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Abstract: We construct a link homotopy invariant for three-component spherical

link maps which is a generalisation of the Kirk invariant for two-component spherical

link maps. We then construct an invariant for three-component annular link maps

and establish that there is a relationship between the three-component annular link

map invariant and the three-component link map invariant. We show the link map

invariant can detect non-trivial three-component link maps which become trivial up

to link homotopy when a component is removed. We establish that there exist link

maps where each component has the same image in S4 but are not link homotopic,

unlike in the two-component case. Using the link map invariant we construct an

invariant which is analogous to Milnor’s triple linking number, and show that they

can be used to distinguish different link maps. We provide a method for calculating

our invariant for an infinite family of three-component annular link maps and deduce

a computation for link maps and detect infinitely many three-component link maps

which have vanishing Kirk invariants.

Next we prove that the Blanchfield form on a closed, orientable, connected three-

manifold can be computed in terms of the intersection form of a four-manifold which

it bounds. We aim to do this using the weakest assumptions possible, as similar

results in the literature have been shown but proofs are often imprecise or make

more assumptions than are needed.
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Chapter 1

Introduction

The equivariant intersection form plays a large role in the study of surfaces in

four-manifolds, as algebraic intersections often provide the simplest obstructions to

an immersion being homotopic to an embedding or two immersed surfaces being

homotopic. Their importance is also highlighted by the success of surgery theory,

in both high dimensions and in the topological category for dimension four. This

thesis is split into two main sections both of which involve equivariant intersection

invariants: Chapter 2 through to Chapter 8 focuses on the study of link maps of

spheres and annuli in four-manifolds (see Section 1.1 for details). In Chapter 9 we

change our focus and study the Blanchfield form on closed orientable three-manifolds

and its relationship to the intersections of surfaces in four-manifolds (see Section 1.2

for more details).

1.1 Link homotopy of surfaces

A continuous map

f = f1 ⊔ · · · ⊔ fn :
n∐
i=1

M qi
i → N q,

which keeps disjoint components in the domain disjoint in the image, i.e fi(M qi
i ) ∩

fj(M qj

j ) = ϕ, is called a link map. We consider link maps up to link homotopy, i.e. a
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homotopy through link maps. A spherical link map is a link map where M qi
i = Sqi for

all i and N q = Sq. Let LMq
q1,...,qn

be the set of such link maps up to link homotopy.

The classical study of link homotopy started with Milnor in his Bachelor’s thesis

[Mil54]. He made use of a quotient of the fundamental group of the complement of

three disjoint circles in S3, which we now call the Milnor group. Using this group

Milnor classified three-component links in S3 up to link homotopy. He did this by

constructing a triple linking number which measures linking behaviour for links of

three or more components. This number is only well defined modulo the greatest

common divisor of the linking numbers between each pair of components. The

triple linking number, along with the linking number of each two component sublink,

classifies three-component links up to link homotopy.

Since then, work in higher dimensions has been studied. If we have a two component

spherical link map f : Sp ⊔ Sq → Rm such that p, q ≤ m − 2, then the homotopy

class of the map ϕ : Sp × Sq → Sm−1, defined by

ϕ(x, y) = f(x) − f(y)
|f(x) − f(y)| ,

can be identified with an α(f) inside the stable homotopy group πp+q(Sm−1). The

following results about results have been proven by Massey and Rolfsen, and Levine

respectively.

Theorem 1.1.1 ([MR85]). The map α : LMm
p.q → πp+q(Sm−1) is a group homomorph-

ism, where the group structure on LMm
p.q is connect sum and 2(p+ q) ≤ 3(m− 2).

Theorem 1.1.2 ([MR85]). If 1 ≤ p ≤ m− 2 and f ∈ LMm
p,m−2 then if the codimen-

sion two component is embedded then α(f) = 0

This work will focus on the case of link maps of S2 into S4. By convention, when

we say link maps we mean spherical link maps of S2 in S4 unless stated otherwise.

The study of link maps of S2 inside S4 began with Fenn and Rolfsen who showed

there exists a link homotopically non-trivial link map f : S2∐S2 → S4 which
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contains a self-intersection on each sphere [FR86]. Self-intersections are a necessary

condition for generic smooth link maps of S2 in S4 to be non-trivial [BT99].

In 1988, Paul Kirk defined a two-component link map invariant

σ : LM4
2,2 → Z [t] ⊕ Z [t] .

