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Abstract

Reproducibility of an experiment’s conclusion is an important topic in a variety of

fields, including social studies. This thesis presents a theory of reproducibility of statistical

inference based on randomised response data. First, reproducibility of statistical hypothesis

tests based on randomised response data is studied. This thesis presents statistical inference

for reproducibility of the outcome of a hypothesis test based on data resulting from

different randomised response techniques (RRT). Secondly, a new method for quantifying

reproducibility of statistical estimates is introduced. Finally, this method is applied to derive

reproducibility of estimates of population characteristics based on randomised response

data.

The quantification of reproducibility uses nonparametric predictive inference (NPI),

which is suitable for reproducibility when considering this as a prediction problem. NPI uses

only few model assumptions and results in lower and upper reproducibility probabilities.

We compared different randomised response methods. The results of this thesis open up the

possibility of pre-selecting a randomised response method with higher reproducibility and

also indicate the relationship between variance and reproducibility with the same privacy

level. We find that less variability in the reported responses of RRT methods leads to higher

reproducibility of statistical hypothesis tests based on RRT data with the same privacy

degree.

Therefore, for RRT methods using binary responses, reproducibility of hypothesis tests

based on the forced method is greater than reproducibility of hypothesis tests based on
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the Greenberg method. For RRT methods using real-valued responses, reproducibility of

estimates is greater for data collected from the Greenberg method than the reproducibility

of estimates for data collected from the optional multiplicative method and the Eichhorn

and Hayre method.
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Chapter 1

Introduction

1.1 Overview

In social research, it is often necessary to ask questions on issues that could be sensitive to

the respondent, in order to obtain truthful answers from the people to whom the research

study is applied. Randomised Response Technique (RRT) is an effective method which

helps to elicit the truth. It is critical with this technique to obtain accurate responses to

sensitive questions from respondents while maintaining their privacy. There are various

distinct RRT approaches, some qualitative and others quantitative; the Warner method [95]

is the first method that was introduced as explained in the literature review in Section

1.2.

Social science statistical inference allows for the estimation from a sample of the

population that is impacted by a certain phenomenon. Because people differ over time,

between geographies, and in relation to social life, we could reach at a different conclusion

if we repeat the experiment. By being observant of how much the outcomes could change

if we repeated the test, we can take this difference into account when drawing inferences.

Additionally, it allows for the statement of whether or not this social study provides evidence

to reject a hypothesis and to provide a reasonable range for the true value of any property

in the population, such as the population’s proportion of this property.

2
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This thesis presents different methods to investigate reproducibility of statistical

inference. We focus on three main topics: reproducibility, nonparametric predictive inference

(NPI), and randomised response methods (RRT).

The first contribution, we investigate the reproducibility of statistical hypothesis

tests based on RRT data using the one-sided and the two-sided test. The reproducibility

of statistical hypothesis tests has received attention according to De Capitani and De

Martini [44] who were the first researchers that investigated reproducibility estimators for a

number of nonparametric tests, including the sign, and Wilcoxon signed rank tests.

Reproducibility is concerned with the question of whether a second statistical test

performed under identical conditions will provide the same result as the original tests in

terms of rejection or non-rejection of the null hypothesis.

We study the reproducibility of statistical hypothesis tests using Nonparametric

Predictive Inference (NPI). The NPI method is a frequentist statistics framework that focus

on future observations that are exchangeable with actual observations. NPI is based on

only few modelling assumptions. NPI has ability to predict which makes it suitable method

for determining test reproducibility.

The second contribution is reproducibility of estimates. Of course, the original estimates

of distribution characteristics for real-valued random quantities will differ from the future

estimates, which means that the future estimates will not lead to the exact same value as

the original estimates. Therefore, we consider reproducibility for estimates in terms of the

difference between actual estimates and estimates based on a future data set.

The third contribution is the application of reproducibility for estimates with data

collected using randomised response methods.

NPI for reproducibility of statistical tests based on RRT data (NPI-RP-RRT) and for

reproducibility of estimates will be presented using several RRT in order to compare them

in terms of reproducibility, while we also consider the efficiency and privacy of these RRT

methods.

The primary ideas and concepts employed in this thesis are explained in this chapter
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as follows. Section 1.2 provides a literature review of a variety of RRT methods. Section

1.3, explains the reproducibility concept. Section 1.4 introduces nonparametric predictive

inference, NPI for Bernoulli random quantities and NPI-B method. Then, the NPI for

reproducibility is introduced in Section 1.5.

1.2 Randomised response techniques (RRT)

Randomised response techniques (RRT) are methods to elicit truth responses from respondents

to sensitive questions in a survey. To avoid embarrassment when respondents are asked

sensitive questions. A spinner, a deck of cards, or a coin can be used as randomisation

device and the responses are hidden from the interviewer. These methods conceal individual

responses and maintains respondent privacy by generating randomness.

There are several forms of RRT available to eliminate bias caused by respondents’

hesitancy or respondents providing incorrect responses, which affects the accuracy of the

results. Warner [95] presented the first RRT method which we refer to as the Warner

method (WM).

The WM method is illustrated as follows. Suppose that we have a population and we

wish to estimate the proportion π of people who have a sensitive characteristic A. We have

two questions, the sensitive question Q1 and the non-sensitive question Q2, to determine if

the respondent is in the target group A (they have the sensitive characteristic) or if they

do not have the sensitive characteristic Ā as follows.

Q1 : Are you a member of group A?

Q2 : Are you not a member of group A?

Let there be a randomisation device to help respondents to choose the question and

then answer it. Suppose that with probability γ, we have the sensitive questions and

with probability 1− γ, we have the non-sensitive question, where γ is only known of the

interviewer. As a result, the number of people who get the sensitive question is binomially

distributed with sample size n and parameter γ. Each response can result in one of
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two possible outcomes, a Yes-answer (Ẏ ) or a No-answer (Ṅ) regardless of the question

selected.

Assume that Y is the binomial random quantity of the number of people who will

answer ‘Yes’ to the sensitive question where possible answers are only ‘yes’ or ‘no’. If the

probability of a ’yes’ answer is given by:

P ∗ = γπ + (1− γ)(1− π) (1.1)

then, the expected value of Y is E(Y ) = nP ∗.

The estimator of the proportion π̂(Y ) of people who have the sensitive characteristic

is

π̂(Y ) =
n(γ − 1) + Y

(2γ − 1)n
where 0 ≤ γ ≤ 1 and γ ̸= 1

2
(1.2)

The expectation of the estimator π̂(Y ) is

E(π̂(Y )) = E

[
n(γ − 1) + Y

(2γ − 1)n

]
= π (1.3)

So π̂(Y ) is an unbiased estimator of π. The variance of the estimator π̂(Y ) is [95]:

Var(π̂(Y )) =
(π − π2)

n
+

γ(1− γ)

n(2γ − 1)2
where 0 ≤ γ ≤ 1, γ ̸= 1

2
(1.4)

The first term in Equation (1.4) is the binomial variance related to a sensitive question. The

second term is the extra variance for the uncertainty caused by using the randomisation

device, which becomes substantial if γ is close to 0.5.

In this method, Warner [95] suggested that the probability of a sensitive question in

the randomisation device should be greater than 0.5 which is the point of interest in this

method. The reason for this choice is that if γ = 0.5, then the probability of person i who

says ‘Yes’ will not depend on π in Equation (1.1), then the data would hold no information

about π. If γ = 1, we just return to the non-RRT methods and use the direct question.

If we choose 0.5 < γ ≤ 1, the respondent provides a useful response and the respondent

never refers to which group they belong. Therefore, γ can describe whether the respondent

cooperates, by answering any question asked, or not.
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As a result, good selections of γ and n are essential to provide a level of accuracy of

P ∗ and standard deviation of the estimator π̂(Y ). For example, if π = 0.5 and γ = 0.75,

the variance given by Equation (1.4) equals 1/n. However, to achieve an accurate result

of P ∗, the sample size should be 400 to ensure that the standard deviation is 0.05 which

indicates that under the regular method, each response was truthful. Comparatively, the

classical estimating approach (corresponding to γ = 1) would suggest that only a sample of

about 100 would be required for a standard deviation of 0.05 [95].

More widely, it should be noted that there appear to be large potential improvements

from the randomised response, excepting situations where the bias of the regular estimate

is minimal or 0. For example, using larger samples such as 2000 leads to reducing the

mean square error of the estimates. In addition, using a γ as low as 0.6 is needed to ensure

collaboration from the respondents [95].

After creating the WM, several researchers presented a variety of randomised response

techniques to reduce bias and obtain accurate responses from respondents, with some

focusing on the type of questions used in the process and others focusing on the usage

of various shapes of randomisation devices and others focus on the type of the responses

such as the binary and real-valued responses of RRT as explained in Sections 1.2.1 and

1.2.2.

1.2.1 Qualitative randomised response techniques

In this section, we introduce qualitative RRT for surveys in which sensitive questions are

answered using qualitative binary response variables such as ‘Yes’ or ‘No’. The Greenberg

technique and the forced approach are two RRT approaches that use binary responses and

are substantially used in this thesis.

The Greenberg Method (GB) [60] is a variation of the WM in which respondents

are also randomly assigned to one of two questions using the randomisation device. With

known probability γ, the respondent is asked the question about the sensitive issue, and with

probability 1− γ, the respondents are asked an unrelated question and not sensitive.
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Assume that we have a sample of size n, and random quantity Y as the number

of people who answer ‘Yes’. Let πA be the proportion of people who have the sensitive

characteristic, and πB is the proportion of people who would respond ‘Yes’ to the unrelated

question. It is assumed that πB is known. Because the characteristic B is not a sensitive

feature, therefore, we assume that respondents answer question B truthfully. The two

questions could be:

Q1 : Are you a member of group A?

Q2 : Are you a member of group B?

Then, the probability of the event that a person answers ‘Yes’ to the question

P ∗ = γπA + (1− γ)πB (1.5)

Note that, as for WM, in applying GB, the interviewer is unaware of the question

being asked.

It is preferable to choose the unrelated characteristic B with probability πB that is not

close to zero. Such action could contradict the core purpose of using the unrelated question

approach because choosing πB close to zero could affect the respondent’s desire to respond

truthfully, a good rule is to aim for πB in the neighbourhood of 0.10. If πA is very small,

say 0.01, it is not always desirable to choose πB in the neighbourhood of 0.10, even if such

a choice is advantageous theoretically based on the sampling variance [2].

Let Y be the random quantity of the number of people in the sample of size n who

answer ‘Yes’ to the two questions they are asked, then the estimator of proportion π̂A(Y )

of people who have the sensitive characteristic is

π̂A(Y ) =
Y
n
− πB(1− γ)

γ
(1.6)

The expected value of the estimator π̂A(Y ) is

E(π̂A(Y )) = E

( Y
n
− (1− γ)πB

γ

)
=
P ∗ − (1− γ)πB

γ

=
γπA + (1− γ)πB − (1− γ)πB

γ
= πA
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where π̂A(Y) is an unbiased estimate of the population proportion πA.

The variance of π̂A(Y ) is [100]:

Var(π̂A(Y )) = Var

(
P ∗ − (1− γ)πB

γ

)
= Var(

P ∗

γ
)

=
[πAγ + πB(1− γ)][1− (πAγ + πB(1− γ))]

nγ2

=
−π2

Aγ
2 + 2πAπBγ

2 − π2
Bγ

2 − 2πAπBγ

nγ2 + 2πBγ
+
πAγ − π2

B − πBγ + πB
nγ2

=
−π2

Aγ
2 + 2πAπBγ

2 − π2
Bγ

2 − 2πAπBγ

nγ2 + 2πBγ

+
πAγ − π2

B − πBγ + πB
nγ2

+
πBγ

2 − πBγ
2 + πAγ

2 − πAγ
2

nγ2

=
πA(1− πA)

n
+

(1− γ)2πB(1− πB) + γ(1− γ)(πA + πB − 2πAπB)

nγ2
(1.7)

where 0 ≤ γ ≤ 1 and γ ̸= 1
2
, and the term in the first equality Var

(
(1−γ)πB

γ

)
is equal 0

because it is constant.

The Forced Method (FM) [19] is a simple implementation of an RRT. When using

the forced response method, the randomisation device forces the respondent to answer

‘Yes’ with probability γ1 or ‘No’ with probability γ2 or to answer the sensitive question

with probability γ truthfully, where γ = 1 − γ1 − γ2 and 0 < γ1 < 1, 0 < γ2 < 1 and

γ1 + γ2 < 1 [19].

Assume that we have a sample of size n, and random quantity Y denoting the number

of people who answer ‘Yes’. The probability of a respondent answering ‘Yes’ using the

sensitive question or forced Yes-response is

P ∗ = γ1 + πA(1− γ1 − γ2) (1.8)

where πA again the proportion of people who have the sensitive characteristic A. The

estimator of the proportion of people who have the sensitive characteristic is

π̂A(Y ) =
Y
n
− γ1

1− γ1 − γ2
(1.9)
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and the expected value of π̂A(Y ) is

E(π̂A(Y )) = E

( Y
n
− γ1

1− γ1 − γ2

)
= E

(
P ∗ − γ1

1− γ1 − γ2

)
= E

(
γ1 + πA(1− γ1 − γ2)− γ1

1− γ1 − γ2

)
= πA (1.10)

where π̂A(Y) is a unbiased estimate of the population proportion πA. The variance of the

estimator π̂A(Y ) is [19]:

E(π̂A(Y )) = E

( Y
n
− γ1

1− γ1 − γ2

)
= E

(
P ∗ − γ1

1− γ1 − γ2

)
= E

(
γ1 + πA(1− γ1 − γ2)− γ1

1− γ1 − γ2

)
= πA (1.11)

where π̂A(Y) is a unbiased estimate of the population proportion πA. The variance of the

estimator π̂A(Y ) is [19]:

Var(π̂A(Y )) =Var

( Y
n
− γ1

1− γ1 − γ2

)
= Var

(
P ∗

n(1− γ1 − γ2)2

)
=
[γ1 + πA(1− γ1 − γ2)][1− (γ1 + πA(1− γ1 − γ2))]

n(1− γ1 − γ2)2

=
γ1 − γ21 − πAγ1(1− γ1 − γ2) + πA(1− γ1 − γ2)

n(1− γ1 − γ2)2

−πAγ1(1− γ1 − γ2)− π2
A(1− γ1 − γ2)

2

n(1− γ1 − γ2)2

=
πA[−γ1(1− γ1 − γ2) + (1− γ1 − γ2)− γ1(1− γ1 − γ2)]

n(1− γ1 − γ2)2

−π
2
A(1− γ1 − γ2)

2 − γ1(1− γ1)

n(1− γ1 − γ2)2

=
πA[(1− 2γ1 − γ2 + γ2)(1− γ1 − γ2)]

n(1− γ1 − γ2)2
− π2

A(1− γ1 − γ2)
2 − γ1(1− γ1)

n(1− γ1 − γ2)2

=
πA(πA − 1)

n
+

πA(γ2 − γ1)

n(1− γ1 − γ2)
+

γ1(1− γ1)

n(1− γ1 − γ2)2
(1.12)
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Other RRT methods have been proposed, each with specific procedures and assumptions,

such as scenarios in which respondents are truthful or untruthful in their responses, or using

multiple randomisation devices. For more details, we refer to [4,19,53,54,75,80,84,85].

1.2.2 Quantitative randomised response techniques

This section introduces some randomised response techniques for quantitative responses

which uses real numbers to response the questions such as the Greenberg method, the

Eichhorn and Hayre method, the optional multiplicative method and the additive method.

The Greenberg method (GM) [61] is a quantitative variation of the unrelated question

approach (GB) for quantitative responses. Respondents utilise the randomisation device

to answer one of two questions. One of these questions is sensitive while the other is

nonsensitive. Both answers of these question are real-valued quantities.

Assume the probability of the sensitive question is γ, and denote answer as random

quantity Xi with expected value E(Xi) = µx and variance σ2
x. The probability of the

unrelated question is 1− γ, and this is an unrelated non-sensitive question. Let denote the

answer as random quantity Yi with expected value E(Yi) = µy and variance σ2
y. Both µy

and σ2
y are assumed to be known, because if it is not we need to estimate them.

Let assume that random quantity Zi denotes response of the ith respondent (i =

1, 2, ..., n), so

Zi =

Xi with probability γ

Yi with probability 1− γ

(1.13)

Then, the expected value of Zi is

E(Zi) =γE(Xi) + (1− γ)E(Yi)

=γµx + (1− γ)µy (1.14)

with Z̄ regarding to the sample mean, we can estimate µx by

µ̂x =
Z̄ − (1− γ)µy

γ
(1.15)
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The variance of Zi [98] is

Var(Zi) = [γE(Z2
i ) + (1− γ)E(Z2

i )]− (E(Zi))
2

=
1

γ2

[
γ(µ2

x + σ2
x) + (1− γ)(σ2

y + µ2
y)− {γµx + (1− γ)µy}2

]
=

1

γ2

[
σ2
y + γ(σ2

x − σ2
y) + γ(1− γ)µ2

x − γ(1− γ)µ2
y − 2γ(1− γ)µxµy

]
=

1

γ2

[
σ2
y + γ(σ2

x − σ2
y) + γ(1− γ)(µx − µy)

2

]

Eichhorn and Hayre method (EH) is a quantitative approach which relies on

scrambled responses rather than true responses and can be implemented by adding, removing,

or multiplying real responses by random numbers.

Eichhorn and Hayre [51] presented a full randomisation multiplicative scrambling

approach in which respondents were asked to product their response with a scrambling

number using the randomisation device.

Assume that we have random quantity Xi as the true response with expected value

E(Xi) = µx and variance σ2
x = V (Xi), where i = 1, ..., n, and µx and σ2

x are unknown. The

randomisation device provides a numerical value Si that follows a predetermined probability

distribution with a known mean E(Si) = θ and variance r2, where the random quantities

Si and Xi are assumed to be independent variables. In this method, respondents choose a

number and report the product of the real responses Xi and Si, as follows:

Zi = XiSi (1.16)

Because Si and Xi are assumed to be independent, we have:

E(Zi) = E(Xi)E(Si) = µxθ (1.17)
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The variance of the unbiased estimator of the sensitive characteristic’s mean µ̂x is

Var(µ̂x) =
1

n
Var(

Z̄

θ
) =

1

nθ2

[
E(Z2

i )− E(Zi)
2

]
(1.18)

=
1

nθ2

[
E(SiXi)

2 − E(Xi)
2E(Si)

2

]
=

1

nθ2

[
E[S2

i ]E[X
2
i ]− µ2

xθ
2

]
=

1

nθ2

[
(r2 + θ2)(σ2

x + µ2
x)− µ2

xθ
2

]
=
1

n

[
σ2
x +

r2

θ2
(σ2

x + µ2
x)

]
(1.19)

where µ̂x = Z̄
θ
and Z̄ =

∑n
i=1

Zi

n
.

The optional multiplicative method (MM) is another quantitative method.

Gupta [62] developed multiplicative optional scrambling of RRT method, in which an

unknown proportion of respondents scramble their responses as sensitive, other respondents

do not consider the issue sensitive and give their true responses. When adopting this

approach, respondents are not required to scramble their responses if they do not think the

issue is sensitive.

Assume that we have random quantity Xi as a sensitive characteristic for individual

i with an unknown mean µx, and random quantity Si as a scrambling variable with a

known mean E(Si), where Xi and Si are independent, and Si can be produced from any

distribution. Let’s assume that we have a random quantity Zi denoting the response of a

person i where i = 1, ..., n. Giving the randomisation device which gives a random quantity

Si that follows a known probability distribution with the known mean E(Si) = 1 and known

variance γ2. Si and Xi are both random variables with positive values, therefore we assume

that E(Si) = 1.

The respondent offers the answer Zi = Xi if the question is not sensitive; if the question

is sensitive, the answer is scrambling Zi = SiXi. Each respondent has an equal probability

of being chosen. All respondents have the same chance of scrambling ψ, which is a known
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quantity. Therefore, the reported responses Zi is

Zi =

Xi with probability ψ

XiSi with probability 1− ψ

(1.20)

Under the assumption that Xi and Si are independent, the expected value of Zi is as

follows.

E(Zi) = µz =ψE(Xi) + (1− ψ)E(Xi)E(Si)

=ψE(Xi) + E(Xi)E(Si)− ψE(Xi)E(Si)

=ψE(Xi) + E(Xi)− ψE(Xi)

=E(Xi) = µx (1.21)

where E(Si) = 1, then µz = µx. That means the estimator µ̂z is also estimator µ̂x based on

µx.

The variance of µ̂x [62] is

Var(µ̂x) =
1

n
Var(Z̄) =

1

n

[
E(Zi)

2 − E(Z2
i )

]
=
1

n

[
E[S2

i ]E[X
2
i ] + E[X2

i ]− E(Zi)
2

]
=
1

n

[
ψ(1 + γ2)(σ2

x + µ2
x) + (1− ψ)(σ2

x + µ2
x)− µ2

x

]
=
1

n
[σ2

x + ψγ2(σ2
x + µ2

x)] (1.22)

The additive method (AM) is an extension of the multiplicative technique. Gupta

et al. [67] assume that a sample of size n is divided into two sub-samples of sizes n1 and n2,

where n1 + n2 = n. In this method, the response to the sensitive question X is a random

quantity with unknown mean µx (which must be estimated) and unknown variance σ2
x

where i = 1, ..., n.

Let assume that Sj have random quantities of scramble the responses in the sub-sample

j for j = 1, 2, where θj and σ
2
sj
are the known mean and variance of Sj and θ1 ̸= θ2. Suppose

that X and Sj have independent random quantities. If a respondent considers the question

sensitive, the respondent uses an additive scrambled response; another respondent does
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not consider the question sensitive and gives their true responses. We assume that the

sensitivity level ψ is known. The reported response Zj in the sub-sample j is:

Zj =

X with probability (1− ψ)

X + Sj with probability ψ

(1.23)

where j = 1, 2. The expected value of Zj is

E(Zj) = (1− ψ)E(X) + ψE(Sj +X)

= (1− ψ)µx + ψ(θj + µx)

= µx + ψθj (1.24)

where E(Sj) = θj for j = 1, 2. We estimate E(Zj) by Zj that leads to:

µ̂x =
θ2Z̄1 − θ1Z̄2

θ2 − θ1
(1.25)

where Z̄j is the sample mean of the responses in the sub-sample j. The values of θ1 and θ2

should not be set too near to each other because tiny differences in their values will result

in inaccurate variance measurement.

The variance of the estimator µ̂x is

Var(µ̂x) = Var

(
θ2Z̄1 − θ1Z̄2

θ2 − θ1

)
=

1

(θ2 − θ1)2

[
θ22γ

2
1

n1

+
θ21γ

2
2

n2

]
(1.26)

where the variance of each Zj is denoted by γ2j and is derived as follows.

γ2j =(1− ψ)E(X2) + ψE(X + Sj)
2 − (E(Zj))

2

=(1− ψ)(σ2
x + µ2

x) + ψE(X2 +XSj + S2
j )

2 − (µx + ψθj)
2

=(1− ψ)(σ2
x + µ2

x) + ψ(σ2
x + µ2

x) + 2ψµxθj + ψ(θ2j + σ2
sj
)− (µ2

x + 2µxψθj + ψ2θ2j )

=(σ2
x + ψσ2

sj
) + θ2jψ(1− ψ) (1.27)

and the optimal values of n1 and n2 to reduce variance of the estimator µ̂x are

n1 =
nγ1θ2

γ1θ2 + γ2θ1
(1.28)

n2 =
nγ2θ1

γ1θ2 + γ2θ1
(1.29)
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1.2.3 RRT efficiency comparison

The importance of randomised response designs as a tool for studying sensitive issues

increases when they become more effective. We can slightly higher compared the efficiency

of randomised response methods by using the optimal design parameters and appropriate

sample size. In practice, such measures can help researchers to select good RRT approach

in terms of efficiency.

Young et al. [99] use the percent relative efficiency (PRE) to compare the RRT method’s

efficiency of binary RRT methods. It is defined as the ratio of the theoretical mean square

error (MSE) of the estimator of the first RRT method to the mean square error (MSE) of

the estimator of the second RRT method. Assume that we have any two RRT methods

which have the two estimators of the proportion π̂A1 and π̂A2 respectively. Then the first

RRT method is more efficient than the second RRT method if MSE(π̂A1) < MSE(π̂A2).

Young et al. [99] use the percent relative efficiency (PRE), where

PRE =
MSE(π̂A1)

MSE(π̂A2)
(1.30)

If PRE is greater than 1, we prefer the second method over the first method.

Greenberg [60] defined the efficiency of RRT methods as the ratio of the variance of

the estimator π̂A1 of the first RRT method and π̂A2 of the second method as follows.

Efficiency =
Var(π̂A1)

Var(π̂A2)
(1.31)

if this value is less than 1 that means that the first RRT method is preferred to use instead

of the second RRT method. Therefore, lower variance leads to higher efficiency [100].

Similarly, we can compare between the quantitative RRT methods using the variance

of the estimators of the two RRT methods. So, the lower variance of the estimator leads to

better RRT methods e.g. Var(µ̂x1) < Var(µ̂x2) that means the first RRT method is better

than the second method [100].
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1.2.4 RRT privacy

A fundamental challenge in RRT is how to provide accurate estimates of the population

proportion of people with sensitive characteristics while maintaining respondents’ privacy.

Therefore, several privacy measures ∆ have been proposed for qualitative and quantitative

RRT, with different implications for optimal method design. These measures typically

involve conditional probabilities of the event that the respondents have the sensitive

characteristic A (or do not have the sensitive characteristic Ā) given the response ‘Yes’ or

‘No’ respectively [9, 76,79].

Zhimin and Zaizai [100] presented the qualitative RRT method for determining the

measurement of privacy using the ‘Yes’ (say, Ẏ ) or ‘N’ (say, Ṅ) dichotomous response

method. To derive the privacy measurement, assume that the conditional probabilities are

determined by randomisation device as follows:

P [Ẏ | A] = 1− P [Ṅ | A] (1.32)

P [Ẏ | Ā] = 1− P [Ṅ | Ā] (1.33)

Therefore, the privacy measurement ∆ is:

∆ =

∣∣∣∣1− 1

2

(
P [Ẏ | A]
P [Ẏ | Ā]

+
P [Ṅ | A]
P [Ṅ | Ā]

)∣∣∣∣ (1.34)

where, small values of ∆ indicate a high privacy level because the conditional probabilities

of the event that the respondents have the sensitive characteristic A (or do not have the

sensitive characteristic Ā) given the response ‘Yes’ or ‘No’ closes to the proportion πA, and

then P [Ẏ | A]

P [Ẏ | Ā]
and P [Ṅ | A]

P [Ṅ | Ā]
closes from 1, then the privacy measurement closes from 0.

To derive the privacy measurement of GB as explained in Section 1.2.1 using Equation

(1.34), assume that the conditional probabilities are determined as follows:

P [Ẏ | A] = πB + (1− πB)γ (1.35)

P [Ẏ | Ā] = πB(1− γ) (1.36)
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Then, the privacy measurement of GB is

∆GB =

∣∣∣∣1− 1

2

(
(πB + (1− πB)γ)

πB(1− γ)
+

1− (πB + (1− πB)γ)

1− (πB(1− γ))

)∣∣∣∣
=

∣∣∣∣ γ(1− 2πB(1− γ))

(2πB(1− γ)(1− πB(1− γ))

∣∣∣∣ (1.37)

Similarly, the privacy degree of the forced method as explained in Section 1.2.1 is

derived using the conditional probabilities of the event that the respondents have the

sensitive characteristic A (or do not have the sensitive characteristic Ā) given the response

‘Yes’ or ‘No’ as follows

P [Ẏ | A] =1− γ2 (1.38)

P [Ẏ | Ā] =γ1 (1.39)

Then, the corresponding privacy measurement of FM is

∆FM =

∣∣∣∣1− 1

2

(
1− γ2
γ1

+
γ2

1− γ1

)∣∣∣∣
=

∣∣∣∣γ1(3− 2γ1) + γ2(1− 2γ1)− 1

2γ1(1− γ1)

∣∣∣∣ (1.40)

As privacy measure quantitative RRT expectation of the squared of the difference between

the reported response Zi and true response Xi of the sensitive question has been used [100].

The privacy of the quantitative RRT method is

∆ = E(Zi −Xi)
2 (1.41)

If ∆ is larger, the RRT method has greater privacy protection. If a method does not provide

any privacy, then ∆ = 0. A larger value of ∆ of the quantitative RRT method leads to a

lower variance of the reported responses Zi that leads to a higher level of efficiency.

The privacy measure of the Greenberg method ∆GM [100] is

∆GM = (1− γ)E(Yi −Xi)
2 = (1− γ)E(Y 2

i − 2XiYi +X2
i )

= (1− γ)

[
E(Y 2

i )− 2E(Xi)E(Yi) + E(Xi)
2

]
= (1− γ)

[
(σ2

y + µ2
y)− 2µyµx + (σ2

x + µ2
x)

]
= (1− γ)[σ2

y + σ2
x + (µx − µy)

2] (1.42)
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The privacy measure of EH [51] and MM [62] method are

∆EH = E(Zi −Xi)
2 = E({SiXi −Xi}2)

=
1

θ2
E({Si − θ2}2X2

i ) = (
r

θ
)2(σ2 + µ2)

∆MM = E(Zi −Xi)
2 = ψE({SiXi −Xi}2)

= ψE({Si − 1}2X2
i ) = ψ(γ)2(σ2

x + µ2
x) (1.43)

where E(Si) = 1.

The privacy measure of the additive method ∆AM [71] is

∆AM = E(Zj −Xi)
2

= ψ
1

n1

n1∑
i=1

(Z1 −Xi)
2 = ψE(S2

1) = ψ(θ21 + γ21) for the first sample

= ψ
1

n2

n2∑
i=1

(Z2 −Xi)
2 = ψE(S2

2) = ψ(θ22 + γ22) for the second sample (1.44)

As explained in Sections 1.2.3 and 1.2.4, two crucial factors to take into account, when

contrasting any randomised response techniques, which are efficacy level and respondent

privacy degree. A technique that offers less privacy has a higher level of efficiency. Conversely,

a technique’s efficacy will be lower if the level of privacy is higher.

1.3 Reproducibility

Reproducibility of research results is important in many research areas, including science,

society, and others. The probability to reproduce the same results of an original experiment

in a future experiment using the same computational process, under the same conditions,

and with the same study population is referred to as reproducibility. However, there is a

reproducibility crisis with contradictory results between initial experiments and subsequent

replications due to the fact that many scientific study findings are difficult to interpret or

impossible, which affects the validity of the hypotheses they support.

Goodman [59] discovered the importance of statistical test reproducibility to address

some common misunderstandings about the statistical p-value. The reproducibility probability,
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according to Goodman, can be used to show that the p-value could misrepresent the strength

of the evidence supporting the null hypothesis. Reproducibility probability can be used

to show that the p-value could overstate the strength of the evidence rejecting the null

hypothesis.

Therefore, the reproducibility probability for a test is defined as the probability that,

if the test is repeated under the same circumstances as the original experiment, the test

result, that is, whether the null hypothesis is rejected or not, will be the same.

Senn [89] emphasised the differences between the nature of reproducibility probability

and the p-value in the discussion of Goodman’s study. Senn agreed with Goodman [59] on

the importance of test outcome reproducibility and the probability of reproducibility (RP).

