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Abstract

Diffuse reflectance spectroscopy (DRS) is a powerful non-contact technique for prob-

ing the physical world. In this project it was applied to two main areas of study,

colourimetry and chemometrics. Chapter 1 gives a review of the relevant concepts used

throughout this study. Chapter 2 first explores the origin of the difference in perceived

colour when compounds containing certain lanthanide ions are viewed under sunlight

or fluorescent lighting. It was found that salts of neodymium and holmium are subject

the the largest change in colour. The cause of this phenomenon was found to be the

overlap of the concentrated green component in fluorescent lighting with absorption

bands of the lanthanide ions, leading to illuminant metamerism. The phenomenon

observed in neodymium chloride was then utilised in order to control the perceived

appearance of a sample to any hue using a custom-build spectrally tunable light source,

while maintaining near-white illumination. The process was herein termed tunable il-

luminant metamerism.

The colourimetry models which could accurately describe the complex colour appear-

ance of lanthanide salts were then applied to study the workings of fluorescent whitening

agents (FWAs) and hueing dyes (HDs) on the colour correction of naturally degraded

fabric (yellowing). A platform was developed which could be used to model the ap-

pearance fabric under different lighting conditions, at different stages of yellowing while

simulating the effects of FWAs and HDs.

In chapter 3, DRS is applied to study the lipid component of laundry stains, and a tech-

nique for the quantification of lipid on fabric substrates by short-wave infrared DRS was

devised. A unit system for comparing the concentration of lipid on fabric, termed wt%,

was first discussed and calibration samples of uniformly set lipid concentration were

prepared and measured using DRS to yield a dataset for machine learning. A combina-

tion of preprocessing techniques, principal components regression and Gaussian process

regression models were used to model lipid concentration from DRS spectra. The valid-

ity of the best performing model was tested on an external sample set with consistent
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results, confirming that the proposed technique is capable of non-contact quantitative

measurements of lipid concentration on fabric. The approach was applied to point-scan

imaging where the concentration of lipid across a fabric could be quantitatively mapped

and results were verified by gravimetry. Further validation of the developed machine

learning models is still required as the method of producing calibration samples of low

lipid concentration was found inaccurate at low levels of staining. A revised method for

producing uniform calibration samples using inkjet printing was investigated to address

this issue and found to be feasible.
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Aims

This study is centred around the applications of diffuse reflectance spectroscopy (DRS)

in extracting and interpreting information about objects from their reflectance profile.

The manuscript is divided into two main sections of work. These sections aim to:

Firstly, understand and utilise the complex metaphysical phenomenon of lanthanide

compounds appearing completely different colours or hues, which has previously been

reported in the literature yet lacked a thorough and detailed study to conclude its

origin. The study of complex colour phenomena described herein is of importance in

testing the accuracy of our pre-existing models of colour perception. These models find

application in many industries, and one of which will be prevalent in this study is the

ever-changing landscape of lighting. With each new technology offering a novel spectral

power distribution that humans now spend using instead of natural illumination from

the sun. Developers of lighting technology need to utilise colour appearance model to

understand the impact of their products on consumers’ colour perception.

The second section of this manuscript is focused on the development of a novel technique

capable of quantifying the level of lipid present on a fabric. The units of such a quantity

were first established, and the problem is approached using a combination of reflectance

spectroscopy and machine learning on a model system. Such a technique would find

application in the assessment of laundry detergents performance at cleaning lipids.

This is key to development of more effective formulations which can function in a wider

variety of situations.
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Chapter 1

Introduction

This chapter serves to provide relevant background into the general concepts which will

be used and referred to throughout this manuscript. More specific background to each

of the two main sections of research is provided at the beginning of proceeding chapters.

1.1 Photophysics and spectroscopy

Light or electromagnetic radiation can be considered as an oscillating electric field which

generates an orthogonal oscillating magnetic field, and exists in discrete packets called

photons. The energy (E ) carried by photons in such a wave is proportional to the square

of its amplitude, as well as the frequency of its oscillation (ν), and can take values in

multiples of the Planck constant h:

E = hν =
hc

λ
= hcν̄ (1.1)

where λ and ν̄ represent the wavelength and wavenumber of the oscillating field re-

spectively. While photons of different frequencies may be similar in nature, the way

13
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they interact with matter leads to a range of different properties for different regions on

the electromagnetic spectrum. For this reason, the spectrum has been subdivided into

7 regions, ranging from low-energy radio waves to high-energy gamma-rays and their

associated wavelength range can be seen below.

Figure 1.1 Representation of the different sections of the electromagnetic spectrum, with
the visible portions approximated in colour.

The electric component of light means that it is able to interact with matter possessing

a transition dipole moment, and in cases where the energy of the photon corresponds to

the energy between two states in an atom, the photon may be absorbed. The absorption

of a photon results in the corresponding atom, ion or molecule being prompted to an

excited state, which can have different physical and chemical properties to the ground

state. In this work, the main wavelengths of interest are the ones covering: the visible

(λ = 400 - 700 nm) region, and transitions in this energy range typically taking place

between electronic states of atoms; and a region between the infrared and red portion of

the spectrum, which is referred to as the short-wave-infrared (SWIR: λ = 1000-2500 nm)

region. Transitions in this region are typically of the right energy to excite vibrational

overtones and combination modes, which have their fundamental absorption peak in

the mid-infrared region at lower energy.

The absorption of light by an atom is followed by relaxation back to its ground state,

and that may be radiation-less or radiative. Radiation-less relaxation occurs between

vibrational states via internal conversion, with energy being transferred to internal

molecular modes. Radiative relaxation from an excited state is called luminescence,
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and it results with the emission of a photon. The process can be further subdivided

into 2 types, fluorescence and phosphorescence depending on whether or not there

is a change of spin between the initial and final state; but in general fluorescence is

far more common. The presence of radiation-less relaxation means that the process

of luminescence is never completely efficient in a bulk material, and the efficiency is

defined by the so called quantum yield, which is measured as a ratio of the number of

photons emitted by a system compared to the number absorbed.

1.2 Spectroradiometry

The measurement of light intensity as a function of frequency yields the optical spec-

trum, which forms the basis of the experimental presented in this thesis. An overview

into the necessary considerations and instrumentation used to do so is therefore pro-

vided.

Some of the earliest attempts in quantifying the electromagnetic spectrum used glass

prisms as dispersive elements, and the light projected onto a screen where the operator

would record the spectra using thermopiles,1 or with their own visual system. Since

then, the invention of more advanced optical sensors such as photodiodes and more ver-

satile dispersive elements has lead to modern spectrometers. Recording optical spectra

in different regions of the electromagnetic spectrum is achieved most effectively using

a variety of different designs. Most commercial systems can be categorised into two

groups: ones which disperse light into it’s constituent frequencies before recording the

intensity as a function of position, and another which utilises the interference properties

of light to effectively record the entire spectrum simultaneously.2

In this work the majority of measurements are carried out in the NUV-SWIR region of

the spectrum (350 - 2500 nm), as such the most suitable of the available spectrometers

to use were deemed to be the CCD-spectrograph for UV-VIS region, and a Fourier
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transform spectrometer for the NIR-SWIR region. The advantages and disadvantages of

each system is beyond the scope of this review, as the performance of any spectrometer

is typically determined by the implementation rather than the type of optical design.

Although, the mechanistic workings of each type of spectrometer used in this work are

still useful to consider:

Figure 1.2 Basic schematic of two types of spectrometer used throughout this work: (Left)
a dispersive spectrometer design, and (right) Fourier transform spectrometer employed for
the SWIR region. Diagrams have been adapted with permission from ref. 3.

CCD spectrometers utilise a dispersive element, diffraction grating (or sometimes prism)

and a set of optics which image the diffracted light onto a linear array of photodiodes,

which form the detector and is know as the charge coupled device (CCD). A CCD can

be used to measure the intensity of light as a function of position in a near-simultaneous

manner. By measurement of a light source, a simple polynomial function can be found

which relates position on the CCD to a wavelength of light that is incident on it.

Fourier transform spectrometers operate with no dispersive elements, instead light is

diverted to two separate paths of varying length then recombined at a single point

detector. Varying the length of a single path, typically by specially displacing and

recording the intensity observed at the detector. The intensity of each optical frequency

component can then be resolved via a Fourier transform. Provided that the difference
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in pathlength between the two arms can be accurately measured, which is achieved by

a reference laser travelling collinear or along a separate path to the probe beam. The

detectors utilised in such designs are typically photodiodes due to their relatively high

sensitivity and fast response.4

1.2.1 Light intensity

The output of a spectrometer is often quoted in units of ‘intensity’ as a function of

frequency, however, there are several common practises used to report the intensity of

light. Radiant flux, the intensity of light arriving at the detector per unit time can be

represented either: as photonic flux, the number of photons arriving per unit time; or

the perceived power, the energy falling on the detector. The interconversion is non-

linear and related by equation 1.1. Perceived power is commonly used in radiometry

while photonic flux is more useful when relating the spectra to physical properties of

atoms and molecules.

When reporting the intensity of an optical spectrum, the units are commonly omitted,

however, it is important to distinguish which unit system the intensity is proportional

to in order to perform quantitative measurements with optical spectroscopy. In this

work all units of intensity are reported proportional to the power of light incident on

the detector.5

Determining the exact physical quantity reported by a spectrometer is difficult as it

involves many non-trivial parameters such as the wavelength dependent efficiency of

the optics, any aberrations or stray light effects within the optical assembly, as well as

the quantum efficiency of the detector at each frequency. To complicate things further

there may be non-linear thermal effects which skew these parameters with changes in

temperature. To understand the nature of the signal, we therefore need to trace it back
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to its physical source, the detector.

In each of the aforementioned spectrometers, the detector is typically a single point

or array of photodiodes. Photodiodes are semiconductor devices with a defined band

gap which corresponds to its spectral bandwidth. Incident electromagnetic radiation

can cause excitation of electrons from the valence band to the conduction band within

the depletion region of the photodiode. The net result is a charge separation which

is proportional to the photon flux incident on the depletion region.6 Addition of a

load across the charge separation leads to a current, referred to as the photocurrent to

distinguish it from the current generated by excitation from thermal processes within

the semiconductor, which is above absolute zero. The generated photocurrent can be

measured using a variety of electronic circuits, for example, a trans-impedance amplifier

based on a operational amplifier:

Figure 1.3 Photodiode current to voltage converter circuit. U1: operational amplifier, R1:
feedback resistor, Vbias: reverse bias voltage, Vout: output signal, ADC: analogue to digital
converter.

The circuit converts the photocurrent generated by a photodiode into a voltage directly

proportional to the feedback resistor (R1). In this configuration the photodiode is used

in photo-conductive mode, meaning it is reverse biased and incident photons allow the

diode to conduct in the usually blocked direction.

The wide spread use of this circuit comes from the high linearity with photon flux as

well as increased bandwidth due to the decreased parasitic capacitance. In addition
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commercially available low-distortion operational amplifiers are now available at low-

cost.

The output (Vout) is a low impedance source which can be directly sampled by an ana-

logue to digital converter (ADC). An ADC takes an analogue voltage as an input and

outputs a digital number between 0 and 2n, where n is the resolution in ‘bits’. Commer-

cial devices are commonly available with resolution of: 8-bit (0-255), 16-bit(0-65536),

and 24-bit (0-16777216). The output from the ADC is usually the quantity displayed

as ‘intensity’ and it is therefore proportional to the photon flux at the detector, but

lacks correction for sensitivity; a conversion to power units is possible using equation 1.1.

1.2.2 Calibration and correction

In order to have reliable data from a spectrometer the instrument needs to have a

reliable calibration and an equally sensitive, linear response across its operating band-

width. Usually these conditions are specified to within a given tolerance provided by

the instrument manufacturer. Most systems, however, require additional correction

steps to ensure the output is accurate.

A background correction is required if the detector produces a reading with no input

light, such as thermal current in photodiodes or ‘hot pixels’, and this is achieved by

recording the output when the detector is isolated from any optical input, and sub-

tracting the recorded reading from subsequent measurements. The correction must be

repeated on a time scale similar to the drift of the instrument.

Custom optical systems which introduce optical components in the beam path that

are not accounted for by the manufacturer require further correction. The wavelength

calibration is usually unaffected by introducing optics external to the spectrometer and
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therefore usually does not need to be corrected, but each optical setup may have a

complex frequency dependant attenuation. To account for this and achieve a uniform

response across the spectrometers operating frequency range, it is therefore necessary

to correct the intensity measured by each custom optical setup.

This can be achieved using a commercial calibration source, which has a well charac-

terised output spectrum, and can be traced to reliable standard. The calibration source

is guided into the optical setup in such a way as to imitate the sample being measured.

A spectrum is then recorded and the intensity compared to the reference spectrum of

the standard. A correction factor (ξ(λ)) is then determined by the ratio of the two

spectra:

ξ(λ) =
Ical(λ)

Imeasured(λ)
(1.2)

Where Ical(λ) is the calibrated intensity of the source and Imeasured(λ) is the intensity

measured by the spectrometer. Provided the detector is operating within its linear

region, the correction factor can be applied to any further reference-less measurements

made to compensate for any frequency dependent attenuations within the optical setup.

The units of corrected intensity become arbitrary due to ratiometry, however, it is im-

portant to note which unit system the supplied calibration source intensity follows as it

will be incorporated into the correction factor and applied to subsequent measurements.

An incandescent source can also be used as a calibration source as long as it has a

known, and stable temperature. The intensity can then be approximated using the

Planck equation:

I(λ, T ) =
2hc2

λ5

e hc

λkBT − 1


−1

(1.3)
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where I(λ, T ) is the emission intensity of a black body at temperature T .7 This form

of the equation provides the intensity in units Wst−1m−3, although a trivial conversion

using equation 1.1 is possible if units of photonic flux are required.

In some applications it is useful to visualise spectra on a scale proportional to the energy

of photons, rather than their wavelength. In such a scenario the conversion is not as

trivial as re-assigning the x axis of the data. The non-linear relationship between

wavelength and frequency means that the intensity recorded by the spectrometer is

quantised to keep the spacing constant in wavelength units (dλ), but this results in an

uneven spacing in units proportional to energy (dE), such as frequency or wavenumber.

Therefore to perform the conversion and preserve the shape of spectra, the spacing

needs to be maintained. If the spectrum is considered as a function of wavelength

(f(λ)) or energy (f(E)), then the relationship f(λ)dλ = f(E)dE must be maintained.

Substituting with equation 1.1, yields the conversion factor:

f(E) = f(λ)
dλ

dE
= f(λ)

d

dE

(
hc

E

)
= −f(λ)

hc

E2
= −f(λ)

λ2

hc
(1.4)

The minus sign represents a change in direction and the factor hc is a constant which

does not change the shape of the spectrum, and can be ignored as corrected intensity

is usually scaled in ‘arbitrary’ units, in which a constant factor is included. The ap-

propriate conversion from a wavelength quantised spectrum to one in frequency space

therefore requires the intensity to be multiplied by the square of its associated wave-

length in order to maintain even spacing on an energy scale.5
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1.2.3 Diffuse reflectance spectroscopy

Measuring spectral properties of solids presents a range of difficulties when compared

to transparent samples. Transmissive measurements are usually only possible on fluids

or engineered materials with well defined dimensions and uniform properties. Solid

samples can be opaque with varying surface texture. To perform spectroscopy on such

samples, a useful approach is to illuminate the sample with a ‘probe’ beam of broadband

radiation and collect the reflections from the surface, of which there are 2 types; specular

and diffuse:

Figure 1.4 Representation of possible paths for light incident on a solid surface producing
both dispersed diffuse reflections (red arrows) and mirror-like specular reflections (blue
arrows).

Specular reflections result from mirror-like reflections from the top layer of the sample,

the beam exits the sample such that the angle between the reflected beam and the

normal of the surface is equal to that of the incident beam.

Diffuse reflections occur from light scattering in all directions. This may be caused by

reflections from an irregular surface, or the incident light penetrating into the sample

and after several reflections the light exits in a random direction. Depending on the

sample, absorption can also occur meaning that the spectral profile of the scattered

light is attenuated to some degree based on the dielectric properties of the sample. An

ideally diffuse surface may be considered as exhibiting a Lambertian reflectance,8 where
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the intensity of scattered radiation is directly proportional to the cosine of the angle

between the incident beam and the normal to the surface, this has been demonstrated

in figure 1.4 by the length of the red arrows.

Diffuse reflectance spectroscopy (DRS) aims to produce a reflectance spectrum that is

independent of the light source and detector used to measure it. This is achieved by

illuminating the sample with a light source which is continuous over the entire spectral

region of interest. The diffuse reflections are then collected, collimated and input into

a spectrometer. To account for the non-uniform spectral power distribution of the

light source, as well as any losses in the collection optics, diffuse reflectance is typically

reported relative to a reference material.

In practise, DRS is carried out by recording the spectral power distribution of reflected

light from the sample and reference material under the same conditions. The relative

reflectance (R) of sample is then defined as the ratio of intensities (I(λ)) between the

two readings:

R(λ) =
Is(λ)

Ir(λ)
(1.5)

Where Is(λ) and Ir(λ) represent the intensity of diffuse reflected light measured from

the sample and reference respectively.

A common reference material for UV, visible and near infra-red (NIR) reflectance spec-

troscopy is a sintered PTFE material called Spectralonr. It is used as it has the highest

diffuse reflectance of any known material in UV-NIR, and behaves as a Lambertian sur-

face between 257 nm to 10,600 nm.9

In DRS, it is difficult to directly extract quantitative metrics such as extinction coeffi-

cient. This is because the spectrum is heavily influenced by the surface of the sample,

as well as other physical properties. A major problem is that it’s nearly impossible to
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tell how much of the sample, on average, the probe beam interacts with before reach-

ing the detector, which is referred to as the effective path length. Furthermore, it is

usually impossible to completely decouple the specular reflection and the diffuse reflec-

tion. Since the surface of the sample has a major influence on it’s reflectance spectrum,

the sample preparation, which directly affects the particle size and shape, can have an

extremely significant effect on the measured reflectance spectrum.

Due to the geometry of the optics, any luminescence caused by the probe beam will

also be coupled with the collected diffuse reflections. This is particularly problematic

as the intensity of luminescence depends not only on the sample but also the intensity

and spectral power distribution (SPD) of the probe light source, meaning that the re-

flectance spectrum is no longer device independent. In such a scenario a single sample

measured with different instruments will likely give a different reflectance spectra, lead-

ing to irreproducible results. Luminescence contribution can be reduced by utilising

a spectrometer in which the probe light source is monochromatic and reflectance is

measured at a single wavelength, however this requires scanning through the full spec-

trum, which is usually time consuming and limits sample throughput. In cases where

this is not possible, luminescence can be reduced by filtering out the higher frequency

components of the probe light source which causes excitation in the sample, although

this limits the spectral bandwidth of the measurement.

To make matters even more complicated, the effective path length depends on the

refractive index of a sample, which itself is a function of the absorption coefficient,

and undergoes a significant change during a resonant transition. This is an example

of a non-linear optical property, which can make interpretation of spectra extremely

difficult. Mathematical pre-treatment of data, such as Kramers-Kronig relations,10 can

be used to minimise this effect. However, due to the complex nature of reflections, it is

only an approximation.

Quantification is further complicated when impurities are introduced. If chemicals of
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dissimilar refractive index are mixed together then the changes observed in the re-

flectance spectrum are not only due to the different dielectric properties of each com-

ponent like in transmission spectroscopy, but also the change in effective path length

causes a distortion to the spectrum which is difficult to predict and compensate for.

Combination of all these effects means that quantification using DRS is not a trivial task

and simple Beer-Lambert type analysis of data is impossible. However, pre-processing

of reflectance spectra can be used to compensate for these factors to some extent and

allow quantification with an acceptable degree of accuracy.

One model which is commonly used in reflectance spectroscopy is the Kubelka-Munk

(KM) model. The KM model assigns variables to account for the scattering and ab-

sorption properties of the material, k(λ) and s(λ) respectively. The sample can then be

divided into vertical layers, light penetrating the sample then interacts with each layer.

The probability of light exiting the material and being detected is then calculated based

on how many layers it penetrates, and the sum of these probabilities yields the KM

function.

In the special case that the material is approximated to be infinitely thick and that

light doesn’t penetrate the full depth, among other approximation, the model can be

written as:

F (R(λ)) =
(1−R(λ))2

2R(λ)
=
k(λ)

s(λ)
(1.6)

By approximating that the scattering coefficient (s(λ)) is constant, the KM function

(F (R)(λ)) is then proportional to the coefficient of absorbance. A property which

makes it useful for identifying the centres of resonant transitions as well as quantitative

measurements, since the absorption coefficient is proportional to the concentration of

absorbing species.
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1.2.4 Transflectance spectroscopy

Reflectance spectroscopy can be combined with transmission spectroscopy in a tech-

nique called transflectance spectroscopy, which can be utilised to characterise the optical

properties of thin, translucent materials or even liquids.11,12 Transflectance spectroscopy

is carried out in a similar method to reflectance spectroscopy: a probe beam is focussed

on a reflectance standard, followed by collection and measurement of the reflected light

(Ir(λ)); the sample is then placed in front of the reflectance standard and the mea-

surement repeated (Is(λ)) to yield a ratio of the two collected spectra (equation 1.5),

otherwise called a transflectance spectrum (usually also denoted R(λ)). The geometry

of the optics may be set to collect mainly diffuse reflections or specular reflections as

required (figure 1.5).13

Transflectance measurements are subject to the same challenges which make quantifica-

tion of absorbing species difficult in reflectance spectroscopy. However, the technique is

usually employed due to the relaxed requirements for sample preparation, as the sample

does not need to be of uniform thickness, or of small enough physical dimensions to fit

inside a transmission measurement cavity.

Figure 1.5 Diagram of transflectance spectroscopy setup with geometry of optics optimised
for collection of diffuse reflections (a), and specular reflections (b).

Spectralon reflectance standards are not usually used for these measurements as the

standard would be contaminated by the sample. A similar inexpensive standard may
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be used as long as the measured spectrum is corrected for. Switching which material a

reflectance or transflectance spectrum is referenced to may be done by measuring the

new standard. The ratio of the two standards then forms a correction factor, which may

be used to multiply a measured transflectance spectrum so that it may be comparable

to measurements referenced to the Spectralon standard.
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1.3 Colourimetry

The human visual system can distinguish around 100,000 - 7 million different colours.1

From an evolutionary point of view, this ability has allowed us to find shelter and

determine whether fruit was ripe enough to eat.14 Colour is often described as a photo-

physical property, simply the spectral density of the light entering our eyes. However,

this is not the case. The eye is complex, it contains mechanisms for image adjustment

based on it’s surroundings, one example which must be considered for colourimetry is

‘colour constancy’, which will be further explored.

Understanding the origin of colour has therefore puzzled a number of great scientists

in the past such as: Newton, Helmholtz, Young and many others.15

From a spectroscopy perspective, the human visual system can be considered as a

form of multi-spectral imaging, allowing us to gather basic information about the re-

flectance profile of objects in the visible region of the electromagnetic spectrum. It is

this reflectance profile which contains useful information about the object, such as the

‘ripeness’ of fruit.

Modern instruments are capable of extracting vastly more information from objects

than the human visual system. That may be through imaging systems which can easily

surpass the spatial resolution, or spectrometers which can detect and quantify frequen-

cies of light beyond either extreme of the spectrum detected by the human eye. The

science of colourimetry has even allowed us to use such instruments in quantifying the

metaphysical experience which we referred to as ‘colour’. In the modern world, colour

vision is arguably much less of a survival necessity than it is an additional sense for

deciding what we like or dislike. The industrial applications of this are far-reaching,

some industries are primarily based on accurate colour measurement and reproduction,

with examples including: displays,16 imaging17 and paints.1 It is for these reasons that

a great deal of research has been carried out on our perception of colour and how it

may be influenced.
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1.3.1 Standard observer functions

It has been postulated as far back as 1802 that our eyes contain three distinct types of

photoreceptors (Young-Helmholtz theory),15 and this is still the backbone of modern

colourimetry.

The response of the human visual system to stimuli from the visible portion of the spec-

trum may be modelled by the International Commission on Illumination (CIE) system

of colourimetry, which constitutes a wide range of formulas and algebraic functions for

different metrics that will be introduced throughout this work.1 The CIE developed

their models to represent a ‘standard observer’, derived from the average of a series of

psychological experiments which also included people with abnormal vision. Colourime-

try systems developed by the CIE have since become widely used throughout industry

and academic research for quantitatively describing colour appearance.1

Colour appearance models require a base set of variables, in the CIE system these are

defined as CIE X, Y, and Z. The variables are calculated using a set of numeric functions

which could be applied on a SPD of visual stimulus (Istim) to the human visual system

within a small 1-4° field of vision.

The functions are referred to as standard observer function or similarly colour matching

function, denoted x̄, ȳ and z̄, and they were provided by CIE in the form of a look-up

table which has been plotted in figure 1.6. The output is a set of coordinates which,

in-combination with a colour space (discussed in the following section), map the ap-

pearance of the visual stimuli being analysed.

The CIE 1931 colour matching functions are still widely used to this day, however,

they have since been expanded to include corrections for numerous inconsistency found
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through experiment; as well as more specific cases such as a wider field of vision.18

Figure 1.6 CIE 1931 2° standard observer functions used for quantifying human colour
perception from the SPD of visual stimuli. The intensities are relative to the ȳ function
which has been normalised, as defined by CIE.18

The standard observer functions are applied to calculate the base CIE X, Y, and Z

variables by multiplying the SPD of visual stimulus (Istim) with each function in-turn,

followed by integration of each resulting sum over the visible region (equation 1.7). The

SPD of visual stimulus can be measured directly if the sample under analysis is purely

an emitter of light, such as an illuminant. For objects which get their colouration from

absorbing species (majority of objects), a product of the DRS spectrum and the SPD

of the illuminant (R · I) is typically used in-place.

X =

∫ 780nm

380nm

Istim · x̄ dλ

Y =

∫ 780nm

380nm

Istim · ȳ dλ

Z =

∫ 780nm

380nm

Istim · z̄ dλ

(1.7)
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The physical origin behind the spectral shape of the colour matching functions, which

were developed from psychology trials, became apparent in 1983, when the photore-

ceptors in human eyes were, for the first time isolated and their absorbance spectra

measured using micro-spectrophotometry.19

The eye contains 2 types of photosensitive cells named rods and cones. Rod cells

outnumber cone cells by a factor of 20, they contain the photosensitive carotenoid

called rhodopsin, and are used in low light conditions. At high levels of illuminations,

rhodopsin becomes bleached and our vision is dominated by cone cells.1 There is also an

intermediate level of illumination, in which the visual system operates using a mixture

of stimuli from rod and cone cells.

Cone cells contain a different photosensitive pigment called iodopsin, which is far less

prone to photo-bleaching. They can also be further subdivided into 3 types, clas-

sified as: long, medium and short (or L, M and S). These cells each have various

responses to stimuli in the blue, green and red region of the spectrum, reaching peak

absorbance at 420, 534, and 564 nm respectively as characterised through absorbance

spectroscopy (figure 1.7).20 The absorbance spectrum of cone cells may also be used

to measure colour, instead of the standard observer functions, and this is know as the

LMS colourimetry system. However, this is far less common than standard observer

functions, although both can provide accurate results.1
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Figure 1.7 Normalised absorption spectra of human rod (R) and cone (L,M and S) cells,
with peak maxima labelled as well as the approximate colour of the wavelength scale.

The subdivision of cone cells is the reason human beings have trichromatic vision. The

response of these cells is similar, but noticeably different to the psychologically-derived

CIE XYZ colour matching functions, and this dissimilarity shows that there is more to

colour perception than simply the sensitivity of the photoreceptors. This is the result

of biological ‘signal processing’ that takes place on the interconnections between the

photoreceptors and the brain, as well as inside the visual cortex of the brain.1 This has

a significant input into our perception of colour and forms a major area of psychology

research to this day.21

1.3.2 Colour space

To describe colour using the CIE XYZ parameters, they first need to be mapped onto a

coordinate system where each points represents a unique colour, called a colour space.

The coordinates are calculated using transformation functions which act on CIE XYZ
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parameters. There are many colour spaces which have been created for specific pur-

poses, for example, the sRGB colour space is widely used in displays and digital pho-

tography.22 The ones which are most relevant to this work are the CIE xy and CIE

L*a*b* colour spaces.