For each sphere he associated a polynomial in Z [t]. This polynomial is constructed

by taking the set of self-intersections I, and for each element p ∈ I associating the

polynomial t|np| − 1, where |np| is the absolute value of the linking number of the

double point loop at p with the other sphere. Summing these polynomials over p ∈ I,

taking the sign of the self-intersection into account, yields the invariant.

Schneiderman and Teichner showed that the Kirk invariant classifies two-component

link maps up to link homotopy [ST17], computing the group LM4
2,2. Hence, the Kirk

invariant is analogous to the linking number in the classical two-component case.

To generalise the Kirk invariant we will use Z[F/F3] in place of Z[t]. The group

F/F3 is the third lower central series quotient of the free group on two generators -

F3 is the third lower central series subgroup. This is also the free Milnor group on

two generators as proven in Lemma 4.1.10. The group F/F3 admits the presentation

F/F3 ∼=
〈〈
y, z, s | [x, s] , [y, s] , [x, y] s−1

〉〉
,

as shown by Section 4.1. It can also be described as the following central extension

0 Z F/F3 Z2 0,

where the inclusion maps 1 to [y, z]. In this thesis, we construct a function

σ̃3 : LM4
2,2,2 → K̃,

where K̃ := (Z[F/F3])3 / ∼ for some choice of equivalence relation, specified in

Chapter 6. Unlike the Kirk invariant, σ̃3 is not a group homomorphism as LM4
2,2,2

cannot be turned into a group using connect sum as the operation is not well defined

up to link homotopy, see Proposition 1.1.10. This invariant is constructed by first
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considering an invariant of based three-component link maps up to link homotopy,

which takes values in (Z [F/F3])3. These values are given by taking each component

and computing the self-intersection number in the complement of the other two

components. We then consider the effect of changing the basings of a link map on

the invariant and determine the finest equivalence relation required to define an

unbased invariant. The effect of changing the basing path transforms the group

elements by multiplying group elements by the power of a commutator term.

This new invariant fits into a commutative diagram for each i ∈ {1, 2, 3}

LM2,2,2 LM4
2,2

K̃ (Z [Z])2 ,

σ̃3

i

σ

pi

where i is the map which forgets the ith component; σ is the Kirk invariant and the

lower horizontal map, pi, projects onto the other two components, and sets the ith

meridian to 1. Hence, σ̃3 also contains all the information of the Kirk invariant for

each two-component sublink.

In (Z [F/F3])3, the group our based link map invaraint takes values in, the group

generators we choose in each factor are different. In the first component we use

the generators y, z and s = [x, y]; in the second factor we have generators z, x and

t = [z, x]; and in the third factor we use the generators x, y and u = [x, y]. In

each of these, x, y and z represent meridians of the first, second, and third sphere

respectively. Using σ̃3 we prove the following.

Theorem 1.1.3. There exists a three-component link map f with a choice of basing

path such that

σ̃3(f) =
(
z (s− 1) + z−1

(
s−1 − 1

)
, 0, x (1 − u) + x−1

(
1 − u−1

))
.

Furthermore, removal of any component gives a trivial two-component link map. But

f is not link homotopically trivial.

This shows that the invariant can detect linking information which only occurs in
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three or more components. Using Theorem 1.1.3 we prove the following

Theorem 1.1.4. For each n ≥ 3 there exists link maps f = f1 ⊔ · · · ⊔ fn and

f ′ = f ′
1 ⊔ · · · ⊔ f ′

n such that for every i, fi(S2) = f ′
i(S2), but f and f ′ are not link

homotopic.

This is done by precomposing the link map in Theorem 1.1.3 with a map which

reflects the second sphere, reversing the orientation on the second sphere. Both

maps evaluate to distinct elements of K̃.

Since σ̃3 takes values in an orbit space, it can be difficult to tell whether one has

two representatives of the same value in K̃ or whether you have two distinct values.

To resolve this, we construct invariants to help differentiate the different orbits of

K̃. Consider

v =
( ∑

(i,j,k)∈Z3

avijky
isjzk,

∑
(i,j,k)∈Z3

bvijkz
itjxk,

∑
(i,j,k)∈Z3

cvijkx
iujyk

)

and

w =
( ∑

(i,j,k)∈Z3

awijky
isjzk,

∑
(i,j,k)∈Z3

bwijkz
itjxk,

∑
(i,j,k)∈Z3

cwijkx
iujyk

)

where we have used a normal form of F/F3 to describe each element of Z [F/F3].

