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Abstract

This thesis presents the design, modelling and preliminary experimental setup of

a deterministic single-photon emitter scheme. It relies on storing a three-beam zero-

wave vector Rydberg polariton in a caesium thermal vapour through dressed-state

electromagnetically induced transparency (EIT).

EIT was experimentally studied through 6S1/2 → 6P1/2 → 6D3/2 in room tem-

perature thermal caesium, and data was compared to an analytic model derived

for weak probe velocity-averaged hyperfine absorption. Peak heights and widths

were over-estimated because of a uniform intensity beam assumption and the lack

of a strictly weak probe in the experiment. Along with fluorescence data from the

7P1/2 → 6S1/2 decay at 459.4 nm, EIT was shown to maximise the upper state

population whilst simultaneously reducing the line centre probe absorption.

Dressed state three-level EIT is then derived from the four-level ladder Ryd-

berg excitation scheme with laser parameters calculated for a 2π × 1 GHz dressed

state Autler-Townes splitting. The corresponding probe absorption was simulated

for continuous wave and pulsed STIRAP excitation demonstrating expectedly weak

Rydberg EIT. Polarisation spectroscopy was investigated for probe beam frequency

stabilisation yielding a steep slope dispersive error signal. Finally, a bespoke hexag-

onal vapour cell was designed that minimises astigmatism aberrations from focusing

beams across tilted planar interfaces. Dimensioned photographs of the fabricated

cell display its readiness for use in future three-beam Doppler-free experiments.
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the words that best describe how you have enriched my life and supported me.

Outside of Durham, I want to acknowledge my friends from all over the world

that have been a key part of my life. Finally, I am eternally indebted to my mother

for the kindness and patience that she has shown me.

iii



Contents

Abstract i

Declaration ii

Acknowledgements iii

1 Introduction 1

1.1 Single-photon sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thermal vapours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 EIT in ladder systems 6

2.1 Theoretical background: two-level systems . . . . . . . . . . . . . . . 6

2.1.1 Atom-light interaction Hamiltonian . . . . . . . . . . . . . . . 6

2.1.2 Relaxation and the optical Bloch equations . . . . . . . . . . . 8

2.1.3 Macroscopic theory of absorption . . . . . . . . . . . . . . . . 10

2.1.4 Weak probe regime optical response . . . . . . . . . . . . . . . 11

2.2 Three-level systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Dressed state interference . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Electromagnetically induced transparency . . . . . . . . . . . 14

2.3 Doppler broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Two levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Three levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iv



CONTENTS

2.4 Multi-level theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Atomic structure . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Computing atomic properties . . . . . . . . . . . . . . . . . . 20

2.5 The Cs D1 line - theory and experiment . . . . . . . . . . . . . . . . 20

2.5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Exciting 6S1/2 → 6P1/2 → 6D3/2 in caesium . . . . . . . . . . . . . . 24

2.6.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Zero-wave vector Rydberg polaritons 32

3.1 Introduction: single-photon storage scheme . . . . . . . . . . . . . . . 32

3.1.1 Dark-state polaritons . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 The Rydberg blockade . . . . . . . . . . . . . . . . . . . . . . 34

3.1.3 Uniform phase spin waves . . . . . . . . . . . . . . . . . . . . 36

3.2 Doppler-free Rydberg excitation . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Excitation laser angles . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Dressed-state EIT . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 STIRAP pulse timing diagram . . . . . . . . . . . . . . . . . . 43

3.3 Custom Doppler-free cuvette . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Focal distortion across planar interfaces . . . . . . . . . . . . . 45

3.3.2 Cuvette design and fabrication . . . . . . . . . . . . . . . . . . 46

3.3.3 Simulating transmission and velocity selection . . . . . . . . . 50

3.3.4 Knife edge probe beam waist data . . . . . . . . . . . . . . . . 54

3.4 Future experimental layout . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Ground state polarisation spectroscopy data . . . . . . . . . . 56

3.4.2 Probe beam amplitude EOM pulse data . . . . . . . . . . . . 59

3.4.3 Experimental layout suggestions . . . . . . . . . . . . . . . . . 60

v



CONTENTS

4 Conclusion 62

4.1 Summary of key results . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A Data linearisation and normalisation 64

B Knife edge beam waist extraction 67

C Solving the optical Bloch equations 69

Bibliography 71

vi



Chapter 1

Introduction

This thesis presents the preliminary design, modelling and experimental setup of a

deterministic single-photon emitter scheme based on a thermal vapour of caesium.

Single-photon sources are key in realising quantum technologies where the funda-

mental quantum bit (qubit) is the photon. Such technologies would enable improved

capabilities for metrology, computing [1, 2] and information processing [3], as well

as investigating quantum optics phenomena [4,5].

Quantum computers are of much interest to scientific and technical communities

because of their very attractive and alarming potential applications. For instance,

they put public key cryptography at risk because of the potential to implement

Shor’s algorithm for prime factor decomposition. There is also the potential to im-

plement Grover’s quantum search algorithm that yields polynomial time speed-ups,

and to simulate quantum systems [6]. Indeed, quantum computers are predicted to

outperform classical computers in a particular set of tasks, but cannot be considered

a replacement technology [7].

One paradigm, the all-optical quantum computer, displays much potential for

implementing quantum information processing. In 2001, a scheme for linear optics

quantum computation was proposed that requires only single-photon sources, de-

tectors and linear optical elements [8]. This scheme would suffer from weak photon-
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CHAPTER 1. INTRODUCTION

photon interactions, which would affect scalability and put a heavy demand on

resources. Successful systems would also require near-unity efficiency optical com-

ponents and inherently inefficient storage/readout processes would need to be com-

bated. However, developments in theory and experiment have reignited faith in

realising a quantum computer via this paradigm [9]. For instance, introducing non-

linearity in the system such as the Kerr effect through linear components would

improve the issue of scalability.

The success of any future system will depend on our ability to integrate and in-

terface technologies of different types and one promising platform that could couple

single photons to different qubit technologies is the Rydberg polariton [10]. This is a

light-matter excitation where a photon is stored as a collective excitation across an

ensemble of atoms via electromagnetically induced transparency (EIT) [11]. Map-

ping photons to polaritons creates a very strong and long-range contactless photon-

photon interaction [5], which further motivates the all-optical quantum computer.

Since the stored photon’s polaritonic wavefunction is comprised of the relative phases

of atoms in the ensemble, atomic motion-induced dephasing will change the read-out

photon mode. This dephasing can be countered by using cold atom platforms [12]

though at the expense of bulky and complex experimental hardware.

Alternatively, a Doppler-free zero wave vector scheme would enable a stored

Rydberg polariton to become robust to motion-induced dephasing. Preliminary

work from Durham University in 2016 [13] demonstrated a three-step Doppler-free

EIT scheme in a thermal vapour of caesium excited to
∣∣8P1/2

〉
, which forms the

basis for this research project. Overall, the aim is to extend the Doppler-free results

from low-lying states of caesium in Ref. [13] to Rydberg levels in a caesium thermal

vapour to make a deterministic Rydberg thermal vapour single-photon source.

2



CHAPTER 1. INTRODUCTION

1.1 Single-photon sources

There exist two main categories of single photon emitters [14]; deterministic sources

based on single emitters [15–21], atomic ensembles [10, 22–24], and probabilistic

(heralded) sources based on parametric downconversion [25] and four-wave mixing

[26, 27]. The second-order intensity correlation function g(2)(τ) for the probability

of multi- to single-photon emission, defines antibunching for zero time delay as

g(2)(0) = 0 [28]. This metric, along with indistinguishable single-mode, on-demand

emission, defines the ideal source. However, real sources undergo trade-offs and

deviations from ideality.

For instance, cold atom systems are experimentally complex and have low overall

emission efficiencies with reasonable single-photon character E.g. 2.4 % and g(2)(0) =

0.06 [15], but are identical and scalable emitters. Additionally, the heavily researched

quantum dot [29] usually requires cryogenic operating temperatures and complex

photon collection setups, but offers single-mode emission with recent work in Ref.

[30] showing efficiencies of 57 % and g(2)(0) = 0.02.

There is also a deterministic ensemble platform, which exploits the Rydberg

blockade [31, 32] at sufficiently high atomic densities to heavily suppress the prob-

ability of exciting more than one atom within a mesoscopic blockade radius. The

single excitation is then read out and converted to a photon, as demonstrated in

ensembles of ultracold caesium atoms trapped in a 1D optical lattice [10] and in

room-temperature rubidium vapour micro-cells [23,24]. This latter platform quotes

a 4 % generation efficiency and g(2)(0) = 0.21, but is of particular practical interest

due to being an on-demand, room-temperature and relatively low complexity source.

Additionally, a Rydberg polariton was stored in a 220 µm thick rubidium vapour cell

using a pulsed four-wave mixing scheme with a storage lifetime of 1.2 ns in [33]. This

forms a storage time lower bound that future schemes should seek to surpass, but

these references further motivate thermal vapours as a platform for quantum optics.
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CHAPTER 1. INTRODUCTION

1.2 Thermal vapours

This thesis is centred on a level scheme identified in caesium, which has a melting

point of 28.5 °C and one stable isotope - 133Cs. Alkali metal thermal vapours are a

key platform for investigating quantum optics due to their simplicity, relatively low

cost and controllable gaseous phase number density, N . Vapours are contained in

glass cuvettes known as vapour cells, which makes them mechanically robust and

easy to include in optical setups. Cell dimensions are usually in the centimetre and

millimetre ranges all the way down to the micro- and nanoscale [33,34].

The vapour pressure, Pv, of a gas is the pressure it exerts on its condensed phase

counterpart and the walls of a closed container [35]. It is valid when the two phases

are in equilibrium in a closed system at a fixed temperature. The Antoine equation

then aims to model the temperature dependence of Pv using empirically determined

coefficients [36]. A simplified form of the equation for a liquid condensed phase

rewritten in SI units from [37] is

log10(Pv) = log10(101325) + 4.165− 3830

T
, (1.1)

where T is in Kelvin and Pv is in Pascals. If the ideal gas law applies for a suffi-

ciently dilute vapour where inter-atomic interactions can be neglected, the relation

N/V = Pv/(kBT ) holds. Rearrangement then approximates the average inter-atomic

spacing, d, from N atoms distributed through a volume V such that V ∼ Nd3 giv-

ing d ∼ (N/V )−1/3. However, corrections have been suggested based on nearest-

neighbour analysis where, d ≈ K(N/V )−1/3 with K ≈ 5/9 [38]. Figure 1.1 plots

N and d against T in Celsius, where N increases by a factor of 1× 104 between T

= 30 °C and 200 °C. These relations demonstrate the controllability of the number

density in thermal vapours.

Thermal vapours also introduce motional dephasing from nonzero sample tem-

peratures resulting in broadenings from transit times across beam foci and inhomo-

4



CHAPTER 1. INTRODUCTION

Figure 1.1: Plotting the number density (blue) and the average interatomic spacing
(red) of caesium against temperature in celsius.

geneous Doppler broadening as well as velocity selection. The single-photon emitter

scheme in this thesis relies on setting up a micrometre-scale Rydberg blockade vol-

ume [31], but atomic motion would smear out the phase distribution of the stored

Rydberg polariton [13]. It is a Doppler-free arrangement of three incident beams

that would make the scheme insensitive to such motion provided the zero-wave vec-

tor sum is perfect.

1.3 Thesis structure

The content in this thesis follows from the motivation of having a deterministic Ry-

dberg caesium thermal vapour single photon source. Chapter two builds a model

of atom-light interactions under the dipole approximation and introduces coherent

phenomena arising from quantum interference in three or more level systems. Chap-

ter three then presents the calculations for designing the three-beam Doppler-free

scheme as well as preliminary simulations and experimental work. Finally, the con-

clusion summarises the key results of this work and gives an outlook for the next

stages of this project.

5



Chapter 2

EIT in ladder systems

This chapter introduces the semi-classical theory of atom-light interactions by solv-

ing two-level atom dynamics. The developed formalism is then applied to three level

systems where coherent electromagnetically induced transparency (EIT) is analysed.

Extensions to multi-level theory are made to model hyperfine manifolds within the

two- and three-level systems and finally, the models are compared with one- and

two-photon experimental data in a caesium thermal vapour.

2.1 Theoretical background: two-level systems

2.1.1 Atom-light interaction Hamiltonian

Consider a classical, monochromatic electromagnetic field incident on an isolated

quantum mechanical two-level atom with ground and excited states coupled by a

dipole-allowed transition [39]. The ground and excited states with eigenkets |1〉 , |2〉

have eigenenergies ~ω1, ~ω2 and spontaneous decay rates Γ1 = 0,Γ2 = Γ, as depicted

in Fig. 2.1. State |1〉 represents a meta-stable ground state thereby having a zero

natural decay. The incident radiation of angular frequency ω is also detuned from

the resonance frequency ω0 = ω2 − ω1 by an amount ∆ = ω− ω0. The beam’s Rabi

frequency is denoted by Ω.

