoric uncertainty is captured; however, there is no

theoretical measure of the accuracy of our method in approximating the posterior

of the heteroscedastic aleatoric distribution. An alternative approach for capturing

various types of uncertainty is through the use of a prior network, as presented

in [234], which implicitly measures the Bayesian distribution over distributions on

a simplex through a neural network during training.
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5.4 Experiments

5.4.1 Data

We conduct experiments on three public text classification benchmark datasets,

presented in [12]. These datasets can be used in two different types of tasks: (1)

topic classification (using AG‘s News and DBPedia) and (2) sentiment analysis

(using Yelp-P). We denote these datasets as ‘AG’, ‘DB’, and ‘Y-P’, respectively,

shown in Table 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6.

A summary of the datasets is provided in Table 5.14 and a summary of token

statistics is presented in Table 5.2. In our experiments, we use the full testing data

set (hence the difficulty of the task is the same) and use only partially the original

training data, split as our training set, which we will explain in the following section

5.4.2. We set the maximum token length as 110 (by removing the tokens beyond the

first 110) for the ‘AG’ and ‘DB’ datasets; and 450 (by removing the tokens beyond

the first 450) for the ‘Y-P’ dataset. The maximum token length is selected based

on Table 5.2.

5.4.2 Vocabulary and Sampling

Before performing sampling, we first create the vocabulary for each dataset, which

is shared across all the models. We create each vocabulary based on a minimum

frequency of 5 and a maximum size of top 20K tokens from the complete training

data points, with four additional special tokens: < pad >, < unk >, < bos >, and

< eos >. These tokens are used to denote batched computation padding, out-of-

vocabulary words, and the beginning and the end of the sequence, respectively.

We first perform stratified sampling on the original data points to retrieve our

class-balanced data points (we sample 20K points per class in each task), and then

we apply again stratified sampling, to further split these data points into the class-

4Note here for the Y-P dataset, the testing data size is bigger than the training data size, which
is not a standard setup in machine learning. There are two main reasons for this: first, as explained
in section 5.4.2, this ensures class-balanced data; and second, since the Y-P dataset is a relatively
easy task (polarised sentiment analysis), use training data of size 32, 000 already grants a decent
result.
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balanced training set and validation set, with a percentage of 80% and 20%, respec-

tively.

Dataset Training Validation Testing Number of Classes
AG 64,000 16,000 7,600 4

DBP 224,000 56,000 70,000 14
Y-P 32,000 8,000 38,000 2

Table 5.1: Chapter 5: Dataset summary

Dataset Mean Standard Deviation Min Max
AG 45 13 12 214
DBP 57 26 3 1500
Y-P 156 143 1 1202

Table 5.2: Chapter 5: Token length statistics, all numbers round to integer.

5.4.3 Experimental Setup

We conduct experiments over three diverse neural network architectures as the en-

coder network: LSTM [169], CNN [165], and Transformer [81]. For epistemic un-

certainty modelling and aleatoric uncertainty modelling, we add ‘+EP’ and ‘+AL’

to the model name, respectively, in the tables below (Tables 5.4, 5.5 and 5.6).

To compare with the widely adopted epistemic uncertainty modelling technique

[193]5, we implement the Monte Carlo Dropout technique for each network, denoted

by the addition of ‘+MC’, following the implementation guideline in [218]. We fix

the dropout rate as 0.5 based on our empirical experiments. We use Adam [182] as

our optimiser in all experiments. The batch size is set to 32 and all training runs

for a maximum of 10 epochs. All experiments are conducted on a computer with an

Ubuntu operating system and a single RTX 2080 Ti GPU.

Next, we introduce the setup of the three model architectures (LSTM, CNN, and

Transformer) below. Each architecture is based on a widely adopted model for text

classification tasks in the NLP domain.

5Here, we only compare with [193] since [218] adopted a similar approach as in [193] and both of
them use Monte Carlo Dropout to model the epistemic uncertainty. [193] focused on applications
to computer vision while [218] focused on applications to natural language processing.
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LSTM

For the LSTM experiment, we use an embedding size of 56 for each unique word

and build a single-layer bi-directional LSTM (Bi-LSTM) network architecture with

a hidden dimension of 56 (resulting in 112 latent dimensions). We use a size of 56 for

the CVAE latent variable z. We use the last hidden state of the Bi-LSTM network

as the xrep.

CNN

For the CNN experiment, we apply the 2d-convolution operation (over sequence

length and embedding dimension) as in [58] on our text input and use learnable

filter sizes of 1, 2 and 3 to represent ‘unigram’, ‘bigram’, and ‘trigram’ information

from the text sequence. We use a max pooling operation over each filter output

to alleviate various sequence length issues and concatenate them as xrep. For each

2d-convolution operation, we use an input channel size of 1 and an output channel

size of 56. We use an embedding size of 56 for each unique word and a dimension

of 56 for the CVAE latent variable z for our epistemic modelling experiments.

Transformer

For the Transformer experiment, we use the same architecture setup as in [81], but

with a stack of N = 1 encoder layer and with no decoder (as it is not required for text

classification). For a detailed description of the transformer network, please refer

to [81]. We use the same positional encoding methods (sine and cosine) as in [81]

and use a hidden dimension of 56, feedforward neural network intermediate layer

dimension of 256, and 8 attention heads. This grants us an output dimension of 56,

and we use the same size (56) for the CVAE latent variable z. As the transformer

encoder creates a sequence of contextual representations for a given input sequence,

we pre-process text by adding additional special tokens < bos > and < eos >, before

and after the sequence input. We use the output at the < bos > position as xrep,

which is similar to how a BERT model [54] is used for text classification.
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Model Architecture Complexity

For a fair comparison, we set each model architecture with similar complexity in

terms of the number of trainable parameters. For the LSTM, CNN, and Trans-

former models defined in the experiments, there are around 1.4M , 1.5M , and 1.4M

trainable parameters, respectively (calculated based on the epistemic uncertainty

experiment). There are slight variations in the number of parameters in other ex-

periments (Table 5.4, 5.5 and 5.6, results without the ‘+EP’ flag), but the model

complexities always remain on the same scale.

5.4.4 Experimental Run

For reporting results, we first select the best learning rate from among 1e−2, 1e−3,

1e− 4 and 1e− 5, based on the mean average run from three random seeds: 1000,

2000, and 3000. Then, we run each model 3 times with the best learning rate and use

seeds from 1111, 2222, and 3333 to initialise model parameters. For each run of the

model, we use the training, validation, and testing sets as shown in Table 5.1. We

evaluate the model performance on the validation set after each epoch and save the

best model based on the F1 score, calculated over the validation set. For testing, we

apply the best-performing model on the test set and report the evaluation metric.

Based on our experiments, the optimal learning rates for our models are 1e− 3

and 1e − 4 in general, while most of the time, 1e − 3 performs the best. Thus we

use a learning rate of 1e − 3 when reporting the results unless specified otherwise.

During training, we use a gradient clip of 1, to avoid gradient overflow.

5.4.5 Evaluation Metric

We report the mean and the variance (in brackets) amongst three runs on the

standard evaluation methods for the text classification task (macro-averaged F1) in

Experiment 1 and Experiment 2. For the F1 scores, all values are reported in per-

centage. We report additional entropy measurement [18] calculated with Equation

5.3 over the test set in Experiment 2. For the entropy measurement, we report the

mean average over the three runs.
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5.5 Results and Discussion

5.5.1 Experiment 1: Posterior Collapse

In the first experiment, we address the commonly encountered problem in CVAE

training, i.e., the posterior collapse [104,109,111], in the context of text classification.

We compare three different methods for training a CVAE, including using standard

KL, KL Annealing, and KL Coefficient. We apply each of the three methods to

the epistemic uncertainty modelling task over three diverse architectures. Here, we

briefly describe these three methods:

1. Standard KL

During training, we use the standard CVAE formula (as in Equation 5.11)

with β = 1 as the KL term.

2. KL Annealing

During training, we apply KL annealing on β, as in [104,109], to induce the cost

function and thus maintain a substantial KL value. In all of our experiments,

we run a total of 10 epochs. Specifically, we linearly anneal β from 0 to 1 over

the first 5 epochs and then use a value of 1 for the remaining 5 epochs. The KL

annealing essentially forces the model to explore and utilise the information

from the latent variable z [111].

3. KL Coefficient

During training, we use a reduced β = 0.2 for the KL term as in [109,118]. This

allows us to adjust the weight of the KL penalty related to the reconstruction

loss.

Experimental results on macro-average F1 for the LSTM, CNN, and Transformer

architectures, respectively, are presented in Table 5.3. Training with standard KL,

KL Annealing, and KL Coefficient are denoted as ‘EP (β = 1)’, ‘EP (Ann.)’, and

‘EP (Coe.)’, respectively. Throughout the experiments, we have discovered that

training with the KL annealing method provides us with the best F1 score in general

on both mean and variance across three random runs with different seeds (see
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Table 5.3) when the MAP decoding method is adopted, especially for the LSTM

architecture, which is reported similarly in literature [104, 109, 111]. Based on the

results shown in Table 5.3, we adopt the KL Annealing training technique in the

follow-up experiments, although it requires an additional hyperparameter tuning

(rate for linear annealing reduction).

To demonstrate the efficacy of the results, we apply the Wilcoxon signed-rank

test to the results (KL Annealing against the other two in Table 5.3) from multiple

3 runs of our models. In terms of the AG dataset, the F1 score is better, although

not statistically significant (p > .05) for Transformer; and statistically significantly

better (p < .05) for LSTM and CNN. For the DB dataset, F1 is better, but not sta-

tistically significant (p > .05) for LSTM and CNN; and not better for Transformer.

For the YP dataset, F1 is statistically significantly better (p < .05) for LSTM and

Transformer; and better, but not statistically significant (p > .05), for CNN.

5.5.2 Experiment 2: Uncertainty Modelling

In the second experiment, we apply uncertainty modelling over the four datasets

with three diverse neural network architectures. For epistemic uncertainty mod-

elling, we use the KL annealing technique during training, followed by the results

in experiment 1 (Table 5.3). The experimental results on macro-average F1 and

entropy for LSTM, CNN, and Transformer architectures are presented in Tables

5.4, 5.5, and 5.6, respectively. The results suggest that uncertainty plays an im-

portant role in text classification tasks. In general, modelling uncertainty, as we

observe, mostly comes with a benefit. We use bold font to denote when results are

better than the deep learning baseline models, and use underline to denote the best

performing methods in Tables 5.4, 5.5, and 5.6.

Epistemic Uncertainty

Compared with the ‘+MC’ method using Monte Carlo dropout, we observe that

our epistemic uncertainty modelling method ‘+EP’ achieves competitive or better

performance across most experiments (based on mean and variance) for the F1

score. However, the ‘+EP’ model grants much lower entropy in general, compared
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Model AG DBP Y-P

LSTM (%)

EP (Ann.) 91.13 (0.33) 98.36 (0.08) 91.70 (0.23)
EP (Coe.) 90.94 (0.44) 98.33 (0.04) 90.69 (0.12)

EP (β = 1.) 91.12 (0.39) 98.33 (0.02) 91.52 (0.15)

CNN (%)

EP (Ann.) 91.38 (0.30) 98.22 (0.04) 92.69 (0.01)
EP (Coe.) 91.42 (0.52) 98.15 (0.08) 92.21 (0.16)

EP (β = 1.) 91.47 (0.28) 98.15 (0.02) 92.33 (0.21)

Transformer (%)

EP (Ann.) 91.29 (0.15) 97.52 (0.14) 92.16 (0.10)
EP (Coe.) 91.03 (0.19) 97.68 (0.01) 91.88 (0.11)

EP (β = 1.) 91.50 (0.29) 97.63 (0.04) 91.99 (0.26)

Table 5.3: Chapter 5: Posterior Collapse Experiment on LSTM, CNN and Trans-
former architectures. Results presented in Macro F1-score based on the test dataset.

Model AG DBP Y-P

Macro-F1%

LSTM 91.17 (0.28) 98.39 (0.03) 91.20 (0.17)
LSTM + EP 91.13 (0.33) 98.36 (0.08) 91.70 (0.23)
LSTM + MC 91.49 (0.21) 98.58 (0.02) 91.74 (0.35)

LSTM + AL 91.16 (0.20) 98.40 (0.03) 91.20 (0.29)

Entropy (Ave.)

LSTM 0.1866 0.0360 0.2166
LSTM + EP 0.0434 0.0262 0.0338
LSTM + MC 0.1766 0.0193 0.1816
LSTM + AL 0.2359 0.0315 0.1589

Table 5.4: Chaper 5: Uncertainty modelling results for LSTM model, results pre-
sented in Macro F1-score and entropy based on the test dataset.

to the MC dropout method, as shown in Tables 5.4, 5.5, and 5.6. The entropy value

is regarded as a critical measurement of information uncertainty for the predictive

distribution [18]. The lower the entropy, the more confident the classifier is in its

decision. ‘+EP’ results in a lower entropy than the ‘+MC’ method in general,

demonstrating its effectiveness in reducing epistemic uncertainty.

To demonstrate the efficacy of the results, we apply the Wilcoxon signed-rank test

on all the results (compare baseline model, i.e. LSTM, CNN, and Transformer; and

with uncertainty modelling, i.e.‘+EP’) from the multiple runs of our models. The

F1 score is generally competitive, or better than the baseline model. The entropy
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Model AG DBP Y-P

Macro-F1%

CNN 91.49 (0.27) 98.32 (0.06) 92.49 (0.12)
CNN + EP 91.38 (0.30) 98.22 (0.04) 92.69 (0.01)

CNN + MC 91.77 (0.18) 98.39 (0.01) 92.20 (0.23)

CNN + AL 91.70 (0.37) 98.35 (0.06) 92.40 (0.10)

Entropy (Ave.)

CNN 0.1960 0.0327 0.1619
CNN + EP 0.0651 0.0203 0.0240
CNN + MC 0.2014 0.0379 0.1607
CNN + AL 0.1762 0.0357 0.1261

Table 5.5: Chapter 5: Uncertainty modelling results for CNN model, results pre-
sented in Macro F1-score and entropy based on the test dataset.

Model AG DBP Y-P

Macro-F1%

Transformer 91.32 (0.16) 97.88 (0.13) 92.10 (0.03)
Transformer + EP 91.29 (0.15) 97.52 (0.14) 92.16 (0.10)

Transformer + MC 91.43 (0.18) 97.84 (0.14) 91.87 (0.32)

Transformer + AL 91.41 (0.22) 97.89 (0.01) 92.07 (0.06)

Entropy (Ave.)

Transformer 0.2274 0.0543 0.2548
Transformer + EP 0.0592 0.0341 0.0319
Transformer + MC 0.2106 0.0339 0.2164
Transformer + AL 0.1969 0.0444 0.1559

Table 5.6: Chapter 5: Uncertainty modelling results for Transformer model, results
presented in Macro F1-score and entropy based on the test dataset.

value is mostly statistically significantly better (p < .05), in comparison with the

baseline model. When combining results from both the F1 score and entropy value,

we can claim that it is beneficial to model epistemic uncertainty in deep neural

networks.

Aleatoric Uncertainty

Compared with the baseline model, our aleatoric uncertainty modelling method

‘+AL’ achieves competitive or better performance across most experiments (based

on mean and variance) for the F1 score. Again, for the Wilcoxon signed-rank test

on all results (comparing baseline model, i.e. LSTM, CNN, and Transformer; with
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uncertainty modelling, i.e.‘+AL’) from the multiple runs of our model, F1 is better,

although not statistically significantly so. The entropy value is mostly statistically

significantly better (p < .05), in comparison to the baseline model. When combining

results from both the F1 score and entropy value, we can claim that it is beneficial to

model aleatoric uncertainty in deep neural networks. Additionally, since modelling

aleatoric uncertainty only requires tiny changes in the cost function during training,

it is inexpensive and hence is recommended for text classification tasks whenever

possible.