Then we show the following theorem holds.

Theorem 1.1.5. Suppose v and w represent the same element of K̃. Then for each

avijk there exists an awlmp such that avijk = awlmp, i = l, k = p and

j ≡ m mod gcd(i, k).

Example 1.1.6. Let

v =
(
z2s2 + z−2s−2 − 4zs− 4z−1s−1 + 6, 0, 4xu+ 4x−1u−1 − x2u2 − x−2u−2 − 6

)

and

w =
(
z2s+ z−2s− 4zs− 4z−1s−1 + 6, 0, z2u+ z−2u− 4zu− 4z−1u−1 + 6

)
.
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Consider the term av022 = 1. In w there is no term awijk such that i = 0, k = 2, j ≡ 0

mod gcd(i, k) and awijk = 1. Hence, v and w are distinct elements in K̃.

In the above example v is in the image of σ̃3 but we were unable to determine

whether w is.

This kind of indeterminacy is directly analogous to the triple linking number in

the classical dimension. Next we go further and extract a stronger invariant. The

naive approach would be to create an invariant listing the values of k mod gcd(i, j)

for each non-zero aijk ≠ 0. However, the power of the commutator term changes

simultaneously for all group elements, so we construct an invariant based on the

total Milnor quotient in [DNOP20],

µ : K̃ → A,

where A is a space of affine points, lines, and planes which measures how all the

commutator terms change when we change basing paths. We show this invariant

can be used to distinguish two link maps. See Section 6.3 for details on how A is

defined.

Example 1.1.7. Let

v = (zs− z + z−1s−1 − z−1, 0, x− xu+ x−1 − x−1u−1)

and

w = (zs2 − z + z−1s−2 − z−1, 0, x− xu2 + x−1 − x−1u−2).

We cannot use Theorem 1.1.5 to distinguish between v and w, both of which are

realised by link maps. However, we show that µ can detect that these maps are

different in Section 6.3.

We now consider n-component Annular link maps, which by definition are immersions

n∐
i=1

S1 × I → B3 × I,
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such that restricting to the boundary ∐n
i=1 S

1 × {j} → B3 × {j} is an embedding

of n-component unlink of circles in B3 when j = {0, 1} where the ith component of

maps onto the ith component of the unlink for each embedding. We consider the

set of three-component annular link maps up to link homotopy, which we denote by

ALM4
2,2,2. Using σ̃3 we prove the following proposition.

Proposition 1.1.8. The group of n-component annular link map up to link homotopy

is non-abelian when n ≥ 3.

This result was proven in [MY21] by studying the isomorphisms of the free Milnor

group, which is isomorphic to the group of embedded annular link maps up to link

homotopy, whereas our proof uses the self-intersections of annular link maps to prove

the result.

The benefit of studying annular link maps instead of link maps is that the set of

annular link maps up to link homotopy is a group under a natural stacking operation.

This is a similar move Habegger and Lin made in [HL90] which allowed them to

classify n-component classical links up to link homotopy. Combining our approach

of studying intersections with Meilhan and Yasuhara’s approach of studying the

induced isomorphism, we construct an invariant of three-component annular link

maps up to link homotopy giving a group homomorphism

Θ : ALM4
2,2,2 → (Z [F/F3])3 ⋊ Aut(MF (3)),

where the semi-direct product records the self-intersection information on each

component and the automorphism of the free Milnor group on three-generators,

Aut(MF (3)), which is induced by the annular link map. This map is an extension

of the work by Meilhan and Yasuhara in [MY21] to the non-embedded case. Note

that since annular link maps have a canonical choice of meridians and basing there

is less indeterminacy in this invariant compared to σ̃3.

We show that Θ is a group homomorphism and there exists a closure map ALM4
2,2,2 →

LM4
2,2,2 and establish the following theorem.
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Theorem 1.1.9. The following diagram commutes

ALM4
2,2,2 LM4

2,2,2 LM4
2,2

(Z [F/F3])3 ⋊ Aut(MF (3)) K̃ (Z [Z])2 .

Θ σ̃3

i

σ

pi

We show that the subgroup of annular link maps whose closure is a Brunnian link

map – link maps where each two component sublink is trivial up to link homotopy –

is a normal subgroup, containing the subgroup of annular link maps link homotopic

to a embedded annular link map.

