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Abstract

This dissertation examines portfolio selection under systemic risk using performance mea-

sures. In the first chapter, we propose a novel performance measure to construct optimal

portfolios that explicitly incorporate the occurrence of systemic event. Investors maximize

an ex-ante modified Sharpe ratio that is conditional on some systemic event, with the lat-

ter interpreted as a low market return environment. We solve the portfolio optimization

problem analytically under the absence of short-selling constraint and numerically when

short-selling constraint is imposed. The approach is made operational by embedding it in

a multivariate dynamic setting via dynamic conditional correlation and copula models. In

the second chapter, we further enhance the portfolio selection approach proposed in the

first chapter by using machine learning techniques. Specifically, the optimal portfolio is

solved through a three-step supervised learning model. First, the smooth pinball neural

network is employed to predict conditional marginal return distribution. Secondly, we use

copula to model dependence between portfolio assets and the market, based on which we

generate return scenarios. Lastly, we maximize the ex-ante conditional Sharpe ratio based

on simulated returns. Unlike the previous chapter, where we use statistical models to fore-

cast return distributions, in this chapter we take advantage of a distributional machine

learning model along with a set of predictors that includes more than 1,000 predictive sig-

nals. In the last chapter, following the similar idea of conditional Sharpe ratio, we propose

another systemic risk-based performance measure namely the conditional Rachev ratio.

This measure inherits the advantage of unconditional Rachev ratio in the sense that it can

account for asymmetric information of portfolio return distribution. Moreover, we build a

link between our new measure and the well-know CoV aR measure in the finance literature.

In each chapter, we construct a comparative analysis using data on the US stock market.

Overall speaking, all the backtesting results demonstrate the superiority of our proposed

approaches against popular benchmark strategies in terms of profitability and systemic

risk, where the outperformance is robust to the inclusion of transaction costs.

Keywords: Portfolio selection; systemic risk; machine learning; probabilistic forecasting;

copula; scenario analysis; performance strategy.
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Chapter 1

Portfolio selection under systemic

risk

1.1 Introduction

Systemic risk is defined as the risk of collapse of an entire financial system, as opposed to

risk associated with any single individual entity or component of the system. It also refers

to the risk imposed by poorly understood interlinkages and interdependencies between

assets and institutions in the financial market, where the failure of a single entity or cluster

of entities can trigger the failure of more institutions, see Allen and Carletti (2013).

The global financial crisis of 2007-2008 and subsequent crises (e.g. COVID-19 crisis)

provide ample evidence of the importance of containing this risk. More formally, Ben

Bernanke, as previous Chairman of the US Federal Reserve, defined systemic risk as “de-

velopments that threaten the stability of the financial system as a whole and consequently

the broader economy, not just that of one or two institutions.” For a brief discussion

on the elements of a systemic risk monitor that help identify risks to financial stability,

readers can consult Liang (2013). In this paper, we formally incorporate the occurrence

of systemic event to the construction of optimal portfolios. This new approach is better

suited to accommodate market turbulences and, as a result of this, it is able to outper-

form popular alternatives such as the classical mean-variance, global minimum variance

and equally-weighted portfolios out-of-sample.

Prevalent financial regulations such as Basel capital requirements seek to control firms’

individual risks without accounting for systemic event (Acharya et al. 2017). Empirical ev-
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idence shows, however, that the interconnection among financial institutions has increased

significantly in recent years, generating the risk of potential system-wide distress with ma-

jor knock-on e↵ects on the real economy. Financial institutions in the same sector have

linkages and connections which can become channels for spreading poor performance from

one to the others. A message that stems from this literature, see Board (2016), is that it

is necessary for regulators to monitor systemically important financial institutions (SIFIs)

whose failures may impose negative spillover e↵ects on the wider financial system. Benoit

et al. (2013, 2017) di↵erentiate between two distinct approaches that measure the systemic

risk contribution of financial institutions. The first method looks at di↵erent sources of sys-

temic risk such as financial contagion, bank panics, liquidity problems, etc. It relies on the

use of confidential data directly provided by financial institutions to regulators. Following

this idea, various regulatory models are proposed to identify the transmission channels of

systemic risk and supervise inter-bank behaviors with the aim of enhancing the stability

of the financial system. Gourieroux et al. (2012), for example, propose a new regulation

mechanism which requires periodic reporting by financial institutions of their structural in-

formation, which is used to quantify the bilateral exposures concerning equities, lendings,

or derivatives. The second method depends on market trading data such as the prices of

stocks, bonds, and CDSs.

Many financial economists have developed their own measures to quantify firms’ con-

tribution to the overall risk of the financial system (see, for example, Acharya et al. 2017,

Acharya et al. 2012, Brownlees and Engle 2016 and Adrian and Brunnermeier 2016). While

distinguished from traditional risk measures, the systemic risk measures proposed by these

authors focus on the interconnection among financial firms. Prominent systemic risk mea-

sures are the CATFIN of Allen et al. (2012), the CoVaR of Adrian and Brunnermeier

(2016) and its extension to a multivariate setting by Girardi and Ergün (2013), the SRISK

of Brownlees et al. (2012); Brownlees and Engle (2016) and its extension to a multifactor

model by Engle et al. (2014), the systemic expected shortfall (SES) of Acharya et al. (2017),

and econometric measures of connectedness and systemic risk in finance and insurance sec-

tors, such as Hong et al. (2009), Battiston et al. (2012), Billio et al. (2012), Helbing (2013),

Ang and Longsta↵ (2013), Diebold and Yılmaz (2014), and Hautsch et al. (2014). Bisias

et al. (2012) present a survey that covers over thirty systemic risk indices.

Although the existing systemic risk measures are helpful for financial regulators, port-

folio managers are still looking for practical guidance under which they can account for

2



systemic event during their decision-making process. A general approach for constructing

optimal portfolios is to maximize a reward-to-risk ratio. Modern portfolio theory pioneered

by Markowitz (1952) stresses the idea that portfolio diversification leads to a risk reduc-

tion. Following this idea, Tobin (1958) developed further the concept of optimal portfolio

allocation by arguing that agents would diversify their asset allocation. An alternative

strategy to solve the optimal portfolio allocation exercise is to maximize the investors’ ex-

pected utility, which was first proposed by Von Neuman and Morgenstern (1944). In this

framework, the optimal portfolio decision is obtained as a result of the maximization of the

expected utility derived from the portfolio return.

Unfortunately, none of these two paradigms is devised to properly take into account

the occurrence of systemic event. Both approaches incorporate the possibility of joint

dependence between the assets within the portfolio through the presence of cross-correlation

between the returns on the portfolio constituents or through more sophisticated measures

considering joint dependence in the tails. A seminal example is the literature on optimal

portfolio allocation under tail quantile restrictions using value-at-risk (VaR) and expected

shortfall (ES), see Du�e and Pan (1997) and Jorion (2007) for a comprehensive review

of VaR models. More specifically, in an optimal asset allocation context, tail quantiles

act as constraints in the asset allocation optimization exercise. These mean-risk models

discussed in Fishburn (1977) can be considered as an extension of standard mean-variance

formulations that interpret portfolio risk as the probability of tail events and that implicitly

incorporate the occurrence of such events through VaR measures. The relevant literature

includes Basak and Shapiro (2001), Campbell et al. (2001), Bassett et al. (2004), Engle

and Manganelli (2004) and Ibragimov and Walden (2007), as seminal examples.

Whereas the macroprudential literature has made substantial progress in developing

monitoring tools for assessing the underlying systemic risk in a financial system (see Tente

et al. 2019, among others), the portfolio management literature has not evolved in parallel.

This branch of the empirical finance literature has not explored systematically yet the

implications of systemic event on the construction of investment portfolios. Our main

contribution in this paper is to bring the attention of academics and financial practitioners

to this important problem that has been overlooked until recently. To do this, we apply

methods from the emerging macroprudential literature on systemic risk to the optimal

portfolio allocation problem.

The marginal expected shortfall (MES) proposed by Brownlees et al. (2012) has received

3



much attention recently. This measure accounts for the comovements between individual

firms and the market under stressed market conditions. It is defined as the expected

percentage loss of a firm’s equity value in times of a market decline. Motivating by this

measure of systemic risk, we propose a modified mean-variance objective function to reflect

investor’s risk-return tradeo↵. In particular, we propose a modified Sharpe ratio that

is conditional on a systemic event, with the latter interpreted as a low market return

environment. We solve the portfolio allocation problem analytically under the absence of

short-selling restrictions and numerically when short-selling restrictions are imposed. This

approach for obtaining an optimal portfolio allocation is made operational by embedding

it in a multivariate dynamic setting. To do this, we consider two di↵erent processes for

modelling multivariate financial returns and set up the portfolio allocation problem in an

out-of-sample setting. The first model fits the return data to a GARCH type process

and models the joint dependence between the return vector of portfolio constituents and

the market portfolio using a dynamic conditional correlation (DCC) model introduced

in Engle (2002). The second approach models the joint dependence between returns on

portfolio assets and the market index using a Student’s t-copula model. In contrast to

standard approaches for portfolio selection, our proposed methodology is conditional on

the occurrence of systemic event. To do this, we simulate the multivariate returns using a

Monte Carlo scenario generation method.

We evaluate the portfolio performance on the US stock market. We choose a group

of large financial institutions as portfolio assets, and the S&P 500 Index as benchmark

rate. Our out-of-sample evaluation period spans from the beginning of 2007 to the end

of 2020, hence covering two major financial crises with important systemic event (i.e. the

bankruptcy of Lehman Brothers and the outbreak of COVID-19). We compare the ex-

post wealth paths and portfolio-level systemic risk metric against three competitors. The

first competitor is the unconditional Sharpe ratio that represents the classic mean-variance

approach, the second portfolio is the naive equally-weighted portfolio that reflects full di-

versification and is shown to work well in financial applications (DeMiguel et al. 2009),

and the third competitor is the global minimum variance portfolio (GMVP) which is often

shown to outperform the mean-variance portfolio in many empirical studies (see, for ex-

ample, Jagannathan and Ma 2003 and DeMiguel et al. 2009). The results of our empirical

study show the outperformance of our portfolio against these three competitors in terms

of profitability and systemic risk, especially during crisis periods.
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The rationale for the excellent performance of our model is its positive exposure to

assets that are more resilient in periods of market distress. Our portfolio clearly outper-

forms competitors under market distress and remains competitive in non-crisis periods.

Interestingly, the proposed portfolio is less diversified than benchmark portfolios during

crisis times since we only invest on a few stocks with low long-run MES level. In these

periods, our strategy invests on those stocks that are expected to experience small losses

under stressed market conditions. Underdiversification is the result of optimal strategies

aiming to minimize exposure to systemic event. This is done by reducing the set of eligible

assets to a small group of stocks with small systemic risk. This empirical finding provides

an alternative interpretation to the presence of underdiversification observed in financial

markets, see Mitton and Vorkink (2007) and references therein. Interestingly, our results

can also be related to a recent literature on time series, see Farmer et al. (2019), which

finds pockets of predictability. These pockets are short periods of time over which there is

predictability of returns within longer periods with little or no evidence of predictability.

In our setting, we interpret these pockets as periods of systemic risk that drive the overall

performance of the proposed portfolio based on the maximization of a conditional Sharpe

ratio objective function.

Our paper also contributes to a relatively scarce literature on systemic risk-based portfo-

lio selection. There are a few studies on the implications of systemic risk in the investment

decisions of financial institutions. Biglova et al. (2014) study portfolio selection under

systemic risk using the Co-Rachev ratio as objective function. In their setting, systemic

risk takes place when all assets in the investment portfolio are distressed, i.e., below their

individual VaR thresholds. However, this definition can be ambiguous since the poor per-

formance of individual assets in a portfolio does not necessarily imply a poor state of the

whole financial system. Another exception is Capponi and Rubtsov (2022). These authors

consider the problem of maximizing portfolio returns conditional on a systemic event given

by the realization of an extremely adverse market outcome. These authors seek the portfo-

lio that performs best in a low return environment and when the market is in distress. To

solve the portfolio allocation problem, Capponi and Rubtsov (2022) impose the restrictive

assumption that the distribution of the portfolio and market returns follows a bivariate

Student’s t distribution. More importantly, none of these papers explicitly focus on finding

the best trade-o↵ between return and risk under stressed market conditions. Our paper

bridges this gap.
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The rest of the paper is organized as follows. Section 2 introduces our novel objective

function defined as a modified Sharpe ratio conditional on the occurrence of systemic

event. Section 3 presents the investors’ optimal portfolio allocation problem under systemic

risk. This section derives analytically the solution without short-selling restrictions and

proposes numerical methods to obtain the solution under the presence of short-selling

restrictions. Section 4 introduces the simulation of return scenarios under a DCC model

and a Student’s t-copula for modelling the joint conditional distribution of asset and market

portfolio returns. Section 5 discusses an application of our optimal asset allocation strategy

to a portfolio of 23 assets and presents several robustness checks. Conclusions are in Section

6. Appendix A reviews several prominent systemic risk measures. A description of the

simulation of return scenarios is provided in Appendix B. The last appendix collects the

figures.

1.2 Our objective function under market distress

The mean-variance framework developed by Markowitz (1952) is one of the cornerstones

for portfolio theory. Optimal portfolios are obtained by maximizing the expected return on

an investment portfolio conditional on a given level of risk that is proxied by the variance of

the portfolio return. Alternative formulations consider risk measures given by tail events

such as VaR and ES, see Du�e and Pan (1997) and Jorion (2007) for a comprehensive

review of VaR models. In these models the objective function is the expected portfolio

return that is constrained by a tail quantile restriction on the asset allocation optimization

exercise.

Based on these objective functions, the literature in financial economics has developed

performance measures to evaluate investment strategies. A natural performance measure

based on the seminal mean-variance framework is the Sharpe ratio (Sharpe 1966a), which is

originally proposed for measuring the performance of mutual funds. This measure is defined

as the ratio between the expected portfolio excess return (i.e. the expected portfolio return

minus risk-free rate) and its standard deviation. Sharpe (1994) later revised this measure

by referring the portfolio performance with respect to a certain benchmark rate Rb, which

can change over time, such that the revised Sharpe ratio is defined as

SR(Rp) =
E(Rp �Rb)

std(Rp �Rb)
. (1.1)
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In the remainder of this paper, when referring to the Sharpe ratio, we will consider ex-

pression (1.1). It is typical to use the Sharpe Ratio to evaluate and compare the ex-post

portfolio performance among di↵erent investment strategies.

Interestingly, Biglova et al. (2009) argue that the maximization of the Sharpe ratio

allows one to obtain a market portfolio that is optimal in the sense that it is not dominated

in stochastic dominance of second order by non-satiable risk-averse investors. This result

suggests that using the Sharpe ratio and related performance measures as the investor’s

objective function in a portfolio allocation setting is a fruitful strategy (see Rachev et al.

2008 for a review of performance measures). The choice of a performance measure allows

one to explicitly introduce the risk measure along with the corresponding reward measure

in the portfolio choice optimization problem without having to specify a risk aversion

coe�cient.

Although the Sharpe Ratio works well in Gaussian settings, it is not a suitable perfor-

mance measure in settings characterised by skewness and heavy tails of the return distribu-

tions. In order to capture higher moments of the return distributions on the performance

of investment portfolios, many authors have developed their own ratios such as Gini ratio

(Shalit and Yitzhaki 1984), Mean Absolute Deviation ratio (Konno and Yamazaki 1991),

Mini-max ratio (Young 1998), Sortino-Satchell ratio (Sortino and Satchell 2001), Rachev

ratio (Biglova et al. 2004) and others (see Farinelli et al. 2008 for a detailed survey). In this

paper, we focus on tail risk measures capturing systemic risk. In particular, we propose a

conditional performance measure that incorporates the occurrence of systemic risk without

imposing any distributional assumptions.

Our objective function for optimal portfolio allocation is inspired by the conditional

performance measure proposed by Biglova et al. (2014). These authors study the portfolio

selection problem in the presence of systemic risk and propose a conditional version of

Rachev ratio (CoRR), which is defined as:

CoRR(Rp;↵, �) =
E(Rp �Rb|R1 � �V aR1��(R1), ..., Rn � �V aR1��(Rn))

�E(Rp �Rb|R1  �V aR↵(R1), ..., Rn  �V aR↵(Rn))
, (1.2)

where V aRq(X) = �inf{x|P (X  x) > q} is the VaR of the random variable X that

is interpreted as a financial return on an investment portfolio. The interpretation of this

measure is di↵erent from standard systemic risk formulations. CoRR does not link systemic

risk to the occurrence of distress in the financial system, instead, it evaluates portfolio per-

7



formance conditional on the occurrence of idiosyncratic events in all assets in the portfolio

(i.e. all asset returns are above (or below) their individual VaR levels). Moreover, CoRR

takes the expected portfolio return as a reward measure conditional on all asset prices co-

moving in the tail. This assumption may be di�cult to be satisfied in practice and might

lead to an empty set if the set of assets in the portfolio is su�ciently large.

Unlike Biglova et al. (2014), we define a systemic event when the return on the market

index is below a certain threshold C over a time horizon h. Following the related literature,

we assume that there exists a benchmark systemic risk index, which is the S&P 500 Index in

our case, that reflects broad market conditions. The goal of our investors is to maximize the

Sharpe ratio conditional on the systemic risk index being below a threshold level C between

t and t+ h, and we set the horizon h to one month (i.e. 22 trading days). Our investment

strategy aims to find portfolios that perform best under stressed market conditions.

We start by introducing several assumptions and notations used throughout the paper.

In our economy there is no risk-free asset and there are N � 2 risky assets (firms) with

stochastic simple returns denoted by Rt = (R1,t, ..., RN,t)T . The return on the financial

system is proxied by a market portfolio return Rm,t. The logarithmic returns of the firm i

and the market are denoted, respectively, as ri,t = log(1 + Ri,t) and rm,t = log(1 + Rm,t).

The mean vector of returns is denoted by µt = E(Rt), while ⌃t = E[(Rt � µt)(Rt � µt)T ]

represents the covariance matrix of returns. The vector of portfolio weights is denoted by

Wt = (!1,t, ...,!N,t)T such that
P

N

i=1 !i,t = 1. Let Rp,t = W
T

t
Rt be an investment portfolio

with expected return given by µp,t = W
T

t
µt. Similarly, µm,t and �m,t denote the expected

return and standard deviation of the market portfolio return reflecting the performance

of the financial system. The column vector �t = (�1m,t, ..., �Nm,t)T contains covariances

of each asset with the market portfolio. Hereafter, we use I{x} to denote the indicator

function that equals 1 if condition x is met and 0 otherwise. 1 and 0 are column vectors

of ones and zeros, respectively, whose dimension are understood from the context.

In the next section we will be concerned with building portfolios under stressed market

scenarios. Di↵erent definitions of SE can be adopted. For instance, Acharya et al. (2017)

consider SE as extreme tail events that happen rarely on a daily basis. In particular, they

focus on those “moderately bad days” defined as the worst 5% of daily market outcomes,

SEt = {Rm,t  �V aR5%(Rm,t)}, while Biglova et al. (2014) define SE as all assets in the

portfolio being below their individual VaR levels, SEt = {R1,t  �V aR↵(R1,t), ..., RN,t 

�V aR↵(RN,t)}. We follow Brownlees et al. (2012); Brownlees and Engle (2016) and define
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a systemic event as a severe drop of the market index below a threshold C over a time

horizon h, that is:

SEt:t+h = {Rm,t:t+h < C}, (1.3)

where Rm,t:t+h is the multiperiod simple market return between t and t+h. We also follow

related literature and define the magnitude of the market decline (C) as a function of the

length of the time horizon (h). Acharya et al. (2012) set C equal to �2% and h equal to

one trading day to estimate the daily MES; Brownlees and Engle (2016) set C equal to

�10% and h equal to one month for computing the monthly MES (i.e. LRMES); Engle

et al. (2014) focus on long-run market stress and fix C equal to �40% and h equal to six

months. In the empirical section, we use C = 0 and �40% as threshold values, which on a

monthly basis correspond to C = 0 and �6.7% respectively.

We construct a new performance measure that will be used to build optimal portfolios

under stressed market conditions. To do this, we incorporate systemic risk directly into the

reward and risk measures. In order to account for the interconnection between individual

assets and the financial market we propose to use the first and second moments of the excess

portfolio return conditional on the occurrence of a systemic event. Our new performance

measure is defined as:

CoSRt(Rp,t) :=
CoERt(Rp,t)

CoSDt(Rp,t)
=

W
T

t
µt|SE � µm,t|SEq

W
T

t ⌃t|SEWt + �
2
m,t|SE � 2W T

t �t|SE

. (1.4)

Following the spirit of the Sharpe ratio and similar performance measures, the CoSR is

defined as a ratio of a conditional reward measure over a conditional risk measure. The

conditional reward measure CoER is defined as

CoERt(Rp,t) : = Et(Rp,t:t+h �Rm,t:t+h|SEt:t+h),

= Et(W
T

t
Rt:t+h �Rm,t:t+h|SEt:t+h),

= W
T

t
µt|SE � µm,t|SE,

(1.5)

where µt|SE = Et(Rt:t+h|SEt:t+h) denotes the column vector of conditional expected re-

turns on individual assets, while µm,t|SE = Et(Rm,t:t+h|SEt:t+h) represents the conditional

expected market return. Inspired by the formulation of LRMES, we add the market index

as a benchmark to enable us measure portfolio performance under stressed market scenar-

ios. Analogously, we define the risk measure CoSD as the conditional second moment of
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the portfolio excess return, that is:

CoSDt(Rp,t) : = [V art(Rp,t:t+h �Rm,t:t+h|SEt:t+h)]
1/2

=
⇥
V art(W

T

t
Rt:t+h �Rm,t:t+h|SEt:t+h)

⇤1/2

=
�
W

T

t
⌃t|SEWt + �

2
m,t|SE � 2W T

t
�t|SE

�1/2
,

(1.6)

where ⌃t|SE = V art(Rt:t+h|SEt:t+h) denotes the conditional covariance matrix of asset

returns, �2
m,t|SE = V art(Rm,t:t+h|SEt:t+h) denotes the conditional variance of market return,

and �t|SE = covt(Rt:t+h, Rm,t:t+h|SEt:t+h) is the column vector of conditional covariances

between individual assets and the market portfolio.

1.3 Portfolio allocation under systemic risk

In this section, we present the portfolio allocation problem of an investor that is concerned

with maximizing the modified Sharpe ratio conditional on the market being under distress.

We describe first the generic portfolio optimization problem when the investor’s objective

function is given by a performance measure ⇢(·). In this setting, the investor’s optimal

portfolio is obtained as

W
⇤ = arg max

W

⇢(Rp), s.t. 1T
W = 1. (1.7)

Di↵erent performance measures ⇢(·) will lead to di↵erent optimal portfolios. In the em-

pirical application, we will consider the Sharpe ratio as the relevant objective function of

interest under short-selling restrictions (W � 0).

In what follows, we present the optimization problem of an investor with objective

function given by the CoSR measure defined above. To simplify the problem, we note that

this measure can be expressed as a function of the portfolio weights as CoSR = W
T
µp

WT⌃W
,

with µ = E(R�Rm · 1|SE) and ⌃ = V ar(R�Rm · 1|SE) be the conditional mean vector

and conditional covariance matrix of excess returns on individual assets respectively. The

solution to the optimization problem is

W
CoSR = arg max

W

{CoSR}, s.t. 1T
W = 1. (1.8)

This portfolio optimization problem can be solved analytically under the absence of short-
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selling constraints. To do this, we first solve for the conditional e�cient frontier among

all assets. That is, given a desired conditional expected excess return level e, we find the

portfolio weights W ⇤ that minimize the risk measure.1 The optimization problem becomes

W
⇤ = arg min

W

1

2
CoSD, s.t. µT

W = e, and 1T
W = 1. (1.9)

Expression (1.9) is a convex optimization problem since the objective function is convex

and is subject to a�ne constraints. Furthermore, the Slater’s condition is satisfied, hence

the first order conditions are necessary and su�cient for an optimum. The Lagrangian of

this problem is L = 1
2W

T⌃W ��1(µT
W � e)��2(1T

W � 1), that yields the following first

order condition with respect to W : @L
@W

= ⌃W � �1µ � �21 = 0. Assuming that ⌃ is full

rank, we obtain W = �1⌃�1
µ + �2⌃�11. Now we need to solve for multipliers �1 and �2.

Using the portfolio constraints µT
W = e and 1T

W = 1, we have

8
<

:
�1µ

T⌃�1
µ+ �2µ

T⌃�11 = e,

�11
T⌃�1

µ+ �21
T⌃�11 = 1.

(1.10)

Let sµµ = µ
T⌃�1

µ, s1µ = µ
T⌃�11 and s11 = 1T⌃�11, and A =

0

@sµµ s1µ

s1µ s11

1

A, with A =

eµT⌃�1eµ, and eµ = (µ 1)T . The system of equations (1.10) can be rewritten in matrix form

as A� = ee, with � = (�1 �2)T and ee = (e 1)T . The matrix A is positive definite and, hence,

invertible such that � = A
�1ee. Replacing the value of W obtained above, we obtain the

optimal portfolio weights W ⇤ = ⌃�1eµA�1ee. The portfolio W
⇤ is the minimum conditional

variance portfolio for a given conditional mean e and such that 1T
W = 1 is satisfied. The

conditional variance frontier can be expressed as

CoSD
⇤ = W

⇤T⌃W ⇤ = eeTA�1ee = s11e
2 � 2s1µe+ sµµ

s11sµµ � s
2
1µ

. (1.11)

Now we can find the portfolio with maximum CoSR among all portfolios W
⇤ located on

1 The conditional variance of the portfolio’s excess return (i.e., CoSD) is divided by two in the optimization
problem. This is merely for algebraic convenience and does not change the solution to the optimization
problem.
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the e�cient frontier. Hence, the optimization problem (1.8) can be written as

W
CoSR = arg max

W ⇤

CoER

CoSD⇤ = arg max
W ⇤

eq
s11e

2�2s1µe+sµµ

s11sµµ�s
2
1µ

. (1.12)

The first order condition of this problem with respect to the objective expected reward

e is @

✓
ep

s11e
2�2s1µe+sµµ

◆
/@e = 0, which yields e = sµµ

s1µ
. Therefore, the optimal portfolio

weights defining the CoSR portfolio satisfy

W
CoSR = ⌃�1eµT

A
�1

0

@
sµµ

s1µ

1

1

A =
⇣
⌃�1

µ ⌃�11
⌘
0

@
1

s1µ

0

1

A =
⌃�1

µ

µT⌃�11
. (1.13)

It is often the case that we want to place additional constraints on the optimization

- for instance we might want to restrict the portfolio weights so that none of the weights

are greater than 25% of the overall wealth invested in the portfolio, or we might want to

prohibit short selling allowing only long positions. This is a realistic scenario in settings

characterised by systemic risk in which financial regulators ban short-selling to reduce short-

term investment with speculative motives. Unfortunately, under short-selling restrictions

(W � 0) the optimization problem (1.8) cannot be solved analytically and thus a numerical

procedure must be employed. In our empirical application, we use the Solver function

fmincon built in Matlab.

1.4 Simulation of return scenarios

Although CoSR has no closed-form expression in dynamic models when short-selling re-

strictions are imposed, we can still use a Monte Carlo simulation-based procedure to im-

plement our systemic risk-based portfolio. The dynamic CoSR measure can be calculated

using its empirical analog calculated from simulated returns over the subset of simulated

crisis scenarios.

This section discusses two alternative multivariate settings to model dynamics of the

returns of constituents of the investment portfolio and the market portfolio. First, we

consider a semiparametric model in which the conditional mean and covariance matrix of

the vector of returns is modelled parametrically. The return distribution is left unmodelled

beyond these two moments and will be simulated using naive nonparametric bootstrap

methods. As a robustness check, we also use a fully parametric model that allows for
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heavy tails and joint tail dependence in return distributions. To do this, we consider a

Student’s t-copula model for modelling the multivariate conditional distribution of returns.

The following subsections describe both approaches to generate the vector of assets

and market portfolio returns. A detailed algorithm describing the simulation scheme is

presented in Appendix B.

1.4.1 GARCH-DCC Modelling

The DCC model proposed by Engle (2002) can be seen as an extension to the constant

conditional correlation (CCC) model developed by Bollerslev (1990), which captures the

time-varying correlation of multivariate data. In this subsection, we use the GARCH-DCC

model to describe the volatility dynamics and conditional correlations between returns on

portfolio assets and the market index.