To illustrate what we modelled for aleatoric uncertainty, we provide examples

of high and low uncertainty of data in the Yelp-P dataset, presented in Table 5.7

(based on the LSTM model). The Yelp-P data is used for the polarised sentiment

analysis task (negative or positive). We can observe that the low aleatoric uncer-

tainty examples contain clear sentiment words, such as ‘not very good’, ‘don’t like’,

and ‘horrible’. On the contrary, the high aleatoric uncertainty examples contain

vague sentiment words, such as ‘little high’ and ‘little too sweet’ ; or words with

vague meaning, such as ‘seriously.’ ; or even sentiment words with contradictory

meanings, such as ‘great’, ‘greasy’ and ‘sad’ concomitantly. These observations

align with the results presented in [218].

5.5.3 Discussion on Entropy as Uncertainty Estimation

In this paper, entropy is used as an uncertainty estimation, as in [18,218]. However,

the reason for choosing entropy as the measurement is not clear in the literature,

so here we discuss briefly the reason and whether it is applicable. From a Bayesian

modelling perspective, uncertainty is best presented as the variance of the density

function for the posterior distribution in regression tasks. In this paper, we instead

explore classification tasks, and thus the variance is best represented as the entropy

measurement over the posterior distribution, as in equation 5.3. In this case, a lower

entropy value indicates a decrease in classification variance for a predictor, which

represents a decrease in uncertainty. However, a lower entropy value only can not

denote an improvement in model performance, so we additionally adopt the F1 score

as another metric measurement.
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High Aleatoric Uncertainty
The price is a little high for me. They don’t give enough
bean sprouts without asking for more. The pho broth is
a little too sweet for me also.
I like their beer ... seriously.
Was a great place to eat, now food is greasy, and it doesn’t
taste like it used to. Used to have a more of a homemade
taste, now tastes like Costco business center. Sad. I loved
going here .
Low Aleatoric Uncertainty
I went there last night and I ordered the calamari. It had
no taste and was very expensive. And the service was not
very good. I will not be back
Oh my... dont like the food here. Tried the Pad thai and the
chicken fried rice ... the pad thai was disgusting and the fried
rice was not < unk > either ... wont be going back ... ugh
Wow this place has gone down hill. Old smelly rooms.
Service is horrible

Table 5.7: Chapter 5: High versus Low aleatoric uncertainty examples for Yelp-P
dataset.

In this work, the quality of uncertainty estimation has been evaluated using a

combination of the F1 score and entropy. However, there is a lack of other evalu-

ations, such as misclassification detection, out-of-distribution input prediction, and

adversarial attack detection, which are important metrics for measuring the qual-

ity of uncertainty estimation results. Although the F1 score and entropy provide

a decent evaluation of the sharpness of the distribution on the simplex, a more

comprehensive assessment is necessary to fully understand the effectiveness of the

uncertainty measurements.

It is worth noting that the main focus of this work is on introducing a novel

framework for modelling both epistemic and aleatoric uncertainty conditional on

text, along with empirical experiments on various neural network architectures. As

a result, further exploration into the quality of uncertainty estimation has been

left as a future direction. Despite the limitations, the combination of the F1 score

and entropy provides a good starting point for evaluating the quality of uncertainty

estimation results from a Bayesian perspective.
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Model AG DBP Y-P

LSTM (s)

LSTM 0.700 7.746 12.607
LSTM + EP 0.834 (1.08) 8.132 (1.04) 14.51 (1.15)
LSTM + MC 26.990 (34.91) 299.867 (38.70) 582.844 (46.20)
LSTM + AL 0.783 (1.01) 8.034 (1.03) 12.775 (1.01)

CNN (s)

CNN 0.278 2.426 1.877
CNN + EP 0.358 (1.28) 3.077 (1.26) 2.100 (1.11)
CNN + MC 3.597 (12.90) 33.350 (13.7) 46.011 (24.50)
CNN + AL 0.282 (1.01) 2.550 (1.05) 1.887 (1.01)

Transformer (s)

Transformer 0.412 4.186 19.689
Transformer + EP 0.439 (1.06) 4.421 (1.05) 20.185 (1.02)
Transformer + MC 11.185 (27.10) 129.108 (30.80) 848.486 (43.10)
Transformer + AL 0.415 (1.01) 4.604 (1.09) 20.878 (1.06)

Table 5.8: Chapter 5: Run Time Results for Uncertainty modelling for LSTM, CNN
and Transformer models, results presented in seconds based on the test dataset (in
brackets the number of times it is faster, compared to its respective baseline model).

5.5.4 Analysis on Run Time Efficiency

Based on the information provided for the experimental setup in sections 5.4.3 and

5.4.3, we present an analysis of the run time efficiency in Table 5.8. In particular, we

present the run time for each testing set and the number of times it is faster than its

base model (i.e. LSTM, CNN, and Transformer). We also underline the multipliers

for ‘+MC’ and ‘+EP’. We observe that, in general, modelling aleatoric uncertainty

(‘+AL’) does not increase run time during testing. However, with epistemic uncer-

tainty (‘+EP’ and ‘+MC’), the current widely adopted approach (‘+MC’) requires

significantly more time, as noted in [18]. While our approach barely changes the

run time and is a lot faster (between 13 to 45 times faster).

5.6 Conclusion

This chapter presents novel uncertainty quantification methods that allow efficient

analysis of posterior inference. We demonstrate their effectiveness on four multi-

label text classification tasks. Our framework allows efficient posterior analysis,
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and our experiments affirm the benefits of modelling uncertainty. We show the

consistency of our results over multiple experiments with diverse neural network ar-

chitectures. Our work can serve as a baseline for applying uncertainty quantification

to text classification tasks and contributes to further research in this domain.

Epilogue

In the second work, we extend our contribution of the benefits of Bayesian deep

learning in the first chapter from an educational NLP application to a general NLP

application using DLVMs. The approaches presented in this chapter shows the bene-

fits of explicitly modelling uncertainties (epistemic and aleatoric) in natural language

understanding problems on multi-label text classification tasks with DLVMs. Prior

research has also proved benefits when modelling these uncertainties conditional on

text; however, these methods are mainly based on MCD and hence require expen-

sive computational sampling techniques to approximate the posterior distribution.

We alternatively propose an efficient uncertainty quantification framework based on

posterior analysis to model these uncertainties. We demonstrate the effectiveness

and generalisation of our approach on three benchmark datasets and three types

of network architectures (LSTM, CNN and Transformer). In comparison with the

current framework, our proposed methods require significantly less inference time.

We demonstrate that DLVM addresses the concerns over trustworthiness (sta-

tistically significant lower entropy value); while achieving competitively or some-

times even better performance compared with deep learning (general competitive

F1 score). This chapter (Chapter 5) and the previous chapter (Chapter 4) explored

the benefits of deep latent variable models for natural language understanding prob-

lems. For building NLP applications, apart from natural language understanding

problems, another kind of challenge is natural language generation problems. Hence

in the next few chapters (Chapter 6 and 7), we further explore the benefits of deep

latent variable models for natural language generation problems.
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CHAPTER 6

A Deep Generative XAI Framework for Natural Language

Inference Explanations Generation

Prologue

In Chapter 4 and 5, we have focused on text classification tasks, which belong

to natural language understanding problems for natural language processing

(NLP). We have presented studies on the benefits of uncertainty modelling with

Bayesian Deep learning methods empirically, especially with deep latent variable

models (DLVMs). In this chapter, we move our focus toward natural language

generation problems and explore the applications of DLVMs for such problems.

In this chapter, we present a novel deep generative explainable artificial intelli-

gence (XAI) framework for natural language inference explanation generation. This

is the first research on how deep latent variable models can be applied to generate

multiple explanations in the Stanford natural language inference task. Our main

contributions include: (i) a novel two-step generative XAI framework, named IN-

TERACTION, which presents explanations in two steps: (step one) Explanation

and Label Prediction; and (step two) Diverse Evidence Generation; (ii) the first
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study on spurious correlation on the e-SNLI dataset with Transformer architecture;

(iii) demonstrating the benefits of our framework, against state-of-the-art baseline

models with empirical experiments; and (iv) a solid deep generative model baseline

for future research in the XAI field.

Declaration: This chapter is based on the following publication:

Yu, J., Cristea, A.I., Harit, A., Sun, Z., Aduragba, O.T., Shi, L. and Al

Moubayed, N., 2022, July. INTERACTION: A Generative XAI Frame-

work for Natural Language Inference Explanations. In 2022 International

Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE. (Core A Ranked

Conference, Accepted for Oral Presentation)

This chapter is presented largely as accepted, although referencing and notation

have been altered and cross-referencing added for consistency across this thesis.

Some stylistic changes have been made for consistency. The majority of the text is

verbatim, with some minor wording and formatting changes.

6.1 Introduction

Traditionally, natural language processing (NLP) applications are built based

on techniques that are inherently more explainable. Examples of such techniques are

often referred to as ‘white box’ techniques, including rule-based heuristic systems,

decision trees, hidden Markov models, etc. In recent years, due to the advancement

of deep learning, a ‘black box’ technique, deep neural network, has become the dom-

inant approach [235]. With the advancement of deep neural networks, their ubiq-

uitousness comes at the expense of less interpretability. Hence, concerns have been

raised on whether deep neural networks can make reasonable judgements [19, 236],

which further triggers an interest in explainable artificial intelligence (XAI)

research [237].

With XAI techniques in NLP applications, researchers first focused on feature-

based [238,239], model -based [240], and example-based [241] explanation techniques.
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However, even for experts working as data scientists in the industry, interpreting

results from these models was found to be hard and bias-prone [242]. To reduce hu-

man interpretation bias, directly generating natural language explanations seemed

a better medium for presentation. Rather than based on carefully designed addi-

tional tools, XAI with natural language produced human-readable explanations as

evidence for AI decision-making [243].

The current state-of-the-art approaches, such as those in [244,245], are limited by

presenting a single explanation only. However, from an HCI research perspective, it

is hard to account for the diversity of human thoughts, and experience [246]. Indeed,

natural language allows expressing the same semantic content in various ‘correct’

(i.e., semantically similar) forms, subject to cognitive biases, social expectations,

and socio-cultural backgrounds [247].

This paper addresses this gap by, proposing a generative XAI framework, which

presents explanations in two steps: (step one) Explanation and Label Prediction,

and (step two) Diverse Evidence Generation. In step one, we offer the most probable

explanation and label prediction, similar to other prior work in literature [244,245].

In our original step two, we adopt deep generative models, to generate multiple

diverse explanations via posterior analysis in the latent space.

We evaluate our method specifically on a natural language inference (NLI)

task [248], which determines whether a ‘hypothesis’ is true (entailment), false (con-

tradiction), or undetermined (neutral), given a ‘premise’. To perform this, an ap-

propriate dataset is needed. Current NLI datasets, however, contain annotation

artefacts, which allow the models to make predictions based on spurious correla-

tions [21] 1. To address annotation artefacts in data, Camburu et al. [20] suggest

that spurious correlations are much harder to be captured with natural language

explanations and propose a large-scale benchmark dataset (e-SNLI), which contains

NLI data points and their associated explanations. In this paper, we present our

1NLI is an essential yet challenging task, requiring common sense reasoning on the semantic
relationships between premise and hypothesis sentence pairs. However, as shown in [21], current
NLI datasets contain annotation artefacts, allowing the models to make predictions based on
spurious correlations in data. A simple neural network (here a fastText classifier [249]) can make
correct predictions 67% of the time when only having access to the hypothesis. This phenomenon
is evidence of model capture ‘spurious correlation’ in data.
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studies thus on this dataset, with the Transformer architecture, as further explained

in Section 6.4 and Section 6.5.

6.2 Related Work

6.2.1 Explainable Artificial Intelligence for Natural Language

Processing

General XAI approaches can be categorised in two main ways: [250, 251]: 1) Local

vs Global, and 2) Self-Explaining vs Post-Hoc. Our work contributes to explain-

able artificial intelligence (XAI) from two perspectives: Local and Self-Explaining,

as we provide explanations based on a fine-granularity individual input, and our

explanations are directly interpretable.

In terms of explanation techniques and their applications to NLP there are, in

general, five different types [235]: 1) feature importance, 2) surrogate model, 3)

example-driven, 4) provenance-based, and 5) declarative induction. The first three

are more widely adopted and have already been described briefly in section 6.1. The

provenance-based technique refers to visualising some or all of the prediction process,

such as in [252, 253]. Our work uses the declarative induction technique, which

tackles the challenging task of providing human-readable representations as part of

the results, such as in [20, 254]. Our work further extends [20] with a probabilistic

treatment.

6.2.2 Supervised Deep Generative Models for Natural Lan-

guage Processing

Our work is associated with deep generative models, which are based on Neural

Variational Inference (NVI) [4–6]. NVI is also known as amortised variational

inference in the literature and can be considered as an extension of the mean-field

variational inference [28, 93]. The NVI technique uses data-driven neural networks

instead of more restrictive statistical inference techniques. NVI allows us to infer

unobservable latent random variables that generate the observed data and are thus
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very efficient for data with hidden structures, such as natural language.

NVI has been successfully applied in various NLP applications, including topic

modelling [134,255], machine translation [109,256], text classification [134], conver-

sation generation [108, 257], and story generation [258]. This paper explores the

potential for XAI with natural language inference explanation generation with a

novel deep generative framework. A very recently published paper [259] adopts a

similar approach as in this paper; however, the research gap for multiple explana-

tions generation is not explored or discussed. This paper is thus, to the best of our

knowledge, the first work to address the concern on the diversity of human languages

in XAI within the natural language inference task.

6.3 Technical Background

This section provides a brief overview of the Conditional Variational Autoen-

coder (CVAE), the Transformer architecture, and a description of the data.

6.3.1 Conditional Variational Autoencoder

CVAE [105, 106] is a class of deep latent variable models (DLVMs) and ex-

tended based on the variational autoencoder (VAE) model [4, 5]. Both models

allow learning rich, nonlinear representations for high-dimensional inputs. When

compared with VAE (performing inferences for the latent representation z, based

on the input x, only), CVAE performs inference for the latent representation z,

based on both the input x and the output y, together. CVAE can be considered

as a neural network framework based on supervised Neural Variational Inference.

CVAE generally includes two components: an encoder and a decoder. We con-

sider the joint probability distribution and its factorisation, in the form of Pθ(y, z|x) =

Pθ(y|z, x)Pθ(z|x) as in [108,109,134,257,258]. The encoder Pθ(z|x) takes the ob-

served input x and produces a corresponding latent vector z as the output with

parameter θ. The decoder Pθ(y|z, x) takes the observed input x and its corre-

sponding latent vector sample z as the total input and produces an output y with

the parameter θ. The latent variable z in the joint probability Pθ(y|z, x) can be
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marginalised out by taking samples from P (z).

For CVAE, we optimise the following evidence lower bound (ELBO) for the

log-likelihood during training:

logPθ(y|x) ≥ L(ELBO) = Eqφ(z)[logPθ(y|z, x)]−DKL[qφ(z|x, y)||Pθ(z|x)]

(6.1)

The first term of ELBO is the reconstruction loss and is measured via cross-

entropy matching between predicted versus real targets y. The second term is the

KullbackLeibler (KL) divergence between two distributions Pθ(z|x) and qφ(z|x, y).

