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Abstract: In this thesis, we explore crystallography through a mathematical lens.

We review the basics of crystallography with a mathematical focus, and expand into

contributions on two specific areas of the crystallographic refinement process. The

first of these is the detection of twin components within crystals using the effect

of twinning on detected diffraction peaks. We focus on using the information of

particularly underestimated peaks along with the lattice structure to intelligently

search for the most viable twin laws. The second contribution concerns the use of

non-spherical form factors in crystallographic refinement, and testing of the impact of

setting the form factor derivative to zero within the least-squares refinement process.

We utilise numerical differentiation to approximate this derivative more exactly, and

evaluate the impact of these choices for modelling the derivative through three test

molecules to find that, within the current bounds of uncertainty, modelling the

form factor derivative as zero has insignificant impact on the results of refinement.

Additional curiosities encountered within our investigations of crystallography are

also documented, such as the implementation of extinction parameters.
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Introduction

Crystallography is a field focused on the determination of crystal structure (the

layouts of atoms), typically using diffraction properties of the crystal. This requires

a deep mathematical analysis of the physical processes, leading to a backwards

deduction process to deduce the crystal structure which gave rise to the diffraction

pattern. It is this process which has been my focus over the PhD, and in particular

I have delved into two aspects of the refinement process - detection of rotated

components within a single crystal (twinning), and improvement of the diffraction

model based on ad hoc quantum mechanical calculations (nonspherical refinement).

The process of crystal determination itself has many more factors, outlined in Figure

1. In this thesis, I focus on the refinement aspect of the crystallographic process.

The basics of crystallography - details on atomic structures and how these cause

diffraction, as well as the process by which we trace back the diffraction results to

return these atomic structures - are described in Part I. This part was written with

an intention to describe crystallography in a very precise mathematical way, to allow

future mathematicians to understand the fundamentals quickly without the chemical

details.

In Part II, we cover the theory behind the effect of twinned crystals on the diffraction

pattern, and focus on the detection of these twins after initial refinement. We discuss

the current available literature and algorithms, and introduce our own algorithms

focusing on using the information available to guide our search. The conclusion for

this part is in Section 10.9.



2 List of Tables

Create the Crystal

A chemist will make a crystal through crystallisation from
solution, or a variety of other methods. The chemical
ingredients and method of crystallisation will affect the
end product, and different crystals can arise in the same
experiment. They will need to carefully inspect through
a microscope to select their crystal, and may have to try
multiple crystals before they get one which is the inten-
ded structure.

Diffract X-rays

The crystal is placed on the diffractometer, where X-rays
are fired at the crystal, diffract, and are registered by a
detector. Typically, the X-ray source and crystal can be
rotated around the crystal centre to allow all angles of
diffraction to be observed.

‘Integrate’ the images

The collection of images at known angles are inspected
for bright spots which are used to determine basic details
about the crystal lattice, labelled, and the brightness of
each spot is recorded. Integration is the term used for
both this whole process and specifically the integration of
the spot brightness in the images.

Obtain an initial model

The details of the spot intensities is used to create an ini-
tial model of the crystal structure. This process is known
as initial structure solution, and there are a number of
algorithms for this.

Refine the model

The structure is refined such that the theoretical results
of diffraction match as closely as possible with the re-
corded diffraction images. This is done via least-squares
refinement. My work lies within this part of the crystallo-
graphic process.

Deduce details
A crystallographer will analyse the crystal structure and
record interesting details and likely traits, or deduce reas-
oning behind traits the crystal is known to have.

Figure 1: The process of crystal determination
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In Part III, we explore the use of ad-hoc quantum mechanical calculations for the

adjustment of the form factors associated to each atom during the refinement process,

rather than taking a pre-tabulated model of each atom independent of the structure

it lies within. In particular, we explore the impact of approximating a form factor

derivative, which is particularly costly to calculate, as zero, on the refinement process.

The conclusion for this part is in Section 13.7.

My python files can be found at

https://github.com/Lycanic/crystal-investigations.

These files take the form of the olex_twinning file provided with Olex2 at the time

of thesis submission and a NonSpherTests.py plugin which can be added to Olex2

to perform numerical nonspherical refinement (see Part III). It additionally contains

my ns_analyse python script used to analyse nonspherical data and provide it in a

LATEX- compatible form.

https://github.com/Lycanic/crystal-investigations




Part I

Basics of X-ray Crystallography





Chapter 1

Fundamental Mathematical

Notions

In this chapter, we introduce some convention of notation I use in this thesis as well

as some basic mathematical notions used later in this thesis.

1.1 Notational Conventions

A boldface x denotes a column vector



x1

x2
...

xn

, the dimension n of which should be

clear from context. x has a magnitude x = ∥x∥ =
√

x · x, where x · y represents the

dot product, ∑n
i=1 xiyi. Additionally, x · y = xy cos θ where θ is the angle between

the two vectors. In three dimensions, the cross product x× y =


x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

, and

is perpendicular to both x and y. The zero-vector (with 0 in all entries) is denoted

0 and additionally is used to represent the origin. The Standard Basis is a set of
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vectors e1, . . . , en, where ei =



0
...
1
...
0


, with the 1 in the i-th row and 0 in every other

row. These satisfy ||ei|| = 1, ei · ej = δij, where δij is the Kronecker Delta, equal

to 1 if i = j and 0 otherwise. The Kronecker Delta is also used in a more general

context, for example δx∈X would be 1 if the element x were in the set X.

Matrices are represented by capital letters A =



a11 a12 . . . a1n

a21
. . . ...

... . . . ...
am1 am2 . . . amn

, given a matrix

with m rows and n columns. A particularly important matrix is the identity matrix

I which has 1 along its diagonal (aii = 1, aij = 0 for i ̸= j). I is always square, and

its dimensions should be clear from context.

We consider subsets of matrices with specific traits, which have a group structure

via matrix multiplication (details of groups will be outlined in the next section). A

common one is the Orthogonal Group

O(n) = {A|AAT = I, A is an n by n matrix}.

A key trait of such matrices is having a determinant of ±1. Such an element with

determinant 1 is referred to as an proper rotation, with determinant -1 is an improper

rotation. In 3 dimensions, improper rotations are also known as rotoinversions (and

change the handedness of the system) and proper rotations simply as rotations. The

linear map represented by the matrix -I is called inversion.

1.2 Group actions, orbits, equivalence relations

and quotients

In this section, we recall some basic definitions related to groups.



1.2. Group actions, orbits, equivalence relations and quotients 9

Definition 1.2.1 (Group). A group is a set G together with an operation given by

G×G→ G and denoted by (g, h) 7→ g · h satisfying the following properties:

(i) Existence of a neutral element e ∈ G satisfying e · g = g · e = g for all g ∈ G

(ii) Existence of an inverse element g−1 for every g ∈ G such that g−1·g = g·g−1 = e

(iii) Associativity: For all g1, g2, g3 ∈ G : (g1 · g2) · g3 = g1 · (g2 · g3).

A group G is called commutative if for all g1, g2 ∈ G : g1g2 = g2g1.

Definition 1.2.2 (Equivalence relation and quotient). Let X be a set. A equivalence

relation on X, denoted by x ∼ y meaning x ∈ X is equivalent to y ∈ X, satisfies the

following three properties:

(i) Reflexivity: x ∼ x for all x ∈ X,

(ii) Symmetry: x ∼ y implies y ∼ x for all x, y ∈ X,

(iii) Transitivity: x ∼ y and y ∼ z implies x ∼ z for all x, y, z ∈ X.

Given a set X with an equivalence relation ∼, this equivalence relation partitions

X into equivalence classes, denoted by [x] for x ∈ X and given by

[x] := {y ∈ X | y ∼ x}.

Any z ∈ [x] is called a representative of the equivalence class [x]. The quotient space

X/ ∼ is the set of all equivalence classes.

A specific example is R/ ∼ where x, y ∈ R are equivalent if and only if x − y ∈ Z.

This can also be written as R/Z, since both R and Z are groups with respect to

addition.

Definition 1.2.3 (Group action). Let G be a group and X be a general set. A

group action of G on X is given via a map G × X → X, (g, x) 7→ g · x with the
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following properties:

e · x = x for all x ∈ X, e the identity element,

g · (h · x) = (gh) · x for all g, h ∈ G, x ∈ X.

For a given x ∈ X, the orbit of x is given by

G · x = {g · x | g ∈ G},

and is a subset of X containing all elements which are results of any g acting on x.

For a given x ∈ X, the stabiliser of x is given by

Gx = {g ∈ G|g · x = x} ,

and is a subgroup of G preserving x.

A group action of G on X gives rise to a specific equivalence relation: x, y ∈ X are

equivalent if and only if there exists g ∈ G such that y = g · x. In this case the

quotient X/ ∼ of orbits G · x = [x] can also be written as X/G.

Definition 1.2.4 (Fundamental domain). Let G × X → X be a group action on

X. A fundamental domain of this group action is a subset D ⊂ X which contains

precisely one representative of each orbit in X (which is an element of X/G).

If X has additional topological structure like Rn, one often chooses fundamental

domains to be connected and of special shape like polytopes.



Chapter 2

Mathematical Concepts Related to

Crystal Structure

In this chapter, we set up the structures needed for the description of a crystal

lattice - that is, how the structure repeats in space. Whilst the definition of a

crystal has been updated to simply ‘a material which exhibits essentially a sharp

diffraction pattern’ [27] in order to accommodate quasicrystal structures discovered

by Shechtman [51]1, in this thesis we consider only crystals with a regular repeating

structure in 3 dimensions. Such regular structures have associated symmetry groups

(point groups and space groups) which are outlined in detail. We describe the

idealised form of a crystal as one which is infinite in size.

2.1 Atomic Locations and the Lattice

We define a Crystal Structure as a set of atoms, subject to repetition conditions.

Definition 2.1.1 (Crystal Structure). Mathematically, we choose to represent a

Crystal Structure as a discrete set S ⊂ R3 (representing atomic locations, or sites)

1Quasicrystals form an interesting story - even Shechtman was bemused by the existence of
a crystal with a tenfold rotational pattern, and tried all sorts of alternate explanations before
deducing that it must not follow any crystallographic lattice. He finally received the Nobel prize
for this discovery in 2011.
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along with a function p : S → N (representing the electron/proton number of the

atom). We then refer to a crystal structure by the set (S, p).

For a simple periodic crystal, we can choose three linearly independent vectors

a, b, c ∈ R3 such that:

• ∀s ∈ S : s + a, s + b, s + c ∈ S - that is, translations by these vectors map S

to itself.

• ∀s ∈ S : p(s + a) = p(s + b) = p(s + c) = p(s) - that is, p is periodic with

respect to each vector.

We have a similar concept to p of the electron density function ρ : R3 → R>0. This

also obeys periodicity in a, b, c, and is expected to have peaks at locations in S, but

is instead a smooth function.

We let these vectors a, b, c define a Lattice of points, or equivalently of translations

by those points.

Definition 2.1.2 (Lattice). A lattice Γ = Za1 + Za2 + · · ·+ Zan ⊂ Rn is a set of

lattice points x such that x = u1a1 + u2a2 + · · ·+ unan, ui ∈ Z and {a1, a2, . . . , an}

the lattice basis. a1, a2, . . . , an must be linearly independent.

A lattice can also be viewed as a set of translations which carries the structure of a

commutative group via composition.

Definition 2.1.3 (Primitive Lattice). Given a crystal structure (S, p), the associated

primitive lattice Γ is given by

Γ := {t ∈ R3|t + S = S, p(s + t) = p(s) for all s ∈ S}.

That is, Γ contains every translation which preserves the crystal structure.
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In general, for a given periodic crystal structure (S, p) we take the Direct Lattice [28,

/Direct_lattice] defined by the three vectors a, b, c introduced at the beginning of

this section, that is, Γ = Za + Zb + Zc. We define additionally the angle between a

and b to be γ, the angle between b and c to be α, and the angle between a and c

to be β. Whilst Za + Zb + Zc must be a sublattice of the primitive lattice of the

crystal structure, it might not be the entirety of the primitive lattice. Situations in

which a larger lattice is chosen are clearly noted, and are frequently done to gain

‘nicer’ lattices - ones with 90◦ angles, or ∥a∥ = ∥b∥. More on non-primitive lattice

types will be discussed in subsection 2.4.

Given a periodic crystal, we can note that we need only list elements in a small finite

subset of S along with their p(s) to be able to deduce the entirety of S and p(s) over

the crystal.

Definition 2.1.4 (Unit cell of lattice). A unit cell of a lattice Γ = ∑n
i=1 Zai is

given by D = ∑n
i=1[0, 1)ai ⊂ Rn, that is, a subset of minimal volume in the shape

of a parallelepiped with a vertex at 0 ∈ Rn whose Γ-orbit covers all of Rn. The

volume of D is independent of the choice of lattice basis {a1, . . . , an}, and is called

the covolume of Γ.

In other words, a unit cell is a specifically shaped fundamental domain of the lattice

action on Rn.

2.2 Relative and Cartesian Coordinates

It is common in crystallography to write the locations of atoms (and other locations

relative to a lattice) in Relative Coordinates.

Definition 2.2.1 (Relative Coordinates). Given a lattice Γ with basis a, b, c (such

that Γ = Za + Zb + Zc), and a location x ∈ R3, we can write x = xaa + xbb + xcc.
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Then, the xrel written in relative coordinates is


xa

xb

xc

.

The typical basis for vectors in R3,with three perpendicular axes e1, e2, e3, is known

as the Cartesian Basis. To refresh, this is defined such that e1 =


1
0
0

 , e2 =


0
1
0

 , e3 =


0
0
1

.

Vectors written in relative coordinates can be easily transformed into Cartesian

coordinates. This is done through the use of an orthogonalisation matrix.

Take the vector xcart = xaa + xbb + xcc in the Cartesian basis. Then xcart =
xaa1 + xbb1 + xcc1

xaa2 + xbb2 + xcc2

xaa3 + xbb3 + xcc3

 =


a1 b1 c1

a2 b2 c2

a3 b3 c3



xa

xb

xc

 =: Axrel, where xrel represents xcart as

written in relative coordinates, and A is the orthogonalisation matrix. A relative

vector is with respect to the basis of its associated lattice, which should always be

obvious from context.

Definition 2.2.2 (Orthogonalisation Matrix). The Orthogonalisation Matrix A =[
a b c

]
, transforms vectors xrel written in relative coordinates with respect to

the basis {a, b, c} of Γ = Za + Zb + Zc into Cartesian coordinates via the action

xcart = Axrel.

By a suitable choice of Cartesian orthonormal basis (obtained via an orientation-

preserving orthogonal transformation), we can always express our orthogonalisation

matrix in terms of the cell parameters a, b, c, α, β, γ as follows (see [53, Section

3.3.1.1.1])

A =


a b cos γ c cos β

0 b sin γ c(cos α−cos β cos γ)
sin γ

0 0 V
ab sin γ

 .
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Here V denotes the volume of the unit cell and is given by (see [53, formula (1.1.3.17)]

V = (a × b) · c = abc
√

1− cos2 α− cos2 β − cos2 γ + 2 cos α cos β cos γ.

We can consider the dot product of two vectors xcart, ycart written in relative coordin-

ates to the same lattice, xrel and yrel. Their dot product would be

xcart · ycart = (Axrel) · (Ayrel)

= (Axrel)⊤Ayrel

= xrel,⊤A⊤Ayrel

= xrel · A⊤Ayrel.

This central matrix A⊤A is known as the metric matrix, M :

Definition 2.2.3 (Metric Matrix). Given an orthogonalisation matrix A, the metric

matrix is A⊤A. If A =
[
a b c

]
, then

M =


a · a a · b a · c
b · a b · b b · c
c · a c · b c · c

 . (2.2.1)

The metric matrix has many uses. As seen above, it provides one simple transform-

ation within the dot product for vectors in relative coordinates. The determinant

of the metric matrix is equal to the squared volume of the fundamental domain of

the lattice Γ - equivalently, the determinant of A is plus or minus the volume of the

fundamental domain.

We can also consider the action of a rotation matrix in cartesian and relative space.

If a rotation matrix Rcart takes xcart to ycart = Rcartxcart, yrel = A−1RcartAxrel, and

thus we can state that Rrel = A−1RcartA (and Rcart = ARrelA−1). This is a map by

conjugation with A.
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2.3 Symmetries

Further to this translation repetition, many crystals also have additional symmetries

composed of rotation or rotoinversion, or either combined with a simultaneous

translation. Given this, we can further reduce the domain that must be described

to describe the entire periodic crystal structure.

Definition 2.3.1 (Rigid Motion). A rigid motion is a linear transformation of points

within Rn which preserves distances between points. That is, for a rigid motion

f : Rn → Rn, ||f(x) − f(y)|| = ||x − y||. Such transformations can be written as

g(x) = Rx + t, where R ∈ O(n) is an operation without translation (rotation or

rotoinversion), and t is a pure translation component.

We can further separate these matrices R in O(n) into those with determinant -1 or

+1. The matrices of determinant +1 form the subgroup SO(n) known as the special

orthogonal group.

The set of all rigid motions preserving a crystals structure gives rise to the notion

of a space group:

Definition 2.3.2 (Space Group). The Space Group G of a crystal (S, p) is the group

of all symmetry operations preserving the crystal structure. That is, the space group

is defined as

G = {g a rigid motion | for every s ∈ S, g(s) ∈ S and p(g(s)) = p(s)}.

The space group is often presented by providing representative elements modulo the

lattice translations - that is, crystallographers will write only representative symmet-

ries for each of the equivalence classes in G/Γ, assuming the lattice translations to

be inherently present.

Given the space group, we can obtain the Asymmetric Unit of the crystal similarly

to the unit cell, that is
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Definition 2.3.3 (Asymmetric Unit of a crystal). An asymmetric unit of a periodic

crystal (S, p) with space group G is given by a fundamental domain D of G. The

asymmetric unit will generally be a polyhedron with vertex at the origin.

There are in fact a limited number of possibilities for the Space Group of a crystal.

Given two space groups G1 and G2 of two crystal structures (S1, p1) and (S2, p2) with

associated lattices, bases, and orthogonalisation matrices, we consider G1 and G2 to

be the same if the following holds: the corresponding groups in relative coordinates

agree up to an orientation preserving operation involving permutations and reversals

of axes, and combinations thereof (such an operation is represented by a matrix with

a single entry ±1 in each row and column and determinant of +1).

There are 230 possible space groups [53], up to this identification, whose descriptions

are well formulated and summarised later in this Section (see e.g. Table. 2.2).

Theorem 2.3.4 (The Crystallographic Restriction). Given a crystal system (S, p),

with a space group G, any g ∈ G represented as g(s) = R(s)+t, the matrix R ∈ O(3)

will be of order 1, 2, 3, 4, or 6.

For the proof of this, we first need to prove the following:

Proposition 2.3.5. Given a crystal system (S, p), with a space group G, any g ∈ G

represented as g(s) = R(s) + t, the matrix R will preserve the primitive lattice Γ

associated to (S, g).

Proof. We begin by partitioning S into subsets which are the orbits of each element

in the unit cell under the lattice translations,

S =
⋃

s∈D∩S

(s + Γ) ,

where D is the fundamental domain of Γ.

Recall that as G is the space group of S, g(S) = S for all g ∈ G. Using that, and

taking g(s) = Rs + t:
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g(S) = g

( ⋃
s∈D∩S

(s + Γ)
)

=
⋃

s∈D∩S

(g(s + Γ))

=
⋃

s∈D∩S

(Rs + RΓ + t)

=
⋃

s∈D∩S

(g(s) + RΓ) .

The rest of the proof will use the following arguments: Since Γ is the set of all

translations which preserve S (and p), we can conclude that if RΓ preserves S, then

it must be a subset of Γ, and if the intersections of RΓ and Γ with every open ball

Br(0) centered at the origin have the same cardinality, then RΓ and Γ must be equal.

Take a translation y ∈ RΓ, y = Rx for some x ∈ Γ. Then, for g ∈ G,

S = g(S) =
⋃

s∈D∩S

(g(s) + RΓ)

⇒ g(S) + y =
⋃

s∈D∩S

(g(s) + RΓ + y)

⇒ g(S) + y =
⋃

s∈D∩S

(g(s) + R(Γ + x))

⇒ g(S) + y =
⋃

s∈D∩S

(g(s) + R(Γ))

⇒ S + y = S = g(S) = S.

Thus, any translation y ∈ RΓ preserves S, and thus RΓ is a subset of Γ.

We can show that they are of the same size by restricting them to a ball of size r.

That is, take Br(0) = {z| s.t. |z|| ≤ r} as a closed ball of radius r around 0. Then

we take Γr = Γ ∩Br(0). As the rotation of the ball remains the ball, (RΓ)r = RΓr,

and these contain the same number of elements. Thus, RΓ = Γ and R must preserve

the lattice.
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Proof of Theorem 2.3.4. By Proposition 2.3.5 any rotational component R of an

element g ∈ G preserves the lattice Γ.

Initially, we show that R has integer coefficients in its characteristic polynomial.

This arises naturally from the fact that Ry ∈ Γ for any lattice point y, and thus

the rotation R, expressed as a matrix in relative coordinates, must be integer-filled

because of the fact that R maps lattice vectors to lattice vectors. Such an integer-

valued matrix gives rise to a characteristic polynomial with integer coefficients, and

as the characteristic polynomial is unchanged under conjugation, the characteristic

polynomial of R is integer valued.

All eigenvalues of such an R ∈ O(3) must be complex numbers of modulus 1 (since

R preserves Cartesian length of vectors), and non-real eigenvalues come in pairs

which are complex conjugates. Since the determinant of R (which is equal to the

product of the eigenvalues) is ±1, one of the eigenvalues of R must be real, and

thus must be plus or minus 1. We can perform a change of bases such that the

eigenvector corresponding to this value is the z-axis, and thus reduce the rotation

to:


q11 q12 0
q21 q22 0
0 0 ±1

, where Q ∈ O(2) is its restriction to z = 0. We can now simply

consider restrictions on such a plane.

Thus, we have Q ∈ O(2). When its determinant is positive 1, it can be represented

as a rotation
cos θ − sin θ

sin θ cos θ

 for θ ∈ [0, 2π), with the same characteristic polynomial

λ2 − 2 cos θλ + 1. By the above claim, this must have integer coefficients, and thus

cos θ ∈ Z/2, giving rise to θ ∈ {0, π
3 , π

2 , 2π
3 , π}, corresponding to rotations of order 1,

6, 4, 3, and 2 respectively. In the case where the determinant of Q is -1, Q represents

a reflection across a mirror line in the restricted plane, and thus must be of order 2.

Thus, in all cases, R may only be of order 1, 2, 3, 4, or 6.

The 230 space groups come under 32 point groups:
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Definition 2.3.6 (Crystallographic Point Group). A crystallographic point group of

a lattice Γ ∈ R3 is the group of operations which map the lattice to itself, preserving

the origin. That is, the crystallographic point group is given by

G0 = {Q ∈ O(3)|QΓ = Γ}.

There is a limited set of symmetry transformations which satisfy this condition.

The requirement to preserve the location of the origin removes the possibility of

translation components. Thus, the symmetry component can be represented as

R ∈ O(3), consisting of only rotoinversions and rotations.

In fact, this transformation is further restricted, as there are a very limited number

of rotations which can preserve a lattice structure. As before, a rotation component

must be twofold, threefold, fourfold or sixfold, and we can then introduce an inver-

sion component. In the crystallographic community, Hermann-Mauguin notation is

commonly used, representing rotations as numerals (such as 1, 2, 3, 4, 6) and roto-

inversions with a ‘bar’ to represent the negation (1̄,2̄,3̄,4̄,6̄) - for example, 4̄ means a

fourfold rotation followed by an inversion with respect to a centre on the rotation

axis. Rotations must be defined around a particular axis, whilst inversions must

be defined about a point. A twofold rotation combined with an inversion through

some point on the rotation axis results in a mirror plane, which the operation can

be described as a reflection through. Hermann-Mauguin notation here deviates by

denoting this as ‘m’ rather than ‘2̄’.

The lattice system will first be declared (see Table 2.1), and this will give the relevant

axes to declare the symmetry elements with respect to. Symmetry elements can be

partitioned in relation to the axes L as follows:

Let G0 be a crystallographic point group fixing the origin, and L a line through the

origin, with a plane P perpendicular to L, passing through the origin. Consider the

subgroup
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GL = {R ∈ G0|RL = L, R restricted to P is a rotation} ,

Then GL is either the identity, cyclic with generators 2, 3, 4, 6, 1̄, 2̄, 3̄, 4̄, or 6̄, or not

cyclic, and generated by a rotation 2, 4 or 6 and a reflection with respect to the plane

P . Such non-cyclic groups are written n
m , where n is the order of the generating

rotation, and the ‘m’ represents the reflection generator.

These 32 point groups are divided between 7 lattice types, according to their essential

symmetries.

The lattice type of highest symmetry is named a ‘cubic’

lattice, and has 3-fold symmetry about 4 axes, the

diagonal cross-sections of a cube.

In Figure 2.1, we show a demonstration of this on a

distorted cube, with the red lines being mapped to each

other on the cube through this threefold symmetry, the

axis of rotation represented by the dotted line.

Figure 2.1: A distorted
view of a cube, show-
ing three lines which
map to each other
about the dotted line.

These lattice types are classified via the essential symmetry of the underlying crystal

system and described in Table [57]. Each of the 230 space groups comes under one

System Essential Symmetry Parameter Restrictions
Cubic 3-fold about 4 axes |a| = |b| = |c|, α = β = γ = π

2
Hexagonal 6-fold about c axis |a| = |b|, γ = 2π

3 , α = β = π
2

Trigonal 3-fold about c axis |a| = |b|, γ = 2π
3 , α = β = π

2
Tetragonal 4-fold about c axis |a| = |b|, α = β = γ = π

2
Orthorhombic 2-fold or mirror about 3 axes α = β = γ = π

2
Monoclinic 2-fold or mirror about b axis α = γ = π

2
Triclinic No symmetries None

Table 2.1: The 7 crystal systems with their essential symmetries

of the above 7 symmetries. Given the assignment of the essential symmetry to a

particular axis, each of the 230 space groups can then be described in a unique way

via their elements as linear maps with respect to the relative coordinate system given
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by the basis a, b, c. The number of space groups associated to each crystal system

is given in Table 2.2.

System Number of Space Groups

Cubic 36

Hexagonal 27

Trigonal 25

Tetragonal 68

Orthorhombic 59

Monoclinic 13

Triclinic 2

Table 2.2: The numbers of space groups present for each crystal
system

For example, the Triclinic system has no essential symmetries, and all space groups

with additional symmetries would come under other systems. Given this, the two

space groups under the triclinic system are 1 and 1̄ - no symmetry and inversion

only.

In addition to simple rotation components, symmetry operations can also include

translation components. Similarly to the rotations, they are also limited. We denote

the order of a translational component x to be the lowest possible multiplier n for

which nx ∈ Γ.

A translation paired with a mirror plane is known as a glide plane. The translation

component must be in a direction x which lies within the mirror plane, and if

repeated twice should be a multiple of a lattice vector (it should be of order 2). If it

needs to be repeated more times to reach a lattice vector, then it can equivalently

be written with respect to a smaller lattice. A glide plane is written as a symbol

by the letter that the translation moves in the direction of. The letters a, b, and

c represent a glide plane with translation in the a, b and c directions respectively,
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the letter n represents a glide plane with translation in the diagonal direction along

the plane (for example, for a plane taking x to −x, a letter ‘n’ would signify an

additional shift by


0

1/2
1/2

), and the letter ‘d’ represents a similar glide plane to ‘n’

within a Face-centered cell, where the translation only covers 1/4 of the cell face

diagonal (such different larger cell types will be discussed later in Section 2.4).

A translation paired with a rotation is known as a screw axis. The translation

component must be in the direction of the axis of rotation, and can only be of an

order which respects the order of the rotation (for example, for a sixfold rotation,

the translation must have order 2, 3, or 6). A screw axis is written as a symbol

ns, where n is the order of the rotation and s represents the fraction of the axis

the translation component moves - that is, the translation component is s/n in the

direction of the axis. For example, 41 represents a rotation by π/2 along with a

translation of 1/4 in the direction of the axis.

2.4 Non-Primitive Lattices

Sometimes, it is beneficial to describe the crystal structure with a lattice which is a

sub-lattice of the primitive lattice. In this case, a, b, c will differ and the unit cell

will be larger, containing a primitive lattice point within it.

Such a lattice is usually chosen when it results in

more preferable lattice parameters - for example,

angles α, β, γ = π/2, or lengths a = b.

Such a lattice is largely dealt with as usual, with

an additional consideration to the additional trans-

lation component to any lattice points within the

lattice.

Figure 2.2: A diagram of a
primitive unit cell in blue
and a non-primitive pre-
ferred unit cell in red.





Chapter 3

Diffraction

In X-ray crystallography, a beam of coherent X-rays are fired into the crystal. The

interactions within the crystal result in observable ‘peaks’ of intensity at a detector

screen. The process by which these arise is outlined here.

When an atom is hit by an X-ray, its electrons scatter that X-ray in all directions.

For a single atom alone, this would simply result in a dispersion of the X-ray, however

when multiple atoms are involved interference comes into play.

3.1 Interference

X-rays form a wavelike structure, meaning they fluctuate through space. Our math-

ematical model of a wave is represented as travelling along a straight line. At any

point x along this line, we describe the wave as Ae2πi(|x|/λ−t/c+φ), where t is the

time parameter, c is the speed of the wave (typically the speed of light) and λ its

wavelength. A ≥ 0 represents the (real) amplitude of the wave, whilst the complex

amplitude is Ae2πiφ. φ ∈ R is a phase of the wave - these are generally important in

relation to other waves.

Definition 3.1.1 (Phase Difference). Given two waves of the same wavelength and
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of phase φ1 and φ2, their Phase Difference is the difference of their phases, φ1 − φ2.

If waves have a phase difference in Z they are described as coherent.

In general we will not be considering the time and space components of the wave, only

the other relative variations - that is, we will likely factor out at least e2πi(|x|/λ−t/c),

resulting in e2πi|x|/λ−t/cAe2πiφ.

When waves travel in the same direction within coherence range, they interfere,

creating a combined wave.

Definition 3.1.2 (Interference). When two waves A1e
2πi(x/λ−t/c+φ1) and

A2e
2πi(x/λ−t/c+φ2) interfere, they create a wave the sum of their parts,

A1e
2πi(x/λ−t/c+φ1) + A2e

2πi(x/λ−t/c+φ2) = e2πi(x/λ−t/c)(A1e
2πiφ1 + A2e

2πiφ2)

If these two waves are of equal amplitude A1 = A2 = A, the resultant wave =

Ae2πi(x/λ−t/c)(e2πiφ1 + e2πiφ2)

Definition 3.1.3 (Constructive interference). In the special

case where the phases of the waves perfectly match (φ1 − φ2 ∈

Z), they undergo constructive interference, adding their intensit-

ies. The resultant wave can be written as (A1+A2)e2πi(x/λ−t/c+φ)

Definition 3.1.4 (Destructive interference). In the case where

the waves are of equal amplitude and the phase difference φ1−

φ2 ∈ 1/2 + Z, they undergo destructive interference, cancelling

one another to create a wave = 0.

Destructive interference can also occur with the interference of

many waves, so long as the waves add to 0.

3.2 Laue Cones

The Laue Cone is a representation of a set of possible constructive interference

around a line of atoms. Here, we will outline how these possibilities arise and are

described.
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The incident beam of X-rays is denoted by a vector Win. This vector has a magnitude

Win = ||Win|| = 1
λ
, proportional to its photon energy.

We begin with an infinite straight line of atoms, spaced by one vector of the lattice

basis (for example, a) - that is, we assume the atom sites are given by the vectors

ka, k ∈ Z. We can consider that each such atom will be ‘hit’ by the incoming beam

Win and scatter the wave in all directions. We consider a particular scattering

direction and denote it Wout (this retains the size such that Wout = ||Wout|| = 1
λ
).

Win

µ

X-rays

0 a

∆in

Figure 3.1: The incid-
ent beam hitting two
adjacent atoms

As the X-rays come to hit these adjacent atoms, they may

travel different distances before interaction. We take the

angle µ from the incident ray to the direction of a, such

that

−Win · a = Wina cos µ = a

λ
cos µ. (3.2.1)

As can be seen from Figure 3.1, the additional distance

travelled by the wave hitting the second atom is ∆in =

a sin(µ− π/2) = −a cos µ.

Wout

ν

X-rays

0 a

∆out

Figure 3.2: The outgo-
ing beam from two ad-
jacent atoms

The X-rays also travel different distances following inter-

action. We consider a scattering angle ν between the out-

going scattering direction Wout and the lattice direction

a. This satisfies

Wout · a = Wouta cos ν = a

λ
cos ν. (3.2.2)

Additionally, the extra distance travelled by the second

wave is ∆out = a sin(ν − π/2) = −a cos ν.

Following on from this, we can determine that the additional distance travelled by

the second wave is equal to ∆in + ∆out = −a(cos µ + cos ν). This equates to a phase
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shift of φ = − a
λ
(cos µ + cos ν).

We do not merely have two atoms scattering the waves though - we have a near-

infinite line of them. Each subsequent atom results in an outward beam of identical

intensity A and phase shift kφ compared to the X-ray passing through the origin,

where k is the number of the atom. When these interfere, they result in a wave of

complex amplitude ∑k Ae2πi(kφ) = A
∑

k e2πikφ.

Claim 3.2.1. The only relevant values of φ are integers. For sufficiently large n of

atoms along a line, constructive interference dominates for integers in comparison

to non-integer φ.

Proof. Take φ ∈ Z. Then, e2πikφ = 1 for all k. This results in the sum ∑n−1
k=0 e2πikφ =

n, where n is the number of atoms along a line taken into account. Clearly, this

causes a very large amplitude, as n nears infinity.

Else, we can investigate the sum ∑n−1
k=0 e2πikφ. Taking a line of n atoms, this becomes

n−1∑
k=0

e2πikφ =
n−1∑
k=0

[
e2πiφ

]k
Without loss of generality, we take unique φ ∈ (0, 1) (modulo 1), and define q =

e2πiφ ∈ C, |q| = 1, q ̸= 1. Then the above is a geometric series

=
n−1∑
k=0

qk = 1− qn

1− q

Considering only φ /∈ Z, (q ̸= 1), we can bound this function:

∣∣∣∣∣1− qn

1− q

∣∣∣∣∣ = |1− qn|
|1− q|

≤ |1 + |qn||
|1− q|

= |1 + |q|n|
|1− q|

= |1 + 1n|
|1− q|

= 2
|1− q|

.

We want this intensity to be negligible in comparison to the intensities rising from

integer valued φ. It is clear to see that this has no dependency on n for non-integer
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φ. Thus, the ratio is maximally n : 2
|1−q| . So long as n >> 2

|1−q| , the direction will

be negligible in comparison to integer valued φ.

Example 3.2.1 (Sizes of relevant phase shifts). In this example we assume arbitrarily

a crystal diameter of 0.5mm and cell lengths of 10Å, giving an approximate n =

500000 atoms across the crystal along a lattice direction, and present for curiosity

the strength of the n >> 2
|1−q| relation.

n >
2

|1− q|
⇒ |1− q| > 2

n
⇒ (1− q)(1− q̄) >

4
n2

⇒ (1− e2πiφ)(1− e−2πiφ) >
4
n2

⇒ 2− 2 cos(2πφ) >
4
n2

⇒ 2 sin2(πφ) >
4
n2

⇒ |
√

2 sin(πφ)| >
2
n

⇒ | sin(πφ)| >

√
2

n
.

Without loss of generality, we take φ ∈ (−0.5, 0.5]. For an n of 500000, the above

inequality requires |φ| > 4.5 × 10−7. To be ten times as large, we require a |φ| >

4.5 × 10−6, a hundred times (well beyond imperceptible compared to background

noise), |φ| > 4.5 × 10−5. This clearly indicates a very small area of perceivable

constructive interference, effectively a point.
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Given the knowledge that for significant waves, φ must

be in Z, we know that a
λ
(cos µ + cos ν) = −Win · a +

Wout · a = a · (Wout − Win) ∈ Z for constructive

waves. We define the vector w = Wout −Win to be

the scattering vector. Given a specific entry angle µ,

a Laue Cone is the set of Wout at the specific exit

angle ν deduced from a chosen integer n ∈ Z such that

a · (Wout−Win) = n. Differing values of n give rise to

different angles and thus different cones about the line

Ra.

We take the tip of the Laue cone to be emanating from

an atom site.

Figure 3.3: A Laue
Cone of constructive
interference

Definition 3.2.2 (Laue Cone). Given a spacing a of scatterers in a line and an

incident ray Win to that line, a Laue Cone is the set of directions Wout where

constructive interference arises from all the scatterers.

For constructive interference in a lattice of atoms, we require that no direction

provides destructive interference. This can be covered by checking only the three

lattice directions a, b, c. For each lattice direction we provide an integer and an

associated Laue cone. We may only have interference where all three cones intersect,

with their tips placed at the same atom site. The intersection of the three (if it

exists) will then be typically a ray.

The intersection of such cones can be difficult to visualize, but with cones placed

with their tips at the origin, they can be considered to intersect with a unit sphere

centered at the origin. This represents the cones as circles on this sphere, and their

intersection ray (starting at the origin) as an intersection point on that sphere.

Figure 3.4 is a visualization of these cones on a sphere and their representative

circles.

We name the integer associated with this line of atoms defined by a to be h, that
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Figure 3.4: A set of 3 cones with a single intersection direction in
yellow

is, a · w = h. However, the lattice is defined by a 3-dimensional basis, and thus

we must satisfy this condition for every direction. We can utilise the three lattice

directions, naming the integers corresponding to a, b and c as h, k and l respectively.

This means that we require:

a ·w = h, (3.2.3)

b ·w = k, (3.2.4)

c ·w = l. (3.2.5)

It is clear that any other line’s stepping vector can be realised as an integer linear

sum naa + nbb + ncc of these three basis vectors , and that (naa + nbb + ncc) ·w =

nah + nbk + ncl, which is also an integer fully defined by the above equations. It is

therefore sufficient to ensure the above three equations are satisfied to ensure that

no destructive interference has occurred.
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3.3 Reciprocal Lattice

As we know a, b, c, and choose h, k, l, we then must deduce the vector w - if we

know the direction of Win, this will provide the full information.

This task is made far easier by defining the concept of the Reciprocal Lattice.

Definition 3.3.1 (Dual basis and dual lattice). Let {a1, . . . , an} be a basis of Rn.

The dual basis is the uniquely determined set {a∗
1, . . . , a∗

n} of vectors satisfying

ai · a∗
j = δij =


1, if i = j,

0, if i ̸= j.

For a given lattice Γ ⊂ Rn the dual lattice is defined by

Γ∗ = {x | x · y ∈ Z for all y ∈ Γ}.

Lemma 3.3.2. In particular, if Γ = ∑n
i=1 Zai then

Γ∗ =
n∑

i=1
Za∗

i ,

where {a∗
1, . . . , a∗

n} is the dual basis of {a1, . . . , an}. Additionally, (Γ∗)∗ = Γ.

Proof. Take x = ∑n
i=1 xia∗

i ∈
∑n

i=1 Za∗
i (xi ∈ Z). Then, for any y = ∑n

j=1 yjaj ∈ Γ

(yi ∈ Z),

x · y =
n∑

i=1
xia∗

i ·
n∑

j=1
yjaj

=
n∑

i=1

n∑
j=1

xiyja∗
i · aj

=
n∑

i=1
xiyi ∈ Z

As x · y ∈ Z, ∑n
i=1 Za∗

i ⊂ Γ∗.

Given x ∈ Γ∗, we know that x · y ∈ Z for all y ∈ Γ. As each ai ∈ Γ, we know



3.3. Reciprocal Lattice 33

x · ai = xi ∈ Z. Then, we can write x in the form ∑n
i=1 xia∗

i , which implies that

Γ∗ ⊂ ∑n
i=1 Zai (the set of all such possibilities.

Thus, we have ∑n
i=1 Za∗

i ⊂ Γ∗ and Γ∗ ⊂ ∑n
i=1 Zai, implying that Γ∗ = ∑n

i=1 Zai.

(Γ∗)∗ = Γ follows from the fact that the dual basis of a∗
1, . . . , a∗

n is again a1, . . . , an.

Proposition 3.3.3. Let Γ ⊂ R3 be a lattice, and R ∈ O(3) a rotation. Then the

dual lattice of the lattice

RΓ = {Ry|y ∈ Γ}

is given by RΓ∗, that is,

(RΓ)∗ = RΓ∗

Proof. The dual of the lattice RΓ = {Ry|y ∈ Γ} is the set of x such that x ·Ry ∈ Z

for all y ∈ Γ. Thus:

(RΓ)∗ = {x|x ·Ry ∈ Z for all y ∈ Γ}

= {x|x⊤Ry ∈ Z for all y ∈ Γ}

= {x|(R⊤x)⊤y ∈ Z for all y ∈ Γ}

= {x|(R⊤x) · y ∈ Z for all y ∈ Γ}

= {(R⊤)−1z|z · y ∈ Z for all y ∈ Γ} taking z = R⊤x

= {Rz|z · y ∈ Z for all y ∈ Γ}

= R{z|z · y ∈ Z for all y ∈ Γ}

= R(Γ∗).

For the lattice Γ = Za + Zb + Zc, the dual lattice is Γ∗ = Za∗ + Zb∗ + Zc∗ with a

basis of a∗, b∗, c∗. In fact, we can take a∗ = 1
V

(b× c), b∗ = 1
V

(c× a), c∗ = 1
V

(a×b),

with V is the volume of the unit cell, V = a · (b× c).
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Given a lattice Γ = Za + Zb + Zc with basis a, b, c, and its reciprocal lattice

Γ∗ = Za∗ +Zb∗ +Zc∗ with basis a∗, b∗, c∗, we take A as the orthogonalisation matrix

associated to the basis of Γ and A∗ as the orthogonalisation matrix associated to

the basis of Γ∗. Then, (A∗)⊤ is the inverse of A, and A⊤ is the inverse of A∗. We

can easily show this as

(A∗)⊤A =


(a∗)⊤

(b∗)⊤

(c∗)⊤

 [a b c
]

=


a∗ · a a∗ · b a∗ · c
b∗ · a b∗ · b b∗ · c
c∗ · a c∗ · b c∗ · c



=


1 0 0
0 1 0
0 0 1

 .

We can use this to our advantage when taking the dot product of two vectors, xrel

in relative coordinates of a lattice Γ and hrel in relative coordinates with respect to

the associated reciprocal lattice Γ∗. Then:

xcart · hcart = (Axrel) · A∗hrel

= (Axrel)⊤A∗hrel

= xrel,⊤A⊤A∗hrel

= xrel,⊤hrel

= xrel · hrel,

that is, the dot product between these two vectors can be simply calculated through

the effective dot product of their relative coordinates.

The reciprocal lattice basis a∗, b∗, c∗ form a separate basis of R3, and thus w =

Wout −Win can be written as a combination of them. The three Equations (3.2.3)-
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(3.2.5) and the orthogonality relations between lattice vectors and reciprocal lattice

vectors immediately imply w = ha∗ + kb∗ + lc∗, a fully defined vector.

Theorem 3.3.4. Given λ > 0, Win ∈ R3 with ||Win|| = 1
λ

and a lattice Γ =

Za +Zb +Zc, we assume there are scatterers at all z + Γ, for some z ∈ R3. Then we

have constructive interference in precisely those directions Wout ∈ R3, ||Wout|| = 1
λ

for which we have

Wout −Win ∈ Γ∗ = Za∗ + Zb∗ + Zc∗

and ||Wout −Win|| ≤
2
λ

.

3.4 Miller Planes

Definition 3.4.1 (Primitive Lattice Point). A lattice point x ̸= 0 in a lattice Γ is

called primitive if there is no other lattice point of Γ on the straight line segment

{λx|λ ∈ (0, 1)}.

For any lattice point h = ha∗ + kb∗ + lc∗ ∈ Γ∗ \ {0}, its corresponding primitive

lattice point, pointing in the same direction, is given by h0 = h/ gcd(h, k, l)

Theorem 3.4.2. Given a lattice Γ and a vector h = ha∗ + kb∗ + lc∗ ∈ Γ∗ \ {0},

the plane P perpendicular to h passing through the origin contains infinitely many

points of Γ, and all points in Γ are fully contained in the set of parallel planes

rd + P, r ∈ Z

where d = d∗

||d∗||2 , where for m = gcd(h, k, l), d∗ = h
m

(d∗ is the primitive lattice point

in the direction of h).

The following number theoretical lemma is crucial for the proof of the above theorem.
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Lemma 3.4.3. Given a lattice Γ ⊂ R3 and a primitive lattice point z ∈ Γ. Then z

can be extended to a lattice basis, that is, there exist z1, z2, z3 ∈ Γ with z1 = z such

that

Γ = Zz1 + Zz2 + Zz3.

Proof. First we consider the two-dimensional case - a vector d = ha + kb with

gcd(h, k) = 1 and a lattice plane P = Za + Zb to cover. We use the fact that there

exist integers x, y such that xh + ky = 1, and deduce:

xd = xha + xkb yd = yha + ykb

= a + k(xb− ya) = b + h(ya − xb).

We then define f = xb− ya, and retrieve a = xd− kf and b = yd + hf . Therefore,

d and f form a basis of the lattice P .

For the three-dimensional case, we assume Γ = Za + Zb + Zc and we begin with a

vector z1 = ha + kb + lc with gcd(h, k, l) = 1.

We consider 3 cases:

Case 1: z1 = a, b or c

In this case, we simply take the lattice basis a, b, c as the generated lattice basis.

Case 2: One of h, k, l is 0

Let us assume, without loss of generality, l = 0. In this case, we take z3 = c and

we choose d = z1 in the two-dimensional sub-lattice Za + Zb primitive as in the

two-dimensional case and find z2 = f .

Case 3: None of h, k, l are 0.

Finding a 3-dimensional lattice basis is equivalent to finding a matrix with integer
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entries with determinant 1 extending the vector z1. We take

[
z1 z2 z3

]
=


h 0 q

k −s −kp
t

l r − lp
t


where we find p, q, r, s such that ph+q gcd(k, l) = 1 (using the fact that gcd(h, k, l) =

gcd(h, gcd(k, l))) and gcd(k, l) = t = rk +sl. It is simple to verify that the determin-

ant of this matrix is 1: h(slp/t+rkp/t)+q(kr+sl) = (hp/t)(sl+rk)+qt = hp+qt = 1.

Proof of Theorem 3.4.2. First, we will prove that the plane P contains infinitely

many lattice points. Given h ∈ Γ∗ and its corresponding primitive lattice point d∗,

we can extend d∗ to a basis of Γ∗, d∗, e∗, f∗ such that Γ∗ = Zd∗ + Ze∗ + Zf∗, by

Lemma 3.4.3. Given this, we can represent Γ as Zg + Ze + Zf , where (g, e, f) is

the dual basis of (d∗, e∗, f∗). Then, via the construction of the dual basis, e and f

are perpendicular to h and thus describe the plane P perpendicular to it. Given

this, the infinite set of lattice points described by Ze + Zf is contained within P as

required.

Now we wish to show that all points x ∈ Γ lie within the set of parallel planes

rd + P, r ∈ Z.

First we take a description of the entirety of R3 as rd + P, r ∈ R, noting that d

is perpendicular to P . Then clearly any element x ∈ Γ lies within R3, and thus

x = rd + P , for some r ∈ R.

Next we make use of the description of Γ = {x|x · y ∈ Z for all y ∈ Γ∗}, the

knowledge that d∗ ∈ Γ∗ and that for any x ∈ Γ:

x · d∗ = rd · d∗ + P · d∗

= r
d∗

||d∗||2
· d∗ + P · d∗

= r + P · d∗.
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For all p ∈ P, p · h = 0 as h is perpendicular to the plane. Thus, x · d∗ = r, and as

x · d∗ ∈ Z, r ∈ Z.

Definition 3.4.4 (Miller Plane). A Miller Plane is a representative of a set of parallel

planes, each containing infinitely many points of a crystal lattice Γ = Za +Zb +Zc.

Such a set of parallel planes is perpendicular to a vector ha∗ + kb∗ + lc∗ of the dual

lattice Γ∗, and we say that this set of parallel planes corresponds to the Miller Index

(h, k, l).

Proposition 3.4.5. For a set of planes corresponding to hkl, the first plane adjacent

to the plane at the origin intersects the axes at a/h, b/k and c/l.

Figure 3.5: The Miller Plane (123) corresponding to the Miller
Index (1,2,3)

Proof. We know that for such a set of planes, the planes are perpendicular to the

vector h. Further, the first plane adjacent to the origin is d + P and thus elements

x in the plane satisfy x · h = 1. Given this, by setting the components of x in

two lattice directions to be 0 (ie finding the axis intercept), we can see that the

intercepts lie at xa = 1/h for the a-axis, xb = 1/k for the b-axis, and xc = 1/l for

the c-axis.
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3.5 Bragg’s Law of Reflection from Planes

We can view the pair of rays Win, Wout as a reflection from a plane P .

Lemma 3.5.1. Given Win, Wout ∈ R3 linear independent vectors with ||Win|| =

||Wout||, there exists a unique plane P (Win, Wout) though the origin such that the

plane spanned by Win and Wout is perpendicular to P (Win, Wout), Win and Wout

lie on different sides of the plane, and that the angle between Win and P (Win, Wout),

and the angle between Wout and P (Win, Wout) are equal.

0
P (Win, Wout)

Win

Wout

θ

θ

Figure 3.6: A visualisation of the vectors Win and Wout and their
associated plane P (Win, Wout), which comes out of the page per-
pendicular to the plane of the page.

That is, the rays Win and Wout can be viewed as directions representing a reflection

from the plane P (Win, Wout), satisfying the rule that angle of incidence = angle of

reflection.

Proof. Let P be a plane satisfying the two properties of the Lemma. Firstly, because

it has to be perpendicular to the plane spanned by Win and Wout, it must contain

Win×Wout ̸= 0. Secondly, Win and Wout must be on both sides of the plane P with

the same angle and thus Win + Wout ̸= 0 must also be contained in this plane. As

Win and Wout are linearly independent and Win ×Wout must be perpendicular to

Win + Wout, these are linearly independent vectors also. Therefore the unique plane

in question must be the span of these two vector sWin ×Wout and Win + Wout.
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These descriptions of Win and Wout lead to the view of reflections from planes. We

first consider the standard view of reflections between planes, and then show this

matches to the Miller planes outlined above.

Given a set of parallel planes at a perpendicular distance d apart, and a ray of light

of wavelength λ shone on them, we can consider the interference between the light

reflected from parallel planes.

Given rays reflected at an angle θ from planes spaced a distance d apart, the ray

travelling to the second plane will travel a further distance 2d sin θ, resulting in a

phase difference of 2d sin θ/λ wavelengths. This is demonstrated in Figure 3.7.

d

θ

∆/2

θ

Figure 3.7: Reflection of x-rays from parallel planes

We know from our prior discussion that we want this phase difference to be an

integer number of wavelengths, that is, 2d sin θ/λ = n ∈ Z. This is know as Bragg’s

Law. If we take a plane P as defined in Lemma 3.5.1, related to a reciprocal lattice

vector h, and the parallel planes at distance d as defined in Theorem 3.4.2, we find

that these are precisely the set of parallel planes satisfying the above Bragg’s Law

for n = gcd(h, k, l).
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As a side note, it is common in the crystallographic community to view reflections

with an n ̸= 1 as reflections from sets including ‘artificial’ planes at d/n spacing.