Using the work of Fenn and Rolfsen [FR86], Brendle and Hatcher [BH08], and

Benjamin Audoux, Paolo Bellingeri, Jean-Baptiste Meilhan, and Emmanuel Wagner

[ABMW14], we show how to construct a class of link maps and compute σ̃3 on this

class in terms of the Kirk invariants of the two-component sublinks. From this we

prove the following proposition.

Proposition 1.1.10. Connect sum on the group of n-component link maps does not

give a well defined group structure for n ≥ 3.

Using techniques of Schneiderman and Teichner, we construct more non-trivial link

maps and compute σ̃3 of the resulting link maps in Section 7.1.3.

1.1.1 Organisation of chapters on link homotopy of surfaces

In Chapter 2, we define the equivariant intersection form, geometric intersections

invariant, and establish their relationship to each other.

In Chapter 3, three types of homotopy are defined which allow us to understand link

homotopy in terms of a more rigid structure. We also discuss the results which have

been achieved in the two-component case.

In Chapter 4, Milnor groups are defined and we revise commutator calculus. We then

show that the Milnor group of the free group on two generators, F/F3, is isomorphic

to the integral Heisenberg group of matrices and compute its group homology.
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In Chapter 5, we calculate the homology of the complement of generically immersed

two-spheres in the four-sphere and show that the second homology is generated by

Clifford tori around each self-intersection. Using Dwyer’s theorem we show that

the Milnor group of the fundamental group of the complement of two generically

immersed disjoint spheres is isomorphic to F/F3.

In Chapter 6, we give a link homotopy invariant for based three-component link

maps of oriented two-spheres. We then remove the based restriction to create σ̃3.

We then develop tools for being able to differentiate between values of σ̃3 since our

invariant takes values in a quotient space. We show there exist examples of link maps

with the same image in S4 but are distinct. Additionally, we develop an invariant

which highlights how analogous our invariant is to the triple linking number. We

then construct an invariant which measures the size of the values of our invariant.

In Chapter 7, we construct an invariant for annular link maps and show how one

can use annular link maps to create link maps and establish the existence of an

annular link map invariant which records induced automorphism information and

the intersection information.

In Chapter 8, we discuss generalising σ̃3 to establish an n-component link map

invariant.

1.2 Noncommutative Blanchfield pairings

In Chapter 9 we change topics and consider the computation of Blanchfield pairings.

The linking form on a closed, connected, orientable three manifold M is a bilinear

form

lk : TH1(M ;Z) × TH1(M ;Z) → Q/Z,

where TH1(M ;Z) is the torsion part of the first homology. This form was first

defined by Seifert in 1935 [Sei35] and since then has been a large object of study in

low dimensional topology, particularly in the study of knot theory. It has been well
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documented that we can compute the linking form of three manifolds in terms of a

four-manifold which it bounds [CFH16; GL78; Fri16].

Consider the cover ofM associated to the kernel of a group epimorphism v : π1(M) →

π, whose group of deck transformations is π. The chain complex of the cover is

defined to be C∗(M ;Zπ), which comes equipped with a left action of Zπ. This

has corresponding homology H∗(M ;Zπ). Let R be a ring with involution and

ρ : π → Un(R) where Un(R) is the group of unitary n×n matrices extending linearly

to a representation ρ : Zπ → Mn×n(R). We have the chain complex

C∗(M ;Rn) := Rn ⊗ρ C∗(M ;Zπ)

with corresponding homology H∗(M ;Rn); we define such homology groups in gener-

ality in Chapter 2. On these homology groups we can define a generalisation of the

linking form known as the Blanchfield form

Bl : T S × T S → RS/R,

where S ⊂ R is a multiplicative subset which allows us localise on R (specifically

the pair (R, S) satisfy the left Ore condition, see Chapter 9 for details) to create

RS and T S ⊂ H1(M ;Rn) is the S-torsion submodule i.e. {x ∈ H1(M ;Rn) | ∃s ∈

S such that sx = 0}. The Blanchfield form is known to be sesquilinear and hermitian,

which we prove in Corollary 9.3.8. Definition 9.2.7 and Proposition 9.2.10 give

criterion for the Blanchfield pairing to be non-singular.

