
Durham E-Theses

Improved Deep Neural Networks for Generative

Robotic Grasping

PREW, WILLIAM,THOMAS

How to cite:

PREW, WILLIAM,THOMAS (2023) Improved Deep Neural Networks for Generative Robotic Grasping,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/14809/

Use policy

This work is licensed under a Creative Commons Attribution 3.0 (CC BY)

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/14809/
https://creativecommons.org/licenses/by/3.0/
http://etheses.dur.ac.uk

Improved Deep Neural Networks

for Generative Robotic Grasping

William Prew

A Thesis presented for the degree of

Doctor of Philosophy

Department of Computer Science
Durham University
United Kingdom
December 2022

Abstract

This thesis provides a thorough evaluation of current state-of-the-art robotic grasping
methods and contributes to a subset of data-driven grasp estimation approaches, termed
generative models. These models aim to directly generate grasp region proposals from
a given image without the need for a separate analysis and ranking step, which can be
computationally expensive. This approach allows for fully end-to-end training of a model
and quick closed-loop operation of a robot arm.

A number of limitations are identified within these generative models, which are iden-
tified and addressed. Contributions are proposed that directly target each stage of the
training pipeline that help to form accurate grasp proposals and generalise better to un-
seen objects. Firstly, inspired by theories of object manipulation within the mammalian
visual system, the use of multi-task learning in existing generative architectures is evalu-
ated. This aims to improve the performance of grasping algorithms when presented with
impoverished colour (RGB) data by training models to perform simultaneous tasks such
as object categorisation, saliency detection, and depth reconstruction. Secondly, a novel
loss function is introduced which improves overall performance by rewarding the network
to focus only on learning grasps at suitable positions. This reduces overall training times
and results in better performance on fewer training examples. The last contribution anal-
yses the problems with the most common metric used for evaluating and comparing offline
performance between different grasping models and algorithms. To this end, a Gaussian
method of representing ground-truth labelled grasps is put forward, which optimal grasp
locations tested in a simulated grasping environment.

The combination of these novel additions to generative models results in improved
grasp success, accuracy, and performance on common benchmark datasets compared to
previous approaches. Furthermore, the efficacy of these contributions is also tested when
transferred to a physical robotic arm, demonstrating the ability to effectively grasp pre-
viously unseen 3D printed objects of varying complexity and difficulty without the need
for domain adaptation. Finally, the future directions are discussed for generative convo-
lutional models within the overall field of robotic grasping.

ii

Declaration

The work in this thesis is based on research carried out at the Department of Computer

Science, Durham University, United Kingdom. No part of this thesis has been submitted

elsewhere for any other degree or qualification and it is all my own work unless referenced

to the contrary in the text. This work was supported by the Engineering and Physical

Sciences Research Council.

Copyright c© 2022 by William Prew.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from it

should be acknowledged”.

iii

Acknowledgements

I would first like to share my sincerest appreciation my supervisors for supporting me
throughout this journey, Prof. Toby Breckon for giving me this opportunity and always
providing me with the help I needed, Prof. Magnus Bordewich for providing guidance
and correcting my mistakes, and Dr Ulrik Beierholm for his insights into neuroscience. A
special thank you to my former supervisor Dr Jason Connolly who encouraged me on this
path and helped me through my undergraduate towards where I am today.

My dearest gratitude towards my family and friends for aiding me and offering their
help. To my parents who shared their unwavering support and acceptance on my journey,
and my friends throughout my time at Durham University who believed in me and pushed
me to be better and enjoy life to the fullest.

A special thanks to my colleagues who were part of Toby’s research group, including
Dr Neealanjan Bhomik and Dr Yona Falinie who helped answer all my questions, Dr
Grégoire Payen de La Garanderie, Dr Samet Açkay, and Dr Amir Atapour Abarghouei for
introducing me and guiding me through the field, and Tom Winterbottom for offering his
sound advice when it was needed.

Finally, I would like to thank my partner Bryony for helping me through every stage
of my work. For easing my burdens, accepting my flaws, and being there when I needed
help the most. The best part of this work was sharing it with you.

iv

Contents

Abstract ii

Declaration iii

Acknowledgements iv

List of Figures viii

List of Tables xi

Abbreviations xiii

Nomenclature xiv

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Contributions . 4

1.3 Publications . 5

1.4 Thesis Scope and Structure . 6

2 Literature Review 7

2.1 Analytical Approaches to Robotic Grasping 9

2.2 Empirical Approaches to Robotic Grasping 12

2.2.1 Discriminative Models . 18

2.2.2 Generative Models . 19

v

2.2.3 Reinforcement Learning . 22

2.3 Datasets and Benchmarks . 24

2.3.1 Grasp Representation and Evaluation Metrics 25

2.3.2 Grasping Datasets . 28

2.3.3 Transfer Learning . 32

2.4 Summary . 33

3 Multi-Task Learning for Monocular Generative Models 35

3.0.1 Grasping Problem . 37

3.1 Object Classification . 39

3.1.1 Grasping and Classification Dataset 39

3.1.2 Methodology . 41

3.1.3 Evaluation . 53

3.2 Saliency and Depth Reconstruction . 60

3.2.1 Background . 60

3.2.2 Methodology . 62

3.2.3 Evaluation . 66

3.3 Summary . 72

4 Optimising Generative Grasping Models using Positional Loss 74

4.1 Methodology . 76

4.1.1 Generative Grasping Networks . 76

4.1.2 Positional Loss . 78

4.1.3 Experimental Setup . 80

4.2 Evaluation . 81

4.2.1 GG-CNN2 and MTG-CNN Models 81

4.2.2 Generative Residual Convolutional Network 84

4.2.3 Limited Training Set . 85

4.2.4 Effects of Loss . 87

4.3 Summary . 91

5 Gaussian Ground-Truth Grasp Maps 92

5.1 Methodology . 94

5.1.1 Networks and Outputs . 94

5.1.2 Gaussian Ground Truth Grasp Maps 96

vi

5.1.3 Simulated Grasp Trials . 99

5.1.4 Training Method . 100

5.1.5 Robotic Implementation . 101

5.2 Evaluation . 104

5.2.1 Offline versus Simulated Performance 104

5.2.2 EGAD Results . 109

5.3 Summary . 113

6 Conclusion 115

6.1 Contributions . 116

6.2 Limitations and Future Work . 118

6.2.1 End-Effectors and Data Availability 118

6.2.2 Object Properties . 119

6.2.3 Object Manipulation for Task Completion 120

A Classification Labels for the Cornell Grasping Dataset 138

A.1 List of Specific Classification Labels . 138

A.2 List of General Classification Labels . 144

B Calibration and Arm Setup 150

vii

List of Figures

1.1 Examples of different robot arms and grippers used. 3

2.1 Grasping prediction pipeline. 8

2.2 A taxonomy of different approaches to achieving grasp synthesis. 9

2.3 Diagram of the structure and sequence of pick and place grasping. 10

2.4 Different kinds of robotic end-effectors used. 16

2.5 The common rectangle grasp representation. 27

2.6 Example objects included in the YCB object dataset 30

2.7 Example of positively labelled grasps in the Cornell Grasping Dataset . . . 31

2.8 Example of positively labelled grasps in the Jacquard Grasping Dataset . . 32

3.1 Examples of classification labels for the training set in the Cornell Grasping

Dataset. 41

3.2 Variants of the fully CNN multi-task architectures with varying branch

locations. 43

3.3 Generated training grasp maps from the Cornell Dataset. 46

3.4 Distribution of training labels for specific object ground-truth labels. 49

3.5 Distribution of testing labels for specific object ground-truth labels. 50

3.6 Distribution of training labels for general object ground-truth labels. 51

3.7 Distribution of testing labels for general object ground-truth labels. 52

3.8 Random examples of grasp outputs and corresponding predicted specific

classification labels from MTG-CNN models.. 58

viii

3.9 Random examples of grasp outputs and corresponding predicted general

classification labels from MTG-CNN models. 59

3.10 Random examples of proposed grasps from the MTG-CNN trained to per-

form a concurrent SOD task. 69

3.11 Comparison of model outputs between trained loss functions to perform

salient object detection. 70

3.12 Random examples of proposed grasps from the MTG-CNN trained with an

auxiliary depth reconstruction task. 71

4.1 Proposed positional loss function. 75

4.2 Generative Residual Convolutional Network (GR-ConvNet) architecture. . . 77

4.3 Jacquard ground truth grasp maps. 79

4.4 Random predicted example grasps from the GG-CNN2 model trained with

the positional loss function. 83

4.5 Random predicted grasp examples and depth outputs from the MTG-CNN

model trained with the positional loss function. 84

4.6 Random predicted grasp examples from the GR-ConvNet2 model trained

with the positional loss function. 86

4.7 Comparison of example grasp map outputs from the GR-ConvNet2 model

trained with smooth L1 versus positional loss. 87

4.8 Average grasping performance on the Jacquard validation set after each

training epoch for different models trained with competing loss functions. . 89

5.1 Problem with the IoU metric for measuring grasp success. 93

5.2 Typical generative grasping model pipeline. 95

5.3 Comparison of binary and Gaussian ground truth grasp quality maps. . . . 97

5.4 The setup of the WidowX robot arm used in the physical experiments, with

the camera positioned above the scene. 102

5.5 3D printed EGAD dataset. 103

5.6 IoU performance for each model with gradually increasing thresholds. . . . 108

5.7 EGAD results. 110

5.8 Example success and failure cases on a WidowX robot arm using physical

objects. 111

5.9 Example model output with multiple orientation bins. 111

ix

5.10 Example model output with multiple orientation bins and multiple objects. 112

5.11 Example model output with multiple orientation bins and multiple trans-

parent objects. 112

B.1 Diagram of the limits and reach of the WidowX robot arm. 150

B.2 Robot calibration process . 151

x

List of Tables

2.1 Overview of model-free based approaches to robotic grasping. 17

2.2 List of commonly used grasp representations. 28

2.3 List of publicly available 2D planar and 3D grasping datasets. 29

3.1 Percentage of correct grasps according to the IoU metric and the specific

object classification performance. 54

3.2 Percentage of correct grasps according to the IoU metric and the general

object classification performance. 55

3.3 Mean percentage of correct grasps evaluated on the Jacquard grasping dataset. 67

4.1 Performance comparison of GG-CNN2 and MTG-CNN models when trained

with the positional loss function. 82

4.2 Predicted IoU grasp success for the GR-ConvNet model on the Jacquard

grasping dataset. 85

4.3 Grasping success on the Jacquard test set for the GG-CNN2 and GR-

ConvNet models when trained on the smaller Cornell Grasping Dataset. . . 86

4.4 Comparison of inference times with models using different loss functions. . . 90

5.1 Model performance according to IoU with orientation bins and positional

loss. 105

5.2 Model performance across IoU thresholds and SGT metric. 105

5.3 Inference time and number of parameters of different grasping models. . . . 113

xi

A.1 List of specific classification labels for the Cornell Grasping Dataset. 138

A.2 List of general classification labels for the Cornell Grasping Dataset. 144

xii

Abbreviations

CGD Cornell Grasping Dataset

CNN Convolutional Neural Network

Dex-Net Dexterity Network

DoF Degrees of Freedom

EGAD Evolved Generative Adversarial Dataset

GAN Generative Adversarial Network

GG-CNN Generative Grasping Convolutional Neural Network

GR-ConvNet Generative Residual Convolutional Network

JGD Jacquard Grasping Dataset

IoU Intersection over Union

MAE Mean Absolute Error

MSE Mean Squared Error

MTL Multi-task Learning

MTG-CNN Multi-task Grasping Convolutional Neural Network

NLL Negative Loss Likelihood

RGB Colour-image consisting of Red, Green, and Blue colour channels

RGB-D Colour image with added depth input

SOD Salient Object Detection

YCB Yale - Carnegie Mellon University - Berkeley

xiii

Nomenclature

G All the available grasps for a given object

g A single grasp for a given object g ∈ G

gi A single grasp in the image frame of reference

gr A single grasp in the robot frame of reference

Ĝ Corresponding set of ground-truth labels for a given variable, e.g. G

I Input image

L Total Loss function

` Loss function component

Q Grasp quality map output

Θ Gripper angle output

W Gripper width output

N(µ, σ2) Normal distribution (N) with mean (µ) and standard deviation (σ)

N Gaussian distribution

xiv

CHAPTER 1

Introduction

The study of grasping is both a challenging problem within the fields of computer vision

and robotics, as it requires an understanding of intuitive physics and object properties.

This is an integral factor of broader object manipulation and is necessary for future com-

pletely autonomous robotic systems to exist as they must be able to manipulate and

interact with both known and unknown objects in the environment reliably and consis-

tently. This is a wide research area as it has applications in both domestic and industrial

settings [1].

Historically, creating a robotic grasping system often relied on hand-crafted analytical

features that required expert human knowledge to model. However, this type of grasping

system assumed that important information such as object geometry or force analytics

are known [2]. For general-purpose robotics systems (such as the robotic arms displayed

in Fig. 1.1), such analytic features can be difficult and time consuming to produce [3].

This has resulted in the advent of data-driven neural networks for grasping which are

based on existing experience, which can be a heuristic, or generated in simulation or on

a real robot [4]. Implementations differ in the ways grasp candidates are proposed and

how grasp quality is estimated. All systems tackle the same challenges however, and

successful strategies must ensure grasp plans are accurate to achieve grasp synthesis [4].

These criteria are generally, that a grasp must:

• enable the given task criteria;

1

• generalise to new and unseen objects reliably;

• and function in a range of environments with various arm designs.

This thesis aims to contribute to the growing grasping literature by proposing improve-

ments to a subset of supervised deep learning approaches known as generative grasping

models. These types of networks generate grasp candidates directly from an input image,

and display their advantage that they are capable of end-to-end training and operate fast

enough to suggest multiple grasps per second [5].

These improvements target each stage of the training methodology to generalise to new

objects and environments. This includes the overall network architecture (Chapter 3), a

targeted loss function (Chapter 4), and finally, methods of representing good training data

(Chapter 5).

1.1 Motivation

Learning to interact with the immediate environment is a crucial task for applied robotics.

The ability to interact with and manipulate objects is particularly challenging beyond the

predictable assembly line in unstructured settings [6]. Any robot attempting to grip and

interact with an object faces uncertainty in how the object will react to touch.

This challenge has direct application in industry with research teams at Amazon (com-

pany) hosting a yearly robotics competition to sort items from containers into categories

due to the difficulty [7–9]. Attempted solutions to this task range from changes in hard-

ware and software, with end-effectors ranging from pincer-like and multi-fingered grippers,

to suction-based grippers which each attempt to pick up an object using specific grasps.

Some even use hybrid grippers and choose between them depending on the best tool for

the object [7, 10]. These systems take advantage of of the recent advances in machine

learning to empower these robots to identify the best gripper placement, which has seen

a surge of interest due to success in similar tasks such as object classification [11,12] and

semantic segmentation [13–15].

Prior surveys classify these empirical, or data-driven approaches in multiple ways,

depending on the focus of the review. For example, Bohg et al. [4] classified these ap-

proaches based on whether they were designed to handle known, familiar, or unknown

objects, whereas Kleeberger et al. [16] further expanded these categories as to whether

they rely on model-free or model-based methods. More recently, Du et al. [17] split meth-

2

(a) WidowX [18,19] (b) KUKA Aiwa [20]

(c) Baxter Robot [21] (d) Ambidextrous multi-handed robot [22]

Figure 1.1: Examples of different robot arms and grippers used.

ods according to whether they focus on object localisation, object pose estimation or grasp

estimation. In practice, each of these separate classifications is true as there is a wide vari-

ety of architectures, arms, end-effectors, and sensors (see examples in Fig. 1.1). Similarly,

whether these systems are trained on physical data or in simulation, which means that

the systems tend to be very domain-specific and bespoke for a given task. This makes it

difficult to generalise between systems and training settings as they are not invariant to

changes in gripper, camera position, or field of view.

For humans, grasping unknown objects in unfamiliar environments is a trivial task by

comparison, as we are able to categorise and manipulate objects quickly and effectively.

Importantly, we also dynamically form grasp plans from a single egocentric view of a

scene, which are problems of high interest to the robotics research community. Therefore,

researchers often draw on inspiration from multiple fields such as physics, psychology, and

computer science to build capable and robust robotic systems [23]. Human hands however,

have the benefit of contact compliance - where the fingers mould themselves to the object

and create large amounts of surface area allowing for more ambiguity when reaching [2,24],

3

which is a luxury rigid robot grippers do not possess.

There has already been a large body of work which aims to employ the knowledge

already understood about the way humans determine good grasp locations and apply it to

these robotic systems. For example, the dual-stream hypothesis of human vision [25–27]

proposes that there are two key pathways of object interaction, the ventral pathway deals

with perceiving and is dedicated to object recognition [28], whereas the dorsal pathway

controls gaze and eye movements for interacting with objects [29]. Machine learning

research has used understood concepts from this model to attempt to improve the identi-

fication of grasps including processes such as gain-modulation [30–33], or functional grasp

placement based on affordances [34–36].

Robotic grasping is still far from human levels both in terms of accuracy, speed, and

dynamic reactivity [1, 23]. Our aim is to contribute towards the current state-of-the-art

supervised deep learning methods, towards human levels of interaction by techniques in-

spired by . Currently, these supervised methods require large amounts of expertly labelled

data to train initially [37], and then further amounts to transfer between domains [16],

which can be expensive and time-consuming to collect even in simulation. The work pre-

sented in this thesis goes toward addressing these issues by improving the quality of the

information which can be learned from existing data or reduce the overall training data

required and developing a grasping system capable of success on both known and unknown

objects.

1.2 Thesis Contributions

The main contributions of the thesis are as follows:

• A novel network architecture inspired by the mammalian visual system is introduced,

which aims to improve the grasp success rate for unknown objects under monocular

viewing conditions through multi-task learning. This Multi-Task Grasping Convolu-

tional Neural Network (MTG-CNN) performs parallel auxiliary tasks thought to be

imperative to grasping, such as: object classification; salient object detection; and a

depth reconstruction task. In doing so, early layers are forced to learn representa-

tions common to both tasks. While classification negatively impacted performance,

saliency and depth tasks slightly improve grasp success rates compared to base gen-

erative models on standard datasets (Chapter 3).

4

• A novel loss function for optimising these generative grasping models is proposed that

focuses model attention by reducing the overall contribution from the background

of ground truth images. The goal is to train the model to learn only the relevant

grasping information at suitable locations. This generally improves grasp success

rates in an offline setting compared to base generative grasping models and reduces

the amount of training data required by allowing the network to converge to an

optimum at a faster rate (Chapter 4).

• We also note that the widely used intersection over union (IoU) metric, often used

as the state-of-the art comparison for measuring grasping success across standard

datasets, is flawed. While commonly used in image datasets, it does not consider

information vital for evaluating grasps such as collision data. We therefore reinforce

the notion that grasping performance should be conducted with reproducible sim-

ulated or physical benchmarks alongside the often reported standalone offline data

(Chapter 5).

• Finally, a Gaussian ground truth grasp representation is proposed for training the

models in prior chapters to improve grasp placement by being better centred around

the object. This subsequently improves grasp success in a simulated environment,

and demonstrates an ability to generalise to a previously unseen physical dataset on

different hardware without the need for transfer learning (Chapter 5).

1.3 Publications

The work contained within this thesis has been previously published in the following peer-

review publication by the author, and is used in the chapters indicated below:

• Improving Robotic Grasping on Monocular Images via Multi-Task Learn-

ing and Positional Loss, W. Prew, T. P. Breckon, M. Bordewich, U. Beierholm, In

Proc. International Conference on Pattern Recognition (ICPR), 2020, pp. 9843-9850

(Contributing to Chapter 3 and Chapter 4): github.com/wtprew/mtgrasp.

• Evaluating Gaussian Grasp Maps for Generative Grasping Models W.

Prew, T. P. Breckon, M. Bordewich, U. Beierholm, In Proc. International Joint

Conference on Neural Networks (IJCNN), 2022 (Contributing to Chapter 5):

github.com/wtprew/grasping_robot.

5

github.com/wtprew/mtgrasp
github.com/wtprew/grasping_robot

1.4 Thesis Scope and Structure

The pipeline of planning a grasp involves multiple processing stages: grasp detection,

grasp planning, and finally grasp execution [38]. The topics presented in this thesis focus

on the grasp detection or estimation step, which directly determines the grasp pose with

the highest chance of success from the sensor, while the path planning and execution

stages more of concern to automation than computer vision. Chapter 2 reviews how

a successful grasp is achieved by comparing early analytical which relied on manually

labelling suitable locations on object models, with the range of contemporary deep learning

techniques for grasp estimation, including supervised, unsupervised, and reinforcement

learning algorithms. This chapter classifies and contrasts these techniques, as well as the

common object and benchmark datasets available for training.

Chapter 3 explores the use of applying multi-task learning (MTL) to a supervised

deep CNN architecture designed for grasp pose estimation. The efficacy of introducing

additional auxiliary tasks relevant to grasping is evaluated according to a commonly used

offline grasping benchmark. Additional tasks are tested against one another and hyperpa-

rameters for learning are optimised on common task representations, including changing

the number of shared layers between tasks.

Chapter 4 proposes a new loss function for commonly used generative grasping mod-

els which ignores irrelevant information not required during learning. The loss function

improves successful grasp rates with no drawback, without negatively impacting inference

speeds or overall training time. This also helps to generalise to other settings and unseen

objects, even across datasets.

Chapter 5 looks at the current evaluation metrics for model comparison. Many studies

have relied on these metrics to report findings without further testing on physical arms,

which can lead to inaccuracies and consequences when applied to the whole grasping

pipeline. This chapter therefore proposes an updated method for training these generative

models that better reflects real-world performance, by rewarding the model for centring

the gripper at ground truth grasp locations. This also reinforces the use of simulated

and physical grasping benchmarks, and demonstrates how the algorithms proposed in this

thesis can be effectively applied and transferred to other settings and arms.

Chapter 6 evaluates the techniques presented together and provides a discussion on

the overall contribution to the wider literature together with potential future directions

in the field.

6

CHAPTER 2

Literature Review

For multi-purpose robots, grasping is an essential tool for completion of any task that

requires dexterous manipulation of an object. A grasp in this case describes the process

of gripping a desired object using an end-effector [39], such as fingers (in humans) or a

gripper, and lifting the object successfully [3]. This is an especially difficult task in un-

structured environments, changes in illumination, complex backgrounds, and inter-object

occlusion. Grasp generation approaches that have improved robustness to these changes

have applications to both industrial and domestic settings [1]. In each case, the system

must be able to manipulate previously seen objects, as well as unknown objects, both of

which pose their own fundamental challenges.

Early work with robots focused on generating individual bespoke plans for known

objects, which required an expert knowledge of the robot for the specific task [2]. However,

unseen objects and unstructured environments still remain a challenge, as the process is

impractical particularly on large scales [40].

The overall process of the robotic grasping system can be broken down into three

distinct subsystems: the grasp detection system, the grasp planning system, and the

control system [38] (see Fig. 2.1 for an overview). More recently, contemporary data-driven

approaches have greatly improved this first grasp detection process, and have enabled more

sophisticated and accurate systems capable of generalising better to unknown objects

in a variety of environments [1]. This is due to significant advancements in publicly

7

Figure 2.1: The grasping pipeline. This review generally covers the first grasping detection
subsystem (green).

available data, computational resources, and improvements in machine learning grasp

generation algorithms. This has also enabled deep neural networks to achieve great success

in visual tasks relevant to grasping such as classification [12, 13, 41], detection [42], and

segmentation [15]. A number of popular networks in these areas were in fact built upon

neural networks designed for grasping including You Only Look Once (YOLO) [41], and

SegNet [15].

Using these techniques, empirical models are able to infer implicit knowledge to cal-

culate the required grasp position with the highest chance of success, including object

weight, centre of mass, and material much like a humans would. Such approaches excel at

reducing the extremely large set of valid grasp configurations by evaluating varying grasp

contact points and gripper angles to achieve “grasp synthesis”: a term which here refers

to the problem of finding a grasp configuration that satisfies the relevant criteria for a

given task [4]. All work covered in this review, deals with this problem either explicitly

or implicitly, by either directly modelling all forces applied to the gripper, or estimating

grasps with the highest chance of success by generating a large number of grasp candidates

with a potential later ranking step.

To this end, a wide variety of grasping solutions exist within the literature that improve

the grasping pipeline at each stage. This includes varying the implementation of machine

learning algorithms such as: supervised learning [43], unsupervised learning [35, 44], or

reinforcement learning algorithms [45,46]; changing the type of hardware and gripper used

including parallel plate grippers [47], multi-fingered robots [48], or suction-based grippers

[5, 10]; and the type of sensors used e.g. colour (RGB) image, depth (D) image, RGB-D,

point cloud, multi-view, etc. Furthermore, systems can differ in whether they operate with

8

Figure 2.2: A taxonomy of different approaches to achieving grasp synthesis.

continuous feedback from visual features (closed-loop) or without (open-loop), or attempt

to grasp single objects versus multiple objects on a wide variety of different benchmarks.

Reacting in this way, based on continuous feedback from the input, is often referred to

as visual-servoing [49]. The overall taxonomy of the techniques described in the field is

described in Fig. 2.2.

The goal of this chapter is therefore, to review a wide selection of current research

exploring various solutions to enable systems capable of highly accurate robotic grasping.

Most of these examples tackle a similar typical robotic grasping setup as shown in Fig. 2.3

with a camera placed above the scene and a single object in view, but some also consider

multiple arms or multiple objects in clutter. In aid of this, a brief overview of the early

analytical (geometric) methods of robotic grasping (Section 2.1) are described and the

fundamental principles required for a successful grasp to occur. This leads to an analysis

of more contemporary empirical (data-driven) approaches (Section. 2.2), as well as the

common publicly available datasets used to train these methods (Section. 2.3). Finally,

future challenges within the field are discussed (Section. 2.4).

2.1 Analytical Approaches to Robotic Grasping

Analytic, or geometric, approaches to grasping rely on hard-coded computational algo-

rithms for achieving grasp synthesis with an object [4,50]. This branch of research consid-

ers any approach that implements geometric, kinematic, and/or dynamic formulations in

9

Figure 2.3: Diagram of the structure and sequence of pick and place grasping.

determining grasps. The aim of such which are to utilise multi-fingered grippers to achieve

a force-closure grasp, a term defined in the literature as a grasp that is able to generate

any external force that the grasped object may have to exert on an external body and is

able to counteract any external disturbing forces that may try to loosen the grip [39].

In order to identify suitable locations for robotic fingers, research has focused on three

basic approaches, mathematics, physics, and computational geometry. However, these

analytical methods tend to rely on assumptions such as simplified contact models, Coulomb

friction, and rigid body modelling [51,52]. Whilst these assumptions enable practical pick-

and-place grasping, inconsistencies and ambiguity within the environment or noise within

robot position, especially regarding grasp dynamics mean these methods are little more

than approximations [4]. On the other hand, while contemporary empirical methods tend

to avoid these direct computations by imitating human grasping strategies, the principles

for achieving force-closure grasps and corresponding methods of grasp analysis are still

relevant for any robotic grasping system.

A comprehensive analysis of early and contemporary analytical methods can be found

in the review papers of Shimoga [39], Bicci & Kumar [2], and Sahbani [50], which each

describe the fundamental properties needed to achieve a force-closure grasp. This can

be summarised as analytical methods have aimed to generate solutions which possess the

four key properties, these are: dexterity, equilibrium, stability, and dynamic be-

haviour [4]. Grasp synthesis is then usually formulated as an optimisation problem over

the four qualities. However, there is a wide set of definitions for this terminology [53–58]

and therefore the most recent definitions as described in Howard & Kumar [58] are used:

10

Dexterity: “This property deals with how the fingers of the robotic hand should be

configured for force-closure.”

Dexterous placement of these fingers is imperative for task-dependent manipulation

as the planning of the fingers is also necessary for task compatibility and future

planning of secondary objectives. Many configurations allow for a successful grasp,

however, not all will allow for the dexterity required in a given situation.

Equilibrium: “A grasp is considered in equilibrium if: the sum of all forces and the sum

of all moments acting upon the grasped object are equal to zero.”

This problem deals with deciding what forces should be exerted onto the object so

that the grasp is able to lift the object without damaging it [2, 39]. As a result,

this property is typically seen as a force-distribution problem in determining the

appropriate internal forces that should be applied. This varies on factors such as

object complexity, although this can also be taken advantage of for efficient solutions,

or object material [57]. In addition, this depends on factors such as the number

of fingers in the end-effector, as separate algorithms were developed for n-fingered

grasps [54] and multi-fingered grasps [59]. Achieving grasp equilibrium however,

does not guarantee stability [60,61].

Stability: “For a grasped object at equilibrium, the grasp is considered stable if a small

disturbance on the object or end-effector does not result in dropping the object.”

This is an important property when stationary, as well as during manipulation tasks.

The object must return to equilibrium within the grasp once the disturbing force

vanishes. Most works looking at stability in analytical works tend to focus on qua-

sistatic assumptions and is far more difficult in dynamic settings with moving objects

as forces continuously change [39].

Dynamic behaviour: “How well the robotic system reacts to changes in motion or force

trajectories.”

This final behaviour is only considered as a desirable property rather than an essen-

tial property, but is still important in manipulation tasks nonetheless. This is also

the most difficult task as it requires fine control of each finger individually in response

to large perturbations in movement and direction and therefore is difficult to remain

11

stable [54]. Usually, this is due to the fact that the number of forces acting upon

the object is greater than the number of actuators or Degrees of Freedom (DoF) of

the arm itself, meaning the arm is unable to react to every force simultaneously [2].

This is the main problem in designing control algorithms and is still a significantly

difficult problem even with contemporary empirical systems.

As is the case with many analytic approaches towards grasp synthesis, many of these

models are only studied in simulation where precise and accurate knowledge of hand

kinematics, objects, and alignment are known [4]. In practice, noisy sensors and inaccurate

models of robot kinematics, sensors, or the object can make accurate placement of the

fingers difficult the same way each time. Nguyen [54] attempted to counteract this by

introducing independent contact regions where the fingers can be placed independently at

multiple points on an object without disturbing force-closure, and Rodriguez et al. [62]

introduced the caging formulation which also made a manipulator with three-fingered

placements more stable as they could be positioned around the object without the need

for accurate positioning using waypoints. However, most of these techniques deal with rigid

models of objects and assume properties such as surface properties, friction coefficients,

or centre of mass and distribution of weight, which are necessary for equilibrium and

stability. Therefore, most of these methods were limited to simulation [62,63] or consider

2D objects [4, 64].

2.2 Empirical Approaches to Robotic Grasping

Empirical or data-driven approaches to robotics grasping alternatively generate grasp

candidates for a given object which is ranked according to a chosen metric [4]. This is

usually based on prior knowledge or experience which can be collected in simulation or

using physical trials, and therefore used to be referred to as a knowledge-based approaches

by early works [39].

Compared to analytical methods, these methods are less specific in parameterising

grasps. By calculating grasps as part of an approach vector compared to specific finger-tip

placements, they are therefore more robust to uncertainty in perceiving and executing

grasps [4]. While this does not provide guarantees for the grasp criteria as mentioned in

the previous section [39], instead estimated grasps from models are tested and verified

empirically. This enables developing models which are better able to interact within

12

dynamic environments [4] and instead parameterise a grasp as follows according to [65,66]:

1. the grasping point on the object should be aligned with the centre of the end-effector;

2. the approach vector describing the movement the arm must take in 3-D space to

reach the grasping point without obstruction;

3. the orientation or angle of the wrist joint;

4. the initial finger configuration.

Due to this simplified representation of a grasp, as well as an increase in data availabil-

ity and improved hardware computing capabilities, these types of approaches have gained

significant popularity in recent years. However, this remains challenging due to the wide

variety of object shapes and poses they can take, and the large number of valid robot

poses which can be created for solving the task. Robotic grasp implementations therefore

splits the process of a grasp into a number of sub-systems [3, 38]: grasp detection (in

image plane coordinates), grasp planning (mapping image to world coordinates), and arm

control (inverse kinematics solution for planning).

The grasp detection sub-system is where most empirical approaches are targeted, as

the grasp planning and control are usually more the focus of motion and automation

disciplines [17]. With machine learning becoming a popular tool in computer vision due

to comprehensive success in tasks useful to grasping, such as: classification [11], detection

[41], and segmentation [15]. Deep learning techniques in particular have seen increased

usage for determining successful grasp locations, although a large amount of training data

is required for enabling autonomous models [37]. This data can be labelled or unlabelled

depending on whether the technique uses supervised learning (SL), unsupervised learning

(UL), or reinforcement learning (RL) techniques [67, 68], and labels can be collected in a

simulated setting or using physical objects, either by humans or generated automatically

in a self-supervised method.

The goal is to produce an automatic system, capable of being tuned to these new

objects, with no expert input. Since a large amount of data is required for training such

empirical models [37], it is common to generate simulated data for a greater amount

of easily available training data [16], which already has access to 3D meshes, and use

transfer learning to improve performance later in production (see Section. 2.3.3). Empirical

approaches can be categorised into two major categories, otherwise known as model-based

13

or model-free, depending on the implementation and whether specific knowledge about

the object is used to complete the task [16]. These methods can also be further classified

based on whether they handle known, familiar, or unknown objects which Bohg [4] argued

matched the dual-stream process of vision in humans. The dorsal stream processing action-

relevant features, focused on grasp planning and object manipulation, and the ventral

pathway related to object recognition [25, 26]. For a complete review of the neuroscience

behind these processes, the reader is directed to Milner [27].

Model-based grasping is a three-stage process where the object poses are estimated,

a grasp pose is determined, and a kinematically feasible, collision-free, path towards the

object is planned [69,70]. In the literature, this problem is also referred to as object pose

estimation [17], which relies on prior knowledge of an object to formulate a grasp plan that

estimates the transforms, such as translation and rotation, between a given reference frame

and objects in the scene [69, 70]. This is particularly difficult for empirical models which

have to deal with noise, occlusion, and environmental variation compared to the training

data. Furthermore, these models have to deal with challenges of symmetry as different

annotations can exist for the identical areas [71–73]. The main strategies employ template-

matching, feature-matching (correspondence) [16], or voting-based methods [17]. This

usually requires expert knowledge to manually tune an object-specific grasp configuration

until grasp performance reaches a satisfactory level, however this limits generalisability

towards novel or unseen objects [4].

Model-free approaches, on the other hand, directly determine grasp poses based on

observations from the sensor, with the aim of better generalising to novel objects [74,

75]. This directly generates grasps from the target image by combining the object pose

estimation with the grasp pose determination steps into a single grasp estimation step [16].

As the aim of this thesis is to better generalise to unseen objects based on only images

without prior knowledge of the object, the rest of this review focuses on only this grasp

estimation solution. For a comprehensive review of all methods of vision-based grasping,

including model-based approaches, the reader is also directed towards [17].