3.6 Ewald Sphere

The final way to look at these reflections, that of the Ewald Sphere, allows a simple

viewing of where particular reflections come into view during the rotation of the

crystal.

We take w = Wout −Win = ha∗ + kb∗ + lc∗ given the reciprocal lattice Γ∗ as

usual. We know that Wout and Win are of length 1/λ, and therefore ||w|| ≤

||Wout||+ ||Win|| = 2
λ
. Given this, we can determine that only vectors w with length

less than or equal to 2/λ can in fact appear as scattering vectors.

This leads naturally to the concept of the Ewald Sphere. Assume that we have

our crystal centered at the origin. Without loss of generality, we can assume that

Win = 1
λ
e1 (fixing our coordinate system appropriately). In the diffraction process,

we rotate the crystal through rotations R in O(3). The corresponding lattice under

such a rotation is RΓ and thus the dual lattice is RΓ∗ (see Proposition 3.3.3). Taking

Γ∗ centered at the origin, RΓ∗ is also centered at the origin. Then, the vector w,

which as we know appears as a scattering vector only when equal to a lattice point in

RΓ∗, will lie upon a sphere of radius 1/λ centered at −Win. That is, for a particular

rotation R, the viable scattering vectors are the intersection of this sphere and the

dual lattice - S1/λ(−Win) ∩ (RΓ∗), where S1/λ(−Win) =
{
z ∈ R3

∣∣∣||z + Win|| = 1
λ

}
.

Such an intersection point z is the scattering vector, and the direction in which this

constructive interference appears is z + Win = Wout

Definition 3.6.1 (Ewald Sphere). The Ewald Sphere is a sphere of radius 1/λ with

the origin on the sphere (not its centre), where the incident ray runs from the centre

of the sphere to the origin. A reflected direction will satisfy the diffraction condition

if its corresponding reciprocal lattice point lies on the Ewald Sphere.
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0−e1/λ Win

Wout w

Figure 3.8: The Ewald Sphere

3.7 Indexing the h-Identifiers of Peaks

For a direction h, its peak will show up for a rotation R

if h lies on the Ewald Sphere
{
z ∈ R3

∣∣∣||z + Win|| = 1
λ

}
,

at a direction Wout = h + e1/λ. There is an angle 2θ

between Win and Wout, and there is a direct relation

between θ and the size of h (||h|| = 2 sin θ/λ). Tak-

ing this into account, it is then possible to take these

known directions from the crystal, and known angles

and wavelengths to transfer this data into reciprocal

space and thus determine the reciprocal lattice and

provide labels for each reflection.

Win

Wout
h

2θ

θ

Figure 3.9: Relation
between angle of re-
flection and incident,
reflection and scattering
vectors

3.8 Intensity of Peaks: the Idealised Case

We have identified directions in which constructive interference appears, but not

the intensities. Assume the following idealised case: We have scatterers precisely
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at the positions given by s ∈ S with scattering power p(s). In an electron density

approximation, these would be represented by the distribution

ρ(x) =
∑
v∈Γ

n∑
j=1

p(zj)δzj+v(x)
︸ ︷︷ ︸

scatterers in the translates unit cell

,

where n is the number of sites in the unit cell of the lattice Γ, with δzj+v(x) denotes

the classical Dirac delta function.

We consider each family of atoms as scatterers of rays in the directions described

by h, with an amplitude proportional to the scattering power p(s). We assume that

atoms within the plane perpendicular to h which intersects the origin has a phase

of 0. Then, atoms within the next plane (x such that x · h = 1) have a phase shift

of 1. Any atom will have a phase shift proportional to its distance between adjacent

planes, which can be determined by the dot product zj · h.

Then, each family of atoms at positions zj + Γ would lead to a contribution

p(zj)e2πizj ·h,

to the complex amplitude in the constructive interference occurring via reflection

along planes parallel to (h, k, l) (perpendicular to h). So the observed intensity at

the screen in the direction h would be proportional to∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

p(zj)e2πizj ·h

∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

In reality, the scatterers are not represented by this distribution at the positions

s, but are represented by the electron density. A similar approach for the electron

density function ρ leads to the concept of form factors and structure factors.
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Structure factors

The peaks detected on a screen in directions of constructive interference as above

have varied intensities. We can calculate these by considering the scattering power

at each point in the unit cell, alongside the phase differences due to ray distances

travelled.

4.1 Derivation of Structure Factor

The following definition is inspired by that given in [27]

Definition 4.1.1 (Structure Factor F (h)). The structure factor F (h) is the math-

ematical function describing the amplitude and phase of a beam of coherent waves

diffracted from a family of parallel crystal lattice planes perpendicular to the vector

h in the direction of the angle represented by h.

We now present a direct derivation of these structure factors. This is largely based

on the derivation presented in [13].

We begin with source S and detector D. These are represented as bounded subsets

of planes, with the points s and d as the respective points on each plane which are

closest to the origin, 0. The source emits a stream of parallel X-rays (perpendicular
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to its surface), whilst the detector receives parallel X-rays (perpendicular to its

surface).

We introduce scatters at locations zj with scattering powers pj.

0

S

s

D

d

z1

z2

Figure 4.1: A source beam reflecting from a crystal.

The jth scatterer will receive an X-ray from S and transmit it onwards to D. This

X-ray travels a distance of (s − zj) · s/|s| from the source to the scatterer, and

(d − zj) · d/|d| from the scatterer to the detector. We set a phase of 0 to be that

of an X-ray travelling from the source to the origin to the detector, that is a phase

of 0 corresponds to |s|+ |d|. Any beam which travels a shorter distance will have

been released from the source at a later time-emission point, and thus has a positive

phase difference. Thus, the phase is the negative distance. That is, the jth scatterer

has a phase difference of

ϕj = − [((s− zj) · s/|s|+ (d− zj) · d/|d| − |s| − |d|) /λ]

= − [(|s| − zj · s/|s| − |s|+ |d| − zj · d/|d| − |d|) /λ]

= − [−zj · (s/|s|+ d/|d|)/λ] .

With the nature of our previous definitions, (s/|s| + d/|d|)/λ = Wout −Win, and

thus the phase ϕj = zj · (Wout −Win) =: zj ·w, where w is the scattering vector.

We take from each scatterer a contribution with phase ϕj and relative scattering

power pj, leading to a resultant complex amplitude of ∑j pje
2πiϕj .

If, instead of modelling the scatterers individually, we take an electron density
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function ρ(x), the sum over the scatters transforms into an integral over all space,

that is

F (w) =
∫
R3

ρ(x)e2πix·wdx. (4.1.1)

In the case of a crystal, we have a finite repetition of the unit cell of the crystal.

We represent the electron density associated to the atoms in the unit cell by ρ0(x)

(see 4.1.5 later in this section for more understanding), which fades to 0 approaching

infinity, and is much more dense within the unit cell. Then, the full electron density

of the crystal is this repeated by translation many times. We take H as the set of

finitely many integer triples (n1, n2, n3) representing the repetitions of this unit cell

through space (each beginning at n1x + n2y + n3z). We define the structure factor of

the unit cell as F0(w) =
∫
R3 ρ0xe2πix·wdx. The total electron density of the crystal

ρ(x) = ∑
n∈H ρ0(x− An), leading to a total structure factor of

F (w) =
∫
R3

∑
n∈H

ρ0(x− An)e2πix·wdx

=
∑
n∈H

∫
R3

ρ0(x− An)e2πi(x−An)·(w)dxe2πi(An)·w

= F0(w)
∑
n∈H

e2πi(An)·w. (4.1.2)

For clarity, we rearrange the dot product (An)·w to be n·(A⊤w), which is equivalent

to n · wrel, where wrel is the vector of coefficients of the vector w expressed with

respect to the basis a∗, b∗, c∗ of the dual lattice Γ∗.

We now consider the sum ∑
n∈H e2πin·wrel . In the case wrel ∈ Z3, each element of this

sum is 1, and the total sum is #H (that is, the number of elements in H). For the

case where wrel /∈ Z3, we utilise the formulae for geometric series as in Claim 3.2.1.

We first expand the sum to:

∑
n∈H

e2πin·wrel =
∑
n∈H

e2πin1wrel
1 e2πin2wrel

2 e2πin3wrel
3 . (4.1.3)
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Then, assuming the crystal takes up a convex space, we can sum each exponent in

turn. That is, for a given choice of n1 and n2, we take a sum over the range of n3

permitted with this choice. We refer to the upper and lower bounds for each ni as

ui and li respectively (with dependence on the prior choice of n), that is:

∑
n∈H

e2πin1wrel
1 e2πin2wrel

2 e2πin3wrel
3

=
u1∑

n1=l1

e2πin1wrel
1

u2(n1)∑
n2=l2(n1)

e2πin2wrel
2

u3(n1,n2)∑
n3=l3(n1,n2)

(
e2πin3wrel

3
) .

We take the most inner sum,

u3(n1,n2)∑
n3=l3(n1,n2)

(
e2πin3wrel

3
)

=
u3(n1,n2)∑

n3=l3(n1,n2)

(
e2πiwrel

3
)n3

= e2πiwrel
3 l3

u3(n1,n2)−l3(n1,n2)∑
k3=0

(
e2πiwrel

3
)k3

= e2πiwrel
3 l3

1− e2πiwrel
3 (u3(n1,n2)−l3(n1,n2)+1)

1− e2πiwrel
3

.

As in Claim 3.2.1, this is in norm less than or equal to

2∣∣∣1− e2πiwrel
3

∣∣∣ ,
for every choice of l3 and u3.

We can repeat this with the other two sums to obtain1:∣∣∣∣∣∑
n∈H

e2πin·wrel
∣∣∣∣∣ ≤ 8∣∣∣1− e2πiwrel

1

∣∣∣ ∣∣∣1− e2πiwrel
2

∣∣∣ ∣∣∣1− e2πiwrel
3

∣∣∣ .
We then compare this to the sum obtained for wrel ∈ Z3, #H, such that the relative

structure factor for such an off-peak wrel is 1
#H

8∣∣∣1−e
2πiwrel

1
∣∣∣∣∣∣1−e

2πiwrel
2
∣∣∣∣∣∣1−e

2πiwrel
3
∣∣∣.

1if any value of wrel is integer-valued, its corresponding sum will equate to the total ni in the
line, rather than the fraction shown. This can be bounded above by a greater limit of the largest
ui − li, and thus points with some (but not all) integer values may get closer to #H, but will still
be significantly smaller than #H.
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As before, so long as #H >> 8∣∣∣1−e
2πiwrel

1
∣∣∣∣∣∣1−e

2πiwrel
2
∣∣∣∣∣∣1−e

2πiwrel
3
∣∣∣ , the direction represented

by wrel will be negligible in strength.

We then simply note that integer wrel corresponds to w ∈ Γ∗. From now on, we

return to using h ∈ Γ∗ for these most visible points with respect to the structure

factor.

Given this, we can reduce our calculations of F (h) to be simply F0(h) for any h ∈ Γ∗,

with the constant factor #H removed. That is:

F (h) =
∫
R3

ρ0(x)e2πix·hdx. (4.1.4)

In structure determination, the number of unit cells is irrelevant as the unit cell re-

peats periodically. Additionally, there are additional multiplicative factors unknown

to us. Therefore, reducing this to a single unit cell does not impact the determination

of the structure factors, and we allow the multiplicative factor to be determined

within the structure refinement.

Equation (4.1.4) is mathematically a Fourier transform of the electron density, which

we will discuss in more details in Section 4.2.

We partition the electron density into associated densities belonging to each atom,

assuming each contributes to the overall electron density via its own atomic electron

density ρj.

We take

ρ0(x) =
n∑

j=1
ρj(x− zj) (4.1.5)

where n is the number of atoms within the unit cell, ρj is the electron density

assigned to an atom as if its centre, zj, were at the origin. Then:

F (h) =
∫
R3

n∑
j=1

ρj(x− zj)e2πix·hdx
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=
n∑

j=1

∫
R3

ρj(y)e2πi(y+zj)·hdy via y = x− zj

=
n∑

j=1
e2πizj ·h

∫
R3

ρj(y)e2πiy·hdy

We can then define the form factor of the jth atom fj(h) (again, this is a Fourier

transform of the atomic electron density.):

Definition 4.1.2 ((Atomic) Form Factor). The form factor,

fj(h) =
∫
R3

ρj(y)e2πiy·hdy, (4.1.6)

is a measure of the scattering power of an individual atom.

Given this, we can write these structure factors as:

F (h) =
n∑

j=1
e2πizj ·hfj(h). (4.1.7)

These form factors have historically been approximated by an assumption of spher-

ically symmetric electron density around an atom, known as the Independent Atom

Model (IAM). This leads to a spherically symmetric function for fj(h), which is

approximated by a sum of Gaussian functions:

fj(h) =
4∑

i=1
aie

−bi( |h|
4π )2

+ c,

where specific values for the ai, bi, c can be found at [58] and [6, Table 6.1.1.4]. These

have additionally been verified by experiment, and are considered valid for ||h||

below 25Å−1.
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4.2 Fourier Theory

To the experienced eye, the Equation (4.1.1) of the structure factor can be identified

as a Fourier Transform2 (we take details from [55] and [36]).

For simplicity, we assume all our functions in this section to be smooth and we

restrict to the 3-dimensional case.

Definition 4.2.1 (Fourier Transform). The Fourier Transform of a function f ∈

L1(R3) ∩ L2(R3) is F(f)(ξ) =
∫
R3 f(x)e2πix·ξdx.

Recall the well-known Fourier Inversion Formula [36, page 132], F−1(F(f)) = f ,

where

F−1(g)(x) =
∫
R3

g(ξ)e−2πiξ·xdξ

This F(f) is a function of the variable ξ in Fourier Space (a separate copy of R3)

and also obeys the above requirements on the function f , that is F(f) is square

integrable and smooth.

Definition 4.2.2 (Fourier Coefficient). The Fourier Coefficients are defined on

(smooth) functions f periodic with respect to a lattice Γ such that f(x + t) = f(x)

for t ∈ Γ and x ∈ R3.

The Fourier Coefficient of f for h ∈ Γ∗ is defined as

f̂(h) = 1
Vol(D)

∫
D

f(x)e2πih·xdx

(with D the unit cell of the lattice Γ).

With these Fourier Coefficients, the function f can be recovered by the following

2Typically in mathematical literature, the Fourier Transform and Fourier Inverse Transform are
the reverse of these two (that is, the Fourier Transform contains a negative exponent and the inverse
a positive exponent), but taking positive for the forward transform is typical in crystallography,
and this remains mathematically consistent.
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Fourier Series:

f(x) =
∑

h∈Γ∗
f̂(h)e−2πih·x.

In the next section we will require the useful property in Theorem 4.2.4 below of

the Fourier Transform. For this, we need an operation called convolution defined on

absolutely integrable functions, that is
∫
|f | < ∞. As before, to simplify matters,

we restrict to smooth functions.

Definition 4.2.3 (Convolution). A convolution ∗ on two absolutely integrable

functions f and g is:

(f ∗ g) (x) =
∫
R3

f(x− y)g(y)dy. (4.2.1)

This can be seen as a smearing of f , using g as weighting (it is a symmetric function,

so can also be seen as a smearing of g with f as weighting).

The result we require in the next section is the following fact (see pg 101 of [36]):

Theorem 4.2.4. Let f, g be two absolutely integrable functions. Then f ∗g is again

absolutely integrable and we have:

F(f ∗ g) = F(f)F(g).

4.3 Anisotropic Displacement Parameters

The model of a structure is enhanced by the addition of extra modelling factors and

parameters. A very common such enhancement is that of Anisotropic Displacement

Parameters, or ADPs.

ADPs were initially described as ‘Anisotropic Thermal Parameters’, and intended to

account for the thermal motion of atoms. However, they account for more than the

thermal motion and were thus renamed to the more general Displacement parameters.
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These parameters provide a smearing factor to the atomic electron densities, which

represent things such as the atom moving or vibrating in space, the lengthening and

contracting of bonds, and even electron density within bonds themselves.

We implement this smearing as a convolution on the electron densities with a Gaus-

sian function gj(x) for each atom, that is

(ρj ∗ gj)(x).

As seen above, F(ρj ∗ gj) = F(ρj)F(gj). The Fourier Transform of a Gaussian is

again a Gaussian, and we write

F(gj) = Gj := e−2π2h⊤Ujh, (4.3.1)

thus,

F (h) =
n∑

j=1
fj(h)e2πizj ·he−2π2h⊤Ujh. (4.3.2)

Uj is a 3 by 3 symmetric matrix. These ADPs may be written as a Cartesian (U cart)

or relative (U∗) format [20], much like the Miller indices and positions. These are

related simply by:

U cart = AU∗A⊤.

where A is the standard orthogonalisation matrix. It is easy to show that

hrelU∗hrel,⊤ = hcartU carthcart.

Additionally, ADP parameters will be displayed as U cif format in crystallographic

programs. This is given by

U cif =


a∗ 0 0
0 b∗ 0
0 0 c∗

U∗


a∗ 0 0
0 b∗ 0
0 0 c∗

 ,

and converts the values into a more understandable, Å2-scale values whilst preserving

the a∗, b∗, c∗ directions as refined.
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Finally, they may also be represented as the Debye-Waller factor β, which simply

includes the 2π2 factor - that is, β = 2π2U∗.
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Initial Structure Determination

Let us recall from Section 4 Equation (4.1.4) that

F (h) =
∫
R3

ρ0(x)e2πix·hdx

which can be re-written as

F (h) =
∫

D
ρ(x)e2πix·hdx, (5.0.1)

where we take ρ(x) = ∑
t∈Γ ρ0(x − t) with the idealisation of an infinite lattice. It

stands to reason that the electron density could be retrieved by the inverse equation,

that is:

ρ(x) =
∑

h∈Γ∗
F (h)e−2πih·x

The theoretically derived structure factor F (h) has a direct relation to the observed

reflection intensities Io(h) = |Fobs(h)|2. In fact, they are considered the theoretical

and physical estimations of the same quality1. If we were able to know the physically

reflected structure factor Fobs(h) precisely for all Miller indices h, we would be able

1We focus around calculated and observed values of the same quantity, with the calculated values
for a specific model being represented with the subscript c or calc, and the observed values from a
physical crystal labelled with the subscript o or obs. In discussion, we tend to write the full ’obs’
or ’calc’ but we shorten this to o and c within more complicated equations. When these quantities
are presented without a subscript (eg F (h)), we are discussing the theory without a specific crystal
or model.
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to use the inverse transform above to find the electron density. However, the detected

values on the screen do not provide a complex number - the information we have

for Fobs(h) contains only its amplitude and no phase information. Thus, we cannot

utilise this Fourier connection completely from the experiment - this fact is known

as the phase problem of crystallography. Additionally, within the Fourier Coefficient

it is assumed that h is taken over the infinite lattice Γ∗, whilst we are physically

limited to ||h|| < 2
λ

in size (where λ is the wavelength of the incoming X-ray beam).

However, there is clear information in the directions and intensities that can be used

to deduce crystallographic information.

5.1 Space Group and Lattice Determination

Firstly, the indexing process gives information on the reciprocal lattice basis a∗, b∗, c∗,

which can be directly transformed into the crystal lattice basis a, b, c.

Additionally, noted absences in the diffraction pattern can imply symmetries of the

crystal.

Definition 5.1.1 (Systematic Absence). A systematic absence of a diffraction pat-

tern is a set of reflections h with intensity 0 which can be explicitly expressed by

certain relations.

For example, a diffraction pattern could have a systematic absence in the h = 0, k = 0

line when l is odd.

Example 5.1.1. We will analyse the appearance of the diffraction pattern of a

simple crystal with a single non-trivial symmetry element in its space group.

Within these examples, for ease of understanding, all locations and reciprocal lat-

tice points are written in relative coordinates (that is, s =


sa

sb

sc

 ; sa, sb, sc ∈ [0, 1)
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represents an atom at Cartesian location saa + sbb + scc, and h =


h

k

l

 ; h, k, l ∈ Z

represents a reciprocal lattice point with Cartesian representation ha∗ + kb∗ + lc∗.

All elements within these examples can be equivalently fully written out within the

Cartesian coordinate system.

The general situation:

We take a crystal system with a glide plane, with the reflection plane perpendicular

to the b-direction and a shift in the c-direction (this space group is known as Pc, or

P1c1). This symmetry can be represented by a rigid motion g(s) =


1 0 0
0 −1 0
0 0 1

 s +


0
0
1
2

 =: Rs + t.

We partition our set of n atomic sites, S, into two subsets S1 and S2 such that

g(S1) = S2, g(S2) = S1, S1 ∩ S2 = ∅, S1 ∪ S2 = S, and we label the elements of

S1 lying within the unit cell from 1 to n
2 and the elements of S2 lying within the

unit cell from n
2 + 1 to n such that for sj ∈ S1, g(sj) = sj+ n

2
. Then additionally,

the form factors for these atoms are related by fj+ n
2
(h) = fj(Rh). Also, note that

s ·Rh = sT Rh = (RT s)T h = RT s ·h, and that our particular choice of R guarantees

RT = R, RT R = R2 = I.

Then we take the equation for the structure factor, (4.1.7), and partition it according

to these subsets:

F (h) =
n∑

j=1
e2πisj ·hfj(h)

=
n
2∑

j=1
e2πisj ·hfj(h) +

n∑
j= n

2 +1
e2πisj ·hfj(h)

=
n
2∑

j=1
e2πisj ·hfj(h) +

n
2∑

j=1
e

2πisj+ n
2

·h
fj+ n

2
(h)
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=
n
2∑

j=1
e2πisj ·hfj(h) + e2πig(sj)·hfj(Rh)

=
n
2∑

j=1
e2πisj ·hfj(h) + e2πit·he2πiRsj ·hfj(Rh)

=
n
2∑

j=1
e2πisj ·hfj(h) + e2πi l

2 e2πiRsj ·hfj(Rh).

a) Now we search for Systematic Absences, h where this structure will have no

intensity. If we take h with k = 0, Rh = h and we can factor out the form factors:

=
n
2∑

j=1
fj(h)(e2πisj ·h + e2πi l

2 e2πiRsj ·h)

=
n
2∑

j=1
fj(h)(e2πi(sah+scl) + e2πi l

2 e2πi(sah+scl))

=
n
2∑

j=1
fj(h)e2πi(sah+scl)(1 + e2πi l

2 )

If we also take l odd, then the final bracket

1 + e2πi l
2 = 1 + eπil

= 1− 1

= 0,

and thus, for h with k = 0, l odd (h may take any value), there will be no intensity. In

turn, observed intensity patterns with these systematic absences imply the existence

of this glide plane (or similar symmetries) within the crystal.

b) Now we wish to show that the diffraction pattern has intensities invariant under

R.
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To do this, we look at F (Rh)

F (Rh) =
n
2∑

j=1
e2πisj ·Rhfj(Rh) + e2πit·Rhe2πiRsj ·Rhfj(R2h)

=
n
2∑

j=1
e2πiRsj ·hfj(Rh) + e2πiRt·he2πisj ·hfj(h)

=
n
2∑

j=1
e2πiRsj ·hfj(Rh) + e2πit·he2πisj ·hfj(h)

= e2πit·h
n
2∑

j=1
e−2πit·he2πiRsj ·hfj(Rh) + e2πisj ·hfj(h).

Noting that as t · h ∈ Z/2, e−2πit·h = e2πit·h,

F (Rh) = e2πit·h
n
2∑

j=1
e2πisj ·hfj(h) + e2πit·he2πiRsj ·hfj(Rh) = e2πit·hF (h).

This is then a multiplication of F (h) by e2πit·h, and thus F (Rh) has the same

intensity as F (h).

It is the case that multiple different symmetries can give rise to the same systematic

absences, but these have been recorded and all possibilities can be noted for the

observed absences, which can be determined through further analysis.

5.2 Initial Atom Placement

Beyond this determination of Γ, and implication of suitable space groups G, the full

determination of an initial model of the crystal is typically much more challenging.

One method for identifying an initial model is the Patterson Function, a function

which is the Fourier Transform of the electron density ρ0(x) convolved with ρ0(−x),
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leading to

P (u) = 1
V

∑
h
|F (h)|2 cos(2πh · u). (5.2.1)

This provides a map of the differences of atom sites within the structure, with

intensities proportional to those atoms’ density (or atomic number). One would

then map out all of these peaks, divide by the intensity of the lowest such peak

(which may correlate to a hydrogen-hydrogen distance), and use the strengths of the

other peaks to assign atoms and their locations in relation to one another.

The method of charge flipping [44] iteratively assigns likely phases to the observed

structure factors and uses Fourier inversion to generate an electron density map. Any

negative electron density results are either ‘flipped’ to positive (giving the name) or

set to 0, and this is followed by Fourier transforms to generate new likely phases.

This iteration continues until reasonably converged, or it is clear that convergence

is unlikely. Typically, charge flipping will begin with hundreds or thousands of

potential electron density functions which go through this process simultaneously

and the best fitting one will be chosen. Due to this, this is a very recent method, as

it required much computational power to run these many simulations.
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Refinement

Given an initial estimation for the crystal structure (S, p) from some initial structure

solution method, we then perform in a second stage refinement on the structure to

shift it into a structure which best fits the data collected. However, for this we need

an idea of how to evaluate what a best fit looks like.

Definition 6.0.1 (R-factor). The R-factor is a quantity used to express how closely

a model’s theoretical structure factors fit to the observed data.

There are two popular equations to measure this - colloquially known as ‘R1’ and

‘wR2’.

For R1, the standard quoted R-factor,

R =
∑

h ||Fcalc(h)| − |Fobs(h)||∑
h Fobs(h) , (6.0.1)

where the sums are taken over those Miller indices h ∈ Γ∗ which have recorded ob-

served intensities, Fcalc(h) is the calculated structure factor and Fobs(h) the observed

structure factor. This is the most direct linear evaluation of the closeness of Fcalc

and Fobs

The factor wR2 is typically used as the target of refinement, and is as follows:

wR2 =

√√√√∑h w(h)(Yo(h)− K̃Yc(h))2∑
h w(h)Yo(h)2 . (6.0.2)
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Here, Yo(h) are the observed intensities |Fobs|2, Yc(h) the calculated intensities

|Fcalc|2, and w(h) the weight associated to the Miller triple h (typically related to

the confidence in its value). Here we also have the scaling factor K̃, an analytically

calculated constant multiplier across all Yc which scales Yc to minimise the difference

vector Yo − K̃Yc(h). In future, when we are comparing different structures, we will

introduce an additional variable x representing all the parameters of the model,

which K̃ and Yc are dependent on.

The wR2-factor can also be written as a quotient of weighted norms

wR2 = ∥r̃∥w

∥Yo∥w

of the residual vector r̃ = Yo(h)− K̃Yc(h) and the observed intensities Yo.

Here, the weighted norm of a vector v is given by

∥v∥w =
√∑

h

(w(h)v(h)2). (6.0.3)

That is, these R-factors evaluate the difference between the theoretical and observed

structure factors or intensities relative to the strength of the observed structure

factors or intensities - it provides a percentage inaccuracy.

The aim with the refinement process is to minimise the wR2-factor. The process by

which we do this is known as Least Squares Minimisation. In this section we will

discuss the Gauss-Newton method, whilst the Levenberg-Marquadt method utilises

gradient descent alongside Gauss-Newton to speed up the convergence far from the

minimum and move to more careful refinement steps close to the minimum. For

more details on the intricacies of these choices, see [17].

6.1 Least Squares Minimisation

The general setting for least squares minimisation is given as followed:
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• a set of N observations (hn, yn) (hn the label and yn ∈ R the observed value),

n = 1, 2, . . . , N

• a set of corresponding weights w1, . . . , wn > 0,

• an initial vector x0 = (x0
1, . . . , x0

M) ∈ RM ,

• for every n ∈ {1, . . . , N}, a function Y (x, hn) ∈ R which is a linear polynomial

in x = (x1, . . . , xM) ∈ RM - that is,

Y (x0 + ∆x, hn) = Y (x0, hn) +
M∑

i=1
ci(hn)∆xi,

where ∆x = (∆x1, . . . , ∆xM) ∈ RM with ci(hn) ∈ R.

• N >> M , an over-determined system.

Given this, we can generate N residuals ∆n(x) := Y (x, hn) − yn, denoting the

deviation of Y from y.

Our goal, given a start vector x0 = (x0
1, . . . , x0

M) ∈ RM , is to find the shift vector

∆x = (∆x1, . . . , ∆xM) ∈ RM such that the sum of the squares of these residuals is

minimised, that is

Z(∆x) :=
N∑

n=1
wn

(
∆n(x0 + ∆x)

)2
(6.1.1)

is minimised.

The construction of the function Z guarantees that Z : RM → R is infinitely many

times differentiable, non-negative and strictly convex and has therefore, a unique

global minimum.

The minimum of Z is characterised by the following conditions on its derivatives:

∂Z

∂xj

(∆x) = 0 for all j = 1, 2, . . . , M.

Or in short - gradZ(∆x) = 0. So, we can seek out the solution by taking these

derivatives of Z:
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∂Z

∂xj

(∆x) = ∂

∂xj

N∑
n=1

wn

(
∆n(x0 + ∆x)

)2

=
N∑

n=1
wn

∂

∂xj

(
∆n(x0 + ∆x)

)2

=
N∑

n=1
2wn

(
∆n(x0 + ∆x)

) ∂∆n

∂xj

(
x0 + ∆x

)

=
N∑

n=1
2wn

(
∆n(x0 + ∆x)

)( ∂Y

∂xj

(
x0 + ∆x, hn

))
.

Recalling that we can write Y as Y (x+∆x, h) = Y (x, h)+∑M
i=1 ci(h)∆xi, and using

our prior x0 to define Y 0(h) = Y (x0, h),

∂Y

∂xj

(
x0 + ∆x, hn

)
= cj(h).

Given this, our above derivative becomes:

∂Z

∂xj

(∆x) =
N∑

n=1
2wn

(
∆n(x0 + ∆x)

)
cj(h)

=
N∑

n=1
2wn

(
Y (x0 + ∆x, hn)− yn

)
cj(h)

=
N∑

n=1
2wn

(
Y 0(h) +

M∑
i=1

ci(h)∆xi − yn

)
cj(h)

=
N∑

n=1
2wncj(h)

(
Y 0(h)− yn

)
+

N∑
n=1

2wncj(h)
M∑

i=1
ci(h)∆xi.

Thus, to find ∂Z
∂xj

(∆x) = 0, we have the following normal equations (after dividing

the equations by 2):

0 =
N∑

n=1
wncj(hn)

(
Y 0(hn)− yn

)
+

M∑
i=1

N∑
n=1

wncj(hn)ci(hn)∆xi

=: −vj +
M∑

i=1
Aji∆xi. (6.1.2)
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This defines a vector v (such that vj = −∑N
n=1 wncj(hn) (Y 0(hn)− yn)) and a matrix

A (such that Aji = ∑N
n=1 wncj(hn)ci(hn) = Aij). Therefore, gradZ(∆x) = 0 implies

that

A ·∆x = v.

Assuming invertibility of A, this allows us to determine ∆x as

∆x = A−1v.

The minimum of Z is then attained as x0 + ∆x. We call ∆x the shift needed to get

from the initial vector x to the minimum.

Given this solution, then x0 + ∆x is a minimum of Z.

6.2 Non-Linear Least-Squares

An expansion of least-squares minimisation to non-linear functions is attained via

the Gauss-Newton method. For this, we have a function Y (x, hn) which is not a

linear polynomial in x, but the remainder of the setup remains the same as in the

linear least-squares case. For this, we must approximate Y by its linearisation at

x0 which is then minimised. Then, given the adjustment made, a new linearisation

at x1 = x0 + ∆x is taken and minimised - this is repeated with x2, x3 until a

minimisation is reached where ∆x is numerically 0.

To linearise a function g(x) at xs, we must take its Taylor expansion, that is:

g(xs + ∆x) = g(xs) +
M∑

j=1

∂g

∂xj

(xs)∆xi

+
M∑

j=1

M∑
i=1

∂2g

∂xi∂xj

(xs)∆xi∆xj

+ higher powers of ∆xi
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recalling that ∆x =


∆x1

...
∆xM

.

We take those components containing products of more than one ∆xj to be negligible,

as the ∆xj involved are very small. Then, our linearisation is:

g(xs + ∆x) ≃ g(xs) +
M∑

j=1

∂g

∂xj

(xs)∆xj.

That is, we take ci(h) = ∂g
∂xi

(xs, h) and the remainder of the solution for each

individual step stays the same.

6.3 Basic Application to Crystallography

In the crystallographic case, Y (x, h) is a either |F (x, h)| or |F (x, h)|2, where the

structure factor F (x, h) = ∑n
j=1 fj(h)e2πizj ·he−2π2h⊤Ujh. yn are the amplitudes re-

corded from the screen Fobs(h), or their intensities (the squares). The x represent

atomic parameters for atoms within the asymmetric unit - thusfar, the locations (zj)

of atoms and their ADPs (Uj).

Sometimes, because of internal symmetries, constraints, or other reasons, the vector

x is a contraction of the Uj and zj. One example is a nitrogen atom constrained such

that x = y = z, in which case there will be a single parameter in x corresponding to

all 3 variables.

We additionally use a vector y which can be derived from x and contains the full zj

and Uj for each atom in order1. x will be of the same or lower dimension than y.

The vector y is useful for calculations related to the atomic parameters specifically,

for example calculating cascaded uncertainties using matrices.

1that is, y⊤ = [x1, y1, z1, U1,11, U1,22, U1,33, U1,12, U1,13, U1,23, x2, y2, . . . , Un,13, Un,23]
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Then for our two options:

Y (x, h) = |F (x, h)| or |F (x, h)|2,

ci(h) is a little more difficult. For the case of |F (x, h)|2, we first expand the equation

to F (x, h)F (x, h), and then the differential is:

ci(h) = ∂

∂xi

(|F (xs, h)|2)

= ∂

∂xi

(F (xs, h)F (xs, h))

= ∂F

∂xi

(xs, h)F (xs, h) + F (xs, h)∂F

∂xi

(xs, h)

= 2Re
(

F (xs, h)∂F

∂xi

(xs, h)
)

.

For the case of Y (x, h) = |F (x, h)|, we use |F (x, h)| =
√
|F (x, h)|2, and by the

chain rule:

ci(h) = 1
2|F (xs, h)|

∂

∂xi

(
|F (xs, h)|2

)
= 1

2|F (xs, h)|

(
2Re

(
F (xs, h)∂F

∂xi

(xs, h)
))

.

Of importance in both cases is the derivative,

∂F

∂xi

(xs, h) =
n∑

j=1

∂

∂xi

(
fj(h)e2πizj ·he−2π2h⊤Ujh

)

=
n∑

j=1
e2πizj ·he−2π2h⊤Ujh ∂

∂xi

(fj(h))

+ fj(h)e−2π2h⊤Ujh ∂

∂xi

(e2πizj ·h)

+ fj(h)e2πizj ·h ∂

∂xi

(e−2π2h⊤Ujh). (6.3.1)

It is generally the case that xi will only be related to to one of Uj or zj - that is, one of
∂

∂xi
(e2πizj ·h) and ∂

∂xi
(e−2π2h⊤Ujh) will be 0. As fj(h) is independent of the parameters
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x (in the classical case of the Independent Atom Model, IAM), ∂
∂xi

(fj(h)) is zero.

We will discuss in Part III models in which fj(h) do depend on the parameters x in

which case this partial derivative is no longer zero.

Where these cases and assumptions hold, only one of the 3 parts of the sum will be

nonzero, and it will contain a factor fj(h).

Thus, in the case of refinement with respect to Yc(x, h) = |Fcalc(x, h)|2, given our

current structure xs, we obtain the matrix A in (6.1.2) as

Aij =
N∑

n=1
wncj(hn)ci(hn)

= 4
N∑

n=1
wn

∂Yc

∂xi

(xs, h)∂Yc

∂xj

(xs, h)

and the vector v as

vj = 2
N∑

n=1
wnRe∂Yc

∂xi

(xs, h) (Y (xs, hn)− yn) .

6.4 Incorporation of Restraints and Constraints

The use of Restraints and Constraints is a method by which the model is encouraged

towards a theoretically justified solution. For example, one could know that a bond

should be a particular length, or that two atoms are in related positions, meaning

if one moves, the other should equivalently. These can be forced by constraints or

encouraged by restraints.

Definition 6.4.1 (Constraint). A crystallographic Constraint is a direct restriction

on parameters. It will take the form of an equation on parameters to be enforced,

and result in a reduction of the number of xi refined.

A constraint may state that particular values are linked, for example zH = zC +

l(C, H) states that a Hydrogen atom is precisely l(C, H) away from the Carbon

atom. This will result in their locations being moved by identical vectors.
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Definition 6.4.2 (Restraint). A crystallographic Restraint provides an additional

target to be refined towards. It will take the form of an additional quality T added

to the least squares function. Incorporating a number of restraints denoted by Ti,

the modified least squared function takes the form

Z(∆x) :=
N∑

n=1
wn

(
∆n(x0 + ∆x)

)2
+

∑
restraints i

w′
i

(
T model

i (x0 + ∆x)− T target
i

)2
,

where the w′
i are weights corresponding to the strength of encouragement of the

restraint i.

The additional restraints essentially provide additional data to refine against, though

unlinked to h and with a different function to refine against.

If the above example were presented as a restraint, it would appear as

T model(x0 + ∆x) =((z0
H + ∆zH)− (z0

C + ∆zC)), T target =l(C, H).

This would encourage the function to find the zH , zC which have their difference

closest to l(C, H).

6.5 Scaling factor K̃

Due to various factors, such as the distance to the screen and the relative power of

the incoming X-ray beam, the recorded intensities have an unknown multiplier with

relation to the calculated intensities which we will denote K.

That is, we scale each calculated intensity Yc(x, h) to

Y ′
c (x, h) = KYc(x, h),

where K is some constant factor applied to all calculated intensities. By choosing

some suitable K, we try to reduce the error between Yo and Y ′
c , rather than against

Yc.
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We know that we are trying to minimise the weighted sum of the squares of the

residuals,

∆n = r(x, K) = Yo −KYc(x). (6.5.1)

The weighted sum can equivalently be written as a weighted scalar product ⟨·, ·⟩w on

RN , defined as

⟨X, Y ⟩w = X⊤WY =
N∑

n=1
w(hn)XnYn, (6.5.2)

for all X = (X1, . . . , XN), Y = (Y1, . . . , YN) ∈ RN , where W is a diagonal weight

matrix such that Wii = wi. The corresponding weighted norm is given by ∥X∥w =√
⟨X, X⟩w.

This scale factor K is adapted in such a way that ∥r(x, K)∥w becomes minimal.

Introducing L(x, K) = ∥r(x, K)∥2
w, we have

L(x, K) = ∥Yo∥2
w − 2K⟨Yo, Yc(x)⟩w + K2∥Yc(x)∥2

w

= ∥Yc(x)∥2
w

(
K − ⟨Yo, Yc(x)⟩w

∥Y (x)∥2
w

)2

+ ∥Yo∥2
w −
⟨Yo, Yc(x)⟩2w
∥Yc(x)∥2

w

,

which immediately implies the following lemma:

Lemma 6.5.1 (see [4, (67) and (68)]). The weighted norm of the residual vector

r(x, K), given by (6.5.1), is smallest for the following choice of the scale factor K:

K̃ = K̃(x) = ⟨Yc(x), Yo⟩w
∥Y (x)∥2

w

, (6.5.3)

and we have

L(x, K̃) = ∥r(x, K̃)∥2
w = ∥Yo∥2

w −
⟨Yo, Yc(x)⟩2w
∥Yc(x)∥2

w

.

We have the following explicit expression for the partial derivatives of the scale factor

K̃:

Lemma 6.5.2 (see [4, (75)]). Let K̃ be given by (6.5.3). Then

∂K̃

∂xj

(x) = 1
∥Yc(x)∥2

w

〈
∂Yc

∂xj

(x), Yo − 2K̃(x)Yc(x)
〉

w

.
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Proof. This follows straightforwardly from (6.5.3):

∂K̃

∂xj

(x) =

〈
∂Yc

∂xj
(x), Yo

〉
w

∥Yc(x)∥2
w

−
2⟨Yc(x), Yo⟩w

〈
∂Yc

∂xj
(x), Yc(x)

〉
w

⟨Yc(x), Yc(x)⟩2w

= 1
∥Yc(x)∥2

w

〈
∂Yc

∂xj

(x), Yo − 2⟨Yc(x), Yo⟩w
∥Yc(x)∥2

w

Y

〉
w

.

Finally, we define the scaled calculated intensity Ỹc = K̃Yc. Typically when working

with the calculated intensities we assume that they are scaled in this way unless

otherwise stated.

6.5.1 The residual vector r̃

The residual vector corresponding to the scale factor K̃ minimising ∥r(x, K)∥w is

denoted by r̃:

r̃(x) = r(x, K̃(x)) = Yo − K̃(x)Yc(x) (6.5.4)

= Yo −
⟨Yc(x), Yo⟩w
∥Yc(x)∥2

w

Yc(x) ∈ RN ,

using the explicit expression for K̃(x), given in (6.5.3).

Note that the residual vector r̃(x) depends only on the weight matrix W and the

theoretical and observed intensities Yc(x) and Yo. The residual vector does not

involve the partial derivatives ∂Yc

∂xm
(x).

6.6 Solving for the shift

We now take a change in notation and name the shift vector s = ∆x. This allows

us to more easily denote different inputs to this shift vector, which will be required

in Part III. Thus,

s = A−1v
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where

Aij =
N∑

n=1
wn

∂Ỹc

∂xi

(x, hn) ∂Ỹc

∂xj

(x, hn)

vi =
N∑

n=1
wn

∂Ỹc

∂xi

(x, hn)
(
Ỹc(x, hn)− Yo

)
.

We can further expand this equation in matrix form for further crystallographic

insights. For this, we define the design matrix D as a N ×M matrix containing the

derivatives:

(D(x))nj = ∂Yc

∂xj

(x, hn).

As usual, we will wish to work not with Yc but Ỹc, so we have an adjusted design

matrix D̃:

(
D̃(x)

)
nj

= ∂(K̃Yc)
∂xj

(x, hn)

= ∂K̃

∂xj

(x)Yc(x, hn) + K̃(x)∂Yc

∂xj

(x, hn)

= ∂K̃

∂xj

(x)Yc(x, hn) + K̃(x)(D(x))nj. (6.6.1)

These two design matrices are related by

D̃(x) = K̃(x)D(x) + Yc(x)
(
grad K̃(x)

)⊤
, (6.6.2)

where both Yc(x) and the gradient are taken as column vectors. The design matrix

D̃(x) is, therefore, a rank-one perturbation of the rescaled design matrix K̃(x)D(x).

The matrix A from least square refinement is named the normal matrix B(x) ∈

RN×N , and is the symmetric matrix given by

B(x) = D̃(x)⊤WD̃(x), (6.6.3)

whilst

v = D̃(x)⊤Wr̃(x)
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and the shift vector can then be computed via the formula

s(x) = B(x)−1D̃(x)⊤Wr̃(x).

This agrees with [4, (72)], namely, Bs = −g, where g coincides with −D̃⊤(x)Wr̃(x).

Setting

S(x) = B(x)−1D̃(x)⊤W = (D̃(x)⊤WD̃(x))−1D̃(x)⊤W, (6.6.4)

with D̃(x) given in (6.6.2), we obtain the shift vector s(x) as the product

s(x) = S(x) · r̃(x).

Note that the design matrices D(x) and D̃(x) and, therefore, also the normal matrix

B(x) and the shift matrix S(x) depend not only on the weight matrix W and the

observed and theoretical intensities at x ∈ RN but also on the partial derivatives
∂Y
∂xn

(x).

6.7 Cholesky Decomposition

When processing least-squares refinement, we require the inverse of the normal

matrix in (6.6.4). However, matrix inversion is something which is both time-wise

costly and prone to errors when computer precision is involved - it is a process in

which small errors can add, invert, and multiply quickly to create large problems.

Thus in many implementations of this kind of formula, matrix inversion is avoided.

Instead, we utilise the process of Cholesky Decomposition [47, Ch.2.9], in which we

split the matrix2 into the product of an upper and lower triangular matrix, which

are conjugate transposes of each other. This allows solution of the equation via

forwards and backwards substitution. This too can suffer from precision issues, and

a further improvement could be found via QR decomposition [43].

2This can only applied to a positive-definite matrix, but the normal matrix satisfies that re-
quirement.
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We take the form of the equation s = B−1D̃⊤Wr̃. D̃⊤Wr̃ can be calculated directly,

and we equate it to Bs. Recall that B = D̃⊤WD̃ and is symmetric. We wish to

create a lower triangular matrix L such that B = LL⊤.

The form of L is easy to deduce by expanding out LL⊤. That is (requiring that the

elements of L are always written Lij, i ≥ j),

LL⊤ =



L11 0 0 . . .

L21 L22 0 . . .

L31 L32 L33 . . .
... ... ... . . .





L11 L21 L31 . . .

0 L22 L32 . . .

0 0 L33 . . .
... ... ... . . .



=



L2
11 L11L21 L11L31 . . .

L21L11 L2
21 + L2

22 L21L31 + L22L32 . . .

L31L11 L31L21 + L32L22 L2
31 + L2

32 + L2
33 . . .

... ... ... . . .


These form a cascading series of rules. That is,

L11 =
√

B11 L21 = B21/L11

L31 = B31/L11

L22 =
√

B22 − L2
21 L32 = B32 − L31L21

L22

L33 =
√

B33 − L2
31 − L2

32

expanding to:

Lii =

√√√√Bii −
i−1∑
k=1

L2
i,k Lij =Bij −

∑j−1
k=1 LikLjk

Lj,j

.

Then, we have LL⊤s = D̃⊤Wr̃. Taking this first as an equation of the form Lu =

w = D̃⊤Wr̃, we use forward substitution to solve for u = L⊤s. That is,

Lu = w
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L11 0 0 . . .

L21 L22 0 . . .

L31 L32 L33 . . .
... ... ... . . .





u1

u2

u3
...

 =



w1

w2

w3
...

 ,

leading to the deduction that

u1 = w1/L11

u2 = w2 − L21u1

L22

u3 = w3 − L31u1 − L32u2

L33

ui = wi −
∑i−1

k=1 Likuk

Lii

.

We can similarly solve L⊤s = u through the similar process of backwards substitution,

which first determines the last value sN in s (where s is N in length) and cascades

similarly back to the first, that is:

ui = wi −
∑N

k=i+1 Likuk

Lii

.

This allows solving of Equation (6.6.4) without the use of matrix inversion, reducing

the numerical errors introduced.

6.8 Uncertainties

Following the least squares process, we retrieve the uncertainties associated to the

parameters x through a variance-covariance matrix defined as the following rescaling

of the inverse of the normal matrix B(x) (as defined in (6.6.3)):

Var(x) := ||r̃||2w
#obs −#param

B(x)−1 (6.8.1)

(3.1.10.2 in [53]), where x is the vector of model parameters, ||r̃||w is the weighted

norm introduced in (6.0.3) of the residual r̃, #obs is the number of observations

taken into account in the refinement process and #param is the number of parameters
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contained in the vector x (that is, its length).

The diagonal of Var(x) holds the variance σ2(xi) for each parameter, whilst the

off-diagonals hold the covariance Cov(xi, xj) between two parameters xi and xj. The

covariance is largely used for further uncertainty calculations, but the variance (and

in particular, its square root, the standard deviation) gives us an estimate of the

likely position of the atom. The position of the atom can be seen as lying on a

normal distribution for each parameter.

We also require uncertainties for derived parameters. Luckily with a normal distri-

bution like this describing our parameters, it is simple to cascade these uncertainties.

The variance of a function f is given by (3.1.10.3 in [53]):

σ2(f) =
∑
i,j

∂f

∂xi

∂f

∂xj

Cov(xi, xj), (6.8.2)

requiring the values of the covariances between all involved parameters as well as

the partial derivative of the function with respect to each parameter, which must be

derived analytically for each function.

6.9 Ending refinement

Given a non-linear optimisation function like we have for crystallography, we can

continue to generate next shift vectors s infinitely. In fact, these shift vectors do not

continue to get smaller but instead reach a limit in which they continue to generate

similar-size steps around a point. Typically, these steps are small enough as to be

significantly smaller than the uncertainties associated to the parameters.

It is common in crystallography to stop refinement when the ratio of the shift

vector to the uncertainties is less than 0.01. This is known as the ‘shift/esd’, and is

calculated by taking the maximum over all parameters of si/σi.
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Storage and Transfer of Data

Crystallography requires a large amount of data processing, often utilising different

programs. To enable this, the community has settled on a few standard file types

for recording and transferring this data.

7.1 cif files

The Crystallographic Information File (.cif ) is the standardised format for storing

all crystallographic data. It takes the form of a raw text file, with well outlined

determiners to make it easy for a program to read and interpret. Designed by the

IUCr Working Party on Crystallographic Information and adopted in 1990, the .cif

file format forms a key part of the Crystallographic Information Framework [21], and

was designed to make crystallographic information transfer viable and consistent

between different machines and programs.

A .cif contains sets of data partitioned into data blocks. Such blocks contain various

different elements of the crystallographic data, for example details of the machine

used for the diffraction experiment and the temperature of the sample, or the recorded

reflections. These blocks typically take a table-like format, with the entries for each



78 Chapter 7. Storage and Transfer of Data

data record defined at the start of the block and each data record presented on its

own line. See [26] for the full details for the construction or reading of a .cif file.

7.2 hklf files

The file format typically used for conveying information about the recorded reflections

of crystals is the hklf4 format file.

The hklf4 file format consists of a row for each indexed reflection, containing in

order the h, k and l indices, followed by the observed intensity Io and the associated

uncertainty σ. This file can contain multiple observations of the same reflection,

which will simply occur on separate lines. A snippet of a hklf4 file is as follows:

2 0 0 400 20

2 0 0 390 30

2 0 1 200 4

2 0 2 600 50

All the reflections here are those with h = 2, k = 0, and are ordered in ascending l.

This is a typical ordering for a .hkl file, but it is not necessary - the reflections can

appear in any order. A ‘raw’ .hkl file will contain details of every indexed reflection,

including multiple instances of the same indices. .hkl files can also be typically saved

as ‘merged’ data, where those of the same indices are combined into a single line.

Doing so loses information, but is done with the knowledge that identical indices

imply the reflections should be identical, and any difference is measuring error, so

taking an average is the best guess.

Such merged data are typically combined with regards to their weights - so for

example, in the file above, the value of ‘400’ would be a more significant contributor

to the 2 0 0 reflection than the value of ‘390’, having a default weight of 1/20 versus

1/30, leading to a merged value of 396.
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7.3 Intermediate File Types

There are additional file types, typically organised in a similar raw text format to

.hkl and .cif files.

Three such files which are typical during the refinement cycle are .ins, .res and .fcf

files.