6



CHAPTER 2. EIT IN LADDER SYSTEMS

Figure 2.1: An isolated two-level atom level diagram with eigenkets |1〉 , |2〉 and
spontaneous decay rates Γ1 = 0,Γ2 = Γ. The incident beam with Rabi frequency Ω
is detuned from resonance by ∆ = ω − ω0.

For alkali metals with one outer electron, the electric field at the electron with

position vector r is given by

E(r, t) =
1

2

(
E0 ei(k·r−ωt) + c.c.

)
, (2.1)

where E0 and k are the field strength and wavevectors. Since optical transition

wavelengths are generally much larger than typical atomic sizes, the expansion

eik·r = 1 + ik · r + ... reduces to unity. This is the dipole approximation [40],

where the quantum mechanical atom-light interaction Hamiltonian is

ĤI = −d̂ · Ê(t) , (2.2)

and the electric dipole moment operator is d̂ = −er̂, which is written using raising

(|2〉 〈1|) and lowering (|1〉 〈2|) operators as d̂ = d21 |2〉 〈1| + d∗21 |1〉 〈2| with a dipole

matrix element d21 = 〈2|d̂ · ê|1〉 [41]. Together with the bare atom Hamiltonian

Ĥ0, the total system Hamiltonian is Ĥ = Ĥ0 + ĤI and its wavefunction |ψ〉 evolves

according to the time-dependent Schrödinger equation i~ ∂t |ψ〉 = Ĥ |ψ〉. Note that

the matrix element of the transition |n〉 → |n′〉 given Ĥ is

〈n|Ĥ|n′〉 = Enδnn′ + E 〈n|d̂ · ê|n′〉 cosωt , (2.3)

with eigenenergies En and δnn′ is the Kronecker delta. The field strength and po-

7



CHAPTER 2. EIT IN LADDER SYSTEMS

larisation unit vector are E and ê, respectively. The Rabi frequency Ωnn′ for this

transition is then defined to be

~Ωnn′ = E 〈n|d̂ · ê|n′〉 . (2.4)

Since transitions are between bound states the dipole matrix element 〈n|d̂ · ê|n′〉

and its Rabi frequency Ω∗nn′ = Ωn′n will be real.

When expanding the interaction operator −d̂ · Ê(t), the resulting terms will

have e±iωt prefactors [42]. Here, the rotating wave approximation (RWA) is applied

to simplify analysis [43] by finding a unitary operator that transforms the system

into a representation where rapidly oscillating components are neglected. The RWA

violates the second law of thermodynamics [44], but the wealth of available quantum

optics literature worldwide shows that it is an empirically justifiable approximation.

Denoting the transformed quantities with a tilde and writing Ω21 = Ω12 = Ω results

in a matrix representation RWA system Hamiltonian of

H̃ =
~
2

0 Ω

Ω −2∆

 . (2.5)

2.1.2 Relaxation and the optical Bloch equations

Introduced next is the density matrix formalism, which models processes that can’t

be included using the Hamiltonian - namely spontaneous emission. The density

matrix is defined as ρ̂ = |ψ〉 〈ψ| and its equation of motion is the Liouville equation

[45], which in the laboratory frame is dρ̂/dt = −i[Ĥ, ρ̂]/~.

A general state ket |ψ〉 is a probability amplitude ci weighted superposition of

basis states {|i〉}, so the density matrix elements are ρij = cic
∗
j . Diagonal elements

represent population fractions and off-diagonal elements are coherences between the

levels and are complex quantities. Applying the RWA to the Liouville equation

allows rotating frame matrix elements ρ̃ij to be considered, where populations are

8



CHAPTER 2. EIT IN LADDER SYSTEMS

unchanged by the transformation and so are written without tildes.

To model relaxation, a phenomenological spontaneous decay operator L̂ is added

to the Liouville equation to give the Lindblad master equation [46]

dρ̂

dt
= − i

~
[Ĥ, ρ̂] + L̂ . (2.6)

Diagonal matrix elements Lii quantify the net population transfer into an atomic

level |i〉 due to spontaneous emission, which sets Tr(L) = 0. Off-diagonal elements

represent decays of coherences between the atomic levels |i〉 and |j〉 [41] as

Lij = −(Γi + Γj)ρ̃ij
2

. (2.7)

For a ground state with Γ1 = 0 and an excited state Γ2 = Γ the two-level decay

matrix becomes

L =
1

2

2Γρ22 −Γρ̃12

−Γρ̃21 −2Γρ22

 . (2.8)

The Lindblad master equation then gives a set of coupled differential equations

known as the optical Bloch equations. For two levels, these are

dρ11

dt
=

iΩ

2
(ρ̃12 − ρ̃21) + Γρ22 , (2.9a)

dρ̃12

dt
=

iΩ

2
(ρ11 − ρ22)− ρ̃12

(
Γ

2
+ i∆

)
, (2.9b)

dρ̃21

dt
=

iΩ

2
(ρ22 − ρ11)− ρ̃21

(
Γ

2
− i∆

)
, (2.9c)

dρ22

dt
= −dρ11

dt
. (2.9d)

A linear algebra solution to the optical Bloch equations is given in Appendix C,

where the density matrix is reshaped to a column vector and the system of equations

is re-cast as a matrix problem.

9



CHAPTER 2. EIT IN LADDER SYSTEMS

2.1.3 Macroscopic theory of absorption

The absorptive properties of a medium can be calculated by linking the macroscopic

theory of linear dielectrics and the microscopic atomic dipole moment. Linear optics

relates the applied time-dependent field and the electric polarisation P by using the

complex susceptibility χ as

P (t) =
ε0
2

(
χE0e−iωt + c.c.

)
. (2.10)

For an ensemble of atoms with number densityN , the polarisation can also be related

to the average dipole moment per unit volume 〈d〉 through P (t) = N 〈d〉 [47]. Using

the wavefunction for a two-level system |ψ〉 = c1 |1〉 + c2 |2〉 the expectation value

becomes 〈d〉 = −(d21ρ21 + c.c.) with d21 = 〈2|d̂ · ê|1〉. Finally, using the rotating

wave approximation to write ρ21 = ρ̃21e−iωt and comparing terms with Eq. 2.10

results in an expression for the susceptibility as

χ = −2Nd2
21

~ε0Ω
ρ̃21 . (2.11)

The complex refractive index of the medium is then n =
√

1 + χ. For a monochro-

matic electric field with a free-space wavenumber k = ω/c propagating a distance

z through a medium with an isotropic complex refractive index n = nR + inI, the

Beer-Lambert absorption coefficient is α = 2ωnI/c [48], where T = e−αz. .

Dilute thermal vapours have small number densities and therefore small suscepti-

bilities, so binomially expanding the refractive index yields n ≈ 1+χ/2 and therefore

α ≈ ωχI/c. In quantum optics experiments the transition frequencies ω0/(2π) are

typically hundreds of terahertz and detunings ∆/(2π) are around tens of gigahertz,

so ω0 � ∆ and the absorption coefficient can further be appoximated as α ≈ ω0χI/c

to give

α = −2ω0Nd21

cε0E
Im{ρ̃21} . (2.12)

10



CHAPTER 2. EIT IN LADDER SYSTEMS

2.1.4 Weak probe regime optical response

For a weak incident field such that Ω � Γ, the ground state population remains

mostly unperturbed such that ρ11 ≈ 1 and ρ22 ≈ 0. Thereafter, solving the steady-

state weak probe solution to Eq. 2.9b yields

ρ̃21(∆) = − iΩ

Γ− 2i∆
. (2.13)

Figure 2.2 shows the weak probe real dispersive and imaginary Lorentzian absorptive

components of susceptibility. Strong probes saturate the excited state population,

which monotonically reduces the line centre absorption [49].

Figure 2.2: Two-level atom weak probe normalised susceptibility. Imaginary (blue)
and real (red) components plotted against normalised detuning.

The weak probe power is estimated here for a linearly polarised collimated Gaus-

sian beam with a peak intensity I0, 1/e2 waists wx,y in the x-y plane and a total

power of P = πwxwyI0/2 [50]. For a two-level transition, the on-resonance satura-

tion intensity [37] for linearly polarised light is

Isat =
~ω3

0Γ

4πc2
, (2.14)

which for the caesium D1 transition is Isat ≈ 25.06 Wm−2. To mitigate the line

centre absorption reduction from self- and hyperfine pumping the weak probe beam

must satisfy I0 � Isat. For beams with FWHM radii of a few millimetres, ratios of

11
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I0/Isat = 10−3 to 10−2 are sufficient to ensure the weak probe condition [49]. Larger

beams result in larger times of flight for atoms moving through the beam, which

requires a smaller I0 to ensure a weak probe.

2.2 Three-level systems

Two-level dynamics from the previous section are now extended to three-levels where

the presence of two laser fields causes coherent phenomena to arise. In this thesis,

the effect of interest is the reduction of the line centre absorption in the first-step

beam when a much stronger and resonant second beam is present. This is known

as electromagnetically induced transparency (EIT), which arises due to quantum

interference between different excitation pathways in atomic level schemes [51–53].

2.2.1 Dressed state interference

Figure 2.3 shows the isolated three-level ladder scheme considered in this section.

It has an eigenket basis {|1〉, |2〉 , |3〉} with eigenenergies ~ω1 < ~ω2 < ~ω3 and the

levels have natural decay rates Γ1 = 0,Γ2 6= Γ3 6= 0. The first-step ‘probe’ beam

couples the ground and first excited states |1〉 and |2〉 with a resonance frequency

ω01, a detuning ∆1 = ω1 − ω01 and a Rabi frequency Ω1. The probe beam gains its

name because it is detected on photodiodes in experiments to probe and measure

the absorptive properties of the medium. The second ‘coupling’ beam couples the

exited states |2〉 and |3〉 with a detuning ∆2 = ω2 − ω02 and a Rabi frequency Ω2.

The RWA analysis from the two-level scheme can be applied to here to give the

rotating frame three-level ladder Hamiltonian

H̃ =
~
2


0 Ω1 0

Ω1 −2∆1 Ω2

0 Ω2 −2(∆1 + ∆2)

 , (2.15)
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Figure 2.3: An isolated three-level atom level with eigenkets |1〉 , |2〉 , |3〉 and nonzero
spontaneous decay rates Γ2,Γ3. The probe beam and coupling beams have detunings
and Rabi frequencies ∆1,Ω1 and ∆2,Ω2, respectively.

where the new ‘dressed’ eigenkets in the presence of a second coupling laser are no

longer the bare states {|1〉 , |2〉 , |3〉}. Consider the case of two-photon resonance

(∆1 + ∆2 = 0). Diagonalising the Hamiltonian gives one eigenenergy as zero with

an eigenket |v0〉 and two nonzero eigenenergies E± with eigenkets |v±〉 [54] as

|v+〉 = sin θ cosφ |1〉+ sinφ |2〉+ cos θ cosφ |3〉 , (2.16a)

|v−〉 = sin θ cosφ |1〉 − sinφ |2〉+ cos θ cosφ |3〉 , (2.16b)

|v0〉 = cos θ |1〉 − sin θ |3〉 , (2.16c)

and are parameterised using the following mixing angles

tan θ =
Ω1

Ω2

, (2.17a)

tan 2φ =

√
Ω2

1 + Ω2
2

∆1

. (2.17b)

State |v0〉 is a dark state because its zero eigenenergy means that atoms prepared in

|v0〉 cannot be excited to another level. In the weak probe limit with ∆1 = ∆2 = 0,

the new dressed states tend towards |v0〉 → |1〉 and |v±〉 → (|2〉±|3〉)/
√

2. Therefore,

excitation out of the dark state cannot occur even for an on-resonant weak probe

when the second coupling laser is present and two-photon resonance is satisfied. This

increased resonant probe transparency is electromagnetically induced transparency.
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2.2.2 Electromagnetically induced transparency

By solving the optical Bloch equations (OBEs), the sensitivity of system parameters

on EIT can be investigated. Following the rules for constructing L̂ from the previous

section, the phenomenological decay matrix for the ladder system in Fig. 2.3 is

L =
1

2


2Γρ22 −Γ2ρ̃12 −Γ3ρ̃13

−Γ2ρ̃21 2Γ3ρ33 − 2Γρ22 −(Γ2 + Γ3)ρ̃23

−Γ3ρ̃31 −(Γ2 + Γ3)ρ̃32 −2Γ3ρ33

 . (2.18)

Inserting the Hamiltonian and decay matrix into the Lindblad master equation in

Eq. 2.6 then returns the OBEs for this system. In the weak probe limit where

ρ11 ≈ 1 and ρ22 ≈ ρ33 ≈ 0, the steady-state coherence is [55]

ρ̃21(∆1,∆2) =
−iΩ1

Γ2 − 2i∆1 +
Ω2

2

Γ3−2i(∆1+∆2)

. (2.19)

From Eq. 2.11, χ is independent of Ω1 because χ ∝ ρ̃21/Ω1. Initially, the case

of a detuned probe and resonant coupling beam with a varying Rabi frequency is

investigated. The normalised line centre susceptibility denoted χ/χ0 reads

χ

χ0

(∆1 = ∆2 = 0) =
iΓ3/Γ2

Γ3/Γ2 + (Ω2/Γ2)2
. (2.20)

At one- and two-photon resonance, the real component χR/χ0 is always zero. When

the condition Ω2/Γ2 �
√

Γ3/Γ2 is satisfied, the imaginary component χI/χ0 tends

to zero, which shows the EIT line centre probe absorption reduction. Smaller values

of Γ3 make it easier to observe EIT given a fixed Ω2.