Supervised learning approaches to model-free grasping tend to fall in one of two

categories: either discriminative approaches sample grasp candidates which are then

ranked [10,76]; or suitable grasps are directly proposed using generative approaches [5,77].

The former ranks many grasps during execution time and then chooses the grasp with the

highest score. These have the advantage that many grasp poses can be evaluated but incur

14

a high run-time cost because they require multiple forward passes for high quality grasps

to be decided. Generative models, on the other hand, generally allow for faster operating

times because they only requiring one forward pass through the model with the initial

highest quality grasp to be executed by the robot [7]. Reinforcement learning approaches

aim to train the network with regards to an objective grasp function, letting the network

learn the best locations to grasp, irrespective of the type of object without labelling from

a human expert [68].

Regardless of the implementation, both methods have to contend with a number of

variables to correctly identify the best way of estimating the gripper pose. The essential

information for the model to calculate is the 6D gripper pose in the camera frame of ref-

erence, containing the 3D gripper position (x, y, z) and the 3D gripper orientation around

those three axis (θ, φ, ψ). The estimation of this information either includes directly in-

ferring the 6-DoF grasp, which requires an arm with at least as many degrees of freedom

to attempt, or 2D planar grasps.

For the 2D planar grasps, the arm is constrained to a single direction and the height

of the gripper (z) is fixed, grasps are then attempted on objects lying on a planar surface.

This reduces the essential information to a 2D position (x, y) in the workspace, and in-

plane rotation angle (Θ) to form an oriented rectangle (see Section. 2.3.1). This benefits

from the improvements to deep learning applications in computer vision, which aim to pro-

duce bounding boxes of objects for detection and classification, by treating these oriented

rectangles as the grasp configuration. This has allowed for the extension of grasp knowl-

edge from known to unknown objects by evaluating the oriented rectangles [38,42,76–81],

or directly evaluating contact points [5, 35].

6-DoF grasps extend this concept by allowing for object grasping at various angles

where the 6D pose could not be simplified. This was the main focus of the analytical

approaches mentioned previously (see Section. 2.1) [50], and similarly 6-DoF empirical

approaches mostly aim to grasp known objects, as the placement of the gripper can be

computed beforehand and then solved for the 6D pose estimation [82–84]. Deep learning

have also been used as a powerful tool in this regard with some success generalising to

novel objects [69,85,86].

To this effect, grasp estimation is conducted using a variety of inputs, with 2D planar

grasps generally operating on image data which is easier to obtain. Although, this includes

different types of sensor data involving RGB, D, or RGB-D image inputs, whereas 6-DoF

15

Figure 2.4: Different kinds of robotic end-effectors used.

systems generally operate on complete or partial point cloud (PC) data where the 3D

shape can be reconstructed. This is further complicated by having to account for factors

such as the type of gripper (end-effector) used when applying these systems, with most

work using the relatively simple parallel plate gripper [76], but multi-fingered and suction-

based grippers are also used [22]. Parallel grippers are generally preferred for their ease

of achieving a relatively stable force-closure, however multi-fingered grippers can achieve

greater dexterity [87] but generally introduce increased complexity in design. Suction-

based grippers on the other hand, are generally more limited to grasping simple objects

because they require a flat surface to achieve stability (example diagrams are shown in

Fig. 2.4).

The rest of this section therefore compares the advantages and disadvantages of model-

free grasp estimation approaches using neural networks. A comprehensive break down

of the classification of methods used in the literature up until this point is featured in

Table. 2.1, however, these approaches are tested using a wide range of dataset benchmarks

and test objects which makes it difficult to draw a direct comparison. Some methods test

on physical benchmarks, while others use transfer learning to train in simulation and

generalise to real-world scenes. Therefore, the table includes reported grasp success values

according to their own work, and the generalisation from training data to real-world robotic

arms are then covered.

16

Table 2.1: Overview of model-free based approaches to robotic grasping (sorted chronologically by year of publication). Success rates are
determined according generally separate and bespoke benchmarks.

Input ML Training Category Approach End- Gripper Open-loop/ Success
Data Type Setting effector Freedom Closed-loop Rate

Two Stage [78] RGB-D SL Physical Discriminative Classification Parallel jaw 2D Open-loop 84-89%
SingleGrasp [77] RGB-D SL Physical Generative Regression Parallel jaw 2D Open-loop 73.9%
MultiGrasp [77] RGB-D SL Physical Generative Regression Parallel jaw 2D Open-loop 88.0%
Self-supervised [21] RGB SL Physical Discriminative Classification Parallel jaw 2D Open-loop 79.5%
Dex-Net [76] Depth SL Simulation Discriminative Segmentation Parallel jaw 2D Closed-loop ∼98%
Dex-Net 2.0 [10] Depth SL Simulation Discriminative Classification Parallel jaw 2D Closed-loop 80%
Google Grasp [20] RGB RL Physical Reinforcement Reinforcement Two finger 2D Closed-loop 80-90%
GG-CNN [5] Depth SL Physical Generative Regression Parallel jaw 2D Closed-loop 81-88%
QT-Opt [88] RGB RL Physical Reinforcement Reinforcement Two finger 2D Closed-loop 76-96%
FC-GQ-CNN [89] Depth SL Simulation Generative Segmentation Parallel jaw 4D Closed-loop 85-87%
QT-Opt RCAN [90] RGB RL Simulation Reinforcement Reinforcement Two finger 2D Closed-loop 64-76%
Dex-Net 3.0 [22] Depth SL Simulation Discriminative Classification Jaw/Suction 2D Closed-Loop 92%
GraspNet [85] PC UL Simulation Discriminative Classification Parallel jaw 6D Open-loop 88%

17

2.2.1 Discriminative Models

Discriminative models are defined by their ability to rank grasps during execution time and

then choose the grasp with the highest score, with the latter half typically performed by

a neural network. This can result in carefully evaluated grasps since an arbitrary number

of grasp poses can evaluated to result in the highest quality grasp [10, 22, 89]. Early

examples include Lenz et al. [78], which was the first to apply neural networks to robotic

grasping. This used a two-stage method, with the first half presenting and generating

grasps using a sliding-window approach, and the second half ranking these grasps based

on the colour image, the depth image, and information such as surface normals. This

treated grasping as a classification problem, based on the prior success of neural networks

in the field at the time, however incurred high inference times because multiple forward

passes through the neural networks were required to generate the best grasps and was

therefore computationally expensive.

Pinto & Gupta [79] expanded this approach by attempting to alleviate one of the large

drawbacks of empirical methods up until this point, the lack of training data, by creating

a dataset of 50k grasp labels, including both positive and negative examples, for model

training. They initially identify regions of interest and sampling image patches, then

classifying those regions according to predicted grasping angle and use a convolutional

neural network to predict grasp likelihood. Similarly, Park & Chun [91] used a multi-

stage classifier with spatial transformer networks which was better able to classify grasp

candidates based on partial observations of objects to achieve relatively high accuracy

and ten Pas et al. [69] used a binary classification to demonstrate the successful nature of

these approaches when picking from a cluttered scene. Whilst, these classification-based

methods are relatively straightforward, the sampling of a large number of grasp candidates

result in rather slow inference speeds.

The Dexterity Network (Dex-Net) [76, 92] alternatively treated grasping as a segmen-

tation problem. This discriminative approach instead uses a physics and point-cloud input

to grasp objects on a workspace using a green colour, in randomised poses, to easily seg-

ment the objects using background subtraction. The outcome of the resulting grasp is then

added to a dataset together with the aligned cropped depth input with an added scalar in

the range of [0, 1] as a measure of grasp robustness. Their Grasp-Quality Convolutional

Neural Network (GQ-CNN) is trained using this dataset to predict grasp success for the

given candidate to generalise to unseen objects during testing. Dex-Net 2.0 [76] further

18

increased the size of this dataset using analytic grasping metrics alongside the GQ-CNN

to achieve satisfactory performance, and later this network was extended to ambidextrous

grasping policies [10] as well as suction-based grippers [22]. However, this still took some

time to fully evaluate the best grasps through this sampling and ranking-based approach,

so a fully convolutional approach (FC-GQ-CNN) [89] was proposed to improve the sam-

pling rate but also reduced the degrees of freedom from a 6-DoF system (3D grasp positon

and 3D gripper orientation) to a 4-DoF system (3D position and planar orientation).

2.2.2 Generative Models

Generative grasping models differ from discriminative models in that they directly output

a grasp configuration for an object in a given scene [16]. These models tend to be trained

using either regression or detection-based methods, and include models which are more

analogous to computer-vision tasks, where a bounding box with an associated position

and width are produced which is treated as the grasp location except with an added term

for orientation [42] (see Section. 2.3.1).

Here, it should be clarified that the term generative is used to define and differentiate

the direct grasp generation method from methods that sample grasp candidates [5]. How-

ever, this is distinct from the generator models as used in generative adversarial networks

(GANs) [93] as real images are used as input compared to the noise used for the GAN

input. Although this type of generative model can still generate new grasp instances and

provides an associated probability score at each pixel.

Redmon and Angelova [77] was one of the first to propose a generative model for

grasping, simplifying the two-stage process of Lenz et al., by utilising a larger regression-

based convolutional neural network termed SingleGrasp. This method took advantage of

the singular uniform method to improve accuracy, whilst also improving the speed in a

grasp was proposed and then classify the object from the given RGB-D image. However,

due to the large number of suitable grasp poses, another method, termed MultiGrasp,

was also introduced which aimed to generate multiple valid grasp poses for the same

image which led to the popular You Only Look Once (YOLO) architecture for object

detection [41]. Kumra and Kanan [38] further improved grasp success rates by using the

popular Residual network (ResNet) model [12] to perform the same regression-based task.

With larger datasets available for training, further improvements to the regression-

based neural networks were developed including the Generative Grasping Convolutional

19

Neural Network (GG-CNN) [5] which showed how multiple grasps could be generated

simultaneously from a scene. By outputting a pixel-wise representation of grasps, termed

grasp maps, this method was able to output a grasp for every pixel of a given depth input

image. These maps contained a corresponding grasp quality score, angle, and gripper

width for every pixel of an image, with the pixel with the highest grasp quality score

being used to reconstruct the best grasp, although a grasp could also be generated from

any point on the planar object. A larger model was later introduced, which achieved even

better grasp success, referred to as the GG-CNN2 [47].

Detection-based methods also exist which use the reference anchor box, an initial

fixed bounding-box prediction, to assist the generation of grasp candidates [41]. With

an expected size of expected grasps, regression can be further simplified [94], typically by

attempting a secondary task. For example, Guo et al. [95] introduced a hybrid architecture

with visual and tactile sensing, with an axis aligned reference box of different scales and

aspect ratios. The model then classifies the orientation between discrete values alongside

a quality score. Chu et al. further improved this model with the same idea of fixed anchor

boxes, again utilising ResNet, but changed the regression model into a combination of

region detection and orientation classification to again propose grasps for multiple objects.

Similarly, Zhou et al. [80] used a end-to-end fully convolutional network with a feature

extractor and multi-grasp predictor, but assigned a quality grasp score to each oriented

box separately. This removed the dependency on scales and aspect ratios, predicting five

regression values. Most recently, Depierre et al. [94] added a direct dependency between

the regression and score evaluation with a novel architecture and loss function to correlate

them to one another.

A common theme within many of these supervised learning approaches is instead of

performing a singular grasping task, performance can be improved by solving a number

of simultaneous tasks, a technique commonly referred to as multi-task learning (MTL).

This is a machine learning approach that aims to help models better generalise to a given

main task by using the training signals of a related task to learn an appropriate inductive

bias [96]. By sharing features between multiple tasks, the network is forced to learn

common representations between them that may reduce overfitting, resulting in better

generalisation to the original task. MTL has been shown to improve performance on a

main task when simultaneously training on a simpler auxiliary task across a wide range

of disciplines [97], including computer vision (e.g. using the characteristics of the road to

20

predict steering direction [96] or the segmentation of images for classification in the fast R-

CNN model [98]); natural language processing [99,100]; and speech recognition [101]. For

robotic grasping, system performance can be improved with the learning of simultaneous

tasks which can be later combined into a single grasp proposal [43], or by solving associated

tasks that contribute to successful grasp proposals, such as object segmentation [102],

saliency detection [103], or semantic classification [36, 104]. This is similar to the human

visual system, which separates the tasks of classification and manipulation in later cortical

areas, but early stages of the visual system learn common representations of the visual

scene to both tasks [25–27].

MTL can be implemented through an assortment of different functions, either sepa-

rately or together in the same model; as long as the model has access to all the common

representations required for both tasks. Such examples can include the cross-talk of in-

formation between different networks [100], focusing attention on a given task by learning

an auxilliary training bias [96], or leveraging more specific examples like representation

learning for language modelling [105]. Although, for MTL to be effective that related

tasks need to share a similar optimal inductive bias [106]. As such, it is not always clear

which auxiliary tasks will lead to performance increases on the main task during joint

learning [97]. Some studies have attempted to bypass this problem with specifically de-

signed multi-task losses that add an extra coefficient for training a plethora of different

techniques [107].

The main advantage these generative models have over the previously discussed dis-

criminative models, such as the GQ-CNN [76,92], is that they are able to generate grasps

at a much faster rate due to lower computational demand and only requiring a single for-

ward pass through the neural network. Although, this may result in reduced accuracy as

a result. This enables systems capable of grasping in dynamic environments using closed-

loop operations, i.e. able to operate using continuous feedback mechanisms [5]. Whereas

open-loop systems take the initial proposed grasp and attempt a grasp on a static ob-

ject, closed-loop systems are able to react to dynamically moving objects by shifting the

grasp trajectory based on real-time continuous information from the model, a technique

sometimes referred to as visual servoing [49]. Furthermore, despite being trained on iso-

lated images in most cases, these approaches are able to generalise to operate in cluttered

environments with multiple objects with minimal decrease in performance [108].

21

2.2.3 Reinforcement Learning

Another common technique for data-driven robotic grasping involves model-free deep re-

inforcement learning. This is a specific form of supervised learning but instead of learning

from a series of labelled images, the algorithm is trained on a scoring function that gives

feedback informing how close the network was to the correct answer and adjusts weights

based on trial-and-error functions [109]1. Semi-supervised forms of reinforcement learning

are considered to be natural ways of teaching robotic grasping agents, as toddlers often

receive a few labelled training data examples from an expert figure (parent, teacher, etc.)

and are then exposed to a large number of non-labelled training examples. A mixture

of direct training examples preceding natural reinforcement learning in this manner can

outperformed pure supervision models as the system is better able to generalise on tasks

while learning from the environment [110]. Therefore, this is considered as a more ecologi-

cally valid method for robotic agents learning in the field (i.e. closer to how human agents

learn), and has seen increased attention after examples like AlphaGo [111] demonstrated

great success in training model agents to play games, or other models demonstrate the

control of simple simulated robots [112].

The goal of reinforcement learning in the context of robotic manipulation is to detect

the optimal sequence of commands for accomplishing the given task, in this case this is

picking up an object [113]. The differences between RL systems therefore differ in how

the task grasping task is defined and rewarded [109]. Model-free reinforcment learning

(RL) grasping algorithms can be categorised into value-based methods and policy gradi-

ent methods [68]. Value-based methods construct a value function for defining a policy,

which is based on Q-learning [114], while policy gradient methods are developed to find a

parameterised policy to maximise a given cumulative reward based on expectation [115],

such as the Deep Deterministic Policy Gradient (DDPG) [112].

These systems often go beyond pure grasp estimation, as in generative or discriminative

methods, and use the current state of the robot to manoeuvre into the target pose for the

best grasping position including direct use of robot kinematics from the joint sensors as

a model input like position, velocity, or acceleration. For example, QT-Opt [88] is a

highly influential exemplar for RL and robotic grasping rewarding a 1 for a successfully

lifted object and 0 for a failed grasp. This also allows for continuous closed-loop grasping

1For a detailed review of reinforcement learning methods, the reader is directed towards the seminal
text by Sutton & Barto [109]

22

as the current state of the object relative to the gripper is updated consistently, which

is also demonstrated in later works [20]. This makes it an overall popular option as

it demonstrates an ability to perform dynamic behaviour including object disturbances

including pre-grasp manipulation strategies such as pushing and shifting, and ability to

pick up novel objects. The main challenges for these systems concern sample efficiency

and generalisation to novel objects or environments [68].

Sample efficiency, in the context of robotic grasping, is the problem of how much data

needs to be collected in order to build an optimal policy of the given task [37]. This

is more challenging than traditional supervised learning where a specific input-output

pairing is used to train models because there is no clear distinction between training and

testing. The time the agent spends improving the policy tends to come at the expense

of the model utilisation, otherwise known as the exploration-exploitation trade-off [116].

Therefore, data collection can be an expensive process, in both time and labour costs [117].

A study by Levine et al. [20] demonstrated large scale end-to-end data collection and

training for over 800,000 grasps on 14 robots which took over 2 months to collect. This

showed that data from multiple robots could be combined for effective grasping. The

model could predict grasp success based on RGB images of cluttered object scenes, and

also demonstrated novel behaviours such as moving objects to improve success chance

and altering the type of grip used for each object (i.e. changing between a power grip

or pinch grip for objects with different materials and shapes). While the results were

successful, this also demonstrates the intense requirements for physical data collection to

train real-world arms, and changes in hardware setup require extensive further retraining

which makes it inappropriate for general application [16,68].

Methods to alleviate the sample efficiency problem include Hindsight Experience Re-

play (HER) [48] which replays gathered pick-and-place task information and augments

them with different reward policies than the one initially collected. However, this is

not trivially applicable to all situations due to value approximations which also makes it

difficult to apply to techniques such as reward shaping. An alternative solution is im-

itation learning, which demonstrates the best place to grasp an object instead of using

random initialisation for rapid learning [118, 119], and shown to be successful on large

scales by “Grasping in the Wild” [120]: which used human grasping examples to collect

large amounts of data quickly.

The second challenge concerns generalisation, which involves using knowledge from

23

the source environment to perform in a target environment, albeit to a somewhat greater

degree than in supervised learning techniques as RL techniques tend to be confined to

the training environment and arm used for training [121]. A popular solution is to train

reinforcement learning algorithms in simulation, and use transfer learning to real-world

settings, as it is easy to randomise object placement while maintaining consistent starting

locations for training. An updated version of QT-Opt, RCAN [90] demonstrated how

domain randomisation from simulation can lead to successful results on the same real-world

robotic arm. Alternatively, another popular method involves meta-learning, colloquially

referred to as learning-to-learn. Instead of training on singular tasks, the goal is to learn

a variety of tasks, with the intention of training a model to learn the best method in

new scenarios using a smaller number of training samples [122]. This can be combined

with imitation learning to allow robots to learn new skills like reaching and pushing from

grasping tasks or single demonstrations [123].

Overall, RL algorithms show particular promise in high-dimensional data problems

and unstructured environments with further work. At the moment, these challenges mean

that RL is not used widely in real-world manipulation tasks because of scalability, as it can

be expensive to collect the data and to repair if the arm is damaged during exploration

[68]. Even Levine et al. [20] experienced significant wear and tear on the grippers due

to the significant quantities of grasping required. Another concern is safety, because it

is not always predictable if the system will perform the same when transferred to new

environments. This makes RL appropriate for fault tolerant tasks where high levels of

failure are not as much of an issue. This is why most studies at this time still prefer to

train in simulation, where it is quicker to collect large amounts of data and there is a high

degree of control over environmental variables like keeping the arm starting point and

camera position consistent which is more difficult in real-world settings, and consequently

use some form of transfer learning to reduce the overall cost of time and effort required,

as in [90]. This is a common problem across both supervised- and reinforcement-based

methods and is therefore discussed in the next section.

2.3 Datasets and Benchmarks

One of the major limitations of the empirical methods discussed thus far, is that they

require a large quantity of data for training [37]. This can be in the form of labelled

training data by experts in the case of supervised learning (SL), or tackling the sample

24

efficiency and exploration-exploitation payoffs in reinforcement learning (RL) [116]. In

order to assess the efficacy of these models, public datasets exist for training new models

to compare between new algorithms, however, there is a large amount of variation between

studies including the grasping benchmarks and the type of data used.

The aim of this section is to categorise the common methods for training supervised

models of grasping and describe the methods used for evaluation. While reinforcement

learning algorithms are popular in the literature, they tend to be study- and policy-specific,

with each method describing their own forms of data collection and grasp success rates.

Therefore, these tend to be restricted to the domain where the data was collected and

will only be briefly covered in this section, except for notable examples. For a complete

and comprehensive look at the range of data collection methods within the reinforcement

literature, the reader is referred to the broader overview of the topic as presented by Sutton

& Barto [109] or Mohammed et al. [124].

First, the methods for defining and representing a grasp are covered, as well as the

common methods for evaluating grasp success. The common simulated and physical object

datasets found throughout the literature which are used to train neural networks are then

described and compared, including those with and without corresponding object meshes.

Finally, since a common technique for training is to train within simulation and then

generalise to the real-domain, the overall approaches to generalising between these domains

are covered, including domain adaption and sim-to-real transfer methods.

2.3.1 Grasp Representation and Evaluation Metrics

Grasp detection defines the ability to recognise the points and poses required to grasp

an object for a given image [10]. A grasp is generally recognised to be successful when

the robotic end-effector is oriented correctly onto an object and is able to securely hold

and lift the object using the gripper of choice [3], as this is the starting point for many

object manipulation tasks and demonstrates some of the properties described earlier (see

Section. 2.1). For the robot, as in humans, this requires knowledge of the coordinate

transforms between the data from the sensor to real-world locations for grasping, as well as

being able to distinguish which locations on the object would result in the highest chances

for success. This requires ways of representing grasps in an image frame of reference to

transform into the arm frame of reference, although there are a number of methods which

exist for this purpose.

25

Early work represented grasps directly as contact points on images or 3D simulated

mesh models, and then use analytical or empirical methods to estimate the chance at a

successful grasp, through methods such as finding the optimal contact points to ensure

force-closure. Dex-Net 2.0 for example [76], uses point clouds and analytic grasp metrics

to plan grasps by first segmenting the scene for points of interest and using the GQ-CNN

to generate multiple grasp candidates with the highest quality grasp being executed. In

6-DoF grasp poses, the grasp representation must be defined by both the position and

orientation relative to the end-effector, but for 2D planar grasps, these contact points can

uniquely define the gripper’s grasp pose.

Early examples of 2D planar grasp representation include Saxena et al. [125] used a

probabilistic model to infer the 3D location of a grasping point in Cartesian coordinates

while considering uncertainty in the camera position. Using a multi-view approach, a

singular grasp g was simplified to a small grasp point region on an image g = (x, y, z),

showing multiple viewing angles would help to reduce the range of possible points for grasp

point inference. Zhang et al. [46] further simplified their point-based grasp representation

to a single point on 2D plane g = (x, y) using a reinforcement based approach. Evaluation

of these point-based methods relies on measuring the distance between the predicted grasp

centre and the ground truth grasp based on a threshold value. One drawback to these

methods is that they only represent a basic approach to grasping, without any parameters

for gripper orientation or how open the gripper had to be.

As a result of these limitations, a more popular form of grasp representation came

about known as the oriented grasp rectangle representation by Jiang et al. [42]. Their full

3D grasp configuration was defined according to seven parameters: the 3D grasping point,

3D orientation, and opening width between the jaws of the end effector, formally defined

a grasp in real-world coordinates G = (x, y, z, θ, φ, ψ, l). However, for training a model in

the image plane of reference, they reduced this to a rectangle defined by the two opposite

vertices, and angle θ from the x-axis to reconstruct the grasping rectangle. This was

the first study to introduce the common rectangle metric for evaluating and comparing

predicted grasp rectangles with previously defined ground truth labels. A predicted grasp

G was considered correct if the area of intersection with the ground truth grasp Ĝ was

greater than 50%, i.e. Area(G
⋂
Ĝ)

Area(G
⋃
Ĝ

, but also must be within 30◦ degrees of orientation error.

Lenz et al. [78] further simplified the rectangle metric by proposing a five-dimensional

representation with the assumption a good 2D grasp was able to by projected back into

26

Figure 2.5: The common rectangle grasp representation [42,78].

3D space via known transforms., which was useful for single view grasping and this made

it analogous to the bounding box representation commonly used in computer vision tasks

except with an added term for gripper orientation [77]. This defined a predicted grasp

as G = (x, y, θ, h, w), with (x, y) representing the centre of the grasp rectangle in pixel

coordinates of the 2D image, along with a gripper orientation Θ, and finally the height

h and width w of the rectangle. However, they also reduced this required a minimum

intersection over union (IoU) of 25% with the predicted and ground truth grasp rectan-

gles, arguing that a single grasp rectangle can define a large space and make up most

of an object. This was later empirically tested by Redmon & Angelova [77] with their

SingleGrasp and MultiGrasp systems and became the main metric for evaluating neural

network performance across benchmarks, e.g. [5,38,126]. Wang et al. [127] proposed a fur-

ther small change which removed the height h parameter, arguing that this is a static value

for a given gripper which can be controlled in the robotic set-up configurations. This gave

the more commonly used four parameter grasp rectangle representation of g = (x, y, θ, w)

represented in Fig. 2.5.

A final representation also seen in research, drops the gripper dimension parameters en-

tirely in favour of only a location and orientation based grasp assumption G = (x, y, θ) [21].

The advantages of this method are that it provides a middle ground between the two previ-

ous methods, as it does not limit grasp representation to only parallel jaw grippers, whilst

still proving more comprehensive data about gripper placement. Therefore, this represen-

tation is more likely to be seen in work where the gripper uses finger placements,and was

27

Table 2.2: List of commonly used grasp representations.

Grasp Representation Parameters Depth Pose Transform

Full Representation [42] (x, y, z, θ, φ, ψ, l) Yes Yes No

Point Representation [46] (x, y) No No Yes
[125] (x, y, z) Yes No Yes

Location + Orientation [21] (x, y, θ) No No Yes
[128] (x, y, z, θ) Yes Yes Yes

Rectangle Representation [78] (x, y, θ, h, w) No Yes Yes
[127] (x, y, θ, w) No Yes Yes

further improved with a depth z coordinate for grasping in 3D space Gz = (x, y, z, θ) [128].

Of the three 2D planar grasp representations listed, the five-dimensional rectangle

representation is the more common in the literature as it provides enough detail to perform

training, whilst not remain over-defined, and therefore is provided along many datasets,

e.g. [78, 129]. However, grasp representation is usually application specific and therefore

more detailed examples are also used in some cases. For example, specific finger placements

on 3-D meshes with 6D gripper poses or model-based grasp detection methods, or pixel

masks where the fingers should be placed on images [130], although, these methods tend

to be limited to the domain in which it was used. A summary of these representations

listed can be found in Table. 2.2, with the assumption that 2D representations often

require a method of transforming to 3D space. Most of these approaches are used by

themselves if the aim is to pick up any given object in a scene and no requirements are

necessary, but can also be used in conjunction with tasks such as object recognition to grasp

identifiable objects [77], or based on other other metrics such as grasp affordances [36,131]

(i.e. grasping based on intended usage, and is akin to a segmentation problem).

2.3.2 Grasping Datasets

With the advent of data-driven grasping, new large scale datasets have been required to

provide a large volume of data reserves for training these models for effective learning

of task goals [74]. For supervised learning, this also requires a plethora of accurately

labelled data to learn from, although this is less important in unsupervised techniques and

reinforcement learning [77, 78, 109]. However, many challenges to overcome as collecting

data for robotics can be expensive to acquire manually, which can be time-consuming,

costly, and requiring constant supervision.

28

Table 2.3: List of publicly available 2D planar and 3D grasping datasets.

Dataset Year Reference Type No. Objects No. Images Labelled Grasps

Stanford Grasping 2008 Saxena et al. [74, 132] 3D simulated 10 13747 13747
Cornell Grasping Dataset (CGD) 2011 Jiang et al. [42, 78] 2D planar 280 1035 (8019 positive)
Carnegie Mellon University (CMU) 2015 Pinto & Gupta [21] Reinforcement ∼ 150 N/A 50567 (6266 Positive)
Yale-CMU-Berkeley (YCB) 2015 Calli et al. [133] 3D physical 80 Mesh N/A
Dex-Net 1.0 2016 Mahler et al. [92] 3D Mesh 13k Mesh 2.5M
Dex-Net 2.0 2017 Mahler et al. [76] 2D planar ∼ 150 6.7M (Depth) 6.7M
Google 2018 Levine et al. [20] Reinforcement N/A > 10M 800k
Jacquard 2018 Depierre et al. [129] 2D planar 11619 54485 1.1M

29

Figure 2.6: Example objects included in the YCB object dataset [133,137].

One of the first large scale examples includes that of Pinto & Gupta [21] released the

Carnegie Mellon University (CMU) dataset of 50k positive and negatively labelled grasps,

although this was collected over the course of 700 hours, and the previously discussed

Levine et al. [134] collected over 800,000 grasp attempts on 14 robots over the course

of two months in order to train their reinforcement learning algorithm. However, these

datasets possess a large amount of domain-specific data making it difficult to generalise

to another target system or environment which can be difficult to obtain [135,136].

Studies tend to present their results on application specific proprietary data for the best

results, but this makes it difficult to compare between different algorithms and models.

A major requirement for the field of robotic grasping and similar disciplines, is the need

for an easily accessible benchmarks, as it is necessary to evaluate their ability to grasp

both previously seen objects but also generalise to unknown objects as well as reproduce

results for a required application. Therefore, it is common to use both physical and

simulated benchmarks to reduce the need for data collection. Early physical benchmarks

such as the Yale-CMU-Berkeley (YCB) dataset [133,137], provide high resolution RGB-D

images alongside object meshes of common household objects for training models alongside

simulated trials (as shown in Fig. 2.6). However, as the aim of the dataset was to be able

to be ordered, only a small sets of objects are used which make it difficult to generalise

beyond them.

Another popular early dataset which contained RGB-D images of physical objects

was the Cornell grasping dataset (CGD) [42, 78]. This contained an initially limited 885

images of 240 different object types, and a total of 8019 valid and invalid hand-labelled

grasps. It was designed for common parallel plate grippers, and utilised the IoU metric

alongside oriented grasping rectangles for evaluation and has been used extensively as a

benchmark c.f. [38, 43, 95]. Although, as Mahler [76] notes each grasp was labelled by

a human annotator, which introduces multiple conditionalities to the process. One of

30

(a) RGB Input. (b) Depth Image. (c) Positive grasps.

Figure 2.7: Example of positively labelled grasps in the Cornell Grasping Dataset [78]

which it is tedious to hand label and collect all available grasps, and therefore difficult to

generalise to other objects or scenes. The other is that this process of manually labelling

ground truth rectangles likely introduces human bias into the robotic grasping data as the

annotator is likely to label a grasp that is easier for humans to pick up but not necessarily

for a parallel plate gripper attached to a robot arm [21,129].

With this in mind, Dex-Net 2.0 [76], instead created a synthetic dataset with 6.7M

depth images with grasps labelled at the centre of each image. Whilst the previously

mentioned GQ-CNN achieves high performance on this dataset, it is not possible to train

models end-to-end, and therefore is limited to training discriminative models which can

generate and rank grasp candidates separately. This showed that datasets could be scaled

to match the training needs of empirical models and datasets are typically now labelled by

the robot arms themselves, compared to the hand-labelled data from the CGD for more

accurate and exhaustive ground-truth labels.

Most of these datasets have the common benefit over the CGD in that they have

generated a larger amount of labelled grasps on a wider variety of objects to train data-

driven models. This has been achieved through procedures such as autonomous collection

from real robots on physical objects [20], or by generating a large number of grasping

examples using simulated data [76, 90], in both an online fashion through reinforcement

learning [18], or by using a simulated robot arm to attempt a larger number of grasps like

the more recent Jacquard Grasping Dataset (JGD) [129].

The JGD also uses a simulated robot arm with various gripper widths to perform an

exhaustive set of grasps on 3-D models of objects in ShapeNet [138, 139]. This features a

set of 54k images and 1.1M annotated correct grasps. One major advantage of this dataset

is that a simulated robot arm is provided on-line that allows performance to be tested in

31

(a) RGB Input. (b) Depth Image. (c) Positive grasps.

Figure 2.8: Example of positively labelled grasps in the Jacquard Grasping Dataset [129]

the same conditions as the data was generated for a more standardised benchmark, known

as the Simulated Grasp Trial (SGT) score. Despite this, for speed and convenience most

authors have continued to use the rectangle metric to measure performance.

2.3.3 Transfer Learning

The datasets mentioned in the previous section which are produced in simulation provide

an abundant source of high-quality grasp annotations, which can be parallelised for faster

training or data generation. Likewise, the quality of the gripper remains relatively high

without the wear and tear of grasping objects repeatedly for high levels of control in sit-

uations where repetition is important such as reinforcement learning methods. Although,

the main limitation of pre-training models using these methods becomes transferring these

learned properties to the real-world on a variety of arms [16, 140, 141]. The next section

therefore discusses common methods within the literature for transferring between pre-

trained datasets, both physical and simulated, to new environments and arms.

For transferring between simulated to real world settings, there are three main methods

for improvement: implementing better simulations which are closer to reality, or post-hoc

methods such as domain randomisation [135] or domain adaptation [140, 141]. Improve-

ments to create better simulations are generally of concern to the domain of graphics and

physics engines. Examples include the early GraspIt! physics engine [142] which popu-

larised the method of simulating grasps, but more recent and general examples used widely

throughout the literature include: pyBullet [143], Blender [144], and Gazebo [145].

Domain randomisation refers to the technique of randomising elements of the simu-

lated system, including vision observations or system dynamics, such that it trains the

model to recognise the real-world as just another variation of the simulation and deal with

32

the variations accordingly [135]. Visual variations include changes to lighting, or object

textures and colours, and system randomisations can include changing the gravity, mass of

robot links, friction coefficients, or base of the robot pose [141]. This technique has been

utilised by systems such as QT-Opt RCAN [90] to better improve reinforcement grasping

algorithms as well as to better generalisation pick-and-place tasks [146], and segmentation

tasks [147]. Another study was able to improve robotic hand manipulation by solving a

Rubik’s cube with multi-fingered grippers and automatically scheduling the intensity of

the randomisation based on current performance [48].

Domain adaptation is a process of generalising to a target domain from a source do-

main, which can be achieved using unlabelled data from the target domain [16]. This

applies to simulated work but also refers to transferring between arms or work environ-

ments. One method includes feature-level domain adaptation which focuses on learning

domain-invariant information [140, 148], and another method focuses on pixel-level do-

main adaptation which restyles images similar to the target domain [90,149]. An example

of these types of domain transfer include Generative Adversarial Networks (GAN) [93],

which have also previously shown to be successful in this classification of similar tasks

and domains [150].GraspGAN [140] allows for a reduction in the amount of target domain

data by generating real-world examples using their model. However, these approaches still

require some target domain data to be successful which negatively impacts the scalability

of larger models [16].