The CIE xy colour space is a two dimensional plane in which the coordinates are derived

directly from the base CIE XYZ values; The X, Y and Z parameters are normalised

such that X + Y + Z = 1. This means that only two of the parameters need to be

specified, as each parameter is a function of all three. The X and Y parameters are

then directly used for the x and y axis which forms to the CIE xy colour space and

can be seen in figure 1.8. Generally, X increases with an increasingly dominant red

component of visual stimuli, the same can be seen for Y and green, as well as Z and

blue dominant components. Including the effects of normalisation, the CIE xy colour

space described blue hues with low values of x and y, green hues with high y and low x,

and red hues with high values of x and an intermediate range of y. The area within the

body of the CIE xy colour space defines all colours perceivable by humans with average

colour vision.1

Figure 1.8 CIE 1931 xy colour space with the representative colours of the coordinates
translated into the sRGB colour space.
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The xy colour space is primitive as it only accounts for chromaticity of a perceived

colour, completely ignoring the luminosity or perceived brightness. However, this is not

an issue for objects which only emit light, therefore it is still widely used to describe

the colour of illuminants. It’s continued popularity is potentially due to it’s simplicity,

as it is 2-dimensional it is simple to display, therefore useful for human assessment of

colour.

This colour model was later refined by Munsell,23 who introduced the separation be-

tween chromaticity and luminosity in a 3-dimensional colour space. The theory has

since been adapted by CIE who published their hugely popular version named the

L*a*b* colour space, with the ‘*’ used to distinguish the coordinates from other colour

spaces using the same notation.1

Figure 1.9 Cross-sectional representation of the 3-dimensional CIE L*a*b* colour space at
the 50% neutral luminosity.

The aim of the L*a*b* colour space is to represent a perceptually linear coordinate

system, meaning that Euclidean distances between colours or coordinates are far more

tangible to visual perception and lend themselves to analysis and manipulation. To

convert from the CIE XYZ colour space coordinate system to the L*a*b* colour space,
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the following functions are used:
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where Xn, Yn and Zn specify the CIE XYZ coordinates of the light source used to

illuminate the sample, and t the ratio X/Xn, Y/Yn or Z/Zn input into function f(t).

This sample-illuminant scenario is setup because the L*a*b* colour space is only used

to describe the appearance of objects as opposed to illuminants, and the spectral profile

of light reflected from an object is a function of the illuminant. In human colour vision,

however, there are multiple mechanisms for altering the perception of visual stimulate

based on external information. The impact of these mechanisms to colour perception,

on a broader level, can be modelled to good level of accuracy; while the mechanisms

which act on a local level in a complex scene are still difficult to model.24

A major mechanism in colour perception on a broad-scale is called colour constancy. It

is the focus of the following section, but it it should be noted that an approximation of

this mechanism is employed in the L*a*b* colour space. The colour of the illuminant

must also be analysed using standard observer functions, and the outcome is referred

to as the ‘white point’ in colourimetry.
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1.3.3 White point

The human visual system is capable of adapting colour perception to surrounding en-

vironment of the observer. On a broad level the mechanism is called colour constancy,

and is thought to function by globally adjusting colour appearance so that objects ap-

pear consistent colours under changes in the colour of the illuminant. Such changes

in the illuminant can occur naturally, for example when the sun starts off an orange

colour at sunrise, gradually changing to it’s brightest blue-white appearance during the

middle of the day, followed by the reverse at sunset. The current state of artificial light-

ing, however, means that indoor illumination is typically a random mix of blue-white

(cool-white) and yellow-white (warm-white) emitters.

The mechanism for colour constancy is still not well understood,25 and recently even the

existence of colour constancy has been called into question.26 To understand the working

of colour constancy and why this topic is currently so contentious, we can consider a

set of objects (white, blue, red and purple) whose reflectance spectra resemble those in

figure 1.10 (column 1), and these objects are viewed under daylight and incandescent

lighting. The light reflected from the object and seen by the observer is calculated as

the product of the source’s SPD and the reflectance profile of the object. The resulting

spectral intensity reaching the observer under each type of illumination can be seen in

figure 1.10 (columns 2 and 3).
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Figure 1.10 Diagrammatic explanation of the effects a light source’s colour temperature
has on the SPD of light reflected from coloured surfaces (red, blue, purple and white for
reference), represented with simplified spectral profiles to aid comparison. Each spectrum is
a product of the SPD of the light source (shown at the top of each column), and the
reflectance profile of the object (shown on left of each row). The product of the light source
SPD and reflectance profile (R · I) shows the SPD of light input into the human visual
system while observing the coloured surface under high-colour temperature sunlight or lower
colour temperature incandescent light. The relative intensity of the products shows that red
surfaces reflect more light under illumination from lower colour temperature light sources,
and the opposite can be seen for blue surfaces. Purple surfaces display a combination of the
two effects.

Comparing the light reflected from the same objects under the two light sources, it

becomes obvious that under incandescent illumination the same objects reflect more

red light than blue light. However, the human visual system is equipped to compensate

for such changes with the colour constancy mechanism. A proposed basis for colour

constancy states that white objects (those with a ‘flat’ reflectance profile) will continue

to appear white when the colour of the illuminant is altered.27 To understand how this

occurs we need to consider the sensitivity of the cone cells responsible for human colour
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vision (figure 1.11, row 1). For the white sample to appear white under both types of

illumination, it must cause the same cone response in each scenario. The response of

each type of cone cell can be considered as the integral of the stimulus SPD and cone

response product across the visible spectrum (defined as 380 - 780 nm):

S(short) :

∫ 780nm

380nm

R · I · β dλ

M(medium) :

∫ 780nm

380nm

R · I · γ dλ

L(long) :

∫ 780nm

380nm

R · I · ρ dλ

(1.9)

Where R is the reflectance spectrum of the sample, I is the SPD of the light source and

β, γ & ρ are the spectral response function of the S, M and L cone cells respectively.

To achieve colour constancy, the response of S, M and L cone cells can be individually

increased or decreased by a multiplication factor but their spectral response cannot be

altered, this is the basis of the von Kries colour constancy model.1 This model forms

the colour constancy correction in the L*a*b* colour space described earlier. In the

case of these simulated illuminants, the luminosity or the perceived brightness of the

light sources is set to be the same, consequently for colour constancy to be achieved:

the S cones need to increase their response by a factor of 1.6, the M cones are used for

reference therefore unchanged, and the L cones decrease their response by a factor of

0.9. Once this has been applied, the outcome is illustrated in figure 1.11 (Row 2) where

the response of the cone cells to light reflected of the white sample is the same for each

type of illuminant. However, it also becomes clear that the cone response of non-white

samples is not compensated for by such a colour constancy mechanism.
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Figure 1.11 Diagrammatic explanation of why red, blue and especially purple colours
cannot be adjusted for in colour constancy. The reflectance-illuminant (R · I) products
described in figure 1.10 are adjusted for colour constancy using the von-Kries model. The
top row shows the response of human cone cell where β, γ & ρ denote the sensitivity of each
type of cell. The middle row shows the SPD of light input into the human visual system
while observing a white surface under sunlight and incandescent light, the SPD has been
adjusted for the response of human cone cells. A colour constancy correction is derived by
scaling the response of the S and L cells under incandescent light as to achieve the same
cone response (defined in eq. 1.9) under each light sources, in this case the response of the S
cells is increase by a factor of 1.6 and the L cells decreased by a factor of 0.6 to account for
colour constancy. This colour constancy correction is applied to blue, red and purple
surfaces illuminated by incandescent light by scaling the R · I product by 1.6 in the blue
region and 0.9 in the red region. The correction appears to match the cone response of
white objects under the two light sources of different colour temperature, but does not
match the SPD of light reflected from coloured surfaces under the same conditions. Blue
surfaces have a smaller R · I product under incandescent lighting, while red surfaces have a
higher R · I product. Purple surfaces display a larger difference in appearance under these
light sources due to a combination of the two effects.
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The product of the simulated illuminants with the samples reflectance spectra show

that: blue samples have a tendency to appear darker under incandescent lighting than

under sunlight, while red samples generally appear brighter under incandescent illumi-

nation compared to sunlight. Purple samples exhibit an extra-skewed colour due to a

combination of the effects seen in red and blue samples; and the overall effect is a large

shift of the objects hue towards a more red appearance. In colorimetry, the effect of ob-

jects changing their colour appearance under different colour temperature illuminants

is known as colour inconstancy and occurs in most coloured objects, although usually

to an unnoticeable degree.1
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1.4 Detergency

It is claimed that 90% of clothing garments are disposed of before they become unfit

for purpose.28 This is a major problem for climate change as the clothing industry

which manufactures them is claimed to be the second largest polluter after the oil

industry.29 Laundry detergents which can better clean garments are key to prolonging

their usable life-span and lowering the environmental impact of producing new clothing.

The laundry industry is, however, in itself a heavy contributor to climate change.

In 2005, It was estimated that residential laundry alone in the United States, which is

one of the worlds most polluting countries,30 accounts for over 8% of the sectors total

carbon dioxide emissions.31 That includes the energy required to heat a large volume

of water to a temperature at which laundry detergents can operate effectively; while

the energy required to move, treat, and use the amount of water needed in the laundry

process is estimated to make up a further 0.6% of total United States carbon-dioxide

emissions.32

Aside from the energy consumption associated with laundry, disposal of the waste wash

water also forms a major environmental challenge. Typically, laundry detergents are

formulated to form alkaline washing solutions, and following a wash cycle this solution

is disposed of into the drain system or directly into the environment. It has been

shown that in both scenarios this can cause serious adverse effects.33,34 Furthermore,

the mechanical agitation involved in the wash process, especially on synthetic fabrics,

has been found to release small fibers (micro-fibers) into the wash solution.35 These

fibers are around 12-16 µm in diameter with a length typically 360-660 µm, making

them difficult to filter out at water treatment plants and ultimately they end up being

released back into water streams; a study testing tap water around the world has

found 83% of samples tested to be contaminated by fibres from the laundry process.36

This issue is exacerbated as micro-fibers have now been identified as the main source

of microplastics in the oceans,35 which in-turn have been described as “the greatest
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potential threat to marine environment for the whole world”.37

In total, these findings indicate that laundry detergent formulations, in addition to

simply cleaning garments, need to be formulated to work: using less water, at lower

temperatures and more neutral pH levels. These are extremely challenging problems

which need to be solved in the next generation of laundry.

In addition to the above requirements for future laundry detergent formulations, they

must also correct the colour of fabrics which arises from un-avoidable degradation mech-

anisms as the fabrics age. Yellowing is one example of such a process, and is a major

contributor to degradation of fabric’s visual appearance. This effect will be explored in

more detail below.

Formulating better laundry detergents first requires a method of quantitatively assessing

and comparing their performance. The methods currently used are primarily aimed

at assessing the performance of formulations on stains which directly detract from

the appearance of fabrics, such as visible soils and coloured food stuffs. However,

many laundry stains may also contain lipids. Lipids found in laundry stains do not

absorb strongly in the visible part of the spectrum, and therefore in low-moderate

concentrations usually do not affect the colour of fabrics. For this reason the removal

of lipids is usually overlooked in the washing process. Such residues can build up on

garments and start a series of degradation processes, causing odour, or act as a site for

bacteria growth, ultimately leading to a shortened usable lifespan of the garment.38

1.4.1 Yellowing

Yellowing is a group term for a series of degradation processes that, over time, result

in formation of blue-absorbing chromophores in or on the surface of textiles. The

resulting ‘dingy’ yellow appearance is generally undesirable and can sometimes leads to

premature disposal of garments.
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In cotton fabrics, the yellow appearance it mostly due to two competing oxidative

reactions. Exposure to the atmosphere and sunlight can cause oxidation of the multiple

primary and secondary hydroxyl groups in cellulose. It was recently reported that yellow

colour is exclusively a result of carbonyl group formation on the cellulose polymer chain,

and the process is amplified by nearby carboxyl groups which find their origin also as

products of oxidation.39 Yellowing is also not exclusive to cotton, it is observed in

virtually all commonly used textiles.40,41

Tackling this issue has historically been the work of laundry detergents, which contain

additives such as fluorescent whitening agents (FWA) or hueing dyes (HD). These op-

tical active components seek to neutralise the yellow colour during the wash cycle and

their function will be explored in greater detail. Clothes manufacturers are now con-

sidering more exotic solutions, such are coating the fibers with more stable polymers.42

However, until this technology becomes viable, the world continues to rely on FWAs

and HDs.

1.4.2 Fluorescent whitening agents

Fluorescent whitening agents (FWA) or optical brighteners are blue-fluorescent chem-

icals added to most white paints and materials, as well as laundry detergents. They

absorb in the invisible NUV region of the spectrum (below 400 nm) and emit blue light

(400 - 450 nm), which compensates for the lack of blue light reflected from yellowed

fabric, owing to the introduction of chromophores. The compounds used for this pur-

pose are typically derivatives of stilbene, which is a simple molecule consisting of two

phenyl rings connected by a conjugated carbon-carbon double bond.43 Other FWAs

based upon coumarins, imidazolines, diazoles, triazoles, and benzoxazolines have also

previously been used for this purpose.44 Interestingly, this mechanism is even found in

some natural materials, with an example being human teeth.45
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1.4.3 Hueing dyes

A different approach to correcting for yellowing is to dye the degraded fabric purple-blue

hueing dyes (HD) also during the wash cycle. This results in a more-flat reflectance

profile, devoid of the ‘dingy’ yellow appearance at the expense of reduced overall bright-

ness.46 The chemistry of HDs is as broad as dyes themselves, and therefore the exact

dyes used in formulations are not typically disclosed by the laundry industry.
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1.5 Machine learning

The process of automated function fitting forms the core of machine learning. Algo-

rithms used in machine learning can be sub-divided into two categories: ones which

require a set of data containing both the input and correlated output variables, called

training data and measured using an external technique; and others which require no

prior knowledge about the input dataset. These are called supervised and unsupervised

algorithms respectively.

The supervised type operate on a given set of input variables and desired output vari-

ables, a reflectance spectrum and concentration of analyte in a sample for example.

There exists many algorithms which can ‘learn’ the relationship between the two sets

of data. This relationship, also referred to as a ‘model’, and can then be used to infer

the output from a new set of input data. The accuracy of these types of models is

ultimately limited by the accuracy and reliability of the training data, as well as the

complexity of the relationship between the input and output space. Unsupervised algo-

rithms require no training data, however, unlike the former type, the output is subject

to interpretation by the user or further analysis.

A brief introduction to the specific functions used in this work will now be provided.

The functions were used from the MATLAB Statistics and Machine Learning add-on

package, and further information about the computation is available elsewhere.47

1.5.1 Principal component analysis

Reflectance spectroscopy can generate large amounts of data, with a spectrum for a

single sample usually consisting of over a thousand variables. In cases where multiple

samples need to be compared or analysed together, data analysis can become computa-

tionally intensive, or sometimes even impossible with the available hardware. However,

spectra usually contain a large amount of multicollinearity, where spectral bands are
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likely to be correlated between each other. These correlations can be removed to sim-

plify the dataset using a dimensionality reduction technique such as principal compo-

nent analysis (PCA).48 PCA creates a new set of variables called principal components

(PCs) which are linear combinations of the original variables. The PCs are formed by

rotating the original axes in order to describe the maximum amount of variance in the

dataset, it is therefore necessary to mean-center data prior to application of PCA.

Mathematically, PCA can be described by considering a set of n samples with K number

of variables associated with each sample. The dataset is then formed by defining each

sample as a vector in K dimensions. PCA can be performed on the dataset by firstly

forming a K × K covariance matrix (C) using the whole dataset. The off-diagonal

entries of C describe the correlations between variables. They can be subsequently

removed by diagonalisation, which is carried out by solving the characteristic equation:

det[C− σ2I] = 0 (1.10)

where σ2 is an eigenvalue and I is the identity matrix. The eigenvalues (σ2) are the

projections of the variance of each variable onto the corresponding eigenvectors, which

can be found by solving:

Cvj = σ2vj (1.11)

for each eigenvalue (indexed by j). Each eigenvector contains the coefficients, also called

loading or weighting, of the original variables which can be used in linear combinations

to produce what are called PC scores.48

Once the PC scores have been determined, they may be used for data analysis in place

of the original variables with the added advantages of: a single PC usually accounts

for the majority of the variance in the total dataset, therefore only a few PCs are
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needed to describe the entire dataset. Secondly the PCs are orthogonal by definition,

making them ideally suited for regression analysis. The combination of using PCA

followed by linear regression on the resulting scores is a popular supervised machine

learning technique called principal components regression (PCR), and the process will

be described in more detail as it is applied.

The use of PCA in the context of spectroscopy can be further demonstrated with

simulated data; in this example, a spectrum with a single Gaussian peak can be defined

by the expression:

f(x) = ae−
(x−b)2

2c2 (1.12)

where a defines the peak’s amplitude, b the center position, and c the standard deviation

or the peak width. An arbitrary x axis is defined with a set of integers 1:1000 in unit

steps. A set of Gaussian curves can be defined by a = 0.2, 0.4, 0.6, 0.8, and 1, with b

and c as constants of value 500 and 50 respectively (arbitrary). The peak height and

integral both scale linearly with a, which can be observed in figure 1.12 (a-left). It can

be seen that PC1 describes 100 % of the variance in the dataset, with the weightings for

PC1 forming a Gaussian curve. The initial 1000-dimensional dataset can therefore be

completely described by a single variable, the score of PC1. Furthermore, a PCR type

model can be applied by fitting a first order polynomial to the score of PC1 against

peak amplitude, leading to perfect fit with gradient 9.4 and intercept -5.3 (2 sf).

To further demonstrate the effect of spectral features in PCA, a more complex example

is given. A set of spectra have been defined as a sum of two Gaussian functions, one

increasing and the other decreasing linearly in magnitude throughout the dataset. The

functions take the form:

f(x) = αe
− (x−300)2

2(50)2 + βe
− (x−700)2

2(50)2 (1.13)
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where α and β have been arbitrarily set to: α = 0.2, 0.4, 0.6, 0.8, 1, and β = 2, 1.6,

1.2, 0.8, and 0.4. The resulting simulated curves can be seen in figure 1.12 (b-left). The

PCA coefficients, shown in figure 1.12 (b-middle) now take the shape of two horizontally

offset Gaussian peaks, with one showing twice the amplitude and opposite sign. PC1

again describes 100 % of the variance in the dataset, showing how multiple correlated

features from 1000 input variables may be decomposed to a single variable. An ideal

PCR type model can also be fitted with a linear trend of gradient -21 and intercept 13

(2sf).
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Figure 1.12 Demonstration of PCA on an example dataset consisting of Gaussian
functions. The functions f(x) in the left column have been set up using equations 1.12 (top)
and 1.13 (bottom). The top row demonstrates a function consisting of a single Gaussian
curve which increases linearly in magnitude set by variable α = 0.2, 0.4, 0.6, 0.8 and 1. The
bottom row demonstrates a function that consists of two summated Gaussian curves, one
increasing and the other decreasing in magnitude linearly, as defined by the variables α =
0.2, 0.4, 0.6, 0.8, 1, and β = 2, 1.6, 1.2, 0.8, and 0.4 respectively. The middle column shows
the weightings used to define PC1, calculated using PCA on the corresponding set of
functions to the left. The right column shows a plot of the PC1 scores as a function of peak
amplitude (defined by α). The scores are calculated by linear combinations of each curve
and the PC1 weightings, each point corresponds to a single curve shown in the same colour
on the left-hand set of functions.

1.5.2 t-SNE

Another method of visualising datasets with many variables is t-distributed stochastic

neighbour embedding (t-SNE), which is an unsupervised technique primarily used for

data exploration. In t-SNE, the output is two dimensional unit-less scatter plot, with

the axes formed to again maximise variance, only is this case local similarities between
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variables are preserved. This means that the output can be analysed in a similar manner

to a score plot in PCA, however, one consideration is that t-SNE is not deterministic,

meaning that the exact shape of the output will be different with every computation.49

1.5.3 Gaussian process regression

Gaussian process regression (GPR) is a non-parametric approach to regression that

has been shown to be highly effective in extracting quantitative information from NIR

spectral data, and works well on small datasets.50 A Gaussian process is a collection of

random variables such that any finite subset exhibits a joint Gaussian distribution. In

GPR, this idea is extended to a distribution of functions that is used to represent the

training data, and inference can then be carried out by taking the mean of the function

distribution sampled at a single point. A major advantage of this approach is that

the distribution of functions provides a measure of the uncertainty in each prediction,

meaning that the model can evaluate how confident it is in relating the input to the

training data used to create the model. A detailed explanation of the maths behind

this method is available elsewhere51 and the algorithms used to fit GPR models vary

between implementations; the approach used in this work is documented in ref. 52.
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1.5.4 Validation

In fitting a function to a dataset, it is important to prevent over-fitting. Over-fitted

functions are very good at describing the dataset presented (training data) but fail when

the function is tested on external data (validation data). Over fitting can generally be

reduced using the following techniques: (a) increasing the size of the training dataset

which increases the complexity requirements for over fitted functions; or (b) using

validation techniques to supervise the fitting procedure. Validation aims to prevent

over fitting by assessing the quality of the fit on a dataset that is external to that used

in parameter fitting. Mathematical, this is defined by calculation of the loss function

using the fitted model on a dataset separate to that used in minimisation the residuals

vector, which is used to optimise the coefficients which define a model. Validation is

key to producing robust models which are tolerant to random fluctuations which are

always present in training data, as well as real-world data.

An external dataset can be obtained from a subdivision of the total acquired dataset by

using two common validation techniques: holdout validation and k-fold cross validation.

1.5.5 Holdout validation

As the name suggests, this a method which is carried out by excluding a specified

proportion of the overall dataset from the training data to be used as validation data.

The fitted model can then be used to predict the responses of the excluded samples

to assess the model performance on data not present in its training set. A measure of

model performance, is then calculated from the difference between the predicted and

known responses in the validation dataset. Holdout validation is usually used with large

datasets as the excluded data is not used in the fitting process. The amount of data

excluded needs to be statistically significant to represent the entire dynamic range of

the model, which may impact model performance if only a small number of samples are

present in each region of the input range.
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1.5.6 k-fold cross validation

Cross validation can be considered as a more rigorous version of holdout validation. It

is carried out by splitting the total dataset into k number of groups. Then a series of k

iterations removes a single group to be used as the validation data, with the remaining

groups used as training data. Model performance is then calculated from the difference

between the predicted and know responses in the excluded group during each iteration.

This iterative approach is more suited to smaller datasets as the entire dataset is used

in model construction. Furthermore, computational requirements are increased com-

pared to holdout validation, which maybe not be feasible with more complex models

and larger datasets.

The error in fitted models is assessed using a parameter called RMSE, which is calcu-

lated during the validation process as to include the effect of over-fitting in assessing

model performance. RMSE is calculated as the quadratic mean of residuals when the

fitted function is applied to the external validation data:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − y(xi)) (1.14)

where n is the number of samples in the validation dataset, yi is the set stain con-

centration, xi is the model input, and y(xi) is the model output of the ith sample.

This empirical parameter provides an estimate of model accuracy, however the error

associated with model prediction requires a more rigorous analysis with external data.
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Colourimetry and tuning colour
appearance

In studying the appearance of objects using colourimetry models, it is important to in-

vestigate their limits, and particularly phenomena which may not be possible to predict

using our existing models of human colour perception. In this chapter, the mechanisms

which can affect human colour perception will be the object of study through a combi-

nation of spectroscopy and computational modelling.

Initial studies were focused on the unusual range of appearances which can be attributed

to compounds containing lanthanide ions, and origin of these discrepancies identified a

misnomer commonly referred to in the literature.

Following this, the attention turned to tuning colour appearance, and the ideas devel-

oped were then applied to control the colour change seen in one particular lanthanide

salt (neodymium chloride), which has lead to the development of an entirely new mech-

anism for controlling the appearance of an object.

Finally, the colour appearance models which were rigorously tested in the sections de-

scribed above were then applied to colourimetry of consumer laundry. A model used for

predicting the appearance of fabric under different lighting conditions, as well as levels

53
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of degradation and colour-correction by FWAs or HD is described and implemented.
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2.1 Introduction

2.1.1 Discrepancies in colour appearance

The background of why objects may appear different colours is foremost discussed.

There are many examples of objects which can appear different colours under different

conditions, some objects are artificial while, others are completely natural and have

been commonly known since early civilisation such as the Uluru landmark in Australia,

that can appear to change from deep red to orange-brown at sunrise; or the reverse

at sunset.53 Similarly, the less common Alexandrite effect describes the difference in

appearance of the mineral ‘Alexandrite’, which can appear any hue ranging from pur-

ple to green depending on the illumination source and chromatic adaptation of the

observer.54 This effect has also been attributed to the cause of the colour change seen

in compounds containing rare-earth elements, and will be discussed in more detail later

in this section.

There are many well known mechanisms for which a single object can appear different

colours, the most common of which can be summarised as follows:

Luminescence

In luminescence, photons of higher energy are absorbed by atoms, typically leading

to emission of lower energy photons, the process is also sometimes referred to as down-

conversion. It may cause a drastic change to the appearance of an object if the absorbed

light is in the ultra-violet (UV) region, which is otherwise invisible and therefore does

not contribute to the colour of the illuminant regardless of intensity. If a material can

down-convert the absorbed energy to a photon in the visible portion of the spectrum,

then it’s colour shifts towards the hue of the emitted light. This is a particularly

challenging area of colourimetry to model as discussed in a previous section (1.3).
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Photochromism

The absorption of light by matter results in excitation of the irradiated atom to an

excited state, the de-excitation pathway which occurs in-turn can result in a physical or

chemical change within the material. This could be a chemical reaction55 or a change in

conformation,56 for example. The result may alter the materials frequency-dependant

dielectric properties which, if in the visible region affects its perceived colour. This

effect may be permanent or reversible and is widely used in commercial applications.

An example of this effect in everyday life is utilised in auto-darkening sunglasses.57

Dichromatism

The colour of a material depends not only on its dielectric properties, but also on

how much light is absorbed when passing through the material before reaching the

observer. This is affected by the effective path length in the measurement as well as

concentration of absorbing species. A common example where changing these factors

leads to a large difference in colour is seen in pumpkin seed oil, which appears green

in a thin layer and changes to deep red as the thickness or concentration increases.58

Most translucent materials which are coloured will display this property, although the

difference in hue is usually too small to be noticeable compared to the difference in sat-

uration. Dichromatism can be explained by the Beer-Lambert law and by the response

of the three types of cone photoreceptors in the observer. It is particularly prevalent in

substances that have an absorbance spectrum with two features, one wide but weak in

intensity, and another narrow but with high intensity. As the absorption of the sample

increases, the perceived hue changes from that defined by the position of the wide but

shallow feature to one defined by the deep but narrow feature.59 In pumpkin seed oil

this is caused by two absorbance bands, one high in magnitude peaking around 405

nm, and the other low in magnitude but broad peaking in the yellow region around 575

nm.60
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The change in hue stems from the non-linear relationship between absorbance and

perceived colour. In gemstones, this effect is sometimes also referred to as Usambara

effect.61

2.1.2 The Alexandrite effect

Some natural minerals exhibit a colour change when viewed under different light sources.

Perhaps the most striking of these is the mineral Alexandrite which can appear any hue

from green to deep purple (figure 2.1). This change in colour occurs when the illuminant

under which the sample is observed changes between a high colour temperature source

such as daylight, to lower colour temperature one such as incandescent lighting. The

phenomenon is called the ‘Alexandrite effect’ and was first observed in the mineral

Alexandrite which is a type of Chrysoberyl (BeAl2O4), originally discovered in the Ural

Mountains of Russia.20

Figure 2.1 Mineral Alexandrite observed under daylight (top) and incandescent lights
(bottom) displaying the Alexandrite effect. Reproduced with permission from ref. 54.