Senn [89], on the other hand, disagreed with Goodman’s claim that p-values misrepresent

evidence against the null hypothesis, emphasising the natural relationship between the

p-value and the reproducibility probability where smaller p-value, which measures the

strength of the statistical conclusion, leads to larger RP in which is expected to be in the

case of a rejected null hypothesis.

According to Goodman [59] and Senn [89] on calculating reproducibility probability

(RP), there is a clear recommendation that if a test statistics distribution shows that it

is virtually symmetrical under a null hypothesis, then the reproducibility probability is

roughly 0.5. This suggestion happened if the test statistic is close from the threshold value.

There is a heuristic argument that if the distribution under the null hypothesis of the

test statistic is (about) symmetric, then a worst-case scenario would yield an RP of about

0.5 [59, 89]. This is due to the chance that the test statistic value could be equal to the

test value of the threshold. Without any additional information, one might expect a repeat

of the experiment to yield a second value of the test statistic that is equally likely to be

larger or smaller than the original value, and thus the same conclusion with a probability

of 0.5. Goodman [59] supports this with a Bayesian argument with a non-informative

prior. Senn [89] has discussed difficulties with test reproducibility in real life, such as

when a repeated test is performed under different circumstances and by a different team of

analysts.
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The idea of reproducibility probability (RP) for a given clinical trial was established by

Shao and Chow [90]. In this study, the second clinical trial will be conducted with the same

research procedure in order to determine whether the first trial’s clinical findings can be

repeated in the second trial. A two-sided alternative hypothesis tested for a positive known

constant. Then, RP is calculated of a statistically significant result for the t-test. They

suggested that if the first clinical trial’s result is strongly significant, a single clinical trial is

acceptable. Shao and Chow [90] considered three approaches to studying reproducibility

probability: an estimating the power of a future test based on available test data, an

approach in which RP is related to a lower confidence bound, and in which RP is related to

a higher confidence bound for the power estimate of the second test, and a third approach

is a Bayesian approach. They studies RP in these cases where clinical trial evidence firmly

supported a different treatment.

De Martini [47] assessed the reproducibility probability of statistically significant results

and proposed statistical tests based on the estimation of reproducibility probability for

one-sided and two-sided alternative hypotheses. De Martini demonstrated how to use RP

estimation to test parametric hypotheses. The power of the test and the lower confidence

bound of the power were considered by De Martini as two definitions of the reproducibility

probability of statistically significant results. De Capitani and De Martini [44] considered

various estimators of reproducibility probability for the Wilcoxon rank sum test. De

Capitani and De Martini [42,43] investigated estimators for several nonparametric tests,

such as the sign and Wilcoxon signed rank tests. They concluded that statistical tests

contain randomness, and the reproducibility probability can be also estimated. The RP

confidence intervals can be also used to compute statistical tests, and it is possible to

demonstrate that the RP pointwise estimator’s threshold for defining statistical tests comes

out to be 0.5. The RP estimates provide suitable interpretations of the results.

Several further contributions to the development of reproducibility probability are

worthy of attention. Posavac [87] offers to assess reproducibility probability by comparing

the value of a test statistic based on the actual test and the corresponding threshold value.

As a result, if a two-sample test is used, the standard error of the difference between the

means of the two relevant samples must be estimated. This allows for the assessment of the
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probability of a statistically significant precise replication.

Bayesian approaches enable researchers to include more information in their findings and

make more informed judgments. Killeen [73] developed the reproducibility probability as an

alternative to null-hypothesis significance testing and established a relationship between the

reproducibility probability and the effect size. Both the effect size and standard p-values can

be regarded as measures the amount of an experimental effect and the significance threshold

respectively. Killeen [73] proposed that the effect size be reduced by averaging it using a

Bayesian technique with a flat distribution as the prior. While Killeen’s study [73], also

emphasises the uncertainty that arises throughout the study of this issue. He emphasised

the explicit prediction of reproducibility probability and thus believes that RP represents

an accurate power test.

Lecoutre et al. [77] provide a discussion of Killeen’s technique [73], referring to it as

a “calibrated Bayesian predictive probability”. Lecoutre et al. [77] agree with Killeen’s

technique [73] and stated that, despite the technique’s success in producing satisfactory

results, there is still confusion, as mentioned in Killeen’s paper [73]. According to Lecoutre

et al. [77], the predictive probabilities form a vital part of the statistical approach and must

be taken into consideration. We agree with this. We investigated the variability in RP

for estimates using NPI-B and a simple random sampling method to predict the RP for

estimates based on the future samples, which produced a variety of results as explained in

Chapters 3 and 4.

Miller [83] distinguished between two types of test-repetition circumstances: those in

which repetition is carried out by different analysts so that the test circumstance differs

from that of the initial experiment, and those in which repetition is carried out by the same

researchers as the original experiment and test, under the same circumstance as the original

experiment. Miller [83] has doubts about the probability of extracting a valid conclusion

from the original experiment because the effect sizes are unknown then the power of this

test cannot be determined.

Gelman [57] connected the reproducibility crisis in social science to the default model

of constant effects and null hypothesis significance testing, and he claims that Bayesian



1.4. Nonparametric Predictive Inference(NPI) 22

modelling can lead to a significant increase in understanding social research data. He

investigated reproducibility by concentrating on effect sizes, their variability, and the

uncertainty in estimating them. The difficulty in fitting interaction models is that they

are difficult to estimate to the level of accuracy usually required in practical research and

require extra data or prior knowledge. He also mentions that adding further data can well

be to make analyses better. Additionally, hierarchical Bayesian analysis can distinguish

between large variations in a posterior distribution due to reliable variability in effects

across scenarios and large uncertainty due to the non-informativeness of data.

1.4 Nonparametric Predictive Inference(NPI)

Nonparametric Predictive Inference (NPI) is a statistical method based on Hill’s assumption

A(n) [69], which provides a direct conditional probability for a future observable random

quantity based on observed values of related random quantities [13,23]. NPI can be used

for prediction if there is no knowledge of an underlying distribution or if one does not want

to use any such knowledge. This can happen if one wants to investigate the hidden impacts

of extra structural assumptions underpinning statistical methods. Inferences based on such

limited information are also known as low structure or black-box inferences [22].

NPI has been studied for a variety of data types and applications have been presented in

statistics, risk and reliability, and operations research. Many studies have proven that NPI

has strong statistical features and produces reliable conclusions from predictive inference.

NPI for real-valued random values has thus far primarily been limited to a single future

observation, but many future observations have been addressed for NPI approaches for

statistical process control [10,11]. It has numerous successful applications in engineering

reliability, such as [3, 24, 26, 28, 30]. In addition, NPI has also been employed in the area of

finance such as [15,20,68].

To introduce the assumption A(n), we have n observed observations y(1), ..., y(n) and

the future observation m = 1. Assume that the ordered observed values of the random

quantities Y1, ..., Yn are denoted by y1 < y2 < ... < yn, with the lower bound denoted by
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y(0) and the upper bound by y(n+1). It should be noted that y(n+1) is not an observed value

for Yn+1. The n observations split the real-line into n+ 1 intervals Ii = (y(i−1), y(i)), where

i = 1, ..., n+ 1. The assumption A(n) [69] for one future observation Yn+1 is

P (Yn+1 ∈ Ii) =
1

n+ 1
for i = 1, ..., n+ 1 (1.45)

The A(n) is a post-data assumption related to exchangeability that makes no further

assumptions.

The lower and upper probabilities for any set A ⊂ R are [13,23]:

P (Yn+1 ∈ A) =
n+1∑
i=1

1{Ii ⊆ A}P (Yn+1 ∈ Ii) =
1

n+ 1

n+1∑
i=1

1{Ii ⊆ A} (1.46)

P (Yn+1 ∈ A) =
n+1∑
i=1

1{Ii ∩ A ̸= ∅}P (Yn+1 ∈ Ii) =
1

n+ 1

n+1∑
i=1

1{Ii ∩ A ̸= ∅} (1.47)

where 1{E} is the indicator function where is equal to 1 if event E happens and 0 otherwise.

The NPI lower probability is calculated by counting up the probability masses in which A

must into consideration. The NPI upper probability is calculated by counting up all of the

probability masses that could be in A.

It is evident from the theory of imprecise probability [13, 94, 96, 97] that bounds

provide information about the uncertainty of events caused on by restricted information.

For the event A, the precise classical probability is only a specific case of the imprecise

probability, when P (A) = P (A) (i. e. the point probability case). However, the situation

where P (A) = 0 and P (A) = 1 denotes a complete lack of information regarding the event

A. We briefly discuss some of the theories of imprecise probability as relevant to A(n)-based

inference [13]. In general, in imprecise probability theory, 0 ≤ P (A) ≤ P (A) ≤ 1, the

lower and upper probabilities are conjugated i. e. P (A) = 1 − P (Ac), where Ac is the

complementary event of A, and P (.) is super-additive and P (.) is sub-additive.

For many events of interest, A(n) is insufficient to determine a precise probability.

But it provides optimal probability bounds for all events of interest Yn+1 that are lower

and upper probabilities. However, in NPI, we use De Finetti’s Fundamental Theorem of

Probability [45] to determine optimal bounds for the probability of an event of interest [13].
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They have strong consistency properties in the theory of imprecise probability [94] and

interval probability [97].

NPI has been introduced for a number of applications involving a wide range of data

kinds. NPI has been presented for Bernoulli data [22, 29], real-valued data [34, 35, 82],

right-censored observations [36,37]. Coolen and Yan [36,37] proposed a generalisation of

A(n) called “ right-censoring-A(n)” for right censoring data , circular data [23], multinomial

data [22,27], and bivariate data [38].

1.4.1 NPI for multiple future observations

NPI has been also developed for multiple future real-valued observations where we are

interested in m > 1. Assume that the ordered observed values of the random quantities

Y1, ..., Yn are denoted by y(1) < y(2) < ... < y(n), with the lower bound denoted by y(0) and

the upper bound by y(n+1). It should be noted that y(n+m) is not an observed value for

Yn+m for m > 1. The n observations split the real-line into n+ 1 intervals Ii = (y(i−1), y(i)),

where i = 1, ..., n+ 1.

We assume that all the orderings Oj of the future observations m among the original

observations n are equally likely as explained in Section 1.4. For the future observations

Yn+i, each ordering can be derived from Sj
i = #{Yn+i, i = 1, ..., n} where j = 1, 2, ...,

(
n+m
n

)
.

We link the data and future observations via Hill’s assumption A(n) [70], or more precisely,

via consecutive application of A(n), A(n+1), ..., A((n+m)−1) which can be considered as a

post-data version of a finite exchangeability assumption for n + m random quantities

that are Yn+1, ..., Yn+m. A practical interpretation of the A(n) assumptions implies that

all possible orderings of n data observations and n future observations are equally likely,

where the n data observations and m future observations cannot be separated from one

another.

Based on the A(n) assumptions, Equation (1.48) derive the probability of each ordering

[34] as follows.

P

( n+1⋂
i=1

{Sj
i = sji}

)
= P (Oj) =

(
n+m

n

)−1

(1.48)
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where the sji are non-negative integers with
∑n+1

i=1 s
j
i = m.

The A(n) assumptions suggest that one has no knowledge of whether particular values

of near revealed observations make it more or less likely that future observation will

fall between them. Equation (1.48) implies that for each event involving the m future

observations, we can count the number of such orderings for which this event holds. In

NPI, generally, as described in Section 1.4.1 states that the upper probability of an event is

determined by counting all orderings for which it can hold, whereas the lower probability is

determined by counting all orderings for which it must hold [13,23]. Several publications are

introduced using NPI of reproducibility for multiple future real-valued observations [8,31,91]

as explained in Section 1.5.

1.4.2 NPI for Bernoulli random quantities

This section explains NPI for Bernoulli random quantities [22,29] is one NPI application

that is based on a latent variable representation of Bernoulli data. This presentation

assumes underlying real-valued quantities and threshold values, so that values to one side

of the threshold are successes and values to the other side of the threshold value are

failures. The assumption of A(n) yields lower and upper probabilities for the number of

successes A(n), .., A(n+m−1) for m future trials, depending on the number of successes in n

observations.

Assume there is a sequence of n+m exchangeable Bernoulli trials, each having the

outcomes ‘success’ and ‘failure’, with data consisting of s successes in n trials. If Y denotes

the random number of successes in trials ranging from 1 to n, then an adequate representation

of the data for NPI is Y n
1 = s, because all trials are assumed to be exchangeable. Let

Y n+m
n+1 denote the random number of successes in the future trials n + 1 to n + m. Let

Rt = {r1, r2, ..., rt} with 1 ≤ t ≤ m + 1 and 0 ≤ r1 < r2 < ..., rt ≤ m. The NPI upper

probability [22,29] for the event Y n+m
n+1 ∈ Rt given Y

n+m
n+1 = s for s ∈ {0, 1, ..., n} is

P (Y n+m
n+1 ∈ Rt | Y n

1 = s) =

(
m+ n

n

)−1 t∑
j=1

[(
s− rj

s

)
−

(
s− rj−1

s

)](
n− s+m− rj

n− s

)
(1.49)

The corresponding NPI lower probability can be derived using the conjugate property, that
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is P (A) = 1− P (Ac) for any event A and its complementary event Ac.

P (Y n+m
n+1 ∈ Rt | Y n

1 = s) = 1− P (Y n+m
n+1 ∈ Rc

t | Y n
1 = s) (1.50)

where Rc
t is the complement of Rt , R

c
t = {0, 1, ...,m}/Rt.

1.5 NPI for reproducibility

An important characteristic of the practical application of test results is a test’s reproducibility.

The reproducibility probability (RP), which its definition and interpretation as well as

its estimate are not fully specified in the traditional frequentist statistical framework, has

attracted a lot of interest recently. The NPI method of frequentist statistics explicitly

focuses on future observations while making few assumptions and using lower and upper

probabilities to quantify uncertainty. This makes it possible to reach inferences about RP

logically given the explicitly predictive nature of NPI.

NPI for reproducibility is first established by Coolen and Bin Himd [22], denoted by

NPI-RP, and defined as the probability that, if a test repeated based on an experiment

performed in the same way as the original experiment, the test outcome, that is, whether

the null hypothesis is rejected or not, would be the same. This was taking into account a few

basic nonparametric tests, including the sign test, Wilcoxon’s signed rank test, and the two

sample rank sum test [58]. NPI for Bernoulli quantities [18], for real-valued data [5] were used

for these inferences. This led to NPI lower and upper reproducibility probabilities, denoted

by RP and RP , respectively, rather than precisely determined reproducibility probabilities.

The NPI lower and upper probability for test reproducibility were calculated for various

tests using statistical methods. The NPI-B method, as developed and demonstrated by

Bin Himd [33] for the Kolmogorov-Smirnov test, can be used to provide NPI for more

complicated test scenarios.

The NPI-RP method is presented for two basic tests using order statistics: a test for

a specific population quantile value and a precedence test for comparing data from two

populations. These tests are typically used for lifetime data experiments when one wishes

to reach a conclusion before all observations are available. For these inferences, NPI for
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future order statistics is used to provide the lower and upper reproducibility probability for

quantile and basic precedence test [7].

Simkus et al. [91] provide an NPI algorithm to assess the reproducibility of the t-test and

then use simulations to investigate the reproducibility both under the null and alternative

hypotheses. The procedure is to apply NPI reproducibility to real-life applications of a

clinical experiment that involves numerous pairwise comparisons of test groups and varying

drug concentrations for each group [91].

The nonparametric predictive inference approach for reproducibility of likelihood

ratio tests [81]. The idea of this research is to investigate tests between two simple

hypotheses on the mean value. The result reveals an upward trend in both the lower and

higher reproducibility as well as a distance between the observed likelihood ratios and

quantiles.

Coolen and Marques [31] investigated sampling of future data orderings among observed

data to obtain the approximate lower and upper reproducibility probability. A new sampling

methodology is proposed to overcome the limitations of the usual sampling of orderings

method to address scenarios with larger sample sizes [31].

Further work on NPI for reproducibility of statistical inferences based on randomised

response data is developed in this thesis. The nature of this thesis is primarily theoretical,

with the implementation of the established methodologies shown by example applications.

It is important to mention that there are different methods which are used to compute

NPI for reproducibility which is the NPI-B and sampling of ordering methods as discussed

in the following section.

1.6 NPI-bootstrap

The key to statistical inference is quantifying the variability of a sample estimate. Making

inferences and assuming a probability model are both possible in simple situations, but they

can be tricky in complicated ones and can lead to misleading conclusions if the method
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assumptions are not correct. Efron [50] created a bootstrap method that makes fewer

assumptions but requires more computations in order to see through this issue. Due to its

ease of use and ability to provide accurate approximations to the sample estimates, there has

been an increase in the use of this method. Nonparametric predictive inference bootstrap

(NPI-B) is one of the bootstrap methods which is a computational implementation of NPI

and it is used to quantify uncertainty in the statistical inference. The original investigation

of the NPI-B method was introduced by BinHimd and Coolen [18,33].

We discuss the performance of the NPI-B method of m future observations where the

NPI-B method sample the observations samples values from the data sets and from the

interval among them and add them to the data set.

Assume that the ordered observed values of the random quantities Y1, ..., Yn are denoted

by y(1) < y(2) < ... < y(n), with the lower bound denoted by y(0) and the upper bound by

y(n+1). The n observations split the real-line into n + 1 intervals Ii = (y(i−1), y(i)), where

i = 1, ..., n+ 1. The assumption

NPI-bootstrap (NPI-B) is based on constructing n+ 1 intervals from n observations.

As in A(n), we create intervals Ii between the observations n where i = 1, ..., n+ 1, then

draw one value from these intervals and add it to the dataset, and then sampling m− 1

more values to produce a new sample called an NPI-B sample [18]. All possible orderings

of the new observations among the past observations are equally likely to appear in NPI-B.

The NPI-B algorithm [18] for one-dimensional real-valued data on a finite interval is as

follows:

• Assume there is a data set of n real-valued, one-dimensional observations on a finite

interval.

• The partitions n+ 1 created by n observations.

• Chooses one of the n+ 1 intervals at random, with equal probability for each interval.

From this chosen interval, choose one future value uniformly.

• Increase n to n+1 and add that future value to the data. Steps 2-4 must be repeated

with n+ 1 data to obtain a further future value.
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• Repeat this to produce m NPI bootstrap samples b1, b2, ..., bm.

• Repeat all of these steps nB times, to obtain a total of nB NPI-B samples of size m.

The NPI-Bootstrap method is used in Chapters 3 and 4.

1.7 Sampling of orderings method

Sampling of orderings method (SOM) is a solution when the number of orderings Oj is large

of m future observations among large n data observations. Marques et al. [81] illustrate the

original work of the SOM method.

To use SOM method based on NPI, we consider that each order that is chosen to be

included in the sample must have the same possibility of being selected, and the ordering

selection should be independent of the other selections. It is important to note that if the

sample size n or the value of orderings sampled is large, the total number of orderings

becomes large enough to ignore any potential differences between sampling with or without

replacement of these orderings.

To explain SOM method, we need to choose such vectors at random of the orderings

r1, ..., rn with r1 ≥ 1 and rl−1 < rl where rn ≤ 2n for all l = 2, ..., n. Take the rank of

the l-th ordered data observation among the 2n combined data and future observations

to be rl. Then, the future observation data Sj
l is specified as Sj

l = (rl − rl−1) − 1 where

l = 1, ..., n+ 1, such that r0 = 0 and rn+1 = 2n+ 1.

This method is used in this thesis in reproducibility for an estimate using the

representative sample to generate unlimited orderings for the future observations among

the original data as explained in Sections 3.3 and 4.3.

1.8 Thesis outline

The purpose of this thesis is to investigate reproducibility of statistical inferences based

on RRT data. This thesis is structured as follows. Chapter 2 considers one-sided and
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two-sided hypothesis tests based on RRT data. We present a new measure based on the

lower and upper reproducibility probability. This work was presented online at International

Conference on Advances in Interdisciplinary Statistics and Combinatorics Conference (AISC)

in October 2020. Chapter 3 introduces ϵ−reproducibility of an estimate in the general

statistical scenario. This work was presented online at the 6th Canadian Conference on

Applied Statistics in 2021. Chapter 4 applies the methodologies presented in Chapter 3 to

scenarios with data generating from RRT. In Chapter 5, we draw some conclusions and

discuss related research challenges.



Chapter 2

Reproducibility of hypothesis tests

based on randomised response data

2.1 Introduction

The reproducibility of statistical tests is one of the most important topics in applied

statistics, as it has been observed that the conclusions of statistical test could differ if the

test is repeated [12].

Some social studies begin with a sensitive question with the aim of eliciting a truth

response for the sensitive question of interest with maintaining the respondents’ privacy.

This method is called randomised response technique. Use of these techniques can be an

effective method to quantify sensitive population characteristics.

We are interested in the question if the test were repeated under the same circumstance

and with the same sample size, would the same conclusion be reached which is rejection or

non-rejection of the null hypothesis?

In this chapter, the reproducibility of statistical tests based on RRT data is discussed,

which uses nonparametric predictive inference to predict the results of future hypothesis

tests. It compares two RRTs in terms of the reproducibility probability of statistical test or

31
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the estimation (variance), and the degree of privacy. It also includes a measure of lower and

upper reproducibility of tests based on RRT data. The probability of sensitive questions and

the required sample size play an important role in achieving higher reproducibility.

This chapter is organised as follows. Section 2.2 explains NPI for Bernoulli random

quantities. Sections 2.3 and 2.4 study the NPI-RP approach for one-sided and two-sided

hypothesis tests respectively. Section 2.5 introduces a measure of reproducibility probability

of the area under the curve. Section 2.6 calculates the area under MRP of statistical tests

based on RRT data. Section 2.7 presents the lower and upper threshold values. Section 2.8

presents a comparison of the reproducibility of statistical tests based on RRT data. Section

2.9 presents a discussion of related topics for further research.

2.2 NPI reproducibility probability for statistical

hypothesis tests using Bernoulli data

This section reviews the NPI reproducibility probability for statistical hypothesis tests

(NPI-RP) based on Bernoulli data [18, 33]. We use the NPI method as explained in Section

1.4.2 to derive the lower and upper probabilities for the event of interest Y 2n
n+1 ∈ Ii where

i = 1, ..., n+ 1.

It is important to note that the NPI reproducibility probability seems to be predictive

in nature, based on data from the first test, one could be able to predict the results of

a future test assuming it would have the same sample size and become performed under

similar circumstances. Therefore, we assume that the sample size of the original sample

size n is equal to the future sample n.

We suppose that a sequence of 2n exchangeable Bernoulli trials, each with ‘Yes’ and

‘No’ values. Let Y n
1 denote the random number of ‘Yes’ answers in trials 1 to n and Y 2n

n+1

denote the random number of ‘Yes’ answers in trials n+1 to 2n. Based on the basic method

represented by Coolen [22] and Coolen and Coolen-Schrijner proposal [28], the NPI lower

and upper probability for the events Y 2n
n+1 ≥ C are derived as follows.
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P (Y 2n
n+1 ≥ C | Y n

1 = y) = 1−
(
2n

n

)−1

×
[ C−1∑

l=1

(
y + l − 1

y − 1

)(
2n− y − l

n− y

)]
(2.1)

and

P (Y 2n
n+1 ≥ C | Y n

1 = y) =

(
2n

n

)−1[(
y − C

y

)(
2n− y − C

n− y

)
+

n∑
y=C+1

(
y − l − 1

y − 1

)(
2n− y − l

n− y

)]
(2.2)

where C is the rejection threshold, and y ∈ {1, ..., n− 1}. If the observed data are all

‘Yes’ answers (so y = n), or all ‘No’ answers (so y = 0), then the NPI upper probabilities

are

P (Y 2n
n+1 ≥ C | Y n

1 = n) = 1 (2.3)

P (Y 2n
n+1 ≥ C | Y n

1 = 0) =

(
2n

n

)−1(
2n− C

n

)
(2.4)

and NPI lower probabilities are:

P (Y 2n
n+1 ≥ C | Y n

1 = n) = 1−
[(

2n

n

)−1(
n+ C − 1

n

)]
(2.5)

P (Y 2n
n+1 ≥ C | Y n

1 = 0) = 0 (2.6)

This method can be applied to reproducibility of one-sided tests based on RRT data,

Section 2.3 introduces more details.

For the two thresholds l, r, the n future random quantities given n observations can

be represented with Bernoulli quantities represented by observations on the real line, such

that the non-rejection region which includes the ’Yes’ answers in the range between the

endpoints l and r respectively.

Suppose there is a non-rejection area R between the two points l and r. If the event

Y 2n
n+1 ∈ {l, ....., r} where 1 ≤ l < r ≤ n, the H0 is rejected if and only if y < l and

y ≥ r. Then, the related NPI lower and upper probabilities, assuming Y n
1 = y, are easily

determined from Equations (2.7) and (2.8), using Coolen’s paper [22] as follows.
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The NPI upper probability is

P (Y 2n
n+1 ∈ {l, ....., r} | Y n

1 = y) =

(
2n

n

)−1

×[(
y + r + 1

y

)(
2n− y − r − 1

n− y

)
+

r−1∑
i=l+2

{(
y + i− 1

y − 1

)(
2n− y − i

n− y

)}]
(2.7)

The NPI lower probability is

P (Y 2n
n+1 ∈ {l, ....., r} | Y n

1 = y) =

1−
(
2n

n

)−1

×
[(

2n− y

n− y

)
+

r−1∑
i=1

{(
y + i− 1

y − 1

)(
2n− y − i

n− y

)}
+

{(
y + r + 1

y

)
−(

y − l − 1

y

)}
×

(
2n− y − (r + 1)

n− y

)
+

n∑
i=r+1

{(
y − i− 1

y − 1

)(
2n− y − i

n− y

)}]
(2.8)

This method can be applied to reproducibility of two-sided tests based on RRT data, Section

2.4 introduces more details.

2.3 Reproducibility of one-sided hypothesis tests

based on RRT data

Reproducibility of one-sided hypothesis tests based on randomised response data (NPI-RP-RRT)

shows how probably it is that a future test of qualitative RRT data will lead to the same

conclusion as the original test.

Based on RRT methods, we consider the hypothesis test for the proportion of people

with a sensitive characteristic A, where H
′
0 is the null hypothesis of the proportion πA = πA0 ,

and H
′
1 is the alternative hypothesis of the proportion πA > πA0 , as follows:

H ′
0 : πA = πA0 and H ′

1 : πA > πA0 (2.9)

where πA0 ∈ [0, 1].

Give P ∗ = P ∗
0 is the function of the proportion πA0 of people who answer ‘Yes’ to the

question of RRT method.
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We assume the proportion of people with a sensitive characteristic πA0 and calculate

the proportion of people who will say ‘Yes’ using P ∗ as explained in Section 1.2.1, to write

the corresponding hypothesis test as follows:

H0 : P
∗ = P ∗

0 and H1 : P
∗ > P ∗

0 (2.10)

A logical test rule is rejecting the null hypothesis if Y n
1 ≥ C for chosen significance level α

is:

P (Y n
1 ≥ C | H0) ≤ α (2.11)

The NPI upper and lower reproducibility probabilities for the event Y 2n
n+1 ≥ C are

expressed as function of y, with respect to C as rejection threshold and α as level of

significance using the equations in Section 2.2, as follows

RP (y) = P (Y 2n
n+1 ≥ C | Y n

1 = y), RP (y) = P (Y 2n
n+1 ≥ C | Y n

1 = y) (2.12)

If we observe Y n
1 < C, the upper and lower reproducibility probabilities of this event

Y n
1 < C using the conjugacy property are as follows:

RP (y) = 1− P (Y 2n
n+1 ≥ C | Y n

1 = y), RP (y) = 1− P (Y 2n
n+1 ≥ C | Y n

1 = y) (2.13)

Examples 2.3.1 and 2.3.2 illustrate this method using the GB and the FM methods explained

in Section 1.2.1.

Example 2.3.1 This example explains NPI reproducibility for one-sided tests based on

data collected using GB method (NPI-RP-GB). Suppose that we have a sample with size

n = 30 and are interested in a sensitive characteristic A. The unknown proportion of

people with the sensitive characteristic is πA0 , and πB is the proportion of people who

would respond ‘Yes’ to the unrelated question where πB is known and equal to 0.3. In

this example, we assume that a randomisation device is used with a probability that the

sensitive question is asked equal to γ = 0.7.

To start with, we assume that we need to test the null hypothesis that the proportion

of people who have the sensitive characteristic πA0 is equal to 0.70, against the alternative

hypothesis that is greater than 0.70.
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y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 1.0000 1 11 0.9956 0.9980 22 0.5 0.6145

1 1.0000 1.0000 12 0.9909 0.9956 23 0.6145 0.7240

2 1.0000 1.0000 13 0.9824 0.9909 24 0.7240 0.8198

3 1.0000 1.0000 14 0.9680 0.9824 25 0.8198 0.8954

4 1.0000 1.0000 15 0.9449 0.9680 26 0.8954 0.9479

5 1.0000 1.0000 16 0.9101 0.9449 27 0.9479 0.9790

6 1.0000 1.0000 17 0.8605 0.9101 28 0.9790 0.9939

7 0.9999 1.0000 18 0.7941 0.8605 29 0.9939 0.9990

8 0.9997 0.9999 19 0.7102 0.7941 30 0.9990 1

9 0.9992 0.9997 20 0.6106 0.7102

10 0.9980 0.9992 21 0.5 0.6106

Table 2.1: NPI-RP-GB at α = 0.05, C = 22

y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 1.0000 1 11 0.9981 0.9992 22 0.5 0.6145

1 1.0000 1.0000 12 0.9959 0.9981 23 0.5 0.6195

2 1.0000 1.0000 13 0.9916 0.9959 24 0.6195 0.7340

3 1.0000 1.0000 14 0.9837 0.9916 25 0.7340 0.8333

4 1.0000 1.0000 15 0.9702 0.9837 26 0.8333 0.9097

5 1.0000 1.0000 16 0.9483 0.9702 27 0.9097 0.9601

6 1.0000 1.0000 17 0.9149 0.9483 28 0.9601 0.9872

7 1.0000 1.0000 18 0.8666 0.9149 29 0.9872 0.9977

8 0.9999 1.0000 19 0.8007 0.8666 30 0.9977 1

9 0.9997 0.9999 20 0.7163 0.8007

10 0.9992 0.9997 21 0.6145 0.7163

Table 2.2: NPI-RP-GB at α = 0.01, C = 23.

So the hypotheses are

H ′
0 : πA = 0.7 and H ′

1 : πA > 0.7 (2.14)

and we test with a level of significance α = 0.05.

These hypotheses lead to the null and alternative hypotheses for P ∗ for which the

observed number of ‘Yes’ answers is derived using Equation (1.5) in Section 1.2.1.

H0 : P
∗ = 0.58 and H1 : P

∗ > 0.58 (2.15)

The corresponding threshold value C for the one-sided test is 22. Therefore, H0 is

rejected if Y n
1 ≥ C; otherwise, it is not rejected. In this example, the null hypothesis

πA = 0.7 is not rejected. Then, the p-value can be computed as follows: P (Y n
1 ≥ 23|n =
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Figure 2.1: NPI-RP of one-sided test based on GB data of n = 30, πA0 = 0.7, πB = 0.3,

γ = 0.7, α = 0.05, P ∗
0 = 0.58
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Figure 2.2: NPI-RP of one-sided test based on GB data of n = 30, πA0 = 0.7, πB = 0.3,

γ = 0.7, α = 0.01, P ∗
0 = 0.58

30, P ∗
0 = 0.58) = 0.0296 which is less than 0.05. Therefore, we conclude that H0 can be

rejected if Y n
1 ≤ C. Then, the claim that the proportion of people who answer ‘Yes’ is

greater than 0.7 would be not rejected, at the 0.05 significance level.

