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Abstract: Dark matter direct detection experiments are about to hit a complex

obstacle—the irreducible background of solar neutrinos. While this will complicate

the search for dark matter, it will usher in the beginning of a new search for beyond

Standard Model neutrino physics. However, the use of solar neutrinos as a signal

of novel physics in these detectors is still in its infancy. To further explore the

potential of next-generation and far-future direct detection experiments in this vein,

we consider how deviations in the solar neutrino rate can be used as an indirect

probe of new physics in the neutrino sector. We consider beyond Standard Model

extensions that can serve as solutions to the present tension in the muon’s anomalous

magnetic moment, as well as the more general framework of neutrino non-standard

interactions. In all cases, we find that future direct detection experiments will be

able to either probe as-yet unconstrained new neutrino physics or provide us with

information complementary to dedicated neutrino experiments. We conclude that

direct detection experiments are poised to become key players in the field of neutrino

physics, contributing to a compelling research mission beyond their search for dark

matter.
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CHAPTER 1

Introduction

Dart matter (DM) direct detection (DD) experiments have achieved an incredible

feat. Following only a few decades of operation, they have significantly constrained

the potential properties of the paradigmatic dark matter candidate—the weakly

interacting massive particle. However, these experiments are about to hit a com-

plicated obstacle. The next generation of DD experiments will become so sensitive

that they will begin to expose themselves to an irreducible background of solar neut-

rinos. While this will pose a serious complication for the dark matter search, it will

herald the beginning of a new search for new physics in the neutrino sector. The

potential of DD experiments in this vein remains a topic of intense research, provid-

ing them with a compelling research mission beyond the hunt for dark matter. If

these experiments are to remain relevant in the decades to come, the case for such

an alternative mission is a critical one to make.

In this thesis, we will further develop the case for the use of DD experiments as neut-

rino observatories. Using the flux of neutrinos generated by solar fusion reactions,

we will explore how potential deviations from the expected neutrino scattering rate
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can be used as an indirect probe of new physics in the neutrino sector. We will

argue that, through their unique ability to detect both nuclear and electron recoils,

future DD experiments will be able to provide competitive, if not leading, results

beyond those of dedicated neutrino experiments. Through this thesis, we provide

the DD community with a guiding light into a bold new era of physics exploration.

We begin by introducing the neutrino as a particle within the Standard Model (SM)

and slightly beyond it in Chapter 2. This chapter follows the history of the neutrino:

from the first hints of its existence in radioactivity experiments in the late 19th-

century to the eventual discovery of neutrino oscillations in the early 21st-century.

We discuss the fundamentals of electroweak theory and neutrino oscillations, focus-

ing in particular on the propagation of solar neutrinos. We conclude with a brief

account of how to give the neutrino a mass.

We introduce DD experiments in Chapter 3, where we focus on their utility as

neutrino observatories as opposed to DM particle explorers. We begin with a brief

historical account of these experiments. We then motivate their use in the field

of neutrino physics by charting their course to neutrino-level sensitivities. Driven

by this, we lay out the SM theory behind solar neutrino scattering with nuclei

and electrons. We finish this chapter by introducing the DD experiments we have

considered in this thesis, briefly discussing some of the experimental details we have

implemented to make our analyses as sophisticated as possible.

In Chapter 4, with the SM theory laid out, we move on to exploring the beyond

Standard Model (BSM) extensions we have considered in this work. We first mo-

tivate the need for new physics in the leptonic sector by discussing two modern-day

physics puzzles: the tension in the muon’s anomalous magnetic moment [4,5], which

forms the principal motivator for the majority of our work, and the tension in the

present-day value of the Hubble constant [6, 7]. We then introduce the gauged

U(1)Lµ−Lτ
model—a particularly elegant BSM extension that can simultaneously

explain both of these mysteries at once. Moreover, we introduce an effective U(1)Lµ

model that, although theoretically less well-motivated than the U(1)Lµ−Lτ
, forms



23

an excellent model with which to compare to the U(1)Lµ−Lτ
, exhibiting remarkably

similar phenomenology to it. Finally, we present the framework of neutrino non-

standard interactions (NSIs), providing a general, effective description of potential

new neutrino physics.

We begin arguing the contention of this thesis in Chapter 5, where we explore

neutrino probes of the gauged U(1)Lµ−Lτ
. We first compute the limits set by the

neutrino-dedicated experiments CENNS-10 LAr [8] and Borexino [9,10]. This allows

us to compare their results to those attained by DD experiments, where we begin

with an analysis of the (recently neutralised [11]) electron-recoil excess reported by

the XENON1T collaboration [12]. We then move on to projecting the limits that

next-generation (SuperCDMS [13], LZ [14], and XENONnT [15]) and far-future

(DARWIN [16] and DarkSide-20k [17]) DD experiments can place in the U(1)Lµ−Lτ

parameter space.

Motivated by our results and the increased tension in the muon’s anomalous mag-

netic moment reported by Fermilab in 2021 [5], we move on to develop a strategy to

confirm the U(1)Lµ−Lτ
as the underlying solution to this modern hint of new leptonic

physics in Chapter 6. We construct this strategy using the near-future muon beam

experiment NA64µ [18,19], a selection of proposed liquid argon spallation source ex-

periments [20–22], and, critically, the liquid-xenon based DD experiments LZ, XEN-

ONnT, and DARWIN. For each of these experiments, we assess their sensitivities to

several benchmark points in the U(1)Lµ−Lτ
solution region by performing a series of

parameter reconstructions. Throughout this study, we compare the phenomenology

of the U(1)Lµ−Lτ
to that of generic potential realisations of a U(1)Lµ

, attempting

to disentangle their signatures from one another by using these experiments both

independently and in combination.

Finally, in Chapter 7, we move beyond the U(1)Lµ−Lτ
model and more generally

consider the power of DD experiments in probing NSIs—a formalism describing the

effective behaviour of potential BSM neutrino physics [23]. We begin by developing

a novel framework in which to embed these effective interactions, extending the



24 Chapter 1. Introduction

previous parametrisation by allowing for NSIs with the electron [24]. We highlight

the need for this framework by illustrating how bounds set on NSIs by the CENNS-10

LAr experiment are highly dependent on the assumption one makes for the strength

of the electron contribution. We then use our framework to place bounds on the

NSI landscape using LZ, XENONnT, and DARWIN. We situate our results in the

broader context of NSI global studies in the case of nuclear recoils [24,25] and a recent

spectral analysis of the Borexino Phase-II data in the case of electron recoils [26].

In this final study, we most clearly showcase the potential of DD experiments in the

search for new physics in the neutrino sector.



CHAPTER 2

Fundamentals of Neutrino Physics

It is no contention that the neutrino is one of the most fascinating particles in the

SM. It has taken a leading role in the development of the SM as we know it, and, yet,

it has defied to be confined to its bounds. Doubtless, to learn how upcoming and

far-future DD experiments can teach us about the nature of neutrino physics beyond

the SM, we will have to introduce the neutrino itself. The ideas we will develop here

for solar neutrinos in particular will be instrumental in our phenomenological study

of BSM physics in the neutrino sector.

In this chapter, we will introduce the neutrino as a particle in the SM and beyond.

We will commence with a historical introduction to the neutrino—from the discovery

of radioactive decay to the eventual development of SM electroweak theory. We will

then, in broad brush strokes, cover the main ideas behind the electroweak sector,

including the important prediction that neutrinos are massless. Following this, we

will come to learn how solar and atmospheric neutrino experiments accumulated

evidence for the case of massive neutrinos through neutrino flavour conversions,

introducing the basics of solar neutrino physics in the process. Finally, we will
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develop the fundamental theory behind neutrino oscillations in both vacuum and

matter, concluding with a brief account of how to give the neutrino a mass.

2.1 The Road to the Neutrino

The history of the neutrino begins in 1896, with a Nobel Prize-winning discovery.

Having learned of Röntgen’s discovery of what we now dub ‘X-rays’, Henri Becquerel

sought to learn more about this mysterious phenomenon. He hypothesized that

phosphorescent materials, such as uranium salts, were responsible, producing X-

rays when illuminated by sunlight. During one overcast day in Paris, believing his

experiment to have led to nothing, he stored away his photographic plates alongside

the uranium salts, hoping to be more successful the next time. Becquerel, possibly

for the sake of completeness, decided to develop these plates anyway, expecting to

see next to nothing on them. He was struck, however, to find that they displayed

strong images, having been irradiated by the uranium salts themselves. In what is

surely one of the most serendipitous moments in all of science, Henri Becquerel had

discovered radioactivity [27–31].

A period of intense research followed. The interests of Marie and Pierre Curie

in particular had piqued, and they began their research into uranium in earnest.

M. Curie discovered that uranium caused the air around it to become electrically

conductive, with its activity dependent only on the amount of uranium present.

She hypothesized that this radiation was emanating from processes concerning the

uranium atoms themselves, as opposed to any molecular processes [32]. Her research

led her to discover several other radioactive elements, including thorium, radium,

and polonium [33, 34]. In 1903, Becquerel, M. Curie, and P. Curie were jointly

awarded the Nobel Prize in physics in recognition of their services to research into

radioactivity.

Ernest Rutherford had also become interested in radioactivity. In 1899, he found

that the radiation produced by uranium was composed of at least two different types,
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which he called α- and β-rays [35] (γ-rays would not be discovered until a year later

by Paul Villard [36]). By studying how the current produced by the ionised air

around the uranium could be altered by obscuring it with metal foils, he found that

only some of the ionising radiation could be removed. This experiment would inspire

the famous Geiger-Marsden experiment [37], which would reveal the inner structure

of the atom [38]. In 1900, Becquerel, using Joseph Thomson’s measurement of the

electron mass made a few years earlier [39], found that the mass-to-charge ratio of

the emitted β-particles was the same as that of the electron [40]—β-particles were

simply electrons.

Indeed, the study of β-decay would eventually lead us to the neutrino. James

Chadwick, in 1914, measured the energy spectrum of the emitted β-electrons. Unlike

the spectra of α− and γ−radiation, which were effectively monochromatic with

energies equal to the energy difference between the initial and final atomic states, the

spectrum of β-radiation was broad and continuous [41]. This posed a dire problem

for physicists at the time: it appeared that the law of conservation of energy was

being violated. Even Niels Bohr was led to postulate that energy conservation

was true merely in a statistical sense (c.f. for example Ref. [42]). What is more,

measurements of the total angular momentum before and after the β-decay also

pointed towards a violation of angular momentum conservation.

To remedy these problems, Wolfgang Pauli, in a famous 1930 letter entitled ‘Dear

Radioactive Ladies and Gentlemen’, proposed the existence of a third particle emit-

ted during β-decay [43]. This particle had to be a neutral fermion and be much

lighter than the proton, taking away whatever energy and angular momentum the

electron did not undetected. Such a particle would save the fundamental laws of

both energy and angular momentum conservation [44].

While Pauli was the first to postulate the existence of this new hypothetical particle,

it was Enrico Fermi who, in 1933, formalised the idea [45]. He developed his land-

mark theory of β-decay, perhaps the first milestone in the theory of weak interac-

tions, calling the new particle the neutrino to resemble its neutral and very light
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Figure 2.1: β-decay (left) and inverse β-decay (right). As per Fermi
theory, both processes are shown as a four-point contact
interaction.

nature. In Fermi’s theory, β-decay was characterised by a neutron transforming into

a proton, producing an electron and the newly theorised neutrino1. The diagram for

this interaction, which is a four-point contact interaction in Fermi theory, is shown

in Fig. 2.1.

Throughout the next two decades, Fermi theory would be regarded as an incredible

theoretical success. However, finding experimental evidence for the neutrino seemed

all but impossible. A 1934 calculation by Hans Bethe and Rudolf Peierls predicted

that the cross section for inverse β-decay, shown in Fig. 2.1, could be as small as

σ . 10−44 cm2. This vanishingly small interaction strength led them to claim that

a physical observation of it would be all but unachievable [46]. The experimental

case for the neutrino looked bleak.

It would be another two decades before technology caught up with the neutrino.

After dropping the idea of using a nuclear bomb as a source of sufficient anti-

neutrinos, Los Alamos National Laboratory physicists Frederick Reines and Clyde

Cowan decided to use the fluxes from recently developed nuclear reactors to attempt

to observe inverse β-decay directly. The experiment, which was part of a larger

initiative dubbed Project Poltergeist, consisted of a ton-scale detector composed

of water doped with cadmium and a liquid scintillator target placed within a few

meters of the Savannah River nuclear reactor [47].

The idea was simple. The anti-neutrinos produced from the nuclear reactor would

1Of course, today we know that the emitted particle is in fact an anti-neutrino to conserve
lepton number.
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react with the hydrogen in the water, initiating the inverse β-decay process. The

emitted positron would then annihilate with a surrounding electron, producing a pair

of photons. Meanwhile, the neutron, freely travelling through the detector, would

eventually slow down and be captured by the cadmium in the water. Following this,

the cadmium would de-excite, emitting a single photon with a characteristic energy.

The signal, which consisted of a pair of prompt photons produced by the annihilation

of the positron and a single delayed photon due to the capture of the neutron, would

be detected by the liquid scintillator surrounding the detector [47, 48]. By June

1956, Reines and Cowan had grown confident in their results, and they sent Pauli

a telegram notifying him that they had, indeed, ‘definitely detected neutrinos’ [47].

They published their discovery shortly thereafter [49].

With the neutrino experimentally confirmed, the next decade was dedicated to bet-

ter understanding its mysterious properties and developing a theory of weak interac-

tions consistent with observations. The famous θ−τ puzzle, in which apparently the

same particle (what we now call the K+ meson) could decay via two different chan-

nels, eventually led us to recognise that the weak interaction violates charge-parity

(CP) symmetry [50–52]. In the first-ever spallation source experiment, conducted

at Brookhaven National Laboratory (BNL), the muon neutrino was discovered, es-

tablishing not only that neutrinos came in different flavours but also that flavour

was a conserved property [53–55]. Finally, after years of intense work on the theor-

etical underpinnings of the weak interaction [51, 56–61], Glashow-Weinberg-Salam

(GWS) theory was born, unifying the weak and electromagnetic forces under one

common framework [62–64]. This framework is the cornerstone of our modern-day

understanding of electroweak interactions within the Standard Model.
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2.2 Neutrinos in the Standard Model:

Electroweak Theory

Within the SM, neutrino interactions are governed by electroweak (EW) theory: a

unification of the electromagnetic and weak interactions. At its core, it is a gauge

theory centred around the SU(2)L × U(1)Y symmetry group of the broader SM

group, which includes a description of the strong force. Together with spontaneous

symmetry breaking (SSB) and the Higgs mechanism, EW theory dictates how all

SM particles interact with the EW force, as well as how they acquire mass. We will

briefly develop these ideas in this section; however, for a more complete treatment

of EW theory, please refer to, for example, Ref. [65–67].

EW theory is based on two important groups, SU(2)L and U(1)Y . The subscript L

on the first group tells us that it only acts on left-handed (LH) chiral fermion fields.

Indeed, right-handed (RH) fields are left unchanged by transformations under this

group, and they are therefore singlets under it. The SU(2)L group consists of three

generators, T a, which can be represented in terms of the Pauli matrices: T a = σa/2.

In a gauge theory, each of these generators corresponds to a gauge boson field, W a
µ ,

that couples to particles that are charged under SU(2)L—that is, it couples to their

weak isospin.

The second of these groups, U(1)Y , has only one generator—the hypercharge gen-

erator, Y . It unifies the weak and electromagnetic interactions through the Gell-

Mann-Nishijima relation [68,69],

QEM = T3 + Y

2 , (2.2.1)

where T3 is the third component of a particle’s SU(2)L isospin, QEM is its electro-

magnetic (EM) charge, and Y is its hypercharge. The gauge boson associated with

this group is the hypercharge boson, Bµ.

In the SM, we have three generations of quarks and leptons. Their LH chiral parts

pair up to form SU(2) doublets, which transform under its fundamental represent-
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ation:

Li ≡


νeL
eL

 ,
νµL
µL

 ,
ντL
τL


 , and Qi ≡


uL
dL

 ,
cL
sL

 ,
tL
bL


 , (2.2.2)

where i ∈ {1, 2, 3} indexes a particular generation. The RH chiral parts, on the

other hand, are SU(2) singlets, and they are therefore uncharged under the weak

interaction. These are

eiR ≡ {eR, µR, τR} , uiR ≡ {uR, cR, tR} , and diR ≡ {dR, sR, bR} , (2.2.3)

where we have labelled them according to the first generation fermions. Note that,

as no RH chiral neutrino has been observed, it is omitted in the SM. As we will see,

this has an important consequence: the neutrino, within the confines of the SM, is

massless.

The SM behaviour of these fields, as well as the behaviour of the EW bosons,

is entirely encapsulated by the EW Lagrangian. We can decompose it into four

separate Lagrangians:

LEW = Lgauge + Lfermion + LHiggs + LYukawa . (2.2.4)

Each of these terms describes a particular aspect of the theory.

The first term contains the pure gauge boson kinetic terms and describes the beha-

viour of the gauge bosons. In the EW sector, it is given by

Lgauge = −1
4WµνW

µν − 1
4BµνB

µν , (2.2.5)

where Wµν and Bµν are, respectively, the field strength tensors of the SU(2)L and

U(1)Y gauge bosons. From this term, we can derive the self-coupling interactions of

each of these bosons.

The second term contains the kinetic terms of both the gauge bosons and the fer-
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mions. For any one particular generation, it reads

Lfermion = iL
i /DLi + iQ

i /DQi +
∑

f∈{e,u,d}
ifR /DfR . (2.2.6)

where ψ ≡ ψ†γ0 and /a ≡ γµaµ. The covariant derivative, Dµ, ensures the gauge

invariance of the theory,

Dµ ≡ ∂µ − igW a
µ τ

a − 1
2ig

′Y Bµ , (2.2.7)

where g and g′ are the gauge couplings of the weak isospin and hypercharge groups,

respectively.

Expanding Eq. (2.2.6), we retrieve the interaction terms between the fermions and

the gauge bosons. We can divide these interactions into those associated with a

charged current (CC) and those associated with a neutral current (NC), both of

which can then be further subdivided into quark and lepton interactions. Their

respective Lagrangians are

LCC = − g

2
√

2
(
jµ+W

+
µ + jµ−W

−
µ

)
, (2.2.8)

LNC = −ejµγAµ − g

2 cos θW
jµZZµ , (2.2.9)

with the vector currents

jµ+ = ψuγ
µ(1 − γ5)ψd , jµ− = (jµ+)† , (2.2.10)

jµγ = −QEMψγ
µψ , jµZ = ψγµ

[
(T3 − 2QEM sin2 θW ) − T3γ

5
]
ψ .

Here, we have defined the general field ψ to be the sum of the LH and RH parts of

the fields in Eqs. (2.2.2) and (2.2.3) (except for the neutrino field, which only comes

in LH form), and ψu(d) as a field with T3 = +
(−)1/2. Moreover, we have respectively

identified the physical gauge bosons W±
µ , Zµ, and Aµ as the usual weak charged,

weak neutral, and electromagnetic gauge bosons. The angle θW is the Cabibbo weak-

mixing angle, and QEM is the electromagnetic charge accompanying any particular

field ψ. We note that the structure of the CC interaction follows that of a V − A
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theory [61], allowing the weak force to violate parity.

The Higgs doublet, H, is described by the third term of Eq. (2.2.4). It is given by

LHiggs = (DµH)†(DµH) − V (H) , (2.2.11)

where V (H) is the Higgs potential, V (H) = µ2H†H + λ(H†H)2. For λ > 0, which

ensures that the potential is bounded from below, and µ2 < 0, we find a non-zero

vacuum expectation value (VEV) for the Higgs, v ≈ 246 GeV [70]. This leads to the

so-called Higgs mechanism and the SSB of the EW symmetry group,

SU(2)L × U(1)Y → U(1)EM . (2.2.12)

After SSB, the physical weak gauge bosons and every charged fermion acquire a

mass. The nature of their masses is described by the fourth and final term of

Eq. (2.2.4)

Known as the Yukawa term, the fourth term contains the couplings between the

fermions and the Higgs. It is given by

LYukawa = −Y e
ij

(
L
i
HejR

)
− Y u

ij

(
Q
i
H̃ujR

)
− Y d

ij

(
Q
i
H̃djR

)
+ h.c. , (2.2.13)

where Y is the Yukawa matrix describing the Higgs-fermion couplings and the CP

conjugated Higgs field is H̃ = iσ2H?. After the Higgs acquires a VEV, these terms

lead to the quarks and charged leptons acquiring a mass. For any given field ex-

pressable as the sum of its left- and right-handed parts, ψ ≡ ψL + ψR, SSB leads to

Dirac mass terms of the form

mψψψ = mψ(ψLψR + ψRψL) , (2.2.14)

where mψ = yψv/
√

2, with the coefficients yψ arising from the diagonalisation of

the Yukawa matrix. An interesting consequence of this diagonalisation in the quark

sector stems from the fact that the diagonalised matrices for the up and down

quark pairs do not quite match. This leads to up- and down-type mixing across

the generations during CC interactions, which is characterised by the famous CKM
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matrix.

EW theory, as it was devised throughout the 20th-century, has been widely successful

in describing a broad range of phenomena. One important prediction it makes is

that neutrinos, with no accompanying RH field, cannot acquire a Dirac mass term

as per Eq. (2.2.14). Thus, within the SM, neutrinos are massless particles. As we

will see in the next section, solar neutrino (and atmospheric neutrino) observations

challenge this prediction. Indeed, we will see that these observations force us to

conclude that neutrinos are massive particles, opening the door to physics beyond

the SM.

2.3 Solar Neutrinos

The Sun is powered by a series of thermonuclear fusion reactions. During some of

these reactions, intermediate, proton-rich nuclei are produced whose binding forces

are unable to balance the increased electric repulsion caused by the excess protons.

These unstable nuclei eventually decay through either β+-decay or electron-capture,

transforming redundant protons into neutrons and creating electron neutrinos in the

process. This effectively makes solar neutrinos byproducts of sunshine.

Two groups of reactions are responsible for energy generation in the Sun: the pp

chain and the CNO cycle. Both of these groups ultimately produce 4He nuclei,

electron neutrinos, and 26.7 MeV-worth of energy. The majority of this energy is

released as photons, with the remaining fraction taken by the kinetic energy of the

produced neutrinos.

The pp chain, which we show diagrammatically in Fig. 2.2, dominates solar energy

production [71]. It also consists of the most neutrino-producing processes, respons-

ible for five of the eight neutrino populations created in the Sun via fusion2. These
2The Sun also contains a population of thermal neutrinos produced via thermal processes that

occur within the solar plasma [73]. However, these neutrinos have typical energies of ∼ keV, and
they therefore do not appreciably contribute to the signatures we consider in this work.
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p + p → 2H + e+ + νe p + e− + p → 2H + νe

16.70%

∼ 10−5%2H + p → 3He + γ

3He + p → 4He + e+ + νe

3He +4 He → 7Be + γ

7Be + e− → 7Li + νe

7Li + p → 4He +4 He

7Be + p → 8B + γ

8B → 8Be∗ + e+ + νe

8B∗ → 4He +4 He3He +3 He → 4He + 2p

83.30% 99.88% 0.12%

99.76% 0.24%
pp pep

hep

7Be

8B

Figure 2.2: The reactions that make up the pp chain [71]. The five
reactions that contribute to the solar neutrino flux are
flagged with the name given to their flux.
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15O → 15N + e+ + νe

15O

99.96% 0.04%

13N 17F

12C + p → 13N + γ

15N + p → 12C +4 He

13N → 13C + e+ + νe

13C + p → 14N + γ

15N + p → 16O + γ

16O + p → 17F + γ

17F → 17O + e+ + νe

17O + p → 14N +4 He

14N + p → 15O + γ

I II

Figure 2.3: The reactions that make up the CNO cycle, which it-
self is composed of two sub-cycles, labelled I and II [72].
The three reactions that contribute to the solar neut-
rino flux are flagged with the name given to their flux.
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processes are highlighted in Fig. 2.2, and the neutrinos produced via any particular

process are named according to it: pp, pep, hep, 7Be, and 8B. The 7Be neutrinos can

be further split into 7Be384 keV and 7Be861 keV neutrinos, depending on which orbital

electron is captured.

The CNO cycle occurs alongside the pp chain, likewise fusing hydrogen into helium.

Unlike the pp chain, however, it proceeds via a series of heavy element catalysts:

carbon, nitrogen and oxygen. We show this particular group of reactions in Fig. 2.3,

where we see that it is driven by two smaller sub-cycles: the CNO-I and CNO-II

cycles. Altogether, they produce three neutrino populations: 13N, 15O, and 17F. The

CNO cycle is sub-dominant to the pp chain in terms of energy production in the

Sun; this is because its rate of energy production has a much greater dependence on

the core temperature, with εCNO ∝ T 18
c compared with εpp ∝ T 4

c . However, for much

heavier main sequence stars, which have considerably higher core temperatures, the

CNO cycle dominates [71].

The energy spectrum for each solar neutrino flux, as well as important thermody-

namical solar profiles, are provided by standard solar models (SSMs). SSMs are

mathematical descriptions of the Sun based on stellar evolution equations, giving

us a snapshot of the solar state at any particular time [74]. Given a certain set of

inputs, these equations are solved from when the Sun enters the main sequence to

the present day. As such, they must predict present-day solar observations, such as

the solar luminosity, radius, and surface (photospheric) composition [75,76]. Today,

SSMs typically use two spectroscopic studies, GS98 [77] and AGSS09 [78], to calib-

rate to the present-day photospheric composition. We will discuss SSMs in greater

detail in Chapter 5, only noting now that these studies differ in what they predict

for the present-day photospheric metalicity3 and that we use the B16-GS98 SSM,

developed by Ref. [74], for the majority of this work.

We show the predicted electron neutrino fluxes under the B16-GS98 SSM in Fig. 2.4.
3In this context, a metal is any element that is heavier than helium. The solar metallicity

quantifies the fraction of hydrogen to metals in the Sun.
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Figure 2.4: The neutrino flux spectra under the B16-GS98 high
metallicity SSM. The shapes of the spectra have been
taken from Ref. [79], and their overall normalisations
have been read from Ref. [74]. The solid lines cor-
respond to the fluxes produced by processes in the pp
chain, while dashed lines correspond to those produced
by processes in the CNO cycle. The units for the mono-
energetic neutrinos are cm−2 s−1.

We note in particular that low-energy pp neutrinos contribute the most to the total

neutrino flux, accounting almost entirely for it—φ(pp) ∼ 1011 cm−2 s−1. The largest

high-energy neutrino contribution is from 8B neutrinos, with φ(8B) ∼ 107 cm−2 s−1.

As we will see in Chapter 3, pp and 8B neutrinos are responsible for the majority of

the expected events in neutrino-electron and neutrino-nucleus scattering, respect-

ively.

Of all the neutrino fluxes, those associated with the CNO cycle are the least well

understood. The rates of the CNO cycle reactions critically depend on the abund-

ances of the heavy elements that catalyse them, and they are hence linked to the

total solar metallicity. This quantity has not yet been pinned down, with some stud-

ies preferring a high-metallicity Sun and others pointing towards a low-metallicity

solution. Depending on which metallicity the SSM takes as its input, the CNO
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cycle fluxes can vary by as much as ∼ 30% [72]. This forms part of a much broader

issue known as the solar metallicity problem [80–84], which we discuss further in

Chapter 5.

In 1964, John Bahcall and Raymond Davis Jr. proposed an experiment to measure

the solar neutrino fluxes. Located almost 1.5 km underground in the Homestake

Gold Mine, South Dakota, the experiment was to test the idea that the Sun was

powered by hydrogen to helium fusion. The experimental details were laid out by

Davis Jr., with a companion paper by Bahcall building the theoretical foundation

for it [85,86].

The Homestake experiment was based on the same idea that was initially proposed

by Pontecorvo in 1946 to detect the existence of neutrinos [87]. They would ex-

pose 100,000 gallons of C2Cl4 to solar neutrinos, allowing the chlorine to capture a

neutrino and become an unstable isotope of argon via the reaction

37Cl + νe → 37Ar + e− . (2.3.1)

The argon would then be extracted and its eventual decay through electron capture

measured, providing indirect evidence of the inverse β-decay process. Indeed, this

choice of elements made the experiment feasible at the outset; Bahcall noticed that

a ‘superallowed’ transition from the ground state of 37Cl to the 5.1 MeV excited state

of 37Ar enhanced the expected capture rate for 8B neutrinos by ∼ 20-fold [85].

The first results of the Homestake experiment were announced in 1968, reporting a

neutrino capture rate no greater than 3 × 10−36 s−1 per 37Cl atom [88]. However,

updated calculations by Bahcall predicted a value almost triple that amount [89].

Known as the solar neutrino problem, this discrepancy marked the beginning of a

three-decade-long struggle to reconcile theory with experiment.

Independent corroboration with several experiments quickly followed. The water

Cherenkov Kamiokande experiment in Japan, re-purposed to look for solar neutri-

nos, likewise measured a deficit using neutrino-electron scattering with 8B neut-

rinos [90–95]. Soon after, they also found a smaller fraction of muon to elec-
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tron neutrinos than expected from atmospheric neutrinos [96]. The experiments

SAGE [97–102], based in Russia, and GALLEX [103–106], based in Italy, used the

same inverse β-decay idea as Homestake, but they used gallium instead of chlorine.

This afforded them a lower threshold, giving them access to pp and 7Be neutrinos.

Their result showed a ∼ 50% deficit compared to the theoretical expectation—a

smaller deficit than that measured by Homestake, but a deficit nonetheless4.

Meanwhile, helioseismological studies appeared to agree with the SSM predictions

of Bahcall [107]. Different SSM constructions also did not seem to be able to ac-

count for the observed rates, and even SSMs that were forced to yield the counts

measured by the Kamiokande experiment were then in tension with the results of

the Homestake experiment [108]. Indeed, it seemed that the only way to recon-

cile theory with experiment was to invoke physics beyond the Standard Model.

Ideas included neutrino flavour oscillations with both SM interactions [23,109–112]

(discussed in Section 2.4) and non-standard interactions [23, 113–115] (discussed in

Section 4.2.5), neutrino decays [116], and spin-flavour precessions due to a non-zero

neutrino magnetic moment [117–119].

Finally, through 2001 to 2003, this stalemate between theory and experiment was

broken by the Sudbury Neutrino Observatory (SNO) [120–123]. Also a water Cher-

enkov detector, SNO was sensitive to CC, NC, and elastic neutrino-electron scat-

tering. This gave them the key to the solar neutrino problem, as they were able to

separate electron neutrino events, exclusively measured by the CC channel, from the

rest of the data, which included interactions from all flavours. By comparing the CC

and NC fluxes, they found that only ∼ 1/3 of 8B neutrinos were arriving as electron

neutrinos; the majority of them had oscillated to νµ and ντ . Combined with the un-

precedentedly precise neutrino-electron scattering data from the Super-Kamiokande

experiment [124,125], they were also able to show that the total number of neutrinos

was in agreement with the prediction of Bahcall.
4We will see in Section 2.4.4 that this less significant deficit is due to the way that pp neutrinos

interact with matter in the Sun compared to 8B neutrinos.
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The conclusion was inescapable: the electron neutrinos born in the Sun arrived on

Earth as a mixture of all three different flavours. The solar neutrino problem was

solved. Together with the first evidence of neutrino oscillations from atmospheric

neutrinos supplied by Super-Kamiokande in 1998 [126], the SNO result provided

irrefutable evidence of neutrino physics beyond the Standard Model.

2.4 Neutrino Oscillations

In 1967, before the results of the Homestake experiment had even been released,

Pontecorvo predicted that solar electron neutrinos could transition to a different fla-

vour and decrease the expected electron neutrino capture rate [109]. After precisely

this type of deficit was observed at Homestake, Pontecorvo and Gribov developed

the theory underlying neutrino oscillations, considering the case of two-neutrino

mixing in vacuum [110].

2.4.1 Vacuum Oscillations

As we saw in Section 2.2, neutrinos are fundamentally born during weak inter-

actions; they are therefore inherently created in flavour eigenstates. However, if

neutrinos are massive, these flavour eigenstates do not necessarily coincide with the

mass eigenstates of the neutrino—these latter states are the ones that propagate in

spacetime5. Given a flavour eigenstate, |να〉, we can write it as a linear combination

of the mass basis states, |νi〉, as

|να〉 =
∑
i

U∗
αi |νi〉 , (2.4.1)

where U∗
αi is the overlap between the two states.

5One may then be curious as to why the quarks, which also exhibit mixing between flavour
and mass eigenstates, are then not observed to oscillate. In principle, this is entirely possible;
however, the interaction scale of quarks is set by the QCD scale, Λ−1

QCD, such that a quark does
not propagate very far before it interacts with matter and its free state is disturbed.
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Suppose that we begin with a neutrino in a particular flavour state α, such that

|ν(t = 0)〉 = |να〉. To track its evolution, we evolve its mass eigenstates according

to the Schrödinger equation,

i
d
dt |νi(t)〉 = H |νi(t)〉 , (2.4.2)

where H is the Hamiltonian in the mass basis. As these states are eigenstates of the

Hamiltonian, we have that

H |νi〉 = Ei |νi〉 , (2.4.3)

with the energy eigenvalues

Ei =
√

|pi|2 +m2
i . (2.4.4)

Solving Eq. (2.4.2) tells us that any particular mass eigenstate evolves according to

the unitary time operator, U(t) ≡ exp(−iHt). If a state begins in the state |νi(0)〉,

then, after some time t, it will evolve into the state

|νi(t)〉 = U(t) |νi(0)〉 = e−iEit |νi(0)〉 . (2.4.5)

Thus, our flavour eigenstate at time t will be

|ν(t)〉 =
∑
i

U∗
αie

−iEit |νi(0)〉 . (2.4.6)

We see that, in general, this state will be in a different linear combination of the mass

eigenstates to the one in which it began, and it will therefore no longer necessarily

be in the flavour α.

The probability amplitude of this state finding itself in the flavour eigenstate |νβ〉,

where β is in general different to α, is then

Aαβ(t) ≡ 〈νβ|ν(t)〉 =
∑
i

∑
j

U∗
αiUβje

−iEit 〈νj(0)|νi(0)〉

=
∑
i

U∗
αiUβie

−iEit ,

(2.4.7)

where we have used the fact that the mass eigenstates form an orthonormal basis,

〈νj|νi〉 = δij. Therefore, the probability of a neutrino transitioning from flavour α
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to flavour β at time t is given by

Pαβ(t) = |Aαβ(t)|2 =
∑
i

∑
j

U∗
αiUβiU

∗
αjUβje

−i(Ei−Ej)t . (2.4.8)

Note that this result is general and applies to any number of realisable neutrino

flavours.

As neutrinos are ultra-relativistic particles, m2
i /|pi|2 � 1, we can re-write Eq. (2.4.4)

as

Ei ' |pi| + m2
i

2|pi|
' Eν + m2

i

2Eν
, (2.4.9)

where in the last step we have assumed that the total neutrino energy is dominated

by its momentum, Eν ' |pi|, and neglected its mass in comparison. We have also

assumed that all of the mass eigenstates are created with the same energy Eν ,

which is equivalent to modelling these eigenstates as plane waves instead of as more

general wavepackets6. We can use this result—along with the fact that t ' L (the

full distance travelled) for ultrarelativistic neutrinos—to re-express Eq. (2.4.8) in

the slightly simpler and more usual form

Pαβ(L) = |Aαβ(L)|2 =
∑
i

∑
j

U∗
αiUβiU

∗
αjUβj exp

(
−i∆m

2
ij

2Eν
L

)
, (2.4.10)

where we have defined the difference in square masses as ∆mij ≡ m2
i − m2

j and

replaced the dependence on time with a dependence on the distance between the

source and the detector. Note that the common phase factor exp(−iEνL) has can-

celled; this is the consequence of a more general result that any common phase factor

in the Hamiltonian has no impact on the final measured probability.

The interference between mass eigenstates is characterised by the oscillatory term

appearing in Eq. (2.4.10). In practice, a detector can be insensitive to these os-

cillations if its finite resolution cannot resolve them. Defining the characteristic

oscillation length of any particular neutrino species as

losc ≡ 2Eν
∆m2

ij

, (2.4.11)

6The full wavepacket treatment ultimately leads to the same results. See, for example, Ref. [67].
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we can identify the resolution-limited regime as that in which L � losc. In this case,

the observed oscillatory behaviour is greatly suppressed, and a detector instead

measures the time-averaged probability, which is equivalent to the incoherent sum

〈Pαβ〉 =
∑
i

|Uαi|2|Uβi|2 . (2.4.12)

As we will see, for the oscillations exhibited by neutrinos produced in the Sun, this

is always the case.

2.4.2 Two-Neutrino Mixing

The simplest case of neutrino oscillations occurs when we only have two neutrino

flavours, which we will label according to the first two generations: e and µ. As we

will see in Section 2.4.4, this is also the most relevant case for solar neutrinos, as we

can express the more realistic three-neutrino problem as an effective two-neutrino

one.

