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Abstract: Amorphous materials form a part of a wide array of common materials,
including foams, emulsions, colloidal and metallic glasses and polymeric systems.
Many amorphous materials exhibit yielding transitions from a solid-like to a fluid-
like state under shear, and characterising and predicting these transitions is of key
importance in a variety of industrial and biological applications. We study the
yielding of amorphous materials in three separate studies.

First, we use a thermal fluidity model to explore the yielding transitions of
an amorphous material under a shear startup protocol and categorise the yielding
transitions as either brittle or ductile. We find that ductile and brittle yielding both
occur in systems with a stress overshoot as a function of strain, with no need for an
overhang, in contrast to recent claims in the literature.

Second, we use the Soft Glassy Rheology (SGR) model and a thermal elastoplastic
model (EPM) to study slow fatigue followed by sudden catastrophic failure of amorph-
ous materials subjected to a large amplitude oscillatory shear strain protocol. We
find that both models display delayed yielding, in which there is a significant stress
drop after many cycles. We fit the number of cycles before yielding to functions of
the relevant physical parameters. In the SGR model, we find a critical amplitude
below which the yielding is delayed but insignificant, and in the EPM we find a
temperature-dependant critical amplitude at which the yielding cycle diverges.

Third, we attempt to derive a continuum model of epithelial tissue rheology.
We present several model variants, and compare them to published Self-Propelled
Voronoi (SPV) model simulations of epithelial rheology. While we are unable to
derive a model that fully captures all of the features seen in the SPV Model, we do
identify several necessary ingredients of an eventual successful model.
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Chapter 1

Introduction

The world around us contains many materials that look or feel solid, and yet still

change shape and deform over a broad range of length and timescales. Foodstuffs

such as ketchup and mayonnaise can sit in apparently solid lumps, and yet flow out

of their bottle with enough force, and flow to fill a container given enough time [1,2].

Countless objects around us are made of plastic, which behaves as a solid under the

right circumstances, and yet can deform, flow and slowly change shape or rupture

suddenly and catastrophically [3]. In the biological world, the multicellular tissue

that makes up plants and animals is normally solid, and yet during wound healing

and embryonic growth it morphs and flows into a new shape [4–7].

All of the materials listed above are unified by the fact they have an amorphous

microstructure: instead of forming crystalline structures over a regular lattice, they

consist of a disordered arrangement of constituents. For example, emulsions such

as mayonnaise comprise small droplets of one material embedded in a continuous

background of another, which are randomly placed with no apparent spatial structure

[8]. Polymeric systems such as plastics have long, chain-like molecules, which wrap

around each other and tangle [3]. This amorphous structure leads to a wide variety

of material responses to an applied deformation or load, as the substructure is able to

rearrange and respond in a complicated way. Rheology is the study of how materials

deform and flow, and the rheology of amorphous materials reveals a rich array of
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phenomena and complex flows.

Many amorphous materials have multiple qualitatively distinct states or beha-

viours, which can be described as solid-like and fluid-like [9]. It is common for

amorphous materials to display yielding transitions following the application of a

deformation or load, in which they transition from a solid-like to a fluid-like state.

These transitions can take a variety of formats, and are an essential part of under-

standing the behaviour of a material. Experiments applying a shear protocol to

bentonite suspensions [10], microgels [11–13], fuel slurries [14], foams [15–17], emul-

sions [18–20] and attractive gels [21, 22] have revealed a transition from an initial,

solid-like regime, in which stress is proportional to strain to a fluid-like regime at

higher stress or strain, in which the stress is extremely non-linear in strain, and

typically related instead to the strain rate. In strain-controlled protocols, this is

often associated with a stress overshoot, so that there is a relaxation of stress as the

system approaches its steady state [10, 15,18,21,22].

The physical origin of yielding transitions has been connected with a variety

of microscopic phenomena [9]. In colloidal suspensions and polymer melts, the

system often has a characteristic relaxation timescale over which it is able to locally

relax stress [23–27]. If a deformation is applied on a shorter timescale than the

relaxation time, the system is unable to reconfigure to relax stress and flow, and so

behaves in a solid-like way. If, in contrast, the applied deformation is slow compared

to the relaxation time, the system is able to relax stress and flow in a fluid-like

way. In foams, emulsions and colloidal suspensions with a sufficiently high packing

fraction, solid behaviour at low load or deformation emerges because the particles

are in contact with each other and jammed, so that they cannot move past each

other [28–34]. When a stress or strain is applied to the system, this therefore deforms

the particles, and their elastic response generates system-wide solid-like behaviour.

At larger load or deformation, the particles rearrange locally in a way that relaxes

stress, and if this happens sufficiently fast, fluid-like behaviour emerges.

In this work, we consider several different models of amorphous materials, which
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are designed to capture the behaviour of a variety of systems, including foams, emul-

sions, metallic glasses, gels, colloidal glasses [35–39] and organic tissue [40,41]. We

will also consider the predictions of these models in several different commonly stud-

ied rheological protocols. We will find various different types of yielding transitions

throughout, and will explore the nature of these transitions and the situations in

which they occur.

1.1 Layout of Thesis

The work in this thesis consists of three separate investigations; two of them are

contained in their own results chapters, and the third is split into two chapters.

These chapters are presented after an initial background chapter to introduce some

basic concepts. The thesis then has a final conclusions chapter, summarising the

work, and suggesting further avenues for future study.

1.1.1 Background

In Ch. 2, we introduce the basic concepts needed for the rest of this thesis. We

start by defining stress and strain, which are used throughout to measure applied

force and deformation, and we show how to describe the total stress and strain on a

material using the stress and strain tensors. We also consider some basic rheological

protocols, which will be used throughout this thesis.

Next, we consider the methods that allow us to measure and characterise rhe-

ological behaviour. This includes a discussion of the experimental methods used in

rheometry and some common rheometer geometries. We also describe a number of

common shear protocols and the associated behaviour of some common classes of

materials under these protocols.

Following this, we introduce the phenomenon of shear banding, which is crucial

to much of the work in this thesis. We explain how it arises, and deduce some
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common associated material responses.

Finally, we provide details of some of the computational methods that we will

employ to simulate the rheological constitutive models used in this thesis. This

focusses on the Runge-Kutta method and the Crank-Nicolson algorithm.

1.1.2 Ductile and Brittle Yielding in Soft Glassy Materials

A class of amorphous materials known as yield stress fluids behave in a solid-like

way at low deformation or applied stress, but flow in a fluid-like when subject to

larger deformations or a stronger applied stresses [42]. These materials therefore

exhibit a yielding transition under shear, from an initially solid-like to a finally

fluid-like state. The nature of this transition can have a sensitive dependence on the

material’s history before the application of shear [35,38,43]. The transition can be

smooth and gradual, in which case we refer to it as “ductile”, or it can be sudden

and catastrophic, in which case we refer to it as “brittle” [44]. In Ch. 3, we use a

continuum thermal fluidity model to consider this yielding transition, exploring its

predictions for a shear startup protocol.

Recent studies have proposed that ductile and brittle yielding are separated by a

qualitative change in a system’s behaviour [43,45]. In particular, Ref. [43] proposes

that brittle yielding occurs when the shear startup curve displays an overhang in

the stress as a function of strain, while ductile yielding occurs when there is merely

an overshoot. We challenge this conclusion for thermal materials, and propose that

ductile and brittle yielding both occur in systems with a stress overshoot, with no

need for an overhang. Rather, we find that brittle yielding is caused by a shear

banding instability, which causes the system to fluidise very rapidly when there is

a large stress drop from the peak of the stress overshoot to the steady state. This

allows us to draw a quantitative distinction between ductile and brittle yielding,

and reveals that brittle yielding typically happens in systems that have been more

strongly annealed prior to shear, and at lower strain rates.
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1.1.3 Delayed Yielding in the Soft Glassy Rheology Model

in Large Amplitude Oscillatory Shear

There is a great deal of evidence that solids, when subjected to cyclic loading, can

very slowly accumulate fatigue over many loading cycles, before eventually failing

catastrophically in a single cycle [46–50]. There have also been many experimental

and theoretical studies into soft and amorphous materials under cyclic loading, which

have revealed that many such materials likewise display a solid to fluid transition

under cyclic loading, and that this can occur after many cycles [51–66]. What

has been less well studied in amorphous materials is the number of deformation

cycles that occur before this transition, how this depends on the relevant physical

parameters, and the mechanism by which fatigue slowly accumulates and the material

eventually yields.

In Ch 4, we study the Soft Glassy Rheology model under a Large Amplitude

Oscillatory Shear (LAOS) Strain protocol to explore this phenomenon theoretically.

We find that the number of cycles before a sample yields follows a power law in the

degree to which the system is annealed prior to shear, as quantified by an ageing

time. We also find that the number of cycles before yielding increases as the strain

amplitude decreases, and this trend in principle continues down to zero amplitude.

However, we also find that the magnitude of the stress drop associated with the

yielding event drops to a very small value below a critical strain amplitude, so

although in principle we find a very delayed yielding event at low amplitude, in

practice we do not characterise it as significant delayed yielding.

We also find that prior to the yielding event, strain heterogeneity very slowly

grows within the sample, which causes slow fatigue. Any significant yielding event

is then associated with a pronounced shear banding instability: strong strain loc-

alisation arises and a shear band forms over the course of a few strain cycles. We

additionally find that the transition to a fluid-like state is closely associated with

the system being rejuvenated by the applied shear, which reverses the initial ageing.
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1.1.4 Delayed Yielding in an Elastoplastic Model Under

Large Amplitude Oscillatory Shear

To further improve our confidence and understanding of the results in Ch. 4, we

explore the same phenomena within a simpler model in Ch. 5. We consider a

thermal elastoplastic model which does not show ageing, and is instead annealed

by equilibrating at a pre-quench temperature, before instantaneously quenching the

system to a working temperature immediately before the imposition of shear strain.

We again consider the predictions of the model in a LAOS Strain protocol.

We again find significantly delayed yielding effects. In particular, we show that

the number of cycles before yielding can be fit to the exponentiated reciprocal of

both the pre-quench temperature and the working temperature. We also find that

the number of cycles before yielding is a decreasing function of increasing strain

amplitude, γ0. As γ0 is reduced, we now find that N∗ diverges at a finite critical

amplitude, which depends on both the working temperature and the pre-quench

temperature. We find that the yielding event in this model is again closely related

to a shear banding instability, which grows dramatically over a few cycles as the

sample yields, after a very slow accumulation of heterogeneity during the pre-failure

regime.

1.1.5 Shape Driven Rigidity Transitions in Epithelial

Tissue

The rheology of biological tissue is currently the subject of intense study, both

theoretically and experimentally [5,67–76]. Epithelial tissue is an important type of

multicellular tissue which is found in animals, and consists of flat layers of cells, which

in simple epithelial tissue exist as monolayers [7, 77]. The cells in these monolayers

are almost space filling, and so form a collection of polygons. Epithelial tissue has

a variety of interesting mechanical behaviours, due to its roles in wound healing,



1.1. Layout of Thesis 7

tissue growth and organ protection [4–7, 77, 78]. Experimental study has revealed

that in many situations, epithelial tissue behaves in a solid-like manner, and can

provide a protective layer around organs. However, under certain conditions, the

tissue needs to deform and reshape, particularly during embryo growth, or to repair

damage to a tissue’s structure. Growing evidence suggests that this is possible due

to a spontaneous fluidity transition, which allows the tissue to behave in a more

fluid-like manner for a period of time [67–72].

Epithelial tissue is commonly modelled theoretically using a Vertex Model [41,

74,79–82], in which a monolayer of cells is represented by an ensemble of confluent

polygons with no gaps between them. This approach has been successful at capturing

the solid-fluid transition, as well as several other experimentally observed behaviours.

However, it is computationally expensive, and the size of the system that can be

modelled with this approach is therefore limited. There have therefore been some

recent attempts to derive continuum models that capture the rheology of epithelial

tissue [40,83,84], with the aim of applying these to explore phenomena that happen

on longer length scales, such as shear banding effects.

In Ch. 6, we attempt to derive one such continuum model, aimed at capturing a

selection of rheological behaviours seen in the Self-Propelled Voronoi (SPV) Model

[41]. We present a number of different continuum model versions, of increasing

complexity, which have varying degrees of success in capturing the desired behaviour.

We have not been able to develop a final model that provides a good match to

the SPV Model in all situations, but our findings represent good progress in that

direction, and suggest a list of ingredients that are necessary in a successful model.

1.1.6 Conclusion

In Ch. 7, we summarise the key findings from each of our results chapters and

consider the features which unify them. We also propose some potential avenues of

future investigation to better understand the phenomena we have explored. This



8 Chapter 1. Introduction

includes some suggestion for future theoretical work, aimed at building on the results

presented in this thesis. It also includes suggestions for experimental work, much of

which relates to testable predictions that follow from this research.



Chapter 2

Background

In this thesis, we will consider several rheological constitutive models, which are

applicable to a wide range of soft matter systems. We will also consider a range of

deformation and flow protocols. However, each chapter is unified by two overarching

themes: the first is that we consider the rheology of these systems, and the second is

that we analyse yielding transitions, which represent a subset of rheological phenom-

ena. Rheology refers to the study of deformation and flow, and involves studying how

a material responds to the application of an applied stress or strain [85]. Yielding

transitions arise when a material changes from having a solid-like response to a

fluid-like response, following the imposition of a suitable deformation or stress [86].

In this chapter, we will discuss some of the underlying concepts behind both of

these principles, and provide further context and definitions for the phenomena that

we will explore. We start by introducing a range of important rheological behaviours,

and consider some familiar materials under common protocols. We will then consider

some important internal effects that arise in soft matter systems in general, and that

will apply to the work presented later. Finally, we will lay out some of the basic

computational principles that allow us to carry out the simulations presented in this

thesis.
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2.1 Stress and Strain

When considering the flow properties of a material, strain is the metric of deformation

and stress is the metric of force. Strain is defined as the material’s deformation in a

given direction normalised by the material’s size in a given direction [87,88],

γ = ∆x

L
, (2.1)

with ∆x the deformation and L the material size. If ∆x and L are parallel, the

strain is called an extensional strain, and if they are perpendicular, it is a shear

strain. We will explore this further below. The stress is the force applied to the

material divided by cross sectional area [88–90],

Σ = F

A
, (2.2)

with F the applied force and A the cross sectional area. If the force acts perpendicular

to the plane of the area, it is a normal stress, and if it acts within the plane, it is a

shear stress.

2.1.1 Strain and Strain Rate Tensors

To consider strain, we start by considering a 3D material undergoing deformation.

A point in the material that starts at position r will be moved to position r′ by this

strain. This can be described by a deformation tensor Eij such that

r′
i = Eijrj, (2.3)

where subscripts denote basis directions and repeated indices are summed over. For

a small deformation, this generates a displacement ui = r′
i − ri, and the deformation

tensor can be written as [91]

Eij = δij + γij, (2.4)
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with δij the Dirac delta function and

γij = ∇jui (2.5)

the strain tensor. For a small region of material, each element of the strain tensor

now describes the deformation in the j-direction of one edge of the region with

respect to the opposite edge divided by the size of the region in i-direction, which is

exactly the strain as written in Eq. 2.1. We now consider a time-dependent strain,

which will generate a velocity field across the sample, given by

v (r) ≡ ∂tu. (2.6)

We can then define a velocity gradient tensor,

γ̇ij = ∇jvi = ∂tγij, (2.7)

which is exactly the strain rate at any location in the sample, and is given in full

as [92, 93]

γ̇ij =


∂vx

∂x
∂vx

∂y
∂vx

∂z

∂vy

∂x

∂vy

∂y

∂vy

∂z

∂vz

∂x
∂vz

∂y
∂vz

∂z

 . (2.8)

The diagonal components now describe normal strain, while the off diagonal elements

describe shear strain. Fig. 2.1 shows a sketch of a material sample with the effect of

two of these elements labelled, one diagonal and one off diagonal. We now consider

a small strain increment, γ̇ijδt, which will generate a deformation given by

ri (t + δt) =
(
δij + γ̇ijδt

)
rj (t) . (2.9)

Let the time dependent deformation tensor Eij (t) describe deformation from

time 0 to time t, then we have that

Eik (t + δt) rk (0) =
(
δij + γ̇ijδt

)
Ejk (t) rk (0)

Eik (t + δt) − Eik (t)
δt

=γ̇ijEjk (t) ,

(2.10)
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Figure 2.1: A sketch of a sample of material, showing a) the original shape, b) an
extensional strain (which does not preserve volume) and c) a shear strain. Black
dotted lines show the original shape.

and taking the limit as δt goes to zero,

∂Eij

∂t
= γ̇ikEkj. (2.11)

All the materials considered in this work are incompressible which means that

all strains must preserve the volume. This requires that

∇ · v = 0, (2.12)

and restricts the strain rate tensor to be traceless. The strain rate tensor can be

decomposed into a symmetric part, eij and an anti-symmetric part, which we call

the vorticity, ωij:

eij =1
2
(
∇jvi + ∇ivj

)
,

ωij =1
2
(
∇jvi − ∇ivj

)
,

(2.13)

so that γ̇ij = eij + ωij. We further decompose the symmetric part into a deviatoric

part

dij = eij − 1
D

∇kvkδij, (2.14)

with D the dimension of the tensor, and a compressional term 1
D

∇kvkδij, and note

that for an incompressible material, the compressional term is zero and eij = dij.
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One common deformational mode corresponds to the situation with no vorticity,

and is referred to as pure shear. We forbid vorticity by setting

∇ × v = 0, (2.15)

which constrains the strain rate tensor to be symmetric. The resultant strain rate

tensor is traceless and symmetric, and so for any such strain rate tensor, an appro-

priate change of bases will transform it into a diagonal traceless matrix, and we now

work in the basis in which it is diagonal. The strain rate tensor then takes the form

γ̇ij =


γ̇x 0 0

0 γ̇y 0

0 0 −
(
γ̇x + γ̇y

)

 , (2.16)

with γ̇x and γ̇y the two degrees of freedom. All of these are extensional strain

components, and this has the effect of extending the material along one or two axes,

while it contracts along the remaining axes to preserve volume. However, a change

of basis would transform this matrix into one with off-diagonal elements, which

describe shear strain. We therefore see that for incompressible vorticity free flow,

there will always be some axis along which there is shear strain and some axis along

which there is extensional strain.

We now consider an additional deformational mode, which consists of a pure

shear accompanied by a specific rotational mode, and is called simple shear. Simple

shear has a strain rate tensor which in some basis takes the form

γ̇ij =


0 γ̇ 0

0 0 0

0 0 0

 , (2.17)

where γ̇ is the total applied strain rate. The trace of this is zero, so the material

it describes is incompressible, but now both the vorticity and deviatoric tensor are

non-zero, so we have a combination of pure shear and rotation. Assuming uniform

strain, in which γ̇ij is independent of position, we now have that the velocity field
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Figure 2.2: A sketch of a simple shear strain, γxy. The black dotted line shows the
original sample, and the solid blue shows the shape after the strain.

in the material is described by

vx (y) = yγ̇, (2.18)

with all other components zero. The displacement at any point in the sample is then

given by

sx (y, t) =
∫ t

0
yγ̇dt′ = yγ, (2.19)

so the strain

γ = sx

y
. (2.20)

If we assume the sample to have finite length Ly in the y-direction, the applied

strain is then

γ = ∆x

Ly

, (2.21)

with ∆x the displacement in the x-direction. The shear strain then is the displace-

ment in one direction divided by the sample size in a perpendicular direction, as

shown in Fig. 2.2. This represents the fact that simple shear is a fundamentally

different form of deformation to extensional strain. In both protocols, we can divide

the system into a collection of 2D planes of infinitesimal width in which the velocity

field is constant. In extensional strain, these planes are transported along the normal

to each plane. In shear strain, however, the planes are transported in a direction

which is parallel to the planes. While extensional strain consists of a material being
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stretched (or squeezed), simple shear consists of layers of material sliding over each

other [94].

We have now rigorously defined the concept of strain, and examined two common

strain protocols: pure shear and simple shear. All of the work that is presented in

this thesis uses simple shear protocols, which as we have seen applies no compression,

but does have a rotational contribution.

2.1.2 Stress Tensor

To evaluate stress, we again consider a 3D sample of material. Externally applied

forces all operate on the faces of the material, and we assume that the forces applied

sum to zero. The material can then be divided into a collection of infinitesimal

regions, and the forces within the material must be transmitted from one region to

the next at the surfaces dividing them [95]. At every point in the surface, we can

therefore define a 2D surface with any orientation, and consider the force which is

exerted along that surface, and that force can in general be in any direction. To

quantify this, we consider an infinitesimal surface of area ds with surface normal

vector n, and label the force transferred by the surface dF. The stress on that surface

can then be written as [96]

T(n) = dF
ds

. (2.22)

This can be applied to a surface in any orientation, but linearity ensures that

considering three orthogonal surfaces is sufficient to fully describe the forces at any

point. We can therefore construct a stress tensor by considering the forces on surfaces

which are perpendicular to the basis vectors [97], x, y, z:

Σ =
[
T(x) T(y) T(z)

]
=


Σxx Σxy Σxz

Σyx Σyy Σyz

Σzx Σzy Σzz

 , (2.23)
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Figure 2.3: A sketch of a sample of material, showing the possible stresses. Each
element of the stress tensor also acts in the opposite direction on the opposite face.

so that the stress on any surface is given by

T(n) = Σ · n, (2.24)

with n the unit vector perpendicular to that surface.

As with the strain tensor, there are two different forms of stress defined by the

stress tensor. The diagonal components describe stress related to forces that act

perpendicular to the surface through which they are transferred, and are referred to as

the normal stress components. The normal components describe compressional and

extensional forces on a material. The off diagonal components describe stress related

to forces that act in the plane of the surface through which they are transferred,

and are referred to as shear stress components. These components are associated

with forces that push slabs of material past each other. Fig. 2.3 shows a sample of

material with these stresses labelled.

We can define a hydrostatic pressure on a sample as

P = − 1
D

∑
i

Σii, (2.25)

with D the number of dimensions, and this acts to compress the material and change

its volume. All of the materials we consider are incompressible, and the hydrostatic

pressure adjusts to ensure that the incompressibility condition is always met. We
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shall not consider the hydrostatic pressure for these materials. The normal stress

components are then typically expressed as two normal stress differences. In simple

shear with vx = γ̇y, the normal stress differences are [91]

N1 = Σxx − Σyy, N2 = Σyy − Σzz. (2.26)

These normal stress differences then describe forces that act to extend a material

along one axis while contracting on another, in a way that preserves volume. In

this work, all of the protocols considered are simple shear with ∂yvx = γ̇, and we

will only consider the shear stress component, Σxy. This does not mean that the

normal stress is zero, but for the systems we consider, we assume that the shear

stress provides enough information to understand the key rheological phenomena of

concern here.

2.2 Rheology

Rheology is the study of the deformation and flow properties of matter, and generally

consists of studying the relationship between stress, strain and strain rate. We will

start by considering how this is done experimentally, before discussing some common

rheological phenomena.

2.2.1 Rheometer Geometry

Studying rheology requires applying strain and/or stress to a sample of material.

Generally, this can either be strain controlled, in which a predetermined strain is

applied to the material and the resulting stress measured, or stress controlled, in

which a predetermined stress is applied and the resulting strain measured [98]. This

is done using a rheometer, which is a machine designed for this purpose. There are

a number of rheometer designs available, and we will only consider those that apply

to shear protocols.
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a) b) c)

Figure 2.4: A sketch of some common rheometer geometries: a) Plate-plate, b) Cone-
plate and c) Taylor-Couette. The angle of the cone is significantly more exaggerated
than in most experimental setups.

Shear rheometers typically deform a material by placing a sample between two

plates or cylinders, one of which is fixed, and the other of which rotates. The plates

can have various designs, the simplest of which is plate-plate, in which there are two

flat horizontal plates with the material in between, as shown in Fig. 2.4a. While

this appears to be a simple design, it generates non-trivial dynamics, because the

applied shear rate is a function of distance from the axle, and therefore non-uniform,

and the non-uniformity is significant when compared to the applied shear rate. It is

therefore more common to instead use a plate and cone geometry, in which there is

one flat plate and another conical plate, the tip of which almost touches the bottom

plate, as shown in Fig. 2.4b. The result of this is that both the speed of the rotation

and the width of the sample vary linearly with distance from the axle, and so the

applied shear rate is uniform across the sample [98]. However, a disadvantage of

this geometry is that any material effects that have an associated length-scale may

now occur non-uniformly across the sample due to its non-constant width. Also,

the rotational motion can cause an effect called edge fracture [99], in which air gaps

open in the edges of the material, which impacts the measured response.

An alternative is a Taylor-Couette geometry, in which the material is sandwiched

in between two concentric cylinders, one of which rotates, as shown in Fig. 2.4c.

There is then a curved slab of material which makes a full circle, and it is now simple

to apply a nearly uniform shear. If the cylinders are very long, the flow is effectively
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unidirectional in the azimuthal direction. A disadvantage of this geometry is that

the flow is not completely flat due to the device curvature, and the result of this is

that for inertialess flow (which we assume throughout this thesis), the stress field

varies as [100]

Σ = B

r2 , (2.27)

with r the distance from the axle, in contrast to the expression for flat inertialess

flow, in which ∇Σ = 0. This means that for a viscous fluid, the strain rate also

varies across the sample [101] as

γ̇ = C

r2 . (2.28)

The effect this has can be minimised by using cylinders with large radii and a small

gap, but it still leaves some non-uniformity.

One additional experimental nuance is an effect called apparent wall-slip [102].

Where the material is in contact with the plates, it does not necessarily move at the

same speed as the adjacent plate, and this can cause the rheometer to incorrectly

measure the strain. There are a number of experimental techniques to minimise this,

such as using cross hatched plates [103]. Throughout this work, we will neglect wall

slip.

2.2.2 Flow Curves

A common way to characterise a material’s rheology is via a flow curve. To obtain

this, the material is sheared at a strain rate which is held constant after its first

application at some time t = 0 until the material reaches a steady state in which

the shear stress is independent of time. The steady state shear stress can then be

plotted as a function of strain rate. This graph is referred to as the flow curve.

For a material to reach a steady state while under shear, it must have some

level of viscous, plastic or fluid-like behaviour. Consider for example an elastic solid

with stress proportional to strain, Σ = Kγ. Under a constant applied shear rate,

the stress will continue increasing indefinitely without reaching a steady state (in
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Figure 2.5: Flow curves of steady state stress against strain rate for a) a Newtonian
fluid, b) a shear-thickening fluid (blue) and a shear-thinning fluid (red) and c) a
yield stress fluid.

practice, a real material will break once the breaking strain is passed, and then

display plastic behaviour). Alternatively, a Newtonian fluid with stress proportional

to strain rate, Σ = ηγ̇, will have a flow curve that takes the form of a straight line

passing through the origin, the gradient of which gives the viscosity of the fluid, as

shown in Fig. 2.5a.

Two common non-linear responses that manifest in a flow curve are shear-thinning

and shear-thickening. These are shown in Fig. 2.5b. At low strain rate, they both

have Σ ∝ γ̇, as for a Newtonian fluid, but at higher strain rates the gradient increases

for a shear-thickening fluid and decreases for a shear-thinning fluid. To characterise

this, we can define a dynamic viscosity,

η = dΣ
dγ̇

, (2.29)

and we see that this dynamic viscosity is a function of strain rate.

A third common class of materials are yield stress fluids. These have a flow

curve in which stress is an increasing function of strain rate for γ̇ > 0, but the curve

intercepts the stress axis at a non-zero value, which is referred to as the yield stress,

ΣY , as shown in Fig. 2.5c. This means that a minimum stress must be applied to

the material to generate a steady flow, and above this minimum stress, the material
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behaves as a fluid. For a stress below the yield stress, these materials typically

behave as elastic solids with Σ ∝ γ. A Bingham fluid is a very common sub-class

of yield stress fluid, in which for applied stresses above the yield stress, stress is

linear in strain rate [42, 104]. Another common sub-class of yield stress fluid is a

Herschel-Bulkley fluid [105], for which

Σ = ΣY + κγ̇n. (2.30)

This describes a yield stress fluid which, when a stress greater than the yield stress

is applied, becomes shear-thinning for n < 1 and shear thickening for n > 1.

A flow curve is clearly a good way to distinguish between various classes of

materials and characterise basic rheological behaviour. However, the flow curve

only describes steady state behaviour, and many materials also exhibit a range

of interesting time-dependent rheological phenomena before reaching steady state.

To observe this behaviour, other rheological protocols are needed, which we now

describe.

2.2.3 Shear Startup

A common protocol for characterising a material’s rheology before it reaches steady

state is shear startup, in which shear is applied at a constant rate γ̇ for all time

t > 0. For an elastic solid under shear startup, the stress would be linear with the

strain γ = γ̇t, until the breaking strain is reached, at which point the material no

longer behaves elastically. On the other hand, a Newtonian fluid would have a stress

response Σ = ηγ̇, which is determined by the shear rate, but remains constant at all

times t > 0.