2.4 Summary

In this chapter, an overview of the current literature for autonomous robotic grasping was

outlined. In Section. 2.1, the early work for identifying successful grasps and associated

criteria were defined and Section. 2.2 looks at the contemporary approaches to grasping

which involve training models using large quantities of data from a source domain. It was

identified that for a fully autonomous robotic manipulator to be realised, in future must

be able to grasp both known and unknown objects effectively, generalise from the trained

source domains to target environments and arms, and operate dynamically to changes in

object locations.

Data-driven approaches have been shown to achieve great progress in these areas and

therefore must be able to infer grasp locations quickly and accurately. Motivated by

these findings, the next chapters explore techniques to improve empirical methods and

33

accurately train models to recognise the relevant information for robotic grasping. Here,

we focus on generative models for their fast inference speeds which enable closed-loop

models of grasping, ability to generalise to new objects and environments, and their ability

to be trained end-to-end. As with other neural networks, we identify three main areas

that are typically targeted to improve model accuracy. Firstly, we aim to improve model

performance by training networks to simultaneously perform tasks relevant to grasping

such as classification, segmentation, and depth reconstruction (Chapter 3). Secondly, we

introduce a novel loss function that focuses model attention to locations where grasps are

more likely to succeed on improve model accuracy on unseen objects and images (Chapter

4). Finally, we assess the current metrics for evaluating offline model performance and

their ability to predict performance in online grasping scenarios. We then propose an

improved method for representing grasps in planar scenarios (Chapter 5).

34

CHAPTER 3

Multi-Task Learning for Monocular Generative Models

This chapter aims to explore whether the performance of a typical Convolutional Neural

Network (CNN), trained to recognise appropriate grasps executed by a robotic arm for

a given object, can be improved by introducing a related secondary task during training

using a technique known as multi-task learning (MTL). Currently, these models typically

underperform when trained using traditional RGB input, which are far more readily ac-

cessible when compared to the depth cameras used in some contemporary robotic grasping

systems.

It has been previously shown that applying MTL has improved performance in other

areas of machine learning (see Section 2.2.2), and can alleviate problems which are known

to impact performance [97]. For example, it can improve training on small datasets by

increasing the data availability for training when other forms of data collection may be

limited [106]. MTL typically provides an inductive bias (implicit knowledge) [96] that

helps generalise representations between tasks, such as by focusing attention on relevant

features [106], providing implicit data augmentation [96], or reducing the risk of overfitting

on data [97].

The auxiliary tasks in this chapter are chosen to provide complementary information

alongside a primary grasping task, that reintroduces data intended to improve overall

performance. The inspiration for these auxiliary tasks is based on the mammalian visual

system, which is intended to train models to recognise inductive bias required for under-

35

standing a successful grasp. By understanding and sharing the general features common

across both tasks, three related tasks are tested in which CNN have previously shown

to achieve widespread success in, such as: object classification, salient object detection

(SOD), and depth reconstruction.

The following series of experiments therefore investigate the benefits of applying MTL

to a series of established generative grasping CNN. Of which, these networks have pre-

viously shown to achieve high performance at planar grasping task across established

grasping datasets [5,47]. New network architectures are then introduced that explore the

effect of hard parameter sharing between distinct tasks, designed to highlight the advan-

tage of reintroducing missing information without increasing the information required as

an input. The main contributions of this chapter are therefore as follows:

• Prior generative grasping architectures are modified to introduce MTL to existing

robotic grasping models, resulting in novel network architectures, before being eval-

uated on established grasping datasets.

• Grasping and auxiliary task performance for each network architecture is evaluated

when trained with tasks expected to enhance learning, such as: object classification;

salient object detection (SOD); and a depth reconstruction task.

• Additionally, this chapter provides new classification labels for the existing Cornell

Grasping Dataset (CGD) [78].

• The effect of altering the number of shared parameters and corresponding weighting

between each loss function between each task is investigated to highlight the impact

each modification has on overall performance.

This work is then compared to base network architectures using the same methodology

as the previously published studies of [5,38] on the same widely used datasets [78,129]. The

effectiveness of each task is considered for appropriateness and impact on the initial robotic

grasping task intended to be improved and potential future work is outlined as a result.

These tasks are grouped into object classification, and SOD and depth reconstruction due

to differences in methodology and intended consequence each individual task.

Most current deep learning implementations for robotic grasping tend to only focus

on a single grasping task [20, 43, 77]. However, specific grasping examples have shown

that there is a relative performance increase when networks are trained while performing

36

auxiliary tasks, such as semantic segmentation [36,104,151–153]; saliency detection [103];

or the generation of bounding boxes [34]. Such MTL techniques can be applied to the

model using either a bottom-up [36, 103] or a top-down approach [104, 153]. Similarly, in

the current study we attempt to improve overall grasping performance by forcing shared

parts of the network to learn a similar auxiliary task, when presented with only monocular

colour data. To this end, in the next section, a formal mathematical definition for the

grasping problem we aim to solve in the subsequent chapters is given.

3.0.1 Grasping Problem

Generative grasping models are defined by their function to directly output a grasp pro-

posal from a scene as the output of a network. Examples include early work from Redmon

& Angelova [77] which introduced the single- and multi-grasp systems that popularised

the grasp problem that we attempt to solve. This work defined a single planar grasp over

an image as a five-dimensional output similar to Lenz et al. [78]:

g = (x, y,Θ, h, w), (3.1)

where grasp g is a rectangle centred around pixel (x, y), with height h and width w, and

an angle of Θ. For a robot with a parallel plate end-effector (gripper), Eq. 3.1 can further

be simplified as h is a constant for a given arm. In this case, the grasp pose in the robot

frame of reference gr as follows can therefore be represented as:

gr = (P,Θr,Wr, Q), (3.2)

with P = (x, y, z) being the centre of the parallel gripper jaws, Θr is the angle of the

parallel gripper around the z-axis, Wr is the required with of the tool in mm, and Q is a

value for the predicted probability that a grasp will occur, referred to as the grasp quality

score.

Each generative model used here defines the grasping problem as to be able to take

an n-channel input image I = Rn×h×w, which could be an RGB, D, or RGB-D image of

the scene with a given object, of pixel height h and width w, and outputs a predicted 2D

grasp perpendicular to a planar surface (antipodal). A single grasp rectangle in the image

37

frame of reference gi, therefore consists of a position, angle and width:

gi = (x, y,Θi,Wi, Q), (3.3)

where (x, y) is the centre of the proposed grasp in image pixels, Θi the rotation of the

proposed grasp, and Wi is the required gripper width, and the subscript i indicates the

values are in the image frame of reference.

However, the generative grasping networks considered in this chapter do not directly

output the grasping rectangle, but output grasp for each pixel in a scene simultaneously

in the form of a grasp map G. Each model outputs four per-pixel values Q,Θcos,Θsin, and

W . Θcos and Θsin are the two unit vectors of the gripper angles which are recombined

during post-processing to form the gripper angle Θ (see Section 3.1.2) in the range [−π
2 ,

π
2]

because the gripper rotation becomes symmetric around this point. This makes it easier

for the network to learn compared to the angle directly according to [154]. The angle Θ

may be therefore be inferred from these network outputs using Eq. 3.7:

Θ = arctan(
sin(2Θsin)

cos(2Θcos)
)/2, (3.4)

where Θsin in the range of [0, 1] and Θcos in the range of [−1, 1].

Since there are four per-pixel output values, they can be viewed as images or heatmaps,

and the total grasps over all pixels of an input image are represented as:

G = (Q,Θ,W) ∈ [[0, 1]× [−π
2 ,

π
2]× [0,Wmax]]h×w. (3.5)

The value Q at a pixel position is the probability of a successful grasp being made centred

at the location of the pixel with gripper at angle Θ and width W . Q a scalar in the range

of 0 to 1, with values nearer to 1 predicting a higher chance of a successful grasp. Θ is the

corresponding angle of the gripper (extracted from Θsin = sin(2Θ) and Θcos = cos(2Θ))

required around the z-axis to grasp the object of focus and is a value in the range of

[−π
2 ,

π
2] for each pixel. Wi is the width of the gripper in the range of [0,Wmax], with Wmax

being the maximum width of the parallel gripper.

To extract a single proposed grasping rectangle Gi from grasp map G, the centre of

the rectangle is the pixel position equal to the maximum grasp quality Q score and use

the corresponding angle Θ and width W from the same pixel position.

38

To execute a grasp proposal in the real world from a grasp rectangle given in image

coordinates, the grasp must undergo a series of known transforms:

gr = tRC(tCI(gi)). (3.6)

where tCI is the transform from the 2D image coordinates into the 3D camera frame using

known camera intrinsics, and tRC is the transform from the camera frame to the world or

robot frame (see Appendix. B for examples of these transforms).

3.1 Object Classification

The first auxiliary task considered for MTL alongside robotic grasping was inspired by the

dual-processing theory of the mammalian visual system [27]. There has already been ex-

tensive research into the way humans process visual information and a number of functions

can be performed independently during vision-based grasping processes and object manip-

ulation, most notably the function of object recognition [26]. Humans can apply the knowl-

edge from previously learned tasks to more complex systems, and some overlap between

these systems must exist in order to grasp objects based on their intended function [155],

i.e. must require knowledge of function and class to position end-effector/gripper/hand

for a given use case.

Neural networks have already seen widespread success at classification datasets, such as

on ImageNet [156], with the introduction of deep neural networks like Fast R-CNN [11] and

YOLO [77], or the Common Objects in Context (COCO) [157] dataset with networks like

Mask R-CNN [12]. This section therefore combines the tasks of object manipulation and

classification into one network because object classification may share inherent features

that enhance grasping.

3.1.1 Grasping and Classification Dataset

To address the challenge of developing a large set of training examples containing both

grasp and classification labels, the choice was made to alter an existing grasping dataset

with existing performance benchmarks rather than generate an entirely new dataset. As

grasp labelling can be expensive in terms of human labour and financial cost, it was

deemed unreasonable to create a dataset from scratch. For example, Levine et al. [20], took

3 months to collect 800,000 grasp examples leveraging up to 14 state-of-the-art robotic

39

arms collecting data constantly to generate sufficient training examples, which requires

supervision and energy to achieve. Existing large grasping datasets are now typically

formed of a large set of simulated object meshes to provide adequate training examples

for grasping, such as DexNet [92], but typically do not contain corresponding classification

data for objects. Those that do, generally contain only a small number of categories or

objects. The Yale-CMU-Berkeley (YCB) dataset [133, 137] for example, is divided into

five distinct categories, (food items, kitchen items, tool items, shape items, task items),

but only exists as a physical dataset and is therefore limited to only 77 objects presenting

only a small sample of grasp training data.

To reduce the need for an entirely new set of grasp labels, the existing CGD [78] was

modified to add supplementary classification data for both model training and testing as

this contained a sufficient amount of grasp labels and variety of objects. This dataset,

initially consisting of 1035 RGB-D images of 280 real-world objects, but later reduced to

only 885 images and 240 unique objects, has a total of 8019 positively labelled grasps

including over 5,000 human-labelled positive grasps and nearly 3,000 invalid grasp rect-

angles to learn from. To provide supplementary data, artificial transformations were also

used such as random cropping and rotation to increase the amount of training data and

provide an increased number of grasping examples.

As the original data was collected mainly out of convenience from an office environ-

ment, it was therefore not collected with classification in mind. The dataset unfortunately

features an imbalanced number of examples of the same object, with some appearing more

frequently, such as stationary or objects typically present in a kitchen environment, and

some objects only appear once, such as some food items.

Multiple types of class labels were initially considered that were thought to relate to

grasp quality in some way. This included general properties like overall object shape,

material, or texture but this lead to heavily imbalanced datasets of a singular individual

type. Therefore, the dataset was labelled that aimed to encapsulate the range of objects,

whilst providing enough descriptive information to help improve grasping performance.

The data was labelled according to one of two ways: a specific set of labels and a

general set of labels. Specific labels included the unique name for each type of object

label, such as apple, mug, or screwdriver, leading to a total of 79 unique classes of objects

and the responsibility was left up to the network to infer which types of grasps worked

for similar groups of objects. On the other hand, general labels categorised each object

40

Figure 3.1: Examples of classification labels for the training set in the Cornell Grasping
Dataset [78] and the corresponding positive ground-truth grasp rectangles.

according to a given function using broader terms with similar grasp functions, like the

YCB dataset [133,137], with the intention of forcing the network to associate grasps with

certain groups of objects. For example, all instances of food in the dataset, such as apples

and bananas, were grouped together and the same process for other categories such as

kitchen utensils or tools. This reduced the number of categories to 9 which means there

more examples of each category to learn from but may make identifying categories more

difficult due to the variety between objects. The full list of “specific” and “general” labels

can be found in Appendix A.1 and Appendix A.2 respectively.

A number of examples objects with the corresponding valid ground truth grasp rect-

angles and hand-labelled categories can be seen in Fig. 3.1. Object labels are chosen as all

the grasps in this dataset were labelled by human experts and was designed to train super-

vised learning systems. This is likely to introduce biases towards grasps that are preferred

by human hands rather than parallel plate grippers [129]. For example, in Fig. 3.1, valid

grasps are labelled only along the handles of objects such as in the case of the spatula,

which is ideal for human tool use, whereas a parallel gripper may prefer the wider surface

area of the tool part which remains unlabelled. Therefore, it is expected that valid grasp

rectangles inform classification during training.

3.1.2 Methodology

Here, the methodology for the first set of experiments based on classification using the

modified CGD [78] is outlined.

41

Multi-task Network Architecture

To investigate whether the effect of training a neural network to perform an auxiliary

classification task can improve performance on a grasping task, our proposed solution is

to introduce the multi-task grasping convolutional neural network (MTG-CNN). Based on

the successful generative grasping convolutional neural network (GG-CNN) from [5, 158],

the GG-CNN is a small and lightweight network for closed-loop continuous grasping that

outputs a map of potential antipodal grasps perpendicular to the x− y plane (as defined

in Section 2.2.2). Our experiments use the follow up GG-CNN2 model architecture from

Morrison et al. [158] as the backbone for the multi-task architecture as defined below.

The MTG-CNN network was inspired by the dual-streams hypothesis of human vision

[25–27] and extends the GG-CNN2 network by adding an extra output for the auxiliary

task, in this case, for the classification of objects. To investigate the effect of training the

two tasks simultaneously, multiple architectures are considered that vary the amount of

shared weights which can be viewed in Fig. 3.2.

Each network can be viewed as a function Mf , where f represents the model weights,

which maps a 300×300 pixel input image I to four parameter-space output images: Qf (I),

Θsin
f (I), Θcos

f (I), Wf (I) with an added auxiliary classification branch Af (I). Each image

output represents a pixel map the same size as the input. The first four of these form

the grasping output and come from one branch of the network, and the final auxiliary

output A comes from the the classification branch. The pixel values of Qf (I) represent

the probability of a successful grasp at each pixel position in I. The angle of the proposed

grasp can be calculated pixel-wise by Θ(I) = arctan(Θsin(I)
Θcos(I))/2. The raw angle Θ of each

grasp is in the range [−π
2 ,

π
2]; it is represented as two unit vector components cos(2Θ) and

sin(2Θ) in the network outputs as this aids learning by removing the discontinuity at the

wrap-around point [154]. Finally, Wf (I) is the required gripper width as a value in the

range [0, 1], which is scaled into a physical measurement for gripper width in the range of

[0, 150].

Each model architecture is a fully convolutional network consists of eight convolutional

layers and two max pooling layers. The first half consists of a large convolutional layer

with an 11×11 kernel size and a second convolutional layer with a smaller 5×5 kernel size,

followed by a 2×2 max pooling layer, two further 5×5 convolutional layers, and a second

2×2 max pooling layer. Two dilated convolutional layers are then added from Yu and

Koltun [159] which show increased performance in semantic segmentation tasks. The first

42

(a) MTG-CNNa

(b) MTG-CNNb

(c) MTG-CNNc

(d) MTG-CNNd

Figure 3.2: Variants of the fully CNN multi-task architectures with varying branch loca-
tions.

43

has a dilation of 2 and the second has a dilation of 4. Two 3×3 transpose convolutional

layers are then added with a stride of 2 to increase the size of the output image to the

original input image dimensions.

The way the architectures of these models differ is the amount of shared weights

between the initial grasping task and the given auxiliary task. If the auxiliary task shares

a large set of universal features with the initial grasping task then a greater amount

of shared weights would improve both tasks. Therefore, the base MTG-CNN network,

identified as MTG-CNNa (see Fig. 3.2a), is the most similar to the original GG-CNN2

network and contains the fewest parameters overall. Whereas, the GG-CNN2 network

only produces a four parameter space output images Q,Θsin,Θcos and W , corresponding

to the components of a grasp from the original network, the MTG-CNNa features the

additional classification A output module after the final layer of the model consisting of

fully connected layers. The classification layer featuring nodes equal to the number of

classes during training.

The MTG-CNNa features the greatest amount of shared weights between the proposed

architectures, with only the final output layers allowed to distinguish between grasping

and classification. For the other subsequent architectures, the number of outputs remain

the same, but the number of parameters is increased to allow the network to learn features

unique to both tasks.

For these networks, the initial layers are still shared but later layers are replicated

to allow for specific features to be learned. Therefore, the first variation replicates the

two transpose layers which is referred to as MTG-CNNb (Fig. 3.2b). The second variation

called MTG-CNNc (Fig. 3.2c) replicates both the the dilation and transpose layers, leaving

only the initial convolutional layers to learn shared features. A third variation is included

that removes these transpose layers, acting similarly to an ablation study, referred to as

MTG-CNNd (Fig. 3.2d). This was used as an experiment to showcase the effect that

removing specific network regions dedicated to classification had on training.

To extract a proposed grasp rectangle from the network, we take the (x, y) coordinates

of the maximum pixel value in Q as the centre of the grasp, the angle is then extracted from

the corresponding pixel coordinate values from Θsin and Θcos according to the equation

above, and finally the width of the gripper from W . For smoothness, before extracting the

proposed grasp the outputs are filtered with a Gaussian kernel with a standard deviation

of 5 pixels, as is done in [160]. For the classification task, the output is first passed through

44

a sigmoid and the max value is retrieved for the predicted grasp.

Cornell Grasping Dataset

In order to train the grasp map based generative networks, the Cornell dataset must first be

converted from the rectangle-based representation [77], from Section 2.3.1, consisting of the

gripper position centre, angle, and width (x, y,Θ,W), to the image based representation

Ĝ for grasp map outputs from [5]. Only positive valid grasp labels from the dataset are

used, from which, the centre third of each grasping rectangle corresponding to the central

position of the gripper is taken as an image mask to form the training examples. This

approach assumes that any other area is not the location of a valid grasp and forms the

component grasp maps including the grasp quality Q, angle Θ and width W . The process

is outlined in Fig. 3.3.

• Grasp Quality Q̂: a binary mask representing each ground-truth positive grasp.

Every pixel that falls within the centre third of a valid grasp rectangle is set to a

value of 1 with all other values set to 0.

• Angle Θ̂: The corresponding angle for each grasping rectangle is also represented

pixel-wise. For each pixel with a value of 1 in Q̂, the value in Θ is set to the

corresponding angle of the parallel gripper in the range [−π
2 ,

π
2] because the gripper

rotation becomes symmetric around this point. To make learning easier for the

network, the angle is further decomposed into the two components of a unit circle

in the range [−1, 1] as in Section 3.1.2, representing Θsin in the range of [0, 1] and

Θcos in the range of [−1, 1]. Any discontinuities where the angle wraps around ±π
2

radians if the raw angle was used as the parallel gripper was symmetrical around

this point. The angle is then recalculated during testing by taking the value from

sin(2Θsin) and cos(2Θcos) and recombining them via the equation:

Θ = arctan(
sin(2Θsin)

cos(2Θcos)
)/2 (3.7)

• Width Ŵ : A pixel-wise representation of the required width for the parallel grip-

per. To allow for depth invariance, values are in the range of [0,Wmax] pixels where

Wmax = 150. This can be transformed into a physical measurement during deploy-

ment on a robotic arm using the depth camera parameters and measured depth from

45

Figure 3.3: Annotated data from the Cornell dataset are transformed into grasp maps for
training. The centre third of each grasp is transformed into a training image for grasp
quality Q, grasp angle Θ, and grasp width W , with grasp angle further decomposed into
sin & cos.

the gripper to the base of the arena. During training these values are scaled to the

range [0, 1] by multiplying by 1
150 .

Object classifications for the Cornell dataset were hand-labelled according to the two

methods outlined in Section 3.1.1. Therefore, each object was classified and saved in

the common COCO classification format [157]. Each object received a specific object ID

as well as a general super-class that grouped objects with similar functions together to

direct learning based on objects with similar grasps. Each object was also labelled with a

bounding box which is included within the annotations, however this was not utilised in

these experiments.

Performance Metrics

Performance of each trained model was measured according to both the proportion of

successful grasps on the validation set and related classification performance. A successful

grasp on the Cornell dataset is calculated according to the intersection over union (IoU)

46

metric from [42, 78] as used in [38, 129]. This is a quick offline metric that considers a

proposed grasp as successful against two criteria:

• the predicted grasp rectangle and a corresponding ground truth grasp rectangle share

an Intersection over Union (IoU) score of greater than 25%;

• the offset of the predicted grasp rectangle aligns within 30◦ with the corresponding

ground truth grasp rectangle.

Object classification is considered successful when the predicted output was equivalent

to the ground truth, however, as the main goal of the auxiliary branch is to improve

grasp performance, the model with the highest IoU performance is reported alongside

classification.

Loss Function

Due to the architecture of the MTG-CNN architecture, two separate loss functions were

applied during training to grasping and classification separately. Learning to grasp was

treated as a regression problem compared to the auxiliary classification problem. For each

grasp output, a mean squared error (MSE) loss, also known as squared L2 norm, was

applied to each predicted output separately against the ground truth resulting in the total

grasp loss being calculated as:

`grasp = `MSE(Q, Q̂) + `MSE(Θsin, Θ̂sin) + `MSE(Θcos, Θ̂cos) + `MSE(W, Ŵ), (3.8)

For the auxiliary classification output, the output is first passed through a sigmoid applying

a negative log likelihood loss (NLL), with x representing the predicted classes for a given

batch and y representing the corresponding ground truth classes for the same batch:

`aux = `NLL(x, y), (3.9)

Therefore, the total loss for the network is equal to the addition of these two terms:

L = `grasp + `aux, (3.10)

However, the two error values produced from these loss functions can differ substantially

as one is a classification task and the other is a regression. Therefore the units, in some

47

cases, can differ by orders of magnitude. An additional loss term is applied similar to a

näıve weighted linear sum of losses for each individual task where λ is manually fine-tuned

equal to 1 that forces the network to learn a preference for a task. This weighted linear

sum is added to the loss function:

L = λ`grasp + (1− λ)`aux, (3.11)

This is compared to a more intelligent learned multi-task loss from Kendall et al. [107],

which is a principled multi-task loss function that learns to maximise the Gaussian like-

lihood of the model based on task-dependant uncertainty. Effectively this learns to max-

imise the log likelihood with respect to the model parameters based on an observed noise

parameter σ. This multi-task loss can be passed to the same optimiser used by the net-

work to adjust learning rates between multiple outputs and used an example to show that

multi-task performance was improved even across different modalities. In this instance,

each task loss is weighted according to the dynamic weighting σ learned separately for

each task such that the total loss becomes:

L = − log σ2
1(`grasp) +− log σ2

2(`aux). (3.12)

Training

Due to the small size of the dataset, 90% of the original 885 images was kept for training

and the last 10% was used for evaluating model performance in order to maintain a suf-

ficient number of training examples. However, as this dataset was not originally designed

with classification in mind, this culminated in a skewed dataset with an imbalanced set of

objects. The distribution of objects in the specific training are shown in Fig. 3.4 with the

test set displayed in Fig. 3.5. The corresponding general distribution of training labels

are shown in Fig. 3.6 and the testing labels in Fig. 3.7.

As objects in the dataset were collected mainly from the convenience of object avail-

ability, rather than diversity, it was noted that there were an overabundance of some

examples and sometimes only one instance of other objects. For example, during the first

pass of object labelling it was noted that there was an overabundance of bottles within the

dataset. Therefore, each instance of bottle was split further according to function (pour

bottle, squirt bottle, and spray bottle) to reduce the chance of the network only learning to

predict the most common object type. However, because only the final 10% of the dataset

48

Figure 3.4: Distribution of training labels for specific object ground-truth labels.

49

Figure 3.5: Distribution of testing labels for specific object ground-truth labels.

50

Figure 3.6: Distribution of training labels for general object ground-truth labels.

51

Figure 3.7: Distribution of testing labels for general object ground-truth labels.

52

was used in the evaluation set, this resulted in some categories missing from the test data

which is more prominent in the specific object categorisation as there is some categories

with only one instance within the training set. This created a sample where 48 categories

where present in the specific test set. Whereas, 8 of the 9 object categories were present

in the test set for the general object classification task.

Each network architecture was trained for a total of 40 epochs when trained with

the weighted sum loss function using hand-tuned weights and the task uncertainty loss

from [107]. The model with the highest grasping performance when trained with both

types of auxiliary classification task was then tested on the final 10% of the CGD which

formed the final results.

3.1.3 Evaluation

The performance of each network is evaluated against both the Intersection over Union

(IoU) metric (see Section 3.1.2), as well as the classification results when trained to recog-

nise the specific set or general set of object classifications. As the aim of these experiments

was to analyse whether the grasping performance could be improved via the the introduc-

tion of the auxiliary classification task, the model with the best average performance

between each task is tested, even though this may have not been the highest classification

performance overall.

Results for the model performance on the test set when trained to recognise the specific

object class are reported in Table 3.1, and the general object class results are reported

in Table 3.2. In each case, individual architectures are trained using RGB colour input

on both the grasping and classification tasks simultaneously. Furthermore, task specific

loss functions are weighted due to the different scales used for the regression loss functions

and classification function, as described in Section 3.1.2. This is applied individually to

each model which differ by the number of parameters dedicated to learning each task

individually, with MTG-CNNa featuring the greatest number of shared parameters and

MTG-CNNc featuring the least. The effect of both the loss weighting (λ) and number of

shared parameters are evaluated and compared to the base GG-CNN2 network [5] when

trained to perform each task individually.

Table 3.1 shows the performance results for grasping with a corresponding specific

object classification task. Overall, this shows mixed results for auxiliary classification per-

formance. The first two sections show the baseline GG-CNN2 performance when trained

53

Table 3.1: Percentage of correct grasps according to the IoU metric and the specific object
classification performance.

Model Input λ
Performance (%)
Grasp IoU Specific

GG-CNN2
RGB

1.0
87.55 -

D 89.16 -
RGB-D 88.35 -

GG-CNN2
RGB

0.0
- 1.21

D - 1.21
RGB-D - 1.21

MTG-CNNa RGB

0.5 46.18 28.51
0.6 90.76 1.21
0.7 91.16 1.21
0.8 50.60 56.22
−logσ2 87.15 42.17

MTG-CNNb RGB

0.5 67.47 31.73
0.6 79.52 1.21
0.7 75.90 6.82
0.8 80.32 13.65
−logσ2 85.14 37.75

MTG-CNNc RGB

0.5 85.54 36.14
0.6 87.95 1.21
0.7 91.97 1.21
0.8 80.32 33.33
−logσ2 89.16 30.12

MTG-CNNd RGB

0.5 90.76 1.21
0.6 92.77 1.21
0.7 88.35 1.21
0.8 92.77 1.21
−logσ2 90.36 1.21

54

Table 3.2: Percentage of correct grasps according to the IoU metric and the general object
classification performance.

Model Input λ
Performance (%)
Grasp IoU Generic

GG-CNN2
RGB

1.0
87.55 -

D 89.16 -
RGB-D 88.35 -

GG-CNN2
RGB

0.0
- 20.08

D - 20.08
RGB-D - 20.08

MTG-CNNa RGB

0.5 90.76 20.08
0.6 89.16 20.08
0.7 89.56 20.08
0.8 88.76 20.08
−logσ2 71.49 60.64

MTG-CNNb RGB

0.5 65.06 50.60
0.6 79.92 36.55
0.7 81.53 58.23
0.8 82.73 55.42
−logσ2 83.13 57.43

MTG-CNNc RGB

0.5 89.96 20.08
0.6 87.15 20.08
0.7 80.32 50.60
0.8 89.96 33.33
−logσ2 85.94 52.21

MTG-CNNd RGB

0.5 90.76 20.08
0.6 87.95 20.08
0.7 90.36 20.08
0.8 88.76 20.08
−logσ2 90.36 20.08

55

using different input modalities on each task separately. Whereas grasping performance

remains high, the network is unable to distinguish between objects correctly. In this in-

stance, all three modalities default to predicting the object with the highest instance in the

training set (squirt bottle). This remains a common theme across a number of MTG-CNN

models. This is likely due to such a large imbalanced dataset where some classes dominate

in prevalence. However, there are numerous cases where the networks learn to distinguish

between classes whilst grasping performance remains relatively high.

Similarly Table 3.2, shows the same performance results when models are trained to

recognise the general object classification instead. In this instance, the baseline GG-

CNN2 network also learns to predict the class which features the most frequently in the

training set (work tool), leading to poor overall performance. These classification results

are generally higher than the specific class because there are fewer classes to distinguish

between, however, grasping performance is generally lower as a result.

Effect of Model Architecture

With an increasingly earlier branch point, the number of model parameters, and therefore

layers dedicated to learning specific task functions, also increases. However, in both the

specific and general object classification tasks, whilst the grasping performance generally

increases upwards, the classification results generally decrease.

The highest specific and general classification performance was reported in both cases

by the MTG-CNNa model with a 56.22% and 60.64% success rate respectively. However,

for this model, when classification performance is high, there is a large impact on the

grasping performance, which only achieves a corresponding 50.60% and 71.49% grasp

success rate. This is far lower than the highest grasping performance achieved by the

network of 91.16%, but this only occurs with the traditional weighted sum when the

classification performance collapses.

The MTG-CNNa features the highest number of shared parameters between grasping

and classification which may reduce the ability of the network to distinguish between

the overall performance of the two classes by preventing the final layer from learning

task specific information. It is interesting to note, that in the cases where classification

performance deteriorated, the highest grasping performance outperforms the GG-CNN2

baseline across all modalities.

The highest grasping performance overall however, was achieved by the MTG-CNNd

56

model with a reported 92.77% grasping success rate. In all cases, this model was unable to

successfully interpret classification specific tasks without the later layers dedicated espe-

cially to the task, instead favouring to only predict the highest frequency object. However,

the inclusion of the auxiliary task, for both specific and general object classification, was

enough to improve grasping performance when isolated to only the early layers of the

model. Even the inclusion of the task uncertainty loss was unable to balance performance

across the two tasks.

As the number of layers specific to each task increases, training generally becomes more

stable at the cost of classification performance. Grasping performance remained high when

classification performance improved for both the MTG-CNNb and MTG-CNNc models

compared to the MTG-CNNa model, therefore suggesting that grasping and classification

require the specific regions dedicated to each function similar to the human visual model

unless the tasks are more related.

For greater performance across the two tasks, more specialised layers may therefore be

required. Whilst the dilated and transpose layers provide a greater receptive field [159],

similar to later cortical regions in both the ventral and dorsal streams [26, 161], they

are designed to improve performance in semantic segmentation tasks. Instead of purely

replicating the architecture for a new task, more specific layers suited to classification may

provide improved results, such as transformer layers [162], that are better able to embed

classification information closer to that of the ventral stream.

Effect of Classification Labels

Overall, there was no clear improvement to grasping performance when trained with either

the specific or general auxiliary classification task. In both cases, the highest grasping

performance was reported by networks that experience a catastrophic failure in learning

the classification task. Although, this featured more in architectures without dedicated

layers for object identification.

While classification performance was relatively higher for the general category, this is

likely due to the reduced number of classes for the network to learn, making this an easier

problem for the network to solve. This poor general classification performance may be

because the ‘tool’ label, whilst having a distinct meaning and understanding to humans,

the definition is broad that it may be difficult fully separate function from form. Here,

it was used to specifically classify household hardware distinct from classes like kitchen

57

(a) MTG-CNNa

(b) MTG-CNNb

(c) MTG-CNNc

Figure 3.8: Random examples of grasp outputs and corresponding predicted specific clas-
sification labels from MTG-CNN models..

utensils but features such a wide variety of functions that it becomes difficult to distinguish

the tool-specific qualities. It may be unsuitable to include tool as a general classification

type when humans are especially adapted to recognise tools [163] and feature specific

cortical regions dedicated to tool use [155] due to their close relatedness with grasping as

a function.

Effect of Loss Function

Generally, the weighted sum loss function tended to favour either grasping or the clas-

sification task without the ability to update loss weights during training. This resulted

in a greater failure rate for classification overall, whereas all networks still demonstrated

58

(a) MTG-CNNa

(b) MTG-CNNb

(c) MTG-CNNc

Figure 3.9: Random examples of grasp outputs and corresponding predicted general clas-
sification labels from MTG-CNN models.

59

high performance on grasping. This suggests that a typical weighted sum is not enough

to enable equal learning across the large difference in scales between the regression-based

grasping and classification. On the other hand, the task uncertainty loss resulted in greater

training stability between the two tasks, although, this did not always result in the best

performance for either task for a given model. Instead, this method preferred to learn

to heavily weight the grasping task during the first couple of epochs before reducing the

weight disparity and learning the classification as a separate task.

It was noted during training that when using the log variable function, the loss scaling

heavily skewed towards the classification task. This negatively impacted the ability to learn

both tasks simultaneously suggesting that the classification task was significantly harder

from such a small dataset. Training may benefit from multi-task learning featuring tasks

trained with similar loss scales. Treating classification as a regression function, such as

performing segmentation before classification may yield greater performance or training

grasp classification based on intended function, similar to work from [36], that learned

grasp configuration by classifying the semantic relation from one object to another. The

Cornell dataset may be too small and inappropriate for such training examples.

3.2 Saliency and Depth Reconstruction

One of the main drawbacks of the classification auxiliary task was the requirement for

extensive human labelling of grasping datasets, or the development of an entirely new

dataset that provided improved balanced and integrated training data.

Therefore, the aim was then to consider data that would be readily available in ex-

isting grasping datasets to improve performance. This resulted in two choices: a saliency

detection task; and a depth reconstruction task.

3.2.1 Background

Saliency refers to the selective attention towards an object that is visually distinct from

the immediate surroundings. Koch & Ullman [164] was the first to note the relevance of

saliency in human visual systems, and suggests the process of identifying salient objects is

influenced by a number of factors, including how different an object is from surrounding

information such as colour, motion, and depth.