In the two-neutrino case, the flavour and mass eigenstates are related by the unitary

matrix

U =

 cos θ12 sin θ12

− sin θ12 cos θ12

 , (2.4.13)

where θ12 is the mixing angle between the two mass eigenstates. If θ12 = 0 or

θ12 = π/2, there is no mixing, and the flavour eigenstates are equivalent to one

of the two mass eigenstates. Conversely, if θ12 = π/4, there is maximal mixing

between the two mass eigenstates. Using Eq. (2.4.10), we find that, for a neutrino

state initially in the flavour α = e, the two-neutrino transition probability is given

by

P 2ν
eµ (L) = sin2 2θ12 sin2

(
∆m2

21

4Eν
L

)
. (2.4.14)

If the distance the neutrinos travel to the point of detection is much larger than

their characteristic oscillation length, the probabilities are averaged over. In this
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case, we measure the incoherent probabilities

〈P 2ν
eα 〉 =


1 − 1

2 sin2 2θ12 if α = e

1
2 sin2 2θ12 if α = µ

. (2.4.15)

We show the two-neutrino mixing probabilities in Fig. 2.5 for the case 2θ12 = π/4.

The full calculation exhibits the coherent oscillatory behaviour, and we see that the

oscillation frequencies quickly increase as L/Eν → ∞. The solid lines show what an

experiment might actually measure—a smearing of these oscillations with respect

to some experimental resolution. To produce them, we have convolved the results of

the full calculation with a Gaussian response function, taking the resolution of the

experiment to be a fraction of the expected measurement of L/Eν : σ = 0.1〈L/Eν〉.

We note in particular the behaviour at large distances, where the probabilities con-

verge to their average values given in Eq. (2.4.15).

2.4.3 Three-Neutrino Mixing

The case of three-neutrino mixing is more complicated. The flavour and mass ei-

genstates are now related through a 3 × 3 unitary matrix, such that
νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




ν1

ν2

ν3

 , (2.4.16)

where we have simplified our notation to |ν〉 → ν. This mixing matrix is known as

the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [127]. It can be paramet-

rised by three mixing angles (θ12, θ23, and θ13) and a phase angle (δCP) that quantifies

the degree of CP violation (with δCP = 0 or δCP = π indicating no violation).

The PMNS matrix can, in the case of a Dirac neutrino (see Section 2.4.6), be written

as the product of three independent transformations,

U = R23W13R12 , (2.4.17)
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Figure 2.5: Two-neutrino mixing in vacuum. The red (blue) line
shows the survival (transition) probability. The dashed
lines show the result of the full calculation, with no ex-
perimental averaging. The solid lines contain detector-
averaging effects, where the full calculation has been
convolved with a Gaussian response function with res-
olution σ = 0.1〈L/Eν〉.

with

R12 ≡


c12 s12 0

−s12 c12 0

0 0 1

 , R23 ≡


1 0 0

0 c23 s23

0 −s23 c23

 , (2.4.18)

and W13 ≡


c13 0 s13e

−iδCP

0 1 0

−s13e
iδCP 0 c13

 ,

where cij ≡ cos θij and sij ≡ sin θij7. Performing these transformations, we retrieve

7Note that in the case of a Majorana neutrino (see Section 2.4.6), Eq. (2.4.17) would also incur
the additional transformation D ≡ diag[exp(−iφ1), 1, exp(−iφ2)], where φ1 and φ2 are Majorana
phases. However, these phases have no effect on neutrino oscillations as they induce a common
phase contribution to the propagation Hamiltonian. We have therefore neglected it.
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Figure 2.6: The processes responsible for matter effects in the Sun.
The CC interaction (left) only occurs between electron
neutrinos and electrons. The NC interaction (right)
occurs between all neutrino types (α ∈ {e, µ, τ}) and
all the matter content of the Sun.

the usual form of the PMNS matrix,

U =


c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 . (2.4.19)

To calculate the various probabilities, we would simply insert this matrix into our

master equation Eq. (2.4.10). While there are various regimes in which the complic-

ated result of the general formula simplifies [67], we will forego these calculations

here. We will instead move on to the more interesting and pertinent case of neutrino

oscillations in matter.

2.4.4 Matter Effects

As we saw in Section 2.3, the solar neutrino problem was witnessed by a number

of experiments, all of which agreed that the observed solar neutrino flux was much

lower than expected. However, not all of them agreed on the exact size of this re-

duction. The Homestake experiment, which was primarily sensitive to high-energy
8B neutrinos, measured a rate that was lower than Bahcall’s prediction by almost a

factor of three. On the other hand, the gallium experiments SAGE and GALLEX,
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which observed the lower energy pp neutrinos, reported a deficit of only around 50%.

This tension, which had to be resolved to completely solve the solar neutrino prob-

lem, is completely accounted for when we include how matter can affect neutrinos

on their way out of the Sun.

The CC interactions that produce neutrinos require matter to be present to begin

with. Once created, neutrinos must propagate through the medium, scattering as

they do so. This can have a dramatic effect on neutrino propagation compared

to the vacuum case. In 1985, Stanislav Mikhev and Alexei Smirnov showed that,

when matter is present and varies along a neutrino’s trajectory, it is possible to have

resonant flavour transitions, occurring when it passes through a region in which the

mixing is maximal [111,112]. This is the so-called MSW effect.

Lincoln Wolfenstein showed that neutrinos propagating in matter experience a po-

tential due to their elastic forward scattering with the surrounding particles in the

medium [23]. This potential arises from the CC and NC interactions we introduced

in Section 2.2; we show the relevant diagrams in Fig. 2.6. Of particular note is the

fact that only electron neutrinos undergo CC scattering; the muon and tau neut-

rinos are only able to interact via the NC interaction. Ultimately, this means that

the potential associated with NC scattering is irrelevant for neutrino oscillations, as

they contribute a common phase factor to the matter Hamiltonian. These potentials

can be derived from the CC and NC Lagrangians of Eq. (2.2.8). We find that they

are given by

VCC(x) =
√

2GFNe(x) and VNC(x) = − 1√
2
GFNn(x) , (2.4.20)

where GF is the Fermi constant, and Ne and Nn are, respectively, the electron and

neutron number densities of the medium, which can generally vary with distance.

Note that only neutrons ultimately contribute to the NC potential: this is due to

the fact that, for electrically neutral media, the electron and proton contributions

cancel out. Using these potentials, we can then define the interaction Hamiltonian,
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HI , such that

HI(x) |να〉 = Vα |να〉 , (2.4.21)

where the potential associated with flavour α is given by

Vα ≡ δeαVCC + VNC . (2.4.22)

A state initially born in flavour α will evolve according to the full Hamiltonian, H.

This is the sum of the Hamiltonian governing the neutrino-matter interactions, HI ,

and the free Hamiltonian governing the free propagation of neutrinos in vacuum.

This latter Hamiltonian was the subject of the last section—for n neutrino species,

it can be represented by the diagonal matrix Diag(m2
1,m

2
2, . . . ,m

2
n) in the mass basis.

To combine these two Hamiltonians together, we must bring them to the same basis.

It is most convenient to do this in the flavour basis.

We can write the Schrödinger equation for this system as usual in ket-notation.

However, to afford us the use of matrix notation in what follows, we will write it

in terms of the amplitudes ψαβ(x) ≡ 〈νβ|να(x)〉. We find that the evolution of the

system is then governed by

i
d
dxψα(x) = H(x)ψα(x) =

(
UH0U

† + HI(x)
)
ψα(x) , (2.4.23)

where we have defined the amplitude vector ψα ≡ (ψαα, ψαβ, . . .)ᵀ.

Two-Neutrino Mixing

As in the vacuum case, the simplest mixing scenario is the one in which we only have

two neutrino species. As we will see in Section 2.4.5, the three-neutrino case relevant

for solar neutrino oscillations simplifies to an effective two-neutrino problem. We

will therefore briefly cover the basics of this simplified mixing problem.

The evolution of the flavour eigenstates is determined by Eq. (2.4.23). We will

assume that we begin with a neutrino in the flavour α = e, which has the potential

to oscillate to the flavour α = µ. After removing diagonal terms that lead to an
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irrelevant common phase factor, the evolution of this system is governed by the

effective Hamiltonian

i
d
dx

ψee
ψeµ

 = 1
2Eν

U
0 0

0 ∆m2
21

U † +

ACC(x) 0

0 0



ψee
ψeµ

 (2.4.24)

where we have defined ACC(x) ≡ 2EνVCC. Note that Eq. (2.4.24) has no depend-

ence on the neutral current potential: this is because it appears in equal measures

along every diagonal entry within the SM, and it therefore contributes a redundant

common phase to the problem. However, as we will see in Chapter 4, new physics

effects outside of the SM are not necessarily flavour blind, and in these cases the

NC current can impact neutrino oscillations.

The effective Hamiltonian in Eq. (2.4.24) can be written as

Heff(x) = 1
4Eν

−∆m2
21 cos 2θ12 + ACC(x) ∆m2

21 sin 2θ12

∆m2
21 sin 2θ12 ∆m2

21 cos 2θ12 − ACC(x)

 , (2.4.25)

which is position-dependent due to a generally varying electron number density in

the medium. To evolve the flavour states, we diagonalise this matrix, hoping to arrive

at an evolution equation that is governed by a diagonal Hamiltonian and reducing

the task to exponentiating a diagonal matrix. We can complete this diagonalisation

via the unitary matrix

Um(x) ≡

 cos θm12(x) sin θm12(x)

− sin θm12(x) cos θm12(x) ,

 (2.4.26)

where θm12(x) is now the mixing angle between the two mass eigenstates in matter,

taken at position x. This leads to the now diagonalised effective matter Hamiltonian

Hm = Diag(Em
1 , E

m
2 ), with

Em
1 (x) = ACC(x) − ∆m2

21

4Eν

√
p2 + q2(x) , (2.4.27)

Em
2 (x) = ACC(x) + ∆m2

21

4Eν

√
p2 + q2(x) , (2.4.28)
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Figure 2.7: The variation in θm12 (left axis, solid) and sin2 2θm12 (right
axis, dashed) with decreasing matter potential for neut-
rinos of energies 3 MeV (blue) and 10 MeV (red). The
potential is parametrised in terms of the electron num-
ber density, which is expressed in units of Avogadro’s
number. Neutrinos produced in the Sun will travel from
the dense solar core to vacuum—i.e. from left to right in
the figure. The grey region depicts potentials inaccess-
ible to the Sun, whose electron number density peaks
at the core with a value of Ne ≈ 100NA cm−3.

where we have made the simplifying definitions

p ≡ sin 2θ12 and q(x) ≡ cos 2θ12 − ACC(x)
∆m2

21
. (2.4.29)

The difference between the two energy eigenstates is modified in matter to

∆Em
21(x) = ∆m2

21

2Eν

√
p2 + q2(x) . (2.4.30)

Finally, the matter mixing angle, θm12, can be shown to satisfy the relations

sin 2θm12(x) = p√
p2 + q2(x)

, cos 2θm12(x) = q√
p2 + q2(x)

,

and tan 2θm12(x) = p

q(x) .
(2.4.31)



52 Chapter 2. Fundamentals of Neutrino Physics

From Eq. (2.4.31), we see that a new effect comes into play that was absent in the

case of vacuum oscillations. If the potential reaches a point at which q → 0, then we

find that θm12 → π/4. At this point in the medium, the mixing between the flavour

eigenstates is maximal; this can be interpreted as a resonance effect. This occurs

when the potential satisfies the condition

Ne, res = ∆m2
21 cos 2θ12

2
√

2GFEν
. (2.4.32)

We can understand this effect from Fig. 2.7, where we vary θm12 and sin2 2θm12 with

electron number density. Suppose that a solar neutrino, always born in the state

|νe〉, is created deep within the solar core at the position x0. If Ne(x0) � Ne, res,

where the resonance occurs at the positions of the peaks in sin2 2θm12, then θm12 ≈ π/2

at x0, and |να(x0)〉 ≈ |ν2〉. The neutrino state is then almost entirely composed of

the second mass eigenstate. As the neutrino propagates outwards towards regions

of decreasing potential, it crosses the resonance point and continues towards the

solar surface, where the potential vanishes. If the neutrino crosses this resonance

adiabatically (more on this to follow), then it remains in the state |ν2〉 throughout,

where |ν2〉 = sin θ12 |νe〉 + cos θ12 |νµ〉. If the vacuum mixing angle is small, then,

as θm12 = θ12 at the surface of the Sun, |ν2〉 ≈ |νµ〉, and the neutrino, which was

initially in the electron flavour eigenstate, transitions almost entirely to the muon

flavour eigenstate. This is the MSW effect, which can serve to reduce the expected

population of electron neutrinos compared to the vacuum case dramatically.

If a neutrino is low enough in energy, then Ne, res occurs at high enough values that

the resonance is never crossed. This corresponds to the blue line of Fig. 2.7, where

the resonance happens at a number density that is higher than the maximum solar

value, Ne ≈ 100NA cm−3. In this case, the neutrino population is well-described by

vacuum oscillations, and the MSW effect can be largely ignored. This is precisely

why measurements with low-energy pp neutrinos showed a much smaller deficit

compared to the high-energy 8B neutrinos, which are greatly influenced by the MSW

effect. We note that the values in Fig. 2.7 were computed with the much lower
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value for the vacuum mixing angle of θ12 = 5◦ compared to the solar value of

θ12 ≈ 35◦ [128]. This was to highlight more clearly where the resonances occur, as

the peaks produced with lower angles are sharper. For the solar value, resonances

disappear for Eν . 1 MeV.

With Heff diagonalised, we can transform to the mass basis using ψe = Um(x)φe(x).

This allows us to re-express Eq. (2.4.24) in terms of the mass eigenstates in matter:

i
d
dx

φe1
φe2

 =

−∆Em
21 −iθ̇m12

iθ̇m12 ∆Em
21


φe1
φe2

 . (2.4.33)

We see that the Hamiltonian contains off-diagonal terms that depend on the rate of

change of the matter mixing angle, making Eq. (2.4.33) difficult to solve.

Nevertheless, if we evolve through small enough distances δx, then θ̇m12(x) ≈ 0.

The above Hamiltonian then reduces to an effective diagonal matrix, given by

D(x) ∼ Diag[−∆Em
21(x),∆Em

21(x)]. We can then evolve the mass eigenstates along

this infinitesimal path, transform back to the flavour basis, re-diagonalise at the new

point in space, and repeat this procedure to arrive at the flavour state along a finite

path length. In practice, this is akin to evolving the state through a series of slabs

of constant density with thicknesses δx. We find that the amplitude vector after N

slabs is given by

ψα(xN) = Um(xN−1) exp [−iD(xN−1)δx]U †
m(xN−1)

× Um(xN−2) exp [−iD(xN−2)δx]U †
m(xN−2)

× . . .

× Um(x0) exp [−iD(x0)δx]U †
m(x0)ψα(x0) ,

(2.4.34)

where xi ≡ xi−1 + δx.

In general, the problem of neutrino propagation through matter, characterised by

Eq. (2.4.33), must be solved numerically. However, for slow enough variations in the

mixing angle, θm12(x) will not change significantly between the distances δx. Within
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this approximation, U †
m(xi)Um(xi−1) ≈ 1, and, as δx → 0, Eq. (2.4.34) simplifies to

ψα(xN) = Um(xN) exp
[
−i
∫ xN

x0

D(x) dx
]
U †
m(x0)ψα(x0) . (2.4.35)

This is known as the adiabatic approximation. It is identical to having no mixing

between the mass eigenstates in matter, with each state evolving separately at each

point in space. Defining the adiabaticity parameter

γ ≡ |∆E21|
2|θ̇m12|

, (2.4.36)

we see that when γ � 1, the diagonal terms in the Hamiltonian of Eq. (2.4.33)

dominate, and we can neglect the off-diagonal elements. If γ � 1 at the point of

maximum violation of adiabaticity, where γ takes its lowest value, then the evol-

ution can be treated as adiabatic, and we can resort to the simplified relation in

Eq. (2.4.35). As we will see in the next section, this is pertinent to the case of solar

neutrino oscillations, as the density of the solar medium varies slowly enough for us

to make this approximation.

We can combine the adiabatic approximation with the fact that, for large propaga-

tion lengths, the mass eigenstate arrives at a detector in an incoherent superposition

of states. We can then discard any cross terms giving us interferences of the form

UαiU
m?
αj and keep only those terms where flavour states overlap with the same mass

eigenstates (equivalent to taking a trace). This gives us the probabilities

P 2ν
eα (Eν) = |ψeα|2 =

∑
i

|Uαi|2|Um
ei (x0)|2 , (2.4.37)

where we have used the initial conditions ψe(x0) = (1, 0)ᵀ and the fact that, at

the point of detection, Um(xN) = U—the vacuum mixing matrix. We see that the

probabilities at detection depend only on the initial and final states of the system,

with no dependence on the details of the intermediate propagation states. Thus,

the position-dependence is removed from the probabilities, which become functions

of the single variable Eν coming from ACC. Finally, using Eq. (2.4.37), we get that
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the transition probability is given by

P 2ν
eα (Eν) = 1

2 [1 − cos 2θ12 cos 2θm12(x0)] , (2.4.38)

from which the survival probability can be retried by unitarity.

2.4.5 Three-Neutrino Mixing

As in the case of vacuum mixing, the three-neutrino problem is generally more

difficult to solve. However, there are simplifying approximations we can make that

not only make the problem analytically tractable but are also appropriate in the

case of solar neutrinos. In particular, we will see that we can reduce the evolution

of three neutrino states into that of an effective two neutrino system, allowing us to

use our above results.

Given an initial state in the flavour α = e, its evolution is governed by the Schrödinger

equation

i
d
dxψe = 1

2Eν

U


0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

U
† +


VCC 0 0

0 0 0

0 0 0



ψe , (2.4.39)

where U is now the PMNS matrix, U = R12W13R12, and the amplitude vector is

ψe = (ψee, ψeµ, ψeτ )ᵀ. Defining the matrix O ≡ R12W23, such that U = OR12, it is

illuminating for us to switch to what we will call the solar neutrino basis, ψ̃e = O†ψe.

In this basis, the evolution of ψe is determined by the Hamiltonian

H̃ = 1
2Eν


s2

12∆m2
21 + c2

13ACC c12s12∆m2
21 −c13s13e

−iδCPACC

c12s12∆m2
21 c2

12∆m2
21 0

−c13s13e
iδCPACC 0 ∆m2

31 + s2
13ACC

 . (2.4.40)

If the mass-squared hierarchies are such that ∆m2
31 � ∆m2

21 ∼ ACC, then we

find that the bottom-right entry of the Hamiltonian dominates. For solar neutri-

nos, the current best-fit values for these parameters (normal-ordering) are ∆m2
31 =
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(2.510+0.027
−0.027) × 10−3 eV2 and ∆m2

21 = (7.42+0.21
−0.20) × 10−5 eV2 [128], and the maximal

value for ACC, using the solar electron number density of Ref. [129], is ∼ 10−4 eV2 for

neutrinos of energy Eν ∼ 10 MeV. Thus, for solar neutrinos, the above inequalities

are satisfied, and the third eigenvalue of the Hamiltonian is well-approximated by

∆m2
31/2Eν . This implies that the third mass eigenstate propagates freely without

interacting with the others. The evolution of this system is then dictated by

H̃ =

H̃eff 02×1

01×2 ∆m2
31/2Eν

 , (2.4.41)

where H̃eff is the 2 × 2 Hamiltonian of Eq. (2.4.25) with ACC replaced with the

effective potential ÃCC = c2
13ACC. Thus, we see that the three-neutrino problem

reduces to an effective two-neutrino one, combined with a third freely propagating

neutrino state. We can therefore use the two-neutrino mixing results, making suit-

able replacements of ACC → ÃCC. We note that the adiabaticity parameter, defined

in Eq. (2.4.36), for solar neutrinos is such that γmin ∼ 103, and the adiabatic ap-

proximation is valid in this case. Indeed, in analogy with Eq. (2.4.35), we find that

the state vector evolves as

ψe(xN) = U

exp
[
−i
∫ xN
x0

D(x) dx
]

02×1

01×2 exp
[
−i∆m2

31/2Eν
]
U †(x0)ψe(x0) . (2.4.42)

In the incoherent regime, the probabilities are given by the three-neutrino analogue

of Eq. (2.4.37),

Peα(Eν) =
∑
i

|Uαi|2|Um
ei (x0)|2 , (2.4.43)

yielding the probabilities

Pee(Eν) = c4
13P

2ν
ee + s4

13 , (2.4.44)

Peµ(Eν) = c2
13

[
c2

23

(
1 − P 2ν

ee

)
+ s2

13s
2
23

(
1 + P 2ν

ee

)
+ ∆CP

]
,

Peτ (Eν) = c2
13

[
s2

23

(
1 − P 2ν

ee

)
+ s2

13c
2
23

(
1 + P 2ν

ee

)
− ∆CP

]
,
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where we have defined the CP-dependent parameter

∆CP(θm12) ≡ 1
2s13 sin(2θ23) sin(2θ12) cos(2θm12) cos(δCP) . (2.4.45)

Since solar neutrino experiments such as SNO are only sensitive to νµ and ντ through

NC interactions, only Pee is relevant. This is because, within the SM, the NC poten-

tial is the same for all neutrino flavours, and one cannot differentiate between these

neutrinos through NC interactions. For the second- and third-generation neutrinos,

it is therefore enough to know the sum of Peµ and Peτ , which is merely given by

1 − Pee. However, as we shall see in Chapter 4, new physics effects can introduce

flavour-specific effects, making an explicit expression for the flavour fractions invalu-

able. As far as we are aware, analytical expressions for the solar electron neutrino

transition probabilities in this regime have not been given before.

To use Eq. (2.4.44), we must know the value of the mixing parameters. Each of

these parameters has been measured via a neutrino oscillation experiment that

is sensitive to it. Accelerator experiments—such as Minos [130], T2K [131], and

NOvA [132]—and experiments that are able to measure atmospheric neutrinos—

such as Super-Kamiokande [133] and IceCube [134]—observe the survival and trans-

ition probabilities of muon neutrinos and are hence sensitive to θ23. These ex-

periments are also sensitive to anti-neutrinos, and can therefore also get a handle

on δCP. Reactor experiments—such as KamLAND [135], Chooz [136], and Daya

Bay [137]—measure the survival probability of anti-electron neutrinos, pinning down

θ13 and ∆m2
12. Finally, as can be seen from Eq. (2.4.44), once θ13 is known, solar

neutrino experiments are sensitive to the parameters in P 2ν
ee : θ12 and ∆m2

12. When

combined with data from reactor experiments, solar neutrino data can place greater

constraints on ∆m2
12 [128, 138]. All of these experiments can be incorporated into

a global analysis of oscillation parameters to give us their best-fit values and con-

fidence regions. For our analyses, we use the most up-to-date NuFIT 5.1 global fit

results, which are summarised in Ref. [128].

Finally, we must choose a value to take for cos 2θm12(x0) in Eq. (2.4.38). We can
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Figure 2.8: The normalised electron neutrino production regions,
f(x), with fractional solar radius, x ≡ r/R�, as calcu-
lated from the BP16-GS98 SSM Ref. [74]. The fluxes
associated with the primary pp fusion chain are shown
as solid lines, while those associated with the CNO cycle
are shown as dashed lines.

define a spatially averaged result for it using the normalised spatial distribution,

f(r), governing where each neutrino flux is produced,

〈cos 2θm12(x0)〉 =
∫ 1

0
f(x) cos 2θm12(x) dx , (2.4.46)

where we have introduced the fractional solar radius, x ≡ r/R�. The spatial dis-

tributions for each population are SSM-dependent; we have used the BP16-GS98

predictions calculated by Ref. [74]. These are shown in Fig. 2.8.

Our results for the SM probabilities are shown in Fig. 2.9. We have broken down

each probability into source-specific curves to illustrate the effect of the average in

Eq. (2.4.46). For solar neutrino experiments, the most important curves to read

are the electron survival probabilities, which are shown as solid lines. In particular,

we see that the high-energy 8B neutrinos are greatly affected by the MSW effect,

with their survival probability falling to ∼ 1/3. The low-energy pp neutrinos, on
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the other hand, are well-described by the vacuum mixing angle, θm12 ≈ θ12. This is

precisely what we see in experiments that probe different neutrino energy ranges,

with 8B-sensitive experiments like Homestake measuring a greater deficit in electron

neutrino events compared with experiments sensitive to pp neutrinos, such as SAGE

and GALLEX. Indeed, through this observation, the MSW effect was confirmed, and

the solar neutrino problem was finally put to rest.

2.4.6 Neutrino Masses

The evidence for neutrino oscillations is now overwhelming. They imply that there

is a mismatch between the flavour states that neutrinos are inherently created in and

the states in which they propagate—the mass eigenstates. This, of course, requires
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that neutrinos have mass; however, the SM predicts that no such mass-giving term

exists. Thus, BSM physics must be invoked to give these neutral leptons a mass,

and we will now briefly comment on how such terms can be introduced.

Generally, the nature of the added mass term depends on the nature of the neutrino.

Neutrinos are considered to be either Dirac, Majorana, or some combination of the

two. Both of these neutrino types can be defined by how the neutrino relates to its

anti-particle. In the case of Dirac neutrinos, these two particles are fundamentally

different from one another. For Majorana neutrinos, on the other hand, the anti-

particle of the neutrino is itself, ν = ν. The phenomenology of these possibilities is

very different, and it is then no surprise that the way in which they can acquire a

mass is also different.

Dirac Neutrinos

The case of Dirac neutrinos is perhaps the most straightforward. Dirac masses stem

from the Yukawa Lagrangian in EW theory, Eq. (2.2.13). After SSB, the Yukawa

term endows fermions with Dirac masses via the product of their LH and RH chiral

fields. Thus, to give neutrinos a Dirac mass, we must introduce a RH neutrino field,

νR, for each flavour, adding the additional Yukawa term:

LDirac
Mass = −Y ν

ij

(
L
i
H̃νjR

)
+ h.c. . (2.4.47)

After the Higgs acquires a VEV, neutrinos then acquire masses mν
i = yνi v/

√
2, for

i ∈ {1, 2, 3}, in complete analogy with Eq. (2.2.14).

It is worth noting two important points about the nature of Dirac neutrinos. Firstly,

the newly introduced RH fields must be singlets under all symmetry groups of the

SM, since they cannot interact with the SM (otherwise, we would have seen them).

These RH neutrinos are typically called sterile neutrinos, interacting only gravit-

ationally8. Secondly, cosmological bounds place a strict upper limit on the sum
8One can introduce additional BSM physics to act as a non-gravitational ‘portal’ to these
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of neutrino masses, ∑im
ν
i < 0.12 eV [6]. As a Dirac neutrino would have a mass

proportional to the Higgs VEV, this would require its Yukawa coupling to be of

order yν . 10−12 ∼ 10−6ye, where ye is the electron Yukawa coupling. However,

the SM already suffers for a hierarchy problem in the fermion Yukawa couplings,

with no explanation for why these couplings span six orders of magnitude across

the three generations. Introducing this additional neutrino Yukawa coupling would

exacerbate this issue.

Majorana Neutrinos

As neutrinos are neutral particles, their fields satisfy the Majorana condition,

ψC ≡ Cψ
ᵀ = ψ , (2.4.48)

where ψC is known as the charge-conjugate field and C is the charge conjugation

matrix. As anti-particles are described by their charge-conjugate fields, this means

that the neutrino could be its own anti-particle—a Majorana particle. In this case,

we can construct a Dirac mass term using purely the LH field, with its RH counter-

part given by νR = νCL ,

LMajorana
Mass = −1

2m
ννCL νL + h.c. . (2.4.49)

Worryingly, Majorana neutrinos violate lepton number conservation, as the Major-

ana mass term is not invariant under global U(1) gauge transformations:

νL → eiανL =⇒ νcLνL → e2iανCL νL . (2.4.50)

No lepton number violating processes have been observed so far; however, their ob-

servation would act as a signature of Majorana neutrinos. Searches for neutrinoless

double beta-decay, a prime candidate of such a process, are being intensely pursued

for precisely this purpose [141–143].

new fields. One example is the neutrino dipole portal, in which active neutrinos have a non-
zero transition-magnetic moment that allows them to up-scatter to the heavier, sterile neutrino
state [139,140].
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It is a curious fact that, should the SM be an effective low-energy realisation of a

richer and higher energy theory, the lowest dimension operator that could be added

to the SM realises Majorana neutrinos. This is the so-called dimension-5 Weinberg

operator,

Ld=5 = C5

Λ
(
L
c
H̃
) (
H̃ᵀL

)
, (2.4.51)

where C5 is some weighting coefficient in the theory, and Λ is the scale of new

physics. After SSB, this BSM Lagrangian gives us a mass term precisely of the form

of Eq. (2.4.49).

Ultimately, a combination of both Dirac and Majorana neutrinos is used to give

neutrinos mass. These combined mass mechanisms are known as the seesaw mech-

anisms, and they come in different types depending on how one chooses to UV com-

plete the effective Weinberg operator. For reviews on these models, see, for example,

Ref. [144,145]. Note that these mass models generate neutrino masses at tree-level;

however one can also have ‘radiative’ neutrino masses induced at loop-level through

models such as the scotogenic model [146,147].



CHAPTER 3

Neutrino Physics at Direct Detection Experiments

Dark matter direct detection experiments, as their name suggests, are typically

employed in the search for dark matter. However, a new search is on the horizon.

The next generation of DD experiments will become so sensitive that they will begin

to expose themselves to an irreducible background of neutrino events, marked by the

so-called neutrino floor. This will complicate the hunt for dark matter, but it will

usher in the beginning of a new search for BSM neutrino physics. DD experiments,

with their large exposures and low energy thresholds, present a wealth of untapped

potential in this vein that could provide leading results beyond those of neutrino-

dedicated experiments. It is this potential that is the subject of this thesis.

In this chapter, we will introduce the concepts behind DD experiments, focusing on

how they can be used to detect solar neutrinos. We will begin with a brief historical

account of DD experiments, focusing on their typical application to the search for

DM. We will then turn to neutrinos, making the case for why future DD experiments

are set to play key roles in the search for new neutrino physics. Following this, we

will lay the theoretical foundations for neutrino scattering with nuclei and electrons
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at DD experiments, commenting on the experimental details we have considered to

make our analyses as sophisticated as possible. Finally, we will introduce the DD

experiments that have inspired this work, describing each of their operations and

projected experimental specifications.

3.1 Dark Matter Direct Detection Experiments

In 1984, riding the wave of excitement set up by the solar neutrino problem and

recent advancements in the up-and-coming field of neutrino astronomy, Andrzej

Drukier and Leo Stodolsky proposed a new type of neutrino detector [148]. Based

on the NC process of coherent elastic neutrino-nucleus scattering (CEνNS), the

detector would be able to measure nuclear recoils (NRs) of energies 10−3–10 keV.

This made them sensitive to neutrinos with Eν ∼ 1–10 MeV, giving them access to

a broad range of fascinating neutrino physics. For instance, as a spallation source

experiment, it could be used to test the SM prediction of the CEνNS rate. On the

other hand, as a solar neutrino experiment, it would be able to join the ranks of

neutrino experiments already pointing to the Sun, measuring the solar neutrino flux

through a new interaction channel and yielding additional insights into the nature

of the solar neutrino problem1.

The following year, however, it was pointed out by Mark Goodman and Edward Wit-

ten that such a detector could also be used to detect certain DM candidates [149].

Indeed, two of the three candidates they had in mind are what we today call

weakly interacting massive particles (WIMPs)—massive DM particles with inter-

action strengths of a similar order to that of the weak interaction. They found that

a detector based on the coherent elastic scattering of nuclei with DM particles in the

galactic halo would be sensitive to WIMP masses of 1–106 GeV (for spin-independent

couplings).

1In an alternate history, such an experiment would have observed no deficit in the solar neutrino
flux, as CEνNS is flavour blind. Together with measurements from CC interactions, it would have
provided us with the key to the solar neutrino problem that SNO supplied in 2001-2003.
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Figure 3.1: The effective coherent elastic scattering between a DM
particle, χ, and a nucleus, N , looked for at DD experi-
ments.

While the detector proposed by Drukier and Stodolsky was never built, the theor-

etical foundation they, Goodman, and Witten laid forms the basis of modern DD

experiments. Motivated by the so-called WIMP miracle (the fact that such DM

particles can realise the DM relic abundance we observe today [150]), DD exper-

iments primarily look for the coherent elastic scattering between WIMPs and a

variety of target nuclei. The scattering with a DM particle, χ, is usually considered

as an effective interaction, as illustrated in Fig. 3.1. By looking for this process, or

its lack thereof, DD experiments teach us about the nature of DM.

The last three decades have been an exciting and productive period for DD experi-

ments, and excellent reviews on the topic can be found in Refs. [151,152]. Today, a

great expanse of the WIMP parameter space—described by the WIMP mass, mχ,

and the WIMP-nucleon cross section, σχn2—has been ruled out, lessening the mo-

tivation for this popular DM candidate. The last wave of DD experiments concluded

with the construction of the XENON1T [153] experiment; however, a new generation

of experiments is on its way.

Indeed, a plethora of next-generation and far-future DD experiments have now been

proposed [151]. Should a signal fail to be detected, these experiments are set to

provide us with the leading constraints in the WIMP parameter space. In fact, as

we are about to see, they are projected to reach such astonishing sensitivities that
2For the sake of argument, we only consider spin-independent cross sections here. WIMPs may

also interact via spin-dependent interactions.
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they will begin to observe scattering events induced by solar neutrinos. This will

provide them with a complementary research mission beyond the search for DM,

realising the initial ideas of Drukier and Stodolsky.

3.2 The Case for Neutrino Physics

Neutrinos form a pesky background for DD experiments. With their extremely

small cross sections, neutrinos cannot be shielded against, and the NR signature

they leave in a detector can be difficult to disentangle from that of a WIMP. The

ever-present flux of neutrinos—which can come from the Sun (c.f. Section 2.3), the

atmosphere [154], diffuse supernovae [155], and even the Earth itself [156]—therefore

forms a chronic, irreducible background for the DM hunt at DD experiments.

This has led to the concept of the so-called ‘neutrino floor’: a discovery limit in the

WIMP parameter space representing those cross sections below which a DM signal

would be statistically lost in the sea of neutrino events. We show the neutrino floor,

as calculated by Ref. [160] using the ideas first established in [161], in Fig. 3.2. The

idea behind this calculation is that, for a given WIMP mass, that cross section is

found at which 90% of hypothetical DD experiments would still be able to reject the

neutrino-only hypothesis at a confidence level of 3σ. The floor itself is defined by

the boundary of the red region, and we see that it is broadly characterised by two

regions in the WIMP mass: a low-mass region (mχ . 6 GeV) where it extends to

cross sections of order σχn ∼ 10−45 cm2, and a high-mass region where it is contained

to much smaller cross sections. The first of these is due to solar neutrinos, with 7Be

neutrinos producing NR signatures similar to those of very low-mass WIMPS and 8B

neutrinos causing a similar issue for mχ ∼ 6 GeV. Above this mass, the WIMP signal

is too energetic to be produced by solar neutrinos, but they can instead be mimicked

by the higher energy atmospheric and diffuse supernovae neutrinos, which defines

the second, higher mass regime of the neutrino floor [161]3. We see, therefore, that

3We note that, should a WIMP reside below the neutrino floor, its signal could, in theory, be
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Figure 3.2: The projected 90% CL limits of the considered upcom-
ing and far-future DD experiments relative to the neut-
rino floor. We show the projections from SuperCDMS
at SNOLAB [13], LZ [157], XENONnT [15], DAR-
WIN [16], and DarkSide-20k [17]. We also show the
previous limit set by the XENON1T collaboration [158]
and the limit recently set by LZ [159]. The ‘neutrino
floor’, as calculated for a xenon target [160], is shown
in red.

as far as the DM hunt is concerned, this irreducible neutrino background presents

DM DD experiments with a serious obstacle in their mission to detect ever-weaker

WIMP candidates.

However, we can re-interpret this ‘obstacle’ under a significantly more positive light.

Through ever-decreasing energy thresholds and ever-increasing detector exposures,

DD experiments are set to reach such incredible sensitivities that they will begin to

observe neutrinos with high statistical significance. This will present them with a

disentangled from the neutrino background. This could be done either by using measurements that
bypass the floor to some degree—such as by using complementary targets [162], diurnal/annual
modulation [163,164], or directional information [165,166]—or by simply having enough statistics
and a better handle on the neutrino flux uncertainties. This latter strategy has led to the more
contemporary term ‘neutrino fog’ appearing in the literature, reflecting the fact that this fog can
be lifted given high enough exposures or better knowledge of the neutrino flux normalisations
[163,167–170].
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new and compelling opportunity beyond the search for DM.

In fact, next-generation and far-future DD experiments are on a direct collision

course with the neutrino floor. In Fig. 3.2, we show the projected 90% confidence

level (CL) limits of the future DD experiments we focus on in this work: LUX-

ZEPLIN (LZ) [171], XENONnT [15], SuperCDMS at SNOLAB [13], DarkSide-

20k [17], and the DArk matter WImp xenoN observatory (DARWIN) [16]. We

see that the xenon-based experiments LZ, XENONnT, and DARWIN will begin

to probe the 8B shoulder and will therefore measure a significant number of solar

neutrino scattering events. The germanium-based SuperCDMS experiment, the pro-

jections for which we have split into those from the HV and iZIP detectors (more

details in Section 3.4.2), will not be far behind them. Moreover, the DarkSide-20k

detector, based on argon, will likely not be able to see a significant number of solar

neutrinos; however, they are encroaching on the even weaker atmospheric neutrino

signal, and, as we will see in Chapter 5, a low-threshold version of DarkSide-20k

would be sensitive to solar neutrinos. In Fig. 3.2, we also show the limits set by the

XENON1T experiment [158] and, more recently, by the commissioning run of the

LZ experiment [159]. These experiments have begun to approach the solar neutrino

part of the neutrino floor, and the sensitivity reached by the XENON1T experiment

has already been motivation enough for the collaboration to perform a 8B-dedicated

search [172].