The NPI lower and upper reproducibilities probability for the event Y 2n
n+1 ≥ C is derived

from Equation (2.12) whereas the NPI lower and upper reproducibility probabilities for the

event Y 2n
n+1 < C can be derived from Equation2.13.

The NPI lower and upper reproducibility probabilities of the event Y 2n
n+1 ≥ C = 22

given H0 are presented in Tables 2.1 and 2.2. For all responses which are ‘Yes’ or ‘No’
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for the value y = 0 or y = n which occurs if all observations in the original test are ‘Yes’

answers, or if all are ‘No’ answers respectively. If all of the responses are ‘Yes’ (‘No’), the

data has no effect on the probability that ‘No’ (‘Yes’) responses will never happen.

The minimum value of the lower reproducibility probability is 0.5 which means the test

statistic is symmetric, then a worst-case scenario would result in RP of 0.5 [59,89].

The maximum value of the upper reproducibility probability is 1. This occurs when all

observations in the original test are greater than C, so y = n, in which case H0 is rejected,

at any level of significance α; this shows that the possibility that no future observations

will exceed the value cannot be excluded with no evidence in the original data to indicate

that the data values can exceed the rejection threshold. Note that the corresponding NPI

lower reproducibility probability is less than 1 for y = 0, reflecting that the original data set

provides only limited information which leads to an increase in the NPI lower reproducibility

probability towards 1.

If the original test does not lead to the rejection ofH ′
0 : πA = 0.7, such that Y n

1 ≤ C = 22

at α = 0.05, then the reproducibility of statistical tests is the probability that the null

hypothesis will be not rejected in the future test. The values of Y n
1 = y above the rejection

threshold, C = 22 leads to non-rejection of H ′
0. Then the NPI lower reproducibility of y is

equal to the reproducibility probability of y + 1 such that RP (y) = RP (y + 1).

Conversely, if the original test does lead to the rejection of H ′
0 : πA = 0.7, the

reproducibility probability of the y which is greater than the rejection threshold C = 22,

the NPI-RP of the event Y n
1 ≥ 22 given H0 : P

∗
0 = 0.58 produces a different relationship

between the lower and upper probabilities of the events: RP (y) = RP (y − 1).

Figures 2.1 and 2.2 show NPI-RP-GB at significance level α = 0.05 and α = 0.01, and

their rejection threshold values of 23 and 24 respectively. As already mentioned in Section

1.5, the reproducibility probability of statistical tests measures the probability that the same

decision would be made if a test were repeated under the same circumstances. The larger

value of the lower RP suggests that a test never would be repeated with high probability,

and the same decision regarding rejection of the null hypothesis would be reached.

As shown in Figure 2.3 and Table 2.3, there is a special case for NPI-RP-GB when
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y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 1.0000 1 11 0.8472 0.9011 22 0.9402 0.9665

1 1.0000 1.0000 12 0.7779 0.8472 23 0.9665 0.9828

2 0.9999 1.0000 13 0.6944 0.7779 24 0.9828 0.9920

3 0.9997 0.9999 14 0.6002 0.6944 25 0.9920 0.9967

4 0.9988 0.9997 15 0.5 0.6002 26 0.9967 0.9988

5 0.9967 0.9988 16 0.5 0.6002 27 0.9988 0.9997

6 0.9920 0.9967 17 0.6002 0.6944 28 0.9997 0.9999

7 0.9828 0.9920 18 0.6944 0.7779 29 0.9999 1.0000

8 0.9665 0.9828 19 0.7779 0.8472 30 1.0000 1

9 0.9402 0.9665 20 0.8472 0.9011

10 0.9011 0.9402 21 0.9011 0.9402

Table 2.3: NNPI-RP-GB of n = 30, πA0 = 0.6, πB = 0.1, γ = 0.55, P ∗
0 = 0.3750, α = 0.05
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Figure 2.3: NPI-RP-GB of n = 30, πA0 = 0.6, πB = 0.1, γ = 0.55, P ∗
0 = 0.3750, α = 0.05

πA0 = 0.6, πB = 0, n = 30, γ = 0.55, α = 0.05 and then P ∗ = (0.6)(0.55) + (0.45)(0.1) =

0.3750. The reproducibility of statistical tests based on GB data is symmetric around the

rejection threshold C = n
2
= 30. This means that RP (y = L) = RP (y = 30− L+ 1) and

RP (y = L) = RP (y = 30− L+ 1), L = 0, 1, ..., n
2
.

Example 2.3.2 This example introduces the reproducibility probability for one-sided

hypothesis tests with data collected using the forced method. Assume that a sample of

size n is taken from a population with a possible sensitive characteristic A. Suppose that

the proportion of the sensitive characteristic is πA0 . The randomisation device leads to the

sensitive question being asked with probability γ = 0.75, or the answer is forced to ‘Yes’

with probability γ1 = 0.10 or forced to ‘No’ with probability γ2 = 0.15. The significance
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y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 1.0000 1 11 0.9993 0.9997 22 0.6195 0.7240

1 1.0000 1.0000 12 0.9983 0.9993 23 0.5 0.6195

2 1.0000 1.0000 13 0.9964 0.9983 24 0.5 0.6260

3 1.0000 1.0000 14 0.9925 0.9964 25 0.6260 0.7469

4 1.0000 1.0000 15 0.9854 0.9925 26 0.7469 0.8505

5 1.0000 1.0000 16 0.9731 0.9854 27 0.8505 0.9273

6 1.0000 1.0000 17 0.9527 0.9731 28 0.9273 0.9738

7 1.0000 1.0000 18 0.9210 0.9527 29 0.9738 0.9947

8 1.0000 1.0000 19 0.8742 0.9210 30 0.9947 1

9 0.9999 1.0000 20 0.8092 0.8742

10 0.9997 0.9999 21 0.7240 0.8092

Table 2.4: NPI-RP-FM of α = 0.05, πA0 = 0.7, γ1 = 0.15, γ2 = 0.10, C = 24.

level for the hypothesis test is α = 0.05.

To start with, assume a sample with size n = 30, the null hypothesis that the proportion of

people who have characteristic is πA0 = 0.70, which is tested against πA0 > 0.70. So the

hypothesis test is

H ′
0 : πA = 0.7 vs H ′

1 : πA > 0.7 (2.16)

which is corresponding to the test:

H0 : P
∗ = 0.625 vs H1 : P

∗ > 0.625 (2.17)

Using the probability P ∗ of respondents who say ‘Yes’ in Equation (1.8), then

P ∗
0 = γ1 + πA0(1− γ1 − γ2) = 0.625 (2.18)

The threshold value C for the one-sided test is C = 24. Therefore, H0 is rejected if Y n
1 ≥ C;

otherwise, it is not rejected. In this example, the null hypothesis πA = 0.7 is rejected. Then,

p-value can be computed as follows: P (Y n
1 ≥ 25|n = 30, P ∗

0 = 0.625) = 0.0326 < 0.05. It is

concluded that H0 can be rejected if Y n
1 ≤ C. Therefore, the claim that the true proportion

of people who answer ‘Yes’ is 0.7 would be rejected, at the 0.05 significance level. The NPI

lower and upper probabilities for the event Y 2n
n+1 ≥ C are shown in Tables 2.4 and 2.5.

The NPI lower and upper probabilities for the event Y 2n
n+1 ≥ C are shown in Tables 2.4

and 2.5. At α = 0.05, the rejection threshold is C = 24, whereas at α = 0.01, the rejection

threshold is C = 25.
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y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 1.0000 1 11 0.9998 0.9999 22 0.7340 0.8198

1 1.0000 1.0000 12 0.9994 0.9998 23 0.6260 0.7340

2 1.0000 1.0000 13 0.9986 0.9994 24 0.5 0.6260

3 1.0000 1.0000 14 0.9969 0.9986 25 0.5 0.6347

4 1.0000 1.0000 15 0.9937 0.9969 26 0.6347 0.7642

5 1.0000 1.0000 16 0.9875 0.9937 27 0.7642 0.8729

6 1.0000 1.0000 17 0.9765 0.9875 28 0.8729 0.9486

7 1.0000 1.0000 18 0.9580 0.9765 29 0.9486 0.9881

8 1.0000 1.0000 19 0.9284 0.9580 30 0.9881 1

9 1.0000 1.0000 20 0.8837 0.9284

10 0.9999 1.0000 21 0.8198 0.8837

Table 2.5: NPI-RP-FM of α = 0.01, πA0 = 0.7, γ1 = 0.15, γ2 = 0.10, C = 25.

For all responses which are ‘Yes’ or ‘No’ for the value y = 0 or y = n which occurs if

all observations in the original test are ‘Yes’ answers, or if all are ‘No’ answers respectively.

If all of the responses are ‘Yes’ ( ‘No’), the data has no effect on the probability that ‘No’ (

‘Yes’) responses will never happen.

The minimum value of the lower reproducibility probability is 0.5 which means the test

statistic has worst-case scenario would result in RP of 0.5 [59,89] and according to Sulafah’s

proof [18], the lower reproducibility obtains a minimum value of 0.5, and the greater

reproducibility probabilities obtain a higher value as the test approaches the threshold

C.The maximum value of the upper reproducibility probability is 1. This occurs when all

observations in the original test are greater than C, so y = n, in which case H0 is rejected,

at any level of significance α.

If the original test does not lead to the rejection of H ′
0 : πA = 0.7, such that Y n

1 ≤

C = 24 at α = 0.05, then the reproducibility of statistical tests is the probability that

the null hypothesis will be not rejected in the future test. The value of Y n
1 = y above

the rejection threshold, C = 24 leads to non-rejection of H ′
0 : P

∗ = 0.625. Then the NPI

lower reproducibility of y is equal to the reproducibility probability of y + 1 such that

RP (y) = RP (y + 1).

Conversely, if the original test does lead to the rejection of H ′
0 : πA > 0.7, the

reproducibility probability of the y which is greater than the rejection threshold C = 24,

the NPI-RP of the event Y n
1 ≥ 24 given H0 produces a different relationship between the
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Figure 2.4: NPI-RP of one-sided test based on the forced data of n = 30, πA0 = 0.7,

γ1 = 0.10, γ2 = 0.15, α = 0.05, P ∗
0 = 0.625
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Figure 2.5: NPI-RP of one-sided test based on forced data of of n = 30, πA0 = 0.7,

γ1 = 0.10, γ2 = 0.15, α = 0.01, P ∗
0 = 0.625

lower and upper probabilities of the events: RP (y) = RP (y − 1).

Figures 2.5 and 2.4 show NPI-RP-FM at significance level α = 0.05 and α = 0.01, and

their rejection threshold values of 24 and 25 respectively. Obviously, for Y n
1 = y such that

the null-hypothesis is not rejected, the NPI lower and upper reproducibility probabilities

are higher for α = 0.01 than for α = 0.05, while the opposite is true for Y n
1 = y such

that the null-hypothesis is rejected. These properties directly follow from the fact that

the null-hypothesis is rejected for fewer values for Y n
1 = y if the significance level α is

smaller.
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2.4 Reproducibility of two-sided hypothesis tests

based on RRT data

In this section, the reproducibility of two-sided hypothesis tests based on randomised

response data is studied by deriving the NPI lower and upper reproducibility probabilities.

This follows the main steps of the one-sided test represented in Section 2.3, with two

rejection regions. The threshold values of a two-sided test splits the rejection region into

two regions.

Suppose that there is a sequence of 2n exchangeable Bernoulli trials, each with ‘Yes’

and ‘No’ as possible responses. We apply NPI as explained in Section 1.5 for random

quantity Y n
1 of ‘Yes’ answer in trials 1 to n of the data Y n

1 = y , and random quantity Y 2n
n+1

of ‘Yes’ answers in trials n+1 to 2n. We assume the future number of observations is equal

to the number of data observations n.

To start with, we consider the hypothesis tests for the proportion of people with a

sensitive characteristic A, where H
′
0 is the null hypothesis of the proportion πA = πA0 and

alternative hypothesis as follows:

H
′

0 : πA = πA0 versus H
′

1 : πA ̸= πA0 (2.19)

where πA0 ∈ [0, 1] and the level of significance is α.

The null hypothesi H
′
0 is rejected if Y n

1 ≥ r+1 or Y n
1 ≤ l − 1, otherwise, H ′

0 is not

rejected, where the events Y n
1 ≤ l−1 and Y n

1 ≥ r+1 are derived using Binomial distribution

and level of significance α from the following formulas:

P (Y n
1 ≥ r |H0 is true) ≤ α

2
(2.20)

P (Y n
1 ≤ l |H0 is true) ≤ α

2
(2.21)

We have the alternative hypothesis H ′
1 : πA ̸= πA0 , such that πA0 is the hypothesised

proportion of people who have the sensitive characteristic. This relates to P ∗
0 as mentioned

in Equations (1.5) and (1.8) in Section 1.2.1.
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Then, the NPI lower reproducibility probability of the event Y 2n
n+1 ≤ l−1∧Y 2n

n+1 ≥ r+1

if the original test led to rejection of H0 , given Y n
1 = y, is

RP (y) = P (Y 2n
n+1 ≤ l − 1 ∧ Y 2n

n+1 ≥ r + 1 | Y n
1 = y) = 1− P (Y 2n

n+1 ∈ {l − 1, ..., r + 1} | Y n
1 = y)

(2.22)

and the corresponding NPI upper reproducibility probability is

RP (y) = P (Y 2n
n+1 ≤ l − 1 ∨ Y 2n

n+1 ≥ r + 1 | Y n
1 = y) = P (Y 2n

n+1 ∈ {l − 1, ..., r + 1} | Y n
1 = y)

(2.23)

If H0 is not rejected in the original test, then the NPI lower reproducibility probability

is

RP (y) = P (Y 2n
n+1 ∈ {l − 1, ..., r + 1} | Y n

1 = y)

= 1− P (Y 2n
n+1 ∈ {0, 1, ..., l − 1} ∪ {r + 1, ..., n}| Y n

1 = y) (2.24)

and the NPI upper reproducibility probability of the event Y 2n
n+1 ∈ {l − 1, .., r + 1} is

RP (y) = P (Y 2n
n+1 ∈ {l, ..., r} | Y n

1 = y) (2.25)

For the case of rejection of the null hypothesis in the original test given either y = l − 1 or

y = r + 1, the minimum value that can occur for the NPI lower reproducibility probability

for this two-sided binomial test is less than 0.5. This is evident from the equations for

the NPI lower reproducibility probabilities when y = l − 1 or y = r + 1, with P (Y 2n
n+1 ≤

l − 1 ∨ Y 2n
n+1 ≥ r + 1 | Y n

1 = y) < 0.5 because of the two rejection regions for H0, the event

here differs from the one-sided test, as we now sum up the probability masses for the two

events Y 2n
n+1 ≤ l − 1 and Y 2n

n+1 ≥ r + 1 both given Y n
1 = y, where the probability for the

event Y 2n
n+1 ≤ l − 1 is equal to 0.5 and P (Y 2n

n+1 ≥ r + 1 | Y n
1 = y) > 0.

If H0 is not rejected in the original test, and l − 1 ≤ y ≤ r + 1, then the NPI lower

reproducibility probability for the event Y 2n
n+1 ≤ l − 1 given Y n

1 = y would be less than 0.5

and the NPI lower reproducibility probability for the event Y 2n
n+1 ≤ r + 1 given Y n

1 = y is

less than 0.5. The NPI reproducibility upper probabilities maximum value that can occur

is less than 1 in the scenario where the original test did not reject the null hypothesis. This

happens when y closes from l − 1 or r + 1.
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y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 1.0000 1 11 0.6058 0.7065 22 0.3764 0.4959

1 0.9998 1.0000 12 0.3872 0.4956 23 0.6162 0.7281

2 0.9989 0.9998 13 0.4824 0.5935 24 0.7246 0.8215

3 0.9963 0.9989 14 0.5706 0.6803 25 0.8200 0.8960

4 0.9898 0.9963 15 0.6428 0.7490 26 0.8954 0.9481

5 0.9765 0.9898 16 0.6912 0.7941 27 0.9479 0.9791

6 0.9527 0.9765 17 0.7099 0.8119 28 0.9791 0.9939

7 0.9149 0.9528 18 0.6960 0.8003 29 0.9939 0.9990

8 0.8607 0.9152 19 0.6501 0.7595 30 0.9990 1

9 0.7893 0.8614 20 0.5761 0.6917

10 0.7029 0.7910 21 0.4816 0.6015

Table 2.6: NPI-RP-GB at α = 0.05, l = 12, r = 22

y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 0.9998 1 11 0.4981 0.6046 22 0.4980 0.6137

1 0.9988 0.9998 12 0.6013 0.7002 23 0.3797 0.4997

2 0.9949 0.9988 13 0.6936 0.7811 24 0.6196 0.7342

3 0.9848 0.9949 14 0.7689 0.8441 25 0.7340 0.8334

4 0.9642 0.9848 15 0.8227 0.8875 26 0.8333 0.9097

5 0.9284 0.9642 16 0.8522 0.9108 27 0.9097 0.9601

6 0.8742 0.9284 17 0.8555 0.9137 28 0.9601 0.9872

7 0.8008 0.8743 18 0.8320 0.8959 29 0.9872 0.9977

8 0.7103 0.8009 19 0.7818 0.8569 30 0.9977 1

9 0.6078 0.7105 20 0.7066 0.7961

10 0.3915 0.4997 21 0.6099 0.7142

Table 2.7: NPI-RP-GB at α = 0.01, l = 10, r = 23

Section 2.2 explains the derivation of these equations. Furthermore, we illustrate the

results in the following examples.

Example 2.4.1 This example illustrate the NPI reproducibility probability of two-sided

hypothesis tests from data collected by the Greenberg method. Suppose that we have a

sample size of n = 30 from a population who have a sensitive characteristic A. Let the

proportion of people who have the sensitive characteristic be πA, and the known proportion

of those with the unrelated characteristic is πB = 0.3. Assume that we use a randomisation

device with probability γ = 0.7 for the sensitive question being asked.

We want to test the null hypothesis that the probability of the proportion of people who

have sensitive characteristics is πA0 = 0.7 against the alternative hypothesis that πA0 ̸= 0.7.

So,
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Figure 2.6: NPI-RP of two-sided tests using data collected from the GB method of n = 30,

πA0 = 0.7, πB = 0.3, γ = 0.7, α = 0.05, P ∗
0 = 0.58

H ′
0 : πA = 0.7 and H ′

1 : πA ̸= 0.7 (2.26)

The corresponding null and alternative hypotheses for P ∗ using Equation (1.5) for

NPI-RP-GB are:

H0 : P
∗ = 0.58 and H1 : P

∗ ̸= 0.58 (2.27)

where the proportion of people saying ‘Yes’ is P ∗
0 = (0.7)(0.7) + (1− 0.7)(0.3) = 0.58.

As shown in Figures 2.6 and 2.7 and Tables 2.6 and 2.7, at the significance level α = 0.05

and α = 0.01 respectively where H
′
0 is rejected if Y n

1 ≥ r+1 or Y n
1 ≤ l− 1, otherwise, H ′

0 is

not rejected. The p-value can be computed as follows: P (Y n
1 ≥ 23 ∨ Y n

1 ≤ 11|n = 30, P ∗
0 =

0.58) = 1−P (Y n
1 ≥ 22, n = 30, P ∗

0 = 0.58)+P (Y n
1 ≤ 11, n = 30, P ∗

0 = 0.58) = 0.0419 < 0.05.

It is concluded that H0 can be rejected if if Y n
1 ≥ 23 or Y n

1 ≤ 11, at the 0.05 significance

level.

The minimum value of the NPI lower reproducibility probability of the event Y 2n
n+1 ≥ r+1

or Y 2n
n+1 ≤ l − 1 for this two-sided GB take a value less than 0.5. This small probability of

future observations at the ’other end’ resulting to null hypothesis rejection could be why

the minimum for RP (y) for y that does not lead to null hypothesis rejection for y = 12 and

y = 22, respectively, is less than 0.5.

In the case of y = 0 or y = 30, the NPI upper probability for RP is equal to 1,
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Figure 2.7: NPI-RP of two-sided tests using data collected from the GB method of n = 30,

πA0 = 0.7, πB = 0.3, γ = 0.7, α = 0.01, P ∗
0 = 0.58

indicating that such data do not provide evidence against the possibility that there would

never be any Yes answers (for y = 0), or that there would never be any No answers (for

y = 30).

Figure 2.6 presents the NPI-RP-GB with the two-sided alternative hypothesis H ′
1 :

πA ̸= 0.7, with n = 30 and at α = 0.05. The null hypothesis is rejected if and only if

y ≤ 12 or y ≥ 22. For the case presented in Figure 2.7, with n = 30 and α = 0.01, the

null hypothesis is rejected if and only if y ≤ 10 or y ≥ 23. For values of y for which H
′
0 is

rejected, the NPI lower and upper reproducibility probabilities at significance α = 0.05 are

smaller than the NPI lower and upper reproducibility probabilities at significance α = 0.01,

while for values of y for which H
′
0 is not rejected, they are larger. This is logical because

changing the level of significance changes the rejection threshold.

In addition, an increase in γ causes an increase in P ∗
0 , which leads to an increase in

the threshold values, which results in higher lower and upper reproducibility probabilities

of the event Y 2n
n+1 ≥ l − 1 or Y 2n

n+1 ≤ r + 1.

As a result, when α is small, the null hypothesis is not rejected for a wide range of

y-values, which is consistent with the previous discussion of one-sided tests. The NPI lower

and upper reproducibility probability are lower for y−values for which H0 is rejected and

higher for y−values for which H0 is not rejected, as shown in a comparison of Tables 2.8
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y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 1.0000 1 10 0.7855 0.8567 21 0.5809 0.6986

1 1.0000 1.0000 11 0.7003 0.7871 22 0.4825 0.6061

2 0.9999 1.0000 12 0.6045 0.7036 23 0.3722 0.4964

3 0.9995 0.9999 13 0.3890 0.4959 24 0.6209 0.7375

4 0.9983 0.9995 14 0.4837 0.5935 25 0.7344 0.8346

5 0.9949 0.9983 15 0.5722 0.6808 26 0.8334 0.9101

6 0.9875 0.9949 16 0.6455 0.7507 27 0.9097 0.9603

7 0.9731 0.9875 17 0.6955 0.7976 28 0.9601 0.9872

8 0.9483 0.9731 18 0.7159 0.8172 29 0.9872 0.9977

9 0.9101 0.9484 19 0.7032 0.8072 30 0.9977 1

10 0.8560 0.9104 20 0.6570 0.7671

Table 2.8: NPI-RP-FM of α = 0.05, πA0 = 0.7, γ1 = 0.15, γ2 = 0.10, l = 13, r = 23.

and 2.9. This makes sense because a change in the rejection threshold logically follows a

change in the level of significance α.

Example 2.4.2 This example introduces the reproducibility of two-sided hypothesis tests

using data collected from the forced method. Assume that the probability of being asked

the sensitive question is 0.75, the forced ‘Yes’ answer has probability γ1 = 0.10 and the

forced ‘No’ answer has probability γ2 = 0.15.

Assume that we have a sample of size n = 30, and we want to test the null hypothesis

that the proportion of people who have the sensitive characteristic πA = 0.7, against the

alternative hypothesis that πA ̸= 0.7.

For α = 0.05 or α = 0.01, we consider NPI-RP for the two-sided hypothesis tests using

data collected from the FM method as follows.

The null and alternative hypotheses of the proportion πA of interest are:

H ′
0 : πA = 0.7 and H ′

1 : πA ̸= 0.7 (2.28)

The corresponding null and alternative hypotheses for the proportion of ’Yes’ answers,

using Equation (1.8), are:

H0 : P
∗ = 0.625 and H1 : P

∗ ̸= 0.625 (2.29)
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y RP (y) RP (y) y RP (y) RP (y) y RP (y) RP (y)

0 0.9999 1 11 0.3943 0.4999 22 0.7295 0.8179

1 0.9995 0.9999 12 0.4994 0.6035 23 0.6241 0.7332

2 0.9976 0.9995 13 0.6024 0.6989 24 0.4993 0.6257

3 0.9923 0.9976 14 0.6965 0.7812 25 0.3651 0.4999

4 0.9805 0.9923 15 0.7762 0.8473 26 0.6347 0.7642

5 0.9580 0.9805 16 0.8378 0.8960 27 0.7642 0.8729

6 0.9210 0.9580 17 0.8788 0.9272 28 0.8729 0.9486

7 0.8666 0.9210 18 0.8978 0.9416 29 0.9486 0.9881

8 0.7941 0.8666 19 0.8935 0.9390 30 0.9881 1

9 0.7056 0.7942 20 0.8648 0.9189

10 0.6054 0.7056 21 0.8103 0.8793

Table 2.9: NPI-RP-FM of α = 0.01, πA0 = 0.7, γ1 = 0.15, γ2 = 0.10, l = 11, r = 25.

6

12

18

24

30

0.00 0.25 0.50 0.75 1.00
Lower and Upper Probabilities

y

Figure 2.8: NPI-RP of two-sided tests using data collected from the FM method of n = 30,

πA0 = 0.7, γ1 = 0.10, γ2 = 0.15, α = 0.05, P ∗
0 = 0.625

The p-value can be computed as follows: P (Y n
1 ≥ 24 ∨ Y n

1 ≤ 12|n = 30, P ∗
0 = 0.625) =

1− P (Y n
1 ≥ 23, n = 30, P ∗

0 = 0.625) + P (Y n
1 ≤ 12, n = 30, P ∗

0 = 0.625) = 0.0428 < 0.05. It

is concluded that H0 can be rejected if Y n
1 ≥ 24 or Y n

1 ≤ 12, at the 0.05 significance level.

The null hypothesis is rejected in Table 2.8 with n = 30 and α = 0.05 if and only if

y ≤ 12 or y ≥ 24 are true. The lower and upper reproducibility probabilities are minimum

at these values, however, it is important to note that these lower probabilities are no longer

exactly equal to 0.5 as was the case for the one-sided alternative hypothesis as shown in

Section 2.4 for the same reasons are discussed in Example 2.4.1. The minimum value for

RP (y) for y leads to rejection of the null hypothesis y = 13 and y = 23. For the case when
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Figure 2.9: NPI-RP of two-sided tests using data collected from the FM method of n = 30,

πA0 = 0.7, γ1 = 0.10, γ2 = 0.15, α = 0.01, P ∗
0 = 0.625

the original test did not reject the null hypothesis, the maximum value for RP (y) for y

such that H0 is not rejected is 0.8172.

When the significance level changes from α = 0.05 to α = 0.01, the rejection threshold

values l and r change from 13, 23 to 11, 25. Therefore, with small, the null hypothesis

is not rejected for a large range of values of l and r, which is consistent with the same

property as previously mentioned for one-sided tests. For values of y for which H0 is rejected,

and for values of y for which H0 is not rejected, the NPI lower and upper reproducibility

probabilities are smaller and larger, respectively. This makes sense because a change in the

rejection threshold logically follows a change in the level of significance as Tables 2.8 and

2.9 and Figures 2.8 and 2.9 are shown.

2.5 A measure of reproducibility for statistical

hypothesis tests

One objective of the reproducibility of hypothesis tests based on RRT methods is to

compare RRT methods. This is non-trivial particularly if the different RRT methods require

different sample sizes to achieve a similar level of significance and power for a specific

alternative hypothesis. We present a new measure of reproducibility for this objective. This
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measure can be based on either the NPI lower reproducibilities probability or the NPI upper

reproducibilities probability, we call it the measure of reproducibility probability (MRP).

This measure of reproducibility probability can be applied to one-sided and two-sided

hypothesis tests.

2.5.1 A measure of reproducibility for one-sided hypothesis

tests

The measure of the lower reproducibility probability under H0 (MRPl
0(z)) is the probability,

under H0, for the event that RP (Y ) ≥ z, at the value z ∈ [0, 1]. It is just a probability at

a particular level of z. If we assume that the MRPl
0(z) is an appropriate measurement in

this situation, we gather all reproducibility probabilities at z.

Therefore, with a sample with size n and probability of ‘Yes’ answer P ∗
0 under H0,

MRPl
0 under H0 for one-sided test is

MRP l
0(z) =P (RP (Y ) ≥ z|H0) = P [RP (Y ) > z |Y ∼ Bin(n, P ∗

0 )]

=1−
b(z)∑

y=a(z)

(
n

y

)
(P ∗

0 )
y(1− P ∗

0 )
n−y (2.30)

for z ∈ [0, 1] and P ∗
0 is derived from Equation (1.5) and (1.8) in Section 1.2.1 under H0.

We specify all the values of Y = y for which RP (Y ) ≥ z by removing all the values

in the two intervals [0, 1, 2, ...., a(z) − 1], [b(z) + 1, ....., n] which are not included in the

interval [a(z), b(z)]. We assume that a(z) is integer such that RP (y) ≥ z for y < a(z)

and RP (a(z)) < z, and b(z) is also integer such that RP (y) ≥ z for y > b(z) and

RP (b(z)) < z.

Similarly, the measure of the upper reproducibility probability under H0 (MRPu
0(z))

under H0 for one-sided test is

MRP u
0 (z) =P (RP (Y ) ≥ z|H0) = P [RP (Y ) > z |Y ∼ Bin(n, P ∗

0 )]

=1−
b(z)∑

y=a(z)

(
n

y

)
(P ∗

0 )
y(1− P ∗

0 )
n−y (2.31)
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We specify all the value of Y = y for which RP (Y ) ≥ z by removing all the values in the

two intervals [0, 1, 2, ...., a(z)− 1], [b(z) + 1, ....., n] which are not included in the interval

[a(z), b(z)], where a(z) is integer such that RP (y) ≥ z for y < a(z) and RP (a(z)) < z, and

b(z) is also integer such that RP (y) ≥ z for y > b(z) and RP (b(z)) < z.

So in the last explanation, we investigates the measure of reproducibility under the null

hypothesis, H0 which is a statistical proposition stating that there is no significant difference

between P ∗ and P ∗
0 . Now, we need to investigate the measure of reproducibility under the

alternative hypothesis, H1, is a statistical proposition stating that there is a significant

difference between P ∗ and P ∗
0 that means P ∗ > P ∗

0 . Similarly, to compute the measure of

lower reproducibility probability under H1, we use Equations (2.32 ) and (2.33):

MRP l
1(z) =P (RP (y) ≥ z|H1) = P [RP (y) > z |Y ∼ Bin(n, P ∗

1 )]

=1−
b(z)∑

y=a(z)

(
n

y

)
(P ∗

1 )
y(1− P ∗

1 )
n−y (2.32)

Similarly, the measure of the upper reproducibility probability under H0 (MRPu
1(z)) under

H1 for one-sided test is

MRP u
1 (z) =P (RP (Y ) ≥ z|H1) = P [RP (Y ) > z |Y ∼ Bin(n, P ∗

1 )]

=1−
b(z)∑

y=a(z)

(
n

y

)
(P ∗

1 )
y(1− P ∗

1 )
n−y (2.33)

where P ∗
1 is derived from Equations (1.5) and (1.8) in Section 1.2.1 under H1 in which

power is computed. Examples 2.5.1 and 2.5.2 illustrate this measurement using the GB

and the FM methods as explained in Section 1.2.1.