As the true posterior distribution Pθ(z|x) is intractable to compute, a variational

family distribution qφ(z|x, y) is introduced as its approximation. We consider that

both Pθ(z|x) and qφ(z|x, y) are in the form of isotropic Gaussian distributions, as

N (µθ(x), diag(σ2
θ(x))) and N (µφ(x, y), diag(σ2

φ(x, y))). Our work takes a similar

assumption, but the key difference lies in the design of our novel model architectures

(section 6.5), together with using the Transformer model [81] as a building block.

We provide a detailed explanation of the Transformer model in the next section.

6.3.2 Transformer Architecture

The Transformer architecture, proposed in [81], is the first neural network archi-

tecture entirely built upon the self-attention mechanism. It has been used as the

main building block for most of the current state-of-the-art models in NLP, such as

BERT [54], GPT3 [56], and BART [260].

The Transformer architecture can be divided into three main components: an

embedding part, an encoder, and a decoder. The embedding part takes the input

x ∈ Rs1×1 in the form of a sequence with length s1 and uses an input embedding

to create E(x) ∈ Rs1×E, where E is the embedded dimension size. Due to the

permutation-invariant self-attention mechanism, [81] further introduces positional

encoding, to encode sequential order information, as P (x) ∈ Rs1×E. The sum of

positional encoding and input embedding is used as the final embedding of the input

x. In [81], sine and cosine functions of different frequencies are adopted as positional
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encoding methods. Further work on large-scale transformers [54,56,260] use a learnt

positional embedding, which is what we utilise in this paper. For the encoder and

the decoder, we use precisely the same Transformer architecture as in the original

paper [81]. In our experiments, if an encoder and a decoder are used simultaneously,

they each have a separate embedding part. We use the official implementation in

the Pytorch library2.

6.3.3 Data Description

Our training data is in the form of N data quadruplets {x(p)
n , x

(h)
n , y

(l)
n , y

(e)
n }Nn=1, with

each quadruplet consisting of the premise (denoted by x
(p)
n ), the hypothesis (denoted

by x
(h)
n ) their associated label (denoted by y

(l)
n ), and explanation (denoted by y

(e)
n ).

For the nth quadruplet, x
(p)
n = {w(p)

1 , ..., w
(p)
Lp
}, x(h)

n = {w(h)
1 , ..., w

(h)
Lh
}, y(l)

n = {w(l)},

and y
(e)
n = {w(e)

1 , ..., w
(e)
Le
} denote the set of Lp words from the premise sentence, Lh

words from the hypothesis sentence, a single word w(l) from the label, and Le words

from the explanation sentence, respectively.

Our validation and testing data are similar to data quadruplets as the training

data; however, we have three (y
(e1)
n , y

(e2)
n and y

(e3)
n ) instead of one explanation y

(e)
n ,

all created by human experts. During training, we update model parameters based

on one explanation y
(e)
n for nth data entry; and during validation and testing, we

perform model selection and inference based on the mean average loss of the three

explanations (y
(e1)
n , y

(e2)
n and y

(e3)
n ). In the following, we omit the data quadruplet

index n and use bold characters to represent vector form representations, as x(p),

x(h), y(l), and y(e). All these representations mentioned above will be learnt in an

end-to-end fashion.

6.4 Preliminary Experiments

We present two preliminary experiments in this section. We use the architecture

setting similar to the base version of the Transformer model [81], which is a 6-layer

2https://pytorch.org/docs/stable/nn.html#transformer-layers
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model with 512 hidden units and 8 heads for each encoder-decoder network. Based

on an inspection of token length statistics (Table 6.1), we set the maximum length

of 25 for positional encoding. See section 6.6.5 for a detailed description of all model

complexity in this paper.

Model Mean Median Standard Deviation Min Max
Premise 17 15 7 4 84
Hypothesis 11 10 4 3 64
Explanation 16 15 7 2 189

Table 6.1: Chapter 6: Token length statistics for the e-SNLI dataset, all numbers
round to integer.

We generally follow the vocabulary processing steps as in [20]. Our detailed

dataset statistics are presented in Table 6.1, to help reproduce the experiment

results, we provide a detailed description of our pre-processing and tokenisation

process. We start by stripping out any space in front of and behind the original

sentence. And then tokenise it using the Spacy English tokeniser tool based on the

’en core web sm’ lexicon resource. The tokenised text is then used to create the

complete vocabulary for training. We follow [20] and remove tokens that appear

less than 15 times. We additional include special tokens ’< unk >’, ’< pad >’,

’< bos >’ and ’< eos >’ in the vocabulary. Before we use each sentence, we append

’< bos >’ at the beginning of this sentence and append ’< eos >’ at the end of this

sentence, with a space in between.

We report our quantitative assessment results based on 3 random seeds (1000,

2000, and 3000), and report the average performance with its standard deviation

in parenthesis. Regarding quantitative assessment, we use automatic evaluation

metrics (Perplexity and BLEU [261]) over the entire test data points. Regarding

qualitative assessment (Correct@100, as in Table 6.3 and Table 6.7), we report

results based on the seed 1000. We adopt the criterion as in [20] and evaluate the

Correct@100 score based on the first 100 test examples only3. For evaluation, the

lower the perplexity, the higher the BLEU score and the higher the Correct@100

3The score is related to the correctness for a generated explanation based on the annotations,
details described in section 6.6.4.
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score, the better the model performs.

We use the maximum a posteriori (MAP) estimate decoding for the con-

ditional generation. MAP decoding, whilst not always the optimal choice, has a

reasonably good performance and is widely adopted and cheap to compute [262].

For the network optimisation, we use Adam [182] as our optimiser with default hy-

perparameters (β1 = 0.9, β2 = 0.999, ε = 1e − 8). We conduct all the experiments

with a batch size of 16 and a learning rate of 1e − 5 for a total of 10 epochs on a

machine with an Ubuntu 20.04 operating system and a GTX 2080Ti GPU.

6.4.1 Architecture Selection and Spurious Correlation

In the first experiment, we answer two questions: Q(i) What is a good Transformer

model architecture choice for the e-SNLI text classification task? Q(ii) How easily

can a Transformer model pick up the spurious correlation, when only a hypothesis

sentence is observed?

Hypothesis

Premise Hypothesis Label

Label

( b )

( c )

Hypothesis
Label

Premise

( a )

Figure 6.1: Chapter 6: Graphical overview of architectures used in section 6.4.1.
(a) Separate Transformer Encoder; (b) Premise Agnostic Encoder; and (c) Mixture
Transformer Encoder.

To answer Q(i), we experiment on two candidate model architectures: (1) Sep-

arate Transformer Encoder : an architecture with two separate encoders, one each

for the premise and hypothesis sentences, respectively (Fig. 6.1a). (2) Mixture
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Model Accuracy (%)
Separate Transformer Encoder 73.97 (0.34)
Mixture Transformer Encoder 78.98 (1.44)
Premise Agnostic Encoder 65.43 (0.72)

Table 6.2: Chapter 6: Architecture Selection and Spurious Correlation Experiments.

Transformer Encoder : an architecture with a mixture encoder for both premise and

hypothesis sentence together (Fig 6.1c).

We choose these two candidates for the following reasons: the first candidate

architecture is widely adopted in early NLI literature [263–265], where f refers to

algorithmic operations (identity, subtraction, multiplication) as in [266]. The latter

candidate architecture is adopted by the BERT model [54], where f refers to an

affine transformation operation and has achieved state-of-the-art performance for

NLI tasks. To answer Q(ii), we perform the premise-agnostic prediction experiment

on the Premise Agnostic Encoder model (Fig 6.1b), where f refers to an affine

transformation operation.

For the above two experiments, results are presented in Table 6.2. For the Sep-

arate Transformer Encoder, we use the encoder outputs at two separate ’< bos >’

positions for algorithmic operations (identity, subtraction, and multiplication). For

Mixture Transformer Encoder and Premise Agnostic Encoder, we use the output at

the first ’< bos >’ position. We apply an affine transformation operation for predict-

ing the label. The results suggest the Mixture Transformer Encoder outperforms the

Separate Transformer Encoder, in a statistically significant way (p < .05; Wilcoxon

test). The Premise Agnostic Encoder achieves 82.84% (based on 65.43/78.98) of

the Mixture Transformer Encoder performance, suggesting that Transformer mod-

els tend to capture spurious correlations very easily for the NLI label prediction

task.

6.4.2 Premise-Agnostic and Full Generation

In the second experiment, we address two further questions: Q(iii) Is providing

explanations as output reducing the impact of spurious correlation in a Transformer

model, compared to predicting the label only? Q(iv) How much better are explana-
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tions based on premise and hypothesis together, instead of hypothesis-only?

Premise
( b )
Hypothesis

Hypothesis Explanation
( a )

Explanation

Figure 6.2: Chapter 6: Graphical overview of architectures used in section 6.4.2. (a)
Agnostic Generation; (b) Full Generation.

Model Perplexity BLEU Correct@100
Agnostic Generation 7.66 (0.03) 25.74 (0.8) 42.87
Full Generation 5.53 (0.05) 33.14 (0.5) 57.45

Table 6.3: Chapter 6: Premise Agnostic Generation Experiments.

Test Data Number 22

Premise one tan girl with a wool hat is running and leaning over an object , while another
person in a wool hat is sitting on the ground .

Hypothesis a boy runs into a wall

Explanation a boy is not a tan girl .

Agnostic Generation a boy is not a girl .

Full Generation a boy is not a girl .

Test Data Number 30

Premise a couple walk hand in hand down a street .

Hypothesis a couple is sitting on a bench .

Explanation the couple can not be walking and sitting a the same time .

Agnostic Generation a couple can not be sitting on a bench and walking down a street at the same time .

Full Generation the couple can not be walking and sitting at the same time .

Test Data Number 91

Premise a dog jumping for a frisbee in the snow .

Hypothesis a cat washes his face and whiskers with his front paw .

Explanation a dog is not a cat .

Agnostic Generation a dog is not a cat .

Full Generation a dog is not a cat .

Table 6.4: Chapter 6: Selected spurious correlation examples.

To answer Q(iii), we follow and extend the ’PremiseAgnostic’ experiment [20].

We use the model architecture shown in Fig. 6.2a, and we are interested in evaluating

how well the model can generate an explanation from the premise-agnostic scenario
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Test Data Number 4

Premise a woman with a green headscarf , blue shirt and a very big grin .

Hypothesis the woman is young .

Explanation not all women are young .

Agnostic Generation the woman is young is the same as the woman is young .

Full Generation not all women are young .

Test Data Number 9

Premise an old man with a package poses in front of an advertisement .

Hypothesis a man walks by an ad .

Explanation a man can not be walking by an ad while posing in front of it .

Agnostic Generation a man walks by an ad is the same as a man walks by an ad .

Full Generation the man either poses or walks by .

Test Data Number 26

Premise a young family enjoys feeling ocean waves lap at their feet .

Hypothesis a family is out at a restaurant .

Explanation family can’t be at restraint if feeling ocean waves

Agnostic Generation a family is at a restaurant is a rephrasing of a family is out at a restaurant .

Full Generation a family can not be at a restaurant and at the ocean at the same time .

Test Data Number 69

Premise an older women tending to a garden .

Hypothesis the lady is cooking dinner

Explanation the lady can not be cooking dinner if she is tending to a garden

Agnostic Generation the lady can not be cooking dinner and sitting on a bench at the same time .

Full Generation the lady can not be tending to a garden and cooking dinner at the same time .

Test Data Number 77

Premise a man in a black shirt is looking at a bike in a workshop .

Hypothesis a man is deciding which bike to buy

Explanation the man looking at the bike may not be deciding to buy a bike at all .

Agnostic Generation a man is not a woman .

Full Generation looking at a bike does not imply deciding to buy .

Test Data Number 97

Premise a girl playing a violin along with a group of people

Hypothesis a girl is playing an instrument .

Explanation the violin is an instrument .

Agnostic Generation a girl is playing an instrument is a rephrasing of a girl is playing an instrument .

Full Generation a violin is an instrument .

Table 6.5: Chapter 6: Selected non-spurious correlation examples.

(only premise observed). To answer Q(iv), we implement the seq2seq framework [13]

with the Transformer architecture. We compare the agnostic generation scenario

with the full generation scenario (both premise and hypothesis observed, as shown

in Fig. 6.2b).

Our results, presented in Table 6.3, suggest that the agnostic generation signifi-

cantly reduces (p < .05; Wilcoxon test) the ability to generate correct explanations,

with only 72.19% (based on 5.53/7.66) for perplexity, 77.67% (based on 25.74/33.14)

for the BLEU score, and 74.62% (based on 42.87/57.45) for the Correct@100 score

(compared to 82.84% in section 6.4.1).

Additionally, we present qualitative examples taken from these experiments in

Table 6.4 and 6.5; these examples are from two scenarios. (i) agnostic experiment
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where the agnostic generation model can pick up spurious correlation to generate the

correct explanations, even when the premise information is not offered. Hence, the

explanation generation should ideally be incorrect. (ii) agnostic experiment where

the agnostic generation model cannot pick up the spurious correlation. In contrast,

the full generation model can generate the correct explanations. In the first 100

test examples, case (ii) happens a lot more than case (i), suggesting that checking

spurious correlation in language generation tasks can be a helpful indicator of the

model quality.

6.5 Proposed Deep Generative XAI Framework

In this section, we explain in detail our novel framework, INTERACTION -

(explaIn aNd predicT thEn queRy with contextuAl CondiTional varIational autO-

eNcoder). Our framework presents explanation in two steps: (step one) Explanation

and Label Prediction; and (step two) Diverse Evidence Generation. We present a

workflow diagram for our framework in Fig. 6.3, which consists of four components

as follows.

6.5.1 Neural Encoder

Given a pair of premise x(p) and hypothesis x(h), with their associated explanation

y(e), the encoder network outputs two sequences of representations:

xh = Encoder([x(p);x(h)])

yh = Encoder([y(e)])
(6.2)

Here Encoder refers to the Transformer Mixture Encoder, which is selected based

on experiments in section 6.4.1. xh is the contextual representations for the premise

x(p) and hypothesis x(h) pair. yh is the contextual representation for explanation

y(e). We share the same encoder network parameters for producing xh and yh.

xh has the same sequence length as the sum of premise and hypothesis length.

yh has the same sequence length as the explanation length. [a; b] refers to the
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concatenation operation of vectors a and b.

Explanation Generation            

Premise Hypothesis Explanation

STEP ONE: Explanation Generation
and Label Prediction

M1

Label Prediction                        

M2 M3

Query For  
More

Explanation 
           

Accept
Explanation

and
Prediction 

Human
Intervention 

Accept
Explanation
Examples 

STEP TWO: Diverse Evidence
Generation

Figure 6.3: Chapter 6: Graphical overview of our framework, INTERACTION,

introduced in section 6.5.

6.5.2 Neural Inferer

The neural inferer can be divided into two separate components: the prior and the

posterior networks, as demonstrated by the ELBO equation 6.1. The parameters of

the prior are computed by the prior network, which only takes the inputs: x(p) and

x(h). The posterior parameters are determined from both inputs and outputs: x(p),

x(h) and y(e).
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Contextual Convolutional Neural Encoder

Before introducing the neural prior and posterior, we first present our novel ap-

proach to dealing with various lengths of output from the Transformer encoder. We

first adopt the 2d-convolution operations (over the sequence length and hidden di-

mension) as in [58] and apply it directly to the encoded outputs xh and yh. For the

convolution operations, we use learnable filters with sizes of 1, 2, and 3 to repre-

sent ’unigram’, ’bigram’, and ’trigram’ contextual information from the sequences.