Figure 2.4 shows the imaginary (blue) and real (red) components of the nor-

malised weak probe susceptibility against detuning for ∆2 = 0 with Γ3/Γ2 = 0.01

for Ω2/Γ2 = 0, 0.5, and 2. For Ω2 = 0 the lineshape is the two-level Lorentzian and

the small Γ3/Γ2 ratio makes the onset of EIT easily visible at a critical Ω2. The
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transparency window broadens leaving two new absorption peaks whose separation

increases with Ω2. This phenomenon is Autler-Townes splitting and is difficult to

objectively separate from EIT [56]. The absorption lineshape doublet of states orig-

inates from the separation of the dressed state eigenenergies with Ω2 [54].

Figure 2.4: Three-level atom weak probe normalised susceptibility. Imaginary (blue)
and real (red) components plotted against the normalised probe detuning with ∆2 =
0 and Γ3/Γ2 = 0.01.

2.3 Doppler broadening

This thesis considers thermal vapours where atomic motion alters the perceived

angular frequency of light, ω′. For a beam with a wavevector k the first-order shift

is ω′ = ω − k · v [42], so only atoms with a component of velocity parallel to k

experience a Doppler shift.

2.3.1 Two levels

For a two-level (one-beam) system the corresponding 1D Maxwell-Boltzmann veloc-

ity distribution [57] denoted here as fg(v) with ‘g’ for Gaussian is

fg(v) =
1

u
√
π

e−
v2

u2 , (2.21)
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where u =
√

2kBT/m is the most probable speed for an atom of mass m at an

absolute temperature T . The Doppler shift is included in the previous analysis by

replacing ∆ with ∆−kv, where v is the component of velocity along k. The velocity-

averaged susceptibility then accounts for contributions from all velocity classes as

χI(∆) =

∫
χI(∆, v)fg(v) dv . (2.22)

For stationary ultra cold atoms the lineshape of χI is a Lorentzian with a natural

linewidth Γ. However, as temperature increases the Gaussian Doppler width ΓD =

(ω0/c)
√
kBT/m becomes significant and the integral of the Lorentzian and Gaussian

in Eq. 2.22 produces the Voigt profile [58].

To understand the velocity dependence of the overall two-level susceptibility

the imaginary normalised coherence Im{ρ̃21(∆, v)} is plotted as a colour map in

Figs. 2.5(a), (b) and (c) and the velocity-averaged coherence is plotted below in

panels (d), (e) and (f). The nondimensional detuning ∆′ = ∆/Γ, velocity v′ = v/u

and temperature a = ku/Γ are used, where a = 0, 0.5 and 2 from left to right.

Figure 2.5: (a) to (c) show the velocity and detuning dependence of the normalised
imaginary coherence and (d) to (f) are the corresponding Doppler-averaged coher-
ences against detuning. The temperature-dependent parameter a = ku/Γ is a = 0,
0.5 and 2 from left to right.
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Figure 2.5 shows that for increasing temperatures the velocities that contribute

significantly to Im{ρ̃21} follow the slope 1/a = Γ/(ku). Furthermore, at a fixed de-

tuning, the range of velocities that interact strongly with the probe beam decreases.

This velocity selection leads to a lowered line centre Doppler-averaged coherence.

2.3.2 Three levels

To investigate EIT, assume a resonant coupling beam (∆2 = 0). The induced

transparency is stronger when the residual Doppler broadening from −(k1 + k2) · v

is reduced [55]. Since the majority of EIT experiments have λ1 > λ2 [59], then a

counter-propagating probe and coupling beam minimise the residual width through

−(k1 + k2) · v = −(k1 − k2)v. The normalised counter-propagating coherence is

then plotted as a colour map against the nondimensional probe detuning ∆1/Γ2

and velocity v/u in Figs. 2.6(a) to (c) with λ1/λ2 = 0.5, 1, 1.5 from left to right.

The corresponding velocity-averaged coherences are given in (d) to (f). The ratio

of decays Γ3/Γ2 = 0.01 is set to enlarge EIT features with Ω2/Γ2 = 1 and the

nondimensional temperature is k1u/Γ2 = 1.5.

Figure 2.6: (a) to (c) show the velocity and detuning dependence of the normalised
imaginary coherence and (d) to (f) are the corresponding Doppler-averaged coher-
ences against detuning. The wavelength mismatch is varied as λ1/λ2 = 0.5, 1 and
1.5 from left to right.
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The colour maps in (a) to (c) demonstrate the nonzero probability of atoms

existing whose Doppler shifts will give two-photon absorption to the upper state.

This is represented by the thinner and darker peak coherence tails that follow the

gradient Γ2/(u(k1 − k2)), which is positive in (a), vertical in (b) where λ1 = λ2 and

negative in (c). The thinner tails show how the dressed states tend towards the

initial eigenstates for large detunings and the thicker, brighter sections correspond

to the one-photon resonance velocities where the gradient Γ2/(k1u) is set by the

temperature. From Figs. 2.6(d) to (f), EIT is suppressed when λ1/λ2 < 1. This

occurs because for counter-propagating beams the Doppler shifts −k1v and −(k1 −

k2)v have the same sign, which suppresses the line centre transparency window [59]

As the ratio increases the line centre coherence tends to zero thereby recovering EIT.

2.4 Multi-level theory

Real-world atomic systems differ from idealised two- and three-level models. This

thesis is centred on caesium - an alkali metal with one valence electron, and this

section briefly describes its atomic structure by summarising content from Ref. [60].

2.4.1 Atomic structure

The solution of the Schrödinger equation in a Coulomb potential gives the gross

energy structure for hydrogen and the hydrogenic alkali metals. Levels are labelled

with the principal and orbital angular momentum quantum numbers n and L.

A relativistic correction to the Schrödinger solution considers the spin of the

electron S. The electron orbital angular momentum L couples to S causing a spin-

orbit interaction and leads to fine structure splitting. The total angular momentum

J = L+S with quantum number J satisfying |L−S| ≤ J ≤ |L+S| and a quantisation

axis projection mJ describes the new eigenstates using the |n, L, S, J,mJ〉 basis.

The electron’s angular momentum J then couples to the nuclear spin I giving
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hyperfine splitting that is smaller than the electronic energy scales. New eigenstates

with total angular momentum F = I+J, a quantum number F lying within the range

|I − J | ≤ F ≤ |I + J | and a quantisation axis projection mF allow the eigenstates

to be described using the |n, L, S, J, I, F,mF 〉 basis. Since applied magnetic fields

are not considered in this thesis the hyperfine states are mF Zeeman degenerate, so

only transitions between different F states are considered.

To visualise the gross, fine and hyperfine structures in caesium, the ground 6S

and first excited state 6P splittings are shown in Fig. 2.7. The splittings are not

drawn to scale and will be given in level schemes in the subsequent sections.

Figure 2.7: Gross, fine and hyperfine structure in the ground and first excited states
of caesium. The fine and hyperfine splittings are not drawn to scale.

Finally, all F states in a hyperfine manifold decay with the same rate as dictated

by fine structure [61]. The spontaneous decay rate for an individual transition from

an upper state |n′`′〉 to a lower state |n`〉 is given by the Einstein A coefficient

An′`′,n` =
4ω3

n′n

3~c3

max(`′, `)

2`+ 1
| 〈n′`′|er|n`〉|2 . (2.23)

The spontaneous decay rate Γ is then the sum of individual rates from dipole allowed

upper state |n′`′〉 to lower state |n`〉 transitions as

Γ =
∑
n`

An′`′,n` . (2.24)
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2.4.2 Computing atomic properties

Modelling realistic systems requires hyperfine dipole moments 〈F ′mF ′|er · ê|FmF 〉

to be calculated. This is greatly simplified via the Wigner-Eckart theorem, where

matrix elements are factored into a product of a radial reduced matrix element and

an angular Clebsch-Gordan coefficient [62]. The reduced element is further reduced

through the F , J and L bases leaving the calculation of a radial wavefunction overlap

integral and a product of Wigner 3j and 6j symbols that arise when coupling angular

momenta. This thesis uses a published Python package to perform such hierarchal

calculations - the Alkali Rydberg Calculator (ARC) [63]. It fully documents the

process of calculating matrix elements via application of the Wigner-Eckart theorem.

2.5 The Cs D1 line - theory and experiment

2.5.1 Theory

This section presents a model for the first accessible transition in caesium
∣∣6S1/2

〉
→∣∣6P1/2

〉
known as the D1 line. The level scheme for the D1 line in Fig. 2.8 is re-drawn

from Ref. [64] with hyperfine splittings [65]. The spontaneous decay rate Γ and

lifetime τ of the 6P1/2 state are τ = 34.791(90) ns and Γ/(2π) = 4.575(12) MHz [37].

Figure 2.8: Representing the energy levels of the caesium D1 line.
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Transition frequencies are shifted to include level-dependent hyperfine shifts

ωHFS, where an upper state F ′ and lower state F moves the resonance frequency as

ω0 → ω0 + ωHFS(F ′) − ωHFS(F ). Additionally, the selection rule F ′ − F = −1, 0, 1

is obeyed for each transition leaving a maximum of three accessible upper F ′ states

from an initial F state. In the weak probe regime, optical pumping is negligible

such that individual transitions and absorption coefficients are considered sepa-

rately. Here, the net absorption coefficient is modelled as a sum over individual

transition absorptions through

α =
−2ω0N

cε0~(2I + 1)(2J + 1)

4∑
F=3

4∑
F ′=3

F∑
mF =−F

d2
FmFF ′mF ′

∫
Im
{ ρ̃21

Ω1

}
fg(v) dv . (2.25)

The dividing prefactor (2I+1)(2J+1) averages over the degenerate Zeeman sub-level

populations for each mF transition. The dipole moment for the |FmF 〉 → |F ′mF ′〉

is dFmFF ′mF ′
and the first summation over F encodes the transition selection rule.

By using the weak probe coherence (Eq. 2.13) with the Doppler shift ∆→ ∆− kv,

the Voigt profile arises through the Doppler-averaging convolution integral of the

Gaussian fg(v) and the Lorentzian Im{ρ̃21}.

The accuracy of Eq. 2.25 is tested against a published weak probe software

package known as ElecSus [66, 67]. Figure 2.9 shows the superposition for a L =

75 mm caesium vapour cell at T = 20 °C. The residuals show very good agreement to

within 0.596% despite using equivalent expressions for the number density through

same Antoine coefficients [35, 36]. However, the Python Fadeeva function [68] is

used in ElecSus to calculate individual lineshapes, whereas the model here evaluates

sums over velocity classes to approximate the Voigt integral. Secondly, ElecSus uses

additional higher order terms in its hyperfine shift Hamiltonian to calculate shifts,

whereas the literature values used here measure the hyperfine splittings directly

using a mode locked laser [65].
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Figure 2.9: (a): ElecSus (red dashes) against the two-level model (solid blue) at
T = 20 °C and L = 75 mm, and (b): the residuals.

2.5.2 Experiment

The experimental setup for capturing the caesium D1 line transmission spectrum is

given in Fig. 2.10. A Toptica DL Pro extended cavity diode laser (ECDL) is scanned

across the 9.19 GHz-wide D1 line with a maximum output power of 125 mW. The

power incident on the 75 mm bulk cell is reduced to P = 1 µW through neutral

density (ND) filtering and the λ/2 waveplate and polarising beam splitter (PBS)

pair allows for continuous transmitted power adjustment [69,70].

From Eq. 2.14, for a beam with a FWHM of a few millimetres, the weak probe

power is on the order of Pweak ≈ 100 nW. Each beam is focused onto a photodiode

(PD) and data is captured on a digital storage oscilloscope. However, in this ex-

periment the beam power is increased above the weak probe value to improve the

PD signal signal-to-noise ratio (SNR). Voltage data was converted to transmission

and the time data was calibrated against the nonlinearity of the laser scan using a

low-finesse Fabry-Perot etalon - see Appendix A. The time data was then mapped to

a frequency detuning axis and the transmission data was passed into ElecSus, which

extracted an optimum temperature of T = 23.7 °C through fitting the normalised

and linearised data.