Example 2.5.1 This example illustrates the measure of reproducibility probability for

one-sided hypothesis tests using data collected from the GB method [2]. With a sample of

size n = 30, assume that we interested in a sensitive characteristic A, the probability of a

person having the sensitive characteristic is πA, and the known proportion of those who

have the unrelated characteristic is πB = 0.30. Suppose that we use a randomising device

with a probability of γ = 0.7 for the sensitive question being asked.
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z MRPl
0(z) z MRPl

0(z) z MRPl
0(z)

0.5000 0.9020 0.8954 0.3667 0.9939 0.0151

0.6106 0.8067 0.9101 0.2400 0.9956 0.0056

0.6145 0.7898 0.9449 0.1420 0.9980 0.0018

0.7102 0.6644 0.9479 0.1419 0.9990 0.0018

0.7240 0.6575 0.9680 0.0755 0.9992 0.0005

0.7941 0.5137 0.9790 0.0754 0.9997 0.0001

0.8198 0.5115 0.9824 0.0358 0.9999 0.0000

0.8605 0.3673 0.9909 0.0151 1.0000 0.0000

Table 2.10: MRPl
0(z) with GB data of n = 30, πA0 = 0.7, πA1 = 0.9, πB = 0.3, γ = 0.7,

α = 0.05, P ∗
0 = 0.7, P ∗

1 = 0.72

z MRPl
1(z) z MRPl

1(z) z MRPl
1(z)

0.5000 0.6866 0.8605 0.0721 0.9824 0.0009

0.6106 0.5618 0.8954 0.0392 0.9909 0.0007

0.6145 0.4181 0.9101 0.0254 0.9939 0.0001

0.7102 0.3299 0.9449 0.0197 0.9956 0.0001

0.7240 0.2221 0.9479 0.0071 0.9980 0.0001

0.7941 0.1678 0.9680 0.0050 0.9990 0.0000

0.8198 0.1013 0.9790 0.0016

Table 2.11: MRPl
1(z) with GB data of n = 30, πA0 = 0.7, πA1 = 0.9, πB = 0.3, γ = 0.7,

α = 0.05, P ∗
0 = 0.7, P ∗

1 = 0.72

We want to test the null and alternative hypotheses :

H ′
0 : πA = 0.7 and H ′

1 : πA > 0.7 (2.34)

The corresponding null and alternative hypotheses for P ∗ using Equation (1.5) for NPI-RP-GB

are:

H0 : P
∗ = 0.58 and H1 : P

∗ > 0.58 (2.35)

We takes a specific value under the null hypothesis H
′
0 which is πA0 = 0.7 and we takes

a specific value under the alternative hypothesis H
′
1 which is that πA1 = 0.9 where the

proportion of people saying ‘Yes’ are

P ∗
0 = γπA0 + (1− γ)πB = 0.58

P ∗
1 = γπA1 + (1− γ)πB = 0.72 (2.36)
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Figure 2.10: MRPl
0(z) and MRPl

1(z) with GB data of n = 30, πA0 = 0.7, πA1 = 0.9,

πB = 0.3, γ = 0.7, α = 0.05, P ∗
0 = 0.7, P ∗

1 = 0.72

Figure 2.11: MRPu
0(z) and MRPu

1(z) with GB data of n = 30, πA0 = 0.7, πA1 = 0.9,

πB = 0.3, γ = 0.7, α = 0.05, P ∗
0 = 0.58, P ∗

1 = 0.72

Then, we calculate the RP (Y ) and RP (Y ). Then, we compute MRPl
0(z) by calculating the

probability of all RP (Y ) ≥ z with Y ∼ Bin(n, πA0). Similarly, we compute MRPl
1(z) by

calculating the probability of all RP (Y ) ≥ z with Y ∼ Bin(n, πA1) using Equations (2.30)
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and (2.32) respectively.

Figure 2.10 and Tables 2.10 and 2.11 reveal MRPl
0 and MRPl

1 for this test scenario. It

has been noted that MRPl
0(z) and MRPl

1(z) decrease if z increases. MRPl
0(z) and MRPl

1(z)

have higher value for z between 0 and 0.6. Both MRPl
0(z) and MRPl

1(z) get values close to

0 at z = 1. MRPl
0 get values higher than MRPl

1 for z ∈ [0, 1]. Changes in the MRPl
0(z)

and MRPl
1(z) are caused by further variations of γ, πA0 , πB and α. Increasing their values

which leads to increasing the MRPl
1(z) then which make MRPl

1(z) close to MRPl
0(z).

Similarly, MRPu
0(z) and MRPu

1(z) of the GB can be derived as the same as MRPl
0(z)

and MRPl
1(z) derivation. It can be noted that MRPu

0(z) and MRPl
u(z) get higher values

than MRPl
0(z) and MRPl

1(z) because the probability of yes-response in the FM method

is larger than the probability of yes-response in the GB method, the threshold value gets

larger and consequently the non-rejection region and the reproducibility are increased as

shown in Figures 2.10 and 2.11.

Example 2.5.2 This example illustrates the measure of reproducibility probability of

one-sided hypothesis tests using data collected from the FM method for a sample size

n = 30. Assume that the probability of being asked the sensitive question is γ = 0.75, the

forced ‘Yes’ answer has probability γ1 = 0.10 and the forced ‘No’ answer has probability

γ2 = 0.15.

We assume the null and the alternative hypotheses as follows:

H ′
0 : πA = 0.7 and H ′

1 : πA > 0.7 (2.37)

The corresponding null and alternative hypotheses for P ∗ using Equation (1.8) for NPI-RP-FM

are:

H0 : P
∗ = 0.625 and H1 : P

∗ > 0.625 (2.38)

We takes a specific value under the null hypothesis H
′
0 which is πA0 = 0.7 and we takes

a specific value under the alternative hypothesis H
′
1 which is that πA1 = 0.9 where the
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z MRPl
0(z) z MRPl

0(z) z MRPl
0(z)

0.5000 0.8832 0.9097 0.3148 0.9959 0.0036

0.6145 0.7747 0.9149 0.1971 0.9977 0.0036

0.6195 0.7539 0.9483 0.1114 0.9981 0.0011

0.7163 0.6172 0.9601 0.1112 0.9992 0.0003

0.7340 0.6088 0.9702 0.0564 0.9997 0.0001

0.8007 0.4597 0.9837 0.0255 0.9999 0.0000

0.8333 0.4571 0.9872 0.0255 1.0000 0.0000

0.8666 0.3154 0.9916 0.0102

Table 2.12: MRPl
0(z) with FM data of n = 30, γ2 = 0.10, γ1 = 0.15, πA0 = 0.7, πA1 = 0.9,

α = 0.05, P ∗
0 = 0.625, P ∗

1 = 0.775

z MRPl
1(z) z MRPl

1(z) z MRPl
1(z)

0.5000 0.6899 0.8333 0.0933 0.9702 0.0049

0.6145 0.5898 0.8666 0.0785 0.9837 0.0047

0.6195 0.4200 0.9097 0.0311 0.9872 0.0005

0.7163 0.3589 0.9149 0.0251 0.9916 0.0005

0.7340 0.2185 0.9483 0.0230 0.9959 0.0005

0.8007 0.1863 0.9601 0.0055 0.9977 0.0000

Table 2.13: MRPl
0(z) with FM data of n = 30, γ2 = 0.10, γ1 = 0.15, πA0 = 0.7, πA1 = 0.9,

α = 0.05, P ∗
0 = 0.625, P ∗

1 = 0.775

proportion of people saying ‘Yes’ are

P ∗
0 = γ1 + (1− γ1 − γ2)πA0 = 0.625

P ∗
1 = γ1 + (1− γ1 − γ2)πA1 = 0.775 (2.39)

Then, we calculate the RP (Y ) and RP (Y ). Then, we compute MRPl
0(z) by calculating

the probability of all RP (Y ) ≥ z with Y ∼ Bin(n, πA0). Similarly, e compute MRPl
1(z) by

calculating the probability of all RP (Y ) ≥ z with Y ∼ Bin(n, πA1) using Equations (2.30)

and (2.32) respectively.

Figure 2.12 and Tables 2.12 and 2.13 reveal MRPl
0 and MRPl

1 for this test scenario. It

has been noted that MRPl
0(z) and MRPl

1(z) decrease if z increases. MRPl
0(z) and MRPl

1(z)

have higher value for z between 0 and 0.6. Both MRPl
0(z) and MRPl

1(z) get values close to
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Figure 2.12: MRPl
0(z) and MRPl

1(z) with FM of n = 30, γ2 = 0.10, γ1 = 0.15, πA0 = 0.7,

πA1 = 0.9, α = 0.05, P ∗
0 = 0.625, P ∗

1 = 0.775

Figure 2.13: MRPu
0(z) and MRPu

1(z) with FM of n = 30 , $γ2 = 0.10, γ1 = 0.15, πA0 = 0.7,

πA1 = 0.9, α = 0.05, P0 = 0.625, P1 = 0.775

0 at z = 1. MRPl
0 get values higher than MRPl

1 for z ∈ [0, 1]. Changes in the MRPl
0(z)

and MRPl
1(z) are caused by further variations of γ1, γ2, πA0 and α. Increasing their values

leads to increasing MRPl
1(z) then that makes MRPl

1(z) close to MRPl
0(z).
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From the results of MRPl
0(z) and MRPl

1(z) of the GB and the FM method, it is noted

that the MRPl
0(z) and MRPl

1(z) of the GB method is higher than MRPl
0(z) and MRPl

1(z)

of the FM method as shown in Tables 2.10, 2.11, 2.12 and 2.13.

Similarly, MRPu
0(z) and MRPu

1(z) of the FM method can be derived as the same as

MRPl
0(z) and MRPl

1(z) derivation. It can be noted that MRPu
0(z) and MRPl

u(z) get higher

values than MRPl
0(z) and MRPl

1(z) as shown in Figures 2.12 and 2.13.

For comparison between the GB and FM method using the same sample size, we

can noticed that MRPl
0(z) and MRPl

1(z) of the FM method is greater than MRPl
0(z) and

MRPl
1(z) of the GB method. However, this measurement needs to apply using the required

sample size with high power and at a specific significance level.

when comparing the GB and the FM methods with the same sample size, we find that

the MRPl
0(z) and MRPl

1(z) of the FM technique are higher than those of the GB method.

However, in order for this measurement to be meaningful, the minimum required sample

size must be used, along with high power and a certain level of significance. as explained in

Section 2.5.2.

2.5.2 The minimum required sample size of measurement of

reproducibility probability

In the last explanation, we derive the NPI lower and the upper reproducibility probabilities

and define the measurement of MRP(z). Now, we need to select the best parameters of the

RRT methods, ones that result in tests with appropriate power and p-values to determine

the required minimum sample size, which leads to increasing reproducibility probability

of hypothesis tests.

Assume that Y is the random quantity where Y ∼ Bin(nk, P
∗
0 ), and the null hypothesis

is H0 : P
∗ = P ∗

0 versus the alternative hypothesis is H1 : P
∗ > P ∗

0 . The required sample size

n will be large. So, we use the normal approximation instead of the binomial distribution

when nP ∗
0 ≥ 5 and n(1− P ∗

0 ) ≥ 5 are both true. We standardise the random quantity Y

as Z = Y−E(Y )√
Var(Y )

. Then, for the approximate one-sided test of H0, we reject H0 when the
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p-value of the test statistic ż is less than or equal α where ż =
P̂−P ∗

0√
P∗
0 (1−P∗

0 )

n

and P̂ is the

sample proportion.

Suppose H1 is true with P ∗ = P1. Then, the approximate power is calculated

using [21]:

1− β ≈ P

(
Z ≥

n(P ∗
0 − P ∗

1 ) + z1−α

√
nP ∗

0 (1− P ∗
0 )√

nP ∗
1 (1− P ∗

1 )

)
(2.40)

where the values of z1−α indicates to the (1 − α) × 100 percentiles of standard normal

distribution.

Now, we determine the minimum sample size nk required for this case for getting an

approximate power (i.e. 1− β) at a level of significance of (i.e., α = 0.05) using Equation

(2.41) [21].

⌈nk⌉ ≥
[
z1−α

√
P ∗
0 (1− P ∗

0 ) + z1−β

√
P ∗
1 (1− P ∗

1 )

P ∗
1 − P ∗

0

]2
(2.41)

where ⌈nk⌉ is the smallest integer greater than or equal to nk, P
∗
0 , P

∗
1 are the proportion

of people who have the sensitive characteristics under H0 and H1 respectively. The values

of z1−α and z1−β indicate to the (1− α)× 100 and (1− β)× 100 percentiles of standard

normal distribution respectively. If the hypothesis tests do not give the required power

equal to or greater than 0.90 using sample size nk, Fleiss, Levin, and Paik [54] suggested

adding 1
|P ∗

1 −P ∗
0 |

as a continuity correction to ⌈nk⌉ to get the required power as follows.

n = ⌈nk⌉+
1

|P ∗
1 − P ∗

0 |
(2.42)

Using the threshold value C in Equation (2.11), we calculate p-value as follows:

P (Y n
1 ≥ C | P ∗ = P ∗

0 ) = 1−
n∑

y=C

(
n

y

)
(P ∗

0 )
y(1− P ∗

0 )
n−y (2.43)

we can use the exact power of P ∗ = P ∗
1 [54] as follows:

P (Y n
1 ≥ C | P ∗ = P ∗

1 ) =
n∑

y=C

(
nk

y

)
(P ∗

1 )
y(1− P ∗

1 )
nk−y (2.44)

Similarly, for two-sided tests, assume that the null hypothesis is H0 : P
∗ = P ∗

0 versus

the alternative hypothesis is H1 : P
∗ ̸= P ∗

0 . We use the normal approximation instead of

the binomial distribution when nP ∗
0 ≥ 5 and n(1− P ∗

0 ) ≥ 5 are both true.
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The approximate power is

1− β ≈ Φ(ż − z1−α
2
) + Φ(−ż − z1−α

2
) (2.45)

where Φ is the standard normal distribution function and ż is the test statistics.

Now, we determine the minimum sample size nk required for this case for getting an

approximate power (i.e. 1− β) at a level of significance of (i.e., α = 0.05) as follows:

⌈nk⌉ ≥ (1− P ∗
1 )× P ∗

1

[(
z1−α

2
+ z1−β

P ∗
1 − P ∗

0

)]2
(2.46)

where the values of z1−α
2
and z1−β indicates to the (1− α

2
)×100 and (1−β)×100 percentiles

of standard normal distribution respectively.

Using the threshold value in Equations (2.20) and (2.21), the p-value of test for the

proportion P ∗ = P ∗
0 is

p-value = 2P (Y n
1 ≥ r | P ∗ = P ∗

0 ) = 2
n∑

y=r

(
n

y

)
(P ∗

0 )
y(1− P ∗

0 )
n−y (2.47)

P (Y n
1 ≤ l − 1 | P ∗ = P ∗

1 ) + P (Y n
1 ≥ r | P ∗ = P1)] =

=
l−1∑
y=0

(
n

y

)
(P ∗

1 )
y(1− P ∗

1 )
n−y +

n∑
y=r

(
n

y

)
(P ∗

1 )
y(1− P ∗

1 )
n−y

(2.48)

Using the same parameters of the GB and FM methods in Examples 2.5.2 and 2.5.1,

we calculate the minimum required sample sizes with power equals to 0.90 and p-value is

less than 0.05 as Figures 2.14 and 2.15 show. It is noted that we have higher MRPl
0(z) and

MRPl
1(z) of the GB and the FM method with higher power 0.9356, 0.9417 and p-values

0.0427, 0.0345 respectively. MRPl
0(z) and MRPl

1(z) are close to each other over all z.

This measure can be applied of MRPu
0(z) and MRPu

1(z) for two-sided hypothesis

tests based on data collected from RRT methods for the range values of Y = y in which

RP (Y ) ≥ z and RP (Y ) ≥ z respectively.
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Figure 2.14: MRPl
0(z) and MRPl

1(z) of one-sided hypothesis tests using the GB method of

n = 113, πA0 = 0.7, πA1 = 0.9, πB = 0.3, γ = 0.7, α = 0.05, P ∗
0 = 0.58, P ∗

1 =

0.72
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Figure 2.15: MRPl
0 and MRPl

1 of one-sided hypothesis tests using FM method of n = 93,

γ2 = 0.10, γ1 = 0.15, πA0 = 0.7, πA1 = 0.9, α = 0.05, P ∗
0 = 0.625, P ∗

1 = 0.775

2.5.3 A measure of reproducibility for two-sided hypothesis

tests

This section introduces the measure of reproducibility for two-sided hypothesis tests using

data collected from the GB and FM methods using two threshold values l, r to calculate

MRPl
0(z) and MRPl

1(z) based on NPI lower and upper reproducibility probabilities under

H0 and H1 respectively. In addition, we calculate MRPu
0(z) and MRPu

1(z) under H0 and
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z MRPl
0(z) z MRPl

0(z) z MRPl
0(z)

0.3764 0.9830 0.6428 0.5266 0.8200 0.0020

0.3872 0.9434 0.6501 0.4314 0.8607 0.0007

0.4816 0.9080 0.6912 0.2873 0.8954 0.0005

0.4824 0.8415 0.6960 0.1619 0.9149 0.0001

0.5706 0.7436 0.7029 0.1524 0.9479 0.0001

0.5761 0.6810 0.7099 0.0086 0.9527 0.0000

0.6058 0.6602 0.7246 0.0063

0.6162 0.6534 0.7893 0.0026

Table 2.14: MRPl
0(z) of two-sided hypothesis tests using data collected from the GB method

of n = 30, πA0 = 0.7, πA1 = 0.9, πB = 0.3, γ = 0.7, α = 0.05, P ∗
0 = 0.7, P ∗

1 =

0.72

H1 for all z.

We use the mentiond Equations (2.30) and (2.32) to calculate the MRPl
0(z) and

MRPl
1(z) and Equations (2.31) and (2.33) to calculate the MRPu

0(z) and MRPu
1(z) under

H1 using three intervals [0, l − 1], the middle region between the threshold values [l, r] and

[r + 1, n] where l and r are calculated from Equation 2.20 and 2.21.

Example 2.5.3 This example illustrates the measure of reproducibility probability for

two-sided hypothesis tests using data collected from the GB method [2]. With a sample of

size n = 30, assume that we are interested in a sensitive characteristic A, the probability of

a person having the sensitive characteristic is πA, and the known proportion of those who

have the unrelated characteristic is πB = 0.30. Suppose that we use a randomising device

with a probability of γ = 0.7 for the sensitive question being asked.

Tables 2.14 and 2.15 show the MRPl
0(z) and MRPl

1(z) using data collected from the

GB method. It is noted that MRPl
0(z) takes the maximum value 0.9830 of z = 0.3764

whereas MRPl
1(z) takes the maximum value 0.8563 of z = 0.3764, then they decrease till

0.0000 for z = 0.9527 of MRPl
0(z) and value z = 0.9939 for MRPl

1(z).

For sample size n, it is noticed that MRPl
0(z) = 0.6810 for z = 0.5761 which is close to

MRPl
1(z) = 0.6871 for z = 0.5706. In addition, MRPl

0(z) = 0.2873 for z = 0.6912 which is

close to MRPl
1(z) = 0.2879 for z = 0.6501. Further points between MRPl

0(z) and MRPl
1(z)
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z MRPl
0(z) z MRPl

0(z) z MRPl
0(z)

0.3764 0.8563 0.6501 0.2879 0.8954 0.0041

0.3872 0.8556 0.6912 0.2586 0.9149 0.0041

0.4816 0.6949 0.6960 0.1704 0.9479 0.0007

0.4824 0.6929 0.7029 0.1704 0.9527 0.0007

0.5706 0.6871 0.7099 0.1161 0.9765 0.0007

0.5761 0.5344 0.7246 0.0496 0.9791 0.0001

0.6058 0.5342 0.7893 0.0495 0.9898 0.0001

0.6162 0.4264 0.8200 0.0166 0.9939 0.0000

0.6428 0.4126 0.8607 0.0166

Table 2.15: MRPl
1(z) of two-sided hypothesis tests using data collected from the GB method

of n = 30, πA0 = 0.7, πA1 = 0.9, πB = 0.3, γ = 0.7, α = 0.05, P ∗
0 = 0.7, P ∗

1 =

0.72

Figure 2.16: MRPl
0(z) and MRPl

1(z) of two-sided hypothesis tests using data collected from

the GB method of n = 30, πA0 = 0.7, πA1 = 0.9, πB = 0.3, γ = 0.7, α =

0.05, P ∗
0 = 0.7, P ∗

1 = 0.72

are close to each other as shown in Figure 2.16. In almost MRPl
0(z) is larger than MRPl

1(z)

for each value of z.

Conversely, MRPl
0(z) is less than MRPl

1(z) for each value of z using the required

minimum sample size n = 131 as shown in Figure 2.17.

Example 2.5.4 This example illustrates the measure of reproducibility probability of

two-sided hypothesis tests using data collected from the FM method for a sample size

n = 30. Assume that the probability of being asked the sensitive question is γ = 0.75, the
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Figure 2.17: MRPl
0(z) and MRPl

1(z) of two-sided hypothesis tests using data collected from

the GB method of n = 131, πA0 = 0.7, πA1 = 0.9, πB = 0.3, γ = 0.7, α =

0.05, P ∗
0 = 0.7, P ∗

1 = 0.72

z MRPl
0(z) z MRPl

0(z) z MRPl
0(z)

0.3722 0.9792 0.6209 0.6673 0.7344 0.0044

0.3890 0.9483 0.6455 0.5496 0.7855 0.0019

0.4825 0.9054 0.6570 0.4411 0.8334 0.0013

0.4837 0.8506 0.6955 0.2995 0.8560 0.0004

0.5722 0.7648 0.7003 0.2929 0.9097 0.0003

0.5809 0.6909 0.7032 0.1562 0.9101 0.0001

0.6045 0.6756 0.7159 0.0071 0.9483 0.0000

Table 2.16: MRPl
0(z) of two-sided hypothesis tests using data collected from the FM

method of n = 30, γ2 = 0.10, γ1 = 0.15, πA0 = 0.7, πA1 = 0.9, α = 0.05, P ∗
0 =

0.625, P ∗
1 = 0.775

forced ‘Yes’ answer has probability γ1 = 0.10 and the forced ‘No’ answer has probability

γ2 = 0.15.

Tables 2.16 and 2.17 show the MRPl
0(z) and MRPl

1(z) using data collected from the

FM method. It is noted that MRPl
0(z) takes the maximum value 0.9792 of z = 0.3722

whereas MRPl
1(z) takes the maximum value 0.8302 of z = 0.3722, then they decrease till

0.0000 for z = 0.9483 of MRPl
0(z) and value z = 0.9483 for MRPl

1(z).

For sample size n, it is noticed that MRPl
0(z) = 0.6673 for z = 0.6209 which is close to

MRPl
1(z) = 0.6610 for z = 0.4837. In addition, MRPl

0(z) = 0.0044 for z = 0.7344 which is
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z MRPl
1(z) z MRPl

1(z) z MRPl
1(z)

0.3722 0.8302 0.6455 0.3708 0.8334 0.0221

0.3890 0.8300 0.6570 0.2707 0.8560 0.0221

0.4825 0.6610 0.6955 0.2559 0.9097 0.0046

0.4837 0.6603 0.7003 0.2558 0.9101 0.0046

0.5722 0.6582 0.7032 0.1948 0.9483 0.0046

0.5809 0.5172 0.7159 0.1626 0.9601 0.0005

0.6045 0.5171 0.7344 0.0696 0.9731 0.0005

0.6209 0.3767 0.7855 0.0696 0.9872 0.0000

Table 2.17: MRPl
0(z) of two-sided hypothesis tests using data collected from the FM

method of n = 30, γ2 = 0.10, γ1 = 0.15, πA0 = 0.7, πA1 = 0.9, α = 0.05, P ∗
0 =

0.625, P ∗
1 = 0.775

Figure 2.18: MRPl
0(z) and MRPl

1(z) of two-sided hypothesis tests using FM data of n = 30,

γ2 = 0.10, γ1 = 0.15, πA0 = 0.7, πA1 = 0.9, α = 0.05, P ∗
0 = 0.625, P ∗

1 = 0.775

close to MRPl
1(z) = 0.0046 for z = 0.9097 and z = 0.9101. Further points between MRPl

0(z)

and MRPl
1(z) are close for each other as shown in Figure 2.18. In almost MRPl

0(z) is larger

than MRPl
1(z) for each value of z. Conversely, MRPl

0(z) is less than MRPl
1(z) for each

value of z using the required minimum sample size n = 110 as shown in Figure 2.19. It

is noticed that MRPl
0(z) closes from 0 for z > 0.7, that happens because the difference

between the RP (Y ) values decrease which provides small measures of MRPl
0(z).
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Figure 2.19: MRPl
0(z) and MRPl

1(z) of two-sided hypothesis tests using FM data of n = 110 ,

γ2 = 0.10, γ1 = 0.15, πA0 = 0.7, πA1 = 0.9, α = 0.05, P ∗
0 = 0.625, P ∗

1 = 0.775

2.6 Area under MRP of statistical tests based on

RRT data

In this section, we introduce the measure of reproducibility for hypothesis tests to allow

comparing of different RRT methods by collecting data for such tests we need summary

statistics of MRP(z) over all z. We calculate to use the area under MRP over different

values of z to compare between of RP of statistical tests based on data collected from RRT

method under H0 and H1 which are denoted by AUMRP.

To explain this method to measure the whole area, assume that the initial combinations

of variables within RRT method such as πA0 , πA1 , γ, πB of the GB method or πA0 , πA1 , γ1, γ2

of the FM method.

We can now compute MPRl
0(z) under the null hypothesis and MPRl

1(z) under the

alternative hypothesis using Equations (2.30) and (2.32). The AUMRP0 and AUMRP1 are

then calculated as follows. Assume that D is the partition of z ∈ [0, 1], where zi is real

number of the bound of each partition in the number line and i = 0, 1, ..., n.

D = {[z0, z1], [z1, z2], . . . , [zn−1, zn]}, and 0 = z0 < z1 < z2 < · · · < zn = 1.
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Therefore, AUMRPl
0 and AUMRPl

1 over [0, 1] with partition D are

AUMRP l
0 =

n∑
i=1

MRP l
0(z

∗
i )∆zi (2.49)

AUMRP l
1 =

n∑
i=1

MRP l
1(z

∗
i )∆zi (2.50)

where n is the length of partitions and ∆zi = zi − zi−1 and z∗i ∈ [zi−1, zi].

Examples 2.6.1 and 2.6.2 introduce AUMRPl
0, AUMRPl

1 based on data collected from

the GB and FM method.

Example 2.6.1 This example derives AUMPRl
0 and AUMRPl

1 of one-sided hypothesis

tests based on data collected from the Greenberg method. Assume that some individuals of

a population have a sensitive characteristic A, with πA as the proportion of the sensitive

characteristic in a population whereas πB is the proportion of unrelated characteristic.

We use a randomisation device with a probability of γ = 0.7 for the sensitive question.

Assume that hypothesised value of the proportion of people with the sensitive characteristic

under H0 and H1 are πA0 = 0.7 and πA1 = 0.9 respectively with the significance level

α = 0.05 and power 0.90.

Table 2.18 gives the required minimum sample sizes for different values of πB. At

πB = 0.10, the threshold value is 71, then the AUMRPl
0 equals 0.8190 and AUMRPl

1 equals

0.8114 with power is 0.9123 and p-value is 0.0383, whereas the AUMRPl
0 equals to 0.8225

and AUMRPl
1 equals to 0.8087 for πB = 0.25 with threshold value is 74 and power is 0.9090

and p-value is 0.0356. It is noted that for all values of πB ∈ [0, 0.6], AUMRPl
0 and AUMRPl

1

taking values between 0.80 and 0.81 and the AUMRPl
1 is always greater than the AUMRPl

0

except the case of πB = 0.1.

Example 2.6.2 This example derives AUMPRl
0 and AUMRPl

1 of one-side hypothesis tests

using data collected from the FM method. Assume that the probability of being asked the

sensitive question is 0.75, the forced ‘Yes’ answer is γ1 = 0.10 and the forced ‘No’ answer is

γ2 = 0.15, where the significance level is α = 0.05, and power 0.90.
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πB 0 0.1 0.25 0.3 0.45 0.6

n 121 119 115 113 106 98

C 68 71 74 74 74 73

P ∗
0 0.490 0.520 0.565 0.580 0.625 0.670

P ∗
1 0.630 0.660 0.705 0.720 0.765 0.810

p-value 0.0469 0.0383 0.0356 0.0427 0.0472 0.0435

power 0.9262 0.9123 0.9090 0.9227 0.9316 0.9313

AUMRPl
0 0.8070 0.8190 0.8225 0.8112 0.8029 0.8049

AUMRPl
1 0.8235 0.8114 0.8087 0.8200 0.8281 0.8278

Table 2.18: AUMRPl
0, AUMRPl

1of GB method with γ = 0.7, πA0 = 0.7, πA1 = 0.9, α = 0.05,

β = 0.1

γ1 0.10 0.13 0.15 0.23 0.27 0.29

n 76 80 84 100 109 115

C 57 60 64 77 85 90

P ∗
0 0.6600 0.6690 0.6750 0.699 0.711 0.717

P ∗
1 0.8200 0.8230 0.8250 0.833 0.837 0.839

p-value 0.0350 0.0458 0.0317 0.0458 0.0424 0.0449

power 0.9210 0.9367 0.9124 0.9358 0.9275 0.9315

AUMRPl
0 0.8122 0.7966 0.8200 0.8010 0.8073 0.8047

AUMRPl
1 0.8194 0.8335 0.8119 0.8319 0.8238 0.8274

Table 2.19: The AUMRPl
0, AUMRPl

1 of the FM method with πA0 = 0.7, πA1 = 0.9,

γ2 = 0.10, α = 0.05, β = 0.1

Assume that we have a sample with size n from a population who have the sensitive

characteristic. The hypothesised proportion of people with the sensitive characteristic

is πA0 = 0.7 and the alternative proportion of people with the sensitive characteristic is

πA1 = 0.90.

For different values of γ2, we determine the required minimum sample sizes and derived

values of AUMRPl
0. Table 2.19 investigates the AUMRPl

0 and AUMRPl
1 of the FM under

H0 and H1 using Equations (2.49) and (2.50), respectively. AUMRPl
0 and AUMRPl

1 have

values between 0.80 and 0.83. The AUMRPl
0 is always greater than the AUMRPl

1. However,

there is no specific pattern of AUMRPl
0 or AUMRPl

1.

The hypothesis test based on data collected from the FM method has a p-value of
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approximately 0.03 for γ1 = 0.10 which indicates that there is some evidence that the

proportion of the sensitive characteristic could be not equal to 70%. Therefore, we need to

use a larger sample size to get significant results. The FM method has higher power than

0.92. AUMRPl
0 of the FM method takes values between 0.80 and 0.82 whereas AUMRPl

1 of

the GB method takes values between 0.81 and 0.83.