For a yield stress fluid, we typically see an initial elastic regime, in which stress is

proportional to strain, Σ ∝ γ = γ̇t. Then, at larger strains, the stress approaches a

steady state value, as prescribed by the steady state flow curve defined above. This

steady state stress will be larger than the yield stress and depends on the strain rate.
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a) b)

Figure 2.6: Startup curves of stress against strain at constant strain rate for some
common classes of materials. a) An elastic solid (blue) and a viscous fluid (red). b)
A yield stress fluid with no static yield stress (red) and with a static yield stress
(blue), which leads to a stress overshoot.

Some yield stress fluids display a stress overshoot under shear startup, in which the

stress increases to a maximum value and then decreases as it approaches its steady

state. In this situation, the stress maximum is known as the static yield stress, and

is the stress which is required to generate steady flow at a particular strain rate.

The value of the steady state shear stress in the limit γ̇ → 0 is instead known as

the dynamic yield stress, and is the minimum stress required to maintain a state

of steady flow at any strain rate. Fig. 2.6 shows startup curves for some common

classes of materials.

2.2.4 Lissajous Figures

Another way to characterise the response of a material while in a state of flow is to

apply an oscillatory shear protocol, such that

γ =γ0 sin (ωt) ,

γ̇ =γ0ω cos (ωt) .

(2.31)

The stress response can then be measured around each cycle, which reveals the

dependence of stress on strain and strain rate separately. Typically, the response

is plotted in two different graphical formats, one showing stress as a function of
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a) b)

Figure 2.7: Lissajous figure showing stress as function of a) strain and b) strain rate
under an oscillatory shear protocol γ = γ0 sin (ωt) for an elastic solid (blue) and a
Newtonian fluid (red).

strain and the other showing a function of strain rate. These are known as Lissajous

figures.

For an elastic solid with Σ = kγ, the plot showing stress as a function of strain

will simply be a diagonal straight line. The dependence of stress on strain rate will

look like

Σ2 = k2γ2
0

(
1 − γ̇2

γ2
0ω2

)
, (2.32)

which will appear as an ellipse.

For a Newtonian fluid with Σ = ηγ̇, the plot of stress as a function of strain rate

will trivially be a straight diagonal line. The plot of stress as a function of strain

will show an ellipse with

Σ2 = η2γ2
0ω2

(
1 − γ2

γ2
0

)
. (2.33)

We therefore see that the two extreme cases of an elastic solid and a viscous

fluid have very distinctive signals on this type of plot, which are shown in Fig.

2.7. In practice, most soft matter systems exhibit a mix of solid-like and fluid-like

behaviours, and so they will produce a Lissajous figure that is neither a perfect
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ellipse nor a straight line [63].

Time Dependence

Lissajous figures are typically plotted after many shear cycles, so that the material

has had time to reach its oscillatory steady state, and there is little change from cycle

to cycle. However, many soft matter systems change state during the application

of an oscillatory shear protocol, and as a result the steady state Lissajous figure is

insufficient to describe the full dynamics. Instead, a Lissajous figure for each shear

cycle can be plotted to fully characterise the material response [65]. We will discuss

this in detail in Ch. 4 and Ch. 5, where we examine slow fatigue and delayed yielding

in two theoretical models under an applied oscillatory shear.

2.3 Shear Banding

So far, we have limited ourselves to assuming strain to be uniform throughout a

sample. However, there are many effects that can cause both strain and strain rate

to be heterogeneous. Important among these is the phenomenon known as shear

banding, which has been extensively observed experimentally [106–117].

The most common reason for shear banding to arise is when a material has a

non-monotonic constitutive curve [118–120], as sketched in Fig. 2.8a. The result of

this is that there are some stresses at which the material has multiple states of steady

flow at different strain rates. The material can therefore develop a state in which it

is divided into multiple regions at different strain rates, as shown in Fig. 2.8b, but

the stress is nonetheless uniform, as required by force balance. These shear bands

are generally stable and can in principle persist indefinitely because each region is

in one of the possible steady states.

To allow this effect in theoretical models, it is common to divide the total stress

of the system into a elastoplastic contribution, σ, and a viscous contribution, ηγ̇,
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Figure 2.8: a) Non-monotonic constitutive flow curve, in which multiple strain rates
are possible at the same stress. b) Velocity field for a material exhibiting shear
banding, with different shear rates γ̇ = ∂yvx in each of the two bands. c) Velocity
field for a material exhibiting transient shear banding without distinct bands of
different strain rates, in which the strain rate varies smoothly in space, and is locally
negative in the upper section.

by assuming that the system comprises some elastoplastic material in a background

solvent. The behaviour of σ is then related to the specific system being modelled.

The total stress of the system is taken to be Σ = σ + ηγ̇, and the viscosity of the

background solvent, η, is taken to be small. The total stress of the system then also

obeys specific requirements. One common such requirements is to assume inertia-

less flow, which corresponds to setting the Reynoldss number to zero, and gives

∇iΣjk = 0 for unidirectional flow between two flat plates.

Once the stress has been decomposed in this way, it is common for the elastoplastic

stress σ to vary in space. We assume that between neighbouring regions of different

σ, there must be some interface with a non-zero width [121]. There will be some

non-zero interfacial energy associated with these interfaces, which we expect to de-

pend on the gradient of σ. We follow [121] and assume that the interfacial energy

takes the form

EI ∝
∫

dV (∇σ)2 , (2.34)

although other functional forms would render similar qualitative results. The in-

terfaces will now generate a force which acts to minimise that energy, and so the
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equation for σ needs to be modified by a term of the form

−∂EI

∂σ
= −κ∇2σ, (2.35)

which has the effect of diffusing the elastoplastic stress across the sample. While we

have noted here one possible form for a diffusive term, we will not use this precise

form throughout. However, the key conclusion to be drawn from this analysis is that

for a spatially varying σ, some kind of stress diffusive term should be included [121].

In principle, a material with a non-monotonic flow curve could form a state in

which strain rate varies very rapidly in space and forms a large number of coexisting

bands of alternating strain rate, but in practice this is not what is seen because of

stress diffusion. In both experimental and theoretical systems, the effect of stress

diffusion is to smooth out strain rate, so that typically only a small number of bands

of distinct strain rate form [121].

More recently, transient shear banding has also been the subject of much study.

Here, shear bands form during the early stages of a deformation but do not constitute

a stable steady state, and so under continuous applied shear, the shear bands will

eventually decay and the material return to a state of homogeneous flow [35, 44,

114, 122–124]. Transient shear banding is generally the result of an instability in

the system, which causes the growth of heterogeneity when certain requirements are

satisfied. For example, in some systems, when the stress is relaxing as a function

of strain, ∂γσ < 0, the system is unstable to perturbation growth [44]. In other

systems, instability can be related to the curvature of the stress-strain curve [125].

By the time the system reaches its steady state, these requirements are no longer

satisfied, and so the system evolves towards a homogeneous state once more. Because

they arise out of instability, transient shear bands only form when there is some

form of perturbation in the system. In experimental systems, this perturbation is

present naturally due to thermal or mechanical noise or device curvature, but in

computational systems it sometimes needs to be added by hand.

Transient shear bands do not always have sharply defined bands of different
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shear rates, as is the case for steady state shear bands. Instead, the strain rate can

vary smoothly across the whole sample, and as a result the velocity profile can be

non-linear, and even have locally negative strain rates [126]. An example velocity

profile for a transient shear band without clearly delineated regions is shown in Fig.

2.8c. Although transient shear bands will by definition decay after a long enough

time, many of them can be very long lived [35], which means that on experimentally

or computationally accessible timescales, the apparent steady state remains banded.

2.4 Methodology

In this work, we study theoretical constitutive models of soft matter systems and solve

them computationally. Some of the models used involve simulating a finite number

of discrete material elements, which evolve according to some specified dynamics.

For these models (Ch. 4 and Ch. 5), the dynamics presented in the relevant sections

provide a full description of the way in which the model is simulated.

The remaining models (Ch 3 and Ch. 6) take the form of continuum first order

implicit differential equations of some number of variables. For these models, we

numerically solve these dynamical equations using the fourth order Runge-Kutta

method (RK4) [127]. For a system of n variables, x1, x2, ..., xn, we combine these

variables into a single time dependent vector, x (t). We can write the time derivative

of x at any time,
∂x
∂t

= f (x) , (2.36)

where f is constructed from the dynamical equations. If we know the state of the

system at time t, we can then advance the state by a small time increment, ∆t,
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through the following calculations:

k1 =f (x (t)) ,

k2 =f
(

x (t) + ∆t
k1

2

)
,

k3 =f
(

x (t) + ∆t
k2

2

)
,

k4 =f (x (t) + ∆tk3) ,

x (t + ∆t) =x + 1
6 (k1 + 2k2 + 2k3 + k4) .

(2.37)

Provided the time step is sufficiently small, we can repeat this process a large number

of times, and the result will be a very good approximation to the exact solution to

the dynamical equations.

In Ch 3, we simulate a large number of lattice points, each of which is in a slightly

different state x, so that we can model heterogeneity. While RK4 is sufficient to

advance a single lattice point, we have an additional term in the dynamical equations

which couples lattice points together, which takes the form of a diffusive term, as

introduced in Sec. 2.3. To evolve the system, we therefore have to follow two

processes at each step: first, we advance each lattice point using RK4, then we apply

the spatial coupling term to the whole system using a Crank-Nicolson algorithm

(CN) [128,129].

To apply the CN algorithm, we note that our system is already discretised in

space and time, and we write the state vector as

xn
i , (2.38)

where the superscript denotes the time step and the subscript denotes the position.

The diffusive term which we need to advance takes the form

∂x
∂t

= · · · + α
∂2x
∂y2 , (2.39)

and we advance this using a second-order implicit Runge-Kutta method, which when
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discretised takes the form

xn+1
i − xn

i

∆t
= α

2∆y2

[(
xn+1

i+1 − 2xn+1
i + xn+1

i−1

)
+ (xn

i+1 − 2xn
i + xn

i−1)
]

. (2.40)

This can be rearranged to have all the terms in xn+1 on the left hand side, and then

expressed as a matrix equation with

A



xn+1
0

xn+1
1

...

xn+1
m


= B



xn
0

xn
1

...

xn
m


, (2.41)

with A and B two matrices, and we can calculate all of their elements, provided we

are careful with the boundary conditions. We use symmetric boundary conditions,

and assume all fields are smooth, with zero gradient at each edge of the sample. This

is accounted for when calculating the matrices by considering an additional element

past each edge of the sample, xn
−1 = xn

1 and xn
m+1 = xn

m−1. Eq. 2.40 can then be

applied to calculate the matrix elements of A and B for all 0 ≤ i ≤ m, with slight

modification to the first and last row of the matrices to account for these boundary

conditions. Inspection of Eq. 2.40 reveals that A and B are both tridiagonal, and

because we can evaluate everything on the right hand side of the matrix equation,

we can calculate the next state of the system if we can invert A. We carry out

this inversion using the Thomas algorithm [130], which takes only O (m) time, with

m the number of grid points. Once the matrix has been inverted, it is trivial to

construct the state of the system at the next time step.

2.5 Conclusion

In this chapter, we have introduced the concepts of stress and strain, and defined

the normal and shear components of these in terms of the deformations applied to a

sample of material. We considered some common strain protocols, including simple

shear, which is what we use throughout this thesis. We also considered the effect on
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a sample of material of various components of the stress tensor.

We then considered how to experimentally measure the response of a material

to a deformation by discussing rheometry and rheometer geometry. Next, we intro-

duced some common measurement protocols, in the form of the flow curve, shear

startup curves and Lissajous figures. We considered the response of various common

materials to these protocols, including elastic solids, Newtonian fluids, shear-thinning

and shear-thickening fluids and yield stress fluids.

Next, we introduced the concept of shear banding, in which the strain rate

becomes heterogenous across a sample. We considered both transient and steady

state shear banding, and some of the key differences between them. We also saw

that allowing strain heterogeneity requires the imposition of a stress diffusive term,

and considered the effect that this has on shear banded systems.

Finally, we have introduced some of the computational methods which will be

used in this work, in the form of the RK4 method and the Crank-Nicolson algorithm.



Chapter 3

Ductile and Brittle Yielding in

Soft Glassy Materials

3.1 Introduction

A wide range of amorphous materials display elasto-plastic behaviour, in that they

have a solid-like regime and a plastic-like regime when deformed. The solid-like

regime is characterised by a near-elastic stress-strain response, where stress is typ-

ically very close to proportional to strain. The plastic regime is characterised by

plastic deformation, where very large deformations can occur at a near-constant

stress. Notably, the transition between these behaviours can be driven entirely by

the load or deformation applied to the system. This transition is called yielding and

is generally caused by internal state changes.

Many viscoelastic materials also undergo a yielding process, where there is a mac-

roscopic change to the global mechanical response from an elastic regime at small

deformation to a plastic regime at large deformation [38,43]. Previous experimental

work has explored shear-startup in carbopol microgels [114, 131] and silica based

colloidal gels [12] and identified that they exhibit an elastic branch at small strain,

followed by a stress overshoot, and then relaxation to plastic flow, along with long
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lived transient shear banding during the regime of stress relaxation. Further experi-

mental work with colloidal gels [13] found that fluidity transitions start occurring in

small, spatially localised pockets, which then grow and spread out over the sample

with a characteristic time that exponentially decreases with the applied stress, until

the whole sample has fluidised.

Molecular dynamical simulations of amorphous systems [132] under shear startup

found transitions towards heterogeneous flow, which only at low strain rates develop

into shear bands, which are transient but long lived. A combination of theoretical

and experimental work [133] found that in stress controlled protocols, as the applied

stress of the systems explored increased past the yield stress, regions with faster

particle movement grow heterogeneously, allowing particles to diffuse as steady flow

sets in. Study of a fluidity model and the soft glassy rheology model [35] under

shear startup found that both these models show transient shear banding for a wide

range of parameters, and that this shear banding is often associated with fast stress

relaxation. Fluid-universal criteria for linear instability to shear banding growth

have also been developed [125] for a number of rheological protocols, including shear

startup, in which it was found that banding begins to grow just before a stress

overshoot as a function of strain.

In general, yielding can occur smoothly or can be abrupt and catastrophic. It

has been argued in Ref. [43] that amorphous solids yield in two distinct ways:

discontinuous “brittle” yielding, which is catastrophic and precipitous; or continuous,

“ductile” yielding, which is smooth. The authors of Ref. [43] argue that these two

regimes are separated by a random critical point, and characterised by qualitatively

different underlying stress-strain curves. In Ref. [43], brittle yielding occurs in

systems in which the stress-strain curve has a stress overhang, the result of which

is that for a protocol in which strain increases monotonically, the stress will drop

discontinuously. In contrast, ductile yielding in Ref. [43] occurs in systems with a

stress overshoot and is accompanied by continuous stress.

In this work, we will use a fluidity model to further explore yielding transitions
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under shear startup. We will argue that ductile and brittle yielding are different

manifestations of the same phenomenon, and that the materials we study in this

work only undergo continuous yielding. We will argue that ‘brittle’ and ‘ductile’

are the two limiting cases of a continuum of yielding speeds, without requiring an

overhang in the stress-strain curve or a random critical point.

In Sec. 3.2 we consider a fluidity model for age-dependent soft glassy fluids, as

in [35, 134], and we aim to explore mathematically and computationally how the

model system yields in various situations. In Sec. 3.4.1 we consider the system when

homogeneous shear is artificially enforced. In Sec. 3.4.2 we consider the situations in

which the system is linearly unstable to perturbation growth, and therefore likely to

exhibit shear banding. In Sec. 3.4.3 we carry out detailed non-linear simulations of

the system, and we find a continuum of continuous yielding rates, ranging from slow

and smooth to fast and precipitous, which are two facets of the same phenomenon.

We also find that fast yielding with an infinite negative gradient in the stress-strain

curve, which would be measured experimentally as discontinuous yielding, is the

limiting situation at zero strain rate, infinite sample age and zero diffusion.

3.2 Model

We consider a model of a soft glassy fluid comprised of an elastoplastic fluid with

a scalar, shear-dependent fluidity, following [35]. The total shear stress Σ is decom-

posed into a viscoelastic part σ and a purely viscous part, so that

Σ = σ + ηγ̇, (3.1)

where the viscosity of the purely viscous part, η, is assumed to be small. We will

assume a Reynolds number of 0 (neglecting inertia), which requires Σ to be spatially

invariant, allowing us to use it to describe global behaviour. We use a Maxwell-type
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Figure 3.1: Steady state flow curve of stress against strain for the model with
G = τ0 = 1. The yield stress must be overcome (|σ| > 1) for the system to flow in
steady state.

constitutive equation, dependent on fluidity, for the viscoelastic stress

∂tσ = Gγ̇ − σ

τ
, (3.2)

where G is an elastic modulus and τ is the structural relaxation time, or inverse

fluidity. τ then has its own dynamics:

∂tτ = 1 − τ

τ̃ (γ̇) + l2
0

τ0
∂2

yτ. (3.3)

We define τ̃ (γ̇) so that τ̃ (0) → ∞, and without flow this then represents simple

ageing, with the total change in τ over a given time interval, ∆τ , equal to the total

time, ∆t. When the system is in a state of steady flow, τ̃ (γ̇) is the new steady state

value of τ , and τ evolves towards it. l0 is a mesoscopic length which describes the

tendency for one region to equalise with its neighbours, and the right hand term is

a diffusive one which damps heterogeneity [121].

We choose our steady state relaxation time to be

τ̃ = τ0 + 1
|γ̇|

, (3.4)

so that we have a steady state stress under flow of σ = Gγ̇τ̃ = G (τ0γ̇ ± 1), with the
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± following the sign of the strain rate. For a stress −G < σ < G, the steady state

strain rate is γ̇ = 0, and so this is a Bingham fluid [42], with a yield stress σY = G,

as shown in Fig. 3.1. For a stress below this yield stress, the material behaves like

an elastic solid, while above it the stress increases monotonically with strain rate in

a fluid-like manner. We will work in units of stress and time for which G = τ0 = 1.

For the rest of this discussion, we will use η = 0.05 unless stated otherwise.

τ0 represents the timescale on which microscopic movements take place, and as

such is generally small compared to laboratory timescales. As a result, it would be

difficult to shear an experimental system at a strain rate which is fast compared to

τ0. We therefore impose ˙̄γτ0 ≪ 1 throughout.

3.3 Shear Protocol

We consider a sample of infinite extent in the x (flow) and z (vorticity) directions,

we assume translational invariance in these directions and neglect edge effects, and

consider shear flow between two flat parallel plates at y = 0, Ly. We will work in

length units in which Ly = 1. Within these assumptions, σ, τ and γ̇ can only depend

on y.

We study a shear start-up protocol defined as follows. First, the sample is

prepared by a deep quench at t = −tw, resulting in a fully rejuvenated state with

τ (y, t = −tw) = 1, σ (y, t = −tw) = 0. We then allow the sample to age at rest, with

τ̇ = 1, until time t = 0, at which point we set the upper plate moving along x with

constant speed ¯̇γLy = ¯̇γ, which defines the imposed average shear rate. Assuming

no-slip conditions, the local shear rate, γ̇ (y, t), must satisfy ¯̇γ =
∫ 1

0 γ̇(y, t)dy.
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3.4 Results

3.4.1 Homogeneous Dynamics

We will start by considering this system when it is artificially constrained to flow

homogeneously. We do so by setting the shear rate throughout the sample to be

equal to the imposed shear rate, and therefore do not need to model multiple points

in space. The behaviour of the system is now fully described by the vector (σ, τ)T

evolving in time according to Eq. 3.2, 3.3 without the diffusive term.

The dashed lines in Fig. 3.2 show how the shear stress, Σ, evolves for several

different values of ageing time, tw, and fixed ¯̇γ, and shows two interesting features.

For low ageing time (tw = 102), the global stress response increases monotonically

towards the steady state value, then plateaus when it reaches it. For higher values

of tw, however, the global stress shows a linear elastic branch, which overshoots the

steady state value, reaches a maximum and then decays to the steady state viscous

behaviour from above. To understand this, let us consider σ, remembering that

initially τ = tw, and that it then decays towards its steady state value of τ = τ̃ .

When τ is large, σ
τ

is small, and so ∂tσ ≈ Gγ̇, giving linear elastic behaviour as

observed until τ becomes small enough for the stress to drop off. From this, it is

easy to see qualitatively why a small initial value of τ will result in no overshoot.

To examine this more carefully, first we solve for τ (t), and find that

τ (t) = twe− t
τ̃ + τ̃

(
1 − e− t

τ̃

)
. (3.5)

To solve for σ, we will need to multiply an integrating factor, which is found by

integrating τ ,

P = e
∫

1
τ

dt =
(
et/τ̃ − 1

)
τ̃ + tw, (3.6)

and gives us that

∂t(Pσ) = P γ̇, (3.7)
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Figure 3.2: Numerical homogeneous (dashed), and heterogeneous (solid) start-up
curves for the system at ¯̇γ = 10−3 for tw = 101, 102, ..., 1012 left to right.

which is solved by

σ (t) =
γ̇
[
τ̃ 2
(
et/τ̃ − 1

)
+ (tw − τ̃) t

]
τ̃
(
et/τ̃ − 1

)
+ tw

. (3.8)

To find out more about the stress peak, we will need to consider the derivative

of σ,

∂tσ = γ̇
et/τ̃ [τ̃ (2tw − τ̃) + t (τ̃ − tw))] + (τ̃ − tw)2[

tw + τ̃
(
et/τ̃ − 1

)]2 . (3.9)

We are now interested in whether this expression is ever negative, as that is necessary

and sufficient for an overshoot, and if so when it crosses the time axis, which will

give us the location of the overshoot. The denominator (and γ̇) is always positive,

so we need to consider the strain at which the stress is instantaneously constant:

γ̇2
{
et/τ̃ [(2tw − τ̃) τ̃ + t (τ̃ − tw)] + (τ̃ − tw)2

}
= 0. (3.10)

Substituting in the expression for τ̃ and noting that τ0γ̇ ≪ 1 for all the situations

in which we use this model, we set τ0γ̇ = 0 and find that

exp (γ) [2twγ̇ − 1 − γ (γ̇tw − 1)] + [twγ̇ − 1]2 = 0. (3.11)
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First, consider the case when twγ̇ − 1 = 0, when the expression reduces to

exp (γ)twγ̇, (3.12)

which is necessarily positive, and so there is no overshoot in this situation.

Next, consider the case when twγ̇−1 > 0. There is a growing exponential which is

multiplied by the sum of two quantities, one positive and one negative. The negative

term, −γ (γ̇tw − 1), grows with γ, while the positive term, 2twγ̇ − 1, is constant,

and so the expression must be negative for γ greater than some threshold, γ0. The

remaining term in the expression, [twγ̇ − 1]2, is necessarily positive, although also

constant and therefore quickly becomes small when compared to the exponential.

We can therefore conclude that in this case, the rate of change of stress will become

negative.

Next we consider the case where twγ̇ − 1 < 0, and note that twγ̇ − 1 > −1. The

squared term on the right is still positive, and the exponential term now multiplies a

growing positive term and a term which is either positive or small and negative. The

expression (for rate of change of stress) will therefore only grow after t = 0. From

the assumption that the total stress is always in the same direction as the shear, we

know that ∂tσ (t = 0) ≥ 0, and therefore ∂tσ is always positive. In this case, then,

we conclude that the stress increases monotonically.

From this, we deduce that the condition for an overshoot is

twγ̇ > 1. (3.13)

We will now try to determine when the stress maximum occurs, which will be

when ∂tσ = 0, and to do this we first use the above results to assume that twγ̇ ≫ 1.

Eq. 3.11 now reduces to

eγ0twγ̇ (2 − γ0) + (twγ̇)2 = 0, (3.14)
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Figure 3.3: Strain when stress is maximum, γ0, plotted against γ̇tw for homogeneous
curves (crosses), coloured according to γ̇. The solid black line shows the strain at
which γ0e

γ0 = twγ̇. At low γ̇ and high γ̇tw, we expect the crosses to fall on the black
line.

we will assume that the overshoot occurs at a strain γ0 ≫ 1, and find that

γ0e
γ0 = twγ̇, (3.15)

and so the strain at which the stress maximum occurs is dependent on γ̇tw. We

do not calculate here the height of the stress overshoot, however, note that for a

significant majority of the time before the overshoot, stress is directly proportional

to strain. The maximum stress will therefore be very close to the strain at which it

occurs multiplied by G.

Fig. 3.3 shows strain at which the stress overshoot occurs from homogeneous

simulations, and also the line of Eq. 3.15, and it can be seen that they are similar.

The crosses are colour coded according to strain rate, which reveals that the dis-

crepancies from Eq. 3.15 occur at large γ̇ and small γ̇tw. This is as expected, as we

assumed γ̇ to be small and γ̇tw to be large, and within this regime, the overshoot

height matches the predicted curve very well.
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3.4.2 Linear Stability Analysis

We are also interested in how the system behaves when heterogeneity in σ, τ and

γ̇ in the flow gradient direction is allowed. From now on, we will stop including

τ0 in equations, as we chose a unit system in which its value is 1. To see when

heterogeneous startup curves will differ from the homogeneous one, we need to

carry out a linear stability analysis. This will tell us under what conditions any

small spatial perturbations will grow into measurable heterogeneity and noticeable

shear bands will develop. Shear bands will, in general, modify the behaviour of the

system, so this analysis also tells under what situations we expect heterogeneous

startup curves to be different to homogeneous curves. To do this, we define the

background state, σ̄, τ̄ , ¯̇γ, which follows the homogeneous dynamics, and the first

order perturbations, δσ, δτ , δγ̇, which characterise the degree to which flow becomes

heterogeneous. Both the base state and the perturbation depend on time, and are

expressed as follows:

σ = σ̄ + σ1 cos (πy/L) = σ̄ + δσ, (3.16)

τ = τ̄ + τ1 cos (πy/L) = τ̄ + δτ, (3.17)

γ̇ = ¯̇γ + γ̇1 cos (πy/L) = ¯̇γ + δγ̇, (3.18)

Σ = Σ0. (3.19)

For the last equation we have used that force balance requires that there is no

heterogeneity in Σ. We only consider the lowest Fourier mode because it is the most

unstable and is commonly generated experimentally by device curvature, which is

discussed further below. Substituting Eq.3.1 into Eq. 3.19, we find that

0 = δσ + ηδγ̇, (3.20)
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δγ̇ = −δσ

η
. (3.21)

The perturbation can now be considered separately to the base state, σ̄, τ̄ and ¯̇γ,

which is defined to evolve according to the homogeneous dynamics. To do this, we

define

∂tσ = f (σ, τ, γ̇) , ∂tτ = g (σ, τ, γ̇) , (3.22)

then Taylor expand around the base state to first order and find that

∂tδσ = δσ
∂f

∂σ
+ δτ

∂f

∂τ
+ δγ̇

∂f

∂γ̇
, (3.23)

and similarly for δτ . Using Eq. 3.21 to replace δγ̇ with δσ gives us

∂tδσ = δσ
∂f

∂σ
+ δτ

∂f

∂τ
− δσ

η

∂f

∂γ̇
. (3.24)

Using only the linear part of the Taylor expansion, with higher order terms neglected,

as expressed here, requires that the higher order terms are much smaller. Examina-

tion of the derivatives reveals that approximation is valid for all of the terms except

one, which is the expansion for ∂tδτ , which contains terms of the following form:

∂tδτ = ... + 1
n!

(
−δσ

η

)n
∂n (g)
∂γ̇n . (3.25)

Differentiating g gives us that

∂n g

∂γ̇n = (−1)n τ̄n!(
1 + ¯̇γ

)n+1 , (3.26)

which in combination with Eq. 3.25 gives us

∂tδτ = ... + τ̄

1 + ¯̇γ

− δσ

η
(
1 + ¯̇γ

)
n

. (3.27)

The higher orders of this term will only vanish if the term in brackets is less than

1, and so we will need to avoid the regime in which it is not. ¯̇γ is typically small

compared to 1, and so we find an additional condition for our linear stability analysis
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to hold:
δσ

η
≪ 1, (3.28)

and if we are outside that regime we will have non-linear behaviour which does not

follow the rest of this analysis. For most of the results presented, condition 3.28

holds.