22



CHAPTER 2. EIT IN LADDER SYSTEMS

Figure 2.10: The experimental setup for acquiring the Cs D1 line transmission.

The data, theory and residuals are shown in Fig. 2.11, where residuals lie within

4%. The hyperfine F → F ′ transitions are labelled above each respective trans-

mission dip. Since atoms excited from one ground state can decay to the other

far-detuned (9.19 GHz) ground state, they are effectively removed from the probe

system. This hyperfine optical pumping is more efficient at reducing absorption

than saturating a transition [71] and explains the increased transmission in the min-

ima of the data as compared to the weak probe theory. To improve the D1 data, a

low-noise high gain photodiode should be used with a weak probe beam to mitigate

self- and hyperfine pumping.

Figure 2.11: (a) the Cs D1 transmission spectrum (blue) at P = 1 µW versus ElecSus
(red dashes). Differences (residuals) are multiplied by 100 and plotted in (b).
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2.6 Exciting 6S1/2 → 6P1/2 → 6D3/2 in caesium

In this section, EIT in the caesium 6S1/2 → 6P1/2 → 6D3/2 transition is investigated.

A model is derived that recreates the EIT transmission features and forms the basis

for the model describing the single-photon scheme presented in the next chapter.

2.6.1 Theory

The level scheme for the 6S1/2 → 6P1/2 → 6D3/2 transition is given in Fig. 2.12,

which shows the transition wavelengths, lifetimes and hyperfine splittings [37,72–74]

with the 894.6 nm probe and 876.4 nm coupling beams. The decay pathway 6D3/2 →

7P1/2 at 12.14 µm then leads to 7P1/2 → 6S1/2 at 459.4 nm. This visibly blue fluo-

rescence will be compared to the probe EIT spectrum to show how fluorescence is

maximised in EIT despite an increased resonant probe transparency.

Figure 2.12: The caesium energy level diagram studied in this section with transition
wavelengths, natural lifetimes, fine and hyperfine structure.

EIT is a two-step, dipole-allowed, one-photon coherence effect that leads to an

increased probe transparency at two-photon resonance [55]. However, three-level

ladder systems can also host two-photon absorption (TPA) [75], which is a two-

photon coherence effect where the parity forbidden F,mF → F ′′,mF ′′ transition

occurs. Due to the large caesium ground-state splitting of 9.19 GHz, transitions
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from F = 3 and F = 4 are considered separately. These are illustrated in Fig. 2.13,

which shows the accessible transitions from the ∆F = −1, 0, 1 selection rule. Labels

(i) to (iii) represent three hyperfine EIT transitions for F ′′ = 2, 3, 4 and (iv) to (vi)

represent F ′′ = 3, 4, 5.

Figure 2.13: Visualising the dipole-allowed transitions in 6S1/2 → 6P1/2 → 6D3/2

given the selection rule ∆F = −1, 0, 1.

Accounting for hyperfine and Doppler shifts, the two-photon resonance condition

for probe and coupling detunings ∆1,2 and wavevectors k1,2 is

∆1 + ∆2 − (k1 + k2) · v + ωHFS(F )− ωHFS(F ′′) = 0 . (2.26)

This equation is independent of the middle state hyperfine shift ωHFS(F ′) because

the probe and coupling detunings are shifted by ∓ωHFS(F ′) respectively, so the

terms cancel when added together. In TPA, one-photon resonances need not occur,

so multiple velocities exist that satisfy Eq. 2.26. From Fig. 2.13 it is therefore

expected that three EIT peaks occur at one- and two-photon resonances and four

TPA peaks occur in general two-photon resonance conditions.

To include the effects of hyperfine structure in modelling the absorption coeffi-

cient, the three-level coherence ρ̃21 is augmented to account for the three accessible

F ′′ states from a given F ′ state. By constructing a five-level Hamiltonian repre-
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senting a single ground, a single middle and the three accessible excited states [76]

and applying the weak probe limit allows the inclusion of a net effective angular

frequency [77]. Denoting it here as ωeff gives the three-level hyperfine coherence as

ρ̃21 =
−iΩFmFF ′mF ′

Γ2 − 2i(∆1 − k1 · v + ωHFS(F )− ωHFS(F ′)) + ωeff

, (2.27)

with the inclusion of hyperfine structure in the following term

ωeff =
F ′+1∑

F ′′=F ′−1

Ω2
F ′mF ′F

′′mF ′′

Γ3 − 2i (∆1 + ∆2 − (k1 + k2) · v + ωHFS(F )− ωHFS(F ′′))
. (2.28)

The Rabi frequencies for the two transitions are ΩFmFF ′mF ′
and ΩF ′mF ′F

′′mF ′′
, respec-

tively. By then using this three-level coherence in the expression for the absorption

coefficient in Eq. 2.25, a weak probe Doppler-averaged hyperfine EIT model is made.

Beams are assumed to induce ∆mF = 0 transitions.

The analysis above assumed constant Rabi frequencies from uniform intensity

beams, but the lasers used in this thesis have a Gaussian intensity profile. This

implies an over-estimate of the Rabi frequency that atoms experience. Consequently,

the hyperfine EIT and two-photon absorption peaks will be larger in theory than

in experiment. Additionally, the interaction time of atoms with the probe beam

is approximated by calculating the reciprocal of the mean transit time through a

Gaussian beam of a 1/e2 waist w0. When an atom leaves the probe beam it is

assumed to leave the excitation region, so every level is coupled to the ground state

with a transit time decay Γtt [78] of

Γtt =
2

ω0

√
kBT

πm ln(2)
. (2.29)

Mathematically, Γtt is added to the existing spontaneous decays, which reduces EIT

peak visibilities. For room-temperature thermal vapours and beams with millimetre-

scale 1/e2 waists the transit time decay scales as Γtt/(2π) ∼ 10 kHz whereas the
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spontaneous decays Γ2,3/(2π) in 6P1/2 and 6D3/2 scale as megahertz. When beams

are focused to tens of microns or below the transit time broadening scales similarly

to the spontaneous decay rates.

2.6.2 Experiment

Shown in Fig. 2.14 is the optical layout, where a weak 895 nm probe and a strong

876 nm coupling beam counter-propagate through a 75 mm room-temperature cae-

sium vapour cell. The probe was scanned about 6S1/2 → 6P1/2 and the coupling laser

was detuned about the different 6P1/2 → 6D3/2 hyperfine resonances and free-run.

Figure 2.14: The optical layout for capturing probe EIT transmission and 459 nm
fluorescence data from a 75 mm caesium bulk cell.

The Toptica DL Pro probe beam was passed through an optical fibre to recover

a Gaussian mode with (w1/e2)x = (w1/e2)y = 1 mm. A second bulk cell was used

with the low-finesse Fabry-Perot etalon for time axis calibration and time/frequency

mapping - see Appendix A. The coupling beam was derived from a Moglabs cat-eye

ECDL with (w1/e2)x = 1 and (w1/e2)y = 1.5 mm with a stable output mode power

of Pc ≈ 30 mW after the optical isolator. The two beams counter-propagated in the

main cell, the probe was detected on photodiode 1 (PD1) and the 459 nm fluorescence
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was band-pass filtered and captured on an enclosed photomultiplier tube (PMT).

Figure. 2.15 shows EIT features centred in the left-hand D1 dip (F = 4 → 3).

Transmission data from (a) was taken at Pp = 15 µW and is zoomed to give (b) with

a superposition from the EIT model in Eq. 2.27, and the corresponding fluorescence

data in (c) with Pp = 300 µW was superimposed with a multi-peak Voigt function.

Due to the large ground state 6S1/2 F = 3, 4 hyperfine splitting of 9.19 GHz there

are two sets of two Doppler-broadened dips from 6P1/2 and two sets of hyperfine

features from the 6D3/2 F
′′ = 2, 3, 4, 5 splitting. Therefore the F = 3 and 4 dips are

considered separately.

Figure 2.15: (a): data for the F ′′ = 2, 3, 4 EIT peaks with Pp = 15 µW and Pc =
30 mW. The EIT model in black dashes with T = 15 °C and Pc = 30 mW (b) and
fluorescence data at Pp = 300 µW with its Voigt fit in (c).

Three EIT peaks (F ′′ = 2, 3, 4) and a small right-hand TPA peak (F ′′ = 5) are

seen in Fig. 2.15(a) because the coupling laser detuning knob made it challenging

to create perfectly resonant EIT. The model (black dashes) in (b) over-estimates

peak heights and widths, and predicts sharp wing-like dips on the edges of each
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transmission peak that are very weakly seen in the data. Figure 2.16 shows an

example transition from EIT to TPA for off-resonance peaks, where four peaks

are visible. The three main peak heights and widths are over-estimated and Voigt

profiles are fitted to the fluorescence peaks in (c), where the signal magnitude is lower

than the EIT fluorescence peak signal in Fig. 2.15. Since fluorescence is proportional

to the excited state population, away from resonant EIT the number of excited state

atoms is lower thereby reducing the fluorescence.

Figure 2.16: (a): TPA F ′′ = 2, 3, 4, 5 peaks with Pp = 15 µW and Pc = 30 mW.
The model at ∆c/(2π) = 0.339 GHz in black dashes (b) and fluorescence data at
Pp = 300 µW with its Voigt fit in (c).

Theory and experiment likely differ because the Moglabs ECDL operated at a

diode current that yielded a lower power mode. Secondly, the non-weak probe,

which gave power-broadened features, so in future a higher gain photodiode should

be used with Pp < 1 µW. Thirdly, the optical Bloch equations should be solved to

account for optical pumping [41, 79] and a loss state should be included to model

decays to the ground state outside of the level scheme. Finally, simulations should be
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averaged across position in a Gaussian beam intensity profile, which would remove

the uniform beam assumption and potentially recover realistic peak heights.

Waterfall plots in in Fig. 2.17 show fluorescence versus ∆p and ∆c at Pp =

300 µW and Pc = 30 mW for (a) F = 4 → F ′ = 3, 4 and (b) F = 3 → F ′ = 3, 4.

For EIT at positions three and seven, a smaller unwanted fourth peak is visible due

to imperfect ∆c adjustment. Further from resonance the TPA peaks expectedly

weaken because fewer atoms exist that have velocities to undergo Doppler-shifts

onto TP resonance. Fluorescence is largest in EIT when the 6D3/2 population and

the decay through 6D3/2 → 7P1/2 → 6S1/2 are maximised. Outside of TP resonance,

absorption increases but the 6D3/2 population and the fluorescence reduce.

Figure 2.17: Evolution of 459.4 nm fluorescence for different coupling detunings with
Pp = 300 µW and Pp = 30 mW for (a): F = 4→ F ′ = 3, 4 and (b): F = 3→ F ′ =
3, 4. Positions three and seven represent EIT and everywhere else is TPA.

Figure 2.17 is then used used to extract the 6D3/2 hyperfine splitting separations.

Using the larger fluorescence peaks of Fig. 2.17(a), Voigt profiles were fitted to all

nine traces to give Fig. 2.18. Certain peak SNRs were too low for the Voigt fitting

to recognise them, so only seven data points were available for the F ′′ = 2, 3 and

F ′′ = 4, 5 splittings whilst nine were available for F ′′ = 3, 4. The means and standard

errors α = σN−1/
√
N [80] of the splittings were calculated and displayed in Table 2.1

in agreement with measurements from Ref. [72] to within one error bar. Including

peak data from (b) would further reduce the error bar sizes.
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Figure 2.18: A side view of the left-hand fluorescence waterfall plot in Fig. 2.17(a)
across the nine F = 4→ F ′ = 3, 4 locations. Voigt profiles (black dashes) are fitted
to each trace and their peaks are marked in crosses.

F ′′ Interval This thesis Ref. [72]

4→ 5 82.2± 0.8 81.8± 0.1

3→ 4 65.6± 0.6 65.1± 0.2

2→ 3 48.6± 0.4 49.0± 0.1

Table 2.1: Comparing measured 6D3/2 hyperfine splittings in MHz with Ref. [72].

2.7 Summary

This chapter analysed EIT and fluorescence data from a room-temperature 75 mm

caesium bulk cell for the 6S1/2 → 6P1/2 → 6D3/2 transition and 7P1/2 → 6S12

decay. The EIT data was compared to a derived model, which correctly captured

the transition from EIT to two-photon absorption and gave visual peak height and

width agreement. The 6D3/2 hyperfine splittings were extracted from fluorescence

measurements and agreed with previous literature to within one error bar. EIT

resulted in an increased resonant probe transmission as well as a maximised upper

state population, as seen in the fluorescence spectra. This result is fundamental

to the next chapter where EIT is motivated as a platform for exciting atoms to

Rydberg levels in a three-beam single-photon emitter and storage scheme.
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Chapter 3

Zero-wave vector Rydberg

polaritons

This chapter details the single photon storage mechanism considered in this thesis

based on a Doppler-free three-photon Rydberg ladder excitation scheme. Laser

parameters are calculated and a custom thermal vapour cuvette is presented for

minimised focal astigmatism Doppler-free excitation. Finally, components of the

potential future experimental layout are proposed.