In humans, saliency is crucial in guiding attention mechanisms which aid with object

60

grasping. For example, a large proportion of neurons in the posterior parietal cortex

(PPC) within the dorsal area are dedicated to controlling attention as well as movement

planning. This area is made up of three functionally distinct areas which are involved

in higher order complex tasks such as spatial attention [165, 166], spatial navigation and

decision making [167]. These distinct regions are: the lateral intraparietal area (LIP),

specialised for saccadic eye movements; the parietal reach region (PRR), focused on arm

reaching; and the anterior parietal area (AIP), involved in grasp planning and contains

cells that determine the size and shape of an object [168,169]. The information processed

by these areas directly controls feedback mechanisms to areas that control attention and

eye movements, like the medial superior temporal area (MST), an area that controls eye

vergence [170], and the superior colliculus, an area that controls eye saccades [171]. This

is functionally unique from the ventral stream as it contains direct feedback mechanisms

to control eye movements for the direct influence of attention towards objects for updating

arm reaching movements in space [169]. Computing saliency within a scene could therefore

help improve robotic grasping systems by directing attention towards the objects easiest

to grasp, i.e. non-occluded, visually distinct, or larger objects in a scene.

The tracking of salient objects was first shown to be successful in computer vision

by Itti & Koch [172]. This was calculated by a model that replicated processes similar

to the receptive fields present within the mammalian visual pathway, focusing on centre-

surround contrast features and tracking colour, orientation, and intensity feature maps.

Regional contrast in terms of global and local schemes have since been used frequently in

conventional object detection and are proven to be efficient and effective in simple scenes

with a single object. More recent studies introduced the binary segmentation for salient

objects using conditional random fields (CRFs) [173] to capture global, regional, and local

features. This reduced the task of salient object detection (SOD) to a binary labelling

problem. Fortunately, saliency using binary labels can easily be mimicked within data

using object masks, and is included in common datasets such as the Cornell [78] and

Jacquard Grasping Datasets [129]. Therefore, there is access to a large set of data for

training multi-task networks.

In a similar manner, a second depth reconstruction task is chosen which aims to provide

the same benefits as the concurrent saliency task. As depth information is also provided

alongside grasping datasets and achieves improved performance compared to RGB infor-

mation alone, this is also considered as an auxiliary task to reintroduce information back

61

into the RGB scene that helps improve grasp performance. Depth information is likely to

contribute contour information and distinguish an object from the surrounding environ-

ment, like saliency information, and takes advantage of similar processes such as CRFs

when reconstructing depth using neural networks [174].

3.2.2 Methodology

The following section details the changes made to the methodology after the classification

experiments. These methods correspond to the saliency detection and depth reconstruc-

tion experiments.

Jacquard Dataset

As depth and saliency information are more readily available compared to detailed classi-

fication labelling, we take this opportunity to switch to a more recent dataset with more

concentrated and accurate grasp information.

Instead of the previous Cornell Grasping Dataset [78], models were trained with the

much larger Jacquard Grasping Dataset (JGD) [129]. This is a simulated dataset con-

taining a much larger 54,485 images of over 11,000 different objects on uniform white

backgrounds. The images are annotated with over 1.1 million successful grasps also rep-

resented as grasp centre, angle and gripper width.

All grasps were generated within a simulated physics environment which attempted

grasps at many positions, angles and widths; unsuccessful grasps and highly similar grasps

were not recorded.

Every object in the dataset has four viewing angles with each viewpoint consisting of

a single RGB image as well as a perfect depth image recorded from the simulated data

and a generated stereo depth image.

Labelled grasping rectangles for each object from the dataset were transformed in the

same way as the CGD into corresponding images to train each aspect of the learned grasp.

Ground truth grasps from the dataset are labelled as Ĝ as before, whereas grasps generated

from the network are labelled with G. For each image with a corresponding object I, a

grasp quality image Q̂, grasp angle Θ̂, and gripper width Ŵ are generated (see Section

3.1.2).

In order to train the grasping branch of each model, each ground truth grasp from the

dataset was once again decomposed into the corresponding components which formed the

62

training images. For Q̂ the pixel values are 1 if the pixel falls within the centre third of

the successful grasping rectangle for I and 0 otherwise. Values of Θ̂cos, Θ̂sin and Ŵ are set

to according to the angle and width of a corresponding successful grasp centred at that

pixel position, where Q̂ = 1 and are set to 0 elsewhere. Ŵ is the required gripper width

as a value in the range [0, 1], which can be scaled into a physical measurement for gripper

width.

The angle of the grasp is in the range [−π
2 ,

π
2], this is due to the symmetrical na-

ture of the gripper jaw so that grasps only need to be considered between these angles.

However, the angle is not learned directly during training and is decomposed into two

unit vectors, Θsin and Θcos, in order to improve the efficiency of training. This removes

any discontinuities where the angle wraps around ±π
2 , and provides unique values within

Θ ∈ [−π
2 ,

π
2] [154]. The angle of the proposed grasp can be calculated pixelwise in post-

processing by Θ = arctan(sin(2Θsin)
cos(2Θcos))/2.

To train the saliency branch of the multi-task model, the included image mask that cor-

responded with each viewpoint for an object was used. This binary image mask consisted

of a 1 where the object was placed in the scene and 0 everywhere else.

Alternatively, when training the depth reconstruction, only the true simulated depth

image from the dataset was used to train the models. This image was a true depth

representation of the scene with each pixel representing a measurement between the lens

of the simulated camera and the base of the platform in the scene.

Training

For training and testing, the dataset is split according to the suggested methods provided

alongside the dataset [129]: a 5-fold cross validation was performed where the data was

split randomly. 80% of the data was reserved for training, whilst the remaining 20% of

the data was split evenly between a validation and test set. All models are trained using

the same 300× 300 3-channel RGB input image and colour input data was normalised to

the range of [0, 1] before subtracting the image mean to centre the data at 0.

Data augmentation was applied to the dataset to artificially increase the amount of

training data by random cropping and zooming on the images. Input data is cropped from

its original size, resized, and normalised before being processed by the network to match

the training data used and depth data is inpainted according to [175]. However, during

testing augmentation was not applied and all images were presented in their original format

63

to keep testing performance consistent between runs. All models were trained using the

Adam optimiser [176].

All models were trained for 40 epochs and the average overall performance is reported

on the remaining 10% of data in the test set using the best performing model over the 40

epochs of training.

Performance Metrics

Grasping performance was once again measured using the IoU offline metric (see Sec-

tion 3.1.2: a grasp is considered successful if the predicted grasp rectangle shares a greater

than 25% IoU and aligns within 30◦ with the ground truth grasping rectangle. This

measure provides an efficient offline metric for testing performance and was used in both

the JGD [129] and CGD [78], the values presented in this section are from the Jacquard

dataset [129].

The mean absolute error (MAE) is also reported to assess performance of both aux-

iliary tasks. In this case, a value closer to 0 indicates a closer predicted value to the

observed value, and it can therefore be inferred that the network is performing better at

reconstructing the saliency or depth image.

Loss Function

In addition to the grasping loss used in the previous experiments, the auxiliary loss from

the previous loss function is modified to reflect the change in objective. Instead of applying

a negative log likelihood (NLL) classification loss, the auxiliary term is replaced with an

image-based regression loss to keep the loss between tasks scaled to a similar range. Both

the saliency and depth reconstruction tasks are first trained with a typical MSE loss as

with the grasping loss. This transforms the loss from Eq. 3.10 into:

`aux = `MSE(A, Â), (3.13)

where A represents the given auxiliary task output and Â refers to to corresponding ground

truth for either salient object detection As or depth reconstruction Ad.

Alternatively, further task specific losses are applied that has previously shown to

improve salient object detection performance. The commonly used binary cross entropy

loss (BCEL) for SOD was used and the more recent consistency enhanced loss (CEL)

64

from [177] was applied to improve performance, as this was shown to further improve

saliency detection compared to standard losses.

Here, BCEL is an element-wise loss function commonly used for SOD where the final

prediction is calculated as:

`aux = `BCEL =
∑
p,g

−[g log p+ (1− g) log(1− p)], (3.14)

where p represents the probability of a pixel belonging to a salient region in the range

0 ≤ p ≤ 1, and g representing the ground truth. log(·) is an element-wise operation.

However, this loss function typically results in a saliency output images which does not

consider the inter-pixel relationships across batches [177]. Therefore the CEL loss is added

as an extra loss term to improve SOD. This can be written as:

`CEL =
|FP + FN |

|FP + 2TP + FN |
=

∑
(p− pg) +

∑
(g − pg)∑

p+
∑
g

, (3.15)

where TP , FP , and FN represent true positive, false-positive, and false negative and | · |

computes the area. FP + FN indicated the difference set in union and intersection of

the predicted foreground region and ground-truth one, while FP + 2TP +FN represents

the sum of this union set and intersection. This loss reinforces a global understanding of

saliency whilst BCEL focuses on individual pixel values resulting in sharper boundaries in

salient predictions.

The final CEL loss is therefore used in addition to the BCEL loss resulting in the final

auxiliary loss:

`aux = `BCEL(A, Â) + λ`CEL(A, Â), (3.16)

with λ also representing a contribution weight between the two losses, however this is set

to 1 for simplicity.

The generative grasp loss remains the same as previously used in Eq. 3.8 and therefore

the total loss remains as:

L = `grasp + `aux, (3.17)

with the auxiliary loss being represented by MSE, BCEL, or CEL loss for `aux during

saliency estimation or just MSE for depth reconstruction.

The multi-task specific loss from [107] used in the classification experiments (repre-

sented as − log) is also reapplied to this set of experiments as a learned weighting function

65

between the two branches of the network (see Section 3.1.2).

Multi-task Network Architecture

For the following set of experiments, a 5-fold cross validation was used to test the arge

quantity of data only a single multi-task network was used to compare with the original

GG-CNN2 network [5]. As the networks in the previous experiments performed better

with extra layers dedicated to the auxiliary task only the MTG-CNNc network was used

for comparison.

One branch is used for learning the grasp outputs, as in GG-CNN, the other branch

for an auxiliary learning task, shown as depth reconstruction in Fig. 3.2c. The shared first

half consists of two convolutional layers, followed by a max pooling layer and two further

convolutional layers and a second max pooling layer. The two branches in the second

half of the network are identical and consist of two dilation layers and two convolutional

transpose layers, see Fig. 3.2. All convolutional layers have 16 filters except for the dilated

convolutional layers which have 32 filters.

3.2.3 Evaluation

Each model was trained using a 5-fold cross validation on 80% of the Jacquard dataset

with 10% of the data reserved as a validation set. Each model was then tested on the

same unseen 10% of data as a fair comparison. Performance was measured using the

intersection over union (IoU) method for grasping as previously used in the classification

task alongside the mean absolute error (MAE) for assessing the quality of reconstruction

during the auxiliary task (from Section 3.2.2), the results of which are presented in Table.

3.3. A higher IoU performance represents more successful grasps on the test set whereas

a lower MAE indicates better auxiliary task reconstruction.

According to the results shown in Table 3.3, there is a large benefit to training a grasp-

ing neural network with a related auxiliary task that provides relevant task information

using RGB input data. There is a general increase in grasping success when comparing

the base GG-CNN2 network when trained with RGB input, compared to both versions of

the MTG-CNN network trained with either a salient object detection task and a depth

auxiliary task. The base GG-CNN2 network achieved an average grasp success of 72.04%

whereas the best performing MTG-CNN models achieved 78.61% when trained with salient

object detection (SOD) and a greater 79.50% grasp success rate when trained to perform

66

Table 3.3: Mean percentage of correct grasps evaluated on the Jacquard grasping dataset.
Arrows indicate direction of better performance.

Model Input Aux.Task Aux.Loss Grasps % (↑) MAE (↓)

GG-CNN2
RGB 72.04± 3.44 -
Depth 82.26± 3.76 -

RGB-D 83.11± 1.88 -

MTG-CNN RGB Saliency

MSE 78.61± 0.52 0.011
BCEL 78.48± 0.97 0.007
CEL 76.63± 2.24 0.005

MSE/− log 76.77± 1.37 0.009
BCEL/− log 78.12± 1.00 0.008
CEL/− log 77.63± 0.84 0.005

MTG-CNN RGB Depth
MSE 79.50± 0.65 0.022

MSE/− log 78.29± 1.76 0.014

concurrent depth reconstruction.

Whilst the highest grasping performance was still reported using the more information

rich RGB-D input with a 83.11% grasp success rate, training with an auxiliary related task

shows large improvements when depth information is removed as an input. Reintroducing

more information using multi-task learning to the scene shows the network can learn to

recover some of the lost information with depth reconstruction slightly outperforming

saliency detection overall.

The MTG-CNN was able to achieve high reconstruction performance across both aux-

iliary tasks and ranges of loss functions. However, slight improvements to auxiliary task

reconstruction did not equate to significant improvements in grasp performance. Both

MTG-CNN models performed best at grasping when using the same mean squared er-

ror (MSE) loss as the auxiliary loss function, however this was not equivalent to the

best auxiliary task performance overall. Whilst the highest grasping performance for the

MTG-CNN network with SOD was achieved using the MSE loss at 78.61%, and a cor-

responding average MAE of 0.011, training with the superior consistency enhanced loss

(CEL) resulted in the most accurate average mask reconstruction (0.005), this actually

resulted in a decreased overall 76.63% grasping success rate. This suggests there is a limit

to the effect that concurrent SOD understanding can do to improve grasp performance,

as more resources dedicated to improving the auxiliary task begins to negatively impact

grasp performance.

This is further backed by evidence that the multi-task loss (−log) from [107] had limited

impact on increasing overall performance across both saliency and depth reconstruction,

67

whereas it was better able to weight the differences in function in the previous classification

tasks. Whilst typically slightly improving auxiliary performance, there was no significant

increase in grasping performance. Therefore, this suggests greater relevancy between the

saliency and depth branches to the original grasping task.

Examples of corresponding grasp proposals and auxiliary outputs from the best per-

forming MTG-CNN models are shown in Fig. 3.10 for models trained to perform SOD.

According to the IoU grasp metric, a grasp is successful if there is a greater than 25%

overlap of the grasp proposal and within 30◦ of the ground truth. Therefore, all grasps

with an IoU above 0.25 in these figures are reported as successful.

From Fig. 3.10, the saliency branch of the network interacts with grasp proposals as

the centre for a grasp is typically centred around the most salient parts of the object,

avoiding areas that it calculates as less salient within the scene. This may be related

to aspects such as ease of grasping or may be related to aspects that help achieve a

grasp such as estimating the centre of weight distributions. As the object is individually

present within the scene, saliency detection may be trivial for a network to calculate in

comparison to more complex scenes, however introducing salient information may provide

a useful heuristic within RGB scenes for grasping.

Further changes to the SOD loss function however, did not result in significant im-

provements to grasping, despite reporting slight improvements to the saliency auxiliary

branch of the MTG-CNN model. A comparison of grasps and SOD outputs are compared

in Fig. 3.11 between the MSE, BCE, CEL losses. This shows that general improvements

to the auxiliary loss function have a limit if there is no further significant information

to be gained from improvemed recognition of salient objects within the scene. However,

each network still prefers to grasp the most salient point of the object according to the

perceived saliency output.

On the other hand, models trained to perform depth reconstruction achieve slightly

better performance on the Jacquard test set compared to those trained to perform saliency

detection and the base GG-CNN2 network trained on RGB. Fig. 3.12 shows examples of

grasp and depth reconstruction outputs of such models. Both depth reconstruction models

start to achieve results closer to that of using depth as an input. As it is clear that depth

information is crucial for understanding good grasp placement, learning to reconstruct this

information shows better understanding of grasp placement compared to the base model.

Unfortunately, from the depth reconstruction examples in Fig. 3.12, there is evidence

68

Figure 3.10: Random examples of proposed grasps from the MTG-CNN trained to perform
a concurrent SOD task.

69

Figure 3.11: Comparison of model outputs between trained loss functions to perform
salient object detection.

70

Figure 3.12: Random examples of proposed grasps from the MTG-CNN trained with an
auxiliary depth reconstruction task.

71

of a boxing artefact present that was likely attributable to compression of image files

during storage. However, the network appears to ignore these artefacts around the object

suggesting that understanding the difference in depth between the object and surrounding

area is important to grasping.

Both of these tasks show that reintroducing relevant information to the RGB scene can

greatly improve grasping performance through multi-task learning. Furthermore, neither

task significantly impacts inference time despite the increase in the number of parameters,

and can therefore still be used in closed-loop robotic grasping as in [47].

3.3 Summary

The aim of this chapter was to investigate whether utilising a multi-task architecture can

improve performance of a generative grasping model when trained using only RGB images.

Three auxiliary tasks were considered to help provide more information with the intention

of improving grasp understanding; classification of objects; salient object detection; and

depth reconstruction.

Experimentation suggests that simultaneous end-to-end training of grasping and clas-

sification may be insufficient to improve grasping performance. The drastic difference in

loss scale between the regression-based grasping task and the classification scale may be

too large to properly learn either task to a high standard. The highest reported grasping

results (92.77%) on the Cornell test set was reported by models that were unable to learn

to distinguish between classes correctly, although this was still higher than the baseline

model (87.55% to 89.16%). Whereas, models that were able to learn properties to cor-

rectly classify a set of objects, this information tended to have a negative impact on grasp

performance and did not significantly improve performance compared to the base model.

With the introduction of a dynamic weighted loss function, such as the task uncertainty

loss from [107], shows that the network actually benefits better from learning the two tasks

sequentially. Therefore, whole object classification may not be the best method of grasp

understanding. Grasp performance may be further improved from affordance classification

rather than general object classification [36].

Varying the amount of shared weights in the network between the two tasks did result

in changes to performance on both tasks. Increasing the amount of layers solely dedicated

to each task generally improved training stability, allowing the network to learn task

specific features whilst also forcing the network to learn shared inductions about both

72

tasks.

As a result, training multi-task networks to learn auxiliary saliency detection and depth

reconstruction as alternative tasks resulted in clear improvements to generating accurate

grasp proposals on the Jacquard test set. This is likely due to allowing for training on

larger datasets without the need for hand classifying data from human experts and sharing

closer features to the initial grasping task.

Salient object detection (78.61% ± 0.52) and depth reconstruction (79.50% ± 0.65)

both improved grasp performance compared to the base network trained with RGB data

(72.04% ± 3.44), nearing performance of using true depth data as an input (82.26% ±

3.76). However, this suffers from deteriorating performance, when attempting to further

improve auxiliary task performance as this diverts attention away from grasp understand-

ing. Saliency information helps isolate an object from background features whereas depth

reconstruction helps reintroduce object specific information, such as curvature, which can

improve grasping.

73

CHAPTER 4

Optimising Generative Grasping Models using Positional Loss

Of the two generative convolutional models introduced in the previous chapter, the gen-

erative grasping convolution neural network (GG-CNN) and the multi-task grasping con-

volutional neural network (MTG-CNN), both architectures are able to quickly predict a

grasp proposal for each pixel in a scene by outputting the components of the grasp sepa-

rately in the form of grasp maps. Utilising this method of grasp proposal is advantageous,

in that, the model only requires a single forward pass to propose highly accurate grasps at

multiple points on an object, resulting in faster operating times, compared to alternative

discriminative models of grasping [4, 16], and that this method can easily generalise to

unseen objects with a high success rate [5, 77].

Generating grasp proposals via the implementation of grasp maps allows the network

to predict all available grasps in a scene by decomposing a grasp into multiple dedicated

network outputs, including a grasp quality score that represents the probability of a suc-

cessful grasp taking place on an object alongside the corresponding grasp map for a gripper

angle and width value. This allows for a network capable of producing grasps with an

inference time quick enough for the online control of a robot using visual servoing [49].

However, during training, it was noted that equal weighting was attributed to each

output. We argue that this is unhelpful, to learning as a large proportion of the total

computational loss generated using the standard loss functions, is dedicated to learning

irrelevant components of a scene instead of the grasping task. This leads to long training

74

Figure 4.1: The proposed inference pipeline for generating a grasp proposal region using
a generative grasping neural network. The angle and width grasp maps are scaled using a
dot product between the output and ground truth grasp quality map. A grasp rectangle
can be extracted in the same way as before by centring a grasp at the pixel with the
highest predicted chance of success.

times to achieve higher accuracy on larger datasets. In order to grasp objects correctly,

there should be a greater importance placed towards learning where successful grasps

are likely to take place, compared to the correct gripper angle or width, as there is a

much greater range of correct values if the grasp placement is correct. Since generative

models typically only execute the highest quality grasp, the network should therefore be

encouraged to learn better grasp placement.

As a result, in this chapter, a novel loss function is introduced which can be applied to

the aforementioned generative grasping models that encourages better grasp placement.

As outlined in Fig. 4.1, the positional loss is designed to focus model training on points

where only suitable grasps occur to encourage efficient learning. Each loss ` is scaled by

the grasp quality ground truth Q̂, so the model learns about good grasp placement, whilst

only learning about good grasp placement around these points. The network is therefore

not penalised for errors on the angle or width associated with grasps at positions where

the grasp is unsuccessful. By replacing traditional loss functions with the more targeted

positional loss function, we focus the learning of the network towards successful grasps.

Here, the advantages of applying this novel positional loss function are demonstrated

in some common generative robotic grasping CNN models, including the GG-CNN [5,158]

and MTG-CNN [178] network architectures, as well as the more recent GR-ConvNet [179]

model, on the large Jacquard grasping dataset [129]. The main contribution of this chapter

is therefore the introduction of a novel loss function that is labelled, which when applied

to a generative network displays he following improvements:

• accuracy - generation of more accurate grasp proposals leading to higher performance

across all types of input on the Jacquard grasping dataset (see Table. 4.1 and 4.2);

75

• efficiency - faster convergence of network parameters leading to improved learning

of appropriate grasps by focusing attention on objects in the scene, rather than the

background (see Fig. 4.8);

• efficacy - the positional loss function greatly increases performance when trained

with a limited number of examples (see Table. 4.3).

4.1 Methodology

In this section, the generative models used in the previous chapter are briefly revisited,

which formalise the intended differences, and then outlining the experiments used to eval-

uate the differences resulting from this new loss.

4.1.1 Generative Grasping Networks

Given the grasping problem as outlined in Section. 3.0.1, each generative models described

outputs grasp proposals in the form of grasp maps G. Therefore, each model outputs

according to Eq. 3.5, with a grasp quality score Q, the two unit vectors (sin & cos) of

the gripper angle Θ, and gripper width W . In each instance, each generative model

architecture described takes an input image I of N × 300 × 300 pixels where N is the

number of input channels, and each grasp map output is the same size as the input image.

This is then used to reconstruct grasps during post-processing.

The model architectures used in the following experiments, the GG-CNN2 [158] and

MTG-CNN models (see Section 3.1.2 for detailed descriptions) are used, as well as the

larger generative residual convolutional network (GR-ConvNet) [179] described below.

Each network used utilises the loss function as used in the original experiments and is

then compared with the same model as trained with the newly introduced positional loss

function. In the case of GG-CNN2, and MTG-CNN models, the positional loss is therefore

compared against the typical mean squared error (MSE) loss.

Generative Residual Convolutional Network

The generative residual convolutional network (GR-ConvNet) from [179] is briefly de-

scribed alongside a number of variations to the model introduced in the same work. This

model was originally trained using 4-channel RGB-D images, but can also be trained using

RGB, and depth images. Therefore, each model is trained with each input modality to

76

Figure 4.2: Generative Residual Convolutional Network (GR-ConvNet) architecture as
featured in [179].

show that the new positional loss function improves performance no matter which type

of input is used. Each variation uses the same general structure as in 4.2 with slight

modifications:

• GR-ConvNet - The original GR-ConvNet variation, takes an input image which

is processed by three 2D convolutional blocks with an increasing number of filters,

from 32, to 64, and finally 128, before being fed into 5 residual layers. Each layer

also containing 128 filters. This reduces the size of the image from 300×300 pixels to

75× 75 pixels and the residual layers prevent vanishing gradients which diminishes

accuracy. This is followed by a further three transpose convolutional layers with

the reverse number of filters as the first three convolutional blocks, so that the

four output images are presented at the same size as the input for clarity. All

convolutional layers are followed by batch normalisation and rectified linear unit

(ReLU) activation functions.

• GR-ConvNet2 - as per above, except with an additional dropout [180] element

which was set to a probability of 0.1 during training in the residual layers of the

network as well as the output layers to reduce the chance of overfitting.

• GR-ConvNet3 - as per above, except the dropout element is only present in the

final output layers.

• GR-ConvNet4 - the final iteration instead features an inverted structure with the

number of filters at each layer getting smaller instead of larger. The structure is the

same as the GR-ConvNet but the number of filters are inverted, decreasing from 32

to 16 and finally 8.

77

This produces a network with a total of 1,900,900 parameters, which is an order of

magnitude greater than the other architectures, but is still smaller than comparative

discriminative network architectures [43,181,182].

4.1.2 Positional Loss

Each network architecture is trained using the loss function used originally for each network

and compared with the new positional loss function. Therefore, the GG-CNN2 and MTG-

CNN networks are trained using mean squared error (i.e. MSE or L2) loss [37] and each

GR-ConvNet is trained using Huber (i.e. smooth L1) loss [37,183].

As stated in Section 4.1.1, each model outputs four per-pixel values which are trained

using the same generated ground truth maps as in Section 3.1.2. This allows each model

to be trained with a regression based loss by comparing the predicted model outputs P

with the generated ground truth grasp maps G.

In the case of the GG-CNN2 and MTG-CNN models that require MSE loss, the total

computed loss from each output is represented by the following equation:

`MSE(P, Ĝ) =
1

N

N∑
p∈P,g∈G

(p− ĝ)2, (4.1)

where the total loss is the sum of all the pixels in the single predicted grasp p compared

to the pixels in a given ground truth grasp g ∈ G. From here, a hat operator Ĝ represents

the ground truth from the dataset for that target.

Therefore, the total loss of the grasp Lgrasp used with the GG-CNN2 and MTG-CNN

networks is the summation of each of the MSE loss components of the four parameter

space output images Q,Θsin,Θcos,W :

Lgrasp = `MSE(Q, Q̂) + `MSE(Θsin, Θ̂sin) + `MSE(Θcos, Θ̂cos) + `MSE(W, Ŵ). (4.2)

with the total loss of the MTG-CNN network adding the total loss for the auxiliary task

A, the same as in Section 3.2.2.

The GR-ConvNet on the other hand, preferred the smooth L1 loss, citing it to be the

most stable and reducing the chance of overfitting. Therefore, the base loss function for

78

1

0

90

0

0

1

0

1

-1

0

Figure 4.3: Component ground truth grasp maps Ĝ generated from the Jacquard grasping
dataset: grasp quality Q̂, angle Θ̂, and width Ŵ . Θ̂ is split into ˆsin and ˆcos for easier
training.

this network according to [179] is represented as:

`L1(P, Ĝ) =
1

n

k∑
zk (4.3)

where zk is given by:

zk =

 0.5(P − Ĝ), if |P − Ĝ| < 1

|P − Ĝ| − 0.5 otherwise
(4.4)

As shown in Fig. 4.3, in the Cornell dataset [78] and Jacquard datasets [129], the

generated ground truth maps for Q̂ are set to 1 at positions that resulted in a successful

grasp and 0 elsewhere. Significantly, at positions where Q̂ = 0, the ground truth angle

and width are also set to 0. As a result, the total loss L includes a contribution from the

error in angle prediction and width prediction even at positions of the input image where

no successful grasp is possible, for example, in regions containing the background not the

object. The network must therefore learn to output values close to a default value of 0

for angle and width in such regions, even though grasps are unlikely to be attempted at

these positions. This is because generative models typically centre grasps around pixel

coordinates with the highest grasp quality score, i.e. argmax(Q). Therefore, these angle

and width parameters are not used. This places a significant burden on the network:

typically the contribution of angle and width to the overall loss is equal to 75% with

equal weighting, and early training epochs target reducing the predicted angle error at

79

background positions above other factors.

The positional loss function Lpos aims to scale the angle and width errors by ground

truth for the quality of the grasp (Q̂) at each position in the scene according to the

following equation:

Lpos = `MSE(Q, Q̂)+`MSE(Q̂(Θcos, Θ̂cos)+`MSE(Q̂(Θsin, Θ̂sin))+`MSE(Q̂(W, Ŵ)) (4.5)

By scaling of the loss in this manner focuses the learning of the network on grasp quality

and encourages the network to only learn angles and widths only at positions where grasp

attempts may occur making the contributions of these parts of the network much smaller,

with a reduction of about 45%. The largest proportion of the total loss therefore becomes

dedicated to learning good grasp locations and does not spend most resources learning to

ignore data that does not contribute to the final grasp, as typically only a few best grasps

are considered.

4.1.3 Experimental Setup

In order to compare between models trained with their original loss functions and the

new positional loss function, each model is trained using the same methodology as in

Section 3.2.2. A 5-fold cross validation is performed using each model on the Jacquard

grasping dataset [129]. Each time 80% of the data is used for training, 10% of the data

is reserved for a validation set, and the same final remaining 10% is reserved for testing.

The ground truth examples are generated in the same way as [5] and Section 3.1.1(see

Fig. 4.3).

Each model is trained using the original loss function intended for training according

to the previous section(i.e. MSE loss for training GG-CNN2 [158] and the grasping

branch of the MTG-CNN as in Section 3.1.2, and smooth L1 loss for the GR-ConvNet

[179] variations). In their original works, each was trained with a different type of input.

The GG-CCN2 network uses depth input, whereas the the GR-ConvNet utilises RGB-D

input. However, both models can accept an N -channel image. Therefore, each model

is trained using RGB, D, and RGB-D input to show that the positional loss improves

performance regardless of the type of input used. Furthermore, experiments utilising the

MTG-CNN architectures are trained to perform both saliency object detection and depth

reconstruction as auxiliary tasks. The saliency object detection branch is also trained with

80

both MSE and binary cross entropy loss (BCEL).

As further evidence that the positional loss function helps to focus learning and gener-

alise beyond the training examples, a few of the networks are also trained on the smaller

Cornell grasping dataset [78], which features comparatively sparse training examples, and

then tested on the same Jacquard test set. This is to show that with even a small num-

ber of training examples, the positional loss function improves accuracy whilst decreasing

training time.

All the following models are also trained with the ADAM optimiser [176] on a NVidia

GTX 1080Ti GPU.

4.2 Evaluation

Results are reported using a 5-fold cross validation method similar to that of Redmon et

al. [77]. Performance is measured according to the rectangle (IoU) metric as detailed in

Section 3.2.2, and the percentage of successful grasps on the Jacquard test set is compared

between each generative grasping model trained with the loss function as described in their

original work, against the new positional loss function.

Firstly, models and data from the previous chapter are presented to highlight the

benefit of applying this simple change to training. Then, Jacquard IoU test results are

presented for the GR-ConvNet models to show the generalisability of this new loss to

larger architectures. Finally, the best performing models are trained on the entirety of the

smaller Cornell dataset and tested on the same Jacquard test set to show the advantages

of generalising from only a small number of training samples.

The qualitative differences of training various generative models are then inspected to

analyse the impact of the alternative loss function, which go towards explaining improve-

ments to performance.

4.2.1 GG-CNN2 and MTG-CNN Models

For the first set of experiments, the results of the GG-CNN2 and MTG-CNN models from

the previous chapter are re-presented alongside the results from training these models with

the new positional loss function in order to facilitate a convenient side-by-side comparison.

The average number of correct grasps and standard deviation of these across the five test

folds is shown in Table 4.1. From these results, training with the positional loss function

81

Table 4.1: Average predicted correct grasps for the GG-CNN2 and MTG-CNN models
evaluated on the Jacquard grasping dataset with each loss function. Arrows indicate
direction of performance increase.

Model Input Gr.Loss Aux.Loss MT.Loss Grasps % (↑) MAE (↓)

GG-CNN2 [47]

RGB
MSE - -

72.04± 3.44 -
Depth 82.26± 3.76 -

RGB-D 83.11± 1.88 -

RGB
Pos - -

78.92± 0.97 -
Depth 83.34± 2.41 -

RGB-D 84.11± 1.44 -

MTG-CNN
Saliency

RGB

MSE
MSE

×

78.61± 0.52 0.011
Pos 79.49± 1.54 0.010

MSE
BCEL

78.48± 0.97 0.007
Pos 79.17± 0.77 0.007

RGB

MSE
MSE

X

76.77± 1.37 0.009
Pos 79.34± 1.42 0.015

MSE
BCEL

78.12± 1.00 0.008
Pos 76.63 ± 1.28 0.008

MTG-CNN
Depth

RGB
MSE

MSE × 78.14± 0.65 0.022
Pos 79.12± 1.40 0.014

RGB
MSE

MSE X
79.53± 1.43 0.020

Pos 80.19± 1.14 0.015

results in nearly universal improvement across all models. The best grasping performance

for each model is marked in bold typeface, and is represented solely by models trained

with the new loss function. Therefore, models trained with this loss identify a greater

number of correct grasps compared to training with the previous baseline MSE loss.

For example, the highest performance on the Jacquard test set is reported by the

GG-CNN2 model trained with the most information rich RGB-D input. However, the po-

sitional loss function further increases performance from 83.11% to 84.11%. Furthermore,

this effect applies to both depth and RGB input exclusively, where grasping performance

increases from an average of 72.04% to 78.92% for RGB input and 82.26% to 83.34% for

depth input. This also reduces the variance in grasp performance, making training more

stable, as shown by the standard deviation of grasping performance. Random examples of

grasps on the Jacquard test set, produced by the GG-CNN2 model trained with positional

loss, are shown in Fig. 4.4.

Similarly, the MTG-CNN model also produces more accurate grasp proposals when

trained with the positional loss function regardless of the auxiliary function used. When

82

Figure 4.4: Random predicted example grasps from the GG-CNN2 model trained with
the positional loss function.

trained to perform auxiliary salient object detection, the most best performing MTG-CNN

achieves 79.49% grasping success which is higher than the same model trained with the

base MSE loss. This success rate is also much higher than the 72.04% grasp success rate

with the GG-CNN2 model when trained with the same RGB input with MSE and 78.92%

when trained with the positional loss. Therefore, the combination of both multi-task

learning and the positional loss function is complementary to one another, resulting in

higher performance than either technique individually.

Even with the addition of the new positional loss function, the MTG-CNN model

still achieves higher grasp success rates when trained to perform depth reconstruction

over SOD. This finding is consistent with the result of the previous chapter and auxiliary

depth reconstruction achieves an 80.19% grasp success rate trained with RGB input. In

this case, the addition of the positional loss function also results in slightly better depth

reconstruction performance. This is likely due to the reduced contribution of the angle

and width images to the overall loss. This effect is less prevalent in the saliency branch,

likely because this task is easier to predict for the Jacquard test set, where all objects are

presented on a blank background, and therefore performance is near perfect.

The reintroduction of the multi-task loss (− log σ2) however, results in mixed perfor-

mance compared to the previous chapters results. These findings show that with the

reintroduction of the multi-task loss, grasping performance decreases slightly with the

SOD auxiliary branch but this effect is reversed when applied to depth reconstruction.

83

Figure 4.5: Random predicted grasp examples and depth outputs from the MTG-CNN
model trained with the positional loss function.