Example 2.6.3 This example derives AUMPRl
0 and AUMPRl

1 of two-sided hypothesis

tests based on data collected from the GB and the FM methods. Assume that some

individuals of a population have a sensitive characteristic A, with πA as the proportion

of the sensitive characteristic in a population whereas πB is the proportion of unrelated

characteristic.

This example calculates the AUMPRl
0 and AUMPRl

1 of two-sided hypothesis tests as

shown in Tables 2.21 and 2.20. We calculate the required minimum sample size of the GB

method using Equation (2.46) which is larger than the sample sizes of one-sided hypothesis

tests, we add the continuity correction to get power larger than 0.90. The FM method needs

to get a smaller sample size than the GB method to calculate AUMPRl
0 and AUMPRl

1 with

higher power more than 0.90.

The proportions of the sensitive characteristic in the population of the FM method

are higher than the proportions of the sensitive characteristic in the population of the GB

method. This occurs due to using γ > 0.7 of the FM which is equal to 1− γ2 − γ1 whereas

the GB method uses γ = 0.7. The hypothesis test based on data collected from the FM

method has p-value of approximately 0.03 for γ1 = {0.10, 0.15} which indicates that there is

some evidence that the proportion of the sensitive characteristic could be not equal to 70%.

Therefore, we need to use a larger sample size to get significant results. Both methods have

higher power than 0.90. AUMRPl
0 of the GB method takes values between 0.80 and 0.82 of

the FM method takes values between 0.79 and 0.81. AUMRPl
1 of the GB method takes

values between 0.80 and 0.82 of the FM method takes values between 0.81 and 0.83.

As a result, the reproducibility probability power and p-values for AUMRPl
0 and

AUMRPl
1 of RRT of one-sided and two-sided tests varied depending on the threshold

rejection values and the probability of yes-answer under H0 and H1 respectively.
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πB 0 0.2 0.25 0.3 0.45 0.6

n 149 147 147 145 140 133

l 61 69 71 72 76 78

r 84 92 94 95 98 99

P ∗
0 0.490 0.550 0.565 0.580 0.625 0.670

P ∗
1 0.630 0.690 0.705 0.720 0.765 0.810

p-value 0.0497 0.0466 0.0464 0.0441 0.0449 0.0430

power 0.9430 0.9427 0.9488 0.9480 0.9540 0.9620

AUMRPl
0 0.6953 0.6993 0.7009 0.7056 0.7002 0.7013

AUMRPl
1 0.8165 0.8142 0.8211 0.8195 0.8250 0.8334

Table 2.20: AUMRPl
0, AUMRPl

1 using data collected from the GB method of γ = 0.7,

πA0 = 0.7, πA1 = 0.9, α = 0.05, β = 0.1.

γ1 0.10 0.13 0.15 0.23 0.27 0.29

n 105 112 116 139 152 160

l 60 65 68 86 97 103

r 78 84 87 107 1187 125

P ∗
0 0.660 0.669 0.675 0.699 0.711 0.717

P ∗
1 0.820 0.823 0.825 0.833 0.837 0.839

p-value 0.0499 0.0446 0.0493 0.0426 0.0495 0.0444

power 0.9692 0.9673 0.9737 0.9664 0.9686 0.9662

AUMRPl
0 0.6750 0.6898 0.6841 0.7023 0.6885 0.7020

AUMRPl
1 0.8415 0.8389 0.8508 0.8394 0.8437 0.8402

Table 2.21: AUMRPl
0 and AUMRPl

1using data collected from the FM method of πA0 = 0.7,

πA1 = 0.9, γ2 = 0.10 and α = 0.05, β = 0.1

2.7 The lower and upper threshold values

This section investigates the possible range of threshold values C of each AUMRPl
0 and

AUMRPl
1. This procedure helps to find intersection points between the AUMRPl

0 and

AUMRPl
1 and derivation of the lower and upper rejection threshold values CL

α,β and CU
α,β

of threshold value C respectively. Therefore, we can obtain the same areas of AUMRPl
0

and AUMRPl
1 using different H0 and H1 hypotheses. In addition, these lower and upper

threshold values determine the AUMRPl
0 and AUMRPl

1 with high power more than 0.90

and small p-value less than 0.05 using Equations (2.51) and (2.52) to calculate the lower
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πB = 0.9 πB = 0.8 πB = 0.7

C AUMRPl
0 p-value power C AUMRPl

0 p-value power C AUMRPl
0 p-value power

98 0.7811 0.0380 0.9928 95 0.7900 0.0341 0.9816 91 0.7752 0.0478 0.9791

99 0.8060 0.0223 0.9855 96 0.8135 0.0204 0.9674 92 0.7988 0.0302 0.9646

100 0.8290 0.0124 0.9725 97 0.8353 0.0116 0.9449 93 0.8212 0.0182 0.9426

101 0.8495 0.0065 0.9504 98 0.8546 0.0063 0.9110 94 0.8417 0.0105 0.9107

102 0.8668 0.0032 0.9153 99 0.8711 0.0032 0.8630 95 0.8599 0.0058 0.8666

103 0.8809 0.0015 0.8632

πB = 0.6 πB = 0.5 πB = 0.4

C AUMRPl
0 p-value power C AUMRPl

0 p-value power C AUMRPl
0 p-value power

88 0.7850 0.0414 0.9637 85 0.7949 0.0354 0.9442 81 0.7830 0.0455 0.9469

89 0.8076 0.0262 0.9427 86 0.8166 0.0224 0.9165 82 0.8047 0.0298 0.9212

90 0.8289 0.0159 0.9128 87 0.8368 0.0137 0.8792 83 0.8255 0.0188 0.8869

91 0.8482 0.0093 0.8722

πB = 0.3 πB = 0.2 πB = 0.1

C AUMRPl
0 p-value power C AUMRPl

0 p-value power C AUMRPl
0 p-value power

78 0.7937 0.0380 0.9266 74 0.7831 0.0469 0.9325 71 0.7945 0.0383 0.9123

79 0.8147 0.0247 0.8951 75 0.8044 0.0312 0.9036 72 0.8152 0.0252 0.8781

76 0.8246 0.0201 0.8664

Table 2.22: AUMPRl
0 of the GB method versus C with n = 119, πA0 = 0.7, γ = 0.7,

πA1 = 0.9, with the corresponding p-value and power

and upper rejection threshold values CL
α,β and CU

α,β for each value πB ∈ [0, 1], using the

minimum required sample size n as follows:

P (Y 2n
n+1 ≤ CL

α,β | P ∗ = P ∗
0 ) =

CL
α,β∑

y=0

(
n

y

)
(P ∗

0 )
y(1− P ∗

0 )
n−y ≤ 1− α (2.51)

P (Y 2n
n+1 > CU

α,β | P ∗ = P ∗
1 ) = 1−

CU
α,β∑

y=0

(
n

y

)
(P ∗

1 )
y(1− P ∗

1 )
n−y ≥ 1− β (2.52)

Equation (2.51) derive the range of values of the event Y = y in which the probability of

type of error I under H0 while Equation (2.52) derive the range of values of the event Y = y

in which the probability of type of error II under H1.

All the integer values between rejection threshold values CL
α,β and CU

α,β are determined

to derive AUMRPl
0 and AUMRPl

1. Then, the p-value and the power for each rejection

threshold C ∈ [CL
α,β, C

U
α,β]. Therefore, H0 is not rejected if Y 2n

n+1 ≤ CL
α,β and is rejected if
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πB = 0.9 πB = 0.8 πB = 0.7

C AUMRPl
1 p-value power C AUMRPl

1 p-value power C AUMRPl
1 p-value power

98 0.8783 0.0380 0.9928 95 0.8556 0.0341 0.9816 91 0.8533 0.0478 0.9791

99 0.8603 0.0223 0.9855 96 0.8344 0.0204 0.9674 92 0.8327 0.0302 0.9646

100 0.8387 0.0124 0.9725 97 0.8101 0.0116 0.9449 93 0.8096 0.0182 0.9426

101 0.8133 0.0065 0.9504 98 0.7833 0.0063 0.9110 94 0.7842 0.0105 0.9107

102 0.7846 0.0032 0.9153 99 0.7549 0.0032 0.8630 95 0.7577 0.0058 0.8666

103 0.7538 0.0015 0.8632

πB = 0.6 πB = 0.5 πB = 0.4

C AUMRPl
1 p-value power C AUMRPl

1 p-value power C AUMRPl
1 p-value power

88 0.8329 0.0414 0.9637 85 0.8131 0.0354 0.9442 81 0.8163 0.0455 0.9469

89 0.8107 0.0262 0.9427 86 0.7901 0.0224 0.9165 82 0.7942 0.0298 0.9212

90 0.7867 0.0159 0.9128 87 0.7660 0.0137 0.8792 83 0.7710 0.0188 0.8869

91 0.7615 0.0093 0.8722

πB = 0.3 πB = 0.2 πB = 0.1

C AUMRPl
1 p-value power C AUMRPl

1 p-value power C AUMRPl
1 p-value power

78 0.7990 0.0380 0.9266 74 0.8043 0.0469 0.9325 71 0.7887 0.0383 0.9123

79 0.7766 0.0247 0.8951 75 0.7825 0.0312 0.9036 72 0.7669 0.0252 0.8781

76 0.7601 0.0201 0.8664

Table 2.23: AUMPRl
1 of the GB method versus C with n = 119, πA0 = 0.7, γ = 0.7,

πA1 = 0.9, with the corresponding p-value and power

Y 2n
n+1 > CU

α,β. Using the assumptions of Examples 2.6.2 and 2.6.1, we explain this range and

the effect of changing the parameters in detail.

Figures 2.20 and 2.21 show the AUMRPl
0 and AUMRPl

1 of GB and FM methods in

comparison to an extended range of rejection threshold values C using the largest minimum

sample size to determine the rejection threshold C ∈ [CL
α,β, C

U
α,β]. It is clear that there

are intersection points between AUMRPl
0 and AUMRPl

1 for P ∗ = P ∗
0 . It is obvious that

AUMRPl
0 and AUMRPl

1 are equal if they have the same threshold or probability P ∗
0 , which

occurs at the intersection of them.

As shown in Tables 2.23 and 2.22, AUMPRl
0 and AUMPRl

1 of the GB method. The

highest threshold values (98, 103) are determined for the GB methods at πB = 0.9 and

then AUMPRl
0 takes values between 0.78 and 0.88. For the same threshold value, AUMPRl

1

takes values between 0.75 and 0.87 with a power decrease from 0.0380 to 0.0015. The

lowest threshold (71, 72) values are determined for the GB methods at πB = 0.1 and then
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γ1 = 0.29 γ1 = 0.26 γ1 = 0.23

C AUMRP0
1 p-value power C AUMRP0

1 p-value power C AUMRP0
1 p-value power

90 0.8047 0.0449 0.9315 89 0.8130 0.0458 0.9485 88 0.8029 0.0467 0.9617

91 0.8336 0.0276 0.8945 90 0.8411 0.0284 0.9187 89 0.8311 0.0292 0.9382

91 0.8678 0.0168 0.8771 90 0.8582 0.0174 0.9043

91 0.8833 0.0099 0.8580

γ1 = 0.15 γ1 = 0.13 γ1 = 0.10

C AUMRP0
1 p-value power C AUMRP0

1 p-value power C AUMRP0
1 p-value power

86 0.8195 0.0362 0.9764 85 0.8100 0.0425 0.9842 84 0.8095 0.0430 0.9887

87 0.8463 0.0224 0.9608 86 0.8369 0.0268 0.9729 85 0.8362 0.0273 0.9803

88 0.8716 0.0133 0.9373 87 0.8627 0.0162 0.9555 86 0.8617 0.0166 0.9669

89 0.8947 0.0075 0.9037 88 0.8865 0.0093 0.9297 87 0.8854 0.0097 0.9466

90 0.9153 0.0041 0.8579 89 0.9079 0.0052 0.8934 88 0.9067 0.0054 0.9172

89 0.9254 0.0029 0.8765

γ1 = 0.08 γ1 = 0.04 γ1 = 0.00

C AUMRP0
1 p-value power C AUMRP0

1 p-value power C AUMRP0
1 p-value power

84 0.8270 0.0322 0.9869 82 0.8087 0.0439 0.9945 81 0.8171 0.0385 0.9958

85 0.8528 0.0199 0.9773 83 0.8350 0.0281 0.9899 82 0.8428 0.0244 0.9923

86 0.8770 0.0118 0.9624 84 0.8601 0.0173 0.9824 83 0.8672 0.0149 0.9864

87 0.8991 0.0067 0.9400 85 0.8834 0.0102 0.9703 84 0.8896 0.0088 0.9767

88 0.9186 0.0037 0.9080 86 0.9045 0.0058 0.9519 85 0.9098 0.0049 0.9617

89 0.9356 0.0019 0.8644 87 0.9231 0.0031 0.9251 86 0.9275 0.0027 0.9394

88 0.9392 0.0016 0.8877 87 0.9427 0.0014 0.9077

88 0.9555 0.0007 0.8646

Table 2.24: AUMPRl
0 of the FM method versus C with n = 115 with the corresponding

p-value and power

AUMPRl
0 takes values between 0.79 and 0.81. For the same threshold value, AUMPRl

1

takes values between 0.76 and 0.77 with a power decrease from 0.0380 to 0.0015.

Tables 2.24 and 2.25 show AUMPRl
0 and AUMPRl

1 of the FM method. The highest

threshold values between 91, and 90 that are determined for the GB methods at γ1 = 0.29

and then AUMPRl
0 takes values between 0.79 and 0.82. For the same threshold value,

AUMPRl
1 takes values between 0.78 and 0.82 with power decrease from 0.9315 to 0.8945 and

p-value decrease from 0.0449 to 0.0276. The lowest threshold (81, 88) values are determined

for the GB methods at γ1 = 0.0 and then AUMPRl
0 takes values between 0.95 and 0.81.

For the same threshold value, AUMPRl
1 takes values between 0.93 and 0.77 with power

decrease from 0.99 to 0.86 and p-value decrease from 0.0385 to 0.0007.
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γ1 = 0.29 γ1 = 0.26 γ1 = 0.23

C AUMRPl
1 p-value power C AUMRPl

1 p-value power C AUMRPl
1 p-value power

90 0.8274 0.0449 0.9315 89 0.8411 0.0458 0.9485 88 0.8611 0.0467 0.9617

91 0.7974 0.0276 0.8945 90 0.8122 0.0284 0.9187 89 0.8338 0.0292 0.9382

91 0.7819 0.0168 0.8771 90 0.8045 0.0174 0.9043

91 0.7742 0.0099 0.8580

γ1 = 0.15 γ1 = 0.13 γ1 = 0.10

C AUMRPl
1 p-value power C AUMRPl

1 p-value power C AUMRPl
1 p-value power

86 0.8843 0.0362 0.9764 85 0.9003 0.0425 0.9842 84 0.9121 0.0430 0.9887

87 0.8599 0.0224 0.9608 86 0.8782 0.0268 0.9729 85 0.8919 0.0273 0.9803

88 0.8330 0.0133 0.9373 87 0.8532 0.0162 0.9555 86 0.8687 0.0166 0.9669

89 0.8041 0.0075 0.9037 88 0.8257 0.0093 0.9297 87 0.8428 0.0097 0.9466

90 0.7742 0.0041 0.8579 89 0.7966 0.0052 0.8934 88 0.8148 0.0054 0.9172

89 0.7854 0.0029 0.8765

γ1 = 0.08 γ1 = 0.04 γ1 = 0.00

C AUMRPl
1 p-value power C AUMRPl

1 p-value power C AUMRPl
1 p-value power

84 0.9071 0.0322 0.9869 82 0.9325 0.0439 0.9945 81 0.9393 0.0385 0.9958

85 0.8861 0.0199 0.9773 83 0.9159 0.0281 0.9899 82 0.9240 0.0244 0.9923

86 0.8622 0.0118 0.9624 84 0.8964 0.0173 0.9824 83 0.9060 0.0149 0.9864

87 0.8358 0.0067 0.9400 85 0.8740 0.0102 0.9703 84 0.8850 0.0088 0.9767

88 0.8074 0.0037 0.9080 86 0.8489 0.0058 0.9519 85 0.8614 0.0049 0.9617

89 0.7780 0.0019 0.8644 87 0.8216 0.0031 0.9251 86 0.8352 0.0027 0.9394

88 0.7927 0.0016 0.8877 87 0.8071 0.0014 0.9077

88 0.7781 0.0007 0.8646

Table 2.25: AUMPRl
1 of the FM method versus C with n = 115 with the corresponding

p-value and power

In general, the power increases and the p-value decreases if πB and γ1 decrease. That

happens because of the range of the threshold values decreases if πB increases whereas the

range of the threshold values increases if γ1 decreases.

In addition, under H0, increasing the value C from the lower threshold value to the

upper threshold value for each πB or γ1 values leads to decreasing the power and p-values

and then leads to increasing AUMRPl
0 of RRT. Conversely, under H1, increasing the value

C from the lower threshold value to the upper threshold value leads to decreasing the power

and p-values and decreasing AUMRPl
1 of RRT.

Furthermore, increasing the value C under H0 causes the power and p-values to decrease
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Figure 2.20: The AUMRPl
0 with solid lines and AUMRPl

1 with dotted lines of GB method

versus C with n = 119, πA0 = 0.7, γ = 0.7, πA1 = 0.9
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Figure 2.21: The AUMRPl
0 with solid lines and AUMRPl

1 with dotted lines of the FM

method versus C with n = 115, πA0 = 0.7, πA1 = 0.9, γ1 = 0.10

and the AUMRPl
0 of RRT to increase as it moves from the lower threshold value to the

upper threshold value. Conversely, when C is increased from the lower threshold value to

the upper threshold value under H1, the power and p-values decrease along with AUMRPl
1

of RRT.
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2.8 Comparison of the reproducibility of statistical

tests based on different RRT methods

In this section, we compare RRT methods considering the variance of the estimators and

reproducibility of statistical hypothesis tests using the same privacy degree.

We assume a large sample size for the GB and FM methods and choose different

parameters for the RRT methods to get the same privacy and the variance of the estimator

π̂A0 because of larger sample sizes usually increase the reproducibility probability occurring

inside the [0, 1].

This choice of the parameters gives the same values of both variances of the estimator

π̂A0 and the same privacy degree of the GB and FM method to check the changes in

reproducibility of statistical hypothesis tests.

Example 2.8.1 Assume that we have n = 500, γ = 0.5554, πA1 = 0.9 as parameters of

the GB method and γ1 = 0.20829, γ2 = 0.10, πA1 = 0.9, α = 0.05, β = 0.1 as parameters of

the FM method.

We compare the GB and FM methods for all values of πA0 = {0.550, 0.555, 0.560, 0.565,

0.570, 0.575, 0.580, 0.585, 0.590, 0.595, 0.600} in terms of the reproducibility when both

methods have the same privacy degree around 1.233 and the same variance of the estimator

π̂A0 as shown in Tables 2.26 and 2.27.

For the GB method with privacy degree ∆GB = 1.2237, Table 2.26 shows lower variance

for different values of π̂A0because the changes in π̂A0 values are very small about 0.005. The

AUMRPl
0 and AUMRPl

1 have no pattern while the power is always high around 1.0000.

AUMRPl
0 takes values between 0.82 and 0.83 whereas AUMRPl

0 takes values around 1.0000

for different πA0 .

For the FM method with privacy degree, ∆FM = 1.2236, Table 2.27 shows lower

variance for different values of πA0 and there is no big difference between these variances.

The AUMRPl
0 and AUMRPl

1 have no pattern while the power is always high about 1.0000.
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πA0 0.550 0.555 0.560 0.565 0.570 0.575 0.580 0.585 0.590 0.595 0.600

Var(π̂A0)GB 0.00162 0.00162 0.00162 0.00162 0.00162 0.00162 0.00162 0.00162 0.00162 0.00162 0.00162

Power 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

AUMRPl
0 0.8274 0.8230 0.8298 0.8255 0.8323 0.8280 0.8237 0.8306 0.8263 0.8331 0.8288

AUMRPl
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2.26: The Var(π̂A0)GB, ∆GB , AUMRPl
0, AUMRPl

1 of one-sided tests based on GB

data of n = 500, πB = 0.4, π1 = 0.9, γ = 0.5554, α = 0.05, β = 0.1,

∆GB = 1.2237

πA0 0.550 0.555 0.560 0.565 0.570 0.575 0.580 0.585 0.590 0.595 0.600

Var(π̂A0)FM 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002

Power 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

AUMRPl
0 0.8322 0.8240 0.8335 0.8301 0.8331 0.8250 0.8281 0.8312 0.8230 0.8261 0.8312

AUMRPl
l 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 2.27: The Var(π̂A0)FM , ∆FM , AUMRPl
0, AUMRPl

1 of one-sided tests based on FM

data of n = 500, γ2 = 0.10, πA1 = 0.9, γ1 = 0.20829 , α = 0.05, β = 0.1,

∆FM = 1.2236

AUMRPl
0 takes values between 0.82 and 0.83 whereas AUMRPl

0 takes values 1.0000 for

different πA0 .

In general, a larger sample size leads to higher reproducibility and larger areas of

AUMRPl
0, AUMRPl

1. For example, AUMRPl
0 = 0.824 for n = 500 and πA0 = 0.555 whereas

AUMRPl
0 = 0.7873 for n = 30 and πA0 = 0.555.

The FM method has a lower variance than the GB methods whereas AUMRPl
0 of the

FM method get higher reproducibility than the GB method πA0 for the same privacy degree

1.2236.

As shown in Tables 2.26 and 2.27, even though the estimator’s variances are extremely

low in order to achieve higher reproducibility, however, it might not be practical to assume

the mentioned parameters in order to reduce privacy degree. Therefore, it is better to

suppose different hypothesised values and other parameters to obtain the same degree of

privacy with less variability in the true responses and higher reproducibility.
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2.9 Concluding remarks

This chapter has presented a novel method for determining the reproducibility probability

of statistical hypothesis tests based on data collected by RRT methods, such as the GB and

the FM methods. This method uses the number of ‘Yes’ responses for a particular data set

and the testing threshold. Then we apply NPI for Bernoulli quantities to compute the

lower and upper probabilities of an event in one-sided and two-sided tests.

For reproducibility of one-sided hypothesis tests, we introduce the measurement of

lower and upper reproducibility probability MRPl
0 and MRPu

0 under H0 using a single

threshold value. Similarly, we introduce the measurement of lower and upper reproducibility

probability MRPl
1 and MRPu

1 under H1 respectively. Then we compare the GB and the

FM methods by derivation of the required minimum sample size with respect to higher

power more than 0.90 and p-value less than 0.05. After that, we calculate the area under

MRPl
0 and MRPl

1. In addition, we derive the lower and upper threshold values to find the

same area of the threshold value of MRPl
0 and MRPl

1 using different parameters of RRT

method and using the largest minimum sample sizes and with respect to higher power more

than 0.90 and p-value less than 0.05. The FM method has more reproducibility than the

GB methods for small sizes for the same parameters for one-sided tests.

For larger sample sizes n = 500, the same variance, privacy degree, and proportion of

sensitive characteristics in the population πA0 , the FM method has higher reproducibility

than the GB method. The FM method takes smaller samples than the GB method requires.

As a result, choosing the same parameters within p-value less than 0.05 and power larger

than 0.90 need to increase the sample size of the GB method than the FM method to obtain

the same AUMRPl
0 and AUMRPl

1 for two-sided tests.

The FM method has higher reproducibility than the GB method for larger sample

sizes n = 500 for the same variance, the same degree of privacy, and the same proportion of

sensitive characteristics in the population πA0 using one-sided hypothesis tests. This occurs

because the FM method’s (1−γ1−γ2) is larger than the GB method’s (1−γ). Furthermore,

the FM approach requires smaller samples than the GB method. Therefore, using the same
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sample size for both methods results in improved reproducibility of hypothesis tests of the

FM method.

So, we find that less variability in the reported responses of any RRT method leads to

higher reproducibility with the same degree of privacy.

The advantage of employing reproducibility of statistical tests is that they can be

designed for any RRT method. It can be applied to Warner data to compare with the

Greenberg method, however, this comparison has been done if we assume the Warner

method is a special case from the Greenberg method when 1− πA in the WM is equal to

πB in the GB.

For the limitations of this method, there is practically no reason why our reproducibility

method (NPI-RP) cannot be used with larger sample quantities. The principle of the NPI-B

method can be applied to any sample using the sample orderings method. The number of

orderings need to be sampling not depend on the sample size but depends on the binomial

distribution. Therefore, we can apply this method depending on any sample size. If someone

ran into computational problems with larger sample sizes, it was probably just a software

or computer issue.



Chapter 3

Reproducibility of estimates

3.1 Introduction

Estimation of population characteristics is an essential part of statistical inference. In

this chapter, we investigate the reproducibility of estimates. However, it is clear that for

real-valued random quantities, an estimate of a parameter or the characteristic will not be

reproduced precisely. Therefore, we define reproducibility of estimate as the probability of

the event that, if we repeat the experiment under the same circumstances, the estimate

based on the future sample will be close to the estimate based on the original sample.

The objective of this chapter is to introduce NPI for reproducibility of estimates

using two procedures. The first procedure is reproducibility of estimates using NPI-B

method. The second procedure is reproducibility of estimates using a representative sample

of a population, which is a novel concept we introduce here without making any further

assumptions. We investigate the reproducibility of estimates of population characteristics

such as the mean, median, variance, quartiles and interquartile ranges.

This chapter is structured as follows. Section 3.2 introduces reproducibility of estimates,

in general, using NPI-B method. In Section 3.3, the concept of a representative sample

of the underlying population distribution is introduced, together with its use to asses

reproducibility of estimates and a comparison of both techniques. Section 3.4 presents some

80
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concluding remarks.

3.2 Reproducibility of estimates using NPI-B

method

In this section, a new theory of reproducibility for estimates is proposed. Suppose that we

have n real-valued random quantities X1, X2, ..., Xn, which are assumed to be independent

and identically distributed. Let’s assume that the ordered observed values of these random

quantities be denoted by x1 < ... < xn. For simplicity of implementing this theory, we

determine the lower and upper bounds of these random quantities which are x0 and xn+1 to

avoid possible probability mass of −∞ or ∞ that could impact the mean of the future m

observations. These bounds can be specified using

x0 = min
1≤i≤n

(xi)− d, xn+1 = max
1≤i≤n

(xi) + d (3.1)

where d is the maximum distance between two consecutive observations.

The n observations can be divided the real line into n + 1 intervals, which are Ii =

(xi−1, xi) for i = 1, ..., n+1. Assume that the estimate based on the original sample is θ̂, and

the estimate based on the future sample is θ̂f where θ̂f = θ̂± ϵ and ϵ is the distance between

the two estimates and takes values ϵ ≥ 0. As a result, we call this theory ϵ−reproducibility

for estimates

In this method, we assume that there are no ties between the original and the future

observations for simplicity.

Assume that an original estimate θ̂ of the original sample and an estimate based on a

future data set θ̂f should be in [θ̂− ϵ, θ̂+ ϵ]. The probability of the event |θ̂− θ̂f | ≤ ϵ, which

is defined as the probability of the absolute value of the difference between the original

estimate and the future estimate which is equal or less than any real value ϵ, is used to

derive the reproducibility for an estimate as follows:

RP (ϵ) = P (|θ̂ − θ̂f | ≤ ϵ) (3.2)
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where θ̂ estimate of a population characteristic.

To illustrate this method to quantify of reproducibility of estimates using the method

of NPI-B method for observations on finite intervals as follows. Based on the original sample

x1, ..., xn, we estimate the population characteristic θ by θ̂ to assess ϵ−reproducibility of

this estimate. We use NPI-B method as explained in Section 1.6 to create future samples

of size m where m = n. For such future samples, we also derive the estimate of θ denoted

by θ̂f and this allows us to estimate ϵ−reproducibility. For simplicity of implementing the

NPI-B method, we assume finite support of Xi using Equation (3.1).

NPI-B method, as described in Section 1.6, is used to generate a future sample

b1, ..., bn and denote the estimate based on this bootstrap sample by θ̂Bi
. We perform

this procedure nB times. NPI-B method draws new observations from the whole range of

possible observations and outside the bounds of this original sample.

Based on these nB bootstrap samples, we can estimate reproducibility of θ̂ by:

R̂P (ϵ) =

nB∑
i=1

1

nB

1

{
|θ̂ − θ̂Bi

| ≤ ϵ

}
(3.3)

with ϵ ≥ 0, and 1{A} is an indicator function that is equal to 1 if event A is true and 0

otherwise.

Note that, by using NPI-B method, we get a precise of R̂P (ϵ), so there is no imprecision

and repeated applications of this bootstrap will leads to different estimate R̂P (ϵ). In the

following example, we illustrate this procedure.

Example 3.2.1 To illustrate reproducibility for an estimate using NPI-B method for two

different samples. We assume that we have the first sample with size n = 30 from the

standard normal distribution:

Xi = {−1.8180,−1.5977,−1.5531,−0.9193,−0.8864,−0.7505,−0.6443,−0.4816,−0.4535,

−0.3316,−0.2842,−0.2762,−0.1623,−0.1162,−0.1093, 0.2987, 0.3706, 0.5202, 0.5855, 0.6059,

0.6121, 0.6204, 0.6301, 0.7095, 0.7796, 0.8169, 1.1207, 1.4558, 1.8051, 1.8173}

The sample mean x̄ = 0.0788 is an estimate of the population mean µ and we are

interested in ϵ−reproducibility of this estimate based on these data and the suggestion in
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nB max(x̄B) mean(x̄B) min(x̄B) RP (ϵ)

100 0.5946 0.0863 -0.6157 1.0000

500 0.8046 0.0799 -0.8492 1.0000

1000 0.8353 0.0795 -0.8492 1.0000

10000 0.9730 0.0765 -1.0055 1.0000

100000 1.1146 0.0757 -1.1764 1.0000

Table 3.1: R̂P (ϵ) of the mean of characteristics of the standard normal distribution of the

first sample with n = 30, ϵ = 1
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Figure 3.1: R̂P (ϵ) for estimates of characteristics of the standard normal distribution of

the first sample with n = 30, nB = 1000

Equations (3.1) with the maximum distance between consecutive observations d = 0.6338.

We set the lower and upper bounds of the support, used in the NPI-B method, of x0 =

−2.4518 and xn+1 = 2.4511.

Figure 3.1 shows the ϵ−reproducibility for estimates of characteristics of the standard

normal distribution with sample of size n = 30 and bootstrap numbers nB = 1000. These

characteristics are the mean with the blue line, the median with the red line, variance with

the green line, the first quartile with the black line, the third quartile with the dark red

line and the IQR with the purple line.

It is noted that R̂P (ϵ) increases for all characteristics if ϵ increases. The ϵ−reproducibility
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nB max(x̄B) mean(x̄B) min(x̄B) R̂P (ϵ)

100 0.2348 0.0851 -0.0613 1.0000

500 0.2758 0.0859 -0.0955 1.0000

1000 0.2758 0.0818 -0.1057 1.0000

10000 0.3142 0.0827 -0.1507 1.0000

100000 0.3814 0.0824 -0.1585 1.0000

Table 3.2: R̂P (ϵ) of the mean of characteristics of the standard normal distribution of the

first sample with n = 500, ϵ = 1
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Figure 3.2: R̂P (ϵ) for estimates of characteristics of the standard normal distribution of

the first sample with n = 500, nB = 1000

of the median takes the lowest values for ϵ ∈ [0, 0.5] whereas the reproducibility of the third

quartiles take the largest values for ϵ ∈ [0, 0.3]. The ϵ−reproducibility of other characteristic

lines show fluctuation for ϵ ∈ [0, 0.5]. For the values ϵ ∈ (0.5, 1], the ϵ−reproducibility of the

mean takes the highest values whereas the lowest values of ϵ−reproducibility for estimates

fluctuate between values of ϵ−reproducibility of q(0.25) and IQR.