It is folklore that we should be able to calculate the Blanchfield form of a three-

manifold in terms of the intersection form of a compact, connected, orientable four-

manifold W , with ∂W = M . However, proofs of this result, both in the literature and

unpublished make one or more of the following simplifying assumptions: H1(M ;Rn)

is torsion; H1(W ;Rn) = 0; n = 1; the ring R is commutative; and H2(W ;Rn) is free.

Some examples in the literature making these restrictions are the following:

• Anthony Conway, in his paper [Con18] , uses commutative coefficients – a
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localisation of the integral Laurent polynomials; the first homology of the four-

manifold is trivial; the rank n is equal to one; and the second homology of the

four-manifold is free.

• Maciej Borodzik and Stefan Friedl in [BF15] use commutative coefficients; they

assume that the first homology of the four-manifold is torsion free; the rank

of the representation is equal to one; and the second homology of the four-

manifold is free.

• Cameron Gordon & Richard Litherland in [GL78], while working with the

linking form and not the general Blanchfield form, assumed that the first

homology of the four-manifold was trivial and that first homology of the three-

manifold only has torsion and that the second homology of the four-manifold

is free.

This list is by no means exhaustive. However, we aim to make the weakest/smallest

amount of assumptions possible, as we cannot find a proof in full generality in

the literature. Of the five simplifications in the previous paragraph we make one

weakened assumption in that direction; we require that H1(W ;Rn) is S-torsion free

i.e for all non zero x ∈ H1(W ;Rn) and for all s ∈ S, sx ̸= 0. An assumption of this

kind turns out to be necessary; consider the linking form on a lens space L with

fundamental group Z/n2 which is the boundary of a rational homology four-ball B.

From the long exact sequence of the pair we have

H2(B;Z) H2(B,L;Z) H1(L;Z) H1(B;Z) 0

0 Z/n Z/n2 Z/n 0.

q

∼=

∂

∼= ∼= ∼=

It is well known that the linking form on a lens space is not identically zero so

we cannot compute the linking form in terms of the intersection pairing of B, as

H2(B;Z) is zero.
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If M bounds a connected, compact orientable four-manifold W such that the coef-

ficient system on M extends over W then we have an exact sequence such that ∂

factors through the kernel of i which contains T S

H2(W ;Rn) H2(W,M ;Rn) H1(M ;Rn) H1(W ;Rn).

ker(i)

q ∂ i

0

Hence, we can identify T S with a submodule of H2(W,M ;Rn)/ im(q). We then prove

the following:

Theorem 1.2.1. Let R be a ring with involution and S ⊂ R be a multiplicative subset

which satisfies the left Ore condition and contains no zero divisors. Additionally,

let M be a closed, connected, orientable, three-manifold and let W be a compact

orientable four-manifold such that ∂W = M and the following commutes

π

π1(M) π1(W ),

v

i∗

w

where i∗ is the induced map on homotopy groups coming from the inclusion, and

v and w are the group epimorphism, which correspond to the covers of M and W

with group of deck transformation π. Then if H1(W ;Rn) is S-torsion free then the

Blanchfield form on M

Bl : T S × T S → RS/R

can be computed by

Bl([x] , [y]) = −1
r
λ(x0, y0)

1
s

where r [x] = s [y] = 0; x0, y0 ∈ H2(W ;Rn) with i(x0) = rx and i(y0) = sy with

x, y ∈ H2(W,M ;Rn); and λ is the intersection form on W .

The proof method of this result is based on the work of Anthony Conway in [Con18]
1. We show that his proof method works more generally and use this to prove

1In 2020, I informed Anthony Conway of an error in his published paper and he made some
small changes to his paper on the Arxiv. The main difference was a small change to the definition
of one of the pairings which resulted in small changes to some of the proofs.
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Theorem 1.2.1.





Chapter 2

Algebraic and geometric

intersections

2.1 Defining the intersection form

Let X be a CW complex and X̃ be the regular cover of X, associated to the kernel

of a surjective group homomorphism ϕ : π1(X) → π. Let Y ⊂ X and define Ỹ

to be the pre-image of Y under the covering map. Using deck transformations,

C∗(X, Y ; Λ) : = C∗(X̃, Ỹ ) is given a left Λ-module structure, where Λ := Zπ; where

Λ has a involution coming from extending the involution g := g−1 on π linearly.