.ins and .res follow the same format, and represent instructions and results. They

begin with defining lines with 4-letter signifiers, beginning with ‘TITL’ as the title

of the atom, CELL, ZERR, LATT, SYMM carrying information about the unit

cell information and symmetries, along with many optional parameters containing

more information including weighting and form factor parameters [52], as well as

the current atomic details of the model.

The atoms are written in a specific form, that is

Atom Type x y z Occupancy U11 U22 U33 = U23 U13 U12

with all ADPs as U∗, see 4.3. The Type is an integer matching to the order of atoms

presented in the SFAC command. The occupancy begins with a number indicating

whether it should be refined (1 for not refined, 0 for freely refined, and ‘2’ or ‘3’

linking it to a specific free variable, with ‘-2’ or ‘-3’ linking to 1- that variable).

The .res file contains all the information present in the ins file, adjusted for any

refinement steps performed and with information on the refinement stored in the

case of olex2 behind REM (remark) lines.

The .fcf file echoes the format of the .cif file with loops of information, but focuses

directly on the reflection (hkl) information (along with minor other things like the

cell size and symmetries).

All of these file types are automatically interpreted and created by olex2.refine and

typically by any other program designed to deal with crystallographic information.

It is rare for a crystallographer to manually inspect these files.
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Twinning





Chapter 8

Introduction

As I began my PhD, we sought a way for me to learn about the code behind Olex2.

We decided that I would take on the implementation of an algorithm used in ROTAX

[11]. During the process of implementing this, I developed particular ideas for an

algorithm of my own, making more use of the information available for a more

sophisticated search. The development of this algorithm is one of the two major

projects undertaken over the course of my PhD.

In this part, I will begin with an overview of the twinning problem itself, followed by

a discussion of the current available solutions and continuing with my own solution

and the necessary mathematics. In the final chapter of this part, I will discuss

further ideas which arose during ESGI 165, and leave with a hope for many future

discoveries.

8.1 Motivation

During the physical creation of a crystal, defects can arise. One of these, known

as twinning, occurs when the crystal is comprised of multiple components. Such a

crystal can occur in many ways, for example an intergrowth twin occurs when two

crystals grow into one another, whilst some twins occur within a single crystal along
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a crystal face, where the new molecules connect in a rotated form. Each of these

components has the same basic repeating unit cell, but it is subject to some rotation

(or roto-inversion).

When in the path of an X-ray beam, each of these components will give rise to its

own diffraction pattern (Figures 8.1a and 8.1b), which are overlaid (Figure 8.1c)

and both contribute to the final detected diffraction pattern 8.1d. The red dots in

Figure 8.1 correspond to the primary component, which makes up a majority of the

crystal, whilst the second component’s intensities are shown with the blue dots. The

software detecting these dots looks only in the locations where the red dots are, but

some of the dots (shown in green) are increased in intensity by the blue dots. This

adds additional unknowns and complexity to the solving of the crystal structure.

Mathematically, the challenge is to identify the corresponding rotations of the com-

ponents as well as the proportion of each making up the crystal, which together

comprise the ‘twin law’. In its simplest form, we hunt for rotations for which the

right kind of overlap appears.

Which points are overlapped (green in Figure 8.1) is not an obvious matter either.

We take those points where the observed intensities and theoretical intensities differ

the most as the likely set of overlapped points, but allow that some may not in fact

be overlapped, and may be subject to other artifacts or a particular quirk of the

refinement thus far.

One may note that in Figure 8.1c the blue dots are often imperfectly overlapping the

red, and yet we still consider them to contribute to the observed diffraction pattern.

In this work, we assume that two such diffraction spots may either be overlapping

or not overlapping - there is no such thing as partial overlap (even if the spots do

not rest on precisely the same point). My basic understanding of the integration

software which identifies and records the intensity of these points supports this, but

this is a potential area for further investigation alongside those softwares for more

accurate determination of twins.
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(a) The diffraction of one component
(b) The diffraction of the second compon-
ent

(c) The diffraction patterns overlaid (d) The final observed diffraction

Figure 8.1: The diffraction patterns provided by multiple twin com-
ponents, and the resulting detected pattern
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We utilise a threshold, ϵ, for which if two spots differ by less than ϵ they are treated

as overlapping, and otherwise are not overlapping. This ϵ will be utilised throughout

this Part, and one typical value for it is 0.002Å.

In this part, we first present background knowledge for the study of twinning, in-

cluding a brief review of fundamental concepts used in the literature in Subsection

8.2.4. We continue with a chapter on the previous solutions to the twinning problem,

and follow with a chapter on my own algorithms, and the additional problems which

needed to be solved for them. Finally, we present our views on the future of this

investigation, and some promising results from ESGI 165 where we presented the

issue of twins to other mathematicians.

8.2 Background

A twin law is the collection of information allowing the modelling of the twin com-

ponent within the crystal. This information comprises the Twin Orientation matrix

Rcart and the Batch Scale-factor B, outlined below.

Definition 8.2.1 (Twin Orientation). Given two components, A and B with crystal

structures (SA, pA) and (SB, pB) respectively (see Definition 2.1.1 in Part I), within

a crystal, their relative orientations can be related by a rotation matrix Rcart ∈

O(3). That is, SB = RcartSA + t, where the translational difference t is generally

undeterminable, but also has no effect on diffraction and thus is unimportant to the

structure determination. Additionally, taking sB = RcartsA + t for each sB ∈ SB, we

must have pB(sB) = pA(sA). We call Rcart the twin orientation. Most commonly,

twin orientations are represented as a rotation (or roto-inversion) by some angle θ

about some axis k.

Mathematically, the orientation of an orthogonal matrix is the sign of its determinant

(positive implying orientation preserving and negative implying orientation reversing),

but in crystallography the twin orientation is the matrix itself.
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The the rotation matrix applied to the crystals in direct space is the same as the

rotation applied to the reflections in reciprocal space. This is easily demonstrated.

Let us take a rotation Rcart such that SB = RcartSA + t, and respective lattices ΓB

and ΓA along with their reciprocal lattices Γ∗
B and Γ∗

A.

The existence of a twin law can be written mathematically as SB = RcartSA + t.

Assuming this situation, we now show that ΓB = RcartΓA. Recall that Γ preserves

S, that is S + s = S for any s ∈ Γ. We start with an element sA ∈ ΓA, and note

that SA + sA = SA. We can pre-multiple this equality by Rcart:

RcartSA = Rcart(SA + sA),

adding t to return to SB we obtain:

RcartSA + t = RcartSA + t + RcartsA

SB = SB + RcartsA

which implies RcartsA ∈ ΓB, and thus RcartΓA ⊂ ΓB. As we can equivalently perform

this proof in reverse, RcartΓA = ΓB. Thus RcartΓA is a preserving lattice for SB. As

shown in 3.3.3 in Part I, ΓB = RcartΓA ⇒ Γ∗
B = RcartΓ∗

A.

Definition 8.2.2 (Batch Scale-Factor ‘basf’). Given multiple components, Ai, within

a crystal, their proportion of the total crystal is denoted by a batch scale factor, or

‘basf’, Bi ∈ [0, 1]. Typically, these will be listed for every component but the first,

with B1 = 1−∑N
i=2 Bi.

Twin laws require a modification to the theoretical intensities Ic used in the model

[29]. Given a twinned crystal with s components and N measured intensities (we

use n = 1, . . . , N here to enumerate the recorded reflections as they are no longer

uniquely given by a particular h), with each component i having an associated basf

Bi such that ∑s
i=1 Bi = 1. For a given reflection n, sn ≤ s components will contribute

to it, enumerated as 1 ≤ in,1 < · · · < in,sn ≤ s, giving
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Ic(n) =
sn∑
l=1
Bin,l
|Fcalc(hn,in,l)|2, (8.2.1)

where hn,in,l
is the associated Miller index for component in,l for the nth reflection,

and Ic is our final theoretical intensity.

8.2.1 Reflections with Likely Overlap

Within the process of searching for twin laws, we require the identification of can-

didates for reflections which are likely to be overlapped by a second component.

We find these ‘bad’ hkl as follows: we take the signed difference Io − Ic between the

observed intensity Io and theoretical intensity Ic, and divide it by the uncertainty σ

on the observed intensity, that is we consider (Io− Ic)/σ. This gives us the degree to

which this particular reflection is underestimated (that is, Ic < Io). Those with the

highest value are the most likely to be subject to an overlap from a second component.

Looking for twin laws which will overlap many of the most underestimated points

are the most likely to mitigate this difference and form a good model of the crystal

twin.

Throughout this Part, we will refer to these as bad hkl. Whilst we really mean

‘the hkl with the largest weighted underestimation on its associated intensity’, the

shortness of the phrase ‘bad hkl’ allows a far quicker understanding in the contexts

we will be using it, and as they are ‘the reflections most in need of correction’, it is

not inaccurate to name them ‘bad’.

8.2.2 The Rodriguez Formula: Relation between R, Axis,

and Angle

In this subsection, we outline the formula for obtaining a matrix Reucl from an axis

and angle, which is known as the Rodriguez formula. All of our algorithms rely on
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this method for determining the rotation matrix to use, as axis and angle provide

3 clear parameters (two for a unit axis, one for the angle) which are typically the

easiest to determine of any possible rotation representation. Thus, it is vital to

have a direct method to move from angle and axis to rotation matrix, which can be

utilised directly to transform reflection indices.

Proposition 8.2.3 (Rodriguez Formula). A directed axis k and angle θ give rise

to a unique rotation Reucl in 3d space given by

Reucl = I + sin θK + (1− cos θ)K2, (8.2.2)

where K is the cross-product matrix of the unit axis

k =


kx

ky

kz

 , K =


0 −kz ky

kz 0 −kx

−ky kx 0

 .

Note that Kv = k × v for any vector v ∈ R3, which can be easily shown through

expansion of the cross product:

k× v =


kyvz − kzvy

kzvx − kxvz

kxvy − kyvx

 =


0 −kz ky

kz 0 −kx

−ky kx 0



vx

vy

vz


Another representation of 8.2.2 is also quoted in [53] as

Reucl,ij = kikj(1− cos θ) + δij cos θ + eipjkp sin θ,

where eipj is the antisymmetric tensor, that is:

eipj =



+1, if ipj is an even permutation of 123

−1, if ipj is an odd permutation of 123

0, if ipj has two equal values.

Proof of Proposition 8.2.3. We can easily derive Formula 8.2.2 by considering the
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action of Reucl on a vector:

Take v ∈ R3, and a unit vector k defining the axis of rotation. Define the cross-

product matrix K as above, and note that Kv = k× v.

Then note that the component of v parallel to k is v∥ = (v · k)k. The component

perpendicular is

v⊥ = v− v∥,

= v− (v · k)k,

= (k · k)v− (v · k)k,

= −k× (k× v),

= −K2v,

utilising the identity of the vector triple product, a × (b× c) = (a · c)b + (a · b)c,

along with our definition of K.

Then we note that the component v∥ will not be altered by Reucl, whilst the com-

ponent v⊥ will be rotated. Note that as v⊥ is orthogonal to k, k× v⊥ is a rotation

of v⊥ around k by π/2. Then, the rotation of v⊥ by θ is sin θk× v⊥ + cos θv⊥. We

note for below that k × v⊥ = k × v as the parallel component cross product is 0.

Thus:

Reuclv = Reuclv⊥ + v∥,

= sin θk× v⊥ + cos θv⊥ + v∥,

= sin θk× v− cos θK2v + v∥,

= sin θKv− cos θK2v + v− v⊥,

= sin θKv− cos θK2v + v + K2v,

= sin θKv + v + (1− cos θ)K2v.
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Therefore, we have Reucl = sin θK + I + (1− cos θ)K2

8.2.3 Representation in Relative Coordinates

In our further considerations it will be important to write this twin orientation also

as a matrix in relative reciprocal space, that is as acting directly on the integers

h, k, l.

To do this, we consider the action of the rotation matrix Reucl on a vector h =


h

k

l

.

First, the vector must be transformed into Cartesian coordinates through the use

of the reciprocal orthogonalisation matrix A∗. This allows it to be rotated by

Reucl, and the result can then, through the application of the inverse reciprocal

orthogonalisation matrix, be transformed back into relative space. That is,

h′ = (A∗)−1ReuclA
∗h.

Given this, we can define the matrix Rrel = (A∗)−1ReuclA
∗ as the relative rotation

matrix, such that h′ = Rrelh. Doing so allows much easier identification of the

proportion of overlapped points (and whether all points are overlapped, given by

matrices containing only integers) n as seen in Subsection 8.2.4, and an intuitive

understanding of the impact on the reciprocal basis vectors a∗, b∗ and c∗.

Example 8.2.1. For example, [23] contains a twin matrix (Example 2) which is

Reucl =


0.4120 −0.5422 0.7323
0.5422 −0.5 −0.6753
0.7323 0.6753 0.0880


in Cartesian space, and

Rrel =


0.5 −0.5 1
0.5 −0.5 −1
0.5 0.5 0
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in relative space 1. When written in relative space, this Rrel brings h, k, l ∈ Z3 with

(h + k) even into overlap, and thus overlaps half the points in reciprocal space. This

is not deductible from the Cartesian matrix, and so both for human understanding

and the ease of converting indices, we default to presenting the rotation matrices in

relative coordinates.

Throughout the remainder of this Part, R will typically refer to the relative matrix

Rrel as it is more important for our consideration. We mention this at this point to

avoid confusion.

8.2.4 Classification of Twins

There are many terms used for how well a twin component matches onto the main

component lattice (from now on, we assume that one component is designated the

‘main’ component). Our main source for the basic descriptions of twinning is found

in [2], and for a review of sub-types of twins and their related terms we recommend

chapter 4.3 Crystal Twins in [2]. Twin laws are typically be split into 4 categories

dependent on

1. how many reflections are overlapped, represented by a twin index n

2. how well the reflections overlap in angle, the twin obliquity ω

Definition 8.2.4 (Twin Index n). For the lattice Γ∗ of reflections from the main

component, we take the twin lattice Γ∗
twin as the sub-lattice containing only points

which are overlapped by the twin component. Then, the index n of Γ∗
twin in Γ∗ is

known as the twin index and can be understood as the inverse of the proportion of

1For ease, the lattice parameters of a = 10.220Å, b = 11.083Å, c = 7.538Å, β = 96.85◦ and

α = γ = 90◦ result in a direct orthogonalisation matrix of A =
[

10.220 0 −0.899
0 11.083 0
0 0 7.484

]
leading

to a reciprocal orthogonalisation matrix A∗ =
[

0.09785 0 0
0 0.09023 0

0.01174 0 0.133612

]
.
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spots in the main lattice present in the twin lattice. For group theorists, the twin

index is given by n = [Γ∗ : Γ∗
twin].

Mathematically, Γ∗
twin = Γ∗ ∩ReuclΓ∗, where Γ∗ is the lattice of the main component,

and Reucl the rotation matrix of the twin law. The index can also be interpreted as

the quotient of the volume of the supercell (a fundamental domain of Γ∗
twin) and the

volume of the unit cell of Γ∗ (a fundamental domain of Γ∗).

A twin index of 1 indicates that all points overlap, whilst other indices (essentially

always natural numbers) indicate partial overlap. The twin lattice and its associated

supercell can help to identify plausible twin laws as symmetries of the twin lattice[11].

The twin obliquity ω is explicitly defined only for twofold twins, requiring a twin

plane (hkl) as well as a twin axis [u, v, w], and ω is defined as the angle between the

normal to the plane and the twin axis.

More colloquially, it measures the angular separation between the two contributors

to each overlapping point. Given a rotation matrix R, Rh2 may provide values

which are very close to, but not quite, integers. In this case, the point Rh2 will

still overlap with some h1 from the main component, but there will be a slight

separation between the centres of the two reflections. Ignoring any separation due

to |A∗Rh2| ̸= |A∗h1|, we take ω as the angle between Rh2 and h1. This is not an

official definition, but appears to match the casual usage of ω. In my opinion, the

presented official definition does not provide sufficient clarity, and has no capacity

to consider non-twofold twins. However, the casual use of ω to divide between twins

with perfect and imperfect overlap (focusing on 0 or non-zero values) does provide

a good distinction on types of twins. [40] presents an empirical maximal value of

ω = 6◦ for a reasonable twin2.

Notably, there seems to be little consideration for points which do not perfectly

2This is notably not a spatial distance but an angle, and whether this is easier or more difficult
to deal with remains to be seen. It does mean that higher-index spots are just as likely to overlap
as low-index spots.
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overlap due to being a slightly different distance from the origin. That is, |A∗Rh2| ≠

|A∗h1| for at least one h2 ∈ Γ∗
B where Rh2 is almost-integer, and associated h1 ∈ Γ∗

A).

[42] suggests calling this the twin misfit δ, and measure it as the separation on the

closest overlapping point to the origin, in a plane perpendicular to the twin axis.

That is, we take the shortest possible nonzero h1 matching some Rh2 as defined

above, and split each into components parallel (h1,∥ and h2,∥) and perpendicular

(h1,⊥ and Rh2,⊥) to the axis of rotation. Then the misfit δ = |A∗h1,⊥ − A∗Rh2,⊥|.

We note that ω ̸= 0 ⇒ δ ̸= 0, though the inverse does not apply. Again, I find it

strange that this disregards any difference due to differences parallel to the axis of

rotation.

Table 8.1 gives the names of twin laws with respect to n and consideration of the

overlap (perfect or imperfect), which relates to ω and δ but remains a little more

general. The terms related to merohedral twinning are the most commonly used,

with TLS/TLQS (Twin Lattice Symmetry & Twin lattice Quasi-Symmetry) seeming

to be a recent but encouraged term, and integral mostly a literal description not

commonly seen.3

no n constraint n = 1 n > 1

no overlap
restriction

twin integral twin non-integral twin

perfect
overlap

TLS merohedral
twin

reticular merohedral twin
OR non-merohedral twin

imperfect
overlap

TLQS pseudo-
merohedral
twin

reticular pseudo-
merohedral twin OR
non-merohedral twin

Table 8.1: The names dependent on type of twinning, based on the
proportion of overlapped points (1/n) and degree of overlap4.

3[41] states that the common use of ‘merohedral twin’ is incorrect, and it should be ‘merohedric
twin’ or ‘twin by merohedry’. However, ‘merohedral twinning’ is a common term, whilst ‘merohedric’
is rarely if ever used, so here I remain with the majority usage.

4The degree of overlap is often described with ω, but I find that the definition and typical use
do not perfectly match, so we instead use the more descriptive terms.
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In an integral twin law, all reflections h are mapped directly onto other reflections

- all entries of the relative twin matrix R are integers (potentially up to a small

threshold of error, allowing Rh2 to be a small distance from a lattice point but

requiring that all Rh2 are sufficiently close to a lattice point). This typically arises

as an element of the point group of the unit cell of the crystal (meaning the unit

cell has specific dimensions which enable this). In this case, all lattice points will

be overlapped, and therefore the twin index n = 1.

Merohedral twinning refers to what I might call ‘perfect’ integral twins [46], where

the twin law arises due to additional symmetries in the point group of the crystal

which are not present in its space group. As an example, ammonia crystallises in

a necessarily cubic unit cell with a threefold rotation about the x = y = z axis.

Because of the cubic unit cell, if there were to be a second component rotated 90◦

about the x-axis, its diffraction pattern would perfectly align with that of the first

component. Pseudo-merohedral twinning on the other hand occurs from ‘accidental’

such angles, where for example a unit cell has an angle very close to 90◦ without any

symmetries necessitating that. Another example would be if the a and b axes were

very similar in length and perpendicular to the c axis. For our intents and purposes,

both merohedral and pseudo-merohedral are integral twin laws.

The detection of Merohedral twin laws seem to be largely a solved process - to find

rotations which perfectly overlap the reflections is simple for space groups whose

point group contains additional symmetry elements, which are pre-tabulated and

(relatively) short lists. Detecting twin laws for Pseudo-merohedral twins may be a

little harder, but the process boils down to checking whether a point group with

additional symmetry elements can have the same (or similar) unit cell - for example,

a cell which happened to have a ≈ b ≈ c and 90.1◦ angles would be able to have any

twin law which lay in the point group of a cubic cell, even if the crystal itself did

not require cubic symmetry.

Non-integral twin laws have relative rotation matrices R which have some non-
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integer entries. They overlap some reflections, perhaps non-perfectly, and do not

overlap others. These can be more easily spotted in the diffraction slides than

integral twins as they would appear to have two lattices. However, often these are

not spotted and it is indexed as a single crystal. These can also be referred to as

reticular merohedral twins (which again are split into normal and pseudo-merohedral

dependent on whether they are ‘perfect’ or not), which refers to the twin operation

being a symmetry of the twin lattice sub-lattice. I have found no consideration of

twin operations which do not belong to the symmetry of a sub-lattice, and feel certain

they must exist, but perhaps come with n = ∞ and are not significant enough to

be noticed (for example, if a∗ was mapped onto b∗ through an angle of 80◦ (with

||a∗||=||b∗||, c∗ perpendicular to a∗ and b∗), only those points with h = 0 would

be overlapped (and would be mapped onto by only points with k = 0). Any twin

law which is not perfectly merohedral can also be referred to as ‘non-merohedral’,

despite the fact that they can also be referred to as ‘pseudo’ or ‘reticular’ merohedral

laws.

Some experienced crystallographers can deduce possible non-merohedral twins by

inspection of the lattice parameters [46].

Example 8.2.2. We look at Example 2 from [23]. This has a relative matrix of

R =


0.5 −0.5 1
0.5 −0.5 −1
0.5 0.5 0

 ,

that is 
h

k

l

→


h−k
2 + l

h−k
2 − l
h+k

2

 .

This is a non-integral matrix with n = 2, overlapping half the points (those with

even h + k). This is also a threefold twin law (that is, R3 = I). This rotation has an

axis [2, 0, 1] (in the relative reciprocal basis) and as a threefold law an angle of 120◦.
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The twin lattice for this is generated with a∗+b∗ =


0.09785
0.09023
0.01174

, a∗−b∗ =


0.09785
−0.09023
0.01174



and c∗ =


0
0

0.133612

, with a matrix with respect to this system of


0 1 1
0 1 −1
1 0 0

, with

an axis of [1, 1, 1] (in relative coordinates) in this system. We calculate an angular

discrepancy of 0.006◦ and a difference in norm of 6× 10−6Å for a∗ + b∗ rotated onto

a∗− b∗, which is sufficiently small as to imply perfect overlap and simple errors due

to limited precision. We thus call this a reticular merohedral twin.

8.2.5 hklf5 Format Files

Information about the reflections from twinned crystals is stored in a special variant

of hkl-file, adapted to allow the indication of which reflections are overlapped, or

belong to different components if multiple diffraction lattices were indexed at the

time of slide integration.

The file format typically used for conveying information about the diffraction patterns

of crystal twins is the hklf5 format file. This is an adaptation of the standard hklf4

format file type used to transfer information about recorded reflections.

The hklf5 file format adapts the hklf4 format (see 7 of Part I) to denote overlapped

reflections, and reflections occurring from different crystal components. It has an

additional column (highlighted in red in the example below) at the end of each row

which serves two purposes. Firstly, this column may be without a sign (positive)

or with a ‘-’ symbol. A row with a ‘-’ symbol indicates that it is an overlapped

reflection, and is matched to the line below it. Secondly, this column will contain

an integer, which (without the potential ‘-’) denotes the component associated to

that line. This component number is directly related to the hkl labelling present

in that line, which corresponds to the point in reciprocal space with respect to the

numbered component.
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This is far easier to understand with an example. Consider a two-component crystal

with a twofold twin matrix Rrel =


−1 0 0.5
0 1 0
0 0 1

 in relative reciprocal space. A

snippet of such a hklf5 file is as follows:

-2 0 0 400 20 -2

2 0 0 400 20 1

2 0 1 200 4 1

-1 0 2 600 50 -2

2 0 2 600 50 1

2 0 1 100 5 2

The first two lines show that the ‘2 0 0’ reflection of the first component is overlapped

with the ‘-2 0 0’ reflection of the second component, which is presented in the first

line with a ‘-’ symbol. The third line is a reflection unique to the first component

- if we apply the rotation matrix, we get ‘-1.5 0 1’, which contains a non-integer

and thus not an overlapped point. The fourth and fifth lines show that the ‘2 0 2’

reflection of the first component is again overlapped by the ‘-1 0 2’ reflection of the

second component.

The final line shows a unique reflection of the second component, with the Miller

triple labelling as within this component. Such an entry in a hklf5 file can only

come about if such reflections are also recorded at the indexing stage, but this is a

possibility and one allowed by the hklf5 format file.

One note about the hklf5 format file is that the ordering in the file is very important

- a ‘-’ symbol notes that the reflection is the same as the one on the next line, so any

change to this order would render these incorrect. The hklf5 format also duplicates

the Io and σ information (in the 4th and 5th columns) on such ‘duplicated’ reflection

lines.

For some twin laws, especially integral ones, hklf5 is not necessary and the reflections

can be transformed by refinement software. hklf5 formatted files are most important
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where multiple components have been directly indexed and thus one needs to clearly

indicate overlapped reflections, and which reflections belong to different components.

For example, in our example above we had a ‘2 0 1’ reflection for both components,

but the reflection caused by the second component was half as strong (with a larger

error).

As a first guess, one could assume that the second component is half as large as

the first component - however, such an estimate would need to be verified by other

information. This could further lead to a deduction that the ‘2 0 2’/‘-1 0 2’ reflection

has an intensity of 400 from the first component and 200 from the second, in a process

known as ‘detwinning’. However, this again would need further verification and it

is often useful to keep your data as unaltered as possible - allowing the software to

actively do these deductions when needed.





Chapter 9

Previous Algorithms

Detecting potential twin laws has been considered many times over, and members

of the crystallographic community have made many stand-alone programs. In this

section, we will discuss the softwares COSET, ROTAX and Platon, followed by my

implementation of ROTAX’s method within Olex2.

9.1 Previous Software

We review the softwares COSET, ROTAX and Platon. COSET considers the lattice

parameters to deduce (pseudo-)merohedral twin laws, whilst ROTAX and Platon

perform more general searches for any viable twin laws.

9.1.1 COSET

COSET uses the theory of coset decomposition to find possible (pseudo-)merohedral

twin laws. It thus only applies to integral twin laws. Such decomposition provides

the possible twin laws up to the symmetry of the crystal itself (that is, without

duplicates). [15] provides simple looping algorithms for deducing these representat-

ives. [5] provides a command-line program implementing these algorithms, but still
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requires much user determination, such as a transformation to a reduced cell, and

provides no independent tests for the potential usefulness of a twin law.

9.1.2 ROTAX

ROTAX [11] identifies 30 data points h with the largest values of (|Fo(h)|2 −

|Fc(h)|2)/σ(h). Then it transforms those h by choices of rotation matrices to de-

termine which take these to vectors with integer coordinates.

ROTAX focuses in particular on non-merohedral twinning (including reticular mer-

ohedral twinning), with the knowledge that (pseudo-)merohedral twins are typically

far more easily solved.

The algorithm ROTAX works as shown in the psuedocode in Algorithm 1.

I have implemented a version of ROTAX’s algorithm which I refer to as the ‘angle-axis’

search and this is described in Section 9.2. Additionally, the measure of acceptance,

known as the ‘figure of merit’, is one I also use, and describe in more detail in

Subsection 10.4.1.

9.1.3 PLATON

It has been stated that Platon uses the ‘d-spacing’ to find likely twin laws. This

is the same as points of the same distance from the origin, but the methodology is

unspecified. Platon [54] describes its method as “Those [underestimated] reflections

are overlapped by a strong reflection with (approximately) the same diffraction θ

angle from a rotation-related twin-component lattice. Analysis of multiple such cases

may lead to proposed candidates for the twinning operation at hand." The diffraction

angle θ is what leads to the distance from the origin in the reciprocal lattice, so this

works on the same principle as our methods. Unfortunately, there is no published

literature including the details of the algorithm used in Platon.
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Algorithm 1 Find Viable Rotations
Require: 30 h with largest (|Fo(h)|2 − |Fc(h)|2)/σ(h)
Require: reciprocal lattice vectors k = (h, k, l) with h, k, l ∈ {−12, . . . , 12} and

gcd(h, k, l) = 1
Require: rotation fraction n, typically 2

θ ← 360◦/n
for each k do

m = 1
while m ≤ n/2 do

R← rotation matrix about k with angle mθ
distances ← NewList()
for each underestimated h do

h′ ← Rh for each h
d← distance from h′ to nearest lattice point
AddItem(distances, d)

end for
average ← mean(distances)
omitted ← 0
sort distances by size
while average> 0.002Å AND omitted< 15 do

remove largest value from distances
average ← mean(distances)
omitted ← omitted +1

end while
if average> 0.002Å then

discard R
else

fom ← average
save R with its fom

end if
m← m + 1

end while
end for
Return all saved R
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9.2 Implementing the Angle-Axis Search of

ROTAX

When I began my PhD, Pascal Parois had begun working on implementing the

ROTAX method within Olex2. ROTAX existed as independent software to Olex2

[11], and the task was to bring this algorithm into Olex2 to allow full use of Olex2’s

integrated systems. Based on his initial work, I continued with the implementa-

tion which was determined to be an appropriate task which would help me get an

impression of how Olex2 was built.

To give it a more descriptive name, I call ROTAX’s method the angle-axis search,

as it iterates through angles and axes to find twin laws. Whilst ROTAX allows the

user to input alternate values for some parameters, I also believe that some more

complicated parts of the program could also allow variable inputs. ROTAX allows

these variables to be altered:

• Maximal axis coefficient n: ROTAX defaults to a maximum axis coefficient

for h, k, and l of n = 12 (that is, |h|, |k|, |l| ≤ n).

• Angle Fraction m: ROTAX determines what angle θ = 360◦/m to rotate

around each axis. ROTAX recommends the choice of m = 2, but greater

fractions are viable.

I think it is feasible that the following parameter values could be allowed to change

with user input and different molecules, however the main ROTAX program does

not do so:

• Bad hkl: ROTAX utilises a list of the 30 hkl with the most underestimated

reflections according to (|Fo(h)|2 − |Fc(h)|2) /σ(h). Whilst not implemented,

one could employ larger or smaller lists (or ones limited to a particular discrep-

ancy), or a different condition on underestimated reflections.
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• Overlap Threshold: ROTAX does not have an explicit overlap threshold,

but does use a value of 0.002Å in its figure of merit tests1. I consider this to

be a value which could be altered, and in my implementation allow the user

to input their own threshold ϵ.

We comment now on the way in which we store our list of bad hkl. We utilise a

numpy array to store this information, which allows us to use matrix operations to

act on all our hkl at once. We define a matrix, H0, which contains in each row one

hkl entry, that is:

H0 =



h⊤
1

h⊤
2
...

h⊤
n

 =



h1 k1 l1

h2 k2 l2
... ... ...

hN kN lN

 .

In python, this also allows us to take specific rows, for example H0[i] =
[
hi ki li

]
.

If we wish to multiply all entries by some matrix M (which could be Rrel, the

orthogonalisation matrix A or any other possibility), we can simply post-multiply

HM = H0M
⊤ to obtain the new matrix of transformed vectors

HM = H0M
⊤ =



(Mh1)⊤

(Mh2)⊤

...
(MhN)⊤

 .

Operating like this typically results in dramatically faster code than transforming

each line one-by-one due to the ability to rely on inbuilt C-compiled numpy functions.

In Figure 9.1, we outline our implementation of this algorithm. The implementation

takes as input an upper bound n for the integer triples describing the axes of rotation

under consideration, an angle fraction m, and the set of ‘bad hkl’ H0 = Hbad (it

also utilises the overlap threshold ϵ, but this is ‘hidden’ in the figure of merit and

1See 10.4.1 for the full details of the figure of merit. Due to its implementation, I expect that not
all of the overlap distances considered in the average are actually within this threshold, meaning
that the figure of merit accepts laws which overlap either less points with a tighter threshold, or
more points with a looser threshold.
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Input: limit n of axis coefficients,
angle step θ = 360◦/m,

and matrix H0 of bad hkl in rows

Generate next
axes k = ra + sb + tc

and k = ha∗ + kb∗ + lc∗

with all values
r, s, t, h, k, l

∈ (−n,−n + 1, . . . , n− 1, n);

Generate rotation Rbase
from axis k and
rotation angle θ

Rotate indices
Hi = Hi−1R⊤

base

i=0

Is the figure
of merit low? Discard this lawNo

is i + 1 < mYes
i← i + 1

Is there
another axis?

No

Yes

Create corresponding
rotation Ri = (Rbase)i

Yes

Is the twin law
sufficiently good?

Is this twin law
already recorded?Yes

Record the twin law

NoNo

No Yes

Return all Twin LawsNo

Figure 9.1: Flow chart illustration of the angle-axis search
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‘goodness’ tests). The angle fraction is used to generate the angle step θ = 360◦/m.

We then create viable axes based on both the direct lattice and reciprocal lattice,

running through a list of axes with coefficients up to size n which is restricted by

the symmetries of the crystal (as a symmetry equivalent axis gives a symmetry

equivalent rotation). Then, we generate a one-step rotation Rbase for the angle θ via

the Rodriguez formula, given this axis and the angle step, for both the direct and

reciprocal axes. We work on both axes simultaneously, acting the same on both.

We then repeatedly rotate the bad hkl Rbase, that is we compute Hi = Hi−1R
⊤
base,

verify the figure of merit of Hi, and then generate the actual rotation matrix Ri
base

if this figure of merit is sufficiently low.

We then test the twin law by our standard goodness tests as seen in Section 10.4,

and if it passes, record it.

When we have iterated through all axes, we return any stored twin laws.

An increase of n or m will search more possibilities for rotations. Most twin laws

can already be found by a twofold search m = 2. We typically take the list of bad

hkl as the worst 30-50, but a more dynamic selection based on the precise values of

the underestimation and total number of hkls could provide an improvement to the

process.





Chapter 10

My Own Algorithm: Spherical

Search

In this chapter, we present two algorithms (twofold twin law detection and general

twin law detection) which I created to make most use of the ordered ‘bad hkl’ list

to directly deduce very likely twin laws. We first present the initial idea behind

the algorithms, followed by the special case restricted to twofold twins. Then we

present the full algorithm with arbitrary rotations, and separately the algorithm

for evaluating whether a twin law is sufficiently good, which applies to both. We

follow this with a variety of mathematical ingredients required for these algorithms

in full detail. Next, we present a discussion of various time optimisations and code

improvements, adaptations to the algorithm or implementation to provide the fastest

results. Finally, we present step-through examples for these algorithms deducing

twin laws for specific datasets.

10.1 Fundamental Ideas Behind the Algorithm

My spherical search was inspired by one simple observation - that a point could only

be rotated onto a point of the same distance from the origin. Given the list of most
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underestimated reflections (that is, those most likely to be subject to a twin overlap),

I hypothesized that the list of points of similar distance would be relatively short,

and thus an algorithm which took advantage of the knowledge of these very likely

overlaps would be faster, removing the checking of many irrelevant possibilities.

Given a point v ∈ Γ∗, I find all integer lattice points vk ∈ Γ∗ of similar distance, and

denote their rescalings to the same size as v as wk = vk|v|/|vk| with k = 0, . . . , kmax

(see Section 10.6 for this process) (the scaling is necessary for the following math-

ematics to find the axis/angle to hold, but the ‘overlapped’ point is still considered

the integer lattice point). With the two points v and wk, we obtain a family of

possible rotations whose axes lie on the bisecting plane between v and wk. One such

rotation is the twofold rotation corresponding to a rotation angle of π, around an axis

pointing directly between the two points, n1 = v + wk (with associated unit vector

n̂1 = n1/|n1|). As twofold rotations are particularly common in crystallography, this

gave rise to the first algorithm - the twofold sphere search (see Section 10.2).

This is not the only possible rotation. All axes lying on the plane perpendicular

to the difference v − wk provide a rotation which will map v onto wk for some

to-be-determined angle θ. If we take a second such pair, which we name p and ql

(so long as these difference vectors v −wk and p − ql are not parallel), we find a

unique axis n = (v−wk)× (p− ql) capable of mapping both v onto wk and p onto

ql. In this case, we must additionally find the appropriate angle for each such map

and only if these are the same (within some threshold) does this present a candidate

for a viable twin law. This algorithm is expanded on in Section 10.3.

This allows a dramatically smaller number of possible rotation matrices to be tested

whilst fully scrutinising the most relevant possibility space
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10.2 Twofold Sphere Search

The twofold sphere search locates viable twofold laws (rotation by π), iterating

through the points with underestimated intensity to find all laws which take the

chosen point to any other lattice point. This is especially useful as twofold laws are

by far the most common laws detected in crystallography, and very likely the most

common way that twinned crystals grow. The algorithm is outlined in Figure 10.1.

Importantly, this search forgoes the need for two selected points v, p by restricting

the angle to 180◦. We simply take each point with underestimated intensity v in turn,

then generate all integer lattice points of a similar (up to a threshold, ϵ) distance

(see Section 10.6 for details of how these are generated) and scale them to be of the

same distance as v1. We name these points wk, k = 0, . . . , kmax. We then iterate

again through these points, taking the sum n = v + wk as the axis of rotation. We

must scale this to a unit vector n̂ = n
|n| , at which point we can use the Rodriguez

Formula 8.2.2 to generate our rotation, with a slight simplification due to the prior

knowledge that sin θ = 0 and cos θ = −1 for θ = 180◦, such that R = I + 2K2.

We must then test the law, to evaluate whether or not it is effective, and in doing

so find the basf which minimises the R-factor. This process is the same for all

generation methods, and is expanded on in Section 10.4. If the twin law is effective,

it is recorded. We then perform a check as to whether we have found the required

amount of twin laws, as there is no need to continue searching if many laws are

found quickly as they are most likely to be correct. If we have not found the required

amount, the loops continue through other points wk and v until sufficient laws are

found or we reach the end of points of underestimated intensity to check, at which

point it is likely there are no further 180◦ twin laws.

1This is excluded from the flowchart for simplicity, but scaling these integer points to very close
non-integer points of the same size as v is necessary for the mathematical derivation of the axis to
hold correctly and provide the error ϵ - if the scaling is ignored, the error from Rv to wk will be
larger.
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List of hkl sorted by
strongest underestimations

Use the ith hkl to generate
v = ha∗ + kb∗ + lc∗

i = 1

Generate all points ∈ Γ∗

wk s.t. ||wk|| ≈ ||v||
k = 0, . . . , kmax

within the stated threshold

Obtain an axis (v + wk)

k = 0

Generate the twin law
with this axis and

angle of 180◦.

Yes

Is the twin law
sufficiently good?

Is this twin law
already recorded?

Yes

Discard
this law

Record the
twin law

No

Have we found
sufficient twin laws?

No

Yes

is k + 1 ≤ K?

No

Yes
k = k + 1

is there an
i + 1th hkl?

No

Return all
Twin Laws

No

Yes
i = i + 1

Yes

Figure 10.1: Flow chart illustration of the twofold spherical search
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10.3 Full Sphere Search

The full sphere search locates viable twin laws by iterating over all pairs of points

with underestimated intensity, and finding all axes which take both points to other

lattice points. The algorithm is outlined in Figure 10.2.

List of hkl sorted by
strongest underestimations

Use the ith hkl to generate
v = ha∗ + kb∗ + lc∗

i = 1

is 0 ≤ j ≤ i − 1

j = 0

Use the jth hkl to generate
p = ha∗ + kb∗ + lc∗

Yes

Generate all points
wk s.t. ||wk|| ≈ ||v||, k = 0, . . . , kmax

ql s.t. ||ql|| ≈ ||p||, l = 0, . . . , lmax
within the stated threshold

Obtain an axis (v − wk) × (p − ql)

k = 0, l = 0

Find the angles of rotation
∢p⊥,ql⊥ , ∢v⊥,wk⊥

around this axis

Are the angles
within 6◦ of each other?

AND
Do the angles have the

same orientation?

Generate the twin law
with this axis and
the average angle

Yes

Is the
twin law

sufficiently
good?

Is this
twin law
already

recorded?

Yes

Record the twin law

No

Have we
found sufficient

twin laws?

Discard this law

YesNo

No

is l + 1 ≤ L? No

Yes
l = l + 1

is k + 1 ≤ K?

No

Yes
k = k + 1,

l = 0

No
j = j + 1

is there an
ith hkl?

No:
i = i + 1

Return all Twin Laws

No

Yes

Yes

Figure 10.2: Flow chart illustration of the spherical search

To expand upon this diagram, we take these points of strongest underestimated

intensity and use the indices i and j to enumerate them, with i always being larger
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than j. This allows us to effectively iterate through these pairs beginning with the

pairs with strongest underestimation, which allows us to cut off the search early if

it is effective.

We label this pair of points v and p, and find all integer lattice points wk,0, ql,0 such

that |v −wk,0| < ϵ and |p − ql,0| < ϵ (see Section 10.6 for the generation of these

points). Then, we scale these found integer lattice points to be of equal length -

that is, wk = wk,0
|v|

|wk,0| and ql = ql,0
|p|

|ql,0| . This ensures that the generated rotations

provide the correct error2 of ϵ. These are then fully iterated through (described in

the following paragraphs), looking for a twin law for each v, wk and p, ql pair.

There are many possibilities here which do not give rise to a twin law. If v − wk

and p− ql point in the same direction, they describe the same family of axes and

thus do not provide a unique axis and require a third point to find one - which is

left to be done with the pairing of each of the two with this third point rather than

duplicated for this instance.

The set of axis which supports a rotation from v to wk lie in the plane perpendicular

to v − wk, whilst those supporting a rotation from from p to ql lie in the plane

perpendicular to p − ql. Thus, the unique axis of rotation which supports both

rotations can be found via n = (v − wk) × (p − ql). We then take the unit axis,

n̂ = n/|n|.

Each vector v can be split into its portion parallel to the axis n̂ and perpendicular

to that. We take the parallel portion as v∥ = (v · n̂)n̂, and the perpendicular portion

as v⊥ = v−v∥. It is the case that wk,∥ = v∥, whilst wk,⊥ = wk−wk,∥. The angle of

rotation θ is the angle between the perpendicular components, which can be found

via v⊥ ·wk,⊥ = |v⊥||wk,⊥| cos θ. Finally, this retrieved angle is without orientation,

but one can give it an orientation by looking at the axis given by v⊥ × wk,⊥ and

whether it lies in the same direction as n̂ or the opposite direction.

2In fact, using the mathematical derivation presented here on unscaled end points typically
provides a greater error, caused by the derived rotation, due to the innacuracies then present in
the process.
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If the two pairs of points share a unique axis but have different angles, there is no

twin law which works for both. If they share the axis and angle (with orientation),

then we can generate the twin matrix describing this paired rotation. This can then

be tested (see Section 10.4) to determine its usefulness.

10.4 Evaluating the Viability of Twin Laws

It is vitally important to have a quick way to evaluate the viability of twin laws -

within the process, one can generate thousands of rotation matrices, and we need to

filter that down to the most likely candidates. I use two main filters - the figure of

merit as introduced in the ROTAX paper [11] to confirm that enough ‘bad’ points

overlap, then find basf to check if the twin law is capable of lowering the R-factor.

In Figure 10.3, we describe the algorithm for the evaluation of a twin matrix R.

Recall that the twin matrix R = Rrel is written with respect to the lattice basis, not

in pure Cartesian coordinates. The blue (and black) boxes are expanded on in their

own subsections.

We begin with a twin matrix R (typically generated through one of the previous

algorithms such as Spherical Search), and require a few additional matrices for

our algorithm to function. Due to the nature of programming, we organise lists

of n hkls hi =


hi

ki

li

 as numpy arrays, which can be equivalently represented as

matrices H =



h1 k1 l1

h2 k2 l2
... ... ...

hn kn ln

 =



h⊤
1

h⊤
2
...

h⊤
n

. This allows us to perform operations on all

such hkl simultaneously, reducing the time cost of such operations. As a reminder,

HM =



(Mh1)⊤

(Mh2)⊤

...
(Mhn)⊤

. We begin with one such matrix, H0, containing all hkl with
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Input: twin matrix R,
matrix of all hkl H0,

associated list I1 of squared Fcalcs,
matrix of worst hkl Hbad

Create matrix of rotated hkl:
HR,bad = HbadR⊤;

‘Round’ the rotated points:
HZ,bad = closest_point(HR,bad)

Create list of Cartesian difference
vectors (HZ,bad −HR,bad)(A∗)⊤

Take norm of each row to create list of distances,
average the smallest half of the distances

Is this average below the threshold?

Fi
gu

re
of

M
er

it

This is a bad lawNo

Create matrix of rotated hkl: HR = H0R⊤;
‘Round’ the rotated points: HZ = closest_point(HR).

hi and hi,R denote the ith row of HZ and HR respectively.

Yes

Are all entries of R integers?

All rows
hi ∈ HZ overlap

Yes
Find ‘overlapping’ points

hi ∈ HZ s.t.
|A∗(hi − hi,R)| < ϵ

No

Create a list I2 with zero entries
of the same length as I1

For each overlapped point hi ∈ HZ ,
set I2(i) to |F 2

c (hi)|

Enact Golden Section Search to find
the Bmin such that R-factor(Ic)
with Ic = (1− Bmin)I1 + BminI2

is minimised with value Rmin.
Additionally, R0 = R-factor(I1)

Is Rmin < R0

No

This is a good law:
Return Bmin, Rmin
and the decrease
R0 −Rmin

Yes

Figure 10.3: Flow chart illustration of the evaluation of twin laws
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recorded observations, alongside equal-height lists of the squared Fcalcs and observed

intensities (squared fobs) associated to these hkl. We also have a matrix Hbad which

contains the most underestimated hkls in order.

10.4.1 Figure of Merit

The Figure of merit is a value measuring the average distance between a rotated

point and its nearest lattice point, outlined in the first blue box of Figure 10.3. The

lower the figure of merit, the more likely it is that the twin law provides a viable

rotation.

To calculate the figure of merit, we take our list of ‘bad’ hkl and apply the rotation

matrix to them. Then, for each we obtain the distance from the rotated point to

its nearest lattice point. Finally, we take the smallest half of these distances and

average them - if this average is below the threshold of overlap, then it ‘passes’ the

figure of merit test.

In essence, this test guarantees that a reasonable number of the most underestimated

Fcalcs are accounted for by this rotation matrix.

10.4.2 R-factor Minimisation via Batch Scale Factor (basf)

A smaller R-factor indicates a closer fit to the recorded data. Once we have a twin

orientation matrix R, there is a single parameter (in our case of only two components)

which can impact the R-factor - the batch scale factor, B. When testing a single

twin law, we have two components only, so

Ic(h,B) = (1− B)Ic,1(h) + BIc,2(Rh),

where Ic,1 and Ic,2 are the theoretical intensities corresponding to each component.

We keep the label h from component 1 as the label for the combined intensity. We

take B ∈ [0, 1) (where B = 0 corresponds to the twin law not being present). As
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seen in Equation (8.2.1), B alters the calculated intensities Ic. We can then either

try to optimise the R1-factor,

R1 =

∑
h

∣∣∣∣∣∣∣∣√K̃(B)Ic(h,B)
∣∣∣∣− |Fo(h)|

∣∣∣∣∑
h |Fo(h)| , (10.4.1)

or the wR2-factor,

wR2 =

√√√√∑h w(h)|K̃(B)Ic(h,B)− Io(h)|2∑
h w(h)I2

o (h) , (10.4.2)

where h ∈ Γ∗ are the labels of the recorded observations (note that in the case of a

twin Fc is not available to use, and we substitute |Fc| =
√

Ic in R1). K̃ is defined in

Section 6.5, and due to Ic depending on B, so too does K̃. This dependency means

that we cannot easily analytically calculate the minimum of wR2 with respect to B.

We then need to minimise the chosen R-factor with respect to the B. As the R-factor

is a sum over all reflections n, and in the case of the R1-factor is a sum over many

square roots of linear functions of the B, we find this minimum numerically.

To do this, I employed the golden section search, a method which finds the minimum

of a function by algorithmically decreasing the search range. Details on the intricacies

of the golden section search can be found in [47, Section 10.2]. Other methods such

as gradient descent could also work well, but to the precision of 10−2 needed for an

initial estimate the golden section search takes only 3-6 steps to find a sufficiently

precise minimum without the calculation time needed for the derivative.

In preparation for the golden section search, we must have the theoretical intensities

Ic,2 corresponding to the overlapping point for each h. This part of the algorithm

underwent much time optimisation development which is expanded on in Section

10.7. We rotate the entire hkl list and find the closest point to each rotated point

(see Section 10.5), with this integer list denoted HZ .

If R is an integral matrix, we know each hkl is overlapped. If not, only some rows

overlap, and all other rows have a corresponding Ic,2 = 0. For all overlapping rows, we
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must take the integer rotated hkl and locate the theoretical intensity corresponding

to that Miller index, which is assigned to the appropriate location in the list of

intensities I2.

The golden section search is then utilised to find a value for B which gives a minimal

R-factor, Rmin. So long as this provides a reduction compared to the base R-factor

R0, we determine that the twin law is viable, and return all relevant information.

At this point, there are no further tests and twin laws will be presented to the user

for inspection and potential use and refinement. Refinement can often confirm more

strongly whether a twin law is useful.

10.4.3 Golden Section Search

To begin, we will explain the general concept of the golden section search. The

search is designed to effectively search for a minimum, narrowing the search space

by a factor of approximately 0.618 (2/(3 +
√

5 precisely) each step

The golden section search requires a function which is unimodal within the bounds

provided to it. In our case, we assume only one local minimum which implies

unimodality. If it were to have multiple, the search could enter a false minimum,

or simply fail if it finds a point which provides a higher function value than the

extremes.

The golden section search begins with two bounds within which to search - in our

case, Blower = 0 and Bupper = 1. These give function values Rlower = R-factor(Blower)

and Rupper = R-factor(Bupper).

Setup stage

Then it enters the ‘setup’ stage as shown in Figure 10.4, where we confirm that the

function falls below Rlower and Rupper at some point in between Blower and Bupper.

We generate Bnew = Blower +ϕ(Bupper−Blower) (ϕ = 3+
√

5
2 is a specifically chosen ratio
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Blower
= Bmin,0

BupperBnew

R(B)

(a) A ‘setup stage’ case where the new x
is not the minimum of the 3 points, so
the region is shrunk with the minimum
still at the edge

Blower BupperBnew,1
= Bmin,1

R(B)

(b) The end of the setup stage, once the
new point is the smallest of the three and
we can continue with the main minimum
finding process

Figure 10.4: The setup stage of the golden section search.

closely related to the golden ratio to enable easy iteration, which is explained later).

If at any point Rnew := R-factor(Bnew) < Rlower and Rnew < Rupper, we proceed to

the next stage with the triple Blower,Bupper and Bmin := Bnew. If not, we shorten the

search to where it is currently minimal (that is, if Rlower ≤ Rupper, Bupper = Bnew,

and similar for the opposite), and repeat this process.