Pure Chrysoberyl is actually colourless and the colouration in Alexandrite originates

from the absorption of light by chromium impurities, which replace a small portion of

aluminium atoms in the beryllium aluminate lattice with chromium. This is present as

Cr3+ ions which have two transitions (absorbance bands) prevalent in the visible region:

one in the UV-blue region (380-450 nm ) and the other in the yellow region (565-590
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nm).62,63 The resulting optical spectrum contains two bands of high transmission, one

centred at around 490 nm in the blue/green region and another in the red region, which

peaks in the NIR region:

Figure 2.2 Transmission spectrum of a mineral Alexandrite sample which displays a strong
colour change between daylight and incandescent lighting.64

The result is that this mineral appears green under broad spectrum illumination; which

may seem contradictory due to the strong transmission feature in the red part of the

spectrum. However, due to the green-centred sensitivity of the human visual system, the

blue/green transmission peak dominates the apparent colour. In translucent materials,

transmission properties are closely related to reflectance properties, as the light typically

passes through the material before reaching the observer, meaning that the two types

of spectra can be analysed in a similar manner.

The colour change of Alexandrite has been the subject of numerous studies. Early stud-

ies concluded that the phenomenon was a ‘psychophysical’ one involving: the adaptive

aspect of the human vision system, the two transmission bands in the blue-green and red

regions, and the spectral power distributions of the different kinds of light sources.20,65–67

Colourimetric analysis of Alexandrite has previously been carried out by applying the

CIE colour matching functions on spectra of light reflected from the sample.64 The
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results showed that the observed colour change is also concordant with the CIE sys-

tem, it is therefore not outside of our current understanding of human colour vision.68

The ‘Alexandrite effect’ is not exclusive to mineral Alexandrite, in fact samples of this

gemstone which exhibit such a strong perceived colour change are extremely rare and

valuable. Certain ruby, sapphire and other gemstones that feature trivalent chromium

also exhibit a colour change when the light source is changed from sunlight to incan-

descent light, although not as pronounced as Alexandrite.20,64,69 Synthetic gemstones

which exhibit this colour change are now routinely synthesised; a popular approach

involves doping sapphire with low levels of vanadium, which results in similar optical

properties to that of Alexandrite.20,54,70 It has recently been shown that the petals of

purple Torenia flowers can also exhibit this colour change property to a small degree.68

With so many different objects showing a change in colour between sunlight and incan-

descent lighting, the classification of what is the Alexandrite effect has been challeng-

ing. Early studies concluded that simply the presence of two transmission bands in the

blue/green and red regions of the spectrum, caused by an absorption band in the yellow

region is enough to classify a material as possessing an Alexandrite or Alexandrite-like

effect.69 A later study looked at a collection of four materials: Alexandrite, coloured

glass, garnet and sapphire. The study then categorised the observed colour changes into

four types based on the CIE Lab colour space.68 The defining metric was the hue angle

measured between the a* and b* coordinates under a set of standard illuminants. This

classification system has since been adopted for identifying if materials which change

colour under different illuminants exhibit the true Alexandrite effect; which is surprising

given the study only included four samples.71–73

The true cause of the Alexandrite and Alexandrite-like colour changes was only re-

cently published in 2020, despite the concept having already been well established in

colorimetry literature.

In the case of Alexandrite, while it does not appear purple under broad spectrum
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illumination, the transmission/reflectance spectrum contains two bands which expressly

interact with the S and L cone cells, causing an overall hue shift towards red under lower

colour temperature illuminants due to colour inconstancy (described in section 1.3.3).

The position and width of the two transitions responsible for the transmission spectrum

of Alexandrite have been found to be critical to achieve such extreme colour inconstancy

which gives the mineral its sought-after appearance.54 These spectral band shapes are

primarily governed by the chromium levels in the beryllium aluminate lattice,20 which

explains why only a small fraction of naturally occurring Alexandrite with the right

level of chromium doping exhibits a strong colour change effect.

The reflectance or transmittance spectrum of Alexandrite also satisfies the criteria for

dichromatism, which is sometimes misinterpreted as the origin of the colour change,20

although it does have an effect on the magnitude of colour inconstancy observed. The

anisotropic orthorhombic crystal structure of Alexandrite also facilitates a change in

observed colour due to pleochroism,72 but this is unlikely to be observed under natural

conditions.

2.1.3 Compounds containing rare-earth elements

One phenomenon that may challenge our current understanding of colour perception

is the uncertain colour of particular lanthanide compounds. Anhydrous neodymium

chloride as an example, can be described as appearing pale green or lilac according

to different chemical suppliers.74,75 While this may be attributed to impurities or iso-

merism, it is actually found that the appearance of a single sample can vary between

these two colours depending on the light source used as the illuminant. Under sun-

light (or other broad spectrum light sources) neodymium chloride appears lilac, yet

under fluorescent lighting the observed colour is pale green. These observations can

be confirmed by multiple observers, and even replicated with digital photography as
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shown in figure 2.3. The phenomenon has been reported in a range of chemical com-

pounds that contain rare-earth elements,73,76–79 although the colour change is yet to be

fully explained. Recently the same phenomenon has also been reported in actinides,

particularly compounds of americium and neptunium.80,81

Figure 2.3 A single sample of anhydrous neodymium chloride under sunlight (left) and
fluorescent lighting (right) including a QP 20382 colour standard card for reference.
Photographs were taken using a Canon EOS 60-D digital camera.

Upon closer inspection of this phenomenon, it becomes clear that the colour change ob-

served in rare-earth elements cannot be due to the ‘Alexandrite effect’, or even colour

inconstancy more generally. The colour change in Alexandrite or ‘Alexandrite-like’

materials occurs when the colour temperature of the light source is altered. In this

novel class, however, the difference in colour is never reported when the illuminant is

changed from sunlight to an incandescent source. Furthermore, fluorescent lighting is

sometimes used as a ‘daylight simulator’ in studies of Alexandrite-like materials, appar-

ently because samples appear similar colours under both illuminants, yet in compounds

containing rare-earth elements, changing between daylight and fluorescent lighting trig-

gers a large and noticeable change in perceived colour.64

If the new type of colour change observed in rare-earth compounds can be understood,



Chapter 2. Colourimetry and tuning colour appearance 62

then there is a possibility that it can be tuned. Controlling the appearance of objects

using the illuminant has significant commercial applications. In the retail industry for

example, colour is a key aspect of a products aesthetic; and while retailers may not

always be able to control the colour of their products, they can chose the light sources

used to display them. The sale of red meat is a prime example of a scenario where

this is utilised, warmer illumination causes a more-red appearance of the product83

which is typically considered more appealing.84 The tuning of the colour change seen

in rare-earth compounds will therefore also form a part of this study.

2.1.4 Colorimetry of consumer fabrics

The laundry detergent industry strives for products which better clean fabrics and to

replicate the users-experience, this is usually assessed through colourimetric assessment

of fabrics in combination with wash testing. Describing the colour of consumer garments

may seem like a trivial exercise, however, if reliable quantitative results are required

then the exercise becomes far more complex, and the most challenging aspects will

herein be outlined.

The challenges to colourimetry of fabric stem from the contamination and mechanical

abrasion that functional fabrics are typically subject to, as well as the numerous degra-

dation mechanisms which impact the appearance of fabrics, these have been discussed

in a previous section (1.4.1). Colourimetry of consumer fabrics is further complicated

by laundry detergents themselves, which introduce optically active additives such as

FWAs and HDs to the fabrics during a wash cycle. Consumers can choose between

many laundry detergent brands and therefore the nature of these additives is subject

to vary between washing cycles, as well as the concentrations in which they are used

in.

Overcoming these challenges to yield a method which can reliably assess the perfor-

mance of laundry detergent formulations is key to optimising laundry detergents to
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better correct the colour of garments for the effects of yellowing, and ultimately extend

the usable life span of a garment as far as possible. The future of current technologies

to combat yellowing is, however, becoming more uncertain as advances in lighting tech-

nology mean that the spectral profile of light illuminating the washed fabrics is going to

change. This is particularly challenging for FWAs, which rely on the light source having

some high-energy near-UV (NUV) component to give the renowned ‘whiter-than-white’

appearance.

LED based lighting is quickly becoming the most wide-spread lighting technology due

to it’s relatively high efficiency and colour rendering compared to incandescent and

vacuum fluorescent alternatives. The efficiency of LED lighting, among other factors,

stems from its spectral output, which is typically very low in the NIR and NUV regions

where the human visual system is least sensitive.

FWAs will fail to correct the appearance of fabric for degradation under a certain type

of LED lighting, which is quickly becoming the most wide spread form of lighting. The

type of LEDs primarily affected are the blue-pumped white LEDs, which consist of a

450 nm GaN LED coated with a cerium-based (typically Y3Al5O12:Ce) down-converting

phosphor,85,86 which are the most common type currently used in lighting technology.

This was the conclusion of a study published by Houser and co-workers,87 which has

since spurred several news stories warning about the effects of a ‘dingy’ appearance even

after washing.88,89 The authors of the study even suggested that lighting manufacturers

should include violet LEDs into lighting products, which result in an overall reduction

in the efficiency of the lighting,89 but still allow FWAs to function. Such light sources

are now commercially available for applications where the whitening effect of FWAs is

crucial.90
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2.2 Results and discussion

2.2.1 Colourimetry of compounds containing rare-earth ele-
ments

Initial studies into the true cause of the colour change of rare earth compounds used

anhydrous neodymium chloride as the representative sample. It is readily available and

was found to exhibit a strong colour change between natural sunlight and fluorescent

lighting. After these initial studies, the concepts will be expanded to cover a broader

range of rare earth compounds.

Anhydrous neodymium chloride appears lilac when viewed under sunlight but appears

pale green when viewed under fluorescent lights; this is the opposite of the colour change

observed with the Alexandite effect. To investigate the currently accepted connection to

Alexandrite, the CIE system (introduced in section 1.3.2) may be employed to predict

the colour under sunlight and incandescent lighting. The first step in this procedure

was to measure the reflectance spectrum of anhydrous neodymium chloride using DRS.

The SPD of sunlight and a 2800 K incandescent lamp were also recorded (figure 2.4).

The light diffusely reflected off the samples surface can be calculated as the product

of the light source’s SPD and the reflectance of the sample, both as a function of

wavelength. The coordinates of the reflected light in the CIE Lab colour space can

then be calculated using colour matching functions. In this study the L* coordinate (or

perceived brightness) of the reflected light is of little relevance since only the change in

hue is of interest, which places the focus onto the a* and b* coordinates. The calculated

Lab coordinated are therefore displayed as projections onto a two dimensional plane

(figure 2.4).

In this calculation, ‘chromatic adaptation’ or the process responsible for colour con-

stancy, was estimated using the von Kries transformation (described in section 1.3.3).

More complex and accurate corrections do exist, however, these usually use the von
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Kries hypothesis as their basis.27 Furthermore, in this case the simple von Kries cor-

rection was found to give results concordant with observations.

Colourimetry is usually carried out with standard illuminants as the light source; in this

case we are interesting in explaining the observed colour change, therefore the measured

SPD of two broadband sources, sunlight and an incandescent lamp, which are known

to cause this phenomenon will be used instead.
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Figure 2.4 (Top) CIE L*a*b* colour space plot showing chromaticity change of
Alexandrite (A) and neodymium chloride (N) as the illuminant is exchanged from sunlight
(Sun) to incandescent lighting (Inc), the label next to each point corresponds to the sample
and illuminant whose spectral properties are displayed below. The colour of the points is a
conversion of the L*a*b* coordinates into the sRGB colour space. (Middle) Transmittance
spectrum of Alexandrite64 (blue) and reflectance spectrum of neodymium chloride (orange).
(Bottom) SPD of midday sunlight recorded in Durham, UK (blue) and a 2800 K
incandescent lamp (orange).
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The L*a*b* coordinates of Alexandrite correctly predict the green to purple hue shift

as the illuminant is exchanged from sunlight to incandescent lighting (all L*a*b* co-

ordinates are provided in section 5.2), which is consistent with literature colourimetric

studies.64 By contrast, the hue of neodymium chloride is almost unaffected by this

change of illuminant. This is consistent with observations and further supports the

argument that there is another mechanism, separate from the Alexandrite effect, re-

sponsible for the colour change phenomenon in rare-earth compounds.

The reflectance spectra of Alexandrite and neodymium chloride show little similarity.

While the colour of Alexandrite arises from broad transitions within the d subshell of the

chromium ions, broadened by vibrations in the crystal field; the colour of neodymium

chloride is a result of a myriad of parity-forbidden transitions in the 4f subshell. The

transitions become allowable due to non-centrosymmetric interatomic and crystal field

effects on the ions. However, the intensity of f-f transitions are still much weaker

than those in the d subshell. The ‘shielding’ of the unfilled 4f subshell by the filled

5s and 5d subshells greatly reduces the interatomic and crystal field effects on the 4f

transitions, producing the relatively narrow bands.20 This effect also means that the

reflectance spectra of the majority of chemical compounds containing neodymium ions

show little variation, hence the colour change phenomenon is reported in a wide variety

of compounds containing neodymium.

The SPD of sunlight and the incandescent emitter are both continuous over the visible

spectrum with only a few sharp features towards the NIR portion of sunlight, which

can be attributed to Fraunhofer lines.91 These light sources can both be considered

as black-body radiators, emitting a continuous frequency spectrum that depends on

the body’s temperature. Conversely, fluorescent lighting utilises a completely different

mechanism for generation of light; stimulated (electron-bombardment induced) emission

from gaseous mercury is used to initially generate UV radiation, and a mixture of

phosphors is then used to down-convert a portion of the mercury emission to visible
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light through luminescence. Two common phosphor technologies include: rare earth

element based, which are typically used to produce cool white lights, and halophosphate

based which are typically used to produce warm white illumination. SPDs from both

types were recorded for colorimetric measurements (figure 2.5).

The colour of cool white fluorescent lamps is designed to mimic that of natural sun-

light, however the SPD is completely different. While sunlight is effectively continuous

through out the visible spectrum, fluorescent lights constitute high intensity peaks

which carry the main components necessary to generate ‘white’ light as perceived by

the human visual system. In colourimetry, the effect of different SPD’s producing an

identical cone response is called metamerism. Even in the case of warm white fluo-

rescent lamps, which are orange in colour, the effect of colour constancy is that their

colour is still perceived as white.

Figure 2.5 (Top) SPD of sunlight (orange, recorded at midday in Durham, UK) and white
fluorescent lighting (blue) which responsible for the colour change in neodymium chloride.
(Bottom) SPD of typical cool white (blue) and warm white (red) fluorescent lights.
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Metamerism can be considered as an artefact of the human visual system having less

channels than required to represent the spectral information; it appears in several forms

and presents many challenges to colourimetry.26 For example, the two light sources

described above may appear the same colour to one person but different to another.

This is classed as metameric failure and in the example case it is caused by observer

metamerism, as the observers’ visual systems have subtly different spectral responses.

If a sample has a reflectance profile which is not even across the visible spectrum then

it is also subject to illuminant metamerism, which describes the differences in observed

colour of an object under different white light sources. The ability of a light source

to maintain the colour of objects relative to a reference illuminant, such as D65, is

referred to as colour rendering. A commonly used metric to assess this is the colour

rendering index (CRI), which may be calculated for white light sources based on the

colour of a set of CIE standard under the light source (discussed further in this section).1

Fluorescent lighting typically scores relatively low in CRI compared to incandescent or

LED illuminants.92

The interaction of different light sources with neodymium chloride can be visualised

by considering the spectral composition of the diffuse reflections off the surface, which

have been calculated as the product of the light source SPD and reflectance spectrum

(figure 2.6). For the sake of comparison, the intensity of the light sources has been

scaled as to maintain an equal luminosity, which was estimated as the integral of the

SPD-ȳ product.
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Figure 2.6 SPD of light diffusely reflected from anhydrous neodymium chloride under
sunlight (left) and cool white fluorescent lights (CFL - right). Intensities are scaled as to
maintain an even luminosity between the light sources. The background has been coloured
as to approximately represent the perceived colour of each portion in the visible spectrum.

The results show that under sunlight the SPD is distributed across the spectrum in

a series of bands. Under cool white fluorescent lighting, however, the distribution is

completely different and dominated by two peaks in the green and orange regions.

The contrast between these two spectra is particularly significant in the green region:

under sunlight the purple appearance must be influenced by the absorbance bands

at 525 nm (Nd: 4I9/2 �
4G9/2,

2K13/2 and 4G7/2 ),93 yet in fluorescent lighting the

major green component comes from an atomic transition of mercury at 546 nm (Hg:

3P2 �
3S1),

94 which lies in between two absorption bands of neodymium chloride and is

largely reflected.

The big discrepancy between the SPD of diffuse reflections under each light source

shows that this is a case of illuminant metameric failure, and this can be confirmed

by colourimetry. However, to exclude any contribution from colour inconstancy, the

light sources must have the same colour temperature. The CCT of a light source may

be approximated from CIE xy coordinates using the McCamy method (2.1).95 It was

found that the recorded sunlight spectrum approximates to 5310 K while the cool white

fluorescent lights approximate to 4310 K.
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CCT (x, y) = −449n3 + 3525n2 − 6823.3n+ 5520.33

n =
(x− 0.3320)

(y − 0.1858)

(2.1)

This is a significant difference and in order to compensate for it, the broad sunlight

spectrum was replaced in calculations by a 4310 K black body radiator derived using

eq. 1.3. The SPD of such a source is shown in figure 2.7 and the resulting CIE xy

coordinates can be considered identical to those of the recorded cool white fluorescent

lights (fluorescent lights: x=0.369 y=0.375 and black body radiator: x=0.370 y=0.374)

within the accuracy of the instrumentation used in this study.

Figure 2.7 SPD of sunlight recorded in Durham, England at midday (orange) and a 4310
K black body radiator (blue) calculated using the plank equation (1.3), the same CCT as
that of cool white fluorescent lighting used in this study.

The colour matching functions were applied on SPD’s of light diffusely reflected from

the neodymium chloride surface under the 4310 K black body radiator and cool white

fluorescent lights. The von Kries chromatic adaptation functions were included to

compensate for minor differences in the illuminant colour. The resulting CIE L*a*b*

coordinates were found almost identical to those under measured sunlight (displayed in

figure 2.4). The predictability of this colour change phenomenon confirms that this is a

case of illuminant metameric failure as opposed to colour inconstancy, which has been

excluded by keeping the colour temperature of the light sources equal.

These results can be verified by observers: both the human eye and digital cameras.
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Photographs of the sample are provided in figure 2.3, and the Lab coordinates extracted

from them are similar to those predicted with colour matching functions (provided in

5.2).

The colourimetry studies carried out have shown that the nature of the colour difference

in anhydrous neodymium chloride is due to illuminant metamerism, however, with

such a complex reflectance spectrum it is not possible to identify the specific features

which are responsible for this effect from first principles. To investigate this matter

further, a set of computational reflectance spectra has been constructed by sequentially

removing sets of Nd absorption bands from the recorded diffuse reflectance spectrum.

The resulting spectra were multiplied by the SPD of a 4310 K black body radiator and

cool white fluorescent lights in turn to calculate the SPD of light diffusely reflected from

the surface. Colour matching functions were then applied and the L*a*b* coordinates

calculated under each light source (figure 2.8).

The results show that removing most of the absorption bands does not contribute to

illuminant metamerism, does not have a significant effect on the degree of illuminant

metameric failure observed, instead leading to a translation of appearance in the a*b*

colour plane. The direction of the colour change shows little variation in the majority of

the modified spectra, with the exception of 1 and 3 where the magnitude of the colour

change is significantly reduced. Removing the bands at 430 nm (4I9/2 → 2P1/2),
93 1,

changes the appearance under fluorescent lighting to pale cyan instead of green (figure

2.8 - 1), whereas removing the transitions at 525 nm (4I9/2 → 4G7/2,
2K13/2,

4G9/2),
93

3, eliminates the purple appearance entirely (figure 2.8 - 3). This suggests that the

colour change observed in anhydrous neodymium chloride is largely due to these two

absorption bands, which is to be expected given the overlap previously observed with

the sharp mercury transitions utilised in fluorescent lighting.
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Figure 2.8 (Left) L*a*b* coordinates calculated from a set of modified reflectance spectra
under a 4310 K black body radiator (central black spot) and cool white fluorescent lighting
of the same CCT. Each set of points describes the appearance of a theoretical surface with a
reflectance profile of corresponding number (shown to the right) under the two lighting
conditions. The colour of the points is a conversion of the L*a*b* coordinates into the
sRGB colour space. (Right) Set of reflectance spectra of anhydrous neodymium chloride
which have been computationally modified by systematically removing groups of absorption
bands. The spectra have been offset vertically for clarity.

The hypothesis can be investigated further by considering another set of modified re-

flectance spectra, which were simulated by including a single set of absorbance bands

onto an otherwise 50 % reflective sample using the KM approximation of reflectance.

The summation of reflectance spectra was carried out by: firstly applying a rectangular

window function to isolate each set of absorbance bands in turn, then all sets of spectra

were converted to KM space using equation 1.6 before being summed with the 50%

reflective profile (also converted to KM space); applying the inverse KM function then

yields the final simulated set of spectra (figure 2.9).

The same colorimetry procedure as that used on the previous set of modified spectra

was carried out in order to study the illuminant metamerism contributed by each set

absorption bands. The resulting L*a*b* coordinates show that the majority of modified

spectra show very little illuminant metamerism with the exception of spectra 1 and 3. 1

shows a grey to pale green change in hue, while 3 shows little change in hue, but a drastic

change in saturation. This distinction is consistent with the previous set of simulated
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spectra and suggests that a combination of the two bands could almost entirely describe

the colour change observed in neodymium chloride. Such a spectrum, comprised of only

two absorption bands was created (7) and the predicted colour is: purple under broad

spectrum illumination, and yellow / green under fluorescent lighting, which is very close

to that of the original sample. This confirms that observed colour change in neodymium

chloride can be almost entirely accounted for by two sets of absorption bands, 4I9/2 →
2P1/2 and 4I9/2 → 4G7/2,

2K13/2,
4G9/2, in the blue and green portions of the visible

spectrum.

Figure 2.9 (Left) L*a*b* coordinates calculated from a set of theoretical reflectance
spectra under a 4310 K black body radiator (central black spot) and cool white fluorescent
lighting of the same CCT. Each set of points describes the appearance of a theoretical
surface with a reflectance profile of corresponding number (shown to the right) under the
two lighting conditions. The colour of the points is a conversion of the L*a*b* coordinates
into the sRGB colour space. (Right) Set of theoretical reflectance spectra constructed by
systematically including a single group of neodymium chloride absorbance onto an otherwise
evenly reflective surface (with 7 as an exception which is a combination of 1 & 3). The
spectra have been offset vertically for clarity.

Neodymium chloride is deliquescent, and hydrated neodymium chloride also exhibits

an interesting susceptibility to illuminant metamerism. The hexahydrate sample used

in this study consisted of larger crystals than those of the anhydrous sample. This leads

to reduced scattering and a longer effective path length through the sample, resulting

in stronger absorption of light. These effects are visible in the reflectance spectrum of

the compound (figure 2.10), where the absolute reflectance is attenuated by a factor of
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6. It is also seen that the addition of water to the crystal structure causes a variation

to the shape the transitions at 525 nm ( 4I9/2 → 4G9/2,
2K13/2 and 4G7/2) and 580 nm

(4I9/2 → 2G7/2,
4G5/2) in the neodymium salt.

Figure 2.10 Diffuse reflectance spectrum recorded from two different samples of
neodymium chloride (blue - anhydrous, orange - hydrated). Spectra displayed on the right
are standardised to be mean-centred with a unity standard deviation.

The affected transitions are called hyper-sensitive transitions,96 and the difference can

are better visualised by comparing standardised reflectance spectra of both samples

(figure 2.10 - right). The spectra appear only subtly different, however, the illuminant

metamerism with fluorescent lighting becomes more complex. Colourimetric analysis

(figure 2.11) shows that the colour of neodymium chloride hexahydrate under sunlight

to be the same hue of purple as that of the anhydrous sample, only more saturated.

Under cool-white fluorescent lighting, the reverse pattern is observed with the hydrate

having a relatively less saturated green hue; and under warm-white fluorescent light-

ing, the green appearance is lost entirely and the sample appears a more-blue shade of

purple.

These finding are difficult to rationalised from first principals due to the complex shape

of the spectral profile of light reflected from the hydrated sample under both types

of fluorescent lighting (displayed in figure 2.11 - right). The spectra appear similar

with subtle differences, under warm white illumination the sample reflects more in the
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blue region compared to cool-white illumination, while the green and red components

appear more distributed through the visible spectrum. Aside from the influence on pre-

dicted colour, these results also suggest that under cool-white illumination, neodymium

chloride is more susceptible to observer metamerism.

Figure 2.11 (Left )L*a*b* coordinates of neodymium chloride (a-anhydrous,
h-hexahydrate) under sunlight and fluorescent lighting (cwfl-cool white, wwfl-warm white).
The colour of the points is a conversion of the L*a*b* coordinates into the sRGB colour
space. (Right) SPD of light reflected from neodymium chloride hexahydrate under
warm-white and cool-white fluorescent lighting, calculated as the product of the light source
SPD and the reflectance profile of the sample. Spectra have been scaled to maintain an
equal luminosity.

Neodymium is not the only lanthanide that forms salts which are reported to show a

significant colour change under fluorescent lighting. To study the colour change in other

lanthanides, a series of compounds which represent a single sample from each lanthanide

that has absorbance bands in the visible region was collected. A further six coloured

lanthanide compounds were investigated for the alexandrite effect and metameric failure

under fluorescent lighting. Reflectance profiles from hydrated salts of holmium sulphate,

praseodymium chloride, samarium nitrate and erbium acetate were measured using the

same DRS technique as that used for the neodymium chloride samples and the spectra

are displayed in figure 2.12. Optical spectra from salts of promethium nitrate97 and

thulium sulphate77 were investigated from previously reported studies where they were

measured in aqueous solution, and after conversion of the raw spectra to transmittance,

they will be used in place of reflectance spectra for an approximate comparative analysis.
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Figure 2.12 Standardised DRS spectra of hydrated lanthanide salts. Promethium97 and
thulium77 samples were approximated to reflectance from aqueous transmission
measurements which have been reported in literature.

The reflectance spectra again consist of a myriad of sharp f − f transitions, similar to
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those observed in neodymium chloride. The spectral profile of the light reflected from

each sample was calculated for each compound under sunlight and an incandescent

lamp, to test for colour inconstancy or the ‘Alexandrite effect’; as well as cool-white

fluorescent lamp and a 4310K black body radiator (the same colour temperature as that

of the cool-white fluorescent lamp) to test for illuminant metamerism. The results were

analysed in the L*a*b* colour space by applying the CIE colour matching functions

onto each product of the illuminant and the samples reflectance spectrum (figure 2.13).

The coordinates show that the tested samples display no significant degree of colour

inconstancy, as the appearance of all samples is nearly indistinguishable when sunlight

or an incandescent lamp is used at the illuminant. Further confirming that the colour

change observed in lanthanide compounds is not due to the ‘Alexandrite effect’ (colour

inconstancy) as previously reported.

Looking at the difference in appearance between fluorescent lighting (cool-white) and

a black body radiator of the same colour temperature, shows that the holmium sample

has a large susceptibility to illuminant metamerism under fluorescent lights, which is

comparable in magnitude to that observed in neodymium compounds. The remainder

of the tested samples show no significant change in hue between illumination from a

broad-spectrum source and fluorescent lights.

It is surprising that the promethium salt appears colourless and yet it has distinct

absorption feature in the green portion of the spectrum. This is somewhat displayed in

the calculated L*a*b* coordinates as a purple hue but with a low saturation. Saturation

of hue varies with the effective path length in the measurement, and the low value in

this case likely resulted from the diluted solutions used in place of solid sample as

sample could not be obtained and suitable reflectance data were not available in the

literature. Regardless, it is expected that larger crystals of promethium salts would

display a deep purple appearance, however the hue angle in the a*b* plane between

promethium nitrate’s appearance under sunlight and fluorescent lighting is quite small,
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therefore a large degree of illuminant metameric failure is not expected for such salts.

Figure 2.13 Colour appearance in the L*a*b* colour space of six hydrated lanthanide salts
calculated from reflectance spectra shown in figure 2.12: holmium sulphate (Ho),
praseodymium chloride (Pr), samarium nitrate (Sm), erbium acetate (Er), promethium
nitrate (Pm), and thulium sulphate (Tm); illuminated by: a simulated 4310 K black body
radiator (BBR), Incandescent lighting (Inc), cool-white fluorescent lights (CFL), and
warm-white fluorescent lighting (WFL). The label next to each point corresponds to the
lanthanide salt and light source used as the illuminant. The colour of the points is a
conversion of the L*a*b* coordinates into the sRGB colour space.