The landscape we present in Fig. 3.2 sets the scene for our work. The next era of

DD experiments will become sensitive to solar neutrinos, and, as such, they will

become excellent probes of potential BSM physics in the neutrino sector. As we

will see in Chapter 4, such BSM physics can impact both the NR and ER (electron

recoil) scattering cross sections, and, by comparing the predicted phenomenology of

these models to measurements of the solar neutrino scattering rate, DD experiments

will be able to place limits on, or potentially even make a discovery of, new neutrino

physics. Indeed, while we have focused on the coherent scattering of nuclei with

neutrinos, as this poses an existential threat to the WIMP hunt, elastic neutrino-
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electron scattering (EνES) will also become an important ER background, or in our

case signal, for these next-era detectors.

This more optimistic approach of breaking through the neutrino floor has already

been the subject of intense research. These studies broadly focus on how this solar

neutrino signal can be used to teach us more about the nature of solar physics,

neutrino oscillations, and BSM neutrino physics [173–183]. In this work, we will

follow suit, showing how DD experiments can use solar neutrinos as powerful probes

of both light new physics in the neutrino sector (Chapters 5 and 6) and, more gener-

ally, neutrino non-standard interactions (Chapter 7). However, before we introduce

these new physics models, we will lay the theoretical foundations for CEνNS and

EνES, both of which we will make reference to throughout the remainder of this

work.

3.3 Neutrino Scattering at Direct Detection

Experiments

The theoretical scattering rate between a DD target and a colliding particle is usually

described by the differential rate spectrum. This tells us how many recoils to expect

per unit time and per unit mass of a detector at a particular recoil energy, ER. For

neutrino scattering at a DD experiment, the total differential rate for nuclear- and

electron-recoil events is given by4

dR
dER

(ER) = nT
∑
r

∑
α

∫
E

min
ν

dφrνe

dEν
(Eν)Peα(Eν)

dσανT
dER

(ER, Eν) dEν , (3.3.1)

where nT is the number of targets available to interact per unit mass of a detector,

dφrνe
/dEν is the electron neutrino flux produced by the solar nuclear fusion reaction

r (pp, 8B, etc.), Peα(Eν) is the probability of an electron neutrino transitioning to a

4We will see in Chapter 4 that this relation is only true for the case of flavour-conserving
interactions. When we add BSM flavour-violating effects, we must consider how the mixed-state
flavour system arriving at the Earth interacts with the detector more carefully. We will study such
interactions in the context of DD experiments in Chapter 7.
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neutrino of flavour α, and dσανT/dER is the differential cross section for the scattering

process between a neutrino of flavour α and the target T (which can be either a

nucleus or an electron). In the case of a nuclear target, nT = 1/mN , where mN is

the mass of the nucleus, and in the case of an electron target, nT = Z/mN , where Z

is the number of protons (or equivalently electrons) per nucleus. The neutrino flux

produced by each nuclear fusion reaction in the Sun is shown in Fig. 2.4, and the

relevant SM transition probabilities are shown in Fig. 2.9. The integral above runs

from the minimum neutrino energy required to produce a recoil of energy ER with

a target of mass mT ,

Emin
ν =

ER +
√
E2
R + 2mTER
2 . (3.3.2)

The number of expected neutrino events between any two recoil energies, E1 and

E2, quickly follows from Eq. (3.3.1):

N(E1, E2) = ε
∫ E2

E1

dR
dER

dER , (3.3.3)

where ε ≡ MT is the exposure of an experiment, given by the product of the total

detector mass and the detector livetime.

When considering the differential rates of NRs and ERs, we will make a distinction

between the two energy scales associated with them. For the former, we will attrib-

ute to it the unit of nuclear-recoil-equivalent energy (keVnr), while, for the latter,

we will use the unit of electron-equivalent energy (keVee). This is because the recoil

energies associated with NRs and ERs translate to different observed energies in a

detector. We will expand on this in greater detail in Section 3.3.3, where we will

introduce the concept of signal ‘quenching’.

For the new physics models we consider in this work, only two quantities in Eq. (3.3.1)

will be impacted: the transition probabilities, Peα, and the (flavour-specific) differ-

ential scattering cross section, dσανT/dER. For the former, BSM physics can enter

at the level of the matter effects that affect neutrino oscillations in the Sun (this is

the MSW effect we saw in Section 2.4.4). For the latter, new physics will contribute
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Figure 3.3: The NC interaction responsible for CEνNS.

terms to the EW interaction Lagrangian in Eq. (2.2.4), introducing new neutrino

scattering interactions. We will discuss these effects in Chapter 4, where we present

the BSM physics we have considered. Presently, however, we will treat the neut-

rino phenomenology at DD experiments predicted by the SM in combination with

neutrino oscillations.

3.3.1 Coherent Elastic Neutrino-Nucleus Scattering

Coherent elastic neutrino-nucleus scattering was first predicted by Daniel Freed-

man in 1973 as a test of the recently developed SM EW theory [184]. He argued

that, just as a weak NC interaction exists between neutrinos and electrons, so too

must an NC process occur between neutrinos and nuclei. This process, depicted in

Fig. 3.3, features a neutrino scattering coherently with an entire nucleus (as opposed

to incoherently with only a single nucleon). The result is that the cross section of

the process benefits from an enhancement that goes as the square of the atomic

mass, A2 = (Z + N)2, where Z and N are the number of protons and neutrons

in the nucleus, respectively. Indeed, Freedman predicted that, for energies of order

Eν ∼ 100 MeV, the cross section for a nucleus with as few nucleons as even car-

bon (A = 12) would be as large as σ ∼ 10−38 cm2. This cross section is orders of

magnitude larger than that of the inverse β-decay process we encountered in Sec-

tion 2.1, which, as we saw in Section 2.3, the Homestake experiment successfully

used to detect solar neutrinos.
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Despite its enhanced cross section, CEνNS eluded researchers for over four decades

after Freedman’s prediction. The issue came not from the theoretical strength of

the process, but rather from the experimental hurdle of detecting the low-energy

nuclear recoils involved. Even for high-energy neutrinos with Eν ∼ 100 MeV, a

heavy nucleus will recoil with energies of order ER ∼ 1 keV. It took until 2017 to

discover this elusive phenomenon, detected by the COHERENT collaboration at the

Oak Ridge National Laboratory Spallation Neutron Source, where they witnessed

CEνNS with neutrinos scattering off a CsI target [185]. They have since observed

this process using a liquid argon target [8], as well as performed measurements of the

CEνNS cross section itself [186]. All of their results have thus far been consistent

with SM predictions, marking another great success for the SM.

Within the SM, the (flavour-blind) differential scattering cross section for CEνNS

is given by [184,187]

dσανN
dER

= G2
FmN

π

(
1 − mNER

2E2
ν

)
Q2
νN

4 F 2(ER) , (3.3.4)

where mN is the mass of the recoiling nucleus, and the coherence is encapsulated in

the factor

QνN ≡ N − (1 − 4 sin2 θW )Z . (3.3.5)

The nuclear form factor, F (ER), accounts for the fact that the nucleus is not a point-

like particle but is rather composed of nucleons distributed according to some spatial

distribution functions. This factor quantifies the decoherence that occurs when the

de Broglie wavelength associated with the momentum transfer, q = (2mNER)1/2,

is no longer large compared to the scale of the nucleus. This leads the effective

cross section in Eq. (3.3.4) falling with increasing q [188]. For low values of q, it is

effectively unity, F (q2 → 0) ∼ 1.

A commonly used form factor is the Helm form factor, which treats the nucleus as

a solid sphere with a Gaussian smearing around its edges [189]. It has the benefit
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that its form is given analytically:

F (q2) = 3j1(qR0)
qR0

exp
(
−q2s2/2

)
, (3.3.6)

where j1 is the first-order spherical Bessel function of the first kind, R0 is the effective

nuclear radius, and s is a measure of the nuclear skin thickness. R0 can be para-

metrised such that Eq. (3.3.6) approximates the more realistic, though non-analytic,

Fermi (or Woods-Saxon) form factor. This parametrisation is given by [188]

R0 =
√
c2 + 7

3π
2a2 − 5s2 , (3.3.7)

where c and s are variables that must be fitted to data, and a is a parameter related

to s. All of these quantities are connected to the root-mean-square radius of the

nucleon distributions, rRMS, which are experimentally measurable quantities. One

can therefore fit the parameters in Eq. (3.3.7) to data, and from the muon scattering

measurements of Ref. [190], they are fitted to [188]

c ≈ (1.23A1/3 − 0.60) fm , s ≈ 0.9 fm , and a ≈ 0.52 fm . (3.3.8)

We note that the form factor is, in general, nucleon dependent, with two separate

form factors, Fp(ER) and Fn(ER), for the proton and the neutron; this is due to their

generally different spatial distribution functions. Equating these two functions to

one another, Fp(ER) ' Fn(ER) ≡ F (ER), allows us to write the CEνNS cross section

in the form shown in Eq. (3.3.4), where the form factor appears as a global scaling.

However, we must be careful with this approximation, as the experimental best-fit

values and uncertainties in the rms radii of the proton and neutron distributions

are significantly different. While the rRMS of the proton is well-known, that of

the neutron is poorly constrained, as it depends on measurements completed at

hadronic experiments, which are subject to large uncertainties themselves [191]. For

momentum transfers of q . 20 MeV, these uncertainties only have an ∼ 1% effect

on the form factor; however, for larger q, their impact can be as large as ∼ 5% [191].

Therefore, while not important for CEνNS with solar neutrinos, for the energies
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Figure 3.4: The differential rate spectrum for solar neutrino CEνNS
with a 131Xe target. The total spectrum (dash-dotted)
is broken down into flux-specific contributions (solid).

involved in experiments such as COHERENT, these differences must be taken into

account once other systematic uncertainties have been sufficiently reduced. This is

crucial when interpreting the CEνNS rate in terms of new physics effects, as they

can cause deviations of a similar order to the form factor uncertainties [191,192].

We show the expected CEνNS rate due to solar neutrinos for the case of a 131Xe

target in Fig. 3.4. The total rate is broken down into contributions from each

solar neutrino flux, the energy spectra for which are shown in Fig. 2.4. As we

will see in Section 3.4, DD experiments typically have NR thresholds in the range

Ethresh ∼ 0.1–10 keVnr, making 8B neutrinos the main contributors to the CEνNS

signal. We note that the rates for other targets are broadly similar, with lighter

nuclei generally shifting to higher energies and lower overall rates. This is because

lighter nuclei benefit from the fact that they can scatter more energetically, but their

smaller size means that the coherence effect is substantially reduced, with the cross

section in Eq. (3.3.4) scaling as ∼ A2.
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Figure 3.5: The processes responsible for EνES. The CC interac-
tion (left) is only accessible to electron neutrinos. The
NC interaction (right) is available to neutrinos of all
flavours.

3.3.2 Elastic Neutrino-Electron Scattering

Elastic neutrino-electron scattering played a key role in our discussion of solar neut-

rinos in Section 2.3. In particular, we saw that the water Cherenkov detectors

Super-Kamiokande and SNO used this process to provide us with the critical puzzle

piece that helped us solve the solar neutrino problem—namely, a difference in the

number of neutrinos interacting via charged and neutral currents. This was no easy

feat, as the cross sections involved in EνES are of order σ ∼ 10−42 cm2 [193], and

they are not improved by any coherence effects like in the CEνNS case. However, as

electrons are very light, even low-energy pp neutrinos can produce ERs of sufficiently

high energies to be measurable by these detectors. This, combined with the high

flux of these neutrinos, makes EνES with solar neutrinos a realistically observable

phenomenon.

The three processes responsible for EνES within the SM are shown in Fig. 3.5.

These include the CC interaction, which only occurs with electron neutrinos, and

the NC interaction, which occurs with all neutrinos. The cross section is therefore

flavour-specific and is given by

dσανe
dER

= 2G2
F me

π

(gα1 )2 − gα1 g
α
2
meER
E2
ν

+ (gα2 )2
(

1 − ER
Eν

)2
 , (3.3.9)

where me is the electron mass, and gα1 and gα2 are the flavour-specific weak couplings.
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They are given by

gα1 = geL + δαe and gα2 = geR , (3.3.10)

where geL and geR are the LH and RH couplings between the electron and the Z-boson,

geL = sin2 θW − 1
2 and geR = sin2 θW . (3.3.11)

The cross section in Eq. (3.3.9) is relevant for a free electron that is unencumbered

by any potential well. However, the electrons we deal with in a DD experiment are

always, through one means or another, bound to the detector medium. In the case

of liquid noble gas detectors, electrons are bound to the target atoms themselves.

For solid semiconductor targets, they are better described as residing in valence

and conduction bands, whereby electrons in the former band must be promoted to

the latter band via the injection of a band-gap energy before they can move freely

within the lattice. These binding effects can have a sizeable impact on the expected

event rate compared to the free electron case when the deposited energy, ER, is

comparable to electron binding energies, reducing the number of expected counts

by as much as ∼20–30% [194]. It therefore behoves us to capture these effects to

make for a realistic analysis.

The first correction we can make is to weigh the free-electron cross section by the

number of orbital electrons that can be freed with a particular energy deposit. This

is equivalent to inserting a (normalised) step-function into Eq. (3.3.9), such that the

cross section is scaled as

dσανe
dER

→ 1
Z

Z∑
i=1

Θ (ER −Bi)
dσανe
dER

, (3.3.12)

where Θ is the Heaviside step-function and Bi is the binding energy of the ith

electron. This approximation was first introduced by Ref. [195] to more realistically

model EνES in reactor experiments, and it has been shown to be consistent with

the predictions provided by quantum mechanical sum rules [196–198]. However,

when Eν and ER become comparable to low-energy atomic binding effects, this
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Figure 3.6: The differential rate spectrum for EνES with solar neut-
rinos with a 131Xe target. The total spectrum (dash-
dotted) is broken down into flux-specific contributions
(solid). The result under the assumption of a free elec-
tron is shown in black, whereas that with the stepping
approximation, which considers the electron binding en-
ergies, is shown in grey.

approximation begins to falter [199]. ab initio calculations based on the relativistic

random-phase approximation (RRPA) [200–203], which properly takes into account

the many-body dynamics involved in the collisions of interest to us, have shown a

consistent suppression of the rate at low recoil energies for both germanium [199,204]

and xenon [194, 205]. We will return to the RRPA in Chapter 6, where we will use

it to implement a more sophisticated analysis for xenon-based DD experiments.

We show the differential rate spectrum for EνES for the case of a 131Xe target in

Fig. 3.6. Like that of the CEνNS case, the rate is broken down into flux-specific

contributions. The first contrast we can make with the CEνNS rate is that, with

no enhancements to the cross section, the EνES rate for an ER of any given en-

ergy is orders of magnitude lower than an NR of the same energy. The EνES

spectrum, however, stretches to significantly higher energies, extending to recoils
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beyond 103 keVee. This is because the electron is ∼ 10−5 times as heavy as a nuclear

target, allowing for low-energy neutrinos to produce high-energy recoils. We see this

explicitly in the contribution from the high-flux pp neutrinos, which produce recoils

of up to ER ≈ 250 keVee. In fact, the scattering events caused by pp neutrinos form

the dominant contribution to the EνES rate, making them the main component of

the neutrino ER signal. Indeed, combined with the fact that the energy threshold

for ERs is much lower than that for NRs (due to the signal quenching effect we

discuss in Section 3.3.3), pp neutrinos, and to a lesser extent 7Be neutrinos, typic-

ally form the main constituents of the total (NR + ER) neutrino event rate at DD

experiments.

Also shown in Fig. 3.6 is the result of the stepping-approximation, which we show by

means of a grey, dash-dotted line. To produce this stepped weighting, we have used

the binding energy data from Ref. [194]. We see that the effect of this correction is to

gradually suppress the rate at lower energies, reflecting the fact that fewer electrons

can be released from their orbitals with lower energy depositions. However, at high

deposited energies (ER ≈ 30 keVee for xenon), this effect disappears, as the incoming

neutrino energy is sufficient to free all electrons from their potential wells. This is

true even when more sophisticated corrections are used to model atomic binding

effects, such as the RRPA [194]. We note that, for a different target element, the

rate spectrum will differ in where the binding energy effects take place, and it will

also incur an overall scaling of Z/A due to a change in the number of total available

electrons per unit detector mass.

3.3.3 Experimental Considerations

Before introducing the DD experiments that have inspired our work, we will briefly

comment on important experimental details that we have included in our analyses.

These serve to make our studies more sophisticated, such as the inclusion of resolu-

tion effects, and, in the case of quenching factors, possible at all when we ultimately
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combine the expected rates from both NR and ER events.

Quenching Factors

In practice, DD experiments do not directly measure the recoil energy of a target,

ER. Instead, they rely on interpreting the signal from a set of detection channels.

These channels typically include signals from phonons, ionised electrons, and scin-

tillation photons, and the channel (or channels) that a DD experiment has available

to it depends on the detector technology employed. Given a signal of a particular

characteristic, it can be mapped to a particular recoil energy.

However, we must be careful when performing this mapping. Following a collision

with an incoming particle, a target will recoil with energy ER, and the resulting

signal will, in general, be different depending on whether the collision occurred

with a nucleus or with an electron. This is because these two targets propagate

very differently within the detector medium post-collision and are thus subject to

different energy-loss signals [151,152,206]. Electrons, by virtue of their smaller size

and charge, drift through the detector practically undisturbed. Nuclei, on the other

hand, undergo a cascade of collisions with neighbouring atoms, quickly losing energy

to their surroundings as heat. Consequently, the signal produced by a recoiling

nucleus tends to be much weaker than that created by an electron for the same

energy deposition. It is therefore crucial that we are able to reconstruct the initial

recoil energy from the detected signal accurately, as the details of the physics we

are interested in are encoded in this quantity.

Thankfully, a great deal of theoretical and experimental efforts have been made

to help us perform this reconstruction. The amount by which an NR signal is sup-

pressed, or ‘quenched’, relative to an ER signal is described by a so-called quenching

factor. Once one energy scale has been calibrated—typically the ER scale as ERs

undergo little-to-no quenching—this factor can then be used to move between ER
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and NR energies. It is defined as

Q(ER) ≡ Eee (keVee)
ER (keVnr)

, (3.3.13)

and it tells us how much of the initial recoil energy of a nucleus, ER (measured in

units of keVnr), is transformed into observable energy in a detector, Eee (measured in

units of keVee). It can be interpreted as the ratio of the detectable energy produced

by an electron recoil relative to that produced by a nuclear recoil for the same energy

deposition, Eee. This quenching, which is in general energy-dependent, is intrinsic to

the detector material and is therefore independent of any experimental details [151].

Different mathematical descriptions for Q exist for different target materials, which

must be verified by experimental measurements of it.

Experimentally, the quenching factor is determined by observing the detector re-

sponse to collisions with particles of known energy. The Eee scale is first calibrated

using a source of monochromatic γ-rays, which cause ERs of a known energy dis-

tribution. The ER scale is then set by the detector response to collisions caused

by a source of monochromatic neutrons, which can then be compared to the relat-

ive response of ERs. The quenching factor follows directly from these calibrations5.

Monte Carlo methods based on detector simulations can also be used to get a handle

on Q [151,152].

Theoretically, mathematical descriptions of Q aim to predict the amount of nuclear

motion energy that is ultimately transformed into observable energy. Different mod-

els must be used for different detector technologies, as the nature of the detectable

signal will generally be different. However, all of these models ultimately rely on

the Lindhard quenching factor, which describes how the energy deposited onto a

nucleus partitions into energy associated with nuclear motion and that associated
5We note that DD experiments usually measure relative quenching factors. These factors

quantify how many quanta (ionisation or photoelectrons) are produced after an NR recoil with
the same energy deposition as an ER recoil with known energy.
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Figure 3.7: The quenching factors we have used in this work, based
on fitted models to data from xenon (blue) [207], ger-
manium (green) [208], and argon (pink) [209] targets.
Note that, for germanium, the shown quenching factor
models the ionisation yield, which we ultimately use
in the phonon quenching of Ref. [210]. The solid lines
show the results of each quenching factor model within
the energy regions for which they have been verified by
existing data. The dashed lines show where, for the
purposes of visualisation, we have extrapolated them
beyond these regions.

with electronic effects [206]. It is given by

QLindhard = kg(ε)
1 + kg(ε) , (3.3.14)

where k ≡ 0.133Z2/3A−1/2 in Lindhard’s original description, and

g(ε) ≡ 3ε0.15 + 0.7ε0.6 + ε , (3.3.15)

with ε ≡ 11.5Z−7/3(ER/keVnr). Physically, k is the proportionality factor in the

electronic stopping power, telling us how quickly a nucleus loses its kinetic energy

to electronic energy. It is usually left as a free parameter that is fitted to data, as it

can hold the greatest uncertainty in the model [206].



82 Chapter 3. Neutrino Physics at Direct Detection Experiments

We show the target-specific quenching factors we have used in Fig. 3.7. Each of

them is based on a model fitted to experimental data spanning some energy range

in ER, and where we have evaluated a model within the same energy domain is

shown as a solid line. For the purposes of visualisation, we have extrapolated these

models beyond the regions where they have been experimentally tested, which we

show by means of a dashed line. At low energies, complex atomic binding effects

can arise that are not captured by models fitted at higher energies, so they may

not accurately describe the quenching effect [211–213]. Throughout our work, we

have been careful to use the fitted quenching factor models only within the domains

where they have been verified by data. We will describe each of these models in

greater detail in Section 3.4, where we connect each of them to a particular DD

experiment.

We note that it is this quenching, which captures the different behaviours of NRs

and ERs, that can be used to discriminate between the two types of scattering

event. By calibrating an energy scale with one signal and then using another signal

to compare the reconstructed energies, ERs can often be confidently separated from

NRs in what is usually described as an experimental ‘cut’. Of course, some ERs

will always leak into the NR signal, and some NRs will always be inadvertently cut.

Energy thresholds are often chosen such that ERs can almost be totally eliminated

while retaining a relatively high NR acceptance rate [151,152]. These thresholds are

set by the efficiencies of particular experiments.

Efficiency and Resolution Effects

Experiments are neither infinitely sensitive nor infinitely precise; experimental ef-

ficiency and resolution functions capture these unavoidable detector imperfections.

Improving these facets of an experiment is always an ongoing mission for DD exper-

iments, as it allows them to not only improve their signal in their regions of interest,

but also lower their energy thresholds to give them sensitivity to lower energy phe-

nomena. We have incorporated efficiency effects throughout our work, including the
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effects of finite resolutions in Chapters 6 and 7 to improve our analysis further.

The efficiency of an experiment can be accounted for by folding an efficiency function,

ε(ER), into the expected rate spectrum,

dR
dER

→ dR
dER

ε(ER) . (3.3.16)

This function, which is generally energy dependent, is close to unity at high ER,

where the produced signal can be captured with high certainty, but it rapidly elim-

inates the signal at low ER, where a detector will have a low chance of triggering.

Typically, the threshold energy of an experiment is quoted as that ER at which its

efficiency reaches 50%.

Additionally, the finite precision, or resolution, of an experiment can cause the

expected recoil spectrum at any given energy to become smeared over a range of

energies. This results in the reconstructed recoil energy, ER, differing from the

true recoil energy, E ′
R. As measurements are always made with respect to the

electron-equivalent energy scale, this smearing occurs at the level of Eee. For a

given resolution function f(Eee, E ′
ee), which depends on both the measured and true

energies, the observed spectrum is given by convolving the true spectrum with f .

Assuming a Gaussian resolution function with energy-dependent width σ(E ′
ee), the

observed spectrum is then

dR
dEee

=
∫ ∞

0

dR
dE ′

ee

ε(E ′
ee)

1
σ(E ′

ee)
√

2π
exp

[
−(Eee − E ′

ee)2

2σ2(E ′
ee)

]
dE ′

ee , (3.3.17)

where we have included efficiency effects and where dR/dE ′
ee is given by Eq. (3.3.1)

(with E ′
ee = E ′

R for electron recoils). In the case of NRs, the CEνNS spectrum must

first be converted to the electron-equivalent energy scale, which can be done via the

quenching factor transformation

dR
dEee

=
(
Q(ER) + dQ

dER
(ER)ER

)−1 dR
dER

. (3.3.18)

Experiments will usually give a measure of their resolution through the quantity

σ(E ′
ee)/Eee′ , where they measure by how much a signal spreads for a known energy
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deposit. This quantity is high for low energies and low for high energies, reflecting

the fact a detector performs better at higher energies.

We note that, when calculating the total rate between the (electron-equivalent)

energies E1 and E2, we can swap the order of integration to remove the integral over

the measured energy. We get that

R(E1, E2) =
∫ ∞

0

dR
dE ′

ee

ε(E ′
ee)Φ(E ′

ee, E1, E2) dE ′
ee , (3.3.19)

where we have defined the response function, Φ, as

Φ(E ′
ee, E1, E2) ≡ 1

2

[
erf

(
E2 − E ′

ee

σ(E ′
ee)

√
2

)
− erf

(
E1 − E ′

ee

σ(E ′
ee)

√
2

)]
, (3.3.20)

and where erf(z) is the error function.

3.4 Next-Generation and Far-Future DD

Experiments

We will conclude this chapter by introducing the upcoming and far-future DD ex-

periments that have inspired our analyses. We will respectively refer to these ex-

periments as generation-two (G2) and generation-three (G3) experiments. As we

discussed in Section 3.1, all of these experiments have the potential to observe solar

neutrinos through both CEνNS and EνES—especially those breaking through the

neutrino floor. They are therefore poised to act as key players in the future of

not only DM physics, but also neutrino physics. In Table 3.1, we summarise their

projected configurations as well as the signals they are able to measure, which we

break down into ionisation (I), phonon (P), and scintillation (S) signals. We note

that, while we show the nominal specifications for the experimental exposures and

NR thresholds from the respective experiment design reports, we take the freedom

of varying these parameters in our analyses to explore the full potential of each of

these detectors.
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Exp. Gen. Target ε (ton yr) Eth (keVnr) Signal

LZ [14] G2 15.34 6

XENONnT [15] G2 131Xe 20 4 I + S

DARWIN [16] G3 200 6.6

SuperCDMS iZIP [13]

SuperCDMS HV [13]
G2 73Ge

0.056

0.044

0.272

0.040
I + P

DarkSide-20k [17] G3 40Ar 100 30 I + S

Table 3.1: The base experimental configurations we consider in this
work. We list the generation of the experiment as be-
ing either next-generation (G2) or far-future (G3). The
written target is the main isotope present in an exper-
iment. We take the experimental exposures and NR
thresholds from the respective design reports. The sig-
nals observed can include ionisation (I), phonon (P), and
scintillation (S) signals.

3.4.1 LZ, XENONnT, and DARWIN

The LZ [214] and XENONnT [15] detectors are both G2 DD experiments. LZ

is based at the Sanford Underground Research Facility (South Dakota, USA) and

is projected to have a total exposure of 15.34 ton yr, corresponding to running the

5.6 ton experiment for 1000 livedays. XENONnT, based at the Laboratori Nazionali

del Gran Sasso (Italy), will be the next iteration of the XENON1T [215] experiment

and is planned to have an exposure of 20 ton yr. The DARWIN [16] experiment, on

the other hand, is a G3 DM observatory, expected to begin its first science run in

2023 and have the much higher exposure of 200 ton yr. Their nominal thresholds,

optimised for the DM search to avoid neutrino events, are all similarly placed at

Ethresh ≈ 4–7 keVnr. Despite these high thresholds, however, they are all projected

to break through the neutrino floor, piercing through the 8B shoulder, as can be seen

from Fig. 3.2. With their large target sizes and high volumes, these experiments

offer us our best hope of seeing a large number of high-energy solar neutrinos at a

DD experiment.
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All of these experiments are based on the same detector technology: they all em-

ploy double-phase time-projection chambers (TPCs). TPCs are large cylindrical

vats that are filled with a liquid noble element in the centre and its corresponding

gaseous phase at the ends, with an electric field applied across the chamber. In this

case, these vats are filled with liquid xenon (LXe) and gaseous xenon (GXe). The

LXe acts as the main target for an incoming particle, which collides with a xenon

atom and either excites it or ionises it. If excited, the xenon eventually relaxes,

releasing a prompt scintillation photon in the UV range that can be detected by

photomultiplier tubes; these photons are typically referred to as the primary scin-

tillation signal (S1). If ionised, the released electrons either drift towards the GXe,

where they produce proportional scintillation photons and create a delayed second-

ary scintillation signal (S2), or recombine in the liquid phase to produce further

scintillation photons that enhance the S1 signal. Recoiling atoms also disturb the

surrounding medium, causing further atoms to undergo these same processes.

The S1 and S2 signals can be used to get a handle on potential sources of background.

The delay between the S1 and S2 signals allows these experiments to determine the

depth at which a collision occurred6, allowing them to reject surface events that are

more likely to have been caused by background sources. Moreover, the relative size

of these signals gives them the ability to discriminate between NR and ER events.

As we saw in Section 3.3.3, NR events produce a much smaller ionisation signal for

the same deposited energy compared to an ER event, so the S2 signals caused by

NRs are considerably smaller than those produced by ERs. Consequently, the S1

signal, which is weaker than the S2 signal, largely dictates the energy threshold,

as it can only be lowered so far until the S1 signal disappears and the ability to

perform NR/ER discrimination is lost. We note, however, that several S2-only

analyses have been completed, foregoing this discriminatory power for a lower energy

threshold [216–218]. Indeed, we will take advantage of this fact when justifying the

6In fact, the S2 signal also allows for (x, y)-position reconstruction. Combined with the time-
delay information, this gives TPCs access to the full set of interaction observables: (S1, S2, x, y, z, t).
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lower thresholds we use throughout this work.

For these xenon-based experiments, we use the Lindhard model of Eq. (3.3.14)

as our quenching factor, shown in Fig. 3.7. This has been shown to be a good

description of the energy partition for LXe experiments as long as one uses the total

S1 + S2 signal, which is composed of both ionisation electrons and scintillation

photons [219]. For the k-factor, we use the best-fit value determined by the LUX

collaboration, k = 0.1735, who validated the Lindhard model down to energies as low

as 0.7 keVnr [207]. This model also agrees well with the results from the calibrations

of other xenon-based DD experiments [220–227], which are collated in the review by

Ref. [228].

3.4.2 SuperCDMS at SNOLAB

The next-generation SuperCDMS experiment has now been successfully relocated to

SNOLAB—an underground facility in the Vale Inco Mine in Sudbury, Canada [13].

Located at a depth of 2 km, it boasts increased shielding from cosmic ray muon

backgrounds compared to its predecessor, which was housed in the Soudan Mine in

Minnesota [229]. With its low energy thresholds (Eth ∼ 100 eV), it is projected to

give us the best low-mass WIMP limits yet [13], which we show in Fig. 3.2.

The SuperCDMS experiment uses the semiconductor targets germanium and sil-

icon, which are cryogenically cooled to sub-Kelvin temperatures. A collision with

one of these crystal targets produces phonon excitations that are measurable through

minuscule temperature rises in the detector material. As a nucleus propagates

through the detector, electron-hole pairs are also produced, which can be collec-

ted if an electric field is applied across it. In a phenomenon known as the Luke-

Neganov effect [230,231], these electron-hole pairs cause further phonon excitations

as they move through the detector medium, enhancing the phonon signal. The total

signal is therefore a combination of a primary phonon and a secondary ionisation

signal, with the latter allowing for the discrimination between NRs and ERs, as the
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ionisation signal produced by NRs is much smaller than that caused by ERs (see

Section 3.3.3). We note that, due to the greater planned volume of germanium used

at the SuperCDMS experiment, we will focus on this target material throughout our

work.

SuperCDMS employs two types of detectors to take advantage of these different sig-

nals: a high-voltage (HV) detector and an interleaved Z-sensitive ionisation phonon

(iZIP) detector. The latter, with an expected full exposure of 56 kg yr and threshold

of 0.272 keVnr, interleaves phonon and ionisation sensors, allowing for the discrim-

ination of surface events—which are composed of background recoils—and bulk

events—which are more likely to be a signal. Moreover, the electric field applied

across the iZIP detectors enables them to distinguish between NR and ER events.

The HV detector, with a predicted full exposure of 44 kg yr and much lower threshold

of 0.040 keVnr, differs from the iZIP detector by the application of a much stronger

electric field [13]. This greatly increases the phonon signal arising from the Luke-

Neganov effect, resulting in a lower energy threshold compared to the iZIPs. How-

ever, this comes at a cost: they are unable to discriminate between NRs and ERs.

This is because Luke-Neganov phonons become the dominant contribution to the

overall phonon signal, leading to the phonon readout effectively becoming propor-

tional to the ionisation signal.

When converting between the NR and ER scales, we consider the total signal as

only being composed of phonons for both the HV and iZIP detectors. This is

due to the fact that, despite the iZIP detectors having the power to detect both

ionisation and phonon signals, the signal produced by recoiling nuclei is primarily

phonon based [13]. The quenching factor we use must then be able to describe the

quenching of the deposited energy in terms of phonon energy, which is the sum of

the recoil energy ER and the phonon energy generated by Luke-Neganov phonons.

To perform this quenching, we follow the prescription of Ref. [210], which uses the

ionisation yield, Y (ER), to describe how much of the initial atomic phonon energy

is converted into an ionisation signal. This yield, as it pertains to germanium, has
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been the subject of many studies [208,232–243], and we parametrise it according to

the form introduced by Ref. [208], which is built from the Lindhard model and a

series of functions that correct for experimental and material effects7. We show this

total yield function in Fig. 3.7, which has been fitted to data as low as 0.272 keVnr.

3.4.3 DarkSide-20k

The DarkSide-20k [17] experiment is a G3 detector, employing essentially the same

TPC technology as the xenon-based experiments of Section 3.4.1 but with argon. It

is aimed to have an initial exposure of 100 ton yr and will take advantage of argon’s

abundant natural occurrence, making it easier to scale up. Indeed, with its large

exposure, it is expected to give us the best limits in the high-mass region of the

WIMP parameter space, falling close to the background of atmospheric neutrinos

seen in Fig. 3.2.

The key difference between argon and xenon TPC experiments lies in how they

perform NR/ER discrimination. This is of crucial importance in argon detectors,

as the natural abundance of the radioactive isotope 39Ar in the detector makes for

a large ER background [151]. Generally, the ratio of the S1 and S2 signals is not

enough to sufficiently reduce this increased background [244], so another, powerful

method is used in combination with it. Known as ‘Pulse Shape Discrimination’,

this technique uses the different decay times of the excited states in liquid argon

following a collision with an incoming particle. The relative size of the populations

of these excited states is different depending on whether a collision occurred with a

nucleus or an electron, and the difference in decay times (measured as the prompt S1

scintillation signal) can be used to perform NR/ER discrimination [245]. However,

a large number of scintillation photons must be measured to use this technique,

leading to the higher energy threshold of 30 keVnr in the case of DarkSide-20k [17].

7We note that, very recently, the SuperCDMS collaboration completed its own measurement of
this yield in Ref. [232], performing a fit to its own Lindhard-based yield function. We encourage
the use of this more recent, and more relevant, yield for future studies involving SuperCDMS in
the same energy domain.
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The total quenching factor we use for argon, which accounts for both the S1 and

S2 signal, is based on the model built by Ref. [209]. This description uses the

ideas of Ref. [246], combining the Lindhard factor, describing the atomic energy loss

into electrical energy, with Birk’s saturation law [247], describing the loss of the

scintillation signal. We show this total quenching factor in Fig. 3.7, which has been

verified down to 5 keVnr and agrees with data from ARIS [209] and DarkSide-50 [248].

It is also in broad agreement with the measurements of Refs. [249–251].



CHAPTER 4

New Physics in the Neutrino Sector

The SM of particle physics is surely one of humankind’s greatest achievements.

Describing to astonishing detail many of the small-scale physics we are sensitive to

today, it is our best theory of the world of the very small. However, many readily

observable phenomena that refuse to be explained by the SM. From the fact that

our galaxy manages to stick itself together with DM to the mystery of neutrino

oscillations that we saw in Chapter 2, we now have overwhelming evidence that the

SM is incomplete. Finding increasingly more cracks in the SM is one of the primary

goals of modern physics, giving us a greater wealth of information with which to

base models of BSM physics. Neutrinos, having already displayed non-standard

behaviour, are one of the most popular candidates with which to look for this, and

how DD experiments might help us to reveal more of their mysteries is the subject

of intense research.

In this chapter, we will introduce the new leptonic physics models that we will focus

on in this work. We will first motivate the need for this kind of BSM physics in

the form of the growing tension in the muon’s anomalous magnetic moment, which
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forms the basis of our work in Chapters 5 and 6, and the tension in the value of the

Hubble constant, which we use as a secondary motivator. We will then introduce

the gauged U(1)Lµ−Lτ
model—a particularly elegant explanation to both of these

modern mysteries. We will also introduce generic realisation of a U(1)Lµ
model,

which, though theoretically less well-motivated, functions as an excellent model

with which to compare to the U(1)Lµ−Lτ
due to its similar phenomenology. Finally,

we will present the framework of NC neutrino non-standard interactions, which is

the subject of Chapter 7 and acts as a general effective description of BSM neutrino

physics.