As depth reconstruction likely provides more key information to improving grasp forma-

tion compared to SOD, there is an argument that optimising this relationship likely yields

greater performance whereas optimising SOD past a certain point has a detrimental effect.

Therefore, in future experiments, it is recommended to only apply this multi-task function

when the auxiliary task is harder than the grasping task.

4.2.2 Generative Residual Convolutional Network

The following set of experiments detail the results of grasping performance with the GR-

ConvNet and corresponding model variations from [179], as detailed in Section 4.1.1. Each

model was trained using three different input modalities that are commonly used as inputs

for robotic grasping tasks. This includes uni-modal inputs, such as RGB and Depth only

images, as well as multi-modal RGB-D input. The results are displayed in Table. 4.2

where the best performing networks for each modality are marked in bold typeface.

From these results, we show that the positional loss function once again consistently

achieves the highest performance across all input modalities, with the highest accuracy

reported for the colour and depth only inputs represented by an average grasp success

rate of 81.94% and 88.38% on the Jacquard test set using the GR-ConvNet2 model when

trained with the new positional loss function. Additionally, this also achieved the highest

grasp success rate with the RGB-D input, however this was for the base GR-ConvNet

84

Table 4.2: The average proportion of predicted correct grasps for the GR-ConvNet model
[179] variations evaluated on the Jacquard grasping dataset with the new positional loss
function.

Model Loss Grasp Success (%)

RGB D RGB-D

GR-ConvNet
Smooth L1 79.70± 0.79 87.08± 0.57 87.07± 0.47
Positional 80.66± 1.40 87.19± 0.72 87.46± 1.07

GR-ConvNet2
Smooth L1 80.00± 0.98 84.49± 2.22 85.66± 1.74
Positional 81.94± 1.17 88.38± 1.20 87.45± 1.17

GR-ConvNet3
Smooth L1 81.48± 1.44 87.18± 1.20 85.26± 2.96
Positional 81.38± 1.58 86.03± 1.61 86.08± 0.70

GR-ConvNet4
Smooth L1 75.63± 1.30 83.30± 1.59 81.93± 3.49
Positional 76.98± 2.99 83.30± 0.79 81.67± 1.48

with a success rate of 87.46%, only just outperforming the GR-ConvNet2 with 87.45%. A

random set of grasps from the Jacquard test set using the best performing model, alongside

the IoU with grasps from the ground-truth labels are presented in Fig. 4.6.

The new loss generally provides a performance increase across all the generative net-

works used in these experiments, in some cases providing an average 4% improvement

over the base model using fully trained models, compared to the original smooth L1 loss

function intended to be used with the network. The novel loss results in increases to

overall performance to the GR-ConvNet networks, despite the larger number of parame-

ters compared to the GG-CNN2 and MTG-CNN network architectures. Previously, the

GR-ConvNet3 model achieved the highest grasping success rate with 81.48% and 87.18%

using RGB and depth inputs respectively.

4.2.3 Limited Training Set

The final set of experiments aims to investigate the effect of training with the positional

loss function when the number of training examples is limited. Therefore, a few of the

best performing models are trained with their original intended input modalities from

their respective work on the entire Cornell grasping dataset [78] (i.e. depth for the GG-

CNN2 [47] and RGB-D for GR-ConvNet [179]). These results are shown in Table 4.3.

By training on a smaller dataset, and generalising to unseen data, the advantages

of training using positional loss become clearer. Models trained with the positional loss

function show higher accuracy, and by focusing the attention of the network, each model

85

Figure 4.6: Random predicted grasp examples from the GR-ConvNet2 model trained with
the positional loss function.

Table 4.3: Grasping success on the Jacquard test set for the GG-CNN2 and GR-ConvNet
models when trained on the smaller Cornell Grasping Dataset.

Model Input Loss Successful Grasps (%)

GG-CNN2 [47] Depth
MSE 48.54

Positional 64.53

GR-ConvNet [179] RGB-D
Smooth L1 21.10
Positional 37.01

GR-ConvNet2 [179] RGB-D
Smooth L1 34.35
Positional 49.46

86

Figure 4.7: Comparison of example grasp map outputs from the GR-ConvNet2 model
trained with smooth L1 versus positional loss.

is able to learn more from the smaller number of examples. This suggests that learning

suitable locations for grasps is more important than learning the grasp angle and width.

This is likely because there are a wide variety of suitable angles and widths which are valid

for each suitable grasp centre pixel location, and so it is more beneficial and valuable to

learn where the grasps are centred in the first place.

4.2.4 Effects of Loss

Alongside the improved grasping performance, evidence is presented to evaluate the quan-

titative and qualitative differences in grasping output, as well as a closer look at how the

loss function alters training.

Effect on Grasp Maps

To investigate the reason behind the higher grasping performance success, we look directly

at example grasp maps when trained with or without the new loss. An example of direct

outputs from the same GR-ConvNet2 architecture is shown in 4.7.

As shown in this figure, due to the training method using the positional loss, there are

a number of differences that can be qualitatively analysed. For example, whilst the quality

score map loss `Q remains untouched during training, the average Q probability is higher

when trained using positional loss. The resulting Q output is therefore generally more

confident as to where grasps can be positioned, and considers more grasp centres as viable

candidates. By reducing the contribution from the angle `Θ and width `W losses, the

87

model focuses on successful grasp placement. Therefore, the model is learning to predict

grasps even in places where the original loss function does not.

As a result of only penalising loss values where grasps are likely to occur, the angle

Θ and width W grasp maps also appear far more vivid than the original smooth L1

function. By ignoring irrelevant background information, the Θ and W maps therefore

propose realistic values for every pixel in the scene, not just where grasps occur. This can

be advantageous because generative grasp networks only execute grasps with the highest

chance of success, i.e. argmax(Q), therefore the network is not devoting resources to also

learning to ignore background information and instead compartmentalising tasks more

efficiently. Whereas the generic loss function learns to output no value on the background,

the positional loss learns to propose an angle and width values for all pixel grasp centre

locations. Therefore, it is likely that training with the positional loss function improves

performance by considering grasp placements that traditional loss functions do not.

Training Stability

Another ancillary bonus from applying the positional loss function is that model training

generally becomes more stable, especially in the first few epochs of training. By applying

the new positional loss, attention is focused very early during training to only suitable

grasp locations. This results in faster training and a higher average performance, even

after only a few epochs of training, across all cross-validation trials.

Fig. 4.8 presents grasping performance after each epoch during training on the Jacquard

validation set. This shows the average model performance over time across all five cross-

validation sets for some of the generative models presented. Similar to the grasping success

on the test set, the positional loss consistently achieves the greatest grasping success rate

reflecting general higher performance.

Initially, all networks trained on the new positional loss function perform better on

average that the previous loss function. For example, the featured GG-CNN2 and MTG-

CNN models trained with both auxiliary SOD and depth reconstruction tasks in Fig. 4.8a,

quickly learning to distinguish what contributes towards a successful grasp. This effect is

also replicated in Fig. 4.8c on the validation data using the GR-ConvNet2 model. This

shows that the positional loss function provides a faster and better starting basis for

learning grasps.

This further supports the hypothesis that it is more important to train the network to

88

(a) GG-CNN2 and MTG-CNN with RGB input

(b) GR-ConvNet

(c) GR-ConvNet2

Figure 4.8: Average grasping performance on the Jacquard validation set after each train-
ing epoch for different models trained with competing loss functions.

89

Table 4.4: Time, in milliseconds, to generate a grasp from an input image when trained
using the positional loss function.

Model Loss Inference Time

GG-CNN2 [47]
MSE ∼ 5 ms

Positional ∼ 5 ms

MTG-CNN [178]
MSE ∼ 6 ms

Positional ∼ 6 ms

GR-ConvNet [179]
Smooth L1 ∼ 29 ms
Positional ∼ 29 ms

GR-ConvNet2 [179]
Smooth L1 ∼ 29 ms
Positional ∼ 28 ms

learn about where grasps are more likely to occur than the angle or width of the gripper.

By focusing attention onto where grasps are more likely to occur, the loss encourages

learning of suitable grasps early, providing a good starting basis for training generative

models resulting in better performance overall.

Inference times

Another advantage of the introduction of this new loss for generative models results in

generally increased grasping performance without impacting the overall inference time

(see Table. 4.4). Since there is no increase in the number of network parameters or post-

processing steps, there is no change to the amount of inference time taken compared to

the base generative network to calculate the grasp proposal. This retains one of the best

generative model advantages in that the inference time is still quick enough for open-loop

grasp processing.

This results in much faster inference times compared to the alternative discriminative

approach to grasping which means more grasps can be considered in the same amount of

time. This is useful as it allows for rapid updating to changes in a scene. This means

the model can cope with environmental problems such as the movement of objects in a

scene. The reader is invited to refer to refer to Section 5.1.5 for examples of the successful

deployment of the GG-CNN2 and GR-ConvNet models discussed in this chapter to a

physical 6-DoF robot arm.

90

4.3 Summary

Despite generally high accuracy on common large grasping datasets, generative models

that utilise grasp maps to propose appropriate gripper placements have relied on tradi-

tional loss functions for model training. This chapter shows that training networks with

a bespoke and focused loss function designed for teaching grasping results in a higher

grasping success rate due to the better placement of gripper positioning.

The intuition behind this loss was that learning the best placement for a grasp is more

important than the given gripper angle or width, because there is a wide range of appropri-

ate values for a given grasp centre. By using the common Jacquard grasping dataset [129],

grasping success rate improved nearly universally across all network architectures and in-

put modalities with this new loss, including when using the popular GG-CNN2 [158] model

and MTG-CNN architecture from the previous chapter (See Table. 4.1), as well the larger

GR-ConvNet [179] models (See Table.4.2).

Furthermore, this loss also resulted in faster and more stable training methods, as

in Fig. 4.8, without impacting model inference times (See Table. 4.4), which allows for

real-time control of a robot arm, as in other work like [5].

However, even though these generative models report high accuracy on these com-

mon datasets, they tend to only report findings according to the generally accepted IoU

method. The next chapter investigates whether this metric alone is enough to predict high

performance, and compares it against morre robust simulated and physical metrics.

91

CHAPTER 5

Gaussian Ground-Truth Grasp Maps

In previous chapters, a number of planar generative grasping models are discussed that are

capable of proposing high-quality grasps for a wide variety of objects. The first network

covered, the generative grasp convolutional neural network (GG-CNN) [5], was the first

architecture to improve model performance and training time by learning to output sepa-

rate components of a grasp in the form of grasp maps. This method generates a pixel-wise

grasp quality representation which is reconstructed at test time into the more common

form of representing grasping the rectangle representation, first defined in Jiang et al. [42]

and further updated in follow up work by Lenz et al. [78] and Redmon et al. [77]: This

represents a grasp as four parameters (x, y,Θ,W), the centre of a grasp in image pixel

coordinates (x, y), the angle of the grasp Θ, and the width of the grasp W .

Up until now, the datasets used to train these models label successful grasps according

to the rectangle metric described previously, and therefore a transformation is required to

generate suitable ground truth grasp data used to train the grasp maps utilised by these

generative networks. In previous chapters, a simple heuristic is implemented that generates

grasp location data by assuming any grasp within the centre third (and approximately close

angle) of an annotated successful grasp is valid. However, this assumption is incorrect: as

Fig. 5.1 shows how grasps centred on pixels towards the edge of the centre third of the

grasp rectangle can lead to gripper collisions when applied to a robotic arm, resulting in

unsuccessful grasps on real world objects.

92

Figure 5.1: Current generative models for robotic grasping assume a binary representation
of grasp labelling. Models are trained to recognise that any grasp centred on a pixel
that falls within the centre third (blue) of a correct grasp rectangle (green) are suitable.
However, grasps centred on the pixels closer to the edge of the rectangle are less reliable
and result in collisions due to incorrect labelling (red).

To address this inconsistency, this chapter presents a modified Gaussian ground truth

to train common generative grasping networks, which more closely resembles that of the

training data based on recent work from, the orientation attentive grasp synthesis frame-

work (ORANGE) [184]. By introducing this modified heuristic for training, the network

learns to predict grasps that more closely resemble grasps previously successful in a sim-

ulated setting. This is more likely to generate more accurate and successful grasps plans

which can better capture the geometric properties of the grasp pose to avoid potential

collisions between the gripper and the grasped object.

We argue that reported performance according to the commonly accepted IoU metric,

that implements an arbitrary limit of 25% overlap with any ground truth grasp rectangle,

is insufficient for predicted real-world performance and suffers from the same problems

that are present using the binary heuristic for training generative models. This results in

inflated success rates on grasping datasets when measuring grasping performance offline

because it does not penalise cases where grasps are unsuccessful due to factors such as a

gripper collision.

This chapter therefore presents auxiliary metrics that are recommended to be presented

alongside established grasping model performance to inform researchers in choosing the

best performing models when transferred to real robotic arms. As such, model performance

is also presented alongside widely accessible simulated and physical grasping benchmarks

benchmarks to show these models are capable of better transferring to unseen objects.

The contributions of this chapter are therefore as follows:

93

• Gaussian training grasp maps - a novel Gaussian ground truth is introduced which

encourages generative models to produce grasps which more closely resemble the

simulated successful grasps;

• Simulated grasp benchmarks - previous work has mostly reported grasp success on

widely varying physical benchmarks. We demonstrate the increased accuracy for

representing grasp success on an easily accessible and comparable simulated grasp

trial (SGT) benchmark [129] for future studies to compare with;

• Physical grasp benchmarks - an easily reproducible simple robotic arm implementa-

tion is used to demonstrate that the model trained on simulated data is capable of

direct deployment to a physical robotic arm without the need for any transfer learn-

ing. This model achieves a high grasp success rate on a previously unseen dataset

of standardised 3D printed objects.

5.1 Methodology

To explain the rationale behind the changes to the generated ground truth grasp maps

from the previous chapters, first we describe the changes to the generative grasp networks

in line with current work. As a result, the changes to the generated ground truth from

the dataset are defined and the updated training methods. Finally, we detail an example

method of transferring the output of the network into a real-world 6-DoF robot, which is

used to perform physical experiments with unseen objects.

5.1.1 Networks and Outputs

In the previous chapters, examples of generative grasping models were outlined including

the GG-CNN2 [47] (see Section. 3.1.2), and GR-ConvNet [179] (see Section. 4.1.1). Each

of these network architectures generate a grasp for each pixel in the scene in the form of

grasp maps (previously covered in Sections 3.1.2 and 4.1.1. This creates an easy way to

train models which contain a value for each pixel, with a grasp represented different by four

outputs that can be reconstructed into a grasping rectangle during post-processing. These

outputs are labelled: Q,Θcos,Θsin, and W as in Fig. 5.2. To extract a grasp proposal, the

centre of the rectangle is assumed to be the pixel position providing the maximum Q value

and use the corresponding angle Θ and width W from the same pixel position to generate

a grasp.

94

Figure 5.2: Given an RGB-D (4×320×320) image, each generative grasping model outputs
four grasp maps: Q, cos, sin, and W of size N×320×320 with N representing the number
of output bins.

For previous model implementations, only a single ground truth map was generated

for each object instance, corresponding to Q, Θcos, Θsin, and W grasp components. Due

to this method, the angle and width correspond to a successful grasp centred at the pixel

position in grasp map Q, and are arbitrarily set to 0 at positions that do not correspond

to a successful grasp. However, because to the structure of the Jacquard dataset, a grasp

map can contain multiple grasps centred on the same pixel that are all valid. When using

a single grasp map, an arbitrary selection of which angle and width to use at such pixels

must be made which drastically alters model performance [184].

In order to reduce overlapping labelled grasps where multiple grasps at different angles

are centred on the same point, we employ a technique from the orientation attentive grasp

synthesis model (ORANGE) [184]. This separates the grasp angles into N bins with each

bin containing a range of 180/N degrees. The network then outputs grasp maps for each

bin, which allows the network to learn N grasps at each pixel. The output of the network

therefore becomes:

G = (Q,Θcos,Θsin,W)N×h×w, (5.1)

where each of the N dimensions gives the grasp maps restricted to that bin of angles. We

compare the models that output grasps as a single bin and when split 1 into 3-bins.

In this instance, to reconstruct a grasping rectangle for testing, the maximum Q value

across all three bins is taken as the (x, y) grasp centre, with the corresponding Θsin, Θcos,

and W pixel values from the same bin output making up the final components of the

grasping rectangle. For remaining overlaps, the grasp with the smallest width was used

to generate the ground truth, in the same way to [184].

95

This work also showed that there are diminishing returns as the number of output

bins increases. While there is an increase in performance from 1 to 3 bins, however 6 bins

results in only a slight increase in performance over 3 except it vastly increases the training

time and resources for relatively little improvement. Therefore, in the following work, we

apply this technique to the generative grasping CNN (GG-CNN2) [158], and generative

residual convolutional network (GR-ConvNet) [179] from previous chapters, as well the

image detection model U-Net [13] also used by Chalvatzaki et al. [184]. All models are

trained using 320 × 320 4-channel RGB-D images. Input data is cropped, resized, and

normalised before being processed by the network to match the training data used and

depth data is inpainted according to [5,175]. The outputs are therefore also the same size

as the input N × 320× 320, where N is either 1 or 3.

5.1.2 Gaussian Ground Truth Grasp Maps

In the previous chapters, ground truth training data had to be transformed from the raw

grasping data into a format suitable for training models that output grasp maps. In the

Cornell [78], and Jacquard grasping datasets [129], data was collected using a robotic arm

to gather suitable grasp points for each object. This included a physical arm in the case

of the Cornell dataset, and a simulated arm in the case of the Jacquard dataset to gather

more training examples. In each case, successful grasps are presented in the form of the

common rectangle format as described in [42] and previously defined in Section. 3.0.1:

g = (x, y,Θ, h, w), (5.2)

each grasp centre is represented in pixel coordinates (x, y), alongside a gripper angle Θ,

and corresponding gripper height h and width w using a parallel plate end-effector.

Of the generative grasping networks covered so far, the GGCNN2 [158] and GR-

ConvNet [179], uses a heuristic that transforms the rectangle representation into a grasp

map representation. In order to train suitable grasp locations, the traditional binary Q

grasp map assumes that all pixels within the centre third of a grasp rectangle are correct

grasps, and assigns a ground truth Q value of 1 if a pixel falls within this section of any

grasping rectangle and 0 otherwise, as in Fig. 5.3. This heuristic is likely to result in in-

accuracies such as grasps that are centred away from the object, and can result in gripper

collisions (illustrated in Fig 5.1).

96

Figure 5.3: Comparison between example binary [5], soft quality [184], and strong quality
ground truth grasp maps. A binary representation assumes any grasp within the centre
third will likely be successful, which is given a value of 1, and 0 otherwise. Using the soft
grasp quality score [184], the centre third of the grasping rectangle is still assumed to be
successful, but values closer to the centre are higher than those at the edges, decaying
towards a high threshold. Our strong quality proposal assumes edge values result in
inconsistent grasps and removes the threshold, instead the ground truth decays towards
zero at a rate defined by a hyperparameter σ. Each quality map is separated into 3 angle
specific bins to predict the grasp quality score for the associated range of grasp angles
using the method from Chalvatzaki et al. [184].

97

Chalvatzaki et al. [184] instead proposes a variation for generating ground truth maps

from successful grasps. In this version, as only the centre pixel of a labelled grasp is

certainly known to result in success, then only this value is assigned value 1. However,

because neighbouring pixels are still highly likely to result in a grasp, then grasp quality

scores gradually decays according to a GaussianN distribution. The centre of the grasping

rectangle has Q value 1, which fades away to a minimum value according to the equation:

Q(x, y) = max
g

{
min

{
N (d, σ2)

N (0, σ2)
δ, 0.9δ

}}
, (5.3)

where the Q ground truth maximum is generated over all annotated grasps g. d =

d((x, y), g) is the distance of the pixel (x, y) from the centre of the grasp g. δ = δ((x, y), g)

is an indicator function taking value 1 if (x, y) is in the centre third of the grasping rect-

angle of g and value 0 otherwise, and σ is the hyperparameter determining the strength

of the Gaussian. In this case σ = 2 according to the ORANGE model and the minimum

value is set to 0.9 within the centre third of the grasping rectangle. This method is referred

to as the soft quality map, as in Fig. 5.3. This ensures that network is taught the centre

of the grasping rectangle is a better location for grasp centre approximation.

However, this technique still considers all of the centre third of the grasping rectangle

to be valid, which we argue is still likely to train the network to recognise grasps centred

at unsuitable places around the object and more likely to result in gripper collisions.

Therefore, we propose a alternative Gaussian heuristic for generating Q ground truth

grasp maps, referred to as the strong quality map, defined in the following equation:

Q(x, y) = max
g

{
N (d, σ2)

N (0, σ2)
× δ
}
. (5.4)

This technique removes the minimum floor from the previous soft quality map, only in-

cluding grasp centres as close to the original ground truth as possible.

We experiment with the strength of the Gaussian distribution N , using the hyperpa-

rameter σ. This value alters the how sharply the N distribution decays the grasp quality

Q̂ value away from the centre. A smaller σ value represents a smaller standard deviation

and closely focuses attention on the centres of successful simulated grasps, whereas a large

σ allows the network to infer successful grasps further away from successful simulated

locations.

Due to overlapping labelled grasps within a scene, the maximum value for a given

98

pixel across each angle bin is used. For multiple grasps using the same instances of a

grasp centre and angle centred on the same pixel but using different jaw sizes, the smallest

jaw size was chosen to match the boundaries of the objects shape more closely.

5.1.3 Simulated Grasp Trials

Until this point, model performance has been measured according to the commonly used

Intersection over Union (IoU) method, also known as the rectangle metric. This is a fast

offline method for assessing model performance as it can be evaluated locally according to

the following criteria:

• the predicted grasp rectangle and a corresponding ground truth grasp rectangle share

an IoU score of greater than 25%, and

• the offset of the predicted grasp rectangle aligns within 30◦ with the corresponding

ground truth grasp rectangle.

Based on work from Jiang et al. [42], Lenz et al. [78] reduced the threshold for a grasp to

be considered successful from 50% to 25%, arguing:

“Since a ground truth rectangle can define a large space of graspable rectangles (e.g.

covering the entire length of a pen), we consider a prediction to be correct if it scores

at least 25% by this metric.”

The threshold of 25% has been used to report performance in subsequent studies. However,

as previously mentioned, this can lead to inaccuracies as a proposed grasp can meet the

criteria for an absolute threshold dictating the rectangle metric, but would cause a gripper

to collide with, or miss an object completely, during deployment [185]. The red rectangles

shown in Fig. 5.1, represent grasps that fail to pick up the objects in simulation, but have

IoU scores of over 25% so would be reported as correct in most studies.

Preferably, grasping metrics should always be provided alongside either simulated or

physical grasp data to mitigate this issue, and show that the proposed grasp would be suc-

cessful. Most studies however, provide widely varying benchmarks, typically comparing

between different types of robotic arms and the physical dataset being tested on. There-

fore, instead of introducing an entirely new benchmark, we also present data using an

existing widely available metric, to allow for direct comparisons with future work. Along-

side the labelled simulated data, included as part of the Jacquard dataset, we also utilise

99

the Jacquard on-line simulation server1. This was presented in the original work where

the Jacquard dataset was introduced [129] referred to as the simulated grasp trial (SGT)

metric.

The SGT measure of performance is a more robust metric, conducted on the Jacquard

on-line simulation server that performs the proposed grasp in the same simulated envi-

ronment as the data collection [129]. This is more costly in time and computation than

the IoU metric, but is more reliable as it considers other data such as gripper collisions.

Therefore, the best models according to the IoU metric are submitted to the Jacquard

on-line simulation server in order to obtain more accurate benchmark for evaluating and

comparing robotic grasping performance.

5.1.4 Training Method

For training and testing, the dataset is split 90/10% between training and test sets accord-

ing to the same methods used by [179, 184], with no data augmentation applied during

either stage. This leaves a total of 5449 grasping scenes from the dataset to form the test

set. The same test set is used to evaluate both the traditional IoU metric and simulated

grasp trial-based (SGT) criterion.

Input data was once again normalised similar to previous chapters. Colour pixel values

are normalised to the range of [0, 1] before subtraction the image mean to zero-centre the

image data. Depth data is also normalised to the range of [−1, 1] before a zero-centre via

mean subtraction and clamping values within this range. All models are trained using the

ADAM optimser [176] and early stopping is used once model performance has saturated.

Models are trained with their original loss function as well as the positional loss function

from Section 4.1.2 and using the orientation bucketing system from Chalvatzaki et al. [184].

This is to show that each technique is capable of generalising to physical grasps successfully.

Therefore, the grasp map outputs for the GG-CNN2 and U-Net models are trained using

an MSE loss function and the GR-ConvNet model is trained using smooth L1 loss, against

the positional loss function.

Following [184], the losses are also scaled by multiplying them with the number of

discretised angle bins N and thus making the overall loss for the network equal to:

Lgrasp = N × (`Q + `Θcos + `Θsin + `W) , (5.5)

1. Available at: https://jacquard.liris.cnrs.fr/

100

https://jacquard.liris.cnrs.fr/

with Lgrasp representing the total loss for the given network and ` representing the indi-

vidual MSE or smooth L1 loss for the given network. The new positional loss LP function

is then given by:

LP = N ×
(
`Q + Q̂(`Θcos + `Θsin + `W)

)
, (5.6)

In generating the ground truth, for situations where multiple grasps centred on the

same pixel values existed with different corresponding angles and widths: the smallest

sized grasp is used, as in [184] to train the model to pick the grasp closest to the object.

Similarly, a half jaw size is adopted during testing as in [186].

5.1.5 Robotic Implementation

Finally, in addition to the IoU and SGT metrics presented, experiments utilising a low-

budget robot arm are implemented to show that the model can easily transfer to a physical

real-world setup. The setup takes an image from above using an Intel RealSense SR300

RGB-D camera, in the same orientation of that used in the Jacquard dataset, and generates

the given grasp proposal from the model for the given object.

The robot arm used in this work has 6 Degrees of Freedom (6-DoF) WidowX arm from

Interbotix Labs: a 1-DoF rotating base, three 1-DoF joints, a 1-DoF rotating wrist, and

a 1-DoF parallel plate gripper with minimum 1cm and maximum 3cm width. The setup

is shown in Fig. 5.4 and is the same low-cost arm as used in REPLAB [18]. Grasp plan

motions are created using ROS inverse kinematics and planned with the MoveIt package.

Using Eq. 3.6, the 2D output from the model is transformed into the robots frame of

reference by taking the maximum pixel coordinate (x, y) from the grasp quality score, and

using the corresponding depth coordinate from an RGB-D camera to the depth point in

3D space z to form a 3D grasp location (x, y, z).

To demonstrate that these trained models are capable of transferring knowledge and

generalise to completely unrelated objects, a standardised set of 3D printed objects is used

for testing called the Evolved Grasping Analysis Dataset (EGAD)2 [158]. This features a

diverse range of objects of varying difficulty and complexity, including simple and antago-

nistic examples. The dataset ranges from A0 representing the easiest and simplest object

to grasp, to G6 representing the most difficult and complex object. Increasing lettering

corresponds to increased complexity and increased numbering represents more difficult

2Available at https://dougsm.github.io/egad/

101

https://dougsm.github.io/egad/

Figure 5.4: The setup of the WidowX robot arm used in the physical experiments, with
the camera positioned above the scene.

102

Figure 5.5: 3D printed EGAD object dataset [158]. Objects are strategically generated
to represent a range in difficulty A-G from the easiest row A to the hardest difficulty G.
Similarly, objects range in complexity by column from 0-6 with 0 being the simplest and
6 being the most complex to grasp. Objects are printed in a range of colours, or in resin
where objects are more prone to breaking.

grasping objects.

The same grasping methodology as used in the original EGAD study [158] is repeated.

Each object is thrown randomly into the arena and a grasp is attempted 20 times for each

object. The grasp is considered successful if the object is lifted above the arena once the

gripper has closed. The object is then dropped back randomly into the arena for the next

attempt. If the object is unsuccessfully grasped then it is manually reset by throwing

it back into the arena randomly, to ensure the network is not continuously attempting

incorrect grasps.

Data is presented using the model as trained with the simulated Jacquard data with

no transfer learning involved. This is to show ease of transferability and that the model

can easily generalise to similar settings. For a description of the calibration process and

transforming from the camera frame of reference to the robot frame of reference see Ap-

pendix B.

103

5.2 Evaluation

In this work, a series of generative grasping models including: the GG-CNN2 [158]; GR-

ConvNet [179]; and U-Net architectures [13, 184], are trained on the Jacquard Grasping

Dataset [129]. The results from both the IoU metric [42, 78] and SGT are reported for

the same unseen data. The IoU metric is used as a quick offline metric for evaluating

performance of all models and then the best performing models are tested using the

simulated physics environment on the Jacquard test server [129], as this is a more robust

evaluation of performance.

Each model is trained using the traditional binary ground truth grasp map introduced

in [5], the soft quality map from [184], and the strong Gaussian grasp map, as described

in subsection 5.1.2. The strength of the Gaussian filter σ is also varied to find the optimal

spread of trainable parameters for the dataset.

5.2.1 Offline versus Simulated Performance

The performance of each model when measured using the typical IoU threshold of 25% is

reported in Table 5.1. Firstly, this data shows that models trained with three output angle

bins perform better than those limited to one angle bin, as previously shown in [184,186].

Similarly, models trained with the positional loss function outperform the same model

when trained with each respective base loss function, as previously shown in [178]. As

far as we are aware, this is the first work to combine both these methods concurrently.

This approach achieves the best reported IoU metric for each model, showing these two

improvements complement one other, which has not been previously demonstrated. Since

the evaluation of these models in simulation takes significantly longer to produce than the

typical offline evaluation, only the highest performing models were evaluated, all models

compared in the SGT results in Table 5.2 feature models trained with both methods in

unison.

From the IoU measure of 25%, the conclusion would be that there is little difference

when comparing the same models on different ground truth maps. The best reported value

overall is achieved by the U-Net model with a generated binary ground truth (94.66%),

which slightly outperforms the same model when trained with the strong (94.35%) Gaus-

sian maps followed by the soft quality ground truth map (93.45%). This conclusion,

however, does not hold when we consider the more robust SGT results in Table 5.2.

The results from this table show that when we analyse performance according to the

104

Table 5.1: Performance on the test portion of the Jacquard grasping dataset according to
the IoU metric at the 25% threshold

Model Loss Bins
Binary Soft Strong

σ 2 2 1 0.5 0.25

GG-CNN2 [158]
MSE

1 87.87 87.69 86.79 87.50 86.86 85.74
3 88.00 88.73 87.83 87.65 86.93 86.02

Pos
1 91.21 91.99 88.13 90.18 90.18 89.96
3 93.98 88.59 91.39 92.90 90.93 92.42

GR-ConvNet [179]

Smooth 1 90.86 90.82 90.16 90.77 89.74 89.10
L1 3 91.65 92.05 91.98 92.40 91.41 92.40

Pos
1 92.27 91.89 91.76 91.47 91.98 92.35
3 93.69 91.82 93.47 90.99 93.21 92.40

U-Net [13]
MSE

1 90.55 89.52 90.48 89.94 89.94 89.91
3 91.78 91.14 90.51 89.21 89.67 89.89

Pos
1 93.61 93.30 92.62 91.69 92.48 92.18
3 94.66 93.45 94.04 94.35 93.83 92.59

Table 5.2: Predicted performance of models trained with three output bins and positional
loss function on the Jacquard grasping dataset across a range of IoU thresholds and actual
performance according the the SGT metric.

Model Q̂
IoU SGT

25% 30% 50% 75% mIoU AUC (%)

GG-CNN2 [5]

Binary 93.98 92.33 79.61 30.21 62.46 0.626 85.41

Soft 88.59 85.15 69.41 25.49 57.40 0.575 85.43

Strong 92.90 91.14 80.29 39.20 64.13 0.649 86.58

GR-ConvNet [179]

Binary 93.69 91.83 83.01 39.37 65.57 0.657 85.36

Soft 91.15 88.81 79.52 23.47 61.16 0.615 83.06

Strong 93.21 90.95 82.44 49.62 66.98 0.671 85.89

U-Net [13]

Binary 94.66 93.25 84.42 43.11 66.61 0.668 85.69

Soft 93.45 91.43 82.27 40.03 65.05 0.652 85.78

Strong 94.04 92.31 83.87 50.71 67.69 0.675 87.94

105

SGT score, the difference between the binary and Gaussian methods does not match

predicted performance at the lower IoU thresholds. According to the SGT score, the

strong Gaussian map now achieves the highest accuracy in each model on this more robust

measure of performance. This is a slightly lower performance than the IoU metric but

indicates which model will perform best in practice on a real robot arm, as it also considers

factors more appropriate to a real setting, such as gripper collisions and grasps not included

in the dataset. Here, the best performing U-Net model reports a total of 87.94% successful

grasps on the same 5449 object scenes as used to measure the IoU compared to only

85.69% using the binary grasp map and 85.78 using the soft grasp map. This is over a 2%

performance increase over the highest reported result for the SGT metric so far [185] .

Auxiliary information is also provided in this table to further investigate this differ-

ence in SGT performance. Despite reported close success rates at the traditional 25%

threshold, the grasping performance of the models widely differs at higher thresholds. A

higher performance at these larger IoU thresholds suggest the model is proposing grasps

that highly resemble a grasp from that of the test set, whereas success at a lower thresh-

old suggests that the proposed grasp matches any grasp and is liable to the incorrect

grasps proposed in Fig. 5.1. The variation in performance between the models at the 75%

threshold suggests that the binary and soft Q̂ training maps, are not learning how to best

recreate the training data. Therefore, the 25% threshold by itself is not enough to predict

real world performance.

We therefore propose that when predicting grasp success in the future, instead of just

the typical 25% (IoU@25) threshold, performance should also be reported according to the

other metrics used in this table. This includes performance at a number of thresholds, as

well as auxiliary information such as the mean IoU (mIoU) score, or the IoU area under

curve (IoU-AUC) scores, which reveal similar information about the networks capability

to learn from the data. Together, with the introduction of both these metrics including the

range of thresholds and the mIoU/IoU-AUC scores as metrics, we aim to help researchers

decipher which models perform better when transferred to a real setting, as the mIoU

metric is better correlated with the final SGT performance (pearson’s r = 0.541, p =

0.132), compared to just the IoU@25 metric (pearson’s r = 0.402, p = 0.283).

Whilst the effects of altering the hyperparameter σ while using strong Gaussian maps

are considered, there is no clear optimal value. Generally performance benefits from a

moderate value in which the Gaussian map does not include the edges of the grasping

106

rectangle but maintains a large enough collection of high quality grasp centres to learn

from. We note that the optimal Gaussian scaling is likely tied to the density of labelled

grasps in the dataset for a given object and a given model. As the Jacquard dataset

contains a high density of grasp labels, it is likely that the optimal scaling factor is smaller

than for a dataset with more sparsely sampled grasp labels. As such, this hyperparameter

may require fine tuning when training with other datasets.