Assuming linearity, we can write the perturbation dynamics as a matrix equation:

∂t

δσ

δτ

 = M

δσ

δτ

 =


−1

τ̄
− 1

η

σ̄

τ̄ 2

τ̄

η
(
1 + ¯̇γ

)2 − 1

1 + 1
¯̇γ

− l2
0π2


δσ

δτ

 . (3.29)

For now, we will neglect the diffusive term, l2
0π2, as l0 describes a microscopic length

scale, which will be much shorter than the wavelength of the perturbations, and

therefore is generally small compared to the other terms. Eq. 3.29 is then in general

diagonalisable, and will have two separate modes. We are interested in whether either

of these is a growing mode, as a single growing mode is sufficient for the magnitude

of the heterogeneity to grow. The growth rate of each mode is determined by the

eigenvalues, and so we need to find a condition for a positive eigenvalue. We note

that the trace of the growth matrix, − 1
τ̄

− 1
η

− 1
1+ 1

γ̇

, is necessarily negative as τ̄ , η

and ¯̇γ are all positive, and so standard matrix results tell us that |M | > 0 gives

both eigenvalues negative, while |M | < 0 gives one positive and one negative. We

therefore find that the condition for linear instability is

0 > |M | =
(

1
τ̄

+ 1
η

)
1

1 + 1
¯̇γ

− σ̄

τ̄ η
(
1 + ¯̇γ

)2 . (3.30)

Assuming that η ≪ τ̄ and ¯̇γ ≪ 1, this reduces to

σ̄

τ̄ η
>

¯̇γ
η

, (3.31)

σ̄ > τ̄ ¯̇γ. (3.32)
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From this, it can be seen that perturbation growth will occur when the stress is

large and the fluidity is low. Recall that in steady state, σ = τ γ̇, and the steady

state is therefore stable against perturbation growth (or, given the approximations,

may be unstable with a very low growth factor, which is too small to overcome

diffusion), and so there will be only transient banding. From Eq. 3.2, it can be seen

that the criterion for stress relaxation (∂tσ < 0) is identical to condition 3.32, and so

we can conclude that the system is linearly unstable to perturbation growth while

the stress in the homogeneous base state is a decreasing function of strain. This tells

us that only systems with a stress overshoot will be unstable against perturbation

growth at any point, and that systems with an overshoot will in general develop

shear bands after the overshoot, while the stress is relaxing.

Eigenvalues

We can also examine the eigenvalues directly. For cleanness of notation, we will stop

using overbars to describe the steady state (so we will use τ instead of τ̄ etc.). Recall

that each eigenvalue describes the growth rate of its mode, and the growing mode

corresponds to the positive eigenvalue. From Eq. 3.29, we can calculate that the

eigenvalues will be

λ∓ = 1
2

−γ̇ − 1
τ

− 1
η

∓

√√√√(−γ̇ − 1
τ

− 1
η

)2

− 4γ̇

(
1
τ

+ 1
η

)
+ 4σ

τ

1
η (γ̇ + 1)2

 ,

(3.33)

which we simplify by assuming that η and γ̇ are small and τ is large to give

λ± ≈ 1
2

[
−1

η

(
1 ±

√
1 − 4γ̇η + 4ησ

τ

)]
. (3.34)
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We can now see that the eigenvalue which becomes positive will be λ−, and we carry

out a binomial expansion of the square root to give

λ− ≈ 1
2

[
−1

η

(
1 −

(
1 − 2γ̇η + 2ησ

τ

))]

= 1
2

[
−1

η

(
2γ̇η − 2ησ

τ

)]

=
(

σ

τ
− γ̇

)
,

(3.35)

which as expected is positive iff the condition 3.32 derived earlier is met.

By examining the ratio σ
τ

for the homogeneous state, we can proceed further. We

find that this ratio as a function of γ always has a typical shape for all γ̇, tw, with

a magnitude depending on γ̇ and tw. We also find that for a given product γ̇tw the

magnitude is directly proportional to γ̇. This allows us to write it as

σ

τ
= γ̇F (γ̇tw) A (γ) , (3.36)

with A (γ) and F (γ̇tw) two unspecified (although calculable) functions. Close exam-

ination of the equations reveals that F (x) varies slowly.

For total perturbation growth, we need to consider the differential equation which

comes from Eq. 3.29:

∂tα = λ− (t) α, (3.37)

with α the relevant eigenvector, with components which are linear combinations of

δτ and δσ. This is solved by

α = α(t=t0) exp
(∫ t1

t0

λ− (t) dt

)
, (3.38)

and so we see that the time integral of the eigenvalue is what determines perturbation

growth. Note, however, that our growth matrix is time dependent, and the matrix

results used in Eq. 3.38 are only strictly true for time-independent matrices. We

proceed with the calculation under the assumption that it will be approximately

true, noting the need to verify our results with non-linear simulations. If we assume

that there will be a small perturbation at all times, then we are specifically interested
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in the integral over the time interval during which the eigenvalue is positive:

∫ t1

t0

λ−dt =
∫ t1

t0

−σ̇dt = −∆σ, (3.39)

and so because λ− is exactly the gradient of the stress strain curve, its integral will

equal the change in stress over the same period. Because we are considering only the

period when the eigenvalue is positive, this integral is then equal to the stress drop

of the homogeneous curve, which depends principally on the product γ̇tw. This is an

important result, and tells that during the linear regime, we are able to completely

calculate the magnitude of the perturbation growth from the size of the stress drop

after the overshoot. We therefore also expect any phenomena associated with shear

banding to also show a dependence on γ̇tw.

It will also be useful to consider the effect that diffusion can have on perturbation

growth. We find that the perturbation diffuses at a rate

∂tδτ = −l2
0π2δτ. (3.40)

If we assume that the direction of α remains fairly constant in (σ, τ)-space, this

damping is transferred directly to α and so our combined perturbation growth

equation becomes
∂tα

α
= γ̇F (γ̇tw) A (γ) − γ̇ − l2

0π2, (3.41)

which gives a stronger requirement for perturbation growth:

γ̇ (F (γ̇tw) A (γ) − 1) − l2
0π2 > 0. (3.42)

This will in general have the effect of delaying the onset of banding, but also gives a

new condition which must be met for any banding:

γ̇ >
l2
0π2

AmaxF (γ̇tw) , (3.43)

which gives an l0-dependent strain rate for a given γ̇tw below which perturbation

growth is impossible because any perturbation will diffuse faster than it grows. We

will call this strain rate the diffusion limit, and note that because F varies slowly
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it will be close to being a line of constant γ̇, and so the diffusion limit γ̇diff ∼ l2
0.

This seems logical, as diffusion is principally a time-dependent phenomenon, while

our analysis has shown that during the linear regime, perturbation growth is mainly

strain-dependent. For sufficiently small strain rate, the diffusion will overtake the

perturbation growth and prevent the formation of shear bands. This important

result tells us that for a fixed l0, there will be some strain rate below which we see

no significant shear banding, and the heterogeneous startup curves will follow the

homogenous ones.

We have now seen the system is unstable to perturbation growth when the stress

of the homogeneous base state is decreasing in time, and that the perturbation

growth during the linear regime is directly related to the size of the stress drop.

We therefore expect systems with a larger stress overshoot to show more significant

banding. We also find that for any l0, there is a strain rate-dependent diffusion limit

which scales as l2
0, below which we expect to see no banding. However, we also note

that our analysis is only true in the linear regime, makes several approximations,

and applies results which only strictly hold for time-independent matrices to a time-

dependent matrix. We therefore explore this further in full non-linear simulations,

to confirm whether the behaviour we have predicted will occur.

3.4.3 Non-Linear Simulations

Random Noise

We are interested in seeing how heterogeneity and shear banding will affect the

system’s dynamics. However, if we simply remove the artificial homogeneity con-

straint and model spatial variation, but start the system in a mathematically exactly

uniform spatial state, then every point will evolve in the same way and the system

will remain homogeneous. To observe heterogeneity, we therefore have to seed the

system with some form of heterogeneous perturbation. These perturbations repres-

ent physical phenomena such as thermal effects and rheometer imperfections, and
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as such will need to be initially small. These small perturbations can still have a

large impact on the global dynamics, however, due to the instability that amplifies

heterogeneity into a fully formed shear band.

In this work, we will only seed the first Fourier mode, as it is the one which

diffuses most slowly, grows most quickly and is most likely to appear in real physical

situations due to device curvature. The typical rheometer geometry which would

be used to approximate our geometry would be a Taylor-Couette flow, in which a

thin layer of fluid is in between two large cylinders, one of which rotates. This is

a good approximation to our protocol, with the exception that the fluid layer is

slightly curved. This curvature means that even under homogeneous flow, there is

a slight variation in stress across the sample, which is proportional to 1/r2, with r

the distance from the centre of rotation. For a set-up in which the radius of the

cylinders is much larger than the distance between them, this effect is effectively

linear, and therefore appears most strongly in the first Fourier mode, with other

modes having progressively smaller amplitudes. We will discuss several different

methods of seeding, which all have competing advantages and disadvantages.

We will start with the simplest method of seeding, where we prepare the sample

with a slight heterogeneity in the local stress field. We will therefore have an initial

state of (σ (y) , τ (y)) = (σ0 (y) , tw), with σ0 (y) = δ cos (πy/L), with δ some small

number. This perturbation represents some artefact of the sample preparation, or

could represent a non-uniformity associated with the finite time a rheometer takes

to reach ¯̇γ.

This approach is appealing in its simplicity, and in the right circumstances does

yield interesting results. However, at low strain rates it can be ineffective. To see

why, consider two start-up curves with the same value of ¯̇γtw, and therefore the

same size of overshoot, but with differing strain rates. We know that the system

only becomes unstable to perturbation growth near the peak of the overshoot, which

happens at fixed strain for these scenarios. However, because γ = γ̇t, this occurs at a

much later time for the case with lower strain rate (and can be orders of magnitude
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later). While the system is evolving towards the stress maximum, however, the

perturbation is decaying due to the diffusive term in Eq. 3.3, and this decay happens

at a rate independent of strain rate. We therefore find that for sufficiently low strain

rates, the perturbation will have been decaying for longer, and often almost to zero,

by the time the system is unstable, and this can obscure many phenomena.

Next we should consider what would happen if we seed τ instead of σ, so that

the initial state looks like (σ (y) , τ (y)) = (0, τini (y)), with τini = tw (1 + δ cos πy/L),

which might represent a non-uniformity in sample ageing. While the mechanism is

different, the physics is the same: the coupling between τ and σ means that within

a few time-steps the percentage perturbation in each is effectively the same. We can

also see how seeding σ would result in a heterogeneous τ : the perturbations in σ are

quickly transferred to γ̇ due to force balance, and this heterogeneity then perturbs

τ . We can therefore conclude that the choice of field to seed has little effect on the

outcome, and perturbing τ will give the same results as perturbing σ. We therefore

only need to perturb one of these fields, and for the rest of this work will choose to

seed σ for simplicity.

To get around this problem of noise diffusion, we could instead add a small

random perturbation at each time step, which is similar to thermal fluctuations or

time dependent mechanical rheometer noise. However, we wish to ensure that this

perturbation does not become too large, and that the added noise is not dependent on

non-physical simulation parameters, and so we choose at each time step to increase

σ (y) by σn (y) = Xtδ
√

∆t cos πy/L, where δ is still a small number, Xt is a random

number, chosen for each time-step, in the range [−0.5, 0.5], and ∆t is the time step.

Because the perturbation can now be positive or negative, the noise will never grow

too large.

To understand why the noise is scaled by the square-root of the time-step, we

need to examine the statistical properties of the total noise added, ϕ = ∑
t σn =

δ
√

∆t cos (πy/L)∑t Xt, where the sum is over N time-steps. For cleanliness of

notation, we will analyse χ = ∑
t Xt, and this can be done using the central limit
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theorem, which tells us that this value will follow a Gaussian distribution [135]. We

will first look at the mean of this distribution,

χ̄ = NX̄t = 0, (3.44)

which gives us the hoped for result that the mean total noise added is zero. Next

we consider the variance of χ, (∆χ)2, which is given by

(∆χ)2 = N (∆Xt)2 , (3.45)

and the standard deviation

∆χ =
√

(∆χ)2 =
√

N∆Xt =
√

t

∆t
.

1√
12

, (3.46)

with t the total time being summed over. We can now look at the standard deviation

of ϕ,

∆ϕ = δ
√

∆t cos (πy/L)∆χ = δ

√
t∆t

12∆t
cos (πy/L) = δ

√
t

12 cos (πy/L), (3.47)

which reveals that the standard deviation of the total noise added is independent

of the time step and depends only on total time, which is desired because the time

step is a non-physical model feature. However, the standard deviation increases

with time, which is as expected as the random motion compounds with time. We

therefore see that the total noise added by this method will have a mean of zero,

ensuring it never grows too large, and a standard deviation which is independent of

the time step, meaning that it depends only on physical parameters.

We can now see why this noise protocol is useful: there is heterogeneity ensured at

every time-step, it is always small, and its properties are independent of the time step.

However, the trade-off is that with the high degree of randomness introduced, the

system is now less predictable. When the system reaches a point where perturbation

growth begins, we can’t even predict whether the perturbation will be positive or

negative, and its magnitude is likely to change on every run. This can be countered by

simulating the system multiple times and averaging, although this is computationally
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Figure 3.4: Homogeneous (black dashed) and heterogeneous (red solid) start-up
curves for a system with ¯̇γ = 10−4, tw = 1010, δ = 10−3. The seeded perturbation
gives a shear band with a range which is larger than the imposed shear rate, and so
the heterogeneous system fluidises far earlier than might be expected.

expensive.

The magnitude of the noise, which is determined by δ, is also significant. From

now on, δ will refer to the quantity define above, and is a simulation parameter. A

value of δ = 0.01 is commonly used, and is similar to the variations of 1-10% which

are caused by device curvature in experiments. However, to avoid non-linear effects

in this model requires that δ
η

≪ 1. We therefore generally will choose δ to be no

larger than 0.01 (and often much smaller) in order to avoid these effects.

It will also be instructive to consider the magnitude of the variation in γ̇. As we

have seen, δγ̇ = δσ
η

, and due to the seeding δσ ≈ δ, so we see that δγ̇ is independent

of strain rate. This is problematic, because it means that taking ¯̇γ sufficiently low

will give us δγ̇ > ¯̇γ in the unperturbed state, and so the system is seeded with a

permanent large shear band in comparison to the shear rate of the background state.

There are two possible ways to resolve this: we could take δ to be very low, say

10−5, to avoid this behaviour in a larger range of strain rates. This approach is

unsatisfactory, however, because we still have a finite lower limit on strain rate. The

alternative is to scale δ with ¯̇γ so that δ ∝ ¯̇γ, which means that the seeded shear
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band is always small compared to the global shear rate. This is appealing because it

allows strain rate to be taken infinitely small. To consider the physicality of this, it

will be instructive to consider the case where δ is kept constant at low strain rates,

as in Fig. 3.4. We then will have situations in which the shearing is very slow, but

the system still exhibits a strong shear band immediately which causes the system to

fluidise very rapidly, and with only a very small elastic branch. Further, the steady

state which the system reaches is different to the homogeneous steady state, because

the system has some locally negative strain rates. This seems particularly strange

when a faster shear rate (with the same ˙̄γtw) would prevent this early fluidisation,

restore the elastic branch, and ensure the steady state stress is equal to that of

the homogeneous system. We therefore consider the scaling of δ to be physically

justifiable, and for the rest of the work will use δ = 0.01¯̇γ unless otherwise specified.

The physical origin of the random noise is also important to consider. Adding

noise at every timestep, with a δ independent of strain rate, would seem to be a

good example of thermal noise; there is some stochasticity in the system caused by

local thermal motion. In this scenario, the fact that the seeded shear band is large

compared to the global strain rate also seems reasonable, and could be justified by

arguing that local thermal motion is faster than shear induced motion (although the

neat sinusoidal shape of the noise would be less justifiable). However, while plausible

for some materials, this actually indicates why this approach is problematic here. In

soft glassy materials, the microstructure which determines the behaviour is typically

far larger than the atomic scale, and as such the thermal motion of particles is very

slow compared to their size. We should therefore assume that, outside of the strict

athermal limit but even at very low strain rates, the shear induced particle motion

should dominate over the thermal motion. The case of constant δ is therefore

acceptable in this scenario for thermal, quasistatic systems (although the model

would need to be modified to allow quasistatic simulation), while the situation we

have chosen, with δ scaling with ˙̄γ is for thermal, finite strain rate systems, even if

that strain rate is slow. This situation, however, is clearly not pure thermal noise.
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Figure 3.5: Homogeneous (dashed) and heterogeneous (solid) startup curves for
¯̇γ = 10−3 (left) with tw = 105, 106, ..., 1012, and for tw = 1011 (right) with ¯̇γ =
10−4, 3.16 × 10−4, .., 3.16 × 10−2. On the left plot, coloured crosses identify locations
of velocity profiles of the same colour in Fig. 3.6a, except for the pink cross which
identifies the location of a velocity profile from Fig. 3.6b. In all cases l = 10−3 and
δ = 0.01¯̇γ.

Instead, it should be interpreted as some non-uniformity in molecular velocities, and

the assumption that they follow a certain distribution regardless of shear rate.

Heterogeneous Dynamics

We now consider the heterogeneous dynamics in full detail, for which we have used

numerical simulations. We will observe that the scenarios in which significant shear

banding is observed line up with those predicted on the basis of the linear stability

analysis in the previous section, and a few of these start-up curves are shown in Fig.

3.5. This allows us to see the impact of banding on the global stress response: there

is a sudden sharp drop-off in the stress, with a (negative) gradient which is steeper

than the stress decay for the homogeneous case. This drop-off can be understood as

follows: the development of a shear band causes some local strain rates to increase

and others to decrease. The critical point is when the strain rate is able to become

locally negative: the average of the absolute local strain rate then begins to exceed

the average imposed shear rate. This causes the sample to fluidise more rapidly on

average than in the homogeneous case, causing a faster stress drop-off. An example

of an extremely banded velocity profile, including locally negative shear rates, is

shown in Fig. 3.6b. For a single sample, we can define Smax, which will be the
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Figure 3.6: Banded velocity profiles for ¯̇γ = 10−3, tw = 1010 and l = 10−3. (a) shows
a range 1.5 strain units, and (b) shows half a strain unit during the time in which
the profile is extremely banded. The local strain rate, γ̇, is given by the gradient of
these curves.

amplitude of the largest negative gradient of the stress-strain curve during the time

simulated. This gives a measure of yielding rate for each sample, which can be

averaged across samples with the same parameters but different random seeds. We

also define the degree of banding, B = (∆γ̇) / ˙̄γ, with ∆γ̇ the difference between

the largest and smallest local strain rate. From this, we can define Bmax, for each

sample, which is the largest value of B during the time observed, and this can also

be averaged across samples.

As shear banding leads to a fast drop-off in the stress, we might expect large

values of Smax to be correlated with the regions of instability identified by the analysis

in Sec. 3.4.2. Fig. 3.7a, 3.7b show phase space plots of Smax, and we can see the

predicted trends broadly emerging. The plot with l = 10−2 has a cut-off strain rate

below which Smax returns to a small value, while in the plot with a lower value of l

the diffusion limit is not visible. We also see that increasing the product ¯̇γtw leads

to a higher value of Smax, except below the diffusion limit.

The white lines in Fig. 3.7 show contours of constant overshoot height. Following

one of these lines at a large overshoot height (right of the plot), we see that Smax in-

creases as the strain rate decreases, and appears to do so without bound. This implies

that the sharpness of the yielding increases along these contours, and approaches
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Figure 3.7: Top: Phase space plots of Smax for l = 10−3 (left) and l = 10−2 (right).
Bottom: Phase space plots of degree of banding, Bmax, for l = 10−3 (left) and
l = 10−2 (right). White lines on phase space plots are contours of constant overshoot
height.

a limit of infinite steepness (at zero strain rate), which would be experimentally

indistinguishable from discontinuous yielding. Note that this was not predicted by

the linear stability analysis, and so is likely related to non-linear behaviour. If we

instead follow a line of constant low overshoot height (bottom left), we see that

Smax is small and remains constant. This implies that in that regime, we have only

slow, smooth yielding, regardless of strain rate. We consider the case in which Smax

is large to be “brittle” yielding, and the case of low Smax to be “ductile” yielding,

although we do not define a precise threshold in Smax to differentiate between them,

as this would necessarily be somewhat arbitrary. Instead, we describe samples as
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showing brittle yielding when Bmax > 1, as this indicates that significant shear bands

form, and the failure is therefore initially strongly localised. Examination of Fig.

3.7 reveals that following this criterion, we do indeed see that samples which exhibit

brittle yielding have a high Smax, and for those showing ductile yielding it is low.

While phase space plots allows us to see general trends, it will also be instructive

to examine some slices across them, as in Fig. 3.8. It can be seen from Fig. 3.8(b) that

at low tw, Smax increases only slowly with increasing tw, following the homogeneous

trend, and then at a ¯̇γ-dependent tw it starts to increase very rapidly. Comparison

with Fig. 3.8(d), which shows the degree of banding for the same parameters, reveals

that the much sharper gradients occur when the degree of banding, Bmax, is larger

than some cut-off, which is slightly above 1. This is as expected because the degree

of banding exceeding 1 indicates that there is some material with a negative local

shear rate.

It will also be instructive to examine the case where γ̇ is increased at constant tw,

as in Fig. 3.8(a,c). Now it can be seen that Smax appears to increase as ¯̇γ decreases,

until it reaches a limiting point where the perturbation growth is too small to

generate locally negative shear rates. However, this limiting point is dependent on

tw, so if we were to examine the limit of infinite sample age, Smax could increase

without limit as ¯̇γ decreases, until the diffusion limit. From this we can conclude

that an infinitely sharp stress drop-off would be the limiting behaviour in the case

of infinite tw, zero strain rate and no diffusion.

We have now seen that the behaviour predicted by the linear stability ana-

lysis has broadly emerged, including more severe banding for samples with a larger

stress overshoot and an l0-dependent strain rate below which perturbation growth

is suppressed. We have also seen several interesting new phenomena relating to the

non-linear behaviour, including the observation that Smax → ∞ as ˙̄γ → 0 at fixed

overshoot height.
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Figure 3.8: Slices of the phase space shown in Fig. 3.7a, with fixed tw =
108, 109, .., 1012, blue to red increasing tw, (left) and fixed ¯̇γ = 10−4, 10−3, 10−2, 10−1,
blue to red increasing shear rate, (right), showing Smax (top) and Bmax (bottom).

3.5 Discussion

We have seen that shear banding leads to a fast drop-off in stress, and that its

occurrence is broadly correlated with regions of phase space in which we expect

significant banding. However, it is also interesting to note that there appears to be

a continuum of yielding rates. Some startup curves, generally those with minimal

banding, have a slow stress drop off, which we will refer to as “ductile yielding”,

while in others the stress drops off exceptionally fast, which we call “brittle yielding”.

Crucially, while these two extreme behaviours are qualitatively distinguishable, there

is also a continuum of intermediate yielding speeds. Fig. 3.9 shows a specially

chosen selection of startup curves for which the yielding is easily comparable, as

the parameters are chosen to give identical stress overshoot sizes. In the left plot,
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the stress drop is large and the smooth variation of yielding is clearly visible. It

can be seen that the brittle and ductile yielding are the two extremes of a common

phenomenon. In fact, it is difficult to robustly define ductile and brittle yielding

separately based only on the stress-strain curve, as this would require the imposition

of an artificially chosen threshold value of Smax. In comparison, the right plot shows

a small stress drop, and in this situation, only ductile yielding is observed. We

therefore see that although a range of yielding speeds is in general possible, the

brittle yielding is only possible for a large stress overshoot. However, note that the

parameters used in Fig. 3.9 are very carefully chosen, and while they are helpful here

for instruction, it would be unusual to generate such a plot from regular experimental

data.

Brittle yielding in general takes place at low strain rates and at high tw (and

low l). This is actually the result of two separate processes: a sample with higher

tw
¯̇γ fluidises more slowly, and therefore has a longer elastic branch. It follows that

when the sample starts to yield, more stress has built up, and this drives a more

rapid fluidisation. This correlation is related to the homogeneous dynamics, and

occurs even when the system is artificially constrained to homogeneous flow. When

the system is allowed to flow heterogeneously, we find an additional phenomenon:

the rate of perturbation growth in the non-linear regime is, broadly speaking, time-

dependent rather than strain-dependent, so at low strain rates significant shear bands

can develop in a much smaller strain window following the start of the yielding. As

discussed above, this banding can lead to locally negative shear rates, which causes

the system to fluidise much more rapidly on average.

While the authors of [43] find that brittle yielding is accompanied by a discon-

tinuous stress drop, and therefore separated from ductile yielding by a critical point,

we find that brittle yielding occurs with a finite, although very fast, stress drop, of

which a limiting case is a discontinuous stress drop. We therefore find that there

is no need for a stress overhang or a random critical point, and ductile and brittle

yielding both occur in systems with a stress overshoot.
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Figure 3.9: Stress-strain curves for constant overshoot height Σmax = 17.0 (left) and
Σmax = 5.0 (right), with strain rates ˙̄γ = 10−5, 10−4, ..., 10−1. The ageing times are
chosen so that the peak of each curve is at the same height, in order to make it
easier to compare them. These curves do not correspond to a straight line slice of
the phase space considered above.

3.6 Conclusion

We have introduced a fluidity model of soft glassy fluids, and considered its dynamics

under a shear startup protocol. In Section 3.4.1 we considered the dynamics of the

system when constrained to flow homogeneously, and found that for sufficiently high

¯̇γtw, the system exhibits an elastic branch, before yielding into a fluid-like state. We

also found that the strain at which the stress is at a maximum is dependent only on

the product γ̇tw.

In Section 3.4.2, we considered the system’s linear instability to perturbation

growth, and identified typical parameter values in which this is likely to lead to shear

banding. We found that in the linear regime, perturbation growth is directly related
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to stress relaxation, and that systems with a larger stress overshoot are therefore

more likely to show significant banding.

In Section 3.4.3 we then carried out heterogeneous, non-linear simulations of

the system, and found the regions of parameter space which lead to shear banding

broadly line up with the predictions of our linear stability analysis, although samples

which showed significant banding entered a non-linear regime in which the linear

stability analysis was no longer able to accurately predict behaviour. We also saw

that there is a range of rates at which the system can yield, and found that the

extreme cases of ductile and brittle yielding are simply two extremes of a continuum

of yielding rates for a single phenomenon. We find also that for our model, brittle

yielding is only possible with a large stress overshoot, while ductile yielding can

occur for any size of overshoot.

We have seen that for a large stress overshoot, decreasing the strain rate appears

to increase the sharpness of the yielding transition indefinitely. However, we note

also that this only strictly true in the case l0 = 0, as for finite l0 we have a strain

rate below which perturbation growth is damped. Therefore, although we make

predictions for the model’s behaviour as strain rate goes to zero, these predictions

are not strictly true in the quasistatic limit.

This work has successfully built on that done in [35] exploring the transient shear

banding in this model. It is, however, in disagreement with the conclusions drawn

in [43] that “brittle” and “ductile” yielding are two distinct phenomena, and the

work in [45], which finds a discontinuity in the stress response during elastoplastic

yielding. We can compare our brittle and ductile yielding to those in [43], and we

find that, in our model at least, they are two facets of the same process, differing

only quantitatively. We find that precipitous yielding can occur with an arbitrarily

steep gradient in the stress response, while these former works find that there is some

threshold beyond which there are discontinuities in the stress response. However, we

note that, in contrast to these works, our simulations were thermal at finite strain

rate.



60 Chapter 3. Ductile and Brittle Yielding in Soft Glassy Materials

These results can also be compared to additional results presented in [44] for

athermal systems. This work found that at low strain rates, heterogeneous athermal

systems with a stress overshoot always show brittle yielding, regardless of the size of

the overshoot, and ductile yielding is therefore only possible at high strain rate. This

implies that the ductile yielding we see for samples with a small overshoot height is

related to thermal effects, which in some way slow down the yielding. The precise

nature of the transition between the athermal and thermal cases remains unstudied.



Chapter 4

Delayed Yielding in the Soft

Glassy Rheology Model in Large

Amplitude Oscillatory Shear

4.1 Introduction

Common experience tells us that many materials can be deformed many times in

a similar way, before eventually breaking; for example a plastic chair might be sat

on hundreds of times with no apparent problems, before suddenly breaking the next

time. The process of fatigue in solids following repeated cyclic loading has been

extensively studied in an engineering context [46–48], and it is widely accepted that

repeated loading and unloading of a wide range of materials causes the development

of weaker areas and cracks, which then propagate across the material, leading to

macroscopic failure [46–50]. The process by which small regions of a material slowly

weaken is known as material fatigue, and has been shown to occur over a large

number of loading cycles [49]. The process of crack propagation in solids has been

connected to the relaxation of elastic stress through local yielding events [49, 136]

and to noise-induced heterogeneity, which causes the stress on small regions of a

material to exceed the yield stress while the material-averaged stress is still below
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this threshold [137]. However, the focus within the engineering literature has been

on materials that are elastic solids until some maximum stress or strain, at which

point they fracture. We wish to consider here a wider class of materials, which are

able to show solid-like, fluid-like and plastic behaviour, and as a result can yield

without fracturing.

