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Abstract

We study the application of the marked correlation function, M(rp), to

probe gravity using the large scale structure of the Universe. We focus our

efforts on testing the f(R) modified gravity theory introduced by Hu et al.

(2007). This model mimics the cosmic acceleration at late times through the

introduction of new physics when the curvature terms are replaced by a func-

tion of the Ricci scalar R, rather than by invoking the cosmological constant.

These modifications to the gravity equations lead to changes in the environ-

ments of large-scale structures that could, in principle, be used to distinguish

this model from GR. We use data from the LOWZ and CMASS luminous

red galaxy samples of SDSS-III BOSS to measure the marked statistic over a

range of scales. To compare with the data, we create mock galaxy catalogues

using the halo occupation distribution (HOD) prescription, to populate haloes

from N-body simulations using GR and f(R) gravity. Using the Monte Carlo

Markov Chain algorithm, we extract the number density and two-point clus-

tering from the mock catalogues and compare with the observational meas-

urements to constrain the HOD model parameters. Weights for individual

galaxies are based on the local density information, calculated using a Voronoi

tessellation, and are used to mark galaxies when computing the marked cor-

relation function. We find that when taking into account the 1-σ confidence

interval for the best fitting HOD parameters, the marked correlation function

only marginally distinguishes viable gravity models at the 1-σ level for separ-

ations rp < 1.7h−1 Mpc. As part of the process of evaluating the suitability

of the N-body simulations to build mock catalogues, we address the question

of the mass resolution of the halo catalogue, and introduce a simple scheme

to allow the use of marginally resolved halos.

i



Supervisors: Carlton M. Baugh Peder Norberg and Nelson Padilla

ii



Acknowledgements

This work could not being possible with the unconditional support of people around
me, those who have contributed a lot in my life, specially during my time at
Durham. First, I would like to thank Carlton, Peder, and Nelson. With your
supervision and guidance I have reach really far in my academic path. I hope that
I have learned a bit of all the wisdom you tried to provide me during these 4 years
in my PhD. A special shout to Shufei, you made my life a lot easier, and I will be
forever grateful for that. Your work in the ICC is of the highest quality.

Second, to all my friends and colleagues in Durham. You are a lot of people to
be mentioned, but everyone I have meet in the last time has been really important,
and I am happy for all the moments I have shared with you guys. Special thanks
to my housemates and friends, Qiuhan and Sergio. It was a pleasure to live under
the same roof, and knowing you more, guys. Specially the video-game nights
(including factorio with Victor). To Arnau, Carol, Christoph, Aidan, and all the
CDT members. I have learned so much from you, and I really thank you for that.
Many thanks to the Astro-people, in special Jack, who disinterestedly offered his
help to proofread this thesis and Ellen for being such a lovely friend. I will miss
every coffe break, lunch, Friday-pub and dinners with you, wonderful people. To
Ash and the football lads, you guys are awesome, and I really enjoyed my time
being part of the Ustinov team. All the training and games, are memories I will
hold back every time I enter the pitch.

To those who are far away right now: Thanks to all my friends in Chile. Re-
gardless of the distance, you always managed to keep in touch and be there every
time I needed. Pablo, Ignacio, Diego-Mono, Diego and Jorge, I miss you guys, but
the Puma will rise again, stronger than ever. All the nights playing Age of Em-
pires during lockdown were more than worth. To Maria Paz, your unconditional
friendship and support makes me smile everyday, I am really grateful for that, and

iii



I hope it goes forever. To Natalya, even though we are not close right now, thank
you for being my friend, and I promise I will visit you soon.

To Ana María and Álvaro, my parents. Gracias por hacer de mi un hombre que
está feliz por todo lo que ha logrado. Todo esto lo hago por ustedes, y espero que
puedan estar orgullosos de su hijo. A pesar de la distancia, siempre están en mi
mente y mi corazón. A mi hermano Álvaro, gracias por cuidar de mi Ema, y me
hace muy feliz que ahora también tengamos a Canela. Espero verlos pronto.

It has been quite a long a eventful journey, and again, not the same without all
of you on it.

iv



Contents

Declaration viii

List of Figures ix

List of Tables xix

1 Using the large-scale structure of the Universe to constrain cos-

mology 1

1.1 The cosmological model . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Friedmann-Robertson-Walker metric . . . . . . . . . . . 2

1.1.2 Cosmological distances . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2.1 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2.2 The luminosity and angular-diameter distances . . . 5

1.1.3 The cosmological constant . . . . . . . . . . . . . . . . . . . . 6

1.2 The Λ Cold Dark Matter universe . . . . . . . . . . . . . . . . . . . 7

1.3 Using the large-scale structure of the Universe to constrain cosmology 9

1.4 Probing the the Universe at Large-scales . . . . . . . . . . . . . . . . 12

1.4.1 Peculiar velocity and redshift space distortions . . . . . . . . 12

1.4.2 Power spectrum and galaxy-galaxy correlation function . . . 14

1.5 Studying gravity with large-scale structures . . . . . . . . . . . . . . 16

1.5.1 Modified gravity theories in large-scales structures . . . . . . 17

v



1.6 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 The f(R) theory of gravity 19

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 The chameleon mechanism . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 The Hu & Sawicki model . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Large-scale N-body simulations in f(R) modified gravity . . . . . . . 25

3 Luminous red galaxies in the Sloan Digital Sky Survey: The

LOWZ and CMASS samples 30

3.1 Luminous red galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 The baryon oscillation spectroscopic survey BOSS . . . . . . . . . . 32

3.3 Characteristics of the LOWZ and CMASS samples: number density

and projected correlation function . . . . . . . . . . . . . . . . . . . 36

3.3.1 Galaxy number density . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Galaxy-galaxy two-point correlation function . . . . . . . . . 39

4 N-body simulations of modified gravity: Making use of sub-

resolution haloes 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 The N-body simulations . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 The halo mass function and simulation resolution . . . . . . . . . . . 48

4.4 Extending the resolution of the simulated halo catalogue . . . . . . . 52

4.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 57

5 The construction of accurate mock galaxy catalogues for the

Baryon Oscillation Spectroscopic Survey galaxies. 60

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 The halo occupation distribution model . . . . . . . . . . . . . . . . 63

5.2.1 Modelling the one-halo term using HOD methods . . . . . . . 64

vi



5.3 Inferring HOD parameters using the Monte Carlo Markov Chain

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 The Metropolis-Hasting MCMC approach . . . . . . . . . . . 69

5.3.2 Autocorrelation time and convergence . . . . . . . . . . . . . 71

5.3.3 Studying the HOD parameter-space using the Markov Chain 74

5.3.4 Defining the χ2 distribution in the MCMC . . . . . . . . . . 78

5.4 The HOD families that reproduce LOWZ and CMASS results . . . . 82

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 The marked correlation function of LOWZ and CMASS galaxies

as a test of modified gravity. 92

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 The projected marked correlation function . . . . . . . . . . . . . . . 94

6.3 Local density estimation: the Voronoi Tessellation . . . . . . . . . . 96

6.3.1 The shape of the local density distribution . . . . . . . . . . . 99

6.3.2 Tessellation of the LOWZ and CMASS lightcones . . . . . . . 100

6.3.3 Mock lightcones of the LOWZ and CMASS samples . . . . . 104

6.4 LOWZ and CMASS marked correlation functions . . . . . . . . . . . 109

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Summary and conclusions 114

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 The Constrain Dark Energy with X-ray clusters sample (CODEX) . 121

7.2.1 Richness-Mass relation . . . . . . . . . . . . . . . . . . . . . . 122

7.2.2 Future plans . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 125

vii



Declaration

The work in this thesis is based on research carried out at the Institute for Compu-
tational Cosmology, Department of Physics, Durham University, England. No part
of this thesis has been submitted elsewhere for any other degree or qualification,
and it is the sole work of the author unless referenced to the contrary in the text.

Some of the work presented in this thesis has been published in journals and
conference proceedings - the relevant publications are listed below.

Publications

• The content of Chapter 4 in this thesis has been published in:

Joaquín Armijo et al. Monthly Notices of the Royal Astronomical Society:
Letters, Volume 510, Issue 1, pp.29-33

• The content of Chapter 5 and 6 in this thesis is being prepared to be a paper
to be submitted to a journal

Joaquín Armijo et al. in prep.

Copyright © 2022 by Author.

“The copyright of this thesis rests with the author. No quotation from it should
be published without the author’s prior written consent and information derived
from it should be acknowledged”.

viii



List of Figures

1.1 Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS).

The plot shows the right ascension and comoving distance (obtained

from the redshift) of the individual galaxies. Two samples, LOWZ (black

dots), and CMASS (grey dots) are plotted over 140 deg. on the sky, in

a slice of thickness 3 deg. in declination. These samples are described in

more detail in Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 The non-linear power spectrum P (k) ratio between f(R) gravity models

and ΛCDM cosmology as function of the scale k from Li et al. (2012).

Open symbols are calculated using the simulations at z = 0 of F4 (red),

F5 (green) and F6 (blue), whereas the solid lines correspond to the

analytical fits from Schmidt et al. (2009). . . . . . . . . . . . . . . . . . 24

2.2 The two dimensional power spectrum in real space (left panels) and

redshift space (right panels) for the GR (top panels) and F4 (bottom

panels) simulations from Jennings et al. (2010). The colour gradient

and the contour lines represent the amplitude of the power spectrum,

log P as indicated by the line labels and color-bar at the top. . . . . . . 26

ix



2.3 Top panel: The dark matter density field from the N-body simulations of

GR (left) and MG (right) presented in Arnold et al. (2019). Both images

show the density log ρ/ρ̄ of smooth particles in a box of 40 × 40h−1Mpc

and a slice of 10h−1 Mpc. Some regions have been highlighted to show

the different formation of some haloes between the simulations of GR

and MG. Bottom panel: The subtraction between the two images in the

top panel coloured by ∆ρ/ρGR, with ∆ρ = ρF5 − ρGR. . . . . . . . . . . 28

3.1 Rest-frame spectra of 5 LRGs from Eisenstein et al. (2001). The main

feature of these spectra is the well defined 4000Å break. . . . . . . . . . 31

3.2 Colour-space density plot for LOWZ galaxies at low redshift from Reid

et al. (2016). The diagram shows the color distribution in the (g−r, r−i)

plane detailing the selection with the definitions of Eqns. 3.1, 3.2 (red

dashed lines). See the text in Reid et al. for more details. . . . . . . . . 33

3.3 Colour-space density plot for SDSS-III CMASS galaxies from Reid et al.

(2016). Top: The distribution in the colour-plane with a selection for

the higher redshift sample with z ≳ 0.4. The additional colour selection

(red line) is defined by the d⊥ parameter. Bottom: The sliding cut in d⊥

with the i-band magnitude. The color and magnitude cuts implemented

for the samples are shown by the red lines in each axis See the text in

Reid et al. for more details. . . . . . . . . . . . . . . . . . . . . . . . . . 34

x



3.4 The angular coverage footprint of BOSS DR12, reproduced from Reid

et al. (2016) catalogue showing the spectroscopic redshift completeness,

which is the ratio of the number of galaxies with zspec. to the number

of galaxies in the target catalogue. Individual patches corresponds to

a plate with fibres measuring the redshift of target galaxies, coloured

from blue to red by the overall completeness of that plate (the higher

completeness goes to redder colours in the colour bar). The survey is

divided into 2 samples with different areas and redshift ranges, with the

LOWZ sample (bottom panel) at 0.10 < z < 0.43 and CMASS (top

panel) 0.43 < z < 0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 The galaxy number density n(z) as function of redshift z for the BOSS

DR12 NGC data. LOWZ (black) and CMASS (gray) samples have dif-

ferent selection functions which lead to different curves for n(z). We

also plot the distribution of the random galaxy catalogue (red) from

Reid et al. (2016), used for clustering analysis, and the subsample se-

lection for this study LOWZ 0.240 < z < 0.360 (blue dashed line) and

CMASS 0.474 < z < 0.528 (light blue dashed line). . . . . . . . . . . . . 38

3.6 The projected two-point correlation function wp scaled by rp as a func-

tion of the projected perpendicular distance rp for BOSS DR12 NGC.

The clustering is calculated for the selected subsamples of LOWZ (black

dots) and CMASS (gray dots) and scaled by rp. Error bars are calcu-

lated using Jackknife resampling over 100 Jackknife regions (e.g Norberg

et al. 2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 The footprint of LOWZ (left panel) and CMASS (right panel) samples

including the Jackknife regions for the uncertainties in the clustering

analysis. All colour regions have roughly the same area to create the

resampling of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xi



4.1 The differential halo mass function at z = 0. Top: results from the

P-Millennium Baugh et al. (2019) (blue line), and the ΛCDM N -body

simulations of Arnold et al. (2019) (points); red triangles show the mass

function measured from the L768 simulation and the green squares show

the L1536 run. The vertical dashed lines indicate a halo mass of 100

particles for the L768 (red) and L1536 (green) resolution runs. Bot-

tom: fractional difference expressed relative to the P-Millennium halo

mass function. A small correction has been applied to the masses in the

P-Millennium mass function to account for the slightly different cosmo-

logical parameters used in this run and in Arnold et al. (see text for

details). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 The correlation function measured in the HR (red) and LR (green) runs

for subhalo samples defined by sharp lower mass cut (left and centre-

left panels, corresponding to σlog M = 0) and by a HOD-style, more

gradual mass cut (centre-right and right panels, defined by σlog M > 0;

see Eqn. 1). For the correlation functions measured from the LR run,

the solid lines shows the unweighted estimate and the dashed lines the

weighted case. The lower panels show the fraction difference in the

correlation function, relative to the HR measurement. The pink shad-

ing shows the error on the correlation function estimated by jackknife

resampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xii



4.3 The distribution of matter density counts in cells of size 1.6 h−1 Mpc

centred on halos in the stated mass range, measured from the L768

(red) and L1536 (green) simulations. The difference in volume of the

L1536 and L768 runs has been taken into account in the normalisation.

The left and central panels show the count in cells distributions for the

bins used in the mass function (the bin limits are written at the top

of each panel) for which the weights are greater than unity. The right

panel shows the distribution of cells for a wider mass range covering all

of the bins for which the weights in our scheme are greater than unity.

Here the green dashed line shows the distribution of counts-in-cells in

the L768 simulation after applying the weights. . . . . . . . . . . . . . 56

5.1 2-D projection in the XY plane of the L768 N -body simulation for the

snapshot at redshift z = 0.3 from Arnold et al. (2019). The distribution

of smoothed dark matter particles is projected in a slice of ∆Z = 40 h−1

Mpc. Highlighted regions are coloured using the density log ρ/ρ̄. The

smoothing of the plotted particles was performed using the swiftsimio

python-library (Borrow et al., 2020). . . . . . . . . . . . . . . . . . . . . 61

5.2 2-D projection of the distribution of subhaloes in 2 arbitrary haloes

with the same mass but different shapes. The coordinates are plotted

in units of the respective value of R200c radius (the blue circle marks

unity in these units) and are centred on the main subhalo (red star). In

each row we plot the same halo in XY , Y Z and ZX projection for the

distribution of subhaloes (black dots). . . . . . . . . . . . . . . . . . . . 65

5.3 Cumulative number of subhaloes Nsh(< r) as a function of the radial dis-

tance from the halo centre using two different simulations, L768 (solid

lines) and L1536 (dashed lines). We use halos with masses Msh >

1011 h−1 M⊙ (left) and Msh > 1012 h−1 M⊙ (right) to compute the

subhalo density profiles in 3 different bins of subhalo mass as described

in the legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xiii



5.4 Top: the MH-MCMC sampling for a individual walker in the 2-D-

projection space for the HOD parameters log Mmin and log M1. The

sampling starts from a random position in the parameter space, with

a “burn-in” stage (black dots), after which the “production” stage (red

dots) starts. Bottom: Same as in the left panel, but for the complete

MCMC ensemble composed of 28 independent walkers. . . . . . . . . . . 75

5.5 top: log-likelihood distribution, ln L(θ), as function of the Monte Carlo

step for a realization of 30,000 samples. bottom: log Mmin distribution

as function of MC step for the same realization as shown in the top

panel. Only 10 individual walkers of a total of 28 walkers are plotted

for clarity. The black dashed line indicates the burn-in stage, which is

placed once the chain stabilize. . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 The ∆χ2 probability density function for the MCMC run with An = 0.15

and Awp = 0.85 (red line). The shape of the distribution depends on

the number of degrees of freedom (colour lines), the histogram is better

fit by ν = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.7 Corner plot of the MCMC posterior distribution for the HOD model

parameters. The MCMC run fits the HOD model from a simulation

(either GR or F5) over the data we want to replicate (either LOWZ or

CMASS data). The diagonal subpanels show the 1-D distribution of the

parameters (black lines) or posterior distribution p(θ) with θ being the

HOD parameters. The off-diagonal subpanels show the 2-D projection

of the parameters for all parameter combinations, where the contours

are selected using the ∆χ2, using 1-σ (cyan lines) and 2-σ (red lines). . 81

xiv



5.8 Top panel: The average number of galaxies in a halo, ⟨N⟩, as function

of halo mass M200c (red lines) for all the HOD parameter sets which

lie within a 1 σ confidence interval according to the χ2 distribution.

Bottom panel: The projected correlation function wp(rp) as function

of the projected separation, rp, for galaxy catalogues created using the

HOD samples shown in the top panel. The red region corresponds to

that covered by all the wp/rp curves, and the black dots shows the

measurement from LOWZ that we used to fit the model. Uncertainties

for the observational measurements points have been calculated using

the Jackknife as explained in Section 3.3. The bottom subpanel shows

the residuals relative to the observational data. . . . . . . . . . . . . . . 84

5.9 The distribution of the galaxy number density values P (ngal) recovered

for the HOD samples in the different weighting schemes: An = 0.15,

Awp = 0.85 (top panel); An = 0.50, Awp = 0.50 (middle panel) and

An = 0.85, Awp = 0.15 (bottom panel). We draw over each P (ngal) a

Gaussian with the same mean and standard deviation as the distribu-

tions. We have rescaled the x-axis to center each distribution on the

target value we are fitting nobs, the number density of the LOWZ sample. 86

5.10 Top: The integrated autocorrelation time τf as a function of the number

of samples N . The curves show three different MCMC runs changing

the weights that define the χ2: An = 0.15 Awp = 0.85 (red), An =

0.5 Awp = 0.5 (green), and An = 0.85 Awp = 0.15 (blue). The τf = N/50

(black dashed line) is added to show how the models are predicted to

start converging after crossing this value. Bottom: The G-R diagnostic

showing the ration between the ratio R − 1 as function of the number

of samples N for the same samples displayed in the top panel. . . . . . . 88

xv



5.11 Same as figure 5.1, but adding the distribution of galaxies tracing the

underlying dark matter. Galaxies are placed using the HOD method,

with the parameters tuned to replicate the observed abundance and

clustering of BOSS galaxies. . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Top Panel: Two dimensional Voronoi diagram of the galaxy distribution

shown in Figure 5.11. The polygons indicated by the white lines are

calculated using the Voronoi tessellation for the projection of a slice of

thickness ∆Z = 40h−1 Mpc projected in the XY plane. Bottom panel:

same as in the top panel but colouring individual Voronoi cells using

the respective value of the mark of the galaxy in that cell, divided by

the mean mark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 The distribution of the logarithm of Voronoi cell projected volumes,

V , in units of the mean slice volume of the distribution, V̄ , for a HOD

galaxy catalogue generated using the L768 simulation. The distributions

are shown for different numbers of slices used to create the projection

space before the 2D tessellation is performed: 20 (grey), 30 (yellow), 40

(orange). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Right ascension (RA) and declination (Dec) for a set of galaxies in a

thin redshift slice with ∆z = 0.008 for the LOWZ sample. The black

dots show galaxies within the survey in the redshift slice. Blue dots

cover the survey mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Angular distribution of galaxies in the LOWZ sample in a window of

60◦ in right ascension and a section of the radial coordinate, displaying

the redshift, for a thin slice of ∆Dec = 3.5 deg. in declination. We mark

the 8 redshift slices (red dashed lines) with ∆z = 0.015 used to perform

the Voronoi tessellations in a 2D space. . . . . . . . . . . . . . . . . . . 103

xvi



6.5 The distribution of Voronoi cell volumes for the projected slices for a

comparison between the HOD mock catalogues from periodic simulation

boxes (red lines) and the LOWZ 0.24 < z < 0.36 data (black line). 1000

HOD catalogues selected from the random sampling explained in 5.4 are

selected to represent the samples that match the galaxy number density

and clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.6 Left: The number density distribution n(z) for the subsample of LOWZ

and a mock lightcone which has been randomly sampled to have the

same n(z). Right: The distribution of Voronoi cell volumes dn/d log V

for the mock lightcone and the LOWZ subsample. . . . . . . . . . . . . 106

6.7 The marked correlation function M(rp) as a function of the projected

distance rp using the same HOD mock catalogue from the original box

(red dashed line) and the mock lightcone with the SDSS footprint geo-

metry (red dots). The light-red shaded shows the uncertainties of the

HOD model for the GR z = 0.3 simulations. . . . . . . . . . . . . . . . . 108

xvii



6.8 The marked correlation function M(rp) as function of the projected

distance rp for the BOSS galaxy samples and the results from the re-

spective HOD mock galaxy catalogues from the GR (red) and F5 (blue)

simulations. Left panel: M(rp) measured from LOWZ (black dots) at

0.24 < z < 0.36 compared with the HOD mock catalogues within the

1-σ confidence interval from the MCMC fitting of the two-point cluster-

ing and number density. Right: same as left panel, but for the CMASS

subsample (grey dots) at 0.474 < z < 0.528. The shaded areas for the

models come from selecting the 68% of all the family of HOD catalogues

of each model, GR, F5 at redshift z = 0.3 (dark red and dark blue) and

z = 0.5 (light red and light blue). The error bars on the data are estim-

ated using Jackknife resampling, with 100 subvolumes of the data. In

the bottom panels we show the relative residuals using the data meas-

urements as a reference, meaning that we display Mmod/Mdata−1, with

Mmod the marked correlation function for each HOD set and Mdata is

the marked correlation function of LOWZ and CMASS in left and right

panels respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1 Left: the footprint coverage of the CODEX cluster catalogue from Lind-

holm et al. (2021). We plot the distribution of randoms (black) and the

cluster (red) samples, following the area of the SDSS-Legacy survey

with the X-ray mask from Clerc et al. (2020). Right: The redshift

distribution for the random and cluster samples from Lindholm et al.

(2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 The richness-mass relation, λ(M), for galaxy clusters from Capasso

et al. (2019) (red line) with the respective model uncertainty (red shaded

area). We add the richness λ and its variance estimation σ2
λ for mock

cluster catalogues from simulations of GR and F5 at redshift z = 0.3. . 123

xviii



List of Tables

5.1 Uniform priors for the HOD parameters, θ. Extra conditions are applied

to the prior distributions, like the fact that log M0 > log Mmin and that

log M1 > log 5M0 for every set of HOD parameters. . . . . . . . . . . . . 82

5.2 The 1-σ confidence intervals of the HOD parameters for the GR and F5

simulations at redshift z = 0.3 and z = 0.5, to match the clustering and

abundance of galaxies in the LOWZ and CMASS samples. . . . . . . . . 87

xix



Chapter 1

Using the large-scale structure of

the Universe to constrain

cosmology

1.1 The cosmological model

In this thesis we explore the large scale structure of the Universe, where galaxies are

born, grow and evolve through different epochs, processes and environments. To

understand the different phenomena that gave shape to the Universe we observe,

first we need to study it as a whole in the context of a cosmological model. For

example, on the largest scales, the Universe is governed by the laws of the theory

of gravity, which can be described by Einstein’s General Relativity (GR). Einstein

proposed the fundamental field equation

Gµν = 8πG

c4 Tµν , (1.1)

where Gµν is the Einstein tensor, which encodes the curvature of space, and Tµν

is the energy-momentum tensor that describes the matter distribution for a per-

fect fluid. In this way the Universe can be described completely by considering

its geometry and energy-density matter content, assuming certain properties en-

capsulated in the cosmological principle. This principle states that on large scales
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1.1.1. The Friedmann-Robertson-Walker metric

the Universe is homogeneous and isotropic, which means that are no privileged

directions or positions.