Let rt be an (N + 1) ⇥ 1 vector of logarithmic returns. The last return, rN+1,t is the

return on the market index, i.e. rN+1,t = rm,t. We propose an AR(1)-GJR-GARCH(1,1)

model for the dynamics of returns such that

ri,t = ↵i,0 + ↵i,µ ri,t�1 + ⇠i,t,

⇠i,t = �i,t "i,t,

(1.14)

where ⇠i,t is the error term and "i,t is an innovation process with Et�1("i,t) = 0 and

Et�1("2i,t) = 1; ↵i,0 and ↵i,µ are the parameters of the autoregressive process with |↵i,µ| < 1

to ensure stationarity of the process ri,t for i = 1, . . . , N + 1. The DCC model of Engle

(2002) is estimated in two steps. In the first step, the univariate GARCH models for each

time series of returns are fitted and estimates of their conditional variances are thus ob-

tained. In the second step, the standardized residuals "i,t = ⇠i,t/�i,t are used to estimate the

time-varying correlation matrix. More formally, the conditional variance process is defined

as Ht = DtPtDt, with Pt = [⇢ij,t] the conditional correlation matrix and Dt a diagonal

matrix with time-varying standard deviations on the diagonal. Thus,

Dt = diag(�1,t, ..., �N+1,t),

Pt = diag(q�1/2
11,t , ..., q

�1/2
N+1N+1,t)Qt diag(q

�1/2
11,t , ..., q

�1/2
N+1N+1,t).

(1.15)

To capture potential leverage e↵ects that may be empirically relevant in periods of financial

distress, the idiosyncratic conditional variance terms �2
i,t

are modelled as univariate GJR-
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GARCH models. For the GJR-GARCH(1,1) model the elements of Ht can be expressed

as:

�
2
i,t

= !i + (↵i + �iI{⇠i,t�1 < 0})⇠2
i,t�1 + �i �

2
i,t�1, i = 1, ..., N + 1. (1.16)

The quantity Qt = [qij,t] in (1.15) is a symmetric positive definite matrix which is specified

as

Qt = (1� ✓1 � ✓2)Q̄+ ✓1"t�1"
T

t�1 + ✓2Qt�1, (1.17)

where Q̄ = E("t "Tt ) is the unconditional covariance matrix of the standardized residuals

"t obtained from the first step estimation; ✓1 and ✓2 are non-negative scalars satisfying

0 < ✓1 + ✓2 < 1. The correlation estimator is given by ⇢ij,t =
qij,tp

qii,tqjj,t
. Hereafter, we will

refer to the above specified model as GARCH-DCC.

1.4.2 GARCH-Copula Modelling

An (N + 1)-dimensional copula C is a multivariate distribution function on [0, 1]N+1 with

standard uniform marginal distributions. Following Sklar’s theorem (Sklar 1959), any mul-

tivariate distribution, in our case the multivariate distribution function of the innovations

of the above GARCH processes, can be decomposed into univariate margins and a certain

copula, that is

F"1,...,"N+1 (u1, ..., uN+1) = C
�
F"1(u1), ..., F"N+1(uN+1)

�
, (1.18)

where ui is uniformly distributed on (0, 1), F"1,...,"N+1 denotes the joint cumulative distribu-

tion function and F"i the corresponding marginal distribution functions of the innovations

"i, for i = 1, . . . , N + 1.

In this subsection, we use a t-copula function to model the mutual dependence among

standardized residuals. This copula function is given by

C
t

⌫,⇢(u1, ..., uN+1)=

Z
t
�1
⌫ (u1)

�1
· · ·

Z
t
�1
⌫ (uN+1)

�1

�(⌫+N+1
2 )

�(⌫2 )
p

(⌫⇡)N+1|⇢|

✓
1 +

x0⇢�1x

⌫

◆� ⌫+N+1
2

dx,

(1.19)

where � is the gamma function, ⇢ is a correlation matrix, ⌫ represents the degree of freedom

both in margins and copula function. Note that if the t-copula and univariate t margins

share the same degree of freedom ⌫, then we obtain a multivariate t distribution with ⌫

degree of freedom as in (1.19). In our case, we assume that F"1 , ..., F"N+1 are univariate
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t distributions with di↵erent degree of freedom parameters ⌫1, ..., ⌫N+1, thus we obtain

a multivariate distribution function F⌫ which has been termed as meta-t⌫ distribution

function (see Fang et al. 2002 for more details). In the following, we will refer to this model

as GARCH-Copula.

1.4.3 CoSR estimation

To obtain the estimator of CoSR, we first estimate individual elements contained in µt

based on the Monte Carlo average of the simulated arithmetic h-period firm returns, that

is

bµi,t =

P
S

s=1 R
s

i,t:t+h
I{Rs

m,t:t+h
< C}

#SE
, (1.20)

where S is the number of Monte Carlo simulations and #SE =
P

S

s=1 I{Rs

m,t:t+h
< C} is

the number of scenarios out of S a↵ected by market distress. For each asset in the portfolio

the filtered mean vector (average h-period ahead return conditional on a market distress

episode) is given by bµt = (bµ1,t, ..., bµN,t)T . Similarly, µm,t can be estimated as

bµm,t =

P
S

s=1 R
s

m,t:t+h
I{Rs

m,t:t+h
< C}

#SE
. (1.21)

Thus the estimator of CoER can be written as

\CoERt = W
T

t
bµt � bµm,t, (1.22)

where Wt denotes the vector of portfolio weights that is known at time t. As for the CoSD,

we first estimate the covariance matrix ⌃t|SE using the Monte Carlo sample counterpart,

with element (i, j) defined as

b⌃t(i,j)|SE =

P
S

s=1

�
R

s

i,t:t+h
� bµi,t

� �
R

s

j,t:t+h
� bµj,t

�
I{Rs

m,t:t+h
< C}

#SE � 1
(1.23)

for i, j = 1, . . . , N . Then, we estimate �
2
m,t|SE as

b�2
m,t|SE =

P
S

s=1

�
R

s

m,t:t+h
� bµm,t

�2
I{Rs

m,t:t+h
< C}

#SE � 1
. (1.24)
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Analogously, we obtain the estimator of �im,t|SE as

b�im,t|SE =

P
S

s=1

�
R

s

i,t:t+h
� bµi,t

� �
R

s

m,t:t+h
� bµm,t

�
I{Rs

m,t:t+h
< C}

#SE � 1
, (1.25)

and hence b�t|SE = (b�1,t, ..., b�N,t)T . Combining the above estimators together, we obtain the

estimator of CoSD, that is

\CoSDt =
⇣
W

T

t
b⌃t|SEWt + b�2

m,t|SE � 2W T

t
b�t|SE

⌘1/2

. (1.26)

The estimator of CoSRt is expressed as \CoSRt =
\CoERt

\CoSDt
.

1.5 Empirical analysis

This section illustrates the performance of our systemic risk-based optimal portfolios. We

compare the ex-post final wealth and cumulative logarithmic returns of portfolios obtained

by maximizing two performance measures: the traditional Sharpe ratio (SR) corresponding

to the mean-variance strategy and our CoSR measure that incorporates systemic event. We

also add the naive equally-weighted portfolio !i = 1/N , for i = 1, . . . , N , and the GMVP

as benchmarks. Finally, we compute portfolio’s LRMES as the relevant portfolio-level

systemic risk measure, which is defined below as the weighted sum of LRMES across the

portfolio constituents.

1.5.1 Dataset

We use stock price data from the US market. Our sample contains 23 big financial firms

that are either SIFIs or non-SIFIs. The Financial Stability Board (FSB), in consultation

with Basel Committee on Banking Supervision (BCBS) and national authorities, has just

identified the latest list of global systemically important financial institutions (G-SIFIs)

in November of 2020.2 The overall number of G-SIFIs contained in the list is 30, specif-

ically 20 of them are traded on the US market. Besides, the Board of Governors of the

Federal Reserve System also maintains a list of domestic systemically important financial

institutions (D-SIFIs). This list includes those financial institutions not being big enough

for G-SIFIs status, but still possess high enough domestic systemically importance, making

2
https://www.fsb.org/wp-content/uploads/P111120.pdf
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them subject to the most stringent annual Stress Test (USA-ST) from the Federal Reserve.

Despite the lack of any o�cial D-SIFIs designation, the institutions being subject to the

USA-ST can be considered to be D-SIFIs in the US.3 According to the list released by

Federal Reserve as of March 2014, 17 banks traded on US stock market were identified as

D-SIFIs.4

The intensity of the computational simulation methods that we propose makes di�cult

to work with large sets of assets. In addition, the definition of the systemic risk measures

also involves knowledge of financial information on firms beyond the stock price, which is

not readily available for some firms. These two factors reduce the number of firms that we

can consider in our empirical application. Thus we consider 16 firms within the group of

SIFIs contained in the above two lists. All firms within the top three buckets (3.5%, 2.5%

and 2.0%) of G-SIFIs list are included in our dataset.5 A few remarks on computational

complexity are given in the last section of Appendix B. In addition to the SIFIs, we also

add 7 non-SIFIs into our dataset since we aim to find the best tradeo↵ between risk and

return rather than only minimizing the underlying systemic risk of our portfolios. Our

choice of non-SIFIs is motivated by Brownlees and Engle (2016), these authors also use

these firms in their empirical study on systemic risk.

Historical return data on the stocks included in our dataset are retrieved from the

Wharton Database website6 over the period from January 3, 2000 to December 31, 2020

(5284 daily observations for each stock), and the panel is balanced since all firms have been

trading continuously during the sample period. The price sequences are adjusted for splits

based on split adjustment factors reported by both CRSP and Compustat. We proxy the

market index with the S&P Composite Index, which will be later used as our benchmark

when solving the portfolio optimization problem.

The full list of tickers and company names grouped by subindustry are Depositories:

Bank of America (BAC), Citigroup (C), Synovus Financial (SNV), Truist Financial Corpo-

ration (TFC), HSBC Holdings (HSBC), JP Morgan Chase & Co (JPM), Barclays (BCS),

Morgan Stanley (MS), State Street (STT), ING Groep (ING), Keycorp (KEY), Northern

Trust (NTRS), PNC Financial Services (PNC) and Wells Fargo & Co (WFC); Insurance

companies: Lincoln National (LNC), Progressive (PGR) and Global Life (GL); Broker-

3
https://www.govinfo.gov/content/pkg/CHRG-113hhrg80873/pdf/CHRG-113hhrg80873.pdf

4
https://www.federalreserve.gov/newsevents/press/bcreg/ccar_20140326.pdf

5 The bucket approach is defined in Table 2 of the Basel Committee document (see https://www.bis.

org/publ/bcbs255.pdf).
6

https://wrds-www.wharton.upenn.edu/
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Dealers companies: Goldman Sachs (GS) and Schwab Charles (SCHW); and other financial

companies: American Express (AXP), Franklin Resources (BEN), Blackrock (BLK) and

Capital One Financial (COF). The reason for only including large financial institutions

in our dataset is that they are more exposed to systemic risk than non-financial firms,

especially during crisis times.

For illustrative purposes, Figure 1.1 presents a descriptive analysis of two big finan-

cial institutions (Citigroup and Goldman Sachs) as well as two non-financial counterparts

(Squibb and Boeing). The main aim of this exercise is to highlight the systemic risk of

large financial institutions as opposed to non-financial firms of similar size. By doing so,

we aim to motivate the importance of our portfolio strategy for portfolios of assets that

exhibit large individual systemic risk.

The left panel of Figure 1.1 reports the relative price movements for these firms. The

initial level of each price series has been normalized to unity to facilitate the comparison of

relative performance, and no dividend adjustments are explicitly taken into account. The

evolution of S&P 500 Index in the out-of-sample period (2007-2020) is reported in the top

right panel of Figure 1.1. The S&P 500 Index has experienced four dramatic declines over

the analyzed period. The first one happened during 2007-2009 due to the subprime crisis,

the second one took place over 2010-2012 due to the European sovereign debt crisis, the

third one occurred at the beginning of 2016 due to a decline in oil prices, and the latest one

broke out at the beginning of 2020 due to the Covid-19 pandemic. The bottom panels of

Figure 1.1 illustrate the dynamics of SRISK and LRMES (see Appendix A for definitions

of both systemic risk measures) for these four firms over the evaluation period. During the

subprime crisis, both financial firms su↵ered great losses with a drawdown of around 80%,

while the non-financial firms performed much better, with relatively small drops in asset

prices.

The comparison of the SRISK and LRMES measures between financial and non-financial

firms during the di↵erent crisis episodes reveals that financial firms contribute more to the

overall market disruption than non-financial firms. We also observe the buildup of the

systemic risk measure at the start of the di↵erent crises for the two financial firms but not

for the non-financial firms. In particular, the SRISK of non-financial firms delivers lower

volatilities and is always below zero throughout the out-of-sample period. It is interesting

to note, for example, that despite the increase in the SRISK of Boeing during the Covid-19

pandemic its value remains negative. Brownlees and Engle (2016) argue that a negative
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SRISK indicates that the firm faces expected capital surpluses conditional on a market

decline, i.e. the firm functions well and does not contribute to the overall systemic risk

during times of crisis. Similar insights are obtained from the analysis of the dynamics of

LRMES. This measure displays quite di↵erent patterns across firm groups over time. The

LRMES of financial firms increases significantly before each crisis, which reflects the fact

that the interconnections between financial institutions and the market become stronger

during di�cult times. However, the LRMES of non-financial firms does not exhibit violent

fluctuations before or during crisis times. The lack of sensitivity of both systemic risk

measures for both non-financial firms confirms the weak linkage between non-financial

firms and the market.

These results show that our objective function is more relevant when the universe of

assets includes large firms that are potentially systemic, although not necessarily classified

as SIFIs. Therefore, in the remaining, we only focus on large financial firms when studying

optimal portfolio allocation under market distress periods since these firms are more likely

to a↵ect and be a↵ected by market declines during systemic risk episodes.

1.5.2 Empirical methodology

We demonstrate the superiority of the proposed portfolio selection procedure under stressed

market conditions by comparing the results of the portfolios obtained from maximizing our

CoSR measure against competitors used in the literature. We backtest our model over

the period January 2007 to December 2020. The backtesting period has been chosen to

include most of the recent financial crises. In particular, we use a rolling window of 1,500

daily historical returns to estimate the model parameters and then simulate 30,000 return

scenarios from the above processes for each asset contained in the portfolio at the beginning

of each month.

The portfolio optimization problem (1.8) with short-selling constraints is solved on a

monthly basis by maximizing the proposed performance ratio CoSR based on generated

return scenarios. To generate the return scenarios, we follow the two strategies discussed

above. First, we apply a GARCH-DCC model for the dynamics of returns. After fitting

the model, we use nonparametric bootstrap to resample the standardized residuals. These

pseudo-samples are used as inputs of the GARCH and DCC filters respectively, to get the

simulated monthly returns. The second approach is to use a GARCH-Copula model. After
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fitting the model, we simulate 30,000 independent random trials of mutually dependent

standardized residuals over a one-month horizon based on the fitted t-copula. Using the

simulated standardized residuals as inputs to the GARCH filter, we obtain 30,000 simulated

monthly cumulative returns. We can estimate the reward and risk measures using the

generated return distributions, i.e. compute the first and second conditional moments by

filtering realizations that satisfy the SE condition. In particular, following Capponi and

Rubtsov (2022), we choose the following two specifications for the systemic event threshold

C: i) C = 0, i.e., rebalancing occurs when the market index experiences negative returns,

and ii) C = �6.7% for monthly rebalancing, which corresponds to a 40% decrease in the

market index over a six-month period. Although the second specification better captures

a SE (i.e. a significant drop in the market index), we still want to see the di↵erences

in portfolio allocation between milder and stronger definitions of systemic risk. Thus we

also test our portfolios on less severe market declines, which are represented by the first

specification.

For comparison purposes, we also evaluate the performance of our CoSR portfolio

against three other performance criteria, namely the mean-variance (SR) portfolio obtained

from maximizing the Sharpe ratio, the equally-weighted portfolio (1/N), and the GMVP.

The first refers to the portfolio on the mean-variance e�cient frontier that has the highest

expected return per unit of risk, the second strategy represents a well-diversified portfolio

of assets, and the last is the portfolio on the mean-variance e�cient frontier with minimum

variance. Moreover, the portfolio strategy maximizing CoSR is related to the SR portfolio

since it is obtained by adjusting the latter to account for systemic risk events (see equations

(1.5) and (1.6)). To avoid the construction of portfolios with large negative allocations to

all assets under stressed market conditions, we assume that short-selling is not allowed in

our model. Furthermore, we assume that our investors have an initial wealth of FW0 = 1

and an initial cumulative logarithmic return CR0 = 0 at the beginning of the backtesting

period.

Three main steps are performed to calculate the ex-post final wealth and cumulative

return at the k-th recalibration (k = 0, 1, 2, ..., 168). Firstly, we choose a performance

ratio. Second, we generate return scenarios based on the algorithms described above and

obtain the solution W
⇤
k+1 to the optimization problem (1.7). This step is performed in

Matlab using the fmincon function. Following Kresta et al. (2015), we randomly choose

20 starting points in order to find the global instead of local minimum when solving (1.7).
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Secondly, the ex-post final wealth is given by

FWk+1 = FWk(1 +W
⇤T
k

Rk+1), (1.27)

where Rk+1 is the ex-post vector of simple returns between k and k+1. Thirdly, the ex-post

cumulative logarithmic return is given by

CRk+1 = CRk + ln(1 +W
⇤T
k

Rk+1). (1.28)

Note that the latter measure reports the cumulative performance of the portfolio net of

wealth. That is, expression (1.27) implies that FWK+1 = FW0

K

⇧
k=0

(1 +W
⇤T
k

Rk+1). Then,

taking logs, we obtain lnFWK+1 � lnFW0 =
KP
k=0

ln(1 +W
⇤T
k

Rk+1). Therefore, the growth

in wealth due to the cumulative return on the portfolio is given by expression (1.28), with

CR0 = 0.

By repeatedly computing FWk+1 and CRk+1 for di↵erent performance ratios we obtain

the wealth and cumulative return path evolutions over the evaluation period and the final

wealth and total return accumulated at the end of the period. For simplicity, we neglect

transaction costs for now. The influence of transaction costs will be further studied later.

1.5.3 Empirical results

In this section, we present the backtesting results. First, we show the results of the portfolio

optimization exercise using the GARCH-DCC and GARCH-Copula models, respectively.

Second, we study the influence of adding transaction costs to the results. We also compute

confidence intervals to our estimates of final wealth paths to account for the uncertainty

arising from model estimation.

The empirical results of the portfolio optimization backtesting using the GARCH-DCC

model are depicted in Figure 1.2. There are several noticeable features from these figures.

Firstly, all portfolios perform badly during the 2007-2008 financial crisis, no matter which

model is chosen. In general, the CoSR portfolio with C = �6.7% outperforms the other

competitors throughout the evaluation period. Final wealth is maximized when investors

use the CoSR as objective function, the second strategy is the SR portfolio and the worst

performance with regards to final wealth is the GMVP. In contrast, when the systemic

event is defined by a milder threshold (i.e. C = 0) the results vary. In this scenario the
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CoSR portfolio does not outperform the competing portfolios consistently but it is still

more resilient to crises than the other three portfolios. Losses are significantly smaller

during these periods. This observation also reflects the importance of choosing a proper

systemic event threshold for portfolio selection. Conditioning on a mild threshold may

jeopardize return at the expense of a more conservative portfolio allocation.

Table 1.1 confirms that the CoSR portfolio with C = �6.7% provides the best per-

formance. An investor would multiply their wealth by 2.280 using the SR strategy, by

1.343 using the equally-weighted strategy, by 1.323 using the GMVP, while following the

proposed CoSR strategy the final wealth would be around triple (2.794 for C = 0 and

3.021 for C = �6.7% respectively). Similarly, the annual return of the CoSR portfolio with

C = �6.7% is 8.22%, which is about two percentage points above the SR portfolio given

by 6.06%. The annual return for the equally-weighted portfolio and the GMVP are 2.13%

and 2.02% respectively.

Another factor the investor would care about is the risk of the strategy. The CoSR

strategy not only outperforms the other competing strategies in terms of profitability but

also the maximum drawdown decreases, which is an important indicator of portfolio perfor-

mance for portfolio managers. While SR, 1/N and GMVP strategies lost near 70% (74.22%,

71.74%, and 67.21%, respectively) of their values during the 2007-2008 financial crisis, the

maximum drawdown of CoSR was around 60% for both thresholds. Similar findings are

obtained for the other three major crisis episodes. In these cases there is also a drop in

profitability of the strategy but this drop is smaller compared to the 2007-2009 period. To

Table 1.1: Final wealth and maximum drawdown of particular wealth paths based on
GARCH-DCC model.

Strategy SR CoSR(C=0) CoSR(C=-6.7%) 1/N GMVP

Final Wealth 2.280 2.794 3.021 1.343 1.323
Annual Return 6.06% 7.62% 8.22% 2.13% 2.02%

Maximum Drawdown 74.22% 61.55% 58.75% 71.74% 67.21%

add robustness to the results, we repeat the analysis for the copula model. The results are

very similar to those obtained for the GARCH-DCC model. The empirical results of the

portfolio optimization backtesting are depicted in Figure 1.3. There are several noticeable

features from this figure. All portfolios perform badly during 2007-2008 financial crisis,

no matter which model is chosen. The SR, 1/N and GMVP strategies lose almost all of

their value during that period, while the CoSR portfolio performs much better but still lose
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more than 50% of its value. The SR portfolio is a serious competitor and reports similar

profitability figures to the CoSR during the first half of the evaluation period, however,

from the second semester of 2016, the CoSR portfolio consistently beats the SR portfo-

lio. Overall, the CoSR portfolio has a strong upward trend in profitability that results

in superior performance over time. This strong performance is due to its relatively stable

performance in times of market downturns. Table 1.2 summarizes earnings and maximum

drawdown of di↵erent strategies. The SR portfolio provides the worst performance in terms

of final wealth whereas the maximum drawdown is comparable to the maximum drawdown

of the equally-weighted portfolio (73.86% for SR and 71.74% for 1/N). Both systemic event

thresholds provide similar performance, where the CoSR portfolio with C = 0 provides the

highest value of final wealth (annual return) and the lowest maximum drawdown.

Table 1.2: Final wealth and maximum drawdown of particular wealth paths based on
GARCH-Copula model.

Strategy SR CoSR(C=0) CoSR(C=-6.7%) 1/N GMVP

Final Wealth 1.299 2.423 2.134 1.343 1.423

Annual Return 1.88% 6.53% 5.56% 2.13% 2.55%

Maximum Drawdown 73.86% 59.98% 61.07% 71.74% 67.43%

Portfolio diversification for portfolios of SIFI firms:

As an additional robustness exercise, we repeat the portfolio allocation exercise for the

subset of the firms in our study that are classified by the Financial Stability Board (FSB)

and the Basel Committee on Banking Supervision (BCBS) as G-SIFIs and by the Board of

Governors of the Federal Reserve System as D-SIFIs. In particular, we consider 16 firms.

This exercise may be interesting to highlight the importance of portfolio diversification in

a setting where all the assets in the portfolio are a↵ected by systemic risk. Note that in

the above exercises some firms were within the pool of SIFIs but others were not.

The results of this exercise are reported in Figure 1.4. The top panel of this figure

shows the slight outperformance of the CoSR portfolio with C = �6.7% compared to other

competitors over the first half of the evaluation period, however, as expected, there is a

sizeable drop in profitability for all portfolios compared to the portfolios also considering

non-SIFIs, see Figure 1.2. The analysis of the GARCH-Copula model shows similar results,
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however, in this case, the equally-weighted portfolio is the top contender, followed by the

CoSR with C = 0.

Portfolio turnover and transaction cost:

We use the definition of portfolio turnover in Kirby and Ostdiek (2012), which is consis-

tent with the concept used in the mutual fund industry. This measure provides an indication

of the variability of the portfolio weights over time. Table 1.3 reports the turnover rates for

all the portfolios under investigation. This table shows that portfolio optimization strate-

gies based on the maximization of CoSR are characterized by relatively high turnover rates.

Unsurprisingly, the turnover rates are much smaller for the equally-weighted portfolio than

for the remaining competitors. In contrast, both CoSR portfolios take larger values, which

suggests that these portfolios are more flexible than the competitors to adapt to changes

in market conditions.

Table 1.3: Comparison of turnover rates.

Strategy SR CoSR(C=0) CoSR(C=-6.7%) 1/N GMVP

GARCH-DCC 0.250 0.356 0.298 0.025 0.236

GARCH-Copula 0.241 0.431 0.361 0.025 0.253

On the other hand, an increase in portfolio turnover entails an increase in transaction

costs due to higher fees and other costs derived from modifying the portfolio allocation. We

proceed to analyze the impact on portfolio performance of including these costs. To do this,

we recompute the ex-post final wealth and the total return for all portfolios considering

proportional transaction costs. In order to stress test the impact of transaction costs, we

adopt 5 basis points as proportional transaction costs. Tables 1.4 and 1.5 report the results

in this case. Figures 1.5 and 1.6 also illustrate the di↵erence in portfolio performance for

the DCC and copula models, respectively. The presence of transaction costs does not alter

the results.7

7 Unreported results show the e↵ect of transaction costs of di↵erent magnitude on portfolio performance.
More specifically, we obtain the results of the CoSR portfolio with C = �6.7% for the best performing
strategy - GARCH-DCC approach - assuming transaction costs that range from 0 to 10 basis points.
The results confirm the profitability of the CoSR strategy across di↵erent levels of the transaction costs.
The CoSR strategy always outperforms the 1/N portfolio and GMVP.
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Table 1.4: Recomputation results based on GARCH-DCC model with transaction costs.

Strategy SR CoSR(C=0) CoSR(C=-6.7%) 1/N GMVP

Final Wealth 2.186 2.632 2.873 1.338 1.272

Annual Return 5.74% 7.16% 7.83% 2.10% 1.73%

Maximum Drawdown 74.33% 61.76% 58.96% 71.77% 67.37%

Table 1.5: Recomputation results based on GARCH-Copula model with transaction costs.

Strategy SR CoSR(C=0) CoSR(C=-6.7%) 1/N GMVP

Final Wealth 1.247 2.254 2.008 1.338 1.364
Annual Return 1.59% 5.98% 5.11% 2.10% 2.24%

Maximum Drawdown 73.99% 60.23% 61.31% 71.77% 67.60%

Portfolio systemic risk measure:

Our portfolios are constructed to maximize the Sharpe ratio conditional on the market

being under distress. This ratio can be viewed as a measure of risk-adjusted profitability

under market distress, with the latter interpreted as a systemic event. In order to assess

the underlying systemic risk of such portfolios we define portfolio’s LRMES as

LRMESp,t =
NX

i=1

!i,tLRMESi,t. (1.29)

This measure is a weighted combination of the LRMES of the individual firms at each

point in time. Interestingly, the portfolio’s LRMES can be interpreted as the expected

percentage drop in portfolio value under stressed market conditions. Thus a lower value of

LRMESp reflects a lower level of potential loss during crisis times. This quantity can be

estimated based on the generated return scenarios obtained from the GARCH-DCC and

GARCH-Copula models.

Figure 1.7 displays portfolios’ LRMES paths obtained from di↵erent investment strate-

gies over the out-of-sample evaluation period for the GARCH-DCC and GARCH-Copula

models, respectively. The LRMES of the CoSR portfolio is relatively stable across the

evaluation period and is always lower than for the other benchmark portfolios. This

forward-looking measure can serve as an early warning indicator or monitoring tool for
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both portfolio managers and financial regulators who aim to control the losses of their

portfolios, especially during crisis times.

An important feature of the portfolio allocation exercise is to study the variation of the

portfolio across assets and over time. The optimal weights are shown in Figure 1.8. Here,

we set C = �6.7% for both GARCH-DCC and GARCH-Copula models when computing

optimal weights and LRMES. Firms that receive greater allocations of wealth under the

optimal CoSR portfolio strategy are more attractive from a systemic risk-return perspective.

Interestingly, the empirical results in Figure 1.8 show that the optimal CoSR portfolio

is less diversified than the SR portfolio during crisis times after accounting for systemic

risk. For instance, the CoSR portfolio implies a relatively high investment proportion

in PGR while the SR portfolio invests more in BEN across the evaluation period. An

interpretation of this result is that investors anticipate a systemic risk event in advance.

As a result, investors prefer to sacrifice diversification benefits and gain from the reduced

exposure of their portfolios to stressed market conditions (see also Capponi and Rubtsov

2022). These insights of the model provide an alternative interpretation to the presence of

underdiversification compared to standard mean-variance e�cient allocations, see Mitton

and Vorkink (2007) and references therein. In our model, underdiversification takes place

because the CoSR portfolio is less likely to su↵er great losses during a market slide. Figure

1.9 shows that the LRMES of PGR is always lower than the LRMES of BEN. This di↵erence

becomes even larger during distress episodes.