Many of the materials that show this behaviour can be characterised as soft

and/or glassy [138], and in this work we explore this phenomenon theoretically.

It is widely accepted that soft glassy materials show a solid-fluid transition under

shear [12,13,38,42,91,114,115,131,139–143]. Experimental work has applied large

amplitude oscillatory shear (LAOS) protocols to a range of soft glassy materials

[53] including foams [51], gels [52, 54, 58], emulsions [52, 55, 61], wormlike micelle

solutions [54], polymer solutions [55, 56] and colloidal glasses [57, 59, 60]. These

experiments have revealed a range of non-linear behaviour, including solid-fluid

transitions, yielding processes and growth of heterogeneity in the strain and strain-

rate fields. Solid-fluid transitions transform a material from a solid-like state, in

which stress is proportional to strain, to a fluid-like state, in which stress is a

function of strain rate. In yielding events, for a strain-controlled protocol, the

stress suddenly decreases substantially, while in a stress-controlled process, the

strain suddenly increases substantially. In the experiments of Ref. [51], a solid fluid

transition emerges as the oscillation amplitude increases, while experiments with

colloidal gels [63] showed that this yielding can happen after thousands of shear

cycles. In Ref. [64] the authors connected delayed yielding with either a power law

or exponential fit of the time until yielding as a function of the stress amplitude.

LAOS protocols therefore clearly provide a rigorous way of exploring this every day

process with which we are familiar, and so we will explore the process of delayed

yielding under LAOS, in which a solid-fluid transition happens after a large number

of strain cycles.

Previous studies of the Soft Glassy Rheology (SGR) model under LAOS [65,66]

found transitions from solid-like to fluid-like behaviour, with a fluidised steady state
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featuring strong shear bands. Ref. [65] explored the criteria for yielding transitions

under LAOS, and showed that they only occur for amplitude greater than some

threshold, but for arbitrarily low frequency.

However, to the author’s knowledge, no previous work has explored theoretically

the number of shear cycles before yielding under LAOS, or the process by which that

yielding occurs, in either the SGR model or any other model of soft materials. In

this work, we use the SGR model to explore both of these questions. In particular,

we will explore the way in which yielding can occur suddenly over a small number of

cycles after a very large number of cycles. We will also attempt to identify precursors

to yielding, which has wide reaching real world applications: a good understanding

of the precursors to yielding could allow engineers to identify when a material is

likely to fail, even if there is no obvious indication from its macroscopic stress-strain

relationship.

4.2 Model

We use the SGR model [36,37,144,145], which considers an ensemble of elastoplastic

elements, each of which represents a mesoscopic spatial region of material. These

regions are small enough that a macroscopic material contains a large number of

them, meaning that we can describe material properties using an ensemble aver-

age. They are also large enough that we can meaningfully define a local elastic

strain. Typically, therefore each mesoscopic region must contain at least a few of

the material’s constituent building blocks (foam droplets, colloidal particles etc.).

Each element has a local elastic strain, l, and a local yield energy, E. The elastic

strain increases as the system is sheared at a rate l̇ = γ̇, where γ̇ is the applied

strain rate, allowing local deformation to build up. As elements are strained, they

gain stress Gl and energy per unit volume 1
2Gl2, where G is the microscopic shear

modulus. We work in stress units where G = 1.
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Each element then stochastically hops out of its energy well at a rate Γ, which

is determined by the difference between the accumulated elastic strain energy and

the local yield energy. This hopping rate is given by

Γ (E, l) = Γ0min
{

exp
[
−

E − G
2 l2

x

]
, 1
}

, (4.1)

where x is an effective noise temperature and Γ0 is the microscopic hopping rate.

We work in time units where Γ0 = 1. The hopping rate is given a maximum value

of Γ0 following the recommendations in [146] in order to ensure the model remains

thermodynamically consistent.

In materials in which the thermal energy is of the same order of magnitude as

the energy well depths, such as metallic glasses, the temperature parameter, x, is

generally interpreted as the true thermodynamic temperature, with x = kBT [146].

For systems such as foams and emulsions, the energy barriers generally relate to the

stretching and rearrangement of films and interfaces, and as a result are typically

much larger than the thermal energy [16, 17, 19, 20, 147]. In these systems, x is an

effective noise temperature, which is not connected to thermodynamic temperature,

but is related to the mechanisms which allow stress fluctuations to propagate across

the material.

After yielding, the local elastic strain of an element is reset to l = 0, and a new

energy well depth is chosen from an exponential distribution,

ρ (E) = 1
xg

e
− E

xg , (4.2)

where xg is the glass transition temperature [148]. We set xg = 1, which corresponds

to setting the local yield strain amplitude. To calculate the stress in the system, we

take an ensemble average of the local elastic stress, so that

σ = G

n

n∑
i=1

li, (4.3)

where n is the number of elements and the sum is over elements.

In the limit of an infinite number of elements, the probability distribution of the
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Figure 4.1: Sketch of the behaviour of the SGR model [36, 37, 144, 145]. Elements
are in traps of depth E, and gain local strain energy 1

2Gl2 as they are deformed at a
rate l̇ = γ̇. Elements have a probability of hopping out of their well at any time, and
this probability is a decreasing function of the energy gap to the top of the well and
depends on the noise temperature, x. After hopping, each element returns to l = 0
and a new energy well depth E is chosen from the distribution ρ (E) = 1

xg
e−E/xg .

Figure is adapted from [36,145]

system, P (E, l; t) is governed by the equation

Ṗ + γ̇∂lP = −Γ (E, l) P + ρ (E) δ (l) Y (t) , (4.4)

with δ(x) the Dirac delta function and Y (t) the ensemble average hopping rate,

given by

Y (t) =
∫

Γ (E, l) P (E, l; t) dEdl. (4.5)

The second term on the left hand side of Eq. 4.4 describes elements’ local strain

growing as the system is sheared. The first term on the right hand side describes

elements yielding, and the second term on the right hand side describes the selection

of new energy well depths.

We therefore have a model that for small strains, 1
2Gl2 ≪ E, and zero temperat-
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ure, x = 0, behaves effectively elastically, whereas at large enough strains, elements

approach the edge of their traps and start to yield locally, allowing the stress in

the system to relax plastically. It is therefore possible for the system to reach a

state of steady stress while under continuous shear. At finite temperature, the same

behaviour is broadly observed, but it is now possible for elements to yield for any

value of l. The behaviour of elements is sketched in Fig. 4.1 to illustrate this.

The resulting behaviour of the model depends on the value of the noise temper-

ature, x, and we find that the flow curve (see Ch. 2.2.2) has three regimes [149]:

Newtonian flow regime: σ ∝ γ̇ for x > 2

Power law fluid regime: σ ∝ γ̇x−1 for 1 < x < 2

Glass phase: σ − σy ∝ γ̇1−x for x < 1

(4.6)

As can be seen, below the glass transition temperature, the model predicts yield

stress fluid behaviour.

We follow Ref. [149] and initialise the system with the probability distribution

P0 (E) = ρ (E), which corresponds to the steady state of the system in the limit

x → ∞ and is also the distribution which maximises the system’s entropy. We

then apply a deep quench to the system, and instantaneously set the temperature

to some finite working temperature within the glass phase, x < xg. If the system

then remains at rest in the glass phase, it shows rheological ageing [149], and the

ensemble hopping rate, Y (t), decreases with time, causing the system to become

more solid-like. In principle this ageing can continue forever, although in practice

simulating a finite number of elements limits the level to which a system can age.

Previous studies [35, 44, 145, 149–152] have shown that within the glass phase, the

system’s age prior to shear is a key parameter in determining the system’s subsequent

behaviour under shear.

So far we have considered the behaviour of an ensemble of elements assuming

uniform shear is applied to all elements, but have not considered any spatial variation
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in the shear rate. We now extend this model into a 1D form, allowing spatial variation

of the shear rate field in the flow gradient direction, y. The system is now divided

into n streamlines, each of which has m elements, where m still needs to be large so

that ensemble averages can be taken for each streamline. Throughout this work, we

have n = 25 streamlines of m = 10, 000 elements each. We find that increasing m has

no noticeable impact on the dynamics of the system, although for lower m ≈ 1, 000,

there are some changes to the results, particularly near transition points. We find

that varying n has no noticeable impact on the number of cycles before yielding, but

can have a small impact on the rate at which a sample yields. Each streamline has

a local strain rate, γ̇j, which obeys

1
n

n∑
j=1

γ̇j = ˙̄γ, (4.7)

where ˙̄γ is the imposed strain rate which is applied to the system. We can also

calculate the elastoplastic stress on any streamline as

σj = G

m

m∑
i=1

lij, (4.8)

where lij is now the elastic strain of the i-the element in the j-the streamline.

We then consider the elastoplastic elements to be immersed in a background

Newtonian solvent, of viscosity η ≪ 1 (in our units in which G = Γ0 = 1, and we use

η = 0.05 throughout. For the jth streamline, the total stress, Σj, is then composed

of an elastoplastic contribution from the SGR elements and a viscous contribution

from the solvent, so that

Σj = σj + ηγ̇j. (4.9)

We assume small Reynolds number, which means that the total stress must be

spatially uniform, ∂yΣ (y) = 0, and so the total stress in the system, Σ, obeys

Σ = 1
n

n∑
j=1

Σj = 1
n

n∑
j=1

σj + η ˙̄γ. (4.10)

This allows us to calculate the global stress. We then calculate the local strain rate

of each streamline, given the local elastoplastic stresses and the imposed strain rate,
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by recalling that for a spatially uniform system,

Σj =Σ, (4.11)

and therefore that

σj + ηγ̇j = 1
n

∑
j

σj + η ˙̄γ. (4.12)

This has the net effect that a streamline with a higher elastoplastic stress than its

neighbours will flow at a lower strain rate than those neighbours. This allows the

stress to propagate across the sample on a timescale determined by η, in a manner

that reproduces the 1D projection of the Eshelby propagator [153].

Finally, we need to couple adjacent streamlines together to allow some diffusion

of stress, as discussed in Ref. [121]. If we do not include some form of diffusion,

there will be no significance to the location of streamlines within the sample, and

spatially-heterogeneous effects will occur on the scale of the spatial grid, with the

strain rate of each streamline independent of the strain rates of adjacent streamlines

(within the limit of Eq. 4.12). Including a diffusive term couples adjacent streamlines

together, and ensures that heterogeneous effects occur in spatially localised regions

on a length-scale determined by the diffusion coefficient. To do this, each time an

element yields, we choose three elements at random from each of the neighbouring

streamlines and adjust their local strains by w∆l [−1, +2, −1], where ∆l is the change

in local strain of the element that yielded during the yielding event and w is a small

diffusivity parameter, which we set to w = 0.05. This acts as a diffusive term [44],

and causes stress heterogeneity in the sample to be diffused, with the most strong

damping on higher Fourier modes. It therefore plays an analogous role to the l2
0∂2

yτ

term in the model presented in Ch. 3.
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Figure 4.2: Sketch of the shear protocol. The sample is first equilibrated at infinite
temperature, then instantaneously quenched to a finite working temperature, x.
Next, it is aged without shear for a time tw, before an oscillatory strain of amplitude
γ0 and frequency ω is applied. The oscillatory strain is applied for many more cycles
than are shown here.

4.3 Shear Protocol

As described above, we have a model in which we apply a global strain rate and

are able to measure the resulting stress. We first equilibrate at x = ∞, then

instantaneously quench at time t = −tw to a working temperature x < xg, within

the glass phase, where the model shows rheological ageing. The system is then

allowed to age for a time tw without any applied shear. The parameter tw therefore

describes the degree of annealing, and a larger tw will correspond to a more solid,

better annealed sample.

At time t = 0, we begin to shear the system, applying a LAOS, strain controlled

protocol. We apply an imposed strain rate ˙̄γ = γ0ω cos (ωt), with ω the angular

frequency and γ0 the oscillation amplitude. This protocol is sketched in Fig. 4.2. A

cosine strain rate signal is chosen so that the applied strain is continuous and centred:
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it follows γ = γ0 sin (ωt), so that γ (t = 0) = 0, and the strain cycles between positive

and negative. Throughout this work, we set ω = 10−1 for computational efficiency,

which corresponds to low frequency but is far from the quasistatic limit. We have

also explored ω = 10−2, which shows qualitatively similar results.

The oscillation amplitude, γ0 is an important parameter which will be varied

throughout this work. To be within the LAOS regime, we require a sufficiently large

amplitude that non-linear behaviour is commonly observed [154,155]. For the SGR

model, this means that elements are frequently close to the edges of the energy wells,
1
2Gl2 ≈ E. The expected value of E after a relaxation event is given by

Ē =
∫

ρ
(
E ′
)

E ′dE ′ = xg, (4.13)

and so we require that in each cycle, elements are able to build up enough strain

to come close to that mean value. The maximum local strain increase in a cycle is

exactly the oscillation amplitude, so this corresponds to

γ0 ≳

√
2xg

G
=

√
2. (4.14)

We will in general use γ0 > 1, noting that the LAOS regime cannot be rigorously

defined by a precise threshold amplitude. We will also see a change in behaviour

around γ0 ≈
√

2, and we want to see both sides of this transition.

We model shear of a sample between two flat parallel plates, of infinite extension

in the flow direction, x, and the vorticity direction, z. The plates are separated in

the y-direction by a distance L. We choose units of length in which L = 1. We

assume the sample to be infinite and homogeneous in the x- and z-directions, and

only allow heterogeneity in the y-direction. The assumption of infinite extensions

requires that for each streamline, we model enough elements that the distribution of

E and l is a very close approximation to the probability distribution described by

Eq. 4.4. Applying the oscillatory shear protocol corresponds to fixing the bottom

plate while moving the top plate in the positive and negative x-directions. This is

similar to a Taylor-Couette rheometer geometry in the limit of small gap size, as in
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previous chapters.

We need to ensure that there is some variation in the system so that if it is

unstable against the growth of heterogeneity, there will be a perturbation that is

able to grow. Without any variation in the system, any unstable modes will have

zero amplitude, and so will still be unable to develop. To generate variation, we

seed the system with a small sinusoidal perturbation, by adjusting the energy well

depths after ageing. Each energy well is adjusted to E = E0 (1 + δ cos 2πy), with

E0 the energy well depth before the adjustment and δ the size of the perturbation.

We use δ = 10−2 throughout. The fact that there are a finite number of elements on

each streamline ensures that there is some stochastic variation between streamlines

at all times, and we find that maintains enough heterogeneity in the system that we

do not need to continually add additional noise.

While applying this protocol, we can measure the response of the system both

within each oscillation cycle and as a function of the number of oscillation cycles.

As we are particularly interested in yielding that occurs after many cycles, we will

principally follow the latter, and define N as the number of complete oscillation

cycles that have been carried out. We define ΣRMS (N) for a given cycle, which is

the root-mean-square of the stress during that cycle. To measure heterogeneity, we

define the degree of banding at any point in time, ∆γ̇ (t), as the standard deviation

of the strain rate across the sample,

∆γ̇ (t) =

√√√√∑n
i=1

(
γ̇i − ˙̄γ

)2

n
, (4.15)

and ⟨γ̇⟩ (N) as the mean of ∆γ̇ during a cycle.

4.4 Results

The basic phenomenon that we report is illustrated in Fig. 4.3. We see an initial,

pre-failure regime, in which stress is almost constant. Then, after some number of
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Figure 4.3: RMS stress (blue) and mean degree of banding (red) around each cycle
as a function of number of cycles for tw = 107, γ0 = 1.8. For this sample, the cycle
number at yielding N∗ = 70.

cycles N∗ = 70, the system suddenly yields dramatically over just a few cycles, and

the stress drops to a much lower value. Then in the post-failure regime, the stress

is almost constant again, but now at a lower value than initially.

Examining the degree of banding for the system reveals some insight into the

process. During the pre-failure regime, although stress is effectively constant, we see

that heterogeneity is gradually building up. Then, as the sample fails, the degree of

banding increases very rapidly at the same time as the stress relaxes, suggesting that

these processes are very closely linked. The degree of banding then also stabilises to

an approximately constant value, which is higher than its value before yielding.

To quantify this delayed yielding, we define N∗ as a measure of the cycle number

in which yielding occurs. To calculate this, we first find the cycles in which ΣRMS

is at its global maximum and global minimum as a function of cycle number, N .

If the minimum occurs before the maximum, we argue that the sample does not

show yielding for the parameter values in question, and do not define an N∗. If

the minimum is after the maximum, we define a threshold stress as the midpoint

between the two, and N∗ is then the first cycle in which ΣRMS is below that threshold,
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Figure 4.4: Root-mean-square stress, ΣRMS as a function of cycle number N for one
sample, with important quantities labelled. Σ̃D is the size of the stress drop and
Σss is the steady state stress, which allows calculation of the normalised stress drop,
ΣD = Σ̃D/Σss. The threshold stress is the midpoint between the maximum and
minimum of ΣRMS, and the yielding cycle, N∗, is the first cycle in which ΣRMS is
less than the threshold stress and remains below it.

and remains below the threshold until the stress minimum. Note that the minimum

possible value of N∗ is N∗ = 2. To characterise the magnitude of the observed

yielding phenomenon, we define Σ̃D, which is simply the difference between the

maximum and minimum values of ΣRMS, and ΣD = Σ̃D/Σss, where Σss is the final

value of ΣRMS. Fig. 4.4 shows a sketch of all of these quantities for a single sample.

To examine this behaviour in more detail, we now turn to Fig. 4.5, which on the

left shows both ΣRMS and ⟨γ̇⟩ as a function of cycle number, N , for tw = 107 and

various strain amplitudes, γ0. Within the range of strain amplitude 1.5 ≤ γ0 ≤ 2.5,

we see clear and significant delayed yielding, and the cycle in which the sample fails,

N∗ is larger for smaller amplitudes. For the larger amplitude γ0 = 2.75, we see that

the sample does yield, but this begins in the first cycle, and so the effect cannot

be considered as delayed yielding. For smaller amplitude, γ0 ≤ 1.25, we do see a

late stress drop, but the magnitude is very small. For this reason, we also introduce

a threshold, ΣD > 0.1, which we justify below by referring to Fig. 4.8, and will

not consider samples below this threshold to show yielding. Also of note is that
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Figure 4.5: Root-mean-square stress, ΣRMS (top) and mean of banding during a
cycle, ⟨γ̇⟩ (bottom) as a function of cycle number N . Left: waiting time tw = 107

and strain amplitudes γ0 = 1, 1.25, ..., 2.75 in curve sets right to left, blue to red.
Right: strain amplitude γ0 = 1.5 with waiting time tw = 101, 102, ..., 107 in curve
sets left to right, blue to pink. Within each set, each curve corresponds to a different
random initial seed.

the samples which show significant yielding all relax to a very similar steady state

stress, while those at lower amplitudes have a clearly different steady state stress.

Examination of Fig. 4.5b, shows that in each case, the drop in ΣRMS is associated

with a simultaneous sudden increase in the degree of banding, indicating that the

yielding is closely related to a growth in heterogeneity. Note that the final degree of

banding for 1.5 ≤ γ0 ≤ 2.75 is approximately the same, while for γ0 = 1.25 it is two

orders of magnitude lower, and doesn’t appear on the scale for γ0 = 1. This implies

that the small stress drop we see for γ0 = 1.25 is caused by a qualitatively different

process to the yielding we see at higher amplitudes, and is not driven or accompanied

by a shear banding instability of any experimentally observable amplitude. We revisit

this phenomenon below when we consider the system under homogeneous shear.
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Figure 4.6: a) Cycle number at yielding, N∗, as a function of amplitude, γ0, for tw =
103, 104, ..., 107 in curves bottom to top, blue to pink. b) Cycle number at yielding,
N∗, as a function of waiting time, tw, for amplitudes γ0 = 1.5, 1.675, 1.75, ..., 2.25 in
data sets top to bottom, blue to red. Marked symbols show data points, and straight
lines show power law best fits, N∗ = ctα

w. c) Power law exponent, α, and prefactor,
c, as a function of amplitude, γ0. Only cases with ΣD > 0.1 are shown.

The right of Fig. 4.5 shows both ΣRMS and ⟨γ̇⟩ as a function of cycle number,

N , for various tw and γ0 = 1.5. Here, it can be seen that all the samples show some

level of delayed yielding, although for the smallest tw, these yielding events follow a

rise in the stress. In the general, the cycle in which the sample fails, N∗, increases

as tw increases. We now see that the steady state stress of all the samples is equal,

which is to be expected at constant amplitude, as tw is an initial condition of which

the system should retain no memory in steady state.

To explore these trends further, Fig. 4.6 shows N∗ as a function of both γ0 and

tw, now excluding samples with ΣD < 0.1. Fig. 4.6a shows that at high amplitude,

N∗ → 2 for all tw, indicating a yielding process which starts within the first cycle.
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Figure 4.7: a) Colourmap showing cycle number at yielding, N∗, as a function of
both tw and γ0. b) Colourmap showing size of the stress drop, ΣD, as a function of
both tw and γ0. In both plots, the region in white is where the maximum of ΣRMS
occurs after its minimum, and so no yielding is considered to have taken place.

Above a critical amplitude, γ0 > γc, with γc ≈ 1.4, we see N∗ increase as amplitude

decreases. For γ0 < γc, we then see very small stress drops, and the corresponding

N∗ are not marked here. Fig. 4.6b shows the corresponding plot with N∗ as a

function of tw, and we now see that for any amplitude there is a region in which

N∗ ≈ 2, but outside that region, N∗ appears to show a power law dependence on

tw. This power law implies that if we were to keep increasing tw outside of the

limits shown, we would also see N∗ increase without bound. Fig. 4.5c shows the

exponent and prefactor of the power law as a function of amplitude, and we see the

prefactor clearly growing as the amplitude decreases, in support of the trend seen in

Fig. 4.5a. The exponent of the power law varies smoothly, although shows a very

weak dependence on amplitude. The smooth dependence of both of these parameters

suggests that for a given tw and γ0, we could use the power law to predict N∗.

Having examined N∗ as a function of γ0 and tw separately, we turn now to Fig.

4.7a, which shows N∗ in the full 2D parameter space of γ0 and tw. We see that for

all tw there is an amplitude below which no yielding occurs, either because the stress

maximum occurs after the minimum or because the size of the stress drop is small.
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Figure 4.8: Normalised stress drop, ΣD, (left) and final degree of banding, ⟨γ̇⟩f ,
(right) as a function of amplitude for tw = 103, 104, ..., 107 in curves from blue to
pink. Both show a clear change in behaviour around a critical amplitude, γc ≈ 1.4.
The black dashed line in panel (a) shows ΣD = 0.1, and samples below this line are
excluded from Fig. 4.6.

Everywhere else, N∗ increases with decreasing amplitude and increasing tw, as seen

before. The trends shown imply that it would be possible to see delayed yielding

for an arbitrarily large amplitude, provided tw is taken large enough. The bottom

right corner of the plot shows that N∗ does continue to increase for γ0 < γc, and

it grows very quickly as amplitude decreases. However, what we see in this regime

is not really yielding, as the magnitude of the stress drop is small compared to the

steady state stress.

Fig. 4.7b shows the stress drop, ΣD, as a function of both γ0 and tw, and we now

see two different types of behaviour. For γ0 ≥ 1.5, there is a clear trend in ΣD, and

it is typically greater than 0.2. For γ0 < 1.5, a very different trend emerges, which

barely depends on tw within the region in which yielding occurs. ΣD is also much

smaller, and typically around 0.1. This is also the only region in which there are

samples which show no yielding.

To further explore the region of Fig. 4.7b which looks visibly different (γ0 < 1.5),

we turn to Fig. 4.8, which shows the normalised stress drop, ΣD, and the final

degree of banding, ⟨γ̇⟩f , as a function of amplitude for various tw. We see that as
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the imposed strain amplitude is decreased towards γc, the final degree of banding

reaches a clear plateau, and then for amplitudes only very slightly smaller than γc,

the final degree of banding is significantly smaller. Fig. 4.8a shows more clearly the

transitional behaviour that we noted from observation of the size of the stress drop

in Fig. 4.7b, and shows that this transition occurs at exactly the same amplitude as

the transition in the final degree of banding.

For this reason, we separate the samples which yield into two categories: for

ΣD > 0.1, which typically corresponds to γ0 > γc, we consider the sample to have

shown significant, measurable yielding. For ΣD < 0.1, we consider the sample

to not show significant yielding, despite the small stress drop (which can still be

exceptionally delayed). This threshold is marked on Fig. 4.8a, which reveals that

it does exclude all samples which do not show significant banding. However, it

also excludes some samples with γ0 > γc, and applying a threshold based on ⟨γ̇⟩f

may appear to be more appropriate. We chose a criterion based on stress despite

the fact that it doesn’t provide a perfect distinction between the two qualitatively

different regimes because in a real application, a significant change in stress would be

necessary to consider a sample to have yielded, and not simply a growth in internal

heterogeneity. Additionally, it is significantly easier to measure a change in the stress

than in the degree of banding in a laboratory setting. Based on this distinction,

samples with ΣD < 0.1 are excluded from Fig. 4.6.

Homogeneous Shear

So far, we have presented results only for heterogeneous shear. We now also present

results for samples with enforced homogeneity, in which the strain rate of each

streamline is always set to the applied strain rate, thereby excluding the possibility

of shear banding. Note that this is not experimentally possible, and we explore this

only to provide further theoretical insight. Fig. 4.9 shows the stress curves from

Fig. 4.5 alongside their counterparts, in which strain rate homogeneity is enforced.

Examination of the top two panels, at constant tw, reveals that several samples
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Figure 4.9: Root-mean-square stress, ΣRMS as a function of cycle number N for
heterogeneous shear (left) and homogeneous shear (right). Top: waiting time tw =
107 and strain amplitudes γ0 = 1, 1.25, ..., 2.75 in curve sets right to left, blue to red.
Bottom: strain amplitude γ0 = 1.5 with waiting time tw = 101, 102, ..., 107 in curve
sets left to right, blue to pink. Within each set, each curve corresponds to a different
random initial seed.

now have different steady state stress values, while those at low and high amplitude

have essentially the same steady state values under homogeneous shear as under

heterogeneous shear. This can be understood as follows: at high amplitude, the

samples fluidise rapidly, and this effect is strong enough to occur without shear bands

developing. At low amplitude, the heterogeneous steady state still has a very low

degree of banding, and this is unaffected by enforcing homogeneous shear. These

samples do not appear to fluidise substantially, and so it seems the amplitude is

too low to properly fluidise the homogeneous state or to generate significant shear

banding. For intermediate amplitudes, the system fluidises significantly in both cases,

but under heterogeneous shear, the formation of shear bands allows the system to

fluidise further and reach a new steady state. This implies that the homogeneous
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steady states for 1.5 ≤ γ0 ≤ 2 are unstable to growth of heterogeneity. We also see

from these panels that almost every sample yields more slowly under homogeneous

shear. We suggest, therefore, that the sudden growth of a shear band is able to

fluidise the sample much more rapidly. The samples that do not show this difference

are for strain amplitude γ0 < 1.5, for which the stress curves are effectively identical

between the two plots.

Fig. 4.9c-d show stress curves at a given imposed strain amplitude, γ0 = 1.5, for

different values of the waiting time, tw, and we find that in both cases the steady

state is independent of tw. However, once again, we find two different steady states,

implying that the homogeneous steady state is unstable to growth of heterogeneity.

Many of these curves show stress drops of significantly smaller amplitude under

homogeneous shear than under heterogeneous shear, and in some cases the stress

increases as it approaches steady state rather than decreasing. Once again, we also

see significantly slower yielding as a function of cycle number in homogeneous shear

compared to when shear banding is allowed.

These graphs provide further evidence for a critical amplitude at γc ≈ 1.4: it is

now clear that for all parameters, there is a homogeneous yielding mechanism possible.

For some parameters, there is also a heterogeneous yielding mechanism available,

which happens faster and takes the samples to a steady state of lower stress than in

the homogeneous case. For γ0 < 1.5, the samples for which heterogeneous shear is

allowed still yield in exactly the same way as those for which homogeneity is enforced,

while those at higher amplitudes display clear differences between homogeneous and

heterogeneous shear. There is therefore a qualitative difference between the yielding

process which occurs for γ0 < γc and the process for γ0 > γc

4.5 Discussion

We have uncovered two distinct forms of yielding within the SGR model subject

to LAOS. One of these is related to a shear banding instability and is inherently
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heterogeneous in nature. In contrast, the sample remains homogeneous in the other

case. The heterogeneous yielding generally happens more quickly, and most of the

stress change typically occurs over just a few cycles. In contrast, homogeneous

yielding can take tens of cycles to occur.