1.1.1 The Friedmann-Robertson-Walker metric

The geometrical properties of this homogeneous and isotropic space can be de-

scribed by considering every element of the Universe as being modelled as a con-

tinuous fluid. Thus, any point in space-time has a set of “comoving coordinates” xα,

which is the position of the fluid element passing through the point and a proper

time t measured by a clock moving with the fluid. This yields the Friedmann-

Robertson-Walker metric, where the line element dτ2 has the form:

dτ2 = c2dt2 − a(t)2
[

dr2

1 − Kr2 + r2(dθ2 + sin2 θdϕ2)
]

. (1.2)

Here a(t) is a function to be determined, and has dimensions of length, the spher-

ical polar coordinates, r (by convention dimensionless), θ and ϕ are the comoving

coordinates, K is the curvature constant which is scaled to have a value of −1,

0 or 1, for a open, flat and closed universe, respectively. Then dτ represents the

space-time interval between two points xi and xi +dxi. For the case of an isotropic

and homogeneous fluid, and an energy momentum tensor with a rest-mass energy

density ρ2c and pressure p, the Einstein Equation (Eqn.1.1) can be solved. These

equations are called the Friedmann cosmological equations:

ä = −4πG

3

(
ρ + 3 p

c2

)
a, (1.3)

ȧ2 = 8πG

3 a2ρ − Kc2, (1.4)

where ȧ and ä is the first and second derivatives, respectively, of the function

a(t), which is called the expansion parameter or “scale factor”. In this way, the

Friedmann equations tell us about the time evolution of the scale factor, if one

knows the equation of state that relates the pressure p and the mass-energy density

ρ for the different components of the universe. Also, from Eqn. 1.4 the curvature
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1.1.2. Cosmological distances

can be written as:
K

a2 = 1
c2

(
ȧ

a

)2 ( ρ

ρc
− 1

)
, (1.5)

where ρc is defined as the critical density. This quantity can be obtained by as-

suming a universe with K = 0:

ρc = 3
8πG

(
ȧ

a

)2
. (1.6)

1.1.2 Cosmological distances

Understanding the geometrical properties of the Universe through the Friedmann

equations permits us to define the concept of distance in cosmology. The proper

distance, dp, to a point, P , with coordinates r, θ and ϕ measured by an observer at

the origin of the coordinate system is defined by a fixed ruler held by the observer

to the position of P at given proper time t. Then for the FRW metric with dt = 0

this is

dp =
∫ r

0
dr′ a

1 − Kr′2 = af(r), (1.7)

where the function f(r) depends on the value of K:

f(r) = sin−1 r (K = 1), (1.8)

f(r) = r (K = 0), (1.9)

f(r) = sinh−1 r (K = −1). (1.10)

As the proper distance changes with time because of the time dependence of a, we

can define a comoving radial distance dc by relating dp at any time t with the value

at the present time t0 using 1.7

dp(t0) = a0f(r) = a0
a

dp(t), (1.11)

where a0 is the value of a at t0. Then we have a relation between dc and dp, which

is just

dc = a0
a

dp. (1.12)
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1.1.2.1. Redshift

As the proper distance of a source object at position P changes with time, there

is an intrinsic radial velocity with respect to the observer, which is defined by

Hubble’s law

vr = ȧf(r) = ȧ

a
dp, (1.13)

where the quantity H(t) = ȧ/a is called the Hubble parameter. The value of the

Hubble parameter today H(t0) = H0 is believed to be about 70 km s−1 Mpc−1,

though there is some tension between the results derived from different approaches

(Solà et al., 2017). It is conventional to define h = H0/
(
100km s−1 Mpc−1

)
, which

is the dimensionless Hubble parameter.

1.1.2.1 Redshift

It is useful to define a variable related to the scale factor, a(t), to explain the

position of a distant object such as a galaxy or any extragalactic source in the

expanding Universe. We call this variable the redshift:

z = λ0 − λe

λ0
, (1.14)

which relates the wavelengths of the emitted (λe) and observed (λo) photons of

the source moving with the expansion of the Universe. These photons travel from

the source to the observer along the null geodesic with dτ2 = 0, therefore from the

metric in Eqn. 1.2 we obtain:
∫ t0

te

cdt

a
=
∫ 0

r

dr

(1 − Kr2)1/2 = f(r), (1.15)

where te is the time at which the photon was emitted at comoving distance r and

t0 is a later time when the photon is observed at the origin, r = 0. Then light from

the source is emitted at t′
e = te + δte and reaches the observer at t′

0 = t0 + δt0, at

the same f(r). Given that r is a comoving distance and both the observer and the
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1.1.2.2. The luminosity and angular-diameter distances

source are moving with the cosmological expansion, we can write
∫ t′

0

t′
e

cdt

a
=

∫ t0

te

cdt

a
, (1.16)

0 =
∫ te+δte

te

cdt

a
+
∫ t0

te+δte

cdt

a
−
∫ t0+δt0

te+δte

cdt

a
,

0 =
∫ te+δte

te

cdt

a
−
(∫ te+δte

t0

cdt

a
+
∫ t0+δt0

te+δte

cdt

a

)
,∫ te+δte

te

cdt

a
=

∫ t0+δt0

t0

cdt

a
. (1.17)

If δt is small and, in particular, δte = λe/c (and δt0 = λ0/c), which is equivalent

to the frequencies of emitted and observed light respectively, the scale factor is

essentially constant over t and t + δt, then we can integrate Eqn. 1.17 and obtain:

λe

λ0
= ae

a0
. (1.18)

Then for any time t = te and taking the definition of redshift en Eqn. 1.14 we can

rewrite Eqn. 1.18 as

1 + z = a0
a

. (1.19)

1.1.2.2 The luminosity and angular-diameter distances

The distance to a source is calculated using the information we observe in the form

of light, meaning there is a finite time interval and path the light has to travel to

make a measurement of the distance. This means the proper distance is no longer

valid. Therefore we need another definition for astronomically distant objects, such

as the luminosity distance. To calculate the luminosity distance, dL, we consider

the flux obtained from a source at point P . The observed flux needs to take into

account the expansion of the universe. Using Eqn. 1.18 we infer that the observed

flux is L0 = Le (a/a0)2. The two factors of (a/a0) come from the redshifting of the

frequency for individual photons, and the small variation of time interval δt over
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1.1.3. The cosmological constant

which the energy is emitted. The flux is given by

F = Le

4πa2
0r2

(
a

a0

)2
, (1.20)

from the inverse-square law between flux and luminosity. From the definition of

comoving distance (for the spatially flat Universe) and redshift in Eqns. 1.11 and

1.14 respectively, then the luminosity distance is

dL = dc(1 + z). (1.21)

Another useful distance to define is the angular diameter distance dA, which relates

the physical size of a distant object to its angular size for the observer. From the

metric in Eqn. 1.2, the diameter D of a source with dr=0 and dϕ ≈ 0, we obtain

dθ = D

ar
. (1.22)

Then, considering that for a distant observer the angle ∆θ = D/dA, then the

angular diameter distance is simply:

dA = ar. (1.23)

Again, for the case of the Universe with K=0, we can express this distance in terms

of the comoving distance, dA = dc/ (1 + z).

1.1.3 The cosmological constant

The cosmological constant was first introduced by Albert Einstein to make the

universe static, as scientists at the time were unaware of the cosmological expansion.

By adding a constant factor Λ to the field equations, the Friedmann equations

become

ä = −4
3πG

(
ρ + 3 p

c2

)
a + Λa

3 , (1.24)

ȧ2 = 8πG

3 ρa2 − Kc2 + Λa2

3 . (1.25)
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1.2. The Λ Cold Dark Matter universe

From these equations, the Λ term is equivalent to adding a new component to the

energy-density of the universe on the right-hand size of the Einstein field equation,

with density

ρΛ ≡ c2

8πG
Λ. (1.26)

From the acceleration Eqn. 1.25, it can be seen that the cosmological constant has

a different sign than the energy-matter density ρ, which means that Λ produces

a negative pressure with a repulsive gravitational force. This conclusion can also

be obtained by inferring the equation of state for this component, which relates

the pressure to the density (ρΛ) through p = wρc2, with w = −1. However, later

on, observations showed that the Universe was expanding following Hubble’s law,

which prompted Einstein to discard the static universe model, and hence to declare

Λ as the biggest blunder of his life. Currently, the cosmological constant is popular

again following the observations that indicate that the expansion of the Universe

is speeding up, and Λ has been adopted in the most accepted cosmological model,

the ΛCDM universe (Riess et al., 1998; Perlmutter et al., 1999).

1.2 The Λ Cold Dark Matter universe

Now that we understand the context of the cosmological model, we try to under-

stand the physical nature of the Universe, by measuring the evolution of the the

different quantities defined in Section 1.1. The Universe is well described by the

standard model of cosmology, Λ-cold-dark-matter (ΛCDM), which explains with

great accuracy the different phenomena we observe. This model describes a ho-

mogeneous and isotropic Universe, which is currently undergoing an accelerated

expansion, with various components which contribute to the overall energy-density

today, Ω0 ≡ ρ
ρc

. This means that the density of the Universe is measured by the

contributions of matter and energy in comparison to the critical density ρc. The

different components that contribute to Ω0 are: The density for baryonic matter

Ωb, which is mainly in the form of hydrogen and helium, forms the stars and galax-
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1.2. The Λ Cold Dark Matter universe

ies we observe in the sky, the one for cold dark matter Ωc, and for dark energy ΩΛ,

which as of yet both their nature remain undiscovered. These are the cornerstones

of the standard cosmological model.

The baryons we observe in the present time are in galaxies, stars and mostly

in the hot intergalactic medium, and correspond to no more than 5% of the total

energy-density composition of the ΛCDM universe. The rest is believed to be dark

matter (24%) and dark energy (71%), as inferred by people, from the best fitting

model to the observations by the Planck mission (Planck Collaboration et al.,

2020a,b). The Universe then has Ω0 = 1, which means that we live in a universe

with density equals to the critical value ρc (or almost), then the Universe is flat

with K = 0. While dark matter is an active component in the formation of the

large-scale structure of the Universe through its mass and gravity, it is thought

to be “cold”, hence the thermal velocity of one of the successful candidates must

be non-relativistic (Chadha-Day et al., 2022), and does not interact with ordinary

matter, apart from through gravity.

The most commonly invoked candidate for the dark energy is a cosmological con-

stant, Λ, which can be interpreted as a negative pressure that makes the Universe

to expand. This has a constant energy density which, in recent times, has be-

come the dominant component of the Universe and hence results in an accelerating

cosmic expansion today. The cosmological constant explanation of the accelerat-

ing cosmic expansion has unappealing aspects. The theoretically motivated value

from vacuum energy considerations does not match that inferred from observa-

tions (Weinberg, 1989). This “vacuum catastrophy” is a hint that the nature of

Λ is a mystery and that a different, more plausible explanation should be sought.

Among the alternatives to the cosmological constant are exotic mechanisms which

invoke more complex forms of dark energy, such as quintessence and dynamic scalar

fields (Armendariz-Picon et al., 2000; Tsujikawa, 2013). Also, theories of modified

gravity which add physical degrees of freedom (Carroll et al., 2004) to the gravity

equations are being considered, switching the effect of dark energy to the curvature
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1.3. Using the large-scale structure of the Universe to constrain cosmology

side of Einstein’s equation.

At the present time the Universe has evolved to become highly non-homogeneous,

dominated by structures of several Megaparsecs (Mpc) in size, which we call the

large-scale structure. The study of the evolution of the large-scale structures is one

of the most active subjects in cosmology, which describes the hierarchical forma-

tion of structures, dark matter haloes and galaxies. Hierarchical growth can be

understood as resulting from a primordial spectrum of fluctuations, with power on

all scales. In particular, the shape of the small scale spectrum is such that the

fluctuations on these scales become nonlinear first. This leads to a sequence of

structure formation proceeding from small scales to larger scales, as the smaller

structures merge or become larger by accreting more material.

1.3 Using the large-scale structure of the Universe to

constrain cosmology

The cosmic web, which is the network pattern observed today formed by galaxies

that trace the large-scale structures, grows from the primordial matter density

field. This field is thought to be seeded during inflation, through the action of

gravity. The small perturbations imprinted after inflation grow as the Universe

is expanding. During the early phases of this growth structures can be modelled

using perturbation theory, where the equations of motion can be approximated by

linear and higher order equations to describe the dynamics of these structures.

The overdensities of baryonic and dark matter are defined by

δ(r) ≡ ρ(r) − ⟨ρ⟩
⟨ρ⟩

, (1.27)

where ρ is the density and ⟨ρ⟩ is the mean density of the field. The overdensity

evolves first from a linear regime homogeneously, where the perturbations are much

smaller than the horizon scale, and a linear analysis can be used in early times. As

we approach late times, the overdensity grows due to the gravitational instability.
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1.3. Using the large-scale structure of the Universe to constrain cosmology

Here the perturbations become nonlinear, where δ ∼ 1, first on the small scales

where the power is stronger and as time continues, larger scales transition to a

strongly non-linear regime governed fully by gravity. Linear models that describe

the gravitational instability process show how the initial density perturbations for

baryons grow if they are larger than a characteristic length scale or mass, the Jeans

mass, overcoming the pressure force and collapsing to form a gravitationally bound

structures. For collisionless dark matter, the overdensity keeps growing over time

without feeling the pressure force, which forms deep potential wells that structures

follow after the recombination era.

Further on, the evolution of δ of structures becomes non-linear, where the growth

of structures becomes inhomogeneous depending on the scale. Then, to describe

δ, non-linear terms in the equations need to be added, as perturbation terms that

depend on the initial density field (Carlson et al., 2009). Perturbation theories

capture the significant information beyond linear theory, such as the mode-coupling

dependencies, large-scale flows and free-streaming (Leclercq et al., 2013), allowing

to explain the dynamical evolution of the density field. However, their accuracy

is still limited in small scales. For instance, using the Zel’dovich approximation

(Zel’dovich, 1970), we can understand how the initial non-linear collapse occurs

in preferred directions forming sheet-like and filament-like structures, giving shape

to the cosmic web. The Zel’dovich method is simply a linear approximation (first

order) of the Lagrangian perturbation theory, which uses the position and the

displacement of the massive particles.

To solve the small-scale regimes, accurate numerical simulations are required to

study the evolution of structure. Structure formation occurs at nodes of the cosmic

web, where matter collapses from every direction, moving through filaments and

walls, where there is a preferred direction for the collapse, to enormous and almost

empty cosmic voids, which form when most of the matter is evacuated from a

specific region. We refer to hierarchical clustering as the process that connects

the initial perturbations to the actual structures which form at late times. Later
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1.3. Using the large-scale structure of the Universe to constrain cosmology

on, using the Press-Schechter formalism (Press et al., 1974), we can predict the

abundance of collapsed objects as a function of mass, which gives us a useful, yet

approximate formalism to study gravitationally bound structures in the cosmic web.

Nevertheless, various assumptions are made in the Press-Schechter analysis, which

can be difficult to justify, but is still a practical predictive tool. The formalism

can be refined when ellipsoidal dynamics are incorporated in the collapse to form

dark matter haloes, which agrees better with the results from N -body simulations

(Sheth et al., 1999).

The cosmic web serves as a rich laboratory with a variety of different environ-

ments nurturing the different types of galaxies during their lives. The Universe

is thought to be dominated by the presence of dark matter over ordinary matter,

which means that most of the interactions in the cosmic web occur due to gravity.

However, we can only observe the galaxies lying at the density peaks of the matter

density field, which means that we also need to understand the connection between

these galaxies and the dark matter surrounding them. The relation between the

matter density field and galaxies is called the halo-galaxy connection, which ex-

plains how galaxies populate density peaks of dark matter, known as dark matter

haloes. Although halo models also include the effects of baryonic physics on the

birth of galaxies, this process is still mainly driven by gravity (White et al., 1978,

1991). This results in galaxy formation as a two-stage theory: dark matter haloes

form through the hierarchical clustering process first, and then the cooling mech-

anisms which operate within the hot gas inside the dark matter haloes lead to the

formation of a disk of condensed cold gas. The halo model and the cosmic web in

context of the ΛCDM universe have been tested with high precision over the years.

These tests include probes of the early universe using observations of the cosmic

microwave background (CMB) through a series of experiments culminating in the

Wilkinson-Microwave-Anisotropy-Probe (WMAP) and Planck satellites (Hinshaw

et al., 2013; Planck Collaboration et al., 2016, 2020a); and for the late Universe

through large volume surveys of galaxies which measure the cosmic structure such
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the 2-degree-Field Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky

survey (SDSS) (Colless et al., 2003; Alam et al., 2015).

1.4 Probing the the Universe at Large-scales

The distribution of galaxies on the sky is not random. They cluster in groups

in large numbers and, due to the connection between the formation of galaxies

and the underlying dark matter distribution, galaxy clustering is an important

cosmological probe (Benson et al., 2000). To study the clustering of galaxies a large

volume needs to be sampled. The uncertainty on the two-point clustering decreases

with the inverse square root of the surveyed volume. Also, the observed number of

galaxies per unit volume (galaxy number density) used to trace the matter field has

to be large enough to obtain a high signal-to-noise measurement of the clustering

Feldman et al. (1994)∗. A sufficiently high number density of galaxies and a large

sample volume fix the amplitude of the clustering and reduces the uncertainties,

which is crucial for constraining the parameters of the cosmological model. In

Figure 1.1 we show what a large-scale survey looks like, and how they trace the

cosmic web. The galaxy distribution shown corresponds to a large volume surveyed

by SDSS-III, which is the largest published spectroscopic volume surveyed to date

(covering a solid angle of 10, 000 deg2 or almost 1/4 of the sky).

1.4.1 Peculiar velocity and redshift space distortions

In reality the redshift we observe in galaxy surveys is a combination of the cos-

mological redshift we measure from expansion zcos and the velocities of galaxies

caused by the different dynamics that we can find within structures, for example

inside cosmic nodes or other collapsing regions. This “peculiar” velocity vp affects

the line-of-sight distance measurement of the galaxy causing an additional Doppler
∗In practice, this means that the shot noise arising due to the use of discrete tracers to sample

the continuous density field has to be smaller than the clustering signal.
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1.4.1. Peculiar velocity and redshift space distortions

Figure 1.1: Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey
(BOSS). The plot shows the right ascension and comoving distance (obtained from
the redshift) of the individual galaxies. Two samples, LOWZ (black dots), and
CMASS (grey dots) are plotted over 140 deg. on the sky, in a slice of thickness
3 deg. in declination. These samples are described in more detail in Chapter 3.
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1.4.2. Power spectrum and galaxy-galaxy correlation function

effect in the emitted photons of the galaxy, which is indistinguishable to the one in

Eqn. 1.14. Then the effect of peculiar velocities changes the observed redshift zobs:

zobs = (1 + zcos)(1 + vp

c
) − 1. (1.28)

When ignoring peculiar velocities to obtain a correspondent comoving distance

from the galaxy redshift zobs, then distortions in the line-of-sight distance will

appear, for instance galaxy groups are elongated by peculiar velocities producing

the so called “Finger-of-God” effect. Thus, the observed distance for a galaxy is

now defined by

s = r + 1 + z

H(z)v · ê∥, (1.29)

where r is the 3D position (in comoving coordinates) of the galaxy in real-space at

redshift z, v is the 3D velocity of the galaxy, and ê∥ is the line-of-sight direction.

1.4.2 Power spectrum and galaxy-galaxy correlation function

To study the distribution of matter in the Universe one can use the matter power

spectrum, which is defined as the mean square amplitude of the Fourier transforms

of the density field, δk. This is appealing because in the linear regime of fluctuation

growth, the Fourier modes evolve independently of one another. Then P (k), the

power spectrum, can be used to study the large-scale structures formed during the

linear regime, which gives accurate predictions of the structure formation, particu-

larly at very large scales. When the phases of the Fourier modes are independent,

the density field δ(r) can be described by a normal probability distribution, and

if the density field is homogeneous and isotropic as predicted by inflation, then

all its statistical properties can be inferred from the power spectrum (the second

moment of the field). On smaller scales the fluctuation growth rapidly becomes

non-linear, hence higher order perturbation theory and or numerical N -body simu-

lations are needed to resolve such regions. Additionally, as we cannot observe dark

matter directly (and hence do not see the complete density field), we need to probe
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1.4.2. Power spectrum and galaxy-galaxy correlation function

the cosmic density field using individual galaxies, assuming there is an intrinsic

connection between these and the density field we are modelling.

We can also study the two-point correlation function, which is the configuration-

space version of the power spectrum (using the Fourier transform). This is defined

by

ξ(r) = ⟨δ1δ2⟩ , (1.30)

where r = |r1 − r2|, which is defined by the positions of the objects measured.

When using tracers of the density field (galaxies for example), the two-point cor-

relation function can be understood as the excess of probability of finding a galaxy

pair at separation r compared to a random distribution of N galaxies

dN = ng [1 + ξ(r)] dV, (1.31)

where dN is the expected number of galaxies in the small volume dV , and ng is the

mean number density of galaxies. Note that for a random distribution, ξ(r) = 0.

There are advantages in using the two-point correlation function to measuring

galaxy clustering over using the power spectrum. In general, for the scales we

are interested to explore, the estimation of the clustering is more straight forward

using the definition of ξ in Eqn. 1.31, even more so when we use the definition of

“estimators” (see Section 3.5) with the information provided by observations. In

this way we infer the density of a galaxy sample, given the limited sampled volume.

Whereas for the power-spectrum we observe from a galaxy survey, this includes the

convolution of the true spectrum with the window function of the survey. The shape

of the correlation function for different scales gives a detailed description of how

galaxies cluster in the large-scale structures. Nevertheless, higher-order moments

are required to obtain a complete picture of the clustering, particularly on smaller

scales which are in the nonlinear regime. As galaxies trace the underlying matter

distribution in a non-local and stochastic way, there is a “bias” relation between

the distribution of galaxies and the density field. The linear bias b is defined as:

δg = bδm, (1.32)
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where δg is the density field inferred from galaxies and δm is the density field

for matter. This basic parameter b contains information about the content and

dynamical evolution of the Universe, along with the shape of ξ(r), which makes

it a powerful tool to constrain the cosmological model. For example, assuming

the cosmological model from the latest Planck observations, we have the matter

correlation function, which when adding the form of the bias b(M), we can infer

the halo mass for the assumed cosmology.

1.5 Studying gravity with large-scale structures

By observing galaxies in wide-field surveys, to complement CMB measurements,

the density of matter can be constrained to around 30% of the total energy-density

content of the Universe. Given that these observations also support a universe with

the critical density, mostly from CMB observations, this means that the rest of the

energy density is made up of the mysterious dark component that we call dark

energy; this component currently dominates the dynamics of the Universe, causing

its accelerating expansion.

Although the cosmological constant Λ is part of the stationary universe solu-

tion erroneously introduced by Einstein in Eqn. 1.1, the nature of this component

remains unknown and represents one of the biggest challenges in present day cos-

mology, and to the theory of gravity (Heymans et al., 2018; Baker et al., 2021).

This means that the large-scale structure of the universe not only tests the cosmolo-

gical model, but also confronts general relativity on cosmological scales. Moreover,

many models that modify the theory of gravity from general relativity replicate the

accelerated expansion without invoking a cosmological constant (Koyama, 2016).

For such models, new degrees of freedom are introduced, which must be coupled

to matter, modifying the formation of structure over time. Alternative models of

gravity will inevitably modify structure formation in a manner that depends on

the environment. To study such models, we need probes that gather information
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related to these modifications, like the properties linked to the distribution of the

galaxies in such environments. These impacts are seen in probes such as weak

lensing (Kilbinger, 2015), redshift space distortions (Peacock et al., 2001), and the

marked correlation function statistic (White, 2016). In this thesis we focus on the

latter, which is a relatively new statistical method that contains information bey-

ond the traditional galaxy-galaxy correlation function, whilst still being a second

moment quantity. The marked correlation function has been used to study the

connection between properties of galaxies and their environment, such as luminos-

ity and environmental density, and halo mass (Sheth et al., 2004; Wechsler et al.,

2006).

1.5.1 Modified gravity theories in large-scales structures

To better understand what kind of properties we can exploit to study general re-

lativity and modified gravity models, we need to introduce the modified gravity

models that are currently viable in terms of satisfying current constraints. In

particular, viable models of modified gravity (MG) are those that include a screen-

ing mechanism on scales where gravity has been probed and is consistent with

GR. Among such models one can find chameleon theories (Brax et al., 2013) and

Vanshtein mechanism theories (Vainshtein, 1972). Although our interest lies in

studying modified gravity models that change structure formation on cosmological

scales, we need models that satisfy constraints on smaller scales, which to date are

consistent with Einstein’s general relativity.