4.1 Motivation

We begin by introducing two modern-day physics mysteries that have motivated

much of our work. The first of these is the tension anomalous magnetic moment

of the muon, which has largely guided the work of Chapters 5 and 6. We will see

that an elegant way to explain this tension is to introduce a new force mediator

that couples to the second- and third-generation leptons, therefore introducing new

physics in the neutrino sector. The second of these mysteries is the tension in the

present-day value of the Hubble parameter. A secondary motivator of our work, it

can be simultaneously explained through the same BSM extension.

4.1.1 The Muon’s Anomalous Magnetic Moment

Any electrically charged particle with non-zero intrinsic spin possesses a magnetic

dipole moment, µ. All leptons, therefore, admit a magnetic dipole moment, and the

muon—with a charge of −e, a spin of 1/2, and a mass of mµ—has a dipole moment

of

µµ = −gµ
(

e

2mµ

)
S , (4.1.1)
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where S is the muon’s spin vector and gµ is the muon’s gyromagnetic ratio, or g-

factor. This latter quantity is an intrinsic property of the muon, quantifying by how

much µµ differs from the classically derived result of gµ = 1.

A hallmark achievement of Paul Dirac’s was to derive a value for the gyromagnetic

ratio of the electron, ge = 2 [252]. However, following from the Dirac equation, this

result is not specific to the electron: it is a general result for all charged fermions if

they are considered to be structureless, point-like particles. This prototypical value

for the g-factor can be interpreted as the tree-level result of a coupling between

a charged lepton and an electromagnetic field. Today, we understand that this

tree-level process is not the end of the story: higher-order, radiative corrections

are needed to describe this coupling completely. We can quantify the effect of

these higher-order corrections through the anomalous magnetic dipole moment of

the charged lepton, al, defined as

al ≡ gl − 2
2 . (4.1.2)

This is simply the fractional difference in the particle’s g-factor compared to the

tree-level result of Dirac.

Inspired by the anomalies arising in the hyperfine structure of the hydrogen atom

[253,254], Julian Schwinger calculated the very first radiative correction to the elec-

tron’s magnetic dipole moment [255]. His result corresponded to the lowest order,

loop level QED correction, equivalent to the contribution of a single photon propag-

ator. He predicted the first anomalous value of ae ≈ α/2π, where α ≈ 1/137 is the

fine-structure constant. This result is famously engraved on Schwinger’s gravestone.

This result, however, is the first of many higher-order corrections. The complete

picture must take into account all possible radiative processes that can take place

at the QED vertex, which we visualise as an effective interaction in Fig. 4.1. To

calculate al in full is to capture the full breadth of the quantum theory describing

this simple interaction between leptons and photons. The more precisely we cal-

culate this quantity, therefore, the more we can push the SM to its limits when
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µ µ

γ

Figure 4.1: Radiative corrections to the muon’s anomalous mag-
netic moment. This effective loop process can repres-
ent corrections of infinitely high order both within and
outside the SM.

experimentally measuring it.

For the anomalous magnetic moment of the muon, aµ, the complete SM contribu-

tion can be expressed as the sum of all possible QED, EW, and hadronic vacuum

polarisation (HVP) contributions,

aSM
µ = aQED

µ + aEW
µ + aHVP

µ . (4.1.3)

The QED contribution arises from loops containing photons and leptons. Loops

containing the EW gauge bosons and the Higgs give us the EW input. The hadronic

contribution, which is the most difficult to calculate of all and the subject of intensive

research [256–265], stems from loops containing hadrons within vacuum polarisation

loops. We illustrate some of the processes contributing to each of these terms in

Fig. 4.2. The total uncertainty in the final value of aµ in Eq. (4.1.3) is dominated

by uncertainties in HVP processes, and we must therefore be careful to incorporate

the various tensions in aHVP
µ in the calculation. Ref. [266], building on the results

of an extensive body of work on the subject [256–265,267–275], carefully calculated

what is now the accepted value of aµ:

aSM
µ = 116591810(43) × 10−11 . (4.1.4)

The quest to experimentally verify whether aµ agrees with the theoretical SM result

has been a long and exciting one. We will briefly review its almost 70-year history
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γ

γ
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γ
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H
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γ

H
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γ

Figure 4.2: Higher-order corrections to the muon’s anomalous mag-
netic moment within the SM. From most to least con-
tributing, these are first-order QED (top left) and weak
(top right) processes, leading-order hadronic (H) va-
cuum polarization (bottom left), and hadronic light-
by-light contributions.

below, outlining the journey we have taken to measure one of the most precisely

known quantities in all of physics. We provide a summary of the evolution of its

measurement in Table 4.1.

Experimental interest in the muon’s anomalous magnetic moment began at CERN

in 1957, with the first results published in 1965 [277]. A total of three experiments

were run over the course of over 20 years [276–278]—each one improving on the

precision of the last. Their aim was twofold: to provide ever more stringent tests of

QED and to look for effects beyond QED [279]. The particular interest in aµ followed

the lead of the recent measurement of the electron’s anomalous magnetic moment,

which agreed with the theoretical value at the time to great accuracy [280]. Due to

the muon’s much higher mass compared to that of the electron (mµ/me ≈ 200), the

virtual photon contributions to aµ were expected to be much larger than those to ae.

Indeed, second-order vacuum polarisation effects, un-probable by the electron due
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Year Exp. aµ
(
×10−11

)
Prec.
(ppm)

SM
Tension

Ref.

1979 CERN 116592400(850) 7 0.7σ [276]

2004 BNL 116592080(63) 0.54 3.5σ [4]

2021 FNAL 116592040(54) 0.46 3.3σ [5]

2021 FNAL +
BNL

116592061(41) 0.35 4.2σ [5]

Table 4.1: The history of the measurements of the muon’s anomal-
ous magnetic moment. We show the averaged results of
the experiments that have measured aµ, together with
their precisions and tensions with the theoretical SM res-
ult.

to its low mass, were unlocked to these experiments. Moreover, possible new physics

effects that serve to increase the value of aµ, such as the first-order exchange of a new

vector boson, would go as m2
µ, giving these experiments an advantage in searching

for BSM physics. The final CERN result, averaged over muons and anti-muons, was

published in 1979 and had an averaged precision of 7 ppm [276,279],

aCERN
µ = 116592400(850) × 10−11 , (4.1.5)

which agreed well with the theoretical value at the time of

aSM,CERN
µ = 116592100(830) × 10−11 . (4.1.6)

Thus, following the results of all three CERN experiments, measurements of aµ

suggested no hints of new physics in the leptonic sector.

It was 20 years before experiments once again probed the aµ, and it was Brookhaven

National Laboratory (BNL) that took up the gauntlet. Using methods first pion-

eered by CERN, but with improved technology, the BNL E821 experiment set out to

perform five further measurements of aµ [4, 281–284]. By this point, the theoretical

determination of aµ had matured to include higher order corrections of the processes

outlined in Eq. (4.1.3), and its experimental determination therefore stood to test
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the SM more stringently than before. The final, averaged result of the BNL runs,

released in 2004 with a precision of 0.54 ppm, was [4, 285]

aBNL
µ = 116592080(63) × 10−11 . (4.1.7)

At the time, this brought a 2.2—2.7σ tension to the SM prediction, depending on

how the HVP radiative corrections were taken into account. Indeed, after further

such corrections were incorporated into the theoretical value of aµ, giving us the

present value shown in Eq. (4.1.4), this tension was increased to 3.5σ. Thus, the

BNL result indicated a possible discrepancy with the SM value, hinting at potential

new physics at play and the upheaval of the SM. It would be almost another two

decades before aµ was explored again.

In April 2021, Fermilab’s Muon g − 2 collaboration released the results of the most

precise measurement of the muon’s anomalous magnetic moment to date [5]. The

E989 experiment at Fermilab used many of the techniques used by BNL, but it be-

nefited from several experimental improvements [5,286]. Their result, which reached

a precision of 0.46 ppm, was

aFNAL
µ = 116592040(54) × 10−11 , (4.1.8)

differing from the SM result by 3.3σ. Taking the average of the Fermilab and BNL

results, we find that

aFNAL+BNL
µ = 116592061(41) × 10−11 , (4.1.9)

raising the tension with the SM significantly to 4.2σ1. This final result provides us

with the greatest tension in the anomalous magnetic moment of the muon since its

first measurement in 1979, differing from the SM result of Eq. (4.1.4) by

∆aµ = 251(59) × 10−11 . (4.1.10)

1We note that a recent lattice QCD calculation of the leading-order HVP processes can signi-
ficantly alleviate this tension [287]. However, this comes at the expense of creating a tension with
e+e− data and worsening fits to EW variables, such as the masses of the EW gauge bosons [288].



98 Chapter 4. New Physics in the Neutrino Sector

This tension, often quoted as the (g − 2)µ tension, could signal another nail in the

SM coffin should it reach a discovery-level significance of 5σ,

Due to the gauge invariance of the SU(2)L SM symmetry group, any new physics

that we introduce for the heavy, charged leptons should also impact their corres-

ponding neutrinos. By virtue of this, hints of new physics with the muon more

broadly suggest BSM physics with the second-generation leptons. Thus, the aµ ten-

sion provides us with a tantalising hint of BSM physics for the muon neutrino, and,

for this reason, it forms the key motivator in Chapters 5 and 6, where we use it as

our inspiration for the study of light new physics in the neutrino sector.

4.1.2 The Hubble Tension

We have empirically known that our Universe is expanding since the early 20th-

century. In 1929, the American astronomer Edwin Hubble, following his measure-

ments of the redshifts of Cepheid variables within distant galaxies, discovered that

all galaxies appear to be receding from us at a rate proportional to their distance

away from us [289]. This relationship, which has famously come to be known as

Hubble’s law, can be expressed as

v = H(t)d , (4.1.11)

where v is the recessional velocity of a galaxy that is following the Hubble flow, d

is the distance to the galaxy from an observer, and H(t) is the constant of propor-

tionality between these quantities, known as the Hubble parameter. This quantity

is a cornerstone of modern cosmology, enabling us to make predictions about the

expansion history of our Universe.

The present-day value of the Hubble parameter, known as Hubble’s constant H0,

is a difficult quantity to determine. There are ultimately two ways of measuring

it: either through direct measurements of the recession velocities and distances of

distant galaxies, or through cosmological fits to CMB data. Due to where the focus is
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placed in these techniques, the values determined using them are commonly referred

to as late- and early-time measurements of H0, respectively. We will briefly outline

how these methods work and how they lead to a worrying problem in cosmology:

the Hubble tension.

The power spectrum of the CMB contains a wealth of information about the early

history of our Universe. Assuming a particular cosmology, we can use this spectrum

to fit the parameters describing our cosmological model. The 6-parameter ΛCDM

model treats our Universe as being composed of three energy densities: dark en-

ergy, cold dark matter, and ordinary baryonic matter. It is widely regarded to be

the standard of cosmological models, as it can explain many of the phenomena we

observe in our cosmos. A fit to the CMB power spectrum using the ΛCDM model

was last performed in 2018 by the Planck collaboration, who inferred a value for the

present-day Hubble parameter of H0 = (67.4 ± 0.5) km s−1 Mpc−1 [6].

Alternatively, direct, late-time measurements of H0 rely on careful measurements of

the recession velocities of distant galaxies and their distances away from us. This

allows us to use Eq. (4.1.11) to fit to the value of H0. However, while recession velo-

cities are typically easy to determine, distances turn out to be difficult to measure.

To find the distances to different bodies in the Universe, we use what is called the

‘distance ladder’: a set of distance-measuring techniques tailored to how far away

the object is, wherein each ‘rung’ of the ladder is calibrated using the technique of

the last. For instance, to measure the distance to the closest stars to us in the Milky

Way, we can use trigonometric parallax to relate the angular shift in the apparent

position of a star to its distance away from the Sun. On the other hand, to measure

the distances to distant galaxies, we must rely on ‘standard candles’—objects with

known luminosities or luminosity relations—the distances to which we first calib-

rate using this parallax technique. As Hubble’s law only pertains to the velocities

of objects that follow the Hubble flow, such as galaxies or galaxy clusters, we are

primarily interested in ladder rungs that rely on these so-called standard candles.

There have been many late-time measurements of H0, which have relied on a variety
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of standard candles (c.f. Fig. 2 of Ref. [290]). The most recent of these measurements

was performed earlier this year by the SH0ES collaboration, who used Cepheid

variables and type Ia supernovae, observed with the Hubble Space Telescope, to

arrive at the significantly higher value of H0 = (73.04±1.04) km s−1 Mpc−1 [7]. This

result is in ∼ 5σ tension with the early-time, high-precision measurement of the

Planck collaboration, and it is known as the H0, or Hubble, tension.

This discrepancy presents a significant problem to modern cosmology. It calls into

question either the calibration of the distance ladder or our understanding of the

early- or late-time cosmology of the standard ΛCDM model [291]2. In the latter case,

the ΛCDM would need to be extended with physics beyond the Standard Model,

introducing new physics that modifies the early- or late-time history of the universe.

This alleviates the H0 tension by introducing new parameters that can be fitted to

the CMB power spectrum, allowing the fitted value of H0 to find a new minimum

that potentially both agrees with CMB data and the late-time measurements of H0.

Many one-parameter extensions have been proposed for this purpose, including those

with a non-zero curvature for the Universe, a dynamical dark energy component,

and a higher number of effective neutrino species in the early Universe [293–299].

Indeed, we will see in the next section how introducing a new light mediator that

couples to both the second- and third-generation leptons can significantly alleviate

the H0 tension by altering precisely this final quantity.
2We note that measurements of H0 using stars on the Tip of the Red Giant Branch—red

giants undergoing a helium flash—instead of Cepheids arrive at the slighter lower value of H0 =
(69.8±1.8) km s−1 Mpc−1 [292]. This value is in agreement with the CMB data presented by Planck
to 1.3σ and with the Cepheid-calibrated SH0ES result to 1.6σ. However, while this measurement
presents us with a halfway-house between these values, it neither explains their discrepancy nor
precludes an explanation of it with a cosmological model beyond the ΛCDM model.
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4.2 New Physics Interactions

4.2.1 The Minimally Gauged U(1)Lµ−Lτ

The SM Lagrangian is invariant under the accidental global symmetries U(1)B,Le,Lµ,Lτ
,

corresponding to gauging the total baryon number, B, and the individual lepton

numbers, Lα (with α ∈ {e, µ τ}). We can combine the last three of these symmet-

ries into groups conserving either the difference between the total baryon number,

creating U(1)B−L, or the difference between different individual lepton numbers,

creating groups of the form U(1)Lα−Lβ
(for α 6= β). These latter groups, and their

linear combinations, can be promoted to gauge groups that extend the SM without

the need to introduce anomaly-correcting fermionic field content3.

Of these three anomaly-free gauge groups, the U(1)Lµ−Lτ
group can be used to

elegantly explain the (g− 2)µ tension we introduced in Section 4.1.1. Extending the

SM by a minimally gauged U(1)Lµ−Lτ
introduces a new gauge boson, a so-called

‘hidden photon’, that couples to the second- and third-generation leptons. Due to

its coupling to the muon, this hidden photon contributes an additional diagram

to the radiative corrections that take place at the muon-photon vertex and, for

particular values of its gauge coupling and mass, it can exactly account for the

observed deviation in (g − 2)µ. Owing to its theoretical elegance and continued

potential to explain this possibly profound tension with the SM, it has been the

subject of many studies [300–304]. Before discussing precisely how it can alleviate

this tension, we will briefly outline how we can add this new particle to the SM.

To introduce this hidden photon into the SM, we simply add the relevant terms to

the EW Lagrangian of Eq. (2.2.4). In the gauge basis, we can write the U(1)Lµ−Lτ
-

extended Lagrangian as

L = LEW − 1
4XαβX

αβ − εY
2 BαβX

αβ − m2
X

2 XαX
α − gµτj

µ−τ
α Xα , (4.2.1)

3The group U(1)B−L can also be promoted to form an anomaly-free gauge theory as long as
we also add an extra three right-handed neutrinos to cancel the anomalies that are introduced.
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where Xα is the gauge field of the new hidden photon of mass mX , Xαβ is its

associated field strength tensor, εY parametrises the strength of the kinetic mixing

between the SM photon and new hidden photon, and gµτ is the gauge coupling. All

other quantities have the same definitions we provided in Section 2.2. The gauge

current of the new symmetry, which describes its tree-level interactions, is given by

jµ−τ
α = L

2
γαL

2 + µRγαµR − L
3
γαL

3 − τRγατR . (4.2.2)

Ultimately, we observe such interactions in the mass basis, so we must rotate to

it to study the phenomenology of this new particle. We find that the interaction

Lagrangian of the mass eigenstate of Xα, A′
α, is given by

Lint = −
(
ejEM
α , gZj

Z
α , gµτj

µ−τ
α

)
K


Aα

Zα

A′α

 , (4.2.3)

where, to leading order in the kinetic mixing parameter and hidden photon mass,

the coupling matrix, K, is such that

K =


1 0 −εµτ

0 1 0

0 εµτ tan θW 1

 (4.2.4)

Here, the rotated kinetic mixing term, εµτ , is given by

εµτ = εY cos θW . (4.2.5)

Note that, in this regime, the mass of this eigenstate is equal to that of the original

gauge field, mA
′ = mX .

From Eq. (4.2.3) and Eq. (4.2.4), we see that the physical hidden photon, A′, couples

to both the jµ−τ
α via its own gauge interactions and to the electromagnetic current,

jEM
α , via the kinetic mixing parameter. We can capture these interactions through
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f e νe (νµ, µ) (ντ , τ) qd qu

cf εµτe 0 gµτ −gµτ 1
3εµτe −2

3εµτe

Table 4.2: The coupling coefficients for each SM fermion in the in-
teraction between the massive hidden photon A′

α and the
fermionic vector current fγαf . Coefficients are given to
leading order in the kinetic mixing parameter, εµτ . We
show only the couplings to the first-generation quarks,
but this is trivially extended to the second and third
generations.

the effective interaction Lagrangian

Lint = −cffγαfA′
α , (4.2.6)

where the coupling coefficients for each fermion, cf , are summarised in Table 4.2.

Of particular note is the fact that the couplings between the second- and third-

generation leptons have opposite signs. This is because, under the U(1)Lµ−Lτ
model,

these leptons are oppositely charged. For each flavour α, we can write this new ‘dark’

charge, Q′
α, as

Q′
α ≡



0 if α = e

1 if α = µ

−1 if α = τ

, (4.2.7)

and it implies that the effects we expect from interactions between leptons and A′

will be highly flavour specific.

The kinetic mixing parameter, εµτ , is generally a function of the momentum transfer

flowing through the loop, q2. While it can occur with both the SM photon and the

Z boson, for q2 � m2
Z (where mZ is the mass of the Z-boson), it can be well-

approximated to occur only with the SM photon. In this case, we can depict the

mixing as per Fig. 4.3, where muon and tau leptons run through the loop. This loop

can be matched to an effective mixing parameter, given by

εµτ
(
q2
)

= egµτ
2π2

∫ 1

0
x(1 − x)

[
ln
(
m2
µ − x(1 − x)q2

m2
τ − x(1 − x)q2

)]
dx . (4.2.8)



104 Chapter 4. New Physics in the Neutrino Sector

γ

µ, τ

µ̄, τ̄

A′ γ A′

Figure 4.3: The kinetic mixing between the SM photon and the
new U(1)Lµ−Lτ

hidden photon. We show the full loop
diagram (left) and the effective interaction matched to
it (right). This matching is what leads to the introduc-
tion of the kinetic mixing parameter, εµτ .

If we further have that q2 � m2
µ, which is an appropriate approximation for the

processes we consider here, we can write this more succinctly as

εµτ
(
q2 � m2

µ

)
' egµτ

6π2 ln
(
mµ

mτ

)
≈ −gµτ

70 . (4.2.9)

Thus, with this mixing set by scale of the muon and the tau, the U(1)Lµ−Lτ
hidden

photon is completely defined by only two parameters: its gauge coupling and its

mass.

4.2.2 Resolving Modern Physics Tensions

The tensions we introduced in Section 4.1 can both, in theory, be resolved by in-

corporating a U(1)Lµ−Lτ
hidden photon into the SM. Within certain regions of its

two-dimensional parameter space, this new force carrier has the desired properties

to either significantly ameliorate the H0 tension or completely account for the meas-

urements of aµ. In fact, within a small region of this parameter space, both of these

tensions can be dealt with simultaneously, giving us a highly motivated target region

to probe.

Perhaps most motivating of all is the fact that we can entirely explain the (g − 2)µ

tension using this new particle. To leading-order, the U(1)Lµ−Lτ
hidden photon

contributes to the magnetic moment of the muon through the one-loop process
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µ µ

γ

A′

Figure 4.4: The leading order contribution of the new U(1)Lµ−Lτ

gauge boson, A′, to the anomalous magnetic moment
of the muon.

shown in Section 4.2.2. This contribution is given by [305,306]

∆aµ = Q′2
µ

g2
µτ

4π2

∫ 1

0

u2(1 − u)
u2 + (mA

′/mµ)2(1 − u)
du (4.2.10)

' Q′2
µ

g2
µτ

4π2 ×


1/2 if mA

′ � mµ

m2
µ/m

2
A

′ if mA
′ � mµ

where Q′
µ is the charge of the muon under the new gauge symmetry, given in

Eq. (4.2.7). Equating ∆aµ to the observed tension given in Eq. (4.1.10), we can

use this relation to draw a region in the U(1)Lµ−Lτ
parameter space than can ex-

actly account for this tension within its error margin. Indeed, from Eq. (4.2.10),

we see that we expect it to be flat (mass-independent) for low masses of the hidden

photon and linear in mA
′ for high masses. We show the region in the U(1)Lµ−Lτ

parameter space where a hidden photon can explain the measured value of ∆aµ to

2σ in Fig. 4.5, which we discuss further below.

The second tension—that in H0—can be alleviated by altering the early-time ex-

pansion history of the Universe, which we can achieve by increasing the number of

effective neutrino species, Neff . This quantity, which describes the number of neut-

rino species present at the time that neutrinos decoupled from the early-Universe

radiation bath, has a value of NSM
eff = 3.045 within the SM4 [313–315]. However,

4We note that this value is slightly higher than the expected three neutrino species that we
see in the SM. This is due to entropy transfers from e+e− annihilations to neutrinos, neutrino



106 Chapter 4. New Physics in the Neutrino Sector

10−3 10−2 10−1 100 101 102

mA′ (GeV)

10−5

10−4

10−3

10−2

10−1

g µ
τ

Neff

White Dwarfs

BaBar 4µ CMS 4µ

Charm-II

H0

(g − 2)µ

Figure 4.5: The current U(1)Lµ−Lτ
landscape. The most strin-

gent 90% CL limits (grey) are shown, corresponding to
constraints on ∆Neff [299], white dwarf cooling [302],
neutrino-trident production at Charm-II [307,308], and
four-muon searches at BaBar [309] and CMS [310]. Also
shown are the (g − 2)µ 2σ (green) and H0 (blue) pre-
ferred regions.

an increase in this quantity of ∆Neff ≈ 0.2–0.5 can significantly relax the H0 ten-

sion, and this can be done by introducing a new light U(1)Lµ−Lτ
gauge boson to the

early Universe. Such a boson can be made to be in thermal equilibrium with the

SM particle bath, leaving this equilibrium through the cooling of the Universe, at

which point the production processes begin to become disfavoured. The remaining

hidden photons then decay into muon and tau neutrinos, increasing the value of Neff

if these decays occur after neutrinos decouple from the remainder of the radiation

bath. Additionally, the non-zero kinetic mixing between A′ and the SM photon can

delay when this decoupling occurs, which can also increase the value of Neff . For a

hidden photon mass of mass mA
′ ≈ 10 MeV, these effects give us the desired change

of ∆Neff = 0.2–0.5.

oscillations, finite temperature corrections, and the fact that neutrinos do not decouple from the
thermal bath instantaneously [311–314].
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We show the regions in the U(1)Lµ−Lτ
parameter space where the tensions in (g−2)µ

and H0 can be ameliorated in Fig. 4.5. The green band represents the area within

this space where (g− 2)µ can be completely explained to 2σ, whereas the blue band

shows that region in which the H0 tension can be significantly reduced. We see

that there exists a small region at mA
′ ≈ 15 MeV and gµτ ≈ 4 × 10−4 where both

of these tensions can be accounted for simultaneously. In grey, we show the most

stringent presently existing bounds in this space. These limits are from constraints

on ∆Neff [299], white dwarf cooling [302], neutrino trident production at Charm-

II [307, 308], and four-muon searches at BaBar [309] and CMS [310]. Interestingly,

there still remains a large, unprobed area of this parameter space that can explain

the (g− 2)µ tension, including the region that can simultaneously explain both this

and the H0 tension at once. Cutting into this novel part of the U(1)Lµ−Lτ
parameter

space is our main motivator for the studies we conduct in Chapters 5 and 6.

4.2.3 CEνNS and EνES with the U(1)Lµ−Lτ

The kinetic mixing between the SM photon and the U(1)Lµ−Lτ
hidden photon gives

us an additional interaction between neutrinos and electrically charged particles.

In addition to the usual SM scattering processes responsible for CEνNS and EνES

we saw in Section 3.3, the new A′ induces a further possible interaction, shown

in Fig. 4.6. This new process adds additional contributions to the CEνNS and

EνES scattering cross sections, which can impact the expected phenomenology at

experiments sensitive to these processes. Indeed, it is because of this mixing that

DD experiments, as well as other experiments sensitive to these scattering processes,

have access to new physics models such as the U(1)Lµ−Lτ
despite their lack of direct

gauge couplings to the first-generation particles.

The new scattering process made available by the A′ augments the CEνNS cross
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N or e− N or e−

νµ or ντ νµ or ντ

γ
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Figure 4.6: The contributing diagram of the U(1)Lµ−Lτ
hidden

photon to both CEνNS and EνES. The kinetic mix-
ing with the SM photon is shown explicitly.

section we first met in Section 3.3.1, which now reads

dσανN
dER

= G2
FmN

π

(
1 − mNER

2E2
ν

)

×

Q
2
νN

4 +
gµτeεµτQνNQ

′
ναN√

2GF

(
2mNER +m2

A
′

) +
g2
µτe

2ε2
µτQ

′2
ναN

2G2
F

(
2mNER +m2

A
′

)2

F 2 (ER) .

(4.2.11)

Here, we have introduced the coherence factor Q′
ναN

, which represents the effective

interaction between neutrinos of flavour α ∈ {e, µ, τ} and nuclei via the exchange

of a hidden photon. It is defined by Q′
ναN

≡ ZQ′
α, with Q′

α given by Eq. (4.2.7).

Note that the dependence on the total number of protons reflects the fact that the

U(1)Lµ−Lτ
gauge boson couples to the nucleus via its kinetic mixing with the SM

photon, and so the total effect is proportional to the total electric charge of the

nucleus.

The fact that second-generation leptons are positively charged under U(1)Lµ−Lτ
has

interesting phenomenological properties. The cross section in Eq. (4.2.11) can be

thought of as consisting of three different terms: an SM-only term, an interference

term between the SM and the new BSM effect, and a BSM-only term. The first and

last terms, regardless of the neutrino flavour, are always positive; however, as the

kinetic mixing parameter is itself negative, the interference term for α = µ is strictly
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Figure 4.7: The fractional change in the total CEνNS differen-
tial cross section, shown in Eq. (4.2.11), across the
U(1)Lµ−Lτ

parameter space for the muon neutrino. A
positive change, shown in red, resembles an enhance-
ment of the cross section, while a negative change,
shown in blue, indicates a suppression of the cross sec-
tion. The (g − 2)µ 2σ preferred region is overlayed.
The cross sections are evaluating for a three-momentum
transfer of q ≈ 5 MeV.

negative. Due to the relative sizes of each of these terms, this results in regions of

the U(1)Lµ−Lτ
parameter space in which this negative interference dominates over

the positive BSM-only term, leading to an overall suppression of the CEνNS rate.

We can see this effect in action in Fig. 4.7, where we show the fractional change in

the total CEνNS cross section, Eq. (4.2.11), for α = µ. For very high couplings,

the BSM-only term dominates, resulting in an overall enhancement of the cross

section. On the other hand, for very low couplings, the SM term dominates and we

retrieve the usual SM result. However, for intermediate values of gµτ , we find an

interference-dominated region in which the CEνNS cross section exhibits an overall

suppression compared to the SM expectation. Therefore, in the case that α = µ, we

can observe an overall deficit in the number of CEνNS events if the model parameters
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lie within this area. As we will see in Chapter 6, this suppression of the CEνNS cross

section, not present for the tau neutrinos, will be an important clue in confirming

the U(1)Lµ−Lτ
hidden photon as a solution to the (g − 2)µ tension. We note that,

due to the turning point between interference- and BSM-dominating regions, there

is also a very finely tuned region of the parameter space where these two terms

exactly cancel, yielding the SM value for non-zero values of gµτ . We also remark

that the exact location of where this interference band occurs is highly dependent

on the value of the three-momentum transfer, with higher momenta shifting it to

higher couplings. The region shown has been derived in the particular case that

q ≈ 5 MeV.

The kinetic mixing between the SM photon and the hidden photon also affects the

EνES cross section. The new physics contribution to it can be derived in much the

same way as for CEνNS, as the A′ only contributes to the NC process. For α = e,

the cross section is unchanged, as the electron is uncharged under the new gauge

symmetry. For the remaining flavours, α = µ, τ , we have that

dσανe
dER

=2G2
Fme

π


geL2 + geR

2
(

1 − ER
Eν

)2

− geLg
e
R

meER
E2
ν


+ gµτeεµτQ

′
α√

2GF

(
2meER +m2

A
′

) [(geL + geR)
(

1 − meER
2E2

ν

)
− geR

ER
Eν

(
2 − ER

Eν

)]

+ g2
µτe

2ε2
µτQ

′2
α

4G2
F

(
2meER +m2

A
′

)2

[
1 − ER

Eν

(
1 − ER −me

2Eν

)] ,

(4.2.12)

The EνES cross section also contains an interference term; however, as gL + gR <

0, it is the α = τ flavour instead that exhibits the negative interference. This

interference is significantly smaller than the CEνNS case, with fractional changes of

order ∆σ/σSM . 1%. The observational impact is thus minimal.
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4.2.4 The Gauged U(1)Lµ

The U(1)Lµ−Lτ
stands out as a particularly elegant solution to the (g − 2)µ puzzle,

as it can explain it in an anomaly-free way. However, all we ultimately need to

account for this tension is a model that couples to the second-generation leptons.

In theory, it therefore suffices for us to add a simple U(1)Lµ
gauge symmetry to the

SM, introducing a new mediator that couples to both µ and νµ. Though a simpler

solution at first glance, it comes at a price. The sole gauging of Lµ does not produce

an anomaly-free theory, requiring us to add additional fermionic content as well as

the new U(1)Lµ
hidden photon in order to cancel the anomalies it introduces. While

theoretically less appealing because of this, a generic U(1)Lµ
acts as an excellent

model to compare with the U(1)Lµ−Lτ
from a phenomenological stance, as it has

the potential to produce remarkably similar observations. We compare and contrast

their predictions in Chapter 6 with the aim of confirming the U(1)Lµ−Lτ
as the true

underlying model, and it is thus instructive for us to give a brief introduction to

how such a U(1)Lµ
symmetry might be added to the SM.

The U(1)Lµ
Lagrangian is similar to that of the U(1)Lµ−Lτ

, shown in Eq. (4.2.1). The

two key differences lie in the charged current, jµα, and the kinetic mixing parameter,

εµ. Both of these differences are due to the fact that additional field content must

be added to cancel out the anomalies introduced. The charged current, which now

excludes a coupling to the third-generation leptons, reads

jµα = L
2
γαL

2 + µRγαµR +
∑
ψ

Qψψγαψ . (4.2.13)

where ψ are the new heavy fields required to UV complete the theory and Qψ are

their charges under the U(1)Lµ
. In this effective description, these new fields could

enter the spectrum at a new physics scale, ΛNP, anywhere between the electroweak

scale, vEW = 246 GeV, and a possible GUT scale, fGUT ∼ 1016 GeV, with its ultimate

value dictated by the choice of UV completion.

Moreover, this choice impacts the value of the kinetic mixing parameter. In the
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U(1)Lµ−Lτ
case, this was set by the mass scale of the τ lepton. However, with no ex-

plicit constraint on ΛNP, the value of εµ can, in general, lie within a range set by this

new physics scale. Within the same approximations we made in Section 4.2.1—that

the mixing occurs principally with the SM photon and that the three-momentum

transfer is smaller than the mass of the muon—we can write that

εµ ≈ egµ
6π2 ln

(
mµ

ΛNP

)
. (4.2.14)

This mixing is identical to that of the U(1)Lµ−Lτ
, except for two key differences: the

gauge coupling, gµ, is now particular to the U(1)Lµ
, and the new physics scale, ΛNP

now replaces the mτ scale. As the most general assumption we can make on the

new physics scale is that ΛNP ∈ [vEW, fGUT], we have that εµ ∈ [−gµ/10,−gµ/100].

Thus, even with a broad, largely agnostic treatment of ΛNP, we can still make a

reasonable approximation of where the value of this kinetic mixing parameter might

lie for the U(1)Lµ
given a realistic potential choice for UV completion.

Owing to their similarities, the U(1)Lµ
and U(1)Lµ−Lτ

have almost identical CEνNS

and EνES cross sections. The key difference lies in the U(1)Lµ
model’s lack of a

coupling to the third-generation leptons. To account for this, we can set Q′
ντ

= 0 in

Eq. (4.2.7). The CEνNS and EνES cross sections for the case of a U(1)Lµ
hidden

photon then follow directly from Eq. (4.2.11) and Eq. (4.2.12), respectively.

As a potential BSM explanation of (g − 2)µ, the U(1)Lµ
model is significantly less

elegant than the U(1)Lµ−Lτ
model. In addition to requiring additional field contend

on top of the U(1)Lµ
hidden photon to remove anomalous diagrams from the theory,

the U(1)Lµ
is subject to strong constraints from flavour-changing neutral current

(FCNC) processes, such as K → πX and B → KX [316]. These constraints arise

from the enhanced production of the longitudinal mode of a potential U(1)Lµ
gauge

boson coupled to an anomalous current [317]. In the low-energy regime of our

effective U(1)Lµ
description, the electroweak-charge-carrying heavy fields, ψ, can

be integrated out, producing Wess-Zumino (WZ) terms that couple the new gauge

boson to the weak gauge bosons and, therefore, produce flavour-changing penguin



4.2. New Physics Interactions 113

diagrams. The coefficients of these WZ terms are controlled by the underlying

UV completion of the U(1)Lµ
model and do not necessarily vanish. These FCNC

constraints place harsh limits on the allowed coupling strengths of the new U(1)Lµ

hidden photon, pushing them well beneath the (g − 2)µ favoured region [317].

However, should experiments begin to favour a U(1)Lµ
explanation of the (g − 2)µ

tension, it is not impossible to evade these constraints. While contrived, it is possible

that there could be some finely tuned cancellation of FCNCs that render these

constraints obsolete. Alternatively, there could be a scenario in which these FCNC

constraints are absent to begin with. For instance, the UV-completing heavy fields,

ψ, could be SM-chiral with masses that break the broader EW symmetry of the SM.

Phenomenologically, observational differences between different realisations of a

U(1)Lµ
and a U(1)Lµ−Lτ

depend on the nature of the experiment. For instance,

experiments that are only sensitive to the second-generation gauge interactions of

these models, such as muon beam experiments, will observe exactly the same phe-

nomenology regardless of the underlying model. On the other hand, experiments

that are sensitive to these propagators via their mixing with the SM photon would

potentially measure a difference. As we discussed above, the value of this mixing

for the U(1)Lµ
is generally different to that of the U(1)Lµ−Lτ

, leading to observ-

able differences in these experiments; however, this is not necessarily the case. The

range of possible values of εµ contains the concrete value of εµτ ≈ −gµτ/70, so a

U(1)Lµ
hidden photon could perfectly mimic the phenomenology of a U(1)Lµ−Lτ

hidden photon through this higher-order process. Indeed, only experiments that

can probe the biggest predicted difference between these models—a coupling to the

third-generation leptons—are able to definitively discriminate between them.

Due to the level of overlap in the phenomenology of these models, even though

a U(1)Lµ
is a theoretically less elegant BSM possibility, an effective realisation of

it forms an excellent foil with which to pit against the U(1)Lµ−Lτ
. Indeed, the

U(1)Lµ
landscape (with the same kinetic mixing value) looks identical to that of

the U(1)Lµ−Lτ
in Fig. 4.5, excepting for bounds by BaBar and Charm-II, which are
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scaled downwards by the factor
√

BRµ−τ
A′→µµ

/BRµ

A′→µµ
≈ 0.87 (0.71) below (above)

the ditau threshold.

Thus, should the U(1)Lµ−Lτ
prove to be a promising avenue of new physics, we will

need a strategy to be able to confirm it as the true underlying model over a more

generic U(1)Lµ
. We show how these models can be discriminated from one another

in Chapter 6, where we will build exactly this strategy using muon beam, spallation

source, and DD experiments. Crucially, we will see how DD experiments can provide

us with the final piece of the puzzle—the coupling to the third-generation—in the

event that these models are maximally degenerate.