Then, we use a max-pooling operation over each filter output, to alleviate various

sequence-length issues and concatenate them as one single output vector. Finally,

we apply an affine transformation on the output vector and return the original vec-

tor dimension, but with a sequence length of 1. We name the whole set of operations

here contextual convolutional neural encoder (denoted in short as Concoder).

In contrast, a standard CVAE model uses a fixed position from the sequence

instead, to handle various sequence-length issues. We implement a standard CVAE

with the < bos > position output as the final output, denoted as CVAE Genera-

tion. We use this as a comparison with our novel solution (Concoder), denoted as

ConCVAE Generation (with results shown in Table 6.7).

Neural Prior

The prior distribution is denoted as:

Pθ(z|x) = N (z|µθ(x), diag(σ2
θ(x))) (6.3)

Where Pθ(z|x) is an isotropic multivariate Gaussian with mean and variance ma-

trices parameterised by neural networks. To deal with the challenge of the variable-

length sentence as input, we first use a contextual convolutional neural network,

introduced in section 6.5.2, to retrieve a fixed output xc. Then, we apply two ad-

ditional affine transformations, f1 and f2, to parameterise the mean and variance

matrices for the neural prior. The tanh() function here introduces additional non-

linearity and also contributes to numerical stability during parameter optimisation.

Thus:
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xc = Concoder([xh])

µθ = f1([xc])

logσθ = tanh(f2([xc]))

(6.4)

Neural Posterior

During training, the latent variable will be sampled from the posterior distribution:

qφ(z|x, y) = N (z|µφ(x, y), diag(σ2
φ(x, y))) (6.5)

Where qφ(z|x, y) is also an isotropic multivariate Gaussian with mean and vari-

ance matrices parameterised by neural networks. However, the parameters here are

inferred based on both inputs and outputs. We use the same Concoder network

to handle the various lengths of inputs and outputs (x(p), x(h), and y(e)). As

for the neural prior, we apply two additional affine transformations, f3 and f4, to

parameterise the mean and variance matrices. Thus:

yc = Concoder([yh])

µφ = f3([xc;yc])

logσφ = tanh(f4([xc; yc]))

(6.6)

6.5.3 Neural Decoder

The decoder models the probability of the explanation y(e) in an auto-regressive

manner, given the predicted label yp, the encoded premise and hypothesis pair xh,

and the latent vector z. We obtain the explanation sequence via:

y(e) = Decoder([z;x(h)]) (6.7)

Here, Decoder refers to the Transformer decoder. Given an explanation with a
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total sequence length of T , at time step j (j < T ), it produces the jth word with a

softmax selection from the vocabulary based on all the past j − 1 words.

6.5.4 Neural Predictor

In our novel INTERACTION framework, the label can be predicted based on one

of the three options: (i) M1 Model: predicted based on the premise and hypoth-

esis only, (ii) M2 Model: predicted based on the explanation only, and (iii) M3

Model: predicted based on the premise, hypothesis, and explanation altogether.

With the Transformer architecture, we first concatenate the vector outputs of the

information at each first ’< bos >’ position into a single vector for each model.

Then we apply an affine transformation operation f to the concatenated vector. We

jointly train the neural predictor together with the generative model ConCVAE. We

compare the performance of these three models in our experiments (Table 6.7).

6.6 Experiments

In this section, to evaluate our proposed framework INTERACTION, we conduct

experiments comparing with our baseline models.

6.6.1 Baseline Models

We define two types of baseline models: generation model and prediction model. We

consider the following works as baseline models:

• seq2seq (generation model, our implementation): a sequence-to-sequence learn-

ing framework developed by [13]. We implement it with the Transformer ar-

chitecture and present the results as Full Generation in Table 6.7.

• CVAE (generation model, our implementation): a strong probabilistic condi-

tional generation framework introduced by [105, 106]. We implement it with

the Transformer architecture and present the results as CVAE Generation in

Table 6.7.
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• Transformer (prediction model, our implementation): a very strong baseline

model for NLI task developed by [81]. We present the results as Mixture

Transformer Encoder in Table 6.7.

6.6.2 Experiment Setup

To evaluate the explanation generative model of our INTERACTION framework,

we implement our novel ConCVAE model and use the MAP decoding over the

latent variable during both training and testing to generate a single explanation.

For the label prediction task, we implement the INTERACTION M1, M2, and

M3 models (as in section 6.5.4), and compare their performance with our predictive

and generative baseline models. Regarding network architectures, vocabulary, and

training, we use the same experimental setting as in section 6.4.

6.6.3 Diverse Evidence Generation via Interpolation

We present a study on the generation of diverse evidence to support explanation,

as in step two from Figure 6.3. To generate multiple explanations, we perform

a posterior analysis over the latent space. We choose to linearly interpolate the

isotropic multivariate Gaussians over its 95.44% region (left and right of 2σ from

µ). This interpolation produces 5 samples calculated based on the µ − 2σ, µ −

σ, µ, µ + σ, and µ + 2σ coordinates. Examples of interpolation results from the

ConCVAE Generation experiment are presented in Table 6.8, and we only show the

examples which are different. Note that the latent space is smooth, continuous and

infinitely unbounded; here, we use 5 samples here just to demonstrate the possibility

of generating diverse examples.

Due to the difficulty of the task (end-to-end learning from data directly, with

no pre-trained models used) and limited data access (due to the constraint of the

e-SNLI dataset only). Gradually interpolation through the latent space does not

present a lot of changes as demonstrated in Table 6.8 (usually 2 or 3 out 5, although

some data points might have significant changes). Some discussions on improving

the diversity of interpolation are presented in section 6.7.5.

105



6.6.4 Qualitative Evaluation

We calculate the qualitative assessment score, Correct@100, as suggested in [20]:

we manually grade the correctness of the first 100 test examples, each with a score

between 0 (incorrect) and 1 (correct) and give partial scores of k/n if only k out of n

required arguments were mentioned. The required arguments are publicly available

on GitHub4, and we take the mean average of three annotations as the final score.

6.6.5 Model Complexity

We present the model complexity in Table 6.6, with separate counts for prediction,

generation and total network components, the one with the ‘−−’ mark is denoted

as not applicable.

Model Prediction Generation Total

Separate Transformer Encoder 48.6M – 48.6M
Mixture Transformer Encoder 24.3M – 24.3M
Premise Agnostic Encoder 24.3M – 24.3M

Agnostic Generation – 63.6M 63.6M
Full Generation – 63.6M 63.6M
CVAE Generation – 65.9M 65.9M
ConTrCVAE Generation – 68.3M 68.3M

INTERACTION M1 24.3M 68.3M 68.3M
INTERACTION M2 24.3M 68.3M 68.3M
INTERACTION M3 24.3M 68.3M 68.3M

Table 6.6: Number of parameters for each model, with separate counts for prediction
and generation component.

6.7 Results and Discussions

6.7.1 Explanation Generation Only

The main results are presented in Table 6.7. For the explanation generation evalua-

tion, we first compare a deep generative model (CVAE Generation) with a standard

4https://github.com/OanaMariaCamburu/e-SNLI/tree/master/dataset
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neural network model (Full Generation). The results suggest that the Full Gener-

ation model performs better, as the perplexity is reduced by (7.58 − 5.53 = 2.05),

the BLEU score increases by (33.14 − 25.70 = 7.4%), and the Correct@100 score

increases (57.45 − 43.04 = 14.4). All the results here are statistically significant

(p < .05) based on the Wilcoxon signed-rank test. However, deep generative mod-

els, such as CVAE Generation, allow generating multiple explanations via a posterior

analysis over the latent space, as shown in section 6.6.3. With our novel contextual

deep generative model ConCVAE, we achieve competitive performance with the

Full Generation model, evidenced in both quantitative (perplexity, BLEU score)

and qualitative (Correct @100) results.

Model Label Accuracy Perplexity BLEU Correct@100

Premise Agnostic Encoder (lower bound) 65.43 (0.72) −− −− −−
Mixture Transformer Encoder (baseline) 78.98 (1.44) −− −− −−
Full Generation (baseline, non-probabilistic) −− 5.53 (0.05) 33.14 (0.50) 57.45
CVAE Generation (baseline, probabilistic) −− 7.58 (0.27) 25.70 (1.04) 43.04
ConCVAE Generation (our model, probabilistic) −− 5.69 (0.03) 32.74 (0.09) 55.27

INTERACTION M1 (our model) 83.42 (0.31) 6.73(0.16) 30.46(0.33) 47.04
INTERACTION M2 (our model) 73.73(1.54) 5.75 (0.01) 32.68(0.64) 52.29
INTERACTION M3 (our model) 79.85(0.35) 5.93(0.02) 32.70 (0.28) 58.06

Table 6.7: Chapter 6: XAI with natural language processing Results ( ‘−−’ refers
to results not applicable).

6.7.2 Explanation Generation and Label Prediction

We implement three variants of our INTERACTION framework (M1, M2 and

M3) to perform generation and prediction simultaneously. Regarding label pre-

diction, results suggest that generating a valid explanation from the premise and

hypothesis sentence-pair allows the encoder to better understand the semantics of

the words and hence further enhances the accuracy of prediction. This leads to a

boost in prediction performance (83.42% for M1 and 79.85% for M3), compared to

the Mixture Transformer Encoder (78.98%), with the same number of parameters.

However, with M1, a significant improvement in classification accuracy results in

the worst generation quality (based on Correct@100) among all three models. Ad-

ditionally, as shown in M2 model, the label prediction accuracy is the worst when

using explanation only. This could potentially be explained since only 52.29% of

the explanations are considered correct (based on Correct@100).
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Regarding explanation generation, we observe that the M3 model achieves com-

petitive results for the quantitative assessment (perplexity and BLEU) as the Full

Generation model. Additionally, it achieves the best performance in qualitative as-

sessment (Correct@100) among all models. The results from Table 6.7 suggest that

label prediction and explanation generation can complement each other and hence

enhance the importance of XAI with natural languages in practice. When choosing

amongst these three models: for the prediction performance, the M1 model fits the

best; however, for the generation performance, the M3 model is preferable.

Test Data Number 29
Premise a couple walk hand in hand down a street .
Hypothesis the couple is married .
Explanation just because the couple is hand in hand does n’t mean they are married .
Generated Explanation 1 not all couple walking down street are married .
Generated Explanation 2 not all couple in hand is married .
Generated Explanation 3 not all couples are married .

Test Data Number 50
Premise a little boy in a gray and white striped sweater and tan pants is playing on a piece

of playground equipment .
Hypothesis the boy is sitting on the school bus on his way home .
Explanation the boy is either playing on a piece of playground equipment or sitting on the school

bus on his way home .
Generated Explanation 1 the boy can not be playing on a playground and sitting on his way home at the

same time .
Generated Explanation 2 the boy can not be playing on a playground and sitting on his way home simulta-

neously .
Generated Explanation 3 the boy can not be playing on a playground and sitting on the bus at the same

time .

Test Data Number 64
Premise people jump over a mountain crevasse on a rope .
Hypothesis people are jumping outside .
Explanation the jumping over the mountain crevasse must be outside .
Generated Explanation 1 people jump over a mountain so they must be outside .
Generated Explanation 2 a mountain is outside .

Test Data Number 77
Premise a man in a black shirt is looking at a bike in a workshop .
Hypothesis a man is deciding which bike to buy
Explanation just because the man is looking at a bike does n’t mean he is deciding which bike

to buy .
Generated Explanation 1 just because a man is looking at a bike in a workshop does n’t mean he is deciding

to buy .
Generated Explanation 2 just because a man is looking at a bike in a workshop does n’t mean he is deciding

what to buy .

Table 6.8: Chapter 6: Selected diverse evidence generation examples.
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6.7.3 Diversity of Explanation

The main contribution of this paper is to build a model (INTERACTION) capable

of providing multiple explanations, reflecting the diversity in natural languages. The

motivation is that a natural language usually works in a way such that humans often

provide more than one explanation for their actions, and hence may find systems

that reply ’monosyllabically’, or too briefly, potentially frustrating, or even non-

informative [247, 267]. Still, our approach raises other questions, e.g., do humans

have enough time to read multiple explanations? How do they pick the best or most

faithful one? In a recent paper [268], the authors propose first to generate multiple

paraphrases and then select the most faithful one. In our paper (Fig. 6.3), we

alternatively select the most faithful one based on MAP decoding in step one (the

maximum likelihood for data), then provide multiple explanations in step two. The

richness and diversity of the generation of multiple explanations can be observed in

Table 6.8 (e.g., for test data numbers 29 and 64). In practice, the MAP decoding

might not offer the best results; however, it is a faithful response from the model,

given the context of using a ‘data-driven’ approach with deep learning.

This paper explores the concept of diversity from two perspectives: semantic

diversity and syntactic diversity. Semantic diversity refers to selecting words and

phrases from the premise and hypothesis that share the same semantic information

and support the explanation, as demonstrated by test data number 29. Syntactic

diversity refers to variations in sentence order and structure, as illustrated by test

data number 64. Both perspectives can be observed from examples in Table 6.8.

6.7.4 Data-driven Template for Explanation

In [20], the authors made effects of removing template-based explanation and using

observed templates to refine annotated data. However, in our explanation examples,

we were surprised to identify the existence of data-driven templates learnt by our

model; similar observations are made in [269]. As challenged by authors in [243],

structured information such as template-based explanation might be helpful and

sometimes even more faithful. We present some of the data-driven templates dis-
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covered by our model here.

The concept of the ‘general template refers to explanations that take the entire

premise or hypothesis as the final output, which has been deemed non-informative

in previous studies (as stated in [20]). However, despite this, a significant portion of

expert annotations still consist of explanations structured in this manner, and the

deep neural networks in the paper recognize this general template as a valid output.

The ‘contradict, ‘entailment, and ‘neutral templates were chosen based on the

gold standard label of the explanations. It is noteworthy that all of these templates

were selected by deep neural networks in a data-driven manner without significant

human intervention. Furthermore, when reviewing the annotations provided by hu-

man experts, similar templates were observed, indicating that deep neural networks

tend to pick up data biases (in this case, the templates) from the data. Therefore,

extra caution should be taken in the data annotation process to avoid introducing

excessive bias, which remains a standard and predominant approach in the deep

learning field.

General Templates

• <premise>

• <hypothesis>

Contradiction Templates

• <XXX> is either <XXX> or<XXX>

• <XXX> is not the same as <XXX>

• <XXX> can not be both <XXX> and <XXX> at the same time

• <XXX> is not <XXX>

• <XXX> can not <XXX>

• <XXX> is <XXX>, not <XXX>
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Entailment Templates

• <XXX> is the same as <XXX>

• <XXX> is a type of <XXX>

• <XXX> is a <XXX>

• <XXX> is a rephrasing of <XXX>

• <XXX> so <XXX>

Neutral Templates

• <XXX> does not mean <XXX>

• just because <XXX> does not mean <XXX>

• <XXX> is not necessarily <XXX>

• <XXX> does not imply <XXX>

• not all <XXX> are <XXX>

6.7.5 Limitations and Future Works

In this chapter, the aim is to create personalized explanations that are suited to the

background of the end users. It is well-known that people from different cultures

may have varying preferences for the form of explanations provided by AI systems.

For instance, individuals from western cultures might prefer more straightforward

explanations, while those from eastern cultures might lean towards more indirect

explanations. Additionally, full-time students might have different expectations for

explanations than those with other occupations.

Despite these differences, current NLP generation tasks do not effectively cap-

ture the diversity of human expression. The work in this chapter provides a good

starting point for generating diverse explanations that maintain the same semantic

information yet are structured differently with regard to semantic elements such

as words and phrases, as well as syntactic elements such as sentence structure and
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grammar. This is demonstrated through the use of interpolation (section 6.6.3) and

examples shown in Table 6.8.