Powerful constraints, such as the dynamics of the solar system, and the more

recent detection of binary neutron star mergers, indicate that several classes of

MG models that were recently under consideration have now been ruled out (Lom-

briser et al., 2016). Such theories of gravity modify the propagation velocity of

gravitational waves detected in vacuum, which is not consistent with the cur-

rent measurements, including measurements of the optical counterparts of such

events. However, many models of modified gravity are still viable as they evade
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local tests of gravity in the solar system and on galactic scales (Baker et al., 2017;

Creminelli et al., 2017). Such models are continuously being tested and further

constrained, and include chameleon theories, for example f(R) gravity (De Felice

et al., 2010) and Brans-Dicke type theories including the Dvali-Gabadadze-Porrati

(DGP) model (Dvali et al., 2000). These MG models are important as they can be

used to test GR and the equivalence principle on cosmological scales.

Our main aim in this thesis is to investigate if a marked correlation function, in

which the mark depends on density, can distinguish between viable gravity models.

To meet this aim, we have developed a pipeline to make realisations of mock galaxy

catalogues from N-body simulations, using a simple halo model approach. A key

feature of our analysis is an assessment of the resolution effects of the simulation

and the uncertainty due to the range of halo models that give acceptable fits to

the measured two-point correlation functions; this uncertainty is often ignored in

the literature and could result in an overly optimistic view of the performance of

any diagnostic that depends on clustering.

1.6 Outline of the thesis

The outline of this thesis is as follows: in § 2 we review the f(R) theory of grav-

ity, which is the model studied in this work. In § 3 the data from the Baryon

Oscillation spectroscopic survey (BOSS) is presented, which is designed to collect

large numbers of galaxy redshifts over a large volume to measure the large-scale

structure of the Universe. The simulations used to understand the modelling of

MG are presented in § 4, along with a discussion of the mass resolution of the

halo catalogue and a simple scheme to make use of marginally resolved halos. The

creation of mock galaxy catalogues to replicate the observations is described in

§ 5. The calculation of the marked correlation function for both data and mock

catalogues is presented in § 6. Finally, we explain the direction in which this work

could go in the future and draw our conclusions in § 7.
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Chapter 2

The f (R) theory of gravity

2.1 Overview

The f(R) theory of gravity is a viable alternative to general relativity. In the

standard ΛCDM cosmological model, the cosmological constant, Λ, drives the ac-

celerated expansion of the universe at recent times. Instead of invoking Λ, f(R)

gravity models explain the quickening expansion by the invoking of new physics

that arises from the additional degrees of freedom introduced in the equations of

motion for gravity (Li et al., 2007). Such models can be understood as an extension

to the standard GR model and can be tested by studying the effects of gravity on

different physical scales.

The f(R) model of gravity can be viewed as an extension of standard GR through

the inclusion of a function f of the Ricci scalar, R, in the Einstein-Hilbert action

S =
∫

d4x
√

−g

( 1
2κ2 [R + f(R)] + Lm

)
, (2.1)

where κ2 = 8πG/c4, Einstein’s constant, g, is the determinant of the metric gµν

and Lm is the Lagrangian density of matter. The choice of this f(R) function can

be used to mimic the behaviour of the ΛCDM model which is well constrained

by CMB observations, and to modify the cosmology at late times to replicate the

accelerated expansion that we observe at low redshift. It is worth noting that
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2.1. Overview

considering the specific shape of the f(R) function, the ΛCDM model is recovered

for f(R) = 2Λ, where Λ is a constant. The addition of higher order terms in 2.1

leads to the modifications of all the equations of GR, including the Einstein field

equation in Eqn. 1.1:

Gµν + fRRµν − gµν

[1
2f − ∇2fR

]
− ∇µ∇νf = κTµν , (2.2)

where ∇µ is the covariant derivative of the metric tensor, fR ≡ df(R)
dR is the new,

scalar and dynamical degree of freedom that arises from the introduction of the

f(R). To solve this new equation and obtain the equations of motion for massive

particles, one can take the trace of Eqn. 2.2 and solve for the case of a perturbation

around the standard Friedmann-Lemaître-Robertson-Walker metric in Eqn. 1.2.

This leads to a modified set of the Friedman equations, which include several non-

linear terms that combine f(R), fR and higher order. This description of the

background evolution of the Universe gives two equations of motion. One is the

modified Poisson equation for the gravitational potential:

∇⃗2Φ = 16πG

3 a2[ρm − ρ̄m] + 1
6a2

[
R(fR) − R̄

]
, (2.3)

and for the new scalar field fR

∇⃗2fR = −1
3a2

[
R(fR) − R̄ + 8πG(ρm − ρ̄m)

]
, (2.4)

where ρm is the matter density field, and overbar indicate quantities (ρ̄m and R̄)

defined as mean values for the background cosmology, which is solved in comoving

coordinates. As we have now defined the Ricci scalar as a function of fR in both

Eqns 2.3 and 2.4, we can combine these to obtain

∇⃗2Φ = 4πGa2 [ρm − ρ̄m] − 1
2∇⃗2fR, (2.5)

which is a new equation of motion for massive particles including a term which

comes from the new scalar degree of freedom. We can understand this new term
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2.2. The chameleon mechanism

as the potential −1
2fR of an extra force, the fifth force, mediated by the scalar field

fR, which is sometimes referred to as the scalaron (Gannouji et al., 2012).

2.2 The chameleon mechanism

The equations of motion of f(R) gravity are different from the one in standard

gravity, and different predictions may result. Nevertheless, local tests already con-

strain these predictions with great accuracy on certain scales, such as in the solar

system (Guo, 2014), which means that modified gravity must include mechanisms

to hide the new physics which arises from the extra degree of freedom in Eqn. 2.5.

This feature is referred to as a screening mechanism (Khoury et al., 2004), and is

a scale-dependent property of chameleon theories such as f(R) gravity. In scales

where the model is expected to behave as standard gravity, such as in the deep New-

tonian potential of the Solar system, Eqn. 2.4 is dynamically driven to |fR| → 0. In

this limit, Eqn. 2.5 reduces to the standard Poisson equation and GR is recovered,

hence this theory is viable on these scales (Hu et al., 2007). On the other hand,

on scales where the Newtonian potential becomes shallower, the term R − R̄ in

Eqn. 2.4 is negligible and Eqn. 2.5 is reduced to

∇⃗2Φ = 16
3 πGa2[ρm − ρ̄m], (2.6)

which is the same as the standard Poisson equation, but enhanced by a factor

4/3 when the amplitude of the fifth force is at its maximum and no screening

is triggered. An interesting feature of this theory is that to obtain Eqn. 2.3 no

assumption about the form of the f(R) function is required in Eqn. 2.5, but some

requirements are needed to avoid large deviations from GR on both cosmological

and solar system scales. These constraints should include the predictions of ΛCDM

as the limiting case on large scales, and can be achieved by ensuring the following:

lim
R→∞

f(R) = const., (2.7)

lim
R→0

f(R) = 0. (2.8)
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2.3. The Hu & Sawicki model

This class of model is referred as the Hu-Sawicki model (Hu et al., 2007).

2.3 The Hu & Sawicki model

The Hu-Sawicki f(R) model gained traction over the past 15 years as a model

that can reproduce almost the same expansion history as in the ΛCDM model

(by construction) without the need for a cosmological constant. Also, the novel

inclusion of a screening mechanism that allows the model to satisfy tests on solar

system and galactic scales, makes this theory viable given the successful predic-

tions of general relativity (Multamäki et al., 2006; Sotiriou, 2006). Additionally,

the relative simple shape of the model, along with its dependence on only a few

free-parameters, makes it possible to solve the equations of motion using N -body

simulations (Oyaizu, 2008; Li et al., 2011). A popular choice for the functional

form of f(R) is proposed as following

f(R) = −m2
c1
(

R
m2

)n

c2
(

R
m2

)n
+ 1

, (2.9)

where m2 ≡ 8πGρ̄m0/3 = H2
0 Ωm is called the mass scale, and is a convenient way

to express the regimes where the behaviour of the model shows or hides the effects

of the scalaron fR. ρ̄m0 is the value of the background matter density today, n, c1

and c2 are free parameters of the model. The form of this function is motivated

by the aim of ensuring that for high curvature values compared to the mass scale,

m2, the term m2/R goes to zero and f(R) can be expanded as

f(R) ≈ −c1
c2

m2 + c1
c2

2
m2

(
m2

R

)n

. (2.10)

In the limit m2/R → 0, the term c1/c2 acts as the cosmological constant of

this model, and is independent of scale. As we have an explicit form for f(R) we

can set c1/c2 = 6ΩΛ,0/Ωm,0, where Ωm,0 is the matter density parameter today,

and ΩΛ = 1 − Ωm. With this configuration the model follows the same expansion
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2.3. The Hu & Sawicki model

history as the ΛCDM model by construction. Meanwhile, the scalaron field can

also be approximated by

fR ≈ −n
c1
c2

2

(
m2

R

)n+1

, (2.11)

In the background cosmology the scalaron fR sits in a minimum of the effective

potential that governs the dynamics of massive particles, triggering the chameleon

mechanism. When Eqn. 2.4 is solved, the effective potential Veff for the scalaron

has the form:

Veff(fR) = 1
3(R − fRR + 2R + 8πGρm). (2.12)

This is a stable potential that requires d2Veff/df2
R > 0, then for small oscillations

the dependence of the scalaron in the Ricci scalar can be solved by using the back-

ground values R̄ and f̄ (Brax et al., 2012), then the Ricci scalar in the background

cosmology can be written like

R̄ ≈ 8πGρ − 2f̄(R) = 3m2
[
a−3 + 2

3
c1
c2

]
, (2.13)

which, removes the dependence between R(fR) and the fR. Then, The previous

approximation can be used to set the term in Eqn. 2.11 once we evaluate with the

values at present time:

c1
c2

2
= − 1

n

[
3
(

1 + 4 ΩΛ0
Ωm0

)]n+1
fR0, (2.14)

which is evaluated with the value of the scalaron today, fR0. By fixing these values

the model depends on only two free parameters, n and fR0. To constrain these

parameters, probing the large-scale structure at late times is required. One of the

fundamental measurements to obtain these constraints is the power spectrum for

a range of models with different values of the scalaron amplitude |fR0| when fixing

n = 1.

In Figure 2.1 we show a comparison of the computation of P (k) for F4, F5 and

F6 models (|fR0| = 10−4, 10−5, 10−6 respectively), relative to the the calculation of

P (k) for GR-ΛCDM simulation. Here, a range of scales k is compared, first, for non-

linear equations from Schmidt et al. (2009), and for the N -body simulations of Li
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2.3. The Hu & Sawicki model

Figure 2.1: The non-linear power spectrum P (k) ratio between f(R) gravity models
and ΛCDM cosmology as function of the scale k from Li et al. (2012). Open symbols
are calculated using the simulations at z = 0 of F4 (red), F5 (green) and F6 (blue),
whereas the solid lines correspond to the analytical fits from Schmidt et al. (2009).

et al. (2012). P (k) at scales of k = 0.1 h Mpc−1 starts diverging for models like F4

and F5, which is expected when considering these models have a strong amplitude

of the fifth force |fR0| (10−4, 10−5 respectively) in comparison to F6, where this

amplitude is much smaller. On smaller scales, for k > 1 h Mpc−1, the non-linear

power spectrum is no longer valid in comparison to the GR and modified gravity

simulations. For example, the screening mechanism is not recovered from the non-

linear equations of Schmidt et al. (2009), and N -body simulations are required.

For the simulations in Li et al. (2012), the screening mechanism is triggered in

high density regions at high k values, where some models with the higher fifth

force amplitude, such as F4 and F5 differ from the P (k) of GR more than 10%.

Here modified gravity could still be distinguished due to its weaker screening, and

N -body simulations play a strong role in studying this regime.

24



2.4. Large-scale N-body simulations in f(R) modified gravity

2.4 Large-scale N-body simulations in f(R) modified

gravity

N -body simulations have been used to investigate the impact of modified gravity

on the large-scale structures. Interesting features arising from f(R) gravity, such as

the fifth force and the screening mechanism, can be studied by creating probes to

exploit this new physics. As structures are expected to collapse at different rates,

due to the additional enhancement in modified gravity, the growth of density fluc-

tuations has a scale dependence different than the one coming from GR (Jennings

et al., 2010). In Figure 2.2 the two dimensional power spectrum from Jennings

et al. (2010), shows how for f(R) modified gravity models the spherical symmetry

seen in the real space power spectrum (left panel) is distorted in redshift space

(right panel): the amplitude of the redshift-space power spectrum is larger and

squashed to that in real-space at large scales, and more elongated along the line of

sight in redshift-space compared to real-space. The effects are more pronounced in

the F4 model, where the large scale boost appears larger than in GR. The redshift

space P (k) for f(R) gravity looks far more distorted and asymmetrical than the

redshift space P (k) in GR. These results hint that the redshift distortion imprinted

in the power spectrum and the subsequent two-point clustering is a relevant probe

to study modify gravity at large-scales.

High resolution N -body simulations can shed light on how modified gravity

differs from GR in large k values. In Figure 2.3 we show simulations from Arnold

et al. (2019). When centering on some of the large mass haloes of simulations

of GR and f(R) we can see some of the extra features predicted by modified

gravity. We highlight some of the regions in the top panel of Figure 2.3, where

the different dynamics presented in the F5 simulation of Arnold et al. show how

the structure formation is modified. Here, the most noticeable features are the

enhancing of gravity in unscreened haloes, and the increased halo formation arising

from the extra fifth force in MG models (Li et al., 2012). Another interesting feature
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Figure 2.2: The two dimensional power spectrum in real space (left panels) and
redshift space (right panels) for the GR (top panels) and F4 (bottom panels) sim-
ulations from Jennings et al. (2010). The colour gradient and the contour lines
represent the amplitude of the power spectrum, log P as indicated by the line la-
bels and color-bar at the top.
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presented in the MG of Arnold et al. is the screening mechanisms predicted in f(R).

The bottom panel of Figure 2.3 shows the difference between the figures of the upper

panel, where the differences between the maps are coloured using the density ρ

calculated in each map. We coloured the map in the range of −4/3 < ∆ρ/ρGR <

4/3, which is the maximum gravity enhancement in units of the density ρ. As we

define ∆ρ ≡ ρF5 − ρGR positive values (red colour) indicates the enhancement in

F5 in comparison to GR, whereas the negative values (blue colour) correspond to

haloes with different dynamics and unsecreened haloes. The white inner structure

of the large halo correspond to the regime where modified gravity is screened. As

the individual densities are the same, hence ∆ρ ≈ 0, both GR and F5 models

have the same density, and the dynamical equation of modified gravity (Equation

2.5) converges to the Poisson equation of GR. This is a remarkable visual result, as

there are several screened haloes that can be identify in the top panel of Figure 2.3.

These regions do not have to be confused with those in cosmic voids, here the

individual densities are already quite low if not zero, which results in ∆ρ = 0,

henceforth these regions are also coloured white. These simulations provide a

reasonable understanding on where f(R) gravity has to be probed, focusing in

the structure formation, and the observation of unscreened haloes, and avoiding

screened regions.

In recent years, several tests have been proposed to constrain the amplitude of the

fifth force in f(R) gravity, including using weak lensing in cosmic voids (Cautun

et al., 2018), the marked correlation function (Armijo et al., 2018; Hernández-

Aguayo et al., 2018) and redshift space distortions (He et al., 2018; Ruan et al.,

2022). All these probes exploit the extra information of f(R) gravity caused by the

additional fifth force triggered at different scales. In the case of cosmic voids, voids

are predicted to be emptier of dark matter in modified gravity than in GR, due to

the strongest fifth force in such region. This results in more matter being pushed

to the boundaries of the defined voids in f(R), having larger tangential shear than

the voids in GR.
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Figure 2.3: Top panel: The dark matter density field from the N-body simulations
of GR (left) and MG (right) presented in Arnold et al. (2019). Both images show the
density log ρ/ρ̄ of smooth particles in a box of 40 × 40h−1Mpc and a slice of 10h−1

Mpc. Some regions have been highlighted to show the different formation of some
haloes between the simulations of GR and MG. Bottom panel: The subtraction
between the two images in the top panel coloured by ∆ρ/ρGR, with ∆ρ = ρF5−ρGR.
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In case of the marked correlation function, this test can used to target properties

arising from the fifth force when computing the two-point correlation function.

Some options for marking galaxies go from local density and halo masses, both

being properties which depend on the modified environment of unscreened regions.

For redshift space distortions, improvements have been made in order to describe

the effects of peculiar velocities in different cosmologies using more accurate models

(Cuesta-Lazaro et al., 2020). These observational probes will take advantage of

the upcoming observations from the new generation of surveys such as the Dark

Energy Spectroscopic instrument (DESI) (Levi et al., 2013). Whilst, for weak

lensing probes, surveys like the Large Synoptic Survey Camera (LSSTCam) of the

Vera C. Rubin Observatory (VCO) (Blum et al., 2022), and the Euclid spacecraft

mission (Laureijs et al., 2011), will shed new light to constrain or rule out these

theories.

The current observational constraints on f(R) gravity parameters correspond

to n = 1 and |fR0| ≤ 10−5 (Cataneo et al., 2016; Liu et al., 2016), using the

abundance of massive clusters of galaxies and weak lensing peak statistic. More

recent constraints using the modified velocity fields from f(R) gravity can put

tighter constraints on the fifth force |fR0| ≤ 10−6 (He et al., 2018), who used

redshift space information to compute the two-point clustering on several scales.

In our case we decide not to compare directly with the results of He et al. (2018),

as we are using the clustering information in the projected space.

29



Chapter 3

Luminous red galaxies in the

Sloan Digital Sky Survey: The

LOWZ and CMASS samples

3.1 Luminous red galaxies

The Sloan Digital Sky Survey (sdss, York et al. (2000)) is a five (broad) band

optical imaging and spectroscopic redshift survey. SDSS collected data for about

20 years covering more than 35% of the sky (Gunn et al., 2006), including more than

four million of galaxy spectra, to shed light on different problems in astrophysics,

including cosmology. Many galaxy samples have been created from spectroscopic

SDSS observations. One of the first samples corresponds to a flux-limited sample

with r ∼ 17.77 (Strauss et al., 2002) and a median redshift of z = 0.1, called the

Main galaxy sample (MGS). This galaxy sample has a mean surface density of 90

galaxies per deg2 and is used to measure many independent modes of the density

fluctuations on scales comparable to the peak of the galaxy power spectrum. An

extension of MGS, correspond to fainter (r ∼ 19) galaxies, which have intrinsically

redder colours and higher redshift. These are early-type galaxies which meet a

colour-magnitude selection and are called luminous red galaxies (LRG). The LRG
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3.1. Luminous red galaxies

Figure 3.1: Rest-frame spectra of 5 LRGs from Eisenstein et al. (2001). The main
feature of these spectra is the well defined 4000Å break.
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spectra are relatively high signal-to-noise and clearly show a strong 4000Å break

which is indicative of old stellar populations (Eisenstein et al., 2001). In Figure 3.1

we display some of the spectra selected in the LRG sample from Eisenstein et al.

(2001). Each individual spectrum shows similar features present in LRG, where

the different redshift values in each panel show the distinctive features in the LRG

spectrum.

The luminous red galaxies (LRG) are intrinsically red, bright galaxies which

are used to trace the large-scale structure efficiently over a large volume of the

Universe (Eisenstein et al., 2001). LRGs are relatively passive-evolving early-type

galaxies, selected up to redshift z ≈ 0.5 which can be found in dense environments,

such as large groups of galaxies and rich galaxy clusters (Postman et al., 1995).

These samples also provide information about the evolution of elliptical galaxies

in dense environments (Burke et al., 2000). The sample selection is based on the

SDSS-I photometric colours. The 4000Å break provides a sharp feature that can

be modelled by the galaxy spectral energy distribution (SED) templates to infer

the redshift. The selection of LRG depends on color, for galaxies up to redshift

z = 0.38, SDSS colours g − r and u − g are used to break the degeneracy between

the position and strength of the 4000Å break, which can be used to obtain the

selection redshift of the galaxy. For LRG samples at higher redshift, the g − r and

r − i color space is used instead, because the u − g colour is close to the redshift

limits, leading to a noisy distribution of colours.

3.2 The baryon oscillation spectroscopic survey BOSS

After the SDSS-I LRG catalogue built by Eisenstein et al., new efforts were made

to target fainter LRG samples at higher redshifts. In SDSS-III (Eisenstein et al.

(2011)), spectra of 1.5 million galaxies spread over 10,000 deg2, with a magnitude

limit of i = 19.9 were obtained up to redshift z = 0.7. As explained in Section 3.1,

the selection of LRGs is colour dependent, which leads to the production of two
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Figure 3.2: Colour-space density plot for LOWZ galaxies at low redshift from Reid
et al. (2016). The diagram shows the color distribution in the (g − r, r − i) plane
detailing the selection with the definitions of Eqns. 3.1, 3.2 (red dashed lines). See
the text in Reid et al. for more details.

independent samples: LOWZ for the lower redshift galaxies and CMASS for the

higher redshift targets. The selection of LOWZ is defined by the following colour

cuts:

c∥ = 0.7(g − r) + 1.2(r − i − 0.18), (3.1)

c⊥ = (r − i) − (g − r)/4.0 − 0.18, (3.2)

where the colour bands are defined using the SDSS-III model magnitudes. The

defined colours of Eqns. 3.1, 3.2 are simply rotations in the colour plane of the SDSS

filters. This is pictured in Figure 3.2, where the density of galaxies in the colour

plane shows a high surface density. Then, the selection is performed in terms of c∥

and c⊥. The peak in the distribution is located around c⊥ = 0 and the selection

is extended up to |c⊥| < 0.2, whereas c∥ controls the selection given the galaxy

brightness (green dashed lines). Thus fainter objects must be redder to pass the
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3.2. The baryon oscillation spectroscopic survey BOSS

Figure 3.3: Colour-space density plot for SDSS-III CMASS galaxies from Reid et al.
(2016). Top: The distribution in the colour-plane with a selection for the higher
redshift sample with z ≳ 0.4. The additional colour selection (red line) is defined
by the d⊥ parameter. Bottom: The sliding cut in d⊥ with the i-band magnitude.
The color and magnitude cuts implemented for the samples are shown by the red
lines in each axis See the text in Reid et al. for more details.

cut (Reid et al., 2016). The high signal-to-noise ratio in the clustering signal aimed

for by SDSS produces a relatively high density sample (∼ 3×10−4 h3 Mpc−3) which

is ideal for studying the large-scale structure using biased tracers (Kaiser, 1986).

For CMASS an additional colour-magnitude cut using the i-band is included to
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3.2. The baryon oscillation spectroscopic survey BOSS

select an approximately constant stellar mass limit over the CMASS redshift range

0.4 < z < 0.7. In Figure 3.3 the selection of galaxies in the CMASS samples is

displayed. The d⊥ is defined in order to discard low-redshift galaxies from the color

selection, by choosing

d⊥ > 0.55. (3.3)

Then, an extra sliding color-magnitude in the i-band is introduced, according to

the passively evolving model of Maraston et al. (2009):

i < min (19.86 + 1.6(d⊥ − 0.8), 19.9). (3.4)

The CMASS sample has an additional constant stellar threshold which includes

bluer galaxies than those in LOWZ. This is derived from fitting stellar population

models to the SDSS, and increases the number density of galaxies above z = 0.4

(see Tojeiro et al. (2012) for a more detailed description of the CMASS sample).

The LRGs in sdss-iii have the same color selections as the LRGs in sdss-i, but

have a fainter magnitude cut, which increases the number density of galaxies at least

by a factor of two (Ross et al., 2012). The sample is part of the Baryon Oscillation

Spectroscopic Survey (BOSS) (Dawson et al., 2013), which was designed to improve

the measurements of the baryon acoustic oscillation (BAO) scale that used the

SDSS-I data from Eisenstein et al. (2001). The new samples from Eisenstein et al.

(2011) obtain a more accurate measurement of the BAO (Anderson et al., 2012),

than previous studies (Eisenstein et al., 2005; Percival et al., 2007) and at higher

redshift, which can be used to probe cosmology by measuring the angular diameter

distance dA(z) (Anderson et al., 2014), for a spherically averaged measurement.

Figure 3.4 shows the footprint area of the BOSS sample (Reid et al., 2016), fo-

cusing on the north galactic cap (NGC) of both samples which is the data used in

this thesis. We decided to use only the NGC of both LOWZ and CMASS samples,

instead of using NGC+SGC for practical convenience: as these correspond to dif-

ferent areas on the sky, we need to consider these as different surveys, with different
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photometric properties and potentially different systematic errors. Furthermore,

the NGC sample covers twice the solid angle of the SGC one.