We generate nB = 1000 NPI-B samples leading 1000 estimates x̄Bi
for the population

mean µ, where i = 1, ..., 1000. The resulting estimates of R̂P (ϵ), for ϵ ∈ [0, 1], are presented

by the various colored lines in Figure 3.1.

For more variations, we repeat the bootstrap with different times of nB using the same
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nB max(x̄B) mean(x̄B) min(x̄B) R̂P (ϵ)

100 1.0002 0.0504 -0.4222 1.0000

500 1.6648 0.0412 -0.9998 0.9900

1000 1.6648 0.0637 -1.0122 0.9870

10000 1.7508 0.0747 -1.0515 0.9905

100000 2.1930 0.0739 -1.3787 0.9908

Table 3.3: R̂P (ϵ) of the mean of characteristics of the standard normal distribution of the

second sample with n = 30, ϵ = 1
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Figure 3.3: R̂P (ϵ) for estimates of characteristics of the standard normal distribution of

the second sample with n = 30, nB = 1000

sample to get the ϵ−reproducibility for the mean as shown in Table 3.1. It is noted that

the mean of the original sample is 0.0788 and the closest value of mean of the bootstrap

sample means is 0.0765 of nB = 10000. In addition, increasing the nB to 100000 leads to

a fixed value of the ϵ−reproducibility of the mean and the mean of the bootstrap sample

means.

Based on the same sample and the same bootstrap samples, we have also estimated

the ϵ−reproducibility of estimates of the population median, variance, the first and the

third quartiles (denoted by q(0.25) and q(0.75), respectively) and the inter-quartile range.

These estimates are also presented in Figure 3.1.
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nB max(x̄B) mean(x̄B) min(x̄B) R̂P (ϵ)

100 0.1341 -0.0466 -0.2167 1.0000

500 0.1948 -0.0482 -0.2669 1.0000

1000 0.1948 -0.0526 -0.2959 1.0000

10000 0.2139 -0.0520 -0.3042 1.0000

100000 0.2647 -0.0523 -0.3253 1.0000

Table 3.4: R̂P (ϵ) of the mean of characteristics of the standard normal distribution of

a different sample with n = 500, ϵ = 1
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Figure 3.4: R̂P (ϵ) for estimates of characteristics of the standard normal distribution of

a different sample with n = 500, nB = 1000

As shown in Figure 3.2, the ϵ−reproducibility of the mean for a similar example but

with sample size n = 500 with mean x̄ = 0.0825 where x0 = −2.7834 and xn+1 = 2.9489.

This illustrates that ϵ−reproducibility is much better for a larger sample sizes as expected

because of reduction of the variability of the estimates.

Now, we illustrate the ϵ−reproducibility for the mean using with the same procedure

and using different samples to derive the ϵ−reproducibility of the mean for a sample of size

n = 30 from the standard normal distribution:

Xi = {0.3408,−0.7033,−0.3795,−0.7460,−0.8981,−0.3348,−0.5014,−0.1745, 1.8090,

−0.2301,−1.1304, 0.2160, 1.2322, 1.6094, 0.4016,−0.2730,−0.0362,−0.1503, 3.7688,−1.6525,
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−1.1351, 0.2277,−0.1833,−0.4135,−0.4376,−0.0262,−0.8598, 0.1665, 1.4755, 0.1954}

with mean x̄ = 0.0392 where x0 = −3.6123. xn+1 = 5.7286 and d = 1.9598. As

can be shown in Figure 3.3, the ϵ−reproducibility of median takes the highest values

whereas the ϵ−reproducibility of IQR takes the lowest values for ϵ ∈ [0, 0.18] and the

ϵ−reproducibility of q(0.75) takes the lowest values for ϵ ∈ (0.18, 1]. The difference between

the ϵ−reproducibility of characteristics of this sample is clear because of the second sample

has fluctuating the ϵ−reproducibility of estimates more than the first sample. In addition,

the ϵ−reproducibility of estimates becomes much better if we increase the sample to n = 500

as shown in Figure 3.4.

For more variations, we use different bootstrap samples as shown in Tables 3.3 and 3.4.

It is shown that the ϵ−reproducibility of estimates of the first sample is higher than the

ϵ−reproducibility of estimates of the second sample. Similarly, the mean of the original

samples and the means of bootstrap sample means of the first sample is higher than the

mean of the original samples and the means of bootstrap sample means of the second

sample although both samples are generated from the standard normal distribution.

Example 3.2.2 In this example, we do this with same procedure and using different

distribution to derive the ϵ−reproducibility of the mean. Assume that we have a sample of

size n = 30 from the exponential distribution with rate λ = 5, where

Xi = {0.4891, 0.0184, 0.5006, 0.0063, 0.2524, 0.2318, 0.6305, 0.2023, 0.5623, 0.0245,

0.2767, 0.0873, 0.1869, 0.4327, 0.2067, 0.1149, 0.1792, 0.0339, 0.1182, 0.3984, 0.0008, 0.1527,

0.4234, 0.0426, 0.4057, 0.0204, 0.0154, 0.3222, 0.2767, 0.2563}.

The sample mean x̄ = 0.2364 is an estimate of the population mean µ and we

are interested in the ϵ−reproducibility of this estimate based on these data and the

suggestion in Equations (3.1) with the maximum distance between consecutive observations

d = 0.5164. We set the lower and upper bounds of the support, used in the NPI-B method,

of x0 = −0.5127 and xn+1 = 1.7969.

For sample of size n = 500 from the exponential distribution with rate λ = 5, the

sample mean x̄ = 0.1861. We set the lower and upper bounds of the support, used in the
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nB max(x̄B) mean(x̄B) min(x̄B) R̂P (ϵ)

100 0.5960 0.2402 0.0918 1.0000

500 0.5960 0.2430 0.0589 1.0000

1000 0.5960 0.2446 0.0097 1.0000

10000 0.7372 0.2496 -0.0512 1.0000

100000 0.9574 0.2499 -0.0672 1.0000

Table 3.5: R̂P (ϵ) of the mean of characteristics of the exponential distribution with λ = 5,

n = 30, ϵ = 1
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Figure 3.5: R̂P (ϵ) for estimates of characteristics of the exponential distribution with λ = 5,

n = 30, nB = 1000

nB max(x̄B) mean(x̄B) min(x̄B) R̂P (ϵ)

100 0.2122 0.1876 0.1553 1.0000

500 0.2259 0.1871 0.1534 1.0000

1000 0.2312 0.187 0.1534 1.0000

10000 0.2375 0.1871 0.1445 1.0000

100000 0.2375 0.1871 0.1445 1.0000

Table 3.6: R̂P (ϵ) of the mean of characteristics of the exponential distribution with λ = 5,

n = 500, ϵ = 1

NPI-B method, of x0 = −0.2025 and xn+1 = 1.4839 with the maximum distance between

consecutive observations d = 0.1488.
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Figure 3.6: R̂P (ϵ) for estimates of characteristics of the exponential distribution with λ = 5,

n = 500, nB = 1000

it is clear from a comparison of Examples 3.5 and 3.6 that in the exponential distribution

causes, ϵ−reproducibility of estimates increases earlier than ϵ−reproducibility of estimates of

the standard normal distribution. For large sample sizes of n = 500, The ϵ−reproducibility of

estimates using the exponential distribution closes to 1 at ϵ = 0.1, whereas ϵ−reproducibility

of estimates using the standard normal distribution close to 1 at ϵ = 0.3.

It is clear from a comparison of Examples 3.2.1 and 3.2.2, that the exponential

distribution causes ϵ−reproducibility of estimates to increase earlier than the standard

normal distribution. Most ϵ−reproducibility of estimates values based on the exponential

distribution have values close to 1 for ϵ = 0.1, whereas ϵ−reproducibility of estimates values

based on the standard normal distribution has values close to 1 for ϵ = 0.3 for large sample

sizes of n = 500.
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3.3 Reproducibility of estimates using a

representative sample

This section introduces a new method for assessing ϵ−reproducibility of estimates of a

characteristic population using a representative sample procedure instead of NPI-B method.

This method helps to avoid randomness of sampling from the distribution. For a population

distribution with cumulative distribution function F for real-valued random quantities, we

define yi as a representative sample as follows:

yi = F−1

(
i

n+ 1

)
(3.4)

So, yi is the 100( i
n+1

)-th percentile of F , for i = 1, ..., n. We call Y1, Y2, ..., Yn as a original

sample of distribution F and order them as y(1) < y(2) < ... < y(n) .

The main idea of this method is that we study the reproducibility of estimates of

characteristics of F by using the representative sample to give the estimates and to use the

NPI method.

As in Section 3.2, we assume finite support in order to simplify the NPI method, so

we define the lower and upper bounds of the original sample y0 and yn+1 are derived as

follows:

y0 = min
1≤i≤n

(yi)− d, yn+1 = max
1≤i≤n

(yi) + d (3.5)

with d again the maximal distance between two consecutive yi values, where d = max
1≤i≤n

(yi −

yi−1). We now have n + 1 intervals Ii = (yi−1, yi) which is determined between the n

observations, where i = 1, ..., n + 1. We assume that all the orderings Oj of the future

observations among the original observations are equally likely 1.4, and each ordering

includes the future observations Sj
i = #{Yn+i, i = 1, ..., n} where j = 1, 2, ...,

(
2n
n

)
. We link

the data and future observations via Hill’s assumption A(n) [70], or more precisely, via

consecutive application of A(n), A(n+1), ..., A(2n−1) which can be considered as a post-data

version of a finite exchangeability assumption for 2n random quantities that are Yn+1, ..., Y2n.

The A(n) assumptions imply that all possible orderings of n data observations and n future

observations are equally likely, where the n data observations and n future observations

cannot be separated from one another.
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For a larger sample size, we use simple random sampling (SOM)as explained in

Section [31] to generate the future observations as explained in Section 1.7.

Based on the A(n) assumptions, Equation (3.6) derive the probability of each ordering

[34] as follows.

P

( n+1⋂
i=1

{Sj
i = sji}

)
= P (Oj) =

(
2n

n

)−1

(3.6)

where the sji are non-negative integers with
∑n

i=1 s
j
i = n.

For ordering Oj, the lower and upper estimates denoted by θ̂fj,L and θ̂fj,U , respectively,

can be calculated by using the minimum and maximum possible values the future estimates

given these orderings. For example, if interested in the mean, then

θ̂fj,L =
1

n

n+1∑
i=1

Sj
i yi−1, θ̂fj,U =

1

n

n+1∑
i=1

Sj
i yi (3.7)

We now use these lower and upper estimates corresponding to ordering Oj to derive the lower

and upper probabilities for ϵ−reproducibility of the estimates based on a representative

sample. This provides a tool to compare RRT as will be explained in examples.

The estimate of θ̂f based on the original representative sample is θ̂. To obtain the

NPI lower ϵ−reproducibility probability for the event that |θ̂f − θ̂| ≤ ϵ, we need to find all

estimates θ̂f with [θ̂fj,L, θ̂
f
j,U ] ⊂ [θ̂ − ϵ, θ̂ + ϵ]. To obtain the NPI upper ϵ−reproducibility

probability for the event that |θ̂f − θ̂| ≤ ϵ with the condition [θ̂fj,L, θ̂
f
j,U ] ∩ [θ̂ − ϵ, θ̂ + ϵ] ̸= ∅

where j = 1, ...,
(
2n
n

)
.

This leads to the NPI lower ϵ−reproducibility probability:

RP (ϵ) = P (|θ̂f − θ̂| ≤ ϵ) =

(2nn )∑
j=1

P (Oj) 1

{
max(θ̂ − θ̂fj,L, θ̂

f
j,U − θ̂) ≤ ϵ

}
(3.8)

and the NPI upper ϵ−reproducibility probability:

RP (ϵ) = P (θ̂f − θ̂| ≤ ϵ) =

(2nn )∑
j=1

P (Oj) 1

{
max(θ̂fj,L − θ̂, θ̂ − θ̂fj,U ) ≤ ϵ

}
(3.9)

We illustrate this in the following example.
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Example 3.3.1

We want to study ϵ−reproducibility of the estimates of characteristics of the standard

normal distribution using the representative sample of size n = 5 which is Yi = {−0.9674,

−0.4307, 0, 0.4307, 0.9674}. The lower bound is y0 = −1.5041 and the upper bound is

yn+1 = 1.5041 and d = 0.5367. The mean and the median of the original sample are 0,

q(0.75) = −0.4307, q(0.75) = 0.4307 and the IQR is 0.8615.

As can be shown in Figure 3.7, the NPI ϵ−reproducibility of a standard normal

distribution with a small sample of size n = 5, and the ordering n0 =
(
10
5

)
= 252 of the

mean, the median, q(0.25), q(0.75) and the IQR. It is noted that NPI ϵ−reproducibility of

median has the lowest maximum values of ϵ = {1.5041, 0.9674, 0.4307} whereas the other

IQR have the largest maximum values of ϵ = {0, 0.3248, 0.1059, 0.2119, 0.3248, 0.4307, 0.5367,

1.0734,

1.61008}.

The ϵ−reproducibility of the the mean are 0.6667, 1.0000, the ϵ−reproducibility of

the median are 0.8300, 1.0000, the ϵ−reproducibility of the the q(0.25) are 0.6746, 0.9762,

the ϵ−reproducibility of the the q(0.75) are 0.6746, 0.9762 and the ϵ−reproducibility of the

the IQR are 0.5159, 0.9762.

Note that we use the number of ordering no =
(
2n
n

)
where n is a small sample, and

it is impossible to derive the ϵ− reproducibility for a large sample as n = 500 and use

no =
(
1000
500

)
. Therefore, we use the sampling of ordering method to solve this issue as

explained in Section 1.7.

Example 3.3.2

We want to study ϵ−reproducibility of the estimates of characteristics of the standard

normal distribution using the representative sample of size n = 500 and the orderings

number is large as no = 1000. We derive the NPI lower ϵ−reproducibility probability

using:

RP (ϵ) = P (|θ̂f − θ̂| ≤ ϵ) =

no∑
j=1

P (Oj) 1

{
max(θ̂ − θ̂fj,L, θ̂

f
j,U − θ̂) ≤ ϵ

}
(3.10)
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Figure 3.7: The NPI ϵ−reproducibility of standard normal distribution with n = 5, n0 =
(
10
5

)
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n = 5 Mean Median q(0.25) q(0.75) IQR

R̂P (ϵ) 0.9880 0.8968 0.9762 0.9722 0.9721

RP (ϵ) 0.8929 0.8333 0.6548 0.6944 0.5714

RP (ϵ) 1.0000 1.0000 0.9802 0.9841 0.9762

Table 3.7: The ϵ−reproducibility of characteristics of the standard normal distribution of

nB = no = 252, ϵ = 1

n = 500 Mean Median q(0.25) q(0.75) IQR

R̂P (ϵ) 1.0000 1.0000 0.9880 1.0000 1.0000

RP (ϵ) 1.0000 0.9999 0.9980 1.0000 0.9970

RP (ϵ) 1.0000 1.0000 1.0000 1.0000 1.0000

Table 3.8: The ϵ−reproducibility of characteristics of the standard normal distribution of

nB = no = 1000, ϵ = 0.3

and the NPI upper ϵ−reproducibility probability using

RP (ϵ) = P (θ̂f − θ̂| ≤ ϵ) =

no∑
j=1

P (Oj) 1

{
max(θ̂fj,L − θ̂, θ̂ − θ̂fj,U ) ≤ ϵ

}
(3.11)

where no is the number of orderings and it can be generated using SOM. We illustrate this

in the following example.

Figures 3.8 show that increasing the sample size and the ordering numbers leads to

better ϵ−reproducibility of estimates. In addition, the RP (ϵ) values closes to RP (ϵ) if the

sample size n increases.

Tables 3.7 and 3.8 show the ϵ−reproducibility for estimates using NPI-B method and

representative sample. It can be noted that a larger sample size and ordering number

or bootstrap numbers lead to higher reproducibility. In this case, we note that the

ϵ−reproducibility for estimates using bootstrap have values between the NPI lower and

upper ϵ−reproducibility for estimates using the representative sample.
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Figure 3.8: The NPI ϵ−reproducibility of standard normal distribution with n = 500,

no = 1000, ϵ = 0.1
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3.4 Concluding remarks

The method presented in this chapter allows study of reproducibility of estimates either by

using NPI-bootstrap or a representative sample.

The NPI- Bootstrap method for quantifying ϵ−reproducibilit of the estimates, as

presented in section 3.2, if one has a specific sample and corresponding estimates. However,

the main aim of this chapter is to consider reproducibility when different RRT methods

are used, without specific samples being available and avoiding the randomness in such

samples. In Section 3.3, we introduce a new concept which we call a representative sample

of a distribution. The sample we create for the ϵ−reproducibility investigation is not an

original sample; rather, it is a way to represent the representative sample using a probability

distribution for a population using percentiles of standard normal distribution. Using the

representative sample, we do not derive the NPI lower and upper ϵ−reproducibility for the

variance. Because the upper variance is a quadratic constraint optimization issue with no

typically closed-form solutions. However, in the lower reproducibility for variance, we need

to minimise the future sample variance θ̂fj,L of the m future observations, then derive the

probability mass of all observations to the left xi−1 or the right xi in the interval [xi−1, xi]

but we do not know the change point is, it could be good to look for this in the future.



Chapter 4

Reproducibility of estimates based on

RRT

4.1 Introduction

In the last chapters, we discussed reproducibility of statistical tests based on RRT data

and then we investigate the ϵ−reproducibility of estimates of data generated from the

standard normal distribution or the exponential distribution. In this chapter, we use the

ϵ−reproducibility methods introduced in Chapter 3 to investigate which RRT methods lead

to the best ϵ−reproducibility of estimates using the NPI-B method and the representative

sample to compare between RRT methods.

This chapter is structured as follows. The idea of ϵ−reproducibility of estimates based

on RRT method using NPI-B method is introduced in Section 4.2. In Section 4.3, the

reproducibility of estimates based on a representative sample is investigated. A comparison

of the reproducibility for estimates based on RRT data is presented in Section 4.4. Section

4.5 concludes the chapter and presents a consideration of relevant research ideas.

97



4.2. Reproducibility of the estimates based on RRT methods using NPI-B
method 98

4.2 Reproducibility of the estimates based on RRT

methods using NPI-B method

In this section, we derive the ϵ−reproducibility for estimates using data generated by RRT;

the approach is detailed in Section 3.2. We use the simulation to generate the original

sample of responses of the respondent of different RRT data such as the true response

X, the scrambling response S, the response of the unrelated question Y or the reported

response Z. These random quantities are generated using a simulation of RRT method,

then we use NPI-B method to generate all possible responses which are generated from the

original sample. We calculate the original mean µ̂x and the future mean µ̂B and then we

use the ϵ−reproducibility for estimates is explained in Section 3.2. Example 4.2.1 illustrates

reproducibility of estimates based on the multiplicative method (MM) method.

Example 4.2.1 This example explains ϵ−reproducibility of the estimate based on real-valued

random quantities generated from the multiplicative methods (MM) [62]. Let Xi ∼ N(µx =

4, σ2
x = 3) be the true answer that represents the sensitive characteristic for individual i with

an unknown mean µx, and let Si be the scrambling variable. By giving the randomisation

device, we generate a random quantity Si that follows a normal probability distribution

with the known mean E(Si) = θ = 1 and known variance γ2 = 0.2.

We assume that all respondents have a probability of scrambling, ψ = 0.7. To start

with, we simulate a sample with a size of n = 5 that represents the reported responses Zi.

The respondent offers the answer Zi = Xi if the question is not sensitive; if the question is

sensitive, the answer is scrambling Zi = SiXi.

The simulated values of X1, X2, X3, X4, X5 are 5.0142, 5.2288, 3.8107, 3.2145,

5.0494, and the simulated values of S1, S2, S3, S4, S5 are 0.1870, 1.2818, 0.8765, 0.8729,

0.5889, this leads to XiSi takes values 0.9376, 6.7023, 3.3400, 2.8060, 2.9734. Assume

that the randomisation device generated the values 1, 1, 0, 0, 1. If the value is 1, the

response is Zi = XiSi. If 0, the answer is Zi = Xi. So, the actual values are Z1 =

0.9376, Z2 = 6.7023, Z3 = 3.8107, Z4 = 3.2145 and Z5 = 2.9734 and the sample mean is
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Figure 4.1: The R̂P (ϵ) of the MM, n = 5, nB = 1000, µx = 4, σ2
x = 3, θ = 1, γ2 = 0.2,

ψ = 0.70

µz = 3.3300.

As discussed in Section 3.2, in order to implement NPI-B method to assess the

ϵ−reproducibility of estimates, we calculate the bounds of support of Zi as follows.

z0 = min
1≤i≤n

(zi)− d = −0.2381, zn+1 = max
1≤i≤n

(zi) + d = 7.4675 (4.1)

where d = 2.0526 is the maximal distance between two consecutive zi values.

We generate nB = 1000 bootstrapping samples each consisting 5 values and we

calculate the bootstrap estimate for the sample mean µ̂Bi
, for each bootstrap sample i. The

ϵ−reproducibility of the estimate of the mean is

R̂P (ϵ) =

nB∑
i=1

1

nB

1

{
|µ̂x − µ̂Bi

| ≤ ϵ

}
, where ϵ ≥ 0 (4.2)

Figure 4.1 shows that R̂P (ϵ) is a function of ϵ, where ϵ ∈ [0, 3]. The results illustrate

clearly that the lowest value of R̂P (ϵ) is for ϵ = 0 whereas the highest value of R̂P (ϵ) for

ϵ = 3. The increasing of ϵ leads to increasing of R̂P (ϵ). Therefore, for any two values

ϵ2 > ϵ1, the R̂P (ϵ2) > R̂P (ϵ1).
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Figure 4.2: R̂P (ϵ) versus ψ based on the MM with n = 5, nB = 1000, µx = 4, σ2
x = 3,

θ = 1, γ2 = 0.2, ϵ = 1

Summary ψ = 0 ψ = 0.1 ψ = 0.2 ψ = 0.3 ψ = 0.4 ψ = 0.5 ψ = 0.6 ψ = 0.7 ψ = 0.8 ψ = 0.9 ψ = 1.0

q(0.25) 0.7310 0.709 0.68475 0.6590 0.6378 0.6115 0.5865 0.5678 0.5498 0.5338 0.5338

q(0.75) 0.9620 0.9560 0.9433 0.9330 0.9220 0.9040 0.8883 0.8810 0.8615 0.8540 0.8463

median 0.8705 0.8460 0.8250 0.8130 0.7865 0.7550 0.7425 0.7175 0.7020 0.6810 0.6805

mean 0.8374 0.8193 0.8019 0.7858 0.7681 0.7476 0.7288 0.7134 0.6989 0.6857 0.6833

sd 0.1407 0.1498 0.15688 0.1649 0.1715 0.1786 0.1810 0.1858 0.1894 0.1926 0.1954

IQR 0.2310 0.2470 0.2585 0.2740 0.2843 0.2925 0.3018 0.3133 0.3118 0.3203 0.3125

lowest whisker 0.3845 0.3385 0.2970 0.2480 0.2114 0.1728 0.1339 0.0979 0.0821 0.0534 0.0650

highest whisker 1 1 1 1 1 1 1 1 1 1 1

Table 4.1: R̂P (ϵ) of estimates of the MM with n = 5, nB = 1000, µx = 0.2, σ2
x = 3,

θ = 1, γ2 = 0.2, ϵ = 1

For many replications n∗ = 100, we generate different original samples and derive the

R̂P (1) versus ψ as shown in Figure 4.2. It is noted that the reproducibility tends to decrease

as the ψ increases. At ϵ = 1, the respondents do not use the scrambling variables which

means the question is not sensitive. So, a large proportion of people are not scrambling

which leads to less variation between the responses.

To estimate the summary of R̂P (ϵ) of estimates of different ψ, Table 4.1 shows that the

R̂P (ϵ) of the medians shows a decreasing if ψ increases, from 0.87 to 0.68. The R̂P (ϵ) of the

means are always less than the medians except for the means of R̂P (ϵ) of ψ = {0.9, 1}.
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Figure 4.3: R̂P (ϵ) of the MM of n = 500, nB = 100, n∗ = 100, µx = 4, σ2
x = 20, θ = 1,

γ2 = 0.2, ϵ = 0.5

Summary ψ = 0 ψ = 0.1 ψ = 0.2 ψ = 0.3 ψ = 0.4 ψ = 0.5 ψ = 0.6 ψ = 0.7 ψ = 0.8 ψ = 0.9 ψ = 1.0

q(0.25) 0.91 0.9 0.9 0.89 0.89 0.88 0.87 0.87 0.86 0.86 0.8575

q(0.75) 0.95 0.94 0.94 0.94 0.93 0.93 0.92 0.92 0.92 0.91 0.91

median 0.93 0.93 0.92 0.915 0.91 0.91 0.9 0.9 0.89 0.89 0.88

mean 0.9267 0.9232 0.9193 0.9145 0.9095 0.9055 0.8987 0.8934 0.8901 0.8849 0.8785

sd 0.0295 0.0288 0.0289 0.0302 0.0301 0.0311 0.0336 0.0351 0.0352 0.0366 0.0398

IQR 0.04 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.06 0.05 0.053

lowest whisker 0.85 0.84 0.84 0.815 0.83 0.805 0.795 0.795 0.770 785 0.779

highest whisker 1 1 1 1 0.990 1 0.995 0.995 1 0.9850 0.9888

Table 4.2: R̂P (ϵ) for different value of ψ of the MM of n = 500, nB = 100,

n∗ = 100, µx = 4, σ2
x = 20, θ = 1, γ2 = 0.2, ϵ = 0.5

The R̂P (ϵ) of IQR takes values between 0.23 and 0.31. In addition, the R̂P (ϵ) of

q(0.25) takes value between 0.73 and 0.53 whereas the R̂P (ϵ) of q(0.75) takes values between

0.96 and 0.84. Conversely, the R̂P (ϵ) of standard deviation increase if ψ increases. The

lowest whisker stakes value between 0.06 and 0.38 whereas the highest whiskers take values

exceeds 1.

When the sample size is increased to n = 500, the reproducibility increases because

the difference between the estimates of the original sample and the future sample decrease

which leads to increasing the R̂P (1) = 1 of all characteristics except sd and IQR which are
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equal to 0.

The length of the rectangles in the boxplot shows the variations in ϵ−reproducibility.

It is noted that ϵ−reproducibility decreases if ϵ decreases of all values of scrambling ψ.

Large sample size n leads to higher reproducibility because the difference between the

original estimate and the future estimate decreases, but large replications n∗ do not lead to

more changes in the reproducibility because larger replication n∗ leads to more accurate

reproducibility for estimates.

Example 4.2.2 This example explains ϵ−reproducibility of the estimate based on real-valued

random quantities generated from the multiplicative methods (MM) [62]. Let Xi ∼ N(µx =

4, σ2
x = 20) be the true answer that represents the sensitive characteristic for individual i with

an unknown mean µx, and let Si be the scrambling variable. By giving the randomisation

device, we generate a random quantity Si that follows a normal probability distribution

with the known mean E(Si) = θ = 1 and known variance γ2 = 10.

To start with, we simulate a sample with a size of n = 5 that represents the reported

responses Zi. In this example, we increase the variance of normal distribution for each

Xi and Si. For σ2
x = 20, it is noted that R̂P (0.5) decreases if ψ decreases. The largest

reproducibility is for ψ = 0 whereas the lowest reproducibility is for ψ = 1. Figure

4.3 and Table 4.2 show that reproducibility decreases slightly if the sensitivity level ψ

decreases.

The R̂P (0.5) of the mean takes values between 0.92 and 0.87 and the R̂P (0.5) of the

median takes value between 0.93 and 0.88. The R̂P (0.5) of q(0.25) takes values between 0.91

and 0.85 whereas the R̂P (0.5) of q(0.75) takes values between 0.95 and 0.91. The R̂P (0.5)

of the IQR takes values between 0.04 and 0.06. The R̂P (0.5) of the standard deviation sd

takes small values between 0.02 and 0.03. The lowest whisker takes values between 0.85

and 0.77 whereas the highest whisker takes values between 0.90 and 0.98.

Now, we increase the variance of normal distribution of Si as shown in Figure 4.4

and Table 4.3. It is noted that the ϵ−reproducibility of estimates for all characteristics

at γ2 = 30 decrease clearly if ψ increases more than the ϵ−reproducibility of estimates at
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Figure 4.4: R̂P (ϵ) based on the MM, n = 500, nB = 100, n∗ = 100, µx = 4, θ = 1,

σ2
x = 3, γ2 = 30, ϵ = 0.5

Summary ψ = 0 ψ = 0.1 ψ = 0.2 ψ = 0.3 ψ = 0.4 psi = 0.5 ψ = 0.6 ψ = 0.7 ψ = 0.8 ψ = 0.9 ψ = 1.0

q(0.25) 1 0.6900 0.5400 0.4400 0.3800 0.3400 0.2900 0.2700 0.2500 0.2400 0.2300

q(0.75) 1 0.8100 0.6300 0.5200 0.4500 0.4100 0.3700 0.3500 0.3200 0.3000 0.2900

median 1 0.7550 0.5900 0.4800 0.4100 0.3700 0.3400 0.3100 0.2900 0.2700 0.2600

mean 1 0.7499 0.5827 0.4800 0.4125 0.3733 0.3357 0.3121 0.29 0.273 0.2606

sd 0 0.0802 0.0643 0.0578 0.0582 0.0565 0.0488 0.0482 0.0456 0.0419 0.0428

IQR 0 0.1200 0.0900 0.0800 0.0700 0.0700 0.0800 0.0800 0.0700 0.0600 0.0600

lowest whisker 1 0.5100 0.4050 0.3200 0.2750 0.2350 0.1700 0.1500 0.1450 0.1500 0.1400

highest whisker 1 0.9900 0.7650 0.6400 0.5550 0.5150 0.4900 0.4700 0.4250 0.3900 0.3800

Table 4.3: R̂P (ϵ) estimates of the MM of n = 500, nB = 100, n∗ = 100, µx = 4, θ = 1,

σ2
x = 3, γ2 = 30, ϵ = 0.5

γ2 = 0.2. Therefore, the increased variance of the normal distribution of Si leads to poor

reproducibility, even if the sample size increases.

Similarly, we introduce examples to the ϵ−reproducibility of the estimate based on

real-valued random quantities generated from the Greenberg method (GM) as explained in

Section 1.2.1.

Example 4.2.3 This example introduces ϵ−reproducibility of the estimate based on

real-valued random quantities generated from the Greenberg method [61]. Respondents

use the randomisation device to answer one of two questions. One of these questions is
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sensitive while the other is nonsensitive. Both answers are real-valued quantities.