1.5.4 Estimation e↵ects on optimal portfolio allocation

Throughout the study, we have considered two di↵erent specifications (GARCH-DCC and

GARCH-Copula) to model the joint dynamics of financial returns. This exercise has pro-

vided robustness to our results against the presence of model uncertainty. Another related

exercise is to study the impact of parameter uncertainty. In this case the objective is to

assess the impact of parameter estimation on the outcome of the model. In our setting, the

outcomes of the model are estimates of the final wealth and portfolio return. This exercise

is particularly important in our setting as our model is heavily parametrized as it is custom

in multivariate time series models. Alternative nonparametric solutions su↵er instead from

the curse of dimensionality as the number of variables in the model grows beyond a few

dimensions.
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In this section we assess the impact of estimation error. The uncertainty arises because

of the parameter estimation error but also because of the randomness in choosing starting

values in the portfolio optimization. As mentioned before, we randomly choose 20 starting

points when solving portfolio optimization problems in order to find global instead of local

optima. In the backtesting exercise we follow a rolling window approach starting initially

from the beginning of 2007 with a window size of 1,500 observations. After fitting the

di↵erent models within each window, the estimated parameters for predicting one-month

ahead returns are obtained before re-estimating the same model with additional observa-

tions. The prediction of returns obtained from each model and the corresponding portfolio

optimization are done on a monthly basis by updating the in-sample dataset. Motivated by

the need of gauging the underlying estimation uncertainty, the whole procedure is repeated

multiple times with the same methodology. By doing so, we obtain multiple portfolio path

realizations throughout the out-of-sample period.

Figures 1.10 and 1.11 show the ex-post final wealth paths for di↵erent strategies after

accounting for estimation uncertainty. For instance, the curve “CoSR Average” reflects

the average of the 200 portfolio paths, which is embedded into the corresponding 90%

confidence bounds centered around the average. The grey shadow area reflects the un-

certainty arising from the model estimation, return prediction and portfolio optimization

underlying the 200 simulation exercises. The corresponding results for other competitors

are also displayed therein. The results of both approaches displayed in Figures 1.10 and

1.11 confirm the statistical significance of the previous evidence on the superiority of the

CoSR portfolios over the competing benchmark portfolios in all cases.

1.5.5 An alternative objective function for portfolio allocation

An alternative strategy to incorporate systemic risk in the portfolio allocation problem is

to replace the denominator in (1.1) by the LRMES of portfolio’s excess return. By doing

this, we develop a new performance measure that we call mean-MES ratio (MMR):

MMRt(Rp,t) : =
Et(Rp,t:t+h �Rm,t:t+h)

�Et(Rp,t:t+h �Rm,t:t+h|SEt:t+h)
,

=
W

T

t
µt � µm,t

µm,t|SE �W
T

t µt|SE
.

(1.30)
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If we set C = V aR↵(Rm,t:t+h), then the above expression can be rewritten as

MMRt(Rp,t) =
W

T

t
µt � µm,t

LRMESp,t � ESm↵,t

, (1.31)

where ESm↵,t = ES↵(Rm,t:t+h), and ES↵ is defined as ES↵(X) = �E(X|X  V aR↵(X))

if we assume a continuous distribution for the probability law of X. The risk measure in

the denominator can be decomposed into the di↵erence between portfolio’s LRMES and

the ES of market return. MMR is able, by construction, to measure the tradeo↵ between

portfolio’s mean return and systemic risk, which formulates a new mean-ES model that

accounts for systemic risk.

In what follows, we present the backtesting results for the portfolios obtained under the

MMR objective function. We first show the results of the portfolio optimization exercise

using GARCH-DCC and GARCH-Copula models, respectively. Then we study the systemic

risk of MMR portfolio and compare against the CoSR portfolio proposed as our main

objective function above. We also compute the confidence intervals of the ex-post final

wealth paths to account for the uncertainty arising from the model estimation procedure.

Backtesting results

The backtesting results of GARCH-DCC and GARCH-Copula model including the MMR

optimal portfolios are illustrated in Figure 1.12 and 1.13, respectively. These portfolios

provide the best out-of-sample performance in terms of cumulative return over the evalu-

ation period. The second competitors are the CoSR portfolios studied earlier whereas the

remaining competitors perform clearly below these two investment portfolios that are fo-

cused on minimizing the e↵ect of systemic event. Table 1.6 extends Table 1.1 by replacing

the CoSR statistics by the MMR values. An investor will multiply his/her wealth by 2.280

using SR strategy, by 1.343 using 1/N strategy, by 1.323 using GMVP, while following the

proposed MMR portfolio the final wealth would be more than sextuple (6.627) for C = 0

and triple (3.734) for C = �6.7%. Similarly, the MMR portfolio with C = 0 gives an

annual return of 14.46%, which is more than double the annual return of the SR portfolio

(6.06%). The MMR portfolio with C = �6.7% performs slightly worse but still beats the

other competitors with an annual return of 9.87%. The annual return for the naive and

GMVP are 2.13% and 2.02%, respectively.

To add robustness to the results, we repeat the analysis using the GARCH-Copula
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model. The backtesting results are illustrated in Figure 1.13. The SR, 1/N and GMVP

lost almost all of their value during that period, while the MMR portfolios perform much

better but still lost more than half of their value. The MMR portfolio with C = 0 provides

the best performance, which is the same as we conclude from the GARCH-DCC model.

However, the level of profitability is much lower compared to the previous counterparts.

The CoSR presents strong performance in the second part of the evaluation period clearly

beating the other portfolios but not the MMR in terms of profitability.

Table 1.7 summarizes the earnings and maximum drawdown of the di↵erent portfolios.

Results for the CoSR portfolios are found in Table 1.2 and not reported here again. The

MMR portfolio with mild systemic event threshold provides the best performance in terms

of final wealth (3.222), while the MMR portfolio with C = �6.7% gives the lowest maximum

drawdown (63.30%) among the competitors.

Table 1.6: Backtesting results based on GARCH-DCC model.

Strategy SR MMR(C=0) MMR(C=-6.7%) 1/N GMVP

Final Wealth 2.280 6.627 3.734 1.343 1.323
Annual Return 6.06% 14.46% 9.87% 2.13% 2.02%

Maximum Drawdown 74.22% 34.96% 41.45% 71.74% 67.21%

Table 1.7: Backtesting results based on GARCH-Copula model.

Strategy SR MMR(C=0) MMR(C=-6.7%) 1/N GMVP

Final Wealth 1.299 3.222 2.040 1.343 1.423
Annual Return 1.88% 8.72% 5.22% 2.13% 2.55%

Maximum Drawdown 73.86% 63.57% 63.30% 71.74% 67.43%

The MMR portfolio is clearly a strong portfolio candidate under market distress in

terms of cumulative return, however, its exposure to systemic risk is significantly larger

than for the CoSR portfolio. Figure 1.14 presents the dynamics of the LRMES of the dif-

ferent portfolios over the evaluation period. For both GARCH-DCC and GARCH-Copula

methodologies and di↵erent values of C, the CoSR portfolio exhibits values of the LRMES

statistic well below the other portfolios. This observation provides strong support to the

CoSR against the MMR portfolio once we jointly consider the profitability measures given

by the ex-post final wealth and cumulative return and the systemic risk measure given by

portfolio’s LRMES.
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Another advantage of CoSR strategies compared to MMR portfolios is the excess vari-

ability in final wealth and cumulative return of the latter class of investment strategies. The

results of the robustness exercise for both GARCH-DCC and GARCH-Copula accounting

for estimation uncertainty obtained from 200 trials are illustrated in Figure 1.15 and 1.16,

respectively. The solid lines reflect the average of 200 portfolio paths, while the shaded ar-

eas represent the corresponding 90% confidence bounds centered around the average. The

simulations suggest that MMR portfolios tend to su↵er bigger losses than CoSR portfolios

under market distress after accounting for estimation uncertainty. It is also worth not-

ing that MMR portfolios are more sensitive to estimation error than the CoSR strategies,

which makes their performance more volatile (the variance of the final wealth paths is much

bigger than other competitors).

1.6 Conclusion

Although the existing systemic risk measures are helpful for financial regulators, portfolio

managers are still looking for practical guidance under which they can account for systemic

event during their decision-making process. A general approach for constructing optimal

portfolios is to maximize a reward-to-risk ratio. In this paper we propose a systemic

Sharpe ratio as the investor’s objective function that conditions on the market return

being under the threshold of a systemic event. By doing so, we propose a methodology for

portfolio construction that explicitly incorporates the sensitivity of portfolio performance

to systemic risk events. Using this objective function, we solve the portfolio allocation

problem analytically under the absence of short-selling restrictions and numerically when

short-selling restrictions are imposed. This approach for obtaining an optimal portfolio

allocation is made operational by embedding it in a dynamic setting and simulating the

returns on the portfolio assets using Monte Carlo return scenario analysis.

We have applied the above model to a basket of 23 assets of big financial firms trading

in the US stock market over an out-of-sample evaluation period spanning 2007 to 2020.

The results of the empirical study confirm the outperformance of our systemic risk portfolio

against the standard mean-variance formulation, the naive equally-weighted portfolio, and

the global minimum variance portfolio. The systemic risk portfolio is, by construction, more

resilient in periods of market distress and remains competitive in non-crisis periods. This

portfolio is less diversified than benchmark portfolios during crisis times. In these periods,
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the systemic risk strategy invests on those stocks that are expected to experience a small

loss under stressed market conditions. In contrast to an emerging literature that suggests

that the presence of underdiversification in financial markets is a rational response to a

preference for positive skewness, we find that investors take conservative positions on a few

stocks that are resilient against systemic risk to shield against potential large drawdowns

in portfolio value.
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Appendix A - A brief review of systemic risk measures

This section reviews the di↵erent definitions of systemic risk measures proposed in the

macro-finance literature. In particular, we review four prominent market-based measures

that constitute the building blocks of an emerging literature on systemic risk. First, we

review the MES and SES measures introduced in Acharya et al. (2017). The first measure

is defined as the expected decrease of an institution’s net equity return conditional on a

market decline:

MESi,t|t�1 = �Et�1(Ri,t|Rm,t < C), (1.32)

where C denotes a given threshold defining the magnitude of a systemic event and Et�1(·)

denotes the expectation operator conditional on the information available to the individual

up to time t�1. This measure gauges how a specific institution’s risk exposure contributes

to the system-wide risk. Financial institutions with higher MES contribute more to the

overall risk of the financial market, thus these institutions can be seen as systemically

dangerous. The SES extends the MES and measures the amount an institution’s equity

would drop below its target level (defined as the prudential capital fraction k of assets) in

case of a future crisis when aggregate capital is less than k times aggregate assets:

SESi,t|t�1

Wi,t

= kLi,t � 1� Et�1

 
Ri,t

���
NX

i=1

Wi,t < k

NX

i=1

Ai,t

!
, (1.33)

where Li,t = (Ai,t/Wi,t) is the quasi leverage ratio, Ai,t = (Di,t +Wi,t) is the total assets,

Di,t is the book value of debt, Wi,t is the market value of equity, and N denotes the number

of financial firms within the system. Acharya et al. (2017) also show that the conditional

expectation term can be expressed as a linear function of MES:

SESi,t|t�1 = Wi,t(kLi,t � 1 + ✓MESi,t|t�1 +�i), (1.34)

where ✓ and �i are constant terms (see also Benoit et al. 2017). The higher the SES is,

the higher the contribution of the financial institution to the system’s overall risk. Acharya

et al. (2017) provide detailed theoretical justification for the positive correlation between

SES and a firm’s MES and leverage.

The second measure that we review is SRISK. It was initially proposed by Acharya et al.

(2010), and later extended to a conditional version by Brownlees et al. (2012); Brownlees
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and Engle (2016). SRISK measures the expected capital shortfall conditional on a systemic

event and can be expressed as a function of the institution’s size, leverage, and long-run

MES (LRMES):

SRISKi,t+h|t = max
⇥
0;Wi,t

�
kLi,t � 1 + (1� k)LRMESi,t+h|t

�⇤
, (1.35)

where LRMESi,t+h|t denotes the expected equity loss of firm i conditional on a systemic

event over a time horizon h (usually one month or six months):

LRMESi,t+h|t(C) = �Et(Ri,t:t+h|Rm,t:t+h < C). (1.36)

Here we denote the multiperiod simple firm (market) return between time t and t + h

as Ri,t:t+h (Rm,t:t+h) and the systemic event (SE) as {Rm,t:t+h < C}. SRISK extends the

MES by taking account of both size and debt of financial institutions. The institution

with highest SRISK is seen as the main contributor to a crisis and is taken as the most

systemically important. It is worth noting that the mathematical expressions for SRISK

and SES are almost the same, since they are both comprised of three components: firm

size, leverage, and marginal risk. At the aggregate level, SRISK can be thought of as a

stress test on the whole financial system, where the adverse case scenario is defined as a

10% (40%) decrease of the market index over a one-month (six-month) time horizon.

Another important systemic risk measure is �CoVaR. The marginal risk measure given

by VaR is used for measuring the tail risk of a portfolio or an individual firm, however, it

fails to take into account spillover e↵ects from other institutions and is highly pro-cyclical.

To overcome these shortcomings, Adrian and Brunnermeier (2016) modify the VaR measure

and present �CoVaR. This measure is defined as the di↵erence between the VaR of the

financial system conditional on a particular institution being in distress and the VaR of

the financial system conditional on that institution being in its median state:

�CoV aRi,t(↵) = CoV aR
m|C(ri,t)
t � CoV aR

m|CMedian(ri,t)
t , (1.37)

where the CoVaR corresponds to the VaR of the market return conditional on a certain

event C(ri,t) observed for firm i:

P
�
Rm,t  CoV aR

m|C(ri,t)
t

��C(ri,t)
�
= ↵. (1.38)
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Various definitions of C(ri,t) can be adopted to define a systemic event for firm i, for

example, Adrian and Brunnermeier (2016) define it as the institution’s loss equals to its

VaR, while Girardi and Ergün (2013) consider the case where the institution’s loss exceeds

its VaR level. A higher �CoVaR indicates higher systemic risk of the financial institution

for a given level of idiosyncratic risk.

Appendix B - Simulation of stock returns

Algorithm for GARCH-DCC Model

This section describes the simulation algorithm for constructing return predictions based

on nonparametric bootstrap approach (see Brownlees and Engle 2016). Specifically, we are

interested in computing the portfolio’s expected excess return over next month conditional

on a systemic event during that period. In the following, we assume that all parameters are

known, while in practice we estimate the model parameters using all available information

up to the current time. Let h denote the length of the forecasting horizon on which the

returns will be simulated, which in our case is 22 trading days. The details of the bootstrap

procedure are discussed as follows:

• Construct the GJR-DCC standardized innovations: ✏t = (Lt)�1
"t, t = 1, ..., T ,

where Lt denotes the lower-triangular matrix in the Cholesky decomposition of the

correlation matrix Rt.

• Sample with replacement S⇥h vectors of standardized innovations ✏t. This provides

us with S pseudo-samples, ✏s
T+t

, t = 1, ..., h, s = 1, ..., S, of length h (i.e. 22 days)

of the GJR-DCC innovations.

• Use the pseudo-samples obtained from the previous step as inputs of the GJR-DCC

filters, and set initial values as the last values of returns ri,T , error terms ⇠i,T , pseudo

correlation matrix RT and variances �2
i,T
. This yields S simulated paths of logarithmic

returns between period T +1 and T +h for all firms and the market index conditional

on the realized process up to T , that is, we obtain r
s

i,T+t
| FT , t = 1, ..., h , s =

1, ..., S, with FT denoting the information set available to the individual at time T .
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• Calculate the arithmetic multi-period return for each simulated path as

R
s

i,T :T+h
= exp

 
hX

t=1

r
s

i,T+t

!
� 1. (1.39)

The simulated monthly returns are utilized to solve the portfolio optimization prob-

lems specified in (1.7) and (1.9).

Algorithm for GARCH-Copula Model

In the GARCH-Copula setting, we generate future return scenarios according to the fol-

lowing procedure:

• Given the standardized residuals "t = ("1,t, ..., "N+1,t) (t = 1, ..., T ) from the fitted

GARCH models, we estimate the cumulative distribution function (CDF) F⌫i of each

series with a univariate t location-scale distribution, "i,t ⇠ F⌫i t = 1, ..., T .

• Transform the marginal distribution functions to uniforms with the empirical CDFs:

ui,t = F⌫i("i,t) t = 1, ..., T , where ui,t ⇠ U(0, 1).

• Given the transformed uniform margins, now we estimate the scalar degrees of free-

dom parameter ⌫ and the linear correlation matrix ⇢ of the t-copula using the Matlab

function copulafit (see The MathWorks 2019).

• Simulate mutually dependent returns by first simulating the corresponding dependent

standardized residuals ✏
s

T+t
(t = 1, ..., h, s = 1, ..., S). To do so, we first simulate

dependent uniform variates us

T+t
(t = 1, ..., h, s = 1, ..., S) using the Matlab function

copularnd (see The MathWorks 2019).

• Transform those simulated uniform variates us

T+t
into standardized residuals via the

inverse marginal CDF of each series: ✏
s

i,T+t
= F

�1
⌫i

(us

i,T+t
) t = 1, ..., h, s = 1, ..., S,

where F�1
⌫i

is the inverse CDF of the fitted ith marginal distribution. This step delivers

simulated standardized residuals (pseudo samples) consistent with those obtained

from the GARCH filter above. Note that these residuals are independent in time but

dependent at any point in time.

• Using simulated standardized residuals ✏
s

i,T+t
as the i.i.d. input noise process, we

reintroduce the autocorrelation as well as heteroskedasticity observed in historical
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return data via the Matlab function filter (see The MathWorks 2019). We set initial

values as the last values of returns ri,T , standardized residuals "i,T and variances �2
i,T
.

This yields S simulated paths of logarithmic returns between period T +1 and T +h

for all firms and the market index conditional on the realized process up to T , that is

r
s

i,T+t
| FT , t = 1, ..., h, s = 1, ..., S. (1.40)

• Calculate the arithmetic multi-period return for each simulated path as

R
s

i,T :T+h
= exp

 
hX

t=1

r
s

i,T+t

!
� 1. (1.41)

Given the simulated return distributions, we can easily compute the conditional (un-

conditional) moments of portfolio excess returns and solve the portfolio optimization

problems specified in (1.7) and (1.9).

Computational Remarks

Despite the computational benefits of scenario analysis, return simulation and solving the

nonlinear programming problem can still be a computationally exhaustive task - ultimately

depending on the sample size of Monte Carlo simulation and the sample size of robustness

check. Getting access to rich computing resources is crucial. This application is feasible

only through access to high performance clusters (HPC) or cloud computing resources.8

Specifically, RAM could be a limiting factor in our case since we have to cache all simu-

lated return scenarios in order to dynamically solve the subsequent portfolio optimization

problems. Due to the computational intensity, we set the sample size of return simulations

as 30,000 and the number of iterations as 200. The single run of model estimation and

return simulation procedure took around 5.7 hours on a MacBook Pro 2018 with 2.6 GHz

6-Core i7 processor and 16 GB RAM, while the multiple runs for purpose of robustness

exercise took around 2.5 days on HPC. Solving the portfolio optimization problems took

around 7 minutes and 25.3 hours for single run and multiple runs, respectively. In order

to accelerate computation speed, we also employ the Parallel Computing Toolbox build in

Matlab.9

8 The robustness exercise made use of the facilities of the Hamilton HPC Service of Durham University
(https://www.dur.ac.uk/arc/platforms/).

9
https://www.mathworks.com/products/parallel-computing.html
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Appendix B - Figures
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Figure 1.1: Left top panel reports the relative price developments between Jan 3, 2007 and
Dec 31, 2020. Right top panel reports the S&P 500 Index. Dynamics of SRISK index on
the left bottom panel and LRMES on the right bottom panel. In term of the simulation
approach we follow Brownlees and Engle (2016).
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Figure 1.2: Top panel compares ex post final wealth paths and bottom panel compares
the ex post cumulative return obtained using di↵erent strategies based on GARCH-DCC
model. The shaded areas correspond to NBER recession periods.
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Figure 1.3: Ex-post final wealth (top panel) and ex-post cumulative return (bottom panel)
paths obtained using di↵erent strategies based on GARCH-Copula model. The shaded
areas correspond to NBER recession periods.
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Figure 1.4: Ex-post final wealth paths obtained using only SIFIs as portfolio assets based
on GARCH-DCC model (top panel) and GARCH-Copula model (bottom panel) respec-
tively. The shaded areas correspond to NBER recession periods.
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Figure 1.5: Ex-post final wealth (top panel) and ex-post cumulative return (bottom panel)
paths obtained using di↵erent strategies based on GARCH-DCC model with proportional
transaction costs. The shaded areas correspond to NBER recession periods.
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Figure 1.7: Portfolio’s LRMES paths based on GARCH-DCC (top panel) and GARCH-
Copula model (bottom panel).

43



Dynamic optimal portfolio weights of SR portfolio (GARCH-DCC)
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Dynamic optimal portfolio weights of GMVP (GARCH-DCC)
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Dynamic optimal portfolio weights of CoSR portfolio with C=-6.7% (GARCH-DCC)
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Figure 1.8: Time-varying portfolios’ composition based on GARCH-DCC model. Top
panel reports the portfolio weights under the SR strategy, middle panel under the GMVP
strategy, and bottom panel under the CoSR strategy, respectively.
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Figure 1.9: Comparison of individual firm’s LRMES based on GARCH-DCC model (top
panel) and GARCH-Copula model (bottom panel).
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Figure 1.10: Comparison between di↵erent strategies accounting for estimation uncertainty
using the GARCH-DCC model. Top panel considers a systemic event given by C = 0 and
bottom panel considers a systemic event given by C = �6.7%.

46



Figure 1.11: Comparison between di↵erent strategies accounting for estimation uncertainty
using the GARCH-Copula model. Top panel considers a systemic event given by C = 0
and bottom panel considers a systemic event given by C = �6.7%.
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Figure 1.12: Ex-post final wealth (top panel) and ex-post cumulative return (bottom panel)
paths obtained using di↵erent strategies based on GARCH-DCC model (S = 30, 000). The
shaded areas correspond to NBER recession periods.

48



20
07

/01
/03

20
07

/06
/30

20
07

/12
/31

20
08

/06
/30

20
08

/12
/31

20
09

/06
/30

20
09

/12
/31

20
10

/06
/30

20
10

/12
/31

20
11

/06
/30

20
11

/12
/31

20
12

/06
/30

20
12

/12
/31

20
13

/06
/30

20
13

/12
/31

20
14

/06
/30

20
14

/12
/31

20
15

/06
/30

20
15

/12
/31

20
16

/06
/30

20
16

/12
/31

20
17

/06
/30

20
17

/12
/31

20
18

/06
/30

20
18

/12
/31

20
19

/06
/30

20
19

/12
/31

20
20

/06
/30

20
20

/12
/31

0

0.5

1

1.5

2

2.5

3

3.5
Ex-post final wealth paths using a GARCH-Copula model

GMVP
1/N
SR
CoSR (C=0)
CoSR (C=-6.7%)
MMR (C=0)
MMR (C=-6.7%)

20
07

/01
/03

20
07

/06
/30

20
07

/12
/31

20
08

/06
/30

20
08

/12
/31

20
09

/06
/30

20
09

/12
/31

20
10

/06
/30

20
10

/12
/31

20
11

/06
/30

20
11

/12
/31

20
12

/06
/30

20
12

/12
/31

20
13

/06
/30

20
13

/12
/31

20
14

/06
/30

20
14

/12
/31

20
15

/06
/30

20
15

/12
/31

20
16

/06
/30

20
16

/12
/31

20
17

/06
/30

20
17

/12
/31

20
18

/06
/30

20
18

/12
/31

20
19

/06
/30

20
19

/12
/31

20
20

/06
/30

20
20

/12
/31

-1.5

-1

-0.5

0

0.5

1

1.5
Ex-post cumulative return paths using a GARCH-Copula model

GMVP
1/N
SR
CoSR (C=0)
CoSR (C=-6.7%)
MMR (C=0)
MMR (C=-6.7%)

Figure 1.13: Ex-post final wealth (top panel) and ex-post cumulative return (bottom panel)
paths obtained using di↵erent strategies based on GARCH-Copula model (S = 30, 000).
The shaded areas correspond to NBER recession periods.
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Figure 1.14: Portfolio’s LRMES paths based on GARCH-DCC (top panel) and GARCH-
Copula model (bottom panel).
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Figure 1.15: Comparison between di↵erent strategies accounting for estimation uncertainty
using the GARCH-DCC model. Top panel considers a systemic event given by C = 0 and
bottom panel considers a systemic event given by C = �6.7%.

51



Ja
n2
00
7

Ju
n2
00
7

De
c2
00
7

Ju
n2
00
8

De
c2
00
8

Ju
n2
00
9

De
c2
00
9

Ju
n2
01
0

De
c2
01
0

Ju
n2
01
1

De
c2
01
1

Ju
n2
01
2

De
c2
01
2

Ju
n2
01
3

De
c2
01
3

Ju
n2
01
4

De
c2
01
4

Ju
n2
01
5

De
c2
01
5

Ju
n2
01
6

De
c2
01
6

Ju
n2
01
7

De
c2
01
7

Ju
n2
01
8

De
c2
01
8

Ju
n2
01
9

De
c2
01
9

Ju
n2
02
0

De
c2
02
0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
90% confidence interval of final wealth paths (GARCH-Copula, C=0)

SR_Average
SR_CI
GMVP_Average
GMVP_CI
CoSR_Average
CoSR_CI
MMR_Average
MMR_CI
1/N

Ja
n2
00
7

Ju
n2
00
7

De
c2
00
7

Ju
n2
00
8

De
c2
00
8

Ju
n2
00
9

De
c2
00
9

Ju
n2
01
0

De
c2
01
0

Ju
n2
01
1

De
c2
01
1

Ju
n2
01
2

De
c2
01
2

Ju
n2
01
3

De
c2
01
3

Ju
n2
01
4

De
c2
01
4

Ju
n2
01
5

De
c2
01
5

Ju
n2
01
6

De
c2
01
6

Ju
n2
01
7

De
c2
01
7

Ju
n2
01
8

De
c2
01
8

Ju
n2
01
9

De
c2
01
9

Ju
n2
02
0

De
c2
02
0

0

0.5

1

1.5

2

2.5

3
90% confidence interval of final wealth paths (GARCH-Copula, C=-6.7%)

SR_Average
SR_CI
GMVP_Average
GMVP_CI
CoSR_Average
CoSR_CI
MMR_Average
MMR_CI
1/N

Figure 1.16: Comparison between di↵erent strategies accounting for estimation uncertainty
using the GARCH-Copula model. Top panel considers a systemic event given by C = 0
and bottom panel considers a systemic event given by C = �6.7%.
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Chapter 2

Machine learning based portfolio

selection under systemic risk

2.1 Introduction

In the first chapter, we proposed a conditional Sharpe ratio (CoSR) that takes into account

systemic risk. The approach is made operational by embedding it in a multivariate dynamic

setting using GARCH-DCC and GARCH-Copula models, and the backtesting results were

shown to be promising for the proposed CoSR portfolio when compared to popular bench-

mark strategies. However, these advanced statistical methods fail to take advantage of the

rich predictive information contained in firm- and macro-level predictors when generating

return scenarios. This can be achieved by using machine learning (ML) techniques. Fur-

thermore, ML can better explain the nonlinear relationships between the explicative and

response variables when compared to traditional methods. Therefore, in this chapter, we

further enhance the portfolio selection approach proposed in the first chapter by employ-

ing a distributional ML model that allows us to obtain more accurate probabilistic return

forecasts in a high-dimensional setting, and thus a more robust estimator of CoSR measure.

Machine learning (ML) is a tool that can explicitly describe complex relationships and

uncover patterns within high-dimensional datasets that might help improve forecast accu-

racy. In the empirical finance literature, Gu et al. (2020) and others narrowed the definition

of ML down to a set of high-dimensional statistical prediction models, combined with op-

timization algorithms for parameter searching and regularization methods for overfitting

mitigation. In this paper, we combine ML and a novel methodology to build optimal port-
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folios that deal with systemic risk. The new approach enables us to incorporate information

from high-dimensional datasets and accommodate market turbulences and, as a result of

this, it is able to outperform many popular alternative portfolios.