3.3 Characteristics of the LOWZ and CMASS

samples: number density and projected

correlation function

The aim of the BOSS survey is to measure the BAO distance scale by efficiently

mapping the large-scale structure of the Universe over a large volume (Anderson

et al., 2012). As explained in Section 1.3, a quantitative measurement of the

clustering of the large-scale structure can be made using either the power spectrum

or the two-point correlation function, which contain the same information, but with

a different emphasis. For example the use of P (k) is focused on understanding the

formation of structures at the largest scales, where the linear regime equations can

be used. Additionally, the covariance matrix for such scales is almost diagonal due

to the different modes k evolving independently. In the case of ξ(r), the analysis

is more focused on galaxies and how they cluster, where the smaller scales play a

more important role.

We plan to make measurements of the marked correlation function by adding

properties of individual galaxies to the clustering estimator. For the galaxy samples

we use, the one- and two-point statistics are already well known, which means that

the models of gravity we test need to replicate these measurements. There are two

basic tests we can make to characterise the sample: 1) calculate the abundance of

galaxies per unit volume, and 2) measure their two-point clustering. The first one

is the galaxy number density, and as briefly described in Section 3.1, it is a function

of redshift. In Figure 3.5 the number density n(z) as a function of redshift z is

shown for the two samples used in this study, LOWZ and CMASS. Here we can

see how the distribution of galaxies varies as we go to higher redshift. The colour
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Figure 3.4: The angular coverage footprint of BOSS DR12, reproduced from Reid
et al. (2016) catalogue showing the spectroscopic redshift completeness, which is
the ratio of the number of galaxies with zspec. to the number of galaxies in the
target catalogue. Individual patches corresponds to a plate with fibres measuring
the redshift of target galaxies, coloured from blue to red by the overall completeness
of that plate (the higher completeness goes to redder colours in the colour bar).
The survey is divided into 2 samples with different areas and redshift ranges, with
the LOWZ sample (bottom panel) at 0.10 < z < 0.43 and CMASS (top panel)
0.43 < z < 0.7.
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Figure 3.5: The galaxy number density n(z) as function of redshift z for the BOSS
DR12 NGC data. LOWZ (black) and CMASS (gray) samples have different selec-
tion functions which lead to different curves for n(z). We also plot the distribution
of the random galaxy catalogue (red) from Reid et al. (2016), used for clustering
analysis, and the subsample selection for this study LOWZ 0.240 < z < 0.360 (blue
dashed line) and CMASS 0.474 < z < 0.528 (light blue dashed line).

selection of the BOSS defines these samples at 0.1 < z < 0.43 and 0.4 < z < 0.7 for

LOWZ and CMASS respectively. The NGC footprints of both surveys cover more

than half of the survey (5836.21 deg2 for LOWZ and 6851.42 deg2 for CMASS).

After z > 0.35, where the LRG distribution peaks, the LOWZ sample starts to

decrease its number density systematically, due to the colour selection. In CMASS

the selection changes, allowing LRGs to be detected at z > 0.4, with the additional

stellar-mass threshold described in Eqn. 3.4, which leads to a number density even

higher than LOWZ in average, with a peak at z = 0.5. After this, the number

density of CMASS also starts decreasing up to redshift z = 0.7.
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3.3.1. Galaxy number density

3.3.1 Galaxy number density

In the ideal case, given a cubic volume of galaxies, the galaxy number density is

just a number represented by ngal = Ngal/Vbox, with Ngal the number of galaxies

and Vbox the volume of the box. The case of the observational data is different. In

Figure 3.5 we see the dependence of n with redshift z, due to the selection function.

This means that we are introducing new dependencies in the properties that depend

on the number density when we compute the marked correlation function. To

avoid this problem, we consider the total number density of the survey as the

number of galaxies divided by the total volume nobs = Ngal/Vs. Moreover, a more

restricted volume is selected for both samples for which there is less variation in

number density, which reduces the variations when computing the clustering and

marked clustering. The dashed lines in Figure 3.5 show the redshift limits of these

new subsamples, which define the new ranges 0.240 < z < 0.360 for LOWZ and

0.474 < z < 0.528 for CMASS. By using this selection, our aim is to achieve a

sample with a roughly uniform number density within the full redshift range to

test. We compare the samples with simulations of roughly the same volume when

we create the mock catalogues.

3.3.2 Galaxy-galaxy two-point correlation function

Once we have selected the redshift range of the subsamples, the next step is to

estimate the clustering of galaxies at different scales. As described in Section 1.3

the two-point correlation function can be computed as the excess of probability

of finding a pair of galaxies at a given separation in comparison with a random

distribution of points. Throughout this study, we measure the clustering using the

projected correlation function wp, which is the integral of the two-point correla-

tion function ξ(rp, π), binned in distance along rp, for the projected perpendicular

distance, and π, the line-of-sight or parallel distance. The integral of ξ(rp, π) is

over the line-of-sight parallel direction π, resulting in the clustering as a function
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Figure 3.6: The projected two-point correlation function wp scaled by rp as a
function of the projected perpendicular distance rp for BOSS DR12 NGC. The
clustering is calculated for the selected subsamples of LOWZ (black dots) and
CMASS (gray dots) and scaled by rp. Error bars are calculated using Jackknife
resampling over 100 Jackknife regions (e.g Norberg et al. 2009).

of the perpendicular distance rp only. In the distant-observer approximation, wp

is related to the correlation function in real space (Norberg et al., 2002), which

simplifies the analysis. The correlation function binned in a two-dimensional grid

is selected instead of the redshift space two-point correlation function ξ(s) to avoid

the influence of redshift space distortions in our results for the scales we are inter-

ested, which can complicate the prediction of the marked correlation function on

such scales. We avoid measuring the correlation function and marked correlation

function in redshift space to avoid the problems encountered by Satpathy et al.

(2019), in which the marked correlation function of LOWZ is presented in redshift
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3.3.2. Galaxy-galaxy two-point correlation function

space. These authors conclude that their results are driven by the limitations of

modelling the clustering on such scales.

The correlation function can be computed using the Landy-Szalay estimator

(Landy et al., 1993):

ξ(rp, π) = DD − 2DR + RR

RR
, (3.5)

where DD, RR, DR are the normalised number of data-data, random-random

and data-random pairs respectively for each separation bin. These terms are also

normalized by the number of galaxies and randoms of the samples, and weights are

added to address the systematic effects of the survey, including FKP weights (Feld-

man et al., 1994) which decrease the variance of the correlation function when tak-

ing into account the radial variation in number density, which can change strongly

with redshift (he normalisation takes into account that the overall number of ran-

dom points can be many times higher than the number of galaxies to reduce noise

in the clustering estimation). For the case of the LOWZ and CMASS samples,

these values are almost constant, as the number density n(z) does not vary drastic-

ally as a function of redshift for our z range selection. To calculate the projected

correlation function and obtain the clustering signal in real space we can integrate

ξ(rp, π) in the π-direction:

wp

rp
= 2

rp

∫ ∞

0
ξ(rp, π)dπ. (3.6)

As we are not solving this integral analytically we bin ξ(rp, π) until πmax,

which is a value chosen when the integral is converging to a stable value (Pare-

jko et al., 2013). Considering the range of scales we are interested in, we choose

πmax = 80h−1 Mpc, after checking that the result of the wp clustering converges

around π = 70h−1 Mpc. In Figure 3.6 we plot the results for the projected cor-

relation function as a function of the perpendicular distance rp on scales between

0.5 < rp/(Mpc h−1) < 50 for both samples LOWZ and CMASS. Both correlation

functions show similar features, with a small offset due to the different number
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3.3.2. Galaxy-galaxy two-point correlation function

Figure 3.7: The footprint of LOWZ (left panel) and CMASS (right panel) samples
including the Jackknife regions for the uncertainties in the clustering analysis. All
colour regions have roughly the same area to create the resampling of the data.

densities that the subsamples have. We use the Jackknife re-sampling method to

compute the uncertainties on the measurements of wp. In Figure 3.7 we show

the implementation of the resampling, showing the Jackknife areas over the BOSS

NGC footprint. We used 100 jackknife areas, where each individual patch has an

area of AJK =∼ 60 deg2. Each different realization gives a similar result for wp

with a small variance, which is related to the Jackknife resampling uncertainties.

To compute the error bars on wp, the Jackknife method consists of calculating wp

100 times omitting one of the regions each time. We end up with 100 calculations

of wp with a covariance matrix defined by

Cij = N − 1
N

N∑
k=1

(
ξk

i − ξ̄i

) (
ξk

j − ξ̄j

)
, (3.7)

where ξi is the i-th measurement of the correlation function using the different

Jackknife areas, and ξi ≡
∑N

k=1 ξk
i /N . The covariance includes the factor N − 1,

which takes into account the dependency of the N − 1 copies when doing the

resampling, as only two areas change for each resampling. Jackknife errors are

expected to represent the correct variance at large-scales rp > 10h−1 Mpc but to

overestimate it on small scales r < 2.5h−1 Mpc according to the tests carried out

by Norberg et al. (2009). A better estimate for the errors on such scales can be
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3.3.2. Galaxy-galaxy two-point correlation function

obtained by using the covariance matrix from an ensemble of a large number of

N -body simulations. However these methods are still computationally expensive

for the separation scales we want to resolve.

The projected correlation function in BOSS has been calculated before for earlier

data releases (White et al., 2011; Parejko et al., 2013) including studies of weak

lensing and intrinsic alignments (Singh et al., 2015) using LOWZ data. All these

studies compute wp for a similar redshift range and scales to the ones showed in

Figure 3.6. White et al. divide the samples between low and high-redshift at

z = 0.55 and a subsample at 0.4 < z < 0.7, whereas Parejko et al., and Singh

et al. use only LOWZ data in their analysis. Amplitudes and uncertainties agree

between the different studies, but there are some differences between the error

bars; however it is worth noting that all studies use different methods for these

calculations. As White et al. analyse an early release of the BOSS-LRG data,

commissioned for SDSS-II (Abazajian et al., 2009), they prefer to use Poisson

realizations of their simulations, arguing that the area that this data covers is not

enough to perform resampling methods. While Parejko et al. also use errors based

on their mock catalogues from simulations, and use the standard deviation of 20

different galaxy correlation functions. Finally Singh et al. use Jackknife resampling

for the uncertainties in their clustering data, which is the same method that we

use. The amplitude of the error does not vary significantly between (<5%) the

different studies, but it is important to mention that all papers use earlier data

releases (DR9, DR11) than the one used on this thesis (DR12). The calculations

of both the number density and the clustering of BOSS data will permit us to

create mock catalogues, which will be used to better understand the systematic

errors associated with the data and to predict the results of the marked correlation

function for MG models.

Previous studies using the the projected-correlation function find robust results

for the clustering and number density of galaxies, which tell how the large-scale

structure can be traced by the LRG population. Such results, can be interpreted
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3.3.2. Galaxy-galaxy two-point correlation function

as an observational constraint and need to be replicated when we create mock

catalogues from different simulation models.
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Chapter 4

N-body simulations of modified

gravity: Making use of

sub-resolution haloes

†

4.1 Introduction

The mass resolution limit of dark matter halo catalogues extracted from N-body

simulations is often set to satisfy a range of requirements and, as a result, can

appear unnecessarily conservative for some applications. The measurement of the

internal properties of halos is challenging and requires that objects are resolved

by several hundred particles. For example, Bett et al. (2007) demonstrated, using

the Millennium simulation of Springel et al. (2005), that at least 300 particles are

needed to measure halo spin robustly. On the other hand, many authors have used

the same simulation to build semi-analytical galaxy formation models retaining

halos down to 20 particles (e.g. Croton et al. (2006)), extending the mass resolu-

tion of the halo catalogue by more than an order of magnitude for this purpose,
†The text in this Chapter has been taken verbatim from Armijo et al. (2022)
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4.1. Introduction

compared with that used to measure halo spin.

Here we revisit how the mass resolution limit of a dark matter halo catalogue is

set for use in a simple clustering study. The application in this case is to use the

halos to build a galaxy catalogue, for example using a halo occupation distribution

model (HOD) or a semi-analytical galaxy formation model (SAM) to populate the

halos with galaxies. The resulting ‘mock’ galaxy catalogue will be compared to an

observed sample, with the criteria for success being that the mock reproduces the

abundance and clustering of the target sample to within some tolerance. Typical

galaxy samples occupy a broad range of halo masses. If we impose an unduly

restrictive mass limit on the halo catalogue that can be used from a simulation,

this could result in the simulation not being suitable to probe a wide range of the

parameter space in the HOD or SAM for a given galaxy selection. We judge the

halo catalogue to be useful if it can be employed to reproduce the abundance and

clustering of halos that would be measured in a higher resolution simulation; we

show that this can be achieved for halos that are made up of a perhaps surprisingly

low number of particles by employing a simple weighting scheme.

Here we address two issues relating to the use of simulated halos in clustering

studies. The first is to devise a robust and reproducible way to determine the

mass resolution limit of a halo catalogue extracted from an N-body simulation for

a clustering study. The second is to see if we can still use the halos below this

resolution limit in a clustering analysis, which, as we shall see, represent a fraction

or subset of the true population of halos at these masses. As these halos are deemed

to be below the mass resolution limit we have set, these ‘sub-resolution’ haloes will

be treated in a different way to the resolved halos. We will show that considering the

sub-resolution halos allows us to extend the useful dynamic range of the simulation

by a factor of 10 below the formal resolution limit, so long as we are willing to

tolerate some error in the clustering predictions. We describe our clustering analysis

as simple since we do not consider secondary contributions to halo clustering besides

mass; the halo resolution needed to use internal halo properties to build assembly
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4.2. The N-body simulations

bias into mock catalogues has been discussed by Ramakrishnan et al. (2021).

4.2 The N-body simulations

We use three simulations of the standard cold dark matter cosmology with different

mass resolutions. We mainly focus on two simulations from Arnold et al. (2019),

but also consider the halo mass function from the P-Millennium Baugh et al. (2019).

The simulations from Arnold et al. each use 20483 collisionless particles in cubic

boxes of length Lbox = 768h−1 Mpc and 1536h−1 Mpc, resulting in particle masses

of Mp = 4.9 × 109 and 3.6 × 1010h−1M⊙, respectively. Both simulations use the

Planck cosmological parameters (Planck Collaboration et al., 2016): h = 0.6774,

Ωm = 0.3089, ΩΛ = 0.6911, Ωb = 0.0486, σ8 = 0.8159, and ns = 0.9667. We

use the simulation outputs at redshift z = 0. The P-Millennium run uses very

similar but slightly different cosmological parameters to the above (e.g. ΩM =

0.307; see Table 1 of Baugh et al. (2019)). The simulation box size in this case

is Lbox = 542.16h−1Mpc with the dark matter traced by 50403 particles, resulting

in a particle mass of 1.08 × 108h−1M⊙. The simulations were run with slightly

different versions of the gadget code (for the most recent description see Springel

et al. (2020)). We henceforth refer to the Arnold et al. runs by their box lengths,

as L1536, and L768. The L1536 and L768 runs form a sequence in mass resolution

completed by the P-Millennium which has the best mass resolution.

Haloes are identified using subfind Springel et al. (2001). The first step in

this algorithm is to run the friends-of-friends (FoF) percolation scheme on the

simulation particles. We set the minimum number of particles per group to be

retained after the FoF step to be 20. subfind then finds local density maxima in

the FoF particle groups, and checks to see if these structures are gravitationally

bound; these objects are called subhalos. Particles that are not gravitationally

bound to the subhalo are removed from its membership list. The mass of the

subhalo is obtained using the spherical overdensity (SO) method (Cole et al., 1996).
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The SO method is applied to the gravitationally bound particles in the subhalo to

find the radius within which the average density is 200 times the critical density of

the universe. The halo mass, M200c, is the sum of the particle masses within this

radius. This results in some subhalos having masses with M200c < 20Mp, because

small groups tend to be ellipsoidal in shape rather than spherical. We consider

halo samples composed of main subhalos, i.e. the most massive subhalo within

each FoF group.

4.3 The halo mass function and simulation resolution

We now look at the considerations that go into setting the mass resolution of the

subfind halo catalogues, by comparing the main subhalo mass functions measured

in the different resolution simulations.

Fig. 4.1 compares the mass functions measured from the L1536 and L768 simu-

lations from Arnold et al., with that obtained from the P-Millennium. To account

for the very slightly different cosmology used in the P-Millennium, we generated

analytic mass functions for the cosmologies used by Arnold et al. and Baugh

et al. These analytic mass function are offset, and can be reconciled by applying

a constant rescaling to the P-Millennium halo masses. After this correction, the

differential mass functions measured from the three simulations agree with one an-

other very well at high masses (i.e. for masses above a few times 1013h−1M⊙), with

some fluctuations at very high halo masses which arise due to sample variance. The

lower panel of Fig. 4.1 shows the fractional difference of the mass functions with

respect to that measured from the P-Millennium. The scheme we set out below

depends on the comparison between the halo mass functions from the L1536 and

L768 runs.

The green vertical dashed line in Fig. 4.1 shows a halo mass corresponding to

100 particles in the L1536 simulation, i.e. 3.6 × 1012h−1M⊙. At this mass, there is

already a clear difference in the mass functions measured from the two simulation
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Figure 4.1: The differential halo mass function at z = 0. Top: results from the
P-Millennium Baugh et al. (2019) (blue line), and the ΛCDM N -body simulations
of Arnold et al. (2019) (points); red triangles show the mass function measured
from the L768 simulation and the green squares show the L1536 run. The vertical
dashed lines indicate a halo mass of 100 particles for the L768 (red) and L1536
(green) resolution runs. Bottom: fractional difference expressed relative to the P-
Millennium halo mass function. A small correction has been applied to the masses
in the P-Millennium mass function to account for the slightly different cosmological
parameters used in this run and in Arnold et al. (see text for details).
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boxes. To quantify these differences, above a mass threshold of 1013h−1M⊙ there

is already a 3 per cent deficit in the cumulative abundance of halos in the lower

resolution L1536 run compared with the higher resolution L768 one; this rises

to 12 per cent for a mass threshold of 1012h−1M⊙ and 32 per cent for a mass

limit of 4 × 1011h−1M⊙. We have checked that the difference in the slope of the

mass function between the L1536 and L768 runs is due to the difference in mass

resolution rather than sample variance in the smaller-volume/higher-resolution box

by measuring the mass functions from the larger volume simulation after splitting

it into eight smaller subvolumes, each equal in volume to that of the L768 run. We

found that there is remarkably little variation in the slope of the mass function

around 1013h−1M⊙ due to sample variance.

Fig. 4.1 shows that moving to masses below 100 particles in L1536, there is a

sudden drop in the number of halos recovered in the L1536 run compared to the

L768 run around 1012h−1M⊙. The red vertical dashed line is equivalent to 100

particles in the L768 run. The question of determining the halo mass resolution

of the simulation can therefore be framed in terms of the tolerance for errors in

the statistic of interest. If the halo mass function is of primary interest, then if

we treat the L768 simulation as the reference or ‘gold standard’, we could choose

the resolution limit of the L1536 run as being 100 particles, in the knowledge that

this gives us a ∼5 per cent underestimate of the cumulative abundance of dark

matter halos compared to the L768 run; if we require a better reproduction of the

cumulative halo abundance, then we would need to apply a mass limit greater than

100 particles. If our interest in the halos is broader and extends to clustering then

we also need to assess the errors made in statistics such as the two point correlation

function. It is possible, however, as we demonstrate in the next section, to extend

the useful resolution of the simulation by applying a simple weighting scheme to

the halos when computing their abundance and clustering.
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Figure 4.2: The correlation function measured in the HR (red) and LR (green) runs
for subhalo samples defined by sharp lower mass cut (left and centre-left panels, cor-
responding to σlog M = 0) and by a HOD-style, more gradual mass cut (centre-right
and right panels, defined by σlog M > 0; see Eqn. 1). For the correlation functions
measured from the LR run, the solid lines shows the unweighted estimate and the
dashed lines the weighted case. The lower panels show the fraction difference in
the correlation function, relative to the HR measurement. The pink shading shows
the error on the correlation function estimated by jackknife resampling.
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4.4. Extending the resolution of the simulated halo catalogue

4.4 Extending the resolution of the simulated halo

catalogue

Typically, a clustering study involves using the number density of objects and the

two-point correlation function estimated from an observational sample to constrain

a model, such as setting the parameter values in an HOD model. Here, we present

a simple weighting scheme that extends the resolution limit of a simulated halo

catalogue down to lower halo masses than are generally considered for use in clus-

tering analyses. The scheme returns the exact abundance of clustering tracers,

by construction, and yields a more accurate prediction of the two-point clustering

to within some tolerance. The procedure used to derive the resolution limit is

transparent and reproducible.

The weighting scheme is remarkably simple. A weight is defined in bins of

halo mass such that the differential mass function of the L1536 simulation agrees

with a reference mass function; here we use as the reference mass function the

measurement from the L768 simulation. For mass bins in which the unweighted

halo mass function in the L1536 run is below the target mass function, halos are

assigned a weight greater than unity. By applying this weight to the halos in the

L1536 run, the new, ‘weighted’ mass function agrees with the target mass function

exactly by construction. In practice we set the weights to unity above some mass,

e.g. 5 × 1013h−1M⊙, to avoid being affected by fluctuations at high masses in the

mass function measured from the L768 run due to sample variance. The limiting

factor which sets the new resolution limit of the weighted halo catalogue is the

error that we are prepared to tolerate on the halo clustering.

With the weighting scheme, the halo correlation function is estimated by includ-

ing the weight assigned to each halo in the pair count. As a first simple illustration

we consider the clustering of samples of main subhalos defined by different lower

mass thresholds in the top panels of Fig. 4.2. These samples are equivalent to
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central galaxies in a simple HOD analysis with a sharp transition in the mean

occupancy from 0 to 1 central per halo. In each case, the clustering of the halos

in the L768 simulation is estimated without applying any weights, i.e. all halos

in this case have the same weight of unity, whereas for the L1536 simulation the

weights derived from forcing the halo mass function to match that in the L768 run

are applied and included in the estimation of the correlation function. Due to the

shape of the halo mass function, halos close to the minimum mass that defines each

sample contribute importantly to the abundance of halos in the sample and to the

clustering.

The top-left panel of Fig. 4.2 shows the clustering measured for a subhalo sample

defined by a mass cut of 1012h−1 M⊙, close to which modest weights have been

applied in the lower resolution run; for halos in which the weight is not unity the

average weight applied in this case is 1.15. The clustering measured in the L1536

run for this halo sample, after applying the weights, agrees remarkably well with

that measured in the L768 run, being within the estimated errors on the correlation

function down to ∼ 3h−1Mpc. In the case without weights, the clustering measured

for this halo sample in the lower resolution run is systematically shifted upwards by

around 5 per cent compared to that measured in the higher resolution simulation.

The top-right panel of Fig. 4.2 shows the limit of the performance of our weight-

ing scheme. This halo sample is again defined by a lower mass threshold than the

one in the left-most panel. For the halos with a weight greater than unity, the

average weight in this example is 1.8. Again, by construction, the weighted sample

matches the abundance of halos in the L768 run to better than 1 per cent (the

agreement could be further improved by using narrower bins to measure the halo

mass function in the mass range where weights greater than unity are derived).

The clustering in the weighted sample matches that in the L768 simulation over a

reduced range of scales, compared to the other cases, being within the errors down

to 10h−1Mpc. We note that the clustering of the unweighted halos for this sample

is 10 to 15 per cent higher than the ‘target’ measurement from the higher resolution
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simulation. If this is the error in the clustering that we are prepared to accept,

agreement down to intermediate scales, rising to a 5 per cent excess approaching

∼ 1h−1Mpc, then the mass resolution of the halo catalogue has been extended

down to halos with ∼ 11 particles. To put this into context, the abundance of the

halo samples starts to deviate between the L1536 and L768 simulations at a mass

corresponding to around 550 particles.

As a second example we consider samples that are more comparable to those

in HOD analyses, in which the occupation of halos by centrals moves from zero

to one per halo more gradually than in the example above. The width of the

transition is one of the HOD parameters; σlog M . Larger values of σlog M mean that

lower mass halos contribute central galaxies to the sample. (Note that we do not

consider satellite galaxies in any of our examples; all galaxies within a halo would

be assigned the weight of the halo to compute the abundance of galaxies and to

estimate their clustering.)