When heterogeneous shear is allowed, we find that there is a critical strain

amplitude, γc, below which samples nonetheless remain homogeneous during yielding,

while for larger amplitudes shear bands form during yielding. This same critical

amplitude also delineates two separate regimes, which are qualitatively distinctive

even when analysing only the stress as a function of number of cycles: for γ0 < γc,

the stress drop as the sample yields is small compared to the steady state stress, and

tends to zero as the oscillation amplitude is decreased, while for γ0 > γc, the stress

drop is significant, except at very low tw.

We therefore were able to define a critical amplitude, γc ≈ 1.4, below which

the samples do not show significant yielding under oscillatory shear. This is very

close to the LAOS threshold which we motivated in Eq. 4.14, which suggests that

perhaps γc ≃
√

2. The fact that new behaviour emerges as the oscillation amplitude

is increased above this limit suggests that the heterogeneous yielding we observe at

larger amplitudes is a non-linear effect, and is closely related to the fact that during

each cycle, the elastic energy of each element is normally increased above the typical

yield energy. However, note that this estimate was based on the typical yield energy

after local yielding, while in practice, for high tw the typical local yield energies are

generally higher than this.

This helps us explain the yielding behaviour as a function of tw: for an individual

element that has not yet yielded, l = γ0 sin (ωt), and so the yielding rate is given by

Γ (t; E) = Γ0min
{

exp
[
−

E − G
2 γ2

0 sin2 (ωt)
x

]
, 1
}

. (4.16)

We now assume that the element has 1
2Gl2 < E, so that the maximisation term is

not needed, and the probability that the element has not yielded at a point in time,
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PN (t; E), then obeys

dPN (t; E)
dt

= −Γ (t; E) PN (t; E) , (4.17)

so that the probability of that element yielding in each cycle is given by

PY (γ0, E) =1 − exp
(

−Γ0

∫ 2π/ω

0
exp

[ 1
2Gγ2

0 sin2 (ωt) − E

x

]
dt

)

≈Γ0

∫ 2π/ω

0
exp

[ 1
2Gγ2

0 sin2 (ωt) − E

x

]
dt,

(4.18)

where the approximation requires that the probability of yielding in each cycle

is small, which corresponds to the situation in which N∗ is large. The expected

number of cycles before the element yields, E (N∗), is inversely proportional to this

probability [156], so

E (N∗) ∝ 1
Γ0

exp
(

E

x

) 1∫ 2π/ω
0 exp

[
1
2 Gγ

2
0 sin2(ωt)

x

]
dt

. (4.19)

The functional dependence of this value on γ0 is non-trivial, but if we assume that

after ageing Ē ∝ log (tw), as in [145], the power law behaviour as a function of

tw emerges naturally. If γ0 > γc, once the element has yielded, it then has a

high probability to yield each cycle, and this probability stays high, so the element

exhibits consistent plastic-like behaviour. Note that while we can predict a power

law dependence on tw, predicting the exponent would require considering the full

variation of E across elements, which is non-uniform. There will always be a small

number of elements with much lower E than the sample average, which are likely

to yield earlier, but a much larger number close to the mean value, and the greater

number increases the probability that one of the these will yield first. Calculating

the power law exponent analytically would require an additional integral over this

distribution, which we do not attempt here.

To understand the behaviour as a function of amplitude, we consider the dynamics

only qualitatively. As amplitude decreases, so do the typical values of l2 over each

cycle, and so the probability of an element yielding during that cycle decreases,
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meaning that more cycles are required for yielding, so N∗ is a decreasing function

of amplitude. However, for γ0 < γc, even after it yields for the first time, the

element has a low probability of yielding in each cycle, and that probability decreases

with amplitude. For γ0 < γc, the element therefore still displays mostly solid-like

behaviour after yielding, and so the change in its average stress with respect to cycles

before it yielded is small. This potentially explains both the general trends we see

as a function of γ0 and tw, and the qualitative change in behaviour at γ0 = γc.

The above discussion considered the behaviour of individual elastoplastic ele-

ments, and while the behaviour of the sample will broadly follow the average be-

haviour of an individual element, it is important to consider heterogeneous effects.

Based on the considerations above, the number of cycles before the first yielding is

likely to show significant variation across elements, which will lead the sample to

yield slowly over many cycles. This is indeed what we see under homogeneous shear.

In heterogeneous shear, in contrast, we see very rapid yielding over only a few cycles.

To understand this, we consider the heterogeneous dynamics of the system.

Consider a single streamline under heterogeneous shear, with γ0 > γc. When

a single element on this streamline yields, it will decrease the root mean square

elastoplastic stress on that streamline over future cycles, as discussed above. To

maintain force balance, this causes an increase to the local strain rate of that

streamline, so that the streamline which has had the most elements yield at least

once is now being sheared at a faster strain rate than the global applied strain rate.

The elements on that streamline will therefore be pushed to larger l2 in each cycle,

making them more likely to yield, and as each element yields the local strain rate

will be increased further. This therefore becomes a positive feedback cycle, causing

a single streamline to very rapidly yield completely. The diffusivity in the model

means that as a single streamline yields rapidly, the adjacent streamlines will also

be impacted, and this is likely to trigger a similar avalanche in each of them, so that

the plastic behaviour then diffuses across the sample from the first streamline to

fully yield. This feedback and avalanche behaviour is what causes the much more
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rapid yielding which is seen under heterogeneous shear.

One result of this phenomenon is that as the sample yields, the streamlines which

are displaying solid-like behaviour are pushed to lower strain rates, making them

less likely to yield. Under heterogeneous shear, it is therefore possible for some

streamlines to stay in their solid-like state for a very large number of cycles without

showing significant yielding, while others yield and remain in plastic-like states. We

see this when examining the degree of banding across the sample, which remains

high indefinitely in samples which have yielded heterogeneously. Simulations of the

SGR model with shear startup [35, 145] have shown very long lived shear bands

that persist after yielding, but are nevertheless transient and therefore decay after a

sufficiently long time period due to diffusion. We might therefore expect that given

sufficient time, we would also see the whole sample fluidise under LAOS, and the

shear bands heal to leave homogeneous shear finally. On the other hand, the effect

of shear banding with a LAOS protocol is to decrease the strain amplitude of the

unyielded streamlines, and if this amplitude is decreased below γc, there may be

no mechanism for those streamlines to yield. The simulations presented here only

explore the dynamics for a reasonably short time period after the yielding event,

which is typically of the same order of magnitude as the time before yielding, and

it therefore remains an open question as to whether or not this banded state will

persist indefinitely.

This positive feedback process, in which changes to local strain rate drives faster

yielding, leads us to expect that there may be changes to the phase of individual

streamlines as they yield, and this is what we see in Fig. 4.10. As a streamline starts

to yield, the total strain applied to that streamline falls out of phase with that of

the sample average and with the streamlines that are not yielding, and stays out of

phase for a significant period of time. The strain rate also falls out of phase with the

sample average as this happens, driven by the fact that the unyielded streamlines

are in solid-like states, with stress proportional to strain and elements generally

unlikely to yield, while the streamline that has yielded is in a plastic-like state, with
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Figure 4.10: Strain rate (left) and strain (right) as a function of cycle number for the
sample average (black), a streamline which yields within the window shown (orange)
and a streamline which does not yield in the window shown (blue). For the sample
shown, N∗ = 1157. We see that as the orange streamline yields, it falls out of phase
with the other streamlines.

stress related to strain rate and with elements frequently yielding. We therefore

expect that while this situation continues, force balance will drive a phase difference

between the streamlines in different states.

By considering the system dynamics, we have now been able to understand the

majority of the observed behaviour. We have motivated the functional dependence

of N∗ on tw and γ0, and the difference in behaviour when γ0 < γc, whilst proposing

that γc ≃
√

2. We have also been able to understand the differences between

heterogeneous and homogeneous yielding, and in particular the reason for the much

more rapid yielding generally seen in heterogeneous shear.

4.6 Conclusion

We have seen that for a significant range of values of the strain amplitude, γ0, and

ageing time prior to shear, tw, the SGR model shows yielding under LAOS, and this

yielding can be extremely delayed for large tw and for small γ0 ≳ γc. We have also
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seen that the number of cycles until yielding, N∗, follows a power law in tw. This

power law suggests that as tw increases, the number of cycles until failure increases

without bound, such that exceptionally delayed yielding is possible at high tw.

We have also characterised the dependence of N∗ on the oscillation amplitude,

γ0, and found that for γ0 > γc, with critical amplitude γc ≈ 1.4, N∗ increases as γ0

decreases. This means that for larger amplitude oscillation, we see less delayed yield-

ing, and at the highest amplitudes yielding is almost instant, while for amplitudes

close to the critical amplitude, it means that we see very delayed yielding.

We have also seen that for γ0 < γc, we do see a very delayed stress drop, but

the type of yielding is qualitatively distinct, and as a result the associated stress

drop becomes small enough that it would be difficult to measure experimentally, so

that in general, we would not consider these samples to have yielded. This is in

agreement with [51,65] both of which showed a solid-fluid transition emerge as the

amplitude is increased above some critical value.

We have also examined the differences between yielding when homogeneous shear

is enforced and when heterogeneous shear is allowed, and find that the yielding

generally happens much more rapidly under heterogeneous shear, and typically takes

only a few cycles, while under homogeneous shear it can occur over tens of cycles.

The much faster yielding under heterogeneous shear is driven by the development of

shear bands within the sample, which are associated with local phase changes to the

strain and strain rate in regions of the sample which are yielding rapidly. We have

also been able to understand these phenomena by considering the dynamics of the

SGR model, and the explanations for some of these behaviours led to the conclusion

that γc ≃
√

2.

We have therefore succeeded in our initial aim of understanding both the cycle

number at yielding and the mechanism by which the samples yield. However, all of

our results are at fixed temperature and frequency, and some interesting further work

would be to explore the dependence of N∗ on these parameters as well. Additional

interesting further work would be to investigate the persistence of shear bands for a



4.6. Conclusion 87

large number of cycles after yielding, and the extent to which the entire sample is able

to fluidise. Such an investigation would be able to draw parallels with previous work

on long-lived transient shear bands in the SGR model [35] and would help discern

whether or not the shear bands we observe after yielding will persist indefinitely.

It would also be interesting to compare these results to further experimental work,

ideally carried out with materials that show rheological ageing. In comparing this

work to experimental data, it is important to note that the most significant previous

experimental work has been stress controlled [63, 64], while the theoretical work

presented here was strain controlled, and therefore further theoretical work with a

stress controlled protocol would be helpful. This work makes a very clear prediction

for the functional dependence of N∗ on sample age, which could easily be compared

to experimental data, as could our qualitative prediction for its dependence on strain

amplitude.

The results presented in this chapter may also have a significant impact in

engineering contexts, especially if they are well supported by future experiments.

The predictions that we presented above could motivate changes in the manufacturing

process for situations in which understanding and predicting fatigue and delayed

yielding is important, and also improve system safety by allowing accurate predictions

of the timescale over which materials will remain solid-like before they yield.





Chapter 5

Delayed Yielding in an

Elastoplastic Model Under Large

Amplitude Oscillatory Shear

5.1 Introduction

In Ch. 4, we summarised some recent experimental and theoretical results concerning

delayed yielding in a Large Amplitude Oscillatory Shear (LAOS) protocol, when

applied to amorphous materials. We then went on to explore this phenomenon in

detail theoretically using the Soft Glassy Rheology (SGR) model. In this chapter,

we will consider the same phenomenon using a different theoretical model.

The SGR model is commonly used to model amorphous and glassy materials

[37,149–152,157–161], and has shown significant success in capturing experimentally

observed behaviour. However, there are other models which use similar approaches,

one of which is the elastoplastic model (EPM) [38,39,162–169].

Exploring the same behaviour in two different theoretical models will be an

excellent way to corroborate results and increase confidence that they are related

to real physical behaviour and not the details of the model assumptions. It will
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also allow us to compare the mechanisms for this process in the two models, which

should help us to understand the physical mechanism for the processes we explore.

For this reason, we will proceed with a very similar investigation in the EPM to the

one we carried out using the SGR model, and compare the results.

The two models in question have several similarities: both involve modelling

an ensemble of elastoplastic elements, and in each case these elements have a local

elastic strain that can be relaxed by yielding events. As a result, there is a range of

behaviour that is shared by the two models, including solid-fluid transitions under

shear and shear banding instabilities [36,37,65,66,144,162–171].

There are also a few differences between the two models, the most notable of

which is that in its glass phase, the SGR model exhibits ageing in the absence of

shear [149–152], while the EPM does not [170,171]. Recall that in Ch. 4, the sample

age was our primary measure of degree of annealing prior to shear, and so in this

chapter we will need to find an alternative measure of annealing.

In Sec. 5.2, we will outline the construction of the EPM and how we will use it

to explore delayed yielding in LAOS. In Sec. 5.3, we will then present the results,

which show several similarities to the results in the SGR model.

5.2 Model

Like the SGR Model, the EPM is composed of an ensemble of elastoplastic elements,

which are small enough that a macroscopic material contains a large number of them,

yet large enough that we can meaningfully define a local elastic strain, l. As the

system is sheared, l increases at a rate determined by the local strain rate, l̇ = γ̇.

Corresponding to the local strain is a stress Gl and elastic energy 1
2Gl2. However,

unlike in the SGR model, the local yield energy is always set to a constant, E, and

we will work in units in which G = 1 and set E = 1, which corresponds to choosing

the yield strain amplitude.
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Each element stochastically hops out of its energy well at a rate Γ, which is

determined by the difference between the accumulated elastic strain energy and the

local yield energy. This hopping rate is given by

Γ (l) = Γ0min
{

exp
[
−

E − G
2 l2

T

]
, 1
}

, (5.1)

with T the system temperature and Γ0 the microscopic yielding rate. We work in

units in which Γ0 = 1. After yielding, the local yield energy remains the same, and

the local elastic strain is set to a new value selected from a Gaussian distribution of

variance lW and mean 0,

P (l; lW ) = 1√
2lW π

exp
[
− l2

2lW

]
. (5.2)

We set lW = 0.05 throughout. The stress of an ensemble of elements is calculated in

the same way as in the SGR model:

σ = G

m

∑
i=1,..m

l. (5.3)

In the absence of shear, the system evolves towards a steady state in which

P (l) = 1√
2T0π

exp
[
−Gl2

2T0

]
, (5.4)

with T0 the system temperature. A lower temperature therefore results in a steady

state in which the distribution of l is narrower. This distribution is centred on l = 0,

and the sample has no macroscopic stress.

To anneal the samples, we will first equilibrate the system at a finite temperature

T0, then instantaneously quench it to a lower working temperature, T , and then

immediately begin shearing the system. A lower T0 therefore corresponds to a better

annealed sample, and the system is expected to behave in a more solid-like way for

larger strains with lower T0.

To allow heterogeneous effects and shear banding, we take the same approach as

we did in the SGR model: the system is divided into n = 25 streamlines arranged

in the y-direction, each of which has m = 10, 000 elastoplastic elements, and the
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elastoplastic stress of an individual streamline, σi, is calculated using Eq. 5.3.

The streamlines are then immersed in a background solvent with a small viscosity,

η = 0.05, and the total stress on each streamline Σi = σi + ηγ̇. We enforce force

balance, ∂yΣ = 0, which means that Σi = Σj ∀i, j ≤ n, so that the strain rate on

any streamline can be calculated using

σj + ηγ̇j = 1
n

∑
j

σj + η ˙̄γ, (5.5)

with ˙̄γ the global applied strain rate. To include stress diffusivity in the system,

each time an element yields, we chose three elements at random from each of the

neighbouring streamlines and adjust their local strains by w∆l [−1, +2, −1], where

∆l is the magnitude of the change in local strain of the element that yielded during

the yielding event and w is a small diffusivity parameter, which we set to w = 0.05.

The sample modelled is placed between two flat parallel plates, which are sep-

arated in the y-direction by a distance L. We work in units in which L = 1. We

assume the sample to be translationally invariant and homogeneous in the x- and

z-directions, and only allow heterogeneity in the y-direction. We then fix the bot-

tom plate while moving the top plate back and forth in the positive and negative

x-directions. This is similar to a Taylor-Couette rheometer geometry, as in previous

chapters, and identical to the configuration in Ch. 4.

After quenching the system to a finite working temperature, T , we apply a strain

controlled LAOS protocol, with ˙̄γ = γ0ω cos (ωt). We will consider γ0 ≥ 0.9, noting

that this a lower minimum amplitude than we considered in the SGR model. In

this model, an amplitude of γ0 =
√

2E
G

=
√

2, is significant, as it is the amplitude at

which elements are likely to yield in every cycle, including the first cycle, regardless

of T0. It is therefore unsurprising that when looking for delayed yielding, we will see

more interesting behaviour at slightly lower amplitudes.

As in the SGR model, we also define ΣRMS (N) as the root-mean-square of the

stress during the N th cycle, the degree of banding at any point in time, ∆γ̇ (t), is

the standard deviation of the stress across the sample, and ⟨γ̇⟩ (N) is the mean of
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∆γ̇ during a cycle. We do not seed the system with a perturbation, and instead

note that with a finite number of elements on each streamline, there will be some

natural variation and stochasticity, and we find that this is sufficient to seed any

instabilities.

5.3 Results

We find that, as in the SGR model, some parameter values lead to systems showing

yielding after a large number of cycles. This behaviour is shown in Fig. 5.1, which

in addition to showing the RMS stress, ΣRMS, also shows the degree of banding as

a function of the number of cycles, N , since the inception of shear, revealing that

the stress drops are associated with sudden spikes in banding and also that strain

heterogeneity slowly accumulates before the system yields. Note that in some cases,

the degree of banding appears to drop to very low values, and can oscillate very

quickly over several decades; this is in fact an artefact of the averaging process, so

for ⟨γ̇⟩ < 10−7, the system is effectively homogeneous and ⟨γ̇⟩ provides no relevant

information.

The left column of Fig. 5.1 shows results for a fixed strain amplitude, γ0 = 1.15,

and temperature, T = 10−3, for various pre-quench temperatures T0, and reveals

that systems with a lower T0 yield at later times. There appear to be two different

steady states with different stresses. The larger of these two stresses is equal to

the initial stress of all the systems shown, and is approximately γ0/
√

2, implying

that this represents a solid-like state. The alternative steady state, which is reached

after a yielding event, instead represents the fluid-like state, and is independent

of the initial condition, T0. We can therefore conclude that the systems for which

the stress remains high have not yielded in the time simulated, and remain in their

solid-like state. Without simulating for longer, we cannot say for certain whether

these systems will ever yield, or whether the higher stress state is a true steady state.

We will return to this question below.
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Figure 5.1: Plots of RMS stress, ΣRMS, (top) and mean degree of banidng, ⟨γ̇⟩,
(bottom) as a function of N . Left: γ0 = 1.15, T = 10−3, T0 = 0.001, 0.002, ..., 0.01
for curves blue to pink. Middle: T0 = 10−2, T = 7 × 10−3, γ0 = 0.9, 0.95, ..., 1.5 for
curves blue to red. Right: γ0 = 1.05, T0 = 10−2, T0 = 0.001, 0.002, ..., 0.01 for curves
blue to pink. Curves of the same colour in the same set represent different random
seeds.

The middle column of Fig. 5.1 shows systems at fixed T = 7 × 10−3, T0 = 10−2

and various strain amplitudes. In each run, we again find an initial solid-like state

and a final fluid-like state, both of which depend on the strain amplitude. The

systems with lower amplitudes do not yield during the time simulated, leaving again

the question as to whether or not this is the true steady state. The systems with

higher amplitudes yield very quickly, and would not be considered to show delayed

yielding. For an intermediate range of amplitudes, we do see a delayed stress drop,

and this drop is more delayed at lower amplitude.

The right column of Fig. 5.1 shows systems at fixed γ0 = 1.05 and T0 = 10−2 for

various T . The behaviour shown is broadly similar to that shown in the left column.

We see that the yielding becomes more delayed at lower T , showing a similar trend



5.3. Results 95

to the dependence on T0, and we still see some systems which do not yield in the

time simulated.

To better understand the delay prior to yielding, we now define N∗ in the same

way as for the SGR model: we identify the cycles at which the stress is at its global

maximum and minimum. Provided the minimum is after the maximum, we define

N∗ as the first cycle for which the stress is less than the midpoint between the

maximum and minimum and remains less than the midpoint until the minimum.

If the minimum occurs before the maximum, we not consider the system to have

yielded and do not define an N∗. To account for the systems that have not yielded

during the simulation, but might at some future point, we define the plastic steady

state stress, ΣP (γ0), as the lowest steady state value of ΣRMS for any run with a

given amplitude. We then consider systems for which ΣRMS > 1.1ΣP in every cycle

to have not reached the plastic steady state, and therefore categorize these systems

as ones that will either never yield or will yield for some N > Nmax, with Nmax the

number of shear cycles that are simulated. We also do not define an N∗ for these

systems.

We now turn to Fig. 5.2, which shows N∗ as a function of various parameters,

excluding systems which do not reach their plastic steady state. Panel (a) shows

N∗ as a function of T0 for T = 10−3 and various amplitudes, with best fit lines to

N∗ = A exp [B/T0]. These lines are clearly a good fit to the data. We see that as

the initial temperature is decreased, which corresponds to a better annealed initial

system, N∗ increases, implying later yielding. This follows the same pattern as in

the SGR model, in which better annealed systems (with higher tw) yield later. The

plots show no indication of a divergence in N∗ at finite T0, which is supported by

the fact that the functional fit has a divergence in N∗ as T0 → 0. Panel (c) shows

a very similar plot, now with N∗ as a function of T for T0 = 10−2. We see a very

similar pattern, and indeed the functional fit that is plotted, N∗ = C exp [D/T ], is

almost identical to the fit in panel (a).

Panels (b) and (d) of Fig. 5.2 show N∗ as a function of amplitude for various
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Figure 5.2: a) Yielding cycle, N∗, as a function of initial temperature T0 for tem-
perature T = 10−3 and amplitude γ0 = 1.1, 1.15, 1.17, 1.2, 1.22, 1.25 in curves blue
to red. Data points are plotted and solid lines show fits to N∗ = AeB/T0 . b) N∗ as
a function of γ0 for T = 10−3 and T0 = 0.001, 0.002, ..., 0.01 in curves blue to pink.
Data points are plotted and solid lines show fits to N∗ = E

γ0−γc
. c) N∗ as a function

of T for T0 = 10−2 and γ0 = 0.95, 1.0, 1.05, 1.07, 1.1, 1.15 in curves blue to red. Data
points are plotted and solid lines show fits to N∗ = CeD/T . d) N∗ as a function of
γ0 for T0 = 10−2 and T = 0.001, 0.002, ..., 0.01 in curves blue to pink. Data points
are plotted and solid lines show fits to N∗ = E

γ0−γc
.

T and T0, and we see that N∗ increases as the amplitude is decreased, which is

again similar to the SGR model. However, we now find that N∗ diverges at a finite,

temperature-dependent amplitude, and we find that the data provide a good fit to
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the function N∗ = E/ (γ0 − γc), which is plotted in the solid lines.
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Figure 5.3: Top: yielding cycle, N∗, as a function of 1
γ0−γc

, with γc a fitting parameter.
a) T = 10−3 and T0 = 0.001, 0.002, ..., 0.01 in curves blue to pink. b) T0 = 10−2

and T = 0.001, 0.002, ..., 0.01 in curves blue to pink. c) Fitting parameter, γc, as
a function of T0 at T = 10−3. Solid line is best fit to γc = A − B

√
T0. d) Fitting

parameter, γc, as a function of T at T0 = 10−2. Solid line is best fit to γc = C − DT .

To examine this further, we turn to Fig. 5.3, which in the top panel shows the

same as the right of Fig. 5.2, but rescaled to show a straight line fit. Note that at

lower N∗ (higher amplitude) the fit breaks down slightly, which is likely because the

dependence emerges when N∗ is large, as in the SGR model. The bottom panels

show γc as a function of T and T0 separately, and we find that the critical amplitude
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is linear in T and scales as γc = A − B
√

T0.

Having reviewed these graphs, we can now return to the problem of whether or

not systems that are in a solid-like state at the end of the simulation would eventually

yield, if enough shear cycles were simulated. The systems in the middle columns

of Fig. 5.1 that remain in high stress states can be compared to Fig. 5.2b,d and

Fig. 5.3, and for these systems we find γ0 < γc, and so we expect them to never

yield. The systems in the left and right columns of Fig, 5.2 that remain in high

stress states are more puzzling: comparison with the fits in Fig. 5.2a,c suggests that

they will yield after some large number of cycles. However, note that γc depends

on both T and T0, and inspection of Fig. 5.3c,d reveals that in fact these systems

do have γ0 < γc, and therefore we do not expect them to yield. This highlights a

subtlety with the fits to T and T0: although there appears to be no divergence at

finite T or T0, we do expect the trend to break down at some amplitude dependent

temperature when γc (T0) > γ0, and equivalently for T .

We have seen that in the EPM model, many systems show significantly delayed

yielding, and the cycle in which they yield, N∗ increases as T, T0 and γ0 decrease.

We have made functional fits of N∗ to T , T0 and γ0, and find that N∗ diverges at a

finite critical amplitude, which depends on T and T0. We have also seen that several

systems remain in a solid like state until the end of the simulation, and we predict

that these will never yield.

5.3.1 Athermal Limit

To better understand the critical amplitude, we will now examine the athermal

limit of the model, when T = 0. In this limit, the hopping rate becomes a step

function, with Γ = Γ0 when |l| >
√

2E, and Γ = 0 otherwise. Recall that before

shear begins, the distribution of l takes the form of a Gaussian, with mean 0 and

standard deviation
√

T0. Within each shear cycle, this Gaussian is shifted laterally

by a maximum value of γ0. We define g =
√

2 − γ0 which measures the gap between
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the centre of the Gaussian at the time of maximum strain and the edge of the energy

well. We then assume that, given enough time, every element with l > 2E when

strain is at a maximum will yield, and we can then calculate the change in the

elastoplastic stress of a streamline from that yielding:

σ0 =G
∫ ∞

g

1√
2πT0

e
− 1

2
x

2
T0
(
x +

√
2 − g

)
dx

=G

√T0

2π
e

− 1
2

g
2

T0 +
(√

2 − g
)(

1 − Φ
(

g√
T0

)) ,

(5.6)

with Φ (x) = 1√
2π

∫ x
−∞ e−t

2
dt. If there are many other streamlines and none of them

have elements yielding, the total stress will remain unchanged, and so the maximum

strain amplitude of this streamline will change by σ0
ηω

. This means that in future

cycles, the gap between the centre of the Gaussian at maximum strain and the edge

of the energy well is g − g0, with g0 = σ0
ηω

. Note that this is the maximum change

to the amplitude of the streamline, whereas in practice, yielding events on other

streamlines are likely to make this lower. There will now be more elements strained

past the edge of the energy well, and if we assume that all of these also yield, it will

change the total elastoplastic stress by

σ1 =G
∫ g

g−g0

1√
2πT0

e
− 1

2
x

2
T0
(
x +

√
2 − g + g0

)
dx

=G

√T0

2π

(
e− 1

2 (g−g0)2
− e− 1

2 g
2
)

+
(√

2 − g + g0

)(
Φ
(

g√
T0

)
− Φ

(
g − g0√

T0

)) .

(5.7)

The effect of this will be to push the Gaussian closer to the edge of the energy well,

and we can assume that this will continue happening indefinitely, and so we define

the elastoplastic stress change after the nth stage as

σn =G
∫ g−gn−2

g−gn−1

1√
2πT0

e
− 1

2
x

2
T0
(
x +

√
2 − g + gn−1

)
dx

=G

√T0

2π

(
e− 1

2(g−gn−1)2

− e− 1
2(g−gn−2)2)

+
(√

2 − g + gn−1

)(
Φ
(

g − gn−2√
T0

)
− Φ

(
g − gn−1√

T0

))]
,

(5.8)
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and the associated change in amplitude as

gn = 1
ηω

n∑
i=0

σi

≈ G

ηω

√T0

2π
e− 1

2(g−gn−1)2

+
(√

2 − g
)(

1 − Φ
(

g − gn−1√
T0

)) ,

(5.9)

where we have neglected terms of the form gi

(
Φ
(

g−gi−1√
T0

)
− Φ

(
g−gi√

T0

))
by assuming

that gi and gi − gi−1 are small and g−gi√
T0

is large.

The gi form a series defined by a recurrence relation, which will either converge or

diverge. If the series converges, the effect of elements at extreme l yielding is limited,

and will perturb the system, but not generate catastrophic yielding. If, on the other

hand, the series diverges, enough elements will be able to yield to cause a substantial

change to the state of the system. We therefore hypothesise that the conditions for

convergence will give a critical amplitude, which we call γco, below which the system

is not able to yield. Note that because of the oscillatory protocol, once elements

have yielded, they have a high chance of yielding from a state with an l value of the

opposite sign to their first yielding: negative if the first yielding was at positive l.