Stock return predictability is of great importance to investors as it is a key ingredient

for asset allocation, risk management, asset pricing, etc. Many studies try to explain

cross-sectional stock returns using various predictors such as size, book-to-market, and

momentum factor; see Harvey et al. (2016) and references therein. The increasing number

of available factors might provide richer predictive information by incorporating big data

into stock return modelling. However, as argued by Gu et al. (2020) and others, traditional

prediction methods (e.g. linear models) are unable to fit complex patterns and tend to

break down when the number of covariates is close to the number of observations or when

the predictors are highly correlated. Thus, thanks to its ability to handle high-dimensional

datasets and complex nonlinear relationships, ML is the tool we need to confront the

challenge of improving prediction accuracy and consequently portfolio performance.

Since the ML techniques have shown promising superiority against traditional statistical

methods in stock return prediction, many researchers have applied these models to portfolio

optimization and generated satisfying results; see Zhang et al. (2020); Babiak and Baruńık

(2020); and Huang et al. (2021); among others. However, as far as we know, the existing

literature has not yet explored the potential economic gains of combining ML-based prob-

abilistic return forecasts with portfolio optimization. The applications in FinTech focus

mostly on point forecasts of stock returns without accounting for any uncertainty. More-

over, so far the e�ciency of portfolios constructed using ML techniques has been tested

mainly for characteristic-sorted portfolios (e.g. long-short decile portfolios), which further

motivates us to investigate whether the ML approach to probabilistic forecasting will help

our investors when forming optimal portfolios.

Starting from the mean-variance paradigm of Markowitz (1952), the tradeo↵ between

return and risk has become the focus of research on portfolio optimization. A general

approach for building optimal portfolios consists of maximizing an ex-ante reward-risk

performance measure to obtain the so-called market portfolio, which is based on diverse

perceptions of reward and risk measures such as the well-known Sharpe ratio (Sharpe 1994);

see Rachev et al. (2008) for a thorough review of various reward-risk ratios that have been

proposed for portfolio optimization. Although the existing performance ratios have led

to the development of many major theories and practices on optimal asset allocations,
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by construction, they are unable to take into account systemic risk that might a↵ect the

portfolio’s risk beyond the e↵ect of individual assets’ risks. In other words, these ratios

only focus on measuring the performance of portfolio assets without accounting for systemic

events happening in the market. Hence, investors need new portfolio strategies that can

help them overcome systemic risk during their decision-making process. Systemic risk is

defined as the risk of collapse of the whole financial system, as opposed to the risk associated

with any individual entity of the system. It also refers to the risk imposed by poorly

understood interlinkages and interdependencies among individual assets, where the failure

of a single entity or cluster of entities can trigger the failure of more institutions within the

same market, see Allen and Carletti (2013). The global financial crisis of 2007-2008 and

subsequent crises (e.g. euro crisis and COVID-19 pandemic) provide ample evidence of the

importance of containing systemic risk.

While the macroprudential literature has made substantial progress in terms of devel-

oping monitoring tools for assessing the underlying systemic risk in a financial system,

portfolio selection literature has not evolved in parallel. Only a few studies examined the

implications of systemic risk for investment decisions; see Capponi and Rubtsov (2022)

and references therein. Recently, Lin et al. (2022) were interested in solving the tradeo↵

between reward and risk under stressed market conditions by introducing a conditional

Sharpe ratio (CoSR), in which they incorporate the occurrence of systemic events into the

performance measure. However, none of the above-mentioned papers utilizes ML tech-

niques for predicting returns when building optimal portfolios. The present paper bridges

this gap by merging the literature on portfolio selection under systemic risk with the one

on cross-sectional return prediction using ML.

Theoretically, solving the portfolio optimization problem by maximizing a specific per-

formance ratio requires knowing the true distribution of future portfolio returns. In prac-

tice, however, we might just need to estimate the reward and risk measures to solve the

portfolio problem. The estimation of these measures can be done in two di↵erent ways that

involve either using historical observations of return or simulated return scenarios. It has

been argued that the optimal portfolios obtained based on the former approach are unlikely

to beat the naive portfolio, which can be mainly attributed to their extreme weights over

the out-of-sample period; see DeMiguel et al. (2009) among others. This might be caused

by the estimation errors that are known to a↵ect sample-based estimators and make the

latter less e↵ective when they are used as inputs in an optimization problem. Therefore, it
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is important to find ways to robustify these portfolio optimization inputs.

Although extensive e↵ort has already been devoted to alleviating the aforementioned

problem by developing estimators that take into account estimation errors, in order to

enhance the out-of-sample performance of the mean-variance portfolio relative to popular

benchmarks; see for example Branger et al. (2019), few papers in the literature resort to

promising ML tools. In this paper, we fill this gap by using a distributional ML approach to

generate return scenarios that we use to estimate the reward and risk measures. Specifically,

we formulate the portfolio selection problem as a three-stage supervised learning process

that considers systemic risk when building optimal portfolios. We start by predicting

quantiles of cross-sectional stock returns using the smooth pinball neural network (SPNN)

model, based on which we estimate the conditional marginal distributions of returns on

portfolio assets and the market. Thereafter, we apply t-copula to model the dependence

between individual assets and the market, and generate scenarios for future returns. Lastly,

we solve the portfolio optimization problem dynamically by maximizing CoSR based on

the simulated return scenarios.

Furthermore, we perform a large-scale empirical study using nearly 600 US stocks with

37 years of history from 1985 to 2021. Our set of predictors includes 94 firm characteristics,

14 macroeconomic variables, and 74 industry dummies. For the returns of individual assets

and the market, we calculate their monthly quantile forecasts using SPNN. Thereafter, on

each month within our out-of-sample period, we solve the portfolio optimization problem

dynamically using di↵erent objective functions. Specifically, we feed the CoSR optimiz-

ers with input parameters that we estimate using the return scenarios generated from a

hybrid model that combines SPNN and copula. In addition, for comparison, we calculate

sample-based tangency portfolio (SR), sample-based minimum variance portfolio (MVP),

and equally weighted portfolio (1/N) as benchmark strategies. Finally, we calculate and

report the out-of-sample portfolio performance of di↵erent strategies via a backtesting anal-

ysis. We also test the significance of the di↵erence in Sharpe ratios between our approach

and that of each benchmark portfolio.

Our paper contributes to the literature in two ways. First, we shed new light on the

performance ratio-based portfolio selection using a distributional ML approach. This is

done by incorporating SPNN-based probabilistic forecasts of stock returns into a conditional

Sharpe ratio. The ability of ML methods to capture complex and nonlinear patterns that

characterize big datasets results in more accurate forecasts of future return distributions,
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and hence in more robust estimates that are then fed into the portfolio optimizer, which in

turn enhances the portfolio performance relative to popular benchmark portfolios. Second,

we further improve the portfolio selection process by explicitly incorporating the occurrence

of systemic events into the construction of optimal portfolios, which leads to portfolios

that are less likely to su↵er great losses during market distress. After accounting for the

conditional tail risk of portfolios, our backtesting results show that our proposed approach

not only performs well on stressed scenarios but also performs steadily when the market is

doing well.

The rest of the paper is organized as follows. Section 2 introduces the stock return

quantile prediction via SPNN. Section 3 formulates the portfolio selection problem under

systemic risk. In this same section, we discuss the method of probabilistic forecasting

of returns, and illustrate how we model dependence through copula and generate return

scenarios. Section 4 uses a high-dimensional dataset from the US market to conduct a

large-scale empirical analysis in which we compare the out-of-sample portfolio performance

of our proposed approach with those of several popular benchmark strategies. Section 5

concludes. Figures and tables that displayed in Appendix A and B, respectively.

2.2 Quantile regression neural network

We start by reviewing the traditional quantile regression (QR), which is a building block of

Quantile Regression Neural Network (QRNN). We then introduce the mathematical formu-

lation of QRNN and its advanced variant Smooth Pinball Neural Network (SPNN). Before

we describe our quantile models, let us first set some notations. Using the terminology

of the literature on neural networks, we denote by R = (R1, ..., RV ) the 1 ⇥ V vector of

monthly returns for V training samples, and X = (X1, ...,XV ), with Xv = (x1,v, ..., xP,v)T ,

for v = 1, ..., V , the P ⇥ V matrix of P covariates across V training samples, including

firm-level features, interactions of each feature with macroeconomic variables, and indus-

try dummies. Note that in the above notations we do not use any subscript to distinguish

between di↵erent entities (e.g. individual firms), but we will do so in Section 2.3.

2.2.1 Model specification

Initially proposed by Koenker and Bassett (1978), the quantile regression (QR) model

estimates the relationship between predictors and a conditional quantile of the response
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variable. Formally, the ⌧ -th conditional quantile of the predictand Rv is given by

QRv(⌧ |Xv) = XT

v
�(⌧), 8v 2 {1, ..., V }, ⌧ 2 (0, 1), (2.1)

where �(⌧) = [�0(⌧), ..., �P (⌧)]T is the vector of the regression coe�cients and can be

estimated by solving the following optimization problem

�̂(⌧) = Arg min
�(⌧)

1

V

VX

v=1

⇢⌧

⇥
Rv �XT

v
�(⌧)

⇤
, (2.2)

where the asymmetric loss function ⇢⌧ (known as pinball loss function) is defined as

⇢⌧ (u) =

8
<

:
⌧u u � 0

(⌧ � 1)u u < 0
. (2.3)

The fitted conditional quantile is expressed as

Q̂Rv(⌧ |Xv) = XT

v
�̂(⌧). (2.4)

QR provides a more complete picture of the conditional distribution of R than conditional

mean regression and does not make assumptions on the distribution of the target vari-

able. Moreover, QR is robust to outliers and can thus be estimated more accurately than

conventional moments regression. The QR model defined in (2.1) is, however, unable to

capture possible nonlinear relationships between R and X. To overcome this issue, Taylor

(2000) originally introduced the quantile regression neural network (QRNN) that combines

QR with ANN to depict the complex nonlinear relationships between predictors and the

response variable without pre-specifying a functional form. Thus, instead of using a lin-

ear function, the conditional quantile is approximated by a neural network f(·) under the

QRNN framework. Formally, the conditional ⌧ -th quantile of Rv based on QRNN model

with a single hidden layer can be formulated as

QRv(⌧ |Xv) = f (Xv,H(⌧),O(⌧)) = g2

h KX

k=1

ok(⌧)g1
� PX

j=1

hj,k(⌧)x
v

j

�i
, (2.5)

where H(⌧) = (h1,1(⌧), ..., hP,K(⌧))
T is the weight vector that links the input and hidden

layer, O(⌧) = (o1(⌧), ..., oK(⌧))
T is the weight vector responsible for connecting the hid-
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den and output layer, and K is the number of hidden neurons. The activation functions

g1(·) and g2(·) are generally specified as a sigmoid/rectifier function and a linear function,

respectively. The set of parameters �(⌧) ⌘
�
H(⌧),O(⌧)

 
can be estimated by solving

�̂(⌧) = Argmin
�(⌧)

L(⌧) = Argmin
�(⌧)

1

V

VX

v=1

⇢⌧

h�
Rv � f(Xv,�(⌧))

�i
, (2.6)

and the fitted conditional quantiles are obtained as Q̂R(⌧ |X) = f(X, �̂(⌧)). Figure 2.1

illustrates the architecture of a QRNN model with a single hidden layer.

2.2.2 Approximation of pinball loss function

The parameters of neural networks are typically determined through some gradient-based

nonlinear optimization algorithms by which the gradients are calculated using the backprop-

agation algorithm, see Cannon (2011). The gradient of (2.6) can be computed analytically

by updating backpropagation equations based on the least absolute error function, see

Hanson and Burr (1988). However, the loss function ⇢⌧ is non-di↵erentiable at the origin

(u = 0), which thus requests a smooth approximation in order to apply gradient-based

optimization methods. To smooth ⇢⌧ , one can resort to the Huber norm introduced by

Huber (2004), which is defined as:

h(u) =

8
><

>:

1

2
u
2 |u|  "

"(|u|� 1

2
") otherwise

, (2.7)

where " is a given threshold magnitude, see Cannon (2018) and Xu et al. (2017) and

references therein. The check function is approximated by

⇢
(A)
⌧

(u) = |⌧ � I{u<0}|h(u), (2.8)

where I{u<0} is an indicator function that values as one when u < 0 and zero otherwise.

As " converges to zero, the approximate error function converges to the exact QR error

function; see Xu et al. (2017). An alternative way to smooth the loss function was proposed

by Zheng (2011), which smoothes ⇢⌧ using a logistic function, i.e., for ⌧ 2 (0, 1),

⇢
(A)
⌧

(u) = ⌧u+ ↵ ln
�
1 + exp(�u

↵
)
�
, (2.9)
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where ↵ > 0 is the smoothing parameter. As argued by Arends et al. (2020), the loss

function in equation (2.9) combines Huber loss and pinball loss together. Zheng (2011) has

shown that ⇢(A)
⌧ (u) = ⇢⌧ (u) as ↵ ! 0+ in the limit. For illustration, Figure 2.2 in Appendix

B displays the pinball loss function (red curve) for ⌧ = 0.5, the Huber approximation (blue

curve) for " = 10, and the logistic approximation (black curve) for ↵ = 0.2, respectively.

Replacing the loss function in equation (2.6) by a smoothed ⇢
(A)
⌧ , we obtain the following

updated objective function

L
(A)(⌧) =

1

V

VX

v=1

⇢
(A)
⌧

h�
Rv � f(Xv,�(⌧))

�i
. (2.10)

We can minimize (2.10) using standard gradient-based optimization algorithms to obtain

the estimate of �(⌧). Cannon (2011) implemented this optimization procedure in R using

the quasi-Newton optimization algorithm for calculating the Huber loss, while Hatalis et al.

(2019) applied the logistic loss in Python based on the TensorFlow Platform. We adopt

the logistic loss (2.9) in our empirical analysis.1

2.2.3 Smooth pinball neural network

To further enhance the performance of estimating quantiles, Xu et al. (2017) extended the

original QRNN model to composite quantile regression neural network (CQRNN), which

can be used to estimate multiple conditional quantiles (for di↵erent values of ⌧) simultane-

ously and e�ciently. CQRNN shares the same goal as the one of linear composite quantile

regression (CQR) developed by Zou and Yuan (2008), namely combining the strength

across multiple quantile regressions to better capture the complex nonlinear relationships

between the predictors and the predictand (Cannon 2018). CQRNN is similar to QRNN

by structure, where the di↵erence lies in the objective function, which is now summed over

M values of ⌧ :

L
(A)
C

=
1

M

MX

m=1

L
(A)(⌧m), (2.11)

where ⌧ is equally spaced as ⌧m = m

M+1 for m 2 {1, · · · ,M}. The expression in (2.11) is

a composite version of the objective function in equation (2.10) since it evaluates multiple

regression quantiles synthetically. CQRNN is a flexible model not only because it allows

1 We have also tried for the Huber loss and the backtesting results are similar to those of using logistic
loss.
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us to uncover complex nonlinear patterns among variables through the properties of ANN,

but also because it helps improve the estimation e�ciency and prediction accuracy thanks

to the property of CQR (Xu et al. 2017).

Although CQRNN improves the model e�ciency and prediction accuracy, it fails to

prevent the quantile crossover problem. Quantile crossing violates the property that a

cumulative distribution function (CDF) is a monotonically increasing function. As stated

by Ouali et al. (2016), quantile crossing is a serious modelling problem that may result in an

invalid predictive distribution of the predictand. Similarly, Bang et al. (2016) argued that

this problem reduces the estimation accuracy of regression quantiles and can cause trouble

to the subsequent analysis and interpretation of the model. In order to mitigate this issue,

Cannon (2018) developed a monotonic CQRNN (MCQRNN) model that imposes partial

monotonicity constraints on the neural network weights and stacks covariates into an input

matrix. MCQRNN imposes monotonicity constraints on a standard Multi-Layer Perceptron

(MLP) and then it integrates the model architecture of CQRNN to achieve simultaneous

estimation. However, the stacked matrix of covariates complicates the network by adding

overmuch parameters, which makes the estimation computationally ine�cient and induces

the propensity of overfitting.

Recently, Hatalis et al. (2019) proposed an e�cient alternative to MCQRNN namely

smooth pinball neural network (SPNN) that introduces a set of constraints into the CQRNN

framework. To prevent quantile crossing, the constraint QRv(⌧1|Xv)  · · ·  QRv(⌧M |Xv),

8v, needs to be satisfied. However, it is hard to solve the optimization problem via gradient-

based methods with such constraints. To fix this issue, Hatalis et al. (2019) suggested

adding a penalty term to the objective function (2.11), where the penalty term p is defined

as

p = c
1

MV

MX

m=1

VX

v=1

h
max

⇣
0, ✏�

�
Q̂Rv(⌧m|Xv)� Q̂Rv(⌧m�1|Xv)

�⌘i2
, (2.12)

where Q̂Rv(⌧0|Xv) is initialized to zero, ✏ denotes the minimum di↵erence value between

two neighbouring quantiles, and c is the penalty parameter. The objective function of

SPNN is now given by

LS = L
(A)
C

+ p+ �||�||1, (2.13)

where � ⌘ {H ,O} = {H(⌧m),O(⌧m)}m=1,...,M represents the composite parameters of

neural network (i.e. parameters across all values of ⌧). Note that the l1 norm || · ||1 is

applied in (2.13) to mitigate the overfitting problem, where � denotes the regularization
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parameter. The training of SPNN can be conducted using standard gradient-based opti-

mization algorithms. In our paper, we adopt SPNN for completing prediction tasks due to

its virtues of simultaneously estimating multiple quantiles and preventing quantile crossing.

2.3 Portfolio selection under systemic risk

In this section, we first review the CoSR-based portfolio selection problem. Then we

discuss the simulation scheme for generating multivariate return scenarios, which is done

by combining the predicted conditional marginal return densities from SPNN with a fitted

t-copula. Lastly, we show how to calculate the CoSR estimator based on simulated returns.

2.3.1 Portfolio selection problem

We consider an economy with N risky assets. Hereafter, we present the portfolio allocation

problem of an investor that wishes to select the weights of N assets by maximizing an ex-

ante CoSR measure following Lin et al. (2022). Before we describe our portfolio problem,

let us first set some notations. We denote by Rt = (R1,t, ..., RN,t)T the vector of monthly

returns over month t, Rm,t the market return over month t, and Wt = (!1,t, ...,!N,t)T

the vector of portfolio weights held over month t + 1. The portfolio return is given by

Rp,t+1 = W T

t
Rt+1. 0 and 1 denote the column vectors of zeros and ones, respectively.

A generic portfolio optimization problem when an investor’s objective function is given

by a performance measure ⇢(·) can be described as follows

W ⇤
t
= arg max

Wt

⇢t(Rp,t+1), s.t. 1TWt = 1, (2.14)

where the di↵erent candidates of ⇢(·) result in di↵erent optimal portfolios. As we argued in

previous sections, we are interested in building portfolios that take into account systemic

risk. For this reason, we consider the performance measure CoSR that is defined as a ratio

of a conditional reward measure over a conditional risk measure

CoSRt(Rp,t+1) =
CoERt(Rp,t+1)

CoSDt(Rp,t+1)
, (2.15)
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with the conditional reward CoER defined as

CoERt(Rp,t+1) = Et(Rp,t+1 �Rm,t+1|SEt+1) = W T

t
µt|SE � µm,t|SE, (2.16)

where SEt+1 = {Rm,t+1 < C} denotes a systemic event (SE) where the market return

goes below a certain threshold C over next month, µt|SE = Et(Rt+1|SEt+1) is the vector

of conditional expected returns on individual assets, and µm,t|SE = Et(Rm,t+1|SEt+1) is the

conditional expected market return. Analogously, the conditional risk measure CoSD is

defined as the conditional second moment of the portfolio’s excess return, that is:

CoSDt(Rp,t+1) =
⇥
V art(Rp,t+1 �Rm,t+1|SEt+1)

⇤1/2

=
�
W T

t
⌃t|SEWt + �

2
m,t|SE � 2W T

t
�t|SE

�1/2
,

(2.17)

where⌃t|SE = V art(Rt+1|SEt+1) denotes the conditional covariance matrix of asset returns,

�
2
m,t|SE = V art(Rm,t+1|SEt+1) denotes the conditional variance of market return, and �t|SE =

covt(Rt+1, Rm,t+1|SEt+1) is the vector of conditional covariances between individual assets

and the market portfolio. The portfolio selection problem under CoSR is given by

W ⇤
t
= arg max

Wt

�
CoSRt(Rp,t+1)

 
, s.t. 1TWt = 1. (2.18)

As pointed out by Lin et al. (2022), the optimization problem in (2.18) can be solved

analytically under the absence of short-selling constraints (W � 0). However, it is often

the case that we want to place additional constraints on the optimization. For instance,

we might want to restrict the portfolio weights such that none of them is greater than a

certain amount of the overall wealth invested in the portfolio, or we might want to prohibit

short selling by allowing only long positions. The latter scenario is realistic in settings

characterized by systemic risk in which financial regulators ban short-selling to reduce short-

term investment with speculative motives. Hence, we consider no short-sale constraint in

our later exercise. Unfortunately, under short-selling restrictions, the optimization problem

in (2.18) cannot be solved analytically, and thus a numerical procedure must be employed.

As for benchmark portfolios, we consider the unconditional Sharpe ratio and the nega-

tive of portfolio variance as alternative objective functions for ⇢ in (2.14) under short selling

restrictions, where the resulting optimal portfolios are denoted by SR and MVP, respec-

tively. In addition, DeMiguel et al. (2009) argued that the naive portfolio (1/N) should
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be taken as a competitive benchmark to evaluate the performance of more sophisticated

strategies. Hence we add it as a benchmark as well.

2.3.2 Simulation of return scenarios

Although CoSR has no closed-form expression in dynamic settings when non short-selling

constraint is imposed, we can still use a Monte-Carlo simulation-based procedure to imple-

ment our ML and systemic risk-based portfolio. The dynamic SPNN-based CoSR can be

estimated using its empirical analogue that we can calculate from simulated returns over

the subset of simulated crisis scenarios.

In this section, we discuss how we estimate the conditional marginal distributions (den-

sities) of monthly returns. In particular, we consider a nonparametric estimation approach

for predictive densities using conditional quantiles obtained from SPNN models. After fit-

ting the marginal densities, we apply t-copula to model the dependence between assets and

market returns. Lastly, we describe an algorithm for simulating return scenarios.

Estimation of predictive densities

Let Xj,t = {xj,p,t}p=1,...,P ; t=1,...,T for j 2 {i,m} with i = 1, ..., N be the P -dimensional

predictor set for monthly return of firm i or market index, which is available at the end of

month t. Hereafter, we show how the conditional quantiles of returns obtained from SPNN,

i.e. q̂j,t+1(⌧m) = Q̂Rj,t+1(⌧m|Xj,t), can be used to estimate the conditional density pj,t =

p(Rj,t+1|Xj,t) following Cannon (2011). Formally, to recover the predictive probability

density p̂j,t(·) based on conditional quantiles, we distinguish between the following three

cases:

• If q̂j,t+1(⌧1)  Rj,t+1 < q̂j,t+1(⌧M) and ⌧m and ⌧m+1 are such that q̂j,t+1(⌧m)  Rj,t+1 <

q̂j,t+1(⌧m+1), then

p̂j,t =
⌧m+1 � ⌧m

q̂j,t+1(⌧m+1)� q̂j,t+1(⌧m)
. (2.19)

• If Rj,t+1 < q̂j,t+1(⌧1), we assume a lower exponential tail

p̂j,t = z1 exp
⇣
� |Rj,t+1 � q̂j,t+1(⌧1)|

e1

⌘
, (2.20)

where z1 = (⌧2 � ⌧1)/(q̂j,t+1(⌧2)� q̂j,t+1(⌧1)) and e1 = ⌧1/z1.
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• If Rj,t+1 � q̂j,t+1(⌧M), we assume an upper exponential tail

p̂j,t = zM exp
⇣
� |Rj,t+1 � q̂j,t+1(⌧M)|

eM

⌘
, (2.21)

where zM = (⌧M � ⌧M�1)/(q̂j,t+1(⌧M)� q̂j,t+1(⌧M�1)) and eM = ⌧M/zM .

The above estimated predictive densities can also be used to estimate CDF and its inverse

(i.e. quantile function), see the documentation of R package qrnn (Cannon 2011).

Dependence modelling and scenario generation

Once the predictive marginal return distributions for individual assets and the market are

obtained, next is to model joint return distribution via copula function. An (N + 1)-

dimensional copula C is a multivariate distribution function on [0, 1]N+1, with standard

uniform margins. Following Sklar’s theorem (Sklar 1959), any multivariate distribution,

in our case the multivariate distribution function of individual firm and market monthly

returns, can be decomposed into univariate margins and a certain copula function, that is

FR1,...,RN+1 (u1, ..., uN+1) = C
�
FR1(u1), ..., FRN+1(uN+1)

�
, (2.22)

where uj ⇠ U(0, 1) for j = 1, ..., N + 1, RN+1 = Rm, and FRj denotes the marginal CDF

of monthly return on an individual asset or market index.

In our empirical analysis, we use t-copula to model the dependence among monthly

returns. The t-copula function is given by

C⌫,P(u1, ..., uN+1)=

Z
t
�1
⌫ (u1)

�1
· · ·

Z
t
�1
⌫ (uN+1)

�1

�(⌫+N+1
2 )

�(⌫2 )
p
(⌫⇡)N+1|P |

⇣
1 +

x
0P�1

x

⌫

⌘� ⌫+N+1
2

dx,

(2.23)

where � is the Gamma function, P is a correlation matrix, and ⌫ represents the degrees of

freedom both for margins and copula function. We now generate future return scenarios

according to the following steps:

• Given historical monthly returns on firms and market, i.e, {Rj,t}j=1,...,N+1; t=1,...,T , we

estimate the CDF, say F̂⌫j,t , of return series {Rj,t} using a univariate t-location-scale

distribution, i.e. Rj,t ⇠ F̂⌫j,t .

• Convert historical monthly returns over each estimation window into standard uni-

forms using probability transformation: uj,t = F̂⌫j,t(Rj,t), where uj,t ⇠ U(0, 1).
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• Given {uj,t}j=1,...,N+1, we use method of moment to estimate the degrees of freedom

⌫ and the correlation matrix P of the t-copula, see McNeil et al. (2015).

• Simulate dependent standard uniform vectors u(s)
t+1 =

⇣
u
(s)
1,t+1, · · · u

(s)
N+1,t+1

⌘
for s =

1, ..., S, where S is the simulation sample size.

• Convert u(s)
t+1 to return scenarios via quantile transformation: R(s)

j,t+1= F̂
�1
Rj,t+1

(u(s)
j,t+1),

where F̂
�1
Rj,t+1

is the inverse CDF of the fitted j-th marginal empirical distribution

deduced from p̂j,t for j 2 {i,m}. From this, we obtain S simulated return samples

over month t+1 that possess the same dependence structure as the in-sample dataset.

2.3.3 CoSR estimation

To estimate the performance measure CoSR based on simulated returns, we first estimate

the elements of the vector of conditional expected returns on individual assets µt|SE using

the average of the simulated arithmetic asset returns over one-month ahead period, that is

µ̂i,t|SE =

P
S

s=1 R
(s)
i,t+1 I{R

(s)
m,t+1 < C}

#SE
, (2.24)

where S is the number of Monte Carlo simulations and #SE =
P

S

s=1 I{R
(s)
m,t+1 < C} is

the number of scenarios out of S that represent a market distress. For each asset in the

portfolio, the filtered mean vector (average of one-period ahead return conditional on a

market distress episode) is given by µ̂t|SE = (µ̂1,t|SE, ..., µ̂N,t|SE)T . Similarly, the conditional

expected market return µm,t|SE can be estimated as

µ̂m,t|SE =

P
S

s=1 R
(s)
m,t+1 I{R

(s)
m,t+1 < C}

#SE
. (2.25)

Thus, the estimator of CoER can be written as

ˆCoERt = W T

t
µ̂t|SE � µ̂m,t|SE, (2.26)

where Wt denotes the vector of portfolio weights that is known at month t. As for the

CoSD, we first estimate the conditional covariance matrix of the vector of asset returns
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⌃t|SE using the Monte Carlo sample counterpart, with element (i, j) defined as

⌃̂t(i,j)|SE =

P
S

s=1

�
R

(s)
i,t+1 � µ̂i,t

��
R

(s)
j,t+1 � µ̂j,t

�
I{R(s)

m,t+1 < C}
#SE� 1

, (2.27)

for i, j = 1, . . . , N . We then estimate the conditional variance of market return �
2
m,t|SE as

�̂
2
m,t|SE =

P
S

s=1

�
R

(s)
m,t+1 � µ̂m,t

�2
I{R(s)

m,t+1 < C}
#SE� 1

. (2.28)

Analogously, for each asset i, an estimator of the conditional covariance between asset’s i

and market returns �im,t|SE is given by

�̂im,t|SE =

P
S

s=1

�
R

(s)
i,t+1 � µ̂i,t

��
R

(s)
m,t+1 � µ̂m,t

�
I{R(s)

m,t+1 < C}
#SE� 1

, (2.29)

thus the estimator of the vector of conditional covariances between individual assets and

the market portfolio is �̂t|SE = (�̂1m,t, ..., �̂Nm,t)T . Combining the above estimators, we

obtain the following estimator of CoSD at month t:

ˆCoSDt =
⇣
W T

t
⌃̂t|SEWt + �̂

2
m,t|SE � 2W T

t
�̂t|SE

⌘1/2

. (2.30)

2.4 Empirical analysis

2.4.1 Data

Our empirical analysis is conducted using monthly cross-sectional US market data spanning

from January 1985 to December 2021, for a period of 37 years. In this section, we first

provide details of the predictor set and then discuss the choice of portfolio assets.