The holmium sulphate hydrate sample is predicted to appear yellow when illuminated

with sunlight or incandescent lighting and red-purple when illuminated with cool-white

fluorescent lighting, yet under warm-white fluorescent lighting the appearance displayed

a yellow-orange hue. These observations can be explained by comparing the emission

spectra of fluorescent lighting with the absorbance of the hydrated holmium sulphate

sample (which was approximated in figure 2.14 using the KM function). It can be seen

that the main green component in cool white fluorescent lighting originates from the

atomic transition of mercury at 546 nm ((Hg: 3P2 �
3S1)

94), this overlaps significantly

with the 5I8 �
5 F4,

5 S2 transition of holmium at 536 nm. The impact on colour appear-

ance is that less green light is reflected under cool-white fluorescent lighting compared to

sources in which the green component is distributed across more of the spectrum. This

effect is further intensified by a similar overlap found between the emission of terbium

at 488 nm (Tb: 5D4 �
7F6)),

98 which is used as a green-blue component in cool-white
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fluorescent lighting, and the 5I8 �
5 F3 transition of holmium at 483 nm.99–101

The absorbance spectrum of holmium also displays two absorbance bands in the blue

region at 447 nm (Ho: 5I8 �
5 F1,

5 G6) and 422 nm (Ho: 5I8 �
5 G5,

3 G5),
99–101 which

in contrast, do not overlap with the atomic transitions of mercury at 404 nm (Hg:

3S1 �
3 P0) and 436 nm (Hg: 3S1 �

3 P1) which contribute to the blue component

in both types of fluorescent lighting.94,102 The result is the holmium salt reflects less

blue light under broad band sources compared to fluorescent lighting, which in combi-

nation with band of high reflectance in the green and red regions explains the yellow

appearance under sunlight.

A combination of the afore mentioned features mean that the appearance of holmium

sulphate hydrate under cool-white fluorescent lighting is dominated by large reflected

red/yellow component, with a partially reflected blue component, and a little reflected

green component. This is expressed in the predicted colour as a large positive a* value

and a small negative b* value. In switching the illuminant to warm-white fluorescent

lighting, the green component of the light source is now reflected more as it is dis-

tributed through the entire green portion of the spectrum. The combined increase in

reflectance around the green - red portion of the spectrum is concordant with the or-

ange appearance. The increase in total light reflected from the surface is also consistent

with the increased L* value observed for the holmium sample when illuminated with

warm-white fluorescent lights.
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Figure 2.14 Comparative plot of the normalised KM function (F(R)) applied to the DRS
spectrum holmium sulphate hydrate, including the normalised SPDs of cool (solid orange
line) and warm-white (dashed orange line) fluorescent lighting for reference.
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2.2.2 Tunable illuminant metamerism

Theory of operation

To achieve a truly colour tunable object, we must be able to tune the spectral compo-

sition of light reflected from it’s surface. In the previous section this was explored by

computationally altering the reflectance profile of neodymium chloride. While this was

proven effective, it is difficult to achieve experimentally. In this section, the idea that

colour must be considered as an illuminant-object pair is exploited. The colour of an

object can also be determined by the spectral composition of the light source used to

illuminate it.

The illuminant is chosen such that it appears ‘white’ with a variable SPD. For a light

source to appear white it must stimulate the photo receptors within the human visual

system in the right ratios, however, the exact spectral distribution can vary significantly,

exemplified by the case of sunlight and cool white fluorescent lighting (figure 2.5). The

sample under illumination is chosen such that it can reflect a portion of each red,

green and blue component, as well as absorb a portion of each component at a slightly

different wavelength to that it reflects.

A ‘white light’ source can then be constructed by targeting each of the six compo-

nents’ bands, two for each red, green and blue components required to generate white

light. Anhydrous neodymium chloride was selected for initial attempts as it’s optical

properties have already been well characterised. The property which makes it a suitable

candidate is displayed in figure 2.15, where it can be seen that the narrow f-f transitions

allow the sample to absorb, as well as reflect red, green and blue components of the

visible spectrum. A sample of hydrated neodymium chloride, which consists of larger

crystals leading to a lower degree of scattering, will also be included in experiments for

reference.
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Figure 2.15 Diffuse reflectance spectrum of anhydrous neodymium chloride, highlighting
the regions targeted by the spectrally tunable light source to create maximum illuminant
metamerism. The background has been coloured as to approximately represent the
perceived colour of each portion in the visible spectrum.

The blue and green components are well suited as the sample can reflect blue light at

450 nm while absorbing it at 475 nm, it can also absorb green light at 525 nm while

reflecting it at 545 nm. The red component is non-ideal as the absorbance maximum

occurs in the yellow part of the spectrum, around 590 nm, but the sample reflect red

light at 620 or 650 nm. This may limit the resulting range of colours which the sample

can be programmed to appear, especially in the high saturation blue and green hues

which require low reflectance of red light.

Spectrally tunable light source

Tuning the spectral composition of a light source has previously been achieved using

two main methods: a broad-spectrum light source may be dispersed using a prism or

diffraction grating, then unwanted spectral components filtered out utilising devices

such as spacial light modulators or digital-micromirror arrays, followed by recombina-

tion to yield an output beam;103 alternatively, the output from a series of discrete,

narrow spectrum emitters such as LED’s, can be combined together and the spectral

profile of the resulting light source can be controlled by adjusting the power of each

emitter in the array.104 The former typically offers a better spectral resolution, usually

at the expense of output power; while the latter can offer higher output power due to
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the absence of filters, although the availability of emitters at specified wavelengths and

bandwidths may limit the operating range of such light sources.

The light source constructed for use in this study was based on a series of narrow

spectrum emitters due to the required optical power output. Human colour vision is

poor at low illumination levels, therefore to allow observation by humans with photopic

vision, the output power of the LED’s needs to be higher than 10 cd m−2.105 The light

source consists of 8 LED’s mounted onto a custom made printed circuit board (PCB),

which is housed on an aluminium heat-sink facing into a custom integrating sphere.

The integrating sphere is required to homogenise the output from the spatially offset

emitters. The LED’s are driven using a series of step-down converters on a main driver

board mounted onto the side of the integrating sphere. The main board features an

integrated microcontroller which is used to interfaced with software on a local computer,

as well as generate power control signals feeding the LED drivers. The tunable light

source unit is mounted on top of a photography booth that houses the samples as well as

a colour standard card for reference. In parallel, the computer-side software interfaces

with a spectrometer coupled to the output of the light source positioned next to the

samples, allowing for feed-back of the optical spectrum. Further details about the light

source are provided in section 2.4.2.
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Figure 2.16 Experimental setup of spectrally tunable light source. A) tunable light source
unit comprised of: integrating sphere shown as split halves in CAD model (B), LED array
(D) and LED drivers & power control electronics (C). E) Photography enclosure. F) QP 203
colour standard card. G) Anhydrous neodymium chloride sample. H) PTFE diffusely
reflective block. I) Collimator fibre-coupled to spectrometer.

The eight LEDs comprising the light source have emission maxima at: 420 nm, 440 nm,

470 nm, 515 nm, 545 nm, 590, nm 630 nm, and 655 nm. These will be referred to as

channels. The emission spectrum of each channel has been recorded and is presented

along with the reflectance spectrum of anhydrous neodymium chloride (figure 2.17),

for which the light source is expressly designed to work with. The 420 nm and 630

nm channels are only weakly absorbed by the neodymium chloride therefore were not

utilised further. The 440 nm and 470 nm channels form the blue component of the light

source. The 470 nm channel is designed to be reflected less than the 440 nm channel

due to overlap with the 4I9/2 → 4G11/2,
2K15/2 and 2G9/2 transitions. The 515 nm and

545 nm channels form the green component, with the later designed to have a higher

reflectance than the former due to the 4I9/2 → 4G9/2,
2K13/2 and 4G7/2 transitions in

neodymium ions. The 590 nm and 655 nm channels make up the red portion of the

light source, with the 655 nm channel designed to have a higher reflectance than the
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590 nm channel which overlaps with the 4I9/2 → 2G7/2,
4G5/2 transitions in neodymium

ions.

Figure 2.17 (Solid lines) Optical spectra recorded from each LED comprising the
spectrally tunable light source. Spectra have been normalised for clarity.(Dashed line)
Reflectance spectrum of anhydrous neodymium chloride for reference.

Tuning the spectral output of the light source is achieved by controlling the power

supplied to each channel individually, this was done using pulse width modulation

(PWM). The power output by each channel is regulated by continuously switching the

LEDs on and off at a rate of 500 Hz, a frequency above that detectable by the human

visual system, which is know as the flicker fusion threshold and has a maximum value

of around 60 Hz.106 The ratio of the time the LED spends turned on compared to off

in a single cycle is called the duty cycle and it determines the power output by each

channel. This technique was adopted to control the LED’s brightness as opposed to

limiting the current supplied to each emitter because the shape of the spectral output,

as well as brightness, of LEDs is known to vary with operating current.107 Previous

studies have reported complications in colorimetry applications of LED tunable light

sources utilising current control.108 PWM dimming does not affect the spectral output

of the LED, as the LEDs are always driven at a constant current during the on period
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of each cycle.

The current LED control electronics allow the intensity of each channel to be set in

151 steps (0-150), and the power control of each channel was tested for linearity by

recording a spectrum of the output as each channel is set to four power levels: 30/150,

60/150, 90/150, and 120/150. Each spectrum was then integrated to determine the

total optical power output and the results for the first (420 nm) channel are shown in

figure 2.18, where it can be seen that the emission peak does not vary in wavelength

with varying power output, and the total optical power output responds linearly to

PWM control. The other seven channels were also tested and show an identical trend.

Figure 2.18 Optical power (arbitrary units) output from each channel of the spectrally
tunable light source as it is set to four power levels: 30/150(1-blue), 60/150(2-red),
90/150(3-orange), and 120/150(4-purple).

Colourimetry studies

In working with spectra that contain sharp features, it is first important to consider

the effects of observer metamerism. Biological differences between individual human
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observers leads to slightly varied colour perception of identical stimuli, which is further

exacerbated when the SPD of the stimuli contains sharp features.109 For colourimetry,

this usually results in a discrepancy between visual metamers and coordinates calculated

using the CIE colour matching functions. A recent study using LED-based spectrally

tunable light sources has concluded that even the most recent colour matching functions

published by CIE were not good enough to render metameric light sources without clear

visible differences in perceived colour by different observers.110 The perceived colour

differences were attributed to the fact that the CIE colour matching functions were

developed from an average of a set of observers, and for accurate colour matching each

observer would effectively require their own set of colour matching functions. This

effect can also be seen in digital photography where different image sensors have Bayer

filters of varying transmission profiles, leading to differences in colourimetric response

which cannot fully corrected for in software. When the neodymium samples used in

this study were illuminated with a broad-spectrum white LED light source, the colour

of the samples perceived by two different cameras (2.19) shows significant variation

while the colour of the colour-standard card under identical conditions shows little

difference, with the exception of the blue tones. Moreover, the intensity of light falling

onto the eyes determines the ratio of which type of cells, rods or cones, dominate visual

perception. These effects make it difficult to accurately describe the appearance of

such samples, however, observer metameric failure is typically minor when compared

to the illuminant metamerism caused by sharp the SPD of the light source which was

demonstrated in the previous section. Chromatic adaptation mechanisms also provide

a margin for some unnatural illumination conditions to still appearing ‘white’.
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Figure 2.19 Neodymium chloride samples illuminated by broad-spectrum white LED
illumination photographed with different cameras: Sony a6000 (left), and Oneplus 5
featuring a Sony IMX 398 sensor (right). The in-camera white balance was set from the
white tile on the QP203 colour standard card.

The suitability of LEDs used in the constructed light source was confirmed by looking

at the appearance of the sample under illumination from individual channels of the

light source, which was captured using digital photography and presented in figure

2.20. The exposure was normalised against the the brightness of the middle grey colour

standard tile included above each image. It can be seen that for the red component,

the samples appear significantly brighter under the 655 nm channel than the 590 nm

channel; the same pattern is observed for the 545 nm / 515 nm channels forming the

green component, as well as the 440 nm / 470 nm channels of the blue component. In the

blue and green components, the colour of the light source shows little variation between

the channels; while the red component shows an orange hue for the 590 nm channel,

which is expected and will need to be compensated when combining the channels to

form white light sources.
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Figure 2.20 Neodymium chloride (anhydrous-left, hydrate-right) photographed while
illuminated by different channels of the spectrally tunable light source. Images have been
recorded with daylight white balance and exposure normalised to the 50 % grey reflectance
standard (central grey tile above each image).

The tunable light source was used to create white light by mixing a single channel

from each red, green and blue component. Feed-back from the spectrometer was used

to simultaneously calculate the CIE xyz coordinates using the CIE 2° (2006) colour

matching functions,111 followed by a conversion to the L*a*b* colour space with D65

as the white point. The channel intensities were then manually tuned to get the a*

and b* coordinates as close to zero as possible, while using the CIE Y parameter to

measure the overall luminance and keep the total apparent brightness of the light source

consistent between metameric combinations.

The appearance of neodymium chloride was tuned to primary colours of light (red,

green and blue) by firstly selecting a single channel from the three components to have

a high reflectance and the remaining two channels low reflectance, followed by the above

procedure to balance the channels in the correct proportions to achieve white light of

consistent luminosity. This is demonstrated in the case of the red appearance where
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the channels chosen to form white light were: 655 nm, 515 nm and 470 nm. Secondary

colour appearance (yellow, magenta and cyan) could also be made by selecting two

channels to have high reflectance and the other low reflectance. For example, in the

case of yellow the selected channels were: 655 nm, 545 nm and 470 nm. A further

two combinations were also made where the channels were selected to all have high

reflectance and all with low reflectance, causing the lightest and darkest possible ap-

pearance of the neodymium chloride sample. A total of eight illumination conditions

were created and will be referred to as 1-8 in this section of work.

Images of the samples were captured under each type of illumination, with the in-

camera white balance fixed to daylight, the same white point as that used in conversion

to L*a*b* space when to balancing the colour of the light source. The results can be

observed in figures 2.21 & 2.22 where it can be seen that the appearance of neodymium

samples is indeed altered to appear as both primary and secondary colours. These

results confirm the possibility of tunable illuminant metamerism, and demonstrate that

the perceived colour of an object can be entirely controlled by the spectral profile of

the illuminant.
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Figure 2.21 Neodymium chloride samples (anhydrous-left hydrate-right) photographed
with illumination from spectrally tunable light source set to different spectral profiles shown
in the right-hand column. Images have been recorded with daylight white balance and white
balance corrected using the white tile of the QP 203 colour standard card.
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Figure 2.22 Neodymium chloride samples (anhydrous-left hydrate-right) photographed
with illumination from spectrally tunable light source set to different spectral profiles shown
in the right-hand column. Images have been recorded with daylight white balance and white
balance corrected using the white tile of the QP 203 colour standard card.

The colour of the light source set to any single illumination condition was found to vary

as described by different human observers or imaging sensors. In the case of 1 and

5 the light source appears to have a red hue, although the neodymium samples still

adopts the desired red and magenta appearance respectively; scenarios 6 and 7 also

show a slight green hue in the illuminant. These discrepancies are confirmed by human

observation and likely arise due to the imperfect nature of the CIE colour matching
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functions used in balancing the colour of the light source. Colorimetric analysis of the

illumination spectra shows CIE xy coordinates (figure 2.23) scattered closed around

the intended D65 white point and do no reflect the off-white hues captured in the

images. In practice it was found impossible to balance the colour of the light source ‘by

eye’ to achieve indistinguishable metamers due to chromatic adaptation effects, which

suggests that the errors introduced by imperfect colour balancing may be un-noticeable

if they are sufficiently subtle. To account for chromatic adaptation and estimate what

the appearance would look like to an adapted observer, the images have been white-

balanced using the colour of the white tile on the colour standard card used as the

reference white point (column 2 in figures 2.21 & 2.22).

Figure 2.23 CIE 1931 xy coordinates of spectrally tunable light source set to illumination
profiles 1-8 calculated from illumination spectra displayed in figures 2.21 & 2.22. The red
cross pertains to the D65 white point. The colour of the background has been set to
approximately represent the associated coordinates in the xy colour space.

The quasi-metameric illumination conditions do not exclusively influence the colour of

neodymium chloride, the appearance of the colour standard card is also found to vary

between different illumination conditions. To quantify these differences in appearance,
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a set of 6 tiles representing the primary and secondary colour were selected and their

colour analysed in the L*a*b* colour space (figure 2.24). The coordinates were extracted

from the RGB values in the images and converted into the L*a*b* colour space using

the colour of the while tile in each scenario as the white point. The results are displayed

as projections on the a*-b* plane, with an image captured using high CRI LEDs as the

illuminant for reference, which will be referred to at illumination condition 9. While

all of the coloured tiles show a degree of illuminant metameric failure, the difference

in appearance is far more pronounced for the red, yellow and magenta tones. The

red colour standard shows a particular pattern of two clusters dividing illumination

conditions 1, 5, 4 and 7 with a lighter and more saturated appearance than 8, 3, 2

and 6, with the reference condition 9 falling in-between the two clusters. This can

be explained by the common factor of the red component in the tunable light source:

when the 655 nm LED is used at the source of red, the red tones appear brighter and

more saturated compared to broad spectrum illumination (9); whereas when the 590

nm LED is used as the source of red light, red tones appear marginally darker and

less saturated relative to the reference. This is the same effect that causes the green

appearance of neodymium chloride under fluorescent lighting, and occurs due to the

narrow emission spectra of the LEDS; the effect is particularly prevalent in the red

tones as the L and M cone cells in human eyes have peak sensitivity weighted towards

lower wavelengths (figure 1.7), meaning the visual system can better resolve colours at

the red and green portions of the spectrum.112 The high degree of metameric failure

seen in the yellow and magenta tones can also be attributed to the same cause, as they

all require high reflectance in the red portion of the spectrum.

Poor rendering of red tones by the tunable light source constructed in this study is not

unusual in lighting. Good colour rendering of high saturation red tones is especially

challenging even with broad-spectrum artificial illumination, for this reason deep-red

colour standards are sometimes omitted from CRI calculations that describe the quality

of white light sources to yield inflated values.113 This could be reduced by exchanging
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the 655 nm LED (chosen to have high reflectance by neodymium chloride) with a red

LED lower wavelength, the high reflectance of the sample at 620 nm suggests that this

could be a good alternative.
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Figure 2.24 L*a*b* coordinates calculated by image analysis of tiles on a QP 203 colour
standard card under illumination from led tunable light source set to illumination conditions
1-8 in figures 2.21 & 2.22 (9 pertains to broad-spectrum LED illumination). Each set of
plots describes the appearance of a single tile of the QP 203 colour standard card, shown at
the top with the letter denoting: red, green, blue, cyan, yellow and magenta, under different
metamers of white light. The label next to each point describes the appearance of the
corresponding colour tile under illumination conditions 1-9. The white point has been taken
from the colour of the white tile in each scenario. The colour of each point is a conversion of
the L*a*b* coordinate to the sRGB colour space.
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The tuned colour of the anhydrous neodymium chloride sample can be further examined

by looking at the spectral profile of the light reflected from its surface under each lighting

condition. This can be calculated as the product of the spectral power distribution of

the light source and the reflectance profile of the sample. The resulting spectra are

shown in figure 2.25. From the primary colours: 1 and 3 are mainly composed of a

single dominant peak, while 2 shows two broad bands in the blue-green and green-yellow

regions of the spectrum. This is likely a result of the incomplete overlap of the 545 nm

and 470 nm LEDs with the high and low reflectance bands of the neodymium chloride

sample at 550 nm and 475 nm respectively, which limits the intensity or maximum

saturation of the green appearance. From the secondary colours: 4 and 5 are dominated

by the reflectance of the 650 nm LED, which must be the most intense due to the low

sensitivity of the human visual system in this region of the spectrum. 4 is designed to

reflect little blue light yet shows a larger than expected reflectance in the blue region,

which was also observed in condition 2; this has the effect of lowering the saturation of

the yellow appearance and suggests that the 470 nm led used in this case is not ideally

suited to the application. 6 shows a good spectrum consisting of two strong peaks as

designed, which is congruent with the bright cyan appearance of the sample.
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Figure 2.25 SPD of light reflected from the surface of anhydrous neodymium chloride
calculated by the product of it’s reflectance spectrum and the SPD of the light source tuned
to illumination conditions 1-6. Picture inset on each spectrum shows the appearance of the
anhydrous neodymium chloride sample under each illumination condition. The background
has been coloured as to approximately represent the perceived colour of each portion in the
visible spectrum.
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Colorimetric analysis can be extended further by applying colour matching functions to

the spectral profiles reflecting from the surface of the anhydrous neodymium chloride

sample under each illumination condition. The resulting L*a*b* coordinates have been

plotted as projections onto the a* b* plane in figure 2.26. The calculated coordinated

closely match the colours observed with digital photography, and the appearance of

the samples covers a large area in L*a*b* colour space. The maximum saturation of

the blue and red hues which constitute a* values almost as high as 50, and b* values

nearly as low as -40, is found to be far greater than that of the yellow and green hues;

which only have a magnitude around 20 in a*b* space. The maximum saturation of

the yellow and green LEDs is likely limited by the high reflectance of the 470 nm LED

as well as the yellow colour of the 590 nm LED used as the red component in 2, 3, 6

and 7.
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Figure 2.26 L*a*b* plot showing calculated colour appearance of two samples of
neodymium chloride, anhydrous and hydrated, under illumination from led tunable light
source set to illumination conditions 1-8 demonstrated in figures 2.21 & 2.22. The label
next to each point describes the illumination condition with subscript ‘a’ denoting
anhydrous neodymium chloride and ‘h’ denoting neodymium chloride hexahydrate. The
colour of the points is a conversion of the coordinates to the sRGB colour space.

Illumination conditions 7 and 8 were designed to control the lightness of the sample.

This is described by the L* coordinate, which shows that a single sample of neodymium

chloride has its lightest appearance under illumination condition 7, and the darkest ap-

pearance when illuminated by 8 as expected.

In condition 7, the appearance of the sample is grey with a pale purple hue, while 8

appears dark blue. Ideally, these would be white and black respectively, and the chro-

matic shift shows that: the LED’s chosen to have a high reflectance with neodymium

chloride are reflected in similar proportions, with the 650 nm channel being reflected

marginally more than the 545 and 440 nm channels; and from the LEDs chosen to have

low reflectance, the 470 nm channel is reflected the most. The intensity of visible light
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reflected from the surface of the sample can be further defined using a different CIE

metric called light reflectance value (LRV), which describes the percentage of visible

light reflected from a surface accounting for the sensitivity of the human visual sys-

tem.114 LRV for anhydrous neodymium chloride under illumination conditions 1 - 8

was calculated (table 2.1) using the formula:

LRV =

∫ 750nm

380nm
I(λ)R(λ) dλ∫ 750nm

380nm
I(λ) dλ

100% (2.2)

where I is the spectrum of the light source and R denotes the reflectance of the sample.

The LRV values for the sample under 7 and 8 are the highest and lowest from the entire

set of illumination profiles respectively, with the sample reflecting more than twice the

amount of light under 7 compared to 8. It is also found that 1, 4 and 5 also show a

relatively high LRV, and this is likely due to the 655 nm red LED which is used in each

case and is largely reflected by the sample.

Table 2.1 Light reflectance values (LRV) of anhydrous neodymium chloride under
illumination from spectrally tunable light source set to illumination profiles 1-8.

Illumination profile

1 2 3 4 5 6 7 8

LRV (%) 41.8 25.4 26.6 42.5 44.5 34.1 46.6 20.9

The established illumination conditions create an appearance of the neodymium chlo-

ride samples which is the most saturated hue of the primary and secondary colours

possible using the constructed light source. The idea of mixing illumination conditions

to fine-tune the appearance of the sample within these bounds is next investigated.

Interpolated illumination profiles have been made by combining two illumination set-

tings with a scaling factor, herein defined as ξ, which determines the proportion of each

illumination profile present in the combined set. Profiles 1 (ξ = 1) and 3 (ξ = 0) were

selected for an initial test, and four interpolated illumination profiles (ξ = 0.2, 0.4, 0.6

and 0.8) were tested by setting the intensity of each channel (Ii) in the light source
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using a weighted sum:

Ii(ξ) = ξI1 + (1− ξ)I3 (2.3)

where I1 and I3 represent the power level of each channel in illumination profiles 1 and

3 respectively. The resulting appearance of the neodymium chloride samples, as well

as the illumination spectra, are displayed in figure 2.27. The colour of the samples

gradually changes from red to blue, passing through shades of purple as the scaling

factor ξ is decreased. The colour of the illuminant remains near-white as determined

by the spectrometer (figure 2.28), although there is a red hue in 1 which is not reflected

in colorimetric analysis. This issue has been previously addressed, and the red hue

appears to decrease with ξ, suggesting that this is a systematic issue which can be

resolved with better colour-balancing of the tunable light source.
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Figure 2.27 Appearance of neodymium chloride samples (anhydrous-left, hydrate-right)
illuminated by spectrally tunable light source with spectral profiles interpolated from 1 and
3, with scaling factor ξ determining the proportion of each profile in the total. White
balance is set using the while tile on the QP203 colour standard card.
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Figure 2.28 CIE 1931 xy coordinates of spectrally tunable light source calculated from
interpolated illumination profiles between 1-3 demonstrated in figure 2.27, with number
above each point showing the scaling factor ξ, which determines the proportion of each
profile in the total. The red cross marks the D65 white point. The colour of the background
has been set to approximately represent the associated coordinates in the xy colour space.

Colorimetric analysis of the neodymium chlorides appearance in the L*a*b* colour

space, which was carried out from the spectrum of light source measured by the coupled

spectrometer, shows a linear relationship between ξ and the apparent colour of the

sample in L*a*b* space between the most saturated red and blue appearance. Similar

behaviour is observed between any two illumination profiles, showing that this method

of mixing illumination conditions via a weighted sum is valid for interpolating the

appearance of neodymium chloride between the most saturated primary and secondary

colours while maintaining near-white illumination.

The appearance of neodymium chloride illuminated by this spectrally tunable light

source can therefore be considered as a polygonal gamut in the L*a*b* colour space

bound by coordinates of the pure primary and secondary colour illumination conditions

1-6. The resolution with which the appearance of neodymium chloride can be tuned to,
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within this colour appearance gamut, is foremost limited by the resolution of the power

control to each channel of the tunable light source; an appropriate level of stability of

the set power level is also required to maintain a ‘white’ colour of the light source as the

programmed appearance of the sample. In the current setup, the resolution of the power

control to each channel is limited to 151 steps, which is likely a major source of error in

mixing illumination profiles as calculations using equation 2.3 result in fractional values

that must be rounded to integers to function with PWM power control. The resolution

of the PWM power control can be increased with readily available integrated circuits,

therefore there is no reason that this resolution cannot be increased until the parasitic

thermal and chromatic effects of the LEDs, which are difficult to account for,108 become

the limiting factor.

Figure 2.29 L*a*b* coordinates of anhydrous neodymium chloride under illumination from
spectrally tunable light source set to interpolated illumination profiles between 1-3,
demonstrated in figure 2.27. The scaling factor ξ which determines the proportion of each
profile in the illumination profile of the tunable light source is labelled next to each point.
The colour of each point is a conversion to the sRGB colour space.
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2.2.3 Modelling the effects of fluorescent whitening agents and
hueing dyes on the appearance of fabric

Scope

The CIE colour appearance modelling that was rigorously tested in the previous two

sections can also be applied to model the appearance of fabric, accounting for the natural

degradation and subsequent colour correction during the laundry process (described in

section 1.4). This section of work will focus on using semi-empirical computer modelling

of the effects that yellowing, FWAs, HDs and lighting conditions have on the appearance

of fabric.