They then have a high chance to yield once more from a state with an l value with

the same sign as the first yielding. This reduces the impact on the elastoplastic stress

of the streamline that this process generates, and so while γ0 > γco is necessary for

yielding, we expect that it will underestimate the critical amplitude. We therefore

predict that γc > γco and there will be some amplitudes for which the gi diverge, but

under LAOS the system is nonetheless unable to yield. Convergence is determined

by the sign of gn − gn−1, which we expect to be independent of the prefactor G
ηω

, and

this is indeed what we see following numerical convergence tests.

We are unable to derive an analytic expression for the convergence of gi, but can

test for convergence numerically by calculating successive elements of the sequence.

We find that for each T0, there is a convergence amplitude γco (T0), and for amplitudes

below this, the sequence converges, while for larger amplitudes it diverges. Fig. 5.4

shows γco as a function of T0, and we find that it scales as γco =
√

2−B
√

T0, capturing
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Figure 5.4: Convergence amplitude of Eq. 5.9, γco, as a function of T0. Crosses show
numerical data points and solid line is best fit to γco = A − B

√
T0.

the same dependence on T0 as γc. The right most edge of Fig. 5.4 represents the

same parameter values as the y-intercept of Fig. 5.3d, and we find that γco < γc

as expected, with γco ≈ 0.9γc. The y-intercept of this curve, γco (T0 = 0), is exactly

the value we expect, and is the strain at which an element which started with l = 0

is sheared out of its energy well. Given that at T0 = 0, γco = γc, and at T0 ̸= 0,

γco ≈ 0.9γc, we therefore suggest that, in the athermal limit, γc =
√

2 − B
0.9

√
T0, with

B the fitting parameter for γco.

5.4 Discussion

To understand the phenomena that we have observed, we first consider how the

EPM model transitions from a solid-like to a fluid-like state. In the SGR model,

the primary measure determining which of these states the material is in was the

mean energy well depth. The EPM model, however, has a constant E, and the
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distinction is instead based on the distribution of l. If the elements have a very

narrow distribution in l at T = 0, the material effectively behaves as an elastic solid

with a breaking strain: as the system is sheared, the local stress is proportional to

the applied strain, until enough strain is applied that some elements have 1
2Gl2 > E,

at which point there is a sudden plastic relaxation of stress. The same behaviour

is broadly observed at low finite T , although there is no strict breaking strain. If,

in contrast, the elements have a very broad distribution in l, the rate of plastic

relaxation events will be large regardless of the applied strain. The average stress

is then controlled by how quickly elements are able to gain local elastic strain after

yielding, and so we find that the strain rate is what determines the stress, and the

material is in a fluid-like state.

The transition from a solid-like to a fluid-like state is therefore caused by a

spreading out of the distribution of elements over l. After annealing, the elements

are in a very narrow distribution, and we therefore observe solid-like behaviour. As

the system is sheared, individual elements yield stochastically in a way that takes

them out of this narrow distribution, and the system transitions towards a fluid-like

state.

This helps us to understand the behaviour as a function of temperature: at a

higher temperature, there is a higher variation in the yielding rate for elements

with 1
2Gl2 < E, and so elements are able to more quickly transition into a broad

distribution. The origin of the observed behaviour as a function of the initial

temperature, T0, is now also clear: a lower T0 corresponds to a narrower initial

distribution of elements over l, and so it takes longer for this distribution to spread

out enough to cause a significant impact on the stress.

To consider the behaviour as a function of amplitude, we note that the delayed

yielding is only seen in systems with γ0 <
√

2E
G

, which corresponds to the situation

in which an element that starts a cycle with l = 0 is not sheared past the edge of its

energy well. This is because for amplitudes larger than this threshold, most elements

have a high chance of yielding each cycle, and this high yielding rate causes the
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distribution to spread out much more rapidly. For amplitudes below this threshold,

a higher amplitude means that the yielding rate of elements is generally higher,

and so the rate at which they leave the initial narrow distribution increases, and

it therefore takes less time for the system to transition to a state with a broad

distribution of elements in l. This trend continues as γ0 decreases, until we reach a

critical amplitude, at which point not enough elements are able to yield to create a

positive feedback loop and cause all the elements to start yielding.

The relation between the yielding event as measured by a stress drop and the

growth of a shear band is very similar in the EPM to the SGR model. For a single

streamline that has started to transition to a more fluid-like state, its elastoplastic

stress will be lower than that of neighbouring streamlines. This causes the strain

rate of that streamline to increase, causing it to start yielding faster, and generating

a positive feedback loop, leading to a significant variation in strain rate across the

system. Once the streamline has fully yielded, its elastoplastic stress cannot decrease

further, but it still has a high rate of plastic relaxations, which causes neighbouring

streamlines to also start yielding faster. This effect then spreads out across the

system, causing a significant fraction of the streamlines to fluidise over a relatively

small number of cycles. Once a large fraction of the streamlines have yielded,

the unyielded streamlines are pushed to lower amplitudes, and so it may become

impossible for them to yield. As in the SGR model, it is therefore unclear whether

the heterogeneity that is generated during yielding will eventually completely diffuse,

and the system return to a homogeneous state, or whether it will persist indefinitely.

We note that while the degree of banding remains high at the end of our simulations,

transient shear bands can persist for a considerable length of time [35], and so more

shear cycles would need to be simulated to fully answer this question.

By considering the way in which a system yields, we have gained some insight

into the behaviour which we observe. We see that the general trends in N∗ can all

be motivated by considering the dynamics of the model, and in doing so we have

been able to consider the situations which we are not able to simulate fully. As a
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result, we predict a finite critical amplitude at all temperatures, so that N∗ will

not continue increasing indefinitely as amplitude decreases. This implies that the

systems that did not reach a plastic steady state during our simulation will never

yield, no matter how long the simulation is run for.

5.5 Conclusion

We have seen that for a range of parameters, the EPM shows delayed yielding in

a very similar way to the SGR model. We have been able to fit the cycle number

at yielding to functions of T , T0 and γ0, and have explored the general trend of

the critical amplitude, γc, below which no yielding occurs. We find that significant

yielding can occur after a very long delay, even for the parameters explored here, and

indeed the divergence of N∗ at finite amplitude makes it trivial to propose reasonable

parameter values for which the yielding is exceptionally delayed and N∗ > NT , with

NT some threshold, which can be arbitrarily large.

One significant difference between the EPM and the SGR model is that in the

EPM, we predict that N∗ diverges at a finite critical amplitude, and below that

threshold there is no yielding. In contrast, recall that in the SGR model we did

predict that there would be a yielding event after a number of cycles which increases

with decreasing amplitude, but that the magnitude of the stress drop would decrease

effectively to zero below a critical amplitude.

For some parameter values, we found that the system remained in a solid-like state

for the duration of the simulation and did not show any yielding. After considering

the dynamics, we have predicted that these systems would never yield, no matter

how long we simulated for. However, this does not mean that those systems have

no plastic-like steady state under LAOS, and it may be that reaching a plastic state

by shearing at a larger amplitude before reducing the amplitude below the critical

amplitude would allow them to reach a plastic steady state. We do, however, predict

that under a constant strain amplitude, many systems will never yield.
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The fact that the behaviour reported here was observed in two different models

suggests that it may be common to many elastoplastic materials. The differences

between the results presented in this chapter and the results in Ch. 4 mean that we

cannot make detailed, material-invariant predictions, but we can predict that some

form of delayed yielding is likely, and that the number of cycles until yielding is a

decreasing function of amplitude, within some limits, and is an increasing function

of the degree to which the sample is annealed prior to shear.

Some interesting further work would be to more carefully consider and record

the distribution of l on each streamline as the system is sheared under this protocol.

A detailed understanding of this would likely provide good insight into the yielding

process and the trends which were observed. It would also be helpful to consider

more fully whether the shear bands that form during yielding will persist indefinitely,

or whether they are transient but long-lived. Considering protocols with a varying

strain amplitude would be a helpful way to better understand whether or not there

are lower stress steady states possible below the critical amplitude, which are simply

not accessible in this protocol. Finally, it would be interesting to explore the same

phenomenon in a stress controlled protocol to see how similar the behaviour is. This

would also provide a more direct connection with a range of interesting existing

experimental results [63, 64].

The results presented here may have a significant industrial impact, particularly

in combination with the results from the previous chapter, and if supported by

experimental work. The characterisation and prediction of the delay before yielding

has applications both in manufacturing and in considering the safety of structures.

Further, our findings of a finite critical amplitude means that some samples have a

very long-lived metastable solid-like state that will nonetheless yield after a large

number of cycles, and that that number can be very sensitive to the oscillation amp-

litude. This high sensitivity could lead to significant uncertainty about a material’s

response in real world applications where the applied strain amplitude is not precisely

controlled. This is potentially significant for range of materials which are already in
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use, and for which previous testing showed no yielding on the timescale observed. We

hypothesise here that some such materials may still yield at an indeterminate time

in the future, particularly if there is even small variation in the strain amplitude,

and for this reason we recommend additional caution when materials which behave

similarly to this EPM are regularly subjected to a LAOS-like protocol.



Chapter 6

Shape Driven Rigidity Transitions

in Epithelial Tissue

6.1 Introduction

Epithelial tissue is a thin layer of tightly packed cells, which lines the outer surfaces

of organs and blood vessels in animals. The epithelium generally protects underlying

tissue from mechanical, chemical and bacterial hazards [7, 77]. Epithelia can be

arranged in a layer a single cell thick (simple epithelium), or in their stratified

placement can form layers which are two or more cells deep. In this work, we

will only consider simple epithelium, in which we have a 2D plane of cells with a

thickness of one cell. Because of their role as protective tissue, epithelial cells need

to be capable of changing shape and arrangement in response to external events,

such as to fill gaps left by mechanical trauma.

Epithelial cells play a significant role in wound healing [4], and recent work

suggests that this may be closely related to a fluidity transition [5] which allows cells

to flow past each other and fill in wounds. The experiments in Ref. [5] found that this

fluidity transition is closely related to the junctional tension between epithelial cells.

Epithelia also play a significant role in embryo development [6, 78], during which
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a) b) c)

Figure 6.1: Schematic illustration of close-packed polygonal cells. (a) shows a
regular hexagonal packing [76]. (b) shows a rosette [76], although note that in
normal cellular tissue, the cells forming the rosette would be less regular. (c) shows
a T1 transition [75], although these typically happen when the shared edge is much
shorter than shown here.

the epithelia rearrange to shape complex tissues as they form and respond to both

extrinsic and intrinsic cues to direct cellular morphology. During these processes,

the mechanical properties of epithelial tissue and the capability for these mechanical

properties to rapidly change are both crucial.

Due to the almost space filling nature of epithelial tissue, individual cells are

effectively polygonal in shape, and these polygons must tile in such a way that a 2D

plane can be fully covered. The simplest arrangement of this is for each cell to be a

regular polygon, such that a collection of these cells is able to tile the plane. The

most common such arrangement is a hexagonal packing of cells, as shown in Fig.

6.1a, which is commonly seen in vivo, for example during germband extension in

Drosophila embryos [172], as is a semi-regular configuration consisting of pentagons,

hexagons and heptagons. Less regular configurations are possible, and in general

the cells can be irregular and the arrangement isotropic, and there can be significant

variation between cells within a small area of the tissue [76]. During Drosophila

gastrulation, cells can form rosettes [76] (see Fig. 6.1b), where more than 4 cells

meet at a single vertex, and these cells form quasi-triangular shapes, so that they

fit together into an approximate ellipse.

Epithelial cells are also able to locally rearrange themselves through a process

known as T1-transitions, which are driven by local forces on cell boundaries [75].
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In these processes, a group of neighbouring cells rearrange the interfaces between

themselves so that an edge between two specific cells is replaced by an edge between

two different cells (see Fig. 6.1c). Because these processes are driven by local forces,

they tend to act in a way which relaxes local stresses in the tissue.

Recent experimental work [5,74] suggests that fluidity transitions are an essential

part of the epithelial wound healing mechanism. Epithelial tissue was observed

to effectively fluidise, allowing individual cells to flow past each other in order to

repair the tissue. In addition, a significant number of recent experimental works

examining the rheology of epithelial tissue [67–73] and other cell monolayers [173]

showed spontaneous transitions between solid-like and fluid-like states, in addition

to a range of non-linear rheological responses, including fluidity transitions following

deformations, superelasticity and scale-independent stress dispersion and relaxation.

There is a clear motive to generate theoretical models that are able to capture

the rich rheological behaviour exhibited by epithelial tissue. Accurately modelling

and understanding how and when various phenomena occur has significant potential

importance for biomedical applications, which include understanding the growth of

tumours and the formation of congenital disorders. One such theoretical approach is

the Vertex Model [41, 74,79–82], in which cells are modelled as individual polygons.

Each cell has an area and a perimeter, and the imposition of a free energy allows

the calculation of forces on the vertices and/or cell centres. This approach has been

successful at capturing several rheological phenomena, including fluidity transitions.

In this work we will primarily consider the Vertex Model as used in [41], based on a

Voronoi tessellation, which is explained in more detail in Sec. 6.2.

While they capture some interesting biophysics, vertex-based models need to

simulate every cell independently, and as a result are computationally expensive,

and therefore generally fairly limited in the number of cells they can simulate.

It would therefore be advantageous to develop a coarse-grained continuum model

capturing the same physics, in which a single grid point might simulate hundreds

or thousands of cells. This would allow the simulation of much larger cell areas,
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and also make it possible to explore larger scale phenomena, such as shear banding

effects. A continuum model for tissue rheology was first proposed in [40], based

on a simple trap or soft glassy rheology model. This model predicted a solid fluid

transition, and found a structurally significant order parameter in relation to cell

shape. This work was built on in [83], in which a mean-field theory was developed,

which coupled cell shape and tissue stiffness to cell motility and polarization. The

resulting model could be tuned between largely homogeneous states and patterned

states, and featured a cell anisotropy parameter as a measure of the rheological

properties of the tissue. A similar mean-field continuum model was derived in [84],

in which a fluidity transition was also observed as a function of cell elongation. Later,

the authors of [174] used a Poisson Bracket formalism to derive equations of motion

for coarse-grained fields describing epithelial tissue. However, while these equations

were derived, the emergent rheology was not explored in depth.

However, while there have been several attempts at constructing continuum

rheological models of epithelial tissue, there are none so far which capture all of the

features seen in the Self Propelled Voronoi model presented in [41]. In Sec. 6.2,

we will lay out what these features are, and then in this work we will attempt to

construct a continuum model which exhibits all of them. This has proven to be a

challenging task, and we have so far been unable to construct a single model that

captures all these features. Nonetheless, we do present a model, and several variants

of it, that improve significantly on previous attempts.

6.2 Self Propelled Voronoi Model

In this section, we summarise the model design and key features of the Self Propelled

Voronoi (SPV) Model used in [41], which is a leading approach in individual-cell

level modelling of epithelial tissue. This summary is provided as background for the

ensuing discussion of continuum models.
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6.2.1 Model

The model compromises a 2D layer of cells labelled i = 1, .., N , in which the degrees

of freedom are the centres of each cell, {ri}. The cellular structure is then determined

using a Voronoi tessellation, so that each cell consists of every point which is closer

to the centre of that cell than to the centre of any other cell. The result of this is that

for any given set of cell centres, the plane is divided into a space filling collection

of convex polygons [175], separated by straight edges. To avoid edge effects, Lees-

Edward boundary conditions [176] are used, which allows rigorous definitions of cell

boundaries which cross the edge of the model space. Once a Voronoi tessellation has

been generated for a set of cell centres, the perimeter, Pi, and area, Ai of each cell

can be calculated.

The mechanics of the tissue are described by a free energy,

E =
N∑

i=1

[
KA (Ai − A0)2 + KP (Pi − P0)2

]
, (6.1)

where the sum is over all i = 1, ..., N cells in the packing. A0 and P0 are a target

cell area and perimeter respectively, and KA and KP elastic moduli. The first term

generates an energy cost for deviations from the target cell area, and arises from

the incompressibility of the cell volume. The second term generates an energy cost

for deviations from the target cell perimeter, and is driven by the interfacial tension

between cells and the contractility of the cell cortex. The constants KA, KP , A0, P0

can in principle vary across the tissue (and even in time), but in the work in [41],

the tissue was assumed to be homogeneous, and therefore the constants are system

parameters, rather than cell parameters, and are furthermore assumed to be time-

independent.

These simulations were carried out with a fixed cell number and density, and as

a result the average cell area, Ā was constant, and so the authors chose A0 = Ā.

Setting the length unit such that A0 = 1, Eq. 6.1 can be non-dimensionalised as

E =
N∑

i=1

[
κA (ai − 1)2 + (pi − p0)2

]
, (6.2)
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with κA = kAĀ/KP the rescaled area elasticity, ai the non-dimensionalised area,

pi = Pi/
√

Ā the cell shape index and p0 = P0/
√

Ā the target cell shape index. The

shape index, pi, is a now a single dimensionless quantity which describes the cell

shape. For a regular polygon, pi is a decreasing function of the number of sides,

such that for a polygon with n sides, pn = 2
√

n tan (π/n), so that p∞ ≈ 3.54 (circle),

p6 ≈ 3.72 (hexagon), p5 ≈ 3.81 (pentagon) and p4 = 4 (square). For irregular

polygons, the shape index is larger than the shape index for a regular polygon with

the same number of sides, and a higher shape index indicates a more elongated

polygon. The target cell shape index, p0, is therefore a crucial parameter, which

controls the preferred shape of cells. The force on each cell is then calculated as the

spatial derivative of the free energy,

Fi = ∂E/∂ri, (6.3)

so that forces act to minimise the free energy when following the dynamical rules

prescribed below.

For all the results in Ref. [41], κA = 0, which corresponds to the assumption that

cell area fluctuations have a low impact on the tissue dynamics. In practice, their

simulations with κA = 0 show only small fluctuations in local cell area, implying

that cell area, at least for small numbers of cells as modelled, is controlled primarily

by the constraint on Ā, without needing a term in the free energy.

The system is sheared according to a quasistatic, simple shear startup protocol.

Starting from a strain-free state, the strain is increased in small increments, ∆γ by

moving each cell centre according to ∆ri = ∆γyix̂. After each strain step, the free

energy is relaxed using the FIRE algorithm [177] by adjusting the locations of the

cell centres, until all forces Fi are vanishingly small. The result is that the system is

sheared whilst allowing it to fully relax at each small increment of strain, so that the

strain rate is effectively infinitesimal compared to all other timescales in the system.

To calculate the stress response of the system, first we define lij as the vector of

the junction shared by cells i, j. We can then calculate the tension on that cell edge
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from

Tij = ∂E

∂lij

= 2
[
(pi − p0) +

(
pj − p0

)]
l̂ij. (6.4)

The contribution to the stress tensor of a cell edge will be given by the outer product

between Tij and lij, normalised by the simulation box size, L. The total stress on

the tissue is calculated by summing all of these contributions, so that the shear

component of stress,

σ = σxy = 1
L2

∑
i<j

T x
ijl

y
ij. (6.5)

We now have a model with one important physical parameter, the target cell

shape index, p0. The model is subjected to quasistatic shear as described above, and

at each strain step the stress response is calculated, so that shear-startup stress-strain

curves can be plotted.

Note that while this model does not include an explicit mechanism for T1 trans-

itions, they are still present as a mechanism for stress relaxation. However, rather

than being generated by a single process, they are a consequence of the Voronoi

tessellation, which means that at each strain step, cell edges are redrawn. When

combined with the free energy minimisation, this means that cell junctions in which

stress can be relaxed through a T1 transition will naturally do so.

6.2.2 Results

The results of [41] and some physical explanations for them are summarised here

for comparison to the continuum models we use in Sec. 6.3. We reproduce one full

graph from the original paper here, which is sufficient to show the behaviour we will

consider.

Critical Strain

For infinitesimal strain, the model shows a linear stress response, with Σ = G0 (p0) γ,

with G0 some elastic modulus. For p0 < 3.81, a non-zero G0 is observed, which
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indicates a solid-like stress response. For p0 > 3.81, G0 = 0, and the stress response

is therefore fluid-like. We note that 3.81 is the cell shape index for a regular pentagon,

and if we assume that the cells are roughly pentagonal, this behaviour can be

explained as follows. For p0 < 3.81, the target cell perimeter is less than the

minimum possible value (for a pentagon), which is achieved by a regular pentagon.

The cells therefore are all close to regular pentagons before shear starts, and the

cell edges are all under tension. To deform the system, the cells are all stretched,

causing the perimeter to increase more, and the force required to do this scales as

F = |F| = ∂E

∂p
∝ (p − p0) . (6.6)

For cell edges which were already under tension, this requires a non-zero force and

therefore the elastic modulus is non-zero. For p0 > 3.81, the target cell perimeter is

realised by an elongated pentagon, and so at equilibrium the cells all form elongated

shapes with this perimeter, and there is no tension on the cell edges. As the system

is sheared, the cells can be stretched and rotated, and the force still scales as (p − p0),

except that now p = p0, and so G = 0. The transition at p0 = 3.81 therefore implies

that at zero strain, the cells are roughly pentagonal, and occurs at the target shape

index which separates states in which the target cell perimeter can be realised by

pentagonal cells and the state in which it cannot.

We have seen that for infinitesimal strains, the elastic modulus can be zero

or non-zero. When G0 = 0, the initial stress response is Σ = 0. In fact, this is

observed to be true not just for infinitesimal strains, but also for small finite strains.

We therefore define the critical strain, γc (p0), such that for γ < γc, Σ (γ, p0) = 0.

As expected, γc (p0 < 3.81) = 0, and for p0 > 3.81, we find that γc is an increasing

function of p0. This is to be understood as follows: for p0 > 3.81, the unsheared state

has elongated cells. When shear begins, the stress in the system is relaxed without

changing the shape index of the cells by rotating them. This process continues to

occur until the point at which the cells are all aligned in the direction of the flow,

at which point they start to be stretched by the continued shear. At this point, the
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Figure 6.2: (a) Stress vs. strain at different p0 and κA = 0. An initially fluidlike tissue
undergoes strain-driven rigidity above a critical threshold γc (location indicated by
vertical arrows). (b) The critical strain γc (p0) defines a boundary that separates a
fluidlike tissue from a solidlike tissue. Inset: γc vs p0 on log-log scale.
Reprinted figure with permission from Junxiang Huang, James O. Cochran, Suzanne
M. Fielding, M. Cristina Marchetti, and Dapeng Bi, Phys. Rev. Lett. 128, 178001,
2022. Copyright (2022) by the American Physical Society [41].

elastic modulus starts to grow, and so a non-zero stress response is observed. The

critical strain as function of p0 is shown in Fig. 6.2b, and Fig. 6.2a shows stress

responses for various p0.

Rigidity Transition

After the critical strain has been attained, we observe a stress response which is an

increasing function of strain, until it reaches some maximum, as shown in Fig. 6.2a.

After this point, stress typically decreases again until it reaches a steady state value

at large strains. Because the simulations are all quasistatic, this steady state stress

is exactly the dynamic yield stress of the material, ΣY (p0): the minimum stress

required for the system to flow in a fluid-like way. It is observed that for p0 ≳ 4,

ΣY → 0, and for p0 ≲ 4, ΣY is a decreasing function of p0. For p0 < 4, the tissue

is therefore a yield stress fluid, which, at constant stress, behaves in a solid-like

way until the yield stress is reached, after which it yields into a fluid-like state. For

p0 > 4, the material is fluid-like, and able to flow continuously for arbitrarily small

https://doi.org/10.1103/PhysRevLett.128.178001
https://doi.org/10.1103/PhysRevLett.128.178001
https://doi.org/10.1103/PhysRevLett.128.178001
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stress. For the system to flow continuously at low or zero stress, the stress that

is added with each strain step must be relaxed by T1 transitions. The measured

dynamic yield stress implies that these transitions are able to happen faster at higher

p0, which is generally associated with more elongated cells.

Strain Hardening

For intermediate strains, γc < γ < γm, with γm ∼ 1 the strain at which the maximum

stress is observed, stress is an increasing function of strain, and strain stiffening is

observed. Rather than having Σ ∝ γ, the gradient dΣ/dγ is seen to increase with

time, as shown in Fig. 6.2a. To understand this, recall that in this window, the

primary stress response comes from cells being stretched by shear. If we define

the elastic modulus as G (γ, p0) = dΣ/dγ, we find that G ∝ dE/dp0 ∝ (p − p0),

as seen earlier for G0 = G (γ = 0). However, as the system is being sheared, the

cells become more elongated, and so G necessarily increases, generating the strain

stiffening observed. The strain stiffening is therefore a direct consequence of the

quadratic nature of the (p − p0)2 term in the free energy.

Stress Overshoot

After the strain stiffening regime, we typically see a stress overshoot in the stress-

strain curve. This means that as the strain increases, the stress reaches some

maximum value, and then begins to decrease again as the system approaches steady

state. The stress maximum at a particular strain rate is generally referred to as the

static yield stress, and the presence of a stress overshoot indicates that the static

yield stress is greater than the dynamic yield stress. Of particular importance is

that these simulations are quasistatic and still show a stress overshoot, meaning that

at finite strain rate we would expect to see a non-zero stress overshoot in the limit

γ̇ → 0.

We have now seen several key features of the SPV model, which we hope to also
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observe in a continuum model:

1. Solid-fluid transition at p0 = 3.81 for infinitesimal strains

2. A critical strain, γc (p0) which must be applied to the system in the fluid state

before any stress is measured

3. Strain-hardening at intermediate strains, γ > γc and before the stress overshoot

4. A dynamic yield stress which vanishes at p0 = 4

5. A stress overshoot in the stress-strain curve in the quasistatic limit of γ̇ → 0

Henceforth, we will refer to these features by their number in this list, as Ft. n.

6.3 Continuum Model

In this section, we aim to derive a continuum model of epithelial rheology, which

we will do by considering several variants of a basic model. For each version, we

characterise its behaviour and compare it to the key features listed above. All of the

versions we consider are at finite strain rate, which is in contrast to the simulations

of [41] as just described in Sec. 6.2 above. We use results at γ̇ = 10−5 to approximate

the quasistatic limit, and present finite strain rate flow curves of steady state stress

as a function of strain rate (see Ch. 2.2.2) to understand the limiting behaviour at

infinitesimal strain rate. We will see that some of the model versions work better at

higher strain rates, and so also present results at γ̇ = 10−1.

Throughout this section, we use Σ as a shorthand for the shear stress, Σxy, and

set it equal to the elastoplastic stress σxy without the imposition of a background

solvent. The addition of a background solvent would have a negligible effect on

the total stress, and as only homogeneous shear is considered, it is not a necessary

addition to allow instability to growth of strain heterogeneity. G = ∂Σ/∂γ refers to

the instantaneous elastic modulus, Σf (γ̇) is the steady state stress reached under
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shear, ΣY = Σf

(
10−5

)
is the steady state stress at low strain rate, which is used

as an approximation for the dynamic yield stress, and the critical strain, γc, is the

earliest strain at which G > 0.02. If the maximum stress of a startup curve is less

than 0.2 times the maximum stress of any curve at the same strain rate from the

same model version, we set γc = 0 and do not plot it. All of these model versions

are solved numerically under homogeneous shear startup, in which a fixed finite

strain rate is applied instantaneously for all times t > 0 (see Ch. 2.2.3). We use the

initial conditions for which all the dynamical variables are at stable equilibria in the

absence of shear. In situations where the equilibrium state has a variable which is

exactly zero, the initial condition used instead sets it to 10−10. This is done because

under shear, some model versions have unstable equilibria when a variable is equal

to zero.

The derivation of the basic form of the model, presented in Sec. 6.3.1, is credited

to Cristina Marchetti, as are the derivations of the adaptations made in Sec. 6.3.4

and Sec. 6.3.5.

Cell Shape Tensor

We first define the variables we will use throughout to describe cellular tissue. The

shape of any individual polygonal cell can be described by a rank-2 symmetric tensor,
ˆ̃Ra

ij, where the superscript a denotes the ath cell. While there are several ways to

define such a tensor, we will use

ˆ̃Ra = 1
na

∑
ν∈a

(ra
ν − ra) ⊗ (ra

ν − ra) , (6.7)

where na is the number of vertices the cell has, the sum is over the vertices of the

cell, ra
ν is the position of the ν-the vertex of the a-th cell, and ra is the geometric

centre of the cell.

The shape tensor has two eigenvalues, λa
1, λa

2, and we label them such that λa
1 ≥ λa

2.

The eigenvalues are a measure of the cell’s extension along its principal axes, and so
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for a regular polygon, λ1 = λ2. For an irregular polygon, the difference between the

eigenvalues gives a measure of cell elongation. We can therefore define a parameter

to describe the elongation of the cell,

m̂ = λ1 − λ2

λ1 + λ2
, (6.8)

and by definition 0 ≤ m̂ < 1. A regular polygon will have m̂ = 0, and a larger

non-zero m̂ indicates a more elongated cell.