3.1 Introduction: single-photon storage scheme

The proposed single photon emitter scheme also inherently includes a photon stor-

age mechanism. It relies on storing a weak incident probe pulse before emitting a

single photon of the same wavelength, spatial mode and direction as the incident

pulse. To understand the proposed scheme, three key background topics are first

covered: dark-state polaritons, the Rydberg blockade and uniform-phase spin waves.

Thereafter the relevant laser excitation scheme is presented and reference is made

back to these three key background topics.
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3.1.1 Dark-state polaritons

In the proposed single-photon emitter scheme, a photon is first stored as a dark-state

polariton [11] via ladder EIT [51–55] in a thermal vapour before being determinis-

tically emitted. Consider a quantum field representing a probe pulse propagating

along the z-axis with temporal dependence Ê(z, t) and a classical control field Ω(t)

that together satisfy the conditions for EIT described in Section 2.2.2. The pulse

couples the ground and first excited states |1〉 and |2〉 and the classical field couples

|2〉 to the upper state |3〉, as shown in Fig. 3.1.

Figure 3.1: The EIT ladder scheme used to store a weak probe pulse (red) as a
polariton by adiabatically reducing the control field (blue) to zero.

If the probe field’s Rabi frequency is much smaller than the control field Rabi

frequency Ω(t), and Ω(t) changes adiabatically then a first-order perturbation ex-

pansion yields a propagation equation for the probe pulse [11] as

(
∂

∂t
+ c

∂

∂z

)
Ê(z, t) = −g

2N

Ω(t)

∂

∂t

(
Ê(z, t)

Ω(t)

)
, (3.1)

with the number of atoms N in an excitation volume V , an atom-light coupling

constant g2 = ω0d
2
21/(2~ε0V ) and the |1〉 → |2〉 resonance frequency ω0. Under these

conditions, a canonical transformation can be made by introducing a new quantum

field Ψ̂(z, t) that encodes both the optical field Ê and the atomic excitations using

the operator σ̂23(z, t) constructed from raising and lowering operators via

Ψ̂(z, t) = Ê(z, t) cos θ(t)− σ̂23(z, t)
√
N sin θ(t) . (3.2)
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The mixing angles follow tan θ(t) = g
√
N/Ω(t) and Ψ̂(z, t) satisfies a transformed

equation of motion describing a new field with shape-preserving propagation at a

group velocity vg/c = cos2 θ(t). From Eq. 3.2, adiabatically turning off the control

field Ω causes θ to follow 0 → π/2 and the group velocity vg decreases to zero.

Consequently, the field Ψ̂(z, t) changes from an optical excitation to a purely matter

excitation representing the deceleration of the input pulse and storage of its pulse

shape and quantum state as a collective excitation.

This quantum field also has bosonic commutation relations [11], so it is associated

with a bosonic quasiparticle denoted as a polariton. Furthermore, the number states

created by Ψ̂(z, t) do not contain the upper state |3〉 and are eigenstates of the

atom-light interaction Hamiltonian with eigenenergies of zero. These states are

theoretically immune to spontaneous emission and are therefore dark states allowing

these quasi-particles to be known as dark-state polaritons.

3.1.2 The Rydberg blockade

The properties of Rydberg atoms can be exploited to ensure that only a single

photon is stored as the collective excitation dark-state polariton. Atoms that have

a valence electron with principal quantum numbers n > 10 are Rydberg atoms [81]

and have tunable properties that scale with n, as seen in Table 3.1 [82]. Most notably

the Rydberg-Rydberg dipole moment scales with n2, which forms the basis of the

Rydberg blockade where all but singly excited collective states are suppressed [31].

Property Scaling

Binding energy n−2

Radius n2

Dipole moment: Rydberg to Rydberg n2

Dipole moment: Rydberg to ground n−3/2

Radiative lifetime n3

Table 3.1: Rydberg atom scaling properties with the principal quantum number, n.
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To explain the blockade consider a two-atom collective ground state |gg〉. A

single Rydberg excitation has the pair states |gr〉 and |rg〉, coupled to |gg〉 with

a resonant Rabi frequency Ω. However, when two atoms are excited to the same

Rydberg state |rr〉 they experience dipole-dipole interactions when the separation

distance R exceeds the extent of the Rydberg electronic wavefunction [83]. The

resulting pair state energy is shifted by a second-order perturbative van der Waals

term ∆Edd = ~C6/R
6 where C6 scales very favourably as n11. For sufficiently

large n or small R the shift exceeds the Rabi frequency of the excitation laser Ω as

~C6/R
6 > ~Ω giving a blockade Rb of

Rb =

(
C6

Ω

)1/6

. (3.3)

Therefore, for atoms within the blockade sphere it is expected that only a singly

excited collective state can occur. The shift-induced blockade is visualised in Fig. 3.2

and the argument extends to more than two atoms.

Figure 3.2: A single atom excited to a Rydberg state |r〉 (a) and the position-
dependent vdW shift preventing doubly excited Rydberg states (b). The laser Rabi
frequency is Ω and the blockade radius is Rb.
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3.1.3 Uniform phase spin waves

Dark-state polaritons have now been described as a mixture of an electromagnetic

wave and collective atomic excitations. This is known as a spin wave [84] and for a

singly excited collective state the symmetric wavefunction is

|ψ〉 =
1√
N

N∑
j=1

eik·rj |g1 . . . rj . . . gN〉 , (3.4)

with N atoms of position vectors rj and k is the sum of incident wave vectors when

exciting to the Rydberg level |r〉. The summation is the coherent superposition of

the jth atom being in the Rydberg state |rj〉 with others being in the ground state.

The Rydberg polaritonic wavefunction in Eq. 3.4 shows that the input optical

field is stored amongst the phases of the atomic distribution within the blockade

radius at zero time (t = 0). However the atomic positions rj and relative phases

change with time in thermal vapours, which changes the spatial mode and worsens

the directionality and efficiency of the photon readout [85]. This motional dephasing

limits the polariton storage lifetime with timescales τdeph on the order of

τdeph =
2π

u‖k‖
, (3.5)

with the most probable atomic speed u =
√

2kBT/m.

To counter motional dephasing, the total wavevector can be set to k = 0 by

applying three or more excitation fields where each atom obtains the same relative

phase irrespective of its time-dependent position rj. This creates a uniform phase

spin wave [13] because k·rj will be zero for all atomic positions. This zero wave vector

polariton is created by using three beams in a four-level ladder scheme presented in

the next section. The experimental reality of overlapping three focused beams in a

vapour cell whilst simultaneously achieving a zero wave vector is also discussed.
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3.2 Doppler-free Rydberg excitation

A three-beam zero wave vector requires a four-level ladder scheme, which is presented

in this section. Incidence angles for the three beams are calculated, conditions for

EIT are derived to map the probe pulse to a Rydberg polariton and the probe

Doppler-averaged transmission is simulated.

3.2.1 Excitation laser angles

The fine structure caesium level scheme for a three-beam zero wave vector is shown

in Fig. 3.3. The transitions are visualised in (a) as 6S1/2 → 6P1/2 via a λp = 894.6 nm

probe beam to 6P1/2 → 7S1/2 via a λd = 1359 nm dressing beam to 7S1/2 → nP

with a variable coupling beam wavelength λc as a function of the target Rydberg

principal quantum number n. Fig. 3.3(b) shows that the dressing and coupling beam

angles are defined relative to the probe beam such that kp + kd + kc = 0 for the

zero wave vector. The probe (kp), dressing (kd) and coupling wave vectors (kc) are

assumed to be two-component vectors in-plane with the optical table.

By considering the horizontal and vertical components of the zero wave vector

condition with a fixed probe and dressing wavelength the relative angles θd and θc

can be found in terms of the variable λc as

cos θd =
λpλd

2

(
1

λ2
p

+
1

λ2
d

− 1

λ2
c

)
, (3.6a)

cos θc =
λpλc

2

(
1

λ2
p

+
1

λ2
c

− 1

λ2
d

)
. (3.6b)

For alkali metals, the semi-empirical hydrogenic Rydberg-Ritz formula [86] describes

the binding energies of a fine structure state |nLJ〉 as

E(n, L, J) = − R∞

(n− δ(n, L, J))2 , (3.7)

with R∞ ≈ 13.6 eV and a state-dependent correction term known as the quantum
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Figure 3.3: (a): Representing the four-level ladder scheme to excite to the variable
Rydberg state |nP〉 using probe (red), dressing (green) and coupling (blue) beams.
Right (b): visualising the probe, dressing and coupling beams with a common over-
lap and angles relative to the probe wave vector.

defect δ(n, L, J). The defect decreases as L increases because the electron has a

higher probability of being found at larger radii thereby reducing the interaction

strength with the inner core electrons. Defects are experimentally found by fitting

to the expansion δ(n, L, J) =
∑

n=0 δ2n/(n− δ0)2n and for the heavier alkali metals,

δ ≈ 0 for L ≥ 3 [87]. This gives a coupling wavelength from a lower state |n′L′J ′〉

to the target Rydberg state |nLJ〉 of

λc(n) =
hc

E(n, L, J)− E(n′, L′, J ′)
, (3.8)

where h and c are Planck’s constant and the speed of light in a vacuum. This

expression for λc(n) is then used in Eq. 3.6 to give the required θd, c for a target n.

The Rydberg transition wavelength λc for a target principal quantum number n

and the resulting θd, c are plotted in Fig. 3.4 for an example Rydberg state
∣∣nP1/2

〉
from

∣∣7S1/2

〉
. Transition wavelengths were calculated using Ref. [63] and the limiting

wavelengths and angles are λc = 776.94 nm, θd = 85.32° and θc = 34.73°. This allows
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the required Rydberg wavelength and beam incidence angles to be calculated for a

target Rydberg state.

Figure 3.4: Upper panel: Rydberg transition wavelengths (blue) to state
∣∣nP1/2

〉
from

∣∣7S1/2

〉
. Lower panel: dressing (green) and coupling (blue) angles for zero-

wave excitation given the target Rydberg state n.

Since the beams overlap at nonzero angles they create a finite interaction vol-

ume, whose equivalent spherical radius should ideally resemble the blockade radius.

Parameters for this condition are calculated in Section 3.3.2. The weak probe pulse

is stored as a Rydberg polariton via EIT where it propagates through the thermal

vapour before it reaches the excitation region. The already weak probe is absorbed

by the gas during propagation and is heavily attenuated, so a potential solution is

off-resonant dressed state EIT, which is derived in the next subsection.

3.2.2 Dressed-state EIT

Conditions for four-level EIT are derived here using the basis states |1〉, |2〉, |3〉 and

|4〉. The probe, dressing and coupling detunings and Rabi frequencies are ∆p,∆d,∆c
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and Ωp,Ωd,Ωc, and in the rotating wave approximation, the system Hamiltonian is

H̃ =
~
2



0 Ωp 0 0

Ωp −2∆p Ωd 0

0 Ωd −2(∆p + ∆d) Ωc

0 0 Ωc −2(∆p + ∆d + ∆c)


, (3.9)

and with natural decay rates Γi for state |i〉 the phenomenological decay matrix is

L =
1

2



2Γ2ρ22 −Γ2ρ̃12 −Γ3ρ̃13 −Γ4ρ̃14

−Γ2ρ̃21 2(Γ3ρ33 − Γ2ρ22) −(Γ2 + Γ3)ρ̃23 −(Γ2 + Γ4)ρ̃24

−Γ3ρ̃31 −(Γ2 + Γ3)ρ̃32 2(Γ4ρ44 − Γ3ρ33) −(Γ3 + Γ4)ρ̃34

−Γ4ρ̃41 −(Γ2 + Γ4)ρ̃42 −(Γ3 + Γ4)ρ̃43 −2Γ4ρ44


. (3.10)

By extending the methodology to find the three-level weak probe coherence ρ̃21 from

Ref. [55], the four-level coherence is found to be

ρ̃21 =
−iΩp

Γ2 − 2i∆p +
Ω2

d

Γ3−2i(∆p+∆d)+
Ω2

c
Γ4−2i(∆p+∆d+∆c)

. (3.11)

For three levels, EIT occurs for two-photon resonance and increases in strength with

the second beam Rabi frequency. Correspondingly, the effects of a zero dressing and

coupling detuning is investigated by plotting the normalised imaginary component

of the weak probe susceptibility χI/χ0 against the normalised probe detuning ∆p/Γ2

in Fig. 3.5. The normalised decay rates are fixed at Γ3/Γ2 = 0.01 and Γ4/Γ2 = 0.001.