4.2.5 Neutrino Non-Standard Interactions

Thus far, we have treated model-specific new physics extensions to the SM, re-

quiring us to introduce a concrete mediator that communicates the new force of

Nature. However, we can be much more general than this. By providing an ef-

fective, model-agnostic formalism to the possible BSM physics that neutrinos can

be broadly subjected to, we can curtail the need to introduce a mediator, placing

the importance instead on the effective strength of any possible new interaction.

Known as neutrino non-standard interactions (NSIs), this framework is the subject

of Chapter 7, where we extend a typical parametrisation of this formalism to include

non-standard interactions with electrons and use this to explore the power of DD

experiments in constraining NSI parameters.

We can theoretically motivate NSIs by recalling a curious fact from Section 2.4.6.

If we treat the SM as being a low-energy realisation of a broader higher energy

theory, then we can, in effect, Taylor expand around the dimension-4 (d = 4) SM

operators, adding higher dimensional operators to it and introducing BSM physics

as a result. The lowest order correction we can make occurs at d = 5, and, in fact,

we can only add one operator at this dimension: the Weinberg operator we saw in

Eq. (2.4.51). Suggestively, after SSB, this operator contributes a BSM mass term to
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the EW Lagrangian that is of the same form as that needed to invoke a Majorana

mass term for the neutrino. However, we need not stop there. At d = 6, we can

introduce Lagrangian terms of the form [318–320]

LNSI = −2
√

2GF

∑
f=e,u,d
α,β=e,µ,τ

εfPαβ
[
ναγµPLνβ

] [
fγµPf

]
, (4.2.15)

which are indicative of new, effective four-fermion contact interactions between neut-

rinos and fermions f ∈ {e, u, d}5. Here, P ∈ {PL, PR} and the NSI parameters εfPαβ
quantify the strength of each possible new interaction relative to that of the weak

force, characterised by the Fermi constant, GF .

Neutrino Propagation in the Presence of NSIs

The effective framework of NSIs was first introduced by Wolfenstein to account for

the SM matter effects that impact solar neutrino propagation [23]. This is the MSW

effect that we discussed in Section 2.4.4. Indeed, we can use this same formalism

but with non-standard to model this propagation with BSM physics. These effects

enter at the level of the matter Hamiltonian in the three-neutrino picture, which we

first considered in Section 2.4.5. In the presence of NSIs, it becomes

Hmatter =
√

2GFNe(x)


1 + Eee(x) Eeµ(x) Eeτ (x)

E∗
eµ(x) Eµµ(x) Eµτ (x)

E∗
eτ (x) E∗

µτ (x) Eττ (x)

 , (4.2.16)

where we have defined

Eαβ(x) ≡
∑
f

Nf (x)
Ne(x) ε

f
αβ , (4.2.17)

with Nf (x) the density of fermion f in the propagation medium (in our case the

Sun). Here, we have also defined the vector-like NSI parameters, εfαβ, to be the sum

5Note that here we have assumed that the final-state and initial-state fermions are the same,
resembling an NC interaction. However, CC NSIs could also exist, where these two states are
different. Since these are subject to harsher constraints and DD experiments do not probe CC
interactions in NRs, we do not consider them here but rather direct the reader to, for example,
Refs. [318,321,322].
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of left- and right-handed couplings,

εfαβ ≡ εfLαβ + εfRαβ . (4.2.18)

It is convenient to define these as only vector-like NSIs contribute to matter effects.

This is because any axial contributions, where left- and right-handed components

enter with opposite signs, ultimately lead to non-standard matter effects cancelling

out. Moreover, since quarks are always confined to be within hadrons such as the

proton (p) and the neutron (n), we can usefully define the nucleon-specific NSI

parameters

εpαβ ≡ 2εuαβ + εdαβ and εnαβ ≡ εuαβ + 2εdαβ . (4.2.19)

If we now make the assumption that the density of each quark is distributed in the

same way as their total count, such that Nu(x) = 2Np(x) + Nn(x) and Nd(x) =

Np(x) + 2Nn(x), then Eq. (4.2.18) becomes

Eαβ(x) ≡
(
εpαβ + εeαβ

)
+ Yn(x)εnαβ , (4.2.20)

where we have defined the neutron-to-electron ratio Yn(x) ≡ Ne(x)/Np(x) and made

use of the fact that the Sun is approximately electrically neutral to set Np(x) ≡

Ne(x).

We will explore the impact of NSIs on neutrino oscillations in greater detail in

Chapter 7. Presently, we only note that, from Eq. (4.2.20), the overall effect of

NSIs is to introduce new terms to the matter Hamiltonian that include, as well as a

contribution from the neutron, an overall charged contribution from both the proton

and the electron. Consequently, from a phenomenological standpoint, the same non-

standard behaviour could be effected through either a single proton/electron contri-

bution or an appropriate combination of both proton and electron contributions. As

NSIs with the electron also have the potential to impact the EνES scattering cross

section, which affects the phenomenology at the interaction point, global analyses of

NSIs assume that only NSIs with the proton exist [24,25]. Similarly, studies of NSIs
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in the context of CEνNS experiments make the same assumption [323]. This greatly

reduces the complexity of the problem; however, it comes at the cost of providing

a less general treatment. In Chapter 7, by re-introducing the electron contribution

to the usual electron-absent NSI parametrisation, we explore the potential impact

that a more general charged contribution can have on limits that have previously

been set on NSI parameters under the assumption that only one of these charged

components exists.

CEνNS and EνES in the Presence of NSIs

In the general NSI case, we must be careful when calculating the differential rate

spectrum for neutrino scattering events. As was recently pointed out by Ref. [26],

when new physics effects introduce potential flavour-changing NCs, we must be

careful to retain the full flavour-structure of the cross section when dealing with a

neutrino flux composed of an admixture of flavour eigenstates. This is in contrast

with the SM case and indeed with both the U(1)Lµ−Lτ
and U(1)Lµ

cases above,

which all lead to interactions that are diagonal in the flavour basis. In the general

case, it is no longer appropriate to project the neutrino state that arrives on Earth,

which does so in a superposition of flavour eigenstates, onto any one particular

flavour state and convolve the result with flavour-pure cross sections (as we did in

Eq. (3.3.1)). Instead, we must consider the full flavour-structure of both the cross

section and the density matrix describing the evolution of the initial neutrino state.

To illustrate this, we can consider the amplitude of the general elastic scattering

process between a neutrino of initial flavour α and a target T , given by

Aαβ = 〈νβ|S |να〉 . (4.2.21)

Here, S ≡ S(i)S(p) is the S-matrix describing the full scattering process, from the

propagation of the initial state |να〉 to its eventual interaction with the detector

material, encoded in the matrices S(p) and S(i), respectively. The differential rate

due to a neutrino initially born in the flavour α is then proportional to the sum of
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the square amplitudes for the neutrino to scatter into all possible flavours. That is,

dR
dER

∝
∑
β

|Aαβ|2

= Tr
(
ρ(α)|M |2

)
,

(4.2.22)

where we have defined the density matrix ρ(α) ≡ S(p)π(α)S(p)†, with π(α) the projector

onto the initial state |να〉, and the scattering matrix M ≡ S(i). In the case of solar

neutrinos, where all neutrinos are born in the pure flavour eigenstate νe, the projector

is given by π(e)
γδ = δγeδδe, and we get that

ρ
(e)
αβ = S(p)

αe (S(p))†
eβ = ψ†

eβψeα , (4.2.23)

with ψe satisfying Eq. (2.4.39). Note that the diagonal elements of ρ(e) give us the

probabilities of a transition from flavour e to flavour α. The non-diagonal elements

describe the flavour coherence of the neutrino state arriving on Earth, which is

not to be confused with the mass eigenstate coherence we discussed in Chapter 26.

Decorating the interaction matrix elements with the relevant phase-space factors,

which promotes it to a differential cross section, we arrive at the general relation

for calculating the differential rate spectrum in the presence of flavour-changing

NSIs [26],
dR
dER

= nT

∫
E

min
ν

dφν
dEν

Tr
(
ρ(e) dσ

dER

)
dEν , (4.2.24)

We stress that the traditional way of calculating the number of neutrino scattering

events in the presence of new physics, given by

Nν ∝
∑
α

Peα
dσανT
dER

, (4.2.25)

where Peα is the transition probability to a neutrino of flavour α, is only appropriate

in two cases. If the flux of neutrinos incident on a target is pure—i.e. it is only

composed of one flavour—then this simplified treatment is appropriate. On the
6The loss of coherence that occurs with the mass eigenstates greatly simplifies the calculation

of ψe; however, there is, in general, a coherence of the flavour eigenstates, as the neutrino flux
arrives in a mixed state.
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other hand, if the flux is composed of a mixture of flavour eigenstates, then it is

still appropriate as long as the new physics contribution is flavour-conserving—in

other words, the generalised cross section is diagonal. However, if this cross section

is non-diagonal and the incident neutrino flux is in a mixed state, we must resort to

the more general treatment of Eq. (4.2.24).

For CEνNS, we can follow the approach of Ref. [324] to derive the generalised

cross section, which describes both flavour-conserving and flavour-changing pro-

cesses. However, we must stop short of summing over all possible final states at the

cross section level, as this is not appropriate for the case of a non-diagonal interac-

tion cross section with a mixed-state neutrino beam. Instead, we give the full cross

section describing the scattering process ναN → νβN ,(
dσνN
dER

)
αβ

= G2
FmN

π

(
1 − mNER

2E2
ν

)

×
(

1
4Q

2
νNδαβ −QνNG

NSI
αβ +

∑
γ

GNSI
αγ G

NSI
γβ

)
F 2(ER) .

(4.2.26)

where the NSI coupling to the nucleus is defined as

GNSI
αβ = Zεpαβ +Nεnαβ . (4.2.27)

In the case of EνES, the generalised cross section is given by [26]
(

dσνe
dER

)
αβ

= 2G2
Fme

π

∑
γ

GL
αγG

L
γβ +GR

αγG
R
γβ

(
1 − ER

Eν

)2

−
(
GL
αγG

R
γβ +GR

αγG
L
γβ

) meER
2E2

ν

 ,

(4.2.28)

where the generalised, parity-dependent couplings are given by

GL
αβ = gα1 δαβ + 1

2ε
e
αβ and GR

αβ = gα2 δαβ + 1
2ε

e
αβ , (4.2.29)

with gα1 and gα2 given by Eq. (3.3.10). We note that, in general, the neutrino-electron

cross section can be composed of both a vector and an axial-vector part. However,

we have ignored the axial-vector contribution, as such an interaction affects neither

CEνNS nor neutrino propagation.





CHAPTER 5

Probing the U(1)Lµ−Lτ with Neutrinos

Having introduced the neutrino, DD experiments, and potential BSM neutrino phys-

ics, we are now ready to turn to the thesis of this work: that DD experiments will

prove to be key players in the search for new neutrino physics. We will begin ex-

ploring this idea by considering the constraining power of DD experiments in the

context of the U(1)Lµ−Lτ
hidden photon, which we introduced in Section 4.2.1. This

model of new physics is particularly well-motivated by the increasing tension in

(g − 2)µ, which can be completely accounted for with the new mediator introduced

by the gauged U(1)Lµ−Lτ
. While vast expanses of the U(1)Lµ−Lτ

parameter space

have now been excluded by a variety of neutrino experiments, a large region of it

where the (g−2)µ solution survives has yet to be probed. As we will see, future DD

experiments are on course to explore precisely this region.

In this chapter, we will explore the sensitivities of DD experiments to the U(1)Lµ−Lτ

hidden photon, comparing them to those of neutrino-dedicated experiments. We

will begin by deriving constraints from the recent LAr run of the COHERENT

experiment, setting up the necessary details of this type of experiment as we do
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so. We will then move on to solar neutrino probes of the U(1)Lµ−Lτ
hidden photon,

beginning with a brief discussion on the SSMs we have considered. Our analysis

with solar neutrinos commences by exploring the potential constraints from neutrino

oscillation experiments, leading us to consider the limits that can be derived from the

most recent run of the Borexino experiment. Finally, we come to constraints from

DD experiments, first computing the limits that the XENON1T collaboration has

already set for the U(1)Lµ−Lτ
hidden photon. We conclude with the main analysis

of this chapter: projecting the constraints that next-generation and far-future DD

experiments will be able to place in the U(1)Lµ−Lτ
parameter space. We show the

resulting limits from all of our analyses at the end of the chapter, which we separate

into those stemming from past data and those projected from future experiments.

5.1 Constraints from COHERENT

We begin by considering how the recent CEνNS measurement of the COHERENT

experiment with LAr can be used to constrain the properties of the U(1)Lµ−Lτ

hidden photon. As we saw in Section 3.3.1, this elusive process was first observed in

2017 by the COHERENT collaboration, who first measured the CEνNS rate using

a CsI target [325]. In 2020, they observed this process again using an LAr target,

measuring no deviation from the SM prediction [8]. Indeed, all of their results

have thus far been consistent with SM predictions, allowing them to set constraints

on possible new physics scenarios that affect the CEνNS rate. These new physics

bounds are particularly relevant for models containing light mediators [323,326–329],

though the potential of this type of experiment to set bounds on general NSIs has

also been studied extensively [25, 140, 173, 323, 326, 330–339]. While a limit on the

U(1)Lµ−Lτ
has already been derived using the CsI run [326], a limit using the LAr

has not. We compute this limit below, first outlining the theory behind spallation

source experiments such as COHERENT, as they will form a driving force behind

both our present analysis and the analysis we conduct in Chapter 6.
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5.1.1 CEνNS at Spallation Source Experiments

The COHERENT experiment is in a category of experiments known as spallation

source (SS) experiments. SS experiments generate high-intensity beams of neutrinos

that are aimed at stationary nuclear targets, where CEνNS is searched for. The

neutrinos themselves are produced via two possible decay channels, beginning with

the decay of the unstable pions created through high-energy proton spallations.

Neutrinos are produced either from the prompt decay of these charged pions or

from the delayed decay of the daughter muons,

π+ → µ+νµ

µ+ → e+νeνµ

(5.1.1)

At SS experiments, the neutrino flux arriving at a target is thus composed of indi-

vidual beams of νµ, νµ, and νe. The most dominant of these is due to the prompt

decay of the pions, producing a monochromatic beam of muon neutrinos whose

energy is dependent on the muon and pion rest masses,

Eνµ
= m2

π −m2
µ

2mπ

≈ 30 MeV . (5.1.2)

The remaining, sub-leading components are from the delayed decay of the µ+. Unlike

the prompt flux of muon neutrinos, the fluxes of these delayed neutrinos follow

continuous energy distributions. The energy spectra of all of these neutrinos can be

derived from two-body and three-body decay kinematics. Their normalised spectra

are given by [340]

fνµ
(Eν) = δ

(
Eν − m2

π −m2
µ

2mπ

)
,

fν̄µ
(Eν) = 64

mµ

(Eν
mµ

)2 (3
4 − Eν

mµ

) ,
fνe

(Eν) = 192
mµ

(Eν
mµ

)2 (1
2 − Eν

mµ

) ,
(5.1.3)

where, from kinematics, Eν ∈
[
0,mµ/2

]
for the continuous spectra. For reference,

we show these spectra in Fig. 5.1. Note that, when calculating the differential
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Figure 5.1: The normalised energy spectra of the neutrino fluxes
arriving on target at SS experiments. These are
the prompt monochromatic muon neutrino flux (solid,
height arbitrary) and the two delayed continuous fluxes
of electron neutrinos (dashed) and muon anti-neutrinos
(dash-dotted).

rate spectrum, these energy spectra must be normalised to account for the total

beam luminosity of any given experiment. This is done by scaling them by the

normalisation factor η ≡ rNPOT/(4πL2), where r is the number of neutrinos of

any given flavour produced per proton collision, NPOT is the number of protons on

target, and L is the total length of the experimental baseline. This yields the total

expected neutrino flux, φα(Eν) ≡ ηfα(Eν), where α ∈ {νµ, νe, ν̄µ}.

The differential rate spectrum for each neutrino flux is given by

dNα

dER
= nT

∫ Eνmax

Eνmin

φα(Eν)
dσανN
dER

dEν , (5.1.4)

where nT ≡ Mdet/mN is the total number of targets per unit mass in a given

experiment, Eνmin is the minimum neutrino energy required to produce a recoil

of energy ER (given by Eq. (3.3.2)), and Eνmax = mµ/2 is the maximum allowed

neutrino energy (determined from the three-body decay kinematics). We can then
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find the number of expected CEνNS events by integrating Eq. (5.1.4) over the recoil

energy, taking into account a generally energy-dependent efficiency function, ε(ER),

that captures the sensitivity of a detector to the produced signal,

NCEνNS =
∫
Eth

ε(ER)dNα

dER
dER . (5.1.5)

Note that the integration in recoil energy runs from the threshold of the particular

experiment. With an efficiency function that is energy dependent, this threshold

energy is implicitly already taken into account by the fact that the efficiency quickly

drops to zero below some recoil energy. As in the case of DD experiments, SS

experiments typically quote their threshold energy to be that recoil energy at which

the efficiency curve drops below ∼ 50%.

5.1.2 Constraints from the CENNS-10 LAr Experiment

As part of their mission, the COHERENT collaboration deployed the CENNS-10

LAr detector to measure CEνNS with a liquid argon target. We summarise the

details for the CENNS-10 LAr experiment in Table 5.1, which we have taken from

Ref. [8]. For simplicity, we assume a 100% isotopic abundance of 40Ar in the exper-

iment. For our efficiency function, we take the Analysis A curve given in Fig. 2 of

Ref. [8].

Like DD experiments, CEνNS experiments such as COHERENT do not directly

measure nuclear recoil energies. Instead, they measure energies stemming from

strictly electronic processes. In the case of scintillation-based SS experiments, the

measured signal is the number of photoelectrons produced, which itself is related

to the electron-equivalent energy that was needed to release that number of photo-

electrons. Thus, to relate nuclear recoil energies to the electron-equivalent energy

scale, we proceed in much the same way as we did for DD experiments in Sec-

tion 3.3.3: by applying an energy-dependent quenching factor. In this case, we

convert the nuclear recoil energies of the expected differential CEνNS rate spectra
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Mdet (kg) NPOT (×1023 year−1) r L (m) σsys

24 1.37 0.08 27.5 8.5%

Table 5.1: The relevant experimental details of the CENNS-10 LAr
experiment.

to their electron-equivalent counterparts by applying the quenching factor presented

in Ref. [8]

QF (ER) = 0.246 + (7.8 × 10−4 keVnr
−1)ER . (5.1.6)

This allows us to map to electron-equivalent energies using the relation Eee = QFER.

To compute our limit, we perform a χ2-fit similar to that of Ref. [323, 341]. In

particular, for each point in the U(1)Lµ−Lτ
parameter space, (mA

′ , gµτ ), we minimise

the function

χ2
(
mA

′ , gµτ
)

= min
α


Nexp −NCEνNS

(
mA

′ , gµτ
)

[1 + α]√
Nexp +Nbkg

2

+
(
α

σα

)2
 , (5.1.7)

where we allow the overall normalisation of the theoretical count, α, to run in the

fit with a systematic uncertainty of σα = 8.5%, acting as a nuisance parameter in

our analysis. The total number of measured events is Nexp = 159, with the total

number of background events given by Nbkg = 563. We show our results, along with

the limits derived from the previous CsI run in Ref. [326], in Fig. 5.4.

5.2 Solar Neutrino Probes of the U(1)Lµ−Lτ

We now turn our attention to solar neutrinos and explore how experiments sensitive

to them can place bounds in the U(1)Lµ−Lτ
parameter space. However, before we be-

gin, we briefly comment on the SSMs we have used. As we mentioned in Section 2.3,

the size of each predicted solar neutrino flux depend on the particular choice of SSM.

Therefore, the constraints we can place with these types of experiments depends on

which SSM we take as the underlying solar model. As we are about to see, there is

currently no unequivocal choice for this.
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5.2.1 The Choice of Solar Model

Modern SSMs typically use one of two popular spectroscopic studies on which to base

their assumed solar abundances during calibration: the GS98 [77] and AGSS09 [78]

studies. Importantly, these studies differ in what they report for the overall photo-

spheric metallicity. The older GS98 results, based on one-dimensional atmospheric

modelling [77, 342], point towards a higher metallicity solar atmosphere than the

newer AGSS09 results, based on improved hydrodynamical modelling and line form-

ation study techniques [78, 343, 344]. Although one might prefer to take the more

recent, low-metallicity results, SSMs based on these solar abundances predict values

for other quantities, such as the solar sonic speed, that are in tension with helio-

seismological measurements, which instead favour a high-metallicity Sun [74]. This

dissonance between spectroscopic and helioseismological data has given rise to the

so-called solar metallicity problem—an ongoing difficulty in choosing the model to

take as the underlying SSM [82–84,345,346].

An orthogonal line of attack to helioseismology is to consider the solar neutrino flux

predictions of these SSMs. Each of these models predicts a different value for the

total expected flux of each solar neutrino population. Therefore, by measuring these

fluxes as precisely as possible, we can test for which SSM best fits the data. Crucially,

the predicted fluxes from the CNO cycle reactions, which are highly dependent on

the abundance of heavy elements in the Sun, are the most impacted by the choice

of SSM, varying by as much as ∼ 30% [72] between high-metallicity (HZ) and low-

metallicity (LZ) solar models. The CNO neutrino fluxes in particular thus form

important probes of the underlying SSM.

At the foreground of neutrino flux measurements is the Borexino experiment, which

infers the various components of the solar neutrino flux by measuring the solar

EνES rate with its organic liquid scintillator target. Borexino has measured events

across the entire range of the solar neutrino spectrum, observing 8B [347], pp, 7Be,

pep [348], and, most recently, CNO [72] neutrinos. This last measurement is the
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first direct observation of neutrinos produced in the CNO cycle, and their results

showed a slight preference for the HZ case. However, their precision will need to be

improved before a clear preference is shown. We discuss the Borexino experiment

in greater detail in Section 5.2.3, where we use the results of its most recent run to

constrain new regions in the U(1)Lµ−Lτ
parameter space.

For our analyses below, we will explore the effect that the choice of SSM has on

our computed limits for Borexino and DD experiments. In particular, we will take

the solar neutrino fluxes of the B16-GS98 and B16-AGSS09met models of Tab. 6 of

Ref. [74]. We will refer to these fluxes as being associated with either an HZ or an

LZ Sun, respectively.

5.2.2 The U(1)Lµ−Lτ
Model and Oscillation Experiments

As we saw in Chapter 4, new physics in the neutrino sector can impact neutrino

oscillations by introducing non-standard matter effects. Experiments that are sens-

itive to neutrino oscillations, such as Super-Kamiokande, SNO, and Borexino can

use deviations induced by these effects to place bounds on the strength of BSM

neutrino physics. Through global analyses, stringent bounds can be placed on these

interaction strengths [25, 138], and therefore one of the first ways we might think

of constraining the potential parameter space of the U(1)Lµ−Lτ
is by considering

the observational impact that a U(1)Lµ−Lτ
hidden photon could have on neutrino

oscillations.

However, the U(1)Lµ−Lτ
does not induce any non-standard effect, and the propaga-

tion is equivalent to that predicted by the SM. We can see this from the effect-

ive couplings we presented in Table 4.2: the U(1)Lµ−Lτ
induces interactions that

are equal and opposite in magnitude on the proton and the electron, and no non-

standard effect is introduced to the neutron. Since non-standard matter effects enter

through the total matter Hamiltonian in Eq. (4.2.16), and since both εpαβ + εeαβ = 0

and εnαβ = 0, this Hamiltonian vanishes.Thus, despite introducing non-standard ef-



5.2. Solar Neutrino Probes of the U(1)Lµ−Lτ
129

fects through the CEνNS and EνES scattering cross section, the U(1)Lµ−Lτ
does

not lead to non-standard oscillation effects. In this special case, then, the bounds

set by oscillation experiments can be completely evaded.

Nevertheless, while the U(1)Lµ−Lτ
does not directly impact the behaviour of neutrino

oscillations, it has the potential to affect global fits of neutrino oscillation paramet-

ers. The parameters θ12 and ∆m2
21 are inferred by solar neutrino oscillation experi-

ments by measuring processes involving EνES, which a U(1)Lµ−Lτ
gauge boson does

alter [349, 350] (c.f. the cross sections of Section 4.2.3). Thus, should a U(1)Lµ−Lτ

hidden photon exist, fitting to these oscillation parameters using the SM prediction

will lead them to be incorrectly determined. This kind of observational degeneracy

has been studied in the context of quark NSIs [24], but it has yet to be explored

with electron NSIs. While we do not conduct this analysis ourselves, we provide a

framework with which it could be performed in the future in Chapter 7.

Interestingly, a tension currently exists between the oscillation parameters inferred

using data from KamLand [351], a reactor experiment, and those inferred from solar

neutrino data [138]. This tension is especially pronounced for ∆m2
21. It is possible

that this discrepancy could be a sign that the SM assumption for the EνES cross

section is at fault, pointing towards potential new neutrino physics. To determine

whether this is an appropriate explanation, we would need to perform a global fit

to this data including both the mixing parameters and the NSI couplings. Such an

analysis might indicate that the electron NSIs induced by the U(1)Lµ−Lτ
model could

rectify this tension, and, in so doing, oscillation experiments would be able to place

preferred regions within the U(1)Lµ−Lτ
parameter space. However, in the absence

of such an analysis, we will not conjecture on the constraining power of oscillation

experiments in the U(1)Lµ−Lτ
case. Instead, we will take the oscillation parameters

found by the global fit of Ref. [138], using them to compute solar neutrino oscillation

probabilities under the SM.
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5.2.3 Constraints from the Borexino Experiment

The Borexino experiment, based in the Laboratori Nazionali del Gran Sasso, aims

to provide us with world-leading precision measurements of the solar neutrino flux

by looking for solar EνES with its liquid scintillator target. To date, the Borexino

collaboration has observed neutrinos with energies in the full range of the solar

neutrino spectrum, detecting 8B [347], pp, 7Be, pep [348], and, most recently, CNO

[72] neutrinos. Its most recent accomplishment has been the first-ever directional

measurement of sub-MeV neutrinos [352]. Thus far, all of their results have shown

excellent agreement with the SM expectation for the EνES rate, enabling them to

set stringent constraints on new physics models that can impact the EνES cross

section and/or neutrino oscillations.

Among the various sources of solar neutrinos, 7Be neutrinos in particular are prime

candidates with which to constrain the properties of a U(1)Lµ−Lτ
hidden photon.

This is because, firstly, Borexino has measured the 7Be flux to the best precision

(2.7%) [10] and, secondly, new light mediators induce the greatest change to the

EνES cross section at low recoil energies, which 7Be neutrinos tend to produce

(c.f. Fig. 3.6). Indeed, Ref. [353] took advantage of these facts to derive precisely

these constraints in the U(1)Lµ−Lτ
parameter space. By remapping limits that had

already been set on a U(1)B−L model [174], they were able to set one of the first

limits on the U(1)Lµ−Lτ
using solar neutrino data from the Borexino experiment.

However, their approach was subject to a number of improvable factors. Firstly, by

performing a simple re-mapping, Ref. [353] did not take into account the interfer-

ence term in the U(1)Lµ−Lτ
cross section of Eq. (4.2.12), which can have appreciable

phenomenological consequences. Secondly, the original U(1)B−L result neither in-

corporated the uncertainty in the SM rate prediction nor considered the ambiguity

in the choice of SSM. Thirdly, at the time of the original analysis, Borexino had only

measured the 7Be rate to a precision of 5% [9]—almost twice that obtained with the

Phase-II run of 2.7% [10].
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In light of these potential improvements, we have re-computed the Borexino limit

in the U(1)Lµ−Lτ
parameter space, incorporating all of them in our analysis. We

have used both the lower Phase-I and higher Phase-II precisions to calculate our

U(1)Lµ−Lτ
constraints, which we have done for both the LZ and HZ cases. Note

that, ideally, we would set a single limit using a combination of these results; how-

ever, we would need a more complete understanding of the systematic uncertainties

associated with them, including any cross-correlations between their measurements.

To derive our limits, we perform a ∆χ2 test, setting bounds on the gauge coupling

at the 90% CL for each SSM. We find that the Phase-II result, which measured a

higher flux of 7Be neutrinos, gives us a weaker constraint, as a lower coupling is

required to achieve the same excess. Similarly, as the 7Be flux predicted from an

LZ Sun is ∼ 10% lower than that from an HZ Sun [74], the EνES rate can be more

significantly enhanced in the former while still predicting the same number of events,

resulting in a weaker bound for an LZ Sun. We show our results in Fig. 5.4 for both

runs of the Borexino experiment, as well as for both of our considered SSMs. Note

that, in the LZ case, the results from each run lead to very similar limits, so we

show only the line derived from the Phase-II data set for an LZ Sun.

We note that our analysis, while providing an improvement on previous results, could

be enhanced further. A complete method for deriving constraints on the U(1)Lµ−Lτ

would see all of the measurements of the various solar neutrino rates taken into

account in a single analysis. Such an analysis would require a careful treatment

of each of the various uncertainties associated with these measurements, ultimately

making for a more expensive global flux analysis. Such a dedicated analysis is

beyond the scope of this study.
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5.2.4 The Constraining Power of Direct Detection

Experiments

The main contention of this work is that DD experiments will play a key role in

teaching us about the nature of potential BSM neutrino physics. As we argued

in Chapter 3, both forthcoming and far-future DD experiments will begin to delve

beneath the neutrino floor, giving them sensitivity to new physics in the neutrino

sector. Through both CEνNS and EνES, these experiments will be able to probe

the MeV-scale neutrinos produced in solar fusion reactions [180,182,354]. By virtue

of ever-decreasing energy thresholds and ever-increasing fiducial volumes, future DD

experiments will provide us with complementary probes of new physics in the neut-

rino sector beyond neutrino-dedicated experiments. The well-motivated U(1)Lµ−Lτ

hidden photon therefore serves as an excellent case study to demonstrate the power

of DD experiments in this new direction.

The XENON1T Result

Before turning to future DD experiments, however, we will briefly consider the

constraining power of the XENON1T experiment. As we saw in Section 3.2, this

experiment, which is the predecessor of the now-operational XENONnT detector,

has already become sensitive to the 8B shoulder of the neutrino floor [172]. Indeed,

it has even performed a 8B-neutrino dedicated search. Thus, as a sign of what

to expect from the near future in the field, we take a brief interlude to discuss

the impact of a recent XENON1T result on our work—a result that was published

during the preparation of Ref. [1].

In 2020, the XENON1T collaboration [153] released the results of their Science Run

1 (SR1), focused on electron recoils [12]. Excitingly, their data showed a discernable

excess at very low recoil energies, ER ≈ 2–3 keVee, tantamount to a 3.3σ deviation

from the expected background. Ref. [12] explored several potential explanations for

this excess, including both an additional tritium background component and po-
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tential new physics scenarios—scenarios such as a neutrino magnetic moment, solar

axions, and bosonic dark matter. Of course, a plethora of works has since attemp-

ted to either explain or refute new physics explanations of the XENON1T excess.

These have primarily focused on models including new light vector mediators, dark

matter in various forms, and neutrino non-standard interactions [355–409]. It is

therefore natural for us to attempt to account for this excess ourselves through a

light U(1)Lµ−Lτ
gauge boson, or otherwise to use it to place on constraint in this

parameter space1.

The results of the SR1 are shown in Fig. 5.2, the data for which we have taken

from Ref. [12]. We also show the background-only spectrum, B0, which is the result

of a high-dimensional fit to the expected background sources in the XENON1T

experiment. These sources include the irreducible background from the β-decays of
214Pb, backgrounds from other material contaminants, the irreducible solar EνES

background, and backgrounds from unstable xenon isotopes. Interpreting the SR1

data as a signal of a U(1)Lµ−Lτ
hidden photon would require us to reject B0 for a

better fit with the total rate predicted by B0 and the signal from this new mediator.

In computing the XENON1T exclusion line, we improve slightly on the analysis we

first performed in Ref. [1]. Firstly, we now perform a multi-bin analysis across the

XENON1T region of interest instead of a one-bin analysis. Secondly, we now take

into account the energy-dependent efficiency function of Ref. [12]. We find that this

more sophisticated analysis slightly improves on the limit we first derived in Ref. [1].

To perform our binned analysis, we calculate the sum of the χ2 values across the 29

bins shown in Fig. 5.2. Under the assumption of the background-only hypothesis,

we find that χ2
B0 = 46.4 (29 d.o.f.), which corresponds to a significance of p ≈ 2.1%.

This suggests a tension with the B0 hypothesis, pointing towards effects that are not

included in the background-only model. Such an effect could arise from a U(1)Lµ−Lτ

hidden photon, and, indeed, a hidden photon with mA
′ ≈ 40 keV and gµτ ≈ 7×10−6

1We note that, very recently, the XENONnT experiment has explained away this tension [11].
The previous XENON1T excess was accounted for by an excess of background tritium events.
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Figure 5.2: The electron-recoil excess reported by the XENON1T
collaboration [12]. We show the data points of the
binned spectrum attained by the SR1 (black) and the
fitted background-only spectrum, B0 (red). We also
show the resulting spectrum from a U(1)Lµ−Lτ

hidden
photon that is just excluded by the data at the 90% CL
(blue, dashed).

can slightly ameliorate this tension. Incorporating this new particle results in the

lower value of χ2 = 40.2 (27 d.o.f.), decreasing the significance of the result slightly

to p ≈ 4.9%. However, not only is this an unremarkable improvement, but such a

hidden photon is deep within the excluded region of the U(1)Lµ−Lτ
parameter space

(mainly due to ∆Neff constraints). Therefore, we do not treat this as a potential

solution to the XENON1T excess.

Nevertheless, instead of performing a reconstruction of a potential U(1)Lµ−Lτ
hidden

photon solution, we can derive an exclusion limit on the U(1)Lµ−Lτ
parameter space

at which we can reject this new particle. To compute the 90% CL limit, we first find,

for a fixed mA
′ , that coupling that minimises the χ2 statistic under the combined

background and signal hypothesis, the value of which is almost identical to χ2
B0 . We

then find those couplings for which ∆χ2 = 2.71, corresponding to a 1 d.o.f. exclusion.
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The ensuing limit is shown in Fig. 5.4. We also visualise the expected spectrum for

the benchmark point BPlim = (mA
′ = 15 MeV, gµτ = 10−3) in Fig. 5.2, corresponding

to a hidden photon with a mass in the H0 solution region but with a coupling that

is just beyond the 90% exclusion limit.

In deriving this limit, we have assumed that the fitted background, B0, acts as a

proxy for the true background of the experiment—a necessary assumption to com-

pute this limit without profiling over a high-dimensional space including the many

background components. While drawing such an equivalence would be appropriate

in the case that the individual backgrounds had small systematic uncertainties, this

is not true for the case of the XENON1T result. In particular, there is a large sys-

tematic uncertainty on the number of expected events from the β-decay of 214Pb,

which is reported to lie in the range NPb ∈ (3450, 8530). This is by far the dominant

background in the low-energy part of the spectrum, where the number of expected

solar neutrino events, Nν = 220.7 ± 6.6, is over an order of magnitude smaller than

it. Thus, the small increase necessary to set the limit we have calculated for the

U(1)Lµ−Lτ
model could, in principle, be completely accounted for by a slight increase

in the fitted value for the lead background.

However, as such a re-fitting of the background would lead to a relaxation of the limit

we have derived here, and since our (over-constrained) limit does not cut into any

new regions of the U(1)Lµ−Lτ
parameter space, we posit that any limit that could be

derived from the XENON1T data would also not constrain any new regions of this

space. Therefore, our limit acts as a most constraining possibility. A more detailed

analysis would require a full profile likelihood analysis, allowing the backgrounds to

vary within their expected ranges. Such a dedicated analysis is beyond the scope of

this study.
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5.2.5 Future Direct Detection Experiments

We now turn to exploring the power of future DD experiments, which are set

to plunge beneath the neutrino floor. To determine their sensitivities to a new

U(1)Lµ−Lτ
hidden photon, we use a set of simplified experimental configurations

that are representative of the upcoming and far-future DD experiments we intro-

duced in Section 3.4. Combined with each of these setups, we undertake three

different types of analyses, differing in the type of recoil event they focus on.

The reason for these separate studies is that, generally, we expect far more back-

ground events from ERs than from NRs. As we discussed in Section 3.3.3, a common

way of reducing these backgrounds in searches for NRs is by combining multiple de-

tection channels, with NRs and ERs having different signal profiles. However, this

typically limits the energy threshold of the analysis, as higher thresholds are usually

needed to ensure the survival of both signals. We therefore consider three types of

analyses, each with their own unique energy ranges: an NR, ER, and NR + ER

analysis. In the first two of these, we choose our energy ranges to allow for good

discrimination between NR and ER events, enabling us to study the signals of each

kind of recoil event separately. In the final analysis, we sacrifice the low-background

NR analysis for a lower threshold, giving us access to lower energy NRs. For this

last analysis, we first convert all recoil energies to the same energy scale using the

relevant quenching factor before combining the signals; arbitrarily, we choose this

scale to be in nuclear-recoil equivalent energies. The NR spectra are integrated up

to the maximum kinematically allowed energies for the NR analysis, which follow

from a collision with the highest energy solar neutrinos (here, the tail of the hep

neutrinos).