Main Process

With the main process, illustrated in Figure 10.5, we begin with the triple

Blower,Bupper and Bmin, which lies between Blower and Bupper and has an associ-

ated Rmin := R-factor(Bmin) < Rlower and Rupper. We then create a new Bnew =

Blower + Bupper − Bmin, and evaluate its R-factor, Rnew. Then, whichever of Rmin

and Rnew is smaller determines the new centre point, which is again denoted Bmin,

of the new triple, whilst the two points adjacent to it become the new Blower and

Bupper. We repeat the process, calculating again Bnew = Blower + Bupper − Bmin. This

continues until we have reaches a sufficiently small difference between Blower and

Bupper to declare the minimum as the point between them.



10.4. Evaluating the Viability of Twin Laws 121

Blower BupperBnew,1
= Bmin,1,. . . ,Bmin,3

Bnew,2

reduction 2

Bnew,3

R(B)

reduction 3

Bnew,4

= Bmin,4

Figure 10.5: Continuation of the golden section search, gradually
reducing the search space to focus in on the minimum

Determining ϕ

The particular ratio ϕ employed in golden section search is specifically chosen to

ensure that we descend in a consistent way no matter the results presented. We have

two end points (in our case Blower and Bupper) and two ‘middle’ points (in our case

Bmin and Bnew) at any given time, but require that when the interval is shortened

the ratios remain constant.

a b c d

Figure 10.6: The distribution of points in the golden section search

In Figure 10.6 we show a set of points with a being the lowest and d being the

largest. We want the first midpoint, b, to be calculated as a ratio of the distance

between a and d, thus b = a + ϕ(d− a). c is the mirror of b, and can be found either

as c = d − ϕ(d − a) or c = a + d − b. Next, we require that when the interval is

shortened it keeps the same distribution of points (regarding their ratios).

In one case, where we shorten around b giving the minimum, we now have [a, c] as

the new interval, and b is one of the two midpoints (with the other being at a+c−b).
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Let us assume that b is the larger midpoint, then we want b = c− ϕ(c− a), and this

determines the value of ϕ. That is:

a + ϕ(d− a) = b = c− ϕ(c− a),

⇒ a + ϕ(d− a) = d− ϕ(d− a)− ϕ(d− ϕ(d− a)− a) using c = d− ϕ(d− a),

⇒ ϕ(d− a) = d− a− ϕ(d− a)− ϕ(d− a) + ϕ2(d− a),

⇒ ϕ2 − 3ϕ + 1 = 0,

⇒ ϕ = 3±
√

5
2 .

We can easily deduce that we must choose ϕ = 3−
√

5
2 , as else this ratio would be

greater than 1. This is also equal to 2
3+

√
5 . Additionally, for curiosity, the mirror of

this ratio, 1− 3−
√

5
2 =

√
5−1
2 = 2

1+
√

5 , which is the inverse of the golden ratio, giving

the search its name.

We note also that during the setup stage, one can ‘jump’ to the next new point by

combination of the present points rather than multiplication with ϕ. That is, if our

section were to be reduced from [a, d] to [a, b], the new point found between a and b

would be found at e = 3b− a− d. However, due to the likelihood of rounding errors

within code, we recommend using the initial formula e = a + ϕ(b− a).

Flowchart 10.7 is a graphical illustration of the golden section search as used in our

process.
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Provide lists I1 and I2
of squared Fcalcs associated respectively

to components 1 and 2

Set Blower = 0, Rlower = R0 = R-factor(Ic = I1),
Bupper = 1,Rupper = R-factor(Ic = I2),

Rmin = min(Rlower,Rupper),
Bmin matching whichever of ‘lower’
or ‘upper’ gave the lower R-factor

Bnew = Blower + 2
3+

√
5 (Bupper − Blower),

Rnew = R-factor(Ic = (1− Bnew)I1 + BnewI2)

Is Rnew < Rmin

Is |Rupper −Rlower|
< 0.01?

Replace whichever of Rupper
or Rlower is larger by Rnew,
and replace the associated
Bupper or Blower with Bnew

No

No

Rmin = Rnew,
Bmin = Bnew

Yes

Bnew = Blower + Bupper − Bmin,
Rnew = R-factor(Ic = (1− Bnew)I1 + BnewI2)

Is Rnew < Rmin

Is |Rupper −Rlower| < 0.01?

Replace whichever of Rupper
or Rlower is on the same side of
Rmin as Rnew with Rnew,

and replace the associated B
No

No

Replace whichever of Rupper
or Rlower is on the same side of

Rnew as Rmin with Rmin,
replace the associated B,

and set Rmin = Rnew & Bmin = Bnew

Yes

Return Bmin,R0 and Rmin

Yes

Yes

Figure 10.7: Flow chart illustration of the golden section search
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10.5 Closest Point Determination

Within this algorithm, we frequently must determine whether a point is sufficiently

close to an integer lattice point - but to do so, we must know which integer lattice

point to compare it to. Naively, we may simply round to the nearest integer lattice

point, but this might not be the nearest point.

This rounding issue is discussed in Subsection 10.5.1, followed in Subsection 10.5.2

to find the shortest lattice vector, and expanded to closest lattice point in general

in Subsection 10.5.3.

10.5.1 A Threshold for Rounding Providing the Closest

Lattice Point

For example, we consider a system in two dimensions with a∗ = (1, 0) and b∗ =

(0.5, 1). Each quadrant marked in Figure 10.8 will be rounded to its corresponding

edge point. The marked point, p = (0.55, 0.25) = 17
40a∗ + 1

4b∗, using the coefficients
17
40 , 1

4 < 1
2 would be rounded to 0 = 0a∗ + 0b∗, but has a distance of approximately

0.60 to 0 and a distance of approximately 0.51 to a∗.

0 a∗

b∗ a∗ + b∗

p

Figure 10.8: A lattice demonstrating that rounding can take you to
a non-closest point.

It is simple to note that this specific chosen point p is quite far from either 0 or a∗,

and would likely not be considered ‘close’ to either. The natural question arises - for

what Cartesian distance threshold, ϵc, can we round without worrying that this will

not give us the nearest point?
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Theorem 10.5.1. Any point q is rounded to the closest (measured in Cartesian

space) integer lattice point h when the distance to that lattice point is less than ϵc,

where3:

ϵc <
1
2 min

(
1
|a|

,
1
|b|

,
1
|c|

, r

)
,

given

r = min
(h,k,l)∈Γ∗\{(0,0,0)}

(ha∗ + kb∗ + lc∗),

that is: any point q with |q− h| ≤ ϵc will be rounded to h, and all q rounded away

from h have |q − h| > ϵc.

Proof. Without loss of generality, we take h = 0; points closest to a different integer

lattice point are simply points closest to zero shifted by that integer lattice point.

Let A = (−1/2, 1/2)a∗ + (−1/2, 1/2)b∗ + (−1/2, 1/2)c∗ be the domain of all points

which would be rounded to zero. We define the Bϵc(0) to be the open ball of radius

ϵc around the origin. We wish to find ϵc > 0 such that, for all q ∈ Bϵc(0):

1. 0 is the closest integer lattice point to q

2. q is not within ϵc-distance of a non-zero integer lattice point in Γ∗.

3. q ∈ A

To satisfy the first point, we simply need ϵc to be less than half the shortest distance

between lattice points. We name this distance r, and calculate it as follows (the

algorithm for its calculation is described in Subsection 10.5.2):

r = min
h,k,l∈Γ∗\{(0,0,0)}

(ha∗ + kb∗ + lc∗).

This radius r creates a separation of R3: Br/2(h) for all h ∈ Γ∗ are disjoint. Given

this, any q within one of these balls cannot be closer than r/2 to any other lattice

point, satisfying points 1 and 2.

3we name ϵc for the closest-point-ϵ. Typically, our overlap threshold ϵ is directly compared to
ϵc to decide whether we simply round all our indices to their nearest integer or perform a more
complicated search.
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However, a ball of radius r/2 may expand outside the parallelepiped of q rounded

to 0 (equivalently, there may be points rounded to 0 which lie within other points’

balls). In this case, we must reduce our radius such that it fits within this space -

that is, we require

Bϵc(0) ⊂ A ∩Br/2(0),

where as above A = (−1/2, 1/2)a∗ + (−1/2, 1/2)b∗ + (−1/2, 1/2)c∗

This puts an upper limit on ϵc of r/2, if Br/2(0) ⊂ A. Otherwise, ϵc must equal the

shortest distance from 0 to the facets of the parallelepiped A, and Bϵc(0) ⊂ Br/2(0)

trivially.

Thus, our final task is to determine the shortest distance between 0 and each facet

of the parallelepiped. We note that due to symmetry of the shape, we need only

consider half the parallelepiped. We thus consider the planes containing these facets,

Pa = a∗ + b∗ + c∗

2 + Rb∗ + Rc∗,

Pb = a∗ + b∗ + c∗

2 + Ra∗ + Rc∗,

Pc = a∗ + b∗ + c∗

2 + Ra∗ + Rb∗,

where a∗+b∗+c∗

2 is a vertex of the parallelepiped A.

As the normal of a plane is perpendicular to the vectors in the plane, the vector

perpendicular to Pa is in the direction of b∗ × c∗, that is normalised to a/|a|, and

similarly for Pb we obtain b/|b| and Pc we obtain c/|c|. Then, we obtain the distance

to the origin via the dot product with a point in the plane - of which a∗+b∗+c∗

2 is for

all three planes.

To demonstrate this for Pa (the other two follow in the same way),

a∗ + b∗ + c∗

2 · a
|a|

= 1
2|a|(a

∗ · a + b∗ · a + c∗ · a) = 1
2|a| .

Thus the shortest distance to the boundary of the parallelepiped is 1
2 min

(
1

|a| ,
1

|b| ,
1

|c|

)
,

and thus any ϵ ≤ ϵc = min
(

1
|a| ,

1
|b| ,

1
|c| , r

)
ensures that all points which are within
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ϵ of an integer lattice point have all their indices within 0.5 of that integer lattice

point.

0 a

b a + b

−a

−b−a − b a − b

−a + b

Figure 10.9: Representation of relevant areas within a lattice. The
red zones show areas which will be rounded to a non-closest point
within the unit cell [0, 1)a + [0, 1)b. The pink zone around 0 is
its Dirichlet domain of all points which are closest to 0, the larger
circle shows all points within r/2 to 0, whilst the inner circle shows
the ‘safe’ ϵc-distance.

10.5.2 An Algorithm to Find the Shortest Non-trivial

Lattice Vector

Recall that the length of the shortest non-trivial lattice vector is the radius r, which is

defined over the whole infinite lattice Γ∗, and is not a terminating search if calculated

naively brute-force. Outlined in [1] is an algorithm for solution of this ‘shortest vector

problem’, which is conjectured to be an NP-hard problem (that is, it is currently

believed that it cannot be solved for an arbitrary lattice in polynomial time). We

adapt this algorithm for our specific 3-dimensional case with knowledge of the direct

lattice a, b and c.

To begin, we will carefully define a series of terms which will allow us to efficiently

find the closest lattice point. Firstly, we recall some basic facts about our lattice.
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Our lattice, Γ∗ = Za∗ +Zb∗ +Zc∗. Its dual lattice, Γ = Za +Zb +Zc. Additionally,

V =(a × b) · c, V ∗ =(a∗ × b∗) · c∗, V = 1
V ∗ ,

a = 1
V ∗ b∗ × c∗, b = 1

V ∗ c∗ × a∗, c = 1
V ∗ a∗ × b∗,

a∗ = 1
V

b× c, b∗ = 1
V

c× a and c∗ = 1
V

a × b.

In addition, due to the nature of their construction, the vectors a, b and c form an

upper triangular matrix, whilst a∗, b∗ and c∗ form a lower triangular matrix. That

is,

a =


a1

0
0

 , b =


b1

b2

0

 , c =


c1

c2

c3

 ,

a∗ =


a∗

1

a∗
2

a∗
3

 , b∗ =


0
b∗

2

b∗
3

 , and c∗ =


0
0
c∗

3

 .

This fact allows some quite convenient simplifications in our process!

Within our process, we make use of subspaces of R3 and the lattice points which lie

within them. We define the plane E(n) = na∗ + Rb∗ + Rc∗ as the nth plane from

the origin. Within this plane, we define the line L(n, m) = na∗ + mb∗ + Rc∗.

We require also the perpendicular vectors between adjacent n-planes and m-lines.

For the perpendicular to the plane E(n), we know that it is perpendicular to b∗

and c∗, and thus parallel to a. The distance between the planes can be determined

by dE := a/|a| · a∗ = a∗
1 > 0, and we can name uE :=


a∗

1

0
0

, as the perpendicular

vector between planes, illustrated in Figure 10.10. For the perpendicular to the line

L(n, m) within the plane E(n), it must be perpendicular to a and c∗ - which results
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in a vector parallel to


0
1
0

. Similarly to before, we can find the distance between

consecutive lines within the plane by taking dL :=


0
1
0

 · b∗ = b∗
2, leading to our

perpendicular vector between lines of uL :=


0
b∗

2

0

. For note, our third perpendicular

vector to uE and uL is none other than c∗.

E(0)

E(1)

E(2)

E(3)

E(−1)

uEa∗

0

Figure 10.10: A perspective view of adjacent planes E(n), and an
emphasised position for a∗ and uE

The general idea is as follows: We perform nested searches of subspaces of R3 to

determine the shortest vector within those subspaces. Our search is bounded by never

looking at a subspace which is, itself, further than the previous shortest distance

from the origin.

As we progress, we keep a running record of the closest point to the origin, hmin ∈ Γ∗,

along with its distance from the origin, dmin.

The plane E(n) closest to the origin is E(0). Following this, the planes at n = ±1

are at a perpendicular distance a∗
1 from the origin, those at n = ±2 are at a distance

2a∗
1 from the origin, and so on. If at any point this distance is larger than dmin, we

need not consider planes of that n or larger-magnitude n as every point in the plane

is at least na∗
1 from the origin. That is, we need only check planes up to a value of

|n| ≤ dmin/a∗
1, which will reduce each time we find a closer hmin.
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Take then a plane E(n). This has a perpendicular distance na∗
1 from the origin,

and this is found at the point nuE. We now, similar to before, seek the nearest

lower-dimensional subspace to this point - in this case, some L(n, m0).

L(n, m0) L(n, m0 + 1) L(n, m0 + 2)L(n, m0 − 1)L(n, m0 − 2)

nuE

uL

δb

c∗δc

Figure 10.11: Lines within the plane E(n) for determination of
shortest vector

We note that such a line must be within ±0.5uL of nuE (as uL takes you from one

line to the next). An illustration of this situation is presented in Figure 10.11. We

take δb ∈ (−0.5, 0.5], and seek the point nuE + δbuL which lies on L(n, m0) for some

m0 ∈ Z. We can equate these to find this point:

L(n, m0) = nuE + δbuL + Rc∗, δb ∈(−0.5, 0.5]

n (a∗ − uE) + m0b∗ + Rc∗ = δbuL, m0 ∈Z, R ∈ R

n


0
a∗

2

a∗
3

+ m0


0
b∗

2

b∗
3

+ R


0
0
c∗

3

 = δb


0
b∗

2

0

 .

We can immediately solve the second component for m0 and δb:

na∗
2 + m0b

∗
2 = δbb

∗
2,
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b∗
2(m0 − δb) = −na∗

2,

m0 − δb = −na∗
2

b∗
2

.

As m ∈ Z whilst δb ∈ (−0.5, 0.5], we can solve this as follows:

m0 =
⌊
−na∗

2
b∗

2

⌉
, δb =m0 + na∗

2
b∗

2
,

where ⌊x⌉ is the closest integer to x, rounding halves up.

Thus the closest line to nuE is L(n, m0), which lies at a distance of
√

(na∗
1)2 + (δbb∗

2)2

from the origin. To find the next closest line, we take the sign of δb as s (if δb = 0,

we arbitrarily take s = 1) and then take m ∈ {m0− s, m0 + s, m0− 2s, . . . } in order

and mu := m−m0 + δb, leading to investigating the point nuE + muuL ∈ L(n, m)

. As before, when
√

(na∗
1)2 + (mub∗

2)2 ≥ dmin, we take no further lines within this

plane.

Finally, given our point nuE + muuL ∈ L(n, m), we need to find the nearest lattice

point on that line to it. This is again illustrated in Figure 10.11. As before, we take

δc ∈ (−0.5, 0.5] and solve where nuE + muuL + δcc∗ is an integer lattice point:

na∗ + mb∗ + qc∗ = nuE + muuL + δcc∗

n


0
a∗

2

a∗
3

+


0

(m−mu)b∗
2

mb∗
3

+ (q − δc)


0
0
c∗

3

 =


0
0
0

 .

Again, to solve for q and δc, we may simply take the third line:

na∗
3 + mb∗

3 + (q − δc)c∗
3 = 0

q − δc = −na∗
3 + mb∗

3
c∗

3
,

and as before:

q =
⌊
−na∗

3 + mb∗
3

c∗
3

⌉
, δc = q + na∗

3 + mb∗
3

c∗
3

.
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At this point we are left with the closest point to zero within the line L(n, m),

na∗ +mb∗ +qc∗ with a distance of
√

(na∗
1)2 + (mub∗

2)2 + (δcc∗
3)2. If this is lower than

the present dmin, it replaces it and hmin = na∗ + mb∗ + qc∗. Either way, we then

move on to the next m if viable, or if this would be too large, to the next n. If the

next n is too large, we are done and can return our hmin and dmin.

Typically, we begin with n = 0, which leads to m0 = 0, and thus also q = 0. However,

we must exclude this origin point as a possibility (as then the distance would always

be zero). Thus, for our first point we do not take this closest point within the line

but instead take q = 1 and the point hmin = c∗ as our initial shortest point with

dmin = c∗
3.

10.5.3 Finding the Closest Lattice Point to an Arbitrary

Point

Similarly to this, we may need to find the closest lattice point to an arbitrary point z

in R3 (if our ϵc rule does not apply). The adjustment of the above algorithm for this

is very simple, instead of beginning with n = 0, we begin by finding the closest plane

E(n0) to z. Similarly to before, we simply need n0a∗ + R1b∗ + R2c∗ = z + δauE,

with δa ∈ (−0.5, 0.5], and by the nature of uE we use the first row for this,

n0 − δa = z1

a∗
1
.

Additionally, at any point our distance thusfar contains nua∗
1 rather than na∗

1, with

nu := n− n0 + δa. The calculations of q and m0 have an additional factor of zk in

the numerator.The formulas for the relevant constants above are adjusted as follows:

n0 =
⌊

z1

a∗
1

⌉
, δa =n0 + −z1

a∗
1

,

m0 =
⌊

z2 − na∗
2

b∗
2

⌉
, δb =m0 + na∗

2 − z2

b∗
2

,

q =
⌊

z3 − na∗
3 −mb∗

3
c∗

3

⌉
, δc =q + na∗

3 + mb∗
3 − z3

c∗
3

.
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10.6 Finding Reciprocal Lattice Points on the

Same Sphere about the Origin within ϵ

Threshold

We must find reciprocal lattice points with similar distance to the origin |A∗hbase|

for a given Miller triple hbase = [h, k, l] (in the above algorithms, both v and p

are examples of a choice of A∗hbase). We will discuss how to do this given one

specific hkl input - with larger numbers of hkls to determine equivalent points for,

it may result in more time efficiency to begin by creating a complete sorted list of

Cartesian distances associated to Miller indices, and simply retrieving those closest.

However, as we typically deal with a maximum of 10 hkls, we did not follow this

implementation up and instead went for direct calculation of those within the same

annulus of the origin as the input hkl.

We do this by finding points with the same Cartesian distance |A∗h| from the origin

as hbase up to some threshold ϵ (we typically choose such ϵ to be 0.002Å−1, but this

can be varied to allow more or less tolerance of overlaps, but due to the nature of

twins this must be smaller than the smallest distance between two lattice points). We

denote the upper bound on this, m+ = |A∗hbase|+ϵ (and similarly, m− = |A∗hbase|−ϵ).

We then seek all lattice points h0 =


h0

k0

l0

 such that m− ≤ |A∗h0| ≤ m+.

10.6.1 Outline

Before we begin, it is useful to review some basic notions and facts:

• We are working with h ∈ R3 in relative coordinates in reciprocal space, with

lattice vectors a∗, b∗ and c∗.
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• The reciprocal space orthogonalisation matrix A∗ =


| | |

a∗ b∗ c∗

| | |

.

• The Cartesian norm of a relative vector h is |A∗h| =
√

hA∗⊤A∗h.

• The reciprocal metrical matrix M∗ = A∗⊤A∗ =


a∗ · a∗ a∗ · b∗ a∗ · c∗

a∗ · b∗ b∗ · b∗ b∗ · c∗

a∗ · c∗ b∗ · c∗ c∗ · c∗

.

• The inverse of the reciprocal orthogonalisation matrix is the transpose of the

direct orthogonalisation matrix, ((A∗)−1)⊤ = A =


| | |
a b c
| | |

.

• The inverse of the reciprocal metrical matrix is the direct metrical matrix,

(M∗)−1 = M = A⊤A =


a · a a · b a · c
a · b b · b b · c
a · c b · c c · c

.

• For a point h in reciprocal space, we refer to its elements as h, k and l

respectively.

It is common to assume that the maximal possible value for h0 is m+/a∗, but this

is not necessarily the case, as lattices without 90◦ angles can allow the decreasing of

distance by adding other lattice vector directions. For example, with a 2-dimensional

hexagonal basis a∗ = (1, 0), b∗ =
(

1
2 ,

√
3

2

)
, and the target function f(ha∗ + kb∗) = h

under the condition ||ha∗ + kb∗|| = 1, h = 1, k = 0 would be expected to be the

maximiser, but 2√
3a∗ − 1√

3b∗ =
(√

3
2 ,−1

2

)
gives a larger maximum f(ha∗ + kb∗) =

2√
3 > 1 whilst attaining the target distance of 1, due to the non-orthogonality. Thus

we must consider the unique point which maximises h, which will not line up with

taking the other variables as 0 unless the unit cell is orthogonal.

Our plan continues as follows:

• Every point of the sphere Sm+ of radius m+ can be expressed via the basis

a∗, b∗, c∗ as ha∗ + kb∗ + lc∗. Find the maximal value hmax for the coefficient h
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which appears in this representation of all the points in Sm+ . Due to inversion

symmetry (at the simplicity we work when considering twins), the minimal

value for the coefficient h will equivalently be at −hmax, and importantly we

can ignore points where h < 0 as these will result in equivalent twin laws to

the negation of that point.

• Choose each h0 ∈ [0, hmax] ∩ Z

• Given h0, find the values k− and k+ which minimise and maximise k for that

specific h0 within the sphere Sm+ .

• Choose each k0 ∈ [k−, k+] ∩ Z

• Given h0, k0, find the values l−,outer, l−,inner, l+,inner, l+,outer bounding l inside

Sm+ and outside Sm− , which geometrically represents an annulus (it may be

the case that all points


h0

k0

l

 are outside Sm− , in which case we only obtain

l−,outer and l+,outer) (see Figure 10.12 for a visual representation)

• Choose each l0 ∈ ([l−,outer, l−,inner] ∪ [l+,inner, l+,outer]) ∩ Z (or, if l−,inner and lL

are not present, in [l−,outer, l+,outer] ∩ Z)

• Denote h0 =


h0

k0

l0

 and store it (along with its distance) into a list of viable

lattice points.

10.6.2 Maximising h

Our first target is to find the maximal value for the h coefficient. That is, given the

function f(h) = f(h, k, l) = h, and the restriction |A∗h| = m+, we wish to find

hmax = max
|A∗h|=m+

f(h).
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We begin by introducing a new variable k = A∗h, and expanding f(h) = h = h · e1,

which allows us to manipulate the maximisation into real space:

hmax = max
|k|=m+

(A∗−1k) · e1.

Utilising the fact that A⊤A∗ = I, we find

hmax = max
|k|=m+

k⊤Ae1

which simplifies to:

hmax = max
|k|=m+

k · a.

The maximisation of this dot product is attained when k is parallel to a with the

same direction. Additionally, recall that |k| = m+. Thus, this maximum is attained

for

k = m+a/a

and the associated

hmax = m+a. (10.6.1)

10.6.3 Viable k Choices

Given an integer value 0 ≤ h0 ≤ hmax as our choice for h, we must then find the range

of viable k corresponding to points h0a∗ + kb∗ + lc∗ lying on the sphere |A∗h| = m+.

The setting of h = h0 defines the plane P = h0a∗ + Rb∗ + Rc∗, whose intersection

with Sm+ defines a circle C4, an illustration of which can be found in Figure 10.12.

Our aim is to find maxh∈C f(h) (and minh∈C f(h)) where f(h) = f(h, k, l) = k. The

level sets of f : h 7→ k in P are f−1({k}) = h0a∗ + kb∗ + Rc∗, that is, parallel lines

in direction c∗. We then need to find the intersection of C with the maximal level

set, which will give us the maximal k. The intersection of C with a line lying within

4Assuming that such an intersection exists. However, as h0 is chosen to be between zero and
the maximal hmax allowing a h lying on the sphere of radius m+, it is necessarily true that the
intersection Sm+(0) ∩ P is non-empty. In the special case where the intersection is a single point,
the point (and thus k and l) is fully determined.
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P is either empty, 1 point (when tangent) or 2 points. Our maximal level set is

found for one of these tangent lines (and our minimal for the other) - the dashed

line to the left in Figure 10.12 shows a minimal level set.

We consider the vector q ∈ P to be the closest point of P to the origin, such that

q ⊥ P and importantly, q ⊥ c∗. q is the centre of the circle C. We consider the

radius vector u of the circle C pointing from q to A∗h, which is again perpendicular

to the tangent vector c∗ - that is, A∗h = q+u, where both q and u are perpendicular

to c∗, thus A∗h ⊥ c∗.

We then rely on the idea that, with h0 fixed and |A∗h| = m+, we maximise (or

minimise) f(h) when our vector A∗h is perpendicular to c∗.

For the vector A∗h perpendicular to c∗, we know that A∗h · c∗ = 0:

A∗h · c∗ = h0a∗ · c∗ + kb∗ · c∗ + lc∗ · c∗ = 0. (10.6.2)

This implies that

l = −h0a∗ · c∗ + kb∗ · c∗

c∗2 . (10.6.3)

We then use the norm equation:

|A∗h|2 = h2
0a

∗2 + k2b∗2 + l2c∗2 + 2h0ka∗ · b∗ + 2h0la∗ · c∗ + 2klb∗ · c∗ = m2
+

and rewrite it as:

h2
0a

∗2 +k2b∗2 + l(h0a∗ ·c∗ +kb∗ ·c∗ + lc∗ ·c∗)+2h0ka∗ ·b∗ + l(h0a∗ ·c∗ +kb∗ ·c∗) = m2
+.

(10.6.4)

Note that by (10.6.2), the third term vanishes when h maximises f(h), and replacing

l by (10.6.3), we obtain

h2
0a

∗2 + k2b∗2 + 2h0ka∗ · b∗ − h0a∗ · c∗ + kb∗ · c∗

c∗2 (h0a∗ · c∗ + kb∗ · c∗) = m2
+.

We then have only the one variable k, in the form of a quadratic equation. First, we

substitute in for each dot product its angular equivalent. That is, a∗ ·b∗ = a∗b∗ cos γ∗,



138 Chapter 10. My Own Algorithm: Spherical Search

a∗ · c∗ = a∗c∗ cos β∗ and b∗ · c∗ = b∗c∗ cos α∗:

h2
0a

∗2 + k2b∗2 + 2h0ka∗b∗ cos γ∗

− h0a
∗c∗ cos β∗ + kb∗c∗ cos α∗

c∗2 (h0a
∗c∗ cos β∗ + kb∗c∗ cos α∗) = m2

+.

This easily allows a cancellation of c∗:

h2
0a

∗2 + k2b∗2 + 2h0ka∗b∗ cos γ∗

− (h0a
∗ cos β∗ + kb∗ cos α∗)(h0a

∗ cos β∗ + kb∗ cos α∗) = m2
+.

We can then expand this and rearrange to find

k2b∗2(1− cos2 α∗) + 2kh0a
∗b∗(cos γ∗ − cos β∗ cos α∗) = m2

+ − h2
0a

∗2(1− cos2 β∗),

which simplifies to

k2b∗2 sin2 α∗ + 2kh0a
∗b∗(cos γ∗ − cos β∗ cos α∗) = m2

+ − h2
0a

∗2 sin2 β∗.

We can then complete the square to find

(
kb∗ + h0a

∗ (cos γ∗ − cos β∗ cos α∗)
sin2 α∗

)2

= m2
+ − h2

0a
∗2 sin2 β∗

sin2 α∗ + h2
0a

∗2(cos γ∗ − cos β∗ cos α∗)2

sin4 α∗

leading to

kb∗ + h0a
∗ (cos γ∗ − cos β∗ cos α∗)

sin2 α∗

= ± 1
sin α∗

√
m2

+ − h2
0a

∗2 sin2 β∗ + h2
0a

∗2(cos γ∗ − cos β∗ cos α∗)2

sin2 α∗

giving us solutions for k of

k = −h0a∗ (cos γ∗ − cos β∗ cos α∗)
b∗ sin2 α∗ ± 1

b∗ sin α∗

√(
m2

+ + h2
0a∗2 Θ

sin2 α∗

)
,

where Θ = cos2 γ∗ + cos2 α∗ + cos2 β∗ − 1− 2 cos γ∗ cos β∗ cos α∗.

Whilst this is by no means a pleasant equation, many of the present constants can
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be pre-calculated (in fact, everything excluding h0 and m+ is dependent only on the

unit cell, not on the twin law under investigation, whilst m+ is set by each hbase we

compare to.). Then, the positive and negative values for k are our maximum k+ and

minimum k− respectively.

That is, we can define

k± = h0T ± T ′
√

m2
+ + h2

0T
′′ (10.6.5)

given

T = −a∗ (cos γ∗ − cos β∗ cos α∗)
b∗ sin2 α∗ ,

T ′ = 1
b∗ sin α∗ ,

T ′′ = a∗2 Θ
sin2 α∗ .

Then, we choose an integer k0 such that k− ≤ k0 ≤ k+, and are finally left with a

direct calculation of l.

10.6.4 Viable l Choices

Having selected 0 ≤ h0 ≤ hmax and k− ≤ k0 ≤ k+, we finally wish to calculate

viable l. It is at this point that we fully introduce the tolerance ϵ. Previously,

we determined the extreme values corresponding to m+ = |A∗hbase| + ϵ, with the

knowledge that any choices of h0 and k0 within these extremes would provide a line

which certainly intersected with Sm+ . However, now we wish for

|A∗hbase| − ϵ ≤ |A∗h| = |h0a∗ + k0b∗ + lc∗| ≤ |A∗hbase|+ ϵ, (10.6.6)

that is, lying in the annulus bounded by Sm− and Sm+ (a demonstration of which

is presented within the purple circles in Figure 10.12). To determine the integers l

satisfying (10.6.6), we first split the vector h into two vectors, h =


h0

k0

0

 +


0
0
l

 =
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C

P

h0a∗ + kminb∗ + l?c∗ h0a∗ + kmaxb∗ + l?c∗

↑
c∗

l

l

q

h0a∗ + k0b∗

Figure 10.12: Diagram of the circle C in the plane P with respect
to important deductions made within this algorithm. P is the plane
of the page, C is the outer circle. q is the centre of the circle,
and the circle is oriented such that c∗ is vertical in the page. The
tangent line to C in the direction of c∗ is shown dashed on the
left. Possibilities for l given a particular choice of k0 are shown as
the blue ↔, and the points attaining the minima and maxima of k
(with undetermined l) are shown on the left and right.

k0 + le3, giving:

m2
− ≤ (A∗(k0 + le3)) · (A∗(k0 + le3)) ≤ m2

+,

which we can expand to obtain

m2
− ≤ |A∗k0|2 + l2c∗2 + 2(A∗k0) · (lc∗) ≤ m2

+. (10.6.7)

Thus, again, we have a quadratic equation, this time in l. We will have to rearrange

to solve this, but we must take special caution with regards to the inequalities.

Firstly, we will simply solve (10.6.7) at the equality points, and then determine

whether l is bounded above or below by each. As we expect two solutions for each

equality, we expect four bounds on l.

Now we look to solve the quadratic equation in l:

|A∗k0|2 + l2c∗2 + 2(A∗k0) · (lc∗) = m2
±.
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As usual, we begin by rearranging and completing the square:

(l + (A∗k0) · c∗/c∗2)2 = m2
±

c∗2 −
|A∗k0|2

c∗2 + ((A∗k0) · c∗/c∗2)2 =: B±.

The right hand side is not necessarily non-negative in the m− case (though, as before,

it is non-negative in the m+ case due to the bounds on the choices of h0 and k0).

We define U , L and V as follows:

L =
√

max (0, B−) U =
√

B+ V =(A∗k0) · c∗/c∗2

This allows us to determine bounds on l.

l±,outer = −V ± U (10.6.8)

and

l±,inner = −V ± L. (10.6.9)

We allow all integers l in [l−,outer, l−,inner] ∪ [l+,inner, l+,outer]. If L is 0, this reduces to

l in [l−,outer, l+,outer].

Unlike for the case of k, much of this is dependent on k0 and thus must be recalculated

in each loop.

Each of these triples h0, k0, l0 give a point of similar distance to our hbase, a list of

which is then returned.

10.6.5 Summary

To find lattice points with a similar (±ϵ) distance from the origin to some reciprocal

lattice point hbase, we first take m± = |A∗hbase| ± ϵ.

Then, we iterate over a series of values. Firstly, hmax = m+a, and we iterate over all

h0 ∈ [0, hmax] ∩ Z. Secondly, we find k± = h0T ± T ′
√

m2
+ + h2

0T
′′ where

T = −a∗ (cos γ∗ − cos β∗ cos α∗)
b∗ sin2 α∗ (10.6.10)
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T ′ = 1
b∗ sin α∗ (10.6.11)

T ′′ = a∗2 cos2 γ∗ + cos2 α∗ + cos2 β∗ − 1− 2 cos γ∗ cos β∗ cos α∗

sin2 α∗ . (10.6.12)

We then iterate over all k0 ∈ [k−, k+] ∩ Z. We generate the bounds on l,

l±,outer =− V ± U l±,inner =− V ± L (10.6.13)

where

L =

√√√√max
(

0,
m2

−

c∗2 −
|A∗k0|2

c∗2 + ((A∗k0) · c∗/c∗2)2
)

(10.6.14)

U =
√

m2
+

c∗2 −
|A∗k0|2

c∗2 + ((A∗k0) · c∗/c∗2)2, (10.6.15)

V = (A∗k0) · c∗/c∗2 (10.6.16)

and take l0 ∈ ([l−,outer, l−,inner] ∪ [l+,inner, l+,outer]) ∩ Z.

Finally, we return all generated triples h0, k0, l0.

10.7 Computational Optimisation and Time

Analysis

In order to optimise the algorithms described above it became necessary to investigate

various aspects of them and optimise them with regards to time cost. This required

the careful consideration of the methods by which information was generated, stored

and retrieved.

My primary source of information for time cost analysis was using python’s cProfiler

library [49] and the timeit module [50].

We focus on 3 particular substantial time improvements, followed by some minor

improvements, and rejected ideas.
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10.7.1 Theoretical Intensities as h, k, l-Array

This optimisation concerns the storage of theoretical intensities for quicker retrieval.

Original Implementation: The theoretical intensities are stored in a list Fsq. The

corresponding hkls are stored in a matching list H0, with the positions in the list

directly relating the two. That is, Fsq[i] is the theoretical intensity corresponding

to the Miller triple H0[i].

Values of the theoretical intensity for a known hkl require searching H0 for the

matching entry, before taking that entry from the list Fsq.

Improved Implementation: The theoretical intensities are stored in a 3d array,

where the hkl indices directly label each value Fsq(h, k, l).

However, the indices hkl can also be negative integers. We solve this problem by

using the fact that in python negative indices technically store data from the end

of the array backwards. By using a sufficiently large array, we avoid overlap and

negative indices work as expected.

Values of theoretical intensities for a known hkl require then taking the [h, k, l] entry

of the array.

Time Analysis: Table 10.1 presents the time taken for retrieval of theoretical

intensities. Note that the function will typically be called 100-10,000 times (reflecting

the number of overlapping hkls), as well as for multiple R-matrices, and the setup

cost will occur once across all tests. Testing was performed on an example structure

with only inversion symmetry and 4630 hkl entries, taking the median time over 20

trials of 100 repetitions of the setup and 10000 repetitions of the retrieval.

Setup Cost/s Per call/s

Original 0 8.46× 10−5

Improved 1.51× 10−2 5.55× 10−6

Table 10.1: Time taken for retrieval of theoretical intensities.
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10.7.2 Expanding Outside the Generating Region

Due to crystal symmetries, |F (h)| = |F (Sh)| for all symmetries S of the crystal. Due

to this, theoretical intensity data is only created for h within a specific generating

region of the lattice Γ∗. We denote these triples within the standard matrix H0. When

rotated, HZ (derived from HR = H0R) will contain many Miller triples h outside

this generating region. Therefore a procedure is required to find the corresponding

theoretical intensity inside the generating region. Two main ideas provide a solution

- to map the rotated point using symmetry back into the generating region, or to

expand the stored information from the generating region to cover more space.

Original Implementations: When searching for a known hkl h, we first see if it

exists within H0. For the case where it does not, we implemented two separate ways

of dealing with this:

(a) we call a function within cctbx called ‘map_to_asu’ which will find a triple in

H0 corresponding toh,

and

(b) we try searching for Sh within H0 for all S symmetries in turn.

There was little time difference between the two implementations (a) and (b).

Improved Implementation: The storage of the theoretical intensities is altered at

the beginning (within the setup of Fsq) to be #S times as large, containing H0S
⊤ for

all symmetries S and their associated theoretical intensities. Note: the theoretical

intensity associated to the ith entry of H0S
⊤ is the same as the theoretical intensity

associated to the ith entry of H0.

Time Analysis:

Table 10.2 presents time costs associated with this retrieval under two test functions

for the original implementation b) and the improved implementation. These were
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performed with randomised data outside of the Olex2 environment5. Data presented

is in seconds for a single run of the function. The setup function would be called

once for the entire search, whilst the retrieval function would be called for each hkl

(or each overlapping hkl) whenever needed, likely multiple times per search. The

results presented are based on the median time to run the function 100 times for the

setup function over 5 trials, whilst the retrieval functions are based on the median

time to run the function 1000 times over 20 trials. We choose the median rather than

minimum time taken in this case due to the random hkl indices taking a variable

amount of retrieval time depending on which symmetry finds them in the b) case,

and to keep consistent with likely system variance we use the same measure for the

improved case.

The first case is a simple example with the only symmetry being the inversion

symmetry. The second case includes one reflection and the inversion symmetry, and

thus has 4 symmetry matrices (including the identity). The third case includes a

quarter rotation and the inversion symmetry, and has 8 symmetry matrices. The

test cases include 9260 hkl indices, including those related by symmetries (-10 to

+10 for each index).

A basf determination would require a fraction of the hkls dependant on its overlap.

For example, an index n = 3 twin law would require over 3000 calculations, each

requiring one retrieval. Typically, one would expect 20 similar twin laws to be tested

in this way, for an estimated 60,000 such retrievals.

The setup costs in the b) case are for converting the initial hkl list to a grid, whilst

in the improved case it also needs multiply by symmetry matrices and add those into

the grid. Thus, as the initial hkl lists are reduced by symmetries, b) has a smaller

setup cost as we have more symmetries, whilst the improved method has similar

times for all, increasing only slightly with more symmetries.

5The retrieval functions contain an element which randomises the hkl they are to retrieve, which
takes 3.1× 10−6s to run, and this time has been removed from the function time.
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Case Function Original b Improved

Case 1
Setup 7.06× 10−3 1.49× 10−2

Retrieval 4.43× 10−6 2.64× 10−6

Case 2
Setup 3.52× 10−3 1.76× 10−2

Retrieval 5.06× 10−6 2.17× 10−6

Case 3
Setup 1.71× 10−3 1.7× 10−2

Retrieval 5.89× 10−6 2.96× 10−6

Table 10.2: Time costs (in seconds) associated with retrieval meth-
ods b) and the improved method.

There is an additional unsolved issue, that the hkl can theoretically be rotated outside

even this symmetry-made shape - it is generally not a sphere, so if we imagine a

corner rotated to be in line with the centre of an edge, it would be outside of the

region of hkl for which we have values. Ideally, in this case, we would recalculate a

theoretical intensity for this hkl. However, at present for efficiency’s sake we simply

allow these to take an intensity of 0.

10.7.3 Filtering Rotated hkls

This improvement brings a substantial (10×) time improvement with a minor ad-

justment. We need to match up ‘overlapping’ points to their correct theoretical

intensity, and this improvement concerns determining which points are overlapped.

Original Implementation: Within the for loop which assigns the theoretical

intensities, we first have a check for if the current point’s difference, HR[i]−HZ [i],

is sufficiently small by directly calculating the size of the difference. That is,

for i in range(len(H_R)):

if np.linalg.norm(np.dot(metrical_inv,(H_Z[i]-H_R[i])))>ϵ:

continue

twin_sf[i]=hkl_grid[int(H_Z[i][0]),int(H_Z[i][1]),int(H_Z[i][2])]
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Improved Implementation: Before the for loop which assigns the theoretical

intensities, we utilise numpy’s array functionality to calculate the size of the difference

for each point simultaneously, and loop through only those indices which provide a

sufficiently small difference:

if np.allclose(R,np.rint(R)):

small_indices=[range(0,len(H_R)]

else:

hkl_diff_cartesian=np.dot(metrical_inv,(H_Z-H_R).T).T

hkl_comparison=np.linalg.norm(hkl_diff_cartesian,axis=1)

small_indices= np.where(hkl_comparison<=cartesian_threshold)

for i in small_indices[0]:

twin_sf[i]=hkl_grid[int(H_Z[i][0]),int(H_Z[i][1]),int(H_Z[i][2])]

This contains both an improvement via simultaneous calculation through the whole

array using numpy’s C-coded functions, and an improvement for shortening the

for loop. The simultaneous calculation accounts for a vast majority of the time

improvement, a third function with no shortening of the for loop but using the

simultaneous calculation of distances (and then filtering within the for loop) is

presented for completeness:

hkl_diff_cartesian=np.dot(metrical_inv,(H_Z-H_R).T).T

hkl_comparison=np.linalg.norm(hkl_diff_cartesian,axis=1)

for i in range(len(H_R)):

if hkl_comparison[i]<cartesian_threshold:

continue

twin_sf[i]=hkl_grid[int(H_Z[i][0]),int(H_Z[i][1]),int(H_Z[i][2])]

we call this the ‘Midway’ function in the following Table 10.3.

Time Analysis: We present tests with four test cases in Table 10.3. Case 1 is a

simple twofold law with half of the points overlapping, case 2 a threefold law with
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half the points overlapping, case 3 is an integral law and case 4 is a twofold law with

one in 5 points overlapping.

Original Improved Midway

Case 1 67.84 5.931 6.554

Case 2 65.58 5.978 6.998

Case 3 74.92 8.478 3.542

Case 4 62.91 3.605 8.117

Table 10.3: Tests of the three filtering implementations. Times
are presented in seconds to run 1000 tests, and were performed on
purely theoretical data sets.

In all but the integral case, the improved implementation is the best of the three

functions. It boasts a tenfold improvement for the 1-in-2 laws, and nearly 20-fold

for the 1-in-5 law. It still brings an improvement of almost 10× even for the integral

law.

10.7.4 Minor Improvements

Other optimisations were not quite as dramatic as those described above, or were

quite simple. These are outlined in this subsection.

Size of a 3d Vector: We frequently need to determine the norm of a vector in R3.

Whilst numpy contains a function (np.linalg.norm) for this, I experienced a twofold

time reduction by creating a function which directly squared every entry, summed

them and square rooted. I anticipate that this allowed such a time improvement

due to not having to check or care about the entries passed to it. Of course, one

must make sure it is only ever passed a 3d-vector, as due to the importance of time

it contains no errors or checks and will simply take the first 3 entries of whatever is

passed to it.

Golden Section Search: Initially, the finding of B was done by evaluating the



10.7. Computational Optimisation and Time Analysis 149

R-factor at B = 0, 0.01, 0.02, . . . , 0.99, 1 and comparing. With golden section search,

it takes at most 10 steps to reduce the interval to below 0.01.

Closest Point: Unlike many others, this is a case of correctness rather than time.

Initially, we only checked the 8 points ‘surrounding’ the rotated lattice point for

which was the closest of them, unaware that it was possible for a ‘non-rounded’

lattice point to actually be the closest. Additionally, we would always do this - there

was no check for the circumstance in which if a point was within ϵ of a lattice point,

that lattice point was certainly closest to it. The algorithm outlined in Section 10.5

is the improvement, allowing a direct rounding of the points when ϵ is sufficiently

small and engaging in the full algorithm when not.

10.7.5 Rejected Ideas

The realm of algorithmic optimisation is not one which always succeeds, but some

attempts are particularly notable due to the reasons they failed to give the expected

improvements, and these are outlined here.

Sufficient Overlaps: Considered as a replacement for find_fom (as discussed in

Subsection 10.4.1), this function takes the size of each row of HZ,bad−HR,bad in turn,

and for any row which was not sufficiently close to a lattice point it would tick up

a counter by one. If this counter passed a threshold of failure (typically being half

of the points tested), the function would immediately return False. The principle

behind this method was that it would be able to cutoff early compared to find_fom,

and thus have a chance of terminating earlier and thus be quicker in general.

However, find_fom benefitted from the use of numpy arrays over for loops - we could

calculate all row-norms simultaneously and average them, whilst sufficient_overlaps

was implemented using a for loop. Due to this, it was dramatically slower, and was

scrapped as a superfluous test.
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The ‘Short’ basf Test: Under the belief that generating an R-factor and associated

B for bad hkls only would:

• take dramatically less time than finding a B given all hkls,

• have a higher B due to containing the ‘worst’ offenders,

this function was intended to be a quicker test which would remove some ‘bad’ R

more quickly than the full B-estimate function.

However, this shorter function consistently underestimated B compared to the full

function, plausibly significantly enough to discard a valid twin law. Additionally,

with the speed improvements due to storing Fcalcs as a h, k, l-array, this function

no longer had a dramatic improvement on the full function. Considering this, it was

not worthwhile to use this test and it was discarded.

10.8 A Walk-Through Example

For this walk-through, we look at example 2 from [23]. We focus on the execution of

the full spherical search 10.3, as this is able to find the twin law most directly. We

calculate with a threshold of 0.001 Å.

The six points (h, k, l) with the most underestimated intensity are indexed by

(4,−2,−4), (−4, 2, 4), (1, 3, 0), (5,−3,−5), (3,−1,−6), and (0, 0, 3).

The first point, (4,−2,−4), has a list of 18 viable rotation points: (±a1,±b7,∓a1),

(±a2,±b3,±a4), (±a3,±b5,∓a3), (±a6,±b3, 0) and (±a4±a 2∓a 4)6 (note that a 180◦

rotation is not useful in this method, so (−4, 2, 4) is excluded, as is the rotation to

4,−2,−4 which would tell us nothing about the angle).

When we select (4,−2,−4) as v and (1, 3, 0) as p (as explained in Section 10.3),

with (4,−2,−4) mapped to (6, 3, 0) and (1, 3, 0) mapped to (1,−3, 0), we obtain a

6The ± are associated if they share the same subscript and otherwise respectively free - that is,
(±a1,±b7,∓a1) covers the 4 points (1, 7,−1), (1,−7,−1), (−1, 7, 1) and (−1,−7, 1)
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relative matrix of

R =


0.712 0.0935 −0.833
−0.148 −0.952 −0.428
−0.575 0.187 −0.664

 .

However, this rotation matrix returns a figure of merit of 0.0354Å, far above our

0.001Å threshold. Thus, we reject this matrix.

The first pair to pass the figure of merit test is the rotation mapping (4,−2,−4) to

(−3,−5, 3) and (1, 3, 0) to (2,−2, 1), with a relative rotation lattice of

R =


0.5 0.5 1
−0.5 −0.5 1
0.5 −0.5 0


and a figure of merit of 0.000047Å<0.0001Å. This has a B of 0.241 alongside an

expected reduction in the R-factor by 0.94% from 8.55% to 7.61%

A pair with a stronger reduction is the rotation mapping (4,−2,−4) to (−1, 7, 1)

and (1, 2, 0) to (−1,−1, 2), with a relative matrix of

R =


0.5 −0.5 1
0.5 −0.5 −1
0.5 0.5 0


and a figure of merit of 0.000025Å<0.0001Å. This returns a basf B of 0.472, alongside

an expected reduction in the R-factor by 2.67%, from 8.55% to 5.88%. Other pairs

also return symmetry-equivalent rotation matrices with identical initial B estimates.

When refined with the twin law applied, it reaches an R-factor of 5.20% and refines

to a B of 0.502 (noting that Olex2.refine includes B as a refinement parameter).

10.9 Summary

Algorithms for the post-structure-determination detection of twin laws have typically

been reliant on programs external to olex2.refine with either poorly described or

simple brute-force algorithms. Through investigation of the nature of twinning, I
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sought to develop an algorithm which would make use of the information present to

quickly detect the most likely twin laws without requiring human intervention on

prediction of likely twinning angles, or similar details.

Key information for the detection of twin laws is the reciprocal lattice parameters

along with a list of those reflections (indexed by h, k, l indices) which are most greatly

overestimated by the current structure, that is h with greatest (Io(h)− Ic(h))/σ(h).

By taking each of these ‘bad’ hkl in turn and generating the list of possible hkl

indices which could have mapped onto them (those of a similar distance from the

origin), we dramatically reduce the possibility space of viable rotations. Twofold

sphere search 10.2 takes this reduced space and further limits it to 180◦ rotations

(which are the most common kind). Conversely, full sphere search 10.3 takes two

such ‘bad’ hkl together with a single possible hkl index (which could have mapped

to it) for each which combine to provide a unique rotation.

Simply finding candidates is not all that is required - we must also evaluate their

effectiveness, which is done in Section 10.4. Rotations are first discarded if they

only result in overlap of very few of the points we expect to be affected, which is

a relatively simple test. Following that, the rotation is tested (via estimation of

proportions of components in the crystal) to see if it can provide an improvement

to the R-factor at the current structure. If so, it represents a potentially viable twin

law, and is presented to the user for human judgment and further refinement.

For these algorithms, I required knowledge on nature of three-dimensional lattices,

including algorithms to effectively find the closest lattice points to a particular point

(Section 10.5), and find points of a particular distance from the origin (Section 10.6).
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ESGI Meeting & Outlook

From 12th-19th April 2021 we presented the twinning problem to other mathem-

aticians at ESGI (European Study Group with Industry) 165 in Durham. This lead

to a variety of insights by the participants which I present in this chapter, and which

are presented in more detail in our report [8]. We also present my hopes for future

developments related to the twinning problem.

11.1 Representations of Rotations

To begin, we discuss the possible rotations mapping some v to some same-size w as

described in 10.1. In our usage, w is matched in norm to v, and may no longer be

an integer lattice point but would be derived from one. However, these discussions

work for general |v| = |w|.

11.1.1 Relation Between Axis and Angle, Based on

Extreme Axis and Angles

To begin, we look at the viable rotations given two points v and w, and how the

angle of rotation is related to the chosen axis when mapping v to w.
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Let us take two points, v and w, such that |v| = |w| with v ̸= ±w1. We first observe

the plane containing v, w, and the origin, illustrated in Figure 11.1a.