In the popular five parameter HOD model the mean occupation of halos by

centrals depends on the parameters Mmin and σlog M through (Eqn. 1 from Zheng

et al. (2005)):

⟨Ncen⟩ = 1
2

[
1 + erf

(
log M − log Mmin

σlog M

)]
. (4.1)

The bottom panels of Fig. 4.2 show the correlation functions measured from the

L768 and L1536 runs for a fixed value of Mmin = 4 × 1012h−1M⊙, varying σlog M .

The width of the transition from ⟨Ncen⟩ = 0 to ⟨Ncen⟩ = 1 gets broader in mass as

the value of σlog M increases. This means that lower mass subhalos are contributing

to the correlation function shown in the bottom-right panel of Fig. 4.2 compared

to the bottom-left panel. In the bottom-left panel of Fig. 4.2, the transition from

all halos being empty to all containing a central is relatively narrow. As σlog M

increases, due to the shape of the halo mass function, the number of haloes in

the samples increases. The bottom-left panel of Fig. 4.2 shows that applying the

weighting scheme allows us to recover the correlation function down to 2.5h−1Mpc.

Again, without applying any weights, the clustering measured in the L1536 box
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would be systematically shifted upwards by 5 per cent. For the broadest transition

considered, with σlog M = 0.9, the weighted correlation function is within a few per

cent of the estimate from the higher resolution L768 simulation; without weights

the estimate is too high by more than 15 per cent.

We have tested the performance of our method at z = 1. In this case, the mar-

ginally resolved halos have a clustering bias that is greater than unity and this

poses a challenge to the method. In the simplest case, using a mass threshold

of log Mmin = 12.0 h−1 M⊙ to populate haloes with central galaxies, the ini-

tial disagreement in the measured clustering is around 6% on scales larger than

1 h−1 Mpc. After applying the weighting scheme, this disagreement drops to 3%.

The performance of the scheme is less good than at z = 0, but still represents

an improvement over doing nothing. The situation is similar for the case with

log Mmin = 12.6 h−1 M⊙ and σlog M = 0.5. Here the difference in the correl-

ation measured from the simulations without weighting differs by 8% on scales

1 < r/Mpc h−1 < 20. When we apply the weighting scheme, the discrepancy more

than halves to a 3% of disagreement. In these two cases we are applying weights

with values between 5 and 10 to haloes with around 20 particles.

We end by investigating the incomplete or ‘partially’ resolved halo population in

the lower resolution L1536 simulation. What is special about the subhalos that are

picked up by FoF and subfind, at masses for which the subhalo samples in this run

are incomplete? We address this by measuring the local environment around halos

as a function of mass, by measuring the distribution of counts-in-cells centred on

halos, and comparing the measurements between the L1536 and L768 runs. We use

cubical cells of side 1.6h−1 Mpc which sample the density field defined by the dark

matter particles. We find that the counts-in-cells distributions around subhalos

that are well resolved in each simulation are essentially the same. The difference in

shot noise (mean particle density) does not affect the count distributions because

centring on a halo biases the counts to high densities. The top and middle panels

of Fig. 4.3 contrast the cell count distributions measured in the two simulations

55



4.4. Extending the resolution of the simulated halo catalogue

0.0 0.5 1.0 1.5 2.0 2.5

log(ρ/ρ̄)

0

1

2

3

4

5

6

7

10
4
×
n

(ρ
)

[M
p

c−
3
h

3
]

11.75 ≤ log (M/M� h−1) < 13.25

Lbox = 768 Mpc h−1

Lbox = 1536 Mpc h−1

WeightedWeighted

Figure 4.3: The distribution of matter density counts in cells of size 1.6 h−1 Mpc
centred on halos in the stated mass range, measured from the L768 (red) and L1536
(green) simulations. The difference in volume of the L1536 and L768 runs has been
taken into account in the normalisation. The left and central panels show the
count in cells distributions for the bins used in the mass function (the bin limits
are written at the top of each panel) for which the weights are greater than unity.
The right panel shows the distribution of cells for a wider mass range covering all
of the bins for which the weights in our scheme are greater than unity. Here the
green dashed line shows the distribution of counts-in-cells in the L768 simulation
after applying the weights.
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in mass bins for which the mass functions are different. As the mass bin shifts to

lower masses, the difference between the local environments of the subhalos that are

identified changes, with marginally resolved subhalos from the L1536 run tending

to be found in higher density environments than the true distribution, according

to the measurement from the L768 run. The bottom panel of Fig. 4.3 shows the

difference in the local density around subhalos for a sample with a sharp mass cut

at 5.6 × 1011h−1M⊙. The mass range shown is that for which greater than unity

weights are applied in our scheme. The unweighted cell-count distribution is shown

by the solid green line; the weighted distribution, using the weights computed in

10 mass bins, is shown by the green dashed line and is remarkably close to the

distribution found in the higher resolution L768 run.

4.5 Summary and Conclusions

Often the mass resolution limit of a simulated halo catalogue is presented as a

suspiciously round number, 100+ particles, that may once have been checked but

has long since passed into simulation folklore and has become an unquestioned rule

of thumb. We have argued that for some studies, for example simple clustering

analyses, such limits are overly conservative as we are not interested in quantities

that are more difficult to calculate, such as the internal structure of the halo. We

have gone a step further and presented a simple weighting scheme to compensate

for ‘missing’ halos by upweighting those that are recovered by the halo finder. Our

scheme is able, by construction, to reproduce a ‘target’ number density of halos,

and returns improved estimates for the clustering of halo samples. Depending on

one’s error tolerance for the accuracy of the clustering predictions, we showed an

example in which this scheme extended the mass resolution of a halo catalogue

down to objects made of 11 particles.

As presented, our scheme requires at least two simulations. One is designated

as the high resolution simulation and sets the target or benchmark for the halo
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sample statistics. This simulation is used to provide the ‘correct’ answer for the

halo mass function, and to provide some indication of the expected clustering for

different halo samples. No weights are applied to the halos in the high resolution

simulation. The second simulation is lower resolution, typically because it models

the growth of structure in a much larger volume, with a similar or reduced number

of particles than the high resolution simulation. The purpose of this simulation

could be to access clustering predictions on larger scales than could be reached

with the high resolution simulation, such as the scale of the baryonic acoustic

oscillations. Also, many copies of the low-resolution simulation could be run using

an approximate simulation method to generate many realisations of halo samples

for error estimation. Examples of both these use cases can be found in Hernández-

Aguayo et al. (2021). By extending the usable halo catalogue derived from the

low-resolution run down to lower masses, significant computational resources can

be saved.

The subhalo finding algorithm recovers a fraction of the expected halos in the

mass range that is considered ‘sub-resolution’. We showed that these objects have

higher local overdensities than halos in the same mass range that are fully resolved

in a higher resolution simulation. The details of which halos are found will no

doubt depend somewhat on the subhalo finder algorithm used, and perhaps on

the simulation code itself. Our scheme does not assign weights using any spatial

information, and so cannot “correct” the clustering measured for halos in a single

mass bin. Our approach works for samples defined by a mass threshold, for which

there are several bins in the mass function from which the halos acquire different

weights greater than unity.

The scheme that we have proposed allows the resolution of a halo catalogue to

be extended down to small particle numbers by applying a correction to the halos

that we do see to account for those that we do not find. Ultimately, the scheme

breaks down at the halo mass for which the errors in the clustering prediction

become unacceptable. This approach is therefore different to those that try to
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account for assembly bias in marginally resolved halos (e.g. Ramakrishnan et al.

(2021)). Assembly bias which arises when the clustering of halos in a given mass

range also depends on an internal property, such as formation time, environment or

concentration (Gao et al., 2007). Ramakrishnan et al. (2021) attempt to estimate

internal halo properties from marginally resolved halos (e.g. with 30 particles) in

order to build mock catalogues which include assembly bias. In principle it should

be possible to combine the two approaches to build more accurate mock catalogues.
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Chapter 5

The construction of accurate

mock galaxy catalogues for the

Baryon Oscillation Spectroscopic

Survey galaxies.

5.1 Introduction

Here we create mock galaxy catalogues from the simulations presented in Section

4.2 to compare the theoretical models with observations, interpret the clustering

measurements and to search for systematic errors associated with the measurements

of the marked correlation functions from the observational data.

To create accurate mock galaxy catalogues we need simulations that are suitable

for studying clustering and marked clustering. These simulations need to have

sufficient resolution in both mass and length scales to allow the halos that are

thought to host the target galaxy sample to be identified reliably. We also aim to

model the inner structure of the haloes to obtain a realistic one halo contribution

to the clustering. At the same time, we need a large volume computational box

to simulate structures on scales in excess of 100h−1 Mpc and to have the same
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Figure 5.1: 2-D projection in the XY plane of the L768 N -body simulation for
the snapshot at redshift z = 0.3 from Arnold et al. (2019). The distribution of
smoothed dark matter particles is projected in a slice of ∆Z = 40 h−1 Mpc. High-
lighted regions are coloured using the density log ρ/ρ̄. The smoothing of the plotted
particles was performed using the swiftsimio python-library (Borrow et al., 2020).
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statistical errors in the correlation function estimation. We use the simulations

studied in Chapter 4, where we test the resolution for the halo catalogues in two

simulation box sizes and the impact on the clustering. This study needs to be

extended for the effect of the resolution when using subhaloes in clustering studies,

which we do in this chapter.

In order to model the Baryon Oscillation Spectroscopic Survey (BOSS) galaxies,

we need to resolve scales in projected distance below 1h−1 Mpc, which means that

a high-resolution simulation like the the L768 run introduced in Section 4.2 is

needed. The box size of the L768 run ( Lbox = 768 h−1 Mpc) is comparable to the

volume of the LOWZ and CMASS subsamples (see Chapter 3). This will be useful

when the uncertainties in clustering measurement are considered. We are confident

that L768 simulation provides both the resolution and volume needed to predict

clustering accurately on the scales we want to study.

As the data covers a wide range of redshifts, we approximate the redshift range

covered by the survey data, by using a single redshift snapshot from the simulations

for our analysis. In this study, we do not create a lightcone mock catalogue with

the geometry of the survey, as the data does not show a significant evolution for the

used redshift range, neither does the number density of the samples vary strongly.

The selection of the subsamples is made in a much narrower redshift range than the

original samples, so the selection of individual redshift snapshots works well. As

the size of the subsamples is small in redshift, the number density and clustering of

the tracers is not expected to evolve. We decide to keep the snapshots at z = 0.3

to model the subsample of LOWZ at 0.24 < z < 0.36, and the one at z = 0.5 to

model CMASS in the 0.474 < z < 0.528 redshift range.

In Figure 5.1 we show the distribution of dark matter particles in a thin slice of

thickness 40h−1 Mpc for the L768 GR simulation. The particle distribution of a

200h−1 Mpc square and a depth of 40h−1 Mpc is projected into a 2-dimensional

grid, with the density is plotted as log(ρ/ρ̄). Focusing on these smaller scales clearly

shows the large-scale structure highlighting dark matter haloes as the brighter spots
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in the projected density. We select simulation snapshots from the L768 run at

z = 0.3 and z = 0.5 for model the LOWZ and CMASS samples respectively. For

these boxes, the subfind halo catalogues are extracted as explained in Chapter 4.

We keep the subhalo catalogues as they will be used to model the one-halo term in

the two-point correlation function. To populate haloes with galaxies, and to obtain

the galaxy catalogue that matches the data from the samples, the halo occupation

distribution method is used, which is described below.

5.2 The halo occupation distribution model

The HOD model (Peacock et al., 2000; Berlind et al., 2002) is an empirical relation

that describes how the expected number of galaxies per halo varies as function

of halo mass. By using the halo and subhalo catalogues we aim to recreate the

galaxy populations of the BOSS LOWZ and CMASS LRG samples. We repeat the

definition of the HOD prescription for centrals introduced in 4.4, but now add the

term for the expected number of satellite galaxies, as defined in Zheng et al. (2007):

⟨Ncen⟩ = 1
2

[
1 + erf

(
log M − log M min

σlog M

)]
(5.1)

⟨Nsat⟩ = ⟨Ncen⟩
(

M − M0
M1

)α

, For M > M0 (5.2)

where for centrals Ncen describes the number of central galaxies, and is a function

of the mass of the halo M , with M min and σlog M being free parameters of the

model. For satellites, Eqn. 5.2 is dependent on Eqn. 5.1 and M , because the

satellite population of the halo is linked to whether or not there is a central galaxy.

M0, M1, and α are free parameters in Eqn. 5.2. To better understand the model

we need to give an interpretation of the meaning of the free parameters in Eqn. 5.1

and Eqn. 5.2: Mmin is the minimum mass for a halo to host a central galaxy, σlog M

sets the probability for a halo with M < Mmin to host a central galaxy (increasing

this parameter increases the number density when the other parameters are held
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fixed); M0 is the initial mass where haloes start being populated with satellites,

for M < M0 the halo contains no satellites; M1 is the typical mass where the

expected number of satellites behaves like a power-law as function of halo mass;

and α is the exponent of the power law for M > M1, which controls the number of

satellites in massive haloes. As this is an empirical relation, some restrictions on the

allowed parameter values need to be considered. We require M0 > Mmin as satellite

galaxies are not allowed if there is no central galaxy in the halo. Also M1 > M0

to ensure a smooth transition between haloes without/with satellite galaxies. We

need α ∼ 1 to recreate a large number of satellites in the high-mass end of the

HOD function, which is a result that most of the HOD models reproduce (Zehavi

et al., 2005; Zheng et al., 2007; Manera et al., 2013). When α ≪ 1, then ⟨N⟩ is

low and converges to unity, which is not realistic for observed galaxy samples, as

this results in a model where all haloes with a central galaxy have either zero, one

or a very small number of satellites. This does not agree with large haloes being

modelled as clusters of galaxies, which have abundant red galaxies in the samples,

as shown by cluster finder algorithms (Rykoff et al., 2014).

The inclusion of satellite galaxies allows us to resolve small scales in the distri-

bution of the galaxies in the BOSS samples. Even though the fraction of satellites

in the sample is small in comparison to fraction of central galaxies, contributing

around ∼ 10 per cent of the total number density of the simulated samples, they

make a large contribution to the clustering of galaxies in the 1-halo term on scales

of r < 1 h−1 Mpc. These HOD mock galaxy catalogues are used to replicate the

abundance and clustering of LOWZ and CMASS galaxies, which constrains the

values of the other free parameters in the HOD model.

5.2.1 Modelling the one-halo term using HOD methods

The matter distribution inside a dark matter halo is not smooth, but smaller struc-

tures can be found which correspond to halos that have fallen into a larger structure

at an earlier time and are still in the process of merging, having experienced some
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Figure 5.2: 2-D projection of the distribution of subhaloes in 2 arbitrary haloes
with the same mass but different shapes. The coordinates are plotted in units of
the respective value of R200c radius (the blue circle marks unity in these units) and
are centred on the main subhalo (red star). In each row we plot the same halo in
XY , Y Z and ZX projection for the distribution of subhaloes (black dots).

mass loss through tidal stripping. These clumps inside haloes or "subhaloes" can

also be identified in the simulation by the halo finders such as subfind and Rock-

star (Springel et al., 2001; Behroozi et al., 2012). Following the application of the

method described in Section 4.2 to identify the main haloes in the simulation using

the FoF scheme, each FoF halo has its own set of bound particles within which

substructures can be found.

Figure 5.2 shows two haloes and their respective subhalo distributions. Although

both haloes have been chosen to have the same mass, they show completely dif-

ferent subhalo distributions. Subhaloes are local peaks in the matter distribution

within a halo and can be populated with galaxies using the HOD prescription.

The differences in these halo profiles provides an illustration of how we can de-

scribe the one-halo contribution to clustering of galaxies using subhaloes. In our

scheme, satellite galaxies are assigned to subhalo positions rather than resorting

to sampling spherically symmetric NFW profiles which end at the virial radius,
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Figure 5.3: Cumulative number of subhaloes Nsh(< r) as a function of the radial
distance from the halo centre using two different simulations, L768 (solid lines)
and L1536 (dashed lines). We use halos with masses Msh > 1011 h−1 M⊙ (left) and
Msh > 1012 h−1 M⊙ (right) to compute the subhalo density profiles in 3 different
bins of subhalo mass as described in the legend.

as has been used in many previous studies (e.g. Cautun et al. 2018; Paillas et al.

2019; Armijo et al. 2018; Hernández-Aguayo et al. 2018). This choice was made

in order to achieve better agreement between the mock catalogues and the obser-

vations: because we use the subhalo distribution to host satellites, we reduce the

number of parameters needed to describe this population, which allows us to focus

on constraining the other HOD parameters more tightly.

As we use the subhaloes found in the simulation, we need to verify that we have

the resolution to probe the smaller scales in the clustering statistics we are trying

to model, and that we have a sufficient number of subhaloes given the expected

number of satellite galaxies. In Figure 5.3 we plot the cumulative subhalo profiles as

function of distance r from the centre of the main subhalo. We choose two different

subhalo mass thresholds to check how the simulation resolution affects the halo

profiles for different halo masses. The subhalo mass is then defined by the number

of bound particles only, instead of the classical M200c used for the main halo masses.

We find that when selecting subhaloes with masses Msh > 1011 h−1 M⊙, a lower

resolution simulation like the L1536 run yields almost an order of magnitude fewer

subhalos than are found in the higher resolution L768 run. It is not until we select
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subhaloes with masses Msh > 1012 h−1 M⊙ that the profiles become insensitive to

the simulation resolution; this is the minimum subhalo mass for which converged

results can be obtained for the small scale clustering from the different resolution

runs. Since the L1536 run can still be useful for some measurements we retain the

threshold minimum subhalo mass as Msh ≳ 1012 h−1 M⊙.

To determine whether or not this subhalo mass threshold is appropriate for our

clustering analysis, we need to run some tests with example HOD parameters. A

clear requirement is that the simulations agree with the expected values of the

HOD model. If we attempt to use subhalo masses smaller than the subhalo mass

threshold, the simulations will have a different number of satellites due to the

resolution limit of L1536 as shown in Figure 5.3. If we increase the threshold for

selecting subhaloes, we increase the minimum separation scale that can be probed

by our clustering predictions, as it is expected that the main halo-subhalo distance

also increases with subhalo mass (Angulo et al., 2009).

We test that our simulations recover the expected number of galaxies from the

analytical HOD model for a reasonable range of parameters, using some of the

HODs inferred from LRG surveys (Manera et al., 2013; Manera et al., 2014). We

find that both simulations replicate the expected number of satellites and centrals

when using each subhalo at most once when building the HOD catalogue. In cases

when the number of satellites is higher than the subhaloes of an individual halo,

then subhaloes can also be recycled. Nevertheless, this effect is sub-percent for the

HOD parameters we use. Now that we know the limitations due to the resolution in

the simulations for satellites for different threshold masses, and for central galaxies

in low mass haloes as discussed in Chapter 4, we can search for HOD parameters

to create mock galaxy catalogues that mimic the LRG catalogues of BOSS.
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5.3 Inferring HOD parameters using the Monte Carlo

Markov Chain method

The HOD framework provides a simple and accurate means of describing a galaxy

population defined by a set of selection criteria, to allow a reproduction of the

large-scale structure measured in a wide field survey. In the particular case of

SDSS-LRGs, several studies have been performed to construct such mock galaxy

catalogues (Parejko et al., 2013; Manera et al., 2013; Manera et al., 2014). These

studies focused on developing methods to generate galaxy mock catalogues using

N -body simulations for some of the early data collected by BOSS, and building

mocks to allow covariance estimates. The galaxy mocks from these studies were

used to test the clustering of LOWZ and CMASS, providing an estimate of the

covariance matrix of galaxy clustering statistics over a wide range of scales. Whilst

Manera et al. study the clustering of galaxies in redshift space on scales between

30 < s/h−1 Mpc < 80, Parejko et al. use the projected correlation function on

scales between 0.4 < rp/h−1 Mpc < 40; the latter is approximately a real-space

clustering measurement (see Norberg et al. 2009).

The studies differ in some aspects in terms of how they extract the HOD para-

meters used to create mocks. Manera et al. minimize the χ2 between cluster-

ing measured for the mock and observations, using a five-dimensional parameter

search employing the simplex algorithm of Nelder et al. (1965). Parejko et al. use a

Monte Carlo Markov Chain Method (MCMC) to fit the wp(rp) function and overall

galaxy number density. Nevertheless, neither of these studies consider that there is

an intrinsic degeneracy between number density and clustering, while using HOD

parameters, which needs to be addressed while inferring the best parameters for

an observational sample. Parejko et al. assume a 15% error on the galaxy number

density, although the number density of the samples used varies by more than 30%

across the studied redshift range. The 15% error in the number density is justified

to make sure that their MCMC chains converge to a solution for the clustering fit,
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which is a valid reason for their methodology, but results in too wide a range of

HOD parameters being compatible with the clustering measurements.

Here, we try to improve on the procedure of Parejko et al. in a number of ways:

we restrict the redshift range of the samples as explained in Chapter 3, and we

create a new scheme for fitting the number density along with the clustering. We

describe our method in the next Section. Another method worth mentioning is that

presented by Zhang et al. (2022), where HOD parameters are constrained by us-

ing high-order clustering statistics. Here, the combination of two, and three-point

functions allows the exploration of the HOD five-dimensional space in a more ac-

curate way. Although the study provides a precise estimation of some of the model

parameters, such as the minimum mass of haloes which host a LRG, the computa-

tion of three-point functions is well known to be relatively time consuming (Guo

et al., 2015). The authors approach this problem by using the tabulation methods

described in (Zheng et al., 2016), which uses the combination of various weights

to statistically emulate the 2,3-point functions directly from the HOD parameters,

without explicitly producing a mock galaxy catalogue. Even though we could be-

nefit from such an approach to compute the two-point clustering fast, as we are

also computing the marked correlation function subsequently, we need the mock

galaxy catalogues to compute the weights for creating the marked statistic of these

samples.

5.3.1 The Metropolis-Hasting MCMC approach

We use the Metropolis-Hasting MCMC scheme (Metropolis et al., 1953; Hastings,

1970) to explore the 5-dimensional HOD parameter space, and obtain the best

fitting parameters that replicate the number density and clustering of the LOWZ

and CMASS samples. Here we describe some of the steps involved in the formalism

and how it is applied to our particular problem:

1. A position in the chain is described by a set of parameters θ, which comes
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from the proposal function q(θt|θt−1), which is normally modelled as a Normal

distribution, computed for time t. In our case θ is the set of HOD parameters.

2. For the next potential move in the parameter at time t, we compute

α = q(θt−1|θt)π(θt)
q(θt|θt−1)π(θt−1) , (5.3)

where q(θt−1|θt) is next move proposed, q(θt|θt−1) is the current position of

the chain, and π(θt) is the probability of the proposed move
(
∼ e− 1

2 χ2), to

be accepted. α is then the probability of accepting the move for the chain.

3. Draw a random number µ from a uniform [0, 1) distribution. This is the

Monte-Carlo step, where if µ < α, then θt is accepted.

4. If the proposed move is not accepted (with probability 1−α), then θt = θt−1,

which means that the chain does not move to the next position. In general,

α ∼ 0, when q(θt|θt−1) ≫ q(θt−1|θt), or the current state probability is much

higher than the proposed one.

Normally it is advisable to work with logarithmic quantities for the density distribu-

tions rather than the density probability, so the ratio to determine the acceptance

or rejection of the next step in the chain becomes the difference of the logged

probabilities. In other words, the accept–reject step conditions can be written as

ln q(θ′) − ln q(θ) > ln µ. The algorithm is repeated a large number N of times to

create a sample of size N which contains information about the true distribution

that describes the best fitting parameters of the model. The main function that

makes the MCMC algorithm work is the proposal function, q(θt+1|θt), which in

most scenarios can be described by a simple Gaussian probability distribution or

any other symmetric distribution. Once the movement of the chain is decided by

applying q(θ′), the true distribution of the set of parameters θ, is given by a prob-

ability distribution function p(θ|X), which tells the probability of an event X, and

an unnormalized distribution that comes from the product of the prior Π(θ) and

the likelihood distribution L(X|θ).
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The priors are the initial distributions of every parameter from which the pro-

posal function takes its values. Again, in the simplest case, the priors are bounded

uniform distributions. If the proposed value is outside these bounds then the log-

probability associated with the event (step in parameter space) is −∞, or an event

with zero probability. Then, the priors help to define the range within which the

parameters are searched for in the log-likelihood distribution. The log-likelihood

distribution describes the probability of a sample of events X to belong to the real

p(θ) distribution. The log-likelihood distribution is proportional to ∆χ2, which is

defined by

χ2 = (x − µ)⊺Σ−1(x − µ), (5.4)

where x is the realization value drawn from the set of parameters, θ, and µ is

the observable that we are trying to model. Σ−1 is the inverse of the covariance

matrix, which includes the uncertainties in the observation of µ. In our case, x

corresponds to the projected correlation function wp and galaxy number density

ngal from every realization of the HOD parameters, and µ represents the values of

wp and ngal measured from the the observed data.