Clean fabric model

To quantitatively describe the appearance of fabric free from degradation or additives

introduced during washing, a reflectance spectrum of new cotton fabric (Rfab(λ)) was

measured using DRS (figure 2.30). The fabric was stained with FWAs from the man-

ufacturer, and to exclude this contribution from the reflectance spectrum a 400 nm

long-pass filter was added into the probe beam, effectively blocking the excitation of

the FWAs. The absorption of the FWA is the major feature in the reflectance spectrum,

but this occurs in the UV-deep blue part of the spectrum (below 400 nm), therefore

has very little influence on colour appearance. The product of Rfab(λ) and the SPD of

the illuminant(Iill(λ)) chosen to assess the fabric’s appearance under gives the SPD of

light reflected from the fabric and reaching the observer (Iobs(λ)).

Rfab(λ)Iill(λ) = Iobs(λ) (2.4)

The spectral function Iobs(λ) can then be input into the CIE colourimetry system to

calculate the L*a*b* coordinates of the fabric under a light source of choice, with the
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white point set as the colour of the illuminant. For initial studies, the measured spec-

trum of mid-day sunlight (figure 1.11) will be used. This forms the basis of the fabric

appearance model, and further properties of real fabrics can be introduced algebraically.

The output of this fabric appearance model is a set of L*a*b* coordinates which can

be used in combination to assess trends, although each 3-dimensional set of coordinates

is difficult to visualise. One solution is to translate the coordinates into the sRGB

colour space, which can then be displayed via a screen, which usually have some level

of colour-calibration. However, this would still result in the output of a single colour,

and real fabrics are typically highly textured which instead leads to a small distribution

of colours. In order to aid visualisation, a simple method was devised based on image-

colour manipulation. First, an image of a textured fabric was taken next to a white

block for reference (figure 2.30-bottom right), making sure that all pixels covering the

fabric do not exceed the dynamic range of the camera. A mask of the textured fabric in

this image was then created by a contrast threshold against the black background. The

RGB coordinates of all pixels within the mask are then converted to L*a*b* coordinates,

forming a point cloud in L*a*b* space. The centre of this point cloud is evaluated and

the difference between the centre coordinate and the model output is used to calculate

a translation vector, which can then be used to shift the entire point cloud in L*a*b*

space. The result is that the L*a*b* coordinates output by the model set the centre of

the image point cloud. Finally, a reverse conversion of each point to the sRGB colour

space yields an image where the texture of the fabric is preserved, but the overall colour

appearance is determined by the colourimetry model (figure 2.30-bottom left). In the

simple case of clean fabric, the results appear very similar to the original appearance

of the fabric sample.



Chapter 2. Colourimetry and tuning colour appearance 109

Figure 2.30 (Top) DRS spectrum of white cotton fabric, measured with 400 nm low-pass
filter in probe beam. (Bottom-right) Raw image of cotton fabric swatch used to make aid for
visualisation of fabric model results. (Bottom-left) colour manipulated image with colour of
fabric swatch set by model output.

Yellowing model

Yellowing can be considered as an increasing concentration of blue-absorbing chro-

mophores. The absorbance spectrum of these chromophores is likely to vary slightly

from sample to sample due to the nature of yellowing. An empirical approach was

therefore taken in modelling the effects of yellowing. A piece of paper free from FWA’s

which had been left in front of the office window and showed a significant degree of

yellowing (primarily caused by months of exposure to UV light) was measured using

DRS (Ryell(λ)). Paper has a reflectance spectrum which strongly resembles that of
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cotton fabric, due to its cellulose composition.

Figure 2.31 DRS spectrum of naturally yellowed paper used to model yellowing in fabric.

The main feature in the reflectance spectra of this yellowed sheet is a strong absorbance

band in the blue region (figure 2.31), which peaks around 430 nm and is responsible

for the yellow colour. This is introduced into the fabric model by attenuating the

reflectance spectrum of clean fabric. The attenuation is carried out as a weighted sum

of the clean fabric’s reflectance spectrum, and that of the yellowed fabric in KM space,

followed by the inverse KM function (f ′(R)) on the sum:

f ′(f(Rfab(λ)) + wf(Ryell(λ))) = Rw(λ) (2.5)

where the coefficient w determines what proportion of the yellowed spectrum is included

in the output, which is termed as the working reflectance spectrum (Rw(λ)) and can be

used in place of Rfab(λ) in equation 2.4 to calculate the colour appearance of yellowed

fabric.

The effect yellowing has on the spectrum of light reflected from the fabric can be seen

below for a practical range of w.
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Figure 2.32 Simulated spectra of sunlight reflected from the surface of yellowed cotton
fabric (Iobs) modelled using equation 2.5 with arbitrary intensity units for comparison. The
w values used to construct each spectrum shown in the legend.

As expected, the spectra show the largest variation at 430 nm, where the absorbance

of yellowed cellulose is greatest. The effects of yellowing in the green and red region

are, however, very minor. Since the KM function is designed to scale linearly with

concentration of absorbing species, this modelling approach should be valid within the

range where the KM approximation is valid. In particular, KM models tend to perform

poorly on strongly absorbing material, which is not the case in yellowed fabric.

The resulting simulated DRS spectra can then be used in conjunction with a spectrum

of the illuminant (sunlight for initial trials) to calculate the colour appearance of aged

cotton in L*a*b* space. Initial tests were carried out with value of w = 0, 0.2, 0.4,

0.6, 0.8, 1 and 2 (figure 2.33). It can be seen that increasing the yellowing coefficient

causes a uni-directional shift in appearance towards a subjectively unappealing yellow

hue, although the L*a*b* coordinates also contain a significant b* contribution which

increases with ‘yellowing’.

It is also observed that the L* value decreases with yellowing, which results from the
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decreased total light reflected from the sample.

Figure 2.33 (Left) L*a*b* coordinates calculated from modelling yellowed fabric. w refers
to the yellowing coefficient in equation 2.5. The colour of the points is a conversion to the
sRGB colour space. (Right) Simulated appearance of corresponding yellowed fabric in
descending w top-bottom.

The fabric visualisation model performs well in aiding the visualising of calculated

L*a*b* coordinates, from the results it can be seen that values of w beyond 1 are rarely

encountered in real-world laundry.

FWA model

To model the effect of FWAs on fabric, a fluorescence spectrum (Ifl) was recorded from

the clean cotton swatch used as the model base, which was pre-stained with FWAs from

the manufacturer (figure 2.34). A 365 nm LED was used as the excitation source, and

as this is not a relative measurement, the recorded emission spectrum was correctly to

ensure a linear response across the visible spectrum.

The measured fluorescence spectrum shows just how well-suited the proprietary FWA
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technology used in fabrics is to combat yellowing when compared to the absorbance of

yellowed paper (approximated with KM function in figure 2.34). The two spectra match

almost perfectly and should combine to restore the appearance of yellowed fabric.

Figure 2.34 (Blue) Corrected fluorescence spectrum recorded from clean cotton fabric with
excitation at 365 nm. (Orange) Absorbance of naturally yellowed paper, approximated using
the KM function on DRS spectrum.

An arbitrary fluorescence coefficient (F ) will be necessary when incorporating FWAs

into the fabric model as the amount of fluorescence emitting from the sample is depen-

dant on many variables. The wavelength dependant excitation product of the FWA and

the light source, as well as the concentration of FWA at the point under observation

are just a few examples.

This approach, however, does not account for the complex relationship between the

spectral output of the FWA fluorescence and the vertical distribution of the FWA

through the fabric matrix. The complex relationship arises due to the diminishing

power of the excitation light as it is scattered upon penetrating further into the fab-

ric, as well as the wavelength-dependant and depth-dependant attenuation that the

fluorescence is subject to before leaving the fabric and reaching the observer. These

complexities have been somewhat reduced by using thin fabric with a black backing to
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reduce the back-reflections reaching the observer.

Another consideration is that in reality FWA concentration cannot be increased con-

tinuously, eventually the molecules begin to aggregate, and the spectral profile of the

emission as well as the quantum yield changes. In this model we assume that due to

the high quantum yield of modern FWAs, they are in low enough concentration for

practical values of F that aggregation is negligible.

A fluorescence coefficient allows us to track the appearance of the fabric with increasing

FWA concentration, and in future can potentially be transcribed to a physical property.

This has previously been the subject of research which concluded that the relationship

is complex but prediction is possible.115

With these approximations in mind, the measured fluorescence spectrum can be incor-

porated into the fabric appearance model by adding it into the light reflected from the

surface of the fabric (equation 2.4) via a weighted sum:

Rfab(λ)Iill(λ) + FIfl = Iobs(λ) (2.6)

The magnitude of F is arbitrary and depends on the relative intensity of the illuminant.

In this case, the illuminant has been scaled to have a unity luminosity, or perceived

brightness, and the fluorescence spectrum has been scaled relative to the illuminant

such that 0-1 forms a sensible scale for real-world fabrics. In the fabric model, FWAs

can be added to fabric with any degree of yellowing.

For an initial test, the condition w = 0.5 was examined. Simulated optical brightener

was added in units F = 0, 0.2, 0.4, 0.6, 0.8, 1, and the effect on Iobs(λ) can be seen

below:
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Figure 2.35 Simulated SPD I(λ) of sunlight reflected from the surface of yellowed fabric
(simulated with w = 0.5) stained with an increasing concentration of FWA. The units of
intensity are arbitrary for comparison between spectra. The legend indicates the values of F
introduced in equation 2.6.

The results clearly show the mechanism of FWAs operation, where the fluorescence

makes up for the blue absorbance of yellow chromophores and restores a ’flat’ colourless

reflectance profile when the concentration of FWA is matched to the degree of yellowing.

In this example, a near-matched condition is observed for values w = 0.5 and F = 0.4,

with the resulting spectral density of light reflected from the surface resembling that of

un-yellowed fabric (w = 0, F = 0). The effects of FWA can be quantified by further

analysing the spectra in terms of their predicted appearance in L*a*b* space (figure

2.36).
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Figure 2.36 (Top) L*a*b* coordinates calculated from modelling yellowed fabric stained
with a varying concentration of FWA. w refers to the yellowing coefficient in equation 2.5
and F to the fluorescence coefficient introduced in equation 2.6. The colour of the points is a
conversion to the sRGB colour space. (Bottom) Simulated appearance of each corresponding
modelled fabric condition, arranged left-right in order of increasing a* coordinate.

The coordinates display a unidirectional blue shift in appearance on increasing the

amount of fluorescence F added to the model, which is a near-perfect polar opposite to

the appearance shift caused by yellowing. This originates from the overlap of the two

spectra displayed in figure 2.34. The matched condition (w = 0.5, F = 0.4) appears

visually indistinguishable (∆E below 2) from unstained fabric, even matching in L*

value. The model also shows the effects of adding too much FWA. In the example cases,

values of F greater than 0.4 result in a light blue appearance of the fabric. Moreover,

addition of FWA to un-yellowed fabric causes a strong and un-natural blue appearance

of the fabric. A useful property of the human visual system aids in extending the

usable range of FWAs here. In perception of whiteness, small appearance shifts in
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the blue direction are still perceived as ‘white’, in some cases even more ‘white’ than

neutral tones as found in psychology experiments.87 This blue-preference, combined

with FWAs ability to increase lightness forms the basis for the ‘whiter than white’

claims often advertised.

Since the yellowing vector (w) was found to be a near-negative of the FWA concentration

vector, it can be assumed that in this model, any practical values of w can be corrected

for by a corresponding value of F . Modelling how FWAs correct fabrics appearance

at different stages of yellowing shows that this is the case. A matching F was found

for a practical range of w (0-1) where the resulting match is visually indistinguishable

from un-yellowed fabric, and the resulting relationship is displayed in figure 2.37. The

amount of fluorescence needed to correct for an increasing concentration of yellowing

chromophores is found to decrease at higher levels of yellowing leading to a non-linear

relationship. This is due to the imperfect spectral overlap of the yellowing chromophore

absorbance and FWA emission shown in figure 2.34, and can be considered beneficial

to FWAs function as small levels of fluorescence make the largest impact in correcting

for the appearance of yellowing.
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Figure 2.37 Simulated conditions where the appearance of fabric at various stages of
yellowing is perfectly correct for by addition of FWA. Yellowing has been modelled using
equation 2.5 with coefficient w plotted on the x-axis, and FWA action has been modelled
using equation 2.6 with coefficient F forming the y-axis. Each point represents a modelled
fabric condition where the correction by FWA of concentration F restores the appearance of
fabric yellowed by w to the point where it is visually indistinguishable from unyellowed
fabric.

Hueing dye model

To model the effect of HDs on appearance of fabric, a similar approach to that used in

modelling of yellowing can be applied. A representative HD was found in literature as

a reflectance spectrum (RHD(λ)) of cotton fabric stained with monomeric v200 dye (a

commercial HD).46 The spectrum features a high reflectance peak coinciding with the

absorbance caused by yellowing with heavier absorbance in the green and red regions

of the spectrum, as demonstrated in figure 2.38.
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Figure 2.38 DRS spectrum of: cotton fabric stained with v200 HD (Blue),46 and naturally
yellowed paper for reference.

Since a HD can be considered as an increasing concentration of green/red absorbing

species, the absorbance can be added to that of paper and yellowing via a weighted

sum in KM space. This can be achieved by modifying equation 2.5 to incorporate the

measured spectrum via a HD coefficient H:

f ′(f(Rfab(λ)) + wf(Ryell(λ)) +Hf(RHD)) = Rw(λ) (2.7)

This approach to modelling should again be valid within the approximations of KM

theory, and in this case at low concentrations of dye. The HD coefficient H should scale

linearly with HD concentration, due to the proportional nature of the KM function.

HDs are prone to aggregation at high concentrations, which is not accounted for using

this technique. Therefore H values of less than 1 will be used in modelling as the dye in

the reference HD stained fabric (H = 1) is known to be free from aggregates,46 making

the approximations feasible.

The effects of HD on light reflected from yellowed fabric (w = 0.5) can be seen in

figure 2.39 where light in the green/red regions, that are little affected by yellowing,
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are the absorbed by the HD; which does not absorb in the blue region, restoring a ‘flat’

reflectance profile with around 20% lower reflectance than un-yellowed fabric.

Figure 2.39 Simulated spectra of sunlight reflected from the surface of fabric showing a
varying degree of yellowing. The spectra are modelled using equation 2.7 with w=0.5 unless
otherwise stated and the corresponding HD coefficient shown the legend. Intensity is
presented in arbitrary units for comparison between spectra.

A flat reflectance profile yields a neutral appearance, but the lower reflectance mani-

fests as a dull-grey appearance of the fabric. This can be seen by further analysis in

the L*a*b* space (figure 2.40), where the action of increasing HD concentration on

yellowed fabric increasingly shifts the appearance towards neutral grey at the expense

of decreasing L* value. In condition w = 0.5 and H = 1, the fabric has no discern-

able colour, yet the appearance compared to un-yellowed fabric is visually darker and

13% less in lightness. This is of course less favourable than the correction from optical

brighteners, however, HDs do not require the light source to contain an invisible UV or

even deep violet component.
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Figure 2.40 (Top) L*a*b* coordinates calculated from modelling yellowed fabric stained
with a varying concentration of HD. H refers to the yellowing coefficient in equation 2.5 and
H to the HD coefficient introduced in equation 2.7. The colour of the points is a conversion
to the sRGB colour space. (Bottom) Simulated appearance of each corresponding modelled
fabric condition, arranged left-right in order of increasing a* coordinate.

A matched condition, like the one observed for the case w = 0.5 and H = 1, can be

found for any value of w, provided that HD is added in enough concentration. An

analysis into the concentration of HD needed to neutralise the yellow hue introduced

from a varying degree of w was carried out. This was done by minimising the b* value

using least squares fitting, and the results are displayed in figure 2.41. It is found that

the concentration of HD needed to neutralise yellow chromophores scales linearly with

the simulated yellowing factor w.
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Figure 2.41 Simulated conditions where the appearance of fabric at various stages of
yellowing is perfectly correct for by addition of HD factor H. Each point represents a
modelled fabric condition which has a colourless appearance.

Effects of lighting

So far in this section we’ve looked at the ability of FWA’s and HD to correct for

yellowing under sunlight, and the impact that different light sources could have on the

function FWAs and HDs correcting yellowing fabric forms the focus of this section.

Firstly we look at the reason why FWAs are becoming redundant under LED lighting

from a spectroscopy perspective. The excitation of the FWA used in this study was

roughly measured by recording the fluorescence spectrum at 10 different excitations

wavelengths (figure 2.42). This typically resembles a mirror image of the fluorescence

spectrum, and in this case peaks around 380 nm. The shape of the fluorescence spectrum

does not vary with excitation wavelength, as fluorescence occurs in appreciable yield

only from the lowest excited state, according to Kasha’s rule.1
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Figure 2.42 Fluorescence of cotton fabric stained with FWA as a function of excitation
wavelength, demonstrating the wavelength dependant quantum yield of the FWA.

The emission from a series of light sources was recorded and when compared to the exci-

tation of the FWA used in the model fabric it becomes evident that sunlight, fluorescent

lighting and even incandescent lighting (to a small degree) all contain a significant emis-

sion in the UV region, which is sufficient to stimulate emission from the FWA used in

our model fabric. However, the blue-pumped white LED shows no discernable output

that overlaps with the excitation of the FWA, meaning that the mechanism for correct-

ing the appearance for yellowing does not function. This is concordant with the findings

of Houser’s team in their approach to studying this issue with psychology experiments

on a group of forty human participants.87 In their study, participants appeared to show

a distorted perception of ‘whiteness’ for white standards containing FWAs under blue-

pumped LEDs, and concluded that this must be caused by the inability of this light

source to stimulate emission from FWAs.
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Figure 2.43 Emission spectra from a collection of light sources, intensities have been scaled
to represent a uniform luminosity. The excitation spectrum of the FWA used in this study is
included for reference.

HDs do not suffer from the same issue as they do not rely on fluorescence to function.

The workings of HDs were examined under different light sources, a series of yellowed

fabric (w = 0.3) was simulated for a range of HD concentrations and the resulting

conditions were studied in the L*a*b* colour space (figure 2.44).

The results show that, firstly, yellowed fabric shows susceptibility to colour inconstancy

which is displayed as a difference in appearance between sunlight and incandescent

lighting, that have a high and low CCT respectively. It can also be seen that with

increasing concentration of HD, the susceptibility decreased which results from HDs

restoring a flat reflectance profile after yellowing. Comparing the appearance of samples

between sunlight and fluorescent lighting, which is visually indistinguishable, shows

that yellowed fabrics are not susceptible to illuminant metamerism that is observed in

rear-earth elements. It should be noted, however, that even the largest differences in

appearance (∆E) between different light sources is still an order of magnitude smaller

lower than that observed in Alexandrite or the rare-earth elements. Un-yellowed fabric

shows no major susceptibility to either metamerism or colour inconstancy, which is to
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be expected given it’s featureless reflectance profile.

Figure 2.44 L*a*b* coordinates calculated from modelling yellowed fabric (w = 0.3)
stained with a varying concentration of HD (H = 0, 0.2, 0.4, 0.6, 0.8, 1 and trend is
displayed with blue line). The colour of the points is a conversion to the sRGB colour space,
and points with a central asterisk show appearance of un-yellowed (w = 0) fabric. All
L*a*b* coordinates are available in section 5.2.
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2.3 Summary and conclusions

The colour change phenomenon reported in compounds which contain rare earth ele-

ments has been shown not to be the Alexandrite effect. The Alexandrite effect was

investigated using the CIE system of colourimetry and found to be an extreme case of

colour inconstancy, which is concordant with recent literature in the field.54

Neodymium chloride was selected for preliminary studies to probe the colour change

observed in rare-earth compounds, and colourimetry studies have shown that colour

inconstancy could not explain the observed colour change in the examined samples.

thus, colour inconstancy was eliminated by using light sources of the same colour tem-

perature, cool white fluorescent lighting and a 4310 K black body radiator; Alexandrite

showed little change in hue, but the colour change in neodymium chloride was compara-

ble to observations. This colour change was attributed to illuminant metameric failure

due to coincidental overlap of the sharp emission lines in fluorescent lighting with the

narrow absorption bands caused by the f-f transitions in the lanthanide salt. Further

investigation showed that a set of absorption bands centred at 430 nm and 525 nm are

almost entirely responsible for the observed difference in colour.

The perceived colour change in six other coloured lanthanide salts was studied for

colour inconstancy and illuminant metamerism under fluorescent lighting, together this

set constitute one example from each coloured lanthanide in the whole series. The

results showed that only the holmium sample displayed a large degree of illuminant

metamerism, while no significant sign of colour inconstancy was found in any of the

lanthanide salts. The yellow-red colour change of holmium sulphate hydrate was found

to be far more pronounced under cool-white fluorescent lighting, and this was again at-

tributed to a similar set of interactions between the narrow absorption bands of the salt

and the sharp emission lines of mercury and other elements emitting light in fluorescent

tubes.

Therefore, the colour change reported when compounds containing lanthanides are
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viewed under sunlight and fluorescent lighting is caused by illuminant metamerism

as opposed to the ‘Alexandrite effect’, which has been commonly attributed to this

phenomenon.

The same colour change phenomenon has also been reported in actinide compounds by

Albrecht-Schmitt and co-workers,80,81 where they demonstrated that the appearance of

neptunium and americium salts exhibit a yellow-brown colour change when illuminated

by broad-spectrum or fluorescent lighting. Although the experimental study of these

compounds was not feasible, we may speculate as to the reported difference in colour of

these heavier elements. Simply considering the illuminants involved, mainly fluorescent

lighting, are more likely to facilitate illuminant metamerism as opposed to the ‘Alexan-

drite effect’. Moreover, the narrow absorption bands of the reported compounds in the

visible region are also highly suggestive of this idea.

Having studied the origin of the colour change in lanthanides under fluorescent light-

ing, the object of the studies turned to harnessing the effect in a tunable manner. A

custom spectrally-tunable light source was constructed with LEDs that correspond to

absorption and reflectance bands of the neodymium chloride, which was chosen as the

target sample due to its suitable and well-characterised optical properties. Using a

spectrometer for in-situ spectral feed-back, it was possible to create quasi-metameric

near-white illumination conditions which force the appearance of neodymium chloride

to any primary or secondary colour. Furthermore, by combining illumination condi-

tions through linear interpolation of individual channels in the tunable light source, it

was possible to fine-tune the appearance of the target samples between the primary

and secondary colours while maintaining near-white illumination. It was even possible

to control the luminosity of the sample white maintaining a uniform luminosity of the

light source.

To the best of the authors knowledge, this is the first example of entirely controlling

the apparent hue of an object (exclusively materials containing neodymium ions) by
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spectral control of the illuminant while maintaining near-white illumination, an effect

which was herein termed ‘tunable illuminant metamerism’. This effect provides a novel

approach for controlling the spectral profile of light reflected from the surface of an

object and may well find application in commercial lighting where colouration cannot

be controlled by the altering the object.

The colourimetry models which passed rigorous testing in examining the colour of

Alexandrite and the rear-earth elements were then applied to construct a unified semi-

empirical model of fabric appearance. The model was used to study the natural degrada-

tion of fabric, which is a large contributor to yellowing, and demonstrated the workings

of FWAs and HDs in countering the resulting yellow appearance and restoring a ‘flat’

reflectance profile.

The output of the model requires further validation with real samples, however this

work forms a platform which is a convenient companion to psychological trails, which

are typically used to study such effects at a far greater expense to conduct. The plat-

form can easily be modified to accept any reflectance profile for the fabric, and any

SPD for the light source to give a near-spontaneous prediction of colour appearance.

The excitation of FWAs was also investigated to validate the result of a psychology ex-

periment run by Houser and co-workers, which raised the issue of FWAs not functioning

under a certain type of LED lighting. The results could be explained by showing that

blue-pumped white LEDs do not emit radiation of sufficient energy to excite FWAs

into fluorescence.

In combination, these studies conclude that colour must be primarily considered as an

illuminant-object pair if accurate results are to be expected. This is a growing consen-

sus in literature and has implications for transitional colour science as well as human

colour perception more generally, where colour is often considered as an intrinsic prop-

erty of an object.26
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Studying such extreme cases of colour inconstancy and illuminant metamerism is im-

portant to test our pre-existing models of colour perception. In studying compounds

with high susceptibility to colour inconstancy and illuminant metamerism, it was found

that the CIE system of colorimetry could accurately predict the observed phenomena.

However, balancing the spectrally tunable light source and creating visually indistin-

guishable metamers was not possible even with the latest colour matching functions

published by the CIE. This conclusion has also been achieved by other studies110 and

suggests that further advances to the field of colour matching are required for delicate

colorimetry problems, such as those encountered in tunable illuminant metamerism.

These studies are of great importance to industry. In the lighting industry for example,

the quality of colour rendering by white light sources is typically assessed using CRI,

with a set of samples showing a wide range of hues at various saturations.116 However,

such a set of samples is presented in images alongside the anhydrous neodymium chlo-

ride examined in this study (figure 2.3), and the standard set shows very little change

in hue between sunlight and fluorescent lighting while the neodymium chloride sample

changes hue entirely. These considerations should be applied when designing the next

generation of lighting technology, as well as the metrics for its evaluation. Additionally,

a more rigorous set of samples may be required to access colour rendering, and sam-

ples based on lanthanide salts are shown to be promising candidates by virtue of their

susceptibility to illuminant metamerism.



Chapter 2. Colourimetry and tuning colour appearance 130

2.4 Experimental

Reflectance measurements were carried out using a custom fibre-optic reflectance probe:

a bifurcated optical fiber (low-OH) couples an ocean optics HL-2000 incandescent light

source into two collimators mounted on the probe. The collimators are arranged in a

‘v’ shaped geometry, and focus the channelled probe beam onto a single spot (around 2

mm in diameter) 30 mm from the detector. A third collimator is then used to guide the

diffusely-reflected light into a fiber-coupled Ocean Optics Maya 2000 Pro spectrometer

(100 µm slit variant). More information about the design is available elsewhere.117

All spectra were referenced to a Spectralon9 standard unless otherwise noted. SPD of

illuminants was recorded using the same spectrometer and intensity corrected using the

procedure described in section 1.2.2. Unless otherwise stated, all images were captured

using a Sony a6000 digital camera equipped with a Sigma 16mm f/1.4 DC DN lens. All

calculations were carried out in MATLAB, and the raw data is available in section 5.2.

All graphical user interfaces were implemented in MATLAB using the ‘app designer’118

add-on package.

2.4.1 Rare-earth elements study

All chemicals were purchased from Sigma-Aldrich and transferred to a sealed glass

vessel before use. Fluorescent lights used in colourimetry studies were Phillips brand

fluorescent tube lights, with phosphor type confirmed by spectrometry.

2.4.2 Tunable LED Light source

The tunable LED light source used for investigation of tunable illuminant metamerism

was constructed from eight individual three watt LED’s purchased from Future Eden

Ltd.119 Mounting and heat dissipation was achieved via a custom 1-layer aluminium

printed circuit board (PCB), the spacing between LED’s was minimised in order to
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achieve the best possible diffusion and even output intensity across the spectral band-

width of the light source. The LED’s were housed in a 3D printed integrating sphere

which was painted internally with titanium dioxide based matt-white paint in order to

maximise scattering.

LED’s were driven by individual current limiting drivers based on the Diodes Incor-

porated AL8805 IC. The operating current of the LED’s was set to 600 mA, which

is well below the maximum 900 mA specified by the manufacturer; this was done in

order to minimise localised heating of the LED’s and maintain a more consistent light

intensity output. Intensity was controlled by pulse width modulation at 500 Hz. The

signal, which resembles a 500 Hz square-wave of varying duty-cycle, was injected into

the driver via a MOSFET forcing the IC’s feedback voltage to ground on the high

cycle of the PWM signal, resulting in smooth switching of the LED’s to guarantee an

accurate duty cycle to set current conversion.

PWM signals were generated by an STM32F303K8 microcontroller clocked by 8 MHz

and 25 KHz temperature compensated oscillators, which were used as the clock source

in order to maintain consistent timings. The drivers and microcontroller were mounted

on a custom 4-layer PCB, which was mounted separate from the LED PCB for thermal

isolation.

The graphical user interface for tuning spectral intensity is implemented using MAT-

LAB software (control panel shown in figure 2.45) which communicates with the micro-

controller via a RS232 virtual serial bus. Feedback of the generated spectrum is achieved

by a fiber-coupled spectrometer (same as that used for reflectance measurements), with

intensity corrected using the method described in section 1.2.2.