O

v

w

v + w

(a) An in-plane illustration of the points
v and w and the 180◦ rotation provided
by the axis n1 = v + w.

α

O

v

w

(b) An in-plane illustration of the points
v and w and the α rotation provided by
the axis n2 = v×w out of the page.

The line equidistant to both v and w within this plane is v + w. Rotating about

this line v + w in 3-dimensional space by 180◦ will map v onto w (and additionally

w onto v). We label this vector n1 = v + w, and its associated unit axis

n̂1 = n1

|n1|
= v + w
|v + w|

. (11.1.1)

The other extreme is an axis out of the page, perpendicular to v and w. This

allows a rotation with an angle equal to the angle between v and w, which we name

α = arccos v·w
|v||w| ∈ [0, π], in the plane. We can generate this axis as n2 = v × w,

with its unit axis similarly being

n̂2 = n2

|n2
= v×w
|v×w|

. (11.1.2)

This rotation can be seen in Figure 11.1b.

These are not the only viable axes, though. In fact, any linear combination of the

two axes will remain able to rotate v onto w (as v and w will remain equidistant

1Whilst the unique case w = −v allows solutions with any axis perpendicular to v and an angle
of π, its circle cannot be described in the same manner as other pairs and so it is excluded from
this set.
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from these axes). Taking the unit axes, we can generate new unit axes

n̂(t) = sin tn̂1 + cos tn̂2 (11.1.3)

dependent on the single parameter t ∈ [0, π).

Such an axis n̂ paired with the expectation of a rotation from v to w must give rise

to a single θ, which we surmise should thus also be able to be written as a function

θ(t).

Proposition 11.1.1. Given v and w linearly independent vectors lying on the same

sphere about the origin with α as the angle between them, the relation between an

axis n̂(t) as defined in (11.1.3) and the mathematically positive2 angle θ(t) ∈ (−π, π)

required for that axis to map v onto w is:

tan θ(t)
2 = tan α

2 sec t, (11.1.4)

with θ(π/2) = π.

Proof. Recall that the rotation R(t) acting on v gives w. Additionally, we can use

Equation (8.2.2) (and using Kv=n̂(t)× v) to expand this:

w = v + sin(θ(t))(n̂× v) + (1− cos(θ(t)))n̂(t)× (n̂(t)× v). (11.1.5)

We next take the dot product of this with v:

w ·v = |v|2 + sin(θ(t))(n̂(t)×v) ·v + (1− cos(θ(t)))(n̂(t)× (n̂(t)×v)) ·v. (11.1.6)

Firstly, the second term vanishes as the cross product n̂(t)×v is perpendicular to v.

We can utilise the circular shift of the scalar triple product, a · (b× c) = c · (a× b),

2Mathematically positive with respect to the right hand rule - that is, with a generic ‘thumbs
up’ motion, the thumb points in the direction of n̂ whilst the curled fingers indicate the positive
direction of rotation. This is equivalent to ‘anticlockwise’ around the axis when it points towards
you.
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to obtain

v · (n̂(t)× (n̂(t)× v)) = (n̂(t)× v) · (v× n̂(t)) = −|n̂(t)× v|2 (11.1.7)

We next use the knowledge that v·w
|v||w| = cos α (along with |v| = |w|):

cos α = 1− (1− cos(θ(t)))|n̂(t)× v|2/|v|2 (11.1.8)

We can further simplify the right hand side by substituting in n̂(t) = cos(t)n̂2 +

sin(t)n̂1. Then we can distribute the cross product to obtain

|v× n̂(t)|2 = | cos(t)v× n̂2 + sin(t)v× n̂1|2,

and as n̂1 is parallel to (v + w), v × n̂1 is parallel to n̂2, and thus the two terms

within this norm are perpendicular. This allows us to utilise Pythagoras’ Theorem,

and separate this norm:

|v× n̂(t)|2 = cos2(t)|v× n̂2|2 + sin2(t)|v× n̂1|2

= cos2(t)|v|2 + sin2(t) sin2(α/2)|v|2

= cos2(t)|v|2 + sin2(t)1− cos α

2 |v|2,

where |v× n̂2| = |v||n̂2| sin(π/2) = |v| as v is perpendicular to n̂2, and |v× n̂1| =

|v||n̂1| sin(α/2) as the direction of n̂1 is precisely halfway between v and w.

Plugging this into (11.1.8) yields

cos α = 1− (1− cos(θ(t)))(cos2(t) + 1
2(1− cos α) sin2(t)),

which implies

1− cos(θ(t)) = 1− cos α

cos2(t) + 1
2(1− cos α) sin2(t) . (11.1.9)

Therefore θ(t) is given by

cos(θ(t)) =
cos α− 1

2(1 + cos α) sin2(t)
1− 1

2(1 + cos α) sin2(t) . (11.1.10)
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For t = 0 one readily finds cos(θ(0)) = cos α while t = π/2 gives cos(θ(π/2)) = −1,

confirming the setup. Note that this angle only depends on the relative angle between

v and w.

However, this does not distinguish between the positive and negative values of θ.

In fact, one sign will correspond to a rotation from v to w whilst the other will

correspond to the rotation from w to v. It remains to detect which sign corresponds

to which direction.

Right scalar multiplication of the Rodriguez formula (8.2.2) applied to the vector v

by n̂(t)× v yields

w · (n̂(t)× v) = sin(θ(t))|n̂(t)× v|2,

n̂(t) · (v×w) = sin(θ(t))|n̂(t)× v|2,

n̂(t) · (|v×w|n̂2) = sin(θ(t))|n̂(t)× v|2,

|v×w|(sin tn̂1 + cos tn̂2) · n̂2 = sin(θ(t))|n̂(t)× v|2,

|v×w| cos t = sin(θ(t))|n̂(t)× v|2,
|v×w|
|n̂(t)× v|2

cos t = sin(θ(t)).

As the fraction is strictly positive, we can state that the sign of θ(t) is the same as

the sign of cos t.

Equation 4.8 leads to the following identities, using the specific tangent half-angle

formula tan(θ/2) =
√

1−cos θ
1+cos θ

:

tan θ(t)
2 = ±

√√√√1− cos(θ(t))
1 + cos(θ(t))

= ±
√

1− cos α

1 + cos α− (1 + cos α) sin2(t)

= ±
√

1− cos α

(1 + cos α)(1− sin2(t))

= ± 1
cos(t)

√
1− cos α

1 + cos α
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= ± tan α

2 sec(t).

Additionally, from earlier, we know that the sign of θ agrees with the sign of cos t,

which in turn agrees with the sign of sec t = 1/ cos t. Since tan(α/2) is strictly

positive, the negative case is ruled out, and we obtain:

tan θ(t)
2 = tan α

2 sec t.

This equation is ill-defined for t = π/2, but continuous extension yields θ(t) = π for

t = π/2.

11.1.2 The Great Circle

The axes n̂(t) = n̂1 sin t + n̂2 cos t lie on a circle of radius 1 about the origin, and

are equidistant from v and w. Such a circle is known as a great circle. Each pair

of vectors will provide its own great circle, whilst two such pairs’ great circles will

intersect at precisely two points (which are equivalently found at ±(v−w)× (p−q)

for vector pairs v, w and p, q).

One idea which arose from ESGI was to generate these great circles for many pairs,

and then to search the unit sphere for points with a high density of circles passing

them - thus implying a large amount of pairs had a viable rotation about an axis

in the direction of said point. However, this still lacks the information of angle and

would thus still need the deduction and comparison of angle.

11.1.3 Quaternion Representation

A main contribution of the ESGI project moderator Cameron Hall was the use of

quaternion representation of viable rotation matrices to provide a more simple search

space as well as the discovery of Proposition 11.1.3 below.
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A quaternion is an extension of complex numbers to 4 dimensions at the expense

of commutativity. Introduced by Hamilton in 1843 and expanded in subsequent

letters up to 1850[22], a quaternion is written as q = q0 + qii + qjj + qkk, where

i2 = j2 = k2 = ijk = −1. We name the space of all quaternions H (after Hamilton).

We write a vector x =


x

y

z

 in quaternion form as x = Q(x) = xi + yj + zk - that

is, i, j, k correspond to the unit axes, and it has no real part.

Proposition 11.1.2. A rotation about a unit axis n̂ with angle θ ∈ (−π, π] (math-

ematically positively with respect to n̂) can be represented through the quaternion

q = cos(θ/2) + sin(θ/2)n̂

(where n̂ = Q(n̂) as above: note that quaternions are italicised).

The rotation is then performed on a purely imaginary quaternion x = xi + yj + zk

(representing the point(x, y, z) ∈ R3) through the quaternion operation

x→ qxq−1.

Proof. We compare the Rodriguez formula (8.2.3) with the above operation. Since

q is a unit quaternion, we have in this case q−1 = cos(θ/2)− sin(θ/2)n̂.

First, we consider the multiplication of two quaternions purely imaginary compon-

ents:

(q1i + q2j + q3k)(x1i + x2j + x3k)

= −(q1x1 + q2x2 + q3x3) + (q2x3 − q3x2)i + (q3x1 − q1x3)j + (q1x2 − q2x1)k

when these are written as vectors q = [q1, q2, q3]⊤ and x = [x1, x2, x3]⊤, this is

equivalent to −q ·x+q×x (though outside quaternions it makes little mathematical

sense to add a scalar and vector). That is,

qx = Q(q)Q(x) = −q · x +Q(q × x)
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for purely imaginary quaternions q = Q(q) and x = Q(x).

We expand our rotation equation into parts dependent on the real components and

parts dependent only on the imaginary components n̂ = Q(n̂) and x = Q(x):

qxq−1 = [cos(θ/2) + sin(θ/2)n̂] x [cos(θ/2)− sin(θ/2)n̂]

= cos(θ/2)2x− cos(θ/2) sin(θ/2)xn̂ + cos(θ/2) sin(θ/2)n̂x− sin(θ/2)2n̂xn̂

= cos(θ/2)2x + cos(θ/2) sin(θ/2) (n̂x− xn̂)

− sin(θ/2)2 (−n̂ · x +Q(n̂× x)) n̂

= cos(θ/2)2x + cos(θ/2) sin(θ/2) (2Q(n̂× x))

− sin(θ/2)2 (−(n̂ · x)n̂ +Q((n̂× x)× n̂))

= 1
2(cos θ + 1)x + sin(θ)Q(n̂× x)

+ 1
2(1− cos(θ)) ((n̂ · x)n̂ +Q(n̂× (n̂× x)))

We can easily see at this point there is no real component. Additionally, the term

sin θQ(n̂ × x) maps to the term sin θK from the Rodriguez formula: because of

Q(Kv) = Q(n̂× v).

We now use the fact that Q(n̂× (n̂×x)) = (n̂ ·x)n̂−x to bring the cosine together:

qxq−1 = 1
2(cos θ − 1 + 2)x + sin(θ)Q(n̂× x)

+ 1
2(1− cos(θ)) ((n̂ · x)n̂ +Q(n̂× (n̂× x)))

= 1
2 · 2x + sin(θ)Q(n̂× x)

+ 1
2(1− cos(θ)) ((n̂ · x)n̂ +Q(n̂× (n̂× x))− x)

= x + sin(θ)Q(n̂× x) + (1− cos(θ)) (Q(n̂× (n̂× x))) .

= x + sin(θ)Q(Kx) + (1− cos(θ))Q(K2x)

= Q(Rx)

This maps perfectly onto Formula 8.2.3.
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By the angle restriction, the unit quaternion q in Proposition 11.1.2 is uniquely

determined by its purely imaginary part. So, we can represent a rotation by sin(θ/2)n̂.

Now we apply this to our target vectors v and w.

Proposition 11.1.3. Let v, w ∈ R3 be linearly independent vectors with |v| = |w|.

Then the set sin(θ/2)n̂ of all rotations mapping v to w traces an ellipse in the

bisecting plane.

Proof. We can show this is an ellipse if we map n̂1 to the x-axis at (1, 0) and n̂2 to

the y-axis at (0, 1). This implies the unit vector n̂ is mapped to (sin t, cos t). The

equation of the ellipse is then x2 + y2

sin2(α/2) = 1.

To verify this, recall that x = sin(θ(t)/2) sin t and y = sin(θ(t)/2) cos t. Then,

x2 + y2

sin(α/2) = sin2(θ(t)/2) sin2 t + sin2(θ(t)/2) cos2 t

sin2(α/2)

= sin2(θ(t)/2)
(

sin2 t + cos2 t

sin2(α/2)

)

First we confirm the case for t = π/2, such that we can use the simplified tangent

formula for the remaining cases:

x2 + y2

sin(α/2) = sin2(π/2)
(

sin2(π/2) + cos2(π/2)
sin2(α/2)

)

= 1(1 + 0)

= 1.

With this satisfied, we utilise (11.1.4) alongside sin2 ϕ = tan2 ϕ
1+tan2 ϕ

x2 + y2

sin(α/2) = tan2(θ(t)/2)
1 + tan2(θ(t)/2)

(
sin2 t + cos2 t

sin2(α/2)

)

= tan2(α/2) sec2 t

1 + tan2(α/2) sec2 t

(
sin2 t + (1 + tan2(α/2)) cos2 t

tan2(α/2)

)

= 1
cos2 t + tan2(α/2)

(
tan2(α/2) sin2 t + (1 + tan2(α/2)) cos2 t

)
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= 1
cos2 t + tan2(α/2)

(
tan2(α/2)(1− cos2 t) + (1 + tan2(α/2)) cos2 t

)

= 1
cos2 t + tan2(α/2)

 tan2(α/2)− tan2(α/2) cos2 t

+ cos2 t + cos2 t tan2(α/2)


= 1

cos2 t + tan2(α/2)
(
tan2(α/2) + cos2 t

)
= 1

With this equation satisfied, we have shown that sin(θ(t)/2)n̂(t) forms an ellipse.

Given such a representation, we can theoretically draw the families of rotations

sin(θ(t)/2)n̂(t) (see Equation (11.1.3)) for many pairs of points. Finding locations

in 3d space where these curves cluster again suggests very likely twin laws, but with

an added benefit over the great circle of having the angle pre-described.

The location of clusters of points is an ongoing issue, and I expect some investigation

into methods utilised in other fields or in computer gaming ( which has a particular

focus on fast processing, see eg [16],[60]) could lead to dramatic time improvements.
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Refinement





Chapter 12

Introduction

12.1 Motivation

Within the Independent Atom Model, form factors for atoms have been tabulated

(see [6], formula 6.1.1.15 and table 6.1.1.4) as if they were independent in space -

that is, ignoring any dependency on other atoms in the molecule. In actuality, the

electron density is likely to alter its shape based on the molecule - showing bonds

and other interatomic effects.

Historically (1965), Robert Stewart derived non-spherical form factors for bonded

hydrogen atoms and commented [56]:

By necessity, if not by choice, crystallographers have treated bonded atoms

as point nuclei with a spherically symmetrical distribution of electron charge.

Technology (with regards to computational power) has now advanced sufficiently that

we can now directly calculate quantum mechanically the electron density function

ρ of the entire molecule, which provides us with new non-spherical form factors

fj(x, h) for every atom.

With these new form factors, the refinement process must be re-evaluated, to check

where changes need to be made. Whilst we find that much of the process requires
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only simple or no modifications, one aspect of the process - the form factor derivatives

(presented in Subsection 12.2.4) - requires a much more in depth investigation which

is undertaken in Chapter 13 of this part, and published in [38].
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12.2 Theory

We will explain the mathematics behind the use of non-spherical form factors and

how olex2.refine has been adapted to enable their use. We keep the notation close to

the one used in [4]. The non-spherical case remains very similar to the spherical case,

with some critical differences which we will summarise at the end of this discussion.

12.2.1 Quantum Theory

The development of computational methods to derive a molecular wavefunction ρmol

has been vital for the implementation of non-spherical theory. We have made use

of ORCA [39] as a well-maintained such program which has been interfaced with

olex2 via NoSpherA2 [31]. In the discussion ahead, we omit the consideration of spin

for simplicity of the presentation, but it is an important component for quantum

mechanical programs.

In its most fundamental form, we seek an electronic wavefunction Ψel(r), where r

consists of the three-dimensional locations ri = (xi, yi, zi) (i in {1, . . . , n}) of the

electrons which make up the molecule (to describe the electrons as ‘being located’

at a single point is somewhat of a false statement, nevertheless the modelling of

an electron as a probability distribution of a point charge is an effective one). To

present it somewhat more intuitively, the integral

∫
R

Ψ∗
el(r)Ψel(r)dr

over a 3n-dimensional set R ⊂ R3n gives the probability of electrons lying in R, and∫
R3n Ψ∗

el(r)Ψel(r)dr = 1.

Finding this Ψel is motivated by the Schrödinger equation:

H Ψ = EΨ,

where Ψ is the total wavefunction (which involves the nuclei as well as the electrons),
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the energy E is an eigenvalue, and the hamiltonian H is an operator on Ψ relating

to the kinetic and potential energies, and can be expressed as follows:

H = − ℏ2

2me

n∑
i=1
∇2

i −
ℏ
2

N∑
K=1
∇2

K︸ ︷︷ ︸
Kinetic Energies

+
N∑

K=1

N∑
L>K

ZKZLe2

4πε0RKL

+
n∑

i=1

n∑
j>i

e2

4πε0rij︸ ︷︷ ︸
Repulsion

−
N∑

K=1

n∑
i=1

ZKe2

4πε0RKi︸ ︷︷ ︸
Attraction

.

Here, the kinetic energy terms relate to the movement of the electrons and nuclei

respectively, and contain the Laplace operator ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . The repulsion

terms apply nucleus to nucleus and electron to electron respectively, with the attrac-

tion term acting between nuclei and electrons, with n being the number of electrons

and N being the number of atoms. The ZK correspond to the number of protons

in the nucleus of the Kth atom, e = 1.602 × 10−19C to the charge of an electron,

me = 9.109×10−28g the mass of an electron, R and r to the distances between bodies,

and ℏ = 1.055× 10−34Js Planck’s constant with ε0 = 8.854× 10−12C2N−1m−2 the

permittivity constant of vacuum.

In our case, we seek the Ψ which matches to the minimal eigenvalue E0, known

as the ‘ground state’ of the molecule. Excitement of electrons can lead to higher

energies and infinitely many possible energies Ei, but we seek the wavefunction for

the basic state of the molecule which matches to the minimal possible energy E0.

Solving for Ψ is an impossible prospect, and thus various simplifications are made.

The Born-Oppenheimer approximation neglects the movement of nuclei, allowing

the nuclear kinetic energy function to be removed to an external factor which can

be reintroduced later. As a result of this approximation, we obtain an electronic

wavefunction Ψel depending only on the 3n coordinates of the electrons (and their

spins which we omit for simplicity as mentioned above).

A vital simplification is to allow a separation of variables for the wavefunction.
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One such separation (as used in the Hartree-Fock method) is given by the Slater

determinant,

Ψel = 1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ2(r1) . . . ϕn(r1)

ϕ1(r2) ϕ2(r2) . . . ϕn(r2)

... ... . . . ...

ϕ1(rn) ϕ2(rn) . . . ϕn(rn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where the ϕi represent molecular orbitals of the molecules. This is motivated by the

consideration of the wavefunction as a product of individual molecular orbitals for

the electrons, alongside the requirement of the Pauli Principle that interchanging two

ri parameters should change the sign of the electronic wavefunction, which therefore

becomes an antisymmetric function. A final approximation is to take these molecular

orbitals as sums of atomic orbitals χµ, ϕi = ∑
µ cµiχµ. These atomic orbitals are pre-

calculated, and with this the computation needed is only to calculate the coefficients

cµi which minimise the energy E and thus satisfy our hamiltonian. It is typically

the case that one will not know this minimum E in advance, and thus it is again

something which can only be refined towards, not calculated analytically.

Of course, it is easy to see that with an ever increasing number of electrons, the

determinant will get ever more complicated. Additionally, there is no limit on the

number of atomic orbital functions used. Thus, any software is presented with a

trade-off - to obtain the most perfect result (given these assumptions), one would

need to use an infinite number of orbitals, taking infinite time, but the less that are

used the less accurate the result. There are far more trade-offs than this present

in the determination of wavefunctions, with further approximations allowing faster

computation at the cost of accuracy, but the full details of these are outside the

scope of this thesis. Practically, these calculations are done by ORCA and controlled
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by different basis sets, as seen in Subsection 13.5.4.

Given such a Ψel, we can obtain the electron density function through a summation

of the individual probability densities of each electron, that is:

ρmol(z) =
n∑

i=1

∫
R3

∫
R3
· · ·

∫
R3

Ψel(r)∗Ψel(r)dr1dr2 . . . dri−1dri+1 . . . drn,

where z = (x, y, z) is substituted for each ri in turn in the summation. That is,

ri = (x, y, z) in the ith term of the sum.

12.2.2 Hirshfeld Partitioning

After using quantum mechanical computations to determine the electron density

function ρmol of the whole molecule, this function is partitioned into individual atoms

utilising a weight function - presently, we use

wj(z) =
ρsph

j (z)
ρpro(z) ,

[24] where z is a point in space, ρsph
j is the spherical atomic density associated

to the jth atom which is the fourier inverse of the form factors tabulated in the

international tables [6, Table 6.1.1.1-5], and ρpro(z) = ∑
j ρsph

j (z) is the promolecule

density generated from the spherical atomic densities (these are in turn determined

by the somewhat simpler single-atom Schrödinger equation). Other partitioning

schemes are also viable[9]. Given a molecular electron density ρmol, we then assign

each atom its nonspherical electron density function

ρnonspher
i (z) = wj(z)ρmol(z).

This is commonly known as Hirshfeld Partitioning or Hirshfeld Stockholder Parti-

tioning. These atomic nonspherical electron density functions are transformed into

nonspherical form factors fj via their Fourier transform

fj(x, h) =
∫
R3

ρnonspher
j (x, z)e2πiz·hdz,
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where the newly-introduced x is a parameter containing information about the

crystallographic parameters. In the independent atom model, these electron densities

(and thus form factors) do not depend on these crystallographic parameters.

As discussed in Part I, modelling the atoms independently using single-atom spherical

atomic densities allows a more general solution for the form factors fj, which has

been quantum mechanically solved and can be very well approximated by sums of

Gaussians, taking the form:

fj(h) =
4∑

i=1
aie

−bi( |h|
4π )2

+ c,

where the constants ai, bi, c are tabulated and openly accessible at [58].

12.2.3 F-calcs and Form Factors

Our mathematical arguments focus on the necessary modifications concerning the

treatment of the calculated structure factor, which we denote as usual by F (x, h).

Recall that

F (x, h) =
n∑

j=1
fj(x, h)e2πizj ·he−2π2h⊤Ujh.

Firstly, we consider the impact of non-spherical form factors on the simplifications

present due to crystal symmetries.

Recall that the structure factor may be partitioned into portions dependant on each

individual representative atom Aj, j = 1, 2, . . . , N , in the asymmetric unit:

F (x, h) =
N∑

j=1

∑
(R|t)∈S

sj fj(x, Rh)

G
(R|t)
j (x,h)︷ ︸︸ ︷

Gj(x, Rh)e2πih·t︸ ︷︷ ︸
f
(R|t)
j (x,h)︸ ︷︷ ︸

atoms equivalent by symmetry to Aj

(12.2.1)

with R the rotational part and t the translational part of the symmetry operation

(R|t) ∈ S, where S is the set of all symmetries of the unit cell, and sj the occupancy
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of the atom Aj
1. Note that we use (R|t)(z) = Rz + t.

Here the terms fj(x, h) are derived from the complex values fj(hi, ki, li) given in the

tsc-file by an addition of the anomalous scattering factors f ′
j + if ′′

j , see [4, eqn. (53)],

that is:

fj(x, h) := fj(hj, kj, lj) + f ′
j + if ′′

j .

These anomalous scattering factors f ′
j and f ′′

j are fixed real values defined for each

atom type, describing additional contributions which arise outside of the classical

elastic scattering - for example, via excitation.

The form factor of the atom Aj is calculated in a coordinate system obtained by

translating the origin of the crystallographic axes to the centre of atom Aj, with

no change in orientation. The form factor fj(x, h) is then the Fourier transform of

the electron density ρj of Aj. In contrast to the case of spherical form factors, this

electron density can now depend on the whole model whose information is given in

x, as non-spherical form factors take the dependence of the electron density of the

surrounding atomic environment into account.

Note that in the case of spherical form factors, the functions fj do not depend on

the model information x and, additionally, we have fj(Rh) = fj(h) since fj(h) does

then not depend on the direction of h but only on h⊤M∗h ∈ R, where M∗ is the

reciprocal metric matrix. This is generally not true in the case of non-spherical form

factors.

For the ADPs, we find that

Gj(x, Rh) = e−2π2(Rh)⊤Uj(Rh)

= e−2π2h⊤R⊤UjRh,

1In our paper discussing the introduction of the .tsc file [37], h is a row vector rather than the
standard column used in this work, but aside from this transposition of parameters the equations
remain the same.
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which coincides with a rotation of the Uj by R.

By the symmetry restriction given for crystals, the term e2πih·t is always a root of

unity of order 1,2,3,4, or 6.

Finally, we consider how rotations affect fj itself, knowing that it is not preserved

as in the case of spherical form factors. We can observe the derivation of fj(x, Rh)

(see (4.1.6) in Part I):

fj(x, Rh) =
∫
R3

ρj(y)e2πiy·(Rh)dy

=
∫
R3

ρj(y)e2πiy⊤Rhdy

=
∫
R3

ρj(y)e2πi(R⊤y)⊤hdy x = R⊤y

=
∫
R3

ρj(Rx)e2πix·hdx R−1 = R⊤,

that is, rotating the atomic density distribution by R results in the form factor of

Rh.

The least square minimization in the refinement procedure requires derivatives of

the structure factor with respect to the components of x = (x1, . . . , xn). Since the

structure factor is the above sum (12.2.1), we only need to consider the derivatives

of the individual terms f
(R|t)
j (x, h).

Using the product rule, we have for the derivative

∂f
(R|t)
j

∂xk

(x, h) = ∂fj

∂xk

(x, Rh)G(R|t)
j (x, h) + fj(x, Rh)

∂G
(R|t)
j

∂xk

(x, h). (12.2.2)

The differential ∂fj

∂xk
(x, Rh) in the first term on the right hand side of (12.2.2) is more

difficult to treat due to the complexity of the involved derivations. The derivatives

of Gj can be handled easily due to their nature as simple exponential functions.

The set of Miller indices h required for the non-spherical form factors (given via the

.tsc file, see 12.3) should correspond to the set of measured Bragg reflections and

their symmetry equivalents, as can be seen in Equation (12.2.2).
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12.2.4 Derivatives of Structure Factors with Nonspherical

Form Factors

Up until (6.3.1) of Chapter 6 of Part I, the derivation required for least-squares

refinement remains the same.

This requires the derivatives of this with regards to each parameter, which in turn

requires the derivatives of the structure factors Yc(h) with regards to each parameter.

As seen in (6.3.1),

∂Fc

∂xn

(x, h) =
Natoms∑

j=1

 ∂fj

∂xn

(x, h)Gj(x, h)︸ ︷︷ ︸
(∗)

+fj(x, h)∂Gj

∂xn

(x, h)

 . (12.2.3)

In fact, we require the partial derivatives of the (theoretical) intensity Yc := |Fc|2,

which can be derived from the partial derivatives of the structure factor via

∂Yc

∂xn

(x, h) = 2 Re
(

F ∗
c (x, h)∂Fc

∂xn

(x, h)
)

, (12.2.4)

where F ∗(x, h) ∈ C denotes the complex conjugate of F (x, h) ∈ C.

Note that the first term (∗) on the right hand side of (12.2.3) vanishes in the case

of spherical form factors fj, since they are only functions of the Miller triple h and

not of the model x ∈ RN , and the partial derivatives of Gj have explicit analytical

expressions since the functions Gj are products of simple exponential functions. In

the case of nonspherical form factors, the numerical computation of their partial

derivatives ∂fj

∂xn
is much more difficult. It involves the change of the form factor fj

under infinitesimally small variation of the parameters corresponding to individual

atoms. In the current implementation of nonspherical refinement in olex2.refine, the

first term on the right hand side of (12.2.3) is taken to be zero and the refinement

uses the following approximation of the partial derivatives given in (12.2.3):(
∂F

∂xn

)
appr

(x, h) :=
Natoms∑

j=1
fj(x, h)∂Gj

xn

(x, h). (12.2.5)
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It is this approximation which needed to be validated and which became one main

part of my PhD investigations.

This approximation gives rise to various questions. Practical experience shows that

nonspherical refinement based on this approximation produces significantly better

refinement models than spherical refinement (in particular with regards to the atom-

to-hydrogen (X-H) distances). Can we achieve a substantial further improvement

via more accurate partial derivatives of the nonspherical structure factors using tools

like numerical differentiation? Are the collected data via X-ray diffraction precise

enough to justify the extra computational effort? Currently the computation of these

more accurate partial derivatives is not feasible due to its substantial time effort.

However, computer performance may further improve in the years to come. The same

may be true with regards to the improvement of precise X-ray diffraction data. To

answer these questions it is necessary to carefully investigate the level of inaccuracy

in this approximation and the potential advantage of using more accurate partial

derivatives of nonspherical structure factors in crystallographic structure refinement.

Our method of choice is numerical differentiation, as explained in Subsection 13.1.4.

These important questions are the main concern of Chapter 13.

12.2.5 Summary

Let us finally cover the relevant differences to be taken into account when working

with non-spherical form factors:

(i) Non-spherical form factors associated to atoms (with the origin at their centre)

are no longer real, but are usually complex-valued (as the electron densities

are non-spherical).

(ii) It is no longer the case that fj(Rh) = fj(h) for rotations R associated to

symmetry equivalent atoms in the unit cell.
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(iii) Due to the change in the shape of form factors under shifts, there appears an

additional term in the derivative of f(R|t)
j – the first term on the right hand

side of (12.2.2).

(iv) The provided form factors must cover a greater variety of Miller indices than

would be needed in the spherical case (due to (ii)). That is, form factors must

be provided for all Miller indices h with recorded reflections and all symmetry

equivalents Rh, for (R, t) appearing in S (see (12.2.1)).
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12.3 The .tsc Format File

In section 12.2 we found that we require specific values for nonspherical form factors

corresponding to specific Miller indices. In this section we will provide information

on the .tsc file, which is used to transfer this information.

In order to perform non-spherical refinement, Olex2 requires non-spherical form

factors for each atom for each hkl required. This is provided via an interlacing

software (currently, we use NoSpherA2 ) which takes a wavefunction determined by a

quantum mechanical program such as ORCA and partitions and Fourier transforms

into the individual atomic form factors. This is fed into Olex2 via the .tsc file

format[37] (as mentioned at the end of 12.2.3), which can also be used for any

alternate externally-sourced method of form factor generation.

Let us now give a brief explanation of the concrete format of this .tsc file.

Olex2 expects a file called [name].tsc (matching the .hkl file name) containing the

following information in order to use the external atomic form factors:

The header of the [name].tsc file is free-format, as long as it contains the space-

separated list of atom names in the ‘SCATTERERS:’ line and finishes with ‘DATA:’.

Any identifier must be followed by a colon. The identifiers may start with a space.

fj(hi, ki, li) is the form factor (Fourier transform of the electron density) of the

atom Aj calculated in a coordinate system obtained by translating the origin of the

crystallographic axes to the centre of atom Aj, at hi, ki, li. Index j ∈ (1, . . . , N)

should run over all unique atoms of the asymmetric unit, and i ∈ (1, . . . , m) should

run over at least all reflections defined in the .hkl file and any equivalents under

symmetry.

1In either case, all symmetry equivalent Miller indices must be present in the DATA section. If
a list of symmetry operators, expressed as rotation matrices (e.g.: 1 0 0 0 1 0 0 0 1;-1 0 0 0 1 0
0 0 -1) is provided, then the Miller indices must be ordered into corresponding blocks – and each
block must have symmetry equivalent indices in the same position in each block and generated
by the corresponding matrices. This allows for more efficient calculations during the refinement.
Otherwise, if SYMM has the value ‘expanded’, the indices can be present in any order.
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TITLE: optional title of the structure

SYMM: ‘expanded’ or list of symmetries 1

AD: TRUE or FALSE (anomalous dispersion)

SCATTERERS: space-separated list of all atoms

[ANYTHING] : colon must be present

DATA: (denotes the end of the header)

h k l A1 A2 . . . AN

h1 k1 l1 f1(h1, k1, l1) f2(h1, k1, l1) . . . fN(h1, k1, l1)

h2 k2 l2 f1(h2, k2, l2) f2(h2, k2, l2) . . . fN(h2, k2, l2)
... ... ... ... ... ... ...

hm km lm f1(hm, km, lm) f2(hm, km, lm) . . . fN(hm, km, lm)

The complex values fj(hi, ki, li) must be written as “Re,Im” - their real component

followed by a comma followed by the imaginary component, with no spaces.

The start of a tsc file for epoxide, used in the rest of this work, is as follows:

TITLE: epoxide.cif

SYMM: expanded

SCATTERERS: O1 C2 H2a H2b C3 H3a H3b

DATA:

-9 0 1 1.42431973e+00,-7.16985709e-03 1.11352758e+00,4.98856433e-04...

-9 0 3 1.43428689e+00,-5.02026979e-03 1.12608844e+00,-3.74646732e-03...

-9 0 5 1.41162731e+00,-2.17215211e-03 1.08918940e+00,-6.49469368e-03...

The ’DATA’ rows have been truncated with ‘...’ to prevent the unclear information

which would come from them line-wrapping. For example, the first line indicates

that the form factor of O1 at -9, 0, 1 is 1.42431973-0.00716985709i. This file was

obtained from a model at the spherical minimum.
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Investigating the Approximation

Typically, the partial derivatives ∂fj

∂xi
of the form factors have been taken as zero. In

this section, we will look deeply into the viability of calculating more accurate values

for these derivatives, as well as whether they make a substantial difference to the

resulting solution.

13.1 Main Refinement Methods & Background

In this section, I cover the required background knowledge for the testing of this

approximation. First, I outline the chemical structures and data used for these tests,

followed by a brief overview of the process required for approximate and numerical

nonspherical refinements. Spherical refinement is the classical refinement method

based on the Independent Atom Model. Approximate nonspherical refinement is

that currently implemented in NoSpherA2, whilst numerical nonspherical refinement

utilises numerical differentiation to gain more accurate partial derivatives for the

form factors, and is our choice for these tests. I cover the process of numerical

differentiation in more detail and clarify what is meant by certain ‘step sizes’, ϵ and

δ. Henceforth, the model obtained via different refinement methods will be denoted

with a subscript - that is, the minimum obtained by spherical refinement is xspher,



180 Chapter 13. Investigating the Approximation

that obtained via approximate nonspherical refinement is xappr and that obtained

via numerical nonspherical refinement is xnum.



13.1. Main Refinement Methods & Background 181

13.1.1 Molecules Used

In our tests, we employ three different molecules - ammonia (NH3), [3] epoxide

(C2H4O) [19] and L-alanine (C3H7NO2) [34] (see Figure 13.1 for their chemical

structures). In the latter two molecules, all atoms are in general positions and the

vector x describing the model has 9 parameters for each atom (3 positional para-

meters and 6 ADPs). The space group of NH3 is P213 and its model is determined

by 9 parameters for the H atom, and only 3 parameters for the N atom as it is

restricted to the symmetry line x = y = z (meaning also that U11 = U22 = U33 and

U12 = U13 = U23). Of course, in the presence of symmetries, the vector x can be

"expanded" to a larger vector y = y(x) which provides all 9 parameters for each

atom in the molecule.

Figure 13.1: The chemical structures of ammonia (top), epoxide
(left) and L-alanine (right). Due to crystallographic symmetries in
ammonia, two symmetry-equivalent hydrogen atoms are shown in
blue.
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13.1.2 Approximate Nonspherical Refinement

We refer to the process of refinement with ∂fj

∂xi
(x, h) set to 0 as approximate nonspher-

ical refinement. In short, we use molecular quantum mechanical computations and

partitioning to obtain better form factors, but we use the simplest approximation of

their derivatives by setting them equal to zero. Approximate nonspherical refinement

is illustrated in the flow chart in Figure 13.2.

Approximate nonspherical refinement begins with an initial model obtained through

classical spherical refinement. Then, by passing this model to a quantum mechanical

calculation program, a quantum-mechanical wavefunction is calculated and trans-

ferred to the NoSpherA2 software in form of a wfn or wfx file. NoSpherA2 converts

this into an electron density function for the model, partitions it, and computes the

nonspherical form factors, which are returned in a .tsc file (as discussed in Section

12.3) for further use.

We then utilise least-square minimisation, bringing in other information such as the

observed intensities Yo and weights, calculating Fc and approximating ∂Fc/∂xn by

the analytical expression (12.2.3) (with (∗) = 0) and using these to calculate a shift

to the model which should result in a better agreement with observed data.

We run this loop repeatedly as in a classical refinement, until the model is converged

(by the standard shift/esd ≤ 0.01 rule, where ‘esd’ is the estimated standard devi-

ation, also referred to as standard uncertainty, of the model parameter), or we have

reached a ‘limit’ nmax of how many times we are comfortable doing a refinement

cycle without recalculating the .tsc file, as this will become increasingly inaccurate

with increasing changes to the model. As calculation of the .tsc file is time consum-

ing, we prefer to get more ‘use’ out of the same file before the model changes too

significantly.

We then compare this output model to the input model - if they are sufficiently close

(for example, if the maximal parameter difference/esd ≤ 0.01), then the refinement
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has converged and we take the output model as our final model. Here we also limit

the number of iterations to mmax and we terminate the procedure if this convergence

criterion has not been satisfied. In this case, Olex2 displays the message ‘Warning:

Unconverged Model!’

13.1.3 Numerical Nonspherical Refinement

Our new refinement method uses the same quantum mechanically calculated non-

spherical form factors given via a .tsc file. However, a numerical procedure to derive

improved values of the derivatives ∂Fc

∂xn
(in coordinates xn representing positional

parameters) is included as in (12.2.3), without the simplification that (∗) is zero.

Since differentiation describes the change of Fc in the direction of xn, we use models

which closely neighbour the current model x - that is, we alter a single positional

parameter xn by a small amount to calculate the derivative ∂Fc

∂xn
. This allows us to

perform a mathematically more accurate least-squares minimisation process. We

refer to this process as numerical nonspherical refinement.

In the case of numerical nonspherical refinement, illustrated by the flow chart Figure

13.3, the initial model can be either obtained by spherical refinement or by approx-

imate nonspherical refinement. We utilise NoSpherA2 in each iteration not only once

for the computation of the form factors fj of the given model but also multiple times

for the calculation of the derivatives ∂Fc

∂xn
of the structure factor. In fact, each such

partial derivative computation via numerical differentiation requires two additional

quantum mechanical and NoSpherA2 computations and the time complexity of this

process grows linearly with the number of atoms in the model (see Subsection 13.3.4).

We additionally are cautious and reduce the risk of inaccurate quantum mechanical

data by only ever performing one refinement cycle with a given .tsc file. Additionally,

we always carry out a full 20 steps whether or not the model has converged, to

provide additional information whether a model remains in this status or whether

it may still fluctuate. We record the model at each step and return the model with
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Start

New Input Model

Compute nonspherical form factors
using QM software and NoSpherA2.

Provide them via a new tsc-file

Generate structure factors
and derivatives using
constant form factors

Refine the model
using least-square

minimisation

Is the model
converged, or have we done

nmax repetitions?

Output Model

Are input and output model
close enough, or have we

done mmax iterations?

Final model

Yes

Yes

No

No

Core
Refinement

Process

Figure 13.2: Flow chart illustration of Approximate Nonspherical
Refinement
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the lowest wR2-factor as our final model. These settings are currently only used for

test purposes, not as defaults in NoSpherA2 for general use.

Typically, there are up to three derivative calculations per atom, corresponding to

its x, y, and z coordinates. These can sometimes be reduced by the symmetry of the

molecule, as in the case of ammonia. As the ADP parameters have no part in the

wavefunction calculation, and no impact on the form factors, all derivatives related

to them are simply taken as in the approximate nonspherical case.

13.1.4 Numerical Differentiation

Numerical differentiation of a function F : RN → R is based on a discretization of

its derivatives. For numerical nonspherical refinement, we use the central difference

quotient (
∂F

∂xn

)
ϵ

(x, h) := F (x + ϵen, h)− F (x− ϵen, h)
2ϵ

,

where en ∈ RN denotes the n-th standard basis vector associated to the parameter

xn
1. An important aspect in this numerical computation is the right choice of the

step size ϵ > 0: This parameter must be small enough to provide a good local fit of

the slope describing the derivative (the error appearing here is called the truncation

error), but it must be also large enough that the subtraction of almost equal numbers

in the numerator does not produce a significant error due to the finite digit precision

(this error is called the rounding error). Theory tells us that we have the following

bound for the total error (see [7, p. 181], with thanks to Louis Aslett for pointing

us to this specific resource):∣∣∣∣∣ ∂F

∂xn

(x)− F (x + ϵen)− F (x− ϵen)
2ϵ

∣∣∣∣∣ ≤ aϵ2 + b

ϵ
. (13.1.1)

1There also exist numerical differentiation of higher orders, making us of 4 or more positions
to calculate the derivative. These typically calculate a more accurate derivative (an error related
to step size cubed rather than squared), at the cost of needing additional calculations. We tested
this, and found that there was no notable improvement worth the time cost.
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Start

New Input Model

Compute nonspherical form factors
using QM software and NoSpherA2.

Provide them via a new tsc-file

Utilise QM software and NoSPherA2
to compute derivatives ∂Fc

∂xn

using numerical differentiation

Generate structure factors

Refine the model
using least-square

minimisation

Output Model

Have we done
mmax iterations?

Final model

Yes

No

Figure 13.3: Flow chart illustration of Numerical Nonspherical Re-
finement
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Here, F (x) denotes the nearest floating-point number to F (x), a > 0 is a constant

involving the third derivative of F , and b > 0 is a constant involving the function F

itself and the maximum relative error between all numbers and their floating-point

representations.

As mentioned before, the lack of an exact analytical formula for the partial derivatives
∂F
∂xn

of the nonspherical structure factor requires us to compute them via numerical

differentiation. This chapter is devoted to finding the optimal step size ϵ > 0 for

this numerical differentiation and to investigate the reliability of these numerically

computed partial derivatives. We refer to them as the numerical partial derivatives

of the structure factor.

Before we focus on these numerical derivatives, we first consider the accuracy ob-

tained via numerical differentiation in the case of spherical and approximate refine-

ment, which can be analytically calculated. This is carried out in Section 13.2. We

consider this as a first reality check for our numerical differentiation.

Before we start our investigations, let us briefly discuss how we compute
(

∂F
∂xn

)
appr

(given in (12.2.5)) and the numerical partial derivatives
(

∂F
∂xn

)
num,ϵ

using numerical

differentiation. For this we introduce the following notation for the structure factor

based on a tsc-file:

F (x′, hk, tsc(x)) :=
Natoms∑

j=1
fj(x, hk)Gj(x′, hk). (13.1.2)

Here hk is one of the observed Miller triples and Gj is given in (4.3.1). Note that

the terms fj(x, hk) on the right hand side of (13.1.2) are extracted from the tsc-file

tsc(x) on the left hand side of (13.1.2). Using this flexible notation involving two

models x, x′ ∈ RN , the computation of (12.2.5) using numerical differentiation with

step size ϵ > 0 is(
∂F

∂xn

)
appr,ϵ

(x, hk) := F (x + ϵen, hk, tsc(x))− F (x− ϵen, hk, tsc(x))
2ϵ

. (13.1.3)

Note that the computation of a tsc-file via NoSpherA2 requires quantum-mechanical
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computations, and here we only need the tsc-file at x, and only the Gj-factors in

(13.1.2) are evaluated at the modified models x ± ϵen corresponding to the n-th

coordinate. It is useful to compare this with our numerical differentiation used for

the computation of the “numerical” partial derivatives:

(
∂F

∂xn

)
num,ϵ

(x, hk) :=

F (x + ϵen, hk, tsc(x + ϵen))− F (x− ϵen, hk, tsc(x− ϵen))
2ϵ

. (13.1.4)

Here we need tsc-files at the two models x± ϵen, and these two models change for

every individual partial derivative with n ∈ {1, . . . , N}. This makes every numerical

refinement step very time-consuming. One could halve the number of quantum

mechanical calculations by replacing 13.1.4 with the forward or backward quotients.

This may lead to less accurate derivatives but may still be worthwhile and sufficiently

accurate, and is worth investigation in future.

In the following sections, we will measure differences between matrices by using the

Frobenius norm

∥A∥F :=
∑

i,j

|Aij|2
1/2

for a matrix A with entries Aij. Note that in the special case of vectors v ∈ RN in

Cartesian coordinates, the Frobenius norm simplifies to the Cartesian norm ∥v∥F =

∥v∥ = (v2
i )1/2.

13.1.5 Relative Step Size ϵ and Cartesian Step Size δ

The model and the partial derivatives are given in fractional (or relative) coordinates

with respect to the unit cell. This provides a dilemma, as we can choose to take either

a consistent step size in fractional space or Cartesian space, but it is frequently the

case that consistent values in one corresponds to different values in the other. Due to

the use of Cartesian distances in the quantum mechanical optimisation, I decided to

keep the Cartesian step size consistent. However, when manipulating values within
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olex2 (and for the values of the derivatives), I needed to use the fractional step size.

In accordance with the description of numerical differentiation, the relative step size

is denoted ϵ, with its corresponding Cartesian step size in Å denoted δ. In my work,

I choose δ and generate ϵ based on that.

To move from our chosen Cartesian step size δ to our utilised fractional step size

ϵ, we must divide by the ‘Cartesian length of the unit relative vector in the step

direction’, that is:

• If the shift is related to only one of a, b or c, ϵ is equal to δ divided by the

length of the relevant direction. For example, if we are moving by δ = 10−3Å

in the a direction, ϵ = 10−3/a.

• If the shift is related to multiple directions, geometry must be used to determine

the relationship between ϵ and δ. For example, the nitrogen atom of ammonia

may only move along the a + b + c line. As ammonia has a cubic cell (with

angles between a, b and c at 90◦ and lengths a = b = c), δ = 10−3 Å gives rise

to an ϵ = 10−3/(
√

3a).

As we do not need to calculate ADP derivatives, we did not need to consider steps

outside of this 3-dimensional space.

In order to find the most suitable choice of Cartesian step size δ, we investigate

results for numerical differentiation with δ-choices from 10−1 Å to 10−10 Å.

We must first verify that numerical methods can reasonably emulate the current

analytical methods, and then continue to determine the most effective δ choice for

numerical refinement itself.
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13.2 A Proof of Principle: Design Matrices and

Shift Vectors at xspher and xappr Compared

with Numerically-Calculated Values

We now move on to our tests. At the beginning of our investigations, we evaluate

whether numerical refinement is even viable; whether it gives valid and sensible

intermediate results before continuing with the far more complicated and time-

consuming full refinement process.

Within a given refinement step, the design matrix D̃(x) can be viewed as the first

object derived from the theoretical structure factor and its partial derivatives, and

the shift vector s(x) as the end product of one least-square minimisation step. We

focus in this subsection on these two objects and their dependence on the step size.

The entries of the design matrix are given by

(D̃(x))kn = ∂K̃Y

∂xn

(x, hk),

(with Y as the theoretical intensities, ||Fc||2) and we denote the positional and ADP

components of the Cartesian shift vectors henceforth by spos,cart(x) and sADP,cart(x).

13.2.1 Comparison of Numerical versus Analytical Results

The partial derivatives of the structure factor in spherical and approximate refine-

ment in olex2.refine (using NoSpherA2 in the latter case) are calculated analytically

assuming vanishing derivatives of the form factors. This analytic calculation of the

partial derivatives can also be done via numerical differentiation. The comparison

with analytical allows us to test the accuracy of numerical differentiation (without

involving the quantum-mechanical software in derivative calculations) and to have

a first look at the error trending. We carry out our comparison at the spherical

optimum xspher and the approximate optimum xappr
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The design matrices in this subsection obtained via numerical differentiation of the

structure factor (using step size δ) will be denoted by D̃•,δ with • ∈ {spher, appr}.

Similarly, we will use the notation spos,cart
•,δ and sADP,cart

•,δ for the corresponding

Cartesian shift vector components derived from numerically differentiated structure

factors.

Design Matrix Analysis

The differences between the internally analytically calculated design matrices D̃•,

• ∈ {spher, appr}, and their analogues D̃•,δ computed via numerical differentiation

using step sizes

δ ∈
{
10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9, 10−10

}

at xspher and xappr are presented in Table 13.1, where we use the following notation:

max(A) and max(v) denote the maximal entry of a matrix A and vector v, respect-

ively. Similarly, med(A) and med(v) denote the median of the entries of A and the

vector v. |A| and |v| denote the matrix/vector whose entries are the absolute values

of the corresponding entries of A and v.

Design matrix xspher xappr

differences • = spher • = appr • = spher • = appr
Epoxide

∥D•∥F 1.001e+06 1.030e+06 1.022e+06 1.042e+06

max(|D•|) 1.393e+05 1.403e+05 1.448e+05 1.456e+05

med(|D•|) 1.965e+01 2.232e+01 1.607e+01 1.687e+01

δ = 10−1 1.365e+03 1.374e+03 1.413e+03 1.415e+03

δ = 10−2 1.389e+01 1.397e+01 1.439e+01 1.440e+01

δ = 10−3 1.389e-01 1.398e-01 1.439e-01 1.441e-01

δ = 10−4 1.389e-03 1.398e-03 1.439e-03 1.441e-03

δ = 10−5 1.342e-05 1.353e-05 1.424e-05 1.428e-05

δ = 10−6 2.950e-05 3.017e-05 4.487e-05 4.679e-05

δ = 10−7 3.167e-04 3.289e-04 3.807e-04 3.876e-04

δ = 10−8 2.746e-03 3.023e-03 3.120e-03 3.137e-03



192 Chapter 13. Investigating the Approximation

Design matrix xspher xappr

differences • = spher • = appr • = spher • = appr
δ = 10−9 3.467e-02 3.884e-02 2.861e-02 2.978e-02

δ = 10−10 3.988e-01 4.224e-01 3.126e-01 3.214e-01
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Design matrix xspher xappr

differences • = spher • = appr • = spher • = appr
Ammonia

∥D•∥F 1.069e+05 1.209e+05 1.014e+05 1.087e+05

max(|D•|) 4.340e+04 4.941e+04 4.128e+04 4.526e+04

med(|D•|) 2.870e+01 3.286e+01 1.961e+01 2.056e+01

δ = 10−1 9.766e+01 1.095e+02 9.446e+01 9.817e+01

δ = 10−2 9.859e-01 1.105e+00 9.540e-01 9.909e-01

δ = 10−3 9.860e-03 1.105e-02 9.541e-03 9.910e-03

δ = 10−4 9.859e-05 1.105e-04 9.541e-05 9.911e-05

δ = 10−5 9.716e-07 1.009e-06 1.043e-06 1.121e-06

δ = 10−6 2.004e-06 1.588e-06 1.145e-06 1.605e-06

δ = 10−7 9.050e-06 1.517e-05 2.713e-05 2.699e-05

δ = 10−8 1.393e-04 2.363e-04 1.410e-04 1.380e-04

δ = 10−9 1.699e-03 1.965e-03 8.971e-04 1.596e-03

δ = 10−10 3.945e-02 2.464e-02 1.624e-02 1.450e-02

L-Alanine

∥D•∥F 1.046e+07 1.047e+07 1.076e+07 1.078e+07

max(|D•|) 9.520e+05 1.027e+06 9.435e+05 1.013e+06

med(|D•|) 9.106e+01 1.000e+02 6.720e+01 7.081e+01

δ = 10−1 1.873e+04 1.861e+04 1.943e+04 1.931e+04

δ = 10−2 1.962e+02 1.949e+02 2.036e+02 2.023e+02

δ = 10−3 1.963e+00 1.950e+00 2.037e+00 2.024e+00

δ = 10−4 1.963e-02 1.950e-02 2.037e-02 2.024e-02

δ = 10−5 1.952e-04 1.940e-04 2.035e-04 2.022e-04

δ = 10−6 9.440e-05 9.668e-05 1.053e-04 1.039e-04

δ = 10−7 8.988e-04 8.977e-04 9.057e-04 9.409e-04

δ = 10−8 8.652e-03 8.756e-03 1.003e-02 1.033e-02

δ = 10−9 1.031e-01 1.068e-01 1.059e-01 1.079e-01

δ = 10−10 8.156e-01 8.209e-01 8.544e-01 9.133e-01

Table 13.1: Comparison of design matrices: The entries in the δ-
rows are ∥D̃• − D̃•,δ∥F with • ∈ {spher, appr}. Particularly small
differences are highlighted in green.