Panels (a) to (c) show Ωd = 0, 0.5, 2 with Ωc/Γ2 = 0, which shows the transition

from EIT to Autler-Townes splitting. Panels (d) to (f) show how increasing the

coupling Rabi frequency (Ωc/Γ2 = 0.25, 0.5, 2) for a large dressing Rabi frequency

(Ωd/Γ2 = 2) results in increasing electromagnetically induced absorption (EIA)

at three-photon resonance [88, 89]. To create three-photon EIT a different set of

detunings and Rabi frequencies must be found.
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Figure 3.5: Four-level normalised imaginary weak probe susceptibility against nor-
malised probe detuning. Panels (a) to (c) show Ωd = 0, 0.5, 2 with Ωc/Γ2 = 0
and (d) to (f) show Ωc/Γ2 = 0.25, 0.5, 2 for Ωd = 2. The normalised decays are
Γ3/Γ2 = 0.01 and Γ4/Γ2 = 0.001 throughout, and ∆d = ∆c = 0.

Four-level EIT is derived here by following Ref. [13], which assumes a weak

probe and a strong dressing beam such that Ωd � Ωc � Ωp. This creates a middle

step Autler-Townes splitting with eigenstates |±〉 separated in frequency space by

Ωd/(2π) for a sufficiently large Ωd. By creating a dressing beam bare state resonance

through ∆d = 0 in the limiting case of Ωp = Ωc and with ∆p = −∆c = ±Ωd/2,

diagonalising the four-level Hamiltonian yields a dark state |D〉 of

|D〉 =
|1〉 −m(|2〉+ |3〉) + |4〉

N
, (3.12)

where N is a normalisation factor and the mixing term m is

m =
−Ωd +

√
Ω2

d + Ω2
c

Ωc

. (3.13)

This mixing term m tends to zero as the dressing strength increases thereby making

the dark state a superposition of the ground and Rydberg states, |D〉 = (|1〉+|4〉)/N .

Therefore, for a strong dressing beam resonant with the bare atom transition |2〉 →

|3〉, EIT is recovered under three-photon resonance but with the probe and coupling
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beams tuned to one of the Autler-Townes split dressed states |±〉. This dressed basis

is visualised in Fig. 3.6, where the probe and coupling beams have been drawn to be

resonant on the |+〉 state and the corresponding normalised weak probe imaginary

susceptibility showing EIT is plotted on the right.

Figure 3.6: Left: the dressed state basis for Ωd � Ωc � Ωp with ∆d = 0 and
Autler-Townes split states |±〉, where the probe and coupling beams are tuned
to |+〉. Right: the corresponding normalised weak probe imaginary susceptibility
showing EIT with Ωd/Γ2 = 3, Ωc/Γ2 = 0.25, Γ3/Γ2 = 0.01 and Γ4/Γ2 = 0.001.

Creating EIT through dressed state resonances also has the advantage of detun-

ing the probe beam away from the D1 line resonance by ∆p = ±Ωd/2. This reduces

the absorption of the probe pulse as it propagates to the three-beam overlap region.

Allowing a weaker incident probe pulse more closely replicates EIT and improves

the efficiency of Rydberg polariton storage. If the Doppler-broadened width of an

absorption lineshape is ∆ωD = (ω0/c)
√
kBT/m, then the probe absorption is greatly

reduced if the detuning exceeds twice the Doppler width

Ωd >
2ω0

c

√
kBT

m
. (3.14)

For caesium’s D1 line resonant frequency and mass [37] at room temperature, the

dressing Rabi frequency must satisfy Ωd/(2π) > 300 MHz. For hotter vapours and

to further guarantee absorption reductions, the target value for future experiments

in this thesis is set as Ωd/(2π) = 1 GHz. This value will be recalled in design

calculations in the next section.
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3.2.3 STIRAP pulse timing diagram

Small dipole matrix elements between the lower and Rydberg levels results in small

Rabi frequencies that must be compensated for with increased beam powers and/or

reduced beam sizes. Alternatively, stimulated Raman adiabatic passage (STIRAP)

can be used as a population transfer technique because it predicts a near-unity

efficiency transfer between two atomic states [90].

Strong dressing maps the four-level system to a three-level dressed basis, so two-

photon STIRAP [91] can be used to transfer ground state atoms to Rydberg levels.

The eigenstates for a three-level ladder under two-photon resonance (∆p + ∆c =

0) are given back in Eqs. 2.16 where the zero eigenenergy STIRAP dark state is

|v0〉 = (Ωc |1〉 − Ωp |4〉)/
√

Ω2
p + Ω2

c with a Rydberg state |4〉. The efficiency of

STIRAP transfer tends to unity if the population is kept in the dark state during

the transfer [92] and adiabaticity is recovered if [93]

Ω2
p0 + Ω2

c0

π2Γ
� 1

T
� γ , (3.15)

where (Ωp,c)0 are the peak Rabi frequencies, Γ is the natural decay rate of the two

middle dressed states, T is the pulse switching time and γ is the linewidth associated

with the frequency difference of the probe and coupling beams.

Atoms are in |v0〉 = |1〉 if Ωp = 0 and Ωc 6= 0 thereby requiring the coupling

beam pulse to occur before the probe pulse. Thereafter Ωc is turned off and Ωp

is switched on whilst maintaining the adiabaticity inequality resulting in |v0〉 →

|4〉. The Rydberg blockade described in Section 3.1.2 then prevents more than one

excitation in the beam overlap region and the dark state polariton is stored. To

retrieve the stored photon from the collective matter excitation [31], Ωc is turned

back on to convert the polariton back to an optical excitation. Since dressed state

STIRAP occurs in the presence of a constant and strong resonant Ωd, this allows

the photon storage and retrieval scheme to be drawn in Fig. 3.7. The pulse widths,
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rise times and amplitudes are not drawn to scale. The diagram is based on previous

cold atom single-photon Rydberg level storage and photon counting experiments in

Durham University [12,94,95].

Figure 3.7: Dressed-state STIRAP pulse timing diagram for Rydberg polariton stor-
age and retrieval. The probe photon (red) is stored as a dark state polariton as the
control field (blue) is turned off. It is retrieved when the control field is turned back
on. The strong dressing beam is on throughout (green line) and amplitudes, timings
and pulse widths are not drawn to scale.

3.3 Custom Doppler-free cuvette

In this section the experimental reality of overlapping three focused beams at nonzero

angles in a thermal vapour cell is considered. This thesis is based on previous work

from Ref. [13] where three beams with 1/e2 waists on the order of tens of microns

were overlapped in a L = 2 mm cylindrical caesium vapour cell. It was found that

the focal distortion from focusing beams across the cell faces severely increased the

complexity of beam overlapping. To combat such difficulties, a bespoke hexagonal

vapour cell was designed and the calculations are presented here.
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3.3.1 Focal distortion across planar interfaces

The motivation for designing a bespoke three-photon vapour cell arises from con-

sidering beam focusing across tilted planar interfaces. Figure 3.8 shows a lens at

an arbitrary nonzero angle relative to a planar interface focusing a beam to a point

in free space (black solid lines) and with the interface present (dashed lines). Each

incident collimated ray is refracted by an amount that depends on its radial posi-

tion on the lens’ back focal plane. The angle of focusing θ relative to the incident

beam’s optical axis satisfies θ ≤ α, where the numerical aperture (NA) of the lens

and the refractive index of the medium between the lens and the surface, n, define

the acceptance angle through NA = n sinα.

Figure 3.8: Visualising how a planar interface causes focal distortion for a non-
normally incident beam. The solid black lines represent free-space focusing of parax-
ial rays and the dashes show the refracted paraxial rays.

The optical path differences of each ray due to the interface causes focal split-

ting through the astigmatism aberration [96]. To counter this, Ref. [13] designed

mounted quartz plates that pre-aberrated the beam such that after focusing the

total accumulated aberration was reduced. A more systematic methodology would

be to pre-aberrate the beam using a liquid crystal spatial light modulator to apply

a phase profile that recovers the free-space focus [97]. The accumulated aberration

phase profile can be decomposed into the Zernike polynomial basis [98], which is
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orthogonal over the unit circle and each mode can be adjusted independently. Pro-

filing the beam in the presence of the cell cannot be done by simply placing a CCD

camera in the beam path. Therefore the Zernike coefficients should be adjusted

whilst maximising another measurable quantity such as single photon counts.

3.3.2 Cuvette design and fabrication

A cell design is presented where the incident beams see faces orthogonal to their opti-

cal axes thereby minimising the potential astigmatism. This is done by constructing

a hexagon with faces that are orthogonal to the required Doppler-free angles arising

from Eq. 3.6. A hexagon was chosen instead of a triangle because the exit face for

each beam must also be orthogonal to the incident wave vector. Figure 3.9 shows

the Doppler-free geometry in (a) and the resulting hexagon angles in (b).

Figure 3.9: The three-photon Doppler-free cell design process. Panel (a): the
Doppler-free geometry and (b): a hexagon with faces orthogonal to each beam.

Assuming an ideal Gaussian beam of wavelength λ with a 1/e2 waist w0 focused

by a lens of focal length f gives the diffraction-limited focal plane waist [99] as

wf =
fλ

πw0

. (3.16)

For a target focal plane waist wf at a wavelength λ, either the required focal length f

can be calculated for an incident w0 or vice versa. Note that real diffraction-limited
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aspherical lenses have focal lengths on the order of f = 17.5 to 20 mm, and sub-

centimetre thicknesses, tlens. The cell wall thickness was chosen to be twall = 2 mm

for mechanical integrity and working distances, WD, between the lens and the cell

faces should be at least a few millimetres to give component adjustment room.

A large Rydberg level n = 60 was chosen giving a coupling wavelength of λc =

779.03 nm. The target probe, dressing and coupling focal plane waists were chosen

as wp, d, c = 3, 4 and 6 µm to be smaller than the Rydberg blockade radius, RB, at

n ∼ 60 of RB ∼ 5 µm. Note that these design values do not claim to constitute

optimal values for this three-beam single-photon scheme. For example, with pre-

focussed beam waists of w0 = 2 mm for all three beams, the required focal lengths

are given in Table 3.2. The corresponding Rayleigh lengths zR are tens of microns,

which makes the beam overlap very sensitive to focal shifts.

Probe Dressing Coupling

w0(mm) 2 2 2

wf(µm) 3 4 6

λ(nm) 894.6 1359.2 779.0

zR(µm) 31.6 37.0 145.2

f(mm) 21.1 18.5 48.4

Table 3.2: Focal lengths for the probe, dressing and coupling beams given target
focal plane waists wf and incident waists w0 and a target Rydberg level n = 60.

The intersection volume of the two smallest beams can be approximated by as-

suming that the focusing hyperboloids remain as cylinders over the Rayleigh lengths.

This gives an under-estimate of the actual interaction volume. For two cylinders with

radii r1 < r2 intersecting at an acute angle β, their analytic overlap volume [100] is

V =
8

sin β

∫ r1

0

√
(r2

1 − z2)(r2
2 − z2) dz . (3.17)

Inserting r1 = w0p, r2 = w0d and β = θd yields V ≈ 209.7 µm3. By then setting

V = 4πr3/3, the equivalent sphere radius becomes r = 3.69 µm, which is well
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within the probe Rayleigh range from Table 3.2 of zR = 31.6 µm. Therefore, this

intersecting cylinder argument is a good representation of the overlap volume that

returns a radius less than the blockade radius at a Rydberg level n = 60.

The corresponding Doppler-free angles are θd, θc = 85.01° and 34.82°, which cre-

ates near right-angles between the probe and dressing windows (see Fig. 3.9(b)). A

design challenge then arises where the entry and exit probe faces have to be suffi-

ciently overlapped to allow the emitted photon to see an orthogonal exit face. This

is achieved by reducing the size of the coupling beam windows to bring the entry and

exit probe faces closer together. However, this reduces the amount of coupling light

entering the cell, so the whole cell must be scaled up in size. Following this argu-

ment, a hexagonal cell was designed with angles from Eq. 3.6 and dimensions shown

in Fig. 3.10. The dimensions were chosen arbitrarily to give working distances of a

few millimetres whilst accounting for the focal lengths in Table 3.2. Figure 3.10(a)

shows the drawing and (b) shows a photo of the top face, where the near-right angle

dressing and probe face joins are visible.

(a) (b)

Figure 3.10: Top-down view of the hexagonal cell internal angles and external di-
mensions based on the parameters in Table 3.2. Drawing (a) and photo (b).

The cavity height and thickness are 20 mm and 2 mm, respectively. The cell was

evacuated and filled by glass blowers on-site at Durham University’s Department of

Chemistry. The cell head was connected to the evacuation system via a cylindrical
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glass flange with internal and external diameters of 6 and 11 mm and length 25 mm.

Therefore a 15 mm length cylindrical stub was included in the cell design and the

cell was fabricated by an external company. Figure 3.11 shows the head (24 mm),

the stem (15 mm) and the glassblowers’ flange (∼ 25 mm). Labels (a) and (b) show

caesium condensation on the cell windows and in the reservoir which can be removed

by a heat gun. Further viewing angles of the cell are shown in Fig. 3.12 where the

cell head wall thickness is more easily seen.