5.3.2 Autocorrelation time and convergence

An essential point to consider when running the MCMC algorithm for any kind

of problem is to determine when the search of parameter space has converged to

a reliable solution. In other words: how long does the chain have to be run to

represent the authentic posterior distribution of the parameters? The answer is

not simple, as this is a fully stochastic method, where the longer the run the more

consistent the answer. However, as the MCMC cannot be run for an infinite time,

we need to define when a particular number of iterations is sufficient for a complete

sample, which can be model dependent.

To do this we perform the autocorrelation time analysis of the model, which

helps us to determine if the chains are sufficiently converged. The autocorrelation
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time quantifies directly the Monte Carlo error in the sampler. This determines

the robustness, in terms of the variance, of the sampling of a given distribution as

function of the different steps. For an independent, finite sample of parameters, θ,

the sampling variance estimator can be written as

σ2 = 1
N

Varp(θ) [f(θ)] , (5.5)

where f(θ) is the function we are trying to sample over N realizations of the

parameters θ, and this is drawn from a probability density p(θ). As the next move

in the MCMC depends on its previous state, the samples of a particular chain are

not independent and the error can be written as

σ2 = τf

N
Varp(θ) [f(θ)] , (5.6)

where τf is the integrated autocorrelation time. Then, τf can be defined as the

number of steps needed so the chain becomes independent of the starting point, and

N/τf then is the effective number of samples for Eqn. 5.6 becoming the expected

Monte Carlo error written in Eqn. 5.5. This means that by estimating τf , we can

calculate the number of samples required to achieve convergence of the chain by

calculating the number of samples required to obtain a constant τf as N increases.

To calculate τf we need to integrate over the time auto-correlation function of

the process

τf =
∫ ∞

τ=−∞
ρf (τ)dτ, (5.7)

where ρf (τ) is the normalized time autocorrelation function of the chain, repres-

enting a time series. Again, as we have a finite number N θ of samples, ρf (τ) can

be calculated using an estimator which uses the finite chain of f(θ) for each set of

parameters θn in the sample, {fn}N
n=1. The estimator ρ̂ is defined as

ρ̂(τ) = 1
N − τ

N−τ∑
n=1

(fn − µf )(fn+τ − µf ), (5.8)

where µf = 1
N

∑N
n=1 fn. An efficient way to compute Eqn. 5.8 for a large sample

is by using a fast Fourier transform, which is computationally much cheaper than
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summing Eqn. 5.8 directly. Then, the integrated autocorrelation time can be es-

timated from Eqn. 5.7

τf = 1 + 2
N∑

τ=1
ρ̂(τ). (5.9)

As we sum Eqn. 5.9 over a large number of samples N , ρ̂ adds more noise than

signal, which can lead to variations in the value of τf and bias the estimation of

the chain. It is recommended to monitor the dependence of τf as a function of

the number of samples N , for a smaller subsample M ≤ N . In this way, when the

sample is large enough, τf (N) converges to a constant value.

An alternative to test the robustness of the posterior distribution sampled by the

MCMC chains is the Gelman-Rubin diagnostic Gelman et al. (1992), R, defined as

R =

√
V̂

W
, (5.10)

where R is the variance of one or all the parameters within a chain represented by

the estimator V̂ , compared to the variance between all the chains W . The compar-

ison tells us whether or not these two quantities are unbiased estimators of the true

variance. Hence, as long as the chain grows and the values are stable, then R ≈ 1.

Whilst the calculation of the integrated autocorrelation time is an estimation of the

error of the Monte Carlo integral and provides us with more understanding of how

the chain converges, the Gelman-Rubin diagnostic is a more heuristic test which

gives information about the variance of the individual parameters. The Gelman-

Rubin test is related to the computation of the autocorrelation time in the sense

that it gives positive results regarding the convergence of the chain, when these

are long enough to reproduce p(θ) confidently. It is considered that ensuring the

convergence of the chain is more a process of finding the number of samples that

stabilize the values of either τf or R, instead of a simple value that tells if the chain

is converged or not.

The convergence of the MCMC permit us to focus on our particular case, where

we infer the parameters of the HOD model for the observed results provided by
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the data through the calculation of the survey metrics. We show in the next

Section how we set up the model in order to fit both the number density and the

clustering of galaxies, and the analysis of convergence for the HOD parameters,

when considering the production of the chain.

5.3.3 Studying the HOD parameter-space using the Markov

Chain

To obtain the best fitting HOD parameters that most closely reproduce the galaxy

number density and clustering measured from the observational samples, we need

to test some aspects of the MCMC process. We focus on the behaviour of the chain

evolution and how well it samples the parameter distribution. As this is a procedure

that takes tens of thousands of iterations, it may become computationally expensive

if some of the stages are not treated carefully. To run the MCMC we need to create

an “ensemble”, which consists of a set of individual samplers or “walkers” forming

a chain that sample or “walk” the parameter space of the model to be fitted.

In the Metropolis-Hasting scheme, the walking goes in the direction of the more

probable positions in parameter space, according to the log-likelihood distribution.

The final function of the ensemble is to sample the posterior distribution in the

most complete way possible. In Figure 5.4 we show how the walkers move in the

parameter space of the HOD model using 2-D projections. A walker starts from

a random position in the parameter space, which is randomly selected from the

prior. Then, the iterations begin accordingly to the Metropolis-Hasting algorithm

explained in Section 5.3.1.

As the starting point may be far from the position of the final posterior dis-

tribution, the walker needs to wander its path for a sufficiently long time until it

finds the location of the maximum likelihood. This is controlled by the definition

of the χ2 value used in the likelihood definition, which contains the probability

information of the actual shape of p(θ). The stage in which the walkers of the

ensemble have yet to reach the “best” regions of the log-likelihood that can be
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Figure 5.4: Top: the MH-MCMC sampling for a individual walker in the 2-D-
projection space for the HOD parameters log Mmin and log M1. The sampling starts
from a random position in the parameter space, with a “burn-in” stage (black dots),
after which the “production” stage (red dots) starts. Bottom: Same as in the left
panel, but for the complete MCMC ensemble composed of 28 independent walkers.
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Figure 5.5: top: log-likelihood distribution, ln L(θ), as function of the Monte Carlo
step for a realization of 30,000 samples. bottom: log Mmin distribution as function
of MC step for the same realization as shown in the top panel. Only 10 individual
walkers of a total of 28 walkers are plotted for clarity. The black dashed line
indicates the burn-in stage, which is placed once the chain stabilize.
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sampled is called the “burn-in” phase. This locus of points in parameter space is

an unrepresentative sample that has to be cut away from the final sample. After

the burn-in phase the chain becomes more representative in the sampling of the

log-likelihood distribution, which is called the “production” stage. Here the chain

samples for a longer time (larger number of steps) to recreate the final posterior

distribution more accurately.

In the top panel of Figure 5.4 the burn-in phase can be identified as the path

travelled by the walker in a 2-D projection during a certain time (black dots), until

a stable region is found. In practice this correspond to the first 10,000 steps of the

chain, after a visual inspection by looking at the evolution of the variance of the

chain. This choosing is arbitrarily and it does not vary the final distribution of the

parameters. After that, the region sampled by the walker, the likelihood, becomes

more representative of the posterior distribution. The values samples by the chain

during the burn-in stage can still be correct, as the walker moves relatively quick to

the region of maximum likelihood. The large variance of the sample is what tell us

we should discard this stage when calculating the posterior distribution. When the

production stage begins (red dots), then we know the walker is actually sampling

the log-likelihood region, and the variance is no longer an issue to be concerned

about.

The procedure is repeated by all the walkers in the ensemble in parallel, as shown

in the right panel of Figure 5.4. The selection of the number of iterations or Monte

Carlo steps for burn-in and production stages is in principle arbitrary as it depends

on how fast the model converges. A rule of thumb for dividing the MCMC run into

these two stages is that the burn-in time is a half of the time used for production,

tb = 1
2 tp, so the chain first runs until it is deemed to be stable and there is still

enough steps remaining to record the sampling of the log-likelihood distribution.

In Figure 5.5 we show the evolution of the chain over 30, 000 MC steps for 10

walkers. Although, the convergence to high likelihood values looks relatively quick,

it is not until at least 10, 000 steps that the chain becomes more stable, as the
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Figure 5.6: The ∆χ2 probability density function for the MCMC run with An =
0.15 and Awp = 0.85 (red line). The shape of the distribution depends on the
number of degrees of freedom (colour lines), the histogram is better fit by ν = 6.

walkers start moving closer together. The same occurs for the evolution of some

of the parameters, like the distribution of log Mmin (one of the parameters of the

HOD model) for the same number of iterations, which suggests that tb ∼ 10, 000.

5.3.4 Defining the χ2 distribution in the MCMC

As the log-likelihood ln L is a set of probability distribution functions (PDFs) for

the parameters of our HOD model, there is not a unique answer for the problem we

are trying to solve. Instead there are many sets of parameters, log Mmin, log M0,

log M1, σ, α, which yield acceptable fits to the observational measurements. To
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obtain all values that can be considered valid, we need to perform an analysis on the

χ2 distribution, which provides a complete classification of the quality of our data

given the χ2 values. As we try to fit two quantities that are highly correlated, such

as the clustering and number density of the galaxy sample, we need to consider this

when defining the χ2 that we want to measure. We define a new χ2 by combining

both measurements:

χ2 = Anχ2
n + Awpχ2

wp
, (5.11)

where An and Awp are factors that weight the individual χ2 for the number density

n and the clustering wp, respectively. By adding these quantities, we can fit models

to the data using the given weights for these two metrics, which in turn can provide

a better understanding of the correlation between the clustering and number dens-

ity, and help us to determine if one is more important than the other when looking

for the best fitting HOD parameters. To determine the optimal values for An and

Awp , we need to test different values for the weights and assess the derived results.

First we need to understand the χ2 distribution generated from our data. In

general terms, we define the probability as the log-likelihood being proportional

to the χ2 defined in Eqn. 5.4, as we are reinterpreting the probability with an

arbitrary normalization. To avoid the need to renormalize our data, we calculate

∆χ2 = χ2 − χ2
min, where χ2

min is for the value that maximizes the log-likelihood

distribution. Then, the actual distribution is relative to the minimum χ2 of the

data, and the χ2 distribution is simply

∆χ2 = −2 ln L. (5.12)

Figure 5.6 shows the distribution of ∆χ2 for a MCMC run. Here, we define

whether the log-likelihood distribution is well sampled by comparing the distri-

bution with the original PDF for a χ2 with ν degrees of freedom. For our case,

the number of degrees of freedom is simply the number of free parameters in the

HOD model, then ν = 5. We also need to consider that in Eqn. 5.4 χ2 depends on

the number of bins of the vector x and the covariance matrix Σ, which indicates
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the level of correlation between the bins of x. When combining these samples the

calculation is more complicated, because of the correlations between the radial sep-

aration bins used when computing wp. This indicates that the effective numbers

of degrees of freedom in our model can vary as we modify the definition of the χ2,

by using the weights An and Awp . For example, the MCMC run displayed in Fig-

ure 5.6 with An = 0.15 and Awp = 0.85 is reproduced better by a χ2 distribution

with ν = 6.

Now that we can describe the χ2 distribution of the data we have the tools

to obtain HOD parameters that provide a good fit to the data. Chapter 15.6

of Press et al. (1992) shows what values of ∆χ2 we can consider appropriate to

describe the data, by considering the numbers of degrees of freedom for our model.

For example, when ν = 5 all the sets of HOD parameters where ∆χ2 < 5.89

correspond to 68% of the data we are trying to fit. To show a complete description

of the χ2 statistic, we plot the posterior distribution p(θ) of the parameters in our

model in Figure 5.7. As we can only show the 2-D projection of the likelihood

data (that has 5 dimensions in total), we need to consider ν = 2 for drawing the

contours in the off-diagonal subpanels of Figure 5.7. This plot shows what the

parameter space likelihood looks like and how different parameters are correlated.

Some of these correlations are expected, like the dependencies between log Mmin

and σ that control the occupation rate of central galaxies in low mass haloes. Other

correlations can be more interesting, like the one between σ and log M0, where the

latter controls the haloes that produce satellite galaxies, once the low mass haloes

with centrals have been fixed.

We can now test our HOD scheme by fitting measurements from the LOWZ and

CMASS galaxy samples. We also need to determine the optimal weights An and

Awp and the complete range of HOD parameters for each model.

For all the runs, we used emcee (Foreman-Mackey et al., 2013), which is a Python

implementation of the MCMC algorithm that allows the Metropolis-Hasting en-

semble sampler explained in Section 5.3.1. We build the ensemble using 28 walkers
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Figure 5.7: Corner plot of the MCMC posterior distribution for the HOD model
parameters. The MCMC run fits the HOD model from a simulation (either GR
or F5) over the data we want to replicate (either LOWZ or CMASS data). The
diagonal subpanels show the 1-D distribution of the parameters (black lines) or
posterior distribution p(θ) with θ being the HOD parameters. The off-diagonal
subpanels show the 2-D projection of the parameters for all parameter combina-
tions, where the contours are selected using the ∆χ2, using 1-σ (cyan lines) and
2-σ (red lines).
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HOD parameter-space limits for GR and F5 simulations
θ

log(Mmin / M⊙ h−1) [12.7, 14.0]
log(M1 / M⊙ h−1) [12.7, 14.8]
log(M0 / M⊙ h−1) [12.7, 14.0]
σlog M [0.0, 0.6]
α [0.7, 1.6]

Table 5.1: Uniform priors for the HOD parameters, θ. Extra conditions are applied
to the prior distributions, like the fact that log M0 > log Mmin and that log M1 >
log 5M0 for every set of HOD parameters.

each running for 30, 000 iterations (10, 000 for burn-in and 20, 000 for production);

these choices need to be corroborated using the autocorrelation time analysis (see

Section 5.4 below) or the G-R diagnostic. We provide the parameter space limits

applied to the priors, used for searching the HOD parameters, in Table 5.1. To

investigate the optimal choice of weights we try three runs with different χ2 defin-

itions: An = 0.15, Awp = 0.85; An = 0.85, Awp = 0.15 and An = 0.5, Awp = 0.5.

These cases are useful to study how we can adjust the metrics and check how the

degeneracy works between these two parameters.

5.4 The HOD families that reproduce LOWZ and

CMASS results

To search for the HOD parameters that give us mock galaxy samples that mimic

the number density and clustering of the observational data, we need to under-

stand how we adjust the model using these benchmarks. For instance, the number

density, which is the mean number of galaxies per unit volume, is represented by

one number for every HOD sample, (ngal = Ngal/Vbox), where Vbox = L3
box. For

the data, as explained in 3.3 we also consider nobs = Ngal,obs/Vs. Whilst for the

clustering, a measurement of wp is estimated in both the simulation box and the

observational data, using 13 rp bins in the projected-perpendicular distance range

0.5 < rp/(h−1Mpc) < 50. For both observational metrics, the uncertainties are
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estimated using Jackknife resampling to account for sample variance, using the

full covariance matrix for wp. As we combine these measurements to fit the HOD

model to the observational data, we need to make sure that this results in cata-

logues with accurate measurements of ngal and wp. For example by giving all the

weight to the clustering by fitting wp only, we will end up with the same two-point

galaxy statistic but we will miss the number density of targets, by around 15-20%

as shown by Parejko et al. (2013). Such a result will have a high influence on the

calculation of the marked correlation function, which will impact on the utility of

this test to probe modified gravity, by adding uncertainties in the ranges where we

expect the models to differ. On the other hand, by giving more weight to the num-

ber density and less to the clustering, we will obtain poorer reproductions of the

clustering. The range of “acceptable" HOD parameters will also be broader in the

limit of giving increasing weight to the number density, as we are effectively trying

to constrain the 5 HOD parameters from one measurement in the limit. Hence,

a compromise is required in which both observational measurements are recovered

without biases at an adequate statistical level of confidence.

As explained in Section 5.3.4 we test three scenarios for the weighting scheme.

1) An = 0.15, Awp = 0.85, where we give most of the weight to the clustering

signal, by considering the number of bins used for wp and ngal. 2) An = 0.5

Awp = 0.5, where both clustering and number density have the same weight in the

χ2 definition. 3) An = 0.85, Awp = 0.15, where we give more weight to the number

density. For these three cases we compare the best-fitting HOD parameters within

their 1-σ confidence interval, and the corresponding results for the ngal and wp

measurements.

In Figure 5.8 we show the resulting HOD functions and the associated clustering

for the HOD galaxy catalogues. We plot a random subsample of 1000 of lines

sampled from the acceptable HOD parameter space we find in one of the MCMC

chains in the top panel of Figure 5.8. We choose to plot An = 0.5 Awp = 0.5 for

clarity and because all three cases show the same features. For the three different
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Figure 5.8: Top panel: The average number of galaxies in a halo, ⟨N⟩, as function
of halo mass M200c (red lines) for all the HOD parameter sets which lie within a 1 σ
confidence interval according to the χ2 distribution. Bottom panel: The projected
correlation function wp(rp) as function of the projected separation, rp, for galaxy
catalogues created using the HOD samples shown in the top panel. The red region
corresponds to that covered by all the wp/rp curves, and the black dots shows
the measurement from LOWZ that we used to fit the model. Uncertainties for
the observational measurements points have been calculated using the Jackknife as
explained in Section 3.3. The bottom subpanel shows the residuals relative to the
observational data.
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weighting schemes we find similar results in terms of the range of values covered

by the HOD parameters. An interesting feature of these HOD parameter is that

all cases permit σlog M = 0, which corresponds to a sharp cutoff in the mass of low

mass haloes that can host a central galaxy. We find that, in general, schemes where

equal or higher weight is given to the clustering, Awp = 0.5, 0.85 cover the same

parameter space. Whereas the model that gives more weight to number density

(i.e. An = 0.85) expands the parameter range for those parameters that contribute

less to the number density such as σlog M and α, but constrains better those that

contribute more such as log Mmin. We also plot wp for the same run. In this case

we show the region covered by the individual wp functions selected within the 1-σ

region, which means that the shaded region represents the uncertainties due to the

allowed values of the HOD parameters. Again, for the three cases considered we

see the same features, as expected: the clustering is degenerate with the number

density for the range of the HOD parameters we find, and the measurement of wp

is adequate for the different weighting schemes. These results indicate a good fit

of the clustering overall, with a small deviation for the large-scales distances at

rp > 20 h−1 Mpc. Nevertheless this is consistent with the uncertainties from the

Jackknife resampling. Additionally, our measurements of wp are also consistent

with those from Parejko et al. (2013), including the small deviation between mocks

and data at these large scales.

Finally, we check the results for the number density in Figure 5.9, which shows

the three different weight cases. The three panels show the distribution of the num-

ber density recovered using the HOD parameters sampled, denoted nsim. When we

compare the distributions to the value from the observational sample, nobs we can

test how good these fits are, paying attention to any significant systematic shifts.

For the first case, An = 0.15, Awp = 0.85 (top panel), there is a clear mismatch

between the mean of the nsim distribution and nobs. By comparing the distribu-

tion of nsim with the Gaussian distribution with the same standard deviation, we

find that the discrepancy is around 1-σ. In comparison, the other weight schemes
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Figure 5.9: The distribution of the galaxy number density values P (ngal) recovered
for the HOD samples in the different weighting schemes: An = 0.15, Awp = 0.85
(top panel); An = 0.50, Awp = 0.50 (middle panel) and An = 0.85, Awp = 0.15
(bottom panel). We draw over each P (ngal) a Gaussian with the same mean and
standard deviation as the distributions. We have rescaled the x-axis to center
each distribution on the target value we are fitting nobs, the number density of the
LOWZ sample.
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5.4. The HOD families that reproduce LOWZ and CMASS results

HOD 1-σ confidence intervals for GR and F5 simulations
θ GR: z = 0.3, z = 0.5 F5: z = 0.3, z = 0.5
log(Mmin / M⊙ h−1) [13.029, 13.205]; [12.928, 13.027] [13.100, 13.282]; [12.996, 13.141]
log(M1 / M⊙ h−1) [13.853, 14.053]; [13.689, 13.869] [13.953, 14.103]; [13.788, 13.927]
log(M0 / M⊙ h−1) [13.042, 13.262]; [12.937, 13.107] [13.118, 13.341]; [13.007, 13.180]
σlog M [0.003, 0.440]; [0.0, 0.327] [0.0, 0.479]; [0.002, 0.431]
α [0.802, 1.067]; [0.800, 1.045] [0.801, 1.255]; [0.800, 1.302]

Table 5.2: The 1-σ confidence intervals of the HOD parameters for the GR and F5
simulations at redshift z = 0.3 and z = 0.5, to match the clustering and abundance
of galaxies in the LOWZ and CMASS samples.

(shown in the middle and bottom panels) seem to yield more accurate estimates of

nobs. Comparing the different panels of Figure 5.9, we chose the weights An ∼ 0.5

in order to obtain a correct, unbiased estimate of nobs.

We run the the autocorrelation time analysis and the G-R diagnostic to test

the convergence of the three choices of weight scheme. In Figure 5.10 we plot

the integrated autocorrelation time and the G-R diagnostic, for the chain τf as a

function of the number of samples N . The ensemble run using emcee is estimated

to converge for N > 50τf, limited by the black dashed line in Figure 5.10. In fact,

by looking at the value of τf where the curves start to flatten, we ensure that the

chain has been running for enough time. For case 1) and 2), τf ∼ 400, which is the

number of samples needed for the chain to forget where it started, following the

estimated number for the convergence suggested by emcee, these models need at

least 20, 000 iterations. Case 3) seems to converge faster with τf ∼ 300, which is

expected, as this model allows a wider range of HOD parameters. Additionally, we

compute the G-R diagnostic for the total samples in the different chains, obtaining

R = 1.149, for case 1), R = 1.087 for case 2), R = 1.071 for case 3). Although,

all cases seem to converge similarly, the higher R value for case 1) disfavours the

scheme where An = 0.15 Awp = 0.85. This can be checked in the the bottom panel

of Fig. 5.10, where the convergence of R for case 1) is slower and starts from a

higher value. This indicates that the variance of the chain is higher than the one

from the total sample in comparison to case 2) and 3) (and a slower convergence),

possibly influenced by the smaller weight value An.
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Figure 5.10: Top: The integrated autocorrelation time τf as a function of the
number of samples N . The curves show three different MCMC runs changing the
weights that define the χ2: An = 0.15 Awp = 0.85 (red), An = 0.5 Awp = 0.5
(green), and An = 0.85 Awp = 0.15 (blue). The τf = N/50 (black dashed line) is
added to show how the models are predicted to start converging after crossing this
value. Bottom: The G-R diagnostic showing the ration between the ratio R − 1
as function of the number of samples N for the same samples displayed in the top
panel.
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5.5 Discussion

By testing the three different cases for weighting the galaxy number density and

clustering, we can choose the optimal scheme to obtain the HOD parameters that

replicate the observations of LOWZ and CMASS samples. By examining the results

of the fits in the number density and the G-R diagnostic values, we discard the

scheme with weights An = 0.15, Awp = 0.85. The level of accuracy of the fit

to the clustering and number density for the other schemes looks adequate with

a few caveats. The scheme with An = 0.85 Awp = 0.15 also increases the HOD

parameter range of the samples, which can be counterproductive, and a smaller

effective number of degrees of freedom in the ∆χ2 distribution with ν ∼ 4. We

are giving more weight to the individual χ2
n of ngal and reducing the effective

number of bins used to calculate χ2
wp

. This will have an impact on our conclusions

regarding the HOD parameters within the 1-σ region and in future calculations of

the marked correlation function. In summary, we choose to keep the scheme where

An = 0.5 Awp = 0.5, as we are giving equal relevance to both ngal and wp, this

seems like the right choice to treat the degeneracy between these measurements

and to extract the information from the observational data.