To better illustrate the improvements made by these techniques, Fig. 5.6 also shows

the interaction between the type of grasp ground truth map used for training, and the

positional loss function across all IoU thresholds. Here, the U-Net model is used as an

example across various training parameters.

In Fig 5.6-a, using only the initial training parameters, the model is able to report rel-

atively high performance at the 25% threshold. However, by implementing the positional

loss function, performance is improved at these lower thresholds, and which is reflected

by shifting the grasp success rate upwards in the bottom half of graphs. This suggests

that the positional loss is more often able to predict grasp proposals that line up with any

labelled ground truth rectangles, as previously predicted, resulting in a higher predicted

grasp success and grasps in more suitable locations.

On the other hand, training a model using our proposed strong Gaussian ground truth

maps (Fig. 5.6-c,f,i,l), shifts the grasp success performance to the right in comparison to the

binary (first column) and soft (second column) quality maps. This is especially apparent

when models are trained in conjunction with the multiple output bins instead of the single

one. Therefore, of the grasps proposed by these models, the grasp rectangles are more

likely to highly intersect those of the ground truth, resulting in better grasp performance at

higher thresholds because grasp proposals are better centred around labelled grasps. This

is important as a higher intersection is less likely to result in success in gripper collisions

which would fail in practice.

Subsequently in future work it is suggested that if a fast, offline estimate of perfor-

mance is presented: the mean IoU (mIoU) score of proposed grasps should also be reported

alongside the commonly used IoU metric, at the thresholds described above, as a predic-

tor of robotic arm/SGT success. This average IoU metric provides insight to how the

model performs regardless of a theoretical absolute threshold, when concurrent physical

or simulated results are not provided for comparison with currently deployed models.

107

0

20

40

60

80

100

1
B

in
` M

S
E

G
ra

sp
S

u
cc

es
s

(%
)

(a)

Binary Q̂

AUC = 0.596

(b)

Soft Q̂

AUC = 0.608

(c)

Strong Q̂

AUC = 0.606

0

20

40

60

80

100

3
B

in
` M

S
E

G
ra

sp
S

u
cc

es
s

(%
)

(d)

AUC = 0.607

(e)

AUC = 0.599

(f)

AUC = 0.612

0

20

40

60

80

100

1
B

in
` P

G
ra

sp
S

u
cc

es
s

(%
)

(g)

AUC = 0.623

(h)

AUC = 0.645

(i)

AUC = 0.641

0 20 40 60 80 100
0

20

40

60

80

100

3
B

in
` P

G
ra

sp
S

u
cc

es
s

(%
)

(j)

AUC = 0.646

0 20 40 60 80 100

(k)

AUC = 0.652

0 20 40 60 80 100

(l)

AUC = 0.664

U-Net IoU Performance

IoU Threshold

Figure 5.6: Reported grasp success as the IoU threshold is increased for the U-Net model
trained with different ground truth maps Q̂, altering the number of output bins, and when
trained with the positional loss function. All models trained with the strong Gaussian Q̂
ground truth are trained with σ = 2 for consistency. Each graph shows the success rate
for the given parameters at different thresholds (in colour) overlaid on top of each other
line (in grey) for easier comparison.

108

5.2.2 EGAD Results

In addition to the SGTs, which show that the trained model is capable of producing

grasps in the environment native to the training procedure, the model was also applied to

a standard low-cost robotic arm. The arm is tasked with picking up each object from the

EGAD [158] evaluation set 20 times for a total of 980 grasp trials.

A grasp is considered successful if a correct plan is made to attempt an object grasp

and the arm is able to lift the object above the arena after closure of the gripper is made.

We apply a single-shot method to grasping in which only one grasp plan is made in the

same way as the simulated grasp trials take place. The camera is placed above the scene

to mimic that of the Jacquard dataset but otherwise no transfer learning took place. The

results of these tests, are shown in Fig. 5.7.

The applied model performs relatively well overall despite only training on simulated

data. The model maintains reasonable consistency across all object complexities, and

generally decreases in performance as object difficulty increases. The model performs best

when grasping the easiest objects (A) and slightly dropping in performance towards the

most difficult objects (G). In some trials, the robot is even able to achieve perfect or near

perfect results, especially with easier objects. However, in all trials, the robot made an

accurate attempt to grasp the object in the scene, which shows that the model is able to

be applied with high accuracy without transfer learning. This results in an overall mean

accuracy of 77% over all grasps attempted which, while not directly comparable due to

the difference in arm setup, is higher than the 58% accuracy achieved by only the base

GG-CNN model in the original study [158].

Most failure cases observed are due to the object difficulty due to grasping parts of the

object that are purposefully difficult, such as angled sides or raised edges. See Fig. 5.8 for

examples. Other cases where grasp success is low, such as object B3 or D4, resulted from

a lack of knowledge about the gripper. The model would predict grasps that resulted in

object collisions with the gripper plates by grasping along an unfriendly axis relative to

the robot end-effector, cases which would otherwise be fine using a narrower pinch gripper.

These could be improved by further training with the specific end-effector.

Fig. 5.9, Fig. 5.10, and Fig. 5.11 show some example grasps and model outputs when

applying the 3 orientation bins. Without any transfer learning techniques, the model

is able to generalise to these new objects and is able to distinguish between the multiple

objects, a task previously untrained on. This shows this model can be directly applied with

109

(a) Results from the original EGAD study

0 1 2 3 4 5 6

G

F

E

D

C

B

A

Di
ffi
cu

lty

0.70 0.70 0.85 0.35 0.45 0.55 0.55

0.30 0.65 0.70 0.75 0.85 0.75 0.65

0.85 0.85 0.70 0.85 0.95 1.00 0.85

0.85 0.85 0.75 0.85 0.60 1.00 0.85

0.70 0.65 0.90 0.85 0.85 0.45 0.70

0.95 0.80 1.00 0.45 0.85 1.00 0.90

1.00 0.95 0.90 0.85 0.85 0.85 0.75

Complexity
Mean

0.59

0.66

0.86

0.82

0.73

0.85

0.88

Mean 0.76 0.78 0.83 0.71 0.77 0.80 0.75 0.77

(b) Results from our experiments.

Figure 5.7: Average grasp success rate for each object in the EGAD [158] evaluation
dataset. Outer cells show the mean for that row and column. 5.7a shows the results from
the original study compared to 5.7b the data collected in our experiments.

110

✘

✘

✓

✓✓

Figure 5.8: Example grasps on using a low-cost robotic arm with a parallel plate gripper.
Most objects are grasped by reaching across the principal axis of the object (top left),
however the model is also capable of plan grasps that only reached across parts of the
object (bottom left). The most common failure cases are due to object difficulty where
the model suggested grasps unsuitable for the type of gripper used (right images).

Figure 5.9: Example grasp alongside generative U-Net model [13] outputs when trained
with multiple orientation bins and positional loss function.

111

Figure 5.10: Example grasp alongside generative U-Net model [13] outputs when trained
with multiple orientation bins and positional loss function. During implementation, the
model is capable of suggesting grasps between multiple objects even though it was not
explicitly trained to do so.

Figure 5.11: Example grasp alongside generative U-Net model [13] outputs when trained
with multiple orientation bins and positional loss function. The model is also capable of
distinguishing and suggesting grasps for translucent objects.

112

Table 5.3: Inference time and number of parameters of different grasping models.

Model No. Parameters Inference Time (ms)

Levine [20] 1M 200-500
GQ-CNN [10] 18M 800

FC-GQ-CNN [89] - 625

GGCNN2 72k 12-14
GR-ConvNet 1.9M 38-40

U-Net 14.7M 25-28

a high success rate and operates at a much faster overall speed than other discriminative

models, as shown in Table. 5.3. Our values are collected using GPU-acceleration on a

NVidia GTX 1080Ti graphics card using PyTorch 1.1 with CUDA 11.

Whilst this robotic implementation requires an external depth camera, very few ex-

amples are failures as a result of an incorrect gripper depth. Future generative grasping

models may benefit from an inherent depth module to directly predict (x, y, z) grasps with-

out the need for the external transformation. Performance would likely be improved using

more accurate robotic grippers and transfer to specific scenes or grippers (e.g. [187]). How-

ever, this work intends to minimise extensive retraining to reinforce the generalisability of

the model.

5.3 Summary

This chapter evaluates the effectiveness of training common generative grasping models

with a modified ground truth grasp map which applies a Gaussian filter. These results show

that using both the attentional positional loss function, in addition to discrete orientation-

specific outputs, together greatly improves performance.

Further experimentation has also shown the traditional rectangle metric, widely used as

the most common measure of grasp performance, is insufficient for predicting grasp success

on physical robot arms. These experiments show that models trained using a Gaussian

ground truth, whilst showing negligible performance differences on the rectangle metric,

were better able to propose appropriate grasps when testing on a simulated robot arm.

Our best performing model achieves 87.94% grasp success according to the SGT, which is

>2% performance increase over the previous state of the art on this benchmark [185].

We finally suggest the addition of the average intersection over union score in future

work, as an offline metric for predicting real-world model performance. We also reinforce

the need for testing of models on physical benchmarks in addition to offline measures and

113

therefore supplement this with real-world data to show the model is capable of transferring

to the previously unseen physical EGAD object dataset [158]. The best model achieves

high performance, even on complex, antagonist, and difficult to grasp objects without

compromising on model inference speeds compared to larger discriminative grasping mod-

els.

114

CHAPTER 6

Conclusion

Due to the complex nature of creating robotic systems capable of fully autonomous grasp-

ing, there exists considerable amounts of literature aiming to generalise designed algo-

rithms across a wide variety of objects and environments. This thesis set out to answer

the main questions as set out in the introduction which outlined the desirable properties

for a future system capable of dynamic object manipulation. A number of novel improve-

ments were thus outlined for generative grasping models in the previous chapters. These

class of generative models for robotic grasping were identified as a promising and reliable

method for determining grasp quality because they are capable of grasp accuracy on par

with the similar supervised discriminative models. These have the advantage that they

enabled systems capable of closed-loop grasping due to their faster grasp inference times

without the need of a separate ranking stage. One of the major limitations common across

deep learning approaches for grasp estimation however, is generating large quantities of

expertly labelled data for training and creating models which are efficient at learning the

relevant grasping qualities.

The work presented here aims to address these issues by introducing changes within the

training pipeline for these generative solutions to grasping. This included altering the pre-

processing stage of grasp representation, the network architecture, and the loss function

for training generative models. Furthermore, the methods for predicting and comparing

offline model success on common datasets are evaluated and the real-world applicability

115

of these models is demonstrated when transferred to a robot arm. The following section

outlines the main contributions of the thesis.

6.1 Contributions

Chapter 3 explores the use of multi-task learning in generative grasping architectures to

improve the grasp accuracy from monocular inputs. As depth is an important aspect

of 3D object geometry, grasp performance is significantly decreased in its absence. The

aim was to improve the networks understanding of object geometry and subsequent grasp

locations by training an end-to-end CNN architectures on simultaneous related tasks to

learn common representations about each task in the early layers and improve primary

grasp performance.

In Chapter 3, by using the early common Cornell Grasping Dataset (CGD), the first

task examined was concurrent object classification, inspired by the dual-stream hypothesis

of human object recognition and manipulation [25–27]. We classified each object into

according to unique object classes or according to its functionality, with the idea that

learning the best way to pick up an object is associated with its usage. However, alone

this was not enough to improve grasp success rates. Forcing the early layers to learn

tasks that relied on identifying different object properties, in fact negatively impacted

performance. Decreasing the number of shared layers in this task improved this slightly,

although it is likely that this was difficult for a relatively small number of layers and overall

architecture, and the disparity between the regression and classification loss functions likely

compounded this issue. Furthermore, it can be tedious to hand-label a grasping dataset

with classifications which makes it unsuitable for larger datasets.

The rest of the chapter investigates an implementation of similar regression-based

auxiliary tasks to match that of the primary grasping task. Without the requirement of

classifying objects, instead the much larger and contemporary simulated Jacquard Grasp-

ing Dataset (JGD) was used for training. The network was trained to either perform

salient object detection (SOD), using the corresponding object mask for the image, or

depth reconstruction, using the perfect depth image included as part of the simulation.

This time, both tasks were demonstrated to improve grasp success, with the best per-

forming auxiliary SOD model improving grasp success from an average of 72.04 ±3.44%

to 78.84 ±0.97%, however, the mean depth reconstruction performance was further im-

proved to 79.50 ±0.65%. This demonstrates that with carefully chosen tasks, multi-task

116

learning can improve performance when training end-to-end generative networks and even

approaches performance of pure depth input 82.26 ±3.76%.

As a result of this work, Chapter 4 identified that these networks were relatively

slow to train and required a large amount of data to reach peak performance. It was

noted that a large proportion of the traditional loss function used for these networks

was dedicated to learning about the irrelevant background information given only low

top number of grasps are intended to be performed. We instead implemented a novel

positional loss function which focuses learning towards suitable grasp locations. This

generally improves predicted grasp success and learning stability on the JGD and a range

of generative grasping architectures, achieving a total of 88.38±1.20% of successful grasps

when using the GR-ConvNet, outperforming the traditional loss function. Crucially, this

was also demonstrated to greatly improve performance when training on smaller datasets.

When trained on the CGD, and tested on the same subset of data from the JGD, the

positional loss function was shown to better generalise to the new setting and greater

variety of objects which is a key problem. Furthermore, this improves performance with

no impact on overall grasping inference times which means the model is still capable of

dynamic control of an arm.

Finally, Chapter 5 recognises that the common IoU metric used to evaluate model

performance on both the CGD and JGD suffers from a number of flaws. Initial implemen-

tations established an arbitrary threshold as a measure of defining offline grasp success.

This can cause inflated and incorrect measures of success by ignoring collision data which

may be crucial. Therefore, the necessity of a common simulated benchmark is reinforced

for accurate comparisons between future models where collision data and model physics

are taken into account. The SGT benchmark is suggested as it is easily accessible on a

publicly accessible server using the same robotic equipment. Whilst physical benchmarks

would be preferred, these can be costly to acquire and more difficult to set up.

This chapter goes on to introduce an alternative method for pre-processing and rep-

resenting grasp rectangles. By using a Gaussian multiplier to alter ground truth grasp

quality data, grasp centres are further emphasised without the need for more data col-

lection. While there is likely to be some room for error in grasp placement, this method

trains the network to generate grasps which are better centred against the ground truth.

This is less likely to cause object collisions which consequently results in better perfor-

mance according to the SGT metric, whereas the traditional metric does not accurately

117

predict this performance. Many studies tend to report their performance according to this

offline metric so in future it is suggested that a corresponding mIoU metric should also be

presented as a comparison metric. Both IoU, mIoU, and SGT performance also improves

when trained with the positional loss function, demonstrating that this technique helps to

generalise to other settings and environments.

Overall, the work presented in this thesis suggests generalised improvements for a series

of generative grasping models and presents experiments according to their effectiveness.

A final demonstration of the transferability of these models to a functional robot arm

is made by testing the capability of the arm on the EGAD dataset [158], a previously

unseen set of 3D printed objects of varying difficulty and complexity. Without additional

data, the model is able to accurately predict grasp location, orientation, and width, which

we believe demonstrates the practical applicability of the model by showing an ability

to generalise to unseen objects and a totally new environment and background scene.

Therefore, this addresses many of the research questions and limitations of the field as set

out in Chapter 1.

6.2 Limitations and Future Work

Despite demonstrating promising performance for object manipulation with the use of

these generative grasping models, there still exist a number of general limitations which

need to be addressed for fully in the wider literature. This section discusses future direc-

tions for the field as well as concurrent work.

6.2.1 End-Effectors and Data Availability

The techniques outlined in this thesis are specifically designed for the grasp estimation and

control of parallel plate grippers. While these are the common choice for many instances

of robotic applications, such grippers have three major limitations in view of their ability

to perform advanced autonomous tasks [39]:

• only objects with parallel and plane surfaces can be comfortably grasped, while

objects with uneven surfaces of arbitrary shapes cannot be grasped easily;

• small reorientations of the object cannot be performed by the gripper alone, meaning

the entire arm has to be moved, however fine adjustments are often difficult and time

consuming to account for;

118

• structural properties of the grasped object, such as the surface texture, cannot be

inferred via such grippers.

These properties are fine in industrial settings for their ability to perform pick and place

tasks with high success rates and are relatively robust to damage, they are not necessarily

appropriate for potential future domestic applications [1]. All three problems can be

overcome by switching to end effectors capable of emulating human hand-like motions and

sensing abilities, such as multi-fingered hands equipped with haptic feedback sensors like

in prior work by [128, 188–190]. Robots equipped with these properties show promising

results but multi-fingered grippers are more prone to damage and requires systems capable

of planning with fine motor control. It has previously been mentioned that some systems

employ dual-arm strategies to utilise the advantages of multiple gripper types, such as

with a suction-based gripper in addition to a plate gripper [10]. Although current multi-

fingered grippers allows for some levels of dexterous object manipulation [87], their usage

is still very limited [191].

The main drawback of these approaches currently is the lack of available data for

training for a variety of arms and end-effectors. For example, datasets do not typically

contain multi-point finger placements. However, datasets are increasing in scope with

examples such as GraspNet 1billion [192] including and orders of magnitude more grasps

from multiple viewing angles of point cloud data, or RoboNet [193] which is an open source

dataset for collating data from multiple arms and environments but more work is needed

for creating easily accessible benchmarks to compare algorithms between. REPLAB [18]

for example, created a cheap open source cell for testing and comparing algorithms in a

standardised physical environment. Future research is encouraged to compare the results

from this thesis with using the EGAD dataset [158] in the same methodology as Chapter 5.

6.2.2 Object Properties

Another limitation of the methods outlined so far is that they are trained via objects

generated in simulation. Currently, the objects do not possess many of the properties which

would be encountered in the wider world, as the objects are assumed to be completely

rigid and opaque. In practicality, these systems must learn to also grasp objects which

are currently difficult to grasp, including highly malleable objects such as cloth, which

are difficult to grasp as they possess an infinite number of degrees of freedom [194], or

transparent objects because they are often difficult to detect with depth sensors [195].

119

Understanding object properties such as material composition would help to predict the

grasp required and react to changes in pressure.

6.2.3 Object Manipulation for Task Completion

When considering complex tasks, grasp synthesis alone cannot be considered an isolated

problem. The research in this thesis is presented as parts of a wider goal with the intention

of being implemented in the completion of higher level tasks and research has only just

begun to investigate this phenomenon with the resources available.

While initially Chapter 3 investigates the use of concurrent grasping and classification

in a multi-task system to tackle this problem, the difference in task representation ulti-

mately created a trade-off between performance across both tasks separately unless they

were highly related. Other research however, has also looked at simultaneous classification

with grasping, although these methods typically employs a modular approaches instead

of training end-to-end [196–198]. This may be more similar to the cortical regions of

the visual system as each area is highly specialised for a given role, such as the fusiform

face area (FFA) in the ventral stream [28] involved in face recognition, or anterior supra-

marginal gyrus (aSMG) for the recognition of tools which are distinct from general object

recognition [155].

For practical applications, the type of grasp must therefore be considered for task

completion. While it is easy to just create a gripper which would envelop an object for

easy picking, this would not allow for goal-oriented task manipulation. Some work applies

task constraints, like learning to classify grasps based on affordances [36, 199], with the

intention that the system will, for example, grasp the handle of a hammer or a mug, which

is crucial when tool functionality is task relevant. However, there is once again a lack of

large-scale training data for this task. This is preferable to training robots which only aim

to grasp what is in front of itself and opens up research for robots capable of higher level

understanding and completion of multi-step tasks.

Some works are also starting to use reinforcement learning to manipulate objects prior

to grasping in order to make it easier to grasp objects in clutter, such as pushing [35,79],

while others are starting to combine language models with simple tasks such as pick or

place to complete orders based on intention of language understanding [200]. Future work

would likely benefit from a holistic approach to grasping and integrate the approaches of

supervised, unsupervised, and reinforcement learning methods. This would better mimic

120

the way toddlers develop grasping skills, which are not isolated from one another [201],

and combine their advantages, including learning the types of grasps required for task

completion, as well as learning to dexterous manipulation the object once grasped.

121

Bibliography

[1] J. Sanchez, J. A. Corrales, B. C. Bouzgarrou, and Y. Mezouar, “Robotic manip-
ulation and sensing of deformable objects in domestic and industrial applications:
a survey,” International Journal of Robotics Research, vol. 37, no. 7, pp. 688–716,
2018. 1, 1.1, 2, 2, 6.2.1

[2] A. Bicchi and V. Kumar, “Robotic Grasping and Contact: A Review,” in Proc.
IEEE International Conference on Robotics and Automation, vol. 1, pp. 348 – 353,
2000. 1, 1.1, 2, 2.1

[3] S. Caldera, A. Rassau, and D. Chai, “Review of Deep Learning Methods in Robotic
Grasp Detection,” Multimodal Technologies and Interaction, vol. 2, pp. 1–24, 9 2018.
1, 2, 2.2, 2.3.1

[4] J. Bohg, A. Morales, T. Asfour, and D. Kragić, “Data-driven grasp synthesis - A
survey,” IEEE Transactions on Robotics, vol. 30, no. 2, pp. 289–309, 2014. 1, 1.1,
2, 2.1, 2.2, 2.2, 4

[5] D. Morrison, P. Corke, and J. Leitner, “Closing the Loop for Robotic Grasping: A
Real-time, Generative Grasp Synthesis Approach,” Robotics: Science and Systems,
pp. 1–10, 2018. 1, 2, 2.2, 2.1, 2.2.2, 2.3.1, 3, 3.1.2, 3.1.2, 3.1.3, 3.2.2, 4, 4, 4.1.3, 4.3,
5, 5.1.1, 5.3, 5.2, 5.2

[6] R. Hodson, “A gripping problem,” Nature, vol. 557, pp. 523–525, 2018. 1.1

[7] D. Morrison, A. W. Tow, M. McTaggart, R. Smith, N. Kelly-Boxall, S. Wade-Mccue,
J. Erskine, R. Grinover, A. Gurman, T. Hunn, D. Lee, A. Milan, T. Pham, G. Rallos,
A. Razjigaev, T. Rowntree, K. Vijay, Z. Zhuang, C. Lehnert, I. Reid, P. Corke,
and J. Leitner, “Cartman: The Low-Cost Cartesian Manipulator that Won the
Amazon Robotics Challenge,” in Proc. IEEE International Conference on Robotics
and Automation, pp. 7757–7764, Institute of Electrical and Electronics Engineers
Inc., 9 2018. 1.1, 2.2

[8] J. Leitner, “Picking the right robotics challenge,” Nature Machine Intelligence,
vol. 1, p. 162, 3 2019. 1.1

[9] E. Matsumoto, M. Saito, A. Kume, and J. Tan, “End-to-End Learning of Object
Grasp Poses in the Amazon Robotics Challenge,” Advances on Robotic Item Picking,
pp. 63–72, 2020. 1.1

122

[10] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-Net 3.0: Com-
puting Robust Vacuum Suction Grasp Targets in Point Clouds Using a New Analytic
Model and Deep Learning,” in Proc. IEEE International Conference on Robotics and
Automation, pp. 5620–5627, IEEE, 9 2018. 1.1, 2, 2.2, 2.1, 2.2.1, 2.3.1, 5.3, 6.2.1

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” Advances in Neural Information Processing Sys-
tems, p. 19, 2012. 1.1, 2.2, 3.1

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2016-Decem, pp. 770–778, 2016. 1.1, 2, 2.2.2, 3.1

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for
Biomedical Image Segmentation,” in International Conference on Medical image
computing and computer-assisted intervention, pp. 234–241, 2015. 1.1, 2, 5.1.1, 5.2,
5.1, 5.2, 5.9, 5.10, 5.11

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Ob-
ject Detection with Region Proposal Networks,” in Advances in Neural Information
Processing Systems, pp. 241–294, 2017. 1.1

[15] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017. 1.1, 2,
2.2

[16] K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber, “A Survey on Learning-
Based Robotic Grasping,” Current Robotics Reports, vol. 1, pp. 239–249, 12 2020.
1.1, 1.1, 2.2, 2.2.2, 2.2.3, 2.3.3, 4

[17] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based robotic grasping from ob-
ject localization, object pose estimation to grasp estimation for parallel grippers: a
review,” Artificial Intelligence Review, 2020. 1.1, 2.2

[18] B. Yang, D. Jayaraman, J. Zhang, and S. Levine, “REPLAB: A reproducible low-
cost arm benchmark for robotic learning,” in Proc. IEEE International Conference
on Robotics and Automation, pp. 8691–8697, 5 2019. 1.1a, 2.3.2, 5.1.5, 6.2.1

[19] W. Prew, T. P. Breckon, M. Bordewich, and U. Beierholm, “Evaluating Gaussian
Grasp Maps for Generative Grasping Models,” in Proc. IEEE International Joint
Conference on Neural Networks, 2022. 1.1a

[20] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection,”
International Journal of Robotics Research, vol. 37, no. 4-5, pp. 421–436, 2018. 1.1b,
2.1, 2.2.3, 2.3, 2.3.2, 3, 3.1.1, 5.3

[21] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from 50K
tries and 700 robot hours,” in Proc. IEEE International Conference on Robotics and
Automation, vol. 2016-June, pp. 3406–3413, 9 2016. 1.1c, 2.1, 2.3.1, 2.2, 2.3, 2.3.2,
2.3.2

123

[22] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, and K. Gold-
berg, “Learning ambidextrous robot grasping policies,” Science Robotics, vol. 4, 1
2019. 1.1d, 2.2, 2.1, 2.2.1

[23] P. Gaussier and A. Pitti, “Reaching and Grasping : what we can learn from psy-
chology and robotics,” in Reach-to-Grasp Behaviour, pp. 349–366, Taylor & Francis
Group, 2018. 1.1

[24] A. M. Dollar, L. P. Jentoft, J. H. Gao, and R. D. Howe, “Contact sensing and grasp-
ing performance of compliant hands,” Autonomous Robots, vol. 28, no. 1, pp. 65–75,
2010. 1.1

[25] L. G. Ungerleider and M. Mishkin, “Two cortical visual systems,” in Analysis of
Visual Behaviour, MIT Press, 1982. 1.1, 2.2, 2.2.2, 3.1.2, 6.1

[26] M. A. Goodale and A. D. Milner, “Separate Visual Pathways for Perception and
Action,” Trends in Neurosciences, vol. 15, no. 1, pp. 20–25, 1992. 1.1, 2.2, 2.2.2,
3.1, 3.1.2, 3.1.3, 6.1

[27] A. D. Milner, “How do the two visual streams interact with each other?,” Exper-
imental Brain Research, vol. 235, no. 5, pp. 1297–1308, 2017. 1.1, 2.2, 2.2.2, 3.1,
3.1.2, 6.1

[28] N. Kanwisher, M. M. Chun, and J. McDermott, “The fusiform face area: a module in
human extrastriate cortex specialized for face perception,” Journal of Neuroscience,
vol. 17, no. 11, pp. 4302–11, 1997. 1.1, 6.2.3

[29] M. A. Goodale, “Vision for perception and vision for action in the primate brain.,”
Novartis Foundation Symposium, vol. 218, pp. 21–34, 1998. 1.1

[30] R. A. Andersen, G. K. Essick, and R. M. Siegel, “Encoding of Spatial Location by
Posterior Parietal Neurons,” Science, vol. 230, no. 4724, pp. 456–458, 1985. 1.1

[31] D. Zipser and R. A. Andersen, “A back-propagation programmed network that sim-
ulates response properties of a subset of posterior parietal neurons,” Nature, vol. 331,
no. 6158, pp. 679–684, 1988. 1.1

[32] E. Salinas and P. Thier, “Gain modulation: A major computational principle of the
central nervous system,” in Neuron, 2000. 1.1

[33] S. Mahé, R. Braud, P. Gaussier, M. Quoy, and A. Pitti, “Exploiting the gain-
modulation mechanism in parieto-motor neurons: Application to visuomotor trans-
formations and embodied simulation,” Neural Networks, vol. 62, pp. 102–111, 2 2015.
1.1

[34] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis, “Object-based
affordances detection with Convolutional Neural Networks and dense Conditional
Random Fields,” in Proc. International Conference on Intelligent Robots and Sys-
tems, pp. 5908–5915, Institute of Electrical and Electronics Engineers Inc., 12 2017.
1.1, 3

[35] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser, “Learn-
ing Synergies between Pushing and Grasping with Self-Supervised Deep Reinforce-
ment Learning,” Proc. International Conference on Intelligent Robots and Systems,
pp. 4238–4245, 2018. 1.1, 2, 2.2, 6.2.3

124

[36] P. Ardon, E. Pairet, R. P. Petrick, S. Ramamoorthy, and K. S. Lohan, “Learn-
ing Grasp Affordance Reasoning through Semantic Relations,” IEEE Robotics and
Automation Letters, vol. 4, pp. 4571–4578, 6 2019. 1.1, 2.2.2, 2.3.1, 3, 3.1.3, 3.3,
6.2.3

[37] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA: MIT
Press, 2016. 1.1, 2.2, 2.2.3, 2.3, 4.1.2

[38] S. Kumra and C. Kanan, “Robotic grasp detection using deep convolutional neu-
ral networks,” Proc. International Conference on Intelligent Robots and Systems,
vol. 2017-Septe, pp. 769–776, 2017. 1.4, 2, 2.2, 2.2.2, 2.3.1, 2.3.2, 3, 3.1.2

[39] K. B. Shimoga, “Robot grasp synthesis algorithms: A survey,” International Journal
of Robotics Research, vol. 15, no. 3, pp. 230–266, 1996. 2, 2.1, 2.2, 6.2.1

[40] Z. Ju, C. Yang, Z. Li, L. Cheng, and H. Ma, “Teleoperation of humanoid baxter robot
using haptic feedback,” in Proc. International Conference on Multisensor Fusion and
Information Integration for Intelligent Systems, pp. 3–8, IEEE, 2014. 2

[41] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Uni-
fied, Real-Time Object Detection,” in Proc. International Conference on Computer
Vision and Pattern Recognition, vol. 2016-Decem, pp. 779–788, 2016. 2, 2.2, 2.2.2

[42] Y. Jiang, S. Moseson, and A. Saxena, “Efficient grasping from RGBD images: Learn-
ing using a new rectangle representation,” in Proc. International Conference on
Robotics and Automation, pp. 3304–3311, IEEE, 2011. 2, 2.2, 2.2.2, 2.3.1, 2.5, 2.2,
2.3, 2.3.2, 3.1.2, 5, 5.1.2, 5.1.3, 5.2

[43] U. Asif, J. Tang, and S. Harrer, “Densely Supervised Grasp Detector (DSGD),”
Proc. AAAI Conference on Artificial Intelligence, vol. 33, pp. 8085–8093, 2019. 2,
2.2.2, 2.3.2, 3, 4.1.1

[44] C. Finn, I. J. Goodfellow, and S. Levine, “Unsupervised Learning for Physical In-
teraction through Video Prediction,” IEEE Transactions on Robotics, vol. 30, no. 2,
pp. 289–309, 2016. 2

[45] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent Models of Visual At-
tention,” in Proc. zhanAdvances in Neural Information Processing Systems, vol. 27,
pp. 1–9, 2014. 2

[46] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, “Towards vision-based
deep reinforcement learning for robotic motion control,” in Proc. Australasian Con-
ference on Robotics and Automation, 2015. 2, 2.3.1, 2.2

[47] D. Morrison, P. Corke, and J. Leitner, “Learning robust, real-time, reactive robotic
grasping,” International Journal of Robotics Research, vol. 39, pp. 183–201, 3 2019.
2, 2.2.2, 3, 3.2.3, 4.1, 4.2.3, 4.3, 4.4, 5.1.1

[48] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew,
J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight Experience Replay,” in Proc.
Advances in Neural Information Processing Systems, 2017. 2, 2.2.3, 2.3.3

[49] B. Siciliano, O. Khatib, and T. Kröger, Springer Handbook of Robotics. Berlin:
Springer International Publishing, 1 2016. 2, 2.2.2, 4

125

[50] A. Sahbani, S. El-Khoury, and P. Bidaud, “An overview of 3D object grasp synthesis
algorithms,” Robotics and Autonomous Systems, vol. 60, pp. 326–336, 3 2012. 2.1,
2.2

[51] R. M. Murray, Z. Li, and S. Shankar Sastry, A Mathematical Introduction to Robotic
Manipulation. CRC Press, 1994. 2.1

[52] D. Prattichizzo and J. C. Trinkle, “Grasping,” in Springer Handbook of Robotics,
pp. 955–988, Cham: Springer, 2008. 2.1

[53] M. T. Mason and J. K. Salisbury Jr, Robot Hands and the Mechanics of Manipula-
tion. MIT Press, 1985. 2.1

[54] V.-D. Nguyen, “Constructing Force-Closure Grasps,” International Journal of
Robotics Research, vol. 7, no. 3, pp. 3–16, 1988. 2.1

[55] J. Montana, David, “The Condition for Contact Grasp Stability,” in Proc. Interna-
tional Conference on Robotics and Automation, 1991. 2.1

[56] J. C. Trinkle, “On the Stability and Instantaneous Velocity of Grasped Frictionless
Objects,” in Proc. International Conference on Robotics and Automation, pp. 560–
572, 1992. 2.1

[57] A. Bicchi, “On the Closure Properties of Robotic Grasping,” The International
Journal of Robotics Research, vol. 14, no. 4, pp. 319–334, 1995. 2.1

[58] W. S. Howard and V. Kumar, “On the stability of grasped objects,” IEEE Trans-
actions on Robotics and Automation, vol. 12, no. 6, pp. 904–917, 1996. 2.1

[59] T. Yoshikawa and K. Nagai, “Evaluation and Determination of Grasping Forces for
Multi-fingered Hands,” in International Journal of Robotics Research, pp. 2–5, 1988.
2.1

[60] Z. Li and S. S. Sastry, “Task-Oriented Optimal Grasping by Multifingered Robot
Hands,” IEEE Journal on Robotics and Automation, vol. 4, no. 1, pp. 32–44, 1988.
2.1

[61] Z. Li, P. Hsu, and S. Sastry, “Grasping and Coordinated Manipulation by a Multi-
fingered Robot Hand,” The International Journal of Robotics Research, vol. 8, no. 4,
pp. 33–50, 1989. 2.1

[62] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging to grasping,” International
Journal of Robotics Research, vol. 31, no. 7, pp. 886–900, 2012. 2.1

[63] C. Rosales, R. Suárez, M. Gabiccini, and A. Bicchi, “On the synthesis of feasi-
ble and prehensile robotic grasps,” Proc. International Conference on Robotics and
Automation, pp. 550–556, 2012. 2.1