Assume the probability of the sensitive question is γ = 0.70. We simulate the responses to

the sensitive question Xi ∼ N(µx = 1, σ2
x = 10) and the responses to the unrelated question

Yi ∼ N(µy = 4, σ2
y = 20).

Suppose that for n = 5, we represent the Xi values 2.8516, 3.2435, 0.6544, −0.4341,

2.9160 and the Yi values are are −4.1301, 6.8179, 2.7649, 2.7292,−0.1113. These values are

simulated from the given distributions.

Assume that γ = 0.70 is the probability of the question of interest being Xi for each

person in which can they give Yi as an answer. Assume that the randomisation device

generated the values {1, 1, 0, 0, 1}. If the value 1, the response is Zi = Yi. If 0, the answer

is Zi = Xi.

The reported Zi responses are −4.1301, 6.8179, 0.6544,−0.4341,−0.1113. The estimate

of the reported responses Zi based on the response Xi to the sensitive question µ̂z
x is

µ̂z
x =

µ̂z − (1− γ)µy

γ
= −0.9152 (4.3)

where µ̂z =
∑n

i=1 Zi

n
= 0.5593.

To apply NPI-B method for determining the lower and upper bounds for the support

Zi:

z0 = min
1≤i≤n

(zi)− d = −10.2937 (4.4)

zn+1 = max
1≤i≤n

(zi) + d = 12.9814 (4.5)

where d = 6.1635 is the maximal distance between two consecutive zi values. We generate

nB = 1000 NPI-B samples b1, ....bn size n based on the zi values.

We calculate the expected value of bootstrap samples bi based on the sample Zi as µ̂
B
z ,

and we use the mean of normal distribution of the unrelated responses µy to derive the

estimate of each bootstrap sample µ̂B
x as follows:

µ̂B
x =

µ̂B
z − (1− γ)µy

γ
(4.6)
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Figure 4.5: The average of R̂P (ϵ) of the Greenberg method, n = 5, nB = 100, n∗ = 1000,

µx = 1, σ2
x = 10, µy = 4, σ2

y = 20, γ = 0.70

where the mean of each bootstrap sample is µ̂B
z =

∑n
i=1 bi
n

. Then, we calculate the difference

between µ̂z
x and bootstrap samples means µ̂B

x to derive ϵ− reproducibility of the mean for

nB times. Then, find the number of of the event that |µ̂z
x − µ̂B

x | ≤ ϵ divided by nB, as

follows:

|µ̂z
x − µ̂B

x | ≤ ϵ⇐⇒
∣∣∣∣ µ̂z − (1− γ)µy

γ
− µ̂B

z − (1− γ)µy

γ

∣∣∣∣ ≤ ϵ (4.7)

This leads to derive ϵ− reproducibility of the mean as follows:

R̂P (ϵ) = P

(
|µ̂z

x − µ̂B
x | ≤ ϵ

)
=

nB∑
i=1

1

nB

1

{∣∣∣∣ µ̂z

γ
− µ̂Bi

x

γ

∣∣∣∣ ≤ ϵ

}
(4.8)

Perform this procedure n∗ times to get n∗ original sample to derive n∗ of ϵ−reproducibility

for estimates.

Figure 4.5 shows the R̂P (ϵ) as function. It can be seen that for larger values of ϵ,

reproducibility increases, because the difference between the estimate based on the original

sample and the estimate based on the future sample is small which increases the R̂P (ϵ).

The results illustrate clearly that the lowest value of R̂P (ϵ) is for ϵ = 0 whereas the highest

value of R̂P (ϵ) for ϵ = 3. The increasing of ϵ leads to increasing of R̂P (ϵ). Therefore, for

any two values ϵ2 > ϵ1, the R̂P (ϵ2) > R̂P (ϵ1).
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Summary γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9 γ = 1.0

q(0.25) 0.0270 0.0530 0.0760 0.0978 0.1160 0.1360 0.1560 0.1740 0.1950 0.3008

q(0.75) 0.0500 0.0940 0.1340 0.1690 0.2040 0.2283 0.2613 0.2965 0.337 0.4960

median 0.0370 0.0690 0.1010 0.1280 0.1500 0.1710 0.1950 0.2215 0.2470 0.3830

mean 0.0424 0.0797 0.1155 0.1435 0.1711 0.1957 0.2240 0.2539 0.2820 0.4142

sd 0.0218 0.0419 0.0657 0.0698 0.0815 0.0970 0.1071 0.1192 0.1271 0.1549

IQR 0.0230 0.0410 0.0580 0.0713 0.0880 0.0923 0.1053 0.1225 0.1420 0.19525

lowest whisker 0 0 0 0 0 0 0 0 0 0

highest whisker 0.0845 0.1555 0.2210 0.2759 0.3360 0.3666 0.4191 0.4803 0.5500 0.7889

Table 4.4: R̂P (ϵ) of the GM method of n = 5, nB = 100, n∗ = 100, µx = 1, σ2
x = 10,

µy = 4, σ2
y = 20, ϵ = 1

For different original samples, the reproducibility for estimates based on Greenberg’s

method can be visualised using a boxplot with different γ ∈ [0, 1] where the variances of

the normal distributions σ2
x > σ2

y.

Figure 4.6 shows that reproducibility gets higher as γ becomes larger because many

people answer the unrelated question. The R̂P (1) of the mean takes values between 0.04

and 0.28 and the R̂P (1) of the median takes value between 0.03 and 0.27. The R̂P (1)

of q(0.25) takes values between 0.02 and 0.19 whereas the R̂P (1) of q(0.75) takes values

between 0.05 and 0.33. The R̂P (1) of the IQR takes values between 0.02 and 0.14. The

R̂P (1) of the standard deviation sd takes small values between 0.02 and 0.12. The highest

whisker takes values between 0.08 and 0.55.

A large sample size leads to higher reproducibility. However, a large number of

replications n∗ does not lead to more changes in the reproducibility because larger replication

leads to more accurate for reproducibility for estimates as shown in Figure 4.5 and Table

4.5.

For the assumptions, µy > µx and σ
2
y > σ2

x, an increasing the variance of the distribution

of the non-sensitive answers leads to an increase of the ϵ−reproducibility for the estimates

as shown in Figures 4.7 and 4.8 respectively. Tables 4.5 shows the ϵ−reproducibility of

estimates are higher than the ϵ−reproducibility of estimates in Table 4.6 shows.

The R̂P (0.5) of the mean takes values between 0.17 and 0.98 and the R̂P (0.5) of the

median takes value between 0.17 and 0.90. The R̂P (0.5) of q(0.25) takes values between
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Figure 4.6: R̂P (ϵ) of the GM method of n = 5, nB = 100, n∗ = 100, µx = 1, σ2
x = 10,

µy = 4, σ2
y = 20, ϵ = 1
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Figure 4.7: R̂P (ϵ) of the GM method of n = 500, nB = 100, n∗ = 100, µx = 1, σ2
x = 10,

µy = 4, σ2
y = 20, ϵ = 0.5

0.15 and 0.87 whereas the R̂P (0.5) of q(0.75) takes values between 0.2 and 0.91. The

R̂P (0.5) of the IQR takes values between 0.05 and 0.07. The R̂P (0.5) of the standard

deviation sd takes small values between 0.03 and 0.05. The highest whisker takes values

between 0.07 and 0.81. and the lowest whisker takes values between 0.27 and 0.97.

Now, we increase the mean of the distribution of the sensitive responses and investigate
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Figure 4.8: R̂P (ϵ) of the GM method of n = 500, nB = 100, n∗ = 100, µx = 1, σ2
x = 20,

µy = 4, σ2
y = 10, ϵ = 0.5
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Figure 4.9: R̂P (ϵ) of the GM method, n = 500, nB = 100, n∗ = 100, µx = 4, σ2
x = 20,

µy = 1, σ2
y = 10, ϵ = 0.5

the ϵ−reproducibility of estimates where µx > µy and σ2
y < σ2

x. We find that the

ϵ−reproducibility of estimates of all characteristics increases than the ϵ−reproducibility of

estimates at µx < µy and σ2
y < σ2

x except the ϵ−reproducibility of the median as shown in

Figure 4.9 and Table 4.7.

So, the ϵ−reproducibility of estimates of the GM gets higher values if the mean of the

distribution of the sensitive responses and the variance of the distribution of the unrelated
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Summary γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9

q(0.25) 0.1500 0.3000 0.4275 0.5300 0.6300 0.7000 0.7700 0.8300 0.8700

q(0.75) 0.2000 0.3600 0.4825 0.6000 0.6900 0.7600 0.8200 0.8800 0.9100

median 0.1700 0.3300 0.4600 0.5600 0.6500 0.7300 0.8000 0.8500 0.900

mean 0.1736 0.3301 0.4578 0.5645 0.6551 0.7309 0.7967 0.8496 0.8902

sd 0.0358 0.0438 0.0440 0.0531 0.0506 0.0446 0.0462 0.04144 0.0335

IQR 0.0500 0.0600 0.0550 0.0700 0.0600 0.0600 0.0500 0.0500 0.0400

lowest whisker 0.0750 0.2100 0.3450 0.4250 0.5400 0.6100 0.6950 0.7550 0.8100

highest whisker 0.2750 0.4500 0.5650 0.7050 0.7800 0.8500 0.8950 0.9550 0.9700

Table 4.5: R̂P (ϵ) of the GM method of n = 500, nB = 100, n∗ = 100, µx = 1, σ2
x = 10,

µy = 4, σ2
y = 20, ϵ = 0.5

Summary γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9

q(0.25) 0.1100 0.2400 0.3800 0.500 0.6200 0.7300 0.8200 0.900 0.9500

q(0.75) 0.1600 0.3000 0.4300 0.5700 0.6900 0.7900 0.8800 0.9400 0.9800

median 0.1300 0.2750 0.4100 0.5400 0.6600 0.7600 0.8600 0.9200 0.9700

mean 0.1345 0.2736 0.4077 0.5385 0.6553 0.7595 0.8498 0.9177 0.9602

sd 0.0343 0.0408 0.0425 0.0526 0.0539 0.0449 0.04192 0.0307 0.0231

IQR 0.0500 0.0600 0.0500 0.0700 0.0700 0.0600 0.0600 0.0400 0.0300

lowest whisker 0.0350 0.1500 0.3050 0.3950 0.5150 0.6400 0.7300 0.8400 0.9050

highest whisker 0.2350 0.3900 0.5050 0.6750 0.7950 0.8800 0.9700 1.0000 1

Table 4.6: R̂P (ϵ) of the GM method of n = 500, nB = 100, n∗ = 100, µx = 1, σ2
x = 20,

µy = 4, σ2
y = 10, ϵ = 0.5

Summary γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9

q(0.25) 0.1600 0.3000 0.4400 0.5700 0.6900 0.8000 0.8800 0.9325 0.9725

q(0.75) 0.1600 0.3000 0.4400 0.5700 0.6900 0.8000 0.8800 0.9325 0.9725

median 0.1300 0.2750 0.4100 0.5400 0.6600 0.7600 0.8600 0.9200 0.9600

mean 0.1359 0.2742 0.4102 0.5403 0.6569 0.7616 0.8516 0.9163 0.9593

sd 0.0344 0.0405 0.0445 0.0502 0.0506 0.0493 0.0449 0.0305 0.0219

IQR 0.0500 0.0500 0.0600 0.0700 0.0700 0.0800 0.0525 0.0325 0.0250

lowest whisker 0.0350 0.1750 0.2900 0.3950 0.5150 0.6000 0.7488 0.8513 0.9100

highest whisker 0.2350 0.3750 0.5300 0.6750 0.7950 0.9200 0.9588 0.98125 1

Table 4.7: R̂P (ϵ) of the GM method of n = 500, nB = 100, n∗ = 100, µx = 4, σ2
x = 20,

µy = 1, σ2
y = 10, ϵ = 0.5
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response increase.

In general, as γ increases, the ϵ−reproducibility of the estimate of the GM rises. It is

to be noted that while the ϵ−reproducibility of estimates of the MM gets higher values than

the ϵ−reproducibility of estimates of the GM with large sample size, the ϵ−reproducibility

of estimates of the GM has less variation with small sample size than the ϵ−reproducibility

of estimates of the MM.

Both the ϵ−reproducibility of estimates of MM and GM are investigated using a single

sample. So, it is useful now to investigate the process of deriving the additive method’s

estimates’ ϵ−reproducibility using two samples.

Example 4.2.4

This example explains reproducibility for estimates based on the additive method (AM) as

explained in Section 1.2.2. Assume that a sample of size n is divided into two sub-samples of

sizes n1 = 6 and n2 = 4, where n1 +n2 = n. Let assume true response X be simulated from

N(µx = 4, σ2
x = 3). Let S1 ∼ N(θ1 = 3, σ2

s1
= 2) and S2 ∼ N(θ2 = 5, σ2

s2
= 4). where θ1 ̸=

θ2. Suppose the sensitivity level is ψ = 0.70 which is known. Therefore, the simulated true

responses Xi are: 5.0142, 5.2288, 3.8107, 3.2145, 5.0494, 0.8512, 5.0914, 3.5216, 3.5078, 2.4077.

The scrambling responses are: S1 are 2.8356, 5.5701, 3.5241, 3.7357, 1.9386, 4.1553 and S2

are 6.5592, 7.9116, 3.7113, 5.5974. Each individual i is asked one of two questions using the

randomisation device. The level of sensitivity of the sensitive question is ψ = 0.7, and the

scrambled response is X + Sj, where j = 1, 2. Draw 0 and 1 variables in a sample Vj such

that Vj = 1 has probability ψ and Vj = 0 otherwise, as follows:

V1 = (1, 1, 1, 1, 0, 0) that means the responses are Z1 = {X1+S1, X2+S1, X3+S3, X4+S4,

X5, X6}, and V2 = (1, 1, 1, 1) that means the responses are Z2 = {X7 + S7, X8 + S8, X9 +

S9, X10 + S10}.

Then, the reported responses Zj are: X1 + S1 = 7.8497, X2 + S2 = 10.7989, X3 =

7.3348, X4 = 6.9502 , and X5 = 5.0494, X6 = 0.8512, X7 + S7 = 10.6889, X8 + S8 =

10.0808, X9 + S9 = 11.4193 and X10 + S10 = 6.1190. The expected values of Z1 and Z2

are

E(Z1) = µx + ψθ1 = 6.1 (4.9)
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Figure 4.10: R̂P (ϵ) of the AM method, n = 10, n1 = 6, n2 = 4, nB = 1000, n∗ =

1000, µx = 4, σ2
x = 3, θ1 = 3, θ2 = 5, σ2

s1
= 2, σ2

s2
= 4, ψ = 0.7

E(Z2) = µx + ψθ2 = 7.5 (4.10)

To apply NPI-B method, we need to choose the lower and upper bounds for the support

Zj:

z0 = min
1≤i≤n

(zj)− d (4.11)

zn+1 = max
1≤i≤n

(zj) + d (4.12)

where d is the maximal distance between two consecutive zj values. Therefore, the lower

and upper bounds of the z1 are −3.3470, 14.9971, and the lower and upper bounds of the z2

are 2.1571, 15.3812 respectively. Calculate the two sample means of the reported responses

z̄1 =
∑n1

i=1 zi
n1

and z̄2 =
∑n2

i=1 zi
n2

for each sample. Then derive the estimate µ̂z
x as follows:

µ̂z
x =

θ2z̄1 − θ1z̄2
θ2 − θ1

= −1.8154, θ1 ̸= θ2 (4.13)

We generate nB = 1000 NPI-Bootstrapping samples b1, ....bnB
with size n based on the

zi values. Then, calculate the bootstrap sample mean based on the original sample by

b̄1 =
∑n1

i=1 bi
n1

and b̄2 =
∑n2

i=1 bi
n2

for the two bootstrap samples. Then, derive the estimate µ̂B
x
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based on the NPI-Bootstrap samples as follows:

µ̂B
x =

θ2b̄1 − θ1b̄2
θ2 − θ1

, θ1 ̸= θ2 (4.14)

Then, we derive the ϵ−reproducibility of the mean as follows:

R̂P (ϵ) = P

(
|µ̂z

x − µ̂B
x | ≤ ϵ

)
⇐⇒ P

(∣∣∣∣θ2z̄1 − θ1z̄2
θ2 − θ1

− θ2b̄1 − θ1b̄2
θ2 − θ1

∣∣∣∣ ≤ ϵ

)
=

nB∑
i=1

1

nB

1

{∣∣∣∣θ2(z̄1 − b̄i1)− θ1(z̄2 − b̄i2)

θ2 − θ1

∣∣∣∣ ≤ ϵ

}
(4.15)

Repeat this procedure for n∗ = 1000 times. Figure 4.10 shows the ϵ−reproducibility of

the mean of different ϵ ∈ [0, 28]. It is noticed that ϵ−reproducibility of estimates increases

if the ϵ increases, and ϵ−reproducibility based on AM method needs larger ϵ = 28 to obtain

higher reproducibility closes to 1.

For more variations, we calculate R̂P (ϵ) for different ϵ as shown in Figure 4.11 and

Table 4.8. As shown in Figure 4.12 and Table 4.9, reproducibility probabilities for estimate

decreases if the ψ increases till ψ = 0.5, then reproducibility probabilities increase. The

highest reproducibiliy of of all characteristics are for ψ = 0 and ψ = 1. Here all the

respondents use the true answers where ψ = 0 and then the ϵ−reproducibility of all

characteristics are similar to ϵ−reproducibility of all characteristics of ψ = 1 where all

respondents use scrambling responses. If ψ = 0.5, we get the lowest ϵ−reproducibility for

responses that divided into two samples. One of them has the responses X, and the other

has the responses X + Sj.

Example 4.2.5 This example explains reproducibility for estimate based on the additive

method (AM) for larger sample size as explained in Section 1.2.2. Assume that a sample

of size n = 500 is divided into two sub-samples of sizes n1 = 279 and n2 = 221, where

n1 + n2 = n. Let assume true response Xi be simulated from N(µx = 4, σ2
x = 3). Let

S1 ∼ N(θ1 = 3, γ21 = 2) and S2 ∼ N(θ2 = 5, γ22 = 4). where θ1 ̸= θ2. Suppose the sensitivity

level is ψ = 0.70.

In this example, it is noted that increasing the sample size leads to increasing the

ϵ−reproducibility for the mean AM method as shown in Figures 4.11 and 4.12 and Tables

4.8 and 4.9.
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Figure 4.11: R̂P (ϵ) of the AM method n = 500, nB = 1000, n∗ = 100, µx = 4, σ2
x = 3,

θ1 = 3, θ2 = 5, σ2
s1
= 2, σ2

s2
= 4, ϵ = 0.5
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Figure 4.12: R̂P (ϵ) of AM method n = 500, nB = 1000, n∗ = 100, µx = 4, σ2
x = 20,

θ1 = 3, θ2 = 5, σ2
s1
= 2, σ2

s2
= 4, ϵ = 1

Table 4.8 show that the R̂P (0.5) of the mean takes values between 0.50 and 0.71 and

the R̂P (0.5) of the median takes value between 0.50 and 0.71. The R̂P (0.5) of q(0.25) takes
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Summary ψ = 0 ψ = 0.1 ψ = 0.2 ψ = 0.3 ψ = 0.4 ψ = 0.5 ψ = 0.6 ψ = 0.7 ψ = 0.8 ψ = 0.9 ψ = 1.0

q(0.25) 0.6775 0.5900 0.5300 0.5000 0.4800 0.4700 0.4700 0.4700 0.4875 0.5000 0.6775

q(0.75) 0.7425 0.6600 0.6100 0.5725 0.5500 0.5400 0.5300 0.5400 0.5525 0.5725 0.7425

median 0.7100 0.6250 0.5700 0.5400 0.5200 0.5000 0.4950 0.4950 0.5200 0.5300 0.7100

mean 0.7068 0.6232 0.5675 0.5362 0.5171 0.5057 0.5005 0.5046 0.517 0.5356 0.7068

sd 0.0487 0.0508 0.05428 0.0480 0.0464 0.0508 0.0462 0.0507 0.0495 0.0490 0.0487

IQR 0.0650 0.0700 0.0800 0.0725 0.0700 0.0700 0.0600 0.0700 0.0650 0.0725 0.0650

lowest whisker 0.5800 0.4850 0.4100 0.3913 0.3750 0.3650 0.3800 0.3650 0.3900 0.39125 0.5800

highest whisker 0.8400 0.7650 0.7300 0.6813 0.6550 0.6450 0.6200 0.6450 0.6500 0.6813 0.8400

Table 4.8: RP (ϵ) of AM method n = 500,nB = 100, n∗ = 1000, µx = 4, σ2
x = 3,

θ1 = 3, θ2 = 5, σ2
s1
= 2, σ2

s2
= 4, ϵ = 0.5

Summary ψ = 0 ψ = 0.1 ψ = 0.2 ψ = 0.3 ψ = 0.4 ψ = 0.5 ψ = 0.6 ψ = 0.7 ψ = 0.8 ψ = 0.9 ψ = 1.0

q(0.25) 0.2700 0.2800 0.2700 0.2600 0.2600 0.2600 0.2575 0.2600 0.2700 0.2600 0.2700

q(0.75) 0.3500 0.3400 0.3300 0.3300 0.3200 0.3100 0.3200 0.3100 0.3100 0.3225 0.3500

median 0.3050 0.3100 0.3000 0.3000 0.2900 0.2850 0.2850 0.2800 0.2900 0.2900 0.3050

mean 0.3120 0.3091 0.2998 0.2948 0.2903 0.2882 0.2872 0.2868 0.2898 0.2954 0.3120

sd 0.0527 0.0423 0.04202 0.0422 0.0437 0.0434 0.0436 0.04012 0.0424 0.04300 0.0527

IQR 0.0800 0.0600 0.0600 0.0700 0.0600 0.0500 0.0625 0.0500 0.0400 0.06250 0.0800

lowest whisker 0.1500 0.1900 0.1800 0.1550 0.1700 0.1850 0.16375 0.1850 0.2100 0.1663 0.1500

highest whisker 0.4700 0.4300 0.4200 0.4350 0.4100 0.3850 0.4138 0.3850 0.3700 0.4163 0.4700

Table 4.9: R̂P (ϵ) of AM method n = 500, nB = 100, n∗ = 1000, µx = 4, σ2
x = 20,

θ1 = 3, θ2 = 5, σ2
s1
= 2, σ2

s2
= 4, ϵ = 0.5

values between 0.47 and 0.67 whereas the R̂P (0.5) of q(0.75) takes values between 0.47

and 0.53. The R̂P (0.5) of the IQR takes values between 0.06 and 0.07. The R̂P (0.5) of

the standard deviation sd takes small values between 0.04 and 0.05. The highest whisker

takes values between 0.36 and 0.58. and the lowest whisker takes values between 0.62 and

0.84.

It is noticed that if the sensitivity level ψ, the ϵ−reproducibility reduces when ψ ∈

[0, 0.5] whereas the ϵ−reproducibility decrease of ψ ∈ (0.5, 1]. Increasing the variance of the

distribution of the sensitive question leads to decreasing the ϵ−reproducibility as Figure

4.12 and Table 4.9 are shown.
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4.3 Reproducibility of estimates using a

representative sample

In this section, the ϵ−reproducibility for estimates using the representative sample obtained

from a distribution as explained in Section 3.3. This data generated by the RRT methods;

EH, MM and GM methods as explained in Section 1.2.2.

Example 4.3.1

This example illustrates ϵ−reproducibility for estimates based on data generated by the

EH method. Let’s assume that we have a sample with size n = 3 and the future sample

size is m = 3. Assume that the true answer Xi ∼ N(µ = 4, σ2 = 3) be a random quantity

as a sensitive characteristic for individual i with an unknown mean µ, and random quantity

Si as a scrambling variable. By giving the randomisation device, we generate random

quantity Si ∼ N(θ = 1, r2 = 0.04). The random quantities of the original sample is

Zi ∼ N(µθ, r2θ2 + r2

θ2
(σ2 + µ2)) = {−0.5865, 4, 8.5865} where z̄ is mean of the original

sample.

To apply NPI-B method, we calculate the lower and upper bounds as follows: z0 =

min(zi) − d = −5.1731, zn+1 = max(zi) + d = 13.1731 and d = 4.5865 is the maximal

distance between two consecutive values of zi.

The original sample mean is calculated from x̄ = z̄
θ
= 4. Here, we have 30 data,

so we can construct four intervals between the data set values including the endpoints

(z0, zn+1) with the intervals I1 = (1.3842,−0.5865), I2 = (−0.5865, 4), I3 = (4, 5.3079), and

I4 = (5.3079, 8.5865).

Then, set all possible locations of the future observations as m = 20 and the number

of the orderings such as no =
(
n+m
n

)
= 20 to get the orderings Oj. If the order is (2, 0, 1, 0),

that means there are two future observations in the interval I1, no observation in the interval

I2, one observation in I3, and nothing in the interval I4 where all orderings have equal

probability 1/20.
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zfj,l ϵj,l RP (ϵj,l) zfj,u ϵj,u RP (ϵj,u)

1.3842 0.8719 0.35 2.6921 0.0000 0.55

3.5640 0.8719 0.35 4.8719 0.0000 0.55

3.5640 0.8719 0.35 4.8719 0.0000 0.55

2.6921 0.8719 0.35 4.0000 0.0000 0.55

4.4360 0.8719 0.35 5.7438 0.4360 0.80

3.5640 0.8719 0.35 4.8719 0.4360 0.80

2.2562 0.8719 0.35 3.5640 0.4360 0.80

3.5640 1.3079 0.55 4.8719 0.4360 0.80

4.0000 1.3079 0.55 5.3079 0.4360 0.80

3.1281 1.3079 0.55 4.4360 0.8719 0.95

2.6921 1.3079 0.55 4.0000 0.8719 0.95

2.2562 1.7438 0.80 3.5640 0.8719 0.95

1.8202 1.7438 0.80 3.1281 1.3079 1.00

4.8719 1.7438 0.80 6.1798 0.0000 0.55

2.6921 1.7438 0.80 4.0000 0.0000 0.55

4.4360 1.7438 0.80 5.7438 0.0000 0.55

3.5640 2.1798 0.95 4.8719 0.0000 0.55

4.4360 2.1798 0.95 5.7438 0.4360 0.80

1.8202 2.1798 0.95 3.1281 0.4360 0.80

3.5640 2.6158 1.00 4.8719 0.4360 0.80

Table 4.10: The zfj,l, z
f
j,u, ϵj,l, ϵj,u, RP (ϵj,l) using the EH method of n = 3, m = 3, no = 20,

µx = 4, θ = 1, σ2
x = 3, r2 = 0.04, z̄ = 4.

We derive the lower and upper mean zfj,l, z
f
j,u using Equation (3.7). Then, we calculate

RP (ϵj,l) and RP (ϵj,l) where ϵj,l is the maximum value between (z̄ − z̄fj,l) and (z̄fj,u − z̄), and

ϵj,u the maximum value between (z̄fj,l − z̄) and (z̄ − z̄fj,u) respectively.

Table 4.10 shows the zfj,l, z
f
j,u, ϵj,l, ϵj,u, RP (ϵj,l) and RP (ϵj,l). It is noted that the

ϵ−reproducibility of the mean increases if the difference between the mean based on the

original and future samples increases. The highest values of RP (ϵj,l) are for the orderings

(0 1 0 2), (2 0 1 0) and (0 0 0 3) whereas the highest values of RP (ϵj,u) are for the orderings

(0 2 0 1), (1 0 1 1) and (2 1 0 0). The ordering of the future observations play important

role in the value of the ϵ−reproducibility of the mean.

For more variations, we generate different sample n∗ as original samples with size

n = 30 as shown in Table 4.11. This shows the characteristics of ϵ−reproducibility of the

mean using the EH method including the 25th, 50th(mean), and 75th quartiles which are



4.3. Reproducibility of estimates using a representative sample 117

RP (1) RP (1)

n∗ 100 500 1000 100 500 1000

q(0.25) 0.9230 0.9240 0.9240 0.9830 0.9820 0.9820

q(0.75) 0.9330 0.9350 0.9350 0.9880 0.9880 0.9880

median 0.9275 0.9290 0.9290 0.9850 0.9850 0.9850

mean 0.9281 0.9292 0.9290 0.9849 0.9851 0.9850

sd 0.0083 0.0085 0.0084 0.0039 0.0039 0.0038

IQR 0.0100 0.0110 0.0110 0.0050 0.0060 0.0060

lowest whisker 0.9080 0.9075 0.9075 0.9755 0.9730 0.9730

highest whisker 0.9480 0.9515 0.9515 0.9955 0.9970 0.9970

Table 4.11: Estimates of RP (1) and RP (1) using the EH method of n = m = 30, no = 20,

µx = 4, θ = 1, σ2
x = 3, r2 = 0.04

known as the lower quartile q(0.25), median or q(0.50), and upper quartile q(0.75), and

then determine the interquartile range IQR.

The results demonstrate that as n∗ increases, the ϵ−reproducibility increases. There

is no difference between the estimates of n∗ = 500 and n∗ = 1000 which means more

replications lead to more accurate ϵ−reproducibility. The mean and the median takes

value 0.92 and 0.98 of the lower and upper ϵ−reproducibilities respectively. The standard

deviation is always minimal, indicating that the variance of reproducibility for data points

is small and that the distance between data points and the mean is short. The IQR is

a measure for determining how far off data points in a set are from the set’s mean. It

always takes value 0.1001 of RP (ϵ), and takes values between 0.0500 and 0.0600 of RP (ϵ),

implying that the smaller the IQR, the more closely the data points are clustered around

the mean. The spread data points are quantified using whisker spread.

Table 4.12 shows the average of RP (1) and RP (1) of different sample sizes and different

orderings no of n∗ = 100. It is noted that an increasing number of orderings no leads to a

decrease in the NPI lower and upper reproducibility probabilities. Increasing of the sample

size leads to higher NPI lower and upper reproducibility probabilities which means we

obtain more accurate information about the ϵ−reproducibility.

Example 4.3.2 This example illustrates ϵ−reproducibility of the mean of MM method [62]

of a sample with size n = 3. Suppose that the true answer Xi ∼ N(µx = 4, σ2
x = 3) be a

random quantity as a sensitive characteristic for individual i with an unknown mean µx,
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n no Average of RP (1) Average of RP (1) n no Average of RP (1) Average of RP (1)

5

100 0.4684 0.9049

100

100 0.9998 1.0000

500 0.4550 0.9061 500 0.9994 0.9999

1000 0.4539 0.9047 1000 0.9994 0.9998

n no Average of RP (1) Average of RP (1) n no Average of RP (1) Average of RP (1)

30

100 0.9301 0.9854

1000

100 1.0000 1.0000

500 0.9278 0.9849 500 1.0000 1.0000

1000 0.9289 0.9848 1000 1.0000 1.0000

Table 4.12: The average of RP (1) and RP (1) using the EH method of different n, no of

n∗ = 100 µx = 4, θ = 1, σ2
x = 3, r2 = 0.04

and random quantity Si as a scrambling variable. By giving the randomisation device, we

generate a random quantity Si ∼ N(θ = 1, γ2 = 0.04) where the sensitivity level of the

sensitive question is ψ = 0.7.