We see that the best agreement is achieved at the step size δ = 10−5 . This table also

clearly highlights the trending of the errors. For the larger δ-values the truncation

error dominates which is proportional to δ2 (decreasing the δ-values by 10 leads to
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error decay by an order of 102 in the upper half of the table). As δ > 0 becomes

smaller, the roundoff error becomes increasingly significant, and it is proportional

to 1/δ (reflected in the fact that the error increases roughly by an order of 10 in

the lower half of the table). This matches very well with the error bound given

in (13.1.1). Modelling the total error as aδ2 + b
δ
, then the minimum should be at

δ = 3
√

b
2a

(see also [7, p. 181]). For ammonia, Choosing a = 104 and b = 4× 10−12,

we obtain δ = 6 × 10−6, which lies between the two lowest recorded errors in the

table. Similarly, for epoxide we have a = 1.4×105, b = 3.2×10−11, giving an optimal

δ of 5× 10−6. For L-alanine, a = 106, b = 7−11, giving δ = 3× 10−6 for the minimum.

Shift Vector Analysis

The impact of the step size on the shift vectors in Cartesian coordinates is presented

in Table 13.2. We consider their positional and ADP components separately. These

results suggest that the best choice for the step size δ in this case lies somewhere

between 10−5 and 10−6, and the error pattern is again very clear.
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Shift xspher xappr

vector • = spher • = appr • = spher • = appr
differences ∗ = pos ∗ = adp ∗ = pos ∗ = adp ∗ = pos ∗ = adp ∗ = pos ∗ = adp
epoxide
∥s∗,cart

• ∥ 2.234e-06 3.970e-06 2.388e-01 9.245e-02 2.485e-01 1.038e-01 3.392e-06 2.884e-06

max
(
|s∗,cart

• |
)

1.698e-06 1.911e-06 1.006e-01 3.719e-02 9.625e-02 4.617e-02 2.318e-06 1.374e-06

med
(
|s∗,cart

• |
)

1.645e-07 9.960e-08 2.958e-02 2.799e-03 2.498e-02 2.678e-03 8.843e-08 7.439e-08

δ = 10−1 1.139e-03 5.280e-04 5.932e-03 1.521e-03 5.035e-03 1.364e-03 8.041e-04 3.351e-04
δ = 10−2 1.118e-05 5.135e-06 5.921e-05 1.531e-05 5.031e-05 1.369e-05 7.864e-06 3.299e-06
δ = 10−3 1.118e-07 5.133e-08 5.921e-07 1.531e-07 5.031e-07 1.369e-07 7.862e-08 3.299e-08
δ = 10−4 1.118e-09 5.133e-10 5.921e-09 1.531e-09 5.032e-09 1.369e-09 7.862e-10 3.299e-10
δ = 10−5 1.141e-11 5.338e-12 5.891e-11 1.527e-11 5.128e-11 1.251e-11 8.323e-12 3.503e-12
δ = 10−6 5.484e-11 9.144e-12 1.032e-10 3.929e-11 1.355e-10 3.465e-11 1.963e-11 5.575e-12
δ = 10−7 4.257e-10 1.016e-10 9.985e-10 3.668e-10 1.172e-09 4.993e-10 1.424e-10 3.836e-11
δ = 10−8 2.996e-09 9.323e-10 1.113e-08 1.968e-09 1.101e-08 4.420e-09 1.734e-09 3.308e-10
δ = 10−9 3.355e-08 7.637e-09 6.796e-08 2.472e-08 1.048e-07 3.964e-08 1.394e-08 3.491e-09
δ = 10−10 4.043e-07 7.570e-08 1.168e-06 3.088e-07 1.349e-06 3.973e-07 2.841e-07 8.589e-08

Ammonia
∥s∗,cart

• ∥ 2.966e-06 2.244e-06 1.769e-01 5.391e-02 1.679e-01 3.944e-02 3.370e-06 1.862e-06

max
(
|s∗,cart

• |
)

2.559e-06 1.335e-06 1.285e-01 3.170e-02 1.098e-01 2.825e-02 2.646e-06 1.189e-06

med
(
|s∗,cart

• |
)

3.024e-07 1.068e-07 3.688e-02 1.183e-03 4.326e-02 1.652e-03 1.030e-07 2.333e-08

δ = 10−1 1.174e-03 5.941e-04 3.349e-03 6.949e-04 5.134e-03 1.059e-03 1.175e-03 4.758e-04
δ = 10−2 1.144e-05 5.870e-06 3.469e-05 6.434e-06 5.111e-05 1.062e-05 1.128e-05 4.681e-06
δ = 10−3 1.144e-07 5.870e-08 3.470e-07 6.429e-08 5.111e-07 1.062e-07 1.127e-07 4.680e-08
δ = 10−4 1.144e-09 5.870e-10 3.470e-09 6.429e-10 5.111e-09 1.062e-09 1.127e-09 4.680e-10
δ = 10−5 1.127e-11 5.864e-12 3.633e-11 6.760e-12 5.117e-11 1.126e-11 1.179e-11 4.938e-12
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Shift xspher xappr

vector • = spher • = appr • = spher • = appr
differences ∗ = pos ∗ = adp ∗ = pos ∗ = adp ∗ = pos ∗ = adp ∗ = pos ∗ = adp

δ = 10−6 7.758e-12 2.554e-12 8.126e-12 1.064e-11 4.062e-11 9.602e-12 3.496e-12 1.227e-12
δ = 10−7 2.497e-11 1.479e-11 2.695e-10 1.117e-10 2.124e-10 8.453e-11 1.399e-11 7.536e-12
δ = 10−8 4.127e-10 2.205e-10 2.052e-09 9.564e-10 2.437e-09 1.407e-09 4.251e-10 1.365e-10
δ = 10−9 9.154e-09 3.867e-09 4.026e-08 1.015e-08 1.952e-08 7.339e-09 4.065e-09 9.963e-10
δ = 10−10 2.254e-08 2.835e-09 2.231e-07 6.507e-08 2.228e-07 8.545e-08 4.945e-08 2.088e-08

L-Alanine
∥s∗,cart

• ∥ 1.152e-05 1.700e-05 2.795e-01 1.359e-01 2.569e-01 1.034e-01 2.346e-06 2.095e-06

max
(
|s∗,cart

• |
)

8.666e-06 1.453e-05 9.919e-02 7.959e-02 1.015e-01 4.121e-02 1.711e-06 1.075e-06

med
(
|s∗,cart

• |
)

6.178e-08 3.168e-08 3.329e-03 2.226e-03 1.191e-02 1.491e-03 3.081e-08 8.054e-09

δ = 10−1 2.692e-03 1.108e-03 8.716e-03 1.187e-03 6.175e-03 1.411e-03 9.882e-04 4.318e-04
δ = 10−2 2.570e-05 1.030e-05 8.833e-05 1.205e-05 6.149e-05 1.378e-05 9.774e-06 4.070e-06
δ = 10−3 2.569e-07 1.030e-07 8.834e-07 1.205e-07 6.149e-07 1.377e-07 9.773e-08 4.068e-08
δ = 10−4 2.570e-09 1.030e-09 8.834e-09 1.205e-09 6.149e-09 1.377e-09 9.775e-10 4.068e-10
δ = 10−5 2.436e-11 9.282e-12 8.894e-11 1.261e-11 5.971e-11 1.495e-11 9.839e-12 3.973e-12
δ = 10−6 2.246e-10 5.155e-11 8.804e-11 3.960e-11 1.696e-10 3.889e-11 4.445e-11 8.016e-12
δ = 10−7 2.332e-09 5.101e-10 7.137e-10 3.593e-10 1.806e-09 4.765e-10 5.005e-10 8.882e-11
δ = 10−8 1.664e-08 3.716e-09 8.170e-09 2.501e-09 2.156e-08 4.806e-09 3.984e-09 7.622e-10
δ = 10−9 9.230e-08 1.766e-08 7.834e-08 3.986e-08 1.659e-07 5.032e-08 3.783e-08 7.372e-09
δ = 10−10 1.476e-06 3.429e-07 1.329e-06 5.219e-07 1.795e-06 4.391e-07 4.801e-07 7.703e-08

Table 13.2: Comparison of shift vectors: The entries in the δ-rows are ∥s∗,cart
• − s∗,cart

•,δ ∥ with • ∈ {spher, appr} and
∗ ∈ {pos, adp}. Particularly small differences are highlighted in green.
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13.2.2 Comparison with Different δ-values Within

Numerical Nonspherical Approximation

In the previous subsection, we needed to choose δ ≥ 10−6 to avoid a significant

impact by the roundoff errors. In the case of numerical refinement, we do not

have analytical values for partial derivatives of the structure factor and we can only

compute them via the numerical differentiation given in (13.1.4). Our focus will

be again on the derived design matrices and shift vectors. Since an analytically

computed numerical design matrix is not available, we substitute it by a median

design matrix D̃num,med: each entry of D̃num,med is the median of the corresponding

entries of the numerically computed matrices D̃num,δ where δ runs through the ten

step sizes from 10−1 to 10−10. As before with the analytical design matrix, we

individually compare the differences of each matrix D̃num,δ for δ ∈ {10−1, . . . , 10−10}

with this fixed median matrix D̃num,med. We also carry out analogous investigations

for the positional and ADP components of the Cartesian shift vectors. The results

are presented in Table 13.3.

Sadly, this does not give much information on the matrices and in fact it is difficult

to evaluate the impact when they have a very large variance in their values and a

vast majority of the entries are very close to 0. Especially for the design matrices,

differences are dominated by those large values even on the most similar design

matrices. Whilst this gives a decent approximation for viable values of δ, our main

analysis uses other evaluations such as wR2drops.
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Differences with xspher xappr

medians at xspher X = D̃ X = spos,cart X = sADP,cart X = D̃ X = spos,cart X = sADP,cart

epoxide
∥Xnum,med∥F 1.030e+06 2.078e-01 6.463e-02 1.042e+06 5.261e-03 1.471e-03

max(|Xnum,med|) 1.403e+05 8.718e-02 2.763e-02 1.456e+05 2.965e-03 7.808e-04
med(|Xnum,med|) 2.349e+01 2.205e-02 1.734e-03 1.754e+01 1.781e-04 6.015e-05

δ = 10−1 1.427e+03 5.976e-03 2.076e-03 1.412e+03 1.025e-03 3.930e-04
δ = 10−2 3.895e+02 1.787e-03 1.267e-03 1.730e+02 9.239e-04 1.342e-04
δ = 10−3 3.703e+02 2.183e-03 1.188e-03 1.804e+02 9.027e-04 1.286e-04
δ = 10−4 3.221e+02 2.132e-03 1.001e-03 1.994e+02 8.618e-04 1.280e-04
δ = 10−5 6.546e+02 3.377e-03 1.579e-03 6.100e+02 1.674e-03 3.108e-04
δ = 10−6 2.484e+03 7.032e-03 4.069e-03 7.579e+02 1.966e-03 6.021e-04
δ = 10−7 1.568e+03 8.172e-03 4.438e-03 2.253e+03 7.326e-03 1.963e-03
δ = 10−8 6.851e+03 6.752e-02 1.932e-02 1.183e+04 2.152e-02 4.847e-03
δ = 10−9 5.213e+04 1.761e-01 4.085e-02 8.080e+04 1.362e-02 1.250e-02
δ = 10−10 2.481e+05 2.062e-01 5.228e-02 5.076e+05 5.317e-03 1.027e-02

Ammonia
∥Xnum,med∥F 1.210e+05 1.630e-01 4.186e-02 1.088e+05 9.822e-03 3.692e-03

max(|Xnum,med|) 4.941e+04 1.199e-01 2.585e-02 4.526e+04 7.160e-03 2.492e-03
med(|Xnum,med|) 3.353e+01 3.279e-02 1.424e-03 2.202e+01 2.410e-04 2.906e-04

δ = 10−1 1.166e+02 7.482e-03 1.414e-03 1.108e+02 4.171e-04 3.043e-04
δ = 10−2 3.704e+01 2.041e-03 9.190e-04 2.243e+01 1.903e-04 4.329e-05
δ = 10−3 3.491e+01 1.972e-03 8.703e-04 2.221e+01 2.273e-04 6.535e-05
δ = 10−4 5.591e+01 5.273e-04 9.711e-04 2.831e+01 2.869e-04 1.045e-04
δ = 10−5 7.272e+01 2.351e-03 1.950e-03 7.544e+01 1.721e-04 1.767e-04
δ = 10−6 1.481e+02 4.688e-04 5.895e-04 1.011e+02 5.941e-04 1.382e-04
δ = 10−7 1.286e+02 1.204e-03 2.295e-03 1.555e+02 4.645e-04 2.962e-04
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Differences with xspher xappr

medians at xspher X = D̃ X = spos,cart X = sADP,cart X = D̃ X = spos,cart X = sADP,cart

δ = 10−8 7.850e+02 1.080e-02 1.248e-02 8.210e+02 1.716e-03 6.756e-04
δ = 10−9 6.232e+03 1.230e-01 5.354e-02 7.742e+03 5.007e-03 3.432e-03
δ = 10−10 8.117e+08 1.629e-01 1.019e-01 6.553e+04 9.078e-03 6.399e-03

L-Alanine
∥Xnum,med∥F 1.047e+07 2.372e-01 1.147e-01 1.078e+07 7.056e-03 1.866e-03

max(|Xnum,med|) 1.027e+06 8.597e-02 7.270e-02 1.013e+06 3.149e-03 8.487e-04
med(|Xnum,med|) 1.018e+02 2.346e-03 1.275e-03 7.241e+01 3.643e-04 2.049e-05

δ = 10−1 1.850e+04 7.604e-03 2.208e-03 1.919e+04 9.750e-04 4.460e-04
δ = 10−2 1.223e+03 2.975e-03 1.575e-03 1.021e+03 5.067e-04 2.092e-04
δ = 10−3 1.240e+03 3.036e-03 1.558e-03 1.004e+03 4.750e-04 2.081e-04
δ = 10−4 1.323e+03 3.901e-03 1.602e-03 1.072e+03 6.084e-04 2.018e-04
δ = 10−5 2.529e+03 4.207e-03 3.028e-03 1.844e+03 1.790e-03 4.132e-04
δ = 10−6 5.450e+03 1.485e-02 5.648e-03 4.682e+03 4.876e-03 8.102e-04
δ = 10−7 9.797e+03 1.175e-02 8.702e-03 1.975e+04 1.364e-02 4.951e-03
δ = 10−8 2.828e+04 8.296e-02 4.441e-02 1.937e+05 2.885e-02 7.378e-03
δ = 10−9 2.090e+05 2.177e-01 5.696e-02 2.012e+05 1.378e-02 9.480e-03
δ = 10−10 1.416e+06 2.369e-01 6.540e-02 1.229e+06 6.823e-03 1.402e-02

Table 13.3: Comparison with the medians: The entries in the δ-rows are ∥Xnum,med − Xnum,δ∥F for X ∈
{D, spos,cart, sADP,cart}. Particularly small differences are highlighted in green.
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We first note that the numerical shift vector components at xappr are smaller than

at xspher (by more than a factor of 10). This is not surprising since we expect xappr

to be a better approximation of the numerical model than xspher. With regards to

the step size δ > 0, the results do not provide a clear indication for the best choice.

While the roundoff errors significantly increase for decreasing step sizes from 10−6 to

10−10 and δ = 10−1 is definitely not in the competition, there is no obvious “winner”

amongst the other δ-choices between 10−2 to 10−6. The picture will become much

clearer in the following subsections, where we investigate the numerical refinement

journeys from xappr to the numerical optimum xnum,δ via different step sizes δ > 0.

We finally note the following additional consideration; the number of digits stored

within Olex2 and transferred to the quantum mechanical software is truncated. The

atomic locations are stored as relative values with 8 decimal places, and thus only

shifts above 10−8Å to 10−6Å (dependant on the unit cell lengths of the structure)

will provide a reasonable estimation in cases where we involve the external quantum

mechanical software, as we do for the numerical determination of the derivative.
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13.3 The Quality of Numerical Nonspherical

Refinement

This section is concerned with the quality of numerical nonspherical refinement. In

particular, we test it with regards to the following criteria:

Convergence When numerical nonspherical refinement has reached a ‘minimum’,

the model should no longer fluctuate - future shift vectors should be sufficiently

small

Improvement numerical nonspherical refinement should result in a smaller wR2-

factor than spherical or approximate nonspherical refinement

Consistency The minimum should be independent of the start model used for the

numerical nonspherical refinement.

Henceforth, we will use the following notation: starting with an initial model

x0 = xspher or x0 = xappr, numerical nonspherical refinement iteratively generates a

sequence xj of 20 models via xj+1 = xj + sj, where sj is the j-th shift vector. Then

xnum is the model xj with the minimal wR2-factor in this sequence.

As we consider the effectiveness of numerical nonspherical refinement with regards

to the above criteria, we must also select a viable choice δ for the step size of our

numerical differentiation. The following investigations also help us to find such a

potentially optimal step size.

13.3.1 Convergence

In Figures 13.4 to 13.6, we see the maximal shift/esd (see Section 6.9 in Part

I for more details) for our examples over 20 refinement steps for each choice of

δ ∈ {10−1Å, 10−2Å, 10−3Å, 10−4Å, 10−5Å, 10−6Å}. The 20 refinement steps are rep-

resented by the horizontal axis. At step j, we divide each parameter in the shift
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Figure 13.4: Maximal shift/esd for numerical nonspherical refine-
ment starting from xappr for δ = 10−1Å, ..., 10−6Å (epoxide)
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Figure 13.5: Maximal shift/esd for numerical nonspherical refine-
ment starting from xappr for δ = 10−1Å, ..., 10−6Å (ammonia)
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Figure 13.6: Maximal shift/esd for numerical nonspherical refine-
ment starting from xappr for δ = 10−1Å, ..., 10−6Å (L-alanine)

vector sj by the corresponding uncertainty of the model xj and take the maximum

over these quotients. This value shift/esd is represented vertically above each step.

If shift/esd is lower than 0.01 the model is considered settled as the shifts cannot

cause a significant change to the parameters (compared to their uncertainties). Fig-

ures 13.4 to 13.6 show that this convergence threshold (represented by the dashed

line) is not reached for δ ∈ {10−4Å, 10−5Å, 10−6Å}. For δ ∈ {10−1Å, 10−2Å, 10−3Å},

convergence is reached from the third step onwards. For such choices of δ, the cri-

terion of convergence is achieved. As only these three δ values satisfy convergence,

we may only choose one of them as our final δ. However, we continue considering

all 6 tested values to allow viewing of the trends across them.

13.3.2 Improvement

Figures 13.7 to 13.15 show the wR2-factors of numerical nonspherical refinement for

our 3 molecules, with three figures for each molecule with increasing focus on the

lowest wR2-factors achieved (via dropping initial refinement steps and extreme δ-
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Figure 13.7: The progression of wR2(xj) for j = 0, 1, . . . , 20 and for
δ = 10−1, . . . , 10−6 (epoxide)
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δ = 10−2, . . . , 10−4 (epoxide)

0 2 4 6 8 10 12 14 16 18 20
1.915

1.920

1.925

1.930

1.935

1.940

1.945

refinement step j

w
R

2(
x j

,δ
)

in
pe

rc
en

ta
ge

s

10−1

10−2

10−3

10−4

10−5

10−6

Figure 13.10: The progression of wR2(xj) for j = 0, 1, . . . , 20 and
for δ = 10−1, . . . , 10−6 (ammonia)
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Figure 13.11: The progression of wR2(xj) for j = 1, 2, . . . , 20 and
for δ = 10−1, . . . , 10−5 (ammonia)
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for δ = 10−2, . . . , 10−4 (ammonia)
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Figure 13.13: The progression of wR2(xj) for j = 0, 1, . . . , 20 and
for δ = 10−1, . . . , 10−6 (L-Alanine)
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for δ = 10−1, . . . , 10−5 (L-Alanine)
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Figure 13.15: The progression of wR2(xj) for j = 1, 2, . . . , 20 and
for δ = 10−2, . . . , 10−4 (L-Alanine)

values). We note that many of the points overlap, in particular all journeys have the

same start point of 4.655% for epoxide, 1.944% for ammonia and 3.230% for alanine.

In particular, δ = 10−2Å, 10−3Å, 10−4Å have very similar essentially horizontal wR2

progressions from step 2 onwards. Since the wR2-factor decreases compared to the

start value, we see that numerical nonspherical refinement provides improvement

(compared to approximate nonspherical refinement). Figures 13.7, 13.10 and 13.13

also indicates that δ = 10−5Å and 10−6Å provide results with larger wR2-factor shifts

later in the journey (outliers) and we consider these δ therefore as worse than the

others. Such increased errors at low δ are typically related to errors in the storage

of numbers. In our case, this could be related to the way that NoSpherA2 passes

information, such as atomic positions, to the quantum mechanical program, and

more accurate passing of information could allow smaller δ choices. Presently, we

are limited by the 8-digit precision of the wfn file, which can lead to an error of up

to 2× 10−8Å in the input to the quantum mechanical program.

Tables 13.4 to 13.9 show the differences between the optimal models of numerical
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δ1 = 10−1 δ1 = 10−2 δ1 = 10−3 δ1 = 10−4 δ1 = 10−5 δ1 = 10−6

δ2 = 10−1 0 6.429e-04 6.586e-04 5.740e-04 7.520e-04 1.307e-03

δ2 = 10−2 6.429e-04 0 1.060e-04 3.234e-04 6.423e-04 8.825e-04

δ2 = 10−3 6.586e-04 1.060e-04 0 2.534e-04 6.578e-04 8.245e-04

δ2 = 10−4 5.740e-04 3.234e-04 2.534e-04 0 6.774e-04 8.579e-04

δ2 = 10−5 7.520e-04 6.423e-04 6.578e-04 6.774e-04 0 1.132e-03

δ2 = 10−6 1.307e-03 8.825e-04 8.245e-04 8.579e-04 1.132e-03 0

approximate 6.303e-03 6.259e-03 6.262e-03 6.326e-03 6.560e-03 6.656e-03

Table 13.4: The difference in final model
∣∣∣xpos,cart

num,δ1 − xpos,cart
num,δ2

∣∣∣ in
epoxide in Å.

δ1 = 10−1 δ1 = 10−2 δ1 = 10−3 δ1 = 10−4 δ1 = 10−5 δ1 = 10−6

δ2 = 10−1 0 3.541e-04 3.665e-04 3.567e-04 2.894e-04 6.344e-04

δ2 = 10−2 3.541e-04 0 3.132e-05 8.148e-05 2.352e-04 3.666e-04

δ2 = 10−3 3.665e-04 3.132e-05 0 7.082e-05 2.377e-04 3.471e-04

δ2 = 10−4 3.567e-04 8.148e-05 7.082e-05 0 2.394e-04 3.768e-04

δ2 = 10−5 2.894e-04 2.352e-04 2.377e-04 2.394e-04 0 4.994e-04

δ2 = 10−6 6.344e-04 3.666e-04 3.471e-04 3.768e-04 4.994e-04 0

approximate 1.939e-03 1.790e-03 1.792e-03 1.815e-03 1.904e-03 1.713e-03

Table 13.5: The difference in final model
∣∣∣xADP,cart

num,δ1 − xADP,cart
num,δ2

∣∣∣ in
Epoxide in Å2.

δ1 = 10−1 δ1 = 10−2 δ1 = 10−3 δ1 = 10−4 δ1 = 10−5 δ1 = 10−6

δ2 = 10−1 0 7.526e-04 7.559e-04 5.684e-04 9.401e-04 8.563e-04

δ2 = 10−2 7.526e-04 0 8.574e-05 2.515e-04 4.376e-04 1.939e-04

δ2 = 10−3 7.559e-04 8.574e-05 0 2.772e-04 4.980e-04 1.852e-04

δ2 = 10−4 5.684e-04 2.515e-04 2.772e-04 0 5.975e-04 3.084e-04

δ2 = 10−5 9.401e-04 4.376e-04 4.980e-04 5.975e-04 0 5.957e-04

δ2 = 10−6 8.563e-04 1.939e-04 1.852e-04 3.084e-04 5.957e-04 0

approximate 7.893e-03 8.608e-03 8.598e-03 8.379e-03 8.815e-03 8.641e-03

Table 13.6: The difference in final model
∣∣∣xpos,cart

num,δ1 − xpos,cart
num,δ2

∣∣∣ in
Ammonia in Å.
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δ1 = 10−1 δ1 = 10−2 δ1 = 10−3 δ1 = 10−4 δ1 = 10−5 δ1 = 10−6

δ2 = 10−1 0 2.888e-04 3.087e-04 2.211e-04 3.265e-04 3.102e-04

δ2 = 10−2 2.888e-04 0 3.259e-05 9.135e-05 1.335e-04 4.988e-05

δ2 = 10−3 3.087e-04 3.259e-05 0 1.076e-04 1.539e-04 5.285e-05

δ2 = 10−4 2.211e-04 9.135e-05 1.076e-04 0 1.978e-04 9.549e-05

δ2 = 10−5 3.265e-04 1.335e-04 1.539e-04 1.978e-04 0 1.653e-04

δ2 = 10−6 3.102e-04 4.988e-05 5.285e-05 9.549e-05 1.653e-04 0

approximate 2.646e-03 2.907e-03 2.918e-03 2.820e-03 2.971e-03 2.910e-03

Table 13.7: The difference in final model
∣∣∣xADP,cart

num,δ1 − xADP,cart
num,δ2

∣∣∣ in
Ammonia in Å2.

δ1 = 10−1 δ1 = 10−2 δ1 = 10−3 δ1 = 10−4 δ1 = 10−5 δ1 = 10−6

δ2 = 10−1 0 8.370e-04 8.807e-04 8.877e-04 7.625e-04 1.390e-03

δ2 = 10−2 8.370e-04 0 1.553e-04 4.561e-04 8.823e-04 9.830e-04

δ2 = 10−3 8.807e-04 1.553e-04 0 4.321e-04 8.670e-04 1.004e-03

δ2 = 10−4 8.877e-04 4.561e-04 4.321e-04 0 7.788e-04 1.089e-03

δ2 = 10−5 7.625e-04 8.823e-04 8.670e-04 7.788e-04 0 1.501e-03

δ2 = 10−6 1.390e-03 9.830e-04 1.004e-03 1.089e-03 1.501e-03 0

approximate 7.549e-03 7.422e-03 7.468e-03 7.553e-03 7.686e-03 7.288e-03

Table 13.8: The difference in final model
∣∣∣xpos,cart

num,δ1 − xpos,cart
num,δ2

∣∣∣ in L-
Alanine in Å.

δ1 = 10−1 δ1 = 10−2 δ1 = 10−3 δ1 = 10−4 δ1 = 10−5 δ1 = 10−6

δ2 = 10−1 0 4.429e-04 4.801e-04 5.091e-04 4.833e-04 5.818e-04

δ2 = 10−2 4.429e-04 0 8.166e-05 1.372e-04 2.398e-04 2.656e-04

δ2 = 10−3 4.801e-04 8.166e-05 0 8.823e-05 2.159e-04 2.488e-04

δ2 = 10−4 5.091e-04 1.372e-04 8.823e-05 0 1.751e-04 2.474e-04

δ2 = 10−5 4.833e-04 2.398e-04 2.159e-04 1.751e-04 0 3.542e-04

δ2 = 10−6 5.818e-04 2.656e-04 2.488e-04 2.474e-04 3.542e-04 0

approximate 2.058e-03 1.988e-03 2.043e-03 2.088e-03 2.156e-03 2.048e-03

Table 13.9: The difference in final model
∣∣∣xADP,cart

num,δ1 − xADP,cart
num,δ2

∣∣∣ in
Alanine in Å2.
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refinement obtained via different δ, labelled xnum,δ. The smallest distanced are

highlighted in green, the worst in red, and those in the middle in yellow. It is clear

that δ = 10−2Å and δ = 10−3Å agree most closely across all molecules for both

the positional and ADP components. δ = 10−4Å shows some close agreement with

these. For Ammonia (13.6 and13.7), the refinement with δ = 10−6Å achieved a low

wR2-factor, and this is backed up by it having a strong agreement with δ = 10−2Å

and δ = 10−3Å, however typically the inconsistency of δ = 10−6Å makes it unreliable

and not a good choice for refinement. Additionally, all choices of δ resulted in models

which agreed more strongly with each other than with approximate refinement, that

is, all such δ choices provide an improvement to the model.

In view of the above results, we decided to fix the Cartesian step size to be δ = 10−3Å

for all numerical differentiation in the remainder of this paper.

13.3.3 Consistency

Finally, to show consistency, we compare the journeys of numerical nonspherical

refinement beginning at the two different start models xspher and xappr, as shown in

Table 13.10.
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shift/esd shift/esd maximal atomic

step (×105) (×105) wR2 wR2 distance
(from xspher) (from xappr) (from xspher) (from xappr) (in 10−6Å)

Ammonia
k=0 392693 143955 9.2821% 1.9440% 126974(H)
k=1 198189 18797 2.6092% 1.9180% 20665(H)
k=2 47387 2818 1.9216% 1.9176% 2458(H)
k=3 7724 760 1.9176% 1.9176% 380(H)
k=4 1823 324 1.9175% 1.9176% 102(H)
k=5 592 142 1.9176% 1.9176% 36(H)
k=6 140 78 1.9176% 1.9176% 11(H)

k=7...20 ≤88 ≤119 1.9176% 1.9176% ≤5(H)
Epoxide

k=0 674626 51117 12.0375% 4.6551% 130527(H3a)
k=1 281762 4568 4.9113% 4.6536% 21095(H2b)
k=2 35810 812 4.6561% 4.6536% 3093(H3a)
k=3 6868 476 4.6537% 4.6536% 461(H3b)
k=4 1365 152 4.6536% 4.6536% 136(H3a)
k=5 292 88 4.6536% 4.6536% 38(H3a)
k=6 138 102 4.6536% 4.6536% 16(H3b)

k=7...20 ≤99 ≤126 4.6536% 4.6536% ≤11(H3b)



13.3.
T

he
Q

uality
of

N
um

erical
N

onspherical
R

efinem
ent

213

shift/esd shift/esd maximal atomic
step (×105) (×105) wR2 wR2 distance

(from xspher) (from xappr) (from xspher) (from xappr) (in 10−6Å)
L-Alanine

k=0 992154 50245 6.4989% 3.2299% 126479(H2b)
k=1 308603 3568 3.3127% 3.2291% 24140(H1a)
k=2 32231 641 3.2298% 3.2291% 1818(H1a)
k=3 7711 244 3.2291% 3.2291% 237(H1c)
k=4 1838 176 3.2291% 3.2291% 59(H1b)
k=5 431 202 3.2291% 3.2291% 20(H1b)
k=6 214 194 3.2291% 3.2291% 16(H1b)

k=7...20 ≤190 ≤267 3.2291% 3.2291% ≤14(H1a)

Table 13.10: Progression of refinement values from xspher and xappr via numerical nonspherical refinement with
δ = 10−3Å. In the first two columns, if the shift/esd is below 0.01, it is colored green, else red. The final column
represents the maximal distance between sites of corresponding atoms (with the specific atom giving this maximal
value in brackets) through numerical nonspherical refinement from these two start points.
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The first four columns of Table 13.10 demonstrate the typical convergence measures

shift/esd and wR2-factor for numerical nonspherical refinement processes starting

from xspher and from xappr.

Green values in the first two columns mean that the convergence criterion “shift/esd

< 0.01” is achieved while red valued mean that it is not.

As expected, the initial wR2-factor of numerical nonspherical refinement starting

from xspher is much higher than the initial wR2-factor of numerical nonspherical

refinement starting from xappr, but the wR2-factors of both journeys agree already

after a few steps in both refinement processes.

Let us, finally, focus on the last column of Table 13.10. Let xk,s and xk be the

models obtained via k numerical nonspherical refinement steps starting from xspher

and xappr, respectively. This column records the maximal distance (in Å) between

sites of corresponding atoms in the same refinement step of each journey. For

example, the third entry 2458× 10−6 Å is the distance between the atom site of H

of ammonia after three numerical nonspherical refinement steps starting from xspher

and the same atom site of H after three numerical nonspherical refinement steps

starting from xappr (since this distance is maximal for H amongst all corresponding

atoms). Table 13.11 shows that this maximum is always assumed by one of the

hydrogen atoms which is also expected. These maximal distances between sites of

corresponding atoms shrink significantly after each refinement step until they reach

values around 10−6 Å. Since, after about 7 refinement steps, these distances are about

the same size as the maximal Cartesian shifts of the individual atoms from the model

xk to the model xk+1 , we can safely conclude that convergence of both refinement

processes is essentially obtained after at most 7 refinement steps. Moreover, since,

the two refinement processes from different start models xspher and xappr lead after

about 7 refinement steps to models whose atom sites agree up to 10−6 Å, the table

proves in particular consistency of numerical nonspherical refinement.

Figures 13.16 to 13.19 show the path of numerical refinement from both spherical
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maximal Cartesian maximal Cartesian
maximal atomic atomic shift atomic shift

step distance (in 10−6Å) (in 10−6Å)
(in 10−6Å) (from xspher) (from xappr)

Ammonia
k=0 126974(H) - -
k=1 20665(H) 115659(H) 9355(H)
k=2 2458(H) 21309(H) 981(H)
k=3 380(H) 2457(H) 168(H)
k=4 102(H) 420(H) 44(H)
k=5 36(H) 127(H) 15(H)
k=6 11(H) 35(H) 7(H)

k=7...20 ≤5(H) ≤8(H) ≤6(H)
Epoxide

k=0 130527(H3a) - -
k=1 21095(H2b) 124253(H3a) 4694(H3a)
k=2 3093(H3a) 21697(H3b) 321(H3a)
k=3 461(H3b) 2653(H3a) 80(H3a)
k=4 136(H3a) 458(H3b) 45(H3a)
k=5 38(H3a) 93(H3a) 12(H2b)
k=6 16(H3b) 27(H3a) 9(H3b)

k=7...20 ≤11(H3b) ≤12(H3a) ≤13(H3b)
L-Alanine

k=0 126479(H2b) - -
k=1 24140(H1a) 110776(H2b) 4802(H1c)
k=2 1818(H1a) 22253(H1a) 172(H1a)
k=3 237(H1c) 1655(H1a) 18(H1b)
k=4 59(H1b) 194(H1c) 19(H1b)
k=5 20(H1b) 50(H1b) 13(H1c)
k=6 16(H1b) 16(H1b) 14(H1c)

k=7...20 ≤14(H1a) ≤19(H1b) ≤14(H1a)

Table 13.11: Progression of refinement values from xspher and xappr
via numerical nonspherical refinement with δ = 10−3Å. The first
column represents the maximal distance (together with the atom
achieving this distance in brackets) between sites of corresponding
atoms through numerical nonspherical refinement from these two
start points, whilst the last two columns represent the maximal
Cartesian atomic shift within the given refinement path, with the
atom achieving this shift named in brackets.
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Figure 13.16: The progression of wR2(xj) for j = 0, 1, . . . , 20 begin-
ning at xspher and xappr (epoxide)
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Figure 13.17: The progression of wR2(xj) for j = 3, 4, . . . , 20 begin-
ning at xspher and xappr (epoxide)
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Figure 13.18: The progression of wR2(xj) for j = 3, 4, . . . , 20 begin-
ning at xspher and xappr (ammonia)
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Figure 13.19: The progression of wR2(xj) for j = 3, 4, . . . , 20 begin-
ning at xspher and xappr (alanine)
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and approximate minima, and clearly shows the two paths converging to the same

wR2.
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13.3.4 Time Cost

Time cost comparisons of approximate and numerical non-spherical refinements are

presented in Table 13.12. We have also added in hybrid nonspherical refinement

which will be defined in Subsection 13.4.1 for completeness. We present the median

time cost for one refinement step (that is, the generation and application of one

shift vector) amongst 20 random refinement steps in each of the three refinement

processes. These were carried out on a computer running Windows 10 with 15GB

of RAM and 3 CPU cores.

Molecule Approximate Hybrid Numerical

Ammonia 9.3 63 79

Epoxide 11.8 302 503

L-Alanine 47.2 2137 3783

Table 13.12: Median time costs for one step of each non-spherical
refinement process (in seconds)

As numerical non-spherical refinement requires a quantum mechanical calculation

twice for each positional parameter in x, as well as one for the central Fcalc, we expect

it to take (2 × #parameters + 1) times as long to run as approximate non-spherical

refinement does, which is reflected in this Table. In the case of hybrid non-spherical

refinement, we count only those positional parameters relating to hydrogen atoms.

For example, in the case of L-alanine, one expects that numerical will take 79 times

as long, and hybrid 43 times as long, as approximate non-spherical refinement. This

is in good agreement with Table 13.12, where the ratios are 3783/47.2 ≈ 80 and

2137/47.2 ≈ 45 respectively. This makes clear that the major contribution to the

time cost is the quantum mechanical calculations.
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13.4 Further Refinement Methods

This section focuses on two additional refinement methods, whose methodology lie

between numerical and approximate refinement (hybrid refinement) and approximate

and spherical refinement (mixed refinement). Hybrid refinement uses numerical

information for the hydrogen-related information, and approximate information for

the non-hydrogen parts, and provides a result closer to numerical refinement than

approximate refinement is with a lower time cost. Mixed refinement uses spherical

information for the derivatives and only uses non-spherical information for the

structure factors, and yet provides a result much closer to approximate refinement

than spherical refinement. These observations are purely academic, as there is no

time improvement gained with this method. This section covers their definitions

and echoes of the testing completed in Section 13.3 to verify the plausibility of these

methods.

13.4.1 Hybrid Refinement

We will see later in Section 13.5 that approximate refinement provides very accurate

models for heavier atoms in comparison to numerical refinement. However, the data

on hydrogen atoms are less precise. This observation motivates a nonspherical refine-

ment process which focusses specifically on the improvement of the hydrogen data.

The idea is to use numerical partial derivatives of the structure factor for directions

corresponding to hydrogen atoms and to use approximate partial derivatives for all

other directions. We refer to this compromise between approximate and numerical

refinement as hybrid (nonspherical) refinement. The entries of the design matrix

D̃hybr(x) of hybrid refinement are therefore given by

(D̃hybr(x))kn =



(
∂K̃Y
∂xn

)
num

(x, hk) if xn is a hydrogen coordinate,

(
∂K̃Y
∂xn

)
appr

(x, hk) otherwise.

(13.4.1)
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The computation of the partial derivatives on the right hand side of (13.4.1) is based

on (12.2.4), (13.1.3) and (13.1.4). The time effort to compute the partial derivatives

in a hybrid refinement step is a fraction of the time effort for a numerical refinement

step. It agrees roughly with the fraction of hydrogen atoms in the molecule.
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Figure 13.20: Maximal shift/esd for numerical non-spherical refine-
ment starting from xappr for hybrid refinement and from xappr and
xspher for numerical refinement (epoxide)

Figures 13.20 to 13.22 compare the convergence of hybrid refinement starting from

xappr with that of numerical refinement starting from xspher and xappr in terms of

the shift/esd. Since the vertical scale is logarithmic and all graphs start in the

first refinement steps with the same slope, we have exponential convergence with

the same convergence rate (for both hybrid and numerical refinement) which then

transitions into a horizontal zigzag behaviour, where the convergence is essentially

completed and the models undergo only minor modifications with no apparent further

improvement. (We have seen this already earlier in Figures 13.7 to 13.14 in the case

of numerical refinement since there is no significant further improvement of the

wR2factor from the 6-th refinement step onwards).

Similarly, we can view the wR2-factor progression from the approximate minimum
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Figure 13.21: Maximal shift/esd for numerical non-spherical refine-
ment starting from xappr for hybrid refinement and from xappr and
xspher for numerical refinement (ammonia)
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Figure 13.22: Maximal shift/esd for numerical non-spherical refine-
ment starting from xappr for hybrid refinement and from xappr and
xspher for numerical refinement (L-alanine)
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Figure 13.23: The progression of wR2(xj) for numerical and hybrid
refinement (epoxide)
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Figure 13.24: The progression of wR2(xj) for numerical and hybrid
refinement, skipping the first step (epoxide)
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Figure 13.25: The progression of wR2(xj) for numerical and hybrid
refinement (ammonia)
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Figure 13.26: The progression of wR2(xj) for numerical and hybrid
refinement, skipping the first two steps (ammonia)
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Figure 13.27: The progression of wR2(xj) for numerical and hybrid
refinement (L-Alanine)
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Figure 13.28: The progression of wR2(xj) for numerical and hybrid
refinement, skipping the first step (L-Alanine)



226 Chapter 13. Investigating the Approximation

through both hybrid and numerical refinements in Figures 13.23 to 13.28, which

clearly indicate that hybrid refinement provides a huge step towards the results

attained through numerical nonspherical refinement.

We will analyse in Section 13.5 whether hybrid refinement provides a more accurate

model for all atoms (including the hydrogen atoms) than approximate refinement

(in comparison to numerical refinement).

Henceforth we will refer to xhybr as the best model (with respect to wR2) obtained

within 20 hybrid refinement steps starting from xappr. This is in analogy to the

earlier definition of xnum.

13.4.2 Mixed Refinement Using smix = Sspher · r̃nonspher

Investigations Based on s = S · r̃

As discussed in Part I (Subsection 6.6), the shift vector at x ∈ RN for the refinement

step is obtained via the product s(x) = S(x) · r̃(x). There are two possibilities for

the residuals, namely r̃spher and r̃nonspher, and four possibilities for the shift matrices,

namely Sspher, Sappr, Shybr and Snum (derived from their corresponding design matrices

D̃spher, D̃appr, D̃hybr and D̃num via S•(x) = (D̃•(x)⊤WD̃•(x))−1D̃•(x)⊤W (see (6.6.4)

in Section 6.6) with • ∈ {spher, appr, hybr, num}). Recall that the shift vectors of

our four refinements under consideration are then given by

spherical refinement: sspher = Sspher · r̃spher,

approximate refinement: sappr = Sappr · r̃nonspher,

hybrid refinement: shybr = Shybr · r̃nonspher,

numerical refinement: snum = Snum · r̃nonspher.

However, there are four other possibilities to combine our shift matrices and residuals.

In this section, we investigate the contribution of the shift matrices and the residuals

to the resulting shift vector and will see that one of these remaining combinations,
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namely Sspher · r̃nonspher, does also provide surprisingly good refinement results. We

will refer to this refinement as mixed (spherical-nonspherical) refinement, and its

corresponding optimum as xmix.
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Shift Vector Analysis at xspher

Table 13.13 confirms our expectation that the numerical and approximate shift

vectors at the spherical optimum xspher are roughly in agreement.

shift vector components at xspher epoxide L-alanine ammonia

∥spos,cart
num ∥ 2.089e-01 1.157e-01 2.386e-01∥∥∥spos,cart
appr

∥∥∥ 2.388e-01 1.250e-01 2.795e-01

∢
(
spos,cart

num , spos,cart
appr

)
3.09◦ 2.36◦ 5.13◦∥∥∥sADP,cart

num

∥∥∥ 6.434e-02 3.435e-02 1.145e-01∥∥∥sADP,cart
appr

∥∥∥ 9.245e-02 4.560e-02 1.359e-01

∢
(
sADP,cart

num , sADP,cart
appr

)
11.30◦ 8.48◦ 12.77◦

Table 13.13: Comparison of numerical and approximate Cartesian
shift vector components at xspher

Recall that shift vectors are a product of the shift matrix and the residua. Therefore

it makes sense to investigate the contributions of the factors S and r̃ to the length

and direction of the shift vectors at xspher in Tables 13.14 and 13.15 by considering

all 8 possible combinations. The norms || · || are ||s|| =
√

s · s, the symbol ∢ in

these tables stands for the angle of the vector under consideration to s♦,cart
num with

♦ ∈ {pos, ADP}. We provide no angle information in the last rows of the tables,

since s♦,cart
spher is essentially zero at the spherical optimum and the zero vector does not

have a well defined angle with the corresponding numerical shift vector component.

The combinations in the Tables 13.14 and 13.15 highlighted in blue are products

S• · r̃∗ mixing spherical and nonspherical factors. It seems questionable to consider

such combinations as meaningful “shift vectors”.

However, all 8 combinations in these tables provide useful information about which

of the two factors has more influence into the length and direction of the resulting

“shift vector”. The tables reveal that the products undergo a significant change when

the nonspherical residual is replaced by the spherical residual and that all products
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(S• · r̃∗)pos,cart epoxide L-alanine ammonia

∥ · ∥ ∢ ∥ · ∥ ∢ ∥ · ∥ ∢

(•, ∗) = (num, nonspher) 2.09e-01 0◦ 1.16e-01 0◦ 2.39e-01 0◦

(•, ∗) = (hybr, nonspher) 2.09e-01 0.2◦ 1.16e-01 0.2◦ 2.38e-01 0.1◦

(•, ∗) = (appr, nonspher) 2.39e-01 3.1◦ 1.25e-01 2.4◦ 2.79e-01 5.1◦

(•, ∗) = (spher, nonspher) 2.51e-01 12.9◦ 1.33e-01 5.8◦ 2.98e-01 7.9◦

(•, ∗) = (num, spher) 1.15e-02 83.6◦ 3.24e-03 81.7◦ 2.19e-02 91.2◦

(•, ∗) = (hybr, spher) 1.15e-02 80.8◦ 3.13e-03 77.5◦ 2.19e-02 91.4◦

(•, ∗) = (appr, spher) 1.24e-02 90.0◦ 8.54e-03 151.1◦ 2.71e-02 117.1◦

(•, ∗) = (spher, spher) 2.24e-11 - 2.18e-11 - 2.92e-05 -

Table 13.14: Contributions of the factors S and r̃ to the positional
shift vector component in comparison to the numerical shift vector
component at xspher

S• · r̃nonspher (with • ∈ {num, hybr, appr, spher}) represent roughly the same vectors.

This observation motivates consideration of the product of the spherical shift matrix

with the nonspherical residual as another potentially useful shift vector. We will see

in the following sections that the resulting mixed refinement process converges for

our 3 test molecules and leads to a significantly better optimal model than spherical

refinement, measured with regards to the wR2factor. In support of this deduction of

the importance of the choice of r̃, we can see that shift vectors using r̃spher typically

are at 90◦ (or worse) to snum, and would thus provide no progress towards the

numerical minimum2.

Investigation of Mixed Refinement

It is natural to be doubtful of a refinement that mixes spherical shift matrices with

nonspherical residuals. An immediate question is whether a refinement based on

such a combination will converge at all. In fact, Figures 13.29 to 13.31 indicate

that this process converges exponentially to an optimum with a similar convergence

2the exception to this are the ADP shifts for ammonia, which with a 30◦ similarity may provide
reasonable steps
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(S• · r̃∗)ADP,cart epoxide L-alanine ammonia

∥ · ∥ ∢ ∥ · ∥ ∢ ∥ · ∥ ∢

(•, ∗) = (num, nonspher) 6.43e-02 0◦ 3.43e-02 0◦ 1.15e-01 0◦

(•, ∗) = (hybr, nonspher) 6.43e-02 0.6◦ 3.43e-02 0.3◦ 1.15e-01 0.2◦

(•, ∗) = (appr, nonspher) 9.24e-02 11.3◦ 4.56e-02 8.5◦ 1.36e-01 12.8◦

(•, ∗) = (spher, nonspher) 1.02e-01 22.1◦ 4.17e-02 20.6◦ 1.23e-01 30.8◦

(•, ∗) = (num, spher) 1.08e-02 95.1◦ 4.92e-03 88.1◦ 5.18e-02 31.1◦

(•, ∗) = (hybr, spher) 1.09e-02 94.2◦ 4.88e-03 87.5◦ 5.20e-02 31.2◦

(•, ∗) = (appr, spher) 1.13e-02 95.4◦ 6.42e-03 104.1◦ 5.56e-02 32.3◦

(•, ∗) = (spher, spher) 2.09e-13 - 1.42e-11 - 4.14e-06 -

Table 13.15: Contributions of the factors S and r̃ to the ADP
shift vector component in comparison to the numerical shift vector
component at xspher

rate to numerical refinement. Note that the refinement journeys start from xspher.

The graphs in these figures reveal also that this “mixed” process takes a few more

refinement steps for the models to finally settle in an optimum. We call this process

henceforth mixed (spherical-nonspherical) refinement, and we add it to the list of

refinement processes that we compare in Section 13.5. Its shift vectors are computed

via

s(x) = Sspher(x) · r̃nonspher(x).

We do note that presently, mixed refinement requires just as much calculation as

approximate nonspherical refinement, and provides no benefit over it, so we do not

expect it to provide any practical use, but it remains theoretically interesting.