In our first study of DD experiments in this vein, we do not include more sophist-

icated experimental details, such as the energy resolution effects and the energy-

dependent efficiency functions (though we do include flat efficiencies, as we detail

below) that we introduced in Section 3.3.3. As we are only interested in an initial
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Exp. Insp. NR (keVnr) ER (keVee) NR + ER (keVnr)

G2-Xe LZ [14]
XENONnT [15]

[3, 5.8] [2, 30] [0.7, 100]

G3-Xe DARWIN [16] [3, 5.8] [2, 30] [0.6, 100]

G2-Ge
SuperCDMS iZIP [13]

SuperCDMS HV [13]

[0.272, 10.4]

—

[0.120, 50]

—

—

[0.040, 2]

G3-Ar DarkSide-20k [17] — [0.7, 50] [0.6, 15]

Table 5.2: The DD setups we have used in this study. We label
each of them according to their generation (G2 or G3)
and their target, and we note the real-life experiment
that has inspired each configuration (c.f. Section 3.4 for
more details). A configuration is crucially defined by the
energy window we consider when calculating the new
physics signal.

estimate of the sensitivities of DD experiments, we will reserve these considerations

for the next chapter, where we fold these details into our analysis.

We summarise the details of the experimental configurations we have considered in

Table 5.2, where we specify the label for each experiment, the detector that has

inspired it, and the energy range used in each analysis. We will briefly discuss each

of these setups below, explaining our choices of detector properties and highlighting

any assumptions that we have made. For more details on each of the experiments

that have inspired these configurations, please refer to Section 3.4.

G2-Ge This second-generation setup is based on the planned configuration of the

SuperCDMS experiment at SNOLAB [13], focusing on its Ge crystal iZIP and

HV detectors2. In the iZIP configuration, we compute separate bounds for

ERs and NRs, as this detector allows for NR/ER discrimination. The NR +

ER limits, however, are calculated using the lower threshold HV configuration.

The NR threshold energies, both assumed to have been derived from a phonon
2We note that, while SuperCDMS will employ both Si and Ge crystal targets, we focus on Ge as

it will be more abundant in the experiment. Its greater exposure therefore makes it more suitable
to probe the subtle effects of light mediators, though the lower threshold of the Si iZIP detectors
will play a complementary role in the case of very light mediators.
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signal, have been converted into electron-equivalent energies as per Eq. (8) of

Ref. [210] using the Lindhard model for the ionisation yield [206] (c.f. Sec-

tion 3.4.2). The maxima of the energy windows approximately resemble the

range of the detectors in each analysis. For each of them, we have taken the

backgrounds from Ref. [210].

G2-Xe This second-generation configuration has been inspired by the upcoming

multi-ton LXe experiments LZ and XENONnT. To place a slightly more con-

servative bound, we use the lower exposure of the former of 15 ton yr. The NR

thresholds for these experiments have been designed to lie above the maximum

of the solar neutrino spectrum, minimising what is typically a background in

their searches for DM. However, as this constitutes a signal for us, we must

justify lowering this threshold as much as possible.

To do so, we note that the LUX collaboration has been able to set energy

thresholds as low as 1.1 keVnr, with a 3.3 keVnr threshold at 50% detector

efficiency in both the S1 and S2 signal channels required for NR/ER discrim-

ination [410]. In light of this and the advent of new analysis techniques that

allow for even lower thresholds [411], we have set the low end of the NR energy

window to be 3 keVnr, corresponding to ≈ 2 keVee for the ER analysis. Above

this threshold, we can perform an NR analysis with a 99.5% rejection of ER

background and a 50% acceptance cut of NR signal events [183,214]. We take

our backgrounds from Ref. [214]; however, we extend our analyses beyond the

energy range for which these backgrounds are specified to give us a greater

signal. At these extended energies, we make the conservative assumption of a

flat background spectrum, justified by the treatments of Ref. [14]

For the combined analysis, we use the S2-only threshold achieved by XENON100,

lying at 0.7 keVnr [412]. We have conservatively assumed that the threshold for

this NR + ER analysis is equivalent in both keVnr and keVee to avoid extrapol-

ating the Lindhard model to energies at which it has not yet been experiment-
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ally tested3. The maximum recoil energy has been set at 30 keVee (≈ 100 keVnr

using the Lindhard model), corresponding to the energy at which the double-β

decay of 136Xe is expected to dominate over solar neutrino events [214].

G3-Xe This far-future detector is based on the proposed DARWIN experiment [16],

though this also acts as a proxy for other high-exposure LXe experiments, such

as PandaX [413]. This configuration is similar to that of G2-Xe, only with an

order of magnitude higher exposure, slightly lower backgrounds (taken instead

from Ref. [16]), and a slightly lower energy threshold for the combined NR +

ER analysis. For this far-future threshold, we have instead been inspired by

the lowest energy measurement in LXe of an S2 signal to date, occurring

at an energy equivalent to 0.3 keVnr for NRs and 0.186 keVee for ERs [414].

Abandoning the NR/ER discrimination power, which requires the additional

S1 signal, we have set the lower threshold to approximately twice this value for

our combined analysis. All other considerations for this setup are equivalent

to those of the G2-Xe setup.

G3-Ar The final, far-future detector has been based on the DarkSide-20k detector.

The energy threshold required for signal discrimination in this setup is too

high to give competitive constraints from CEνNS [415], residing well beyond

the end of the CEνNS spectrum. Thus, we only perform an ER analysis at

this threshold, equivalent to 7 keVee.

Nonetheless, for our NR + ER analysis, we have taken the lower 0.6 keVnr

energy threshold achieved by the DarkSide-50 collaboration in an S2-only ana-

lysis. The maximum of the energy window has been taken from Ref. [17] for

the ER analysis and placed at 15 keVnr for the combined analysis. We have

taken the backgrounds from Fig. 7 of [415]. Similar to our xenon setups, these

backgrounds do not extend to the maximum of our energy windows, so we
3We have, however, explicitly checked that such an extrapolation to lower energies would yield,

at most, a 30% improvement in our computed limits, occurring in the very low mass plateau, where
mA

′ � 10−1 MeV. In the region of interest for our work, where mA
′ & 1 MeV, we see a negligible

difference.
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extend them conservatively assuming a flat background above 15 keVnr. We

justify this by comparison with Fig. 3 in Ref. [415].

For each of these experimental configurations, we derive the 90% CL exclusion line

assuming that no new physics signal is observed. For a given mediator mass, mA
′ , we

determine the value of the coupling, gµτ , for which 90% of hypothetical experiments

would expect to see an excess over the SM prediction. For simplicity, we consider a

one-bin analysis, finding the total number of recoil events expected with energies in

the windows presented in Table 5.2.

Concretely, for a CL of significance α, where in our case α = 0.9, we find that

coupling that gives us an expected number of counts, NBSM, exceeding the number

of observed events, NSM, satisfying

∑
n≤NSM

p(n,NBSM(mA
′ , gµτ )) = 1 − α , (5.2.1)

where p(n, µ) is the Poisson probability mass function with number of observed

events n and mean µ. This procedure is equivalent to finding the expectation value,

µ, necessary to reject the background-only hypothesis with confidence α. We show

the DD limits at α = 0.9 for each of our analyses and experimental configurations

in Fig. 5.3 in the case of an HZ Sun. We reserve the LZ limits, which are all less

constraining as the main contributing fluxes are lower in the LZ case, for when we

present our results in the broader context of the U(1)Lµ−Lτ
landscape in Fig. 5.5.

Before doing so, however, we comment on the behaviour of our DD bounds.

A common feature seen in all of our limits is that they have two characteristic

mass regimes. The first, which occurs at the lightest mediator masses, sees the

limits plateauing and losing their dependence on mA
′ . The second sees the limits

following a constant proportionality relationship in mA
′ . The point at which the

transition between these regimes occurs corresponds to the point where the minimum

transferred momentum, occurring at a recoil energy equal to the threshold energy

of the experiment, is of the same order as the mediator mass: q ≈ mA
′ . If the
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Figure 5.3: The 90% CL exclusion limits derived for the DD config-
urations we have considered in the case of an HZ Sun.
Shown are the limits derived through the NR-only (top
left), ER-only (top right), and NR + ER analyses (bot-
tom). Also shown in the bottom panel is the (g − 2)µ
2σ preferred region (green).
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transferred momentum is consistently higher than mA
′ , the number of events in

excess of the SM will not depend on the mass of the mediator. This explains why

we observe the ER limits extending to much lower masses than the NR limits, as the

threshold energy at which the momentum transfer with the much lighter electron is

of the same order as mA
′ occurs at much lower values.

With the exception of the G2-Ge configuration, the limits set with the ER analysis

are stronger than those set with the NR analysis. This is principally a consequence

of the high thresholds, which are near where the solar CEνNS spectrum ends. This

leads to few events being detected from the outset over the background—a situation

that is exacerbated further by the 50% cut after NR/ER discrimination. By com-

parison, the relatively low-background ER analysis for the Xe setups uses thresholds

that capture the EνES spectrum well, and the limits derived from them are therefore

slightly better. On the other hand, the thresholds used for the G2-Xe configuration

are low enough to allow for a high number of CEνNS events to be detected. This

lower background analysis leads to a better limit than the ER analysis. Owing to

its high threshold, the G3-Ar setup does not feature an NR limit.

Generally, the NR + ER analyses yield the best limits. Despite the higher back-

ground, the significantly lower thresholds in these analyses not only give us more

events but also lower the transition points at which the limits plateau. We see that at

very low mediator masses, for which mA
′ . 1 MeV, the ER limit dominates. Above

these masses, we transition to NR domination, signified by the kink in the limit at

mA
′ ≈ 1 MeV. With an appreciable number of both NR and ER events, we indeed

see that ERs are optimal when testing very light mediator masses, whereas NRs

excel for higher masses [180]. When we come to place these limits in the broader

U(1)Lµ−Lτ
landscape, we will see that the masses for which ERs set the best limits

have already been confidently excluded, and it will therefore be limits set with the

combined NR + ER analyses that will be important in the (g−2)µ region of interest.

We note that the limits we have derived here could be improved. Firstly, we have

only considered a one-bin analysis, and the U(1)Lµ−Lτ
spectrum contains spectral
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features (especially at lower masses) that could provide us with greater constraining

power. Indeed, a binned study would allow us to exploit spectral information that

we have thrown away in our study, possibly giving us considerably stronger limits

for very light mediators. Secondly, we have not optimised our energy windows to

minimise the signal-to-noise ratio. A more careful analysis would ensure that the

recoil energies integrated over are such that the U(1)Lµ−Lτ
signal is maximised over

the experimental backgrounds. Taken together, these points could serve to improve

our computed limits throughout the mass regime of interest.

5.3 Present Constraints on the U(1)Lµ−Lτ

We begin our discussion on our computed limits by considering the constraints we

can place on the U(1)Lµ−Lτ
landscape today. These are shown in Fig. 5.4 for the

case of an HZ and LZ Sun. The details of the solar model only non-trivially affect

the Borexino result. This is because this result is derived from the 7Be flux, which

varies by as much as ∼ 10% between the HZ and LZ cases. On the other hand,

the XENON1T limit is dominated by EνES with pp neutrinos, whose flux is only

reduced by ∼ 1% in the LZ case.

The COHERENT LAr limit is similar to that of the older CsI run, but it is slightly

less constraining. This is because the LAr run saw a result that was less consistent

with the SM than the latter, such that a larger coupling is required to yield the

same level of disagreement with the measured value.

The XENON1T limit is complementary to the limit placed from white dwarf cooling,

but it does not cut into any new regions of the U(1)Lµ−Lτ
parameter space. As we

commented on in Section 5.2.4, this limit was derived with a simplistic treatment

of the backgrounds inherent in the XENON1T data set. Nonetheless, since our

treatment can only over-constrain the allowed couplings, our limit acts as the most

optimistic case scenario. Once again, note that, as the pp neutrino flux, which

dominates the XENON1T measurement, is marginally modified by the choice of
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LZ or HZ abundances, there is no appreciable change in the calculated limit when

choosing between these models.

The Borexino limits are based on both the older Phase-I data set [9] and the newer

Phase-II data set [10] for the HZ Sun. The central value of the rate based on

the latter is closer to the SM result, giving us a less constraining, and thus more

conservative, limit. Despite this conservative result, our updated Borexino limit

is significantly more constraining than that derived by Ref. [416]. These rule out

previously untested regions of the parameter space relevant for the U(1)Lµ−Lτ
ex-

planation of both the (g − 2)µ and the H0 tension in the case of an HZ Sun. This

makes them the most stringent low-mass constraint in this region of the parameter

space, already constraining part of the space in which simultaneous explanations of

the (g − 2)µ and H0 can be realised. In the LZ case, the general picture is similar,

but the limit derived is weaker due to the lower 7Be neutrino flux. The LZ limits,

which are virtually identical for both Phase-I and Phase-II runs, do not cut into

any new regions of the parameter space, though they do make for a complement-

ary bound to that derived from white dwarf cooling. In either SSM case, however,

the intriguing fact remains that a simultaneous U(1)Lµ−Lτ
explanation of both the

(g − 2)µ and H0 phenomena is still allowed, making this region of the parameter

space a prime target for future experimental searches.

5.4 Future Constraints on the U(1)Lµ−Lτ

We show the future of the U(1)Lµ−Lτ
landscape in Fig. 5.5, where we have zoomed in

on the region of this space that is relevant for the (g−2)µ and H0 tensions. As well as

including the projected limits that we have computed from future DD experiments,

we show previously derived projections from kaon decays at NA62 [417], neutrino

trident production at DUNE [418, 419], and a future 10 ton yr run of COHERENT

with an NaI/Ar target [326] for comparison. In the case of our DD limits, we

show the envelope of the most constraining limits from our NR, ER, and NR +
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Figure 5.4: The present U(1)Lµ−Lτ
landscape with our 90% CL

limits from completed experiments included. These
include the bounds from COHERENT LAr (blue),
XENON1T (yellow), and Borexino (red). For Borexino,
we show the limit calculated by Ref. [353] (dotted) and
the limits we have derived from the Phase-I run (dash-
dotted) and Phase-2 run with the HZ Sun (solid) and
LZ Sun (dashed). We also show the H0 (blue) and
(g − 2)µ 2σ (green) preferred regions.

ER analyses. Note that this envelope is dominated by the results of the NR + ER

analysis, which provides us with the best constraints in the region of interest4. We

show our limits for both the HZ Sun and LZ Sun, with the former being slightly

more constraining due to the higher fluxes predicted by a high-metallicity solar

model. Also shown are our calculated limits from the Phase-I and Phase-II runs of

Borexino in the case of an HZ Sun, which we show here in dark grey for comparison.

Note that we do not show the LZ result as this does not cut into any new regions

of the parameter space.

We see that the configuration based on SuperDMS (G2-Ge) will not be able to im-

4Below this region, the ER-only limits slightly dominate due to the reduced backgrounds. Due
to the reduced threshold of the NR + ER analyses, the NR-only limits remain subdominant in the
high-mass regime.
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Figure 5.5: The future of the U(1)Lµ−Lτ
landscape in the region of

parameter space relevant for the (g − 2)µ and H0 ten-
sions, shown as the green and blue bands, respectively.
We show the projected 90% CL limits for the next-
generation and far-future experiments we have con-
sidered (coloured lines). We also include our updated
Borexino limit in the case of an HZ Sun (grey) us-
ing both the Phase-I data (dash-dotted) and Phase-
II data (solid). Our DD limits have been derived us-
ing the higher flux HZ Sun (solid) and lower flux LZ
Sun (dashed). For comparison, we show the projected
bounds from the COHERENT, DUNE, and NA62 ex-
periments (black, dotted).

prove on the updated Borexino limits. Despite the low-threshold NR analysis based

on the iZIP detector, it is the combined NR + ER analysis of the HV detector that

yields the most constraining limit; the higher background of the HV configuration

is more than compensated for by its extremely low 40 eV threshold. The major

limitation of SuperCDMS is a nuclear background of 206Pb decays, the reduction of

which would have the most effect on this limit, potentially allowing SuperCDMS to

gain sensitivity to unprobed regions of the U(1)Lµ−Lτ
parameter space.

For the setup motivated by the far-future DarkSide-20k detector (G3-Ar) the derived

limit is very similar in reach to the G2-Ge setup. The envelope is coincident with
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the NR + ER exclusion line, with the majority of the sensitivity arising from the

NRs visible with the lower threshold of this analysis. Despite its larger volume,

this configuration suffers from the large background that can be seen in Ref. [415].

Similar to the G2-Ge configuration, this setup would greatly benefit from lower

backgrounds.

However, by far the most exciting results are those of the multi-ton LXe detectors

(G2-Xe and G3-Xe), based on LZ/XENONnT and DARWIN, respectively. We see

that these configurations will achieve the greatest sensitivity to solar neutrino scat-

tering events out of all of our considered experiments, with the far-future DARWIN

experiment showing the most promising results. Both of these experiments will be

sensitive to the region of parameter space where the (g − 2)µ and the H0 tensions

can be simultaneously ameliorated, presenting them with the exciting opportunity

to test two modern anomalies at once. This is a particularly exciting prospect for ex-

periments such as LZ and XENONnT, as these G2 experiments have recently begun

taking data [11,159]. The far-future DARWIN experiment, however, will be able to

probe the majority of the allowed (g − 2)µ explanation region and place the most

stringent limits out of the neutrino-dedicated experiments considered in the allowed

low-mass region of the U(1)Lµ−Lτ
parameter space. For both of these experiments,

the limits, which are dominated by the CEνNS signal, could be made better still

with further reductions to the threshold—increased exposures would only have a

minimal effect5.

Our results show that the optimal search strategy to cover the (g − 2)µ solu-

tion with DD experiments is to look for CEνNS and push for lower backgrounds

and thresholds. We have only been able to probe such large, untested regions of

the U(1)Lµ−Lτ
parameter space with LXe-based experiments by pushing for lower-

threshold S2-only analyses, where low thresholds are achieved through the sacri-

fice of NR/ER discrimination. Experiments such as SuperCDMS, however, already

5This is due the very weak glim
µτ ∝ ε−1/8 dependence on the total exposure. Reducing the

threshold at this point would instead lower the turnover point at which the limits transition to
being dominated by the ER signals.
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boast low thresholds and are only held back by high NR backgrounds. Improving

this background could enable SuperCDMS to be competitive with LXe experiments.

Nonetheless, when all thresholds are equal, it is the heavy-nuclei, high-volume LXe

detectors that will ultimately have the dominant sensitivities in the U(1)Lµ−Lτ
para-

meter space.



CHAPTER 6

Confirming the U(1)Lµ−Lτ
as the Solution to (g − 2)µ

We have now seen that DD experiments are powerful probes of the U(1)Lµ−Lτ
hid-

den photon, achieving sensitivities beyond even dedicated neutrino experiments. In

particular, DD experiments based on LXe TPC technology will be sensitive to the

(g − 2)µ solution region of the U(1)Lµ−Lτ
parameter space. With this tantalising

hint of new physics recently strengthened by the first results of Fermilab’s E989

experiment in 2021, we must be prepared to test BSM explanations of this tension

now more than ever. The U(1)Lµ−Lτ
, as a theoretically well-motivated model of new

physics, will no doubt be among the first in line to resolve this mystery should it

be confirmed. With no experimental strategy to confirm the U(1)Lµ−Lτ
as the true

solution in sight, we now offer not only a way to confirm it, but also a series of steps

to disentangle the U(1)Lµ−Lτ
solution from that of a generic, and theoretically less

elegant, U(1)Lµ
hidden photon.

In this chapter, we will develop a strategy to confirm the U(1)Lµ−Lτ
solution to the

(g−2)µ tension. We will begin by outlining the analysis strategy we employ through-

out this study to determine the sensitivities of each of our chosen experiments. We
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will then commence building our strategy, which will consist of determining the

reconstruction power of the muon beam experiment NA64µ, future LAr-based SS

experiments, and, most pertinently, multi-ton LXe DD experiments. We will dissect

the strengths and weaknesses of these experiments in confirming the U(1)Lµ−Lτ
solu-

tion to (g− 2)µ, highlighting how well-suited they will be in discriminating between

a U(1)Lµ−Lτ
and a U(1)Lµ

hidden photon.

6.1 Analysis Strategy

We will be exploring how concrete realisations of a U(1)Lµ−Lτ
hidden photon can

be probed at various experiments. To do this, we will first define a series of bench-

mark points (BPs) within the (g − 2)µ solution region of the U(1)Lµ−Lτ
parameter

space. We will then introduce the parameter reconstruction technique we have

used throughout this work, enabling us to quantify the sensitivities of each of our

considered experiments. Lastly, as we will be comparing the phenomenology of a

U(1)Lµ−Lτ
hidden photon to that of a generic U(1)Lµ

, we will highlight the key ways

in which their phenomenologies differ.

6.1.1 Benchmark Points

Throughout this chapter, we will be exploring the sensitivities of various experiments

to potential solutions of the (g−2)µ tension in terms of a muon-philic hidden photon,

A′. To this effect, we define four BPs within the region of the U(1)Lµ−Lτ
parameter

space that can solve this tension. We tabulate them in Table 6.1 and situate them in

the U(1)Lµ−Lτ
parameter space in Fig. 6.1. BP1 is the lowest in mass and has been

specifically chosen to lie within the coincidence region of both the (g − 2)µ solution

and H0 alleviation regions. The remaining BPs are then chosen to be increasingly

heavier, with the heaviest, BP4, lying just inside the unconstrained region of the

(g − 2)µ solution. To assess the sensitivity of our considered experiments to these
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BP1 BP2 BP3 BP4

mA
′ (MeV) 15 25 50 100

gµτ (×10−4) 5 6 6 10

Table 6.1: The benchmark points we consider within the (gµτ ,mA
′)

parameter space of the U(1)Lµ−Lτ
that can explain the

(g − 2)µ tension. We use these same benchmark points
for a U(1)Lµ

when comparing model reconstructions.

BPs, we will perform a parameter reconstruction, attempting to reconstruct the

properties of the hidden photon responsible for the signal observed.

6.1.2 Parameter Reconstruction

Generally, suppose that we observe the data x ≡ (x1, x2, . . . , xn)>. We wish to

quantify how statistically likely these data are to have been produced by the model of

interest, which will be defined by some set of model parameters, θ ≡ (θ1, θ2, . . . , θm)>.

The likelihood function, L(θ), tells us the probability of having observed these data

given the parameters θ, p(x|θ). Thus, for any point in the parameter space of our

model, the likelihood function assigns a probabilistic measure of how well-suited this

model is in explaining the observed data.

We can compare the likelihood of two competing models to determine whether one

can be rejected over the other. Given the model of interest, typically called the null

hypothesis and defined by a set of model parameters θ0, and a more general compet-

ing model, called the alternative hypothesis and defined by the model parameters

θ1, we can construct the likelihood ratio

λ ≡
maxθ0 [L (θ0)]
maxθ1 [L (θ1)]

, (6.1.1)

where each likelihood is maximised with respect to the free parameters of the rel-

evant model. Note that, since the alternative hypothesis generally contains more

degrees of freedom than the null hypothesis, it will always be a better description of
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Figure 6.1: The BPs we consider here in the context of the current
U(1)Lµ−Lτ

landscape. The 90% exclusion limits (grey)
shown are as per Fig. 4.5; however, we now include the
Borexino limits we derived in Section 5.2.3 with the HZ
SSM (dark grey) using the Phase-I (dash-dotted) and
Phase-II (solid) data. For the case of a U(1)Lµ

hidden
photon of the same kinetic mixing, recall that all limits
are the same except for those from BaBar and Charm-
II (c.f. Section 4.2.4). Also shown are the (g − 2)µ 2σ
(green) and H0 (blue) preferred regions.

the data, and the ratio in Eq. (6.1.1) will be bounded in the interval λ ∈ (0, 1]. A

higher value for λ therefore indicates a greater level of statistical agreement between

the two hypotheses. If θ1 are the parameters that maximise the alternative hypo-

thesis likelihood, and we are testing it against some fixed parameters, θ, of the null

hypothesis, then λ can be interpreted as a function of the null hypothesis parameters,

λ(θ) = L(θ)
L(θ1)

. (6.1.2)

Typically, it is more useful to work with the logarithm of the likelihood ratio, ln λ(θ).

Indeed, if the null hypothesis is the true descriptor of the data, Wilks’ theorem

tells us that the distribution of the test statistic qθ ≡ −2 ln λ(θ) asymptotically

approaches a χ2-distribution with number of degrees of freedom, k, equal to the



6.1. Analysis Strategy 153

difference in the number of free parameters between the two models. This result

holds true as long as the sample size is large enough and the true parameter value

does not lie on the boundary of the assumed parameter space1. A log-likelihood-ratio

test then consists of evaluating q given the measured data, qθ, obs, and calculating

the probability of finding a value of qθ at least as extreme as the one observed:

pθ =
∫ ∞

qθ, obs

f(qθ|θ) dqθ = 1 − F
χ

2(qθ, obs; k) . (6.1.3)

To replace the integral over the distribution function of qθ, f(qθ|θ), we have used

Wilks’ theorem to set f ≡ 1−F
χ

2(qθ,obs; k), where the function F
χ

2 is the cumulative

χ2-distribution function with k degrees of freedom. In performing a parameter

reconstruction, we compare the likelihood of the fitted model to that of the model

at a different point in parameter space.

We can use this pθ-value to construct confidence regions within our parameter space

by performing an inverted-hypothesis test. For some confidence level α, we can define

a confidence region at the level α as all those points for which pθ ≥ 1 − α. Finding

the boundaries of this region then amounts to finding the contours in parameter

space for which the equality holds, whereupon those parameters would be rejected

against the observed data with confidence α2.

For our particular case, since all of the experiments we will be considering are

counting experiments, we will use a binned likelihood function based on Poisson

distributed events,

L(θ) =
N∏
i=1

µ
nobs, i

i e−µi

nobs, i!
. (6.1.4)

Here, N is the total number of bins considered in an experiment, nobs, i is the number

of observed events in bin i, and µi ≡ si + bi is the expected number of events within

each bin, which is built from the expected signal and background within that bin. To

determine the reconstruction power of each of our experiments, we will use Asimov
1We have checked that Wilks’ theorem holds for all reliant analyses in this work.
2From a frequentist perspective, these confidence regions can be interpreted as containing the

true value of the model parameter α% of the time that experiments construct the α-confidence
region.
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data sets [420], such that the number of observed events within each bin is set to its

respective expectation value under the SM, nobs, i ≡ µSM
i , leading to the likelihood

being maximised for µi = nobs, i. Then, for an expected number of events µi(θ)

under any particular model, we have that the test statistic is given by

qθ = 2
N∑
i

[
µi(θ) − nobs, i + nobs, i ln

nobs, i

µi(θ)

]
. (6.1.5)

In this chapter, we will use this test statistic to construct confidence regions in the

2D U(1)Lµ−Lτ
parameter space, θ = (gµτ ,mA

′). We will build the 68% and 95%

confidence regions, which, using Eq. (6.1.3) with k = 2, corresponds to finding those

parameters for which qθ > 2.30 and qθ > 6.18, respectively.

6.1.3 Comparison to a Generic U(1)Lµ
Model

As we discussed in Section 4.2.4, all that we need to explain the (g−2)µ tension is a

muon-philic mediator. Thus, extending the SM with a gauged U(1)Lµ
would suffice.

However, this model is not as theoretically elegant as the U(1)Lµ−Lτ
, requiring the

addition of further field content to cancel the introduced anomalies, and it is also

subject to stringent FCNC constraints. However, it is not impossible that such a

model exists in nature, and, should it do so, we will need a way to discriminate

between it and the more elegant U(1)Lµ−Lτ
.

The U(1)Lµ−Lτ
hidden photon exhibits three characteristic phenomenological prop-

erties:

P1 A vector-like coupling to the second-generation leptons.

P2 A specific value for its kinetic mixing with the SM photon—namely, εµτ ≈

−gµτ/70.

P3 A vector-like coupling to the third-generation leptons, which is equal and op-

posite to that of the second generation.
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As explained above, to account for the (g − 2)µ tension, we only require that the

introduced hidden photon satisfies P1, which both a U(1)Lµ−Lτ
and U(1)Lµ

hidden

photon can fulfil. Therefore, to confirm the U(1)Lµ−Lτ
as the true underlying model,

we must further experimentally verify P2 and P3. Since a generic U(1)Lµ
-type

mediator satisfies P1, has the freedom to satisfy P2, but does not satisfy P3, it is

an excellent model to pit against the U(1)Lµ−Lτ
due to its similar, but not identical,

physical predictions.

To explore how well each of our considered experiments will be able to disentangle

a U(1)Lµ−Lτ
signal from a competing effective U(1)Lµ

signal, we will conduct our

parameter reconstructions separately under both models. We will collectively refer

to the gauge couplings and kinetic mixing parameters of both models as gx and εx,

respectively. When we need to distinguish between them, we will label them with

their respective indices of µ or µτ .

6.2 Muon Beam Experiments

Should the (g−2)µ tension prove to be a sign of new physics, muon beam experiments

will be crucial in determining its true nature. As we have discussed, a new, light

muon-philic vector boson, A′, can solve this tension, and it would leave a signature

in such experiments as missing energy in the muon beam. Detecting this smoking

gun signature will be of paramount importance in testing the U(1)Lµ−Lτ
solution

to (g − 2)µ, as this new gauge boson necessarily couples to the second-generation

leptons. Including these experiments in our search strategy is therefore a necessity,

and we will see that they will be able to tightly constrain the gauge coupling of a

muon-philic vector boson.

The planned NA64µ [18, 19] and M3 [421] experiments at CERN and Fermilab,

respectively, are prime candidates with which to look for such muon-philic hidden

photons. In these experiments, the hidden photon is produced via Bremsstrahlung

radiation in muon-nucleus collisions, decaying into undetectable neutrinos in the case
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where mA
′ < 2mµ ≈ 200 MeV—the mass regime relevant for solving the (g − 2)µ

tension3. The first pilot run of the NA64µ experiment was planned to begin at

the end of 2021 [422], completing its full Phase-I run in 2023 with a total of 1011

muons on target (MOT) [18]. This will be the first experiment to be sensitive to the

(g− 2)µ solution region, and we will therefore constrain our analysis to NA64µ. We

note, however, that our results can also be re-interpreted to pertain to Fermilab’s

M3 experiment4.

Searches for the invisible decay of a muon-philic mediator in rare kaon decay ex-

periments, such as those conducted at NA62 [417], could also be included in our

reconstruction strategy. In these experiments, the A′ could be produced from the

final state muon in the kaon decay K → µν and then decay invisibly, producing a

missing energy signature. NA62 is also capable of probing the (g − 2)µ preferred

region; however, it will need its total planned number of 1013 collected kaons to do

so [417]. Moreover, its experimental systematics will need to be reduced to be sens-

itive to this region [417]. Thus, while NA62 would be an excellent future addition

to our search strategy, we presently focus on NA64µ.

6.2.1 Confirming U(1)Lµ−Lτ
with NA64µ

In the NA64µ experiment, a beam of muons with initial energy E0 ≈ 160 GeV is

dumped onto a lead target with thickness LT ≈ 20 cm. The energy and momentum

of the scattered muons are measured within the fiducial volume of the detector.

This consists of an active target that is surrounded by a high-efficiency electromag-

netic calorimeter to remove charged backgrounds, a series of magnetic spectrometers

and tracker system to measure the momenta of the incident and scattered muons,
3If, on the other hand, the new gauge boson is such that mA

′ > 2mµ, we could directly search
for it in visible decays into muon pairs.

4A full sensitivity study to a U(1)Lµ−Lτ
hidden photon using a sophisticated, realistic beam

simulation for NA64µ was recently performed in Ref. [423]. They found that, should the NA64µ
results be in line with simulation expectations, it will be able to rule out the entirety of the (g−2)µ

preferred region after its Phase-I run. This differs from our analysis, which focuses on parameter
reconstruction over exclusion.
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Figure 6.2: Producing a muon-philic vector boson in muon-nucleus
scattering through Bremsstrahlung radiation. This can
occur either with the initial- (left) or final-state (right)
muon.

and hermetic hadronic calorimeters to detect both charged and neutral secondaries

produced in the muon-target collisions [18].

Within the muon beam, a light muon-philic vector boson can be produced via the

Bremsstrahlung process

µ+ Z → µ+ Z + A′ , (6.2.1)

which we illustrate in Fig. 6.2. The hidden photon produced, A′, will carry away

some fraction of the initial muon energy, x ≡ EA′/E0. If this hidden photon is

lighter than the dimuon threshold, which within the (g − 2)µ solution region is

always true, it will only decay invisibly into a pair of neutrinos. Energy fractions

carried away within a particular range, xi ∈ [ximin, x
i
max], can be translated into a

number of hidden photons having been produced within the detector, N i
A

′ . This is

given by [424,425]

N i
A

′ = (MOT)NTLT

∫ x
i
max

x
i
min

dσ2→3

dx dx , (6.2.2)

where NT is the number of target atoms in the detector, and the differential cross

section dσ2→3/dx is the 2 → 3 production cross section of the process illustrated in

Eq. (6.2.1). In the Weizsäcker-Williams approximation, this is given by [424,425]

dσ
dx ' α2

2π2
g2
xχβA′

1 − x

[
C2

V
+ C3

2V 2 + C4

3V 3

]
. (6.2.3)

The terms in the square parentheses are defined through the relations

C2 ≡ (1 − x) + (1 − x)3 , (6.2.4)
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C3 ≡ −2x(1 − x)2m2
A

′ − 4m2
µx(1 − x)2 , (6.2.5)

C4 ≡ 2m4
µx(1 − x)3 + (1 − x)2

{
4m4

µ + 2m2
µm

2
A

′

[
x2 + (1 − x)2

]}
, (6.2.6)

with the virtuality of the hidden photon, V , given by

V ≡
(1 − x

x

)
m2
A

′ +m2
µx . (6.2.7)

The effective photon flux, χ, sourced by the nucleus is given by [424,425]

χ ≡
∫ tmax(m

A
′ )

tmin(m
A

′ )

t− tmin(mA
′)

t2
G2(t) dt , (6.2.8)

with tmin(mA
′) ≡ (m2

A
′/(2E0))2 ≈ 0, tmax ≈ m2

A
′ , and G2(t) is the electric form

factor of the nucleus, explored in detail in, for example, Ref. [426]. Finally, βA′ ≈ 1

is the boost factor of the hidden photon, and α is the fine-structure constant.

In the NA64µ experiment, a missing energy signature is identified according to meas-

urements of the total energy by the calorimeters and the energy of a single outgoing

muon. Specifically, if the total energy satisfies Etot,cal . 12 GeV and the outgoing

muon has an energy of E ′
µ . E0/2, energy is deemed to be missing. Detailed studies

of the expected backgrounds, such as low-energy muons from the low-energy tail of

the produced muons, have demonstrated that imposing a cut of E ′
µ . 100 GeV to

the maximum muon energy makes this search essentially background free [18, 427].

Furthermore, while the momentum resolution of the incoming muon beam is pre-

dicted to be σp ∼ 1 GeV [18], we use a more conservative bin width of 10 GeV to

ensure that we have approximately NA
′ & 3 events per bin for each of our bench-

mark points. Following Ref. [427], we also assume a signal window of 10–100 GeV

to minimise backgrounds.

We show our predicted muon spectra for each of our benchmark points in Fig. 6.3.

We have assumed an average signal reconstruction efficiency of ε = 0.3 across the

entire energy range, which is an approximation of realistic efficiencies, lying in the

range 0.1–0.5 for masses mA
′ ∼ 10−3–1 GeV [18]. Using these signal templates, we

perform parameter reconstructions for each of our BPs under both a U(1)Lµ−Lτ
and
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Figure 6.3: The computed muon spectra at NA64µ due to an invis-
ibly decaying muon-philic A′ for each of our BPs. The
grey shaded areas show the experimental energy cut we
have applied to remove any backgrounds.

U(1)Lµ
model.

Reconstructing the U(1)Lµ−Lτ
Solution to (g − 2)µ

We show the results of our parameter reconstructions in Fig. 6.4. We first note

that NA64µ has excellent sensitivity to hidden photon masses of the order of the

muon mass, mA
′ ∼ mµ ≈ 100 MeV. This corresponds to the case of BP4, where

both the 1σ and 2σ contours bound a small region around the true parameter point.

However, for the lower mass benchmark points BP1-BP3, NA64µ can only place an

upper bound on the mass, though it can still provide tight reconstructions of the

coupling.

We can understand this by looking at the low-mass limit of the 2 → 3 cross section

in Eq. (6.2.3). For mA
′ � mµ, we have that

dσ
dx ∼ g2

xχ(mA
′)

m2
µ

, (6.2.9)
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Figure 6.4: Parameter reconstructions for each of our BPs using
the NA64µ experiment. The solid (dashed) contours
represent the boundaries of the 1σ (2σ) confidence re-
gions. The contours of both the U(1)Lµ−Lτ

and U(1)Lµ

parameter reconstructions coincide for all of our BPs.
The black stars represent the BPs. The (g − 2)µ 2σ
preferred region is shown in green.

such that the number of hidden photons produced is proportional to the product

of g2
xχ. The mass dependence is thus entirely confined in the effective photon flux,

which acts as a normalisation factor. A decrease in the mass serves to lower this

flux, which can be compensated for by an increase in the coupling strength; this

is the behaviour we see in the low mass regime of Fig. 6.4 for the first three BPs.

The spectral shape of the signal, which is dictated by the mass, is lost within this
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regime.