For a regular polygon, we can calculate the area of the cell from the shape tensor.
ˆ̃Ra

ij will be diagonal with λa
1 = λa

2, and the sum of the eigenvalues (or the trace of

the shape tensor) is exactly the distance from the centre of the cell to each vertex

squared. The cell can then be divided into n isosceles triangles, with two sides of

length
√

λa
1 + λa

2 and one angle of 2π/na. The remaining side therefore has a length

of 2
√

λa
1 + λa

2 sin (π/na). The perimeter of an n-sided regular cell, then, is

Pn = 2n sin
(

π

n

)√
Tr
[

ˆ̃Ra
]
. (6.9)

To calculate the area of the cell, we could use the relationships already derived, but

we instead attempt to derive an expression based on the other matrix invariant,

the determinant. While it is possible to calculate area and perimeter from a single

invariant for a cell which is a regular polygon, we wish to generalise these expressions,

and so will need expressions involving both invariants. In general, the area should

be related to the product of the eigenvalues and the perimeter to their sum, which

is indeed what we see for an ellipse. In fact, we are only able to calculate both area

and perimeter of a regular polygon from just the trace of the shape tensor because

there is a one-to-one correspondence between them. We therefore use the fact that

for a regular polygon, 2
√

Det
[

ˆ̃Ra
]

is also equal to the distance from the centre of

the cell to each vertex squared. Dividing the cell into n isosceles triangles as before,

and using this expression to calculate the area of each, we find that the area of a

regular n-sided cell is

An = n sin
(2π

n

)√
Det

[
ˆ̃Ra
]
. (6.10)
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These expressions were derived for regular polygons, but we will make the assump-

tion that they are approximately true for polygons that are close to regular. This

assumption has been tested by the authors of Ref. [83], who found that for regular

polygons whose vertices have been deformed by the application of Gaussian noise

up to a noise magnitude of 0.2, these expressions remain an excellent approxima-

tion. We now have expressions which allows us to calculate cell area and perimeter

provided we know the number of vertices, and these equations can be expressed in

terms of the eigenvalues of the shape tensor.

Coarse Graining

So far, we have only considered properties of individual cells, but to construct a

continuum model, we will need tissue-scale variables which capture cell level proper-

ties. To generate these, we coarse grain the variables we have already constructed,

to generate

R̃ (r, t) =
[∑

a

ˆ̃Raδ (r − ra (t))
]

c

, (6.11)

m (r, t) =
[∑

a

m̂aAaδ (r − ra (t))
]

c

, (6.12)

where the sum is over all cells, δ (x) is the 2D Dirac delta function, and [·]c represents

coarse graining. Note that the delta function has units of inverse area, so R̃ and

m are unitless. We now have a tensor and a scalar field which vary smoothly with

position and time and describe average properties of the tissue. Note also that m ≥ 0,

and so when we simulate the system, if at any time-step m < 0, we immediately

multiply m by −1, so that m remains positive.

We also define a variable

n (r, t) =
[∑

a

n̂a
effAaδ (r − ra (t))

]
c

, (6.13)

which describes the average number of geometric vertices per cell, and is unitless.

neff is the effective vertex number for each cell. Note that there must be an average
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of 6 vertices per cell, when vertices are considered to be junctions where three cell

boundaries meet, as is typical in vertex modelling. However, with this arrangement,

cells can still approximate other polygons, and it is the number of edges that these

approximate polygons have which is important when calculating cell area and peri-

meter from the shape tensor, and which we call neff . Consider, for example, the face

of a standard brick wall. Each brick has 6 vertices according to the definition used

in vertex modelling, in which a vertex is a point where three cells are all adjacent

to each other. However, each brick is very clearly a quadrilateral in shape, and

therefore has 4 geometrical vertices. Robustly defining neff for a general collection

of cells is an open problem which we do not attempt to solve here, but we will allow

n ̸= 6, which corresponds to a situation in which a collection of cells with 6 junctions

per cell are behaving as n-gons.

Finally, we separate R̃ into a traceless matrix and its trace, so that we have

R = Tr
[
R̃
]

, (6.14)

Rij = R̃ij − δij

R

2 , (6.15)

with δxy the Kronecker delta. Note that our coarse graining operation is linear in all

the fields, and so we can also robustly define R̂a and R̂a for each cell.

We now have all the pieces we will need to begin constructing continuum models.

6.3.1 Simple Mean Field Model

We start with the single cell free energy from the Vertex model,

E = κA (Ai − A0)2 + κP (Pi − P0)2 , (6.16)

and neglect the first term because for homogeneous tissue with fixed area and cell

number, the cell area is constant. To express this in terms of tissue scale properties,

we will need to derive an expression for the cell perimeter in terms of m̂. For a single
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cell, we have

A = µ (n)
√

λ1λ2, (6.17)

P = ρ (n)
√

λ1 + λ2, (6.18)

with ρ, µ defined by Eqs. 6.9, 6.10. We will work in units where A = µ, and so

λ1 = 1/λ2. We therefore have that

m̂ = λ2
1 − 1

λ2
1 + 1

, (6.19)

λ1 =
√

1 + m̂

1 − m̂
, (6.20)

P =ρ

 1 − m̂√
1 − m̂2

+ 1 + m̂√
1 − m̂2

1/2

=ρ
√

2
(
1 − m̂2

)−1/4
,

(6.21)

(P − P0)2 = 2ρ2
(
1 − m̂2

)−1/2
− 2

√
2ρP0

(
1 − m̂2

)−1/4
+ P 2

0 . (6.22)

We now assume that m̂ is small, which corresponds to situations in which the cells

are close to regular. We also note that since only changes to the free energy are

important, we can neglect constant terms. We therefore find that

(P − P0)2 ≈ 2ρ2
(

1 + 1
2m̂2 + 3

8m̂4
)

− 2
√

2ρP0

(
1 + 1

4m̂2 + 5
32m̂4

)
+ const., (6.23)

E = . . . + κP

α̃

2 m̂2 + κP

β̃

4 m̂4, (6.24)

with

α̃ = 2ρ

(
ρ − P0√

2

)
, β̃ = ρ

2

(
6ρ − 5√

2
P0

)
. (6.25)

Based on this, we now define the mean field free energy as

ϵ = const. + α

2 m2 + β

4 m4. (6.26)
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Figure 6.3: Plots of the free energy, ϵ, from Eq. 6.26 as a function of m for p0 = 3.75
(blue) and p0 = 4 (green) with n = 5. For the blue curve, α > 0 and the minimum
is at m = 0, while for the green curve, α < 0 and m = 0 becomes a local maximum,
while the minimum occurs at m = m0 > 0.

Setting the target cell shape index p0 = P0/
√

A, and including the area terms that

have been set to 1, we have that

α = 2ρ
(

ρ − p0

√
µ

2

)
AκP

µ
, (6.27)

β = ρ

2

(
6ρ − 5p0

√
µ

2

)
AκP

µ
. (6.28)

This free energy predicts a bifurcation when α changes sign, which happens at

p0 = p∗
0 (n) ≡ ρ

√
2/µ. For a given n, p∗

0 is exactly the shape index of a regular

polygon with that number of sides. The free energy therefore has a minimum at

some m > 0 when p0 is larger than the shape index of a regular polygon, and at

m = 0 when the shape index is less than that of a regular polygon, as shown in Fig.

6.3. For p0 < p∗
0, the target cell shape is geometrically impossible for that number

of vertices.

In the SPV Model [41], a transition occurs at p0 = 3.81 = p∗
0 (n = 5), which is

exactly the transition that this free energy now captures when α changes sign: for

α > 0, cells are close to regular polygons, and their perimeters have non-zero tension
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at equilibrium (the solid phase in the SPV model), and for α < 0, the cells are

elongated, and their perimeters are all tension-free at equilibrium (the fluid phase in

the SPV model). We will therefore set n = 5, so that our transition is in the same

place.

Dynamical Equations

To derive the dynamical equations for our variables, we use a Poisson Bracket

formalism, which is valid for any system of close-packed polygons. This derivation

was the work of Cristina Marchetti, and is not reproduced here. However, it is

closely based on standard results used for liquid crystals, and extremely similar to

the derivation in [174]. It should be noted that the derivation in [174] uses different

definitions, and as such produces slightly different equations.

Recall from Ch. 2.1.1 that for a velocity field v, we can define the deviatoric rate

of strain, dij and the vorticity, ωij, as

dij = 1
2
(
∂ivj + ∂jvi − δij∇ · v

)
, (6.29)

ωij = 1
2
(
∂ivj − ∂jvi

)
. (6.30)

The Poisson Bracket formalism then gives the following form for the time derivatives

of Rij and m:

D

Dt
Rij = Rdij + Rikdkj + dikRkj − δijRkldkl − Γ δF

δRij

, (6.31)

d

dt
m = 2

mR
Rijdij − Γm

δF
δm

, (6.32)

with F the free energy of the whole system and where

d

dt
= ∂tv · ∇ (6.33)
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is the convective derivative and

D

Dt
= d

dt
+ [ω, ·] (6.34)

is the convective and corotational derivative, and [A, B] = AB − BA.

There is also an equation for the trace of R̃, R, generated by this derivation, but

for now we will consider R to be constant. This is because we simulate a fixed number

of cells in a fixed area, and so some measure of cell size must stay approximately

constant by relaxing faster than all other fields. We chose R for this field, as it

is the only variable which is directly related to cell size, and is approximately the

cell perimeter. Holding R constant therefore corresponds to the assumption that

cell perimeter, rather than area is constant, but for small deviations from regular

polygons these two scenarios will be approximately equal. For further discussion of

this, see Sec. 6.3.3.

Each equation is clearly separated into driving terms, which are coupled to the

strain rate tensor, and relaxation terms, which are coupled to the free energy. We

will construct the relaxation terms by considering the physics of the system we are

modelling.

The relaxational term for m is trivial, as we have already derived a mean field

free energy in terms of m. We therefore use Eq. 6.26 as the relevant part of the free

energy, and set
δF
δm

= ∂ϵ

∂m
= αm + βm3. (6.35)

For the relaxation terms in Rij, we assume that this will be driven by topological

transitions. Rij is a measure of the tissue scale anisotropy, and so it will relax

towards zero by reconfigurations of the cells, mainly in the form of T1 transitions.

It should therefore include a term proportional to the rate of T1 transitions, and to

calculate this we note that in the vertex model, the rate of T1 transitions is roughly

proportional to cell elongation. We therefore set this rate to m, and so have that

δF
δRij

= m

τ0
Rij, (6.36)
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with τ0 the T1 transition timescale.

Applying a shear startup protocol to Eqs.6.31, 6.32 and combining with Eqs.6.35,

6.36, we have that

∂tRxx = γ̇Rxy − m

τ0
Rxx, (6.37)

∂tRxy = γ̇ (R − Rxx) − m

τ0
Rxy, (6.38)

∂tm = γ̇
2

mR
Rxy − 1

γm

(
αm + βm3

)
, (6.39)

with γm the shape relaxation timescale. We work in time units in which τ0 = 1 and

set γm = 1 throughout except when explicitly indicated otherwise, which corresponds

to setting the shape relaxation rate and T1 transition rate equal. Modifying the

ratio of these timescales is seen to have minimal impact on the general qualitative

behaviour of all the model versions presented, except where indicated otherwise, and

so the exploration of the emergent quantitative phenomenology is left as a future

exercise with a successfully constructed continuum model.

To calculate the stress, for now we take that

σxy = BRxy, (6.40)

and work in units where B = 1. For further discussion of this, see Sec. 6.3.2.

Results

The behaviour of this version of the model, which we label version 1, is summarised

in Fig. 6.4, and reveals limited success in matching the behaviour seen in the SPV

model and set out in Sec. 6.2.

At infinitesimal strains and low strain rate, we do see a transition at p0 = 3.81,

which is preserved at high strains, as seen in Fig. 6.4a, in which for p0 > 3.81 the

stress is effectively zero at all times. Fig. 6.4c shows how this transition is preserved
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Figure 6.4: Predictions of version 1 of the model, described by Eqs. 6.37, 6.38,
6.39 showing stress as a function of strain at γ̇ = 10−5 (a) and γ̇ = 10−1 (b), final
stress, Σf = Σ (γ → ∞), and critical strain, γc, as a function of p0 at γ̇ = 10−5

(c) and γ̇ = 10−1 (d), instantaneous elastic modulus G = dΣ/dγ at small strains
for γ̇ = 10−5 (e) and γ̇ = 10−1 (f) and a flow curve (g) showing final stress as a
function of strain rate. Panels a, b, e-g, show p0 = 3.50, 3.55, ..., 4.20 from blue to
red. Critical strain is zero for all curves.

in steady state under flow, and appears to show a dynamic yield stress which vanishes

at p0 = 3.81 (Ft. 1). However, examination of Fig. 6.4g shows that while there is a

qualitative transition, the steady state stress goes to zero at low strain rates for all

p0, and therefore the model has no dynamic yield stress (Ft. 4). Instead, note that
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the flow curve shows a power law relationship between stress and strain rate at low

strain rate, and the transition seen is instead between exponents in this power law.

Examination of Fig. 6.4a-d shows that at all strain rates, there is no critical

strain in this model version (Ft. 2). Similarly, Fig. 6.4e,f show that there is no

strain hardening at early strain (Ft. 3), and instead only capture the decreasing

gradient of the stress-strain curves as the model approaches its stress maximum. Fig.

6.4a also reveals that the stress overshoot is not present at low strain rates (Ft. 5),

although we do see a slight overshoot at high strain rate for some p0 values.

Indeed, the flow curve highlights a persistent issue with this style of model: the

steady state values of the dynamical variables follow power laws in the strain rate.

This means that the limiting behaviour as γ̇ → 0 is exactly the same as the behaviour

at γ̇ = 0. This is in contrast to the SPV model, and most vertex models, in which we

see a qualitatively different steady state under quasistatic shear than without shear.

In the SPV model, σ = 0 in the unsheared system, but in the steady state under

quasistatic shear, we have in general σ ̸= 0, at least for some values of p0. There is

therefore a discrete difference in the stress between zero strain rate and infinitesimal

finite strain rate, which is not what we see here for this continuum model.

While this model version does capture some of the desired behaviour, in the form

of a transition at p0 = 3.81 which impacts the model at infinitesimal strain (Ft. 1)

and in steady state (Ft. 4 qualitatively), it is clearly not a good fit to the SPV

Model simulations of [41], and we therefore consider ways in which to adapt it.

6.3.2 Modified Elastic Modulus

To make the first modification, we note that in the previous section, we made an

approximation while calculating the stress. Following the Poisson Bracket formalism

in full detail, the correct expression for the stress (which we approximated in Eq.

6.40) is

σij = 2
m

Rij

δF
δm

. (6.41)
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Figure 6.5: Predictions of version 2 of the model, described by Eqs. 6.37, 6.38, 6.39,
6.42 showing stress as a function of strain at γ̇ = 10−5 (a) and γ̇ = 10−1 (b), final
stress, Σf = Σ (γ → ∞), and critical strain, γc, as a function of p0 at γ̇ = 10−5

(c) and γ̇ = 10−1 (d), instantaneous elastic modulus G = dΣ/dγ at small strains
for γ̇ = 10−5 (e) and γ̇ = 10−1 (f) and a flow curve (g) showing final stress as a
function of strain rate. Panels a, b, e-g, show p0 = 3.50, 3.55, ..., 4.20 from blue to
red. Critical strain is zero for all curves.

We therefore now take the stress to be

σxy = BRxy = B0Rxy

(
α + βm2

)
, (6.42)

now setting B0 = 1.
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Recall that in the SPV model, the stress also has a factor which is proportional

to dE/dp, and this causes strain hardening at intermediate strains. The new form

for the stress includes an equivalent to this term, and so it might be hoped that this

will induce strain hardening.

The results of this version of the model, which we label version 2, are summarised

in Fig. 6.5, and are broadly similar to those in Sec. 6.3.1. We still see a transition at

p0 = 3.81 at low strain rates (Ft. 1), and the flow curve reveals that this represents

a qualitative change in the form of the steady state, but the dynamic yield stress is

still zero (Ft. 4). There is still no critical strain for any p0 at any strain rate (Ft. 2)

and no stress overshoot at low strain rate (Ft. 5).

We still see no strain hardening (Ft. 3), except for some very weak hardening at

high strain rate, which can be understood as follows. When shear begins, Rxy = 0,

and so the loading term in Eq. 6.39 is still zero, meaning that m stays constant at

its equilibrium value, while Rij are able to grow. This growth in Rxy generates the

observed stress increase, which happens at constant elastic modulus. Once Rxy > 0,

the loading term in m becomes non-zero and m is driven away from its equilibrium

value, causing an increase in the elastic modulus. However, this happens as Rij

are approaching their steady state, and the increasing shear modulus is negligible

compared to the decreasing gradient dRxy/dγ.

This model version still does not capture the behaviour we are looking for, and

so we continue to make further modifications. However, as we modify the model

further, we will continue to calculate the stress in the way introduced in this section

in Eq. 6.42.

6.3.3 Fixing Cell Area

Recall that in Sec. 6.3.1 we set R to be constant, which corresponds to fixing cell

perimeter. We now modify that approach, and fix the area of each cell. For a given

n, two quantities are sufficient to fully describe each cell for the purposes used here.
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Initially we used area and perimeter, which relate directly to the cell shape tensor,

then switched to using m and R, with R effectively a measure of perimeter, meaning

that the area was in principle calculable. We now switch to describing cells by m

and A, which will mean that perimeter and R are both calculable, and will fix A

due to assumptions made earlier. As before, we will assume that area relaxation

is much faster than any other processes, and so will at all times set R to the value

which preserves the cell area.

Without loss of generality, we set A = µ (n), so that for each cell

λ1 =
√

1 + m̂

1 − m̂
, (6.43)

as in Eq. 6.20. We then have that

R̂ = λ1 + λ2 = 2√
1 − m̂2

. (6.44)

While coarse graining, R̂ will be normalised by the cell area, so that

R = 2
µ (n)

1√
1 − m2

. (6.45)

This allows to calculate R at each time step, but we will also modify the elastic

modulus, so that

B ∝ ∂E

∂P
, (6.46)

with B as defined in Eq. 6.42 and P the perimeter. We have that

P = ρ

√
R̂, (6.47)

∂E

∂P
= 2 (P − P0) = 2

(
ρ

√
R̂ − P0

)
, (6.48)

so after coarse graining
∂E

∂P
= 2

√
A
(
ρ
√

R − p0

)
, (6.49)

and we set

B = B0

(
ρ
√

R − p0

)
. (6.50)
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By expanding in powers of m, it can be shown that close to the transition, this

modulus (
ρ
√

R − p0

)
∝ α +

(
β − 5

4α
)

m2, (6.51)

and so for small m, α/β (near the transition), these two expressions are approximately

equivalent.

The results of this version of the model, which we label version 3, are shown in

Fig. 6.6 and shown limited improvement from the previous version. We still have

a transition at p0 = 3.81 (Ft. 1), but the dynamic yield stress is still zero (Ft. 4).

We also still see no critical strain (Ft. 2), no strain hardening (Ft. 3) and no stress

overshoot at low strain rate (Ft. 5).

Fig. 6.6d reveals that we now have a non-monotonicity in the steady state stress

at high strain rates. This is likely due to the new small discrepancy between the form

of the free energy used in the elastic modulus and the form used in the relaxation

term for m, and while this difference is insignificant at low strain rate, it becomes

significant at high strain rate.

We clearly need to construct a new iteration of the model in order to capture the

desired behaviour. We will keep Eq. 6.45, which ensures that the cell area is kept

constant rather than cell perimeter, as this corresponds well to the situation we are

modelling. However, due to the behaviour we see at high strain rate, we will revert

to Eq. 6.41 for the elastic modulus, and ensure that the form of the free energy we

use to calculate the modulus is the same as the form used for the relaxation term in

m.

6.3.4 Solid Phase Shape Deviations

To make the next modification to the model, we consider the model in its solid

phase (p0 < p∗
0) at equilibrium. As currently constructed, m will relax exponentially

towards zero, and the equilibrium state has m = 0. Recall that m̂ describes the

elongation of a single cell and is positive-defined, so that m̂ ≥ 0. As a result, even
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Figure 6.6: Predictions of version 3 of the model, described by Eqs. 6.37, 6.38, 6.39,
6.45, 6.50 showing stress as a function of strain at γ̇ = 10−5 (a) and γ̇ = 10−1 (b),
final stress, Σf = Σ (γ → ∞), and critical strain, γc, as a function of p0 at γ̇ = 10−5

(c) and γ̇ = 10−1 (d), instantaneous elastic modulus G = dΣ/dγ at small strains
for γ̇ = 10−5 (e) and γ̇ = 10−1 (f) and a flow curve (g) showing final stress as a
function of strain rate. Panels a, b, e-g, show p0 = 3.50, 3.55, ..., 4.20 from blue to
red. Critical strain is zero for all curves.

if there are only small local fluctuations in m̂, the coarse graining will average over

some positive values of m̂, but no negative values, and so the coarse grained value

m > 0. We therefore expect that small random fluctuations will in general give

m ̸= 0, even for p0 < p∗
0, γ̇ = 0.
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Examination of the SPV model reveals that this is indeed the case, and it is

found that without shear, for p0 < p∗
0, m ≈ ms, with ms = 0.159. We therefore aim

to modify our equations such that m relaxes to some ms ̸= 0, which we set from the

SPV model

We start with the free energy from Eq. 6.26, and now use a Lagrange multiplier

with Karush-Kuhn-Tucker conditions [178,179] to minimise it under the constraint

m ≥ ms:

L (m, λ) = α

2 m2 + β

4 m4 + λ (m − ms) . (6.52)

This is minimised when

∂L
dm

= αm + βm3 + λ = 0, (6.53)

∂L
dλ

= m − ms = 0, (6.54)

which is satisfied by

m∗ = ms, λ∗ = −
(
α + βm2

s

)
ms. (6.55)

We use this to construct a new free energy,

ϵ̄ = α

2 m2 + β

4 m4 − mms

(
α + βm2

s

)
, (6.56)

which is minimised by the value of m which minimises Eq. 6.26 when it is subject

to the constraint m ≥ ms. We will use this free energy for the relaxation of m, and

it has minima at

m = ms for α > −3βm2
s, (6.57)

m = −ms

2 + 1
2

√
−4α

β
− 3m2

s for α < −3βm2
s. (6.58)

Note that the transition point has been perturbed to lower α, which is as expected:

for −3βm2
s < α < 0, the steady state of the previous free energy was 0 < m < ms,

whereas that whole range now has m = ms at equilibrium. Despite this shift in the

transition, we still use n = 5.
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Eq. 6.39 is now replaced by

∂tm = γ̇
2

mR
Rxy − 1

γm

(
αm + βm3 − ms

(
α + βm2

s

))
, (6.59)

and the stress is calculated as

σxy = 2
m − ms

Rxy

δF
δm

= B0Rxy

[
α + β

(
m2 + mms + m2

s

)]
. (6.60)

The results of this version of the model, which we label version 4, are shown in

Fig. 6.7, and still show little improvement. The dynamic yield stress is still zero

(Ft. 4), and the transition at low strain rate (Ft. 1) is now shifted to p0 ≈ 3.9, as

expected. We still see no critical strain, no strain hardening and no stress overshoot

at low strain rate (Ft. 2,3,5).

We therefore need a new iteration of the model, and as the latest modification

has had minimal impact on the results and is not related to the original model

assumptions, we will not continue with this form for the free energy, and instead will

revert to Eq. 6.26. In addition to this logical premise, exploring the below model

versions with the addition of this modification reveals that it can produce undesired

behaviour.

6.3.5 Cellular Tilt

For the next modification, we note that there is a degree of freedom for each cell

that has so far been neglected. Recall that in the SPV model, the critical strain is

a result of the fact that as strain starts, the cells initially tilt without stretching,

before beginning to elongate once the tilt is saturated. We now modify the model

to account for this tilt.

From this point on, we set n = 4, which will change the transition point to p0 = 4.

This is not for any physical reason, but because the symmetry of a quadrilateral

makes the following derivation possible, while it has not yet been successfully carried

out for general n.
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Figure 6.7: Predictions of version 4 of the model, described by Eqs. 6.37, 6.38, 6.59,
6.45, 6.60 showing stress as a function of strain at γ̇ = 10−5 (a) and γ̇ = 10−1 (b),
final stress, Σf = Σ (γ → ∞), and critical strain, γc, as a function of p0 at γ̇ = 10−5

(c) and γ̇ = 10−1 (d), instantaneous elastic modulus G = dΣ/dγ at small strains for
γ̇ = 10−5 (e) and γ̇ = 10−1 (f) and a flow curve (g) showing final stress as a function
of strain rate. Panels a, b, e-g, show p0 = 3.50, 3.55, ..., 4.20 from blue to red.

Consider a rectangle with sides length a1, a2 and vertices at ra which is deformed

into a parallelogram by a transformation Dij so that the new vertices are at r′a
i =
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a2

a1

ϕ

Figure 6.8: Sketch of a quadrilateral being deformed such that it tilts.

Dijra
j , as shown in Fig. 6.8, with

D =

1 tan ϕ

0 1

 , (6.61)

so that |D| = 1. The modified shape tensor is now

ˆ̃R = D · ˆ̃R0 · DT, (6.62)

with

ˆ̃R0 = 1
4

a2
1 0

0 a2
2

 , (6.63)

ˆ̃R = 1
4

a2
1 + a2

2 tan2 ϕ a2
2 tan ϕ

a2
2 tan ϕ a2

2

 . (6.64)

The determinant and trace of ˆ̃R are now given by

Det
[

ˆ̃R
]

= a2
1a

2
2

16 = A2

16 , (6.65)

Tr
[

ˆ̃R
]

= 1
4
[
a2

1 + a2
2

(
1 + tan2 ϕ

)]
. (6.66)
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Calculating ϕ

If we take the undeformed cell to be a square of area A = 1, we have that

ˆ̃R = 1
4

1 + tan2 ϕ tan ϕ

tan ϕ 1

 , (6.67)

and the traceless shape tensor

R̂ = 1
4


tan2

ϕ
2 tan ϕ

tan ϕ − tan2
ϕ

2

 , (6.68)

so that

R̂ijR̂ji = tan2 ϕ

8

(
1 + 1

4 tan2 ϕ
)

≈ 1
8 tan2 ϕ, (6.69)

with the approximation for small ϕ. While this is strictly derived for a square, we

will assume that it is approximately correct for other quadrilaterals with small m.

Noting that upon coarse graining, the shape tensor will be normalised by the cell

area, which we have set to 1, we can therefore calculate ϕ in mean field from

tan2 ϕ = 8RijRji. (6.70)

Free Energy

To derive the new free energy, we first set A = 1 (note that µ (4) = 4), which gives

us that

R̂ = 1
2

1√
1 − m̂2

. (6.71)

The perimeter of the deformed cell is then given by

P =4

√√√√R̂ + 2
√

Det
[

ˆ̃R
] (

1 + tan2 ϕ
)

=4

√√√√√1
2

1√
1 − m̂2

+

√
1 + tan2 ϕ

2 .

(6.72)

We set

q ≡
√

1
2 + 1

2

√
1 + tan2 ϕ, (6.73)
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so that

P =4
√√√√1

2
1√

1 − m̂2
+ q2 − 1

2

≈4

√√√√1
2

(
m̂2

2 + 3
8m̂4

)
+ q2,

(6.74)

where as usual, we assume m̂ to be small. Considering only the perimeter term in

the free energy, we then expand (P − P0) up to quartic terms in m̂ and find that

E = κP

[
ζ + α̃

2 m̂2 + β̃

4 m̂4
]

, (6.75)

with

ζ = (P0 − 4q)2 , (6.76)

α̃ = 2 (4q − P0)
1
q

, (6.77)

β̃ = 1
4
(
48q3 − 12P0q

2 + P0

) 1
q3 . (6.78)

We now define the critical shape index,

pc (ϕ) = 4q = 4
√

1
2 + 1

2

√
1 + tan2 ϕ ≈ 4

(
1 + 1

8 tan2 ϕ
)

. (6.79)

Noting that p∗
0 (n = 4) = 4 and A = 1, we can now construct the mean-field free

energy:

ϵ = const. + α

2 m2 + β

4 m4, (6.80)

with

α = 8 (pc − p0)
1
pc

≈ 2 (p∗
0 − p0) + 1

4p∗
0 tan2 ϕ + O

(
tan4 ϕ

)
, (6.81)

β =16
(

3
4pc − 3

4p0 + p0

p2
c

)
1
pc

≈1
4 (12p∗

0 − 11p0) + 1
4 tan2 ϕ

(3
2p∗

0 − p0

)
+ O

(
tan4 ϕ

)
,

(6.82)
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where we are also assuming tan2 ϕ to be small. From here, we will also neglect the

tan2 ϕ terms in the equation for β, and we use Eq. 6.70 to substitute in for ϕ, giving

our final expressions:

α = 2
[
p∗

0

(
1 + RijRij

)
− p0

]
, (6.83)

β = 1
4 [12p∗

0 − 11p0] . (6.84)

For p0 < p∗
0, we still have that α > 0, β > 0, and so the equilibrium state

has m = 0, as before. For p0 > p∗
0 (and p0 < 12p∗

0/11, which is a limit of the

approximations we have taken), in equilibrium, Rij = 0, so m > 0, but then as the

system is sheared, Rij grow, and α also grows as a result of the cells tilting, until

tan ϕ becomes saturated when Rij reach their steady state values. This means that

there are now two process affecting the free energy as shear begins: the changes in

m which existed previously and the changes in ϕ, which modify the behaviour of m.