We can see in Figures 13.32 to 13.36 that mixed refinement provides a significant

reduction in the wR2 factor from the spherical minimum. Our investigations show

that it remains worse than approximate refinement, but is far closer to approximate

refinement than expected.
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Figure 13.29: maximal shift/esd along numerical refinement journey
starting from xspher and along mixed refinement journey starting
from xspher (epoxide)

0 2 4 6 8 10 12 14 16 18 20

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

refinement step

sh
ift

/e
sd

num from xspher
mix from xspher

Figure 13.30: maximal shift/esd along numerical refinement journey
starting from xspher and along mixed refinement journey starting
from xspher (ammonia)
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Figure 13.31: maximal shift/esd along numerical refinement journey
starting from xspher and along mixed refinement journey starting
from xspher (L-alanine)
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Figure 13.32: The progression of wR2(xj) for j = 0, 1, . . . , 20 for
mixed and numerical refinement (epoxide)
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Figure 13.33: The progression of wR2(xj) for j = 0, 1, . . . , 20 for
mixed and numerical refinement (ammonia)
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Figure 13.34: The progression of wR2(xj) for j = 2, 3, . . . , 20 for
mixed and numerical refinement (ammonia)
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Figure 13.35: The progression of wR2(xj) for j = 0, 1, . . . , 20 for
mixed and numerical refinement (L-alanine)
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Figure 13.36: The progression of wR2(xj) for j = 2, 3, . . . , 20 for
mixed and numerical refinement (L-alanine)
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13.5 Comparison of Refinement Minima

This section is concerned with a direct comparison of the final models obtained

via our different refinement methods. Within this, we work with the assumption

that numerical nonspherical refinement is the best theoretical refinement method

for our X-ray data, and measure the quality of the results obtained with spherical

refinement, approximate nonspherical refinement and hybrid nonspherical refinement

against that. As mentioned previously, all measurements are based on the Cartesian

step size δ = 10−3Å. Our results are in agreement with general consensus that

approximate nonspherical refinement provides a significant improvement to classical

spherical refinement.

Whilst in the previous section we focused on the wR2-factor, we will now be compar-

ing more specific values such as the model parameters themselves and the hydrogen

distances. The results of this section focus on the exact computational results.

Considerations of statistical uncertainties will be investigated in the next section.

Approximate nonspherical and spherical refinement are obtained by Olex2, whilst

hybrid and numerical nonspherical refinement are obtained by the process described

in the flowchart in Figure 13.3 of Section 2.

13.5.1 wR2-Factors and X-H Distances

This section is devoted to the comparison of the optimal models obtained via the

different refinement processes. Our main focus is on the precise numerical data, and

the standard uncertainties will be considered in detail in Section 13.6. Recall that

xspher and xappr are the optimal models obtained via classical spherical refinement

in olex2.refine, and via nonspherical refinement using olex2.refine and NoSpherA2,

respectively. Starting from xappr, we obtain xnum as the model with the lowest

wR2-factor within 20 numerical refinement steps and, similarly, we obtain xhybr as

the model with the lowest wR2-factor within 20 hybrid refinement steps from xappr.
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Finally, we also introduced mixed refinement in the previous section, and its optimal

model xmix is obtained as the model with the lowest wR2-factor within 20 mixed

refinement steps from xspher.

In Table 13.16 we present the wR2-factor and X-H distances of the models. We note

that the wR2-factor calculated with spherical form factors at xspher is presented in

the final column in parentheses.

xnum xhybr xappr xmix xspher

Ammonia

R1 0.836370% 0.835761% 0.823750% 0.838573% 4.06%(1.17%)

wR2 1.917558% 1.917656% 1.944039% 1.977639% 9.28%(2.39%)

N− H 0.979(5) 0.979(5) 0.973(5) 0.970(5) 0.855(6)

Epoxide

R1 2.335272% 2.335347% 2.336363% 2.728423% 4.78%(3.21%)

wR2 4.653619% 4.653638% 4.655144% 5.067212% 12.04%(6.71%)

C2− H2a 1.095(6) 1.095(6) 1.095(7) 1.096(7) 0.995(8)

C2− H2b 1.080(5) 1.080(5) 1.079(6) 1.076(6) 0.975(8)

C3− H3a 1.106(7) 1.106(7) 1.102(8) 1.101(8) 0.975(11)

C3− H3b 1.090(7) 1.090(7) 1.090(7) 1.090(8) 0.968(10)

L-Alanine

R1 1.906181% 1.906060% 1.906024% 1.908899% 3.03%(2.73%)

wR2 3.229081% 3.229088% 3.229943% 3.231487% 6.50%(6.04%)

N1− H1a 1.007(6) 1.007(6) 1.006(6) 1.007(6) 0.923(13)

N1− H1b 1.019(6) 1.019(6) 1.019(6) 1.020(6) 0.936(12)

N1− H1c 1.050(6) 1.050(6) 1.045(8) 1.047(7) 1.085(17)

C1− H1 1.091(4) 1.091(4) 1.090(5) 1.091(5) 1.002(9)

C2− H2a 1.101(6) 1.101(6) 1.100(7) 1.101(7) 0.993(13)

C2− H2b 1.095(6) 1.095(6) 1.094(7) 1.096(7) 0.978(11)

C2− H2c 1.090(5) 1.090(5) 1.089(6) 1.090(6) 1.005(10)

Table 13.16: wR2-factors and X-H distances.
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One can clearly see the dramatic difference between xspher and xappr with regards to

a drop in the R-factors and increase of the X-H distances. The R factors of all four

non-spherical optima xmix, xappr, xhybr and xnum are essentially in agreement. The

wR2factor, which is a precise measure for the fit of the theoretical intensities (up to

a suitable scaling factor K̃) with the observed intensities, shows a slight decrease

from xmix to xappr to xhybr to xnum. Moreover, the wR2factor of xhybr tells us that

hybrid refinement performs almost as well as numerical refinement.

The X-H distances of xspher is typically about 0.1Å lower than that obtained at

the other minima. The standard uncertainties (s.u.’s) of the X-H distances are also

recorded via the usual notation using parentheses. More detailed information about

these s.u.’s can be found in Tables 13.31 and 13.33 of Subsection 13.6.4. These larger

X-H distances are in better agreement with results obtained via neutron diffraction

experiments for L-alanine [34]. For epoxide and L-alanine, within the margins of

their standard uncertainties, there is essential agreement of the X-H distances in all

three nonspherical optima as well as the optimum obtained via mixed refinement.

Due to its tighter uncertainties and larger differences, ammonia does not support

this level of agreement, but it can be seen that xnum and xhybr are in agreement,

whilst xmix and xappr are only twice the standard uncertainty away.

13.5.2 Distances Between Optimal Models

Before we provide information about the distances between the five refinement

optima, we first present the positional and ADP distances between xnum (the best

with regard to wR2within 20 numerical refinement steps starting from xappr) and

xnum,s (the best with regard to wR2within 20 numerical refinement steps starting

from xspher) in (13.5.1) for epoxide, in (13.5.2) for ammonia, and in (13.5.3) for

L-alanine. The very small numbers in these entries bring the following ones in

Tables 13.17 to 13.20 into perspective, and they confirm that numerical refinement

is very robust and highly independent of the start models after sufficiently many
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refinement steps.

∥xpos,cart
num − xpos,cart

num,s ∥ = 6.408e− 05 Å, (13.5.1)

∥xADP,cart
num − xADP,cart

num,s ∥ = 2.720e− 05 Å2
,

∥xpos,cart
num − xpos,cart

num,s ∥ = 7.068e− 05 Å, (13.5.2)

∥xADP,cart
num − xADP,cart

num,s ∥ = 4.683e− 05 Å2
,

∥xpos,cart
num − xpos,cart

num,s ∥ = 3.808e− 05 Å, (13.5.3)

∥xADP,cart
num − xADP,cart

num,s ∥ = 6.297e− 05 Å2
,

epoxide xpos,cart
num xpos,cart

hybr xpos,cart
appr xpos,cart

mix xpos,cart
spher

xpos,cart
num 0.000e+00 2.256e-04 6.261e-03 8.286e-03 2.376e-01

xpos,cart
hybr 2.256e-04 0.000e+00 6.416e-03 8.339e-03 2.375e-01

xpos,cart
appr 6.261e-03 6.416e-03 0.000e+00 5.946e-03 2.348e-01

xpos,cart
mix 8.286e-03 8.339e-03 5.946e-03 0.000e+00 2.333e-01

xpos,cart
spher 2.376e-01 2.375e-01 2.348e-01 2.333e-01 0.000e+00

Table 13.17: Distances between optimal models (in Å) for epoxide

Tables 13.17 and 13.18 provide information about the positional and ADP differences

of our five optimal models for epoxide. These tables tell us the following for both

the positional and the ADP components of the five models: The model xappr is more

than 10 times closer to xnum than xspher is. Similarly, xhybr is more than 10 times

closer to xnum than xappr is. Finally, the model xmix is also significantly closer to xnum

than xspher is (but not as close as xappr). The corresponding results for L-alanine

in Tables 13.19 and 13.20 provide a similar picture. If we think of xnum as the the

“best” theoretical fit to the observed data (which is confirmed by the wR2-factor),

these values give insight into the “precision” of the different refinement processes.
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epoxide xADP,cart
num xADP,cart

hybr xADP,cart
appr xADP,cart

mix xADP,cart
spher

xADP,cart
num 0.000e+00 1.544e-04 1.791e-03 7.713e-03 8.345e-02

xADP,cart
hybr 1.544e-04 0.000e+00 1.844e-03 7.667e-03 8.345e-02

xADP,cart
appr 1.791e-03 1.844e-03 0.000e+00 7.788e-03 8.410e-02

xADP,cart
mix 7.713e-03 7.667e-03 7.788e-03 0.000e+00 8.291e-02

xADP,cart
spher 8.345e-02 8.345e-02 8.410e-02 8.291e-02 0.000e+00

Table 13.18: Norms of ADP differences between optimal models (in
Å2) for epoxide

L-alanine xpos,cart
num xpos,cart

hybr xpos,cart
appr xpos,cart

mix xpos,cart
spher

xpos,cart
num 0.000e+00 3.553e-04 8.598e-03 1.146e-02 1.344e-01

xpos,cart
hybr 3.553e-04 0.000e+00 8.505e-03 1.139e-02 1.345e-01

xpos,cart
appr 8.598e-03 8.505e-03 0.000e+00 3.011e-03 1.270e-01

xpos,cart
mix 1.146e-02 1.139e-02 3.011e-03 0.000e+00 1.244e-01

xpos,cart
spher 1.344e-01 1.345e-01 1.270e-01 1.244e-01 0.000e+00

Table 13.19: Distances between optimal models (in Å) for L-alanine

L-alanine xADP,cart
num xADP,cart

hybr xADP,cart
appr xADP,cart

mix xADP,cart
spher

xADP,cart
num 0.000e+00 1.870e-04 2.918e-03 5.154e-03 2.543e-02

xADP,cart
hybr 1.870e-04 0.000e+00 2.938e-03 5.151e-03 2.542e-02

xADP,cart
appr 2.918e-03 2.938e-03 0.000e+00 2.944e-03 2.493e-02

xADP,cart
mix 5.154e-03 5.151e-03 2.944e-03 0.000e+00 2.334e-02

xADP,cart
spher 2.543e-02 2.542e-02 2.493e-02 2.334e-02 0.000e+00

Table 13.20: Norms of ADP differences between optimal models (in
Å2) for L-alanine
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ammonia xpos,cart
num xpos,cart

hybr xpos,cart
appr xpos,cart

mix xpos,cart
spher

xpos,cart
num 0.000e+00 1.694e-04 7.461e-03 4.296e-04 2.659e-01

xpos,cart
hybr 1.694e-04 0.000e+00 7.529e-03 4.191e-04 2.659e-01

xpos,cart
appr 7.461e-03 7.529e-03 0.000e+00 7.553e-03 2.655e-01

xpos,cart
mix 4.296e-04 4.191e-04 7.553e-03 0.000e+00 2.660e-01

xpos,cart
spher 2.659e-01 2.659e-01 2.655e-01 2.660e-01 0.000e+00

Table 13.21: Distances between optimal models (in Å) for ammonia

ammonia xADP,cart
num xADP,cart

hybr xADP,cart
appr xADP,cart

mix xADP,cart
spher

xADP,cart
num 0.000e+00 9.749e-05 2.016e-03 1.167e-04 1.331e-01

xADP,cart
hybr 9.749e-05 0.000e+00 2.018e-03 1.407e-04 1.331e-01

xADP,cart
appr 2.016e-03 2.018e-03 0.000e+00 2.088e-03 1.340e-01

xADP,cart
mix 1.167e-04 1.407e-04 2.088e-03 0.000e+00 1.330e-01

xADP,cart
spher 1.331e-01 1.331e-01 1.340e-01 1.330e-01 0.000e+00

Table 13.22: Norms of ADP differences between optimal models (in
Å2) for ammonia
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13.5.3 Atomic Positions

Finally, we investigate the differences of the Cartesian positions and ADP components

of individual atoms in the different optima. We also provide information about the

reliability of the numerical optimum and its independence of the initial model, by

comparing atomic data of the optimum xnum with the corresponding atomic data of

the optimum xnum,s.

In Table 13.23, we compare the individual atom positions in Cartesian coordin-

ates where zcart
∗ denotes the 3 positional Cartesian coordinates of the chosen

atom, at the final model obtained through the corresponding refinement with

∗ ∈ {num, appr, hybr, spher}. We compare each final model against the final model

xnum. The first column shows the difference between final models of numerical non-

spherical refinement processes obtained from different start models xspher and xappr,

with the subscript ‘s’ indicating that from xspher.

In both spherical and approximate nonspherical refinement, the hydrogen atoms are

significantly further than heavier atoms from the positions at xnum. This difference

is dramatically reduced in the case of hybrid nonspherical refinement.

Table 13.23 demonstrates that approximate nonspherical refinement provides a 10-

to 60-fold (median at 50-fold) improvement for hydrogen atoms, and a 10- to 300-fold

(median at 50-fold) improvement for non-hydrogen atoms versus spherical refinement,

when compared to numerical nonspherical refinement. Hybrid refinement then fur-

ther provides a 40-fold (hydrogen) and 2-fold (non-hydrogen) improvement, typically

in approximately a 50% time reduction versus numerical nonspherical refinement

(since the proportion of hydrogen atoms is 4/7 in epoxide and 7/13 in L-alanine).

Mixed refinement shows an improvement also, with median improvements for hydro-

gen atoms being 30-fold and for non-hydrogen atoms being 15-fold.

Table 13.24 shows similar improvements (which are stronger for non-hydrogen atoms),

with a median factor of 60 for hydrogen atoms and 150 for non-hydrogen atoms via
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approximate refinement, 15 for both hydrogen atoms and non-hydrogen atoms via

further hybrid refinement, and 15 for hydrogen atoms and 40 for non-hydrogen atoms

via mixed refinement.

∥zcart
num − zcart

num,s∥ ∥zcart
num − zcart

hybr∥ ∥zcart
num − zcart

appr∥ ∥zcart
num − zcart

mix∥ ∥zcart
num − zcart

spher∥

Ammonia

N 4.734e-06 4.754e-05 9.513e-05 1.841e-04 3.592e-03

H 7.052e-05 3.521e-04 8.598e-03 1.146e-02 1.343e-01

Epoxide

O1 5.997e-07 1.198e-05 3.014e-05 1.190e-04 5.112e-03

C2 1.434e-07 1.525e-05 3.207e-05 1.974e-04 1.829e-03

H2a 1.318e-05 3.642e-05 1.722e-03 2.301e-03 1.011e-01

H2b 2.944e-05 8.945e-05 1.799e-03 4.157e-03 1.131e-01

C3 7.023e-07 2.908e-05 1.154e-04 2.450e-04 3.340e-03

H3a 5.194e-05 1.813e-04 5.085e-03 5.140e-03 1.344e-01

H3b 1.917e-05 8.638e-05 2.668e-03 4.423e-03 1.238e-01

L-Alanine

N1 5.023e-07 1.275e-05 3.137e-05 1.251e-06 8.932e-04

H1a 1.513e-05 8.696e-05 3.723e-03 9.037e-05 1.076e-01

H1b 1.495e-05 1.927e-05 1.736e-03 2.182e-04 9.296e-02

H1c 1.664e-05 1.116e-04 4.864e-03 6.021e-05 7.742e-02

C1 2.286e-07 7.776e-06 7.121e-06 3.403e-06 2.624e-03

H1 1.709e-05 6.874e-05 2.242e-03 2.194e-04 9.049e-02

C2 1.018e-07 6.226e-06 1.933e-05 6.774e-07 2.788e-04

H2a 1.443e-05 2.361e-05 1.990e-03 1.637e-04 1.114e-01

H2b 6.426e-06 1.461e-05 2.074e-03 1.832e-04 1.281e-01

H2c 1.337e-05 4.576e-05 1.359e-03 1.288e-04 8.655e-02

C3 1.687e-07 1.188e-05 7.515e-06 2.392e-06 7.201e-04

O1 1.548e-07 1.038e-05 2.556e-05 1.421e-06 2.022e-03

O2 2.601e-07 1.469e-05 2.130e-05 1.086e-06 8.635e-04

Table 13.23: Distances between the locations of atoms of xnum versus
other models (in Å)

This shows that there is a significant improvement from spherical to approximate

nonspherical refinement, and a further improvement from approximate to hybrid
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Ammonia

N 2.114e-06 6.037e-06 3.572e-04 7.250e-04 1.972e-03

H 4.678e-05 1.869e-04 2.896e-03 5.103e-03 2.536e-02

Epoxide

O1 1.285e-07 9.252e-07 1.271e-05 1.493e-04 2.679e-03

C2 1.403e-07 8.177e-07 1.430e-05 2.019e-04 1.853e-03

H2a 8.951e-06 2.433e-05 5.745e-04 5.361e-03 4.276e-02

H2b 1.565e-05 6.760e-05 7.845e-04 2.208e-03 4.525e-02

C3 2.378e-07 1.633e-06 2.415e-05 1.953e-04 1.583e-03

H3a 1.739e-05 8.065e-05 8.633e-04 4.322e-03 4.159e-02

H3b 1.060e-05 1.104e-04 1.232e-03 2.663e-03 3.668e-02

L-Alanine

N1 1.118e-07 6.927e-07 1.197e-05 4.431e-07 6.211e-04

H1a 1.068e-05 5.539e-05 4.618e-04 5.228e-05 5.186e-02

H1b 4.863e-06 2.068e-05 3.718e-04 3.281e-05 2.991e-02

H1c 5.864e-05 6.180e-05 8.752e-04 6.942e-05 1.041e-01

C1 2.701e-08 5.264e-07 6.396e-06 1.670e-07 9.630e-04

H1 3.988e-06 2.313e-05 3.791e-04 2.193e-05 2.593e-02

C2 5.387e-08 3.628e-07 4.975e-06 6.768e-07 7.760e-04

H2a 1.652e-05 2.087e-05 1.276e-03 4.567e-05 2.999e-02

H2b 6.132e-06 2.078e-05 3.321e-04 3.574e-05 2.103e-02

H2c 7.854e-06 2.801e-05 1.033e-03 3.379e-05 3.582e-02

C3 3.433e-08 2.221e-07 6.221e-06 2.301e-07 1.002e-03

O1 4.128e-08 2.483e-07 5.503e-06 1.679e-07 9.886e-04

O2 2.533e-08 3.740e-07 4.666e-06 2.701e-07 7.778e-04

Table 13.24: Distances between the ADPs of atoms of xnum versus
other models (in Å2)
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nonspherical refinement with regards to the hydrogen atom positions.
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13.5.4 Basis Set Dependence

When utilising quantum mechanical calculations, the user needs to select a method,

a basis set, and also needs to utilise an accuracy for the integration grids, which can

be selected from the pre-defined settings “High", “Normal" and “Low" in NoSpherA2.

We carried out refinement procedures with the method of PBE with five basis sets

for ammonia - 3-21G, def2-SVP, def2-TZVP, cc-pVTZ, cc-pVQZ (for details on these

basis sets, see [48]) - and our results are shown in the following figures.

In Figure 13.37 we compare the hydrogen positions of the results using various

options for the basis sets in 3d space.

Figure 13.37: The position of the hydrogen atom (in Å), obtained
through classical spherical refinement (■) and non-spherical refine-
ment processes (approximate ▲ and numerical  ) using various
basis sets, where the hydrogen atom in the classical spherical model
is shifted to the origin (0,0,0). The integration accuracy used is
‘Normal’. (ammonia)

Figure 13.37 clearly indicates that the difference between smaller basis sets (3-21G

(lower cluster) & def2-SVP (left cluster)) and larger ones (def2-TZVP, cc-pVTZ

and cc-pVQZ, emphasised in the zoomed in image) is far more significant than the

difference between approximate non-spherical and numerical non-spherical refine-

ments. Additionally, the difference between larger basis sets is roughly of the same

magnitude as the change introduced by using numerical rather than approximate
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non-spherical refinement. We finally note here that every larger basis set results in an

additional movement in the −y direction when numerical non-spherical refinement

is used instead of approximate non-spherical refinement.

Figure 13.38: The position of the hydrogen atom (in Å) at the final
model, obtained through classical spherical refinement (■) and non-
spherical refinement processes (approximate ▲ and numerical  )
using various basis sets, where the hydrogen atom in the classical
spherical model is shifted to the origin (0,0,0).
The colours are as follows: cc-pVQZ (top), cc-pVTZ (second-
top), def2-TZVP (third top), 3-21G (lower cluster), def2-SVP (left
cluster), with darkened and lightened versions of these colours corres-
ponding to ‘low’ or ‘high’ rather than ‘normal’ integration accuracy,
respectively. (ammonia)

Figures 13.38 and 13.39 add in the ‘High’ integration grid (shown as a lightened

colour) and the ‘Low’ integration grid (shown as a darkened colour). It is clear that

the impact of these is minimal compared to the other differences. It also indicates

that the choice of integration accuracy has a far smaller impact than these other
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Figure 13.39: A small area of Figure 13.37: The position of the
hydrogen atom at the final model, obtained with the larger three
basis sets, cc-pVQZ (top), cc-pVTZ (middle), def2-TZVP (bottom),
relative to the position of the hydrogen in the classical spherical
model (which would appear at (0,0,0)). (ammonia)
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choices, with even low accuracy of the integration grid remaining very close to high

- however, this might only be a symptom of the small molecule we are using.

Note, however, that all figures in this section are presented without taking into

account that all observed and derived data come with their standard uncertainties.

Uncertainty considerations are the focus of the following Section 13.6.
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13.6 Uncertainties

In crystallography, each parameter (such as atomic location) has an associated

uncertainty which is related to both the uncertainty on the recorded data (for

example, the σ recorded in the hkl file) and the least squares process itself. To

provide a final evaluation of numerical and approximate nonspherical refinement,

I investigate their parameters with regards to their uncertainties to find that, up

to this uncertainty, approximate nonspherical refinement provides as accurate a

model as we can currently produce. This section covers the background of these

uncertainties as well as a mathematical visualisation which allows us to better see

these similarities.

13.6.1 The Variance-Covariance Matrix and

transformations

Background

Recall from Part I Section 6.8 that the variance-covariance matrix arising from the

least-squares process is given by the following rescaling of the inverse of the normal

matrix B(x):

Var(x) = ||r̃||2w
#obs −#param

B(x)−1 (13.6.1)

(3.1.10.2 in [53]), where x is the vector of model parameters, ||r̃||w is the weighted

norm introduced in (6.0.3) of the residual r̃, #obs is the number of observations

taken into account in the refinement process and #param is the number of parameters

contained in the vectors xnum, xappr and xspher (that is, their length).

The diagonals of the variance-covariance matrix Var(x) are the variance σ2(x, xi) =:

σ2
i (x) of their corresponding parameter xi whilst the off-diagonals are the covariance

of the two corresponding parameters cov(x, xi, xj) =: covi,j(x). Var(x) can addition-

ally be split into smaller variance-covariance matrices corresponding to each atom’s
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positional or ADP parameters separately.

In our derivations we will make repeated use of the following fundamental rule (see,

e.g., [14, III.3],[53, formula (3.1.10.5)]): If random vectors v and w are transformed

via w = Qv+b (with a fixed matrix Q and a fixed vector b) then their corresponding

variance-covariance matrices are related by

Var(w) = Q Var(v) Q⊤. (13.6.2)

The first transformation from the vector x (representing a model) into the crystal-

lographic parameters y is often the identity (in the case of epoxide and L-alanine),

but in other cases with constraints (like ammonia) the expansion may be given by

some matrix J , that is y = Jx (the choice of J for ammonia is

J =


J0 03,9

09,9 Id9

 (13.6.3)

with 0p,q the p× q matrix with all entries equal to 0, Idp the identity matrix of size

p and

J0 =



1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1


).

Application of the above rule yields Var(y) = J Var(x) J⊤ (see also (35) in [4]).

The variance-covariance matrix of the fractional positional coordinates zA of an atom

is a specific 3x3 submatrix of Var(y). The transformation in Cartesian coordinates

is given through multiplication with the orthogonalisation matrix A, that is, zcart =

AzA. Consequently, the above rule yields

Var(zcart) = A Var(zA) A⊤. (13.6.4)
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For the ADPs, we utilise the matrix U∗ =


U∗

11 U∗
12 U∗

13

U∗
12 U∗

22 U∗
23

U∗
13 U∗

23 U∗
33

 and transform it with

the help of the orthogonalisation matrix A into a Cartesian matrix

U cart =


U cart

11 U cart
12 U cart

13

U cart
12 U cart

22 U cart
23

U cart
13 U cart

23 U cart
33

 = A


U∗

11 U∗
12 U∗

13

U∗
12 U∗

22 U∗
23

U∗
13 U∗

23 U∗
33

A⊤.

This transformation can be equivalently written as

[
U cart

11 U cart
22 U cart

33 U cart
12 U cart

13 U cart
23

]⊤
= B

[
U∗

11 U∗
22 U∗

33 U∗
12 U∗

13 U∗
23

]⊤
(13.6.5)

with a suitably chosen 6x6 matrix B, which can then be used with the above rule

to obtain Var(U cart) (see [45] for further details).

13.6.2 Uncertainty Domains

We now outline the shape of the domain of uncertainty of an atomic position. This

shape is in Cartesian space, so we first must convert the variance-covariance matrix

as outlined in Equation (13.6.4).

We give our atom the label A, and the variance-covariance matrix associated to its

location we label V AA3, with the transformation to Cartesian being:

V AA,cart := AV AAA⊤,

where A is the standard orthogonalisation matrix taking zA to zA,cart.

Since V AA,cart is positive semidefinite, it has a natural square root4, which we denote

by (V AA,cart)1/2.

3Later, we will introduce V A,C , the covariance between two different atoms.
4The square root of a positive semidefinite 3× 3 matrix M can be obtained as follows: Choose

an orthogonal matrix P (that is, P ⊤ = P −1) such that D = PMP ⊤ is diagonal with entries
d1, d2, d3 ≥ 0, the eigenvalues of M . Let D1/2 be the corresponding diagonal matrix with entries√

d1,
√

d2,
√

d3 ≥ 0. Then the square root of M is given by P ⊤D1/2P .
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We introduce the uncertainty domain U(A) of the atom A as the image of the unit

ball B1(0) = {z | ∥z∥ ≤ 1} under (V AA,cart)1/2, shifted to zA ∈ R3, that is

U(A) := zA,cart + (V AA,cart)1/2B1(0) =
{
zA,cart + (V AA,cart)1/2z | z ∈ B1(0)

}
.

Note that, in the special case V AA,cart = σ2
0 · Id3, c > 0 (where σ0 is simply a

constant uncertainty shared across all parameters) the Cartesian position of atom A

is N (zA,cart, σ2
0 · Id3)–normal distributed and the uncertainty domain U(A) is simply

the ball of radius σ0 about zA ∈ R3. In relation to the uncertainty domain U(A),

we also introduce two uncertainty radii r(A) and R(A) which are, geometrically,

the radii of two balls centered at A, one of them being contained in U(A) and the

other one containing U(A). The radii r(A) and R(A) are the square roots of the

smallest and the largest eigenvalue of the matrix V AA,cart, and they are called the

inner and outer uncertainty radius of the atom A, respectively. In the special case

V AA,cart = σ2
0 · Id3 we have r(A) = R(A) = σ0.

Physical Justification

We now cover the justification and meaning of these uncertainty domains with a more

intuitive derivation which nevertheless matches to the above definitions. Starting

from the distance of an atom A to a reference point zref (in relative coordinates), we

consider the limiting process moving the reference point zref towards the Cartesian

position of the atom until both points coincide.

Lemma 13.6.1 (Uncertainty on Distance between Two Points). Given these two

points zA and zref, the Cartesian distance d between them is given by

d(zA, zref) =
(
(zA − zref)⊤M(zA − zref)

)1/2
=
 3∑

i,j=1
(zA

i − zref
i )(zA

j − zref
j )Mij

1/2

,

(13.6.6)
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where M = A⊤A denotes the metrical metrix, which leads to partial derivatives

∂d

∂zA
i

(zA, zref) = 1
d(zA, zref)

3∑
j=1

(zA
j − zref

j )Mij

and, therefore (see Part I Section 6.8 for details),

σ2(d(zA, zref)) =
3∑

i,j=1

∂d

∂zA
i

(zA, zref) ∂d

∂zA
j

(zA, zref)V AA
ij

= 1
d(zA, zref)2

3∑
i,j=1

( 3∑
l=1

(zA
l − zref

l )Mil

)( 3∑
m=1

(zA
m − zref

m )Mjm

)
V AA

ij

= 1
d(zA, zref)2

3∑
i,j,l,m=1

(zA
l − zref

l )MliV
AA

ij Mjm(zA
m − zref

m )

= (zA − zref)⊤MV AAM(zA − zref)
(zA − zref)⊤M(zA − zref) . (13.6.7)

We notice the following useful fact about this uncertainty δ = σ(d(zA, zref)):

The uncertainty δ does not change if we replace zref − zA by µ(zref − zA) in

(13.6.7) with any scaling factor µ ≠ 0. Thus this uncertainty is the same for

every reference point z′ on the line

zA + µ(zref − zA). (13.6.8)

Given zref a fixed reference point different from the position of the atom A and

z′ be another reference point moving towards the atom A along the line given by

(13.6.8), that is, we assume µ → 0 as well as d → 0. We conclude from the above

fact that the uncertainty δ of the distance of atom A to z′ does not change and we

introduce, in the limit µ = 0,the uncertainty radius of the atom A in direction zref

by u(A, zref). Hence, u(A, zref) and the s.u. σxyz(d(A, zref)) of the distance of atom

A to a reference point zref ̸= A coincide.

We recover the boundary of the uncertainty domain U(A) via taking this uncertainty

radius in every direction around A:

∂U(A) =
{

zA + u(A, zref) · zref − zA

∥zref − zA∥

∣∣∣∣zref ̸= zA
}

.
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Lemma 13.6.2. While u(A, zref) depends on the direction zref − zA (but not on its

length), the inner and outer uncertainty radii r(A) and R(A) are independent of

any direction and coincide with the extrema of the directed uncertainty radii:

r(A) = min
zref ̸=zA

u(A, zref) =
(

min
v ̸=0

v⊤MV AAMv
v⊤Mv

)1/2

> 0, (13.6.9)

and

R(A) = max
zref ̸=zA

u(A, zref) =
(

max
v ̸=0

v⊤MV AAMv
v⊤Mv

)1/2

> 0, (13.6.10)

where for simplicity we have taken v = zref − zA. In particular, we have r(A) ≤

u(A) ≤ R(A) for all zref ̸= zA.

Proof. We begin with the knowledge that r(A) and R(A) are the square roots of

the smallest and largest eigenvalues of V AA,cart respectively. We use the variational

characterisation of eigenvalues via the Rayleigh Quotient (see eg. page 176 in [25]):

r2(A) = λmin(V AA,cart) = min
w ̸=0

(
w⊤V AA,cartw

w⊤w

)
. (13.6.11)

Then it follows from the expansion of V AA:

r2(A) = min
w̸=0

(
w⊤AV AAA⊤w

w⊤w

)
.

Finally, we take w = Av such that:

r2(A) = min
v ̸=0

(
v⊤A⊤AV AAA⊤Av

v⊤A⊤Av

)

which, given A⊤A = M , matches perfectly to Equation (13.6.9). Trading the min

for max gives the proof for R(A).

Whilst we have here used the positional parameters z, a similar approach may be

taken for the ADPs U∗, in the vector form outlined above.

All above uncertainty radii (inner r, outer R and directed uncertainty radius u)

depend on the variance-covariance matrix V AA(x) which, in turn, depends on the

refinement process whose optimal model x we investigate via (13.6.1). Denoting the
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atom A of the optimal model xspher by Aspher, we refer to the corresponding inner

and outer uncertainty radii as r(Aspher) and R(Aspher). The uncertainty radii r(A•)

and R(A•) for • ∈ {mix, appr, hybr, num} are defined similarly.

13.6.3 Uncertainty Balls

These inner and outer uncertainty radii can be represented by balls centered at the

atom, and these balls can be plotted to allow us to compare corresponding atoms of

the different final models with respect to their uncertainties.

Let us briefly discuss our method of illustrating uncertainties. In any dimension,

three points always lie in a single plane (not necessarily uniquely). We apply this

fact to the atomic positions of corresponding atoms in xnum, xappr and xspher across

our 3 molecules. The atoms are represented by a white diamond for xnum, a black

dot for xappr, and a red square for xspher. With regards to the balls we use the

following colour code: green balls represent inner uncertainty balls Br(A)(zA) and

red balls represent outer uncertainty balls BR(A)(zA). We plot each atom’s relative

location horizontally with the spherical location on the right and the nonspherical

approximate and numerical locations on the left. The plots are collated by atom

type (hydrogen or non-hydrogen) for each molecule, but the separate atoms in each

row are plotted independently.

Epoxide

Figures 13.40, 13.41 and Table 13.25 confirm that each individual atom of xnum and

xappr lie well within each others’ uncertainty bounds, whilst the corresponding atom

of xspher lies much further away. We conclude that there is such a strong agreement

between approximate and numerical nonspherical refinement that the simplification

of setting (∗) in (12.2.3) to zero is fully justified. Moreover, these figures reveal

also that approximate nonspherical refinement is a significant improvement against
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0.01 Å

H2a

H2b

H3a

H3b

Figure 13.40: Positions of the hydrogen atoms in xnum (white ⋄),
xappr (black  ) and xspher (red ■), and their uncertainty balls.
Green balls represent inner uncertainty balls and red balls represent
outer uncertainty balls. (epoxide)

0.001 Å

O1

C2

C3

Figure 13.41: Positions of the non-hydrogen atoms in xnum (white
⋄), xappr (black  ) and xspher (red ■), and their uncertainty balls.
Green balls represent inner uncertainty balls and red balls represent
outer uncertainty balls. (epoxide)
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∥Anum −Aspher∥ r(Anum) R(Anum) r(Aspher) R(Aspher)

A =O1 5.112e-03 2.479e-04 3.363e-04 3.624e-04 4.868e-04

A =C2 1.829e-03 3.928e-04 4.554e-04 5.763e-04 6.695e-04

A =H2a 1.011e-01 5.859e-03 8.449e-03 8.055e-03 1.005e-02

A =H2b 1.131e-01 5.380e-03 7.425e-03 7.726e-03 8.868e-03

A =C3 3.340e-03 3.731e-04 5.349e-04 5.559e-04 7.975e-04

A =H3a 1.344e-01 6.341e-03 8.333e-03 8.716e-03 1.160e-02

A =H3b 1.238e-01 5.464e-03 9.420e-03 7.960e-03 1.228e-02

∥Anum −Aappr∥ r(Anum) R(Anum) r(Aappr) R(Aappr)

A =O1 3.014e-05 2.479e-04 3.363e-04 2.485e-04 3.368e-04

A =C2 3.207e-05 3.928e-04 4.554e-04 3.903e-04 4.497e-04

A =H2a 1.722e-03 5.859e-03 8.449e-03 6.546e-03 8.652e-03

A =H2b 1.799e-03 5.380e-03 7.425e-03 5.975e-03 7.668e-03

A =C3 1.154e-04 3.731e-04 5.349e-04 3.715e-04 5.238e-04

A =H3a 5.085e-03 6.341e-03 8.333e-03 6.837e-03 8.576e-03

A =H3b 2.668e-03 5.464e-03 9.420e-03 5.976e-03 9.838e-03

Table 13.25: Positional difference (in Å) between atoms in xnum,
xappr, and xspher and their comparison with uncertainty bounds.
Red indicates a bound smaller than the difference, whilst green
represents a bound larger than the difference (epoxide).
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classical spherical refinement.
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0.01 Å2

H2a

H2b

H3a

H3b

Figure 13.42: ADPs of the hydrogen atoms in xnum (white ⋄), xappr
(black  ) and xspher (red ■), and their uncertainty balls. Green
balls represent inner uncertainty balls and red balls represent outer
uncertainty balls. (epoxide)

The ADPs for epoxide 13.42, 13.43 and Table 13.26 show a similar story, with

numerical and approximate atom locations within each others’ inner uncertainties

and far from spherical atom’s location.
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∥Anum −Aspher∥ r(Anum) R(Anum) r(Aspher) R(Aspher)

A =O1 2.679e-03 9.246e-05 1.535e-04 1.338e-04 2.259e-04

A =C2 1.853e-03 1.222e-04 1.985e-04 1.769e-04 2.942e-04

A =H2a 4.276e-02 2.854e-03 6.604e-03 3.384e-03 7.235e-03

A =H2b 4.525e-02 2.723e-03 5.802e-03 3.333e-03 6.576e-03

A =C3 1.583e-03 1.282e-04 2.364e-04 1.862e-04 3.480e-04

A =H3a 4.159e-02 3.291e-03 7.811e-03 3.851e-03 8.591e-03

A =H3b 3.668e-02 2.736e-03 6.566e-03 3.746e-03 7.917e-03

∥Anum −Aappr∥ r(Anum) R(Anum) r(Aappr) R(Aappr)

A =O1 1.271e-05 9.246e-05 1.535e-04 9.236e-05 1.527e-04

A =C2 1.430e-05 1.222e-04 1.985e-04 1.207e-04 1.960e-04

A =H2a 5.745e-04 2.854e-03 6.604e-03 2.841e-03 6.589e-03

A =H2b 7.845e-04 2.723e-03 5.802e-03 2.692e-03 5.793e-03

A =C3 2.415e-05 1.282e-04 2.364e-04 1.272e-04 2.347e-04

A =H3a 8.633e-04 3.291e-03 7.811e-03 3.225e-03 7.790e-03

A =H3b 1.232e-03 2.736e-03 6.566e-03 2.733e-03 6.528e-03

Table 13.26: ADP difference (in Å2) between atoms in xnum, xappr,
and xspher and their comparison with uncertainty bounds. Red in-
dicates a bound smaller than the difference, whilst green represents
a bound larger than the difference (epoxide).
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0.001 Å2

O1

C2

C3

Figure 13.43: ADPs of the non-hydrogen atoms in xnum (white
⋄), xappr (black  ) and xspher (red ■), and their uncertainty balls.
Green balls represent inner uncertainty balls and red balls represent
outer uncertainty balls. (epoxide)
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Ammonia

0.01 Å

H

Figure 13.44: Positions of the hydrogen atoms in xnum (white ⋄),
xappr (black  ) and xspher (red ■), and their uncertainty balls.
Green balls represent inner uncertainty balls and red balls represent
outer uncertainty balls. (ammonia)

0.001 Å

N

Figure 13.45: Positions of the non-hydrogen atoms in xnum (white
⋄), xappr (black  ) and xspher (red ■), and their uncertainty balls.
Green balls represent inner uncertainty balls and red balls represent
outer uncertainty balls. (ammonia)

∥Anum −Aspher∥ r(Anum) R(Anum) r(Aspher) R(Aspher)

A =N 3.592e-03 4.214e-04 4.214e-04 5.344e-04 5.344e-04

A =H 1.343e-01 4.160e-03 5.131e-03 4.225e-03 7.067e-03

∥Anum −Aappr∥ r(Anum) R(Anum) r(Aappr) R(Aappr)

A =N 9.513e-05 4.214e-04 4.214e-04 3.856e-04 3.856e-04

A =H 8.598e-03 4.160e-03 5.131e-03 4.468e-03 6.141e-03

Table 13.27: Positional difference (in Å) between atoms in xnum,
xappr, and xspher and their comparison with uncertainty bounds.
Red indicates a bound smaller than the difference, whilst green
represents a bound larger than the difference (ammonia).

For the hydrogen atom of ammonia shown in Figure 13.44, we do find that the

numerical and approximate positions lie just outside their respective uncertainty

radii. However, they remain far further from the spherical minimum, implying that

whilst the approximation is not completely fine in this case, it is far preferable to

using only the spherical method. For the nitrogen atom they remain in agreement as

desired, shown in Figure 13.45. These results are shown numerically in Table 13.27.
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0.01 Å2

H

Figure 13.46: ADPs of the hydrogen atoms in xnum (white ⋄), xappr
(black  ) and xspher (red ■), and their uncertainty balls. Green
balls represent inner uncertainty balls and red balls represent outer
uncertainty balls. (ammonia)

0.001 Å2

N

Figure 13.47: ADPs of the non-hydrogen atoms in xnum (white
⋄), xappr (black  ) and xspher (red ■), and their uncertainty balls.
Green balls represent inner uncertainty balls and red balls represent
outer uncertainty balls. (ammonia)

Similarly, all of ammonia’s ADPs in Figures 13.46 & 13.47 and Table 13.28 are

outside of the inner uncertainty thresholds, though the hydrogen now lie within each

other’s outer uncertainty. Again, this implies that the approximation does provide

a more significant error for ammonia than it has for the other examples.
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∥Anum −Aspher∥ r(Anum) R(Anum) r(Aspher) R(Aspher)

A =N 1.972e-03 1.205e-04 3.230e-04 1.576e-04 4.539e-04

A =H 2.536e-02 1.517e-03 3.153e-03 1.546e-03 3.899e-03

∥Anum −Aappr∥ r(Anum) R(Anum) r(Aappr) R(Aappr)

A =N 3.572e-04 1.205e-04 3.230e-04 1.223e-04 3.093e-04

A =H 2.896e-03 1.517e-03 3.153e-03 1.529e-03 3.483e-03

Table 13.28: ADP difference (in Å2) between atoms in xnum, xappr,
and xspher and their comparison with uncertainty bounds. Red in-
dicates a bound smaller than the difference, whilst green represents
a bound larger than the difference (ammonia).
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L-Alanine

L-Alanine returns to agreement between the atomic position in the numerical and

approximate cases within their inner uncertainties in Figures 13.48& 13.49 and Table

13.30. For the case of the carbon atom C2, these also lie within the spherical case’s

inner uncertainty (and it within theirs), but largely this figure emphasises the points

made previously.
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0.01 Å

H1a

H1b

H1c

H1

H2a

H2b

H2c

Figure 13.48: Positions of the hydrogen atoms in xnum (white ⋄),
xappr (black  ) and xspher (red ■), and their uncertainty balls.
Green balls represent inner uncertainty balls and red balls represent
outer uncertainty balls. (L-alanine)
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0.001 Å

N1

C1

C2

C3

O1

O2

Figure 13.49: Positions of the non-hydrogen atoms in xnum (white
⋄), xappr (black  ) and xspher (red ■), and their uncertainty balls.
Green balls represent inner uncertainty balls and red balls represent
outer uncertainty balls. (L-alanine)
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∥Anum −Aspher∥ r(Anum) R(Anum) r(Aspher) R(Aspher)

A =N1 8.932e-04 2.510e-04 2.803e-04 4.813e-04 5.322e-04

A =H1a 1.076e-01 5.681e-03 7.998e-03 9.731e-03 1.310e-02

A =H1b 9.296e-02 5.480e-03 7.790e-03 8.991e-03 1.330e-02

A =H1c 7.742e-02 6.125e-03 6.901e-03 8.844e-03 1.754e-02

A =C1 2.624e-03 2.497e-04 2.920e-04 4.727e-04 5.498e-04

A =H1 9.049e-02 4.513e-03 6.608e-03 8.260e-03 1.059e-02

A =C2 2.788e-04 2.884e-04 3.335e-04 5.488e-04 6.320e-04

A =H2a 1.114e-01 5.375e-03 6.711e-03 9.842e-03 1.374e-02

A =H2b 1.281e-01 5.426e-03 7.179e-03 9.036e-03 1.253e-02

A =H2c 8.655e-02 5.073e-03 8.260e-03 8.993e-03 1.228e-02

A =C3 7.201e-04 2.465e-04 2.792e-04 4.656e-04 5.279e-04

A =O1 2.022e-03 2.022e-04 2.452e-04 3.811e-04 4.624e-04

A =O2 8.635e-04 2.043e-04 2.365e-04 3.863e-04 4.480e-04

∥Anum −Aappr∥ r(Anum) R(Anum) r(Aappr) R(Aappr)

A =N1 3.137e-05 2.510e-04 2.803e-04 2.499e-04 2.772e-04

A =H1a 3.723e-03 5.681e-03 7.998e-03 6.385e-03 8.082e-03

A =H1b 1.736e-03 5.480e-03 7.790e-03 6.129e-03 7.868e-03

A =H1c 4.864e-03 6.125e-03 6.901e-03 6.264e-03 8.056e-03

A =C1 7.121e-06 2.497e-04 2.920e-04 2.494e-04 2.930e-04

A =H1 2.242e-03 4.513e-03 6.608e-03 4.981e-03 6.509e-03

A =C2 1.933e-05 2.884e-04 3.335e-04 2.884e-04 3.308e-04

A =H2a 1.990e-03 5.375e-03 6.711e-03 5.785e-03 7.175e-03

A =H2b 2.074e-03 5.426e-03 7.179e-03 5.692e-03 7.394e-03

A =H2c 1.359e-03 5.073e-03 8.260e-03 5.429e-03 8.263e-03

A =C3 7.515e-06 2.465e-04 2.792e-04 2.470e-04 2.807e-04

A =O1 2.556e-05 2.022e-04 2.452e-04 2.036e-04 2.461e-04

A =O2 2.130e-05 2.043e-04 2.365e-04 2.055e-04 2.375e-04

Table 13.29: Positional difference (in Å) between atoms in xnum,
xappr, and xspher and their comparison with uncertainty bounds.
Red indicates a bound smaller than the difference, whilst green
represents a bound larger than the difference (L-alanine).
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0.01 Å2

H1a

H1b

H1c

H1

H2a

H2b

H2c

Figure 13.50: ADPs of the hydrogen atoms in xnum (white ⋄), xappr
(black  ) and xspher (red ■), and their uncertainty balls. Green
balls represent inner uncertainty balls and red balls represent outer
uncertainty balls. (L-alanine)

Alanine’s ADPs emphasise more soundly that approximate provides a suitable substi-

tute to numerical refinement, and a significant improvement on spherical in Figures

13.50 & 13.51 and Table 13.30.

In conclusion, for all 3 molecules considered here the approximate and numerical

refinement provide atomic locations which lie within each other’s uncertainty radii

in the vast majority of cases, and those which don’t, still lie very close. These two

minima are in far better agreement than either with spherical refinement, leading to
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0.001 Å2

N1

C1

C2

C3

O1

O2

Figure 13.51: ADPs of the non-hydrogen atoms in xnum (white
⋄), xappr (black  ) and xspher (red ■), and their uncertainty balls.
Green balls represent inner uncertainty balls and red balls represent
outer uncertainty balls. (L-alanine)
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∥Anum −Aspher∥ r(Anum) R(Anum) r(Aspher) R(Aspher)

A =N1 6.211e-04 5.645e-05 9.182e-05 1.061e-04 1.702e-04

A =H1a 5.186e-02 2.876e-03 5.015e-03 4.265e-03 9.627e-03

A =H1b 2.991e-02 2.741e-03 4.949e-03 3.551e-03 8.364e-03

A =H1c 1.041e-01 2.765e-03 5.553e-03 3.631e-03 1.711e-02

A =C1 9.630e-04 6.001e-05 9.864e-05 1.139e-04 1.858e-04

A =H1 2.593e-02 2.216e-03 4.100e-03 3.224e-03 6.255e-03

A =C2 7.760e-04 6.677e-05 1.101e-04 1.265e-04 2.068e-04

A =H2a 2.999e-02 2.800e-03 5.158e-03 4.847e-03 9.370e-03

A =H2b 2.103e-02 2.766e-03 5.404e-03 4.173e-03 8.846e-03

A =H2c 3.582e-02 2.624e-03 5.858e-03 4.554e-03 8.060e-03

A =C3 1.002e-03 5.717e-05 9.384e-05 1.076e-04 1.770e-04

A =O1 9.886e-04 5.171e-05 8.777e-05 9.836e-05 1.653e-04

A =O2 7.778e-04 5.263e-05 8.164e-05 9.986e-05 1.533e-04

∥Anum −Aappr∥ r(Anum) R(Anum) r(Aappr) R(Aappr)

A =N1 1.197e-05 5.645e-05 9.182e-05 5.629e-05 8.993e-05

A =H1a 4.618e-04 2.876e-03 5.015e-03 2.833e-03 5.017e-03

A =H1b 3.718e-04 2.741e-03 4.949e-03 2.649e-03 4.917e-03

A =H1c 8.752e-04 2.765e-03 5.553e-03 2.701e-03 5.576e-03

A =C1 6.396e-06 6.001e-05 9.864e-05 5.981e-05 9.860e-05

A =H1 3.791e-04 2.216e-03 4.100e-03 2.219e-03 4.101e-03

A =C2 4.975e-06 6.677e-05 1.101e-04 6.665e-05 1.092e-04

A =H2a 1.276e-03 2.800e-03 5.158e-03 2.797e-03 5.173e-03

A =H2b 3.321e-04 2.766e-03 5.404e-03 2.728e-03 5.396e-03

A =H2c 1.033e-03 2.624e-03 5.858e-03 2.608e-03 5.892e-03

A =C3 6.221e-06 5.717e-05 9.384e-05 5.707e-05 9.384e-05

A =O1 5.503e-06 5.171e-05 8.777e-05 5.164e-05 8.777e-05

A =O2 4.666e-06 5.263e-05 8.164e-05 5.255e-05 8.167e-05

Table 13.30: ADP difference (in Å2) between atoms in xnum, xappr,
and xspher and their comparison with uncertainty bounds. Red in-
dicates a bound smaller than the difference, whilst green represents
a bound larger than the difference (L-alanine).
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the conclusion that approximate nonspherical refinement is sufficiently precise for

practical purposes. This is particularly notable for the positions of hydrogen atoms.
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Neutron Data

For the sake of curiosity, we also employed the above ‘uncertainty ball’ plotting of

the relative location of atoms with regards to neutron diffraction in Figures 13.52

to 13.55. The purple star now represents the atom in the neutron model, and we

compare with the approximate and spherical models. We focus on L-Alanine, the

neutron data for which is obtained from [34].

Neutron diffraction is currently regarded as a very good source of atomic information,

the ‘gold standard’ to compare to.

For hydrogen both the position 13.52 and ADP diagram 13.54 indicate an improve-

ment via approximate refinement, but an imperfect one. The non-hydrogen atoms

13.55 sadly show a far more scattered distribution.