Let N be a (R,Λ)-bimodule where R is a ring with involution. We define

C∗(X, Y ;N) := N ⊗ C∗
(
X̃, Ỹ ,Λ

)

with corresponding homology denoted H∗(X, Y ;N). Both modules are left R-

modules. We define the cochain complex by

C∗(X, Y ;N) : = Homright −Λ
(
C∗(X, Y ; Λ), N

)
,

where C∗(X, Y ; Λ) is the involuted chain complex, with corresponding cohomology
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denoted H∗(X, Y ;N). This is a left R-module with the action of R defined by

(r · f)(σ) : = rf(σ),

where r ∈ R, f ∈ C∗(X, Y ;N), and σ ∈ C∗(X, Y ; Λ).

Set N = Rn, where the right action on Rn by Λ, comes from extending a representa-

tion ρ : π → Un(R), where Un(R) is the group of unitary R matrices, linearly to get

a ring representation Λ → Mn×n(R). We also call this extension ρ. The right action

of Λ on Rn is defined to be

v · a := vρ(a),

where a ∈ Λ and v ∈ Rn viewed as a row vector. Different choices of representation

will result in different chain complexes and thus different homology and cohomology.

We now define a map ⟨−,−⟩ : Rn ×Rn → R where

⟨v, w⟩ = vwT ,

where v, w ∈ Rn.

The above map can easily be shown to be sesquilinear.

Definition 2.1.1. Define κ : Cn(X, Y ;Rn) → Homleft −R (Cn(X, Y ;Rn), R)) to be

the map

f 7→
(

(v ⊗ σ) 7→ vf(σ)T
)

.

We denote the evaluation map by

p : Hn
(
Homleft −R (C∗(X, Y ;Rn), R)

)
→ Homleft −R (Hn(X, Y ;Rn) , R)

and define ev : := p ◦ κ. We often refer to ev as the evaluation map, however we

will be specify which map if it is unclear.

Let W be a compact orientable connected four-manifold with ∂W which is equipped

with Poincaré duality maps

PD : Hn(W ;Rn) → H4−n(W,∂W ;Rn)



2.2. Geometric Intersections 17

and

PD : Hn(W,∂W ;Rn) → H4−n(W ;Rn).

Consider the following composition:

Φ : H2(W ;Rn) q−→ H2(W,∂W ;Rn) PD−1
−−−→ H2(W ;Rn) ev−→ Homleft −R (H2(W ;Rn), R).

Definition 2.1.2. The equivariant intersection form on W is the map

H2(W ;Rn) ×H2(W ;Rn) → R

(a, b) 7→ Φ(b)(a).

From the definition, it is clear this form is sesquilinear and it is well known that the

intersection form is hermitian [Ran02a].

2.2 Geometric Intersections

We define geometric intersections of 2-spheres in an oriented four-manifold M . This

gives us a geometric method of computing the equivariant intersection form, when

R = Λ, N = Λ, and ρ = Id.

Fix an orientation of S2 with a basepoint x0 ∈ S2. Let (f, γf ) : S2 → M be a based

map of a sphere i.e a map paired with a path γf : [0, 1] → M where γ(0) = m0

and γ(1) = f (x0). We often suppress the γf in our notation and instead just write

f : S2 → M to be a based map, where it is implicit there exists a specific γf .

Let g : S2 → M be another based map. Assume f and g are generic transverse

immersions and further assume the map f ∪ g is generic also. By compactness there

exists a finite number of intersections between the images of f and g. Suppose x is

an intersection of f and g where p1 ∈ f−1 (x) and p2 ∈ g−1 (x). Let kx : [0, 1] → S2

be a path such that kx(0) = x0 and kx (1) = p1. Similarly, define lx : [0, 1] → S2

with lx(0) = x0 and lx(1) = p2. We define

gx = γf · f (kx) · g
(
lx
)

· γg ∈ π1(M)
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Definition 2.2.1. We define the geometric intersection to be

λgeo(f, g) =
∑

x∈f(S2)∩g(S2)
εxgx ∈ Zπ,

where εx is the sign of the intersection at x.

The geometric intersection is independent of the choice of paths on each sphere as

S2 is simply connected. However, if we consider f with a different choice of basing

path this may change the value of the geometric intersection. Hence, it is only well

defined on based maps. The geometric intersection form agrees with the equivariant

intersection form when N = Λ and ρ = Id, since the basing paths and the maps f

and g specify a homology classes in H2(M ;Zπ) [Ran02b]. Hence, we will use λ to

refer to both the geometric and the equivariant intersection forms.