25.60 mm

24.00 mm

15.00 mm
11.00 mm

25.00 mm

(a)

(b)

Figure 3.11: Three-photon cell dimensions where (a) and (b) show Cs condensation.

(a) (b)

Figure 3.12: Top (a) and bottom (b) face views of the hexagonal caesium cell.
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3.3.3 Simulating transmission and velocity selection

Given here are continuous wave (CW) and pulsed illumination simulations for the

dressed system. The target Rydberg state is
∣∣60P1/2

〉
and the example hyperfine

transitions are
∣∣6S1/2, F = 4

〉
→
∣∣6P1/2, F = 3

〉
→
∣∣7S1/2, F = 4

〉
→
∣∣60P1/2, F = 3

〉
corresponding to θd, c = 85.00° and 34.82° for a zero-wave vector. The dressed dark

states |±〉 require a probe detuning of ∆p = ±Ωd/2 and three-photon resonance

coupling detunings of ∆c = ∓Ωd/2. All beams are assumed to drive ∆mF = 0

transitions and the caesium temperature is T = 150 °C.

The detuned probe absorption only occurs in the beam overlap region, so the

probe propagation length is approximated as twice the 5 µm blockade radius giv-

ing L ≈ 10 µm. Beams are approximated as being collimated with 1/e2 waists of

wp, d, c = 3, 4 and 6 µm from Table 3.2. Uniform intensity profiles are assumed

with Pp, d, c = 1 pW, 91 µW and 400 mW. A weak probe is chosen and the coupling

power corresponds to CW output powers available from common Ti:Sa laser systems.

The dressing power gives the target dressed state splitting of Ωd/(2π) = 1 GHz for

wd = 4 µm. Hyperfine root mean square dipole matrix elements are calculated as

d =

√√√√ Fa∑
mFa=−Fa

d2(na, La, Ja, Fa,mFa , nb, Lb, Jb, Fb,mFb
) , (3.18)

for the general hyperfine transition |na, La, Ja, Fa,mFa〉 → |nb, Lb, Jb, Fb,mFb
〉 across

all degenerate Zeeman sublevels.

The optical Bloch equations were solved using the method described in Ap-

pendix C. The Hamiltonian and decay matrices from Eqs. 3.9 and 3.10 include hy-

perfine structure and Doppler shifts in the diagonal element detunings. The probe

and dressing beam Doppler shifts are −kp · v and −(kp + kd) · v, and the coupling

Doppler shift is zero because k = 0. A transit time broadening was included corre-

sponding to the smallest of the beam waists, wp, calculated using Eq. 2.29 to give

Γtt/(2π) = 11.7 MHz.
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Figure 3.13 shows the CW steady-state OBE solution to Im{ρ̃21} (a) and the nor-

malised imaginary susceptibility (b) for the dressed state |−〉 as colour maps against

the 2D velocity (vx, vy) for three-photon resonance using the above parameters. The

probe propagation direction is the x-axis. Velocity selection in the form of a locus

of increasing magnitude coherence in negative vy is mapped to a centralised region

of susceptibilities in (b) where near-zero velocity classes contribute most greatly to

the absorption coefficient, as is expected in EIT.

Figure 3.13: The imaginary coherence (a) and normalised imaginary susceptibility
(b) for the dressed four-level system using parameters described above.

Shown in Fig. 3.14 is the corresponding Doppler-averaged transmission spectrum.

The 1 GHz Autler-Townes splitting about the
∣∣6S1/2, F = 4

〉
→
∣∣6P1/2, F = 3

〉
line

centre is visible and the dark state EIT peak is seen in the left-hand dip. The |+〉

state EIT peak would appear in the right-hand dip. Due to the very small hyperfine

RMS coupling Rydberg dipole matrix element of dc/(a0e) = 1.22 × 10−3 the EIT

feature is very weak. For comparison, the probe and dressing transitions have much

larger matrix elements of dp/(a0e) = 1.40 and dd/(a0e) = 1.50. To increase the EIT

strength for a more effective polariton storage, the atomic number density should

be increased [31] and the already large coupling beam power and near-diffraction-

limited focal radii could be increased and decreased, respectively.

Pulsed illumination is investigated by simulating dressed state STIRAP from

Section 3.2.3. The target dressed state (|−〉) and beam parameters remain the
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Figure 3.14: Doppler-averaged transmission of the colour map from Fig. 3.13(b).

same. A hyperbolic tangent pulse shape [31] gives an envelope of

2P (t)

P0

= tanh

(
t− t0
w

)
− tanh

(
t− t0 − T

w

)
, (3.19)

where the shape against time t with an offset t0, characteristic width T and rise/fall

time parameter w is normalised against peak power P0. The pulse parameters in this

simulation are t0 = 5 ns, T = 10 ns, w = 0.45 ns and (P0)p, d, c = 1 pW, 91 µW and

400 mW. The parameter w resulted in a rise and fall time of trise, fall = 1.04 ns, which

is shown to be experimentally achievable in a later section. The normalised probe

and coupling pulse Rabi frequencies are given in Fig. 3.15(a) with the corresponding

coherence against time in (b). The two pulses overlap temporally at their 50/50

point are are in the presence of a constant dressing beam. The imaginary coherence

follows the probe pulse.

Figure 3.16 shows the four level populations against time with the same pulse

scheme present. The ground ρ11, first ρ22 and second ρ33 excited state populations

follow the probe pulse shape, where ρ11 decreases during illumination representing

STIRAP to the Rydberg level. Populations ρ22 and ρ33 increase slightly representing

non-unity STIRAP efficiency. The Rydberg population ρ44 reaches a maximum
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Figure 3.15: Dressed state STIRAP with normalised pulse amplitudes (a) and the
corresponding imaginary coherence (b) for the parameters described above.

that is much smaller than the maximum of ρ22,33 which is explained by the weak

EIT transmission spectrum feature from Fig. 3.14. Stronger EIT would yield a

higher peak Rydberg population. However, the Rydberg population does not get

maintained across the pulse exposure suggesting photon storage as a polariton across

a window of a few nanoseconds. Additionally, the populations ρ22,33 should be near

zero because STIRAP bypasses them when mapping ground state atoms to Rydberg

levels.

Figure 3.16: The four level populations with dressed state STIRAP for a target
dressed dark state |−〉. Simulation parameters are found in the paragraphs above.
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This pulsed simulation requires validation through a probe photon counting ex-

periment where the polariton should be read out as an optical excitation. Different

parameters should be investigated to explore the storage time limit. These are

the time between Ωc turn off and turn on, the probe and coupling pulse switching

time, and the repetition rate of the store/retrieve cycle. Successful future quantum

technologies would operate as fast as the beam modulators, which could be tens or

hundreds of megahertz for devices such as lithium niobate electro-optic modulators.

3.3.4 Knife edge probe beam waist data

Since the three-photon scheme relies on overlapping micrometre-scale beams inside a

cell, it is important to consider how the 2 mm cell walls would affect the foci. A pre-

liminary experiment was performed with an available f = 50 mm plano-convex lens

and a 2 mm mounted glass blank, where the beam focal plane waist was measured

with and without the glass via knife edging (see Appendix B). The glass was placed

approximately 25 mm from the lens’ back face. A locus of Gaussian profile 895 nm

probe beam waist sizes against the beam propagation axis was plotted in Fig. 3.17(a)

without (red) and with the glass (blue). The loci should be hyperbolic [50] with

limiting linear slopes, as is seen in panels (b) and (c).

The free-space data in (b) in red shows linear regions having different magnitude

slopes of −13.1 µm/mm and 8.44 µm/mm likely due to an aberrated beam. Fitting

a hyperbola around the minimum datapoints was found to not be possible, so aver-

aging the positions of the two lowest datapoints returned the minimum at approxi-

mately z = −4.51 mm. The linear slopes in (c) are −13.8 µm/mm and 16.2 µm/mm

and panel (d) shows a successful hyperbolic fit to the data around the minimum

approximated at z = −3.64 mm. This gave a z-axis focal shift of ∆z = 0.87 mm,

as well as a correction of the linear slopes. This correction is not explained in this

thesis and requires more investigation. Since the proposed three-beam scheme re-

quires high NA but shorter focal length diffraction-limited lenses, the focal shift is
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likely to still be significant. This is essential to investigate in a future knife edging

experiment because the Rayleigh lengths for the three micrometre-scale beams are

on the order of tens of microns, as calculated in Table 3.2.

Figure 3.17: Beam waist against propagation distance for an 895 nm Gaussian beam
focused with an f = 50 mm plano-convex lens without (red) and with (blue) a 2 mm
glass blank at approximately 25 mm from the lens’ back face. Panel (a) is the data
overlap, (b) and (c) are linear regressions on the data, and (d) is a hyperbolic fit to
the data with glass.
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3.4 Future experimental layout

The final section of this thesis proposes an experimental implementation of the

single photon storage and emission scheme previously described in this chapter. It

presents preliminary data for laser frequency stabilisation, probe beam amplitude

modulation and suggests components for an optical layout.

3.4.1 Ground state polarisation spectroscopy data

Lasers experience frequency drifts that can exceed absorption linewidths due to

noise sources such as temperature fluctuations, mechanical vibrations and quantum

noise [101]. To frequency stabilise the 895 nm probe beam, a sub-Doppler pump-

probe spectroscopy technique known as polarisation spectroscopy is investigated.

It generates a steep slope dispersive error signal that is fed into a laser controller

with a negative feedback PID loop [102]. By setting the target output frequency as

the on-resonance zero crossing the feedback loop minimises the frequency difference.

The laser frequency is then ‘locked’ to an atomic transition.

Polarisation spectroscopy requires a linearly polarised probe and a circularly po-

larised pump beam derived from the same laser [103]. The pump induces σ± tran-

sitions, which creates a ground state population anisotropy through optical pump-

ing leading to a birefringence in the propagation medium. When the probe field

propagates through the birefringent medium, the probe’s circular basis components

experience a phase shift and attenuation [104]. For light driving σ± transitions the

birefringent absorption coefficients and refractive indices are α± and n± with the

corresponding wavevectors being k± = (ω/c)n±.

Splitting the probe beam into horizontal and vertical x and y components using

a polarising beam splitter and taking their difference returns a signal of

Iy − Ix = I0 e−αL cos

(
φ+

ωL

c
∆n

)
. (3.20)
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Here, φ is the plane of polarisation of the probe relative to the global x-axis be-

fore propagation through the medium. The value α = (α+ + α−)/2 is the average

absorption coefficient and ∆n = n+ − n− is the refractive index birefringence. Ad-

ditionally, propagation through the birefringent medium further rotates the probe’s

plane of polarisation by an angle Φ = ωL∆n/c. If Φ is small and the input plane

of polarisation is set as φ = π/4 to maximise the signal Iy − Ix [104], then for a

transition natural linewidth Γ, a resonant difference in absorption coefficients ∆α0

and a laser detuning ∆, the resulting signal is

Iy − Ix = I0 e−αL L∆α0
2∆/Γ

1 + (2∆/Γ)2
. (3.21)

This profile is proportional to the derivative of a Lorentzian arising from the Kramers

Krönig relation linking ∆n and ∆α. The steep slope arising from the Lorentzian

natural width Γ allows for the feedback loop to respond quickly to frequency drifts.

To implement polarisation spectroscopy, the experimental setup in Fig. 3.18 is

presented. The bottom branch represents the linearly polarised probe propagating

through a caesium bulk cell from left to right. It is incident on the very right-hand

PBS where two photodiodes (PD±) return the dispersive differencing signal Iy − Ix.

The signal is fed back into the laser controller driving the 895 nm laser. A stronger

probe counter-propagates in the bottom cell at a nonzero crossing angle with the use

of an edge mirror, where a λ/4 waveplate creates the necessary circular polarisation.

The middle and upper branches are for time to frequency mapping and time axis

calibration - see Appendix A.

Experimental data was gathered for the caesium D1 line (see Fig. 2.8) at room

temperature in a L = 75 mm bulk cell, which was shielded against stray magnetic

fields with a mu-metal shield. Figure 3.19 shows the evolution of the D1 line polar-

isation spectroscopy spectrum with varying probe powers of Pp = 5, 14, 22, 35 µW

in panels (a) to (d). The pump power was constant at Ppump = 270 µW and both
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Figure 3.18: Experimental setup for polarisation spectroscopy. A circularly polarised
pump counter-propagates against a linearly polarised probe beam, which is incident
on the positive and negative inputs of a differencing photodiode. The etalon and
bulk cell are for time axis calibration and frequency mapping.

beams were collimated with 1/e2 waists of approximately w0 = 1 mm. The traces

were normalised to the strongest feature corresponding to the F = 4 → F ′ = 3

transition. All four features were isolated from each other due to the large hyperfine

ground 6S1/2 and excited 6P1/2 state splittings of 9.19 GHz and 1.17 GHz.