However, there are limitations to the proposed approach. It does not explore

the possibility of more fine-grained control over the generation of explanations. For

example, it would be beneficial to model the users’ background or intention to gen-

erate explanations specifically tailored to them. This could include factors such as

age, gender, occupation, and so on. Fine-grained control in explanation generation

has the potential to make a wider impact in the field of XAI and increase the diver-

sity of generated explanations. Further research in this area is necessary and could

benefit the overall quality of generated explanations.

Another limitation of this work is evaluating the quality of the generated ex-

planations. Although some efforts have been made to establish qualitative metrics,

such as those introduced in [20] for the first 100 test examples, a more proper evalua-

tion of the explanations would require user-based tests. However, due to limitations

in time and resources, this research did not conduct any user-based studies. Ad-

ditionally, since the focus of this research field is not centred on human-computer

interaction, conducting user-based studies is left as a potential avenue for future re-

search. Further discussions about the limitations of user-based studies can be found

in section 8.3.

6.8 Conclusion

Here, we have presented INTERACTION, a novel deep generative XAI frame-

work, with explanations in two steps: (1) Explanation and Label Prediction; and

(2) Diverse Evidence Generation. INTERACTION is the first study which, to the

best of our knowledge, addresses the concern on the diversity of human languages

in XAI, within the natural language processing task. INTERACTION achieves

competitive or better performance against state-of-the-art baseline models on both

generation (4.7% improvement in BLEU) and prediction (4.4% improvement in ac-

curacy) tasks. We observe that label prediction and explanation generation can

complement each other, which further confirms the benefits of XAI with natural
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languages research in practice.

Epilogue

In our third contribution, we explore DLVM for a relatively recent natural language

generation problem: the NLI explanation generation task. This task requires ex-

tra text-form explanation generated apart from the standard NLI class prediction.

The current approach to this task focuses on single explanation generation, and we

propose a deep generative XAI framework based on DLVM to generate multiple

instances of explanations and make predictions simultaneously. We use a latent

variable to model the semantic information of the explanation explicitly, and this

allows us to interpolate the latent space to retrieve diverse explanation instances.

We demonstrate that DLVM addresses the concerns over explainability (explicit

model explanation semantic with latent variable) and interpretability (interpolate

to generation diverse explanations), and the effectiveness of our approach with im-

proved generation and prediction performance over the state-of-the-art Transformer

architecture baseline. Up to this point, in previous chapters, we have focused on

NLP applications which can be solved in a supervised learning setting; next, we

explored semi-supervised learning for a natural language generation problem in the

next chapter (Chapter 7), which allows our model to pick up information from un-

labelled data.
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CHAPTER 7

Deep Latent Variable Models for Semi-Supervised

Paraphrase Generation

Prologue

In Chapter 6, we have explored deep latent variable models (DLVMs) for a natural

language generation problem and shown the benefits of using DLVMs in addressing

the problem of interpretability and explainability. In this chapter, we further explore

another natural language generation problem: paraphrase generation. Additionally,

in Chapter 4, 5 and 6, we have explored deep latent variable models (DLVMs) for

text in supervised learning setup. However, specifically for text, having good quality

annotated data is rare in industrial settings; in this chapter, we present a study on

semi-supervised learning for paraphrase generation tasks with DLVMs.

This is the first study on how deep latent variable models can be used for semi-

supervised learning in paraphrase generation tasks. We introduce two novel mod-

els: VSAR (unsupervised) and DDL (supervised). The VSAR and DDL model

can be combined for semi-supervised learning; however, when we use this com-

bined model(DDL+VSAR), it suffers from a cold start problem when training from
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scratch. Hence we present a novel training scheme to deal with this problem when

used in semi-supervised learning. We also study semi-supervised learning scenarios

with the combined model on the full fraction of data with a fraction of the labelled

data.

Declaration: This chapter is based on the following manuscript, which is now

under review:

Yu, J., Cristea, A.I., Harit, A., Sun, Z., Aduragba, O.T., Shi, L. and Al

Moubayed, N., 2022, October. Language as a Latent Sequence: Deep Latent

Variable Models for Semi-Supervised Paraphrase Generation. Under re-

view for PLOS One Journal. (IF: 3.752, Submitted and Under Review)

This chapter is presented largely as the manuscript submitted, although refer-

encing and notation have been altered and cross-referencing added for consistency

across this thesis. Some stylistic changes have been made for consistency. The

majority of the text is verbatim, with some minor wording and formatting changes.

7.1 Introduction

Paraphrase generation is an important Natural Language Processing (NLP) prob-

lem, useful in many NLP applications, such as question answering [270], information

retrieval [271], information extraction [272] and summarisation [273]. Natural lan-

guage itself is complicated and may be expressed in various alternative surface forms

of the same underlying semantic content [247, 274]. Hence it is critically important

to integrate the paraphrase generation model as a component in real-world NLP

systems to offer robust responses to end users’ inputs. Traditional solutions to para-

phrase generation are generally rule-based [275,276], utilising lexical resources, such

as WordNet [277], to find word replacements. The recent trend brings to fore neural

network models [267,278–280], which are typically based on a sequence-to-sequence

learning paradigm [13].

These models have achieved remarkable success for paraphrase generation due
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to complex architectures and sophisticated conditioning mechanisms, e.g. soft, hard

and self-attention. However, the advancement of such models is primarily based

on the availability of large-scale labelled data pairs. Instead, this paper explores

semi-supervised learning scenarios where only a fraction of the labels are available.

This semi-supervised learning setting is favourable and extremely useful for indus-

try scenarios due to the effort of time and money to obtain good quality human

annotations. A semi-supervised learning model often consists of two components:

an unsupervised learning model and a supervised learning model. For unsuper-

vised learning, we propose a novel deep generative model, motivated by the classic

variational autoencoder (VAE) [4–6]. Furthermore, we propose a novel supervised

model that can be integrated with our proposed VAE model. Combining both un-

supervised and supervised models enable semi-supervised learning by exploiting the

VAEs’ ability to marginalise latent variables for unlabelled data.

Traditional VAEs typically embed data representations in a fixed latent space,

with the general purpose of dimensionality reduction [281]. This paper alternatively

considers a latent variable in the form of a discrete language sequence with various

lengths. This additionally can enhance the model interpretability, as language is

naturally preserved as discrete variables [126]. Following the recent prior works suc-

cessfully incorporating discrete latent variables to improve paraphrasing [274, 282],

we propose a novel model with more expressive discrete latent variable: variational

sequence auto-encoding reconstruction (VSAR) model introduced in section

7.2.

In order to further boost the model performance on paraphrase generation, mo-

tivated by dual learning [283–286], we employ a novel Dual Directional Learning

(DDL) model trained on labelled data, presented in Section 7.3. The DDL model

shares model parameters with the VSAR model and can be jointly optimised for

semi-supervised scenarios, and we discuss this in Section 7.4.

In order to further boost the model performance on paraphrase generation, moti-

vated by dual learning [283–286], we employ a novel Discriminative Dual Learn-

ing (DDL) model trained on labelled data, presented in Section 7.3. The DDL

model shares model parameters with the VSAR model and can be jointly optimised
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for semi-supervised scenarios, and we discuss this in Section 7.4.

Our contributions in this paper include:

• presenting the first study on semi-supervised learning for paraphrasing with

deep latent variable models;

• introducing two novel models: VSAR (unsupervised) and DDL (supervised),

which can be combined for semi-supervised learning;

• proposing a novel training scheme (Knowledge Reinforced Learning) to deal

with cold start problem in the combined model (DDL+VSAR) when used in

semi-supervised learning;

• studying semi-supervised learning scenarios with the combined model on the

full fraction of data and empirically showing that our model achieves compet-

itive state-of-the-art results;

• presenting a study of semi-supervised scenarios with a fraction of the labelled

data, and our models show significantly better results than very strong super-

vised baselines.

7.2 Variational Sequence Auto-Encoding Recon-

struction (VSAR)

In this section, we present the VSAR model (Figure 7.1)1. The model consists of

four separate neural network models - a source encoder, a target decoder, a target

encoder, and a source decoder. Under the unsupervised learning setup, we only

observe source text s and no target text t. We reformulate the problem of modelling

fully observed source text s as modelling partially observed parallel source text s

and its associated latent target pair t̄. We adopt Bayesian inference to marginalise

the latent target string t̄ from the joint probability distribution pθ(s, t̄) as shown

1The language model prior and weak supervision decoding is omitted for clarity.
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Figure 7.1: Chapter 7: Variational Sequence Auto-Encoding Reconstruction Model.

in Figure 7.1 based on Equation 7.7 and hence only the observed source text s is

required for VSAR model.

In the VSAR model, the latent inference network, parameterised as qφ(t̄|s),

takes source text s and generates a latent target sample t̄. The source recon-

struction network, parameterised as pθ(s|t̄), reconstructs the observed source text

s back, based on the latent target sample t̄. As the prior distribution, a language

model is pre-trained on unlabelled source text corpus to approximate the prior dis-

tribution p(t̄)2. The prior is introduced for regularisation purposes [118,123], which

enforces samples are more likely to be reasonable natural language text.

Motivated by the benefits of parameters sharing in multi-task learning for

natural language generation [287–290], we share model parameters for the source

encoder and the target encoder, denoted as fencode; similarly, we share model pa-

rameters for the source decoder and the target decoder, denoted as fdecode. In the

following sections, we use fencode and fdecode to represent all encoders and decoders

in the VSAR model, respectively.

2We leverage linguistic knowledge of paraphrase generation task, in which a paraphrase text
string can be considered as its own paraphrase.
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7.2.1 Weak Supervision

In the VSAR model, we empirically found that the quality of latent sequence t̄

is very unstable, especially at the beginning of the training. To combat this issue,

motivated by the idea of weak supervision [291,292], we propose to use pseudo-labels

to guide VSAR throughout training. Before each model forward pass, we first assign

pseudo-labels to each token in unobserved latent target sample t̄ with the current

model parameter. The pseudo-labels are detached from the computational graph;

hence no gradient is updated during the weak supervision process. The pseudo-labels

can be considered as a weak supervision signal for ‘teacher forcing training’ [293].

The encoder model takes the source string s = (s1, ..., sn) as input and produces

its corresponding contextual vector hs = (hs1, ..., h
s
n):

hs = fencode(s) (7.1)

We adopt a greedy decoding scheme to assign pseudo-target labels t∗ and assume

that a good paraphrase ought to have a similar length as the original sentence

[294, 295]; such that t∗ = (t∗1, ..., t
∗
n). Let t∗i be the ith word in the pseudo target

sequence; we construct this sequence in an auto-regressive manner:

t∗i = fdecode(h
s; t∗1:i−1) (7.2)

7.2.2 Target Inference

Once the pseudo-target labels t∗ are assigned, we perform latent variable inference

with the latent inference network. Since the source string, s remains the same; we

reuse the value of the contextual vector hs in Section 7.2.1. Let t̄j be the jth words

in the latent sample and ej be the corresponding output of the target decoder model.

We construct the latent sample t̄ using contextual vector hs and all t∗1:j−1 words in

the pseudo-labels:

ej = fencode(hs; t
∗
1:j−1)

t̄j ∼ Gumbel-TOPk(ej, τ)
(7.3)
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The t̄i is drawn via the Gumbel-Trick [3,124] and TOP-k subset sampling tech-

nique [145] based on temperature τ , which controls the probability distribution of

the samples. At a high temperature τ , we equivalently sample from a uniform

distribution; at a low temperature τ , we equivalently sample from a categorical

distribution.

We explore two different schemes commonly used in the literature: (1) we use a

fixed temperature τ of 0.1, as in [296]; and (2) we gradually anneal the temperature

τ from a high temperature of 10 to a low temperature of 0.01, as in [297]. Our

empirical results suggest that annealing the temperature τ during training yields

significantly better results (p < .05; Wilcoxon test) and are thus used to report the

final results. We use a k-value of 10 as suggested in [126].

7.2.3 Source Reconstruction

For the source reconstruction network, the encoder model takes the latent target

sequence string t̄ = (t̄1, ..., t̄n) as input and produces its corresponding contextual

vector ht̄ = (ht̄1, ..., h
t̄
n):

ht̄ = fencode(t̄) (7.4)

Let ŝk be the kth word in the reconstructed source string, during the training;

we retrieve the reconstructed source string ŝ via:

ŝk = fdecode(h
t̄; s1:k−1) (7.5)

7.2.4 Learning and Inference for VSAR

In the SVAR model, there are two sets of parameters, φ and θ, which are required

to be updated. Let S be the observed random variable for the source text, T̄ be

the latent random variable for the target text, and N be the total number of the

unlabelled source text. We have the following joint likelihood for the SVAR model,

parameterised by θ:
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P (S, T̄ ;θ) =
N∏
i=1

P (s(i)|t̄(i);θ)P (t̄(i)) (7.6)

The log marginal likelihood L1 of the observed data that we will be approximated

during training is log p(S;θ). We adopt amortised variational inference [4–6] and

build a surrogate function approximated with a neural network q(T̄ |S;φ), parame-

terised by φ, to derive the evidence lower bound (ELBO) for the joint likelihood:

L1 = log
∑
T̄

p(S, T̄ ;θ) ≥ LELBO(S, T̄ ;θ,φ)

=
N∑
i=1

{Eq(t̄|s(i);φ)[log p(s(i)|t̄;θ)]− DKL[q(t̄|s(i);φ)||p(t̄)]}
(7.7)

The most common variational family in the VAE framework relies on the repa-

rameterisation trick [4], which is not applicable to the non-differentiable discrete

latent variable. An approach for optimising learning with such latent variables

uses the REINFORCE algorithm [6, 122]; however, this algorithm generally suffers

from high variance. In this paper, we instead use Gumbel-Softmax [3, 124] with

differentiable subset sampling [145] to retrieve top-k samples without replacement.

Nevertheless, since sampling a one-hot form vector induces high variance, we apply

the straight-through technique [191] as a biased estimator of the gradient, to combat

this variance.

During training, while optimising the log-likelihood, we perform learning (θ)

and inference (φ) at the same time. The parameters are jointly optimised with the

same optimiser. Since we are sharing parameters in our model, in practice, we are

updating the same set of parameters (shared by θ and φ) with source data only.

7.3 Dual Directional Learning (DDL)

In this section, we introduce the Dual Directional Learning (DDL) model, which

we use for supervised paraphrase generation. The DDL model consists of two sets

of standard Transformer models [81], each with its own separate neural networks

- an encoder and a decoder. We perform standard sequence-to-sequence learning,
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with fully observed parallel source text s and its associated target pair t, in dual

directions. The target generation network pθt|s(t|s) takes source text s as input

and generates target text t and the source generation network pθs|t(s|t) takes

target text t as input and generates source text s.

7.3.1 Parameter Learning

In the DDL model, there are two sets of parameters, θs|t and θt|s, which are required

to be updated. Let S be the observed random variable for source text, T be the

observed random variable for target text, and M be the number of labelled pairs;

we then have the following conditional likelihood for our DDL model:

P (S|T ;θs|t) =
M∏
i=1

P (s(i)|t(i);θs|t)

P (T |S;θt|s) =
M∏
i=1

P (t(i)|s(i);θt|s)

(7.8)

The log conditional likelihood L2 of the observed data pairs can be jointly learnt

during training as:

L2 =
M∑
i=1

(logP (s(i)|t(i);θs|t) + logP (t(i)|s(i);θt|s)) (7.9)

During training, we perform dual learning (θs|t and θt|s) at the same time and

the parameters are jointly optimised with the same optimiser.