Let f+ : S2 → M be a normal push-off, using a section of the normal bundle of f

which is transverse to the 0-section. To make sense of λgeo(f, f) we define:

λgeo(f, f) := λ(f, f+).

This is independent of the choice of normal push off.

We define a self-intersection number related to λ. Let I be the set of all double

points of f and let p ∈ I. Let p1, p2 ∈ f−1 (p) with p1 ≠ p2 and let δ1, δ2 : [0, 1] → S2

be paths from x0 to p1 and p2 respectively. Set

gp = γf · f (δ1) · f
(
δ̄2
)

· γ̄f ∈ π1(M).

We could have swapped the roles of δ1 and δ2 and this would give us the loop g−1
p .

To resolve this we take values in the quotient Zπ̃ : = Zπ/{g ∼ g−1}. This is a group

quotient where we view Zπ as an abelian group.

Definition 2.2.2. The self-intersection number of a generic (based) immersion

f : S2 → M is defined to be

µ(f) : =
∑
p∈I

εpgp ∈ Zπ̃,
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where εp is the sign of the intersection at p.

We can relate the self-intersection number and geometric intersection number by the

following.

Theorem 2.2.3. Let f : S2 → M be a generic immersion and let ι : Z → Zπ be the

ring homomorphism where n 7→ n1. Then the following equation holds

λ (f, f) := µ(f) + µ(f) + ι (χ(f)) ∈ Zπ, (2.2.1)

where µ(f) is given by taking the representatives we use to describe µ(f) and sending

each group element to its inverse, and χ(f) is the Euler number of the normal bundle

of f .

It is easily shown from this that µ is not a homotopy invariant. Cusp homotopies

(defined in the next chapter) change the Euler number of the normal bundle by ±2

but λ remains fixed as it is a homotopy invariant. Therefore must µ must change

for λ to remain constant.





Chapter 3

Homotopy of surfaces and the Kirk

invariant

3.1 The structure of link homotopy in dimension

four

Definition 3.1.1. A map

f = f1 ⊔ . . . ⊔ fn :
n∐
i=1

S2
i → S4,

where S2
i

∼= S2, is called a link map if components disjoint in the domain are disjoint

in the image, i.e fi(S2
i ) ∩ fj(S2

j ) = ϕ for i ̸= j. A link homotopy is a homotopy

through link maps. We denote the set of n-component link maps up to link homotopy

by LM4
2, . . . , 2︸ ︷︷ ︸

n

. If each of our spheres comes equipped with a basing path from the

basepoint in S4 to their surface we call it a based link map. The set of based link

maps up to link homotopy is denoted LM4
2, . . . , 2︸ ︷︷ ︸

n

∗.

We want to understand link maps up to link homotopy. Using results by Hirsch

[Hir94] we can assume that each each link map is a generic, self-transverse immer-

sion with only double points. We highlight three instances of homotopies between
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Figure 3.1: The local picture around the origin in R4 where the
x − y plane intersect the z − t plane. The blue circles
are the Clifford torus sitting around the origin.

generic immersions: finger moves, Whitney moves and cusp homotopies. This gives

homotopy between link maps a rigid structure.

Let S be a generic immersed surface inside a four-manifold M , where S is compact,

connected, and oriented. Let p, q ∈ S be distinct points which are not intersections,

and γ : I → M be an embedded arc which intersects p and q at the end points but

does not intersect S at any other point. Take a small disc D ⊂ S around p and push

the disc along the path of γ past the end point q. This is a regular homotopy which

creates two new intersections with opposing signs.

Definition 3.1.2. The homotopy described in the previous paragraph is called a

finger move.

Finger moves can be used to simplify the complement of an immersed surface, at

the expense of creating new intersections. For any double point of a generically

immersed surface, there exists a homeomorphism of a neighbourhood of the double

point to a ball B centred around the origin such that the double point is mapped to

the origin, one sheet of the surface is mapped to B ∩ (R2 × {0}) ⊂ R2 × R2 = R4,

and the other sheet is mapped to B ∩ ({0} × R2) ⊂ R2 × R2 ⊂ R4.