Description of predictors

We use the 94 monthly stock-level explanatory variables considered in Gu et al. (2020).2

The corresponding variable selection procedure was implemented by Green et al. (2013).

We manually matched this dataset with monthly stock returns obtained from the CRSP

database on the WRDS website. The equities presented in this original dataset are from

2 We manually computed the value-weighted average of characteristics for the S&P 500 market index
using the 500 highest market cap companies. The correlation coe�cient between S&P 500 return and
the constructed market return is beyond 0.99.
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listed firms in NASDAQ, AMEX, and NYSE ranging from 1965 to 2021. The detailed

specifications of variables are available from Online Appendix F of Gu et al. (2020).

In addition to stock-level characteristics, we also consider 14 macroeconomic vari-

ables. Among those, eight are used in Gu et al. (2020), including dividend-price ratio

(macro dp), earnings-price ratio (macro ep), book-to-market ratio (macro bm), net equity

expansion (macro ntis), Treasury-bill rate (macro tbl), term spread (macro tms), default

spread (macro dfy), and stock variance (macro svar); and six are uncertainty indices pro-

posed by Ludvigson et al. (2021), which covers total real uncertainty index (macro TRU),

economic real uncertainty index (macro ERU), total macro uncertainty index (macro

TMU), economic macro uncertainty index (macro EMU), total financial uncertainty in-

dex (macro TFU), and economic financial uncertainty index (macro EFU).

Lastly, we include industry dummies based on the first two digits of SIC code as in

Gu et al. (2020). In summary, we have got 94 stock-specific variables, 14 macroeconomic

variables, and 74 industry dummy variables. Throughout our empirical studies, the ex-

planatory variables of use will be the following covariates as defined in Gu et al. (2020):

zi,t = xt ⌦ ci,t, (2.31)

where ci,t denotes the vector of 94 characteristics for firm i, and xt represents the vector of

macroeconomic variables with an added constant C. Thus, zi,t is the vector of predictors

including interactions between macroeconomic variables and stock-level signals. The total

number of covariates is 94⇥ (14 + 1) + 74 = 1484.

The original dataset used by Gu et al. (2020) spans from March 1957 to December 2016,

covering 60 years of history. However, it includes a large number of missing variables.3

After deleting the missing data, we obtain a dataset that starts in January 1985 and ends

in December 2021. To alleviate the computational burden associated with neural network

training, we further restrict our data to firms existing throughout the whole sample period.

The resulting balanced data panel contains 256,632 monthly observations with 577 firms

in total.
3 All data before January 1985 contains at least one variable with a large portion of missing observations.

Thus, it is not possible to fill in those missing values with the month cross-sectional medians as done by
Gu et al. (2020). Because of this missing data problem, filling with medians does not seem appropriate
since it will negatively a↵ect the explanatory power of some predictors. We, therefore, choose to only
consider the sample period without missing observations.
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The choice of portfolio assets

As argued by Lin et al. (2022), big financial institutions are preferred in systemic risk-

based portfolio analysis since they are more exposed to market distress than non-financial

counterparts. Their pre-analysis results have shown that the objective function of CoSR

is more relevant when the universe of portfolio assets covers large financial institutions

that are potentially systemic, although not necessarily classified as Systemically Important

Financial Institutions (SIFIs). Therefore, we first consider a set of portfolio assets that

includes only large financial institutions.

In November of 2021, the Financial Stability Board (FSB), in consultation with Basel

Committee on Banking Supervision and national authorities, identified a list of Global

SIFIs (G-SIFIs). The total number of G-SIFIs contained in the FSB’s list is 30, among

which 5 are traded on the US market throughout our sample period. Besides, the Board of

Governors of the US Federal Reserve System maintains a list of Domestic SIFIs (D-SIFIs).

This list contains financial firms not big enough to be classified as G-SIFIs, but are still

considered to be domestic systemically important. According to the list released by the

Federal Reserve as of March 2014, 23 banks traded on the US stock market were identified

as D-SIFIs. Among those D-SIFIs, 12 are traded throughout our sample period. Thus,

from the above, we obtain a list of 17 SIFIs consisting of 5 G-SIFIs and 12 D-SIFIs.

Following Brownlees and Engle (2016), we select large financial firms with a market

capitalization greater than 5 bln USD as of the end of June 2007. After applying this filter

criterion to our dataset, we are left with a list of 38 assets that covers the aforementioned

17 SIFIs. Therefore, we finally obtain a list of 38 portfolio assets (hereafter set1) including

17 SIFIs and 21 non-SIFIs. These firms are listed in Table 2.1 within Appendix A.

To add robustness to our empirical findings, we also consider a set of portfolio assets

which are randomly selected from our dataset. This allows us to explore the out-of-sample

performance of our approach on portfolio assets that come from di↵erent sectors and with

di↵erent sizes. Since the intensity of the computational simulation methods that we em-

ploy makes it di�cult to work with high-dimensional portfolios, we restrict ourselves to

a relatively moderate number of portfolio assets and set the dimension of the randomly

chosen set to 50 (hereafter set2). Among those 4 belong to the mining sector, 19 belong to

the manufacturing sector, 5 belong to the transportation sector, 4 belong to the wholesale

sector, 4 belong to the retail sector, 10 belong to the finance sector, and 4 belong to the
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service sector. Table 2.2 in Appendix A lists these assets.

2.4.2 Estimation and selection of SPNN model

Sample splitting

We predict conditional quantiles of asset returns over the evaluation period via a recursive

estimation procedure. To achieve this, we first divide our original sample into two disjoint

but consecutive subsamples. The first subsample - known as in-sample - is further divided

into a training subsample L1 and a validation subsample L2 that we use to estimate and

select the best SPNN model, respectively. The second subsample - known as out-of-sample

- represents a testing subsample L3 on which we make final forecasts. The initial size of

our recursive window is set to 180 monthly observations (from January 1985 to December

1999). The increment size of the window is one month, which results in an out-of-sample

with 264 monthly observations starting from January 2000 and ending in December 2021.

It is well known that the ML models are prone to overfit the data, so it is crucial to go

through a rigorous procedure of hyperparameter tuning. The choice of hyperparameters

helps control the model’s complexity and determine the model’s predictive power as well.

Following Gu et al. (2020), we use the validation subsample L2 to perform model selection.

Specifically, for each iteration, we use as a validation subsample L2 the last 20% of cross-

sectional data of each in-sample for all 577 firms and the market, with the first 80% of

the observations as the training subsample. The neural network model is estimated several

times using di↵erent sets of hyperparameters on L1. The subsequent L2 is then employed to

determine the optimal tuning parameters by evaluating the quantile forecasts based on the

model estimates obtained over L1 for the respective hyperparameter set. In particular, the

quantile score (QS) is adopted for evaluating quantile forecasts, which takes into account

both sharpness and reliability; see Hong et al. (2016). It is defined as the mean of pinball

losses throughout the forecasting horizon and across all targeted quantile levels:

QS =
1

#M ⇥H ⇥ (N + 1)

X

m2M

HX

t=1

N+1X

j=1

⇢
�
Rj,t, q̂j,t(⌧m)

�
, (2.32)

where M is the quantile set of interest (we set M = {1, 2, ..., 99}), Rj,t is the realized return

of individual firm or market, and H indicates the forecast horizon (H = 12 in our case).

After selecting the best set of hyperparameters, we re-estimate our model using the
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in-sample data on L1+L2, based on which we obtain the final quantile forecasts of returns

over the out-of-sample period L3. As for the data preprocessing, we standardize features

by removing the mean and scaling to unit variance. The data is first normalized within

each of the training subsamples during hyperparameter tuning and then normalized for

observations within the whole in-sample when making final forecasts. Due to the compu-

tational intensity of ML-based approaches, we re-fit our model once a year and retain the

corresponding estimates to obtain the quantile forecasts for that year; see Gu et al. (2020)

and Kynigakis and Panopoulou (2021).

SPNN configuration

We consider neural networks with up to three hidden layers. In particular, we consider the

following specifications: (1) SPNN model that has a single hidden layer with 32 neurons

(hereafter SPNN1); (2) SPNN model that has two hidden layers with 32 and 16 neurons

(hereafter SPNN2); and (3) SPNN model that has three hidden layers with 32, 16, and 8

neurons (hereafter SPNN3).

In practice, we adopt the Rectified Linear Unit (ReLU) g(x) = max(0, x) as the activa-

tion function of hidden layers, which promotes sparsity in the number of active neurons and

allows for an e�cient derivative computation as well; see Nair and Hinton (2010) among

others. As for the output layer, we apply the identity activation function g(x) = x follow-

ing Hatalis et al. (2019). Following Gu et al. (2020), we implement the Adaptive moment

estimation algorithm (Adam), which computes individual adaptive learning rates for the

model parameters using estimates of the first and second moments of the gradients.

Training and regularization methods

The network training is time-consuming due to the high degree of computational com-

plexity involved in tuning abundant parameters and processing mass data. To improve

the generalization power of fitted SPNN models and reduce the training cost, in addition

to applying l1 penalization, we consider additional DL techniques including batch train-

ing, batch normalization, early stopping, and forecast averaging; see Gu et al. (2020) and

Kynigakis and Panopoulou (2021) for implementations of these regularization methods.
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Hyperparameters

We use a two-dimensional grid search approach to find the optimal set of hyperparameters

by minimizing the QS among all possible SPNN configurations over the validation set

L2. The tuning parameters are the L1 penalty parameter � and the learning rate of

Adam optimizer lr. For the grid of values we keep following Gu et al. (2020) and set

� 2 [10�5
, 10�3] and lr 2 [10�3

, 10�2].

Our goal of model selection is modest in the sense of fixing a variety of hyperparameters

ex ante, though tuning on a larger set of hyperparameters might help in terms of accuracy.4

Note that unlike Gu et al. (2020) who set batch size to 10,000, we adopt a relatively small

batch size of 32. Although a large batch size tends to give more precise estimates of the

gradients, a small batch size ensures that each training iteration is fast and reduces memory

usage as well. Keskar et al. (2016) argued that using a large batch tends to su↵er from a

generalization drop due to sharp minima, see also Masters and Luschi (2018) and others

for the preference for small batch. For the remaining hyperparameters, we just follow Gu

et al. (2020). Specifically, the number of maximum epochs is set to 100, the patience in

early stopping is set to 5, and the number of ensemble models is set to 10.

2.4.3 Portfolio formation

After fitting SPNN models, we obtain quantile forecasts of monthly returns, based on which

we estimate the conditional marginal return distributions following the method discussed

in Section 2.3.2. Combining the distributional forecasts with the fitted t-copula model, we

generate 30,000 return scenarios at the beginning of each month over the out-of-sample

period.

The portfolio optimization problem defined in (2.18) is solved on a monthly basis by

maximizing the ex-ante CoSR measure. Specifically, we estimate the reward and risk mea-

sures by computing the first and second conditional moments based on filtered realizations

that satisfy the SE condition. Following Acharya et al. (2017) and Brownlees and Engle

(2016), we choose two di↵erent SE thresholds C: i) C = V aR
m

5% indicating the most that

the financial market loses with 95% confidence over the next month, and ii) C = �6.7%,

which corresponds to a 40% decrease in the market index over a six-month period.

4 We also tested for di↵erent combinations of L1-penalty, learning rate, dropout rate, and patience in
early stopping, and the current setting is found to be most e↵ective.
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For the comparison purpose, we assess the out-of-sample performance of our approach

against three benchmark portfolios, namely sample-based SR portfolio, sample-based MVP,

and 1/N portfolio.5 In addition, we also consider S&P 500 Index as a fundamental bench-

mark. We assume that our investors have an initial wealth of FW0 = 1 and an initial

cumulative log return CR0 = 0 at the beginning of the backtesting period (December

1999).

Three main steps are performed to calculate the ex-post final wealth and cumulative

return at the k-th recalibration (k = 0, 1, 2, ..., 263). Firstly, we generate return scenarios

based on the algorithms described in Section 2.3.2, and obtain the solution W ⇤
k+1 to the

optimization problem in (2.14) for each of the performance measures under consideration.

This step is performed using the Matlab built-in function fmincon. Following Kresta et al.

(2015), we randomly choose 20 starting points in order to approach the global optimum

when solving (2.14). Secondly, the ex-post final wealth is calculated as

FWk+1 = FWk(1 +W ⇤T
k

Rk+1), (2.33)

where Rk+1 is the ex-post vector of simple returns between k and k + 1. Thirdly, the

ex-post cumulative log return is calculated as

CRk+1 = CRk + ln(1 +W ⇤T
k

Rk+1). (2.34)

Note that the latter equation reports the cumulative performance of the portfolio net of

wealth. That is, expression (2.33) implies that FWK+1 = FW0

K

⇧
k=0

(1 +W ⇤T
k

Rk+1). Taking

logs from the left and right-hand sides of the latter equation, we obtain (ln FWK+1 �

ln FW0) =
KP
k=0

ln(1 + W ⇤T
k

Rk+1). Therefore, the growth in wealth due to the cumulative

return on the portfolio is given by expression (2.34). By repeatedly computing FWk+1 and

CRk+1, we obtain the wealth and cumulative return paths over the backtesting period.

2.4.4 Results

In this section, we first briefly illustrate the results of return quantile forecasts and examine

the predictive power of candidate predictors using two variable importance measures namely

mean squared sensitivity (MSS) and quantile causality measure (QC). We then provide the

5 To reduce the estimation error of sample covariance matrix, we applied the shrinkage estimator proposed
by Ledoit and Wolf (2004) to SR portfolio and MVP.

73



backtesting results with and without accounting for proportional transaction costs. Finally,

we calculate the portfolio’s long-run marginal expected shortfall (LRMES) to compare the

level of systemic risk generated by di↵erent strategies under investigation.

Quantile forecasts and variable importance

To present some insights on the return quantile forecasts obtained using SPNN models,

in Figure 2.3 we display the realized returns and the prediction intervals obtained using

SPNN1. To further save space, we only show results for the S&P 500 Index below.6 From

Figure 2.3, we see that the return quantile forecasts are able to capture most of the variation

in the realized returns over the out-of-sample period, especially during crisis episodes.

Next we investigate the relative importance of individual predictors for the performance

of SPNN model on both training and testing sets. Gu et al. (2020) highlighted the im-

portance of quantifying the influence of each predictor as a way of interpreting ML-based

models. Unlike Gu et al. (2020) and Kynigakis and Panopoulou (2021) who use the change

in the out-of-sample R2 to measure the variable importance in the context of mean regres-

sion, hereafter we adopt two measures that are more suitable for measuring performance

related to quantile forecasts.

We first consider the Mean Squared Sensitivity (MSS), which measures the sensitivity of

the output of the m-th neuron in the output layer with respect to the p-th input predictor

(Zurada et al. 1994; Yeh and Cheng 2010):

MSSp,m =

sP
t2(L1+L2)

�
sp,m|Xt

�2

|L1|+ |L2|
, (2.35)

with

sp,m

��
Xt

=
@Q̂Rt+1(⌧m|Xt)

@xp,t

(Xt), (2.36)

whereXt = (x1,t, ..., xP,t)T refers to the t-th observation of the P predictors in the in-sample

(L1+L2) on which we perform the sensitivity analysis, sp,m
��
Xt

refers to the sensitivity of the

output of the m-th neuron in the output layer (which in our case is the ⌧m-th conditional

quantile) with respect to the input of the p-th neuron in the input layer evaluated at Xt,

and |Li| denote the number of observations in set Li, for i = {1, 2}. The sensitivities

defined in (2.36) can be calculated using the chain rule for the partial derivatives of the

6 The corresponding results for portfolio assets are available upon request.
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inner layers, see Pizarroso et al. (2020) for more computational details. By computing

MSS, we can measure the sensitivity of model estimation/prediction to the changes in a

candidate predictor. In practice, for each predictor xp, we compute the following average

MSS

M̃SSp =
1

M

MX

m=1

MMSp,m, (2.37)

which allows us to measure the variable importance across all quantiles of interest.

Next, we consider the QRNN causality measure developed by Lin and Taamouti (2022),

which is an extension of the Quantile Causality (QC) measure proposed by Song and

Taamouti (2021). Specifically, for ⌧ 2 (0, 1), the QC of the p-th input variable in QRNN

is defined as

QC
p
(⌧) = ln


E
⇥
⇢⌧

�
Rt+1 �QRt+1(⌧ |X t)

�⇤

E
⇥
⇢⌧

�
Rt+1 �QRt+1(⌧ |Xt)

�⇤
�
, (2.38)

where X t denotes the information set at time t on all predictors, except the p-th predictor.

QC
p
(⌧) measures the degree of causal e↵ect from a certain predictor p to the ⌧ -th quantile

of the predictand given the past of the latter. As pointed out by Song and Taamouti (2021),

QC can be viewed as a measure of the amount of information brought by the past of the

p-th predictor to improve the prediction of the ⌧ -th quantile of asset return Rt+1. Similar

to the average measure M̃SSp, in our empirical analysis we compute the average QC for

each predictor xp as

Q̃C
p
= ln

 1
M |L3|

P
M

m=1

P
t2L3

⇢⌧m

�
Rt+1 � Q̂Rt+1(⌧m|X t)

�

1
M |L3|

P
M

m=1

P
t2L3

⇢⌧m

�
Rt+1 � Q̂Rt+1(⌧m|Xt)

�
�
, (2.39)

where the marginal contribution of each predictor xp is assessed using the out-of-sample

L3 only, whose data does not overlap with those of training or tuning samples.

Figure 2.4 reports the variable importance measured by MSS for the 10 most influential

firm-level predictors and for all macroeconomic variables under consideration based on the

fitted SPNN1 model, while Figures 2.5 and 2.6 in Appendix B report the corresponding

variable importance results measured by QC for set1 and set2, respectively.7 The variable

importance is normalized to sum up to one, which makes it easier to interpret the relative

importance of the predictive power of each predictor compared to those of others. Variables

are ranked such that those with the highest importance are at the top and the lowest are

7 To save space, hereafter we only report the variable importance results obtained by the SPNN1 model.
The corresponding results for other SPNN configurations are similar and are available upon request.
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at the bottom.

The top-10 most influential firm-level features measured by MSS as displayed in the

top panel of Figure 2.4 can be grouped into five categories. The first group contains risk

measures including the total and idiosyncratic return volatilities (retvol, idiovol); Next are

liquidity variables including dollar volume (dolvol), debt capacity/firm tangibility (tang),

bid-ask spread (baspread), turnover (turn), and number of zero trading days (zerotrade);

A single momentum predictor constitutes the third group, which is the short-term reversal

(mom1m); The fourth group includes a valuation ratio, which is the R&D expense-to-

market ratio; The last group consists of industry dummy (sic2). As for the corresponding

results of macroeconomic variables, we see from the bottom panel of Figure 2.4 that all

contribute significantly to model training. Among those, the total financial uncertainty

index (macro TFU) is identified as the most influential macro-level predictor.

Analogously, the rankings based on QC measure as shown in Figures 2.5 and 2.6 within

Appendix B draw a similar conclusion. The results for both portfolio set1 and set2 agree on

a fairly small set of dominant predictive firm-level predictive signals, which covers the risk

measures of total and idiosyncratic return volatilities (retvol, idovol), the liquidity variables

of dollar volume (dolvol), industry-adjusted size (mve ia), bid-ask spread (baspread) and

turnover (turn), the short-term reversal (mom1m), and an accounting variable that indi-

cates the number of years since first Compustat coverage (age). While for the macro state

variables, the results again confirm their predictive power and place the greatest emphasis

on the total financial uncertainty index (macro TFU) in both cases.

To better illustrate the variable importance over recursive windows, we display the

time-varying rankings of predictors in SPNN1 measured by MSS and QC in Figures 2.7 -

2.12 within Appendix B, consecutively. In particular, we rank the importance of individual

predictors according to their average contribution over all quantiles of the returns and

across all recursive in-sample or out-of-sample windows depending on the measure of use.

Columns in these figures correspond to the start year in each window, and color gradient

within each column indicates the most influential (dark blue) to least influential (light blue)

predictors.

Backtesting results

After obtaining the quantile forecasts of returns based on fitted SPNN models, we estimate

the corresponding conditional marginal distributions which we combine with t-copula to
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generate return scenarios that we use to solve the portfolio optimization problem. In

this section, we form a backtesting analysis to assess the economic value of using our

SPNN-based return forecasts for asset allocation under systemic risk. To do so, we com-

pare the out-of-sample performance of SPNN-CoSR portfolios with those of benchmark

portfolios under consideration. The optimized portfolios were built recursively using con-

ditional/unconditional return moments estimated from simulated/historical return obser-

vations at each iteration starting in January 2000. The buy-and-hold portfolio returns are

calculated for a one-month period, and portfolios are rebalanced monthly until the end of

the out-of-sample period (i.e. December 2021).

The backtesting results are displayed in Figures 2.13 and 2.14. There are several no-

ticeable features from these figures. Firstly, we observe that all candidate portfolios out-

perform the market S&P 500 portfolio. Secondly, all portfolios perform poorly during the

2007-2008 financial crisis. The SR, MVP and 1/N strategies lose almost all of their val-

ues during that period, while the SPNN-CoSR portfolios perform significantly better than

others, even though they lost around half of their values since the last peak in 2007. In

particular, among SPNN-CoSR portfolios, the SPNN1-based strategy for both SE thresh-

olds deliver the best out-of-sample performance. Thirdly, all SPNN-based CoSR portfolios

show a strong upward trend in profitability throughout the evaluation period, which can be

mainly attributed to the relatively stable performance during market distress. The back-

testing results confirm the benefits of combining SPNN-based return forecasts with the

incorporation of systemic risk into traditional mean-variance framework when constructing

optimal portfolios.

Tables 2.3 and 2.4 report the values of several performance metrics for set1 and set2,

respectively.8 The results vary among di↵erent strategies depending on the choice of per-

formance measure, with the exception is 1/N portfolio which does not rely on any opti-

mization problem or model estimation. For the case of portfolio set1, the SPNN-CoSR

portfolios dominate all other benchmark strategies in terms of profitability, whichever

model configuration is being considered. Among those the SPNN1-based CoSR portfo-

lio with C = �6.7% delivers the highest value by the end of evaluation period. Besides,

the GARCH-based CoSR portfolios are serious competitors which provide comparable prof-

its over out-of-sample period, but still cannot beat our proposed approach. Specifically, our

8 Note that in Tables 2.3, 2.4, 2.5 and 2.6 we also add the corresponding results obtained using the
GARCH-Copula based approach (denoted by “GARCH-based CoSR”) of Lin et al. (2022), which serves
as an advanced statistical benchmark model.
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investors would multiply their wealth by 20.145 and 21.216 using SPNN1-based CoSR port-

folios with C = V aR
m

5% and C = �6.7%, respectively, which is almost twice than that of

GARCH-based CoSR portfolios with C = V aR
m

5% (12.797) and C = �6.7% (13.650). The

MVP gives the lowest final wealth (5.348) and annual return (0.079), while the sample-

based SR portfolio performs as the second-worst with final wealth of 6.973 and annual

return of 0.092. Interestingly, the naive 1/N strategy outperforms all sample-based port-

folios in terms of profitability, with the former exhibiting a final wealth of 9.541 and an

annual return of 0.108. The backtesting results for portfolio set2 draw similar conclusions

as those of set1, we thus omit the details for brevity.

The results of ex-post Sharpe ratio, Sortino ratio and Calmar ratio again demonstrate

the superiority of proposed approach. In particular, the SPNN1-based CoSR portfolio with

C = �6.7% delivers the highest values for all performance ratios among candidate port-

folios. In addition, we also test the significance of the di↵erence of Sharpe ratios between

SPNN1-based CoSR portfolio and that of each benchmark strategy following Ledoit and

Wolf (2008). The results are reported in Tables 2.7 and 2.8 for set1 and set2, respectively.

According to bootstrap p-values, the null hypothesis of equal Sharpe ratios is rejected at

significance level of 0.01 in all cases. The testing results further confirm the enhanced

portfolio performance of our approach.

Besides the above mentioned performance ratios, investors may consider alternative

statistics to gain deeper insights of their trading strategies. Therefore, we add Maximum

Drawdown (MDD), Maximum One-Month loss (MOL), and average Turnover (TO) as

additional performance metrics. Formally, the MDD is defined as

MDD = max
t0t1t2T0

{rp,t0:t1 � rp,t0:t2} , (2.40)

where rp,t0:t denotes the cumulative portfolio return from time t0 to ti, for i 2 {1, 2}, with

t0 and T0 being the first and last months of evaluation period. MOL measures the largest

decline in portfolio value over one-month period, and the average TO is defined as

TO =
1

T

TX

t=1

✓ NX

i=1

����!i,t+1 �
!i,t(1 +Ri,t+1)

1 +
P

N

j=1 !j,tRj,t+1

����

◆
, (2.41)

where !i,t is the desired weight of portfolio asset i at time t.

Tables 2.3 and 2.4 also report the values of these alternative measures. We first look
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at the results for portfolio set1. While the SPNN1-based CoSR portfolio with C = �6.7%

provides the highest profitability, it has the lowest MDD as well. Furthermore, all SPNN-

based CoSR portfolios regardless of model configurations and SE thresholds outperform

other competitors in terms of MDD, which demonstrates the better performance of our

proposed approach during market distress. Next, the values of MOL of SPNN-based CoSR

portfolios are lower than those of GARCH-based counterparts, while the sample-based MVP

displays the lowest MOL since it focuses on the risk only. Lastly, as for the corresponding

results on portfolio set2, our SPNN-based CoSR portfolios are doing slightly worse than

the GARCH-based CoSR portfolios in terms of MOL, while the formers still outperform

the latters in terms of MDD and other measures of profitability as well.

E↵ects of transaction costs

The estimation of transaction cost (TC) is based on TO as defined in (2.41). After ac-

counting for a proportional TC of c, the portfolio return is now calculated as follows:

R̃p,t+1 = (1 +Rp,t+1)

✓
1� c

NX

i=1

����!i,t+1 �
!i,t(1 +Ri,t+1)

1 +
P

N

j=1 !j,tRj,t+1

����

◆
�1. (2.42)

Gu et al. (2020) argued that, given the large role of price trend predictors employed by ML-

based approaches, it is unsurprising that the ML-based trading strategies are characterized

by relatively high TO. This also holds for our SPNN-based approach as shown in Tables

2.3 and 2.4. Although our SPNN-based CoSR portfolios show a higher TO than that of

the sample-based benchmarks, their values are still much lower than those of the GARCH-

based CoSR portfolios. Unsurprisingly, the 1/N portfolio delivers the lowest TO due to its

well-diversified property.

Although the CoSR portfolios with relatively high TO are more flexible to adapt to

the changes in market conditions than other benchmarks, their portfolio values are likely

to decrease due to their higher TC during rebalancing. To analyze the e↵ects of TC, we

set a relatively high value of c = 50 basis points (bps) and recompute the ex-post paths of

final wealth and cumulative return for all portfolios under consideration. Tables 2.5 and

2.6 report the values of the performance measures after taking into account proportional

TC.9 In short, the inclusion of TC does not change our main conclusions. The SPNN-based

9 To save space, the Figures 2.15 and 2.16 that illustrate the backtesting results after considering trans-
action costs are removed to the Appendix B.
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CoSR portfolios still outperform all other competitors in terms of profitability. Remarkably,

the final wealth of SPNN-based CoSR portfolios is still more than twice that of other

benchmarks excluding the 1/N portfolio.