[64] J. Seo, S. Kim, and V. Kumar, “Planar, Bimanual, Whole-Arm Grasping,” in Proc.
International Conference on Robotics and Automation, pp. 3271–3277, IEEE, 2012.
2.1

[65] A. Morales, T. Asfour, P. Azad, S. Knoop, and R. Dillmann, “Integrated grasp plan-
ning and visual object localization for a humanoid robot with five-fingered hands,”
in Proc. International Conference on Intelligent Robots and Systems, pp. 5663–5668,
2006. 2.2

126

[66] S. Ekvall and D. Kragic, “Learning and evaluation of the approach vector for auto-
matic grasp generation and planning,” in Proc. International Conference on Robotics
and Automation, pp. 4715–4720, 2007. 2.2

[67] Y. h. Li, Q. j. Lei, C. Cheng, G. Zhang, W. Wang, and Z. Xu, “A review: Machine
learning on robotic grasping,” in Proc. International Conference on Machine Vision,
p. 54, 2018. 2.2

[68] R. Liu, F. Nageotte, P. Zanne, M. de Mathelin, and B. Dresp-Langley, “Deep rein-
forcement learning for the control of robotic manipulation: A focussed mini-review,”
Robotics, vol. 10, no. 1, pp. 1–13, 2021. 2.2, 2.2.3

[69] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp Pose Detection in Point
Clouds,” International Journal of Robotics Research, vol. 36, no. 13-14, pp. 1455–
1473, 2017. 2.2, 2.2.1

[70] F. Spenrath and A. Pott, “Gripping Point Determination for Bin Picking Using
Heuristic Search,” in Procedia CIRP, vol. 62, pp. 606–611, Elsevier B.V., 1 2017. 2.2

[71] T. Hodăn, J. Matas, and . Obdržálek, “On evaluation of 6D object pose estimation,”
in Proc. European Conference on Computer Vision, pp. 609–619, Springer Verlag,
2016. 2.2

[72] R. Bregier, F. Devernay, L. Leyrit, and J. L. Crowley, “Symmetry Aware Evaluation
of 3D Object Detection and Pose Estimation in Scenes of Many Parts in Bulk,” in
Proc. International Conference on Computer Vision Workshops, vol. 2018-Janua,
pp. 2209–2218, 2017. 2.2

[73] F. Spenrath and A. Pott, “Using Neural Networks for Heuristic Grasp Planning in
Random Bin Picking,” in Proc. International Conference on Automation Science
and Engineering, pp. 258–263, IEEE, 2018. 2.2

[74] A. Saxena, J. Driemeyer, J. Kearns, C. Osondu, and A. Y. Ng, “Learning to grasp
novel objects using vision,” Springer Tracts in Advanced Robotics, vol. 39, pp. 33–42,
2008. 2.2, 2.3.2, 2.3

[75] M. Adjigble, N. Marturi, V. Ortenzi, V. Rajasekaran, P. Corke, and R. Stolkin,
“Model-free and learning-free grasping by Local Contact Moment matching,” in
Proc. International Conference on Intelligent Robots and Systems, pp. 2933–2940,
Institute of Electrical and Electronics Engineers Inc., 12 2018. 2.2

[76] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Gold-
berg, “Dex-Net 2.0: Deep learning to plan Robust grasps with synthetic point clouds
and analytic grasp metrics,” Robotics: Science and Systems, vol. 13, 3 2017. 2.2,
2.1, 2.2.1, 2.2.2, 2.3.1, 2.3, 2.3.2, 2.3.2

[77] J. Redmon and A. Angelova, “Real-time grasp detection using convolutional neural
networks,” in Proc. International Conference on Robotics and Automation, pp. 1316–
1322, 2015. 2.2, 2.1, 2.2.2, 2.3.1, 2.3.1, 2.3.2, 3, 3.0.1, 3.1, 3.1.2, 4, 4.2, 5

[78] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” Inter-
national Journal of Robotics Research, vol. 34, no. 4-5, pp. 705–724, 2015. 2.2, 2.1,
2.2.1, 2.3.1, 2.5, 2.2, 2.3.1, 2.3.2, 2.3, 2.3.2, 2.7, 3, 3.0.1, 3.1.1, 3.1, 3.1.2, 3.1.2, 3.2.1,
3.2.2, 3.2.2, 4.1.2, 4.1.3, 4.2.3, 5, 5.1.2, 5.1.3, 5.2

127

[79] L. Pinto and A. Gupta, “Learning to push by grasping: Using multiple tasks for ef-
fective learning,” Proc. IEEE International Conference on Robotics and Automation,
pp. 2161–2168, 9 2017. 2.2, 2.2.1, 6.2.3

[80] X. Zhou, X. Lan, H. Zhang, Z. Tian, Y. Zhang, and N. Zheng, “Fully Convolu-
tional Grasp Detection Network with Oriented Anchor Box,” Proc. International
Conference on Intelligent Robots and Systems, pp. 7223–7230, 12 2018. 2.2, 2.2.2

[81] D. Park, Y. Seo, D. Shin, J. Choi, and S. Y. Chun, “A Single Multi-Task Deep Neural
Network with Post-Processing for Object Detection with Reasoning and Robotic
Grasp Detection,” in Proc. International Conference on Robotics and Automation,
pp. 7300–7306, 2020. 2.2

[82] M. Zhu and C. Fu, “Convolutional Neural Networks combined with Runge-Kutta
Methods,” ArXiv, pp. 1–10, 2018. 2.2

[83] J. Wang, Y. Ma, L. Zhang, R. X. Gao, and D. Wu, “Deep learning for smart man-
ufacturing: Methods and applications,” Journal of Manufacturing Systems, vol. 48,
pp. 144–156, 2018. 2.2

[84] Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun, “PVN3D: A deep point-wise
3D keypoints voting network for 6DoF pose estimation,” in Proc. Computer Vision
and Pattern Recognition, pp. 11629–11638, IEEE Computer Society, 2020. 2.2

[85] A. Mousavian, C. Eppner, and D. Fox, “6-DOF GraspNet: Variational grasp gen-
eration for object manipulation,” in Proc. International Conference on Computer
Vision, pp. 2901–2910, 5 2019. 2.2, 2.1

[86] B. Zhao, H. Zhang, X. Lan, H. Wang, Z. Tian, and N. Zheng, “REGNet: REgion-
based Grasp Network for Single-shot Grasp Detection in Point Clouds,” in Proc.
International Conference on Robotics and Automation, pp. 13474–13480, 2 2021.
2.2

[87] M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welin-
der, L. Weng, and W. Zaremba, “Learning dexterous in-hand manipulation,” Inter-
national Journal of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020. 2.2, 6.2.1

[88] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen,
E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine, “QT-Opt: Scalable Deep
Reinforcement Learning for Vision-Based Robotic Manipulation,” in Proc. Confer-
ence on Robotic Learning, pp. 651–673, 2018. 2.1, 2.2.3

[89] V. Satish, J. Mahler, and K. Goldberg, “On-policy dataset synthesis for learning
robot grasping policies using fully convolutional deep networks,” IEEE Robotics and
Automation Letters, vol. 4, pp. 1357–1364, 4 2019. 2.1, 2.2.1, 5.3

[90] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz,
S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-Real via Sim-to-Sim: Data-efficient
Robotic Grasping via Randomized-to-Canonical Adaptation Networks,” in Proc.
Computer Vision and Pattern Recognition, 2019. 2.1, 2.2.3, 2.3.2, 2.3.3

[91] D. Park and S. Y. Chun, “Classification based Grasp Detection using Spatial Trans-
former Network,” in Proc. Conference on Robotics Research, 2018. 2.2.1

128

[92] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry, K. Kohlhoff,
T. Kroger, J. Kuffner, and K. Goldberg, “Dex-Net 1.0: A cloud-based network of 3D
objects for robust grasp planning using a Multi-Armed Bandit model with correlated
rewards,” in Proc. International Conference on Robotics and Automation, pp. 1957–
1964, Institute of Electrical and Electronics Engineers Inc., 6 2016. 2.2.1, 2.2.2, 2.3,
3.1.1

[93] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in Proc. Advances in
Neural Information Processing Systems, pp. 2672–2680, 2014. 2.2.2, 2.3.3

[94] A. Depierre, E. Dellandréa, and L. Chen, “Optimizing correlated graspability score
and grasp regression for better grasp prediction,” ArXiv, pp. 1–7, 2 2020. 2.2.2

[95] D. Guo, F. Sun, H. Liu, T. Kong, B. Fang, and N. Xi, “A hybrid deep architec-
ture for robotic grasp detection,” in Proc.International Conference on Robotics and
Automation, pp. 1609–1614, IEEE, 7 2017. 2.2.2, 2.3.2

[96] R. Caruana, “A Dozen Tricks with Multitask Learning,” in Neural networks: Tricks
of the trade, pp. 165–191, Springer, Berlin, Heidelberg, 1998. 2.2.2, 3

[97] S. Ruder, “An Overview of Multi-Task Learning in Deep Neural Networks,” ArXiv,
6 2017. 2.2.2, 3

[98] R. Girshick, “Fast R-CNN,” in Proc. International Conference on Computer Vision,
pp. 1440–1448, 2015. 2.2.2

[99] R. Collobert and J. Weston, “A unified architecture for natural language processing:
Deep neural networks with multitask learning,” in Proc. International Conference
on Machine Learning, pp. 160–167, 2008. 2.2.2

[100] X. Liu, P. He, W. Chen, and J. Gao, “Multi-task deep neural networks for nat-
ural language understanding,” in Proc. Association for Computational Linguistics,
pp. 4487–4496, 1 2020. 2.2.2

[101] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network learning
for speech recognition and related applications: An overview,” in Proc. International
Conference on Acoustics, Speech and Signal Processing, pp. 8599–8603, 10 2013. 2.2.2

[102] Z. Dong, S. Liu, T. Zhou, H. Cheng, L. Zeng, X. Yu, and H. Liu, “PPR-Net: Point-
wise Pose Regression Network for Instance Segmentation and 6D Pose Estimation
in Bin-picking Scenarios,” in Proc. Conference on Intelligent Robots and Systems,
pp. 1773–1780, Institute of Electrical and Electronics Engineers Inc., 11 2019. 2.2.2

[103] D. A. Klein, B. Illing, B. Gaspers, D. Schulz, and A. B. Cremers, “Hierarchical
Salient Object Detection for Assisted Grasping,” in Proc. International Conference
on Robotics and Automation, pp. 1–15, 2017. 2.2.2, 3

[104] E. Jang, S. Vijayanarasimhan, P. Pastor, J. Ibarz, and S. Levine, “End-to-End
Learning of Semantic Grasping,” in Proc. Conference on Robotic Learning, pp. 119–
132, 2017. 2.2.2, 3

[105] M. Rei, “Semi-supervised multitask learning for sequence labeling,” in Proc. Con-
ference Association for Computational Linguistics, vol. 1, pp. 2121–2130, 4 2017.
2.2.2

129

[106] J. Baxter, “A Model of Inductive Bias Learning,” Journal of Artificial Intelligence
Research, vol. 12, p. 149, 2000. 2.2.2, 3

[107] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task Learning Using Uncertainty to
Weigh Losses for Scene Geometry and Semantics,” in Proc. Computer Vision and
Pattern Recognition, pp. 7482–7491, 2018. 2.2.2, 3.1.2, 3.1.2, 3.2.2, 3.2.3, 3.3

[108] D. Morrison, P. Corke, and J. Leitner, “Multi-view picking: Next-best-view reach-
ing for improved grasping in clutter,” in Proc. IEEE International Conference on
Robotics and Automation, vol. 2019-May, pp. 8762–8768, 9 2019. 2.2.2

[109] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA: MIT Press, 2018. 2.2.3, 1, 2.3, 2.3.2

[110] C. Finn, T. Yu, J. Fu, P. Abbeel, and S. Levine, “Generalising Skills with Semi-
Supervised Reinforcement Learning,” in Proc. International Conference on Learning
Representation, pp. 1–11, 2017. 2.2.3

[111] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-
man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep
neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016. 2.2.3

[112] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random synaptic
feedback weights support error backpropagation for deep learning,” Nature Commu-
nications, vol. 7, pp. 1–10, 2016. 2.2.3

[113] D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz, and S. Levine, “Deep Rein-
forcement Learning for Vision-Based Robotic Grasping: A Simulated Comparative
Evaluation of Off-Policy Methods,” in Proc. International Conference on Robotics
and Automation, pp. 6284–6291, 2018. 2.2.3

[114] C. Watkins and P. Dayan, “Q-Learning,” Machine Learning, vol. 8, pp. 279–292,
1992. 2.2.3

[115] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution Strategies as a
Scalable Alternative to Reinforcement Learning,” in ArXiv, 3 2017. 2.2.3

[116] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, “An
Introduction to Deep Reinforcement Learning,” Foundations and Trends in Machine
Learning, vol. 11, pp. 219–354, 12 2018. 2.2.3, 2.3

[117] S. Levine, N. Wagener, and P. Abbeel, “Learning Contact-rich Manipulation Skills
with Guided Policy Search,” in Proc. International Conference on Robotics and
Automation, pp. 156–163, 2015. 2.2.3

[118] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl,
T. Lampe, and M. Riedmiller, “Leveraging Demonstrations for Deep Reinforcement
Learning on Robotics Problems with Sparse Rewards,” ArXiv, pp. 1–10, 2017. 2.2.3

[119] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Overcoming
Exploration in Reinforcement Learning with Demonstrations,” in Proc. International
Conference on Robotics and Automation, pp. 6292–6299, 2018. 2.2.3

130

[120] S. Song, A. Zeng, J. Lee, and T. Funkhouser, “Grasping in the Wild: Learning
6DoF Closed-Loop Grasping from Low-Cost Demonstrations,” IEEE Robotics and
Automation Letters, vol. 5, pp. 4978–4985, 7 2020. 2.2.3

[121] B. Spector and S. Belongie, “Sample-Efficient Reinforcement Learning through
Transfer and Architectural Priors,” in ArXiv, 1 2018. 2.2.3

[122] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation
of deep networks,” in Proc. International Conference on Machine Learning, vol. 3,
pp. 1856–1868, 2017. 2.2.3

[123] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-Shot Visual Imitation
Learning via Meta-Learning,” in Proc. International Conference on Machine Learn-
ing, pp. 1126–1135, 2017. 2.2.3

[124] M. Q. Mohammed, K. L. Chung, and C. S. Chyi, “Review of deep reinforcement
learning-based object grasping: Techniques, open challenges, and recommenda-
tions,” IEEE Access, vol. 8, pp. 178450–178481, 2020. 2.3

[125] A. Saxena, J. Driemeyer, J. Kearns, and A. Y. Ng, “Robotic Grasping of Novel
Objects,” in Proc. Advances in Neural Information Processing Systems, pp. 1209–
1216, 2007. 2.3.1, 2.2

[126] A. B. Watson, “QUEST+: A general multidimensional Bayesian adaptive psycho-
metric method,” Journal of Vision, vol. 17, no. 3, p. 10, 2017. 2.3.1

[127] Z. Wang, Z. Li, B. Wang, and H. Liu, “Robot grasp detection using multimodal
deep convolutional neural networks,” Advances in Mechanical Engineering, vol. 8,
no. 9, pp. 1–12, 2016. 2.3.1, 2.2

[128] R. Calandra, A. Owens, D. Jayaraman, J. Lin, W. Yuan, J. Malik, E. H. Adelson,
and S. Levine, “More than a feeling: Learning to grasp and regrasp using vision and
touch,” IEEE Robotics and Automation Letters, vol. 3, pp. 3300–3307, 10 2018. 2.2,
2.3.1, 6.2.1

[129] A. Depierre, E. Dellandrea, and L. Chen, “Jacquard: A Large Scale Dataset for
Robotic Grasp Detection,” in Proc. International Conference on Intelligent Robots
and Systems, pp. 3511–3516, IEEE, 2018. 2.3.1, 2.3, 2.3.2, 2.3.2, 2.8, 3, 3.1.1, 3.1.2,
3.2.1, 3.2.2, 3.2.2, 3.2.2, 4, 4.1.2, 4.1.3, 4.3, 5, 5.1.2, 5.1.3, 5.2

[130] L. Y. Ku, E. Learned-Miller, and R. Grupen, “Associating Grasp Configurations
with Hierarchical Features in Convolutional Neural Networks,” in Proc. International
Conference on Intelligent Robots and Systems, pp. 2434–2441, 2017. 2.3.1

[131] F. J. Chu, R. Xu, and P. A. Vela, “Real-world Multi-object, Multi-grasp Detection,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3355–3362, 2018. 2.3.1

[132] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel objects using
vision,” International Journal of Robotics Research, vol. 27, no. 2, pp. 157–173, 2008.
2.3

[133] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar, “Bench-
marking in Manipulation Research: Using the Yale-CMU-Berkeley Object and
Model Set,” IEEE Robotics and Automation Magazine, vol. 22, pp. 36–52, 9 2015.
2.3, 2.6, 2.3.2, 3.1.1

131

[134] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection,”
International Journal of Robotics Research, vol. 37, no. 4-5, pp. 421–436, 2018. 2.3.2

[135] J. Tobin, L. Biewald, R. Duan, M. Andrychowicz, A. Handa, V. Kumar, B. Mc-
Grew, A. Ray, J. Schneider, P. Welinder, W. Zaremba, and P. Abbeel, “Domain
randomization and generative models for robotic grasping,” in Proc. International
Conference on Intelligent Robots and Systems, pp. 3482–3489, 2017. 2.3.2, 2.3.3

[136] R. Julian, B. Swanson, G. S. Sukhatme, S. Levine, C. Finn, and K. Hausman,
“Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic Reinforcement
Learning,” in Proc. Conference on Robotic Learning, 4 2020. 2.3.2

[137] B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa, P. Abbeel,
and A. M. Dollar, “Yale-CMU-Berkeley dataset for robotic manipulation research,”
IEEE International Journal of Robotics Research, vol. 36, pp. 261–268, 4 2017. 2.6,
2.3.2, 3.1.1

[138] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, “ShapeNet: An Information-
Rich 3D Model Repository,” 12 2015. 2.3.2

[139] M. Savva, A. X. Chang, and P. Hanrahan, “Semantically-Enriched 3D Models for
Common-sense Knowledge,” in CVPR Workshop on Functionality, Physics, Inten-
tionality and Causality, 2015. 2.3.2

[140] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs,
J. Ibarz, P. Pastor, K. Konolige, S. Levine, and V. Vanhoucke, “Using Simulation
and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping,” in Proc.
International Conference on Robotics and Automation, pp. 4243–4250, Institute of
Electrical and Electronics Engineers Inc., 9 2018. 2.3.3

[141] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-Real Transfer of
Robotic Control with Dynamics Randomization,” in IEEE International Conference
on Robotics and Automation, pp. 3803–3810, Institute of Electrical and Electronics
Engineers Inc., 9 2018. 2.3.3

[142] A. T. Miller and P. K. Allen, “Graspit: A versatile simulator for robotic grasping,”
IEEE Robotics and Automation Magazine, vol. 11, pp. 110–122, 12 2004. 2.3.3

[143] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for
games, robotics and machine learning,” 2016. 2.3.3

[144] B. O. Community, Blender - a 3D modelling and rendering package. Amsterdam:
Stitching Blender Foundation, 2018. 2.3.3

[145] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source
multi-robot simulator,” in Proc. International Conference on Intelligent Robots and
Systems, vol. 3, pp. 2149–2154, 2004. 2.3.3

[146] S. James, A. J. Davison, and E. Johns, “Transferring End-to-End Visuomotor Con-
trol from Simulation to Real World for a Multi-Stage Task,” in Proc. Conference on
Robotic Learning, 2017. 2.3.3

132

[147] M. Danielczuk, M. Matl, S. Gupta, A. Li, A. Lee, J. Mahler, and K. Goldberg,
“Segmenting unknown 3D objects from real depth images using mask R-CNN trained
on synthetic data,” in Proc. International Conference on Robotics and Automation,
pp. 7283–7290, Institute of Electrical and Electronics Engineers Inc., 5 2019. 2.3.3

[148] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, V. Lempitsky, U. Dogan, M. Kloft, F. Orabona, T. Tommasi, and
A. Ganin, “Domain-Adversarial Training of Neural Networks,” Journal of Machine
Learning Research, vol. 17, pp. 1–35, 2016. 2.3.3

[149] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan, “Unsuper-
vised pixel-level domain adaptation with generative adversarial networks,” in Proc.
Computer Vision and Pattern Recognition, pp. 95–104, 2017. 2.3.3

[150] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari, “RL-CycleGAN:
Reinforcement Learning Aware Simulation-To-Real,” in Proc. Computer Vision and
Pattern Recognition, pp. 11157–11166, 2020. 2.3.3

[151] D. Katz, A. Venkatraman, M. Kazemi, J. A. Bagnell, and A. Stentz, “Perceiving,
learning, and exploiting object affordances for autonomous pile manipulation,” Au-
tonomous Robots, vol. 37, no. 4, pp. 369–382, 2014. 3

[152] H. Dang and P. K. Allen, “Semantic grasping: Planning task-specific stable robotic
grasps,” Autonomous Robots, vol. 37, no. 3, pp. 301–316, 2014. 3

[153] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A Convolutional
Neural Network for 6D Object Pose Estimation in Cluttered Scenes,” in Robotics:
Science and Systems, 11 2018. 3

[154] K. Hara, R. Vemulapalli, and R. Chellappa, “Designing Deep Convolutional Neural
Networks for Continuous Object Orientation Estimation,” ArXiv, pp. 1–10, 2017.
3.0.1, 3.1.2, 3.2.2

[155] G. A. Orban and F. Caruana, “The neural basis of human tool use,” Frontiers in
Psychology, vol. 5, no. 310, pp. 1–12, 2014. 3.1, 3.1.3, 6.2.3

[156] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” Computer Vision and Pattern Recognition,
pp. 248–255, 3 2009. 3.1

[157] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft COCO: Common objects in context,” in Proc. European
Conference on Computer Vision, pp. 740–755, 2014. 3.1, 3.1.2

[158] D. Morrison, P. Corke, and J. Leitner, “EGAD! An Evolved Grasping Analysis
Dataset for Diversity and Reproducibility in Robotic Manipulation,” IEEE Robotics
and Automation Letters, vol. 5, pp. 4368–4375, 3 2020. 3.1.2, 4, 4.1.1, 4.1.3, 4.3,
5.1.1, 5.1.2, 5.1.5, 5.5, 5.1.5, 5.2, 5.1, 5.2.2, 5.2.2, 5.7, 5.3, 6.1, 6.2.1

[159] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” in
Proc. International Conference on Learning Representations, vol. 4, pp. 1–13, 2016.
3.1.2, 3.1.3

133

[160] E. Johns, S. Leutenegger, and A. J. Davison, “Deep learning a grasp function for
grasping under gripper pose uncertainty,” Proc. International Conference on Intel-
ligent Robots and Systems, vol. 2016-Novem, pp. 4461–4468, 2016. 3.1.2

[161] G. Rizzolatti and M. Matelli, “Two different streams form the dorsal visual system:
Anatomy and functions,” Experimental Brain Research, vol. 153, no. 2, pp. 146–157,
2003. 3.1.3

[162] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, . Kaiser,
and I. Polosukhin, “Attention is all you need,” in Proc. Advances in Neural Infor-
mation Processing Systems, pp. 5999–6009, 6 2017. 3.1.3

[163] A. J. Kersey, T. S. Clark, C. A. Lussier, B. Z. Mahon, and J. F. Cantlon, “De-
velopment of tool representations in the dorsal and ventral visual object processing
pathways,” Cerebral Cortex, vol. 26, pp. 3135–3145, 7 2016. 3.1.3

[164] C. Koch and S. Ullman, “Shifts in Selective Visual Attention: Towards the Un-
derlying Neural Circuitry,” Human Neurobiology, vol. 4, no. 4, pp. 115–141, 1987.
3.2.1

[165] V. B. Mountcastle, R. A. Andersen, and B. C. Motter, “The influence of attentive
fixation upon the excitability of the light-sensitive neurons of the posterior parietal
cortex.,” Journal of Neuroscience, vol. 1, no. 11, pp. 1218–25, 1981. 3.2.1

[166] B. C. Motter and V. B. Mountcastle, “The functional properties of the light-sensitive
neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing
and opponent vector organization.,” Journal of Neuroscience, vol. 1, no. 1, pp. 3–26,
1981. 3.2.1

[167] J. R. Whitlock, “Posterior parietal cortex,” Current Biology, vol. 27, no. 14,
pp. R691–R695, 2017. 3.2.1

[168] Y. E. Cohen and R. A. Andersen, “A common reference frame for movement plans in
the posterior parietal cortex,” Nature Reviews Neuroscience, vol. 3, no. 7, pp. 553–
562, 2002. 3.2.1

[169] J. D. Crawford, W. P. Medendorp, and J. J. Marotta, “Spatial Transformations for
EyeHand Coordination,” Journal of Neurophysiology, vol. 92, no. 1, pp. 10–19, 2004.
3.2.1

[170] A. Takemura, Y. Inoue, K. Kawano, C. Quaia, and F. A. Miles, “Single-Unit Ac-
tivity in Cortical Area MST Associated With Disparity-Vergence Eye Movements:
Evidence for Population Coding,” Journal of Neurophysiology, vol. 85, pp. 2245–
2266, 5 2001. 3.2.1

[171] D. P. Munoz and R. H. Wurtz, “Saccade-related activity in monkey superior col-
liculus. I. Characteristics of burst and buildup cells.,” Journal of Neurophysiology,
vol. 73, pp. 2313–33, 6 1995. 3.2.1

[172] L. Itti, C. Koch, and E. Niebur, “A Model of Saliency-Based Visual Attention for
Rapid Scene Analysis,” Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 11, pp. 1254–1259, 1998. 3.2.1

134

[173] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H. Y. Shum, “Learning
to detect a salient object,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 33, no. 22, pp. 353–367, 2007. 3.2.1

[174] H. Laga, “A Survey on Deep Learning Architectures for Image-based Depth Recon-
struction,” ArXiv, pp. 1–28, 2019. 3.2.1

[175] H. Xue, S. Zhang, and D. Cai, “Depth Image Inpainting: Improving Low Rank Ma-
trix Completion with Low Gradient Regularization,” IEEE Transactions on Image
Processing, vol. 26, no. 9, pp. 4311–4320, 2017. 3.2.2, 5.1.1

[176] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in Proc.
International Conference on Learning Representations, pp. 1–15, 2015. 3.2.2, 4.1.3,
5.1.4

[177] Y. Pang, X. Zhao, L. Zhang, and H. Lu, “Multi-scale Interactive Network for Salient
Object Detection,” in Proc. Computer Vision and Pattern Recognition, pp. 9410–
9419, 2020. 3.2.2, 3.2.2

[178] W. Prew, T. Breckon, M. Bordewich, and U. Beierholm, “Improving Robotic Grasp-
ing on Monocular Images Via Multi-Task Learning and Positional Loss,” in Proc.
IEEE International Conference on Pattern Recognition, pp. 9843–9850, 2020. 4, 4.4,
5.2.1

[179] S. Kumra, S. Joshi, and F. Sahin, “Antipodal Robotic Grasping using Generative
Residual Convolutional Neural Network,” in Proc. International Conference on In-
telligent Robots and Systems, pp. 1–8, 9 2020. 4, 4.1.1, 4.1.1, 4.2, 4.1.2, 4.1.3, 4.2.2,
4.2, 4.2.3, 4.3, 4.4, 4.3, 5.1.1, 5.1.1, 5.1.2, 5.1.4, 5.2, 5.1, 5.2

[180] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014. 4.1.1

[181] U. Asif, J. Tang, and S. Harrer, “GraspNet: An efficient convolutional neural net-
work for real-time grasp detection for low-powered devices,” in Proc. International
Joint Conference on Artificial Intelligence, pp. 4875–4882, 2018. 4.1.1

[182] U. Asif, J. Tang, and S. Harrer, “Ensemblenet: Improving Grasp Detection using
an Ensemble of Convolutional Neural Networks,” in Proc. British Machine Vision
Conference, pp. 1–12, 2018. 4.1.1

[183] P. J. Huber, “Robust Estimation of a Location Parameter,” The Annals of Mathe-
matical Statistics, vol. 35, no. 1, pp. 73–101, 1964. 4.1.2

[184] G. Chalvatzaki, P. Maragos, J. Peters, and N. Gkanatsios, “Revisiting Grasp Map
Representation with a Focus on Orientation in Grasp Synthesis,” in Robotics: Sci-
ence and Systems Workshop on Visual Learning and Reasoning for Robotic Manip-
ulation, pp. 1–5, 2020. 5, 5.1.1, 5.1.1, 5.3, 5.1.2, 5.1.4, 5.1.4, 5.2, 5.2.1

[185] A. Depierre, E. Dellandréa, and L. Chen, “Scoring Graspability based on Grasp Re-
gression for Better Grasp Prediction,” in Proc. International Conference on Robotics
and Automation, pp. 4370–4376, 2021. 5.1.3, 5.2.1, 5.3

[186] G. Chalvatzaki, N. Gkanatsios, P. Maragos, and J. Peters, “Orientation Attentive
Robot Grasp Synthesis,” ArXiv, pp. 1–8, 2020. 5.1.4, 5.2.1

135

[187] K. Kleeberger, M. Völk, M. Moosmann, E. Thiessenhusen, F. Roth, R. Bormann,
and M. F. Huber, “Transferring Experience from Simulation to the Real World for
Precise Pick-And-Place Tasks in Highly Cluttered Scenes,” in IProc. International
Conference on Intelligent Robots and Systems, 2020. 5.2.2

[188] P. Falco, S. Lu, C. Natale, S. Pirozzi, and D. Lee, “A Transfer Learning Approach
to Cross-Modal Object Recognition: From Visual Observation to Robotic Haptic
Exploration,” IEEE Transactions on Robotics, vol. 35, pp. 987–998, 8 2019. 6.2.1

[189] M. A. Lee, Y. Zhu, Y. Zhu, P. Zachares, M. Tan, K. Srinivasan, S. Savarese, L. Fei-
Fei, A. Garg, A. Garg, and J. Bohg, “Making Sense of Vision and Touch: Learn-
ing Multimodal Representations for Contact-Rich Tasks,” IEEE Transactions on
Robotics, vol. 36, pp. 582–596, 6 2020. 6.2.1

[190] F. R. Hogan, J. Ballester, S. Dong, and A. Rodriguez, “Tactile Dexterity: Ma-
nipulation Primitives with Tactile Feedback,” in Proc. International Conference on
Robotics and Automation, pp. 8863–8869, Institute of Electrical and Electronics En-
gineers Inc., 2 2020. 6.2.1

[191] C. Yu and P. Wang, “Dexterous Manipulation for Multi-Fingered Robotic Hands
With Reinforcement Learning: A Review,” Frontiers in Neurorobotics, vol. 16,
p. 861825, 2022. 6.2.1

[192] H.-S. Fang, C. Wang, M. Gou, and C. Lu, “GraspNet-1Billion : A Large-Scale
Benchmark for General Object Grasping,” in Proc. Conference on Vision and Pat-
tern Recognition, 2020. 6.2.1

[193] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh,
S. Levine, and C. Finn, “RoboNet: Large-Scale Multi-Robot Learning,” in Proc.
Conference on Robotic Learning, pp. 1–13, 10 2019. 6.2.1

[194] J. Borràs, G. Alenyà, and C. Torras, “A Grasping-Centered Analysis for Cloth
Manipulation,” IEEE Transactions on Robotics, vol. 36, pp. 924–936, 6 2020. 6.2.2

[195] Y. Sun, J. Falco, M. A. Roa, and B. Calli, “Research Challenges and Progress in
Robotic Grasping and Manipulation Competitions,” IEEE Robotics and Automation
Letters, vol. 7, pp. 874–881, 4 2022. 6.2.2

[196] M. Antonelli, E. Chinellato, and A. P. Del Pobil, “On-Line Learning of the Visuo-
motor Transformations on a Humanoid Robot,” in Intelligent Autonomous Systems
(S. Lee, H. Cho, K.-J. Yoon, and J. Lee, eds.), pp. 853–861, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013. 6.2.3

[197] M. Antonelli, A. Gibaldi, F. Beuth, A. J. Duran, A. Canessa, M. Chessa, F. Solari,
A. P. Del Pobil, F. Hamker, E. Chinellato, and S. P. Sabatini, “A hierarchical system
for a distributed representation of the peripersonal space of a humanoid robot,”
IEEE Transactions on Autonomous Mental Development, vol. 6, no. 4, pp. 259–273,
2014. 6.2.3

[198] M. Antonelli, M. Rucci, and B. Shi, “Unsupervised learning of depth during coordi-
nated head/eye movements,” Proc. International Conference on Intelligent Robots
and Systems, pp. 5199–5204, 2016. 6.2.3

136

[199] H. Dang and P. K. Allen, “Semantic grasping: Planning robotic grasps functionally
suitable for an object manipulation task,” in Proc. International Conference on
Intelligent Robots and Systems, pp. 1311–1317, 2012. 6.2.3

[200] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter,
A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth, N. J. Joshi, R. Julian,
D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor,
J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan,
A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, R. At Google,
and E. Robots, “Do As I Can, Not As I Say: Grounding Language In Robotic
Affordances,” ArXiv, pp. 1–33, 2022. 6.2.3

[201] J. Atkinson and O. Braddick, “Visual Development,” in Oxford Handbook of De-
velopmental Psychology Vol. 1: Body and Mind (P. D. Zelazo, ed.), pp. 271–309,
Oxford University Press, 2013. 6.2.3

137

APPENDIX A

Classification Labels for the Cornell Grasping Dataset

A.1 List of Specific Classification Labels

Table A.1: List of specific classification labels for the Cornell Grasping Dataset.