Further information and software source code is available in section 5.2).
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Figure 2.45 User interface for spectrally tunable light source implemented in MATLAB
software, allowing for: brightness control of each LED channel, feedback from coupled
spectrometer, integrated colourimetry analysis, storage of preset illumination profiles and
interpolation between saved profiles.

2.4.3 Modelling fabric appearance

The user interface created to model fabric appearance allows facile colourimetric evalu-

ation of simulated fabric under a range of conditions as well as export of data for further

analysis, and is provided in full along with all of the L*a*b* coordinated derived from

it in section 5.2. The front-end of the interface is presented in figure 2.46. The variables

w, F, and H allow for control of the yellowing, fluorescence, and HD coefficients; which

describe the conditions possible to simulate using this model when combined with the

choice of illuminant used in CIE calculations.
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Figure 2.46 User interface of app designed to model fabric appearance including simulating
the effects of yellowing, HDs, and FWAs. The app also displays: the SPD of light reflected
from the surface, a CIE xy plot, and a CIE L*a*b* slice plot which are not visible in this
menu.



Chapter 3

Towards quantification of lipid
residues on fabric

The development of a technique that can accurately and consistently quantify the level

of lipid present on fabric forms the main topic of study in this chapter. Quantifying

the concentration of otherwise invisible lipid trapped in the fabric matrix of a laundry

stain is an essential tool to facilitate the development of better laundry formulations.

Initial work was focused on the development of a method to manufacture calibration

samples with a set mass of lipid on a fabric sample of known dimensions. These standard

samples were then used to define a unit system which could be used to evaluate the

level of lipid staining on fabric.

The standards were then employed to develop a novel approach to lipid measurement

on fabric, based on DRS in the NIR-SWIR region of the spectrum. The key to this new

approach lies in combining DRS with multivariate data analysis and machine learning

to intuitively extract quantitative information out of a measured reflectance profile.

Further studies were carried out in employing the developed lipid quantification method

to imaging, allowing for quantification of absolute lipid mass in a given area of fabric.

134
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3.1 Foreword

The research presented in this chapter have been affected by the outbreak of the

COVID-19 pandemic. Due to national restrictions imposed by the British Govern-

ment, it was also not possible to carry out further work on: validating the developed

model on all types of external datasets, and producing reliable calibration stains using

the application of inkjet printing.
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3.2 Introduction

A laundry stain is typically defined as any undesirable matter which has an adverse

effect on the appearance of a fabric.120 In the context of cleaning, however, it is impor-

tant to consider all of the components, including lipids which may not directly affect the

appearance. Lipids found in laundry stains may originate from: food stuffs, which can

be coated in oils used for cooking and flavouring; sebum, an oily substance excreted by

human skin; or from the environment, where lubricants and other oil based products are

abundant. Lipid residues are often transparent in the visible portion of the spectrum,

and therefore almost impossible to detect by eye. An example is shown in figure 3.1,

where a fabric swatch has been heavily stained with vegetable oil yet shows no visible

difference in colour across the surface. Certain fabric weaves may allow lipid stains

to be visualised due to the change in refractive index of oil-stained fibres leading to a

visible difference in colour, but this is only discernable at relatively high concentrations

of lipid in a stain. This property is likely the reason that lipid removal on fabric has

previously been difficult to quantify, and the amount of lipids present in typical laundry

stains is yet to be reported in the literature.

Figure 3.1 Segment of fabric contaminated with lipid stain (outlined with red circle)
showing no visible sign of contamination.

Fabrics contaminated with lipid stains unnoticeable to the human eye may not seem
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problematic, however, lipids on fabric surfaces are more prone to secondary contam-

ination. Furthermore, lipid deposits comprising unsaturated carbon chains, such as

those present from sebum, undergo autoxidation inside the fabrics they contaminate.121

This leads to polymerisation or stiffening of the fabric, as well as formation of chro-

mophores.38 The oxidation of unsaturated lipid deposits can also liberate short chain

fatty acids that cause malodour when metabolised by bacteria present on human skin.122

These processes are sometimes grouped with yellowing, which as previously described

(section 1.4.1) ultimately leads to degradation in appearance and mechanical properties

of the textile.

The removal of lipid contaminants is challenging as they have very low solubility in

water. Even with the use of surfactants, it has been shown that present day laun-

dry detergents under normal wash conditions cannot remove all the lipid from typical

stains. Novel laundry detergents are therefore formulated to contain additives which

breakdown the large hydrophobic molecules into more soluble components that can then

be removed using surfactants.123 This technology is still in the early stages of develop-

ment, but the key to further optimisation is a method that allows for the measurement

of the level of lipid present on the fabric. Such a technique would allow quantitative

assessment of the effectiveness of new laundry detergent formulations.

3.2.1 Chemistry of lipid stains

The type of stains focussed upon in this project are ones which are most commonly

encountered on clothing garments, effectively limiting the scope to food stuffs and

sebum, which can be transferred onto garments that make physical contact with the

skin.

The major lipid components in common food stuffs are chemically quite similar, these

are a type of compound called triglycerides.
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Glycerides comprise a glycerol backbone esterified with a range of saturated and unsat-

urated long fatty acids to form a triglyceride (figure 3.2). The nomenclature of these

compounds is usually defined by 3 letters which refer to the fatty acids constituting

R1,R2 and R3, for example the common tri-oleic compound is referred to as OOO. The

fatty acid esters are abbreviated to: C-caprate, La-Laurate, M-Mystate, P-palmitate,

S-stearate, O-oleate and L-linoleate.

The other constituents include: diglycerides in which only two of the glycerol alcohol

functionalities are esterified, free fatty acids, and trace compounds present from the

plant or animal that the lipid was extracted from.

Figure 3.2 Structure of triglyceride backbone along with fatty acid esther groups
commonly found in nature which take positions R1,R2 and R3.

The main difference between the oils and lipids found in food stuffs is therefore the
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composition and ratio of the fatty acid esters making up the triglycerides, these can be

summarised for the most common oils in food stuffs and sebum:

Olive oil The composition of olive oil tends to differ across different regions in the

world, but the most common triglycerides contain the oleic group, with OOO accounting

for 40 % - 60 % of the total mixture. POO and OOL account for another 12 % - 20 %

and finally the unsaturated POL accounts for around 5 %.124

Sunflower oil Sunflower oil is also mainly composed of OOO. Different genetic lines

of sunflower have been bred which have higher palmitic, stearic or linoleic content,

therefore the exact composition is usually source-dependent. However, OOL, SOO and

POO are present in oils from all common mutations.125

Coconut oil Coconut oil has a high laurate content, with LaLaLa, LaLaM and CLaLa

acounting for more than 60 % of the total. At room temperature it is a soft waxy solid

which begins to melt at around 24 °C.126

Lard Unlike the previously mentioned oils, lard is an animal product but its chemistry

however is not dissimilar. The main constituents are triglycerides rich in palmitic and

oleic acids: POO , POS and POP. The ratios of which vary between sources. Lard is a

solid at room temperature and begins to melt at 30°C - 40 °C.127

Sebum Sebum is an oily substance excreted by human skin to protect it against fric-

tion and makes it more resistant to moisture.128 It is a complex mixture which varies



Chapter 3. Towards quantification of lipid residues on fabric 140

in composition from person to person, part of the body and between reported stud-

ies. The main components can be summarised as: Squalene, triglycerides, cholesterol,

cholesterol esters, wax asters and free fatty acids.129–131

3.2.2 Quantitative assessment of laundry detergent performance

Assessing the level cleaning achieved by laundry formulations is typically carried out us-

ing: visual assessment, gravimetry, colourimetry, or exotic methods such as radioactive

labelling.38,120,123 However, all of the afore mentioned results are relative measurements,

meaning that they can be used to compare levels of staining, but not give an absolute

value as to the amount present.

For colour stains, colourimetry is a popular approach and the technique can be traced

back to a study published in 1980.120 Formulations are assessed using the following

method: a imitation stain (model stain) is applied onto standard fabric swatches in a

controlled quantity. Samples are then placed into a box with homogeneous illumination

and a standard colour camera is then used to image the samples. The fabric swatches

are then washed, dried and imaged again using the same equipment. The RGB values

obtained from the images are converted into the CIE L*a*b* colour space, and the

Euclidean distance between the L*a*b* coordinates of the clean fabric and the center

of the stain are measured using a parameter called ∆E∗, which is defined:

∆E∗ =
√

(L∗2 − L∗1)2 + (a∗2 − a∗1)2 + (b∗2 − b∗1)2 (3.1)

where (L∗1, a
∗
1 and b∗1) represents the L*a*b* coordinates of the clean fabric and (L∗2, a

∗
2

and b∗2) the L*a*b* coordinates of the stain centre. Performance of laundry detergents

is then assessed using a metric called stain removal index (SRI) which is thought to

indicate the percentage of stain removed after a wash cycle. It is calculated by taking

the difference in ∆E∗ between washed and unwashed fabrics as a ratio of the ∆E∗ in
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the unwashed stain (equation 3.2).

SRI =
∆E∗unwashed −∆E∗washed

∆E∗unwashed

× 100% (3.2)

Measuring the performance of formulations on colour-less lipid stains is, however, more

challenging. Some studies have used solvent extraction, followed by weight measure-

ments as a substitute for ∆E,123 although there are many sources of error in using

this approach as any soluble components are assumed to be lipid. Another approach,

which was reported in the original study,120 has been to add a hydrophobic dye to the

model stain in low concentrations (demonstrated in figure 3.3), allowing the colorimet-

ric method to approximately compare the amount of lipid removed between samples in

model stain wash tests.

Figure 3.3 Example of dyed lipid stains on standard fabric swatches used for colourimetric
analysis.

This empirical metric of observing the wash-off of the lipid-bound dye has been de-

veloped as it allows the otherwise colourless lipid stains to be visualised with basic

instrumentation. It stems from measurement of laundry detergent performance where
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appearance is the key factor, however, the authors of the original study noted ‘a num-

ber of problems in using these methods of calculation’, in particular ‘percentage stain

removal may not describe the relative performance of products’. The errors can be

traced back to several assumptions which are key to the accuracy of the approach, the

validity and implications of which are discussed and tested experimentally further in

this chapter.

In a similar field, the quantification of lipid present on hard surfaces, such as those

found in dish washers, has been previously explored. A widely used method in the field

is called ‘bath substrate flow’ and was originally published in 2003.132 The technique is

based on having a large confined surface, such as glass spheres packed into a column,

called the substrate. This container is subject to model stain and washing solution is

then continuously exchanged between a reservoir and the substrate to simulate washing.

Following the ‘wash’ cycle, the mass of the substrate and washing solution can be

measured to determine the amount transferred. Alternatively, if the model stain is

appropriately chosen then the pH of the wash solution can be continuously monitored.

This method is also prone to several issues, mainly that the mass of the substrate or bath

is usually far greater than the mass of the model stain making accurate measurements

difficult. Measurement of the pH circumvents this issue and even allows real time

analysis during a wash. However this is limited to stains which cause a change in pH

of the usually alkaline wash solution, which excludes the majority of greasy food stain

components.

In an attempt to resolve these issues, an improvement to the method has been published.

The improved technique involves addition of a hydrophobic dye to the model stain,

followed by extraction of the dye into an organic solvent post-wash and examination of

the extract by absorption spectroscopy or colourimetry.133–135 Such a method however,

inherits the problem associated with dye-staining which have been discussed earlier in

this section.
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3.3 Calibration sample set

In order to develop a technique for quantifying lipid stains on fabric, a set of samples

which have a known concentration of model stain is required. Such protocols for making

standards does not currently exist and therefore needs to be developed prior to the

development of new analytical methods. This section describes the approach taken to

develop a method for sample preparation which yields uniformly stained fabric samples

of known lipid concentration.

3.3.1 Unit system

There exists no standard definition for the units of lipid concentration on fabric. In

this application, the lipid being measured can have varying compositions which will be

measured on several different fabric substrates. For this work, a system of measurement

suitable for this purpose has been devised and will be used throughout the course of

this study. The quantity found most suitable was determined to be the mass of stain

per mass of fabric as a universal scale in describing the concentration of lipids on fabric.

This quantity will be denoted cl, and as a ratio of two masses it can be used as a unit-

less value to describe the amount of lipid present on a fabric surface as a fraction of

the fabric substrates mass (eq 3.3). In order to simplify the interpretation of results,

the quantity will be presented as percentage and referred to throughout this work as

‘wt%’:

cl =
ml

mf

wt% = 100 cl (3.3)

where ml is the mass of lipid in a given volume of fabric and mf is the mass of the

fabric substrate occupied by the lipid. Interpretation of the wt% scale should also be

done with care. While values of the wt% scale are expected to lie within the range of

0-100 wt% based upon measurement of real garments and laboratory made replicates,
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the scale can also extend above these values; a sample may comprise more mass of stain

than the fabric substrate to yield a measured cl above 100%.

3.3.2 Model compounds

To study the level of lipid soiling on fabrics, at least in initial studies, a reproducible

and readily available compound is needed to represent realistic lipid stains. This will

be referred to throughout as a model stain and needs to be representative of real stains

encountered on fabric. Due to the low selectivity of the techniques which will be devel-

oped in this work (Colourimetry and SWIR-DRS) as well as the chemical similarity of

lipid stains, the choice of lipid used as a model stain will likely have little effect on the

resulting measurements. Sunflower oil was therefore chosen as the model stain due to

its availability and ease of handling.

The substrate used as the model fabric to represent typical items of laundry will be cot-

ton in initial studies, and further work will expand the technique to include polyester

and poly-cotton (a blend of polyester and cotton typically in around a 3:7 ratio). To-

gether these fabrics account for a large proportion of the laundry industry. They were

selected as together they may show how a reflectance based technique may be suitable

for quantification of lipids on textiles of different fabrics as well as fabrics consisting of

blended materials.

3.3.3 Sample preparation

In order to have samples with a know concentration of model stain, a know mass of

fabric needs to have a known mass of model stain distributed evenly across its volume,

meaning measurements can be carried out at any location on the sample. Directly

staining fabrics with varying amounts of model stain results in a central region of high

concentration with the edges remaining completely unstained, although capillary action
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in between the fibers does help in homogenisation of the oil across the fabric.

A better approach to creating uniform stains was established by diluting the model

stain with a volatile-organic solvent and applying a larger volume to the fabric, with

the aim to completely saturate the swatch and allow the model stain to distribute

evenly before evaporation of the solvent. This methodology was found effective in

producing homogeneous samples with stain concentrations above 10 wt%. Below this

limit, samples exhibit a ‘coffee-ring’ like effect, with more stain deposited on the edges

as opposed to the center of the fabric. The accuracy of this method, as well as the issue

in making low-concentration samples will be addressed further in this section.

Cotton model sample set

A sample set designed to create a prediction model exclusively for cotton fabrics was

made using 2x2 cm square (cut using a surgical scalpel) 100 % knitted cotton fabric

swatches of area density 33 mg cm−2. The concentration range of the sample set was

limited to a maximum at where the fabric can no longer absorb any more oil in between

its fibers, which was found to be 97 wt%. 10 Stain solutions of 1 ml volume were made

up in individual vials using an auto pipette to add the right proportions of sunflower

oil and ethyl acetate. In order to allow colorimetric analysis of the stains, a trace

amount of lipophilic dye (0.1 % solvent violet 13) was added to the sunflower oil prior

to making the solutions. In such low concentrations, it was found that the dye has no

detectable contribution to the NIR-SWIR reflectance spectrum. Staining was replicated

by applying 200 µl of model stain solution, diluted to varying degrees with ethyl acetate,

directly to the center of fabric swatches and leaving the samples at room temperature

for two hours to allow the solvent to evaporate. In total, 10 pairs of stained samples

with lipid concentrations increasing in steps of 9.7 wt% up to the maximum were made,

with a further 14 unstained sample yielding the complete set of 34 samples.
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Figure 3.4 Calibration set of samples with set lipid concentration. Only two clean samples
are shown for clarity. A(10): 9.7 wt% - J(100) 97 wt%.

Multi-fabric model sample set

To expand the scope of fabrics used in modelling, the set of calibration samples was

expanded to include polyester, poly cotton, as well as a composite of the two materials

used in collars. Samples were prepared in the same manner as the cotton set with a few

modifications to address issues which were identified in the process: the relatively high

viscosity of the sunflower oil leads to difficulties in accurately dispensing the liquid.

This was mitigated by first diluting the oil to 70% (by volume) before preparing stain

solutions. The uncertainty in model stain concentration of the stain solution was also

minimised by preparing the solutions in batches of 100 ml. Fabric swatches were cut

to 2x2 cm using a CNC laser cutter, which minimised the error in the dimensions of

the swatches, however, the edges were slightly degraded from the cutting process. The

concentration range of the samples was limited to a maximum of 60 wt% as it was

found that some fabric weaves could not bear a greater proportion of model stain. The

amount of model stain solution deposited onto the swatches was scaled to account for

differences in fabric density. In total, the sample set used in modelling consists of
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84 stained samples: two different types of cotton, poly-cotton and polyester; as well

a batch of collar material, with 12 samples for each fabric type, at 6 concentrations

increasing in steps of 9.7 wt% and two samples at each concentration. A further 120

unstained samples were included to the set. The properties of the fabrics have been

summarised in table 3.1.

Table 3.1 Area-density of fabrics used in multi-fabric calibration set

Fabric type Density (mg cm−2)

Knitted cotton 33.0

Flat cotton 13.1

Poly cotton(1) 11.8

Poly cotton(2) 11.1

Polyester(1) 14.3

Polyester(2) 18.7

Collar material 49.4

Error analysis

It is important to assess the accuracy associated to the process of making the calibration

set of samples, which will aid in quantifying the error in the subsequent reflectance

dataset used in development of machine learning algorithms.

The experimental factors which are likely to contribute most to the error in the set lipid

concentration have been identified as: the variability in dispensing model stain solution

onto fabric swatches, and the uncertainty in dimensions of the fabric swatches. A series

of experiments were designed and carried out to measure the certainty with which the

set lipid on fabric concentration in the training data-set can be known. This practical

approach allows for reliable estimation of the errors associated with the tools which are

used in the preparation of stained fabric calibration standards.
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The accuracy and precision of model stain deposition was measured by repeatedly

transferring 200 µL aliquots of model stain solution into a vessel. The increase in mass

of the vessel was subsequently monitored for each repeat using an analytical balance.

The consistency of fabric swatches was measured using a vernier caliper to gauge the

horizontal dimensions and consequently the area. An analytical balance was employed

in combination to allow for an area density measurement. The dataset acquired from

these experiments is available in section 5.2 and the results have been summarised in

table 3.2.

To aid the propagation of errors, the set lipid concentration of samples in the training

set can be expressed mathematically using the definition of lipid on fabric concentration

in equation 3.3. Furthermore the relationship can be rewritten in terms which have been

experimentally probed:

cl =
ml

mf

∝ cmsmd

ρd ρf As Tf
(3.4)

where cms is the concentration of model stain solution, md is the mass of model stain

dispensed onto the sample, ρd is the density of model stain solution, ρf is the area

density of model fabric, As is the area of the model fabric swatch, and Tf is the thickness

of the model fabric swatch. This equation shows that the probed parameters are linearly

related to the lipid concentration present in the sample. The errors in the measured

parameter can therefore be consolidated into an error in the set lipid concentration

using a root sum of squares.

The thickness of model fabric could not be accurately measured due to the softness of the

material causing ambiguity in the reading. The error contributed by the fluctuations in

the thickness of model fabric is, however, reflected in the error measured for ρf , which is

accounted for in error propagation. The error in making solutions of a set concentration,

cms, was initially a dominant factor due to the high viscosity of the model stain. The
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procedure was however improved by working on a large scale (100 mL) compared to

preparation of samples (0.2 mL). The error associated to cms is estimated to be less

than 0.2% and therefore insignificant in these calculations.

The errors from experimentally tested parameters were calculated as the standard error

of the recorded data, otherwise called the standard deviation of the mean, and takes

into account the offset from the set value for each quantity. The calculated error in

each quantity along with propagation to error in lipid concentration are tabulated in

their relative form in table 3.2.

Table 3.2 Parameters used to probe the magnitude of the error in the set lipid
concentration of the calibration sample set. A The value in brackets denotes the error in the
last significant digit.

Quantity Mean Error % A

md 183.8 mg 0.4(1)

As 404.1 mm2 2.4(6)

ρf 0.33 mg mm−2 0.9(3)

Cl−training 3(1)

The error in the error was calculated based on the number of repeat measurements

performed in the experiments for each quantity.136 This quantity needs to be interpreted

with care as it does not account for any experimental factors which were not controlled.

Alternatively, it provides an estimate of how much the calculated errors are likely to

vary if the number of repeat readings was increased. The results show that the largest

contribution to the error in set lipid concentration is the size variation of the fabric

swatches. The 2-4% error calculated in Cl−training sets the upper limit on the accuracy

of prediction models training using this dataset. This value will be used in detecting

over-fitting present in prediction models.
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3.3.4 Spectroscopy of lipid and fabric substrates

The optical spectrum of lipids in the SWIR region of the spectrum is dominated by

five features: two major features at 1700 nm (5880 cm−1) and 2300 nm (4350 cm−1),

and three minor features at 1200 nm (8330 cm−1), 1400 nm (7140 cm−1) and 2150 nm

(4650 cm−1). The major features are attributed to the first overtone of C-H stretching

modes (1700 nm) and combinations of C-H stretches (2300 nm), while the minor fea-

tures are difficult to assign.137 These can be observed in the transflectance spectrum

recorded from the model stain in figure 3.5. Due to the similar chemical nature of

lipids, specifically regarding the long alkane chains constituting many C-H bonds, these

features are likely to be present in all lipid stains encountered within the scope of this

project. In some oils such as olive, the trace presence of pigments, mainly carotenoids,

anthocyanins and chlorophyll is responsible for a yellow and green colouring, resulting

from two absorbance bands around 420–460 nm and 668 nm.137

The composition of cotton fabric largely consists of two components, cellulose and water,

and these account for 91% and 8% of the total mass respectively, with the remaining

components consisting of protoplasm, pectins, fatty substances, and salts.138 As such,

the optical spectrum of cotton in the SWIR region is dominated by the absorbance

bands of cellulose. This is seen as broad absorption bands at 1500 nm (6670 cm−1),

1900 nm (5260 cm−1), 2100 nm (4760 cm−1) and 2500 nm (4000 cm−1). The band at

1900 nm is due to the presence of water in the fabric, and the band at 2100 nm is a

combination band of O-H / C-H bending modes as well as an O-H stretch.139 These

features can be observed in the measured DRS of the model cotton fabric in figure 3.5.
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Figure 3.5 DRS spectrum of kitted cotton fabric (Orange) and transflectance spectrum of
sunflower oil (Blue) recorded as a thin layer deposited on a teflon backing and reference
corrected.

The DRS spectra of polyester and ploy cotton model fabrics from the calibration set

are also presented here for reference (figure 3.6). Polyester refers to a class of polymers

that contain the ester group in the backbone, but most commonly is used to describe

the material polyethylene terephthalate (PET). The optical spectrum of PET in the

SWIR region shows many distinct features. A distinct peak at 1660 nm originates from

the first overtone of the aromatic C-H stretching mode. The band around 1900 nm can

be attributed to the first overtone of the O-H stretch, and overlaps with the second

overtone of the C=O stretch. The feature around 2170 nm is assigned to combination

bands of aromatic C-H and combination band of the methylene group. Finally the

features beyond 2200 nm are difficult to distinguish, although they are know to involve

the methylene groups, aromatic C-H and COO moieties.140 The spectrum of polycotton

shows absorbance bands from both of it’s constituent components.

As fabrics are stained with an increasing concentration of oil, the absorption bands from

the oil around 1200 nm, 1700 nm and 2300 nm become increasingly prevalent. The
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general trend seen with increasing stain concentration also shows an overall decrease in

reflectance, which is non-linear with wavelength and attributed to changes in scattering

by the oil saturated fibres.

Figure 3.6 DRS spectra sets of fabrics stained with an increasing concentration of model
stain (displayed in the legend). (Left) Polyester training set. (Right) Polycotton training
set. Spectra have been standardised by subtracting the mean and dividing by the standard
deviation, and are presented vertically offset for clarity.
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3.4 Modelling

3.4.1 Cotton model

Cotton fabric is widely used in textiles and serves as a good starting point for developing

a chemometrics model. A system including a single type of fabric and a single type

of model stain lends itself well to multivariate analysis due to the reduced number

of variables. The interpretation of the inner workings of such models is also usually

possible as opposed to more complex models. The use for such a model is limited to

cotton garments, which restricts the application in real-world stains that may be based

on a variety of other fabric, or even blended fabric substrates. While gathering all

real-world fabrics into a single model is beyond the scope of this project, the techniques

which would be used to do so if such a data-set become available would have a firm

grounding in this work. Furthermore, even a limited cotton model has application to

assessment of laundry detergent performance in stain-removal experiments.

Preprocessing

Prior to construction of a mathematical model based on reflectance data, it is necessary

to apply some initial processing of the raw reflectance spectrum in order to remove

device dependant artefacts, minimise experimental artefacts, maximise analyte features,

or linearise the response with respect to analyte concentration.

Selecting a pre-processing method is usually limited to trial-and-error, and is therefore

considered somewhat subjective.141 In this study, the performance of pre-processing

methods is assessed by using unsupervised machine learning algorithms to reduce the

dimensionality of the dataset.

As the main source of inter-sample variance should be caused by changing the concen-

tration of analyte, reducing the dimensionality of a pre-processed dataset should define

a pattern in the higher rank components. The clarity of the pattern and similarity of
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readings repeated on identical samples can then be used to justify the most suitable

pre-processing method. Furthermore, if a mathematical relationship between the new

variables and analyte concentration present in the samples can be found, it can be used

as a basis for a chemometric model.

The unsupervised ML techniques used in this case are PCA and t-SNE; PCA is a

tangible technique which can be later used to build and model. Unlike PCA, which

can only show linear projections, t-SNE is a highly non-linear method which provides

another point of comparison if PCA shows similar results or the relationship between

analyte concentration and the obtained reflectance data cannot be described by a linear

projection.

The relatively small size of the dataset used in this initial model makes computation on

an average computer easily assessable, therefore a variety of preprocessing methods are

be explored including combinations which were found to give promising results. The

result of each pre-processing method, along with the outputs of the unsupervised ma-

chine learning algorithms is shown in table 3.3 and the corresponding transformations

are explained thereafter.
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Table 3.3 preprocessed DRS spectra recorded from the stained cotton calibration set. The
result of pre-processing is shown on a selection of spectra covering the analyte concentration
range, with concentration shown in each figure legend with units of wt%. The scores plot of
the first two principal components is shown with the amount of variance they explain in axis
labels. The pre-processing method are denoted (Nr): (1) Raw spectra. (2) Savitzky-Golay
filtering. (3) SNV. (4) Log(1 / R). (5) Kubelka-Munk function. (6) second derivative. (7)
MSC. (8) EMSC. (9) E-SNV. (10) ESNV of Kubelka-Munk transformation of EMSC
corrected R.

Nr. Processed Spectra PCA t-SNE

1

2

3

4

5
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Nr. Processed Spectra PCA T-SNE

6

7

8

9

10
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Raw spectra First the condition of unprocessed spectra is investigated. Using Un-

processed data is undesirable as it contains device dependant artefacts which may be

incorporated into the later developed machine learning models, making them unreli-

able on spectrometers other than the one used to collect the calibration dataset. For

example in the SWIR spectometer used to collect the dataset, the sample was manu-

ally brought into focus of the probe beam. The alignment is subject to the operators

judgment and will vary between operators. Differences in probe alignment will result in

a non-linear distortion of the recorded reflectance spectrum, which is difficult to reject

in ML models.

Looking at the ML output in table 3.3 (1), the first PC can account for 99.3% of

the variance in the dataset. This is a strong indication that linear projections will be

suitable in this case. The t-SNE projection shows uneven clustering through out the

concentration range of the analyte, although this may be due to the uneven number of

samples taken at different surface lipid concentrations.

Noise reduction Any measurement system is inherently subject to random noise.

In SWIR spectra this is usually present as Johnson–Nyquist noise from the detector

which has been amplified. The noise is unevenly present throughout the spectrum

due to the uneven output of the probe light source and subsequently the SNR across

instruments bandwidth. Noise can be reduced at the expense of spectral resolution.