However, this actually means that as the system is strained, m gets further from

the free energy minimum, which will have the effect of increasing the elastic modulus.

To counteract this, we set γm = 10−2, which corresponds to making m relax much

faster than Rij. This will allow the value of m to slowly decrease while following

the free energy minimum as tan ϕ increases, until ϕ reaches its maximum, at which

point m is forced away from the free energy minimum.

Results

The results of this version of the model, which we label version 5, are shown in Fig.

6.9, and reveal behaviour that is broadly similar to previous model versions, but

with some improvements. The model now successfully displays a clear critical strain

at high strain rates (Ft. 2), and also succeeds in showing some strain hardening

at high strain rates (Ft. 3), although fails to capture a dynamic yield stress (Ft.

4) and fails to show a stress overshoot at low strain rate (Ft. 5), despite a very

pronounced overshoot at high strain rate. At low strain rates the transition (Ft. 1)
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Figure 6.9: Predictions of version 5 of the model, described by Eqs. 6.37, 6.38,
6.39, 6.45, 6.42, 6.83, 6.84 with γm = 10−2 showing stress as a function of strain at
γ̇ = 10−5 (a) and γ̇ = 10−1 (b), final stress, Σf = Σ (γ → ∞), and critical strain,
γc, as a function of p0 at γ̇ = 10−5 (c) and γ̇ = 10−1 (d), instantaneous elastic
modulus G = dΣ/dγ at small strains for γ̇ = 10−5 (e) and γ̇ = 10−1 (f) and a flow
curve (g) showing final stress as a function of strain rate. Panels a, b, e-g, show
p0 = 3.50, 3.55, ..., 4.20 from blue to red.

is now shifted to p0 = 4, as expected from changing to n = 4.

While there is still no critical strain at low strain rate, the high strain rate plots

show that there is now a critical strain, which emerges at p0 ≈ 3.95 and grows with

increasing p0, until some larger value of p0, at which point the stress response at all
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times drops to almost zero, and the critical strain is poorly defined. The emergence

of a second critical point at a lower p0 than the critical point for the final stress has

occurred naturally, and is a significant success of this model version.

This model version also shows a new, unexpected emergent phenomenon: discon-

tinuous shear thickening. Inspection of Fig. 6.9g shows that for p0 > 4, there is some

finite strain rate γ̇t at which there is a discontinuity in the flow curve, so that the

steady state stress for a strain rate immediately below γ̇t is different to the steady

state stress for a strain rate immediately above γ̇t, Σf (γ̇t − δγ̇) ̸= Σf (γ̇t + δγ̇) in

the limit δγ̇ → 0. This effect was not observed in the SPV model, but this is to be

expected as it is a finite strain rate process, and the SPV simulations are quasistatic.

This model version has shown improved success from previous versions, and we

now have a critical strain at high strain rates (Ft. 2), and two separate transition

points in p0 (Ft. 1,4). An interesting new phenomenon has also emerged in the

form of discontinuous shear thickening. However, there is still no critical strain at

low strain rates (Ft. 2), no dynamic yield stress (Ft. 4), limited strain hardening

(Ft. 3) and no stress overshoot at low strain rate (Ft. 5), so we will explore further

modifications to the model.

6.3.6 Dynamic Fluidity

The derivation of the variation of the model presented in this section is credited to

Suzanne Fielding.

A significant recurring problem so far has been that for all the model versions,

their steady state in the limit γ̇ → 0 is equal to their behaviour at zero strain

rate, which means that the majority of the interesting phenomenology occurs at

high strain rate, and is absent at low strain rate. Inspection of Eqs. 6.37, 6.38,

6.39 reveals that generating a discontinuity at infinitesimal strain rate will require a

significant change to the model.

Previously, we used m as the T1 transition rate, which governs the relaxation
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of Rij. We now introduce an additional scalar field, a, which is used as a dynamic

fluidity controlling the T1 rate. Eqs. 6.37, 6.38 now become

∂tRxx = γ̇Rxy − aRxx, (6.85)

∂tRxy = γ̇ (R − Rxx) − aRxy, (6.86)

while the equation for ∂tm remains as before. a then has its own dynamical equation,

which we construct phenomenologically:

∂ta = 2
√

dijdija (1 − τ0a) − a2, (6.87)

which for shear startup becomes

∂ta =
√

2γ̇a (1 − τ0a) − a2. (6.88)

In steady state,

a =
√

2γ̇

1 +
√

2τ0γ̇
≈

√
2γ̇, (6.89)

where the approximation is at low strain rate. Crucially, this steady state value is

independent of Rij, which was not the case for the previous T1 transition rate, m.

The result of this is that at low strain rates, including the limit γ̇ → 0, the steady

state values of Rij are given by

Rxx = R

3 , Rxy = R
√

2
3 . (6.90)

By contrast, without shear, the steady state values are Rxx = Rxy = 0, although

this does require the assumption that random noise ensures a is not exactly zero

at all times while in equilibrium. The imposition of an infinitesimal strain rate

therefore generates a discrete jump in the steady state, which is exactly what we

were searching for.

The results of this version of the model, which we label version 6, are shown in

Fig. 6.10, and show significant success. There is now a clear dynamic yield stress (Ft.
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Figure 6.10: Predictions of version 6 of the model, described by Eqs. 6.85, 6.86,
6.39, 6.87, 6.45, 6.42, 6.83, 6.84 with γm = 1 showing stress as a function of strain
at γ̇ = 10−5 (a) and γ̇ = 10−1 (b), final stress, Σf = Σ (γ → ∞), and critical strain,
γc, as a function of p0 at γ̇ = 10−5 (c) and γ̇ = 10−1 (d), instantaneous elastic
modulus G = dΣ/dγ at small strains for γ̇ = 10−5 (e) and γ̇ = 10−1 (f) and a flow
curve (g) showing final stress as a function of strain rate. Panels a, b, e-g, show
p0 = 3.50, 3.55, ..., 4.20 from blue to red. Missing data in panel (g) are runs where
numerical issues prevented the completion of the simulation before steady state was
reached.

4), and Fig 6.10c shows that this should indeed vanish at some p0 > 4. However, the

approximations we made in deriving this model version are only valid for p0 < 4.21,

(at which point −α = β when ϕ = 0) and so for now we are unable to simulate the
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model above the transition.

We also have a critical strain at high and low strain rate (Ft. 2), and this vanishes

for p0 ≲ 3.9, which is lower than the value at which the dynamic yield stress should

vanish. Although both critical p0 values are higher than their counterparts in the

SPV model, note that we have assumed n = 4; if we had instead assumed n = 5,

we would expect a transition which we see occur at p0 = 4 to occur at p0 = 3.81.

In fact, the projected x-intercept of the dynamic yield stress is close to p∗
0 (n = 3),

which implies that perhaps simulating at n = 5 would also shift the transition point

in the dynamic yield stress to be close to p0 = 4.

Inspection of Fig. 6.10e,f reveals that this model version also shows significant

strain hardening, at both high and low strain rate (Ft. 3). At low strain rate,

there appears to be a significant region in which the shear modulus grows linearly

with strain, which is consistent with the hardening we might expect to see from

the quadratic term in the free energy, which generates a linear term in the elastic

modulus.

Fig. 6.10a reveals that we do have a stress overshoot at low strain rate (Ft.

5). However, examination of Fig. 6.11, which shows the overshoot height (stress

maximum minus final stress) as a function of strain rate, including for startup curves

not shown in Fig. 6.10, reveals that the overshoot height decreases with strain rate

and appears to tend to zero as γ̇ → 0, which implies that in the quasistatic limit

this overshoot would disappear.

Fig. 6.10b shows unusual behaviour at high strain rate, and in fact there are

several numerical issues with simulating in that regime. Previously, all the stress-

strain curves have either increased monotonically towards steady state or shown a

single stress overshoot before relaxing to steady state. Now instead, we see a curve

with multiple stationary points, and a considerable period of negative stress. A

negative stress does not make physical sense - it implies that to shear the system

in one direction, a force would need to be applied in the opposite direction. This is

not behaviour which has been seen in vertex models or experimental data, and we
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Figure 6.11: Overshoot height, ΣO, as a function of strain rate, γ̇, for p0 =
3.50, 3.55, ..., 4.20 from blue to red.

suggest that it is an artefact of imperfect transient dynamics, likely caused by the

complex interactions between the four dynamic scalar fields, and we would expect

an improved model to not show this behaviour.

The data that we are able to generate suggests an important transition at some

p0 outside of our simulation range. In an attempt to observe this, we will make an

additional assumption, and set β = β (p0 = 4) = 1. This avoids the issues associated

with β ≤ 0, and moves the point at which −α (ϕ = 0) = β to p0 = 4.5. With some

careful dynamics, we can simulate past this, provided that in steady state −α < β,

although the transient behaviour of the startup curves will show slightly different

behaviour for p0 > 4.5. We label this model version 6b.

The results for the regime in which there are no numerical issues are summarised

in Fig 6.12. The behaviour for p0 < 4.2 is very similar to Fig. 6.10, and we are

now able to see how the dynamic yield stress vanishes at p0 ≈ 4.65 (Ft. 4). Fig.

6.12g shows that we now have two qualitatively different forms of flow curve: for

p0 ≲ 4.65, the steady state stress tends to a constant as γ̇ → 0, while for p0 ≳ 4.65,
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Figure 6.12: Predictions of version 6b of the model, described by Eqs. 6.85, 6.86,
6.39, 6.87, 6.45, 6.42, 6.83, with β = 1 showing stress as a function of strain at
γ̇ = 10−5 (a) and γ̇ = 10−1 (b), critical strain, γc, as a function of p0 at γ̇ = 10−5

(c) and γ̇ = 10−1 (d), instantaneous elastic modulus G = dΣ/dγ at small strains
for γ̇ = 10−5 (e) and γ̇ = 10−1 (f) and a flow curve (g) showing final stress as a
function of strain rate. Panels a, b, e-g, show p0 = 3.50, 3.55, ..., 4.80 from blue
to red. Missing data in panel (g) are runs where numerical issues prevented the
completion of the simulation before steady state was reached.

the steady state stress is a power law in strain rate, and so vanishes as γ̇ → 0. Note

that while the critical strain appears to be non-monotonic in p0 at low strain rate,

the point at which the curve changes direction coincides with the point where model
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assumptions begin to break down, so the values of γc at high p0 may be inaccurate.

This latest model version, although not perfect at capturing the behaviour of the

SPV model, is therefore able to capture qualitatively at least four of the phenomena

we were searching for: we have a solid-fluid transition for infinitesimal strains at

p0 ≈ 3.9 (Ft. 1), a critical strain which must be applied to the system in the fluid

state before any stress is measured (Ft. 2), strain hardening at intermediate strains

(Ft. 3) and a dynamic yield stress which vanishes at p0 ≈ 4.65 (Ft. 4). We see

a stress overshoot at low strain rate (Ft. 5), but it appears that the height of the

overshoot, ΣO → 0 in the quasistatic limit.

6.4 Conclusion

We have constructed and presented a number of variants of a continuum model of

epithelial tissue in an attempt to capture the key behaviour seen in simulations of the

SPV model, as described in Sec. 6.2. The simplest model versions presented showed

only limited success, but the final model versions presented capture a significant por-

tion of the qualitative behaviour. All of them share the same basic approach, using

a coarse grained cell shape tensor and cell elongation parameter, with dynamical

equations derived from a Poisson bracket formalism, and a free energy constructed

from the form used in the vertex model. While none of the model versions presented

capture perfectly the behaviour of the SPV model from [41], or indeed any other pub-

lished vertex models, the final continuum model does capture a significant portion of

the desired behaviour, and represents a good approximation to the SPV model. The

behaviour of our final model version in the quasistatic limit is, in fact, qualitatively

very similar to [41], and the main difference is in the values of the model parameters

at which key transitions occur: the SPV model has a transition between solid-like

and fluid-like states without shear at p0 = 3.81 and a dynamic yield stress which

vanishes at p0 ≈ 4, while the final version of this model has a transition in the

absence of shear at p0 = 4 and a dynamic yield stress which vanishes at p0 ≈ 4.65.
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However, we were aiming to construct a model which worked at finite strain rate as

well as low strain rate, and the final model shows some unexpected and unphysical

behaviour at higher strain rates.

For the derivation of all the model versions presented, it was necessary to make

several assumptions and approximations, which limit the window in which the model

is valid. In the final version presented, this window became small enough that there

was some interesting behaviour outside of it. To address this in a future model, it

would be interesting to derive the free energy in terms of m for fixed cell area instead

of perimeter. To do so is trivial for the early model versions presented, and tends to

leave looser limits on the model validity. In following that approach, R would need

to be calculated to preserve cell perimeter, instead of area, and the result would

model a system of cells in which the cell area varies with time, although within

certain small limits due to the constraint of constant perimeter.

The reader may also note that in addition to the model versions presented here,

there are many others which could be constructed by combining the parts in different

ways, and most model versions have at least one constant which could be varied. A

significant fraction of these additional variations have been explored by the author,

and this work represents an attempt to present the most interesting ones in a

logical order. However, it is completely plausible that there are other interesting but

unexplored models that can be generated from these analyses, and perhaps one of

these matches the behaviour of the SPV model even better than the ones presented.

In presenting a number of these model versions, we have shown the utility and

necessity of several different model features, and the results show that there are

two adaptations to the simplest model, based on that presented in [174], which are

necessary.

Firstly, the analysis in Sec. 6.3.5 proved to be necessary to generate a critical

strain, and was particularly effective in combination with a dynamic fluidity. It

therefore seems that including a hidden variable for cellular tilt is an effective way to

generate two degrees of freedom in the tissue’s response to shear. The introduction
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of ϕ into the free energy means that for p0 > p∗
0, the free energy has a series of

degenerate minima at different ϕ, and as the system is sheared, it moves between

these minima in a very similar way to the SPV model. In the model presented here,

this was directly coupled to the cell shape tensor and incorporated into the free

energy, although there are other possible ways to generate this effect.

Secondly, the fact that the model version presented in Sec. 6.3.6 is the only one

with a non-zero dynamic yield stress suggests that the original formulation with

only Rij and m as dynamical variables is insufficient, and therefore those dynamical

equations need to be modified to generate a difference between the quasistatic steady

state and the unsheared steady state. The coupling of the system to a dynamic scalar

fluidity, or some other field which can act as a fluidity, has therefore been shown

to be necessary to capture the desired behaviour at low strain rate. For the model

to have a dynamic yield stress, there must be a dynamic scalar field introduced in

addition to Rij and m, which has a final value af such that

lim
γ̇→0

[
af (γ̇)

]
∝ γ̇, (6.91)

with af independent of Rij at low strain rates. There are other possibilities for the

dynamics of this field than were presented in this work, and in future work, it would

be interesting to see a derivation for this fluidity from the physical properties of

epithelial tissue, and such a derivation would identify the fluidity with a specific

process from the SPV model.

The most successful model versions presented here were all derived for n = 4,

despite significant evidence from SPV and vertex model simulations and experimental

work that a value of n = 5 or 6 would be more appropriate. This was done because

several symmetry properties of quadrilaterals had to be used in the derivation, but

the result is that some of the model versions show transitions at different values of

p0 than are seen in the SPV model. Additional interesting further work would be to

attempt a derivation for the free energy accounting for cellular tilt at general n, or

even specific n ̸= 4.
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Several of the model versions that have been presented show the signatures of

interesting, non-trivial rheological phenomena, which have not been explored in this

work. A significant number of the model versions have flow curves which appear to

be non-monotonic, allowing the possibility for shear banding when simulated with

heterogeneous flow allowed. This is in agreement with SPV simulations, in which

distinct bands can form with low internal strain rates and a very high strain rate

between them, typically at high p0 and large strain [41, 180]. One model version

also showed discontinuous shear thickening in its flow curve, which can also generate

interesting phenomena under heterogeneous shear.

To summarise, we have presented an attempt at exploring the emerging field of

continuum modelling of epithelial tissue. While we did not have complete success,

we have presented several very good model versions, and made clear steps in the

direction of constructing a fully successful continuum model of epithelial tissue. From

the results presented here, there are many obvious lines of further investigation open,

and it is our hope that some of these will lead to further advancement of this field.





Chapter 7

Conclusions

In this thesis, we have studied yielding transitions in a variety of soft matter systems

under multiple shear protocols. Three of the models we considered, the thermal

fluidity model, the SGR model and the EPM, were designed to capture the behaviour

of a range of soft materials, and as such each of them could be used to model a

variety of amorphous systems, such as foams, emulsions or colloidal glasses [38]. In

the thermal fluidity model, we studied yielding transitions under shear startup, and

characterised them based on the rate at which they happen. In the SGR model

and EPM, we studied yielding transitions under a LAOS protocol, and characterised

when they occur. In all three of these models, shear banding instabilities were

very closely related to the yielding transition, and the development of heterogeneity

within the system allowed a much faster fluidisation. The remaining set of models we

considered were aimed at capturing tissue rheology. We did not study or characterise

the yielding transitions in these models in as much detail, instead focussing on the

derivation of a successful model. However, this section of the thesis nonetheless

represents an important step forward in studying the yielding transitions seen in

epithelial tissue. We now summarise the findings of each chapter in turn, and suggest

avenues for further study.
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7.1 Ductile and Brittle Yielding in Soft Glassy

Materials

Summary of Main Results

In Ch. 3, we examined a thermal fluidity model under a shear startup protocol. We

found that the system undergoes a solid to fluid yielding transition under shear, and

we investigated how fast this transition is. We categorised the yielding as “ductile”

or “brittle” yielding based on how quickly it occurred, although we found that it

was not possible to draw a qualitative distinction based only on the yielding speed.

Instead, we found that the maximum degree of shear banding was the most effective

way to distinguish between ductile and brittle yielding. We found that there is a

strain rate threshold, which we termed the diffusion limit, and for strain rates below

this threshold, yielding is always ductile. Outside of this limit, we found that brittle

yielding occurs when the magnitude of the stress drop during the yielding event

is sufficiently large, and this regime corresponds to the dimensionless product γ̇tw

being above some threshold. In the brittle regime, we found that the stress drop

occurred faster as a function of strain at lower strain rate and higher ageing time

prior to shear.

We found that the yielding transition was closely related to a shear banding

instability, and that a state of initially uniform shear was unstable to the growth

of small heterogeneous shear rate perturbations while the stress is relaxing as a

function of strain. In all situations, we found that heterogeneity began to grow as

the stress decreased, but only in some situations (large stress drop) was it able to

grow enough to have a significant impact on the system. Once the degree of banding

was of the same order of magnitude as the applied strain rate, the system entered

a non-linear regime in which the degree of banding grew very rapidly. This rapid

growth generated locally negative shear rates, and the effect of these was to fluidise

the system much more rapidly, leading to fast, brittle yielding.
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We also concluded that in this model, ductile and brittle were the two extrema

of a common yielding phenomenon. We found that both occurred in systems that

had an overshoot of stress as a function of strain, with no need for an overhang.

Rather, the only qualitative distinction between the two types of yielding was in

the degree of banding that was associated with the yielding event. This conclusion

is in contrast to the conclusions of Ref. [43], in which the authors proposed that

brittle yielding is associated with a system that has a stress overhang as a function

of strain, while ductile yielding occurs in systems with a stress overshoot.

Possible Further Work

The results presented here were also compared in Ref. [44] to similar results for

athermal systems, and it was found that at low strain rate, brittle yielding is seen in

all systems with a stress overshoot, regardless of the size of this overshoot. What re-

mains unstudied, to this author’s knowledge, is the transition between the behaviour

observed in thermal systems and that seen in athermal systems. Some interesting

further work would therefore be to examine the behaviour in a thermal model at

a range of temperatures, and consider the limit as temperature goes to zero. This

would hopefully elucidate how the behaviour transitions between the two extremes

we have seen, and provide further understanding of the mechanism that drives this

difference.

It would also be helpful to see further results on this topic from experiments

and particle simulations, particularly given that the discussion remains open in

the literature about the distinction between ductile and brittle yielding [181–184].

Because of the low strain rates in our study and others [43,45] (some of which are in

the limit of shear rate γ̇ → 0), these experiments will be time-consuming. It would

also be interesting to see further theoretical results from a wider variety of models,

which would help to identify which of the features we see are related to the specific

assumptions of certain models, and which represent general physical principles.
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7.2 Delayed Yielding in the Soft Glassy Rheology

Model in Large Amplitude Oscillatory Shear

Summary of Main Results

In Ch. 4, we considered the SGR model under a LAOS protocol, and found that in

certain regimes of imposed strain amplitude and degree of sample annealing prior

to shear, it showed very delayed significant yielding. We characterised the number

of cycles before failure, N∗, and found that N∗ follows a power law in the sample

age prior to shear, tw. As a result, we hypothesised that arbitrarily delayed yielding

is possible, as is delayed yielding at any large amplitude, provided that tw is taken

large enough. We also found that N∗ increases as the strain amplitude, γ0 decreases,

but found no divergence in N∗ at finite amplitude.

However, we also found that there was a critical strain amplitude, γc ≈
√

2, below

which the magnitude of the stress drop during the yielding transition effectively goes

to zero. We therefore proposed that for large tw, if γ0 > γc, the system yields from

a solid-like to a fluid-like state, while for γ0 < γc, the system yields from a solid-like

state to a slightly softer solid-like state. Regardless of the magnitude of the stress

drop, however, the cycle at which the yielding occurs was determined by the typical

time before an individual element yields for the first time, and this trend continues

smoothly on both sides of the critical amplitude.

Possible Further Work

Some interesting further work would be to compare our results to additional exper-

imental results. While the basic phenomenon that we observe is well established

experimentally [63, 64], to this author’s knowledge, no one has yet characterised the

dependence of N∗ on the input parameters in real materials. It would also be inter-

esting to carry out very similar theoretical work in a stress controlled protocol, which

would provide a more direct link with the existing experimental literature [63,64].
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It would also be interesting to further investigate whether or not the shear bands

that form during the yielding event represent a steady state of the system or are

only transient. We do not see significant decay during the time simulated, but note

that we only simulate for a short window after the yielding event. It would also be

interesting to simulate the system at a range of effective noise temperatures, and

analyse the dependence of N∗ on temperature.

7.3 Delayed Yielding in an Elastoplastic Model

Under Large Amplitude Oscillatory Shear

Summary of Main Results

In Ch. 5, we considered an EPM under a LAOS protocol, and found broadly similar

results to those of Ch. 4. For a range of parameters, we found the model to show

delayed yielding with a significant stress drop. We were able to fit the yielding cycle,

N∗, as a function of both the working temperature and the pre-quench temperature,

finding N∗ = A exp (B/T ) and N∗ = C exp (D/T0), which predict divergences only

happening as T and T0 go to zero. As in the SGR model, we found that N∗ increases

as the strain amplitude decreases. In contrast to the SGR model, however, in the

EPM we found that N∗ diverges at a finite critical amplitude, based on the fitting

function N∗ = E/ (γ0 − γc). We furthermore characterised the dependence of the

fitting parameter γc on both T and T0.

We found some parameter regimes for which yielding did not occur during the

time we simulated for, with the system instead remaining in solid-like states. We

concluded that these systems would never yield, following our analysis of the critical

amplitude. We also examined analytically the athermal limit, finding a T0-dependent

critical amplitude, below which the effect of elements yielding was insufficient to

have a significant impact on the state of the system. This amplitude was found to

be slightly less than the value of the critical amplitude at which N∗ diverges, when
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extrapolated to zero temperature.

Possible Further Work

As in the SGR model, it would be interesting to compare these results to further

experimental work, and to carry out additional simulations with a stress controlled

protocol [63, 64]. It would also be helpful to simulate this process in the athermal

limit, to better understand the limiting behaviour. Furthermore, we note that

although we have made many functional fits to parameters, we are so far unable

to characterise their dependence in a single function as N∗ = f (γ0, T, T0). Further

exploration of the three-dimensional parameter space may help to map out such a

function.

It would also be interesting to examine more closely the distribution of l among

the elastoplastic elements before, during and after the yielding event. This would

hopefully shed further light on the yielding process, and the reasons for the various

functional forms.

7.4 Shape Driven Rigidity Transitions in

Epithelial Tissue

Summary of Main Results

In Ch. 6, we attempted to derive a continuum model of the rheology of epithelial

tissue. In doing so, we were aiming to capture a number of rheological features

which were exhibited in simulations of the cellular level Voronoi model in Ref. [41].

Although we were unable to derive a model that captured all of these features, we

did present some model variants that captured several key features. These included

a solid-fluid transition as a function of the shape index for infinitesimal strains, a

critical strain that must be applied before any stress accumulates in the system,
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strain hardening at intermediate strains, a dynamic yield stress that vanishes at a

different value of the target shape index to the transition value for small strains, and

a stress overshoot at finite strain rate. We were not able to reproduce the precise

numerical transition points from the Voronoi model, nor did we predict a stress

overshoot in the quasistatic limit. Our most successful model at low strain rates also

showed some unphysical behaviour at high strain rates.

While presenting several versions of a continuum model, we were able to establish

key ingredients that will be necessary in any continuum model of epithelial tissue

rheology in order to capture the phenomena observed in the Voronoi model [41]. The

first of these was accounting for cellular tilt under strain, which in this work was done

by including a hidden variable for cellular tilt, coupled to the coarse grained shape

tensor. We note that other similar approaches may be successful, such as including

cellular tilt as an independent dynamical variable. The second key feature is an extra

dynamical field in addition to the cell shape tensor and cell elongation parameter,

which is coupled to the remaining fields in such a way as to generate symmetry

breaking in the quasistatic limit, so that the model’s steady state is different under

an applied quasistatic shear when compared to its unsheared steady state. In this

work, we introduced an additional scalar fluidity with a phenomenological dynamical

equation, although we again note that there may be other approaches that would

satisfy this requirement. For example, recent work in Ref. [185] presents a continuum

model that includes a scalar fluidity with a dynamical equation that depends on the

cell perimeter, and the model also includes a dynamical equation for cell perimeter

rather than elongation.

Possible Further Work

Given that we were not able to derive a continuum model capable of capturing all

of the phenomena observed in Ref. [41], we hope that there will be further attempts

to do so, building on the work carried out here. It would be particularly interesting

to further explore the introduction of a scalar fluidity parameter, and attempt to tie
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this more strongly to the physics of the system. This may well provide new insight

into the precise form of its dynamical equation. It would also be interesting to see a

derivation of the impact of cellular tilt carried out for general vertex number n. The

work presented here relies on symmetry properties of quadrilaterals to account for

cellular tilt, although some of the earlier derivations of basic concepts were presented

for general n. In addition to this, a continuum model in which n is allowed to

vary, either as a dynamical variable or by coupling it to other fields, may lead to

some interesting discoveries. This is currently possible for the early model versions

presented in this work, but not in the later versions, which are at fixed n. This

approach may help to capture the behaviour that occurs at different special values

of the target shape index in the Voronoi model. We also note that in Voronoi model

simulations and in vivo, changes to the effective vertex number are often associated

with changes to material properties [40, 72,186].

In addition to further attempts at deriving a more advanced model, it would be

interesting to see the behaviour of some of these models when heterogeneous shear is

allowed. Many of the model versions presented here have features that are indicative

of a system that will become banded under shear. In addition to this, Voronoi

model simulations even with small numbers of cells seem to show effects that appear

similar to shear banding [41,180]. Modelling these systems at a continuum level with

heterogeneity would help to connect them to the length scales that are important

in real systems, and to understand the effect that shear banding has in epithelial

rheology. To this author’s knowledge, there are no extant experimental studies of

shear banding effects in epithelial tissue, and so it would also be interesting for such

a study to be carried out, and to compare the results of such a study to theoretical

predictions.
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7.5 Closing Remarks

In this thesis, we have explored some of the rich variety and complexity of yielding

transitions in amorphous materials. Our theoretical study has been motivated by

existing experimental studies, and leaves open a number of testable predictions, as

discussed above. We have seen that despite the range of materials, models and shear

protocols considered here, yielding transitions still occur throughout, and there are

a remarkable number of similarities between them which tie the separate studies

together.

I hope that the work presented here will lead to further experimental and theor-

etical investigation, and that this leads to new insight, understanding and predictive

power of yielding transitions in amorphous materials.
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