We run and compare the MCMC fitting for all models in Table 5.2. Here we

add the information of the 1-σ confidence interval for the GR and F5 simulation

snapshots at redshift z = 0.3 and z = 0.5. The F5 simulation has higher values

for the characteristic masses, log Mmin being the one that contributes more to the

number density and clustering amplitude. Also, the exponent of the power law for

the number of satellite galaxies α goes to higher values in the F5 model. What we

learn from the HOD parameters recovered for the GR and MG models is that the

main differences are in the minimum mass needed to populate haloes with central

galaxies and the rate of satellite galaxies per halo, both of which are higher in

modified gravity. This is caused by enhanced halo formation in modified gravity

models, where unscreened haloes increase the rate of central galaxies, which has to
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Figure 5.11: Same as figure 5.1, but adding the distribution of galaxies tracing
the underlying dark matter. Galaxies are placed using the HOD method, with
the parameters tuned to replicate the observed abundance and clustering of BOSS
galaxies.

be compensated by higher values of log Mmin, log M1, and log M0. This compens-

ation also works for α, because fewer haloes will be populated with satellites, but

more satellites will be added to obtain the same number density and clustering as

in the catalogues produced from the GR simulations.

The catalogues created by this method have the same distributions of galaxies as

the LOWZ and CMASS observational samples at the level of the one and two-point

statistics, using measurements of the number density of galaxies and real-space

clustering. In Figure 5.11 we show the HOD mock galaxy catalogues created using
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this method, overlying the dark matter distribution shown in Figure 5.1. The HOD

model shows good indication of reproducing the clustering of galaxies on various

scales, in the simulations. It also appears to be a good tracer of the dark matter

distribution in the simulations. These galaxy catalogues are used to calculate the

marked correlation function, as we explain in the next chapter.
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Chapter 6

The marked correlation function

of LOWZ and CMASS galaxies as

a test of modified gravity.

6.1 Introduction

The study of the clustering of galaxies at the level of the two-point correlation

function is a robust test of the large-scale structure and has been used to study

cosmology over the last decades. The accurate measurements provided by obser-

vations of galaxies that trace the density field offer tight constraints on how the

clustering of galaxies looks like. This requires that when studying alternative the-

ories that differ from the GR-ΛCDM universe, the number density and clustering

of the mock catalogues from these simulations have to replicate the results of the

real-projected-space correlation function of the most recent extragalactic surveys

(Cautun et al., 2018). In other words, the two-point correlation function is limited

as a means to distinguish GR from alternative gravity models.

We have shown that models such as the HOD prescription can be tuned to repro-

duce the number density and clustering as displayed by observational samples at

the per cent level. The question then arises: What kind of test can we use to probe
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6.1. Introduction

modified gravity models? To answer this question we need to take into account the

features of the modified gravity model we want to explore, such as the screening

mechanism in f(R) gravity that was explained in Chapter 2. In White (2016), the

density-marked correlation function is proposed to study modified gravity models

as an easy-to-compute test, as this uses a property that is expected to depend on

modified gravity which is easy to obtain when observing galaxies in extragalactic

surveys.

The idea of the marked correlation function has been tested using mock galaxy

catalogues (Armijo et al., 2018; Hernández-Aguayo et al., 2018), motivated by the

theoretical background presented in White (2016) using low order perturbation

theory to explore the properties of the marked correlation function. In these stud-

ies, different definitions of weights applied to galaxies were investigated, including

the local density for individual galaxies, the gravitational potential of different en-

vironments, and the host halo mass. All of these properties are expected to differ

from the ΛCDM paradigm when calculated in modified gravity models, even when

the 2-point clustering is matched. Moreover, some of these marks have already

been tested in Satpathy et al. (2019), where the density-mark from White (2016)

is applied to the LOWZ galaxy sample, using the marked correlation function

defined in redshift-space. These authors concluded that their results are limited

by the modelling of small scales in the simulations, where most of the differences

between GR and MG models were found in previous studies. Nonetheless, no sig-

nificant deviations from ΛCDM were found by Satpathy et al. on scales between

6 < s/(h−1 Mpc) < 69. The simulations used in Satpathy et al. (2019) have limited

resolution when using the subhaloes to study their galaxy catalogues, which can

drive the results on small scales, which motivates us to refine some aspects of their

analysis. Furthermore, the analysis of Satpathy et al. is done testing the marked

clustering in redshift-space, which is dominated by the pair-wise velocity distribu-

tions on small scales that require further modelling of differences between GR and

modified gravity models.
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6.2. The projected marked correlation function

As explained in Armijo et al. (2018), the same analysis in real space can be used

to unveil modified gravity theories such as f(R) in the scales not investigated by

Satpathy et al. (2019). Another motivation for revisiting this study is to explore the

option of using marks based on gravity (i.e. the gravitational potential) or mass,

which can be viewed as providing more direct tests of modified gravity. For such

marks, observations of weak lensing measurements become relevant, in addition to

samples including other observational mass estimates, such as those of clusters of

galaxies (Cataneo et al., 2018; Liu et al., 2021). For these reasons, we apply a real-

space version of the marked correlation function based on the projected correlation

function to the BOSS LOWZ and CMASS samples, which we explain in the next

Section.

6.2 The projected marked correlation function

Following White (2016) we define the marked correlation function as

M(r) = 1 + W (r)
1 + ξ(r) , (6.1)

where ξ(r) is the two-point correlation function and W (r) is the weighted or marked

version of ξ. Rather than counting pairs of galaxies, the product of weights is coun-

ted for a given pair of galaxies. To implement the measurement of the mark correl-

ation function we simply include the marks as additional weights in the correlation

function estimator, adapting the example given in Eqn. 3.5, where the pair counts

are replaced by the multiplication of the weights for each galaxy in the pair. We

count pairs from the data and random catalogues, with the terms in the estimator
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6.2. The projected marked correlation function

defined by Eqn.3.5 redefined to include the mark:

DD = 1
Ng(Ng − 1)

∑
ij

wmark,iwmark,j , (6.2)

DR = m̄

NgNr

∑
ij

wmark,iwtot,j , (6.3)

RR = m̄2

NgNr

∑
ij

wtot,iwtot,j , (6.4)

where wmark is the value of the mark for each galaxy, and wtot includes the obser-

vational weights from the survey data. We note that randoms are marked by the

mean mark m̄.

The prescriptions for the construction of marks and weights is defined in Sat-

pathy et al. (2019) to ensure that the weighted correlation functions depend on the

local densities around galaxies. The definition of the total weight can be defined

as

wmark,i = mi × wtot,i, (6.5)

where mi is the individual mark for each galaxy (see below). The wtot,i term is

the total weight of a galaxy, including observational artefacts as explained in Reid

et al. (2016), and the calculation of FKP weights (reviewed in 3.3), which gives

an unbiased scheme for the estimation of the galaxy density field. For density-

motivated definitions, the mark represents an estimation of the local density of an

individual galaxy, ρi, which is defined as the inverse of the volume occupied by a

galaxy in the density field, in terms of the mean density ρ̄ of the field. Then we

define marks of the form

m =
(

ρ

ρ̄

)p

, (6.6)

where p is a free parameter we can vary, in order to up-weight different types of

density environments. For example, a selection of p < 0 can be used to up-weight

low density regions, where the additional gravity force in MG is triggered. On

the other hand, p > 0 is equally useful as in this case high-density environments

are favoured, and halos in unscreened regimes can be tested. Note that any nor-

malization of ρ introduced in Eqn. 6.6 will be included in the value of m̄ in the
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6.3. Local density estimation: the Voronoi Tessellation

estimators of Eqns. 6.2, 6.3 and 6.4. All these definitions produce similar results

in distinguishing MG from GR than using the log-transform density field power

spectrum and the clipped density field statistic (Valogiannis et al., 2018).

Here we focus on the real-space projected clustering, and some of the definitions

change. Instead of measuring the correlation function in redshift-space, ξ(s), as

used in White 2016; Satpathy et al. 2019 we decide to utilize wp(rp)/rp, the projec-

ted correlation function divided by the projected perpendicular distance rp. The

aim here is to avoid dealing with the modelling of redshift-space distortions, which

add a layer of complication (see e.g. Cuesta-Lazaro et al. 2020) and can intro-

duce noise in the final conclusions (Satpathy et al., 2019). Current RSD modelling

performs best on intermediate to large scales, for which it is more challenging to

distinguish modified gravity from GR (Paillas et al., 2019). Another reason for

choosing to work in real-space is that the effects of RSD modify the local densities

obtained from the Voronoi tessellation, as shown in Armijo et al. (2018), which

reduces the signal of modified gravity in the amplitude of the marked correlation

function. Finally, measuring RSD on these scales to test modified gravity is not in

the scope of this study, which is already known to be difficult to model for f(R)

theories (Hernández-Aguayo et al., 2019). In the next section we explain more

about the choice and calculation of density dependent galaxy marks.

6.3 Local density estimation: the Voronoi Tessellation

We decide to base the estimation of the galaxy local density on Voronoi tessellation

(Voronoi, 1908) in 2D as we focus on projected-real space statistics. This is a

computational method to tessellate the space according to a given geometrical

criterion. The Voronoi tessellation is defined in general by a n-plane with N points,

where each point generates a n-polytope∗ that contains all of the region closer to

that point than to any other. The estimation of the local density for our galaxies
∗The n-dimension generalization of a polyhedron
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is performed in a 2D projection of the original XYZ 3D Cartesian coordinates. For

the simulations, this is a straightforward procedure. In our case, a galaxy sample

generates a set of Voronoi cells in two dimensions, each with an area, coming from

a projected local volume (a thin 3D slice). With this area we define the volume Vi

since the remaining dimension is provided by the thickness of the slice, and define

the local projected density:

ρi = 1
Vi

. (6.7)

Estimating the local density by using the Voronoi approach is a relatively inex-

pensive and intuitive method, where galaxies in overdense environments will have

small volumes and hence high densities, and more isolated galaxies will have larger

volumes and therefore smaller densities. Voronoi tessellations have been used in a

wide range of problems in astrophysics and cosmology, such as the identification

of cosmic voids (Platen et al., 2007; Neyrinck, 2008) and probing the primordial

cosmology and galaxy formation (Paranjape et al., 2020). In Figure 6.1 we show

the Voronoi diagram of the galaxy distribution drawn in Figure 5.11. In the top

panel, we show the shape of the actual Voronoi cells in the 2D projection of the

40h−1 Mpc thick slice, which comes from one of the HOD catalogues produced

from the cubic box simulations. Here, the cells of different sizes are generated by

tracers of the underlying matter field and are representative of the environment

in which they reside. In the bottom panel, we relate these Voronoi cells to the

actual marks m defined by Eqn. 6.6, with an arbitrary value for p, divided by

the value of the mean mark m̄. Then, we colour each Voronoi cell to show how

different regions are up or down-weighted when the marked correlation function is

computed. For example, small scales dominated by clusters and groups of galaxies

are boosted when counting pairs, whereas pairs that include more isolated galaxies

yield smaller marks.
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Figure 6.1: Top Panel: Two dimensional Voronoi diagram of the galaxy distribution
shown in Figure 5.11. The polygons indicated by the white lines are calculated using
the Voronoi tessellation for the projection of a slice of thickness ∆Z = 40h−1 Mpc
projected in the XY plane. Bottom panel: same as in the top panel but colouring
individual Voronoi cells using the respective value of the mark of the galaxy in that
cell, divided by the mean mark.
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6.3.1 The shape of the local density distribution

A feature of Voronoi tessellation is that the distribution of the volumes has as its

mean the inverse of the number density of tracers used to compute the tessellation,

so for a set of Ng galaxies

⟨V ⟩ = 1
Ng

N∑
i

Vi = Vtot
Ng

. (6.8)

Here Vtot is the total volume of the sample, and by definition (Vtot/Ng) = 1/ng.

This means that the mean of the density distribution is equal to the galaxy number

density of the tessellated sample, ng. Hence, when correctly normalized and if not

dominated by shot noise, the distribution of densities of two samples tracing the

matter density field in the same way are identical if they have the same number

density.

We use the distant observer approximation, where the line-of-sight is taken to

be parallel to a fixed, preferred axis of the simulation box. To project structures in

their local environments only, we perform the Voronoi tessellation in 20 thin slices

of ∆Z = 38.4h−1 Mpc for the total of the L768 simulation at redshift z = 0.3,

and 25 slices with ∆Z = 30.72 h−1 Mpc for the snapshot z = 0.5. The choice of

the number of slices at each redshift is made to preserve the mean volume V̄ for

the mocks with different number densities of tracers. This selection of slices allow

us to avoid excessive projection effects when computing the Voronoi tessellation,

which can decrease the amplitude of the marked correlation function on the scales

in which we are interested. The selection of the number of slices is made to obtain

an optimal projection, given that the slice has to be thick enough to avoid splitting

structures between different slices. However, we also need to prevent projecting

too many galaxies in one slice as this varies the projected number density of a

single slice, and because of the projection more galaxies converge to this number,

shrinking the distribution of volumes, as can be observed in Figure 6.2.

Here, we compare the distribution of Voronoi cell volumes for the same simulation

changing the number of slices we divide the box when we create the tessellation.
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Figure 6.2: The distribution of the logarithm of Voronoi cell projected volumes, V ,
in units of the mean slice volume of the distribution, V̄ , for a HOD galaxy catalogue
generated using the L768 simulation. The distributions are shown for different
numbers of slices used to create the projection space before the 2D tessellation is
performed: 20 (grey), 30 (yellow), 40 (orange).

Even though the different distributions have the same shape when divided by the

mean volume V̄ of each individual tessellation, we note that when using 20 slices

there are more galaxies with values close to V̄ . Although one solution would be

to create more slices, we also need to consider how many structures would be

intersected or split by the slice boundaries. Nevertheless, we check that this effect

is not a large systematic error in the marked correlation function, as the results do

not vary strongly when using different number of slices.

6.3.2 Tessellation of the LOWZ and CMASS lightcones

The angular and radial distribution of galaxies in the real survey varies signific-

antly in comparison to that in the idealised mock catalogue, where a cube box
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Figure 6.3: Right ascension (RA) and declination (Dec) for a set of galaxies in a
thin redshift slice with ∆z = 0.008 for the LOWZ sample. The black dots show
galaxies within the survey in the redshift slice. Blue dots cover the survey mask.

with periodic boundary conditions is used to generate the galaxy sample. The win-

dow function imposed by surveying galaxies in the Universe is full of observational

artefacts and limited by how much time and area were dedicated performing the ob-

servations. This means that a survey mask has to be applied if we want to perform

an analysis that is as close as possible to that applied to the real observations.

For correlation functions, the estimators are designed to take into account irreg-

ular survey boundaries and varying radial number densities of galaxies. However,

the calculation of the local density using Voronoi tessellation will be sensitive to

the angular footprint of the survey and to any holes within the nominal survey

boundary, hence the need to apply the angular mask to the mocks. In addition,

for the observed galaxies, the sky position (RA,Dec) plus redshift z is measured,

rather the 3D Cartesian position. Both frameworks need to be made in a consistent

way, i.e. using the same positional information and applying the angular and radial

selections, before tessellating the galaxies in the survey. For example, to deal with

the edges of the surveyed sky region we generate a random sample of points that

acts as a buffer to embed the survey within a rectangular patch of the sky, so that
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6.3.2. Tessellation of the LOWZ and CMASS lightcones

we can stop the tessellation at the borders. This approach also applies for holes

and regions within the surveyed area, due to the presence of artefacts or additional

issues, that eliminate those pixels in the final samples.

In terms of the Voronoi tessellation, these random points act as a screen that

prevents the tessellation going further than the edges of the survey and creating

large cells for galaxies near the borders. In the same way, by filling the holes with

the same random particles, galaxies near these regions will not be identified as

being part of a void region, rather to have a more appropriate size for the Voronoi

cell that the galaxy defines. In Figure 6.3 we plot both the distribution of galaxies

and the random particles which “wrap around” the survey for a thin redshift slice.

The number density of these random particles are denser than the n(z), by an

extra factor fp to make sure that all the pixels in the mask holes are covered.

This is an iterative process that we need to repeat until the measurements of the

Voronoi cell volumes converge. We find that for fp = 10 the distribution of volumes

and the calculation of the marked correlation function becomes stable. By doing

this the tessellation runs smoothly for the galaxies and random particles projected

in the 2D space for a fixed redshift slice. In the case of our LOWZ subsample

defined between 0.24 < z < 0.36 we create 8 redshift slices with mean thickness

of ∆Z = 38.42 h−1 Mpc, whereas for CMASS, 4 samples are defined with a mean

thickness of ∆Z = 30.72 h−1 , Mpc. The slightly smaller slice thickness adopted for

the CMASS slices are chosen to preserve V̄ exactly as with the simulations, due to

the higher galaxy number density of the CMASS sample in comparison to LOWZ.

The redshift slices for the LOWZ sample (and analogue for CMASS) are shown

in Figure 6.4, where the dashed red lines mark the limits of the 2D projections

used to perform the Voronoi tessellation. Here, it is possible to see the individual

structures that we project in a single redshift slice. Once we tessellate both samples,

we need to compare the tessellation of the data to that from the mock catalogues.

In Figure 6.5 we compare both the tessellation of the data (the case for the LOWZ

sample) and the HOD mock catalogues from the GR box simulation at redshift
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Figure 6.4: Angular distribution of galaxies in the LOWZ sample in a window of
60◦ in right ascension and a section of the radial coordinate, displaying the redshift,
for a thin slice of ∆Dec = 3.5 deg. in declination. We mark the 8 redshift slices
(red dashed lines) with ∆z = 0.015 used to perform the Voronoi tessellations in a
2D space.

z = 0.3. This comparison shows that there are some differences in the shape

of the the distribution of Voronoi volumes, or local densities, that could impact

the possible measurements of the marked correlation function of the data and

the models. For this reason, we think that we need to explore the impact of

the geometry further,to study mark correlation function measurements in mock

catalogues applying the footprint geometry of the survey.

As we are projecting the galaxy positions from a spherical shell to a 2D plane

to perform the Voronoi tessellation, differences in the actual area for the local

density estimation can arise. However, such differences are small, thanks to the

small angles between galaxy pairs that define the Voronoi areas for objects in 2D,
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which produces small Voronoi cells with similar areas if they are calculated from

a flat or spherical plane. In fact, Na et al. (2002) shows that Voronoi tessellations

in the sphere plane share the same properties as the same tessellation in a flat

surface. We consider that the areas produced by the galaxies projected in a 2D

surface are indeed small and the impact on the difference if we would consider a

spherical surface negligible. In this scenario we transform points from the sphere

surface to the 2D plane using the Stereographic projection. This projection defines

XY points in the plane using the following transformation:

X = sin δ cos α
1−cos δ (6.9)

Y = sin δ sin α
1−cos δ (6.10)

For a sphere of radius R = 1, α the azimuthal angle, and δ the angle along the

pole. The sphere has the origin in the “north pole”. The impact on our results

using this transformation is minimal, and is even smaller if we consider that the

marked correlation function down-weights large areas with the definition of mark

we adopt in Eq. 6.6.

6.3.3 Mock lightcones of the LOWZ and CMASS samples

As we mentioned earlier in Chapter 3 we make a comparison between mock cata-

logues built from N-body simulations and the survey data when we compute the

clustering. However, as the calculation of the Voronoi tessellation is purely geo-

metrical, we need to check if the angular footprint of the survey has an impact on

the distribution of Voronoi cell sizes, the definition of the marks, and, in turn, the

marked correlation function.

First, to compare the distribution of the Voronoi tessellation volumes between

the simulation box and the survey, we need to move the latter to a 2D XY Cartesian

coordinate system. Originally for the lightcone coordinates, we only have equat-

orial angles α and δ (right ascension and declination), so we need to apply the

stereographical transformation in Eqns. 6.9 and 6.10. We know that in the distant
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Figure 6.5: The distribution of Voronoi cell volumes for the projected slices for
a comparison between the HOD mock catalogues from periodic simulation boxes
(red lines) and the LOWZ 0.24 < z < 0.36 data (black line). 1000 HOD catalogues
selected from the random sampling explained in 5.4 are selected to represent the
samples that match the galaxy number density and clustering.

observer approximation, two objects at the same redshift z have a comoving dis-

tance dC(z). If they are separated by an angle θ ∼ 0, then the transverse distance

d is defined by

tan θ = d

dC(z) , (6.11)

d ≈ θ dC(z). (6.12)

For our coordinate system we can write θ = α1 − α0, then the distance dx =

δ′α dC(z) if δ′α is small, (with the analogue for the declination δ). These approx-

imations are valid for the galaxies we are projecting into a 2D plane using the

stereographical projection in a thin redshift slices, because we evaluate dC(z) at a

fixed zs, the mean redshift of the slice. Also, as the angular separation in α is small

for all neighbouring galaxies, with α ≪ 1 deg., when projected in the plane, which
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Figure 6.6: Left: The number density distribution n(z) for the subsample of LOWZ
and a mock lightcone which has been randomly sampled to have the same n(z).
Right: The distribution of Voronoi cell volumes dn/d log V for the mock lightcone
and the LOWZ subsample.

means that the Voronoi cells are correctly defined, as these are only generated by

the direct neighbours of each galaxy, which keeps the plane approximation locally.

The definition of this Cartesian 2D plane allows us to compare the tessellation in

the survey, and that in the mock lightcone, with the box simulation.

To create the mock lightcone we need to follow the following steps:

1. Move the origin to the centre of the box, where we place the observer.

2. Transform from Cartesian to spherical coordinates (x, y, z) → (r, ϕ, θ) for all

galaxies in the mock catalogue.

3. Select the limits in comoving distance for the lightcone. The box is repeated

periodically in case we reach any border.

4. Add the velocities of each galaxies projected along the line-of-sight direction.

5. Apply the sky mask of the survey to the lightcone.

We are not trying to re-create an accurate lightcone of the survey samples at this

stage, rather our aim is to understand whether or not the geometry of the survey

will affect the calculations of the marked correlation function. As the distribution
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of the Voronoi cell volumes is related to the number density of tracers used in the

tessellation, we need to mimic the number density distribution as a function of

redshift n(z). To do this, we use a mock galaxy catalogue with a number density

similar to the one from the survey, which can be randomly sampled to obtain the

same n(z) distribution as the observations. We plot the results of this random

sampling in the left panel of Figure 6.6, where the number of galaxies per redshift

bin are virtually the same. Then, by comparing the distribution of Voronoi cell

volumes dn/d log V , in the right panel of Figure 6.6, we note that dn/d log V for

both the mock lightcone and the survey are very close. Moreover, when comparing

to Figure 6.5 the offsets are corrected and the smaller differences are more consistent

with the uncertainties using different HOD catalogues, displayed by the different

red lines in Figure 6.5 and the shaded area in Figure 6.7. Although, the differences

showed by the histograms of the data and the mock, hint us that this effect is

stronger than projecting the points of the sphere into the plane, which we already

consider that affects large cells only.

We know that the random sampling of galaxies that matches n(z) between mock

and data does not impact the two-point correlation function calculation, which is

already the same for mock and data, by design. Also, the distributions of Voronoi

cell volumes are in good agreement after this procedure, meaning that the meas-

urement of the Voronoi cell volumes is correct for both cases. The distribution of

volumes for both samples has the same shape when we match the number dens-

ity of the tracers in the complete volume, given the connection between the two

shown in Eqn. 6.8. Considering this, we can now compare if by measuring the

marked clustering using the volumes (local densities) as marks, we have compar-

able measurements between the marked correlation functions for mock catalogues

and mock lightcones using Eqn. 6.1, applying the marked version of the estimators

in Eqns. 6.2, 6.3, and 6.4. In Figure 6.7 we plot results for a marked correla-

tion function of the same HOD catalogue from the GR box at z = 0.3, with the

marks defined by the tessellations of the box and the lightcone. The comparison
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Figure 6.7: The marked correlation function M(rp) as a function of the projected
distance rp using the same HOD mock catalogue from the original box (red dashed
line) and the mock lightcone with the SDSS footprint geometry (red dots). The
light-red shaded shows the uncertainties of the HOD model for the GR z = 0.3
simulations.

shows similar results for M(rp) for both schemes, with deviations at small scales

for rp, but not higher than the uncertainties provided by the HOD modelling. This

is expected when considering that the two-point clustering is the same for both

the lightcone and the box regardless of the random sampling, and because if we

examine the distribution of local densities for the different bins of separation rp,

the mean and the variance of the distribution of log(V/V̄ ) does not vary drastic-

ally. We conclude that the differences shown by the Voronoi volume distribution

of Figure 6.5 can be conciliated when resampling the mock lightcone as shown in

Figure 6.6. As this step does not strongly modify the results of the marked cor-

relation function, we decide to make the comparison between the mock catalogues

from the boxes and the survey data for our main study.
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6.4 LOWZ and CMASS marked correlation functions

We calculate the marked correlation function of the LOWZ and CMASS samples

using the marks derived from the local density measurements obtained using the

Voronoi tessellation. To compute the terms in Eqn. 6.1 we use the Landy-Szalay

estimator presented in Section 3.5 to calculate ξ(rp, π). When solving the integral in

Eqn. 3.6 we consider separations in the line-of-sight direction, π, using logarithmic

bins. By doing this, we obtain more accuracy to the integral calculation for the

small π separations on which the correlation function changes rapidly. Then the

differential term of the integral of Eqn. 3.6 can be written as dπ = πd(log π). We use

the publicly available twopcf∗ code to compute the wp(rp) for the data and mock

catalogues; this code supports logarithmic binning and estimators using weighted

pairs. The code can also efficiently calculate jackknife errors in a single loop over

the galaxy pairs. For the mock catalogues, we select a random sample of 1000 of

the HOD parameters within the 1-σ confidence interval obtained in Section 5.4. To

study the marked statistic of the HOD mock catalogues we select 68% of the total

sample of values closer to the mean of M for each model. The argument for this is

that from the whole range of the HOD catalogues selected, there is a probability

to pick a HOD set that reproduce the correct marked correlation function for the

data, as we are trying a different test than the one used to fit the data.