Portfolio-level systemic risk

In this section, we measure the portfolio-level systemic risk using portfolio’s LRMES pro-

posed by Lin et al. (2022), which is defined as

LRMESp,t =
NX

i=1

!i,t LRMESi,t, (2.43)

where LRMESi,t indicates the expected loss in equity value of asset i over month t. The

portfolio’s LRMES can be interpreted as the expected percentage drop in portfolio value un-

der stressed market conditions. Figure 2.17 illustrates the portfolio-level LRMES over the

evaluation period.10 Overall speaking, the SPNN-based CoSR portfolios give the best per-

formance in terms of systemic risk measured by LRMES. The relatively low portfolio-level

LRMES indicates less potential loss during crisis periods. Specifically, the SPNN-based

CoSR portfolio with C = �6.7% presents the lowest LRMES than all other competitors

throughout the out-of-sample period whichever portfolio set is being considered, while all

benchmark strategies provide much higher and volatile LRMES values.

2.5 Conclusion

We explore whether using return forecasts generated via smooth pinball quantile regression

neural network can add value to systemic risk-based portfolio selection. The optimal port-

folio is constructed by maximizing an ex-ante conditional Sharpe ratio based on simulated

return scenarios, and its out-of-sample performance is compared with that of tangency port-

folio, minimum variance portfolio, and equally-weighted portfolio. The proposed approach

outperforms all other benchmarks in terms of profitability and portfolio-level systemic risk.

The testing results of the di↵erence of Sharpe ratios further confirm its significant out-

performance against benchmark strategies. Although our portfolio is characterized by a

relatively high turnover rate, its superiority is still tenable after accounting for a consider-

10 To save space, we only show the results obtained by SPNN1 here. However, the corresponding results
for other SPNN configurations are available upon request.
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able amount of proportional transaction costs. Another side contribution of our paper is the

implementation of two variable importance measures, which we propose to rank the most

influential predictors in SPNN models. The relevant results demonstrate the substantial

predictive information brought by macroeconomic variables, whereas only a limited number

of firm-level signals contribute to the training and prediction process.
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Figure 2.2: Pinball loss versus smoothed ones.
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Figure 2.3: Conditional quantiles of returns on market index and a few portfolio assets
obtained from SPNN1.
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Figure 2.3: (continued)
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Figure 2.4: Top panel displays the top-10 most influential firm-level predictors in SPNN1
measured by MSS, while the bottom panel reports the corresponding results for all macroe-
conomic variables. Variable importance is an average over all quantiles and recursive in-
sample windows. Variable importance is normalized to sum to one.
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Figure 2.5: Top and bottom panels display the variable importance of top-10 most influ-
ential firm-level predictors and all macroeconomic variables measured by QC in SPNN1
for portfolio set1, respectively. Variable importance is an average over all quantiles and
recursive in-sample windows. Variable importance is normalized to sum to one.
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Figure 2.6: Top and bottom panels display the variable importance of top-10 most influen-
tial firm-level predictors and all macroeconomic variables measured by QC in SPNN1 for
the portfolio set2, respectively. Variable importance is an average over all quantiles and
recursive in-sample windows. Variable importance is normalized to sum to one.
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Figure 2.7: Time-varying variable importance of the top-5 most influential firm-level pre-
dictors measured by MSS. Predictors are ordered based on the average value of their MSS
over recursive trainings, with the most influential features at the top and the least influ-
ential at the bottom. Columns correspond to the year end of each of the 22 in-sample
windows, and color gradients within each column indicate the most influential (dark blue)
to least influential (white) variables.
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Figure 2.8: Time-varying variable importance of the top-50 most influential predictors of
interactions between each firm characteristic with macroeconomic variables measured by
MSS. Columns correspond to the year end of each of the 22 in-sample windows, and color
gradients within each column indicate the most influential (dark blue) to least influential
(white) variables.
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Figure 2.9: Time-varying variable importance of the top-5 most influential firm-level pre-
dictors measured by QC for portfolio set1. Columns correspond to the year start of each of
the 22 out-of-sample windows, and color gradients within each column indicate the most
influential (dark blue) to least influential (white) variables.
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Figure 2.10: Time-varying variable importance of the top-50 most influential predictors of
interactions between each firm characteristic with macroeconomic variables measured by
QC for portfolio set1. Columns correspond to the year start of each of the 22 out-of-sample
windows, and color gradients within each column indicate the most influential (dark blue)
to least influential (white) variables.
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Figure 2.11: Time-varying variable importance of the top-5 most influential firm-level pre-
dictors measured by QC for portfolio set2. Columns correspond to the year end of each of
the 22 out-of-sample windows, and color gradients within each column indicate the most
influential (dark blue) to least influential (white) variables.

93



Figure 2.12: Time-varying variable importance of the top-50 most influential predictors of
interactions between each firm characteristic with macroeconomic variables measured by
QC for portfolio set2. Columns correspond to the year end of each of the 22 out-of-sample
windows, and color gradients within each column indicate the most influential (dark blue)
to least influential (white) variables.
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Figure 2.13: Ex-post final wealth (top panel) and ex-post cumulative return (bottom panel)
paths obtained using di↵erent strategies for portfolio set1. The shaded areas denote reces-
sion periods as defined by NBER.
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Figure 2.14: Ex-post final wealth (top panel) and ex-post cumulative return (bottom panel)
paths obtained using di↵erent strategies for portfolio set2. The shaded areas denote reces-
sion periods as defined by NBER.
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Figure 2.15: Ex-post final wealth (top panel) and ex-post cumulative return (bottom panel)
paths obtained using di↵erent strategies with 50 bps proportional TC for portfolio set1.
The shaded areas denote recession periods as defined by NBER.
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Figure 2.16: Ex-post final wealth (top panel) and ex-post cumulative return (bottom panel)
paths obtained using di↵erent strategies with 50 bps proportional TC for portfolio set2.
The shaded areas denote recession periods as defined by NBER.
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Figure 2.17: Portfolio-level LRMES by SPNN1 for portfolio set1 (top panel) and set2
(bottom panel).
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B - Tables

Table 2.1: Portfolio assets of set1

Firm name Ticker

Synovus Financial Corp. SNV

Je↵eries Financial Group Inc. JEF

Cincinnati Financial Corporation CINF

Comerica Incorporated CMA

Loews Corporation L

Vornado Realty Trust VNO

Fifth Third Bancorp FITB

Regions Financial Corporation RF

M&T Bank Corporation MTB

Franklin Resources, Inc. BEN

Wells Fargo & Company WFC

Huntington Bancshares Incorporated HBAN

Marsh & McLennan Companies, Inc. MMC

Host Hotels & Resorts, Inc. HST

CNA Financial Corporation CNA

JPMorgan Chase & Co. JPM

Humana Inc. HUM

Lincoln National Corporation LNC

The Bank of New York Mellon Corporation BK

Aflac Incorporated AFL

Northern Trust Corporation NTRS

American Express Company AXP

Bank of America Corporation BAC

The PNC Financial Services Group, Inc. PNC

Aon plc AON

Globe Life Inc. GL

Cigna Corporation CI
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Table 2.1: (continued)

Firm name Ticker

The Progressive Corporation PGR

Public Storage PSA

KeyBank KEY

U.S. Bancorp USB

SLM Corporation SLM

American International Group, Inc. AIG

SEI Investments Company SEIC

Truist Financial Corporation TFC

State Street Corporation STT

Zions Bancorporation ZION

UnitedHealth Group Incorporated UNH

Table 2.2: Portfolio assets of set2

Firm name Ticker

Coca-Cola Consolidated, Inc. COKE

Apple Inc. AAPL

Vulcan Materials Company VMC

Associated Banc-Corp ASB

Bel Fuse Inc. BELFA

S&P Global Inc. SPGI

FMC Corporation FMC

Cardinal Health, Inc. CAH

Johnson & Johnson JNJ

Merck & Co., Inc. MRK

Coeur Mining, Inc. CDE

Communications Systems, Inc. JCS

Fifth Third Bancorp FITB

Rollins, Inc. ROL
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Table 2.2: (continued)

Firm name Ticker

First Horizon Corporation FHN

Franklin Electric FELE

Weyco Group WEYS

Barnes Group Inc. B

Diebold Nixdorf DBD

Hawkins, Inc. HWKN

Barnwell Industries, Inc. BRN

McDonald’s Corporation MCD

Safeguard Scientifics, Inc. SFE

Rite Aid Corporation RAD

PotlatchDeltic Corporation PCH

Lee Enterprises, Inc. LEE

Tenet Healthcare Corporation THC

Methode Electronics, Inc. MEI

PNM Resources PNM

John Hancock Income Securities Trust JHS

Nordstrom, Inc. JWN

Southwest Airlines Co. LUV

One Liberty Properties, Inc. OLP

Otter Tail Corporation OTTR

Owens & Minor, Inc. OMI

PACCAR Inc PCAR

Leggett & Platt LEG

Newell Brands NWL

Moog Inc. MOG

Blackstone Mortgage Trust BXMT

Luby’s, Inc. LUB

RLI Corp. RLI

AT&T Inc. T

Sasol Limited SSL
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Table 2.2: (continued)

Firm name Ticker

Seacoast Banking Corporation of Florida SBCF

Enbridge Inc. ENB

Transcat, Inc. TRNS

Trustco Bank TRST

Agnico Eagle Mines Limited AEM

Valmont Industries, Inc. VMI
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Table 2.7: Statistics (set1)

Strategy p value �̂ Original statistic Block size

SPNN1-based CoSR (C=V aR
m

5%)

Sample-based SR 0.005 0.104 3.285 8

Sample-based MVP 0.000 0.126 4.468 10

1/N 0.017 0.100 3.120 10

SPNN1-based CoSR (C=-6.7%)

Sample-based SR 0.005 0.108 3.727 10

Sample-based MVP 0.000 0.130 5.144 10

1/N 0.009 0.104 3.336 10

Table 2.8: Statistics (set2)

Strategy p value �̂ Original statistic Block size

SPNN1-based CoSR (C=V aR
m

5%)

Sample-based SR 0.006 0.159 3.446 10

Sample-based MVP 0.008 0.126 3.128 10

1/N 0.008 0.123 3.213 10

SPNN1-based CoSR (C=-6.7%)

Sample-based SR 0.009 0.153 3.249 10

Sample-based MVP 0.015 0.120 2.852 10

1/N 0.013 0.118 2.881 10
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Chapter 3

Machine learning based portfolio

selection under systemic risk and

asymmetry

3.1 Introduction

In the previous chapters, we focused on the implementation of the conditional Sharpe ratio

(CoSR), which can be seen as a novel reward-risk performance measure defined over sys-

temic event. The backtesting results have demonstrated the superiority of CoSR portfolio

against popular benchmark strategies. However, one drawback of CoSR is that it cannot

quantify the asymmetry in the estimated conditional return distribution. More precisely,

CoSR measures conditional reward and risk through two-sided type measures (i.e. mean

and standard deviation, respectively), where the positive and negative deviations from the

benchmark are weighted in the same manner. It is well known that the asset return distribu-

tion is characterized by asymmetry and heavy tail (Biglova et al. 2014). These properties

would be more pronounced when the market is in distress, where we describe from the

generated return scenarios. In other words, the simulated asset return distributions are

supposed to be more left-skewed under stressed market conditions in our case. Therefore,

in order to account for the conditional asymmetry of portfolio return distribution in the

presence of systemic risk, following the same spirit of Rachev ratio (RR) of Biglova et al.

(2004), this chapter proposes a new performance measure, i.e., the conditional Rachev ra-

tio (CoRR), which inherits the merits of both RR and CoSR measures. Using the same
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machine learning (ML) model from chapter 2, we maximize an ex-ante CoRR measure to

solve for optimal portfolios based on simulated returns in this chapter. The backtesting

results are significantly improved against those from the CoSR-based approach.

3.1.1 Motivation of the new performance measure

Deciding the best performance measure to use for constructing optimal portfolios is an

evergreen question in asset allocation. Following the work of Roy (1952), Sharpe (1966b)

established the popular Sharpe ratio, initially termed as a reward-to-variability ratio, mea-

suring the tradeo↵ between mean return and risk. However, this ratio su↵ers from several

drawbacks as it inherently depends on the normality assumption of the return distribution.

Such drawbacks include ignoring higher order moments of returns, but importantly using

an inadequate measure of risk, namely standard deviation.

Although the Sharpe ratio has been always seen as a reward-to-risk performance mea-

sure, it is essentially a dispersion-type of ratio since its risk measure (i.e. standard devia-

tion) only quantifies uncertainty. As argued by Rachev et al. (2008), risk is an asymmetric

concept that needs to consider downside and upside outcomes of an investment di↵erently.

Thus, the Sharpe ratio becomes unsuitable for assessing risk-adjusted performance once the

normality assumption is relaxed. To overcome this, alternative ratios under non-Gaussian

(asymmetric) distributions have been developed; see Sortino and Satchell (2001) and Orto-

belli et al. (2005). For example, to better measure downside risk in a non-Gaussian setting,

the standard deviation can be replaced by either Value-at-Risk (VaR), Expected Shortfall

(ES), or partial moments of di↵erent orders; see Biglova et al. (2004). Among the existing

reward-to-risk ratios, the Rachev ratio of Biglova et al. (2004) is an advanced alternative

since it is fully compatible with non-Gaussian (asymmetric) return distributions.

Recently, other challenges have been pressing investors and portfolio managers to pre-

vent their investments against extreme market events. For instance, the portfolio perfor-

mance is not only a↵ected by the individual risks of portfolio assets, but also by the systemic

risk of the entire financial market. Hence, relevant performance ratios cannot only con-

sider the realistic aspects of return distributions (asymmetry and heavy-tailedness, etc.),

but also incorporate the potential impacts of market distress. Unfortunately, none of the

above-surveyed measures including the Rachev ratio addresses this concern. In the present

paper, we address this issue by extending the unconditional Rachev ratio to account for
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non-Gaussian returns and allow for the occurrence of systemic events.

Roughly speaking, systemic risk is defined as the possibility of the breakdown of a whole

financial system, which is opposed to the risk relevant to individual entities within the

system. The 2007-2008 financial turmoil and the subsequent crises (e.g. the euro crisis and

the COVID-19 pandemic) are examples that illustrate the consequence of ignoring this type

of risk. While the macroprudential literature has made substantial progress in developing

monitoring tools for assessing the underlying systemic risk within the financial system,

investors and asset managers still lack explicit guidance for controlling a portfolio’s systemic

risk, see Biglova et al. (2014). Despite this urgent need, only a few studies have examined

the implications of systemic risk for investment decisions; see Capponi and Rubtsov (2022)

and references therein. Recently, Lin et al. (2022) studied the tradeo↵ between reward

and risk under systemic risk by introducing a performance ratio that extends the classical

Sharpe ratio. However, their measure is unable to account for non-Gaussian (asymmetric)

returns. In this work, we extend the unconditional Rachev ratio by explicitly incorporating

the occurrence of systemic events to account for both individual risk and systemic risk under

non-Gaussian (asymmetric) return distributions.

Moreover, the out-of-sample performance of optimal portfolios also depends on the

quality of inputs of portfolio optimization. In general, portfolio selection models require

estimating reward and risk measures using either historical or simulated return samples.

The former approach has been often criticized under the mean-variance framework since the

sample-based estimators are subject to substantial estimation errors that can lead to ex-

treme portfolio weights. This is sometimes referred to as the error maximization (Michaud

1989); see DeMiguel et al. (2009) and Tu and Zhou (2011) among others. Nevertheless,

reducing estimation error is of great importance not only to the Gaussian-based mean-

variance model where the estimates of the first two moments of returns are required, but

also to other reward-to-risk models that work under more general distributional assump-

tions. In this paper, we adopt the latter approach by employing a distributional machine

learning (ML) method for return prediction, where the resulting probabilistic return fore-

casts can help mitigate the estimation error of inputs to portfolio optimizers as discussed

below.
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3.1.2 Motivation of using ML techniques for return prediction

To obtain more robust estimators for portfolio optimization, ML models seem to be promis-

ing tools in obtaining more robust estimators for the input parameters of portfolio opti-

mizers, see for example Kaczmarek and Perez (2021). In the past decades, the rapid

development of computer technology combined with the availability of big data enables

us to train more complicated models via ML algorithms, see Messmer (2017). Gu et al.

(2020) define ML as a set of high-dimensional predictive statistical models, associated with

regularization approaches for mitigating overfitting problems and e�cient algorithms for

hyperparameter tuning, respectively. With such advantages and an ever-increasing num-

ber of predictors, the ML techniques have become the favourite approach for improving

stock return predictability in a big data setting; see Abe and Nakayama (2018), Feng et al.

(2018), Chen et al. (2019), Jan and Ayub (2019), Gu et al. (2020, 2021) and Feng et al.

(2021) among others.

Since the ML techniques have shown to be superior to the traditional statistical meth-

ods in terms of stock return prediction, many researchers have applied them to portfolio

optimization and generated satisfying results; see Zhang et al. (2020), Babiak and Baruńık

(2020) and Huang et al. (2021) among others. However, to our knowledge, there is no ex-

isting work that explores the potential economic gains of utilizing ML-based probabilistic

return forecasts in portfolio selection. The existing applications in FinTech literature focus

mostly on obtaining point forecasts of stock returns without accounting for any predictive

distributional information. Moreover, so far the e�ciency of ML-based portfolios has been

tested mainly for characteristic-sorted portfolios (e.g. long-short decile portfolios) without

involving any portfolio optimization strategy. All these motivate us further to investigate

the potential benefit of using a distributional ML approach in portfolio optimization.

Specifically, we solve the portfolio selection problem via a three-stage supervised learn-

ing model. We start by predicting conditional quantiles of cross-sectional returns using a

distributional ML model, i.e., smooth pinball neural network (SPNN), based on which we

estimate the conditional return densities of portfolio assets and the market. Next, we use

t-copula to model the dependence among portfolio assets and the market, and generate

scenarios for future returns. Lastly, based on the simulated returns, we solve the portfo-

lio optimization problem dynamically by maximizing an ex-ante conditional Rachev ratio

(CoRR), which accounts for systemic risk and non-Gaussianity.
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To show the superiority of our portfolio selection approach, we perform a large-scale

comparative study using nearly 600 US equities with 37 years of history from January

1985 to December 2021. Our set of predictors includes 94 firm-specific characteristics, 14

macroeconomic variables, and 74 industry dummies. We use the SPNN model to forecast

monthly return quantiles for portfolio assets and the market index. Thereafter, at the

beginning of each out-of-sample month, we use generated return scenarios to solve the

portfolio optimization problems with CoRR and other performance measures (see below).

Finally, we measure the out-of-sample performance of all portfolio candidates by various

metrics in terms of both profitability and systemic risk.

3.1.3 Contribution and paper structure

Our paper contributes to the literature in multiple ways. Firstly, we shed new light on

reward-risk portfolio optimization by introducing a new performance measure that ac-

counts for both non-Gaussianity (asymmetry) and systemic risk. This is achieved by ex-

plicitly incorporating the occurrence of systemic events into the portfolio’s Rachev ratio.

This proposed ratio is able to quantify the tradeo↵ between conditional expected reward

and loss, where the conditional information is the market distress. The optimal portfolios

obtained by maximizing this new measure are expected to deliver resilient performance over

crisis periods. Secondly, we enrich the asset pricing literature by utilizing a distributional

ML model for predicting cross-sectional returns. We demonstrate its superiority in gen-

erating significant economic gains through a comparative backtesting analysis. Contrary

to the majority of FinTech applications that focus on predicting conditional mean return,

this paper takes advantage of the predictive information implied by the whole conditional

distribution that is obtained using probabilistic return forecasts via a distributional ML

approach. Lastly, we build a bridge between the literature on performance strategy and

systemic risk. More specifically, the risk measure in our proposed performance ratio can

be interpreted as the portfolio-level Conditional Expected Shortfall (CoES), which can be

viewed as an extension of Conditional Value-at-Risk (CoVaR) as argued by Adrian and

Brunnermeier (2016). The portfolio’s CoES relative to the whole financial system refers to

the ES of the portfolio’s active return conditional on extreme market scenarios. Interest-

ingly, if we consider portfolio loss instead of return by putting a minus sign, the resulting

CoES becomes a reward measure.
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The remaining paper is structured as follows. Section 2 formulates the return quantile

prediction using the SPNN model. Section 3 defines the portfolio optimization problem

based on our proposed performance ratio. In that same section, we also describe the method

for probabilistic forecasting, the algorithm for scenario generation, and the estimation of

performance measure, consecutively. Section 4 uses a high-dimensional dataset on the US

market to conduct a large-scale comparative study, in which we assess the out-of-sample

performance of all portfolio candidates. Section 5 concludes. All figures and tables are

reported in the Appendix at the end of this paper.

3.2 Quantile regression neural network

We start by briefly reviewing the traditional quantile regression (QR), which is one of the

building blocks of the quantile regression neural network (QRNN). We then introduce the

mathematical formulation of QRNN and its several advanced variants including smooth

pinball neural network (SPNN). Before we describe our quantile models, let us first set

some notations. Using the terminology of the literature on neural networks, we denote by

R = (R1, ..., RV ) the 1 ⇥ V vector of monthly returns for V training samples, and X =

(X1, ...,XV ), with Xv = (x1,v, ..., xP,v)T , for v = 1, ..., V , the P ⇥V matrix of P covariates

across V training samples, including firm-level features, interactions of each feature with

macroeconomic variables, and industry dummies. Note that in the above notations, we do

not use any subscript to distinguish between di↵erent entities (e.g. individual firms and

the market), but we will do so in Section 3.3.

3.2.1 Model specification

The quantile regression (QR) proposed by Koenker and Bassett (1978) describes the rela-

tionship between conditional quantiles of the predictand given a set of predictors. Formally,

the ⌧ -th conditional quantile of Rv is given by

QRv(⌧ |Xv) = XT

v
�(⌧), 8v 2 {1, ..., V }, ⌧ 2 (0, 1), (3.1)
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where the column vector �(⌧) = [�0(⌧), ..., �P (⌧)]T contains regression coe�cients, and it

can be estimated as

�̂(⌧) = Arg min
�(⌧)

1

V

VX

v=1

⇢⌧

⇥
Rv �XT

v
�(⌧)

⇤
. (3.2)

The asymmetric loss ⇢⌧ (known as pinball loss or check function) is defined as

⇢⌧ (u) =

8
<

:
⌧u u � 0

(⌧ � 1)u u < 0
. (3.3)

The fitted conditional quantile is expressed as

Q̂Rv(⌧ |Xv) = XT

v
�̂(⌧). (3.4)

QR provides a more complete picture of the conditional distribution of R than conditional

mean regression and does not make any distributional assumption on the response vari-

able. Moreover, QR is robust to outliers and can thus be estimated more accurately than

traditional moments regression (Gonzalo and Taamouti 2017). The QR model defined in

(3.1) is, however, unable to capture possible nonlinear relationships between R and X.

To overcome this issue, Taylor (2000) originally applied the quantile regression neural net-

work (QRNN) that combines QR with ANN to depict the complex nonlinear relationships

between predictors and the response variable without pre-specifying a functional form.

Formally, the conditional ⌧ -th quantile of Rv based on a QRNN model f(·) with a single

hidden layer can be formulated as

QRv(⌧ |Xv) = f (Xv,H(⌧),O(⌧)) = g2

h KX

k=1

ok(⌧)g1
� PX

j=1

hj,k(⌧)x
v

j

�i
, (3.5)

where H(⌧) = (h1,1(⌧), ..., hP,K(⌧))
T is the vector of weights that links the input layer

with the hidden layer, O(⌧) = (o1(⌧), ..., oK(⌧))
T is the vector of weights responsible for

connecting the hidden layer with the output layer, and K is the number of hidden neurons.

The activation functions g1(·) and g2(·) are generally specified as a sigmoid/rectifier function

and a linear function, respectively. The set of parameters �(⌧) ⌘
�
H(⌧),O(⌧)

 
can be
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estimated as follows:

�̂(⌧) = Argmin
�(⌧)

L(⌧) = Argmin
�(⌧)

1

V

VX

v=1

⇢⌧

h�
Rv � f(Xv,�(⌧))

�i
, (3.6)

and the fitted conditional quantiles are obtained as Q̂R(⌧ |X) = f(X, �̂(⌧)).

3.2.2 Smoothing pinball loss

Neural network parameters are typically determined via gradient-based nonlinear optimiza-

tion algorithms by which the gradients are calculated using the backpropagation algorithm,

see Cannon (2011). In particular, the gradient of (3.6) can be computed iteratively by up-

dating the backpropagation equations based on the least absolute error function, see Hanson

and Burr (1988). However, ⇢⌧ is non-di↵erentiable at the origin (u = 0), which requests a

smooth approximation of ⇢⌧ in order to apply gradient-based optimization methods.

To smooth ⇢⌧ , one can resort to the Huber norm introduced by Huber (2004), which is

defined as:

h(u) =

8
><

>:

1

2
u
2 |u|  "

"(|u|� 1

2
") otherwise

, (3.7)

where " denotes a threshold value; see Chen (2007), Cannon (2011), Cannon (2018), and Xu

et al. (2017) for empirical applications of Huber norm. The check function is approximated

by

⇢
(A)
⌧

(u) = |⌧ � I{u < 0}|h(u), (3.8)

where I{u < 0} refers to an indicator function that is equal to one when u < 0 and zero

otherwise. An alternative way to smooth the loss function was proposed by Zheng (2011),

which smoothes ⇢⌧ using a logistic function:

⇢
(A)
⌧

(u) = ⌧u+ ↵ ln
�
1 + exp(�u

↵
)
�
, (3.9)

where ↵ > 0 is the smoothing parameter. As argued by Arends et al. (2020), the loss

function in equation (3.9) combines Huber loss and pinball loss together. Zheng (2011) has

shown that ⇢(A)
⌧ (u) = ⇢⌧ (u) as ↵ ! 0+. By applying ⇢

(A)
⌧ in (3.6), we obtain the following
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updated objective function

L
(A)(⌧) =

1

V

VX

v=1

⇢
(A)
⌧

h�
Rv � f(Xv,�(⌧))

�i
, (3.10)

that we can now minimize using standard gradient-based optimization algorithms to obtain

the estimate of �(⌧). In our empirical analysis, we adopt the logistic loss (3.9).1

3.2.3 Smooth pinball neural network

To further enhance the performance of estimating quantiles, Xu et al. (2017) extended the

original QRNN model to composite quantile regression neural network (CQRNN), by which

we can estimate multiple conditional quantiles (for di↵erent values of ⌧) simultaneously

and e�ciently. CQRNN inherits one of the same capabilities as linear composite quantile

regression (CQR) developed by Zou and Yuan (2008), i.e., combining multiple quantile

regressions to better capture complex nonlinear relationships between the predictors and

the predictand (Cannon 2018). Formally, CQRNN is similar to QRNN, and the only

di↵erence between the two lies in the objective function, which is now summed over M

values of ⌧ :

L
(A)
C

=
1

M

MX

m=1

L
(A)(⌧m), (3.11)

where ⌧ is equally spaced as ⌧m = m

M+1 for m 2 {1, · · · ,M}. The expression in (3.11) is

a composite version of the objective function in equation (3.10) since it evaluates multiple

conditional quantiles synchronously. CQRNN is a flexible model not only because it al-

lows us to uncover complex nonlinear patterns among variables taking advantage of ANN,

but also because it helps enhance the process of estimation and prediction thanks to the

property of CQR (Xu et al. 2017).

Although CQRNN improves the model e�ciency and prediction accuracy, it fails to

prevent the quantile crossover problem. Quantile crossing violates the requirement that the

cumulative distribution function (CDF) should be monotonically increasing. As stated by

Ouali et al. (2016), quantile crossing might result in an invalid predictive distribution of the

predictand. Similarly, Bang et al. (2016) argued that this problem can make the estimation

of regression quantiles less e�cient and cause problems in the subsequent analysis. In

1 We have also tried for the Huber loss and the backtesting results are similar to those of using logistic
loss.
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order to mitigate this issue, Cannon (2018) developed a monotonic CQRNN (MCQRNN)

model that imposes monotonicity constraints on a standard MLP and integrates the model

architecture of CQRNN to achieve simultaneous estimation. However, the stacked matrix

of covariates complicates the network by adding overmuch parameters, which makes the

estimation computationally ine�cient and induces the propensity of overfitting.