A common approach is to approximate the spectrum by fitting weighted piecewise

polynomials to adjacent points, otherwise called a Savitzky–Golay filter. The outcome

is reduced noise with minimised distortion to the signal shape. In this context the

result of Savitzky–Golay filtering can be seen in table 3.3 (2). Spectra appear less

noisy, and PCA shows more covariance described by a single PC. These techniques

however, generally lower the amount of information present in the data set, therefore

models should instead be trained with tolerance for common instrumental noise.
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Magnitude and offset correction. Errors which cause spectra to be scaled or offset

are difficult to remove without external information, for example the output power of

the probe beam optical alignment on the sample. However, spectra can be standardised

via a linear transformation to a form where such errors are excluded, which allows better

comparison between spectra. Although the original intensity information is lost and

only the shape of the spectrum considered. It is applied by subtracting the mean of the

entire spectrum (x̄) from each point (x) and dividing by the standard deviation (S) of

the spectrum (equation 3.5).

z(λ) =
x(λ)− x̄

S
(3.5)

In chemometrics this is call the Standard Normal Variate (SNV) of a spectrum, and

the result is a standard

The outcome of SNV on the calibration set can bee seen in table 3.3 (3). Spectra

become overlapping in regions which are little affected by the analyte and the C-H bands

introduced to the spectrum become prominent. PCA shows point of the same analyte

concentration appearing closer together, although the amount of variance explained by

a single principal component is reduced.

Response linearity In construction of a model using regression, it is beneficial that

the predictor variables (reflectance spectra) are linearly related to the response variables

(concentrations). In reflectance spectroscopy this is inherently not the case, and there

exists no exact transformation to relate the reflectance intensity to the concentration

of absorbing species. To address this issue, several transformations have been proposed

which input a reflectance spectrum and output a function which is approximately pro-

portional to the concentration of absorbing species. A popular transformation is the

Kubelka-Munk function (F(R)):
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F (R(λ)) =
(1−R(λ))2

2R(λ)
(3.6)

Kubelka-Munk theory was developed using several approximations and is based on

the probability of a ray escaping the surface depending on how deeply it penetrates the

sample.142 It has since been show that a more accurate approximation should use 4R(λ)

in the denominator,143 and this will be referred to as the Kubelka-Munk equation.

Another commonly used approach in reflectance based chemometrics is to use the log-

arithm of the reciprocal of the reflectance:

f(R(λ)) = log10(1/R(λ)) (3.7)

There is no theory which suggests that this transformation should be linearly dependant

on the concentration of absorbing species, however, in practise it has been found to give

good correlation in many systems.144

The use of Kubelka-Munk theory and log(1/R) on the calibration dataset can be seen

in table 3.3 (4) and (5) respectively. The transforms both show better clustering of

similar samples in PCA compares to unprocessed data. Kubelka-Munk theory performs

marginally better in that respect as well as showing more variance explained by a single

principal component, and more even clustering throughout the analyte concentration

range in t-SNE.

Derivatives When building machine learning models to work on features which are

difficult to distinguish, if may be useful to take derivatives of reflectance with respect

to wavelength. This causes peaks to become more prominent compared to the rela-

tively small gradients of the background. In chemometrics, the second derivative is
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found to give good results. it is also important to remove instrumental noise from the

spectrum using the aforementioned Savitky-Golay filtering, otherwise the derivative be-

comes dominated by random fluctuations.

In this case, the result of second derivative pre-processing seemed to show poor corre-

lation with the analyte concentration in PCA and t-SNE as can been seen in table 3.3

(6).

Scatter correction In reflectance spectroscopy the relationship between recorded

spectra and concentration of absorbing species is complicated as the introduction of such

species changes the refractive index, and introduces non-linear wavelength-dependant

distortions. This is extremely difficult to correct for and a popular empirical approach

involves correcting the spectrum (Rs(λ)) by fitting it to a reference one (Rr(λ)) via a

polynomial function in a technique called Multiplicative Scatter Correction (MSC).145

In this case the reference spectrum is that of clean cotton fabric and a second order

function is found to give sufficient results, therefore the scatter correction function take

the form:

Rr(λ) = αR2
s(λ) + βRs(λ) + γ + ε(λ) (3.8)

where α, β and γ are constants found by least squares fitting in order to minimise ε,

the vector of residuals. The MSC function is then applied by using the determined

coefficients on the reflectance spectrum of the sample in question (Rs(λ)):

Rc(λ) = αR2
s(λ) + βRs(λ) + γ (3.9)

where Rc(λ) is corrected spectrum to be used in modelling. This correction works to

remove non-linear distortions which hinder models based on linear projections. The

application of this method to the training set shows results which are comparable to
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those from SNV and can be seen in table 3.3 (7).

Despite the promising results, MSC is fundamentally flawed as the absorbance bands

from the analyte cannot be fitted to the reference spectrum, and therefore reduce the

overall quality of the fit. For this reason MSC was later improved to only fit the regions

where the analyte absorbance has little effect on the spectrum, and the scatter correc-

tion function can include intensity dependant terms, as well as wavelength dependant

terms.146 In this case, the wavelength dependant terms were found unnecessary and the

scatter correction function was built by excluding the absorption bands of the model

stain (described in section 3.3.4) when finding the α, β and γ coefficients. The results

of EMSC are shown in table 3.3 (8) where the fit in areas least affected by the analyte

become significantly improved, along with the variance described by a single PC.

E-SNV In this study, a novel pre-processing method was devised and found to give

excellent results. Based on the method used to extend MSC, SNV can be improved

by excluding spectral regions which are heavily affected by the analyte. This is carried

out by applying a window function on the spectrum in question, to exclude absorbance

bands of the analyte. This is followed by calculation of the mean and standard deviation

of the resulting truncated spectrum. SNV can then be carried out in the same manner

using equation 3.5 with the previously calculated mean and standard deviation values.

This approach remains unsupervised and as shown in figure 3.3 (9) has an excellent

capability to remove the differences between sample in spectral regions which are little

affected by the analyte. This improvement is also observed using PCA where the

variance described by a single principal component is increased compared to SNV. This

approach is however limited in the range of analytes it can be used with.
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Spacing The aforementioned methods aim at improving model performance by fun-

damentally distorting the input space to maximise linearity in the output space. But

it is also important to consider how the input space is sampled, as model input vectors

contains no information on units, the only requirement that they are consistent. In

DRS, the input space may either be sampled linearly in units of wavelength, or units of

frequency. The conversion between these two quantities may be possible via piecewise

interpolation functions. Scaling of the input space is not required as the reflectance

spectrum is a ratio of intensities, and therefore the scaling factors described in section

1.4 ratio to unity.

In this application, the input space will be linear in frequency units as this is the raw

output from the FT spectrometers used in this study. Interpolation to linear spacing

in wavelength units was found to cause little difference to model performance, and

therefore only serves to reduce the amount of information present in the dataset. It is

still however an important consideration when applying a model to the output of a new

reflectance spectroscopy instruments.

Combinations It is also possible to use the aforementioned techniques in succes-

sion to combine the advantages of each individual method. The combination of pre-

processing steps which will be used in this initial model will need to be as effective as

possible at removing device dependent artefacts, as the dataset is of a relatively small

size and collected on a single type of reflectance spectrometer.

The combination which was found to give the best results is a Kubelka Munk trans-

formation, followed by SNV and finally EMSC. The result of these transformations is

visible in table 3.3 (10), where spectra show excellent overlap in the spectral regions

least affected by analyte. The PCA plot shows good clustering of identical samples. t-

SNE shows the most even clustering throughout the concentration range of the analyte

compared to any single pre-processing method applied individually. This combination
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of pre-processing techniques will therefore be used in fitting a model to the cotton

calibration dataset

Model fitting

Predicting stain concentration from an input set of pre-processed reflectance spectra

requires a function which can transfer a vector of input variables into a single predicted

stain concentration variable.

A linear transformation could theoretically achieve this in a single step by using linear

regression to fit a hyperplane, with each preprocessed spectral channel as a discrete

input variable. The resulting function would take the form:



y1

y2

y3

...


=



1 r1,1 r1,2 r1,3 ...

1 r2,1 r2,2 r1,3 ...

1 r3,1 r3,2 r1,3 ...

... ... ... ...





β0

β1

β2

...


+



ε1

ε2

ε3

...


(3.10)

where rm,n is the preprocessed DRS spectrum data of the mth sample and reflectance

at nth wavelength. ym is the set stain concentration of the mth sample. β is a vector of

coefficients which needs to be determined by minimising ε, a vector of residuals.

The size of n is determined by the instrument used to collect the reflectance spectrum.

In this study the FT-SWIR spectrometer used has an effective spectral range of 900 nm

to 2500 nm, and the bandwidth is limited to 8 cm−1. This means 160 discrete channels

are required to effectively sample the input space, combined with over-sampling, this

yields over 900 reflectance variables recorded in each spectrum per sample and therefore

the same amount of β variables to determine. With a dataset of only 34 samples, this

approach is difficult as the number of coefficients which need to be fitted is far greater

than the number of samples in the dataset. Ultimately, this leads to a over-fitted
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model which performs poorly on samples external to the training set. Due to the

constraints described above, it is therefore necessary to reduce the number of variables

input into the model, and a PCR approach has been utilised in this section of work.

The implementation will first be discussed before gauging its accuracy.

It was previously shown (section 1.5.1) that the majority of the variance in a dataset

can be described by only a few PCs using a dimensionality reduction technique such

as PCA (figure 3.7). In PCR, samples’ corresponding PC scores are used for model

inputs in place of pre-processed DRS spectra. The transform function behind such an

approach is nearly identical to equation 3.10, where the reflectance variables are sub-

stituted by PC scores.

The simplified inputs do not need to sacrifice on a large amount of information to greatly

reduce the number of input variables. The use of this operation is also necessary as in-

puts into a machine learning model should be orthogonal, or free from multicollinearity,

which has been inherently introduced in the oversampling used during measurement of

the dataset.

Figure 3.7 Percentage variance cumulatively explained in the pre-processed cotton training
dataset using an increasing number of PCs.
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It was found that in the pre-processed cotton dataset, almost 95 % of the variance can

be described by a single variable, the score of the first PC (PC1). If the first 3 PCs are

also used, then the total amount of variance described by the three variables increases

to over 99 %, and diminishing returns then show that the PC scores below the 3rd rank

add very little information to the data presented to the model input.

The function of PCA can be further investigated by inspecting the coefficients used to

calculate the scores of the most significant PCs. Figure 3.8 shows the weighting of each

input variable used to calculate the scores. PC1 weightings resemble the absorbance

spectrum of the analyte, whilst the weightings forming PC2 appear similar to the

absorbance spectrum of fabric. PC3 weightings show features present from both fabric

and analyte which are difficult to interpret, but still contain information which will be

used in model fitting.
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Figure 3.8 PCA coefficients calculated from the reflectance spectra of the cotton
calibration set. Each trace shows the coefficients for a corresponding PC, which are used in
linear combinations with each spectrum to calculate the PC scores. The coefficients are
mean-centred and have been offset for clarity.

The coefficients of PC4 show large contributions from the extremities of the spectral

range scanned, where SNR is the lowest. The inclusion of PC4 in the model will there-

fore likely result in over fitting as these spectral regions also contain little information

about the substrate or analyte. The remaining 30 PC coefficients appear similar to

PC4, and are too noisy to meaningfully interpret.

The vast majority of the information present in the dataset is contained in a single prin-

cipal component. A chemometrics model can therefore be obtained by fitting a function

to the score of each sample with respect to its set concentration of analyte. The results

(figure 3.9) appear to show a linear relationship, meaning a first order polynomial can
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be used to form the chemometrics model. This result has been facilitated by the pre-

processing step performed on the dataset which increases linearity of the response with

increasing analyte concentration. The calibration samples at 10 wt % appear lower

than the trend in the rest of the dataset, this will be discuss further in section 3.8. A

single calibration sample at 70 wt% appears offset from the trend, potentially due to

an error in its preparation.

Figure 3.9 Basic linear PRC model fitted to the cotton calibration dataset.

The amount of information input to the model can be increase by including the scores

from the remaining principal components as separate channels input to the model.

Including the score from PC2 adds an additional dimension to the distribution, which

can be fitted to a plane via a double first order polynomial function. The resulting

transfer function is therefore a plane with the scores of PC1 and PC2 in the x and y

axes, and stain concentration in the z axis:
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Figure 3.10 PCR model fitted to the first two principal components calculated from the
cotton calibration sample set using PCA.

The model can be made more complex by including the scores of even more PCs into

the input, hence using more of the information captured in the reflectance spectra in

model fitting. The resulting transfer function fitted to a variable amount of PC scores

then takes the mathematical form of a hyperplane, similar to that described in equation

3.10 with PC scores replacing the preprocessed reflectance values. The fitting procedure

remains unchanged: the least squares technique is employed to optimise the coefficient

vector by minimising the vector of residuals.

A series of five PCR models were fitted to the cotton dataset, with each model using

an increasing number of PC score variables as inputs. The fitted functions forming the

first two models have already been discussed. The remaining PCR models are difficult

to visualise as they span into more than three dimensions, they are instead presented

in terms of their performance. The accuracy of a model can be initially assessed by

the RMSE calculated with 3-fold cross-validation, and these have been tabulated in

table 1.14. It can be seen that a simple single component model can achieve prediction
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with an RMSE of 3.8 wt%, and the best performing model fitted was that based on

three PC inputs, with a calculated RMSE of 2.3 wt%. The inclusion of additional PC

scores may appear to improve the fit by minimising residuals, yet validation shows that

models become over-fitted after more than three PC scores are included in the model.

The accuracy of prediction subsequently decreases as seen in the RMSE of the four and

five component models.

Table 3.4 Error of prediction (from 3 fold cross-validation) as a function of the number of
PCA components used in fitting of a PRC model to the cotton calibration sample set. * A
three component model fitted using the same dataset but with the absence of pre-processing.

Number of PCs used for model Model RMSE (wt%)

1 3.8

2 3.2

3 2.3

4 2.6

5 2.7

3* 4.2

The value of pre-processing raw reflectance data can also be observed. A separate

model has been trained using the same architecture as the most accurate model trained

on pre-precessed data. It can be seen in table 3.4 (3*) that the RMSE of prediction

of this model is 4.2 wt %, significantly higher than the 2.3 wt% found for an identical

model fitted to pre-processed data. The use of pre-processing has therefore reduced the

RMSE of prediction by 1.8 wt%. This is a relative increase in model performance of 42

%, which can be considered as a rough metric of pre-processing efficacy.

The three component model which shows the best overall performance, or the lowest

RMSE, will be used for the rest of experiments in this section. The application of this

model to the set of samples used in its training can be seen in figure 3.11, where the

model has been applied to each sample in the calibration set. A perfectly fitted model
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would show a y = x relationship.

Figure 3.11 Predicted stain concentration from a calibration set of samples using a three
component PCR model.

The prediction accuracy shows a linear relationship throughout the concentration range

of the analyte. Further analysis of the fit can be done by looking at the distribution of

residuals. The residuals show a random distribution around the ideal y = x line, and

has a standard deviation of 2.1 wt %, which is consistent with the 2.3 wt % RMSE

calculated during cross-validation.
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Figure 3.12 (Left) Residuals plot from 3 component PCR model fit with the x axis
referring to the index of the reflectance spectrum in the dataset. (Right) Histogram of
residuals (blue) with Gaussian distribution fit (red).
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Error analysis & assessment of model accuracy

It is important to assess the accuracy and reliability of predictions output by the fitted

PCR model by analysing the errors associated with prediction. The accuracy of the

fitted model is limited by the magnitude of the errors in the dataset used to create it.

The dataset used in this trial was estimated to have a standard error of 3% associated

to the set surface lipid concentration. For comparison to the calculated RMSE, an extra

calculation step in necessary.

To calculate the error contribution from practical construction of the training set, the

error in each sample of the set can be combined to measure its contribution to the

RMSE calculated during fitting. This has been done as an RMS sum of absolute errors

from each sample in the dataset.

In the calibration set, summation of the 3 % preparation errors across all samples used

yields an RMSE contribution of 1.8 wt %. This is lower than the 2.3 wt % RMSE

of prediction of the model found through cross-validation. This is a good indication

that the PCR model is not over-fitted and suggests that the accuracy may be improved

using a more complex model, or there is a significant source of unaccounted for error

in the dataset.

To investigate this further, the quality of the fit can be assessed by weighting the residu-

als to standardise the preparation error contribution through the analyte concentration

range, and the outcome of the procedure is displayed in figure 3.13. The resulting plot

would ideally show an even distribution throughout the range, yet in this case it is

observed that low concentration samples show an unusually large deviation, suggesting

an unaccounted for source of error.
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Figure 3.13 Weighted residuals from three component PCR model applied to the cotton
calibration dataset. The residuals have been scaled to account for the error in sample
preparation by dividing the value of each point by the error in its associated set
concentration.

These unusually large errors on low concentration samples is likely a manifestation of the

error associated with the dilute solution staining method used for sample preparation.

The concentration gradient resulting from increased evaporation at the fabric swatch

edges leads to a lower model stain concentration at the center of the swatch compared

to the sides. Samples at 20 wt % appear positively biased, which may be a result of

model non-linearity due to the unaccounted for errors in the 10 wt % samples.

Aside from accuracy, another important limitation of the model is the performance

at extremes of the input range. The smallest concentration of model stain which can

be reliably detected is called the limit of detection (LOD). The smallest concentration

of model stain which can be reliably quantified is called the limit of quantification

(LOQ). LOD and LOQ can be experimentally determined by measuring the range

of results when blank samples are repeatedly scanned, with the assumption that the

prediction model is linear throughout the analyte range. LOD and LOQ are also device

dependant, as each instrument will have unique fluctuations in the output of varying
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magnitude. The LOD can be defined as 3 x standard deviation of the blank, and limit

of quantification as 10 x standard deviation of the blank.147 A further set of 45 clean

cotton swatches was measured and the PCR model used to infer the lipid concentration,

the results can be seen is figure 3.14.

Figure 3.14 (Left) Output from 3 component PCR model on 45 blank samples more with
the x axis referring to the index of the reflectance spectrum in the dataset. (Right)
Histogram of distribution (blue) with Gaussian distribution fit (red) of mean 0.36 wt % and
standard deviation 1 wt %.

The distribution of measurements on blank samples yields a mean of 0.36 wt% and

standard deviation of 1.03 wt %. The LOD is therefore calculated as 3.5 wt %, and

LOQ calculated as 10.7 wt %. The distribution also appears to show a small cluster of

samples with an abnormally high predicted concentration, however, the reason behind

in still unclear.
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3.4.2 Multi-fabric model

Preprocessing

Prior to modelling the reflectance spectra measured on the multi-fabric calibration

sample set, it was again necessary to process the raw reflectance data in order to aid

model fitting. The combination of techniques which was found to be effective was

conversion to KM space, followed by standardisation of the resulting spectrum. The

result of this transformation on each type of fabric in the calibration sample set, as well

as a selection of representative samples with different levels of staining, can be seen in

figure 3.15.

Figure 3.15 Representative spectra of cotton, polycotton, and polyester in the calibration
sample set after pre-processing by KM transformation and SNV, at set surface lipid
concentrations of: 0 wt% (blue), 30 wt% (green), and 60 wt% (red).

The effect of the preprocessing procedure was assessed using unsupervised machine
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learning techniques, PCA and t-SNE, the application of which is displayed in figure

3.16. The PCA scores plot shows a good improvement in structure, with samples

broadly forming three gradients. It is interesting that without preprosessing spectra,

PC1 mainly describes the lipid concentration while PC2 varies most with lipid concen-

tration. This pattern is reversed after KM and standardisation, along with a reduced

spread for concentration gradients on the same type of fabric. t-SNE plots show sepa-

ration between set of different fabric type while concentration gradients remain closely

packed. Overall, these results show that the choice of preprocessing method in this case

is valid.

Figure 3.16 (Top) PCA scores plot of raw spectra in advanced training set prior to
preprocessing (a) and after preprocessing (b), the value given in the parentheses refers to
the percentage variance described by the corresponding PC. (Bottom) t-sne before (c) and
after (d) pre-processing.
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Model fitting

In modelling lipid concentration from the preprocessed multi-fabric dataset, the same

limitations which made it necessary to use dimensionality reduction prior fitting in the

cotton set, apply here. PCA was again employed here and the cumulative variance

which can be explained by an increasing number of PC can be seen in figure 3.17. In

the preprocessed multi-fabric dataset, 86 % of the variance can be explained by the

first PC. This is a large majority, although far lower than the 95 % calculated for the

cotton dataset, but this is to be expected given the added complexity of the sample set.

The plot also shows that the increase in amount of variance explained as extra PC are

included stagnates after 5 PCs.

Figure 3.17 Percentage cumulative variance explained in the preprocessed multi-fabric
dataset as a function of increasing number of PCs.

Examination of the coefficients used to calculate the PC scores have been plotted in

figure 3.18 to investigate the workings of PCA in extracting information from spectra in

the multi-fabric set. The coefficients of PC1 show features most prevalent in polyester

and cotton, which is why PC1 best differentiates different fabrics. PC2 appears to have
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a major component of features observed in the optical spectra of lipids (section 3.3.4),

as well as minor features attributed to the different fabrics types. The remaining PC

coefficients resemble complex shapes with features similar to those found in the optical

spectra of model compounds, and the contribution of the low-SNR signal extremities

increases with decreasing PC rank.

Figure 3.18 PCA coefficients used to calculate the first 5 PCs on the pre-processed
multi-fabric calibration data set. Data has been standardised and vertically offset for clarity.

Attempts to fit PCR type models to the preprocessed multi-fabric dataset were unsuc-

cessful, and the models were found to perform poorly in validation. Gaussian process

regression (GPR) is a different machine learning technique which was found more suit-

able to this application. Five GPR models were fitted to the pre-processed muti-fabric

dataset with an increasing number of PCs included into the model. A linear basis func-

tion and squared exponential kernal were chosen for the GPR model, and the RMSE of



Chapter 3. Towards quantification of lipid residues on fabric 179

prediction calculated from 5-fold cross validation for each model has been summarised

in table 3.5.

Table 3.5 Error of prediction in GPR models trained using a varying number of PC fitted
to the preprocessed multi-fabric calibration dataset. RMSE was calculated using 5-fold cross
validation.

Number of PCs used for model Model RMSE (wt%)

1 13.3

2 3.9

3 1.8

4 1.8

5 1.9

The fitted models show a drastic increase in performance as the second and third PC

is added to the input. The highest performing models were found to be those fitted

to three and four PC inputs, with a RMSE of prediction at 1.8 wt %. The model

using three PC scores will be used in further testing as it is less likely to be prone to

over-fitting than the four component model. This is an improvement on the 2.3 wt%

RMSE calculated for the cotton model, which likely stems from the increased size of

the dataset as well as the improvements to the sample preparation method previously

described in section 3.3.3.

The output of the model applied to its own training set can be visualised in figure 3.19,

along with the residuals to the ideal y = x line. The fit shows a good distribution of

residuals evenly spread around zero, and highest deviation recorded is on the order of

± 8 wt %.
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Figure 3.19 (Top) Predict lipid concentration from three component GPR model on
multi-fabric calibration sample set. (Bottom-left) Residual plot from ideal y = x fit.
(Bottom-right) Histogram from residuals distribution. Points have been plotted with 20%
opacity.

The residuals can be further analysed by weighting them in order to standardise the

contribution of the 3% preparation errors. The outcome can be seen in figure 3.20

where the distribution of the points shows no significant pattern, yet at lower stain

concentrations the error rate appears to be higher.
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Figure 3.20 Weighted residuals from fitted gpr model prediction on training dataset

Looking at the results of the model on unstained fabric (figure 3.21) shows no significant

sign of bias in the model for any particular fabric, as the mean for each batch of fabrics

remains very close to zero. The standard deviation of the set was calculated to be 0.16

wt %, leading to a corresponding LOD of 0.5 wt % and LOQ of 1.6 wt%, although these

values were calculated from the dataset used in training and therefore require further

validation.
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Figure 3.21 Output from three component GPR model on clean samples in the
multi-fabric calibration sample set.
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3.5 Model testing

The validity and workings of the developed lipid prediction model (three component

GPR type) were further examined. Firstly, a set of samples with a know lipid concen-

tration that was prepared separately to the multi-fabric calibration set will be analysed,

followed by investigation into the depth probed using this new reflectance-based tech-

nique.

3.5.1 External set

A set of polyester samples was prepared and measured in the same manner as that used

for the multi-fabric calibration set, the set consists of 34 individual samples (14 stained

/ 20 clean) measured at 3 points, leading to 102 spectra. The dataset used to train

the cotton model, which was not presented to the GPR model during training, was

combined with this new polyester set to create an external set of samples for testing

the model. The resulting predictions by the developed three component GPR model are

displayed in figure 3.22. The RMSE of prediction on samples within the concentration

range of the GPR model was calculated to be 2.1 and 2.0 wt % in knitted cotton and

polyester respectively. This is marginally larger than the 1.8 wt % RMSE of prediction

calculated during fitting using cross-validation, which indicates that there may be a

small degree of over-fitting.
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Figure 3.22 Predicted lipid concentration of three component GPR model applied to the
cotton calibration and an external polyester set. Lipid concentration beyond 68 wt % were
not shown to the model during training. The error bars represent the RMSE of the model
(vertical) and the error in sample preparation (horizontal).

On unstained samples, the distribution of predictions shows a standard deviation of

0.19 wt %, which leads to an estimated LOD of 0.6 wt% and LOQ of 1.9 wt %, again

marginally higher than that calculated from cross-validation during fitting.

The majority of the predicted outputs lie within their associated error of the y = x

line, however, several points in the cotton set are outliers which cannot be accounted

for. These may be a result of defects in the calibration samples, but with such a small

dataset it is difficult to trace.

The larger maximum lipid concentrations set on cotton fabric allow us to test the

behaviour of the fitted model to data which is outside the range of its training set.

Over-fitted models which are weakly related to physical principals typically perform

erratically in such scenarios, however, in this case the output seems to plateau at
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around 60 wt %

3.5.2 Depth penetration analysis

In order to understand how the distribution of lipid inside a fabric matrix contributes

to the level of staining quantified by DRS and the subsequent data processing, an

experiment was devised to measure how the predicted stain concentration varies with

the depth at which the lipid is buried in the fabric. A stack of thin tissue paper was

used to imitate a cotton fabric substrate, with each sheet in the stack having a thickness

of approximately 0.1 mm. The stack consists of 20 sheets in total with a black backing

material. Tissue paper was selected as a suitable model for fabric as it is primarily

composed of cellulose, and therefore the reflectance spectrum closely resembles that

of cotton fabric, making it suitable for analysis by the developed lipid quantification

model. A single sheet was stained with hot coconut oil in the centre (figure 3.23),

and after allowing the stain to solidify, the stained sheet was placed at the top of the

stack and sequentially moved down while the SWIR reflectance of the stack’s center

was measured at each position of the stained sheet.

Figure 3.23 Diagrammatic experimental setup used to measured the depth probed by
SWIR DRS. (Right) Single sheet stained with coconut oil. (Left) Diagram of stack used to
imitate cotton fabric.

The reflectance spectra show an overall increase in reflectance as the stained sheet is

placed further into the stack, while absorbance bands associated with the lipid stain

are visible in the first 5 samples, with the intensity fading quickly going deeper into
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the stack. The predicted stain concentration shows an exponential decrease as the

stained sheet is placed further into the material, and the contribution to the measured

reflectance spectrum becomes negligible after the stain is around 0.5 mm deep.

Figure 3.24 (Right) Overlaid reflectance spectra of a thin paper stack used to imitate
cotton fabric. A single sheet has been stained with oil and a reflectance spectrum of the
whole stack recorded with the sheet at various depths in the stack (displayed in mm in the
legend) . (Left) Results from GPR model applied to reflectance spectra of the paper stack,
with the stained sheet a varying depth.

The results show that the vertical position of the stain in the fabric matrix has a major

impact on how it is quantified, and lipids near the surface dominate the measured

response. In this setup, the total depth which can be probed by DRS was found to be

around 500 µm, although the cellulose fibres that comprise tissue paper are smaller than

typical clothing fibres. This results in a larger degree of scattering encountered in the

model material than what would be expected in real fabrics, therefore the penetration

depth of DRS in fabrics is likely larger than what was measured in this experiment.