We plot the results of the marked correlation function M(rp) for the LOWZ

and CMASS subsamples in Figure 6.8. In the left panel of Figure 6.8, we compare

M(rp) for the GR and F5 models created from the snapshot at redshift z = 0.3,

using the random sampling of the HOD parameters within the 1-σ confidence in-

terval region. These results are compared with the measurement from the LOWZ

sample in the redshift range 0.24 < z < 0.36. Both models agree with the data at

separations larger than rp > 0.8 h−1 Mpc. It is only for 0.5 < rp/(h−1 Mpc) < 0.8

that the GR model is a somewhat better match to the data than F5. These are
∗https://github.com/lstothert/two_pcf
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Figure 6.8: The marked correlation function M(rp) as function of the projected
distance rp for the BOSS galaxy samples and the results from the respective HOD
mock galaxy catalogues from the GR (red) and F5 (blue) simulations. Left panel:
M(rp) measured from LOWZ (black dots) at 0.24 < z < 0.36 compared with the
HOD mock catalogues within the 1-σ confidence interval from the MCMC fitting
of the two-point clustering and number density. Right: same as left panel, but
for the CMASS subsample (grey dots) at 0.474 < z < 0.528. The shaded areas
for the models come from selecting the 68% of all the family of HOD catalogues
of each model, GR, F5 at redshift z = 0.3 (dark red and dark blue) and z = 0.5
(light red and light blue). The error bars on the data are estimated using Jackknife
resampling, with 100 subvolumes of the data. In the bottom panels we show the
relative residuals using the data measurements as a reference, meaning that we
display Mmod/Mdata − 1, with Mmod the marked correlation function for each
HOD set and Mdata is the marked correlation function of LOWZ and CMASS in
left and right panels respectively.

the rp separations where the range of acceptable HOD parameter values lead to a

large spread in M(rp) for both models. We compare the results of the GR and F5

simulations at redshift z = 0.5 with the CMASS measurement in the right panel of

Figure 6.8. Although, similar conclusions are reached in this case as for the LOWZ

data, there are other interesting features to note. The errors from CMASS are

smaller, due to the higher number density in this sample compared with LOWZ,

which makes it easier to see whether the data is likely to follow one model rather

than the other. In fact, we note that below rp < 1.7h−1 Mpc the CMASS data

agrees with the GR model at the 1-σ level, whereas there is a clear tendency for

the F5 model to disagree with the data. This result is derived considering only
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the diagonal errors from the covariance matrix, which simplifies the analysis as

we are not considering the covariance terms between different separation bins. To

obtain a more detailed result on how significant this discrepancy is a full covari-

ance matrix analysis should be adopted. This could be performed, for example,

using an approach to generate large numbers of simulation volumes following the

method proposed by Hernández-Aguayo et al. (2021). Both models fail to match

the CMASS observational estimate on scales 2.0h−1 Mpc < rp < 5.0h−1 Mpc. We

attribute this mismatch to the CMASS data being more difficult to replicate, when

including extra information to define the samples as explained in Chapter 3.2. Fi-

nally, for separations rp > 10h−1 Mpc the data agrees better with both models, in

particular the GR simulations. However the differences are smaller and there is a

small overlap between the confidence regions of both models.

6.5 Discussion

We discuss the measurement of the marked correlation function for the LOWZ and

CMASS samples and the comparison to HOD mock galaxy catalogues generated

from the GR and modified gravity simulations. We find that for two models of

gravity (GR and F5), we obtain different results for the marked correlation function.

This is a limited result in terms of distinguishing modified gravity, as models differ

by about 1-σ at most, in some scales, which is a marginal and not significant

result. Nevertheless, the marked correlation function as a test, helps on breaking

the degeneracy between modified gravity and the HOD modelling, which is expected

for this kind of test (White et al., 2009). In regard to the latter, we check that HOD

parameters within the 1-σ confidence interval reproduce the shape distribution of

the local densities for the observational samples, with an interesting caveat. For

the CMASS sample, the variations of n(z) over the redshift range used proves

to be difficult to model, which leads to disagreements between the data and the

models over intermediate projected separation. The results for the distribution of

111



6.5. Discussion

Voronoi volumes in Figure 6.5 show that even small differences between the number

density of galaxies will generate a change in the shape of the volume histogram. We

think that the fluctuations in the n(z) of the CMASS subsample could drive the

differences between the marked correlation function of CMASS galaxies displayed

in right panel of Figure 6.8, where the differences between low and high number

density bins as function of redshift could be larger than 20%. One solution here

could be try a much thinner lightcone in redshift, to constraint the values of n(Z)

more close to the number density of galaxies in the mock catalogue. This is where

the LOWZ observations become more relevant, where the more constant n(z) is

modelled correctly over the whole range of rp we explore. At the same time, the

higher number density of CMASS (∼ 30% higher than in LOWZ) allows us to

conclude that the data agrees slightly better with the GR model than F5, but only

at the 1-σ level at small separations rp < 1.3h−1 Mpc. Such a difference is not

enough to rule out a model like F5, but it suggests how we can explore further

differences between GR and modified gravity.

The marked correlation function is a promising probe to distinguish between

gravity models, as has been shown by previous studies such as (Valogiannis et al.,

2018; Hernández-Aguayo et al., 2019; Armijo et al., 2018; Liu et al., 2021) and many

others. However, the modelling of the number density seems to drive the results in

terms of the amplitudes of M(rp). Ongoing surveys such as DESI, which will yield

larger LRG samples in terms of both volume and number density, may solve this

issue (Zhou et al., 2020). The test with simulated data suggests that DESI will

improve the number density by a factor of 2-3 in comparison to BOSS in a volume 9

times larger. Also, some modifications to this probe can be explored using different

features of the MG models. Objects like galaxy clusters are promising observational

probes to test these theories, where their masses can be incorporated into the mark

if we cross-correlate them with the galaxy samples. As shown in Armijo et al.

(2018) the mass of large haloes is in fact a better option for marking galaxies to

distinguish between gravity models. Nevertheless, a large volume sample of galaxy
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clusters including mass measurements is needed. A few candidates are available

which could help with this issue, such as the COnstrain Dark Energy with X-ray

(CODEX) clusters sample (Finoguenov et al., 2020), which provides measurements

of clusters masses and their 3D space distribution. This sample is ideal to cross-

correlate with BOSS galaxies as these surveys have the same footprint area. Also,

probes motivated by studying the velocities of galaxies around clusters and weak

lensing profiles will help us to obtain better constraints on modified gravity models.
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Chapter 7

Summary and conclusions

We have introduced a new framework to test gravity on different scales using wide-

field surveys. We use galaxies as tracers of the matter field to probe effects on

the cosmic large scale structure introduced by modified gravity theories. Such

models aim to provide an alternative to the cosmological constant to explain the

accelerating cosmic expansion. These alternative theories of gravity are constrained

by the successful predictions of the general relativity in a range of scales that goes

from the solar system to the propagation of gravitational waves (Lombriser et al.,

2016). The viable models we study present two interesting features: the screening

mechanism to hide the modifications where GR is shown to be accurate, and the

additional fifth force arising from the new degrees of freedom in modified gravity.

Then, this fifth force can be detected in regions where the fifth force is unscreened,

where GR still needs to be proven (Li et al., 2007).

To trace the large-scale structures we use observations of luminous red galaxies

from the SDSS-III survey. We apply marked clustering statistics to samples of

bright red galaxies from the Baryon Oscillation Spectroscopic Survey (BOSS, the

LOWZ and CMASS samples) to detect the existence of a fifth force in the f(R)

theory of gravity. To achieve this, we select volume-limited subsamples of the

catalogues at two redsfhit ranges, and compare with N -body simulations to search

for the impact of modified gravity in these measurements.
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We produce accurate mock catalogues that match the number density and un-

marked two-point clustering of the observational samples. We find the HOD para-

meters that best fit these observational measurements using the MCMC algorithm,

which leads to a set of mock catalogues that we use to predict the form of the

marked correlation function. We also review possible systematic effects in the

calculation of marks when projecting slices in an arbitrary direction in both the

simulations and the survey.

We define a density-dependent marked correlation function using an estimation

of the local galaxy density based on Voronoi tessellation. We provide conclusions for

the main chapters of this thesis, highlighting the results of the marked correlation

function test.

• Several tests of modified gravity (Cataneo et al., 2015; Liu et al., 2016; Armijo

et al., 2018; Hernández-Aguayo et al., 2018; Valogiannis et al., 2018; Liu et al.,

2021; Ruan et al., 2022) have been proposed recently to constrain or even

rule out models. We present a new methodology to add to this canon of tests

which applies the marked correlation function from White (2016) to probe the

impact of modified gravity on cosmic large scale structure, taking advantage

of the projected real-space information of the clustering of galaxies over a

wide range of separations. These observations cover a substantial portion of

the sky and sample a large volume over which our test can be applied.

• From the theoretical side, and to predict the behaviour of the marked cor-

relation function, we prepare mock galaxy catalogues using simulations of a

ΛCDM-GR universe, and compare these with mocks from a simulation which

uses f(R) theory of gravity with fifth force amplitude of |fR0| = 10−5 (in

the parameterisation of Hu et al. 2007). We use the HOD prescription to

populate haloes and subhaloes with central and satellite galaxies, from which

we extract the best fitting parameters in terms of the reproduction of the

projected correlation function wp(rp) and galaxy number density ngal.
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• We have presented a simple weighting scheme to compensate for ‘missing’

halos by upweighting those that are recovered by the halo finder. Our scheme

is able, by construction, to reproduce a ‘target’ number density of halos, and

returns improved estimates for the clustering of halo samples. As presented,

our scheme requires at least two simulations. One is designated as the high

resolution simulation and sets the target or benchmark for the halo sample

statistics. By extending the usable halo catalogue derived from the low res-

olution run down to lower masses, significant computational resources can

be saved. The scheme that we have proposed allows the resolution of a halo

catalogue to be extended down to small particle numbers by applying a cor-

rection to the halos that we do see to account for those that we do not find.

Ultimately, the scheme breaks down at the halo mass for which the errors in

the clustering prediction become unacceptable. We design this approach to

build more accurate mock catalogues, when using the halo information from

the low resolution simulations.

• In order to obtain the HOD parameters that reproduce the observational met-

rics computed for the LOWZ and CMASS subsamples, we perform an MCMC

search to find the best fitting parameters. We combine the measures of the

galaxy number density, ngal, and projected two-point correlation function,

wp, in the least squares search for its parameters. This definition of the χ2

allows us to test the dependency of these two measurements on the different

HOD parameters. We test different weighting schemes of number density and

projected correlation function in the definition of the overall χ2. We find that

better results are obtained if equal weights are given to both measurements.

This decision is based on the definitions of convergence and the individual

chains, in addition to the precision with which the measurements can be re-

covered. In the case of the number density, if too little weight is assigned to

its contribution to the overall χ2, the target value is not recovered with the

uncertainties included, which favours models of the χ2 where equal weight is
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given to both the number density and clustering. Using the χ2 distribution,

we choose a range of HOD parameters within the 1- σ confidence interval to

create mocks for both the GR and F5 simulations.

• The marked correlation function of the LOWZ and CMASS galaxies is cal-

culated for subsamples selected in narrow ranges of redshift, 0.24 < z < 0.36

and 0.474 < z < 0.528 respectively. We create estimations of the 2D pro-

jected local density based on the Voronoi tessellation, for galaxies in thin

redshift slices with ∆z = 0.015 for LOWZ and ∆z = 0.0135 for CMASS,

which are compared with the tessellation of the simulation boxes with the

same slice thickness in comoving coordinates, assuming the cosmology of the

simulation. We also compare the tessellation of the observational and mock

lightcone data adding the geometry imposed by the survey mask, which can

be used to assess the robustness of the local density measurements. We find

that to match the distribution of densities, the mock lightcone needs to re-

produce the same galaxy number density as the observational data, which

can be done by using a simple random sampling of the n(z) distribution.

This is an additional requirement imposed after searching for the best HOD

parameters, to check the impact of the number density distributions on the

marked correlation function. We check that this new sampling does not affect

the two-point clustering and that it has a negligible effect on the shape of the

marked correlation function, allowing the comparison of data to the HOD

mock catalogues from periodic simulated boxes. When comparing the obser-

vations with the HOD mock catalogues, we find that for the LOWZ sample

the data agrees with both mocks from both gravity models for separations

larger than rp > 1.3 h−1 Mpc. Our conclusions are probably limited by the

sample variance of the data and the uncertainties introduced by the HOD

modelling. The situation for the CMASS samples is better, however, with

the GR model giving a better reproduction of the data for separations below

rp < 1.3 h−1 Mpc. There are also differences in the models that are appar-
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ent at separations larger than rp > 10 h−1 Mpc. These smaller differences

between simulations suggest that a different analysis, such the one provided

by adding RSD effects, could help to test such scales. The results provided by

our method allow us to constrain f(R) gravity using only spatial information

from a galaxy sample. Nevertheless the uncertainties introduced by the HOD

modelling restrict the analysis to a marginal 1-σ discrepancy between GR and

f(R) which is not enough to rule out a model as F5 with |fR0| = 10−5. Results

from He et al. (2018) claim that a model like F6 (|fR0| = 10−6) can already

be ruled out by using the redshift-space galaxy-galaxy correlation function,

but using a different method for populating haloes with galaxies. Although,

both methods are similar in terms of testing gravity using the distribution

of galaxies at the two-point level, we introduce the uncertainties of the HOD

modelling, which have not been considered before, whereas He et al. (2018)

uses a subhalo abundance matching (SHAM) technique with a different es-

timation of the uncertainties for its model parameters. An extension of this

work using the same SHAM method than He et al. (2018) to create the mock

catalogue could improve our results.

• The modelling and results of the marked correlation function are highly de-

pendent on the galaxy number density of the samples. For instance, the larger

number density of CMASS galaxies improves the tendency of data to agree

with the GR model, where it also deviates more from F5. Nevertheless, there

is a regime in which the models fail to reproduce the data. We believe that

the disagreement arises due to the CMASS sample being less adequate to

compare to the HOD catalogues in periodic boxes, because of the additional

selection of the sample that makes it more challenging to model. We think

that this matter can be solved by future observations of LRG samples, with a

higher and more uniform distribution of n(z), or by making the comparison

directly to mock lightcones with varying number density with redshift. We

also propose to try new definitions of marks for galaxies or other probes to
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include in the clustering estimations, such as mass estimations for clusters of

galaxies, which are already proven to provide more information about modi-

fied gravity (Armijo et al., 2018). We will explore some of these ideas in the

future work.

7.1 Future work

Another probe of the large-scale structure we can use to test modified gravity

(MG) are clusters of galaxies. These objects correspond to massive perturbations

of the initial power spectrum, and their abundance, for a fixed mass, depends on

the growth rate of cosmic structures and the expansion history of the Universe.

Various studies have used galaxy clusters to test both cosmology and deviations

from the general relativity (Mak et al., 2012; Cataneo et al., 2015; Mitchell et al.,

2018). For instance, Galaxy clusters are useful probes to test MG models, even if

they correspond to high density regions and hence are expected to be screened from

any fifth force, as their abundance is expected to be different than in GR (Cataneo

et al., 2018). This is because in f(R) gravity, unscreened haloes are formed more

efficiently compared to standard gravity (Cai et al., 2015), and also, because galaxy

cluster structures are changed by the emergence of the fifth force on several scales

(Khoury et al., 2004). Another possibility is to test the effects of MG in the

environments for galaxy clusters. Armijo et al. (2018) shows how the mass of haloes

can be used to mark galaxies to measure the marked correlation function. They find

that large mass haloes, such as clusters of galaxies, allow more differences between

the clustering of GR and MG to be found in simulations. In future work we aim

to understand the enhancement of gravity environments related to galaxy clusters,

and how their structure is modified by the action of the fifth force. For this several

tests can be tried: from testing the abundance of clusters in unscreened regimes,

weak lensing peak statistic, measuring the velocities of galaxies in clusters, the

cross-correlation between clusters and galaxies, and using the marked correlation
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function for testing cluster properties. We provide a description of the latter, which

can be a direct extension of the work of this thesis.

The marked correlation function defined in this thesis is a valid test to ap-

ply to clusters, but its definition has to be extended. We want to compute the

cross-correlation between clusters and galaxies, where the two samples come from

different survey experiments and with different properties, which can be used to

also expand the definition of how we mark the tracers. In this scenario, several

cluster properties that should be different between GR and MG models can be

used to mark clusters. In Mitchell (2021) several of these properties are modelled

in the framework of modified gravity theories such as f(R), the mass being the

main property that we can test. Then, the extension of the marked correlation

function we can apply for clusters and galaxies, includes the mass for the clusters

and measurements of the local density for galaxies as possible marks. Further more,

mass measurements for galaxies could also be considered as ideal marks, but an

accurate mass estimation or proxy for its measurement is limited for current data.

We can select large mass haloes and define samples from the simulations, to then

compute the cross-correlation between galaxy clusters (as examples of high mass

halos) and other tracers of the large-scale structure, such as LRGs. The selection

can be treated in a similar way than the one for the HOD mock catalogues. In

principle, catalogues of galaxies that reproduce the same number density and clus-

tering than the LRG samples from BOSS, will also reproduce the cross-correlation

when including the clusters as long as the selection is done based on the mass of

the cluster. As we do not observe the mass directly, an extra step to infer the

mass from the observation is needed. Currently, different methods to estimate the

mass of galaxy clusters can be used, such as weak lensing, the Sunyaev-Zeldovich

effect, the X-ray luminosity, and the optical richness (Baxter et al., 2018; Nagai

et al., 2007; Fabjan et al., 2011; Capasso et al., 2019). There are several samples

of galaxy clusters that include mass estimates made with different methods, which

can be used together with a large sample of galaxies to compute the marked cross-
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7.2. The Constrain Dark Energy with X-ray clusters sample (CODEX)

Figure 7.1: Left: the footprint coverage of the CODEX cluster catalogue from
Lindholm et al. (2021). We plot the distribution of randoms (black) and the cluster
(red) samples, following the area of the SDSS-Legacy survey with the X-ray mask
from Clerc et al. (2020). Right: The redshift distribution for the random and
cluster samples from Lindholm et al. (2021)

correlation function.

7.2 The Constrain Dark Energy with X-ray clusters

sample (CODEX)

A suitable choice for the cluster sample to use in the cluster-galaxy cross correla-

tion is the COnstrain Dark Energy with X-ray (CODEX) clusters sample, which

covers the same area as the SDSS-DR12 footprint with an average cluster candid-

ate density of 0.8 deg−2 up to a maximum redshift of z ∼ 0.6 (Finoguenov et al.,

2020). The selection of CODEX clusters is based on extended X-ray sources over

the complete SDSS legacy-footprint (∼ 7, 500 deg2). First, the galaxy clusters are

identified through their X-ray emission using measurements from satellites such

as rosat (Wang et al., 2011) and xmm-Newton (Fassbender et al., 2011). Then,

the red-sequence Matched-filter Probabilistic Percolation (redMaPPer) algorithm

(Rykoff et al., 2014) is used to find red-sequence galaxies at the same redshift

in the optical counterparts of these objects. RedMaPPer finds the red sequence

galaxy members in the BOSS survey (LOWZ and CMASS), with a given probab-
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ility that these galaxies belong to the galaxy cluster. The cluster galaxies have

SDSS spectroscopic information, as they belong to the samples of BOSS, and can

be used to estimate the redshift of the center of mass of the galaxy cluster. A final

validation is performed using the sdss imaging to obtain a final cluster sample

with optical properties. Furthermore, the CODEX cluster members are targets

for the SPIDERS survey of BOSS which completes the member identification of

these clusters Clerc et al. (2020). The complete catalogue includes the centre of the

object and the spectroscopic redshift, their richness, which can be used to infer the

cluster mass. The final sample corresponds to 5,424 cluster candidates with masses

between 1014 < M/M⊙ < 1015 in a redshift slice of 0.031 < z < 0.658. Lindholm

et al. (2021) provides a final clean sample of CODEX with the selection method of

Finoguenov et al. (2020), which is shown in Figure 7.1. This cluster sample is used

to study cosmological parameters performing a two-point correlation function ana-

lysis of clusters in projected-real space. In this work, the samples are divided in 2

redshift bins at 0.1 < z < 0.3 and 0.3 < z < 0.5, to calculate two-point correlation

functions, which can be used to estimate the bias as a function of the halo mass

b(M). The calculation of b(M) is depends on the selection of the cosmology, which

means that it can be used to constrain cosmological parameters such as σ8 and

Ωm. The estimation of the mass measurements for the galaxy clusters is obtained

using the richness-mass relation calibration provided in (Capasso et al., 2019).

7.2.1 Richness-Mass relation

As the CODEX sample is obtained using the optical information measured by the

redMaPPer algorithm, the selection depends on the optical definition of the cluster

richness, λ, provided in Rykoff et al. (2014). This parameter is a proxy of the mass

estimation, which can be calibrated to create a scaling relation to obtain the mass of

the CODEX clusters (Capasso et al., 2019). We use these results to obtain richness

estimations from the masses of our simulated clusters, to apply the same selection

as in the CODEX clusters provided in Lindholm et al. (2021). In Figure 7.2 we
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Figure 7.2: The richness-mass relation, λ(M), for galaxy clusters from Capasso
et al. (2019) (red line) with the respective model uncertainty (red shaded area).
We add the richness λ and its variance estimation σ2

λ for mock cluster catalogues
from simulations of GR and F5 at redshift z = 0.3.

use the λ(M) relation of Capasso et al. (2019) to estimate λ for the clusters in

the simulation. Once we calculate the richness λ, we add an uncertainty to the

estimation using the richness variance σ2
λ, which is obtained from the redMaPPer

estimations, including observational effects of the survey. The aim of these process

is to create a mock cluster catalogue that follows the CODEX selection.

7.2.2 Future plans

Once we understand the impact of the richness selection of the CODEX clusters,

we will use the mock catalogues to predict the marked correlation function for the

cross-correlation with BOSS-LRGs, using mass as weight for clusters and density

as weight for galaxies. In principle, when changing the selection to richness instead

of mass, more low-mass clusters are included in the selection when we include the
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uncertainties given by σλ. These extra objects can improve the differences between

models if we are adding unscreened haloes with different formation history than

GR predicts. We also need to check if this selection leads to the matching of

the projected-cross-correlation function of CODEX-LOWZ and CODEX-CMASS

samples, when compared to the mock catalogues of galaxies and clusters from the

simulations of GR and F5. Again, maybe the richness cluster selection impacts in

the results from the models, and this can be detected by using two-point statistics.

These aspects could also help to predict what level of differences we can expect for

the marked correlation function to constrain modified gravity models and to tell if

GR is enough to describe the mark correlation function of the observations.

7.2.3 Final remarks

Although the physics of galaxy clusters indicates that their mass estimations occur

in a screened regime where modified gravity is hidden, it is the additional inform-

ation coming from the dynamics and the environment of these objects, that can

be used to test gravity (Clampitt et al., 2012; Lam et al., 2012). Here, is where

marked correlation function becomes relevant as an independent test in addition

to cluster abundance tests to find possible signatures of modified gravity.
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