7.3.2 Parameter Sharing

Once again, motivated by the benefits of multi-task learning for natural language

generation [287–290], we share model parameters for the target generation and the

source generation network. Although sharing parameters is a very simple technique,

as shown in Table 7.1 and Table 7.2, the DDL model significantly improves the

performance of paraphrase generation with respect to the Transformer baseline (p <

.05; Wilcoxon test), which only handles sequence to sequence learning in a single

direction.
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Figure 7.2: Chapter 7: Knowledge Reinforced Learning.

7.4 Combining VSAR and DDL for Semi-supervised

Learning

In this section, we introduce our semi-supervised learning model (VSAR+DDL),

which combines models presented in sections 7.2 and 7.3. For semi-supervised learn-

ing, the log-likelihood of the data can be expressed as follow:

L = L1 +L2

=
N∑
i=1

{Eq(t̄|s(i);φ)[logP (s(i)|t̄;θ)]− DKL[q(t̄|s(i);φ)||P (t̄)]}

+
M∑
i=1

(logP (s(i)|t(i);θs|t) + logP (t(i)|s(i);θt|s))

(7.10)

As suggested in equation 7.10, for unsupervised learning and supervised learning,

the likelihood function involves the same set of conditional probability between s and
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t. We hypothesise that sharing parameters between these two models is beneficial,

and we share two sets of neural network parameters from the VSAR and DDL

models (i.e. qφ(t̄|s) ≡ pθt|s(t|s) and pθ(s|t̄) ≡ pθs|t(s|t)). This allows the strong

supervision signal from the DDL model to directly contribute to the VSAR model.

At the same time, the unsupervised signal from the VSAR model can benefit the

generalisation of the DDL model.

7.4.1 Knowledge Reinforced Learning

Our empirical experiments suggest that our combined model (DDL+VSAR) suf-

fers from a cold-start problem for parameter optimisation when conducting semi-

supervised learning from scratch. We found that a key to the success of our model is

to have better initialisation of the model weight. Hence, we present a novel train-

ing scheme called knowledge reinforced learning (Figure 7.2), which includes

two-stage training. In stage one (pre-training), we conduct supervised learning with

our DDL model on paired training sets, as demonstrated in Algorithm 1. In stage

two (fine-tuning), we initialise the VSAR model parameter with the best perfor-

mance DDL model from stage one; and we conduct semi-supervised learning with

labelled and unlabelled data, as demonstrated in Algorithm 2. The intuition is to

inject better preliminary information into training the SVAR model.

7.4.2 Effect of Language Model Prior

In literature [112,118,123,298], a language model prior is introduced for regularisa-

tion purposes, which enforces samples to more likely contain a ‘reasonable’ natural

language. Hence, we adopt the same approach and use a prior in our model. We

empirically found the prior useful when the labelled dataset is relatively small. How-

ever, surprisingly, we found that training without a prior in the VSAR model yields

better results when the dataset is large with our parameter initialisation method.

The improvement is significant (p < .05; Wilcoxon test), as shown in Table 7.3 and

Table 7.4. We report the results without language model prior as DDL +VSAR∗,

and the log-likelihood becomes:
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Algorithm 1 Knowledge Reinforced Pre-Training
Input:
Supervised Training Data (DST = {(s1, t1), ..., (sN , tN)}), Supervised Validation Data
(DSV )
Parameter:
DDL Model: θs|t and θt|s
Parameter Sharing:
Set θs|t equals to θt|s through out knowledge reinforced pre-training
Output: θs|t

∗ and θt|s
∗

1: Initialise θs|t and θt|s with a random seed; set maximum training epochs as T ;
set L2

∗ = 0
2: while Maximum epochs not reached do
3: Update θs|t and θt|s with mini-batch data from DST based on Equation 7.9
4: if L2 in Equation 7.9 calculated based on DSV bigger than L2

∗ then
5: Set L2

∗ ← L2

6: Set θs|t
∗ ← θs|t

7: Set θt|s
∗ ← θt|s

8: end if
9: end while

Return: θs|t
∗ and θt|s

∗

L∗ =
N∑
i=1

{Eq(t̄|s(i);φ)[logP (s(i)|t̄;θ)]}+
M∑
i=1

(logP (s(i)|t(i);θs|t) + logP (t(i)|s(i);θt|s))

(7.11)

To further investigate this issue, we conducted experiments to compare the per-

formance of semi-supervised learning when training with Equation 7.10 (with prior)

and 7.11 (without prior) under different data portion setting. We empirically found

that with a low portion of labelled data, the combined model (DDL+VSAR) with

a prior grant significantly (p < .05; Wilcoxon test) better performances and is more

stable. This aligns with the observations in [112, 118, 123, 298]. However, with a

large portion of labelled data, the combined model (DDL+VSAR) without the prior

is significantly (p < .05; Wilcoxon test) better.

We argue that this phenomenon relates to our choice of the prior as it is pre-

trained on unlabelled source text corpus instead of on the target text corpus. This

approximation leads to a distribution shift from the true prior distribution p(t̄).

Thus, when a low portion of labelled data is used in Algorithm 1, the final DDL
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Algorithm 2 Knowledge Reinforced Fine-Training
Input:
Unsupervised Data (DU = {s1, ..., sM})
Supervised Training Data (DST = {(s1, t1), ..., (sN , tN)}), Supervised Validation Data
(DSV )
Parameter:
VSAR Model: φ and θ; DDL Model: θs|t and θt|s
Parameter Sharing:
Set φ equals to θt|s; θ equals to θs|t; and θs|t equals to θt|s through out knowledge
reinforced fine-tuning
Output: θs|t

∗∗, θt|s
∗∗; φ∗∗ and θ∗∗

1: Initialise φ and θt|s with θt|s
∗; and initialise θ and θs|t with θs|t

∗; set maximum
training epochs as T ; set L2

∗ = 0.
2: while Maximum epochs not reached do
3: Update θs|t and θt|s with mini-batch data from DST based on Equation 7.9
4: Update φ and θ with mini-batch data from DU based on Equation 7.7
5: if L2 in Equation 7.9 calculated based on DSV bigger than L2

∗ then
6: Set L2

∗ ← L2

7: Set θs|t
∗∗ ← θs|t

8: Set θt|s
∗∗ ← θt|s

9: Set φ∗∗ ← φ
10: Set θ∗∗ ← θ
11: end if
12: end while

Return: θs|t
∗∗, θt|s

∗∗; φ∗∗ and θ∗∗

parameters θs|t
∗ and θt|s

∗ for initialisation VSAR model in Algorithm 2 is not good

enough. The prior, in this case, can still benefit the combined model in the semi-

supervised learning setting. However, with a large portion of labelled data, the

initialisation is good enough, and the distribution shift can harm the combined

model in this case.

7.4.3 Semi-supervised Learning Setup

Under the semi-supervised learning setting, we limit the size of the supervised source

and target pairs to be less than or equal to the unsupervised source text (M ≤ N),

as we could otherwise just conduct supervised learning to take full advantage of

observed data pairs. Experimental results under this setting are presented in Table

7.1 and Table 7.2.
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7.5 Related Work

7.5.1 Paraphrase Generation

Paraphrases express the surface forms of the underlying semantic content [274] and

capture the essence of language diversity [299]. Early work on automatic generation

of paraphrase are generally rule-based [275,276], but the recent trend brings to fore

neural network solutions [16,126,274,278–280,282]. Current research for paraphras-

ing mainly focuses on supervised methods, which require the availability of a large

number of source and target pairs. In this work, we alternatively explore a semi-

supervised paraphrasing method, where only a fraction of source and target pairs

are observed, and where a large number of unlabelled source text exists. We made

an assumption that each missing target text can be considered as a latent variable

in deep generative models. In this paper, we present two models and combine them

for paraphrasing: one for unsupervised learning and one for supervised learning.

Our combined model extends [126] and models jointly the distribution of source and

target, instead of the conditional probability of a target, given the source. Further-

more, our combined model is associated with prior works that introduce a discrete

latent variable [274,282], and it uses an arguably more expressive latent variable, in

the form of language.

7.5.2 Deep Latent Variable Models for Text

Deep latent variable models (DLVMs) have been studied for text modelling [94,

134]. The most common and widely adopted latent variable model is the standard

VAE model with a Gaussian prior [104], which suffers from posterior collapse [110,

111]. Multiple studies have been conducted to combat this issue [112, 113, 116]. In

particular, β-VAE [112] introduces a penalty term to balance VAE reconstruction

and prior regularisation intuitively and is adopted as one of our baselines.

While much of the research focuses on continuous latent variable models, the

text is naturally presented in discrete form and may not be well represented with

continuous latent variables. Early work on discrete deep latent variable models [118,

119] adopted the REINFORCE algorithm [6,122]; however, it suffers from very high
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variance. With the recent advancement in statistical relaxation techniques, Gumbel-

Trick [3, 124] was utilised, to model discrete structures in the latent variable model

of the text [123,125–127]. Our work adopts Gumbel-Trick with subset sampling for

natural language generation tasks and, for the first time, studies latent variables

as a discrete language sequence for the paraphrasing task. Our proposed model is

strongly associated with [118, 123]; however, we study the problem under the semi-

supervised setup for the paraphrase generation tasks. Furthermore, we present a

novel inference algorithm (our knowledge reinforced learning scheme) to help aid

learning in deep generative models and achieve competitive performance for both

full data and data fraction settings.

7.6 Experiments

Here, we describe the datasets, experimental setup, evaluation metrics and experi-

mental results.

7.6.1 Datasets

MSCOCO [300]: This dataset has been widely adopted to evaluate paraphrase

generation methods and contains human-annotated captions of images. Each image

is associated with five captions from different annotators, who describe the most

prominent object or action in an image. We use the 2017 version for our experiments;

from the five captions accompanying each image, we randomly choose one as the

source string and one as the target string for training. We randomly choose one as

the source string for testing and used the rest four as references.

Quora3: This dataset consists of 150K lines of question duplicate pairs, and it has

been used as a benchmark dataset for paraphrase generation since 2017. However,

since this dataset does not contain a specific split for training and testing, prior

models are evaluated based on different subset sizes of data.

For both datasets (MSCOCO and Quora), in order to improve the reproducibility

3https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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of our results, we use a pre-trained tokenizer (’bert-base-uncased’ version) from

[54]4 and set the maximum token length as 20 (by removing the tokens beyond

the first 20). Following [126, 280, 301], we use training, validation and test sets as

100K, 4K and 20K for Quora dataset; and 93K, 4K and 20K for MSCOCO. For

the complementary study in Table 7.5 and Table 7.6, we use training, validation

and test sets as 100K, 24K and 24K for Quora dataset; and 100K, 5K and 5K for

MSCOCO, in order to have a fair comparison with the results reported in [274,282].

7.6.2 Baselines

We consider several state-of-the-art baselines, presented in Table 7.3, Table 7.4,

Table 7.5, and Table 7.6. Note that these experimental results are directly taken

from [280]5 and [274]. For evaluation, we start with our implementation of the

Transformer model as the absolute baseline, which achieves competitive performance

as reported in [280]. The Transformer model [81] is considered as the SOTA model,

which is very ‘hard to beat’. We report our model performance based on a similar

setup as in [280] and [274].

7.6.3 Experimental Setup

In this section, we introduce our primary experimental setup. We do not use any

external word embedding such as Glove [45], word2vec [42] or BERT [54] for initial-

isation; rather, we obtain word embedding with end-to-end training, in order not to

use any prior knowledge and better understand the impact of our model. We use

the ‘base’ version of the Transformer model [81], which is a 6-layer model with 512

hidden units and 8 heads for each encoder and decoder network. In each encoder

and decoder, we have a separate learnable position embedding and its associated

word embedding component.

We use a greedy decoding scheme for paraphrase generation, which is fast and

cheap to compute. For model optimisation, we use Adam [182] as our optimiser

4https://github.com/huggingface/transformers
5The authors do not make their code publicly available.
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with default hyper-parameters (β1 = 0.9, β2 = 0.999, ε = 1e − 8). We conduct

all the experiments with a batch size of 512 for the Quora and MSCOCO datasets.

We set the learning rate as 1e − 4 for MSCOCO and 2e − 4 for Quora based on

empirical experiments. All experiments are run for a maximum of 30 epochs on

NVidia GPU Cluster with A100 GPU. Experiments are repeated three times with

different random seeds (1000, 2000 and 3000) and the average result is reported in

Tables 1-6.

7.6.4 Evaluation

In this paper, we evaluate our models based on quantitative metrics: BLEU [261]6,

ROUGE [302]7, and i-BLEU [303]. BLEU (Bilingual Evaluation Understudy) and

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) scores are based on

‘n-gram’ coverage between system-generated paraphrase(s) and reference sentences.

They have been used widely to automatically evaluate the quality and accuracy of

natural language generation tasks.

Previous work has shown that automatic evaluation metrics can perform well for

paraphrase identification tasks [304] and correlate well with human judgements in

evaluating generated paraphrases [305]. Recent papers introduce additional i-BLEU

[303] metrics to balance the fidelity of generated outputs to reference paraphrases

(BLEU) as well as the level of diversity introduced (self-B). For all metrics apart

from self-B, the higher the value, the better the model performs.

7.6.5 Results and Discussion

Learning with Unlabelled Data Only

In an initial experiment, we explored the ability of the VSAR model to perform para-

phrase generation tasks using only unlabelled data. This experiment was conducted

to see if the model could accurately capture the information required for paraphrase

generation without the aid of labelled data. However, the results of the experi-

6https://www.nltk.org/
7https://github.com/huggingface/datasets/tree/master/metrics/rouge
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ment showed that the VSAR model alone was not able to produce high-quality

paraphrases and often resulted in sentences that were either incomprehensible or

meaningless. These results led us to pursue a semi-supervised learning solution for

paraphrase generation, which would provide the model with guidance from labelled

data. For unsupervised learning with VSAR, we found that while the lower bound

indicated by L1 (Equation 7.7) decreased during training in a fully unsupervised

setting, the model still generated low-quality paraphrases. This further validated

the need for a semi-supervised learning solution, which is introduced in section 7.4

of this paper.

Model Labelled Unlabelled B-1 B-2 B-3 B-4 i-B R-1 R-2 R-L
DDL 20K − 46.68 33.44 25.46 20.18 11.08 47.57 25.42 45.50
DDL+VSAR1 20K 20K 47.80 ↑ 34.33 ↑ 26.17 ↑ 20.76 ↑ 11.25 ↑ 48.03 ↑ 25.82 ↑ 45.84 ↑
DDL+VSAR2 20K 100K 50.26 ↑ 36.87 ↑ 28.50 ↑ 22.82 ↑ 11.60 ↑ 51.51 ↑ 28.45 ↑ 49.07 ↑
DDL 50K − 53.31 40.22 31.70 25.80 13.80 55.63 32.15 53.13
DDL+VSAR1 50K 50K 53.33 ↑ 39.93 ↓ 31.39 ↓ 25.49 ↓ 13.45 ↓ 55.51 ↓ 31.90 ↓ 52.95 ↓
DDL+VSAR2 50K 100K 53.79 ↑ 40.47 ↑ 31.86 ↑ 25.93 ↑ 13.67 ↓ 55.58 ↓ 31.89 ↓ 52.93 ↓

Table 7.1: Chapter 7: Semi-Supervised Learning Experiment Results for Quora.