The implication of this, if we accept neutron diffraction as near-perfect, is that there

remains much within X-ray crystallography which is not yet accounted for, and

emphasises the insignificance of the particular form-factor derivative approximation

we have discussed in this Part.
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0.01 Å

H1a

H1b

H1c

H1

H2a

H2b

H2c

Figure 13.52: Positions of the hydrogen atoms in xneutron (purple
⋆), xappr (black  ) and xspher (red ■), and their uncertainty balls.
Green balls represent inner uncertainty balls and red balls represent
outer uncertainty balls. (L-alanine)
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0.001 Å

N1

C1

C2

C3

O1

O2

Figure 13.53: Positions of the non-hydrogen atoms in xneutron
(purple ⋆), xappr (black  ) and xspher (red ■), and their uncer-
tainty balls. Green balls represent inner uncertainty balls and red
balls represent outer uncertainty balls. (L-alanine)
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0.01 Å2

H1a

H1b

H1c
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H2a

H2b

H2c

Figure 13.54: ADPs of the hydrogen atoms in xneutron (purple
⋆), xappr (black  ) and xspher (red ■), and their uncertainty balls.
Green balls represent inner uncertainty balls and red balls represent
outer uncertainty balls. (L-alanine)
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0.001 Å2

N1

C1

C2

C3

O1

O2

Figure 13.55: ADPs of the non-hydrogen atoms in xneutron (purple
⋆), xappr (black  ) and xspher (red ■), and their uncertainty balls.
Green balls represent inner uncertainty balls and red balls represent
outer uncertainty balls. (L-alanine)
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13.6.4 Cell Uncertainties

This subsection serves as a review of two contributors to uncertainties on derived

values (such as interatomic distances) - the uncertainties on the cell parameters and

those on the atomic parameters (which are in turn obtained via the least-squares

minimisation process).

Assuming that both types of s.u.’s are uncorrelated, the total s.u. of a function f

describing the derived parameter is then given by (see [4, (37)]):

σ(f) =
√

σ2
cell(f) + σ2

xyz(f). (13.6.12)

We will discuss here the explicit computation of both types of s.u.’s.

We primarily focus on uncertainties of atomic distances, the most common derived

value. In this case, the s.u.’s derived from cell parameters are roughly proportional

to the distance between the atoms. In contrast, the s.u.’s derived from the atomic

parameters are independent of the distance and depend only on the direction between

the atoms. This means that the s.u.’s derived from cell parameters become less and

less significant for smaller and smaller distances. More precisely, we discuss s.u.’s of

interatomic distances and s.u.’s of distances between the location of the same atom

in two different models.

Interatomic Distance

The calculations in this section are based on [4, Section 6]. Let zA, zC ∈ R3 be the

relative positional coordinates of the atoms A and C of the model x ∈ RN . Let

d(zA, zC) be the Cartesian distance (in Å) between the atoms A and C, given by

d(zA, zC) =
(
(zA − zC)⊤M(zA − zC)

)1/2
=
 3∑

i,j=1
(zA

i − zC
i )(zA

j − zC
j )Mij

1/2

,

(13.6.13)

where we view zA, zC as column vectors and M = (Mij) is the 3× 3 metrical matrix

from (2.2.1) with entries with units of Å2.
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Here, the cell parameters contribute to this distance through the metrical matrix M

whilst the atomic parameters contribute through the vectors zA and zC. In contrast

to Subsection 13.6.2, the atomic parameter-dependent component of the uncertainty

is dependent on the uncertainty of both atomic locations (rather than the second

being a fixed point without uncertainty).

Thus, for the atomic parameters, we obtain from (13.6.13)

∂d

∂zA
i

(zA, zC) = − ∂d

∂zC
i

(zA, zC) = 1
d(zA, zC)

3∑
j=1

(zA
j − zC

j )Mij.

In the following derivation, we alternatively use (zA
1 , zA

2 , zA
3 , zC

1 , zC
2 , zC

3 ) =

(z1, z2, z3, z4, z5, z6) := z The square of the s.u. of the distance between atoms

A and C is then given by (see [53, (3.1.10.3)] or [4, (36)]:

σ2
xyz(d(zA, zC)) =

6∑
i,j=1

∂d

∂zi

∂d

∂zj

cov(zi, zj)

=
3∑

i,j=1

∂d

∂zA
i

∂d

∂zA
j

(V AA)ij +
3∑

i,j=1

∂d

∂zA
i

∂d

∂zC
j

(V AC)ij

+
3∑

i,j=1

∂d

∂zA
j

∂d

∂zC
j

(V CA)ij +
3∑

i,j=1

∂d

∂zC
i

∂d

∂zC
j

(V CC)ij,

where, for example, V AC is the 3 × 3 submatrix of Var(x) obtained by choosing

the positional coordinates of atom A as rows and of atom C as columns. We have

dropped the arguments (z, zA, zC as appropriate) of the derivatives for simplicity.

Now we have

3∑
i,j=1

∂d

∂zA
i

∂d

∂zA
j

(V AA)ij = 1
d(zA, zC)2

3∑
i,j,l,m=1

(zA
l − zC

l )Mli(V AA)ijMjm(zA
m − zC

m)

= (zA − zC)⊤MV AAM(zA − zC)
(zA − zC)⊤M(zA − zC) .

Similarly, using ∂d
∂zC

i
= − ∂d

∂zA
i

, we obtain

3∑
i,j=1

∂d

∂zA
i

∂d

∂zC
j

(V AC)ij = −(zA − zC)⊤MV ACM(zA − zC)
(zA − zC)⊤M(zA − zC) .



280 Chapter 13. Investigating the Approximation

Combining all four terms yields

σ2
xyz(d(zA, zC)) = (zA − zC)⊤M(V AA − V AC − V CA + V CC)M(zA − zC)

(zA − zC)⊤M(zA − zC) . (13.6.14)

For the cell parameters, we follow the arguments in [4, Section 6.2.1]. Let C =

{a, b, c, α, β, γ} be the set of cell parameters and cov(i, j) with i, j ∈ C be the

corresponding covariances of their uncertainties. Then we have

σ2
cell(d(zA, zC)) =

∑
i,j∈C

∂d

∂i

∂d

∂j
cov(i, j) (13.6.15)

with
∂d

∂i
=

3∑
l,m=1

∂d

∂Mlm

∂Mlm

∂i

by the chain rule. We obtain from (13.6.13)

∂d

∂Mlm

(zA, zB) = 1
2d(zA, zC)(zA

l − zC
l )(zA

m − zC
m).

For the derivation of the values ∂Mlm

∂i
recall that

M =


a · a a · b a · c
b · a b · b b · c
c · a c · b c · c

 =


a2 ab cos γ ac cos β

ab cos γ b2 bc cos α

ac cos β bc cos α c2


and thus, for example,

∂M

∂a
=


2a b cos γ c cos β

b cos γ 0 0
c cos β 0 0

 ,

∂M

∂α
=


0 0 0
0 0 −bc sin α

0 −bc sin α 0

 ,

with similarly derived formulae applying for b, c, β, γ.

Thus the partial derivatives ∂d
∂i

are given by

∂d

∂a
= zA

1 − zC
1

d(zA, zC)
(
a(zA

1 − zC
1 ) + b cos γ (zA

2 − zC
2 ) + c cos β (zA

3 − zC
3 )
)

,
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∂d

∂b
= zA

2 − zC
2

d(zA, zC)
(
b(zA

2 − zC
2 ) + a cos γ (zA

1 − zC
1 ) + c cos α (zA

3 − zC
3 )
)

,

∂d

∂c
= zA

3 − zC
3

d(zA, zC)
(
c(zA

3 − zC
3 ) + a cos β (zA

1 − zC
1 ) + b cos α (zA

2 − zC
2 )
)

,

∂d

∂α
= −bc sin α (zA

2 − zC
2 )(zA

3 − zC
3 )

d(zA, zC) ,

∂d

∂β
= −ac sin β (zA

1 − zC
1 )(zA

3 − zC
3 )

d(zA, zC) ,

∂d

∂γ
= −ab sin γ (zA

1 − zC
1 )(zA

2 − zC
2 )

d(zA, zC) .

Note the following property of the partial derivatives ∂d
∂i

, i ∈ C: A replacement

of zA − zC by λ(zA − zC) leads to a multiplication of these partial derivatives

by the factor λ. Consequently, these partial derivatives are roughly proportional

to the distance d(zA, zC). We conclude from formula 13.6.15 that this distance

proportionality holds also for σcell(d(zA, zC)). This is in significant contrast to the

uncertainty σxyz(d(zA, zC)), given in (13.6.14), which does not change at all under

such a λ-rescaling. As a consequence, the influence of the s.u. coming from the cell

parameters becomes less and less significant for the total s.u. for smaller and smaller

interatomic atomic distances.

Example 13.6.1 (X-H Distances). In this example, we present details about the

uncertainties of the X-H distances of all five optimal models in Tables 13.31 to

13.33. We use the formulas (13.6.14) and (13.6.15) for the s.u.’s derived from atomic

parameters and from cell parameters, respectively. Both types of uncertainties

are assumed to be uncorrelated and the total uncertainties are therefore given by

(13.6.12). The s.u.’s of the cell parameters are provided in Appendix A.

Since we have no information about covariances cov(i, j) of cell parameters i ̸= j, we

ignore them by assuming that they are zero - that is, we assume they are uncorrelated.

Moreover, note that the s.u. of any angles need to be translated from degrees into

radians. In some cases, we know due to the crystal structure that an angle is precisely

90◦ and thus has an s.u. of zero.

Recall the fact that σcell(d(zA, zB)) is roughly proportional to d(zA, zB). In the
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case of a X-H distance, d(zA, zB) is about 1 Å . This distance is small enough that

the derived s.u.’s of cell parameters have essentially no influence on the first two

significant digits of the total s.u.’s of the X-H distances.

Epoxide xnum xhybr xappr xmix xspher

σcell σcell σcell σcell σcell

σxyz σxyz σxyz σxyz σxyz

σ σ σ σ σ

C2-H2a 0.000681 0.000681 0.000680 0.000681 0.000610

0.005860 0.005848 0.006649 0.006610 0.008438

0.005900 0.005887 0.006684 0.006645 0.008460

C2-H2b 0.000127 0.000127 0.000127 0.000127 0.000115

0.005403 0.005388 0.006202 0.006214 0.008485

0.005405 0.005389 0.006204 0.006215 0.008486

C3-H3a 0.000751 0.000751 0.000746 0.000750 0.000689

0.006655 0.006632 0.007782 0.007879 0.011053

0.006698 0.006674 0.007817 0.007915 0.011074

C3-H3b 0.000271 0.000271 0.000273 0.000273 0.000237

0.006544 0.006536 0.007471 0.007548 0.009692

0.006549 0.006541 0.007476 0.007553 0.009695

Table 13.31: Detailed s.u.’s of X-H distances for epoxide

Example 13.6.2 (Uncertainties of Corresponding Atoms). In this example we

provide information about the uncertainties of corresponding atoms in the spherical

and approximate refinement optima xspher and xappr. More precisely, we choose the

Cartesian position of an atom in one of the optima as reference point and present

the s.u. of the distance of the corresponding atom in the other optimum. This

information is given in Tables 13.34 to 13.36, where the s.u.’s σxyz derived from

atomic parameters and σcell derived from cell parameters are provided separately.

Since each σxyz is at least 65 times larger than the corresponding σcell in the case of
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Ammonia xnum xhybr xappr xmix xspher

σcell σcell σcell σcell σcell

σxyz σxyz σxyz σxyz σxyz

σ σ σ σ σ

N-H 0.000108 0.000108 0.000108 0.000108 0.000098

0.000513 0.000514 0.000539 0.000544 0.000641

0.000524 0.000525 0.000550 0.000555 0.000648

Table 13.32: Detailled s.u.’s of X-H distances for ammonia

epoxide, at least 22 times larger in the case of ammonia and at least 281 times larger

in the case of L-alanine, the total s.u., given by σ = (σ2
xyz + σ2

cell)1/2, is at most 1.001

larger than σxyz. This increase is so minimal that we can safely use the figures given

in σxyz as a description of the total uncertainties.

We also see that the σxyz of corresponding atoms in the tables are significantly

smaller than the actual distance between their positions in xspher and xappr (with

the exception of one heavier atom of L-alanine which are already well placed in the

spherical optimum – this is highlighted in green in Table 13.36). This confirms again

that the optimum of approximate refinement differs substantially from the optimum

of spherical refinement.
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L-Alanine xnum xhybr xappr xmix xspher

σcell σcell σcell σcell σcell

σxyz σxyz σxyz σxyz σxyz

σ σ σ σ σ

N1−H1a 0.000124 0.000124 0.000124 0.000124 0.000117

0.005701 0.005696 0.006411 0.005798 0.012714

0.005702 0.005697 0.006412 0.005800 0.012715

N1−H1b 0.000115 0.000115 0.000114 0.000114 0.000107

0.005519 0.005509 0.006393 0.005819 0.012044

0.005520 0.005510 0.006394 0.005820 0.012044

N1−H1c 0.000141 0.000141 0.000140 0.000140 0.000141

0.006309 0.006289 0.007882 0.007011 0.017197

0.006310 0.006291 0.007883 0.007012 0.017197

C1−H1 0.000143 0.000143 0.000142 0.000143 0.000130

0.004497 0.004494 0.005012 0.005223 0.008885

0.004499 0.004496 0.005014 0.005225 0.008886

C2−H2a 0.000142 0.000142 0.000142 0.000142 0.000131

0.005667 0.005657 0.006657 0.006904 0.013122

0.005669 0.005659 0.006658 0.006905 0.013122

C2−H2b 0.000123 0.000123 0.000123 0.000123 0.000107

0.005694 0.005688 0.006530 0.006510 0.011482

0.005696 0.005689 0.006531 0.006511 0.011482

C2−H2c 0.000143 0.000143 0.000143 0.000143 0.000132

0.005124 0.005119 0.005928 0.006030 0.010437

0.005126 0.005121 0.005930 0.006031 0.010438

Table 13.33: Detailled s.u.’s of X-H distances for L-alanine
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Epoxide ∥Aappr −Aspher∥ σxyz(dAappr(Aspher)) σcell(dAappr(Aspher))

σxyz(dAspher(Aappr)) σcell(dAspher(Aappr))

A =O1 5.117e-03 2.499e-04 2.701e-06

3.652e-04 2.701e-06

A =C2 1.860e-03 3.980e-04 1.227e-06

5.905e-04 1.227e-06

A =H2a 1.012e-01 6.786e-03 6.975e-05

8.490e-03 6.975e-05

A =H2b 1.125e-01 6.757e-03 1.956e-05

8.700e-03 1.956e-05

A =C3 3.355e-03 4.339e-04 6.037e-07

6.360e-04 6.037e-07

A =H3a 1.305e-01 7.675e-03 6.143e-05

1.082e-02 6.143e-05

A =H3b 1.232e-01 7.303e-03 3.475e-05

9.525e-03 3.475e-05

Table 13.34: Distances between corresponding atoms of spherical
and approximate optima for epoxide and their derived s.u.’s w.r.t.
atomic parameters and cell parameters (in Å)

Ammonia ∥Aappr −Aspher∥ σxyz(dAappr(Aspher)) σcell(dAappr(Aspher))

σxyz(dAspher(Aappr)) σcell(dAspher(Aappr))

A =N 3.497e-03 1.262e-04 3.148e-07

1.713e-04 3.148e-07

A =H 1.270e-01 4.495e-04 1.189e-05

4.943e-04 1.189e-05

Table 13.35: Distances between corresponding atoms of spherical
and approximate optima for epoxide and their derived s.u.’s w.r.t.
atomic parameters and cell parameters (in Å)
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L-Alanine ∥Aappr −Aspher∥ σxyz(dAappr(Aspher)) σcell(dAappr(Aspher))

σxyz(dAspher(Aappr)) σcell(dAspher(Aappr))

A =N1 9.057e-04 2.564e-04 1.270e-07

4.973e-04 1.270e-07

A =H1a 1.078e-01 7.265e-03 9.651e-06

1.186e-02 9.651e-06

A =H1b 9.398e-02 7.032e-03 8.385e-06

1.306e-02 8.385e-06

A =H1c 8.072e-02 7.102e-03 1.274e-05

1.369e-02 1.274e-05

A =C1 2.627e-03 2.891e-04 3.526e-07

5.424e-04 3.526e-07

A =H1 8.956e-02 4.990e-03 1.212e-05

8.873e-03 1.212e-05

A =C2 2.712e-04 3.088e-04 2.549e-08

5.901e-04 2.549e-08

A =H2a 1.102e-01 6.383e-03 1.213e-05

1.241e-02 1.213e-05

A =H2b 1.265e-01 6.242e-03 1.499e-05

1.081e-02 1.499e-05

A =H2c 8.563e-02 6.004e-03 1.069e-05

1.061e-02 1.069e-05

A =C3 7.183e-04 2.704e-04 7.738e-08

5.072e-04 7.738e-08

A =O1 2.013e-03 2.158e-04 3.041e-07

4.043e-04 3.041e-07

A =O2 8.674e-04 2.133e-04 9.409e-08

4.021e-04 9.409e-08

Table 13.36: Distances between corresponding atoms of spherical
and approximate optima for L-alanine and their derived s.u.’s w.r.t.
atomic parameters and cell parameters (in Å); Uncertainties larger
than the distances between the atoms are highlighted in green.
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13.7 Summary

The implementation of nonspherical structure refinement in olex2.refine-NoSpherA2

is based on an approximation of the partial derivatives of nonspherical structure

factors (see formula (12.2.5) in the Introduction). We refer to this implementation

as approximate (nonspherical) refinement. The motivation for this part was to

investigate the validity of this approximation. In our investigations we focused on

three specific molecules: epoxide, ammonia and L-alanine.

To be able to compare the nonspherical refinement results based on this approxima-

tion, we needed to obtain the partial derivatives of the nonspherical structure factors

as accurately as possible. Our method to do this is numerical differentiation, which

depends on a suitable choice of a step size δ > 0. We refer to the so computed partial

derivatives as the numerical partial derivatives and the corresponding refinement as

the numerical (nonspherical) refinement. The investigations in Section 13.3 show

that the best step sizes for numerical differentiation is 10−3Å, with little difference

in result from δ = 10−2Å to 10−4Å. This confirms the reliability and stability of the

method. Moreover, refinement using numerical differentiation with step size 10−3Å

provides optimal models which are – after sufficiently many numerical refinement

steps – highly independent of the initial model solutions (see (13.5.1) and (13.5.3)

for the Cartesian distance between refined models obtained from two different initial

models). Therefore, we use the fixed step size δ = 10−3Å for all further computations

involving numerical differentiation.

The optimal model obtained in olex2.refine via classical spherical refinement is

denoted by xspher and the nonspherical optimum obtained via olex2.refine-NoSphera2

is denoted by xappr. Note that the partial derivatives of structure factors to obtain

xappr are based on the above mentioned approximation. Starting from xappr, we

obtain our numerical nonspherical optimum xnum as the best model through 20

numerical refinement steps, where each numerical refinement step uses numerical

differentiation to compute the partial derivatives of the structure factors as accurately
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as possible. Therefore, we consider xnum to be a very accurate representation of the

best nonspherical optimum with respect to the wR2 factor. However, the process to

obtain xnum comes at a price: the computation of xnum is very time-consuming, since

each partial derivative of the structure factor via numerical differentiation requires

two additional quantum mechanical calculations.

In Section 13.5 of this part, we compare the optimal models xspher, xappr and xnum.

The X-H distances of xappr and xnum are significantly larger than the corresponding X-

H distances of xspher. Moreover, the X-H distances of xappr and xnum agree within the

margins of their standard uncertainties (see Table 13.16) while the X-H distances of

xspher are far outside the standard uncertainties of xappr and xnum. In conclusion, the

current nonspherical refinement implementation in olex2.refine-NoSpherA2 provides

significantly better results with regards to X-H distances.

However, disregarding any uncertainties, the precise coordinates of the heavier atoms

of xnum are in better agreement with the corresponding heavier atoms of xappr than

the coordinates of the hydrogen atoms (roughly by a factor of at least 10). This

can be clearly seen in Table 13.23 and it is the motivation to introduce another

nonspherical refinement process with particular focus on the hydrogen atoms: hy-

brid (nonspherical) refinement. Hybrid refinement can be viewed as a compromise

between the currently implemented approximate nonspherical refinement and the

time-consuming numerical refinement. In hybrid refinement, only partial derivatives

corresponding to the hydrogen atoms are computed as accurately as possible via

numerical differentiation and the partial derivatives corresponding to all other atoms

are computed using the approximation given in (12.2.5). This leads to a reduction

of computing time: in our examples of epoxide and L-alanine, hybrid refinement

is about twice as fast as numerical refinement5. Moreover, it turns out that the

corresponding optimum xhybr – obtained as the best result from xappr within 20

hybrid refinement steps – is in high agreement with xnum also in all of the hydrogen

5ammonia take a little longer, as this only removes one of the 4 parameters
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atoms.

In every refinement process, the shift vector is computed as the product of a shift

matrix S and a residual vector r̃. While the shift matrix involves the partial deriv-

atives of the structure factor, the residual requires only the structure factor itself.

Surprisingly, a refinement process using the spherical shift matrix and the non-

spherical residual provides results which are much closer to the ones of numerical

refinement than of spherical refinement. We refer to this refinement as the mixed

(spherical-nonspherical) refinement. Its optimum, obtained as the best result within

20 mixed refinement steps starting from xspher, is denoted by xmix. Tables 13.17 and

13.19 show that the component of xmix containing all positional coordinates is almost

as close to xnum as the corresponding positional component of xappr, and it is more

than 10 times closer than the corresponding component of xspher. These findings

suggest that mixed refinement might perform almost as good as approximate refine-

ment also for other molecules. However, since both refinement processes require a

quantum mechanical calculation in each refinement step to obtain the nonspherical

residual, there is no gain in computing time by choosing mixed refinement instead

of approximate refinement.

The ultimate question is whether in certain cases it is worth using numerical re-

finement instead of the currently implemented approximate refinement despite the

significantly higher time effort. For this decision it is useful to investigate the stand-

ard uncertainties of their optimal models. For that purpose, we introduced the

notions of atomic uncertainty radii in Subsection 13.6.2. Our results in Section 13.6

show that the atomic positions of the model xappr lie well within the uncertainty

domains of the atomic positions of xnum. This suggests that the results obtained via

approximate refinement are sufficiently accurate for all usual practical purposes.





Chapter 14

Investigations into Extinction

14.1 Motivation

During my non-spherical tests, we encountered a model of glycine (C2H5NO2 [12],

structure presented in Figure 14.1) which would not refine to a stable minimum if

the weighting scheme parameters1 were set to 0. This is a highly concerning trait,

as the weighting scheme is intended to have only a small effect on the refinement

process. However, we found that when extinction was used instead, the extinction

parameter refined to a high value (0.3 to 0.4) and led to convergence of the model.

C

O

O
C

H H

N
H

H

H

Figure 14.1: The chemical structure of glycine

1Typically, a crystallographic weighting scheme takes into account more than simply the recorded
uncertainties on the intensity data. One such weight adjustment is that used by SHELXL [52], and
adjusts the weights from 1/σ2, including in the denominator extra factors of (aP )2 +bP +d+e sin θ

(where P is f |Fo|2 + (1− f)|Fc|2), and replacing the numerator with ec sin2 θ/λ2 , 1, or 1− ec sin2 θ/λ2

depending on if c is positive, zero or negative respectively, where a, b, c, d, e, f are weight parameters.
Often in the first course of using a weighting scheme many of these factors are set to 0, usually
b, c, d, e (that is, only a and f are refined).
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When I attempted numerical non-spherical refinement, I found the following issue

regarding the design matrices: using the same method as in Subsection 13.2.1, I

compared analytically derived approximate (and spherical) design matrices with

numerically derived approximate (and spherical) design matrices, which should be

identical or near-identical. I found that some values had very dramatic differences.

Through investigation, I found that the implementation of extinction in olex2.refine

(as described in [4]) did not cascade the correction fully (equation (62)) into the

design matrices, only added the derivatives corresponding to the extinction parameter

whilst keeping the other derivatives unchanged. In other words, the theory has not

been fully implemented. As the model structure factors are altered with extinction,

it follows that the model derivatives also will be changed. The necessary changes

are described in this chapter.

14.2 Background

Olex2’s current Extinction Correction provides a consistent adjustment to all struc-

ture factor Fc(h) values to emulate the effects of extinction within a crystal. This

includes a new refinable parameter xe when extinction correction is switched on.

The adjustment is (see (62) in [4])

F ′
c(h) = Fc(h)

(
1 + 0.001xe

|Fc(h)|2λ3

sin(2θ(h))

)−1/4

, (14.2.1)

where xe is the extinction parameter, λ is the wavelength of the incoming X-ray

beam (in Amstrongs), and θ(h) is the angle of reflection. Additionally, note that

Yc(h) = |Fc(h)|2 = Fc(h)F ∗
c (h).

For simplicity, we introduce some additional equations and terminology:

Xe(h) := 0.001xe
λ3

sin(2θ(h)) (14.2.2)
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collates many terms in the adjustment factor into one for ease of readability, whilst

Y ′
c (h) = Yc(h) (1 + Xe(h)Yc(h))−1/2 (14.2.3)

is the equivalent adjustment to (14.2.1) made instead to the intensities Yc, incorpor-

ating Xe(h) as defined in (14.2.2). (Note that Y ′
c does not denote a derivative, but

just a modification of Yc.)

We can then further collate our terms and define the ‘multiplier’

M(h) := (1 + Xe(h)Yc(h))−1/2 . (14.2.4)

14.3 Derivative Derivation

The design matrix D(x) is a matrix with rows corresponding to Miller indices h and

columns corresponding to parameters xn (including the extinction parameter, xe).

That is,

(D(x))kn = ∂Yc

∂xn

(x, hk).

With the adjustment as above altering Yc to Y ′
c , we should also adjust our design

matrix to ∂Y ′
c

∂xn
(x, hk).

Firstly, the design matrix must be expanded with the derivatives of Y ′
c with respect

to the extinction parameter xe. This is simple to calculate, and

∂Y ′
c

∂xe

(h) = −0.001 λ3

2 sin(2θ(h))Yc(h)M(h)3. (14.3.1)

Next, we consider only xn ̸= xe, typically the positional and ADP parameters of each

atom. This adjustment was not implemented in olex2.refine prior to my investigation.

Lemma 14.3.1. Let Y ′
c (h) be given as in (14.2.3). Then ∂Y ′

c (h)/∂xn for xn ≠ xe

is given by:
∂Y ′

c (h)
∂xn

= ∂Yc(h)
∂xn

1
2
(
M(h)3 + M(h)

)
. (14.3.2)
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Proof.

∂Y ′
c (h)

∂xn

= ∂

∂xn

(Yc(h)M(h))

= Yc(h) ∂

∂xn

(M(h)) + ∂Yc(h)
∂xn

M(h)

= −Yc(h)
2 M(h)3 ∂

∂xn

(1 + Xe(h)Yc(h)) + ∂Yc(h)
∂xn

M(h)

= −Yc(h)
2 M(h)3Xe(h)∂Yc(h)

∂xn

+ ∂Yc(h)
∂xn

M(h)

= ∂Yc(h)
∂xn

M(h)
(
1−M(h)2Yc(h)Xe(h)/2

)
= ∂Yc(h)

∂xn

M(h)
(

2 + Xe(h)Yc(h)
2(1 + Xe(h)Yc(h))

)

= ∂Yc(h)
∂xn

1
2
(
M(h)3 + M(h)

)
.

An interesting result of this is that the multiplier effect to the design matrix given

in (14.3.2) appears more significant than its effect to the calculated intensities as

given in (14.2.3) and (14.2.4), since

0 ≤ 1
2
(
M(h)3 + M(h)

)
< M(h) ≤ 1.

However, it is difficult to predict its impact on the whole refinement process, as the

calculation of the inverse normal matrix compresses many of these details, and many

M(h) are not far from 1, as seen in the next section.

Let us summarise how to include these extinction adjustments in the refine-

ment process: to move from D(x) without extinction to D′(x) including

extinction, each row must be multiplied by its corresponding multiplier
1
2 (M(h)3 + M(h)), where M(h) =

(
1 + 0.001xe

Yc(h)λ3

sin(2θ(h))

)−1/2
. Additionally,

an additional column dependent on the extinction parameter xe as described

in Equation (14.3.1) must be added.
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14.4 Example

To evaluate the potential severity of this missing factor, I calculated information on

the multiplier at a single pre-refined point.

For these investigations, I utilised a refined solution of glycine as given in [12], with

an extinction parameter xe of 0.396108. Using this data, the minimum multiplier

M(h) was 0.4874, which occurred at the h index (0 -2 0). The maximal (that is,

least adjusting) multiplier was barely below 1 (0.99999999878), occurring at the h

index (-8 0 2). Whilst half of entries had multipliers very close to 1 (the median

value being 0.9994), 1% had a value 0.915 or less (in this case, this is 16 indices out

of 1672), with 7 rows having a multiplier of 0.8 or less. Whether or not this would

have a significant impact under further refinement remains to be seen, but it does

indicate that the Fc for these specific h are likely to have been under-adjusted with

each refinement step, when not including this multiplier.

I also tried to start a numerical nonspherical refinement process from this data, and

encountered a problem that the inverse of the normal matrix could not be calculated

(nor would Cholesky decomposition work); the matrix was near-singular with an

eigenvalue of 10−6 where others were 105. Thus I could not investigate where the

‘corrected’ refinement may lie.





Appendix A

Tables of refinement minima

The final models for each minima are presented in this appendix.

A.1 Ammonia
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x y z σ(x) σ(y) σ(z)

N -0.21023684 -0.21023684 -0.21023684 0.00006014 0.00006014 0.00006014

H -0.34812626 -0.25292423 -0.12709205 0.00115619 0.00134492 0.00095370

Table A.1: Positions and their uncertainties in xspher (ammonia)

U11 U22 U33 U12 U13 U23

N 0.03724112 0.03724112 0.03724112 -0.00051598 -0.00051598 -0.00051598

H 0.05217024 0.05626107 0.05311731 -0.00519528 0.00523647 -0.00442689

Table A.2: ADPs in xspher (ammonia)

σ(U11) σ(U22) σ(U33) σ(U12) σ(U13) σ(U23)

N 0.00025718 0.00025718 0.00025718 0.00010405 0.00010405 0.00010405

H 0.00274417 0.00282723 0.00268566 0.00252421 0.00262085 0.00328818

Table A.3: ADP Uncertainties in xspher (ammonia)

x y z σ(x) σ(y) σ(z)

N -0.21063037 -0.21063037 -0.21063037 0.00004339 0.00004339 0.00004339

H -0.36459300 -0.26748918 -0.11572486 0.00099515 0.00118253 0.00092224

Table A.4: Positions and their uncertainties in xappr (ammonia)
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U11 U22 U33 U12 U13 U23

N 0.03633643 0.03633643 0.03633643 -0.00137075 -0.00137075 -0.00137075

H 0.06684603 0.06992138 0.06471864 -0.00941038 0.00829451 -0.01173399

Table A.5: ADPs in xappr (ammonia)

σ(U11) σ(U22) σ(U33) σ(U12) σ(U13) σ(U23)

N 0.00017600 0.00017600 0.00017600 0.00007683 0.00007683 0.00007683

H 0.00262302 0.00281359 0.00253973 0.00240753 0.00234663 0.00282272

Table A.6: ADP Uncertainties in xappr (ammonia)

x y z σ(x) σ(y) σ(z)

N -0.21064108 -0.21064108 -0.21064108 0.00004742 0.00004742 0.00004742

H -0.36553288 -0.26887599 -0.11576606 0.00088698 0.00099388 0.00085872

Table A.7: Positions and their uncertainties in xnum (ammonia)

U11 U22 U33 U12 U13 U23

N 0.03653857 0.03653857 0.03653857 -0.00141164 -0.00141164 -0.00141164

H 0.06567149 0.07057512 0.06583168 -0.00813844 0.01015144 -0.01225835

Table A.8: ADPs in xnum (ammonia)
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σ(U11) σ(U22) σ(U33) σ(U12) σ(U13) σ(U23)

N 0.00018335 0.00018335 0.00018335 0.00007749 0.00007749 0.00007749

H 0.00263048 0.00250930 0.00242584 0.00234009 0.00221070 0.00264031

Table A.9: ADP Uncertainties in xnum (ammonia)
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A.2 Epoxide

x y z σ(x) σ(y) σ(z)

O1 0.11682278 0.83081319 0.12407298 0.00009630 0.00004849 0.00006842

C2 0.14837961 0.93866025 0.29620979 0.00014065 0.00007154 0.00009783

H2a 0.26882585 0.89255774 0.42309445 0.00217402 0.00104309 0.00125185

H2b 0.17257700 1.05105150 0.26632456 0.00178043 0.00101427 0.00127526

C3 -0.13433715 0.86488511 0.21842066 0.00015494 0.00008203 0.00010677

H3a -0.29343656 0.92326174 0.13303997 0.00240558 0.00106792 0.00155870

H3b -0.19416073 0.77581343 0.29441725 0.00221466 0.00118997 0.00167968

Table A.10: Positions and their uncertainties in xspher (epoxide)
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U11 U22 U33 U12 U13 U23

O1 0.03517212 0.02728050 0.03058483 -0.00520461 0.01112360 0.00258685

C2 0.03404153 0.02557660 0.02758400 -0.00265580 0.00598523 0.00070565

H2a 0.05634256 0.04908961 0.01918077 -0.00836162 -0.01604999 0.00632139

H2b 0.04119990 0.03406674 0.03068180 -0.00335647 0.00701081 -0.01166467

C3 0.03141294 0.03457965 0.03505740 -0.00018481 0.01288547 -0.00280110

H3a 0.03823368 0.08009990 0.04256266 0.00309522 0.00972083 -0.00022733

H3b 0.06008372 0.04038094 0.06253344 -0.00869169 0.02500175 -0.01785658

Table A.11: ADPs in xspher (epoxide)

σ(U11) σ(U22) σ(U33) σ(U12) σ(U13) σ(U23)

O1 0.00022982 0.00018214 0.00021036 0.00016005 0.00016980 0.00016897

C2 0.00029279 0.00024122 0.00025566 0.00019796 0.00021759 0.00021077

H2a 0.00630831 0.00599915 0.00423080 0.00486364 0.00421960 0.00571211

H2b 0.00611800 0.00569123 0.00495894 0.00410443 0.00439119 0.00398904

C3 0.00029955 0.00030082 0.00031624 0.00023095 0.00025055 0.00023292

H3a 0.00571220 0.00833418 0.00563862 0.00619847 0.00482044 0.00652402

H3b 0.00734428 0.00560223 0.00667028 0.00627241 0.00640804 0.00573051

Table A.12: ADP Uncertainties in xspher (epoxide)
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x y z σ(x) σ(y) σ(z)

O1 0.11629706 0.83105629 0.12461968 0.00006669 0.00003312 0.00004704

C2 0.14860645 0.93867319 0.29600402 0.00009426 0.00004844 0.00006599

H2a 0.28180832 0.88998569 0.43677840 0.00184317 0.00084975 0.00103281

H2b 0.17378376 1.06191834 0.25652393 0.00153409 0.00071760 0.00116802

C3 -0.13420169 0.86455269 0.21817113 0.00010271 0.00005529 0.00007059

H3a -0.30870926 0.93325202 0.12019171 0.00181904 0.00086307 0.00117706

H3b -0.20345561 0.76473066 0.30368497 0.00177855 0.00103186 0.00130594

Table A.13: Positions and their uncertainties in xappr (epoxide)

U11 U22 U33 U12 U13 U23

O1 0.03539775 0.02561570 0.02938774 -0.00354788 0.01060380 0.00304139

C2 0.03241572 0.02498453 0.02735948 -0.00208911 0.00568577 0.00038726

H2a 0.08133475 0.07166194 0.03146493 0.00882681 -0.01522649 0.02242921

H2b 0.06381217 0.02571240 0.07051370 -0.00284714 0.01845210 -0.00834418

C3 0.03064605 0.03378709 0.03434746 -0.00000406 0.01196525 -0.00343559

H3a 0.04871461 0.10417533 0.05120784 0.01349921 0.00126842 0.02801827

H3b 0.07197904 0.06268409 0.07685965 0.00440319 0.02775164 -0.03385757

Table A.14: ADPs in xappr (epoxide)
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σ(U11) σ(U22) σ(U33) σ(U12) σ(U13) σ(U23)

O1 0.00015575 0.00012207 0.00014131 0.00010942 0.00011543 0.00011633

C2 0.00019448 0.00016386 0.00017561 0.00013391 0.00014787 0.00014232

H2a 0.00582552 0.00545698 0.00358524 0.00449760 0.00382175 0.00542634

H2b 0.00550721 0.00366361 0.00518875 0.00350873 0.00430389 0.00313875

C3 0.00020145 0.00020449 0.00021365 0.00015697 0.00016893 0.00015608

H3a 0.00454199 0.00742064 0.00451299 0.00481251 0.00364336 0.00527837

H3b 0.00582954 0.00475939 0.00538370 0.00543243 0.00521835 0.00492548

Table A.15: ADP Uncertainties in xappr (epoxide)

x y z σ(x) σ(y) σ(z)

O1 0.11630200 0.83105456 0.12462240 0.00006670 0.00003283 0.00004683

C2 0.14860388 0.93867370 0.29600818 0.00009482 0.00004933 0.00006666

H2a 0.28188303 0.89018655 0.43679749 0.00175602 0.00083973 0.00096101

H2b 0.17415410 1.06198945 0.25654421 0.00152052 0.00064049 0.00112451

C3 -0.13422380 0.86455610 0.21816096 0.00010404 0.00005554 0.00007162

H3a -0.30965599 0.93325279 0.11966245 0.00171279 0.00082679 0.00111782

H3b -0.20327746 0.76447829 0.30349427 0.00177844 0.00097593 0.00123570

Table A.16: Positions and their uncertainties in xnum (epoxide)
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U11 U22 U33 U12 U13 U23

O1 0.03540553 0.02561929 0.02939355 -0.00355484 0.01060544 0.00304290

C2 0.03241766 0.02499714 0.02735873 -0.00209336 0.00568212 0.00038483

H2a 0.08161116 0.07198549 0.03125303 0.00869537 -0.01506367 0.02267296

H2b 0.06381938 0.02571043 0.06976910 -0.00281568 0.01813303 -0.00845670

C3 0.03065347 0.03378731 0.03434924 -0.00001576 0.01196974 -0.00345708

H3a 0.04850887 0.10404794 0.05112049 0.01298037 0.00163072 0.02750554

H3b 0.07119344 0.06306339 0.07627523 0.00435705 0.02676631 -0.03375260

Table A.17: ADPs in xnum (epoxide)

σ(U11) σ(U22) σ(U33) σ(U12) σ(U13) σ(U23)

O1 0.00015637 0.00012241 0.00014181 0.00010984 0.00011567 0.00011629

C2 0.00019661 0.00016611 0.00017776 0.00013683 0.00014951 0.00014380

H2a 0.00589093 0.00550590 0.00359529 0.00453185 0.00379739 0.00546308

H2b 0.00546325 0.00364392 0.00523232 0.00348838 0.00427868 0.00313333

C3 0.00020251 0.00020568 0.00021486 0.00015898 0.00017052 0.00015932

H3a 0.00454027 0.00745359 0.00457971 0.00484397 0.00364728 0.00524844

H3b 0.00596198 0.00482120 0.00545628 0.00534942 0.00518044 0.00485359

Table A.18: ADP Uncertainties in xnum (epoxide)
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A.3 L-Alanine

x y z σ(x) σ(y) σ(z)

N1 0.64715199 0.13748440 0.18297222 0.00008333 0.00004001 0.00009123

H1a 0.69577155 0.06593927 0.18639576 0.00166174 0.00105007 0.00207293

H1b 0.76922956 0.18496216 0.20244209 0.00169047 0.00092367 0.00217118

H1c 0.57059761 0.14785070 0.01423038 0.00228660 0.00079584 0.00268883

C1 0.46618367 0.16103190 0.35483921 0.00008463 0.00003859 0.00009485

H1 0.42487718 0.24008423 0.34287846 0.00145129 0.00073197 0.00179664

C2 0.25985016 0.09070526 0.30330006 0.00009476 0.00004601 0.00010894

H2a 0.20273129 0.10811255 0.14640631 0.00170590 0.00081632 0.00236560

H2b 0.14478156 0.10752585 0.41890998 0.00164680 0.00076871 0.00215600

H2c 0.29956521 0.01107545 0.30956638 0.00167021 0.00082082 0.00211673

C3 0.55405621 0.14076416 0.59994977 0.00008767 0.00003798 0.00009104

O1 0.72707533 0.08372921 0.62429091 0.00007038 0.00003174 0.00007978

O2 0.44092666 0.18410196 0.76119868 0.00007124 0.00003179 0.00007707

Table A.19: Positions and their uncertainties in xspher (L-alanine)
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U11 U22 U33 U12 U13 U23

N1 0.00577389 0.00662454 0.00446784 -0.00018451 0.00063649 0.00018035

H1a 0.00595765 0.06825635 0.00201168 0.01589340 0.00717879 -0.00920244

H1b 0.00929117 0.03928127 0.01510088 0.00998003 0.01194376 0.02679480

H1c 0.06714575 0.00019180 0.10205770 -0.02801725 0.07920933 -0.03568289

C1 0.00551139 0.00538394 0.00390322 -0.00008583 0.00002376 0.00045229

H1 0.00429880 0.01510641 0.00173544 -0.00380405 0.01115591 0.00957543

C2 0.00614238 0.00938561 0.00660525 -0.00042254 -0.00064816 -0.00130107

H2a 0.00767116 0.02449755 0.02692839 0.00146072 -0.00374702 -0.00652462

H2b 0.00246485 0.01561439 0.02767608 0.00396895 -0.00303481 -0.00455455

H2c 0.02186048 0.01840313 0.01413230 -0.00171879 0.00246347 -0.01076307

C3 0.00547546 0.00431003 0.00408438 0.00007177 -0.00039891 -0.00032423

O1 0.00674007 0.00691055 0.00684896 0.00066567 -0.00057545 0.00217667

O2 0.00796247 0.00783480 0.00417166 -0.00069984 0.00099902 0.00171969

Table A.20: ADPs in xspher (L-alanine)
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σ(U11) σ(U22) σ(U33) σ(U12) σ(U13) σ(U23)

N1 0.00013661 0.00013525 0.00015990 0.00012349 0.00012269 0.00012067

H1a 0.00578714 0.00917431 0.00679987 0.00668690 0.00510409 0.00625569

H1b 0.00542117 0.00688834 0.00751670 0.00619230 0.00569097 0.00560942

H1c 0.00935418 0.00544910 0.01512111 0.00730861 0.01057508 0.00645620

C1 0.00015323 0.00013529 0.00017331 0.00011890 0.00013025 0.00012223

H1 0.00484772 0.00500877 0.00565425 0.00442049 0.00456052 0.00441289

C2 0.00016169 0.00016472 0.00019390 0.00015027 0.00014509 0.00014619

H2a 0.00592584 0.00685744 0.00887026 0.00609390 0.00596207 0.00514189

H2b 0.00500791 0.00575037 0.00855371 0.00553423 0.00593660 0.00472603

H2c 0.00736634 0.00552057 0.00745904 0.00530167 0.00615965 0.00548926

C3 0.00014167 0.00013028 0.00016655 0.00011973 0.00013186 0.00012872

O1 0.00012834 0.00012154 0.00015767 0.00011532 0.00011713 0.00010903

O2 0.00012914 0.00012152 0.00014305 0.00010691 0.00011883 0.00011449

Table A.21: ADP Uncertainties in xspher (L-alanine)
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x y z σ(x) σ(y) σ(z)

N1 0.64729053 0.13751227 0.18294275 0.00004322 0.00002054 0.00004758

H1a 0.70445311 0.06058376 0.19819088 0.00112703 0.00052660 0.00138648

H1b 0.77847125 0.18951189 0.21144384 0.00104111 0.00051495 0.00135294

H1c 0.58376013 0.14917634 0.01643847 0.00119424 0.00052738 0.00129350

C1 0.46629967 0.16108988 0.35441909 0.00004487 0.00002035 0.00005055

H1 0.42255275 0.24730043 0.34322177 0.00093090 0.00040879 0.00111761

C2 0.25986975 0.09068834 0.30332258 0.00005001 0.00002409 0.00005699

H2a 0.19209852 0.11035097 0.13153931 0.00100174 0.00050468 0.00122179

H2b 0.12782867 0.10557622 0.43150634 0.00100750 0.00048330 0.00127323

H2c 0.30412208 0.00447976 0.30818369 0.00100187 0.00046814 0.00142565

C3 0.55403078 0.14079781 0.59985168 0.00004638 0.00002015 0.00004844

O1 0.72675475 0.08378246 0.62426987 0.00003759 0.00001697 0.00004244

O2 0.44090952 0.18404169 0.76112224 0.00003754 0.00001689 0.00004089

Table A.22: Positions and their uncertainties in xappr (L-alanine)
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U11 U22 U33 U12 U13 U23

N1 0.00555336 0.00609744 0.00424070 -0.00015653 0.00067527 0.00011983

H1a 0.02522476 0.02735933 0.01783128 0.00267880 0.01280222 0.00489290

H1b 0.01340261 0.02796687 0.02170759 -0.00007891 0.00691040 0.00265475

H1c 0.03650293 0.02164220 0.02576888 -0.01170160 0.02671652 -0.00913759

C1 0.00518915 0.00472578 0.00351801 0.00009128 -0.00044247 0.00043513

H1 0.02281192 0.01236980 0.01804812 -0.00116477 0.00412339 0.00810289

C2 0.00581523 0.00886036 0.00613851 -0.00046798 -0.00059124 -0.00131908

H2a 0.01958430 0.04810270 0.01567394 0.01052002 -0.01089222 -0.00988225

H2b 0.01071599 0.03065489 0.03273262 0.00392778 0.00788701 -0.00250176

H2c 0.03190898 0.01552745 0.04808608 -0.00463110 0.00064944 -0.00383372

C3 0.00486618 0.00425965 0.00355403 -0.00003353 -0.00019280 0.00022600

O1 0.00668075 0.00705206 0.00592130 0.00052406 -0.00063649 0.00244631

O2 0.00754769 0.00761713 0.00392052 -0.00056017 0.00059908 0.00210478

Table A.23: ADPs in xappr (L-alanine)
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σ(U11) σ(U22) σ(U33) σ(U12) σ(U13) σ(U23)

N1 0.00007240 0.00007072 0.00008459 0.00006466 0.00006471 0.00006338

H1a 0.00410776 0.00363241 0.00471554 0.00346826 0.00377478 0.00342399

H1b 0.00322159 0.00360407 0.00469599 0.00357162 0.00356594 0.00321163

H1c 0.00440654 0.00384202 0.00498110 0.00367668 0.00400057 0.00386312

C1 0.00008098 0.00007114 0.00009207 0.00006324 0.00006883 0.00006460

H1 0.00344488 0.00271591 0.00387724 0.00275681 0.00333956 0.00281442

C2 0.00008586 0.00008667 0.00010250 0.00007961 0.00007646 0.00007716

H2a 0.00392880 0.00469574 0.00440916 0.00362803 0.00328712 0.00347132

H2b 0.00315943 0.00387597 0.00514589 0.00359278 0.00367685 0.00313768

H2c 0.00484259 0.00295715 0.00567382 0.00349171 0.00446842 0.00331167

C3 0.00007465 0.00006965 0.00008829 0.00006400 0.00006994 0.00006785

O1 0.00006799 0.00006531 0.00008338 0.00006132 0.00006187 0.00005818

O2 0.00006847 0.00006418 0.00007608 0.00005688 0.00006300 0.00006073

Table A.24: ADP Uncertainties in xappr (L-alanine)
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x y z σ(x) σ(y) σ(z)

N1 0.64728890 0.13751052 0.18293918 0.00004348 0.00002075 0.00004797

H1a 0.70487739 0.06055461 0.19772123 0.00110091 0.00047813 0.00137278

H1b 0.77853649 0.18945748 0.21117536 0.00097618 0.00048447 0.00134424

H1c 0.58317835 0.14933638 0.01595286 0.00114259 0.00051320 0.00108228

C1 0.46629879 0.16109020 0.35441960 0.00004475 0.00002038 0.00005038

H1 0.42273200 0.24738602 0.34351040 0.00092953 0.00037176 0.00113593

C2 0.25987203 0.09068765 0.30332069 0.00005005 0.00002421 0.00005746

H2a 0.19217152 0.11046128 0.13129869 0.00098673 0.00049667 0.00107981

H2b 0.12766701 0.10544931 0.43167567 0.00095739 0.00047716 0.00120445

H2c 0.30407268 0.00438720 0.30830256 0.00097128 0.00041446 0.00142544

C3 0.55403140 0.14079754 0.59985070 0.00004620 0.00002011 0.00004819

O1 0.72675395 0.08378319 0.62426581 0.00003740 0.00001689 0.00004230

O2 0.44091166 0.18404259 0.76111998 0.00003740 0.00001682 0.00004069

Table A.25: Positions and their uncertainties in xnum (L-alanine)
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U11 U22 U33 U12 U13 U23

N1 0.00554510 0.00609623 0.00424828 -0.00015867 0.00067863 0.00011948

H1a 0.02549738 0.02737437 0.01759412 0.00283709 0.01273538 0.00466275

H1b 0.01335627 0.02819776 0.02173433 0.00006543 0.00666907 0.00259999

H1c 0.03626280 0.02106064 0.02613164 -0.01198870 0.02710476 -0.00906416

C1 0.00519359 0.00472992 0.00351623 0.00009210 -0.00044202 0.00043533

H1 0.02294134 0.01220274 0.01776506 -0.00104112 0.00410680 0.00804487

C2 0.00581726 0.00885965 0.00614227 -0.00046614 -0.00059180 -0.00132057

H2a 0.01876877 0.04731291 0.01609856 0.01033291 -0.01059506 -0.01006855

H2b 0.01052491 0.03069420 0.03288284 0.00396335 0.00789242 -0.00272177

H2c 0.03106142 0.01597713 0.04776419 -0.00472250 0.00079920 -0.00372660

C3 0.00487231 0.00426046 0.00355412 -0.00003286 -0.00019280 0.00022583

O1 0.00668279 0.00705602 0.00592401 0.00052419 -0.00063756 0.00244771

O2 0.00754966 0.00761951 0.00392352 -0.00055902 0.00060035 0.00210424

Table A.26: ADPs in xnum (L-alanine)
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σ(U11) σ(U22) σ(U33) σ(U12) σ(U13) σ(U23)

N1 0.00007289 0.00007206 0.00008590 0.00006465 0.00006494 0.00006436

H1a 0.00415352 0.00362832 0.00471804 0.00350406 0.00378231 0.00340582

H1b 0.00322269 0.00363505 0.00474835 0.00360738 0.00359986 0.00324674

H1c 0.00443657 0.00386887 0.00497369 0.00364313 0.00401598 0.00384358

C1 0.00008116 0.00007160 0.00009216 0.00006323 0.00006881 0.00006468

H1 0.00347419 0.00271630 0.00388888 0.00274262 0.00333884 0.00282823

C2 0.00008626 0.00008784 0.00010308 0.00007983 0.00007697 0.00007731

H2a 0.00391382 0.00470047 0.00440718 0.00362412 0.00329899 0.00342659

H2b 0.00315935 0.00391422 0.00516643 0.00361023 0.00368548 0.00313224

H2c 0.00485168 0.00299532 0.00569547 0.00348751 0.00443944 0.00327954

C3 0.00007477 0.00006967 0.00008829 0.00006398 0.00006993 0.00006785

O1 0.00006801 0.00006535 0.00008344 0.00006131 0.00006185 0.00005817

O2 0.00006849 0.00006421 0.00007608 0.00005687 0.00006302 0.00006078

Table A.27: ADP Uncertainties in xnum (L-alanine)
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