We can also see this from the template spectra in Fig. 6.3. For the lower mass BP1-

BP3, we see that the spectra are very similar in shape, differing only in their overall

scaling. This issue is exacerbated by the cut in the energy window, where the residual

shape signatures of the BPs at higher energies is masked. BP3 in particular suffers

from this masking, as its characteristic spectral peak is produced outside of the

region of interest. This BP, with a mass of mA
′ = 50 MeV, which is of the same order

of magnitude as mµ, is at the turning point of this asymptotic low-mass behaviour,

and it could generally still be well reconstructed, masking notwithstanding.

The reconstructions are performed equally well under both a U(1)Lµ−Lτ
and a U(1)Lµ

model; indeed, the contours shown in Fig. 6.4 coincide in both cases. This is because

there is no difference in the predicted signals for BPs with masses mA
′ < 2mµ.

For masses above this threshold, the contours would deviate due to their different

invisible branching ratios.

Crucially, as the kinetic mixing parameter, εx, has no impact on the predicted

signals of either of these models, NA64µ is completely blind to it. As we have

discussed, this is a critical difference between potential realisations of a U(1)Lµ
and

U(1)Lµ−Lτ
. Thus, while NA64µ can reconstruct the coupling well, it is incapable of

differentiating between these models. To do this, we need a complementary probe

that can access this parameter, giving us this kind of discriminating power. CEνNS

experiments, which can access this dark sector through the kinetic mixing portal,

are able to provide us with precisely this discrimination.

6.3 Spallation Source Experiments

As we saw in Chapter 5, SS experiments, which measure the coherent scattering of

neutrinos on nuclei, can place competitive bounds on the U(1)Lµ−Lτ
parameter space.

Previously, we computed the limit that the LAr run of the CENNS-10 experiment [8]
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Exp. M (ton) Eth (keVnr) NPOT (×1023 year−1) r L (m) σsys

CENNS-610 0.61 20 1.5 0.08 28.4 8.5%

ESS-10 0.01 0.1 2.8 0.3 20 5%

ESS 1 20 2.8 0.3 20 5%

CCM 7 10 0.177 0.0425 20 5%

Table 6.2: The experimental configurations of the SS experiments
we consider here. For more details on what each quantity
represents, see Section 5.1.

places in this parameter space, finding it to be competitive with the CsI run of

COHERENT [185]. Spallation source experiments thus form powerful probes of the

U(1)Lµ−Lτ
hidden photon, and their sensitivity to the kinetic mixing parameter gives

them the discriminating power that we need to distinguish between the U(1)Lµ−Lτ

and U(1)Lµ
models. To explore the potential of these experiments in helping us to

confirm the U(1)Lµ−Lτ
solution to (g − 2)µ, we will consider a selection of future

LAr detectors that have been proposed to measure CEνNS ever more precisely. Note

that, as we outlined how spallation source experiments operate in Section 5.1, we

will skip most of the details here, making reference to any material from that section

where appropriate.

6.3.1 Confirming U(1)Lµ−Lτ
with SS Experiments

Inspired by the analysis of Ref. [338], we consider the four detector configurations

shown in Table 6.2. We will briefly discuss the relevant details of each experiment

below.

CENNS-610 CENNS-610 will be the next iteration of the CENNS-10 LAr de-

tector, featuring an increased fiducial mass of 610 kg [20]. We discussed the

CENNS-10 detector in detail in Section 5.1, and we base our realisation of

the upgraded detector on it. We keep the quenching factor used to convert

between nuclear and electron-equivalent energies, given by Eq. (5.1.6), the
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same. The efficiency is also expected to be similar, reaching 50% at an energy

of ∼ 4 keVee (approximately equivalent to 20 keVnr); we model it via

ε(ER) = 1
2 [1 + tanh(ER − 4 keVee)] . (6.3.1)

Finally, we use the same fixed systematic uncertainty on the overall predicted

rate of σsys = 8.5%

CCM The Coherent Captain-Mills (CCM) experiment, while a future experiment

at the time of writing Ref. [2], recently released the results from its first new

physics search [21]. Located at Los Alamos National Laboratory, CCM was

projected to have a 7 ton mass of LAr. It is planned to run for a total of 2.5

years in both a near and far configuration; however, since the expected number

of CEνNS events will be larger in the near configuration, we only consider

this former setup, which features a baseline of L = 20 m. For simplicity, we

use a flat efficiency of 100% with a sharp cutoff at Eth = 20 keVnr, where

the CENNS-10 LAr efficiency drops to 50%. We assume a more optimistic

systematic uncertainty of σsys = 5%, as per Ref. [338].

ESS(-10) The European Spallation Source (ESS) [22], based in Sweden, is cur-

rently finishing construction. A multidisciplinary project, ESS is endeavouring

to provide us with the most powerful pulsed neutron source in the world. Sim-

ultaneously, it plans to give us an order of magnitude increase in the neutrino

flux compared to that produced at SNS [22]. This experiment will undergo

two iterations: a low mass (10 kg) but very low threshold (Eth = 1 keVee) it-

eration (which we shall call ESS-10), and a higher mass (1 ton) iteration with

the same threshold energy as CCM and CENNS (which we shall refer to as

ESS). For both of these configurations, we use a baseline of L = 20 m and

assume a 1 yr operation period. We use an efficiency of 100% with a sharp

cutoff at the relevant threshold. We employ the same systematic uncertainty

of σsys = 5% for both setups.
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To generate our signal templates, we use a four-bin analysis across the energy window

of 20–100 keVee. This allows for some reconstruction of the mediator mass in the

event of an observation while reducing the effect of systematic errors. Within all

of our bins, we assume that the number of background events will be 10% of the

number of SM events observed, matching the number of beam-related neutrons that

CENNS-10 observed [20].

We show our simulated events in Fig. 6.5. As we mentioned in Section 4.2.1, all

BPs exhibit a deficit of events with respect to the SM prediction due to the negative

interference effects with the muon flavour. We see that the greatest new physics

effects are exhibited by the lowest energy bins—an excellent motivator for lowering

energy thresholds as much as possible. Note that, due to the sharp energy cutoff we

have employed in CCM and ESS to emulate the effects of the energy threshold, the

effects in the first bin are completely hidden from these experiments.

Reconstructing the U(1)Lµ−Lτ
Solution to (g − 2)µ

To perform our parameter reconstruction, we use a binned version of the same χ2

function we implemented in Section 5.1 for CENNS-10 LAr, given in Eq. (5.1.7).

In the limit of high statistics, χ2(θ) → 2 ln L(θ), allowing us to use ∆χ2 as an

equivalent test statistic to qθ. We show the results of our parameter reconstruction

in Fig. 6.6 in the particular case that the value of the kinetic mixing parameter

coincides with that of the U(1)Lµ−Lτ
(i.e. εx = −gx/70).

For the ESS configurations, we obtain full reconstructions at both the 1σ and 2σ

levels for BP1 and BP2. This is because the masses of these hidden photons are

below the minimum energy transfer that can take place within these experiments.

This occurs when m2
A

′ . 2mNEth, which, for our highest threshold detectors (CCM

and ESS), happens at mA
′ ≈ 40 MeV. Above this mass, mA

′ dominates in the

propagator of the new physics contribution, and the scattering cross section falls

as 1/m2
A

′ in the interference-dominated regime. Thus, these experiments may only
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Figure 6.5: The binned CEνNS counts for the future LAr SS experi-
ments considered for each of our U(1)Lµ−Lτ

BPs. Shown
are the counts expected from the SM (black) and our
BPs (coloured). The grey regions for CCM and ESS
highlight the fact that very low-energy bins are hidden
from them due to their higher energy thresholds.

probe the low-mass window of the (g − 2)µ preferred region. For the higher mass

BPs, we can only obtain upper bounds on the coupling.

The ESS-10 configuration exemplifies the advantage of having a low energy threshold.

Despite having the lowest fiducial mass of our considered experiments, its low

threshold gives it high sensitivity to a light mediator, since their effects are strongest

at low recoil energies. This allows it to observe the low-mass BP1 and BP2 hidden
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Figure 6.6: Parameter reconstructions for each of our BPs using
the SS experiments considered here. The reconstruc-
tions correspond to either a U(1)Lµ−Lτ

or a U(1)Lµ
with

|εx| = gx/70. The solid (dashed) contours represent the
boundaries of the 1σ (2σ) confidence regions. The black
stars represent the BPs. The (g − 2)µ 2σ preferred re-
gion is shown in green.

photons, as signified by the fact that the contours close. For all BPs, the bump

at mA
′ ≈ 7 GeV is due to the crossover of the interference and pure BSM terms,

rendering the observed deficit consistent within two regions of the parameter space.

This particular crossover is only observable at low transferred momenta, which are

themselves only achievable with low threshold detectors5.
5For a more detailed discussion on the interference-dominated regions, see Section 4.2.1.
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The CENNS-610 and CCM experiments will have less sensitivity to the U(1)Lµ−Lτ

hidden photon and will be unable to disentangle it from the SM expectation. As a

result, these experiments can only place upper bounds in the U(1)Lµ−Lτ
parameter

space, reaching couplings of approximately gx ≈ 7 × 10−4 (for CCM, this is in

agreement with the results of Ref. [339]). With increased exposures or, perhaps more

realistically, lower energy thresholds, these experiments could become competitive

with ESS.

While SS experiments give us sensitivity to the kinetic mixing parameter of a partic-

ular model, this sensitivity is inextricably entangled with that to the gauge coupling.

The new physics contribution to CEνNS in both the U(1)Lµ−Lτ
and the U(1)Lµ

cases

is given by Eq. (4.2.11), where only the second-generation contribution is relevant

for SS experiments. We see that this effect always enters through the product of the

gauge coupling and mixing parameter, gxεx. Moreover, while the kinetic mixing of

the U(1)Lµ−Lτ
model is fixed at |εµτ | ≈ gµτ/70, that of our effective U(1)Lµ

model

can, in principle, take on any value in the range |εµ| ∈ (gµ/100, gµ/10)6. Thus, a

U(1)Lµ
could mimic the signal from a U(1)Lµ−Lτ

for a wide range of gauge couplings

gµ, as long as the strength of its kinetic mixing is adjusted to compensate for this.

This means that SS experiments will not be able to pin down the true nature of the

underlying U(1) by themselves; they will need a complementary independent probe

of the gauge coupling for this.

Combining Spallation and Muon Beam Experiments

As we saw in Section 6.2, NA64µ will give us a direct measurement of the gauge

coupling, and it can therefore act as our independent probe of gx. By combining

the results from the NA64µ and SS experiments, we can thus get a better handle

on the value of εx. To illustrate this, we will consider the combined reconstructions

of both these experiments with two values of the kinetic mixing parameter: one
6This is due to our agnosticism to the particular UV completion of the U(1)Lµ

model. For a
discussion on this, see Section 4.2.4.
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Figure 6.7: Combining the reconstructions of SS experiments and
NA64µ (blue) in the case that |εx| = gx/70—the value
of the kinetic mixing for the U(1)Lµ−Lτ

model. The
green band shows the (g − 2)µ 2σ preferred region.

consistent with both the U(1)Lµ−Lτ
and U(1)Lµ

models and one inconsistent with

the U(1)Lµ−Lτ
but consistent with an effective U(1)Lµ

model.

We will firstly explore the situation wherein the kinetic mixing is consistent with

both of these models—that is, εx = −gx/70. We show the reconstructions this case

in Fig. 6.7. We see that the reconstructions achieved by NA64µ and SS experiments

are consistent, with the evidence for BP1 and BP2 in particular strengthening as

both of these BPs can be probed at these experiments. However, even in the case
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Figure 6.8: The same as in Fig. 6.7 but for |εx| = gx/10.

of BP3 and BP4, for which SS experiments cannot claim an observation, the result

can nonetheless be used to narrow the region compatible with NA64µ, providing us

with a better measurement of the mediator mass.

In contrast, should the new physics effect arise due to an effective U(1)Lµ
with a

kinetic mixing of εx = −gx/10, which is inconsistent with the U(1)Lµ−Lτ
, we find

ourselves in the situation depicted in Fig. 6.8, wherein the reconstructions are in

tension. While there is some overlap in the reconstruction regions for BP1 and BP2,

the NA64µ preferred regions are almost entirely excluded by SS experiments for

BP3 and BP4. In this latter case, SS experiments exclude this particular realisation
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of a U(1)Lµ
gauge boson as an explanation for the observed NA64µ signal.

By combining the results from the NA64µ and SS experiments, we can therefore

achieve reconstructions of both the gauge coupling and the kinetic mixing parameter,

simultaneously giving us discriminating power between the U(1)Lµ−Lτ
and U(1)Lµ

models. However, measuring εx alone is not enough to tell these two models apart.

While finding an inconsistent value of εx with U(1)Lµ−Lτ
would be enough to rule

it out as a solution to the (g− 2)µ tension, finding a value that is consistent with it

would not, since U(1)Lµ
realisations with the same kinetic mixing value are possible.

The only way to tell these two constructions apart would then be to explore the

coupling to the third-generation leptons—a feature only exhibited by the U(1)Lµ−Lτ
.

This property, labelled P3 in Section 6.1.3, is completely hidden to both NA64µ and

SS experiments, as they do not have an appreciable flux of tau neutrinos.

On the other hand, DD experiments have access to a considerable flux of tau neut-

rinos due to the oscillation effects that take place as neutrinos propagate from the

Sun to the Earth. This gives DD experiments the ultimate discriminatory power

between the U(1)Lµ−Lτ
and U(1)Lµ

models. This, combined with the large number

of CEνNS and EνES events they are poised to observe, makes them an invaluable

addition to our search strategy.

6.4 Future Direct Detection Experiments

As we saw in Chapter 5, next-generation and far-future DD experiments, especially

those based on Xe TPC technology, will be sensitive to the (g − 2)µ preferred re-

gion of the U(1)Lµ−Lτ
parameter space. This makes them excellent additions to our

reconstruction strategy beyond the neutrino-dedicated experiments we have con-

sidered so far. As we will see, not only will a DD experiment like DARWIN be able

to make an observation of low-mass hidden photon solutions to (g − 2)µ, but it will

also give us the critical piece of the puzzle that will enable us to finally distinguish
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a U(1)Lµ−Lτ
hidden photon from that of a U(1)Lµ

model. Before introducing our

DD analysis, we will briefly expand on this latter point.

6.4.1 The Tau Sector: The Ultimate Discriminator

Direct detection experiments will be able to probe the most important distinguishing

property of a U(1)Lµ−Lτ
from an effective U(1)Lµ

—a coupling to the third-generation

leptons. This is purely a consequence of neutrino oscillations, which result in the

electron neutrinos produced in solar fusion reactions transitioning into an admixture

of e, µ, and τ neutrinos. This effect is missing from the previous two experiments,

whose baselines do not allow for appreciable oscillations7.

Ultimately, it is the relationship between the predicted fluxes of muon and tau neut-

rinos arriving at Earth and their corresponding CEνNS cross sections that allows

us to discriminate between the U(1)Lµ−Lτ
and U(1)Lµ

models. As we saw in Sec-

tion 4.2.1, the new physics effect of a U(1)Lµ−Lτ
hidden photon is such that an

interference term is added to the CEνNS cross section. This interference is positive

for tau neutrinos and negative for muon neutrinos, and the nature of the predicted

event rate with respect to the SM depends on the relative size of their populations

on target. Due to the value of the mixing angle θ23, which largely controls these

neutrino populations from the Sun (c.f. Eq. (2.4.44)), the ντ flux is almost always

higher than that of νµ. Thus the U(1)Lµ−Lτ
hidden photon will generally give us an

excess of events in the regions of parameter space that are interference dominated.

On the other hand, the U(1)Lµ
hidden photon can only couple to the incoming

νµ flux, and it therefore only features a negative interference effect. As the region

of parameter space relevant for (g − 2)µ coincides with the interference-dominated

region, we therefore expect a net deficit in the number of CEνNS events in the

case of a U(1)Lµ
hidden photon and a net excess in the case of a U(1)Lµ−Lτ

hidden

7We note that DUNE would make for an extremely interesting addition to our experimental
strategy. In its far-detector configuration, DUNE will be able to measure an appreciable flux of
ντ as a result of neutrino oscillations, forming a complementary probe to DD experiments in this
regard.
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photon. Thus, the new physics effects of these models to the predicted CEνNS rate

at DD experiments are opposite in nature—this is the signature that allows us to

discriminate between them.

Nonetheless, we note that U(1)Lµ
realisations that predict an excess similar to that

predicted by our U(1)Lµ−Lτ
BPs do exist. However, these occur at very high, fine-

tuned values of the gauge coupling gµ, where the positive BSM-only term dominates

over the negative interference term. Such realisations would not only produce coup-

lings that are already strongly excluded by present bounds, but they would also

yield a signal that would be inconsistent with the deficit-only U(1)Lµ−Lτ
data from

all of our BPs for the SS experiments discussed in Section 6.3.

6.4.2 Confirming U(1)Lµ−Lτ
with LXe DD Experiments

Since our best hope of observing a U(1)Lµ−Lτ
hidden photon with DD experiments

is through multi-ton LXe experiments, we will focus on experimental configurations

based on the upcoming LZ [14] and XENONnT [15] detectors and on the far-future

DARWIN observatory [16]. These configurations will be similar to the G2-Xe (in

the case of LZ and XENONnT) and G3-Xe (in the case of DARWIN) setups we

considered in Chapter 5. However, as we will be placing a greater emphasis on LXe

experiments and performing a discovery study using these detectors, we will conduct

a more sophisticated analysis.

In particular, for each of our setups, we include energy-dependent efficiency func-

tions and perform an energy-dependent Gaussian smearing to model their finite

resolutions. We detail the specifics of these considerations, as well as our back-

ground assumptions, below. For more details on the particulars of each experiment,

see Section 3.4.

LZ We take the efficiency functions for both NRs and ERs from Ref. [157], which

reach their 50% threshold values at 3.8 keVnr and 1.5 keVee, respectively. We
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use the resolution fit given by LUX in Ref. [158]. The ER backgrounds are

taken from Fig. 1 of Ref. [171].

XENONnT We take the NR efficiency function from Ref. [428] and our ER ef-

ficiency function from the recent ER-excess measurement of Ref. [428], from

which we also take the resolution function. The efficiency functions reach their

50% threshold values of 3.8 keVnr and 1.5 keVee for NRs and ERs, respectively.

We use the projected ER backgrounds of Ref. [15].

DARWIN We conservatively use the same efficiency and resolution functions as

for XENONnT. However, we take the lower ER background predictions given

by the DARWIN collaboration in Ref. [183], assuming a flat background rate

for all components except for the double-β decay of 136Xe, the spectrum for

which we take from the same study.

In the spirit of our previous DD study, we consider an NR-only, ER-only, and com-

bined NR + ER analysis. As before, we assume a 50% acceptance cut on the

number of NR events above the energy threshold, rejecting ERs and treating this as

a background-free analysis8. For the ER-only analysis, we once again assume 99.5%

NR/ER discrimination, including the experimentally relevant ER backgrounds in

this study. Finally, for the NR + ER analysis, we combine both types of events, in-

terpreting all of them in electron-equivalent energies. We include the full background

in this analysis, but we perform no cuts. In each of our analyses, we fold in the ap-

propriate efficiency functions, with energy resolutions taken at electron-equivalent

energies.

We show the expected NR and ER differential rate spectra for a generic xenon de-

tector (before incorporating any experimental effects) in Fig. 6.9 for both a U(1)Lµ−Lτ

and U(1)Lµ
hidden photon with the properties of BP1. We see that the spectrum,

8A small number of NR background events, along with the 0.05% of ERs that are not rejec-
ted during the discrimination, are expected to persist alongside the signal. However, CEνNS is
dominant over these background contributions, so we can safely neglect them here.



174 Chapter 6. Confirming the U(1)Lµ−Lτ
as the Solution to (g − 2)µ

which is predominantly from 8B neutrinos, terminates at ER ∼ 1 keV, making ob-

serving them very difficult using the nominal thresholds of our detectors. Indeed,

we saw this effect in Section 5.2.4, where the NR limits of our Xe configurations

suffered as a result of high-energy thresholds. We can ultimately only observe a

handful of CEνNS events using the nominal threshold values, with the majority of

them coming from the smearing effect with the resolution near the energy threshold.

Therefore, to truly exploit the CEνNS rate as a signal instead of as a background,

we must push for lower experimental thresholds.

To this effect, we take the liberty of lowering these thresholds from their nominal

values. The importance of this is made even clearer when we compare the expected

spectra of a U(1)Lµ−Lτ
to that of a U(1)Lµ

model. We see the effect we discussed in

Section 6.4.1 that a U(1)Lµ−Lτ
gauge boson predicts an excess over the SM, while a

U(1)Lµ
predicts a deficit. However, we also see that the size of this effect increases

at lower energies. Given the importance of NRs in discriminating between these

models, since the ER rate is predicted to be in excess of the SM for both models,

achieving a threshold that can probe these larger low-energy effects is crucial for

these experiments.

In the case of ERs, we also show the expected background projected for DARWIN,

whereby it is dominated by the double-β decay of 136Xe at high energies. Note

that, as we focus more intently on LXe experiments in this study, we employ a

more careful treatment of the step-approximation in modelling the electronic binding

energies. We do this by employing an LXe-centred RRPA, which leads to a further

suppression in the 0.25–30 keVee window, according to Fig. 2 of Ref. [194]. We have

implemented this by applying an energy-dependent scaling to match the predictions

of the RRPA9. Note that, below the RRPA energy window, we have reverted to the

step-function approximation, which acts as an upper bound on the expected rate in

the absence of numerical solutions to the RRPA at low energies [194]. Nonetheless,

9In principle, we should take into account how the RRPA result might change in the presence
of a new light mediator; however, this is beyond the scope of our present analysis.
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as our ER thresholds always lie above this energy, this ultimately has no impact on

the calculated number of events.

Discovering a U(1)Lµ−Lτ
Hidden Photon

Ultimately, the most exciting prospect for DD experiments is the possibility of mak-

ing an outright discovery of a U(1)Lµ−Lτ
hidden photon. This constitutes satisfying

two criteria: making a 5σ observation of the U(1)Lµ−Lτ
signal and disentangling this

from a competing U(1)Lµ
explanation. As we have discussed, the latter of these is

satisfied by considering the NR signal, which will be affected in opposite ways by

these two models. Thus, all that is left is to explore how we can satisfy the former

condition.

For full generality, we study the requirements to make a 5σ discovery for all three

of our analyses, considering the NR-only, ER-only, and combined NR + ER signals.

As both the exposures and energy thresholds of these experiments are key quantities

in determining how well the new physics effect of a new light vector mediator might

be observed, we treat them as free variables, studying the minimal conditions under

which a 5σ observation of the U(1)Lµ−Lτ
signal could be claimed for each BP.

To compute this significance, we construct the (one-tail) p-value

pµ ≡
∑

N≥Nobs

(µ+ b)Ne−(µ+b)

N ! , (6.4.1)

where µ is the number of expected signal events, b is the number of expected back-

ground events, and Nobs is the number of observed counts. We then perform our

discovery test by treating as the null hypothesis the SM-only expectation, such that

µ = 0. The background-only expectation then consists of the SM CEνNS count plus

any counts from additional background components. For a discovery-level signific-

ance, the total observed count, Nobs, must yield a p0-value of 2.87 × 10−7.

In our analysis, we solve for the required threshold-exposure pairs needed to produce

such a discovery-level measurement of a U(1)Lµ−Lτ
for each of our BPs. The number
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of observed counts is then taken to be the total number of counts expected under a

BP, N(gx,mA
′), plus any additional background counts. We repeat this analysis for

each type of search: NR, ER, and NR + ER. In all cases, we take the maximum of

the energy window to be 30 keVee (≈13 keVnr), where the double-β decay of 136Xe

is expected to dominate over the solar neutrino signal [214], as can be seen from

Fig. 6.9.

When lowering the energy threshold of an experiment, we model what a potential

efficiency function might look like should the experiment be able to reach this lower

threshold. To do this, we assume that the nominal efficiency function would evolve

via a stretch in log-space, with the new, lower threshold placed where this extended

function reaches 50%. When doing this, we are careful not to allow the experimental

resolutions to increase to arbitrarily large values at low energies, making a recon-

struction of a low-energy threshold unrealistic. To this end, we have capped each

resolution function at its value at the original 50% threshold, shifting it linearly.

Moreover, to ensure valid energy convolutions of the spectra, which are done in

electron-equivalent space, we have taken 0.7 keVnr as a minimum threshold, corres-

ponding to the lowest energy at which the Lindhard model has been experimentally

verified for LXe detectors [207].

We show the results of our analysis in Fig. 6.10 for the case of DARWIN, which

will have the greatest chance of making this discovery. Within the red regions, the

experimental configurations are insufficient to make an observation with discovery-

level significance. However, above the line of any given analysis, the enhanced setup

enables it to make a discovery of the BP signal using that particular analysis. We

see that the nominal configuration of DARWIN, indicated by stars in the figure, is

insufficient for it to claim a discovery for any of the BPs. Instead, DARWIN would

have to either increase its exposure, lower its thresholds, or perform a combination

of the two. The optimal strategy for observing the NR signal is to decrease the

threshold, whereas to detect the ER signal we would ‘only’ need either a longer

runtime or a larger fiducial mass.
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Figure 6.10: The configurations required by DARWIN to make a 5σ
discovery of a U(1)Lµ−Lτ

hidden photon. Above any
line, which reflects each of our NR (blue), ER (green),
or NR + ER (red) analyses, a 5σ discovery can be
made. The stars represent the nominal NR (blue) and
ER (green) configurations.
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The most efficient strategy, however, would be to focus on making a discovery with

NRs, as this will simultaneously give us the discriminatory power we need to dis-

tinguish a U(1)Lµ−Lτ
from a U(1)Lµ

gauge boson. While the scenarios with BP3

and BP4 are difficult to motivate, for BP1 and BP2 we would need to lower the

threshold to ∼ 1 keVnr while retaining NR/ER discrimination. This threshold has

previously been reached by LUX, who demonstrated NR calibration for energies

down to 1 keVnr; however, this was by sacrificing the majority of the signal (the effi-

ciency function dropped to 0.3% by this energy). Nonetheless, given that DARWIN

is a far-future experiment, we make the optimistic assumption that such a threshold

could be reached at 50% efficiency, either through the advent of more sensitive in-

struments or new analysis techniques. We hope that the DARWIN collaboration

considers this strategy as part of its mission to explore new physics in the neutrino

sector [16], motivating it to push for this lower energy threshold.

We note that, while we conducted this NR-only analysis in Ref. [2], we could have

more realistically achieved the same goal by considering the combined NR + ER

analysis. Since from Fig. 6.10 a discovery with this analysis can be made at a similar

threshold energy of ER ≈ 1 keVnr, and as S2-only analyses (foregoing the NR/ER

discrimination) have been conducted at thresholds as low as 0.7 keVnr [412], this

combined approach is more feasible. In the parameter reconstructions that follow,

we can equally well interpret the reconstruction regions as arising from an NR + ER

analysis, accompanied by a slight increase in their sizes due to the additional ER

background. Furthermore, since the NR signal dominates this combined analysis

at this lower threshold, the same excess versus deficit discriminating feature in the

U(1)Lµ−Lτ
and U(1)Lµ

models would be seen when employing this approach.

We show the discovery lines for LZ and XENONnT in Figs. 6.11 and 6.12, re-

spectively. Their case appears bleaker. For all analyses, a discovery seems to be

unachievable given their present experimental configurations; one would have to

both increase exposures by orders of magnitude and decrease energy thresholds. We

show them merely for the sake of completeness and instead focus on the potential
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Figure 6.11: The same as in Fig. 6.10 but for LZ.
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Figure 6.12: The same as in Fig. 6.10 but for XENONnT.
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of DARWIN to observe the U(1)Lµ−Lτ
signal.

Reconstructing the U(1)Lµ−Lτ
Solution to (g − 2)µ

Following our above conclusions, we complete our DD analysis by considering a hy-

pothetical DARWIN-like experiment with an optimised 1 keVnr threshold to perform

a final set of parameter reconstructions. We show the results of the DD-only recon-

struction in Fig. 6.13, where we see that BP1 and BP2 are confidently observed with

this configuration. On the other hand, BP3 and BP4 are not observed, and only

upper bounds can be drawn for these higher-mass realisations of a U(1)Lµ−Lτ
. As

we noted in Section 6.1.3, reconstructions with a U(1)Lµ
are possible; however, they

occur at very high, strongly excluded values of gµ, where the positive BSM-only term

dominates. Thus, only the reconstruction with the U(1)Lµ−Lτ
yields regions that are

not in tension with already existing bounds, giving us the ultimate discriminator

between the U(1)Lµ−Lτ
and U(1)Lµ

models.

6.5 The Complete Strategy

The full power of our experimental strategy becomes readily apparent when we

combine the reconstructions from all of our analyses. We show the confidence regions

attained with NA64µ, SS experiments, and our optimised DARWIN-like experiment

in Fig. 6.14 when interpreted in terms of a U(1)Lµ−Lτ
model. We see that a 5σ

discovery by DARWIN gives regions that, when combined with data from both

NA64µ and SS experiment, considerably narrow down the area compatible with

(g − 2)µ, reducing the uncertainty in both the gauge coupling and the mediator

mass.

For BP3 and BP4, neither DD nor SS experiments will have enough sensitivity to

claim a detection. Nonetheless, the ensuing limits can further constrain the para-

meter space. Like the bounds placed by SS experiments, those placed by DARWIN

will be able to reduce the allowed mediator masses reconstructed by NA64µ.
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Figure 6.13: Parameter reconstructions for each of our U(1)Lµ−Lτ

BPs using an enhanced, 1 keVnr threshold-energy ver-
sion of DARWIN. The solid (dashed) contours repres-
ent the boundaries of the 1σ (2σ) confidence regions.
The black stars represent the BPs. The (g − 2)µ 2σ
preferred region is shown in green.
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CHAPTER 7

Neutrino NSIs at Direct Detection Experiments

In the previous two chapters, we learned that near- and far-future DD experiments

will be powerful probes of light new physics in the neutrino sector. We saw this in the

context of the U(1)Lµ−Lτ
model—a particularly well-motivated extension to the SM

both theoretically and, presently, experimentally. However, this is but one potential

avenue for new neutrino physics. If we are to argue that DD experiments will be

more generally useful in the search for such new physics, then we must showcase

their power in a model-independent way. The framework of neutrino non-standard

interactions (NSIs) supplies us with precisely such a means, providing us with an

effective description of BSM neutrino interactions. By situating DD and dedicated

neutrino experiments alongside one another within this broader BSM landscape, we

will make our final case for why future DD experiments are set to play key roles in

the search for new neutrino physics.

In this chapter, we will present work based on Ref. [3], where we introduce an

extended parametrisation for neutrino NSIs and use it to explore the bounds that DD

experiments can place in this more general landscape of new physics. We will first
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discuss the typical NSI framework used in global NSI analyses to parametrise these

interactions, which ignores any potential non-standard behaviour with the electron.

We will then introduce our novel framework, reinstating this particular component.

Using this new parametrisation and data from the CENNS-10 LAr experiment, we

will explore how limits placed on neutrino NSIs are sensitive to the assumption one

makes on the strength of the new interaction with the electron direction. Finally, we

will explore the limits that future multi-ton LXe DD experiments can place in this

extended parameter space, situating their results in the context of those achieved

by dedicated neutrino experiments.

7.1 The Proton-Neutron NSI Formalism

We introduced the basics of the NSI formalism in Section 4.2.5, where we laid out the

framework in terms of the NSI parameters εfPαβ ; we refer the reader to this section for

further details. However, if we assume that the flavour-structure of these parameters

can be factorised from the fermion-specific nature of the interaction, then we can

write these parameters as [24]

εfPαβ ≡ εηαβξ
fP . (7.1.1)

Here, εηαβ describes the neutrino-specific part of the interaction, and ξfP is a projec-

tion onto the interacting fermion. Since only vector-like interactions contribute to

neutrino propagation effects, we will only focus on this type of interaction. In this

case, we can further define

εfαβ ≡ εηαβξ
f , (7.1.2)

where ξf ≡ ξfL+ξfR. This separates the relation we initially had in Eq. (4.2.18) into

neutrino-only and fermion-only parts, allowing us to explore the phenomenology of

these two components separately.

As we did in Section 4.2.5, we can restrict our NSIs to take place only with the

first-generation fermions. This enables us to define the angle η, which controls how
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much of the new interaction takes place with the proton and the neutron. Defining

the up- and down-quark projectors as [138]

ξu =
√

5
3 (2 cos η − sin η) and ξd =

√
5

3 (2 sin η − cos η) , (7.1.3)

we can use Eq. (4.2.19) to write

ξp =
√

5 cos η and ξn =
√

5 sin η . (7.1.4)

Note the normalisation of these parameters, which makes for an up-quark NSI of 1

when the down-quark NSI is chosen to be 0 (and vice versa). In this framework,

a value of η = 0 corresponds to a pure QED-like interaction that only couples to

the electric charge. Restricting this angle to lie in the range η ∈ [−π/2, π/2], we

must allow for positive and negative values of εηαβ to ensure we can have positive

and negative values of the proton NSI.

In this parametrisation, pioneered by Ref. [24], we see that NSIs with the electron are

ignored. This is because their work focused on setting NSI bounds with oscillation

experiments. As we saw in Eq. (4.2.20), non-standard matter effects enter the matter

Hamiltonian via a contribution from the neutron and an overall charged contribution

from both the proton and the electron. This means that, phenomenologically, the

same non-standard behaviour can be elicited from either a proton or an electron

contribution, as well as some appropriate combination of the two. Since NSIs with

the electron can also impact the EνES cross section, it reduces the complexity of the

problem to consider this charged contribution to only arise in the proton. This allows

one to explore the bounds that oscillation experiments can set without considering

non-standard changes to the expected EνES rate.

However, this makes for a non-general treatment. Since we have no reason to believe

that ‘charged’ neutrino NSIs should only take place with the proton, we should allow

for the possibility that this contribution is instead divided between both the proton

and the electron. While such a decomposition can be designed to not impact neutrino

oscillations, allowing for electron NSIs can instead lead to changes in the EνES cross
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section. This, in turn, can impact the bounds set by oscillation experiments, which

could instead be dominated by NSI effects at the detection point [138]. Indeed,

we presented precisely such an argument in Section 5.2.2 in the context of the

U(1)Lµ−Lτ
, which affects the EνES rate without introducing non-standard oscillation

effects.

Furthermore, if one wishes to add bounds from CEνNS experiments, as was done in

Refs. [24,25], then one must be careful to stipulate that the predicted effects can be

maximal within this framework. This is because, for a given η, one always assumes

that the NSI is in the proton-neutron plane. If the charged NSI contribution had

instead been assumed to be only along the electron direction, then the corresponding

non-standard CEνNS effect would only arise from the neutron, generally weakening

the expected effect1. Thus, a framework that includes the electron is imperative

to set general bounds on neutrino NSIs. Such a framework is also crucial for DD

experiments since they can probe both CEνNS and EνES interactions at once.

7.2 A New Framework: Reinstating the Electron

We extend the parametrisation of Ref. [24] by re-introducing neutrino NSIs with

the electron. We do this by including a second angle, ϕ, dictating how much of the

total charged NSI takes place with either the proton or the electron. Concretely, we

define the three fermion directions

ξp =
√

5 cos η cosϕ ,

ξe =
√

5 cos η sinϕ ,

ξn =
√

5 sin η ,

(7.2.1)

and we re-define the flavour-structure coefficient to be εηαβ → εη,ϕαβ , where εηαβ ≡ εη,0αβ .

We visualise our parametrisation in Fig. 7.1, where we show a generic NSI vector,
1Of course, it is possible that the electron NSI can be strong enough to cause appreciable EνES

in CEνNS experiments, allowing them to place bounds on the electron NSI [429].
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εeαβ

εpαβ

εnαβ

εαβ

η
ϕ

Figure 7.1: The novel NSI parametrisation we propose. A given
NSI is defined by a radial component,

√
5εη,ϕαβ (which

can be either positive or negative), an angle between
the charged (εpαβ, εeαβ)-plane and the neutron direction,
η, and the new angle ϕ, which defines the NSI direc-
tion along either the proton or the electron direction.
The domains of these angles are η, ϕ ∈ [−π/2, π/2], as
visualised by the blue and red half-discs, respectively.

εαβ, embedded in our three-dimensional space with coordinates (εpαβ, εeαβ, εnαβ). The

angle η now controls the direction of the NSI vector with respect to the (εpαβ, εeαβ)-

plane and the neutron direction. The novel angle ϕ dictates the nature of the

charged contribution, with ϕ = 0 corresponding to a (positive) proton-only contri-

bution (recovering the above formalism) and ϕ = π/2 to a (positive) electron-only

contribution. To match our notation with that of Ref. [24], we allow for both pos-

itive and negative values of εη,ϕαβ , requiring us to restrict our angles to the ranges

η, ϕ ∈ [−π/2, π/2].