Recently, Hatalis et al. (2019) proposed an e�cient alternative to MCQRNN namely

smooth pinball neural network (SPNN) that introduces a set of constraints into the CQRNN

framework. To prohibit the crossing between two neighbouring quantiles, the constraint

QRv(⌧1|Xv)  · · ·  QRv(⌧M |Xv), 8v needs to be satisfied. However, it is di�cult to solve

the optimization problem via gradient-based methods with such constraints. To solve this,

Hatalis et al. (2019) proposed to add a penalty term p to the objective function (3.11),

where p is defined as

p = c
1

MV

MX

m=1

VX

v=1

h
max

⇣
0, ✏�

�
Q̂Rv(⌧m|Xv)� Q̂Rv(⌧m�1|Xv)

�⌘i2
, (3.12)

where Q̂Rv(⌧0|Xv) is initialized to zero, ✏ denotes the minimum magnitude between two

adjacent quantiles, and c denotes the penalty parameter. If all constraints are satisfied,

then p = 0. Otherwise, once Q̂Rv(⌧m|Xv) < Q̂Rv(⌧m�1|Xv), the squared di↵erence between

them is incorporated as a penalty into (3.11). Thus, the cost function of SPNN is defined

as

LS = L
(A)
C

+ p+ �||�||1, (3.13)

where � ⌘ {H ,O} = {H(⌧m),O(⌧m)}m=1,...,M represents composite parameters of the

neural network (i.e. parameters across all values of ⌧), || · ||1 refers to the l1 norm, and

� denotes the regularization parameter that controls model complexity and mitigates the

overfitting problem. The training of SPNN can be conducted using standard gradient-

based optimization algorithms. In our paper, we adopt SPNN for completing prediction

tasks due to its virtues of simultaneously estimating multiple quantiles and preventing

quantile crossing.
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3.3 Portfolio selection under non-Gaussianity and sys-

temic risk

In this section, we first review several existing performance ratios, in particular, the Rachev

ratio, which we extend to propose our new measure that allows for non-Gaussianity and

accounts for systemic risk. Next, we formulate the portfolio selection problem using the

proposed measure. Furthermore, we discuss an algorithm for generating return scenarios,

which we use to estimate performance measures (ours and the benchmark measures) and

solve for the optimal portfolios.

3.3.1 Review of performance measures

Conditional Sharpe ratio under systemic risk

The new performance measure that we propose can be seen as an alternative to the condi-

tional Sharpe ratio (CoSR) of Lin et al. (2022). The CoSR measure is defined as

CoSR(Rp) :=
CoER(Rp)

CoSD(Rp)
, (3.14)

where CoER denotes the conditional reward measure, which is defined as the conditional

first moment of the portfolio’s active return:

CoER(Rp) := E(Rp �Rb|SE), (3.15)

where Rp represents portfolio return, Rb denotes benchmark rate (which we set as the

market return Rm in our empirical analysis), and SE = {Rm < C} denotes some systemic

event (SE) during which the market return over the next month goes below a certain

threshold C. Analogously, the conditional risk measure CoSD is defined as the conditional

second moment of the portfolio’s active return:

CoSD(Rp) :=
⇥
V ar(Rp �Rb|SE)

⇤1/2
. (3.16)

By maximizing CoSR in an ex-ante analysis, we are able to construct portfolios that perform

relatively resilient during crisis periods.
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Conditional Rachev ratio under non-Gaussianity

Although by construction, the CoSR measure is able to account for systemic risk, it does

not, unfortunately, allow for non-Gaussian (asymmetric) return distributions. One way to

overcome this issue is to separately measure reward and loss using one-sided type parameter-

dependent measures, e.g., the Rachev ratio and the Farinelli-Tibiletti ratio. By a proper

choice of parameters, they can be adapted to investors’ profiles expressing their preferences

for asymmetric deviations away from the benchmark with non-Gaussian data; see Farinelli

et al. (2009). To account for both non-Gaussianity and systemic risk, based on the uncon-

ditional Rachev ratio of Biglova et al. (2004), Biglova et al. (2014) propose a conditional

Rachev ratio (CoRRBiglova), which is defined as

CoRRBiglova(Rp;↵, �) :=
E(Rp �Rb|R1 � �VaR1�↵(R1), ..., RN � �VaR1�↵(RN))

�E(Rp �Rb|R1  �VaR�(R1), ..., RN  �VaR�(RN))
,

(3.17)

where Ri for i = 1, ..., N denotes asset i’s return and VaR↵(R) = � inf{x|Pr(R  x) > ↵}

is the unconditional value-at-risk (VaR) of return. However, it is worth noting that the

conditional information in this measure cannot be interpreted as a SE. Specifically, the

CoRRBiglova measure does not connect systemic risk with the occurrence of market distress,

instead, it evaluates portfolio performance conditional on the occurrence of idiosyncratic

(individual) risk events for all portfolio assets under consideration. Moreover, CoRRBiglova

takes the expected portfolio’s active return as a reward measure conditional on all asset

prices co-moving in the right tail. This assumption is hard to be satisfied in practice and

might lead to an empty set if the number of portfolio assets is su�ciently large. The same

predicament also holds when estimating the risk measure of CoRRBiglova. In our empirical

analysis, we will provide more computational details related to this issue.

CoES-based conditional Rachev ratio

Unlike Biglova et al. (2014), in our paper, a systemic event (SE) occurs when the market

return goes below a certain threshold C over a time horizon h. This definition is in line with

the systemic risk literature, see, for example, Adrian and Brunnermeier (2016), Brownlees

and Engle (2016), and Acharya et al. (2017). We assume that there exists a benchmark

systemic risk index, for example, the S&P 500 Index, that reflects broad market conditions.

And the investors aim to maximize an ex-ante Rachev ratio conditional on the systemic
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risk index being below C between time t and t + h. By implementing our investment

strategy, one can find portfolios that deliver the best tradeo↵ between reward and risk

of the portfolio’s active return under stressed market conditions and non-Gaussian return

distribution.

In order to construct our new performance measure, we first briefly review a well-known

systemic risk measure namely CoVaR proposed by Adrian and Brunnermeier (2016). The

CoVaR corresponds to the VaR of firm i’s return obtained conditioning on some systemic

event C(Rm) observed for the market portfolio, say CoVaRi|C(Rm)
↵

, is implicitly defined as

Pr(Ri  �CoVaRi|C(Rm)
↵

) = ↵, ↵ 2 (0, 1). (3.18)

Following the similar idea of Capponi and Rubtsov (2022), we replace Ri with the portfolio’s

active return (Rp�Rb) and C(Rm) with SE, and obtain the CoVaR of our portfolio denoted

by CoVaRp|SE
↵

. Given the above, we now define the conditional measure of risk (hereafter

CoETL) which is used to build our performance measure:

CoETL(Rp;↵) := �E(Rp �Rb|Rp �Rb  �CoVaRp|SE
↵

). (3.19)

The CoETL quantifies the conditional expected tail loss of a portfolio relative to a bench-

mark strategy when the market is in distress. Thus, CoETL can be used to measure

portfolio-level systemic risk. Notice that CoETL can be interpreted as the portfolio’s

CoES, where CoES was initially mentioned by Adrian and Brunnermeier (2016) and later

extended to the context of portfolio choice by Capponi and Rubtsov (2022). Here, if we

denote X = (Rb � Rp) as benchmark underperformance, then �X = (Rp � Rb) stands

for the active portfolio return. Consequently, the conditional measure of reward (hereafter

CoETP) can be formulated as

CoETP(Rp;↵) := E(Rp �Rb|Rp �Rb � CoVaRp|SE
1�↵

), (3.20)

which measures the mean gains that are greater than the (1� ↵)-conditional percentile of

(Rp �Rb). Finally, based on the terms (3.19) and (3.20), our new measure is defined as

CoRR(Rp;↵, �) :=
CoETP(Rp;↵)

CoETL(Rp; �)
, (3.21)
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where the two performance levels ↵ and � can be set to di↵erent values, and more discus-

sions about the choice of these numbers will be provided in empirical analysis.

To indicate the severity of SE, di↵erent choices of C can be adopted. In our paper,

we follow Adrian and Brunnermeier (2016) and Acharya et al. (2017) and set C as the

negatively signed VaR of market return, i.e.,

SE =
�
Rm < �VaR↵(Rm)

 
. (3.22)

In the empirical analysis, we adopt two threshold values namely VaR1%(Rm) (hereafter C1)

and VaR5%(Rm) (hereafter C2). In terms of the choice of the benchmark rate, we follow

Lin et al. (2022) and consider Rb = Rm.2

3.3.2 Portfolio selection problem

Suppose that there are N risky assets in our economy. Hereafter, we formulate the asset

allocation problem based on the maximization of some performance measures. Before we

describe our portfolio problem, let us first define some notations that will be used later on.

LetRt = (R1,t, ..., RN,t)T be the vector of monthly returns over month t, Rm,t be the market

return over month t, and Wt = (!1,t, ...,!N,t)T be the vector of portfolio weights held over

month t+1. The portfolio return over next month is denoted by Rp,t+1 = W T

t
Rt+1. 0 and

1 denote the column vector of zeros and ones, respectively.

A generic portfolio optimization problem when an investor’s objective function is given

by a performance measure ⇢(·) can be described as follows

W ⇤
t
= arg max

Wt

⇢(Rp,t+1), s.t. 1TWt = 1, (3.23)

where the di↵erent candidates of ⇢(·) result in di↵erent optimal portfolios. In particular,

the portfolio selection problem under CoRR is given by

W ⇤
t
= arg max

Wt

CoRR(Rp,t+1;↵, �), s.t. 1TWt = 1. (3.24)

In practice, it is often the case for investors to place additional constraints on the optimiza-

2 Maximizing the absolute performance of the portfolio (i.e. Rb = 0) using CoSR and CoRR measures
tends to result in extreme portfolio compositions since the absolute portfolio return is hard to be positive
under extreme market conditions. Therefore, we focus on the case where our investors benchmark to
the market index (i.e. Rb = Rm) with the proposed approach.
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tion. For instance, we might want to restrict the portfolio weights such that none of them

is greater than a certain amount of the overall wealth invested in the portfolio, or we might

want to prohibit short selling by allowing only long positions. The latter scenario is realistic

in settings characterized by systemic risk in which financial regulators ban short-selling to

reduce short-term investment with speculative motives. Hence, we consider no short-sale

constraint (W � 0) in our later exercise.

We consider three di↵erent types of benchmark strategies. The first includes portfolios

constructed based on historical return observations. Specifically, we consider the uncon-

ditional Sharpe ratio and the negatively signed portfolio variance as alternative objective

functions for ⇢ in (3.23) under short selling restrictions, where the resulting optimal port-

folios are denoted by SR and MVP, respectively. The second contains the CoSR portfolio

proposed by Lin et al. (2022), which we solve it using simulated return scenarios. The last

consists of the well-diversified equal-weighted portfolio (1/N), which does not rely on any

model estimation.

3.3.3 Simulation of return scenarios

Although CoSR has no closed-form expression in dynamic settings when the non-short-

selling constraint is imposed, we can still use a Monte-Carlo simulation-based procedure

to implement our ML and systemic risk-based portfolio. The dynamic SPNN-based CoSR

can be estimated using its empirical analogue that we can calculate from simulated returns

over the subset of simulated crisis scenarios.

In this section, we discuss how we estimate the conditional marginal distributions (den-

sities) of monthly returns. In particular, we consider a nonparametric estimation approach

for predictive densities using conditional quantiles obtained from SPNN models. After fit-

ting the marginal densities, we apply t-copula to model the dependence between assets and

market returns. Lastly, we describe an algorithm for simulating return scenarios.

Estimation of predictive densities

Let Xj,t = {xj,p,t}p=1,...,P ; t=1,...,T for j 2 {i,m} with i = 1, ..., N be the P -dimensional

predictor set for monthly return of firm i or market index available at month t. Hereafter,

we show how the conditional quantiles of returns obtained from SPNN, i.e. q̂j,t+1(⌧m) =

Q̂Rj,t+1(⌧m|Xj,t), can be utilized to approximate the conditional density pj,t = p(Rj,t+1|Xj,t)
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following Cannon (2011). Formally, to recover the predictive probability density p̂j,t(·)

based on conditional quantiles, we distinguish between the following three cases:

• If q̂j,t+1(⌧1)  Rj,t+1 < q̂j,t+1(⌧M) and ⌧m and ⌧m+1 are such that q̂j,t+1(⌧m)  Rj,t+1 <

q̂j,t+1(⌧m+1), then

p̂j,t =
⌧m+1 � ⌧m

q̂j,t+1(⌧m+1)� q̂j,t+1(⌧m)
. (3.25)

• If Rj,t+1 < q̂j,t+1(⌧1), we assume a lower exponential tail

p̂j,t = z1 exp
⇣
� |Rj,t+1 � q̂j,t+1(⌧1)|

e1

⌘
, (3.26)

where z1 = (⌧2 � ⌧1)/(q̂j,t+1(⌧2)� q̂j,t+1(⌧1)) and e1 = ⌧1/z1.

• If Rj,t+1 � q̂j,t+1(⌧M), we assume an upper exponential tail

p̂j,t = zM exp
⇣
� |Rj,t+1 � q̂j,t+1(⌧M)|

eM

⌘
, (3.27)

where zM = (⌧M � ⌧M�1)/(q̂j,t+1(⌧M)� q̂j,t+1(⌧M�1)) and eM = ⌧M/zM .

The above estimated predictive densities can also be used to estimate CDF and its inverse

(i.e. quantile function), see the documentation of R package qrnn (Cannon 2011).

Dependence modelling and scenario generation

Once the predictive margins of portfolio assets and the market are obtained, we next model

the joint return distribution via copula. An (N + 1)-dimensional copula C is a multivari-

ate distribution function on [0, 1]N+1, with standard uniform margins. Following Sklar’s

theorem (Sklar 1959), any multivariate distribution, which in our case, the multivariate

distribution function of individual firm and market monthly returns, can be resolved into

univariate margins and a certain copula function

FR1,...,RN+1 (u1, ..., uN+1) = C
�
FR1(u1), ..., FRN+1(uN+1)

�
, (3.28)

where uj ⇠ U(0, 1) for j = 1, ..., N + 1, RN+1 = Rm, and FRj denotes the marginal CDF

of monthly return on an individual asset or market index.

In our empirical analysis, we adopt t-copula to model the dependence among monthly

124



returns. The t-copula function is given by

C⌫,P(u1, ..., uN+1)=

Z
t
�1
⌫ (u1)

�1
· · ·

Z
t
�1
⌫ (uN+1)

�1

�(⌫+N+1
2 )

�(⌫2 )
p
(⌫⇡)N+1|P |

⇣
1 +

x
0P�1

x

⌫

⌘� ⌫+N+1
2

dx,

(3.29)

where � denotes the Gamma function, P represents the correlation matrix, and ⌫ refers

to the degrees of freedom both for margins and copula function. We now generate future

return scenarios according to the following steps:

• Given historical monthly returns on firms and market, i.e, {Rj,t}j=1,...,N+1; t=1,...,T , we

estimate the CDF, say F̂⌫j,t , of return series {Rj,t} using a univariate t-location-scale

distribution, i.e. Rj,t ⇠ F̂⌫j,t .

• Convert historical monthly returns over each estimation window into standard uni-

forms using probability transformation: uj,t = F̂⌫j,t(Rj,t), where uj,t ⇠ U(0, 1).

• Given {uj,t}j=1,...,N+1, we use moment method to estimate the degrees of freedom ⌫

and the correlation matrix P of the t-copula, see McNeil et al. (2015).

• Simulate dependent standard uniform vectors u(s)
t+1 =

⇣
u
(s)
1,t+1, · · · u

(s)
N+1,t+1

⌘
for s =

1, ..., S, where S is the simulation sample size.

• Convert u(s)
t+1 to return scenarios via quantile transformation: R(s)

j,t+1= F̂
�1
Rj,t+1

(u(s)
j,t+1),

where F̂
�1
Rj,t+1

is the inverse CDF of the fitted j-th marginal empirical distribution

deduced from p̂j,t for j 2 {i,m}. From this, we obtain S simulated return samples

over month t+1 that possess the same dependence structure as the in-sample dataset.

3.3.4 CoRR estimation

Before starting the estimation, we set up some more notations. Suppose that we have

generated S return scenarios for each portfolio asset and market index. Let Rsim

i,t+1 =

(R1
i,t+1, ..., R

S

i,t+1)
T , i 2 {1, ..., N} and Rsim

m,t+1 = (R1
m,t+1, ..., R

S

m,t+1)
T denote the S ⇥ 1 col-

umn vectors of simulated returns for asset i and market portfolio, respectively. Thereafter,

Rsim

t+1 = [Rsim

1,t+1 Rsim

2,t+1 · · · Rsim

N,t+1] denotes the S ⇥N matrix storing simulated returns for

all portfolio assets. Furthermore, #SE =
P

S

s=1 I{Rs

m,t+1 < �dVaRq(Rm,t+1)} is the number

of SE scenarios based on the estimated market VaR.

To estimate the CoRR based on simulated returns, we first estimate the VaR of the

market return. The one-month ahead VaR at coverage rate q is estimated using the em-
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pirical qth-quantile of the simulated market returns, say dVaRq(Rm,t+1), for q = 1%, 5%.3

Analogously, the CoVaR of the portfolio return can be implicitly estimated by the ↵-th

empirical quantile of the conditional probability distribution of portfolio active return:

Pr(R̃sim

p,t+1|SE  � \CoVaR
p|SE
↵

) := Pr(Rsim

t+1|SEWt �Rsim

m,t+1|SE  � \CoVaR
p|SE
↵

) = ↵, (3.30)

where Rsim

t+1|SE and Rsim

m|SE denote #SE⇥N matrix and #SE⇥1 column vector of the simu-

lated returns for portfolio assets and market portfolio that satisfy SE condition (hereafter

we use the word “filtered” to refer to SE-truncated scenarios), respectively.

Let R̃sim

p,t+1|SE = (R̃1
p,t+1|SE, ..., R̃

#SE
p,t+1|SE)

T refer to the #SE⇥ 1 vector of filtered return

scenarios of portfolio active return, and #TLE =
P#SE

s=1 I{R̃s

p,t+1|SE  � \CoVaR
p|SE
↵

} is the

number of scenarios out of #SE that represents the conditional tail loss event (TLE). Using

the above, the CoETL in (3.19) can be estimated as

\CoETLt(Rp,t+1;↵) = �
P#SE

s=1 R̃
s

p,t+1|SEI{R̃s

p,t+1|SE  \CoVaR
p|SE
↵

}
#TLE

. (3.31)

Similarly, let #TPE =
P#SE

s=1 I{R̃s

p,t+1|SE � \CoVaR
p|SE
1�↵

} be the number of scenarios that

indicate conditional tail profit event (TPE). The CoETP can then be estimated as

\CoETPt(Rp,t+1;↵) =

P#SE
s=1 R̃

s

p,t+1|SEI{R̃s

p,t+1|SE � \CoVaR
p|SE
1�↵

}
#TPE

. (3.32)

Combining the above estimators, we obtain the following estimator of CoRR at each month

t:

\CoRRt(Rp,t+1;↵, �) =
\CoETPt(Rp,t+1;↵)

\CoETLt(Rp,t+1; �)
. (3.33)

3.4 Empirical analysis

3.4.1 Data

We perform our empirical analysis based on a monthly cross-sectional US dataset that

spans from January 1985 to December 2021. In this section, we first provide details of the

3 Specifically, if the generated S market return scenarios are sorted in ascendant order, then the
dVaRq(Rm,t+1) is calculated as the [(1 � q)S � 1]-th observation, which is just the empirical quantile
of the simulated market return distribution.
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predictor set and then discuss the choice of portfolio assets. All the tables in this section

are included in the Appendix.

Description of predictors

Following Gu et al. (2020), we adopt 94 monthly stock-level explanatory variables.4 The

original data can be retrieved from Dacheng Xiu’s website. The corresponding variable

screening procedure was implemented by Green et al. (2013). We manually matched this

dataset with CRSP monthly returns. The equities presented in this original dataset cover

the firms listed on NASDAQ, AMEX, and NYSE ranging from 1965 till 2021. The detailed

variable definitions can be found in the Online Appendix F of Gu et al. (2020).

Except for the stock-level characteristics, we additionally consider 14 macroeconomic

variables. Among those 8 are adopted by Gu et al. (2020), including dividend-price ratio

(macro dp), earnings-price ratio (macro ep), book-to-market ratio (macro bm), net equity

expansion (macro ntis), Treasury-bill rate (macro tbl), term spread (macro tms), default

spread (macro dfy), and stock variance (macro svar); 6 are uncertainty indices proposed

by Ludvigson et al. (2021), which covers total real uncertainty index (macro TRU), eco-

nomic real uncertainty index (macro ERU), total macro uncertainty index (macro TMU),

economic macro uncertainty index (macro EMU), total financial uncertainty index (macro

TFU), and economic financial uncertainty index (macro EFU).

Lastly, we include industry dummy variables following Gu et al. (2020). In summary,

our predictor set contains 94 stock-specific variables, 14 macroeconomic variables, and 74

industry dummy variables. Throughout our empirical studies, the explanatory variables of

use are the covariates defined as follows:

xi,t = mt ⌦ fi,t, (3.34)

where the vector fi,t covers 94 characteristics for the i-th firm, and the vector mt loads

macroeconomic variables plus a constant value C. Therefore, xi,t denotes the predictor

vector including interaction terms between firm-specific and macro state variables. The

resulting dimension of our predictor set is 94⇥ (14 + 1) + 74 = 1484.

The sample period of Gu et al. (2020) spans from March 1957 to December 2016.

4 We manually computed the value-weighted average of characteristics for the S&P 500 market portfolio
using the 500 highest market cap companies. The correlation coe�cient between S&P 500 return and
the constructed market return is beyond 0.99.
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However, their original data involves a large number of variables with missing values.5 After

deleting those missing data, the remaining sample spans from January 1985 to December

2021. To alleviate the computational burden associated with neural network training,

we further restrict our data to firms existing throughout the whole sample period. The

resulting balanced data panel contains 256,632 monthly observations with 577 firms in

total.

The choice of portfolio assets

As argued by Lin et al. (2022), big financial institutions are preferred in systemic risk-

based portfolio analysis since they are more exposed to market distress than non-financial

counterparts. Their pre-analysis results have shown that the SE-based objective function

is more relevant when the universe of portfolio assets covers large financial institutions

that are potentially systemic, although not necessarily classified as Systemically Important

Financial Institutions (SIFIs). Therefore, we consider large financial firms as portfolio

assets in our empirical analysis.6

In November of 2021, the Financial Stability Board announced a list of Global SIFIs

(G-SIFIs) after negotiation with the Basel Committee on Banking Supervision. The total

number of G-SIFIs contained in that list is 30, among which 5 are traded on the US

market throughout our sample period. Besides, the Board of Governors of the US Federal

Reserve System maintains a list of Domestic SIFIs (D-SIFIs). This list includes financial

firms whose size is not large enough for being classified as G-SIFIs, but still considered to

be systemically important in the domestic market. According to the list released by the

Federal Reserve as of March 2014, 23 banks traded on the US stock market were identified

as D-SIFIs. Among those D-SIFIs, 12 are traded throughout our sample period. Thus,

from the above, we obtain a list of 17 SIFIs consisting of 5 G-SIFIs and 12 D-SIFIs.

Following Brownlees and Engle (2016), we select large financial institutions with a mar-

ket capitalization bigger than 5 billion US dollars by June 2007. After applying this filter

5 All data before January 1985 contains at least one variable with a large portion of missing observations.
Thus, it is impractical to fill in those missing variables with the monthly cross-sectional medians as
implemented by Gu et al. (2020). Because of this missing data problem, filling with medians might not
be suitable since it will negatively a↵ect the predictive power of some predictors. Therefore, we decide
to only focus on the sample period without missing observations.

6 Note that although the financial institutions might possess higher systemic risk than non-financial firms,
our aim is not to only minimize the systemic risk of a portfolio but also maximize its profit under stressed
market condition by maximizing a performance measure. It might be the case that systemic firms also
exhibit a positive active return so it may be profitable to invest in them.
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criterion to our dataset, we are left with a list of 38 assets that covers the aforementioned

17 SIFIs. Therefore, we finally obtain a list of 38 portfolio assets (hereafter set1) including

17 SIFIs and 21 non-SIFIs. These firms are listed in Table 3.1.

3.4.2 Estimation and selection of SPNN model

Sample splitting

We forecast return quantiles using a recursive window method. To achieve this, we first

divide our original sample into two disjoint but consecutive subsamples. The first subsample

- known as in-sample - is further decomposed into a training subsample L1 and a validation

subsample L2 that we use to estimate and select the best SPNN model, respectively. The

second subsample - known as out-of-sample - represents a testing subsample L3 on which we

make final forecasts. The starting window covers 180 monthly observations, which spans

from January 1985 to December 1999. The incremental size of estimation windows is a

one-month period, resulting in an out-of-sample that includes 264 monthly observations

spanning from January 2000 to December 2021.

It is well known that the ML models are prone to overfit the data, so it is critical to

carefully choose the optimal hyperparameters. The choice of hyperparameters helps control

the model’s complexity and determine the model’s predictive power as well. Following Gu

et al. (2020), we use the validation subsample L2 to do the model selection. Specifically, for

every iteration, we use as a validation subsample L2 the last 20% of cross-sectional data of

each in-sample for all 577 firms and the market, with the first 80% of the samples included in

the training subsample. We estimate our SPNN model on L1 using di↵erent combinations

of hyperparameters. The subsequent validation subsample L2 is exploited for determining

optimal hyperparameters through evaluating the predicted conditional quantiles based on

fitted models obtained on L1 with respect to each hyperparameter set. In particular,

the hyperparameters are tuned by minimizing the quantile score (QS) over L2.7 After

choosing the best hyperparameters, we refit our model using the in-sample data on (L1 +

L2) and the resulting estimates are used for obtaining final quantile forecasts over the

out-of-sample L3. As for data preprocessing, we standardize covariates so each has a

7 QS is used for assessing quantile forecasts, which accounts for both reliability and sharpness; see Hong

et al. (2016). Formally, QS = 1
#M⇥H⇥(N+1)

P
m2M

HP
t=1

N+1P
j=1

⇢ (Rj,t, q̂j,t(⌧m)), where M denotes the set of

prespecified quantiles (we set M = {1, 2, ..., 99}), Rj,t is the realized return of individual firm or market,
and H indicates the forecast horizon (H = 12 in our implementation).
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zero mean and unit variance. We first normalize the data on L1 when selecting optimal

hyperparameters and then normalize all observations within the in-sample (L1 +L2) when

making final forecasts. Due to the computational intensity of ML-based approaches, instead

of recursively estimating the model for each month, we do it on an annual basis (i.e. every

12 months) and keep the estimates to make predictions for the following year; see Gu et al.

(2020) and Kynigakis and Panopoulou (2021).

SPNN configuration

We follow the same choice of neural network architectures as in Gu et al. (2020). The

number of neurons within each layer is set in accordance with the geometric pyramid rule

(Masters 1993). Specifically, we consider the following model configurations: (1) SPNN

with a single hidden layer (32) (hereafter SPNN1); (2) SPNN with two hidden layers (32,

16) (hereafter SPNN2); (3) SPNN with three hidden layers (32, 16, 8) (hereafter SPNN3);

(4) SPNN with four hidden layers (32, 16, 8, 4) (hereafter SPNN4); and (5) SPNN with

five hidden layers (32, 16, 8, 4, 2) (hereafter SPNN5).

Following the literature, we adopt the Rectified Linear Unit (ReLU) g(x) = max(0, x)

as the activation function, which promotes sparsity in the weights and enables e�cient

computation of gradients as well (see Nair and Hinton 2010 and Glorot et al. 2011 among

others). For the output layer, we apply the identity activation function g(x) = x following

Hatalis et al. (2019).

Neural network models are usually trained via Stochastic Gradient Descent (SGD)

(Robbins and Monro 1951). Unlike the standard gradient descent that computes gradients

within each iteration on the complete training samples, SGD carries out the computation on

a random segment of the training data and performs backpropagation iteratively. As argued

by Gu et al. (2020), this operation sacrifices the accuracy in exchange for substantially

speeding up the training process.8

Training and regularization methods

The training of neural networks is very time-consuming due to the high degree of compu-

tational complexity involved in tuning a big number of parameters and processing a large

amount of data. To improve the generalization power of fitted SPNN models and reduce the

training cost, in addition to applying l1 penalization, we consider additional DL techniques

8 We adopt the Adam optimizer proposed by Kingma and Ba (2014) for model training.
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including batch training, batch normalization, early stopping, and forecast averaging; see

also Gu et al. (2020) and Kynigakis and Panopoulou (2021) for implementations of these

regularization methods.9

Hyperparameters

We use a two-dimensional grid search approach to select optimal hyperparameters by min-

imizing the QS among all possible SPNN configurations over the validation set L2. The

tuning parameters are the L1 penalty parameter �1 and the learning rate of Adam opti-

mizer lr. For the grid of values we keep following Gu et al. (2020) and set �1 2 [10�5
, 10�3]

and lr 2 [10�3
, 10�2].

Our goal of model selection is modest in the sense of fixing a variety of hyperparam-

eters ex-ante to reduce the computational cost, though tuning on a more extensive set of

hyperparameters might help in terms of accuracy.10 Note that unlike Gu et al. (2020) who

set the batch size equal to 10,000, we choose to use a relatively small batch size of 32.