Model Labelled Unlabelled B-1 B-2 B-3 B-4 i-B R-1 R-2 R-L
DDL 20K − 66.82 47.25 33.14 23.75 16.66 40.53 14.95 36.94
DDL+VSAR1 20K 20K 66.98 ↑ 47.28 ↑ 33.10 ↓ 23.72 ↓ 16.54 ↓ 40.60 ↑ 14.95 ↑ 36.94 ↑
DDL+VSAR2 20K 93K 67.64 ↑ 48.00 ↑ 33.96 ↑ 24.55 ↑ 16.68 ↑ 40.87 ↑ 15.12 ↑ 37.01 ↑
DDL 50K − 69.39 50.17 36.06 26.49 18.43 42.08 16.31 38.27
DDL+VSAR1 50K 50K 69.43 ↑ 50.21 ↑ 36.08 ↑ 26.45 ↓ 18.31 ↓ 42.20 ↑ 16.33 ↑ 38.31 ↑
DDL+VSAR2 50K 93K 69.91 ↑ 50.65 ↑ 36.52 ↑ 26.93 ↑ 18.51 ↑ 42.39 ↑ 16.46 ↑ 38.40 ↑

Table 7.2: Chapter 7: Semi-Supervised Learning Experiment Results for MSCOCO.

Learning with a Fraction of Data

In this section, we present results which are based on a fraction of labelled data in

Table 7.1 and Table 7.2. In both tables, we present the results of two models - the

supervised learning model, DDL and the semi-supervised learning model, DDL +

VSAR. In a semi-supervised learning setting, VSAR is trained on unlabelled data,

and DDL is trained on labelled data. The DDL+VSAR1 model employs equivalent-

sized labelled and unlabelled datasets, which come from the same source and target

pairs, so there is no additional information applied in this case. The DDL+VSAR2

model employs the full unlabelled dataset in addition to the existing labelled dataset,

which is the true semi-supervised setting.
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Results suggest that the DDL+VSAR1 model achieves competitive or better

performance on most metrics’ scores compared to the supervised DDL model only

trained on labelled data; especially with a lower fraction of the data (for example,

the significant improvement for 20K is more noticeable than for 50K). Furthermore,

fixing the labelled data size, the DDL+VSAR2 model achieves significantly better

performance by using additional unlabelled data than all other models reported in

both tables (p < .05; Wilcoxon test), which means the semi-supervised learning does

work in this scenario.

Model B-1 B-2 B-3 B-4 i-B R-1 R-2 R-L
Upper Bound (Copy Source) 63.36 49.99 40.47 33.54 - 63.04 38.15 59.64
Lower Bound (Random Select) 16.10 4.50 1.94 0.79 - 9.13 1.54 8.79
Residual-LSTM [306] 53.59 39.49 30.25 23.69 15.93 55.10 33.86 53.61
β-VAE [112] 47.86 33.21 24.96 19.73 10.28 47.62 25.49 45.46
Transformer [81] 53.56 40.47 32.11 25.01 17.98 57.82 32.58 56.26
LBOW-TOPk [126] 55.79 42.03 32.71 26.17 19.03 58.79 34.57 56.43
IANet+X [280] 56.06 42.69 33.38 26.52 19.62 59.33 35.01 57.13
Transformer (our implementation) 54.73 41.59 32.96 26.94 14.50 56.90 33.28 54.29
DDL (our model) 55.97 ↑ 43.02 ↑ 34.32 ↑ 28.19 ↑ 14.83 ↑ 58.80 ↑ 35.00 ↑ 56.11 ↑
DDL + SVAR (our model) 55.79 ↑ 42.79 ↑ 34.11 ↑ 28.01 ↑ 14.92 ↑ 58.61 ↑ 34.75 ↑ 55.91 ↑
DDL + SVAR∗ (our model) 55.99 ↑ 43.05 ↑ 34.37 ↑ 28.23 ↑ 14.81 ↑ 58.79 ↑ 35.02 ↑ 56.14 ↑

Table 7.3: Chapter 7: Main Experiment Results for Quora.

Model B-1 B-2 B-3 B-4 i-B R-1 R-2 R-L
Upper Bound (Copy Source) 64.97 44.90 30.69 21.30 - 39.18 12.96 34.61
Lower Bound (Random Select) 32.34 10.99 3.81 1.68 - 17.58 1.51 16.27
Residual-LSTM [306] 70.24 48.65 34.04 23.66 18.72 41.07 15.26 37.35
β-VAE [112] 70.04 47.59 32.29 22.54 18.34 40.72 14.75 36.75
Transformer [81] 71.31 49.86 35.55 24.68 19.81 41.49 15.84 37.09
LBOW-TOPk [126] 72.60 51.14 35.66 25.27 21.07 42.08 16.13 38.16
IANet+X [280] 72.10 52.22 37.39 26.06 21.28 43.81 16.35 39.65
Transformer (our implementation) 68.72 49.64 35.87 26.63 18.59 42.09 16.53 38.35
DDL (our model) 70.75 ↑ 51.72 ↑ 37.62 ↑ 27.95 ↑ 19.37 ↑ 43.00 ↑ 17.01 ↑ 39.06 ↑
DDL + SVAR (our model) 70.84 ↑ 51.84 ↑ 37.75 ↑ 28.04 ↑ 19.39 ↑ 43.05 ↑ 17.04 ↑ 39.07 ↑
DDL + SVAR∗ (our model) 70.99 ↑ 51.91 ↑ 37.82 ↑ 28.12 ↑ 19.39 ↑ 43.00 ↑ 17.03 ↑ 39.02 ↑

Table 7.4: Chapter 7: Main Experiment Results for MSCOCO.

Model B-4 self-B i-B
Separator [282] 23.68 24.20 14.10
HRQ-VAE [274] 33.11 40.35 18.42
Transformer (our implementation) 26.92 35.33 14.47
DDL + SVAR (our model) 28.15 ↑ 38.92 ↓ 14.73 ↑
DDL + SVAR∗ (our model) 28.16 ↑ 39.07 ↓ 14.71 ↑

Table 7.5: Chapter 7: Complement Results for Quora.
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Model B-4 self-B i-B
Separator [282] 20.59 12.76 13.92
HRQ-VAE [274] 27.90 16.58 19.04
Transformer (our implementation) 26.87 13.50 18.79
DDL + SVAR (our model) 27.87 ↑ 15.42 ↓ 19.21 ↑
DDL + SVAR∗ (our model) 27.92 ↑ 15.21 ↓ 19.29 ↑

Table 7.6: Chapter 7: Complement Results for MSCOCO.

Learning with Complete Data

In this section, we present results based on all labelled data in Table 7.3 and Table

7.4. Each table comes with three sections. In the first section, we present an upper

bound (copying the source as a paraphrase) and a lower bound (randomly selecting

ground truth as a paraphrase) calculated based on the test split. This is used as

an indication of how well the model performs. In the second section, we present

major state-of-the-art models published in recent years. In the third section, we

present our own implementation of the Transformer model, which we consider as

our absolute baseline, and present results for our models. Our implementation is

competitive with the ones reported in recent papers. For our models, DDL is our

supervised model, DDL+VSAR is our semi-supervised model, and DDL+VSAR∗ is

our model with no prior use. Compared with state-of-the-art supervised models, our

models achieve better BLEU scores and competitive Rouge scores for both datasets.

Our complementary experimental results are presented in Table 7.5 and Table 7.6,

which we compare with two more recent state-of-the-art models. Our models once

again achieve better or competitive performance than the reported, which means

our semi-supervised model is competitive with state-of-the-art supervised baselines.

Qualitative Evaluation for Supervised Learning with labelled Data

In table 7.7, we present examples from the test set on Quora data, based on the

outputs of our proposed supervised learning model DDL (introduced in section 7.3)

and a very strong baseline model Transformer (denoted as TRANS), using varying

amounts of training data. The table shows the source and golden reference first,

followed by the outputs of the models trained on 20K, 50K, and 100K labelled pairs
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Source: what are best courses for journalism ?
Reference: what are the best courses on journalism ?

TRANS (20K) which is the best software for beginner ?
DDL (20K) what is the best digital marketing course ?
TRANS (50K) what are the best courses on nagpur ?
DDL (50K) what are the best courses for journalism ?
TRANS (100K) what are the best courses about journalism ?
DDL (100K) what are the best courses for journalism ?

Source: what helps asthma without an inhaler ?
Reference: what are some ways to help someone with asthma without an inhaler ?

TRANS (20K) what happens if a range of a range ofr collides with a range ofr 000r
DDL (20K) how can i save my without doing waves in a month ?
TRANS (50K) what can be done to work in a ppr ?
DDL (50K) what are some of the uses an asthma without an inhaler ?
TRANS (100K) what is the procedure to be an emergency inr ?
DDL (100K) how can i help asthma without an inhaler ?

Source: how can i get 1 million users to sign up to my app ?
Reference: how can i get a million users on my social app ?

TRANS (20K) how can i get a friend store ?
DDL (20K) how can i get a game of app on my app ?
TRANS (50K) how can i get a million million on my startup ?
DDL (50K) how do i get the first million users app in my app ?
TRANS (100K) how can i get a million users to write an app ?
DDL (100K) how do i get a million users to sign up for my app

Source: can anyone suggest me the best laptop under 35 k in india ?
Reference: which is the best laptop under 35 , 000 inr ?

TRANS (20K) what are the best laptop options available for a laptoprsrsrsrsrsrsrsrsrsrs
DDL (20K) which is the best laptop to buy in india ?
TRANS (50K) which is the best laptop under rs . 50000 in india ?
DDL (50K) what are the best laptops under 35 , 000 in india ?
TRANS (100K) which is the best laptop to buy under rs . 50000 in india ?
DDL (100K) which is the best laptop to buy under 35 , 000 in india ?

Source: how do i manage my microsoft account ?
Reference: how can i do manage my microsoft account ?

TRANS (20K) how do i manage my google account ?
DDL (20K) how do i manage my microsoft office ?
TRANS (50K) how do i manage my ip address ?
DDL (50K) how do i manage microsoft microsoft office ?
TRANS (100K) how do i manage my microsoft account ?
DDL (100K) how do i manage my microsoft account ?

Table 7.7: Chapter 7: Selected paraphrase generation results for Transformer
(TRANS) versus DDL model with different amounts of labelled data (denoted in
brackets), represented in the case of Quora dataset.

from Quora. Each example was generated based on a random seed setting of 1000,

ensuring a fair qualitative evaluation.

It is clear from the results that the generated paraphrase is more accurate and

matches better with the reference as more labelled data is used by the model. Ad-

ditionally, our DDL model demonstrated a clear advantage over the TRANS model
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in capturing the essence of the information, as seen in its ability to capture critical

details (e.g. capture asthma and inhaler in the second example; capture number

35000 instead of 50000 in the fourth example). The DDL model also showed more

efficient learning, as it was able to achieve comparable results using 50K data as op-

posed to 100K data for the TRANS model in several examples. These observations

further reinforce the effectiveness and significance of our contribution to the field

with the proposed DDL model in section 7.3.

Qualitative Evaluation for Incorporating Unlabelled Data

In table 7.8, we presented examples from the test set on Quora data based on model

outputs from our proposed semi-supervised learning model DDL + VSAR (from

section 7.4) with the same amount of labelled data (20K, same instance also) plus

difference size of unlabelled data (20K, 50K and 100K). For comparison, model

output with DDL (section 7.3), trained with the same 20K examples, is provided.

Similarly, as in table 7.7, we use the same random seed of 1000 to generate the

examples. In this table, we first presented the source and golden reference, followed

by model outputs trained based on 20K labelled pairs by the DDL model, the

same 20K pairs used for the DDL+VSAR model (similar to DDL+VSAR1 setting

in table 7.1 and 7.2), the same 20K with 50K unlabelled data (extra 30K) for the

DDL+VSAR model and the same 20K with 100K unlabelled data (extra 80K) for

the DDL+VSAR model (similar to DDL+VSAR2 setting in table 7.1 and 7.2).

We can clearly observe that the generated paraphrase matches better with the

reference when more unlabelled data is utilised during the training of the DDL+VSAR

model. The latent sequence generated when incorporating unlabelled data in the

VSAR model improve the paraphrase generation performance. In general, we ob-

serve a progressive improvement in capturing the essence of information when in-

corporating more unlabelled examples. Compared to the preliminary experiment

where the VSAR model failed to learn in a fully unsupervised scenario (section

7.6.5); through qualitative results in table 7.8 and quantitative results in table 7.1

and 7.2; we show that we are able to conduct semi-supervised learning with our

unsupervised model VSAR and our supervised model DDL.
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Source: is it possible to go to the core of the earth ?
Reference: if i really wanted to , can i dig all the way to the core of the earth ?

DDL(20K) is it possible to go to the earth ?
DDL(20K) + VSAR(20K) how do i go about the earth ?
DDL(20K) + VSAR(50K) how do i go about the earth ?
DDL(20K) + VSAR(100K) is it possible to go to the core of the earth ?

Source: what are best courses for journalism ?
Reference: what are the best courses on journalism ?
DDL(20K) what is the best digital marketing course ?
DDL(20K) + VSAR(20K) what is the best digital marketing agency ?
DDL(20K) + VSAR(50K) what is the best digital marketing course ?
DDL(20K) + VSAR(100K) what are the best courses for journalism ?

Source: how should i stop thinking about someone ?
Reference: how do i stop thinking about someone ?

DDL(20K) how do i stop thinking about me ?
DDL(20K) + VSAR(20K) how do i stop thinking about thinking ?
DDL(20K) + VSAR(50K) how do i stop thinking about something ?
DDL(20K) + VSAR(100K) how do i stop thinking about someone ?

Source: what motivates all people ?
Reference: what motivates people ?

DDL(20K) why do people often keep all people ?
DDL(20K) + VSAR(20K) why do people get tattoos ?
DDL(20K) + VSAR(50K) what inspires to be so hard ?
DDL(20K) + VSAR(100K) what motivates people ?

Source: how can i get 1 million users to sign up to my app ?
Reference: how can i get a million users on my social app ?

DDL(20K) how can i get a game of app on my app ?
DDL(20K) + VSAR(20K) how do i get a person from a app ?
DDL(20K) + VSAR(50K) how can i get a billionaire by youtube ?
DDL(20K) + VSAR(100K) how can i get 1 million users back from my app ?

Source: is vegetarian good for health or non - vegetarian ?
Reference: which is good food for our health : vegetarian or non - vegetarian ?

DDL(20K) is smoking considered a vegetarian vegetarian ?
DDL(20K) + VSAR(20K) is vegetarian considered good for health ?
DDL(20K) + VSAR(50K) is vegetarian better than vegetarian ?
DDL(20K) + VSAR(100K) is vegetarian health good or bad ?

Source: how do i manage my microsoft account ?
Reference: how can i do manage my microsoft account ?

DDL(20K) how do i manage my microsoft office ?
DDL(20K) + VSAR(20K) how do i manage my microsoft size ?
DDL(20K) + VSAR(50K) how do i manage my google account ?
DDL(20K) + VSAR(100K) how do i manage my microsoft account ?

Table 7.8: Chapter 7: Selected paraphrase generation results for semi-supervised
model (DDL+VSAR) when incorporating different amounts of unlabelled data (de-
noted in brackets) and the same amount of labelled data (20K), represented in the
case of Quora dataset.

7.7 Conclusions

In this paper, we have introduced a semi-supervised deep generative model for

paraphrase generation. The unsupervised model is based on the variational auto-

encoding framework and provides an effective method to handle missing labels. The

supervised model conducts dual learning and injects supervised information into the
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unsupervised model. With our novel knowledge reinforced training scheme, we em-

pirically demonstrate that semi-supervised learning benefits our combined model,

given unlabelled data and a fraction of the paired data. The evaluation results

show that our combined model improves upon a very strong baseline model in a

semi-supervised setting. We also observe that, even for the full dataset, our com-

bined model achieves competitive performance with the state-of-the-art models for

two paraphrase generation benchmark datasets. Additionally, we are able to model

language as a discrete latent variable sequence for paraphrase generation tasks.