We generate the original generating sample Zi ∼ N(µx, σ
2
x+ψγ

2(σ2
x+µ

2
x)) = N(4, 3.532),

where i = 1, ..., n such that z1 = 2.7324, z2 = 4, and z3 = 5.2676. where the mean of

the original sample is z̄ = 4. To apply the NPI-B method, we determine the lower and

upper bounds z0 = 1.4648, zn+1 = 6.5352 where d = 1.2676. We generate the orderings of

the future observations
(
6
3

)
= 20. Then calculate the lower and upper mean zfl , z

f
u, and

determine the values of ϵj,l, ϵj,u to derive RP (ϵ) and RP (ϵ).

It is noted that a larger distance between the original sample means and lower means

zfl and upper means zfu leads to larger reproducibility of the mean. Therefore, largest value

of ϵj,l = 2.5352 leads to largest value of RP (2.5352) = 1. Similarly, the largest value of

ϵj,u = 1.2676 leads to the largest value of RP (1.2676) = 1 as shown in Table 4.13.

Table 4.14 summarised the characteristics of the MM method including the lower

quartile q(0.25), median M or q(0.50), and upper quartile q(0.75) and the interquartile

range IQR. The results show that as n∗ increases then the lower and upper reproducibility

decrease. The means are close to the median. The standard deviation is always minimal,

indicating that the variance of RP (ϵ) data points is small and that the distance between

data points and the mean is small.

For different replications n∗ = 100, 500 and 1000. The median takes value 0.95 and
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zfj,l ϵj,l RP (ϵj,l) zfj,u ϵj,u RP (ϵj,u)

1.4648 0.8451 0.35 2.7324 0.0000 0.55

3.5775 0.8451 0.35 4.8451 0.0000 0.55

3.5775 0.8451 0.35 4.8451 0.0000 0.55

2.7324 0.8451 0.35 4.0000 0.0000 0.55

4.4225 0.8451 0.35 5.6901 0.4225 0.70

3.5775 0.8451 0.35 4.8451 0.4225 0.70

2.3099 0.8451 0.35 3.5775 0.4225 0.70

3.5775 1.2676 0.55 4.8451 0.4225 0.80

4.0000 1.2676 0.55 5.2676 0.4225 0.80

3.1549 1.2676 0.55 4.4225 0.8451 0.90

2.7324 1.2676 0.55 4.0000 0.8451 0.90

2.3099 1.6901 0.80 3.5775 0.8451 0.95

1.8873 1.6901 0.80 3.1549 1.2676 1.00

4.8451 1.6901 0.80 6.1127 0.0000 0.55

2.7324 1.6901 0.80 4.0000 0.0000 0.55

4.4225 1.6901 0.80 5.6901 0.0000 0.55

3.5775 2.1127 0.95 4.8451 0.0000 0.55

4.4225 2.1127 0.95 5.6901 0.4225 0.70

1.8873 2.1127 0.95 3.1549 0.4225 0.70

3.5775 2.5352 1.00 4.8451 0.4225 0.70

Table 4.13: The zfj,l, z
f
j,u, ϵj,l, ϵj,u, RP (ϵj,l) and RP (ϵj,u) of the MM method of n = 3,

µx = 4, no = 20, θ = 1, σ2
x = 3, γ2 = 0.04, ψ = 0.70, z̄ = 4.

1 of the lower and upper ϵ−reproducibilities respectively. The RP (1) of the mean takes

values between 0.93 and 0.94 whereas RP (1) takes value 0.98. The standard deviation is

always minimal, indicating that the variance of reproducibility for data points is small and

that the distance between data points and the mean is small. The IQR is a measure for

determining how far off data points in a set are from the set’s mean. It always takes value

0.1000 of RP (1), and takes values between 0 of RP (1), implying that the smaller the IQR,

the more closely the data points are clustered around the mean. The spread data points

are quantified using whisker spread.

Increasing sample size leads to increasing the average of the related lower and

upper ϵ−reproducibility as shown in Table 4.15. The highest value of lower and upper

reproducibility of n = 1000 where the lower and upper ϵ−reproducibility are equal. For

different orderings no, the highest value of lower and upper reproducibility of no = 100.
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RP (1) RP (1)

n∗ 100 500 1000 100 500 1000

q(0.25) 0.9000 0.9000 0.9000 1 1 1

q(0.75) 1 1 1 1 1 1

Median 0.9500 0.9500 0.9500 1 1 1

Mean 0.9395 0.9402 0.9360 0.9885 0.9879 0.9871

sd 0.0547 0.0508 0.05512 0.0223 0.0237 0.0246

IQR 0.1000 0.1000 0.1000 0 0 0

lowest whisker 0.7500 0.7500 0.7500 1 1 1

highest whisker 1 1 1 1 1 1

Table 4.14: Estimates of RP (1) and RP (1) using the MM method of n = 30, no = 20,

µx = 4, θ = 1, σ2
x = 3, γ2 = 0.04, ψ = 0.7

n no Average of RP (1) Average of RP (1) n no Average of RP (1) Average of RP (1)

5

100 0.4684 0.9049

100

100 1.0000 1.0000

500 0.4550 0.9061 500 0.9996 0.9999

1000 0.4539 0.9047 1000 0.9995 0.9999

30

100 0.9402 0.9879

1000

100 1.0000 1.0000

500 0.9374 0.9874 500 1.0000 1.0000

1000 0.9384 0.9875 1000 1.0000 1.0000

Table 4.15: Average of RP (1) and RP (1) using the MM method of different n, no of

n∗ = 100 of µx = 4, θ = 1, σ2
x = 3, γ2 = 0.04, ψ = 0.70

For larger sample size and ordering numbers, the lower and upper ϵ−reproducibility of

the mean of the MM method is slightly larger than the lower and upper ϵ−reproducibility

of the mean of the EH method at ψ = 1.

Example 4.3.3 In this example, we derive the lower and upper reproducibility for estimates

based on the GM method [61] using a representative sample with a size of n = 3. Assume

the probability of the sensitive question is γ = 0.70. We simulate the random quantity of

the responses to the sensitive question Xi ∼ N(µx = 4, σ2
x = 3) and the responses to the

unrelated question Yi ∼ N(µy = 1, σ2
y = 0.04).

We generate random quantities of the original sample Zi where, Zi ∼ N(γµy + (1−

γ)µx, σ
2
y+γ(σ

2
x−σ2

y)+γ(1−γ)(µx−µy)
2) = N(3.1, 8.1673). The first response is z1 = 1.1724,

the second response is z2 = 3.1, and the third one is z3 = 5.0276, where the mean of the
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zfj,l ϵj,L RP (ϵj,l) zfj,u ϵj,u RP (ϵj,u)

-0.7552 1.2851 0.35 1.1724 0.0000 0.55

2.4575 1.2851 0.35 4.3851 0.0000 0.55

2.4575 1.2851 0.35 4.3851 0.0000 0.55

1.1724 1.2851 0.35 3.1000 0.0000 0.55

3.7425 1.2851 0.35 5.6701 0.6425 0.70

2.4575 1.2851 0.35 4.3851 0.6425 0.70

0.5299 1.2851 0.35 2.4575 0.6425 0.70

2.4575 1.9276 0.55 4.3851 0.6425 0.80

3.1000 1.9276 0.55 5.0276 0.6425 0.80

1.8149 1.9276 0.55 3.7425 1.2851 0.95

1.1724 1.9276 0.55 3.1000 1.2851 0.95

0.5299 2.5701 0.80 2.4575 1.2851 0.95

-0.1127 2.5701 0.80 1.8149 1.9276 1.00

4.3851 2.5701 0.80 6.3127 0.0000 0.55

1.1724 2.5701 0.80 3.1000 0.0000 0.55

3.7425 2.5701 0.80 5.6701 0.0000 0.55

2.4575 3.2127 0.95 4.3851 0.0000 0.55

3.7425 3.2127 0.95 5.6701 0.6425 0.70

-0.1127 3.2127 0.95 1.8149 0.6425 0.70

2.4575 3.8552 1.00 4.3851 0.6425 0.70

Table 4.16: The zfj,l, z
f
j,u, ϵj,l, ϵj,u, RP (ϵj,l) and RP (ϵj,u) of the GM method of n = 3,

no = 20, µx = 4, µy = 1, σ2
x = 3, γ = 0.7, σ2

y = 0.04, z̄ = 3.1

original sample is z̄ = 3.1. The lower and upper bounds are z0 = −0.7552 and zn+1 = 6.9552,

where d = 1.9276 is the maximal distance between two consecutive of zi values.

Then, find all possible orderings of the future observations to calculate the lower and

upper future averages zfl and zfu, then, and calculate the maximum values of ϵj,l and ϵj,u,

respectively, to derive the lower and upper ϵ−reproducibility of the difference between the

average of the original sample and the future sample as Table 4.16 is shown. It is noted that

a larger distance between the original sample means and lower means zfl and upper means

zfu leads to larger reproducibility of the mean. Therefore, largest value of ϵj,l = 3.8552 leads

to largest value of RP (3.8552) = 1. Similarly, the largest value of ϵj,u = 1.9276 leads to the

largest value of RP (1.9276) = 1 and the lowest value of ϵj,u = 0 leads to the largest value

of RP (0) = 0.55 as Table 4.16 is shown.

Table 4.17 shows the lower quartile q(0.25), median and q(0.25), the upper quartile
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RP (1) RP (1)

n∗ 100 500 1000 100 500 1000

q(0.25) 0.7000 0.7000 0.7000 0.8500 0.8500 0.900

q(0.75) 0.8000 0.8000 0.8000 0.9500 0.9500 0.9500

Median 0.7500 0.7500 0.7500 0.9000 0.9000 0.9000

Mean 0.7415 0.7506 0.7480 0.9155 0.9181 0.9152

sd 0.0935 0.0871 0.0932 0.0610 0.0595 0.0619

IQR 0.1000 0.1000 0.1000 0.1000 0.1000 0.0500

lowest whisker 0.5500 0.5500 0.5500 0.7000 0.7000 0.8250

highest whisker 0.9500 0.9500 0.9500 1 1 1

Table 4.17: Estimates of RP (1) and RP (1) using the GM method of n = m = 30,

no = 20, µx = 4, µy = 1, γ = 0.7, σ2
x = 3, σ2

y = 0.04

n no Average of RP (1) Average of RP (1) n no Average of RP (1) Average of RP (1)

5

100 0.1729 0.7920

100

100 0.9807 0.9948

500 0.1682 0.7865 500 0.9799 0.9936

1000 0.1684 0.7853 1000 0.9795 0.9935

30

100 0.7506 0.9181

1000

100 1.0000 1.0000

500 0.7504 0.9176 500 1.0000 1.0000

1000 0.7512 0.9186 1000 1.0000 1.0000

Table 4.18: Average of RP (1) and RP (1) using the GM method of n∗ = 100,

µx = 4, µy = 1, γ = 0.7, σ2
x = 3, σ2

y = 0.04

q(0.75), the interquartile range IQR, the mean, the lowest and highest whiskers of the lower

and upper reproducibility probabilities for different sample size n∗ = 100, 500, 1000. The

median does not change with different n∗. The mean takes a value between 0.74 and 0.75.

The lowest values are for standard deviation and IQR of the upper reproducibilities.

Table 4.17shows that the increasing of the replication numbers n∗ does not affect

considerably on the lower and upper ϵ−reproducibily of the mean. That means the

increasing in n∗ leads to a slight increase in RP (1) and RP (1).

For different sample sizes and orderings numbers, Table 4.18 shows that increasing

sample size leads to increasing the average of the lower and upper ϵ−reproducibility as

shown. The lower and upper ϵ−reproducibility of the mean of the GM method is the

smallest ϵ−reproducibility.
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no Average RP (1) CI(0.95) Average RP (1) CI(0.95)

1000 0.9273 (0.9112,0.9434) 0.9845 (0.9768,0.9922)

2000 0.9289 (0.9176,0.9402) 0.9849 (0.9796,0.9902)

5000 0.9287 (0.9216,0.9358) 0.9849 (0.9815,0.9883)

10000 0.9290 (0.9240,0.9340) 0.9849 (0.9825,0.9873)

20000 0.9287 (0.9251, 0.9323) 0.9848 (0.9831,0.9865)

50000 0.9290 (0.9267, 0.9313) 0.9848 (0.9837,0.9859)

100000 0.9289 (0.9273, 0.9305) 0.9848 (0.9840,0.9856)

Table 4.19: The lower and upper of CI(95%) of RP (1) and RP (1) using the EH method of

n = m = 30, n∗ = 100, µx = 2, θ = 0.3, σ2
x = 3, γ2 = 0.04

no Average RP (1) CI(0.95) Average RP (1) CI(0.95)

1000 0.9370 (0.9219, 0.9521) 0.9871 (0.9801,0.9941)

2000 0.9384 (0.9279, 0.9489) 0.9875 (0.9826,0.9924)

5000 0.9380 (0.9313, 0.9447) 0.9875 (0.9844,0.9906)

10000 0.9382 (0.9335, 0.9429) 0.9875 (0.9853,0.9897)

20000 0.9381 (0.9348, 0.9414) 0.9875 (0.9860,0.9890)

50000 0.9384 (0.9363, 0.9405) 0.9874 (0.9864,0.9884)

100000 0.9384 (0.9369, 0.9399) 0.9874 (0.9867,0.9881)

Table 4.20: The lower and upper of CI(95%) of RP (1) and RP (1) using the MM method

of n = m = 30, n∗ = 100, µx = 2, θ = 0.3, σ2
x = 3, γ2 = 0.04, ψ = 0.70

As a result, the sample size and choosing parameters of the RRT methods have a basic

role to obtain high the lower and upper ϵ−reproducibility of RRT method.

Now, we computed the exact lower and upper ϵ−reproducibility probabilities for a

sample with a size of n = m, considering large orderings no using the SOM methodology to

compute the lower and upper ϵ−reproducibility probabilities in order to assess the precision

of the SOM method of the computation of the lower and upper ϵ−reproducibility of RRT

methods. The Normal distribution is assumed to be the underlying distributions. Then, we

generate no orderings equal to 1000, 2000, 5000, 10000, 20000, 50000, 100000 using the SOM

approach, and the 95% confidence interval was calculated for both the lower and upper

bounds in each replication as shown on Tables 4.19, 4.20 and 4.21

To calculate the lower confidence interval of exact ϵ−reproducibility for estimates where

the number of sampled orderings is larger than or equal 1000, the interval is calculated
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no Average RP (1) CI(0.95) Average RP (1) CI(0.95)

1000 0.7512 (0.7244, 0.7780) 0.9186 (0.9017, 0.9355)

2000 0.7511 (0.7322 , 0.7700) 0.9192 (0.9073, 0.9311)

5000 0.7501 (0.7311, 0.7691) 0.9186 (0.9066, 0.9306)

10000 0.7497 (0.7307, 0.7687) 0.9184 (0.9064, 0.9304)

20000 0.7496 (0.7436, 0.7556) 0.9184 (0.9146, 0.9222)

50000 0.7494 (0.7456, 0.7532) 0.9183 (0.9159, 0.9207)

100000 0.7497 (0.7470, 0.7524) 0.9184 (0.9167, 0.9201)

Table 4.21: The lower and upper of CI(95%) of RP (1) and RP (1) using the GM method

of n = m = 30, n∗ = 100, µx = 4, µy = 1, γ = 0.7, σ2
x = 3, σ2

y = 0.04

using the normal approximation for the ordering number no. Therefore, the confidence

intervals of the RP (ϵ) and RP (ϵ) are

RP (ϵ)± zα
2

√
RP (ϵ) (1−RP (ϵ))

no
, RP (ϵ)± zα

2

√
RP (ϵ)

(
1−RP (ϵ)

)
no

(4.16)

where zα
2
is 1− α

2
quantile of the standard Normal distribution.

Tables 4.19, 4.20 and 4.21 show that the RP (ϵ) and RP (ϵ) of the mean of GM method

have the smallest ϵ−reproducibility whereas the RP (ϵ) and RP (ϵ) of the mean of the MM

method have the largest ϵ−reproducibility. Increasing no leads to a slight decreases in the

RP (ϵ) and RP (ϵ) of the mean of RRT methods and the confidence intervals CI(95%) and

CI(95%).

In general, it is noted that increasing the number of orderings of future observations

leads to an increase in the approximate lower and upper reproducibility for estimates based

on RRT and decreases the range of lower and upper confidence intervals for these lower

and upper reproducibility probabilities.

4.4 Comparison of RRT methods

We compare RRT methods for real-valued quantities based on three properties; variance,

privacy degree, and ϵ−reproducibility of estimates. To compare the ϵ−reproducibility

of estimates based on MM, EH, and GM data using simulation with NPI-B and the
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n = m = 100 300 500 ∆GM Var(Zi)

γ = 0.7 RP (ϵ) 0.3330 0.4730 0.5690 1.2234 4.5376

RP (ϵ) 0.1330 0.3680 0.5020

RP (ϵ) 0.4170 0.5260 0.6170

γ = 0.53 R̂P (ϵ) 0.2460 0.3680 0.4450 1.9167 7.3573

RP (ϵ) 0.0680 0.2770 0.3840

RP (ϵ) 0.3740 0.4570 0.5280

Table 4.22: Reproducibility of the mean of GM of nB = 1000, no = 1000, µx = 4, µy = 4,

σ2
x = 2.5, σ2

y = 1.5780, ϵ = 0.1

representative sample, we set parameters values for each method to achieve the same

privacy degree, then assess the variance and reproducibility of each method.

We first fix some parameters values of RRT methods such as the sample size n =

100, 300, 500, the number of ordering no = 1000, the number of NPI-B samples nB = 1000

and ϵ = 0.1, 0.7. Then we set the other parameter values to obtain the same privacy

degree. For example; the parameter values of the GM methods are µx = 4, µy = 4, σ2
x = 2.5,

σ2
y = 1.5780 and γ = 0.70. The parameter values of the MM method are µx = 2, θ = 1,

σ2
x = 4.8, γ2 = 0.2958, and ψ = 0.70. The parameter values of the EH methods are µx = 4,

θ = 2, σ2
x = 12.543, r2 = 0.2958 to obtain the same privacy degree 1.2234. Then, we change

γ, ψ and ϵ to investigate the changes in the RRT method in terms of privacy degree, the

variance and the ϵ−reproducibility of the mean.

Tables 4.22, 4.23 and 4.24 show that the comparison between GM, MM and EH

methods using the NPI-B and the representative sample. The results show that the lower

and upper ϵ−reproducibility of the mean of RRT methods increases if the variance decreases

(the efficiency of the method increases) while the privacy degree decreases.

Tables 4.22, 4.23 and 4.24 show that the ϵ−reproducibility of the mean based on

the GM, MM and EH method increases if γ increases or the sample size increases. The

ϵ−reproducibility for an estimate using NPI-B gets values within the range of the lower

and upper reproducibility of RRT using the representative sample except for the cases in

which the difference between the mean µ̂z
x of original samples of the reproducibility using

the NPI-B method are large than the mean µ̂z
x of original samples of the reproducibility

using the representative sample more than 0.2.
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n = m = 100 300 500 ∆MM Var(Zi)

MM(ψ = 0.70) RP (ϵ) 0.2850 0.4220 0.5010 0.7809 6.6221

RP (ϵ) 0.0830 0.2890 0.4170

RP (ϵ) 0.3830 0.4680 0.5410

MM(ψ = 0.53) RP (ϵ) 0.2850 0.4220 0.5010 1.2234 6.1796

RP (ϵ) 0.0900 0.3100 0.4260

RP (ϵ) 0.3900 0.4780 0.5520

Table 4.23: Reproducibility of the mean of MM of nB = 1000, no = 1000, µx = 2, θ = 1,

σ2
x = 4.8, γ2 = 0.2958, ϵ = 0.1

EH n = m = 100 300 500 ∆EH Var(Zi)

RP (ϵ) 0.1160 0.1900 0.2340 1.2234 13.7664

RP (ϵ) 0.0160 0.1770 0.2750

RP (ϵ) 0.3270 0.3580 0.4140

Table 4.24: Reproducibility of the mean of EH of nB = 1000, no = 1000, µ = 2, θ = 2,

σ2
x = 12.543, r2 = 0.2958, ϵ = 0.1

Increasing the sample size leads to higher ϵ−reproducibility and obtains higher values

of lower and upper ϵ−reproducibility using the representative sample and ϵ−reproducibility

using NPI-B method. Tables 4.23 and 4.24 show that ϵ−reproducibility of the mean based

on MM is higher than the RP for estimates based on EH. Increasing ϵ leads to an increase

of ϵ−reproducibility as shown in Tables 4.25, 4.26 and 4.27.

Based on the comparisons of the quantitative RRT methods, it is observed that at the

same level of privacy protection. The privacy degree, the variance and the ϵ−reproducibility

of the mean of the EH method are equivalent to the privacy degree, the variance of Zi and

the ϵ−reproducibility of the mean of the MM method of the sensitivity level ψ = 1. The

GM method has less variability of the reported responses than the EH and the MM method

at the same privacy degree.

To conclude, the ϵ−reproducibility of estimates is affected by the variance of the

original sample (the variability in the reported responses). If the variance increases (the

variability of the reported responses are large), then the ϵ−reproducibility of estimates

decreases. Higher ϵ−reproducibility of estimates leads to lower privacy degree of the RRT

methods.
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n = m = 100 300 500 ∆GM Var(Zi)

γ = 0.7 R̂P (ϵ) 0.9890 1.0000 1.0000 1.2234 4.5376

RP (ϵ) 0.9750 1.0000 1.0000

RP (ϵ) 0.9900 1.0000 1.0000

γ = 0.53 RP (ϵ) 0.9270 1.0000 1.0000 1.9167 7.35728

RP (ϵ) 0.9150 0.9990 1.0000

RP (ϵ) 0.9670 1.0000 1.0000

Table 4.25: Reproducibility of the mean of GM of nB = 1000, no = 1000, µx = 4, µy = 4,

σ2
x = 2.5, σ2

y = 1.5780, ϵ = 0.7

n = m = 100 300 500 ∆MM Var(Zi)

MM(ψ = 0.70) R̂P (ϵ) 0.9850 1.0000 1.0000 0.7809 6.6221

RP (ϵ) 0.9270 1.0000 1.0000

RP (ϵ) 0.9740 1.0000 1.0000

MM(ψ = 0.53) R̂P (ϵ) 0.9850 1.0000 1.0000 1.2234 6.1796

RP (ϵ) 0.9370 1.0000 1.0000

RP (ϵ) 0.9780 1.000 1.0000

Table 4.26: Reproducibility of the mean of MM of nB = 1000, no = 1000, µx = 2, θ = 1,

σ2
x = 4.8, γ2 = 0.2958, ϵ = 0.7

EH n = m = 100 300 500 ∆EH Var(Zi)

R̂P (ϵ) 0.6990 0.8970 0.9640 1.2234 13.7664

RP (ϵ) 0.7750 0.9740 0.9940

RP (ϵ) 0.8910 0.9890 0.9970

Table 4.27: Reproducibility of the mean of EH of nB = 1000, no = 1000, µ = 2, θ = 2,

σ2
x = 12.543, r2 = 0.2958, ϵ = 0.7

4.5 Concluding remarks

This chapter studies ϵ−reproducibility of estimates as introduced in Chapter 3 based on

quantitative RRT methods in two ways; the first method uses NPI-B method and the other

method uses the representative sample.

This first method investigates the ϵ−reproducibility of estimates based on the randomised

response method by using the simulation. The ϵ−reproducibility of estimates has different

behaviour depending on the design of RRT methods.

Using NPI-Bootstrap method is an excellent procedure to generate all possible future
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observations of the original sample while SOM method is a helpful technique to generate

all possible orderings of future observations. Therefore, for a large sample size, if it cannot

consider all the orderings of the future observations, we use sampling of ordering method

(SOM) to obtain a large number of orderings to derive approximation of the lower and

upper ϵ−reproducibility. Using a larger sample size n leads to a decrease in the difference

between the lower and upper ϵ−reproducibility and gives accurate ϵ−reproducibility. A

lower variance of the reported responses leads to higher ϵ−reproducibility with the same

privacy degree.

It is noted that ϵ−reproducibility of an estimate of the GM method has less variability

of the reported responses than the MM and EH methods. There is a strong relationship

between this variability and higher ϵ−reproducibility of estimates of RRT method. Less

variability leads to high ϵ−reproducibility of an estimate. Increasing ϵ and the sample size

n leads to higher ϵ−reproducibility of an estimate.

For further research, this work can be applied to different RRT methods that have

different procedures or multiple samples. In addition, ϵ−reproducibility of estimates can

be improved to investigate a unified measure to connect the variability of the reported

responses, respondents’ privacy and ϵ−reproducibility of estimates.



Chapter 5

Conclusions

In this thesis, we presented the reproducibility probability for hypothesis test scenarios

with data collected using RRT methods. We further proposed a novel method to study

reproducibility of estimates, and we applied this to compare different RRT methods.

In Chapter 2, the reproducibility of the statistical hypothesis test was presented for

data derived from two types of randomised response methods: the Greenberg model and

the forced methods. This reproducibility of the statistical hypothesis tests is applied for

one-sided and two-sided hypothesis tests of the proportion of the respondents who response

’yes’. Besides, a new measurement of reproducibility is proposed to compare the RRT

methods.

This method does not work well with larger samples n. It will be interesting, for

further research, to study the reproducibility of statistical tests based on RRT methods

considering larger sample sizes. We could also use future sample sizes that differ from the

data sample. The results show that the forced method has less variability of the reported

responses and higher reproducibility with the same privacy degree.

In Chapter 3, we discussed the ϵ−reproducibility of estimates of real data is generating

from the standard normal distribution. This method is applied using the NPI-Bootstrap. We

use NPI-Bootstrap to generate new samples of the future observation and then to estimate

the population characteristics. We obtain ϵ−reproducibility by finding the probability of

129
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an estimate valued future observations is close to the actual estimates.

The other procedure for this method we proposed the representative sample as a new

approach to generate the original sample, we consider the ordering of the future sample, and

we obtain the exact estimates which are close to the actual estimates. That can be applied

easily for the mean, the median, the variance, the quartiles, and IQR. However, we can

implement all the lower and upper ϵ−reproducibility of estimates of these characteristics

except the lower and upper variance in the case of the ϵ−reproducibility for estimation

by using the representative sample. Therefore, it may be well to search for this in the

future because the upper variance is a quadratic constraint optimisation problem to which

solutions are normally not available in closed-form.

Chapter 4 investigates the reproducibility of point estimates of population characteristics

based on data collected by RRT methods such as the Greenberg method, the multiplicative

method, and the additive optional method. The results show that the ϵ−reproducibility

of estimates of the Greenberg method is higher than the other RRT methods. In general,

We find that less variability in the reported responses of RRT methods leads to higher

reproducibility with the same privacy degree. In this chapter, we choose the method that is

simple to apply, not because it is the most essential method in the practical way to assess

the reproducibility of statistical inference based on RRT methods. It will be crucial for

the upcoming research to examine a wide range of RRT techniques, including the additive

models and or the combination of additive and multiplicative models.

Finally, applying reproducibility based on RRT will be a great idea if we investigate

the following ideas. It is useful to investigate a unified measurement over the fixed privacy

level and reproducibility and link this work with Gupta et.al work [63] and compare or

combine it with the unified measure of privacy level and efficiency. In addition, it is essential

to investigate reproducibility using different statistical inference techniques that can be

appropriate for reproducibility probability. Furthermore, it is a good idea to apply the

reproducibility method for a range of further statistical inferences based on RRT including

multiple-sample scenarios.
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[86] Pastore, M. and Calcagǹı, A. (2019). Measuring distribution similarities between

samples: A distribution-free overlapping index. Frontiers in Psychology, 10, 1089.

[87] Posavac, E. J. (2002). Using p values to estimate the probability of a statistically

significant replication. Understanding Statistics: Statistical Issues in Psychology,

Education, and the Social Sciences, 1, 101–112.

[88] Reiser, B. and Faraggi, D. (1999). Confidence intervals for the overlapping coefficient:

the normal equal variance case. Journal of the Royal Statistical Society: Series D (the

Statistician). 48, 413-418.

[89] Senn, S.(2002). A comment on replication, p-values and evidence S.N. Goodman.

Statistics in Medicine, 21, 2437–2444.

[90] Shao, J. and Chow, S. C. (2002). Reproducibility probability in clinical trials. Statistics

in Medicine, 21, 1727-1742.

[91] Simkus, A., Coolen, F. P. A., Coolen-Maturi, T., Karp, N. A. and Bendtsen, C. (2022).

Statistical reproducibility for pairwise t-tests in pharmaceutical research. Statistical

Methods in Medical Research, 31, 673-688.

[92] Thulin, M. (2014). The cost of using exact confidence intervals for a binomial

proportion. Electronic Journal of Statistics, 8, 817-840.

[93] Vollset, S. E. (1993). Confidence intervals for a binomial proportion. Statistics in

Medicine, 12, 809-824.

[94] Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities. London:

Chapman and Hall.

[95] Warner, S. L. (1965). Randomized response: A survey technique for eliminating

evasive answer bias. Journal of the American Statistical Association, 60, 63–69.

[96] Weichselberger, K.(2000). The theory of interval-probability as a unifying concept for

uncertainty. International Journal of Approximate Reasoning, 24, 149-170.



Bibliography 140

[97] Weichselberger, K. (2001). Elementare Grundbegriffe einer Allgemeineren

Wahrscheinlichkeitsrechnung I. Intervallwahrscheinlichkeit als Umfassendes Konzept

(In German). Physika, Heidelberg.

[98] Yan, Z., Wang, J. and Lai, J. (2008). An efficiency and protection degree-based

comparison among the quantitative randomized response strategies. Communications

in Statistics-Theory and Methods, 38, 400-408.

[99] Young, A., Gupta, S. and Parks, R. (2019). A binary unrelated-question RRT model

accounting for untruthful responding. Involve: A Journal of Mathematics, 12(7),

1163-1173.

[100] Zhimin, H. and Zaizai, Y. (2012). Measure of privacy in randomized response model.

Quality and Quantity, 46, 1167-1180.


	Abstract
	Declaration
	Introduction 
	Overview
	Randomised response techniques (RRT)
	Qualitative randomised response techniques
	Quantitative randomised response techniques
	RRT efficiency comparison 
	RRT privacy

	Reproducibility
	Nonparametric Predictive Inference(NPI) 
	NPI for multiple future observations
	NPI for Bernoulli random quantities

	NPI for reproducibility 
	NPI-bootstrap
	Sampling of orderings method
	Thesis outline

	Reproducibility of hypothesis tests based on randomised response data
	Introduction
	NPI reproducibility probability for statistical hypothesis tests using Bernoulli data 
	Reproducibility of one-sided hypothesis tests based on RRT data 
	Reproducibility of two-sided hypothesis tests based on RRT data 
	A measure of reproducibility for statistical hypothesis tests 
	A measure of reproducibility for one-sided hypothesis tests
	The minimum required sample size of measurement of reproducibility probability
	A measure of reproducibility for two-sided hypothesis tests

	Area under MRP of statistical tests based on RRT data
	The lower and upper threshold values
	Comparison of the reproducibility of statistical tests based on different RRT methods
	Concluding remarks

	Reproducibility of estimates 
	Introduction 
	Reproducibility of estimates using NPI-B method
	Reproducibility of estimates using a representative sample
	Concluding remarks

	Reproducibility of estimates based on RRT
	Introduction
	Reproducibility of the estimates based on RRT methods using NPI-B method
	Reproducibility of estimates using a representative sample
	Comparison of RRT methods
	Concluding remarks

	Conclusions
	Bibliography