Although a large batch size tends to give more precise estimates of the gradients, a small

batch size ensures that each training iteration is fast and reduces memory usage as well.

Keskar et al. (2016) stated that using a large batch tends to su↵er from a generalization

drop due to sharp minima, see also Bengio (2012) and Masters and Luschi (2018) for the

preference of using a small batch. For the remaining hyperparameters, we follow the same

choice of Gu et al. (2020). Specifically, the number of epochs is set to 100, the patience in

early stopping is set to 5, and the number of ensemble models is set to 10.

3.4.3 Portfolio formation

After fitting the SPNN models, we obtain quantile forecasts of monthly returns, based

on which we estimate the conditional marginal return distributions following the method

discussed in Section 3.3.3. Combining the distributional forecasts with the fitted t-copula

model, we generate 30,000 return scenarios at the beginning of each out-of-sample month.

The portfolio optimization problem defined in (3.24) is solved on a monthly basis by maxi-

mizing the ex-ante CoRR measure based on generated return scenarios, where the CoRR is

9 As argued by Gu et al. (2020), L2-penalty provides similar regularization e↵ect as early stopping.
Therefore, we only apply L1-penalty to the loss function as defined in (3.13).

10 We also tested for di↵erent combinations of L1-penalty, learning rate, dropout rate, and patience in
early stopping, and the current setting is found to be most e↵ective.
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estimated by (3.33). To obtain a robust estimator of our CoRR measure, we follow Biglova

et al. (2014) and set relatively large parameters of ↵ = � = 10%.

For the comparison purpose, we evaluate the out-of-sample performance of CoRR port-

folios against those of four benchmark portfolios, namely the ML-based CoSR portfolio

of Lin et al. (2022), the sample-based SR portfolio, the sample-based MVP, and the 1/N

portfolio.11 To reduce the estimation error of the sample covariance matrix, we applied

the shrinkage estimator developed by Ledoit and Wolf (2004) to SR portfolio and MVP.

Furthermore, we keep using active returns for all portfolios to ensure the comparability of

backtesting results. In addition, we also consider S&P 500 market portfolio as a fundamen-

tal benchmark. To avoid the composition of portfolios that allocate large negative weights

to all assets under SE conditions, we do not allow for short sales in our analysis. The

initial values of wealth and cumulative return at the beginning of the backtesting period

(December 1999) are set to one and zero respectively, i.e., FW0 = 1 and CR0 = 0.

We perform three steps to compute the final wealth and cumulative return at the k-th

rebalancing, for k 2 {0, ..., 263}. We first generate return scenarios based on the algorithms

described in Section 3.3.3, and obtain the optimal weightsW ⇤
k+1 for each of the performance

measures under consideration. This step is performed using the Matlab built-in function

fmincon.12 Then, we compute the final wealth as

FWk+1 = FWk(1 +W ⇤T
k

Rk+1), (3.35)

where Rk+1 is the vector of realized returns over period k+1. Lastly, the cumulative return

is computed as

CRk+1 = CRk + ln(1 +W ⇤T
k

Rk+1). (3.36)

Note that the latter equation reports the cumulative performance of the portfolio net of

wealth. That is, expression (3.35) implies that FWK+1 = FW0

K

⇧
k=0

(1 +W ⇤T
k

Rk+1). Taking

logs of both sides of the latter equation, we obtain (ln FWK+1 � ln FW0) =
KP
k=0

ln(1 +

W ⇤T
k

Rk+1). Therefore, the growth in wealth due to the cumulative return on the portfolio

is given by expression (3.36). By repeatedly computing FWk+1 and CRk+1 for di↵erent

11 We have considered adding the CoRRBiglova measure of Biglova et al. (2014) as an additional benchmark,
however, following their model setting, we were not able to get enough subsets to estimate the measure
based on our dataset. We have further increased the simulation sample size from 30,000 to 60,000, but
the resulting subsamples are still very limited and thus cannot be used to obtain a robust estimator.
We thus exclude it from our comparison set.

12 Following Kresta et al. (2015), we randomly choose 20 starting points to approach the global optimum.
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objective functions, we obtain the ex-post paths of final wealth and cumulative return over

the evaluation period.

3.4.4 Results

In this section, we first illustrate return quantile forecasts and examine the predictive power

of predictors using two variable importance measures namely mean squared sensitivity

(MSS) and quantile causality measure (QC). Thereafter, we provide backtesting results

with and without accounting for transaction costs. Finally, we calculate the portfolio’s

long-run marginal expected shortfall (LRMES) and CoES to compare the level of systemic

risk generated by di↵erent strategies under investigation. All the figures and tables that

are related to the empirical analysis can be found in a separate online appendix.

Quantile forecasts and variable importance

To present some insights on the return quantile forecasts using SPNN models, in Figure

3.1 we display the realized returns and the prediction intervals obtained using SPNN1.

To conserve space, we only show relevant results for the market portfolio and three assets

(CMA, WFC and JPM).13 From Figure 3.1, we see that the return quantile forecasts are

able to capture most of the variation of realized returns, especially during crisis episodes.

Next, we measure the variable importance within both training and testing subsamples.

Gu et al. (2020) highlighted the importance of analyzing the contributions of individual

predictors for better interpreting ML-based models. Unlike Gu et al. (2020) and Kynigakis

and Panopoulou (2021) who computed the change in out-of-sample R
2 to measure the

variable importance in the context of mean regression, hereafter we adopt two measures

that are directly related to measuring the performance of quantile forecasts. As a first

measure, we consider the Mean Squared Sensitivity (MSS) that measures the sensitivity

of m-th output neuron with respect to p-th input variable (Zurada et al. 1994; Yeh and

Cheng 2010):

MSSp,m =

sP
t2(L1+L2)

�
sp,m|Xt

�2

|L1|+ |L2|
, (3.37)

with

sp,m

��
Xt

=
@Q̂Rt+1(⌧m|Xt)

@xp,t

(Xt), (3.38)

13 The results for the remaining portfolio assets are available upon request.
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where Xt = (x1,t, ..., xP,t)T refers to the t-th observation of P predictors within the in-

sample (L1 + L2), sp,m
��
Xt

denotes the sensitivity of m-th output neuron (which in our

case is the ⌧m-th conditional quantile) with respect to p-th input neuron evaluated at Xt,

and |Li| denote the number of observations in set Li, for i = {1, 2}. The sensitivity term

(3.38) is calculated using the chain rule, see Pizarroso et al. (2020) for more computational

details. By computing MSS, we can measure the sensitivity of model estimation/prediction

to the changes in a candidate predictor. In practice, for each predictor xp, we compute the

following average MSS

]MSSp =
1

M

MX

m=1

MMSp,m. (3.39)

It is worth noting that MSS defined above is able to identify and rank predictors of QRNN

models across all quantiles of interest.

Next, we consider the QRNN causality measure developed by Lin and Taamouti (2022),

which is an extension of the Quantile Causality (QC) measure proposed by Song and

Taamouti (2021). Specifically, for ⌧ 2 (0, 1), the QC of the p-th input variable in QRNN

model is defined as

QC
p
(⌧) = ln


E
⇥
⇢⌧

�
Rt+1 �QRt+1(⌧ |X t)

�⇤

E
⇥
⇢⌧

�
Rt+1 �QRt+1(⌧ |Xt)

�⇤
�
, (3.40)

where X t denotes the information set of predictors available by month t, except for the

p-th predictor. QC
p
(⌧) measures the degree of Granger causality from a certain predictor

p to the ⌧ -th quantile of the predictand given the past of the latter. QC quantifies the

predictive information provided by the historical observations of p-th predictor regarding

the prediction of ⌧ -th conditional return quantile. Similar to the average measure ]MSSp,

in our empirical analysis we compute the average QC for each predictor xp as

gQC
p
= ln

 1
M |L3|

P
M

m=1

P
t2L3

⇢⌧m

�
Rt+1 � Q̂Rt+1(⌧m|X t)

�

1
M |L3|

P
M

m=1

P
t2L3

⇢⌧m

�
Rt+1 � Q̂Rt+1(⌧m|Xt)

�
�
, (3.41)

where the marginal contribution of each predictor xp is assessed using the out-of-sample

L3 only, whose data does not overlap with those of training or tuning samples.

Based on the fitted SPNN1 model, Figure 3.2 reports the variable importance measured

by MSS for the 10 most influential firm-level predictors and all macroeconomic variables

under consideration, while Figure 3.3 reports the results of the corresponding variable
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importance measured by QC.14 The variable importance is normalized to sum up to one,

which makes it easier to interpret the relative importance of the predictive power of each

predictor compared to those of others. Variables with the highest (lowest) importance are

displayed on the top (bottom).

The top 10 most influential firm-level features measured by MSS as shown in the top

panel of Figure 3.2 can be grouped into five categories. The first group contains risk

measures such as the total and idiosyncratic return volatility (retvol and idiovol); the

second one represents liquidity variables like dollar volume (dolvol), debt capacity/firm

tangibility (tang), bid-ask spread (baspread), turnover (turn), and number of zero trading

days (zerotrade); the third group corresponds to a single momentum predictor namely the

short-term reversal (mom1m); the fourth group is given by the R&D expense-to-market

ratio (valuation ratio); and the last group consists of industry dummy (sic2). As for the

macroeconomic variables, from the bottom panel of Figure 3.2, we see that all of them

contribute significantly to model training, but among those, we find that the total financial

uncertainty index (macro TFU) can be ranked as the most influential macro-level predictor.

Analogously, the rankings based on the QC measure as shown in Figure 3.3 draw similar

conclusions. The results reveal a fairly small set of dominant firm-level predictors, which

covers the risk measures total and idiosyncratic return volatility, the liquidity variables

dollar volume, industry-adjusted size (mve ia), bid-ask spread and turnover, the short-term

reversal, the valuation ratio of total debt-to-capitalization ratio (lev), and an accounting

variable that indicates the number of years since first Compustat coverage (age). For the

macro variables, the results confirm again their predictive power and place the greatest

emphasis on the total financial uncertainty index.

To further illustrate the variable importance, Figures 3.4 to 3.7 display the time-varying

rankings of the predictors in the SPNN1 model as measured by MSS and QC. In particular,

these figures rank the importance of individual predictors according to their average con-

tribution in terms of predictive power over all quantiles of returns and across all recursive

in-sample and out-of-sample windows depending on the measure in use. Characteristics

are sorted based on their average ranks over all windows, with the most (least) influential

ones placed at the top (bottom). The results displayed in these figures again confirm the

most influential predictors as identified before.

14 To save space, hereafter we only report the variable importance results obtained by SPNN1 model. The
corresponding results for other SPNN configurations are similar and are available upon request.
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Backtesting results

In this section, we use the return quantile forecasts obtained from the fitted SPNN models

to estimate conditional marginal return distributions, based on which we simulate returns

using the copula method and solve the portfolio optimization problem.

Thereafter, we perform a backtesting analysis to evaluate the economic gains of apply-

ing SPNN-based probabilistic return forecasts to portfolio selection under systemic risk.

In particular, we compare the out-of-sample performance of SPNN-CoRR portfolios with

those of several benchmark portfolios. The optimized portfolios were built recursively us-

ing performance measures that are estimated from either simulated or historical return

observations over the evaluation period. All portfolios are monthly rebalanced.

The backtesting results are displayed in Figure 3.8.15 There are several noticeable

features from these figures. Firstly, we observe that all candidate portfolios outperform

the market S&P 500 portfolio. Secondly, all portfolios perform less well during the 2007-

2008 financial crisis. The SR, MVP and 1/N strategies lose almost all of their values

during that period, while the SPNN-CoSR portfolios perform significantly better than

others, even though they lost around half of their values since the last peak in 2007. In

particular, within SPNN-CoSR portfolios, the SPNN1-based strategy delivers the best out-

of-sample performance for both SE thresholds. Thirdly, all SPNN-based CoSR portfolios

show a strong upward trend in profitability throughout the evaluation period. This strong

performance can be mainly attributed to their relatively stable performance during market

distress. Thus, the backtesting results confirm the benefits of combining SPNN-based

return forecasts with the incorporation of systemic risk into the traditional mean-variance

framework when constructing optimal portfolios.

Table 3.2 reports the values of several statistics that are used to measure portfolio

performance. The results vary among di↵erent strategies depending on the estimators

of the performance measure employed during portfolio optimization, with the exception

being the 1/N portfolio which does not rely on any optimization or model estimation.

Overall, the SPNN1-based CoRR portfolios perform the best in terms of out-of-sample

profitability, whichever SE threshold is being considered. Moreover, the SPNN1-based

15 We omit the backtesting results obtained by SPNN4 and SPNN5 since we found that the portfolio
performance starts to deteriorate from SPNN3. Our findings are in agreement with recent studies, see,
for example, Gu et al. (2020) and Kynigakis and Panopoulou (2021), where the authors argued that
“shallow” learning outperforms “deep” learning. Increasing the model complexity does not necessarily
benefit us in terms of economic gains. However, the remaining results using other SPNN configurations
under consideration are available upon request.
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CoRR portfolios outperform SPNN1-based CoSR portfolios by a wide margin, with the

latter being considered advanced ML-based benchmarks. Specifically, using SPNN1-based

CoRR portfolios with SE thresholds C1 and C2, investors would multiply their wealth by

46.385 and 35.031 respectively, which are near twice that of SPNN1-based CoSR portfolios

(15.052 for C1 and 20.141 for C2). The sample-based MVP o↵ers the lowest final wealth

(5.348) and annual return (0.079), while the sample-based SR portfolio performs the second

worst with a final wealth of 6.973 and an annual return of 0.092. Interestingly, the naive 1/N

strategy outperforms all sample-based portfolios in terms of profitability, with the former

exhibiting a final wealth of 9.541 and an annual return of 0.108. The results of Sharpe

ratio, Sortino ratio and Calmar ratio demonstrate again the superiority of our proposed

approach. The SPNN1-based CoRR portfolio with C2 delivers the highest values of Sharpe

ratio (0.811) and Sortino ratio (1.368), while the SPNN1-based CoRR portfolio with C1

presents the highest Calmar ratio (0.413) among all competitors.

Besides the above-mentioned performance ratios, investors may consider alternative

measures to gain deeper insights into their trading strategies. Therefore, we add maxi-

mum drawdown (MDD), average turnover rate (TO), and Farinelli-Tibiletti ratio (FT) as

alternative metrics. Formally, the MDD is calculated as

MDD = max
t0t1t2T0

{rp,t0:t1 � rp,t0:t2} , (3.42)

where rp,t0:ti , for i 2 {1, 2} denotes the cumulative portfolio return from time t0 to ti, with

t0 and T0 being the first and last month of evaluation period. The average TO is defined

as

TO =
1

T

TX

t=1

✓ NX

i=1

����!i,t+1 �
!i,t(1 +Ri,t+1)

1 +
P

N

j=1 !j,tRj,t+1

����

◆
, (3.43)

where !i,t is the desired weight of portfolio asset i at time t. The FT ratio was proposed

by Farinelli and Tibiletti (2008) to capture the asymmetric information of portfolio return

distribution. Unlike the Sharpe ratio, which measures the tradeo↵ between reward and risk

via two-sided type measures (by which the asymmetric deviations from the benchmark are

equally weighted), the FT ratio is a one-sided type measure that describes the volatility

above and below a benchmark. Formally, the FT ratio is given by

FT(Rp; p, q) =

�
E(Rp �Rb)

p

+

�1/p
�
E(Rb �Rp)

q

+

�1/q , (3.44)
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where (X)+ = max(X, 0), and p � 1, q � 1 are the orders of the corresponding partial

moments. The FT ratio is an alternative reward-risk measure that is compatible with

skewed return distributions, see for example Bouaddi and Taamouti (2013). Note that the

FT ratio implicitly embraces some well-known indices in the literature. For example, for

p = q = 1, FT represents the Omega ratio of Keating and Shadwick (2002), while for p = 1

and q = 2, FT corresponds to the Upside Potential ratio of Sortino et al. (1999).

Table 3.2 reports the values of the above-mentioned alternative measures. Overall, both

ML-based CoSR and CoRR portfolios provide lower MDD than the rest whichever systemic

risk-based performance measure is used. In particular, the SPNN1-based CoRR portfolio

with C1 presents the lowest MDD of 0.461, while the sample-based MVP delivers the high-

est MDD of 0.722. In terms of the FT ratio, the SPNN1-based CoRR portfolios dominate

other benchmark strategies, regardless of the choice of SE threshold. This indicates that

our proposed approach achieves better performance under di↵erent asymmetric preferences

depending on di↵erent choices of partial moment orders.

E↵ect of transaction costs

The calculation of transaction cost (TC) is based on TO as defined in (3.43). After ac-

counting for a proportional TC of c, the portfolio return is now calculated as follows:

R̃p,t+1 = (1 +Rp,t+1)

✓
1� c

NX

i=1

����!i,t+1 �
!i,t(1 +Ri,t+1)

1 +
P

N

j=1 !j,tRj,t+1

����

◆
�1. (3.45)

Given the major role that momentum predictors play in ML models, it is perhaps unsur-

prising that our SPNN-based trading strategies are characterized by relatively high TO,

see also Gu et al. (2020). As we can see from Table 3.2, the SPNN1-based CoSR portfolio

with C1 has the highest TO of 0.210, while the SPNN1-based CoRR with C2 provides the

second highest TO of 0.180. The sample-based portfolios possess much lower TO (0.038 for

SR and 0.028 for MVP) at the cost of less profitability. Unsurprisingly, the 1/N portfolio

delivers the lowest TO due to its well-diversified property.

Although the ML-based portfolios with relatively high TO are more flexible to adapt to

the changes in market conditions than other benchmarks, their values are likely to decrease

due to the higher rebalancing TC. To analyze the e↵ect of TC, we set a moderate level of

c = 20 basis points (bps) and recompute the ex-post paths of final wealth and cumulative

return for all portfolios under consideration. Figure 3.9 illustrates the ex-post paths of

138



final wealth and cumulative return after taking into account TC, whereas Table 3.3 reports

the relevant performance measures. In short, we find that the inclusion of proportional

TC does not alter our main conclusions. Generally speaking, the SPNN1-based CoRR

portfolios still outperform all other competitors in terms of profitability and performance

metrics. Remarkably, the final wealth of SPNN-based CoRR portfolios is more than twice

that of SPNN1-based CoSR portfolios and is five times more than that of sample-based

portfolios.

Portfolio-level systemic risk

In this section, we define two portfolio-level systemic risk measures. The first one is the

portfolio’s LRMES (Lin et al. 2022):

LRMESp =
NX

i=1

!i LRMESi, (3.46)

where LRMESi indicates the expected loss of asset i over next month. The LRMESp can

be interpreted as the expected percentage drop in portfolio value under stressed market

conditions, which we estimate using generated return scenarios. In the same spirit, we

extend the CoES measure to a portfolio-level version as follows

CoESp|SE
↵

=
NX

i=1

!i CoES
i|SE
↵

, (3.47)

where CoESi|SE
↵

= E(Ri|Ri  CoVaRi|SE
↵

) refers to the expected tail loss of asset i condi-

tional on market distress.16 Compared to the portfolio’s LRMES defined previously, the

portfolio’s CoES considers a more extreme scenario where both portfolio assets and the

market can be in a low-return environment.

Figure 3.10 illustrates the time-varying portfolio’s LRMES and CoES over the evalu-

ation period.17 Overall speaking, the SPNN-based CoRR portfolios o↵er the best perfor-

mance in terms of systemic risk. The relatively low values of LRMES and CoES indicate

that these portfolios will su↵er from less potential losses during crisis periods. Specifically,

the SPNN1-based CoRR portfolio with C1 provides the lowest LRMES over the first half of

16 It is worth noting that CoES is subadditive and is able to account for distributional aspects within the
conditional tail.

17 To save space, we only show the results obtained by SPNN1 here. However, the corresponding results
for other SPNN configurations are available upon request.
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the evaluation period, while the SPNN1-based CoRR portfolio with C2 becomes the winner

over the second half. The SPNN1-based CoSR portfolio with C2 is a serious competitor

that presents slightly higher LRMES in the middle of the evaluation period. Similarly,

the SPNN1-based CoRR and CoSR portfolios with C1 deliver the lowest and the second-

lowest CoES among all candidate competitors, respectively. Thus, one can conclude that

both ML-based strategies are able to minimize the portfolio-level systemic risk compared

to other benchmark strategies, among which the CoRR measure performs the best.

3.5 Conclusions

In this paper, we propose a novel performance ratio that simultaneously takes into account

systemic risk and non-Gaussianity when building optimal portfolios. The proposed mea-

sure extends the unconditional Rachev ratio by explicitly incorporating the occurrence of

extreme events. To robustify the portfolio optimization and better represent the extreme

market events, instead of relying on historical returns only, we generate a large number of

return scenarios via a Monte Carlo method. This is done by first obtaining probabilistic re-

turn forecasts via a quantile regression neural network (regarded as a distributional machine

learning approach), and then simulating returns via a fitted t-copula model. Thereafter, a

large-scale comparative analysis using US data is conducted to compare the out-of-sample

performance of our proposed portfolio selection approach against popular benchmarks.

Our backtesting results demonstrate the superiority of the SPNN-based CoRR portfolio in

terms of profitability, with its outperformance staying robust after the inclusion of moder-

ate transaction costs. Last but not least, we also compare the portfolio-level systemic risk

among all candidates using the portfolio’s LRMES and CoES. Our SPNN-based CoRR

portfolio, while characterized by the highest profitability, it delivers the lowest systemic

risk throughout the evaluation period.
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Appendix A - Figures

Figure 3.1: Conditional quantiles of returns on market index and a few individual firms
obtained from SPNN1.
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Figure 3.1: (continued)
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Figure 3.2: Top panel displays the top-10 most influential firm-level predictors in SPNN1
measured by MSS, while the bottom panel reports the corresponding results for all macroe-
conomic variables. Variable importance is an average over all quantiles and recursive in-
sample windows. Variable importance is normalized to sum to one.
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Figure 3.3: Top and bottom panels display the variable importance of top-10 most influ-
ential firm-level predictors and all macroeconomic variables measured by QC in SPNN1,
respectively. Variable importance is an average over all quantiles and recursive in-sample
windows. Variable importance is normalized to sum to one.
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Figure 3.4: Time-varying variable importance of the top-5 most influential firm-level pre-
dictors measured by MSS. Predictors are ordered based on the average value of their MSS
over recursive trainings, with the most influential features at the top and the least influ-
ential at the bottom. Columns correspond to the year end of each of the 22 in-sample
windows, and color gradients within each column indicate the most influential (dark blue)
to least influential (white) variables.
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Figure 3.5: Time-varying variable importance of the top-50 most influential predictors of
interactions between each firm characteristic with macroeconomic variables measured by
MSS. Columns correspond to the year end of each of the 22 in-sample windows, and color
gradients within each column indicate the most influential (dark blue) to least influential
(white) variables.
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Figure 3.6: Time-varying variable importance of the top-5 most influential firm-level predic-
tors measured by QC. Columns correspond to the year start of each of the 22 out-of-sample
windows, and color gradients within each column indicate the most influential (dark blue)
to least influential (white) variables.
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Figure 3.7: Time-varying variable importance of the top-50 most influential predictors
of interactions between each firm characteristic with macroeconomic variables measured
by QC. Columns correspond to the year start of each of the 22 out-of-sample windows,
and color gradients within each column indicate the most influential (dark blue) to least
influential (white) variables.
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Figure 3.8: Ex-post final wealth (top panel) and ex-post cumulative return (bottom panel)
paths obtained using di↵erent strategies. The shaded areas denote recession periods as
defined by NBER.
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Figure 3.9: Ex-post final wealth (top panel) and ex-post cumulative return (bottom panel)
paths obtained using di↵erent strategies with 20 bps proportional TC. The shaded areas
denote recession periods as defined by NBER.
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Figure 3.10: Portfolio-level LRMES and CoES estimated from simulated returns.
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Appendix B - Tables

Table 3.1: Portfolio assets

Firm name Ticker

Synovus Financial Corp. SNV

Je↵eries Financial Group Inc. JEF

Cincinnati Financial Corporation CINF

Comerica Incorporated CMA

Loews Corporation L

Vornado Realty Trust VNO

Fifth Third Bancorp FITB

Regions Financial Corporation RF

M&T Bank Corporation MTB

Franklin Resources, Inc. BEN

Wells Fargo & Company WFC

Huntington Bancshares Incorporated HBAN

Marsh & McLennan Companies, Inc. MMC

Host Hotels & Resorts, Inc. HST

CNA Financial Corporation CNA

JPMorgan Chase & Co. JPM

Humana Inc. HUM

Lincoln National Corporation LNC

The Bank of New York Mellon Corporation BK

Aflac Incorporated AFL

Northern Trust Corporation NTRS

American Express Company AXP

Bank of America Corporation BAC

The PNC Financial Services Group, Inc. PNC

Aon plc AON

Globe Life Inc. GL

Cigna Corporation CI
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Table 3.1: (continued)

Firm name Ticker

The Progressive Corporation PGR

Public Storage PSA

KeyBank KEY

U.S. Bancorp USB

SLM Corporation SLM

American International Group, Inc. AIG

SEI Investments Company SEIC

Truist Financial Corporation TFC

State Street Corporation STT

Zions Bancorporation ZION

UnitedHealth Group Incorporated UNH
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Keating, C. and W. F. Shadwick (2002). An introduction to omega. AIMA Newsletter .

161



Keskar, N. S., D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang (2016). On

large-batch training for deep learning: Generalization gap and sharp minima. arXiv

preprint arXiv:1609.04836 .

Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 .

Kirby, C. and B. Ostdiek (2012). Optimizing the performance of sample mean-variance

e�cient portfolios. In AFA 2013 San Diego Meetings Paper.

Koenker, R. and G. Bassett (1978). Regression quantiles. Econometrica: Journal of the

Econometric Society , 33–50.

Konno, H. and H. Yamazaki (1991). Mean-absolute deviation portfolio optimization model

and its applications to Tokyo stock market. Management Science 37 (5), 519–531.

Kresta, A. et al. (2015). Application of performance ratios in portfolio optimization. Acta

Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 63 (6), 1969–1977.

Kynigakis, I. and E. Panopoulou (2021). Does model complexity add value to asset allo-

cation? Evidence from machine learning forecasting models. Journal of Applied Econo-

metrics .

Ledoit, O. and M. Wolf (2004). Honey, I shrunk the sample covariance matrix. The Journal

of Portfolio Management 30 (4), 110–119.

Ledoit, O. and M. Wolf (2008). Robust performance hypothesis testing with the Sharpe

ratio. Journal of Empirical Finance 15 (5), 850–859.

Liang, N. (2013). Systemic risk monitoring and financial stability. Journal of Money, Credit

and Banking 45 (s1), 129–135.

Lin, W., J. Olmo, and A. Taamouti (2022). Portfolio selection under systemic risk. Available

at SSRN 3561153 .

Lin, W. and A. Taamouti (2022). Measuring Granger causality in quantile regression neural

network. Technical report, Working paper, Durham University.

162



Ludvigson, S. C., S. Ma, and S. Ng (2021). Uncertainty and business cycles: exogenous

impulse or endogenous response? American Economic Journal: Macroeconomics 13 (4),

369–410.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance 7 (1), 77–91.

Masters, D. and C. Luschi (2018). Revisiting small batch training for deep neural networks.

arXiv preprint arXiv:1804.07612 .

Masters, T. (1993). Practical neural network recipes in C++. Morgan Kaufmann.

McNeil, A. J., R. Frey, and P. Embrechts (2015). Quantitative risk management: concepts,

techniques and tools-revised edition. Princeton university press.

Messmer, M. (2017). Deep learning and the cross-section of expected returns. Available at

SSRN 3081555 .

Michaud, R. O. (1989). The markowitz optimization enigma: Is ‘optimized’optimal? Fi-

nancial analysts journal 45 (1), 31–42.

Mitton, T. and K. Vorkink (2007). Equilibrium underdiversification and the preference for

skewness. The Review of Financial Studies 20, 1255–1288.

Nair, V. and G. E. Hinton (2010). Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th International Conference on Machine Learning

(ICML-10), pp. 807–814.

Ortobelli, S., S. T. Rachev, S. Stoyanov, F. J. Fabozzi, and A. Biglova (2005). The proper

use of risk measures in portfolio theory. International Journal of Theoretical and Applied

Finance 8 (08), 1107–1133.

Ouali, D., F. Chebana, and T. B. Ouarda (2016). Quantile regression in regional frequency

analysis: a better exploitation of the available information. Journal of Hydrometeorol-

ogy 17 (6), 1869–1883.
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