The results also suggest that output from the model should be treated with care as

measurements show a non-linear weighting with the depth of lipid stain into the fabric.

This means that a single reading can potentially be attributed to either a light lipid

soiling near the surface of the fabric, or heavy soiling at the core of the fabric with a

clean surface. Although, to understand how the predicted lipid concentration varies

with vertical distribution of the lipid requires more in-depth research as the vertically
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separated lipid components would almost certainly affect each other.

All spectra recorded from calibration sample, as well as fitted models are available in

5.2.
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3.6 Comparison to colourimetric method

Another commonly used technique to measure the lipid concentration on fabric is to

stain the oil with a trace amount of dye, and track concentration across the fabric

using colourimetry. This approach was discuses in section 3.2.2. In order to compare

the accuracy, it is first necessary to explore the assumptions that are key to its function.

These will be discussed in-turn:

The center of the stain is representative of the entire stain. When a model

stain is applied to a fabric then is it subject to chromatographic effects, and the result

is usually an uneven distribution where the stain concentration falls radially from the

stain center. The effect can be seen as the change in colour of a single stain in figure

3.3. This effect is the reason that direct application of the model stain was not used

for preparation of the calibration sample set.

There is no interaction between the dye and the fabric, or the affinity of the

dye to the stain is far greater than that to the fabric or the wash liquor.

This must be obeyed as it is the dye being measured and assumed that its concentration

is proportional to the concentration of model stain. If the dye has a greater affinity

for the fabric, then the oil may be unnoticeably washed out of the fabric. This has

been tested experimentally using a chromatography setup, with fabric as the substrate,

sunflower oil as the solvent, and oil violet as the dye. The results are shown in figure

3.25, and it can be seen that the retention factor is near unity, with streaking likely due

to high concentration of dye which was required to clearly visualise the stain, meaning

that the initial assumption is valid.
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Figure 3.25 Chromatography experiment to test oil violet dye affinity for various fabrics.
(Top) Before eluting, (Bottom) After eluting. Substrates left to right: knitted cotton, poly
cotton(65/35), and poly ester. Dashed line represents the solvent line.

The dye does not wash out of the stain, spread across the fabric, or degrade

during the wash cycle. This is difficult to test without a technique to measure the

oil concentration independently of the dye. The problem of dyes transferring between

garments during a wash cycle has been an issue in the detergent industry for centuries,

and laundry formulations typically include bleaching agents which could potentially

discolour the dye without removing the stain. This is therefore a likely source of error

in using a colourimetry approach.

The measured ∆E∗ between the dyed stain and clean fabric is linearly de-

pendant on the concentration of stain present on the fabric. In order to

assess the performance of laundry detergent, the SRI parameter should be linearly de-

pendant on the concentration of stain present. However the CIE L*a*b* colour space

was designed to be perceptually uniform as opposed to scaling linearly with colourant

concentration. This can be validated by measuring the SRI against a set of fabrics
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which have known amounts of stain on their surfaces, the cotton calibration set in this

case. L*a*b* coordinates and the subsequent ∆E∗ values were measured by diffuse

reflectance spectroscopy (figure 3.26).

Figure 3.26 Diffuse reflectance spectra of knitted cotton fabrics stained with an increasing
amount of oil violet dye (indicated with arrow) from cotton calibration set. Measurements
are relative to a Spectralon reference.

The reflectance spectra show two concentration dependent features: a trough at 580

nm which corresponds to absorbance of the oil violet dye and a peak at 440 nm which

is attributed to fluorescence from the optical brighteners used to treat the fabric during

production. The measured spectra were processed using the CIE system of colourime-

try introduced in section 1.3.2 to calculate their colour appearance as described in the

L*a*b* space. The difference between the coordinate of clean fabric and the sample in

each case was used to calculate the ∆E* values are shown in figure 3.27. The relation-

ship between ∆E* and set lipid concentration appears highly non linear, making the

SRI metric based upon colourimetry invalid for use in meaningful assessment of lipid

removal during a wash cycle.
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Figure 3.27 ∆E* values calculated between clean cotton fabric and cotton swatches of set
surface lipid concentration, prepared by the solvent evaporation method described in section
3.3.3.

It should also be noted that in this example, the presence of FWA in the fabrics com-

bined with the near-UV component of probe light source used to measure ∆E∗ leads

to unreliable readings; and this is also the case in other colourimetry setups. Since the

surface is emitting light as well as reflecting it with a measured intensity that is propor-

tional to, among other factors, both the near-UV component and the visible component

of the probe light source. This can be described by equation 3.11:

R(λ)obs =
I + If
Iref

=
I

Iref
+

If
Iref

= R(λ) +
If
Iref

(3.11)

where I is the intensity of reflected light, Iref is the intensity of the probe light source,

If is the intensity of fluorescence, R(λ)obs is the observed reflectance spectrum, and

R(λ) is the fluorescence-decoupled reflectance spectrum.
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This complex relationship between the reflected light and the probe light source means

that the measured ∆E∗ values are device dependant, and identical samples measured

in different colorimeters would not give comparable results.

Combining these assumptions with the restriction that the colourimetric method can

only be used with model lipid compounds stained with dye, as opposed to real-world

stains, the colourimetry approach shows little suitability for assessment of laundry

detergent performance on lipid stains.
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3.7 Imaging

The lipid prediction model developed in this section operates on reflectance spectra

which have been collected from a single point around 2 mm in diameter. In order to

study the cleaning process on real items of clothing, a more complete analysis needs

to be carried out by scanning an area of fabric, and looking at the distribution of a

lipid across the surface. This can be achieved by recording a grid of reflectance spectra

at each point on the fabric surface, followed by applying the developed model to each

reflectance spectrum in turn, giving a concentration map (c(x, y)) that can be used to

visualise the distribution of otherwise invisible lipids on the fabric. Integration of the

concentration map over the scanned area of the fabric can be used to calculate the total

mass of lipids detected on the fabric (mstain):

∫ ymax

ymin

∫ xmax

xmin

c(x, y) dxdy =
mstain 100%

ρa
(3.12)

where x and y are the Cartesian coordinates of the scanned area and ρa is the area

density of the fabric. In artificial stains, the total mass of lipid detected on the fabric

can be experimentally measured using gravimetric analysis.

The SWIR reflectance instrumentation used in development of the new technique been

modified in order to allow imaging of lipid stains on fabric via the addition of an

automated two-axis moving stage underneath the reflectance probe (figure 3.28). The

stage acts to reposition the sample being analysed so that a grid of reflectance spectra

can be collected across the surface. This technique allows for hyper-spectral imaging

with high spectral resolution and sensitivity but low spatial resolution, which limits the

size of the smallest features that can be resolved to around 2 mm.

For an initial test, 120 µl of sunflower oil was deposited onto the center of a 5cm x 5cm

knitted cotton swatch, with the mass of the swatch measured before and after staining.
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The center of the swatch was then scanned with a grid of 9x9 points separated by 5

mm. While the swatch appears to show almost no colouration on the surface, the stain

can clearly be identified on the concentration map. The distribution appears plateaued

near the center and is quickly reduced to zero at the edges of the stain, showing limited

diffusion of the model stain across the fabric. The integral of the concentration map

was approximated using trapezoidal numerical integration. The integral of the scanned

16 cm2 area was calculated to be 322 wt% cm2. Using the area density of kitted cotton

(33.0 mg cm−2), the total mass of lipid on the fabric swatch is found to be 106 mg,

which is a 3.7 % deviation from the applied amount of 110.4 mg.

Figure 3.28 (Left) Modified reflectance setup for imaging of stained fabrics. (Right)
Knitted cotton swatch stained with 120 ul of sunflower oil with overlaid grid showing
scanned points and the measured concentration map below.

Grid scans are useful when the distribution of soil on a garment is completely unknown,

however, they are also quite time consuming and not always necessary. The symmetry of

artificial stains used in wash tests was found to provide a convenient way of simplifying

imaging requirements. Stains tend to be symmetrical around their center and spread at

different rates in directions of the weave and against the weave, leading to an elliptical

distribution of the soil. This distribution can be probed without a full grid of points,
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instead a cross of points can be scanned with the stain aligned to the center of the

cross. The diagonal elements can then be estimated using linear interpolation in polar

coordinate space. This radial form of interpolation is shown in figure 3.29 where the

stain concentration at a query point q (cq), which is equidistant from the center of the

cross as scanned points a and b, can be described as:

cq = (1− 2θ

π
)ca + (

2θ

π
)cb (3.13)

where ca and cb is the stain concentration at points a and b respectively, and θ is the

angle at the center of the scanned cross between a and q. This technique was applied to

the initial test swatch using 14 out of the 81 scanned points which form a cross aligned

to the center of the stain; a further 28 points were then calculated using interpolation

and the resulting concentration map is shown below.

Figure 3.29 (Left) Diagram of scanned points used for radial interpolation. (Middle /
right) Interpolated concentration map of cotton swatch.

The shape of the stain appears very similar to that obtained with a full grid scan,

and integration of the surface yields a total lipid mass of 103 mg. This is a further

2.5% error compared to the integral calculated using a full grid of point, however, this

measurement requires over 80 % less data as an input. The number of points to scan

also scales linearly with the size of the scan (nxn points) in cross scanning, as opposed

to grid scanning where the number of points to scan increases with the square of n.
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Cross scanning in combination with interpolation can therefore be used to greatly in-

crease the sample throughput at the expense of accuracy. The accuracy of quantitative

imaging was further assessed with a another 4 samples were made up in the same

manner as the initial sample, and each swatch was scanned with an 11x11 point cross.

Interpolation was then used to estimate a further 132 points and the concentration

maps integrated to calculate the total mass measured on the fabric. The results are

summarised in table 3.6, the concentration maps all appear similar to the initial test

sample and are available in section 5.1. The error was calculated by summation of the

relative errors from each point in the image.

Table 3.6 Results of quantitative imaging of stained knitted cotton swatches using point
scanning SWIR reflectance spectroscopy.

Sample Mass of lipids deposited / mg Mass of lipids measured / mg error %

1 110.4 103 6.7

2 108.0 106.1 1.6

3 103.8 104.1 0.3

4 109.9 108.0 1.7

5 105.4 98.3 6.7

The results show good agreement between gravimetery and quantitative imaging. The

average error in the total mass of lipid on fabric as measured by scanning reflectance

spectroscopy is 3.4 % and appears to be mainly weighted at under-predicting the total

mass deposited.
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3.8 Low-concentration calibration samples

The measurement of lipid concentration on fabric is ultimately limited to the accuracy

of the calibration set. As discussed in section 3.3.3, the method for preparation of

calibration samples works well on samples with a stain concentration of above 10 wt

%. Samples prepared using the solvent-evaporation method with a concentration below

10 wt% tend to have an un-even distribution of lipid across the fabric swatch. The

effect is similar to the ‘coffee-ring’ effect observed in particle-laden liquids. When a

dilute solution of oil is deposited on a fabric swatch, the edges of the fabric have a

larger surface area compared to the center of the fabric, which results in increased

evaporation at the edges and in-turn creates a concentration gradient that pulls more

oil to the edges of the swatch.

To gauge the effects of this on the concentration of the calibration samples, a set of 20

polyester calibration samples was made using the same approach as that used in making

the multi-fabric set. The concentration range was set from 1 - 10 wt %. The samples

were measured using DRS at the center of each swatch twice and the developed GPR

model applied. The results show that at low stain concentrations the lipid concentration

on calibration samples is under-predicted, which is consistent with the idea that the

model stain is more accumulated at the edges, or the swatch is less concentrated in

middle.
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Figure 3.30 GPR model prediction on low-concentration set of polyester calibration
samples, including y = x line for reference.

Numerous strategies have been unsuccessfully attempted to mitigate the effect of this

issue such as blocking the edges of the fabrics during drying, and using mixtures of

solvents to create an opposing flow to the center.

A different approach to staining was therefore considered. If the model stain could be

deposited onto the fabric in small droplets, individually applied to the fabric, then the

solvent gradient effects should be irrelevant. Experimentally, this can be achieved using

micro-dispensing, for which exist a number of commercial products. In this study, a

piezo-based inkjet dispenser was constructed and implemented with an xy stage for a

custom printing setup. The jetting head can dispense individual droplets of sunflower

oil with mass as low as 7 µ g, while the moving stages underneath can dynamically

reposition the sample to an accuracy of 0.1 mm. Further details about construction of

the unit are available in section 3.10 and the setup is demonstrated in figure 3.31.
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Figure 3.31 (Top) CAD drawing of custom made dispensing head. (Bottom) Custom
printing setup used for dispensing droplets of oil, an example of a dispensed grid pattern is
included.

The printing setup was tuned to dispense even grids of model stain, an example of such

a grid deposited onto a glass slide in shown in figure 3.31. Fabric swatches were then

placed to align with the printed pattern, and a grid of droplets dispensed evenly across

its surface. The swatch was then weighed to determine the mass of lipid added, and

staining procedure repeated until the desired stain concentration was achieved.

Using this method, a set of 13 calibration samples was made using swatches of cot-

ton, polycotton, and polyester at a stain concentration of 0-10 wt %. The swatches

were measured using DRS at three location: in the center, in the corner, and mid-

way between the two. This was done in an attempt to identify uneven distributions

in the fabric. The spectra were analysed using the three component GPR model, and
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compared to mass difference recorded during printing. The results on polyester and

polycotton can be seen in figure 3.32. In general, a good correlation is observed, how-

ever, there are significant deviations between sample, as well as between reading on

different locations of a single sample.

Figure 3.32 Lipid concentration of polyester and polycotton inkjet printed calibration
samples, as predicted by the developed GPR model and compared to concentration
measured by mass after deposition.

In the inkjet printed cotton calibration samples, the lipid concentration predicted using

the new technique returned unusually high values compared to the amount dispensed

by mass (figure 3.33-left). It was hypothesised that the model stain remained close

to the surface after printing, contributing more to the predicted concentration. The

fabric samples were heated for a few minutes using a hot-air tool and left overnight

to homogenise, the measurements were then repeated (figure 3.33-right). This time

the predictions are closer to the ideal y = x fit, and support the theory of the lipid

being confined to the surface. Even after this homogenisation period, however, the GPR

model still over-predicted the lipid concentration compared to the set mass, which needs

to be further investigated. This effect is only seen in the knitted cotton sample likely

as a result of the fabric thickness, which was by far greatest in knitted cotton fabric.
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Figure 3.33 Lipid concentration of cotton inkjet printed calibration samples as predicted
by the developed GPR model, and compared to concentration measured by mass after
deposition. The samples on the right have been heated and left to homogenise.
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3.9 Summary and conclusion

There has been identified a need for a technique capable of measuring the concentration

of lipid present on a fabric. A unit system for such a metric was first defined to

yield a wt % scale based on the lipid proportion by mass. A procedure for making

calibration samples with a known and consistent lipid concentration was then devised,

and subsequently used to make two calibration sample sets with a range of set lipid

concentrations. One set consisted purely of stained cotton swatches, and another also

containing samples of polyester and polycotton.

After consideration to preprocessing of reflectance spectra for machine learning, these

sample sets were used to firstly train a PCR model in predicting the lipid concentration

on the cotton fabric only set. It was found that a PCR model could be reliable fitted

to the cotton set with an RMSE of 2.3 wt%.

Modelling was then expanded to the multi-fabric calibration sample set, where PCR

models were found unsuitable. A GPR model could be fitted with an RMSE of pre-

diction calculated to be 1.8 wt% from cross-validation. The model was further tested

on spectra that were not used for training. The results showed a marginally larger but

consistent RMSE of around 2 wt%. The LOD and LOQ of this model were determined

to be 0.6 and 1.9 wt % respectively. The performance of the GPR model was also found

stable when samples of lipid concentration beyond that shown to the model in training

were tested, no erratic behaviours were seen in the model output which shows that the

model has a good grounding in physical principals.

The impact of the vertical distribution of lipid inside the fabric was investigated through

a model system made of thin tissue paper to simulate fabric. This system showed that

the depth of the lipid soil inside the fabric matrix scales non-linearly with contribution

to predicted lipid concentration. This is not directly comparable to textiles with larger

weave size compared to tissue fibers, Although it gives an approximate value for the

depth probed by the SWIR DRS method, around 0.5 mm.
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Previously, measuring the level of lipid on fabric has been achieved by adding a reporter

molecule to the model stain prior to simulated staining. The validity of this method was

studied using the calibration set of samples which had a trace amount of dye included

in the model stain. The results concluded that the ∆E* metric, which is sometimes

used to measure the relative performance of laundry formulations, scales non-linearly

with the concentration of lipid stained onto fabric. This property makes it unsuitable

in wash tests as a single ∆E* value can originate from vastly different levels of lipid

removal. Furthermore, techniques which rely on reporter chemicals are fundamentally

limited in their applications, as real-world stains cannot always be labelled.

The constraints of single-point scanning were also overcome via automated scanning

over the sample surface, and integration of the resulting concentration map was utilised

to calculate the mass of stain in a scanned fabric swatch. This is the first example known

to the author of an absolute measurement of lipid concentration on fabric.

The main limitation of the SWIR method is the issues in making low concentration

samples of uniform lipid concentration across the surface. These were identified to orig-

inate from a coffee ring-like effect which occurs using the dilution method of sample

preparation. In an attempt to resolve this problem, a custom inkjet printing setup

was employed to dispense a uniform grid of small droplets evenly across the surface of

the calibration swatches. Measurement of the subsequent samples showed promising

results with thinner fabrics showing a good agreement between the SWIR method and

gravimetry. However, the deviations were significant and on cotton samples, the initial

measurements resulted in a higher than expected lipid concentrations. The discrepan-

cies is thought to originate from the poor penetration of the model stain into the fabric,

but inkjet printing still remains the most promising solution to making calibration sam-

ples.

Overall, the developed technique based on SWIR DRS is shown to be well suited to the

task of studying lipid residues on fabric. The technique has clear advantages compared
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to the methods using reporter chemicals, mainly that unlabelled stains can be measured.

However, before the technique can be meaningfully applied to assessment of laundry

detergents, the fitted model must be verified for accuracy at low concentrations.

3.10 Experimental

3.10.1 Sample preparation

The fabrics used in this study were provided by Proctor & Gamble and their identity

verified by spectroscopy before use. The sunflower oil used as model stain was pur-

chased from a local supermarket and again verified by comparison of SWIR spectra to

literature.

3.10.2 Reflectance spectroscopy

Reflectance Spectra were recorded using a custom fiber-optic reflectance spectroscopy

system which was primarily designed for the measurement of ancient manuscripts using

low optical power density. The system has previously been characterised with the results

available elsewhere3 and a brief summary will be given here. The core of the system

consists of an ARCoptix FTIR OEM module fitted with a FTIR-OEM200 light source

and a FTIR-OEM000 interferometer. The output of the interferometer is coupled via

a bifurcated fiber to a remote reflectance probe which is in-turn free space coupled to a

detector (ARCoptix FTIR-OEM100). The probe consists of two kinematicaly-mounted

fibre optic collimator focused to a single spot 50 mm below the probe. A 90°off-axis

parabolic mirror then collects and directs the diffuse reflections into the detector.
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Figure 3.34 Setup of custom reflectance probe. (1) Probe optics (2) Probe spot (3)
collection optics (4) detector.

Reflectance data was acquired using the OEM ‘ARCoptix Rocket’ software provided

with the instrument. The detector was set to medium gain, with a spectral resolution

of 8 cm−1 and three spectra were averaged for each measurement. The spectra were

then exported to MATLAB for processing.

3.10.3 Imaging

Automated point-scanning was facilitated by the inclusion of a custom xy stage. The

design was adapted from ref. 148 and features a dual stepper motor belt drive, con-

trolled by an Arduino microcontroller. A computer side interface was developed using

MATLAB app designer,118 which simultaneously connects to the ARCoptix spectrome-

ter via the OEM API as well as the xy stage. The vertical focus was controlled manually

as the algorithm repositions the sample and records a DRS spectrum.
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3.10.4 Inkjet printing

The custom jetting head used for the production of uniform calibration samples had

it’s design based on a literature device.149 The device was constructed from a CNC

machined aluminium frame, to which a common audio pick-up piezo crystal (purchased

from RS components) was attached via compression from a 3D-printed bracket. The

crystal was driven using a H-bridge MOSFET configuration, controlled by an Arduino

microcontroller. The commonly available 3D printer nozzles were used in this imple-

mentation. The size of droplets could be primarily controlled by: pulse duration, pulse

amplitude, and nozzle size. These parameters were tuned at the beginning of each

printing batch until consistent drop ejection was observed. The smallest droplet mass

that could be achieved with a 0.2 mm nozzle was 7 µg. For printing grid patterns, the

same xy stage as used for imaging studies was employed here.
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Conclusions and future work

Throughout this work, it has been shown that modelling and machine learning, in com-

bination with reflectance spectroscopy form a powerful tool for extracting information

from the physical world.

In the first section of this work, we set out to understand the colour change observed

when the illumination of certain lanthanide salts (mainly neodymium and holmium) is

exchanged between sunlight and fluorescent lighting. The previous attribution of this

phenomenon to the ‘Alexandrite effect’ was found inconsistent with experiments and

the origin was concluded to be illuminant metameric failure. Apart from nomenclature,

these findings show that more consideration should be given to quantification of phe-

nomena when reporting inconsistencies in visual appearance. Moreover, the study of

such extreme phenomena lead to the development of tunable illuminant metamerism.

Tuning the spectral profile of light reflected from neodymium chloride, exploits the

metameric failure to provide an entirely novel method of tunable colouration. Granted

the applications of such an approach are limited, the very nature of its operations

serves to remind us that colour must be considered as an object-illuminant pair, as

207
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opposed to an intrinsic property of the object. The remaining challenges of balancing

spectrally tunable light sources require further work in order to reduce the off-white

hue observed in some illumination profiles. The solutions will likely require a stable

and well-calibrated spectral feed-back in addition to accurate and well-resolved spectral

control of the illuminant. Neodymium chloride was the only sample considered in this

study for tunable illuminant metamerism, and it was found adequate to fully control

the hue of the appearance, however, the maximum possible saturation was limited.

Other samples may very well be more suited for this task and allow a greater range

of colour representation. The samples of holmium acetate hydrate and erbium acetate

hydrate measured in this study both satisfy the criteria for use in tunable illuminant

metamerism, although this would require a suitable spectrally tunable light source to

be designed.

Given the differences between individual human observers, the feasibility of indistin-

guishable metamers of ‘white’ light that can control the colour appearance of a specific

object remains to be seen.

The CIE colourimetry system was extensively used in the study of extreme colour

changes with a good level of accuracy. The colour appearance models were utilised to

simulate the impact that oxidative degradation of fabric has on it’s colour appearance.

The resulting simulations were used to effectively analyse the workings of FWAs and

HDs from a spectroscopy perspective. This model was derived from a single set of sam-

ples and still requires calibration with experimentation. The platform herein described

provides a versatile method of analysis of fabric appearance from spectroscopy data.

If combined with a large enough dataset on real world: fabric reflectance spectra, illu-

minant spectra, and the spectral properties of laundry formulations could be collected,

then it could be analysed using this platform to see the distribution of possible ap-

pearance scenarios. Such an analysis would be of great use in development of laundry

detergent formulations, where the most effective formulations can be selected as the

ones which are effective under a larger majority of scenarios. Similarly, formulations
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could also be tailored to specific illumination condition, like the outdoors for example,

and the correct additive selected through simulation.

The model itself may also be improved by using a less approximated form of the KM

model, similar to the work of Stavenga and van der Kooi150 who approximate flower

leaves using a stacked layer model in order to study the vertical distribution of the

chromophores. Such a model would need to be realised with each layer having its own

wavelength-dependant attenuation properties. Future fabric appearance models may

even feature layer-wise simulation of properties such as FWA excitation integral and

luminescence emission, allowing for better prediction of FWA’s behaviour. Such models

would be computationally more intensive, but with the rapid developments seen in sili-

con integrated circuits, computation of larger and larger models is becoming accessible

to a wider range of devices.

Following the colourimetry work, the attention of the study then turned to developing

a method for quantifying the concentration of lipid in laundry stains. This is a mature

topic in laundry literature, yet common practices still involve flawed assumptions. There

is also no common unit system for comparing the level of lipid staining between studies,

and this was the focus of initial work in this field.

A unit system called wt % was devised based on the ratio of masses between the lipid

and the fabric it occupies. This quantity was then represented in physical samples which

have a set and near-uniform lipid concentration across their surface. These samples were

termed calibration samples, and were used in combination with DRS and GPR to form

a prediction model. The accuracy of any model fitted to the calibration sample set

is ultimately limited by the accuracy to which the set stain concentration is know to.

The dilution method devised to make calibration samples was found to work well above

stain concentration of 10 wt %, however, below this limit a coffee ring-like effect leads to

an uneven distribution of model stain across the calibration sample. A solution to this

model was suggested in the form of inkjet printing, which was shown to be a promising

approach but further work is required to understand the lipid deposition process.
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The developed model can estimate the lipid concentration on fabric by multi-variate

analysis of the SWIR DRS spectrum. A GPR model fitted to a calibration set of cotton,

polycotton and polyester was able to achieve an RMSE of prediction of around 2 wt

%. Measurement of blank samples showed that the model has a LOD of 0.6 wt% and

LOQ of 1.9 wt%. These values still need to be validated to ensure that the model is

linear at lower concentrations.

The addition of moving stages to the DRS setup allowed for the technique to be applied

in imaging, where a low-resolution concentration map could be measured across the

surface of a fabric. This application is a powerful addition to the method, and allow

for the variation of lipid across a fabric to be mapped, as well as the absolute mass

calculated to a good degree of precision. The work can be further improved if applied

with hyper-spectral cameras. Such cameras are now commercially available151 and

capable of vastly greater spacial resolution than the point scanning method used in

this study. Hyper spectral imaging systems, however, typically have lower sensitivity

and spectral resolution compared to the FT spectrometer used in this study. The

application of lipid prediction from hyper-spectral imaging systems therefore provides

its own set of challenges for future scientists.

At the time of writing, further work in validation of SWIR DRS lipid prediction models

has been carried out at Proctor & Gamble. Inkjet printing has been successfully used

to validate such models across the full analyte concentration range, and the technique

submitted for a patent application.

This work has therefore shown that DRS in the SWIR region is well suited to the study

of lipid components of laundry stains. The technique works well on the model system

created, and while its application to real-world stains remains strongly feasible, there

are external factors which need to be explored. There are many textiles available other

than the three explored in this work, and for them to be compatible with this method
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they must not absorb strongly in the regions where lipid bands are most prevalent. The

moisture content of the fabrics is also likely to vary with time, and the impact of this

on the developed model remains to be investigated.

The technique is broadly sensitive to lipids due to the vast amount of C-H moieties

they contain, this limits the scope of this approach in identifying the lipids present.

However, it may even be beneficial in simply quantifying the amount present, which is

important for testing laundry detergent performance.

In combination, the sections of work described in chapters 2 and 3 contribute to fur-

thering the development of laundry technology. Given the rapid developments seen

in the fields of optics and electronics, as well as the constant wide-spread demand for

laundry, it is speculated that technology is going to become an increasing part of the

laundry process.152 This may be in the form of washing machines with integrated gar-

ment analysis and tailored dispensing of formulation components, or colour correction

products made for specific garments types or environments. The work presented in this

thesis provides firm grounding for future scientists developing such technologies.
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Appendices

5.1 Supplementary information

Figure 5.1 L*a*b* coordinates of diffusely reflected light from samples under sunlight
(central black spot) and cool white fluorescent lights. (1) neodymium chloride (2) holmium
sulphate (3) praseodymium chloride (4) Alexandrite.
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Figure 5.2 L*a*b* coordinates of diffusely reflected light from samples under 4310 K black
body radiator (central black spot) and warm white fluorescent lights. (1) neodymium
chloride (2) holmium sulphate (3) praseodymium chloride (4) Alexandrite.

Figure 5.3 Stain concentration maps of four stained knitted cotton swatches imaged by
cross scanning in combination with interpolation. The sample numbers shown in the lower
right corner of each plot correlates to the sample index in table 3.6.
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5.2 Electronic supplementary information

Further information is provided in the ‘Supplementary Information’ folder.
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