Epilogue

Compared with Chapter 4, 5 and 6, which focused on supervised learning setting

and only labelled datasets are used; this chapter (Chapter 7) studies semi-supervised

learning and utilised a mixture of labelled and unlabelled data. The semi-supervised

setting more commonly occurs for real-world problems as large-scale labelled data is

often expensive and hard to collect. Continue with Chapter 7, here we study another

natural language generation problem and explore the application of DLVMs for a

semi-supervised paraphrase generation problem. We present a novel unsupervised

approach and model the missing label of a single unlabelled data point as a latent

variable. Additionally, we present a novel supervised model to leverage information

from paired data; combining these two models allows us to conduct semi-supervised

learning.

We demonstrate that DLVM addresses the concerns over interpretability (repre-

sent model missing data for semi-supervised learning; use a discrete latent variable to

represent words in a sentence sequence) and explainability (infer the corresponding

paraphrase given a sentence), and the effectiveness of our approach with improved

performance when incorporating unlabelled data and competitive to the state-of-

the-art performance when trained with complete data.
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CHAPTER 8

Conclusions and Future Work

8.1 Thesis Summary and Contributions

Due to their unparalleled performance and versatility, deep learning has become

the de facto standard for building natural language processing (NLP) applications.

Several concerns, however, have been raised in the research communities regard-

ing their robustness, trustworthiness, explainability, and interpretability. Although

these limitations of deep learning methods are widely acknowledged, work in meth-

ods and applications to alleviate these concerns in NLP is contrastingly limited. To

address this research gap and explore a more robust approach for building NLP ap-

plications with deep learning, in this thesis, we studied deep latent variable models

(DLVMs) from methods and applications perspectives for building natural language

processing applications.

For contributions from a methods perspective, we studied the benefits of deep

latent variable models in supervised and semi-supervised learning settings. These

studies suggested that deep latent variable models are competitive in performance

against standard deep learning methods; while offering additional robustness, trust-

worthiness, explainability and interoperability in various applications.
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For contributions from an applications perspective, we first presented two ap-

plications for language understanding problems, followed by two more applications

for language generation problems. Our first application concerns a binary text clas-

sification task in the educational domain and pioneers the first research on how

Bayesian deep learning can be applied to this text-based educational application.

Our second application focuses on multilabel text classification tasks, and we present

an efficient uncertainty quantification framework as our contribution; this is the first

research on using deep latent variable models for efficient uncertainty quantification

purposes in multilabel text classification tasks. Our third application deals with

multiple explanation generation for an explainable artificial intelligence (XAI) task,

and we present a first study on how deep latent variable models can be used to gen-

erate multiple explanations in the Stanford natural language inference task. In our

last application, we explore paraphrase generation tasks and present the first study

of DLVMs in a semi-supervised learning setting in paraphrase generation tasks.

To sum up, in this thesis, we have explored and proposed novel methods and

applications with deep latent variable models for both natural language understand-

ing and natural language generation problems. We have contributed by designing

and implementing deep latent variable models under both supervised and semi-

supervised learning settings with four novel applications.

8.2 Answers to Research Questions

Concretely, this thesis presents the first research theme in exploring the benefits

of Bayesian deep learning for an educational AI application, with two Bayesian

methods in Chapter 4 to answer RQ1:

• We have explored learner-based text posts prediction task with two Bayesian

methods: Bayesian Neural Network (BNN) and Deep Latent Variable Model

(DLVM), as a new solution to assessing the need for instructor interventions;

• To the best of our knowledge, we presented the first study on Bayesian deep

learning methods for AI in education contexts;
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• We compared models based on our proposed methods with probabilistic mod-

elling to its baseline deep learning models under similar circumstances for

different cases of applying prediction;

• We presented results to suggest that Bayesian deep learning offers a critical

uncertainty measurement apart from standard prediction measurements that

are not supplied by traditional neural networks. This adds more explainability,

trust and robustness to AI, which is crucial in education-based applications;

• We showed that our methods can achieve similar or better performance com-

pared to non-probabilistic neural networks and are more robust with lower

variance using random initialisation.

To conclude the first research question, we empirically showed the benefits of

Bayesian deep learning methods to improve the robustness and trustworthiness of a

text classification task in education domain. In comparison with the two methods,

DLVM allows more interpretability of the model due to the existence of an explicit

latent variable and hence is identified as the main focus of our research in this thesis.

Furthermore, in the second research theme, we have developed an efficient uncer-

tainty quantification framework for general text classification tasks, which extends

our RQ1 from natural language understanding in education to a more general NLP

domain. We present a novel framework built based on DLVMs to offer efficient

uncertainty quantification conditional on text in Chapter 5 to answer RQ2:

• We proposed methods of representing epistemic and aleatoric uncertainties to

enable efficient uncertainty quantification conditional on text;

• We proposed efficient uncertainty quantification methods with posterior anal-

ysis in the (approximated) latent and data space;

• We conducted extensive experiments and studies on diverse neural network

architectures (LSTM, CNN and Transformer) with proposed methods;

• We proved the benefits of explicitly modelling uncertainty in neural networks.
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For RQ1 and RQ2, we showed that DLVMs improve robustness and trustworthi-

ness and, at the same time, retain performance in deep learning for natural language

understanding problems in NLP. Next, we studied the benefits of DLVMs in natural

language generation problems. In our third research theme, we presented a frame-

work to study how DLVMs can contribute to generating multiple explanations for

XAI in Chapter 6 to answer RQ3:

• We proposed a deep generative XAI framework based on the Transformer

architecture;

• We showed that the proposed framework presents explanations in two steps:

STEP ONE, explanation and label prediction; and STEP TWO, diverse evi-

dence generation;

• We empirically showed our framework achieves competitive or better perfor-

mance on explanation generation and prediction in STEP ONE, and is able

to generate diverse explanations in STEP TWO.

For RQ3, we use a latent variable as an explicit representation of the semantic

information. By interpolating through the latent space, our framework can generate

diverse explanations with similar semantic content. Our third research theme sug-

gested that DLVM improves the explainability and interpretability of deep learning

for this natural language generation problem. For RQ1, RQ2 and RQ3, our re-

search themes focus on supervised machine learning setup; however, for real-world

NLP problems, the availability of large-scale annotated data is often not possible.

In Chapter 7, we explored our last research theme and used DLVMs for paraphrase

generation tasks in a semi-supervised setting to answer RQ4:

• We proposed a novel unsupervised model named variational sequence autoen-

coding reconstruction (VSAR);

• We proposed a novel supervised model named dual discriminative learning

(DDL);

• We showed that combining VSAR and DDL model for semi-supervised learning

in paraphrase generation tasks;
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• We empirically suggest the effectiveness of the combined model for semi-

supervised learning.

In Chapter 4, 5, 6 and 7, we explored and proposed novel methods and applica-

tions with deep latent variable models for both natural language understanding and

natural language generation problems. Through these applications, we demonstrate

that deep latent variable models help to address concerns for robustness, trustworthi-

ness, interpretability, and explainability in natural language processing applications

with deep latent variable models. The discussion about our methodology and justi-

fications has been elaborated in section 1.5. From a methodology perspective, the

exploration study conducted to answer RQ1 in the educational AI field has been

adjusted and extended to answer RQ2 in general natural language understanding

problems in the NLP field. Our studies conducted to answer RQ1 and RQ2 nat-

urally lead to RQ3 and RQ4 in natural language generation problems in the NLP

field. Our limitations for supervised learning studies for RQ1, RQ2 and RQ3 lead

to RQ4 which explored semi-supervised learning with DLVMs.

8.3 Limitations of This Research

In this thesis, there are some research limitations due to time, cost, research equip-

ment, and other unforeseen reasons. And we will present these points from two

perspectives: machine learning methods and natural language processing applica-

tions.

From a methods perspective, we have adopted DLVMs as a general learning and

inference framework to build NLP applications. One limitation of the study in this

thesis concerns the usage of data. Labelled datasets were employed in Chapter 4,

5 and 6. The performance of models in supervised learning setup heavily relied on

the labelled datasets. However, the data annotation process can be very labour-

intensive and time-consuming. More importantly, in real-life scenarios, large-scale

data with good-quality annotation might not be possible. One possibility to tackle

this limitation is to employ semi-supervised learning techniques, which additionally

exploit knowledge from the massive unlabelled dataset. While some preliminary
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attempts at semi-supervised learning have been made in Chapter 7, more efforts

and experiments are needed to demonstrate the full potential of DLVMs in a semi-

supervised setting.

From an applications perspective, we have presented NLP applications built with

DLVMs in both natural language understanding (Chapter 4 and 5) and generation

(Chapter 6 and 7) domain. One limitation of the study in this thesis concerns

the level of modelling for these NLP applications, as most of them are built to

model the sentence level. The complex nature of many NLP tasks goes beyond

sentence levels, such as paraphrase-level and even document-level modelling. One

possibility to address this limitation is to use multi-level, hierarchical DLVMs to

capture semantic and syntactic variants of a language in different sentences. Further

studies in this direction are required to demonstrate the benefits of DLVMs for NLP

applications. Another limitation worth mentioning is that study in this thesis does

not base on pre-trained language models (PLMs), which represent the state-of-the-

art methods in NLP. This is based on the concerns of computational resources and

carbon footprint1. From a theoretical perspective, our result will generalise to large-

scale PLMs; however, the lack of research in building deep latent variable models

with PLMs motivates future experiments in this direction.

The utilization of PLMs has a substantial effect on the environment, due to

the intensive computational demands and energy consumption incurred during both

training and operation. This results in elevated levels of carbon emissions and ex-

acerbates sustainability problems. As an ethical concern, the deployment of PLMs

necessitates organizations to contemplate the environmental impact and adopt sus-

tainable practices, such as minimizing carbon footprint and fostering green comput-

ing. This raises questions about the accountability of technology corporations in

guaranteeing environmentally responsible practices in the creation and application

of these models.

In the field of NLP, the human aspect holds a crucial role, particularly from a

computational linguistic perspective. Although natural language can be flexible and

1https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-
as-much-carbon-as-five-cars-in-their-lifetimes/
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versatile (e.g. similar semantic content can be expressed in various valid forms), it

can also be prone to bias when evaluating annotations or generated text, as there is

no standard by which to assess the quality of the language.

Two limitations have been identified in this research. The first limitation involves

the quantitative evaluation metrics, such as BLEU, perplexity, and rouge, used in

this thesis. These metrics are based on the overlap of n-gram contexts between

generated outputs and reference text and while they are commonly used to compare

with published results, they cannot directly assess the quality of the generated text.

More recent evaluation metrics, such as BERT, have been proposed but there is still

no universal agreement on the best method.

The second limitation is the absence of user-based studies to evaluate NLP sys-

tems, which is often considered the most accurate way to assess the effectiveness

of NLP in real life. Current evaluations in this thesis rely on public benchmark

datasets, which may be biased towards a subset of end-users, due to factors such as

time and cost constraints, availability of experts, and the high cost of labor. User-

based evaluations provide a more accurate understanding of whether NLP systems

meet the needs of end-users, but due to resource constraints, user-based evaluations

were not performed in this research and represent a promising area for future study.

8.4 Lessons and Future Directions

In this thesis, we have explored deep latent variable models for natural language

processing applications from methods and applications perspectives. Throughout

the thesis, deep latent variable models have proven their excellent for building NLP

applications by maintaining the superior performance of deep learning while allowing

a principled way to incorporate uncertainty into deep learning via (approximated)

Bayesian inference. Additionally, we have shown in previous Chapters (4, 5, 6 and

7), deep latent variable models alleviate concerns in robustness, trustworthiness,

interpretability and explainability of deep learning, which is the main motivation

behind the works in this thesis.

However, no methods are perfect; with these great advantages, the deep latent
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variable models suffer some drawbacks: first, due to the use of probabilistic mod-

elling, there is a trade-off between the optimal performance of the models with

respect to how much uncertainty they manage to capture, thus commonly results

in slightly decrease of model performance in standard metric measurements against

non-probabilistic deep learning models, as shown in Chapter 4, 5, 6 and 7; second,

compared with non-probabilistic deep learning models, deep latent variable models

are not very intuitive due to existence of learning and inference process during model

training, this prevents them from widely adopted by a wider research community,

as explained in Chapter 3; third and final, training deep latent variables can be

difficult and may require additional techniques on dealing with cost functions, as

shown in Chapter 5 and 7. Although compared with their advantages as well as their

mathematical and statistical soundness, in general, deep latent variable models are

definitely recommended as an important tool for researchers working in the deep

learning field. With various NLP applications presented in Chapter 4, 5, 6 and 7

of this thesis, deep latent variable models can be a valuable asset and add up for

researchers working in the NLP field.

Regarding future research avenues, many of the applications presented in this

thesis are worth further exploration. The approaches and applications proposed in

this thesis can be further extended to other related tasks and create broader im-

pacts. For example, the exploration study for Bayesian deep learning methods in

Chapter 4 can be extended to other applications in the educational data mining and

analytical field on tasks such as dropout prediction, learner profile prediction and

learner behaviour modelling, etc. The efficient uncertainty quantification framework

in Chapter 5 can be tested more broadly on text classification-based natural lan-

guages understanding tasks, such as aspect-sentiment analysis, question and answer

selection, information retrieval and other more broad domains. Our proposed deep

generative XAI framework in Chapter 6 can be extended to other natural language

generation tasks which require multiple semantic equivalent instances to be gener-

ated. The semi-supervised learning framework presented in Chapter 7 can also be

extended to other semi-supervised generation tasks and also tested with PLMs.

The findings in this thesis are of practical value to deep learning practitioners,
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researchers and engineers working on a variety of problems in the field of natural

language processing and deep learning and are concerned about the robustness,

trustworthiness, explainability and interpretability of these applications.

Concluding, we can say that, via this thesis, we have made some significant

contributions in the cross-disciplinary areas of deep learning and natural language

processing, opening at the same time new directions for future researchers to explore

further.
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Montréal, Canada (S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, eds.), pp. 7298–7309, 2018. 7.4.2, 7.4.2

[299] E. Pavlick, P. Rastogi, J. Ganitkevitch, B. Van Durme, and C. Callison-
Burch, “PPDB 2.0: Better paraphrase ranking, fine-grained entailment re-
lations, word embeddings, and style classification,” in Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 2:
Short Papers), (Beijing, China), pp. 425–430, Association for Computational
Linguistics, 2015. 7.5.1

[300] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European
conference on computer vision, pp. 740–755, Springer, 2014. 7.6.1

[301] Z. Li, X. Jiang, L. Shang, and Q. Liu, “Decomposable neural paraphrase
generation,” in Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, (Florence, Italy), pp. 3403–3414, Association for
Computational Linguistics, 2019. 7.6.1

[302] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in
Text Summarization Branches Out, (Barcelona, Spain), pp. 74–81, Association
for Computational Linguistics, 2004. 7.6.4

[303] H. Sun and M. Zhou, “Joint learning of a dual SMT system for paraphrase
generation,” in Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), (Jeju Island, Korea),
pp. 38–42, Association for Computational Linguistics, 2012. 7.6.4

[304] N. Madnani, J. Tetreault, and M. Chodorow, “Re-examining machine trans-
lation metrics for paraphrase identification,” in Proceedings of the 2012 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, (Montréal, Canada), pp. 182–190,
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