Figure 3.19: Polarisation spectroscopy signals for the caesium D1 line. A room
temperature L = 75 mm vapour cell was used with a pump power of Ppump = 270 µW
and probe powers of Pprobe = 5, 14, 22, 35 µW in panels (a) to (d).
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3.4.2 Probe beam amplitude EOM pulse data

Recall that the probe beam must be made weak and become pulsed for storage

as a dark state polariton. After frequency stabilising the laser, a specific device

needs to be chosen to amplitude modulate the beam based on a set of pulse shape

requirements and practical operating features.

Some key pulse requirements include rise time, fall time, repetition rate and

maximum continuous wave input power. Ideally, the rise and fall times would be

zero thereby giving perfect rectangular pulses but realistic signal generators driving

the modulators need to be considered. Signal generators have a trade-off between

their rise time tR and their three decibel (3dB) half power bandwidth f3dB due

to capacitances that must be charged and discharged in their internal circuitry.

Approximating the generator’s transfer function as a low-pass filter of resistance R

and capacitance C with a decay constant τ = RC gives an approximate 10/90 rise

time of tR = ln(9)/(2πf3dB) [105].

In this thesis, pulse data from an amplitude electro-optic modulator (EOM) from

Jenoptik is presented because it has sub-nanosecond rise times for the near-infrared

wavelengths of 500 ps. However, its maximum CW input is 30 mW, but this is not

a problem because the probe should be weak. Moreover, devices like Pockels cells

and acousto-optic modulators (AOMs) allow for larger input powers but have slower

switching times (10s of nanoseconds for AOMs) or half-wave Voltages on the order

of 100 V to 1000 V (for Pockels cells) requiring bulky Voltage amplifiers.

The amplitude EOM is a lithium niobate crystal fibre-coupled device designed

for 895± 5 nm. It has an extiction ratio of 30 dB and a half-wave Voltage of 2.54 V.

It was driven using a Tektronix AWG 4162 with a switching time of 800 ns and the

modulated light was focused onto an AC-coupled EOT ET-2030A amplified silicon

detector with trise/fall < 500 ps and a high sensitivity of more than 400 VW−1. A

LeCroy oscilloscope was used to display and capture the pulse data. Additionally, a

half waveplate and polarising beam splitter cube were placed before the EOM input
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fibre. This pair maximises the input coupled power and linearly polarises the input

light by aligning the input beam’s plane of polarisation with the fibre’s polarisation

maintaining axis and by cleaning the polarisation of the light by discarding the

reflected beam from the cube.

Figure 3.20 shows the shortest pulse created with the Tektronix signal generator

given in amplitude normalised data. The trailing edge shows some ringing, which

is likely from the finite discharge times of capacitances in the photodetector. An

artefact-free pulse shape would be measured by photon counting.

Figure 3.20: Normalised probe pulse amplitude from an EOT AC-coupled photodi-
ode against time. A lithium niobate Jenoptik amplitude EOM driven by a Tektronix
AWG 4162 generated 800 ps rise and fall times.

3.4.3 Experimental layout suggestions

The closing subsection of this chapter discusses potential implementations of the

three-beam single photon emitter scheme described throughout. It considers the

probe, dressing and Rydberg coupling beams systematically and includes the hexag-

onal caesium cell described previously.

Laser frequency stabilisation

As a reminder, the presence of a strong dressing beam maps the four-level system

to a three-level dressed system. Additionally, the middle dark states were shown
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to be detuned from the D1 line by ±Ωd/2 and a target dressing Rabi frequency

of Ωd/(2π) = 1 GHz was chosen to shift the dressed state resonance out of the D1

absorption line. This requires the probe to be detuned by ±Ωd/2 depending on the

chosen middle dark state |±〉, but the dressing beam is tuned to the 6P1/2 → 7S1/2

transition. The dressing beam therefore can be frequency stabilised from a frequency

stabilised probe beam using excited state polarisation spectroscopy [106]. This is

where a stabilised probe beam and additional polarisation spectroscopy hardware is

used to stabilise the dressing beam, as was explained for the probe in the previous

subsection.

Further consideration needs to be applied to choose a frequency stabilisation

scheme for the Rydberg beam. Options include a simpler scheme such as Rydberg

EIT locking [107] through to master-slave digital controller based scanning transfer

cavity lock schemes [108]. An upper bound on the linewidth of the locked laser

should be evaluated along with the long-term stability through the Allan deviation.

Amplitude modulation

Since the dressing beam power will need to be on the order of hundreds of milli

Watts to create Ωd/(2π) = 1 GHz with micrometre-scale foci, then EOMs cannot

be used. Alternatively, an AOM can be used to switch the dressing beam on and

off on a timescale of tens of nanoseconds that exceeds the nanosecond-scale probe

and Rydberg pulses. To pulse the Rydberg beam, an appropriate EOM should be

identified, purchased and implemented.

Probe and coupling beam frequency offsets

The dressed scheme requires a probe and coupling offsets of half the dressed state

Rabi frequency, which is set to 500 MHz. The probe beam can then be shifted

by Ωd/(2π) = 500 MHz using an acousto-optic modulator, as was done in [13]. A

suitable device needs to be chosen for the coupling beam.
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Conclusion

This thesis presented the initial design, simulations and experiments towards de-

terministic single-photon emission a caesium thermal vapour excited to Rydberg

levels. Realising quantum technologies is an open problem and a deterministic ther-

mal vapour implementation of a single photon source based on linear optics is a very

attractive end goal.

4.1 Summary of key results

Chapter one presented electromagnetically induced transparency (EIT) as a means

to transfer atoms to an upper state population in a ladder scheme. EIT was investi-

gated in a low-lying three-level ladder in a caesium thermal vapour, where a derived

model and experiment agreed to a qualitative level.

Chapter two explored EIT in a four-level ladder scheme where optical excitations

can be mapped to collective states known as Rydberg polaritons. A single-photon

storage and emission scheme was presented for a three-beam Doppler-free illumina-

tion scheme. A custom hexagonal cuvette was also designed to minimise the astig-

matism aberration that arises from focusing beams across tilted planar interfaces.

Simulations of continuous wave and pulsed EIT were given for realistic parameters

in the four-level scheme. Calculations were performed for required beam powers and
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focal plane waists. Finally, laser frequency stabilisation via polarisation spectroscopy

and amplitude modulation using an electro optic modulator were experimentally in-

vestigated. Polarisation spectroscopy demonstrated stabilisation error signals with

steep slopes and zero crossings with a simple experimental layout, and the probe

beam modulation rise times of around one nanosecond suggest a place for lithium

niobate EOMs in a final experimental layout.

4.2 Outlook

The next stage for this project is to build and test the single photon emitter scheme,

which can be broken down as follows. Firstly, using the parameters calculated in

this thesis a three-beam overlap with micrometre-scale focal plane waists in the

presence of the hexagonal Doppler-free caesium vapour cell should be performed.

This quality of overlap could be measured and optimised by tracking changes in the

CW probe transmission, where a Rydberg EIT peak should occur. Secondly, probe

beam photon counting should be performed with dressed state ground-to-Rydberg

STIRAP. This allows for checking the polariton retrieval and storage efficiencies. Fi-

nally, given a working system, the g(2)(τ) second-order correlation coefficient should

be calculated to measure the nature of the retrieved photons. A near-zero g(2)(τ = 0)

dip is expected for a high quality single-photon source.
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Data linearisation and

normalisation

The process of time axis linearisation and transmission normalisation is presented

here for the caesium D1 line. Firstly, nonlinearities in the probe laser scan prevent a

linear time to frequency conversion arising from temperature fluctuations, mechani-

cal vibrations and the finite laser linewidth. Secondly, as the piezoelectric transducer

(PZT) disc in the ECDL rotates to perform the scan, the amount of output coupled

light from the ECDL reduces, which gives a scan amplitude background. Overall,

the time axis must be calibrated and the scanning background must be removed.

Temporal calibration requires an etalon spectrum (Fig. A.1) where peaks are

known to be constantly separated in frequency by the free spectral range (FSR).

Temporally, the peaks will have non-constant spacings. By plotting the peak number

against time, a linear regression can be made to approximate the linear peak spacing

in time (Fig. A.2 (a)). By subtracting the linear function from the points, a deviation

from linearity can be plotted at each instance in time (Fig. A.2 (b)). Thereafter,

interpolating and subtracting the deviation polynomial from the time axis returns

the calibrated, linearised time.

The frequency dependence of the transmission background is seen in Fig. A.3. A
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Figure A.1: The low-finesse etalon used for time axis calibration in this thesis. Peaks
are marked in red crosses.

Figure A.2: Plotting the etalon peaks against the peak number (a) and the temporal
deviation from a linear regression (b).

low-order polynomial is then fitted to the unity transmission regions (red) and the

background slope is approximated. By dividing the trace by the background, the

spectrum becomes normalised. Finally, the normalised spectrum and its four minima

(Fig. A.4 (a)) are plotted against time. A regression between the four peaks’ known

frequency detunings and temporal occurrences allows a time to frequency detuning

mapping (Fig. A.4 (b)).
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Figure A.3: Caesium D1 data (blue) with unity transmission regions (red) and a
background polynomial (black).

Figure A.4: Normalised D1 transmission with red markers indicating minima in time
(a) and the regression on the four minima to map time to frequency detuning (b).
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Knife edge beam waist extraction

This appendix explains the process of measuring beam waists using knife edges.

Assume that the beam waist propagates along the z-axis and that a knife edge

(razor blade) is translated laterally into the beam path along the x-axis. The beam

locus waist w0 is located at (z0, x0) and is assumed to follow a hyperbolic profile

dependent on z as

w(z) = w0

√
1 +

(
z

zR

)2

, (B.1)

with a Rayleigh length zR = πw2
0/λ. For elliptical beams translating the beam along

the x-axis extracts wx and along the y-axis returns wy.

Figure B.1 shows the scenario where a blade is translated along the x-axis thereby

blocking the beam from minus infinity to position x. Since the y-axis transmission is

unaffected (assuming a perfectly sharp edge without any tilt), the power incident on

the photodetector follows the integral of the Gaussian beam intensity distribution

as the error function through

Pdetector(z, x) = Pbackground +
Pmax

2

(
1− erf

(√
2(x− x0)

w(z)

))
. (B.2)

When x is at minus infinity corresponding to the absence of a blade then the detected

power is the maximum power plus the background I.e. Pdetector = Pbackground +Pmax.
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Normalising the detected power by the maximum and fitting error functions against

x at a given z then allows the waist to be extracted and plotted against z. Fitting

a hyperbola to this waist locus then returns the focal plane waist, w0.

Figure B.1: Schematic showing a knife edge translated laterally into a beam path.
The blocked beam is highlighted in pink and is not detected on the photodetector.
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Appendix C

Solving the optical Bloch

equations

In this thesis, the optical Bloch equations are solved by re-casting the problem to

a vector equation by using the Choi-Jamiolkowski isomorphism to create a matrix

superoperator [109]. An alternative is the Runge-Kutta method [110], but the pre-

sented method is cleaner due to employing linear algebra.

Firstly, the density matrix ρ̃ for an N -level system is reshaped into a column

vector ρ̃ with dimensions N2 × 1. Secondly, the isomorphism replaces
[
H̃, ρ̃

]
with

(H̃⊗I−I⊗H̃†)ρ̃, where I is the identity matrix. Thirdly, the decay matrix is replaced

by an augmented matrix L of dimensions N2 × N2 multiplying the column vector

ρ̃ through L(ρ̃)→ Lρ̃. The system of equations is then written more compactly as

dρ̃

dt
= M ρ̃ , (C.1)

where the N2 ×N2 superoperator M is used

M = H̃ ⊗ I− I⊗ H̃† + L . (C.2)

The linear algebra solution is ρ̃(t) = eMtρ̃(t = 0) and an eigenvector decomposition
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of M = W diag{eλit}W−1 returns a cleaner expression to evaluate yielding

ρ̃(t) = W diag{eλit}W−1ρ̃(0) . (C.3)

The eigenvectors of M are stacked in the matrix W and the corresponding N2

eigenvalues λi are placed in the diagonal matrix diag{eλit}.

The coherence ρ̃21 is needed for calculating absorption spectra and the following

presents a quicker way of finding this value when atoms are initialised in the ground

state, ρ(0) = (1, 0, · · · , 0)T . For a N -level system the coherence ρ̃21 is the (N + 1)th

value of ρ̃(t). Manipulating matrix elements then reveals that the coherence can be

calculated from the following matrix elements

ρ̃21 = (W )N+1,N+1 (W−1)N+1,1 eλN+1t , (C.4)

which reduces the number of computationally expensive matrix multiplications. This

is important when looping over thousands of velocities during Doppler averaging.
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