We can re-write the elements of the NSI matter Hamiltonian, given in Eq. (4.2.20),

in terms of our novel parametrisation as

Eαβ(x) = εη,ϕαβ [(ξp + ξe) + Yn(x)ξn] . (7.2.2)

This allows us to retain the electron contribution to the non-standard propaga-

tion effects, which can also affect the EνES cross section. The full NSI matter
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Hamiltonian of Eq. (4.2.16), once rotated to the solar neutrino basis we introduced

in Section 2.4.5, then reads [24]

H̃eff
matter ≡

√
2GFNe(x)


c

2
13 0

0 0

+ [(ξp + ξn) + Yn(x)ξn]

−εη,ϕD εη,ϕN

εη,ϕ∗
N εη,ϕD


 , (7.2.3)

where the coefficients εη,ϕN and εη,ϕD are related to our parametrisation via

εη,ϕD ≡ c13s13 Re
(
s23ε

η,ϕ
eµ + c23ε

η,ϕ
eτ

)
−
(
1 + s2

13

)
c23s23 Re

(
εη,ϕµτ

)
− c2

13

2
(
εη,ϕee − εη,ϕµµ

)
+ s2

23 − s2
13c

2
23

2
(
εη,ϕττ − εη,ϕµµ

) (7.2.4)

and

εη,ϕN ≡ c13

(
c23ε

η,ϕ
eµ − s23ε

η,ϕ
eτ

)
+ s13

[
s2

23ε
η,ϕ
µτ − c2

23ε
η,ϕ∗
µτ + c23s23

(
εη,ϕττ − εη,ϕµµ

)]
. (7.2.5)

To perform this rotation, we note that we require both that ∆m2
31 � ∆m2

21 ∼ Acc,

as in Section 2.4.5, and that ∆m2
31 � GFEν

∑
f Nf (x)εfαβ. This ensures that the

more complicated three-neutrino problem can be reduced to the simpler two-neutrino

picture, whereby the third mass eigenstate propagates freely without mixing with

the remaining two. For the NSI parameters we consider in this work, we have

checked that these conditions hold. Throughout this chapter, we will take δCP = 0,

as in Ref. [24, 25] so that we only need to consider real-valued NSI parameters in

Eqs. (7.2.4) and (7.2.5).

Diagonalising the effective Hamiltonian of Eq. (7.2.3), we arrive at almost identical

relations to those we found in Section 2.4.4. The only changes we must make are

to p and q parameters we introduced in Eq. (2.4.29). Allowing for non-standard

interactions, they become

p = sin 2θ12 + 2 ξ(x) εη,ϕN
ACC(x)
∆m2

21
,

q = cos 2θ12 +
[
2 ξ(x) εη,ϕD − c2

13

] ACC(x)
∆m2

21
,

(7.2.6)

where we have defined ξ(x) ≡ ξp + ξe + Yn(x)ξn. We therefore see that the effect of

NSIs on neutrino propagation is to shift these two parameters, effectively changing
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where the MSW resonance occurs in the Sun. We emphasize that the novelty in our

parametrisation arises from retaining the electron projector, ξe, with all results thus

far being equivalent to those of Ref. [24] when setting ξe ≡ 0.

As the quantities p and q also impact the adiabaticity parameter, Eq. (2.4.36), we

must be careful to quantify how non-standard interactions propagate to its calcula-

tion. Using Eqs. (2.4.30) and (2.4.31), we can write this parameter as

γ =
(

|p2 + q2|3/2

|ṗq − pq̇|

)
∆m2

21

2Eν
. (7.2.7)

Then, for any given value of the NSI parameters, we can evaluate γ at the point of

maximum violation of adiabaticity to test the adiabaticity condition that γ � 1.

Since this point is, in general, different from the resonance point [430, 431], we

evaluate Eq. (7.2.7) over the entire solar radius for the maximum energy neutrinos,

checking that this condition holds for the maximum calculated γ value. When

we come to explore the limits that DD experiments can set in the NSI landscape

in Section 7.4, we check whether the adiabatic approximation is valid using this

approach.

To illustrate how neutrino NSIs can impact neutrino oscillations, we show the oscil-

lation probabilities for 8B neutrinos in two non-standard cases in Fig. 7.2. Both of

these cases have been calculated assuming εη,ϕαβ = 0.1 and equal contributions from

the proton, neutron, and electron—that is, η = ϕ = π/4. They have been computed

assuming either a flavour-conserving electron NSI or a flavour-conserving muon NSI

(εη,ϕαβ = 0.1δee and εη,ϕαβ = 0.1δµµ, respectively). Compared to the SM probabilities,

first depicted in Fig. 2.9, we see that the former case results in stronger matter

effects, while the latter leads to weaker effects.

We note that the CEνNS and EνES cross sections within the NSI framework, re-

spectively given by Eqs. (4.2.26) and (4.2.28), can be re-written within this new

framework. This can be done via suitable substitutions for εpαβ, εnαβ, and εeαβ. In

what follows, we will refer to these cross sections in terms of our framework. We

note that the results of our implementation are in good agreement with those of
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Figure 7.2: The effect of neutrino NSIs on the 8B electron neut-
rino survival (green) and transition (blue for α = µ and
red for α = τ) probabilities. Shown are the SM prob-
abilities (solid) and two example sets of non-standard
probabilities, both of which assume equal non-standard
contributions from the proton, neutron, and electron
(η = ϕ = π/4). These are new flavour-conserving in-
teractions, which take place with either the electron
with εη,ϕee = 0.1 (dashed) or the muon with εη,ϕµµ = 0.1
(dash-dotted).

other works [178,432].

7.3 CEνNS Constraints

To illustrate how different assumptions for the NSI contribution from the electron

can lead to a non-trivial effect on the derived NSI bounds, we consider the results

from the CENNS-10 LAr experiment [8]. Indeed, we considered this experiment in

Section 5.1.2, and we treat it identically here. The experimental details are contained

therein for reference.

As in Section 5.1.2, we consider deviations from the total number of measured

events at the CENNS-10 LAr experiment. We use the same χ2 statistic as in
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Eq. (5.1.7), only the expected number of CEνNS events is now parametrised as

NCEνNS ≡ NCEνNS(εη,ϕαβ , η, ϕ), reflecting our novel NSI parametrisation. The theor-

etical count rate is given by Eq. (5.1.4), with the CEνNS cross section under the

NSI framework given by Eq. (4.2.26).

Since the neutrino beam at SS experiments does not undergo significant decoherence

over the experimental baseline, it can be treated as being composed of independent

νe, νµ, and nuµ parts. As we argued at the end of Section 4.2.5, this means that we

can simply take the overlap of the appropriately flavoured flux and cross section.

The result is that the cross section that we must consider in Eq. (5.1.4) is simply

dσανN
dER

=
(

dσνN
dER

)
αα

, (7.3.1)

with (dσνN/dER)αα given by Eq. (4.2.26) and where α ∈ {e, µ, µ}.

Following the analysis of Ref. [323], we perform our statistical analysis by varying one

NSI parameter at a time. However, unlike their study, we compute the bounds on

these parameters under different assumptions for the electron contribution, varying

ϕ over its full range. We fix η = tan−1(1/2), corresponding to a pure up-quark NSI

when ϕ = 0.

To demonstrate how ϕ can affect the NSI parameter bounds, we show the χ2 function

as a function of ϕ in Fig. 7.3 for the usual assumption of ϕ = 0 and an extreme

case of ϕ = π/2. The black, dashed line highlights the point at which ∆χ2 = 2.71:

the 1 d.o.f. 90% CL value. Since we keep η fixed and treat ϕ as a fixed assumption,

the only d.o.f. in the fit is the NSI parameter. We see that, for every εη,ϕαβ , there

is a weakening of the constraints. This is because a non-zero ϕ leads to a weaker

contribution to the non-standard CEνNS signal from the proton, with that of the

neutron remaining the same (since η is fixed). For the same reason, the locations

of the minima shift to higher values of |εη,ϕαβ |. As a muon beam SS experiment,

CENNS-10 has no sensitivity to εη,ϕττ since there is not an appreciable component of

tau neutrinos.

Note that there are two χ2 minima for all flavours. This is due to the fact that



194 Chapter 7. Neutrino NSIs at Direct Detection Experiments

the CENNS-10 LAr experiment measured a slight excess in the number of total

counts, resulting in preferable fits to models that can reproduce this. In the case of

neutrino NSIs, this can be achieved in different ways depending on whether we have

diagonal or non-diagonal NSI parameters and can be seen by examining the form

of the CEνNS cross section in Eq. (4.2.26). For non-diagonal NSIs, any positive

or negative shift from εη,ϕαβ = 0 produces an excess, as these parameters enter the

flavour-conserving cross section of Eq. (7.3.1) quadratically. However, since the SM

result is not in tension with the observation, we cannot place bounds on the two

minima individually. For the flavour-diagonal parameters, the additional interfer-

ence term leads to greater changes to the CEνNS cross section for non-zero values

of εη,ϕαα . Thus, we can place bounds on them these minima since parameter values

intermediate to them lead to more appreciably different counts.

We repeat this analysis for the full range of values of ϕ, drawing the 90% CL bound

in ϕ-space in Fig. 7.4. The bound that would usually be quoted corresponds to the

intersection of each of the red regions with the ϕ = 0 line. However, we see that this

bound evolves in a non-trivial way for non-zero ϕ, generally worsening for increasing

|ϕ| up to |ϕ| = π/2. While this trend is partially led by our parametrisation—

whereby the strength of the εη,ϕαβ should scale as (1/ cosϕ) for a constant contribution

in any one of the proton, neutron, and electron directions—we see that the bounds

do not all evolve via the same scaling. This is particularly true for the bounds

drawn for the second minima in the cases of εη,ϕee and εη,ϕµµ , both of which scale more

dramatically than the first minima bounds. Moreover, the neutron bounds, which

are independent of ϕ, would see a definite increase (for fixed η), reflecting the need

for a stronger NSI with the neutron to account for the same effect.

Since we make an assumption on the value of ϕ and are considering the more general

flavour structure of neutrino NSIs, parametrised by εη,ϕαβ , we can draw constraints

in the electron direction despite not having direct sensitivity to ERs. In effect, the

weakened bounds in the proton direction are translated into bounds in the electron

direction. Knowledge of ϕ thus allows us to place limits on electron NSIs with
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Figure 7.3: The variation in the ∆χ2 statistic when altering each
NSI parameter in turn under two assumptions for ϕ.
Shown are the resulting statistics under the usual as-
sumption that ϕ = 0 (black) and the extreme case that
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CEνNS experiments.

Nonetheless, we note that we have only considered the bounds that can be set due to

deviations in the CEνNS rate as ERs are typically subdominant to NRs. However,

a strong NSI contribution from the electron can lead to ERs that pass NR selection

cuts, leading to an additional signal component that can be used to further constrain

NSI parameters [429]. A future study could include this ER contribution, causing a

more complex evolution of the bounds.

7.4 Probing Neutrino NSIs at DD Experiments

We now turn to exploring the power of DD experiments in constraining the neutrino

NSI landscape. As we focused on multi-ton LXe experiments in Section 6.4.2, we will

similarly restrict our attention to them here given their success with the U(1)Lµ−Lτ

model. Indeed, considering the effective NSI space instead of a specific model will

situate these experiments in the broader landscape of BSM neutrino physics, provid-

ing a more general picture of their potential in this field. Though still ongoing, this

final study will highlight the essential point of this thesis.

We note, however, that we are not the first to highlight the utility of DD experiments

in probing neutrino NSIs [178, 432]. However, Ref. [432] approached this problem

from the angle of the neutrino floor, arguing that non-standard enhancements to

the neutrino rate could further exacerbate the search for DM. On the other hand,

Ref. [178] did focus on the use of DD experiments in probing neutrino NSIs. However,

we improve on their work in several ways. Firstly, we place the sensitivities of DD

experiments to NSIs in the broader context of neutrino experiments using the global

studies of Refs. [24, 25]. Secondly, we perform a more sophisticated experimental

analysis, including efficiency and resolution effects, the impact of the RRPA in

xenon [194], and, as we discuss further in Section 7.4.1, the effect of including the

systematic uncertainty in the 8B neutrino flux. Thirdly, not only do we allow for our

NSIs to lie in directions other than the up- and down-quark directions in the case of
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our NR results, but, through our novel framework, we also allow for the total charged

contribution to be split into electron and proton parts in our ER results. Lastly, we

consider the blind spots that DD experiments are subject to in the NSI landscape,

highlighting the limits of their constraining power in this parameter space.

To derive our limits, we perform a similar analysis to those of Chapters 5 and 6,

constraining NSIs by considering the deviation in the total number of solar neutrino

events. As we are only interested in providing motivation to use DD experiments in

future global studies, we simplify our computation by varying only one NSI para-

meter at a time, as has been done in various similar studies of NSIs [26,323,433]. We

use the same experimental configurations as those in Chapter 6 for the resolutions,

efficiencies, and backgrounds. However, for our NR energy thresholds, we do not

take the nominal values controlled by the 50%-efficiency points. Instead, we extend

them down to 3 keVnr, enabling these experiments to observe a greater number of
8B neutrinos and thus more fairly pitting them against dedicated neutrino exper-

iments. This threshold is guided by the NR analysis we performed in Chapter 5

for our G2-Xe experiment (the value of which was motivated by results from the

LUX collaboration [410]) as well as a recent 8B-dedicated search conducted by the

XENON1T experiment [172]. For our ER analysis, our configuration is identical

to that of Section 6.4.2, as the nominal thresholds already give DD experiments an

appreciable number of EνES events.

For reasons that we will discuss in Section 7.4.2, we add an additional layer of

sophistication to this particular analysis by considering the xenon target as being

composed of different xenon isotopes. We take the isotopic abundance of the xenon

in the liquid TPC to be equal to that of naturally occurring xenon [434, 435]. We

take the weighted sum of their predicted rates to be our best estimate of the total,

isotope-averaged differential rate spectrum.
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7.4.1 Accounting For Neutrino Flux Uncertainties

Thus far, we have ignored any potential systematic uncertainties in calculating our

DD limits. In our present statistical treatment, we additionally consider the un-

certainty in the total 8B flux in our NR analysis2. Fluctuations in this quantity

act as effective scalings in the total theoretical rate, which can be modelled by in-

troducing a randomly distributed scale factor as a nuisance parameter. Indeed, we

modelled the uncertainty in the normalisation of the total predicted CEνNS rate at

SS experiments in an identical way in Section 5.1.2.

Presently, we introduce the scale factor α ∼ N (0, σα), where N (µ, σ) is a normal

distribution with mean µ and standard deviation σ. In this case, σα = 12%, re-

flecting the fractional uncertainty in the 8B flux in the B16-GS98 SSM [74]. The

resulting test statistic is given by

qµ = min
α

2
[
(1 + α)µ(θ) − nobs + nobs ln nobs

(1 + α)µ(θ)

]
+
(
α

σα

)2
 , (7.4.1)

which has the same form as Eq. (6.1.5) except for the scaling by (1+α), the additional

quadratic penalty term, and the absence of the sum since we are only considering

a single bin. The number of observed events is calculated from the SM prediction,

with the total 8B flux set to its expectation value to reflect our use of Asimov data

sets. The nuisance parameter α is profiled over such that any excess or deficit

predicted by the new physics contribution has the potential to be explained by a

non-zero fluctuation in α. As in Eq. (5.1.7), any shift in α from α = 0 might be

able to account for any such deviations; however, the larger this shift, the larger the

penalty incurred.

This systematic uncertainty can have a large effect on our computed limits. We

illustrate this in Fig. 7.5, where we show the qµ test statistic when both ignoring

and accounting for fluctuations in the 8B flux for the case of εη,ϕee with η = ϕ = 0.

The dashed line, like that in Fig. 7.3, highlights the value of qµ = 2.71, corresponding

2Recall that 8B neutrinos dominate the CEνNS signal, with hep neutrinos being subdominant.
We have explicitly checked that accounting for both flux uncertainties has a negligible effect.
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Figure 7.5: The effect of the 8B uncertainty on the derived limit for
εη,ϕee . The idealised result (black), without including this
uncertainty, is contrasted with the more realistic result
(red) including the ∼ 12% uncertainty in the total 8B
neutrino flux.

to the test statistic required to place a 1 d.o.f. 90% CL limit.

As 8B neutrinos are the dominant component of the CEνNS signal, one might ex-

pect that our previous NR-based DD results in Chapters 5 and 6 might be similarly

impacted by this consideration. However, for the gauged U(1) models we discussed,

the coupling strength always entered at least as g2 due to the kinetic mixing portal

(c.f. Eq. (4.2.11)). Consequently, in contrast to the NSI parametrisation where new

physics effects enter linearly, in the case of our U(1) models they enter quadratically.

Thus, to produce a deviation in the total number of counts that admits the same

level of statistical significance, a smaller change in the gauge coupling is required

compared to the NSI parameter εη,ϕαβ . Nonetheless, our previous results should be

interpreted as ultimate goals for DD experiments in the case that such an uncer-

tainty, which stems from the modelling techniques used in making predictions from

the SSM, can be reduced below any inherent statistical uncertainties.
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For ERs, the neutrino flux uncertainties have a much smaller effect. Since we are

only considering the total number of counts, and, as we saw in Fig. 3.6, pp neutrinos

are the dominant contributors to the EνES count, it suffices to consider the pp flux

uncertainty. This currently rests at σpp ≈ 0.5% in the B16-GS98 model [74], allowing

us to neglect this effect, with the statistical uncertainty dominating.

We note that the uncertainty in the 8B flux can be reduced to a value as low

as σ8B ≈ 2% if experimental data from solar neutrino, reactor, and atmospheric

neutrinos are included [436]. However, we cannot use this more constraining result

as it relies on interpreting the data in terms of standard neutrino oscillations and

interactions. We must therefore rely solely on the theoretical predictions from SSMs,

which concern themselves with neutrino production at the source. Indeed, since

these production processes are based on CC interactions, they are not impacted by

NC NSIs. Thus, we use the higher uncertainty value predicted by the B16-GS98

model [74,77], giving us both consistency with our previous studies and, ultimately,

more conservative results.

Lastly, we have also checked that our limits are not greatly impacted by uncertainties

in the neutrino oscillation parameters when these uncertainties are computed using

standard neutrino oscillations and interactions. While including NSIs can signific-

antly impact the best-fit values of and uncertainties in these parameters, especially

those derived from solar neutrino experiments [24], we note that the future medium-

baseline reactor experiment JUNO [437] will be largely insensitive to the effects of

NSIs. In particular, the fits to the solar neutrino parameters, θ12 and ∆m2
12, and the

reactor neutrino angle, θ13, will be robust in the presence of NSIs [438]. Moreover,

the atmospheric angle (θ23), which impacts the muon and tau neutrino fractions,

is not greatly changed by the inclusion of NSIs [24]. Thus, we take the liberty of

ignoring these systematics in this first study, taking the best-fit values for these

parameters from Ref. [128], as in our previous work.
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7.4.2 CEνNS Limits in the NSI Landscape

Our NR limits are presented in Fig. 7.6. To compare with the results of dedicated

neutrino experiments, we consider the results of the global fit performed by Ref. [25].

This study incorporated the energy and timing information released by the CO-

HERENT collaboration [439] to the earlier global NSI fit performed by Ref. [24].

This latter fit included oscillation data from the solar neutrino experiments Homes-

take [85,86], GALLEX [103–106], SAGE [97–102], Super-Kamiokande [124,125], and

Borexino [9, 347]; the reactor neutrino experiments KamLAND [351], Chooz [136],

and Daya-Bay [137]; the atmospheric neutrino data of Super-Kamiokande IV [440]

and IceCube [441, 442]; and the accelerator experiments MINOS [130], T2K [131],

and NOvA [132].

We extract the 90% CL bounds from Table 3 of Ref. [25], which are visualised as red

bars in Fig. 7.6. These bars are placed at those values of η corresponding to NSIs

with the proton (η = 0◦), the up quark (η ≈ 27◦), and the down quark (η ≈ 63◦) to

directly compare with the results of Ref. [25]. The grey regions highlight those points

in each parameter space where the adiabaticity parameter, given by Eq. (7.2.7), ad-

mits the values γ < 100, where we consider the adiabatic approximation to begin to

falter [67]. Since our limits generally lie outside of these regions, including for those

regions of parameter space relevant for comparing to global fit bounds, we will not

comment on them further. For the first time, our study places the potential power

of DD experiments in the neutrino NSI landscape within the context of dedicated

neutrino experiments.

Promisingly, we see that not only can the far-future DARWIN experiment cut into

unbounded values of multiple NSI parameters, but so too can the next-generation

experiments LZ and XENONnT. In particular, all of them probe regions thus far

unconstrained by global studies in the cases of εη,ϕee , εη,ϕeτ , and εη,ϕττ . DARWIN, with its

∼10-fold increase in exposure, can additionally probe εη,ϕeµ , as well as more stringently

constrain the previous three parameters. XENONnT and LZ are equally matched in
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Figure 7.6: The 90% CL limits set by multi-ton LXe DD exper-
iments in the NSI parameter space using NRs. Each
panel shows the resulting limits when turning on each
given NSI parameter. Shown are the limits from LZ
(cyan), XENONnT (blue), and DARWIN (purple) in
the typically assumed case that the NSI contribution
is entirely in the proton-neutron plane (ϕ = 0). The
bounds from the global analysis of Ref. [25] are shown
for comparison (red bars). The grey regions indicate
where the adiabaticity parameter is such that γ < 100,
where we consider the adiabatic approximation to be-
gin to falter [67].
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this parameter space, with XENONnT performing slightly better due to its slightly

higher exposure (20 ton yr over LZ’s ∼15 ton yr exposure).

Of particular note is the richness of the features exhibited by our limits. Specifically,

we see that there are regions in each parameter space where every one of our DD

experiments loses sensitivity. The two most remarkable of these are, firstly, the

asymptote in η occurring at η ≈ −35◦ and, secondly, the band of insensitivity

in εη,ϕαβ across the full range of η values. To explain them, we must examine the

form of the NSI cross section in Eq. (4.2.26) in conjunction with the fact that the

differential rate now contains a trace operation due to the potential of having flavour-

changing interactions. These blind spots present a challenge to DD experiments

if they are to maximise their constraining power in the NSI landscape, and it is

therefore instructive to consider ways in which they could, at least in part, be

guarded against.

We first consider the asymptote in η, which occurs at the same point regardless of

the nature of the NSI. From Eq. (4.2.26), we see that the non-standard contribution

to the CEνNS cross section disappears when ξpZ+ ξnN vanishes, retrieving the SM

cross section regardless of the value of εη,ϕαβ . For a generic nuclear target, this occurs

when

η = tan−1
(

−Z

N
cosϕ

)
. (7.4.2)

The location of this asymptote is therefore dependent on the chosen target material.

This is why we have considered the full isotopic average in our calculation, as its

location shifts depending on the nuclear composition of the isotopes. By performing

an isotopic average, we find that the asymptote indeed occurs when η ≈ −35◦ for

ϕ = 0. Since this loss of sensitivity is inextricably tied to the choice of target, to gain

sensitivity to this region of the parameter space we must choose a target with an

appreciably different proton-to-neutron fraction. However, since stable nuclei tend

to have similar such ratios, the location of this asymptote does not shift significantly

for different target choices. Indeed, out of all of the targets we have considered in
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this work, argon gives us the largest difference from xenon, with η ≈ −39◦—only a

4◦ difference.

Our second blind spot occurs at intermediate values of εη,ϕαβ , which stretches across

the full range of η. The position of these bands depends on whether we have flavour-

conserving or flavour-violating NSIs. We consider both of them in turn, beginning

with the former.

In the case of flavour-conserving NSIs, we have a similar effect to that of Section 7.3

for the CENNS-10 LAr experiment, whereby two values of εη,ϕαα can account for the

same number of observed counts. As we have assumed that our DD experiments

observe a number of counts equal to the SM expectation, we can use the cross

section of Eq. (4.2.26) to derive an analytical formula for the locations of the second

minimum. This relation, which defines the centres of each of these bands, is given

by

εη,ϕαα = QνN

ξpZ + ξnN
. (7.4.3)

The dependence on η, encoded in ξp and ξn, gives us the band over different values

of εη,ϕαα . We see that as the denominator of Eq. (7.4.3) tends to zero, realising the

asymptote condition of Eq. (7.4.2), the value of εη,ϕαα diverges, as expected. Note that

the location of this minimum, as with the location of the asymptote, is dependent on

the choice of target material. For η = 0, for instance, Eq. (7.4.3) gives εη,ϕαα ≈ 0.60 for

xenon, whereas it yields the lower εη,ϕαα ≈ 0.51 for argon. This gives us one possible

avenue to mitigate this particular sensitivity loss.

Interestingly, the bound in εη,ϕττ from the global fit study, depicted by the red bars,

also has a second minimum. Such a minimum is purely a consequence of the above

effect, and it therefore stems from the inclusion of data from COHERENT. One

might be curious as to why information from COHERENT has an impact on this

parameter since it does not see an appreciable number of tau neutrinos. However, the

key difference is that the global analysis of Ref. [25] included oscillation experiments,

which are sensitive to the combinations εη,ϕee − εη,ϕµµ and εη,ϕττ − εη,ϕµµ . Combining
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this information with that given by COHERENT on εη,ϕµµ gives them sensitivity to

εη,ϕττ [25]. The bounds in the insensitivity region of εη,ϕττ are then due to COHERENT

losing sensitivity to εη,ϕµµ , inhibiting them from providing oscillation experiments with

this information.

In the case of flavour-changing NSIs, the cancellation relation becomes more com-

plicated. Due to the flavour-coherence effects, we still expect regions where the

interference term cancels the BSM-only term. This condition, however, now de-

pends on the density matrix elements. To simplify matters, we consider where the

differential rate spectrum returns to its SM value for a given recoil energy, removing

the need to integrate over ER. From Eqs. (4.2.24) and (4.2.26), we find that, for

α 6= β, the condition that must be satisfied is
∫
E

min
ν

dφνe

dEν

(
1 − mNER

2E2
ν

) [
(ξpZ + ξnN)(ραα + ρββ)εη,ϕαβ

− 2QνNραβ
]

dEν = 0 .
(7.4.4)

The difference between this relation and that of Eq. (7.4.3) is why the locations of

these bands are generally different for α 6= β. For instance, the sign flip that occurs

for the cases of εη,ϕeτ and εη,ϕµτ is because the density matrix elements ρeτ and ρµτ are

negative. For α = β, there is no flavour-specific dependence, so all bands occur at

the same points.

We note that, while we have computed our limits under the assumption of a pure-

proton charged contribution (ϕ = 0), the power of our framework lies in giving one

the ability to make a different assumption. We emphasize that the reasoning for

taking ϕ = 0 was to be able to directly compare to the results from global-fit studies.

In the future, it would be interesting to explore how our NR limits are impacted by

taking different values for ϕ, similarly to our analysis in Section 7.3.
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7.4.3 EνES Limits on the NSI Space

To conclude this chapter, we explore the limits that DD experiments could set using

a search for deviations in the EνES rate. As far as we are aware, no global studies

exist for εeαβ. Nonetheless, to make contact with dedicated neutrino experiments, we

consider the recent results of Ref. [26], which used the spectral data from Phase-II of

the Borexino experiment [10] to constrain these parameters. As they do not mention

the potential impact of either proton or neutron NSIs on neutrino oscillations, we

assume that they have only considered NSIs with the electron, with no contribution

from the other fermions. As a result, we assume η = 0, and we place their bounds

at ϕ = π/2, corresponding to electron-only NSIs. We note that, while other studies

have also constrained electron NSIs, most of them place individual bounds on the

left- and right-handed components of the interaction [319, 443–446]. This makes

it difficult to compare with our results on the electron’s vector interactions since

the bounds from those studies would translate in a non-trivial way to this type of

interaction.

We show our results in Fig. 7.7. Interestingly, we see that DD experiments form

powerful probes of electron NSIs, with all of our limits cutting into portions of the

bounds placed from the Borexino experiment. Indeed, except for the parameters εη,ϕµµ

and εη,ϕµτ , even next-generation experiments can provide us with new information on

NSIs3. DARWIN can give us considerably more sensitivity on all NSI parameters,

showcasing its considerable potential in searching for new physics in the neutrino

sector.

Of course, this potential warrants further investigation. We emphasise that we have

undertaken an idealised statistical treatment for the ER case, ignoring all potential

systematics in our results. For instance, we have not incorporated the systematic

uncertainties inherent in the background components that our experiments are sus-

ceptible to. Furthermore, though we do not believe them to be important, we have
3This loss of sensitivity to the muon sector is likely due to the lower flux of solar muon neutrinos

predicted compared to the other flavours (c.f.Fig. 2.9).
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Figure 7.7: Same as in Fig. 7.6 but for electron recoils. The interac-
tions are assumed to take place entirely in the proton-
electron plane (η = 0). The bounds from the Borexino
analysis of Ref. [26] are shown for comparison (red bars
at the edge of the figure).
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not considered the neutrino flux uncertainties in the pp and 7Be neutrinos, which

principally contribute to the neutrino rate in our energy range of interest. Ref. [26]

took these factors into account when performing their Borexino analysis. While

these potential systematics would make for a more sophisticated comparison, we

stress that our results should be taken only as motivators to include DD experi-

ments in future global studies of NSIs.

As in the CEνNS case, the limits for the EνES case exhibit clear phenomenological

blind spots. We once again observe a divergence of the limits at some value of

the angle and a series of bands where DD experiments appear to lose sensitivity.

However, there are two notable differences between this case and the CEνNS case,

arising from both the different CEνNS and EνES cross sections and the way in

which non-standard matter effects enter. We discuss these differences below.

Firstly, we have no asymptote for the ER limits. While one might expect a complete

loss of sensitivity when ϕ = 0, where the EνES cross section is unchanged by the

presence of NSIs, neutrino oscillations are still impacted by the proton contribution

to the matter Hamiltonian. Thus, for high enough values of εη,ϕαβ , the effect of NSIs

on the neutrino flavour fractions is large enough to give us an observable deviation

from the SM expectation. Consequently, while we do lose sensitivity as ϕ approaches

zero, our limits ultimately reach a finite value. Note that this is only possible as the

cross section for electron neutrinos contains the extra CC contribution, making it

different from that of the muon and tau neutrinos. Changes in the electron neutrino

fraction then lead to measurable changes in the total number of CC interactions in

the detector; the NC interactions from all flavours, on the other hand, remain equal.

Secondly, we have fewer bands of insensitivity over ϕ than we did for the NR case

over η. The location of these bands can be calculated through identical arguments

to the CEνNS case, whereby those values of the NSI parameters where the NSI-

augmented rate is equal to the expected SM rate must be found. However, as the

EνES cross section, given in Eq. (4.2.29), is more complicated than the CEνNS cross

section, the condition that must be satisfied is more complex, and we therefore do not
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give its form explicitly here. Nevertheless, we expect bands similar to those in the

CEνNS case, but generally at much lower values of the NSI parameters. This is due

to the terms involving the left- and right-handed parts of the NSI cross section being

of similar order, generally requiring small values of εη,ϕαβ to cancel them completely,

retrieving the SM cross section. While there are some parameters for which DD

experiments witness this region of insensitivity—namely εη,ϕee and εη,ϕeµ —the majority

of them occur at values that are too small for these experiments to see.

We re-iterate that the limits presented in Figs. 7.6 and 7.7 have been calculated by

switching on only one NSI parameter at a time. Due to potential interference effects

between different NSI parameters, a global analysis that allows all NSI parameters

to vary, before marginalising to compute the limits on any one parameter, would

generally lead to weaker limits [429]. However, the point of our study is only to

illustrate the potential of DD experiments in this direction. We believe our study

makes the case for them to be included in future global analyses including this

marginalisation.

Combined with our CEνNS results, our EνES limits indicate that DD experiments

will form powerful probes of neutrino NSIs. Though we have neglected certain

complicating considerations in our study, such as additional potential systematic

uncertainties, we believe that the conclusion is clear: multi-ton, LXe-based DD

experiments are poised to make a considerable impact in the neutrino NSI landscape.

We therefore recommend that they should be included in future global NSI studies,

incorporating a more complete treatment of the systematics.



CHAPTER 8

Conclusions

Direct detection experiments are on a collision course with the solar part of the

neutrino floor. This will inevitably complicate the search for dark matter; however,

a new era of neutrino research will dawn on these experiments. Since BSM neutrino

physics can lead to deviations in the expected solar CEνNS and EνES rates, these

processes can be used in indirect searches for new physics in the neutrino sector.

The power of DD experiments in probing this kind of BSM physics has been the

subject of this thesis.

We began in Chapter 5 by exploring the competitiveness of these experiments in

searching for a new hidden photon stemming from a gauged U(1)Lµ−Lτ
. This model

is a theoretically well-motivated extension to the SM that can solve the increasing

tension in the measured value of the muon’s anomalous magnetic moment, (g− 2)µ,

as well as help to alleviate the tension in the present-day value of the Hubble para-

meter, H0. We derived limits in the U(1)Lµ−Lτ
parameter space using a selection

of DD experiments and the dedicated neutrino experiments Borexino and COHER-

ENT. For Borexino, we updated previously computed limits by making several im-
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provements to the previous calculation, finding that the limits based on the fluxes of

a high-metallicity Sun cut into previously unexplored regions of the U(1)Lµ−Lτ
para-

meter space. On the other hand, for COHERENT, we calculated new limits based

on its recent LAr run, finding them to be competitive with its first CsI run. We ex-

plored the sensitivity of DD experiments inspired by next-generation and far-future

detectors, such as SuperCDMS, LZ, XENONnT, DARWIN, and DarkSide-20k. Ex-

citingly, we discovered that the multi-ton LXe experiments can probe new regions of

the U(1)Lµ−Lτ
space that can both explain (g− 2)µ and alleviate the H0 tension. In

particular, we found that DARWIN could completely exclude the (g− 2)µ preferred

region.

Motivated by the increased tension in (g − 2)µ measured by Fermilab in 2021, we

sought to provide an experimental strategy with which to confirm the U(1)Lµ−Lτ
hid-

den photon as the solution to this modern hint of new leptonic physics in Chapter 6.

Our strategy featured the muon beam experiment NA64µ, a selection of future LAr

SS experiments, and, critically, multi-ton LXe DD experiments. To judge their

sensitivities, we performed a series of parameter reconstructions based on a set of

benchmark points along the (g − 2)µ solution region of the U(1)Lµ−Lτ
parameter

space. We found that the NA64µ experiment will be able to provide excellent re-

constructions of both the gauge couplings and mediator mass for mA
′ ≈ 100 MeV,

providing only an upper bound on the coupling for lighter mediators. SS experi-

ments searching for CEνNS will be able to set constraints for hidden photons of

masses mA
′ . 50 MeV, with larger volumes and lower thresholds allowing for an ob-

servation of the lower mass mediators. Finally, the far-future DARWIN experiment

will not only be able to discover hidden photons in the mass range mA
′ . 50 MeV ,

but it will also allow us to tightly constrain their gauge couplings.

Throughout the above study, we compared the U(1)Lµ−Lτ
model to an effective

U(1)Lµ
due to its remarkably similar phenomenology. We did this by performing

the parameter reconstructions with each of our experiments under the assumption

of a U(1)Lµ−Lτ
and a U(1)Lµ

in turn. In the case of the NA64µ experiment, we
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found that its results can be equally well interpreted as arising from either model

due to its sensitivity to only muon interactions. Conversely, SS experiments, probing

the new physics effect of these new vector mediators via their kinetic mixing with

the SM photon, will have sensitivity to the value of the kinetic mixing parameter.

Combined with the NA64µ experiment, SS experiments will be able to tell us if

the value of this kinetic mixing is consistent with only one of these models or, in

the maximally degenerate scenario, consistent with both. In this latter case, the

only way to disentangle the U(1)Lµ−Lτ
hidden photon from that of the U(1)Lµ

is to

probe its interaction with the third-generation leptons—a feat achievable with DD

experiments looking for CEνNS with solar neutrinos. We found that a hypothetical

realisation of a DARWIN-like experiment with a lower 1 keVnr threshold will be able

to provide us with this important, final piece of the puzzle in the case that these

two models are maximally entangled.

Finally, in Chapter 7, we moved beyond gauged U(1) models, exploring instead

the sensitivities of multi-ton LXe DD experiments to more general neutrino physics

through the neutrino NC-NSI framework. We did this by first introducing a new NSI

parametrisation that allowed us to include NSIs with the electron—an important

consideration for DD experiments since they can probe both CEνNS and EνES. To

illustrate the broader importance of including the electron component, we studied

how limits set by the LAr CENNS-10 experiment were impacted by varying this con-

tribution, finding their evolution to be non-trivial. We then explored how sensitive

future realisations of LZ, XENONnT, and DARWIN would be to NSI parameters

using the CEνNS and EνES rates, including the effect of the 8B flux uncertainty in

the case of CEνNS. We placed these sensitivities in the context of the results from

dedicated neutrino experiments, consisting of a global fit of oscillation, reactor, and

spallation source experiments in the case of CEνNS, and a recent analysis of the

Borexino Phase-II data in the case of EνES. By varying one NSI parameter at a

time, we found that realistic realisations of xenon-based DD experiments can, in

most cases, provide additional constraining power in the NSI parameter space. Our



214 Chapter 8. Conclusions

preliminary results indicate that next-generation and far-future multi-ton LXe DD

experiments should be included in future global NSI analyses.

In this thesis, we have shown that DD experiments are on course to become key play-

ers in the field of neutrino physics. By reinterpreting the irreducible background of

solar neutrinos as an invaluable signal of new physics in the neutrino sector, we have

shown that DD experiments will be able to provide either leading or complement-

ary results to those of dedicated neutrino experiments searching for BSM neutrino

physics. In doing so, we have reinforced the importance of DD experiments in this

novel direction, adding value to a powerful research mission beyond their search for

dark matter.
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