Label Images

apple pcd0820r, pcd0821r, pcd0822r, pcd0823r

asparagus pcd0804r, pcd0805r, pcd0806r, pcd0807r

bag pcd0280r, pcd0281r, pcd0282r, pcd0283r

ball pcd0795r, pcd0796r

banana pcd0848r, pcd0849r, pcd0850r, pcd0851r, pcd0852r, pcd0853r,

pcd0854r, pcd0855r, pcd0856r, pcd0857r, pcd0858r, pcd0859r

baseball hat pcd0876r, pcd0877r, pcd0878r, pcd0879r, pcd0880r, pcd0881r,

pcd0882r, pcd0883r, pcd0884r, pcd0885r, pcd0886r, pcd0887r,

pcd0888r, pcd0889r, pcd0890r, pcd0891r

book pcd0622r, pcd0623r, pcd0624r, pcd0625r, pcd0626r, pcd0627r,

pcd0628r, pcd0629r, pcd0630r, pcd0631r, pcd0632r

bowl pcd0324r, pcd0325r, pcd0326r, pcd0801r, pcd0802r, pcd0803r

138

Label Images

box pcd0137r, pcd0138r, pcd0139r, pcd0140r, pcd0141r, pcd0142r,

pcd0143r, pcd0144r, pcd0145r, pcd0146r, pcd0147r, pcd0148r,

pcd0149r, pcd0150r, pcd0151r, pcd0152r, pcd0260r, pcd0261r,

pcd0262r, pcd0263r, pcd0343r, pcd0344r, pcd0345r, pcd0346r,

pcd0529r, pcd0530r, pcd0531r, pcd0532r

cable pcd0375r, pcd0376r, pcd0377r, pcd0378r, pcd0379r, pcd0380r,

pcd0381r, pcd0382r, pcd0383r, pcd0384r, pcd0385r, pcd0386r,

pcd0475r, pcd0476r, pcd0477r, pcd0478r

calculator pcd0256r, pcd0257r, pcd0258r, pcd0259r, pcd0351r, pcd0352r,

pcd0353r, pcd0354r, pcd0723r, pcd0724r, pcd0725r, pcd0726r

camera pcd0197r, pcd0198r, pcd0199r, pcd0200r, pcd0542r, pcd0543r,

pcd0544r, pcd0545r

can pcd0594r, pcd0595r, pcd0596r, pcd0597r, pcd0598r, pcd0599r,

pcd0600r, pcd0601r, pcd0602r, pcd0603r, pcd0604r, pcd0605r

can opener pcd0423r, pcd0424r, pcd0425r, pcd0426r, pcd0427r, pcd0428r,

pcd0429r, pcd0430r

candle pcd0447r, pcd0448r, pcd0449r, pcd0450r, pcd0451r, pcd0452r,

pcd0453r, pcd0454r, pcd0455r, pcd0456r, pcd0457r, pcd0458r,

pcd0459r, pcd0460r, pcd0461r, pcd0462r

capo pcd0193r, pcd0194r, pcd0195r, pcd0196r, pcd0755r, pcd0756r,

pcd0757r, pcd0758r

clip pcd0439r, pcd0440r, pcd0441r, pcd0442r

corkscrew pcd0431r, pcd0432r, pcd0433r, pcd0434r, pcd0435r, pcd0436r,

pcd0437r, pcd0438r

courgette pcd0864r, pcd0865r, pcd0866r, pcd0867r

cup pcd0312r, pcd0313r, pcd0314r, pcd0315r, pcd0316r, pcd0317r,

pcd0318r, pcd0319r, pcd0669r, pcd0670r, pcd0671r, pcd0672r,

pcd0673r, pcd0674r, pcd0675r, pcd0676r, pcd0677r

deodorant pcd0169r, pcd0170r, pcd0171r, pcd0172r, pcd0239r, pcd0240r,

pcd0241r, pcd0242r, pcd0743r, pcd0744r, pcd0745r, pcd0746r

139

Label Images

flip flop pcd0633r, pcd0634r, pcd0635r, pcd0636r, pcd0637r, pcd0638r,

pcd0639r, pcd0640r, pcd0641r, pcd0642r, pcd0643r, pcd0644r,

pcd0645r, pcd0646r, pcd0647r, pcd0648r

floss pcd0205r, pcd0206r, pcd0207r, pcd0208r

frisbee pcd0247r, pcd0387r, pcd0388r, pcd0479r, pcd0480r

glasses pcd0106r, pcd0107r, pcd0108r, pcd0109r, pcd0133r, pcd0134r,

pcd0135r, pcd0136r, pcd0153r, pcd0154r, pcd0155r, pcd0156r,

pcd0606r, pcd0607r, pcd0608r, pcd0609r, pcd0610r, pcd0611r,

pcd0612r, pcd0613r, pcd0614r, pcd0615r, pcd0616r, pcd0617r,

pcd0618r, pcd0619r, pcd0620r, pcd0621r

glasses case pcd0161r, pcd0162r, pcd0163r, pcd0164r

goggles pcd0185r, pcd0186r, pcd0187r, pcd0188r, pcd0189r, pcd0190r,

pcd0191r, pcd0192r

hairbrush pcd0165r, pcd0166r, pcd0167r, pcd0168r

headphones pcd0327r, pcd0328r, pcd0329r, pcd0330r

kiwi pcd0868r, pcd0869r, pcd0870r, pcd0871r

lemon pcd0828r, pcd0829r, pcd0830r, pcd0831r

lightbulb pcd0797r, pcd0798r, pcd0799r, pcd0800r, pcd1031r, pcd1032r

lime pcd0824r, pcd0825r, pcd0826r, pcd0827r

lock pcd0934r, pcd0935r, pcd0936r, pcd0937r, pcd0938r, pcd0939r,

pcd0940r, pcd0941r, pcd0942r, pcd0943r, pcd0944r, pcd0945r,

pcd0946r, pcd0947r, pcd0948r, pcd0949r, pcd1000r

lollipop pcd1001r, pcd1002r, pcd1003r

mango pcd0832r, pcd0833r, pcd0834r, pcd0835r

masher pcd0759r, pcd0760r, pcd0761r, pcd0762r

mouse pcd0122r, pcd0123r, pcd0124r, pcd0125r, pcd0443r, pcd0444r,

pcd0445r, pcd0446r, pcd0517r, pcd0518r, pcd0519r, pcd0520r

mouthguard pcd0217r, pcd0218r

mug pcd0320r, pcd0321r, pcd0322r, pcd0323r, pcd0347r, pcd0348r,

pcd0349r, pcd0350r, pcd0389r, pcd0390r, pcd0391r, pcd0392r,

pcd0525r, pcd0526r, pcd0527r, pcd0528r

140

Label Images

nail polish pcd0918r, pcd0919r, pcd0920r, pcd0921r, pcd0922r, pcd0923r,

pcd0924r, pcd0925r, pcd0926r, pcd0927r, pcd0928r, pcd0929r

onion pcd0808r, pcd0809r, pcd0810r, pcd0811r, pcd0812r, pcd0813r,

pcd0814r, pcd0815r

orange pcd0335r, pcd0336r, pcd0337r, pcd0338r

peeler pcd0419r, pcd0420r, pcd0421r, pcd0422r

pen pcd0129r, pcd0130r, pcd0131r, pcd0132r, pcd0331r, pcd0332r,

pcd0333r, pcd0334r, pcd0787r, pcd0788r, pcd0789r, pcd0790r,

pcd0791r, pcd0792r, pcd0793r, pcd0794r, pcd1004r, pcd1005r,

pcd1006r, pcd1007r, pcd1008r, pcd1009r, pcd1010r, pcd1011r, pcd1012r

pepper pcd0836r, pcd0837r, pcd0838r, pcd0839r, pcd0840r, pcd0841r,

pcd0842r, pcd0843r, pcd0844r, pcd0845r, pcd0846r, pcd0847r

pez pcd0649r, pcd0650r, pcd0651r, pcd0652r, pcd0653r, pcd0654r,

pcd0655r, pcd0656r, pcd0657r, pcd0658r, pcd0659r, pcd0660r,

pcd0661r, pcd0662r, pcd0663r, pcd0664r, pcd0665r, pcd0666r,

pcd0667r, pcd0668r

phone pcd0296r, pcd0297r, pcd0298r, pcd0299r, pcd0300r, pcd0301r,

pcd0302r, pcd0303r, pcd0304r, pcd0305r, pcd0306r, pcd0307r,

pcd0308r, pcd0309r, pcd0310r, pcd0311r

plum pcd0872r, pcd0873r, pcd0874r, pcd0875r

potato pcd0860r, pcd0861r, pcd0862r, pcd0863r

pour bottle pcd0463r, pcd0464r, pcd0465r, pcd0466r, pcd0467r, pcd0468r,

pcd0469r, pcd0470r, pcd0471r, pcd0472r, pcd0473r, pcd0474r,

pcd0930r, pcd0931r, pcd0932r, pcd0933r

razor pcd0219r, pcd0220r, pcd0221r, pcd0222r, pcd0223r, pcd0224r,

pcd0225r, pcd0226r, pcd0227r, pcd0228r, pcd0229r, pcd0230r,

pcd0231r, pcd0232r, pcd0233r, pcd0234r, pcd0763r, pcd0764r,

pcd0765r, pcd0766r, pcd0767r, pcd0768r, pcd0769r, pcd0770r

remote pcd0100r, pcd0101r, pcd0489r, pcd0490r, pcd0491r, pcd0492r,

pcd0493r, pcd0494r, pcd0495r, pcd0496r, pcd0501r, pcd0502r,

pcd0503r, pcd0504r

141

Label Images

ribbon pcd0521r, pcd0522r, pcd0523r, pcd0524r, pcd0678r, pcd0679r,

pcd0680r, pcd0681r, pcd0682r, pcd0683r, pcd0684r, pcd0685r, pcd0686r

rolling pin pcd0485r, pcd0486r, pcd0487r, pcd0488r, pcd0715r, pcd0716r,

pcd0717r, pcd0718r

scissors pcd0248r, pcd0249r, pcd0250r, pcd0251r, pcd0513r, pcd0514r,

pcd0515r, pcd0516r, pcd0546r, pcd0547r, pcd0548r, pcd0549r,

pcd0550r, pcd0551r, pcd0552r, pcd0553r, pcd0554r, pcd0555r,

pcd0556r, pcd0557r, pcd0558r, pcd0559r, pcd0560r, pcd0561r,

pcd0687r, pcd0688r, pcd0689r, pcd0690r

screwdriver pcd0578r, pcd0579r, pcd0580r, pcd0581r, pcd0582r, pcd0583r,

pcd0584r, pcd0585r, pcd0586r, pcd0587r, pcd0588r, pcd0589r

shoe pcd0110r, pcd0111r, pcd0112r, pcd0113r, pcd0114r, pcd0115r,

pcd0116r, pcd0117r, pcd0264r, pcd0265r, pcd0266r, pcd0267r,

pcd0268r, pcd0269r, pcd0270r, pcd0271r, pcd0272r, pcd0273r,

pcd0274r, pcd0275r, pcd0276r, pcd0277r, pcd0278r, pcd0279r

soap pcd0339r, pcd0340r, pcd0341r, pcd0342r

spatula pcd0407r, pcd0408r, pcd0409r, pcd0410r, pcd0411r, pcd0412r,

pcd0413r, pcd0414r, pcd0415r, pcd0416r, pcd0417r, pcd0418r

spice pcd0355r, pcd0356r, pcd0357r, pcd0358r, pcd0359r, pcd0360r,

pcd0361r, pcd0362r, pcd0363r, pcd0364r, pcd0365r, pcd0366r,

pcd0367r, pcd0368r, pcd0369r, pcd0370r, pcd0371r, pcd0372r,

pcd0373r, pcd0374r

sponge pcd0562r, pcd0563r, pcd0564r, pcd0565r, pcd0566r, pcd0567r,

pcd0568r, pcd0569r, pcd0570r, pcd0571r, pcd0572r, pcd0573r,

pcd0574r, pcd0575r, pcd0576r, pcd0577r

spoon pcd0399r, pcd0400r, pcd0401r, pcd0402r, pcd0403r, pcd0404r,

pcd0405r, pcd0406r, pcd1033r, pcd1034r

spray bottle pcd0292r, pcd0293r, pcd0294r, pcd0295r

142

Label Images

squirt bottle pcd0243r, pcd0244r, pcd0245r, pcd0246r, pcd0252r, pcd0253r,

pcd0254r, pcd0255r, pcd0288r, pcd0289r, pcd0290r, pcd0291r,

pcd0497r, pcd0498r, pcd0499r, pcd0500r, pcd0747r, pcd0748r,

pcd0749r, pcd0750r, pcd0751r, pcd0752r, pcd0753r,pcd0754r, pcd0898r,

pcd0899r, pcd0900r, pcd0901r, pcd0902r, pcd0903r, pcd0904r,

pcd0905r, pcd0906r, pcd0907r, pcd0908r, pcd0909r, pcd0910r,

pcd0911r, pcd0912r, pcd0913r, pcd0914r, pcd0915r, pcd0916r, pcd0917r

stapler pcd0102r, pcd0103r, pcd0104r, pcd0105r, pcd0590r, pcd0591r,

pcd0592r, pcd0593r

straw hat pcd0892r, pcd0893r, pcd0894r, pcd0895r, pcd0896r, pcd0897r

string pcd1013r, pcd1014r, pcd1015r, pcd1016r, pcd1017r, pcd1018r,

pcd1019r, pcd1020r, pcd1021r, pcd1022r, pcd1023r, pcd1024r

sweet pcd0691r, pcd0692r, pcd0693r, pcd0694r, pcd0695r, pcd0696r,

pcd0697r, pcd0698r, pcd0699r, pcd0700r, pcd0701r, pcd0702r,

pcd0703r, pcd0704r, pcd0705r, pcd0706r, pcd0707r, pcd0708r,

pcd0709r, pcd0710r, pcd0711r, pcd0712r, pcd0713r, pcd0714r

tape pcd0126r, pcd0127r, pcd0128r, pcd0393r, pcd0394r, pcd0395r,

pcd0396r, pcd0397r, pcd0398r, pcd0533r, pcd0534r, pcd0535r,

pcd0536r, pcd0537r, pcd0538r, pcd0539r, pcd0540r, pcd0541r

tennis balls pcd0481r, pcd0482r, pcd0483r, pcd0484r

thread pcd1025r, pcd1026r, pcd1027r, pcd1028r, pcd1029r, pcd1030r

toilet brush pcd0783r, pcd0784r, pcd0785r, pcd0786r

tomato pcd0816r, pcd0817r, pcd0818r, pcd0819r

toothbrush pcd0173r, pcd0174r, pcd0175r, pcd0176r, pcd0177r, pcd0178r,

pcd0179r, pcd0180r, pcd0213r, pcd0214r, pcd0215r, pcd0216r,

pcd0235r, pcd0236r, pcd0237r, pcd0238r, pcd0727r, pcd0728r,

pcd0729r, pcd0730r, pcd0771r, pcd0772r, pcd0773r, pcd0774r

toothpaste pcd0181r, pcd0182r, pcd0183r, pcd0184r, pcd0201r, pcd0202r,

pcd0203r, pcd0204r, pcd0209r, pcd0210r, pcd0211r, pcd0212r,

pcd0775r, pcd0776r, pcd0777r, pcd0778r

143

Label Images

torch pcd0118r, pcd0119r, pcd0120r, pcd0121r, pcd0157r, pcd0158r,

pcd0159r, pcd0160r, pcd0284r, pcd0285r, pcd0286r, pcd0287r,

pcd0505r, pcd0506r, pcd0507r, pcd0508r, pcd0509r, pcd0510r,

pcd0511r, pcd0512r

umbrella pcd0731r, pcd0732r, pcd0733r, pcd0734r, pcd0735r, pcd0736r,

pcd0737r, pcd0738r, pcd0739r, pcd0740r, pcd0741r, pcd0742r

whisk pcd0719r, pcd0720r, pcd0721r, pcd0722r

wiper pcd0779r, pcd0780r, pcd0781r, pcd0782r

A.2 List of General Classification Labels

Table A.2: List of general classification labels for the Cornell Grasping Dataset.

Label Images

accessory pcd0106r, pcd0107r, pcd0108r, pcd0109r, pcd0110r, pcd0111r,

pcd0112r, pcd0113r, pcd0114r, pcd0115r, pcd0116r, pcd0117r,

pcd0133r, pcd0134r, pcd0135r, pcd0136r, pcd0153r, pcd0154r,

pcd0155r, pcd0156r, pcd0185r, pcd0186r, pcd0187r, pcd0188r,

pcd0189r, pcd0190r, pcd0191r, pcd0192r, pcd0264r, pcd0265r,

pcd0266r, pcd0267r, pcd0268r, pcd0269r, pcd0270r, pcd0271r,

pcd0272r, pcd0273r, pcd0274r, pcd0275r, pcd0276r, pcd0277r,

pcd0278r, pcd0279r, pcd0280r, pcd0281r, pcd0282r, pcd0283r,

pcd0606r, pcd0607r, pcd0608r, pcd0609r, pcd0610r, pcd0611r,

pcd0612r, pcd0613r, pcd0614r, pcd0615r, pcd0616r, pcd0617r,

pcd0618r, pcd0619r, pcd0620r, pcd0621r, pcd0633r, pcd0634r,

pcd0635r, pcd0636r, pcd0637r, pcd0638r, pcd0639r, pcd0640r,

pcd0641r, pcd0642r, pcd0643r, pcd0644r, pcd0645r, pcd0646r,

pcd0647r, pcd0648r, pcd0876r, pcd0877r, pcd0878r, pcd0879r,

pcd0880r, pcd0881r, pcd0882r, pcd0883r, pcd0884r, pcd0885r,

pcd0886r, pcd0887r, pcd0888r, pcd0889r, pcd0890r, pcd0891r,

pcd0892r, pcd0893r, pcd0894r, pcd0895r, pcd0896r, pcd0897r

144

Label Images

cleaning tool pcd0173r, pcd0174r, pcd0175r, pcd0176r, pcd0177r, pcd0178r,

pcd0179r, pcd0180r, pcd0181r, pcd0182r, pcd0183r, pcd0184r,

pcd0201r, pcd0202r, pcd0203r, pcd0204r, pcd0205r, pcd0206r,

pcd0207r, pcd0208r, pcd0209r, pcd0210r, pcd0211r, pcd0212r,

pcd0213r, pcd0214r, pcd0215r, pcd0216r, pcd0219r, pcd0220r,

pcd0221r, pcd0222r, pcd0223r, pcd0224r, pcd0225r, pcd0226r,

pcd0227r, pcd0228r, pcd0229r, pcd0230r, pcd0231r, pcd0232r,

pcd0233r, pcd0234r, pcd0235r, pcd0236r, pcd0237r, pcd0238r,

pcd0339r, pcd0340r, pcd0341r, pcd0342r, pcd0562r, pcd0563r,

pcd0564r, pcd0565r, pcd0566r, pcd0567r, pcd0568r, pcd0569r,

pcd0570r, pcd0571r, pcd0572r, pcd0573r, pcd0574r, pcd0575r,

pcd0576r, pcd0577r, pcd0727r, pcd0728r, pcd0729r, pcd0730r,

pcd0763r, pcd0764r, pcd0765r, pcd0766r, pcd0767r, pcd0768r,

pcd0769r, pcd0770r, pcd0771r, pcd0772r, pcd0773r, pcd0774r,

pcd0775r, pcd0776r, pcd0777r, pcd0778r, pcd0779r, pcd0780r,

pcd0781r, pcd0782r, pcd0783r, pcd0784r, pcd0785r, pcd0786r

container pcd0137r, pcd0138r, pcd0139r, pcd0140r, pcd0141r, pcd0142r,

pcd0143r, pcd0144r, pcd0145r, pcd0146r, pcd0147r, pcd0148r,

pcd0149r, pcd0150r, pcd0151r, pcd0152r, pcd0161r, pcd0162r,

pcd0163r, pcd0164r, pcd0169r, pcd0170r, pcd0171r, pcd0172r,

pcd0217r, pcd0218r, pcd0239r, pcd0240r, pcd0241r, pcd0242r,

pcd0243r, pcd0244r, pcd0245r, pcd0246r, pcd0252r, pcd0253r,

pcd0254r, pcd0255r, pcd0260r, pcd0261r, pcd0262r, pcd0263r,

pcd0288r, pcd0289r, pcd0290r, pcd0291r, pcd0292r, pcd0293r,

pcd0294r, pcd0295r, pcd0343r, pcd0344r, pcd0345r, pcd0346r,

pcd0355r, pcd0356r, pcd0357r, pcd0358r, pcd0359r, pcd0360r,

pcd0361r, pcd0362r, pcd0363r, pcd0364r, pcd0365r, pcd0366r,

pcd0367r, pcd0368r, pcd0369r, pcd0370r, pcd0371r, pcd0372r,

pcd0373r, pcd0374r, pcd0447r, pcd0448r, pcd0449r, pcd0450r,

pcd0451r, pcd0452r, pcd0453r, pcd0454r, pcd0455r, pcd0456r,

pcd0457r, pcd0458r, pcd0459r, pcd0460r, pcd0461r, pcd0462r,

145

Label Images

container pcd0463r, pcd0464r, pcd0465r, pcd0466r, pcd0467r, pcd0468r,

pcd0469r, pcd0470r, pcd0471r, pcd0472r, pcd0473r, pcd0474r,

pcd0481r, pcd0482r, pcd0483r, pcd0484r, pcd0497r, pcd0498r,

pcd0499r, pcd0500r, pcd0529r, pcd0530r, pcd0531r, pcd0532r,

pcd0594r, pcd0595r, pcd0596r, pcd0597r, pcd0598r, pcd0599r,

pcd0600r, pcd0601r, pcd0602r, pcd0603r, pcd0604r, pcd0605r,

pcd0649r, pcd0650r, pcd0651r, pcd0652r, pcd0653r, pcd0654r,

pcd0655r, pcd0656r, pcd0657r, pcd0658r, pcd0659r, pcd0660r,

pcd0661r, pcd0662r, pcd0663r, pcd0664r, pcd0665r, pcd0666r,

pcd0667r, pcd0668r, pcd0743r, pcd0744r, pcd0745r, pcd0746r,

pcd0747r, pcd0748r, pcd0749r, pcd0750r, pcd0751r, pcd0752r,

pcd0753r, pcd0754r, pcd0898r, pcd0899r, pcd0900r, pcd0901r,

pcd0902r, pcd0903r, pcd0904r, pcd0905r, pcd0906r, pcd0907r,

pcd0908r, pcd0909r, pcd0910r, pcd0911r, pcd0912r, pcd0913r,

pcd0914r, pcd0915r, pcd0916r, pcd0917r, pcd0918r, pcd0919r,

pcd0920r, pcd0921r, pcd0922r, pcd0923r, pcd0924r, pcd0925r,

pcd0926r, pcd0927r, pcd0928r, pcd0929r, pcd0930r, pcd0931r,

pcd0932r, pcd0933r

cooking utensil pcd0399r, pcd0400r, pcd0401r, pcd0402r, pcd0403r, pcd0404r,

pcd0405r, pcd0406r, pcd0407r, pcd0408r, pcd0409r, pcd0410r,

pcd0411r, pcd0412r, pcd0413r, pcd0414r, pcd0415r, pcd0416r,

pcd0417r, pcd0418r, pcd0419r, pcd0420r, pcd0421r, pcd0422r,

pcd0423r, pcd0424r, pcd0425r, pcd0426r, pcd0427r, pcd0428r,

pcd0429r, pcd0430r, pcd0431r, pcd0432r, pcd0433r, pcd0434r,

pcd0435r, pcd0436r, pcd0437r, pcd0438r, pcd0485r, pcd0486r,

pcd0487r, pcd0488r, pcd0715r, pcd0716r, pcd0717r, pcd0718r,

pcd0719r, pcd0720r, pcd0721r, pcd0722r, pcd0759r, pcd0760r,

pcd0761r, pcd0762r, pcd1033r, pcd1034r

146

Label Images

crockery pcd0312r, pcd0313r, pcd0314r, pcd0315r, pcd0316r, pcd0317r,

pcd0318r, pcd0319r, pcd0320r, pcd0321r, pcd0322r, pcd0323r,

pcd0324r, pcd0325r, pcd0326r, pcd0347r, pcd0348r, pcd0349r,

pcd0350r, pcd0389r, pcd0390r, pcd0391r, pcd0392r, pcd0525r,

pcd0526r, pcd0527r, pcd0528r, pcd0669r, pcd0670r, pcd0671r,

pcd0672r, pcd0673r, pcd0674r, pcd0675r, pcd0676r, pcd0677r,

pcd0801r, pcd0802r, pcd0803r

electronics pcd0100r, pcd0101r, pcd0122r, pcd0123r, pcd0124r, pcd0125r,

pcd0197r, pcd0198r, pcd0199r, pcd0200r, pcd0256r, pcd0257r,

pcd0258r, pcd0259r, pcd0296r, pcd0297r, pcd0298r, pcd0299r,

pcd0300r, pcd0301r, pcd0302r, pcd0303r, pcd0304r, pcd0305r,

pcd0306r, pcd0307r, pcd0308r, pcd0309r, pcd0310r, pcd0311r,

pcd0327r, pcd0328r, pcd0329r, pcd0330r, pcd0351r, pcd0352r,

pcd0353r, pcd0354r, pcd0375r, pcd0376r, pcd0377r, pcd0378r,

pcd0379r, pcd0380r, pcd0381r, pcd0382r, pcd0383r, pcd0384r,

pcd0385r, pcd0386r, pcd0443r, pcd0444r, pcd0445r, pcd0446r,

pcd0475r, pcd0476r, pcd0477r, pcd0478r, pcd0489r, pcd0490r,

pcd0491r, pcd0492r, pcd0493r, pcd0494r, pcd0495r, pcd0496r,

pcd0501r, pcd0502r, pcd0503r, pcd0504r, pcd0517r, pcd0518r,

pcd0519r, pcd0520r, pcd0542r, pcd0543r, pcd0544r, pcd0545r,

pcd0723r, pcd0724r, pcd0725r, pcd0726r, pcd0797r, pcd0798r,

pcd0799r, pcd0800r, pcd1031r, pcd1032r

food pcd0335r, pcd0336r, pcd0337r, pcd0338r, pcd0691r, pcd0692r,

pcd0693r, pcd0694r, pcd0695r, pcd0696r, pcd0697r, pcd0698r,

pcd0699r, pcd0700r, pcd0701r, pcd0702r, pcd0703r, pcd0704r,

pcd0705r, pcd0706r, pcd0707r, pcd0708r, pcd0709r, pcd0710r,

pcd0711r, pcd0712r, pcd0713r, pcd0714r, pcd0804r, pcd0805r,

pcd0806r, pcd0807r, pcd0808r,

147

Label Images

food pcd0809r, pcd0810r, pcd0811r, pcd0812r, pcd0813r, pcd0814r,

pcd0815r, pcd0816r, pcd0817r, pcd0818r, pcd0819r, pcd0820r,

pcd0821r, pcd0822r, pcd0823r, pcd0824r, pcd0825r, pcd0826r,

pcd0827r, pcd0828r, pcd0829r, pcd0830r, pcd0831r, pcd0832r,

pcd0833r, pcd0834r, pcd0835r, pcd0836r, pcd0837r, pcd0838r,

pcd0839r, pcd0840r, pcd0841r, pcd0842r, pcd0843r, pcd0844r,

pcd0845r, pcd0846r, pcd0847r, pcd0848r, pcd0849r, pcd0850r,

pcd0851r, pcd0852r, pcd0853r, pcd0854r, pcd0855r, pcd0856r,

pcd0857r, pcd0858r, pcd0859r, pcd0860r, pcd0861r, pcd0862r,

pcd0863r, pcd0864r, pcd0865r, pcd0866r, pcd0867r, pcd0868r,

pcd0869r, pcd0870r, pcd0871r, pcd0872r, pcd0873r, pcd0874r,

pcd0875r, pcd1001r, pcd1002r, pcd1003r

toy pcd0247r, pcd0387r, pcd0388r, pcd0479r, pcd0480r, pcd0795r, pcd0796r

work tool pcd0102r, pcd0103r, pcd0104r, pcd0105r, pcd0118r, pcd0119r,

pcd0120r, pcd0121r, pcd0126r, pcd0127r, pcd0128r, pcd0129r,

pcd0130r, pcd0131r, pcd0132r, pcd0157r, pcd0158r, pcd0159r,

pcd0160r, pcd0165r, pcd0166r, pcd0167r, pcd0168r, pcd0193r,

pcd0194r, pcd0195r, pcd0196r, pcd0248r, pcd0249r, pcd0250r,

pcd0251r, pcd0284r, pcd0285r, pcd0286r, pcd0287r, pcd0331r,

pcd0332r, pcd0333r, pcd0334r, pcd0393r, pcd0394r, pcd0395r,

pcd0396r, pcd0397r, pcd0398r, pcd0439r, pcd0440r, pcd0441r,

pcd0442r, pcd0505r, pcd0506r, pcd0507r, pcd0508r, pcd0509r,

pcd0510r, pcd0511r, pcd0512r, pcd0513r, pcd0514r, pcd0515r,

pcd0516r, pcd0521r, pcd0522r, pcd0523r, pcd0524r, pcd0533r,

pcd0534r, pcd0535r, pcd0536r, pcd0537r, pcd0538r, pcd0539r,

pcd0540r, pcd0541r, pcd0546r, pcd0547r, pcd0548r, pcd0549r,

pcd0550r, pcd0551r, pcd0552r, pcd0553r, pcd0554r, pcd0555r,

pcd0556r, pcd0557r, pcd0558r, pcd0559r, pcd0560r, pcd0561r,

pcd0578r, pcd0579r, pcd0580r, pcd0581r, pcd0582r, pcd0583r,

148

Label Images

work tool pcd0584r, pcd0585r, pcd0586r, pcd0587r, pcd0588r, pcd0589r,

pcd0590r, pcd0591r, pcd0592r, pcd0593r, pcd0622r, pcd0623r,

pcd0624r, pcd0625r, pcd0626r, pcd0627r, pcd0628r, pcd0629r,

pcd0630r, pcd0631r, pcd0632r, pcd0678r, pcd0679r, pcd0680r,

pcd0681r, pcd0682r, pcd0683r, pcd0684r, pcd0685r, pcd0686r,

pcd0687r, pcd0688r, pcd0689r, pcd0690r, pcd0731r, pcd0732r,

pcd0733r, pcd0734r, pcd0735r, pcd0736r, pcd0737r, pcd0738r,

pcd0739r, pcd0740r, pcd0741r, pcd0742r, pcd0755r, pcd0756r,

pcd0757r, pcd0758r, pcd0787r, pcd0788r, pcd0789r, pcd0790r,

pcd0791r, pcd0792r, pcd0793r, pcd0794r, pcd0934r, pcd0935r,

pcd0936r, pcd0937r, pcd0938r, pcd0939r, pcd0940r, pcd0941r,

pcd0942r, pcd0943r, pcd0944r, pcd0945r, pcd0946r, pcd0947r,

pcd0948r, pcd0949r, pcd1000r, pcd1004r, pcd1005r, pcd1006r,

pcd1007r, pcd1008r, pcd1009r, pcd1010r, pcd1011r, pcd1012r,

pcd1013r, pcd1014r, pcd1015r, pcd1016r, pcd1017r, pcd1018r,

pcd1019r, pcd1020r, pcd1021r, pcd1022r, pcd1023r, pcd1024r,

pcd1025r, pcd1026r, pcd1027r, pcd1028r, pcd1029r, pcd1030r

149

APPENDIX B

Calibration and Arm Setup

This appendix details the calibration for the WidowX robot arm (as pictured in Fig. B.1)

used throughout these experiments.

Due to the 3-D nature of the setup, both rotationR and transformation t information is

needed, so a rigid transform is estimated using the following method to transform between

a grasp in the camera’s frame of reference gi, to a grasp in the robot’s frame of reference

gr. This process involves three steps:

1. Finding the centroids between corresponding points in each frame of reference;

2. Bringing both points to an origin and find an optimal rotation R;

3. Find translation t between the frame of reference.

Figure B.1: Diagram of the limits and reach of the WidowX robot arm from www.

trossenrobotics.com/widowxrobotarm.

150

www.trossenrobotics.com/widowxrobotarm
www.trossenrobotics.com/widowxrobotarm

(a) Checkerboard (b) Crosshair (c) Arm placement

Figure B.2: Demonstration of the calibration process for the robotic arm. (a) a checker-
board is placed under the camera, (b) a crosshair is placed at an intersection, (c) the
centre of the end-effector is placed at the same intersection. This is repeated around 10
times at different points and a rigid transform is calculated.

Firstly, the centroid is the average of corresponding points in the camera frame and

robot frame of reference. To do this, the process is followed as in Fig. B.2, a visible

checkerboard pattern is placed in the centre of the field of view of the camera (Fig. B.2a).

The intersection between points on the checkerboard is used for consistency. A point is

chosen on the board (Fig. B.2b), and the centre of the robot end-effector is manoeuvred to

match the given point on the board (Fig. B.2c). This process is repeated about 10 times

at different points on the board (however, only a minimum of three points are needed).

The average points are calculated to produce a centroid C in the camera frame of reference

C〉 and the robot frame of reference C∇:

Ci =
1

N

N∑
i=1

A, Cr =
1

N

N∑
i=1

B, (B.0.1)

where A and B are the sets of


x

y

z

 vectors gathered during the calibration process. For

the points from the camera A, x and y are the pixel coordinates taken from the camera,

and z is the raw depth value taken from the depth camera. For B, these values are saved

directly from the robot, and works for any coordinate system as the rotation element works

it out automatically.

The optimal rotation R is calculated using singular value decomposition (SVD) from

the built in numpy library in Python, to decompose a covariance matrix H into the matrix

151

[
U, S, V

]
and solving for the optimal rotation R:

H = (A− Ci)(B − Cr)
[
U, S, V

]
= SV D(H)R = V UT , (B.0.2)

where H is a 3× 3 matrix calculated through the operation A− Ci, which subtracts each

column in A by centroid Ci and the same for B − Cr. This represents bring each centroid

to the origin to more easily find the rotation between the two sets of points. A special

reflection case is added by checking whether the determinant ofR is negative, as sometimes

SVD returns a reflection matrix. In this case, the third column of V is multiplied by −1.

The transformation t between the two frames can then be solved by:

t = Cr −R× Ci, (B.0.3)

to produce a rotation and transformation between the two frames.

152

	Abstract
	Declaration
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Nomenclature
	Introduction
	Motivation
	Thesis Contributions
	Publications
	Thesis Scope and Structure

	Literature Review
	Analytical Approaches to Robotic Grasping
	Empirical Approaches to Robotic Grasping
	Discriminative Models
	Generative Models
	Reinforcement Learning

	Datasets and Benchmarks
	Grasp Representation and Evaluation Metrics
	Grasping Datasets
	Transfer Learning

	Summary

	Multi-Task Learning for Monocular Generative Models
	Grasping Problem
	Object Classification
	Grasping and Classification Dataset
	Methodology
	Evaluation

	Saliency and Depth Reconstruction
	Background
	Methodology
	Evaluation

	Summary

	Optimising Generative Grasping Models using Positional Loss
	Methodology
	Generative Grasping Networks
	Positional Loss
	Experimental Setup

	Evaluation
	GG-CNN2 and MTG-CNN Models
	Generative Residual Convolutional Network
	Limited Training Set
	Effects of Loss

	Summary

	Gaussian Ground-Truth Grasp Maps
	Methodology
	Networks and Outputs
	Gaussian Ground Truth Grasp Maps
	Simulated Grasp Trials
	Training Method
	Robotic Implementation

	Evaluation
	Offline versus Simulated Performance
	EGAD Results

	Summary

	Conclusion
	Contributions
	Limitations and Future Work
	End-Effectors and Data Availability
	Object Properties
	Object Manipulation for Task Completion

	Classification Labels for the Cornell Grasping Dataset
	List of Specific Classification Labels
	List of General Classification Labels

	Calibration and Arm Setup