Consider the torus S1 × S1 ⊂ R2 × R2 = R4. This torus has one meridian travelling

around the unit circle in the z − t plane and the other meridian travelling around

the unit circle in the x− y plane. Such a torus is known as a Clifford torus. Hence,

around each double point there exists a torus which has a meridian around one

sheet and the other meridian around the other sheet. Consider the piece of the

surface S, which for some choice of basepoint and path, the meridian is given by

α ∈ π1(M∖S). Doing a finger move on this piece along an element β ∈ π1(M∖S),
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p

W

q

A

B

Figure 3.2: A local picture of a framed embedded Whitney disc W ,
pairing the intersections p and q, with sheet A lying
in the present and sheet B having a arc lying in the
present and the rest going into the past and future.

generates a new generically immersed surface S̃. Since we have introduced Clifford

tori into the complement of the surface, we have potentially introduced new relations

into the fundamental group. A choice of basis curves on the tori are given by α and

β−1αβ and since they lie on a torus both elements in the fundamental group of the

complement of S must commute. Hence,

π1(M∖S̃) = π1(M∖S)/
〈〈[

α, β−1αβ
]〉〉

.

A careful proof of this is given by [Cas86].

We now describe our second move. Let p, q ∈ S be two oppositely signed double

points of S. Assume there exist two embedded curves γ, γ′ : I → S, where γ is a

path from p to q along one sheet (call this sheet A) and γ′ travels from q to p along

the other sheet (call this sheet B). Further, specify that the circle γ ∪ γ′ bounds an

embedded disc with interior in M∖S. We call this disc W . Take a non-vanishing

section of the normal bundle of ∂W , which is normal to A along γ and tangent to

B along γ′. If this section can be extended to a non-vanishing section of the normal

bundle of W , we say W is a framed Whitney disc. In the case where the Whitney
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A′

B

Figure 3.3: The result of doing a Whitney move on the Whitney disc
W removing the intersections p and q, which changes
the sheet A to A′ and leaves sheet B unchanged.

disc is not framed we say W is a twisted Whitney disc. In the framed case we

can push a neighbourhood of γ in A along the disc bundle of W . This is a regular

homotopy. The result of this is to remove a neighbourhood of γ in A and glue in

two parallel oppositely oriented copies of W and glue both them together with a

strip. If W is embedded, this homotopy removes the intersections p and q with no

new intersections on the resulting surface. If the Whitney disc is immersed, then the

homotopy removes p and q but introduces four new intersections to the immersed

surface S for each intersection in the interior of W .

Definition 3.1.3. We call the move described above a Whitney move.

In the description above there is nothing special about the roles of A and B. We

could have chosen to extended a section normal to B and tangent to A on the

boundary of the disc and pushed along that section.

Two intersections may have multiple Whitney discs pairing them up to isotopy, so

removing intersections via a Whitney move requires a choice of Whitney disc.

Loosely speaking, finger moves and Whitney moves are inverse operations. If one

performs a finger move then we create a pair of oppositely oriented intersection
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Figure 3.4: A description of a cusp homotopy, where the homotopy
time goes from the bottom of the picture to the top.

which we can pair with a Whitney disc to undo the finger move.

The last move we consider is a cusp homotopy. Consider taking a map I → D2 with

a single intersection, like the picture in the centre and top of Figure 3.4, and doing

the homotopy like the one described which pulls out the “kink”, which looks like

going down the central column of Figure 3.4. Crossing with D1 ⊂ D2, this gives

a homotopy D2 × I → D4, which goes from the standard embedding of D2 ⊂ D4

to a map D2 → D4 with a line of self intersections. We then do a small homotopy

sending part of the line into the future and the other into the past leaving only a

single intersection. The bottom row of Figure 3.4 is the standard embedding and

the top row is the result of a cusp homotopy

Definition 3.1.4. We call a homotopy of S like the one above, supported in a

four-ball neighbourhood of a non-double point, a cusp homotopy.

Unlike finger moves and Whitney moves, the cusp homotopy is distinct since it is

not a regular homotopy but a homotopy between immersions. The importance of

these three moves in combination with one another is captured by the following

proposition.

Proposition 3.1.5 ([FQ90]). A generic (link-)homotopy between two generic im-

mersions is (link-)homotopic to concatenations of isotopies, finger moves, Whitney

moves, and cusp homotopies.
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Hence, we can think of a link homotopy between two link maps as a combination of

isotopy, Whitney moves, finger moves and cusp homotopies.

3.2 Two-component link maps and the Kirk

invariant

For this section all link maps will have two components unless stated otherwise. In

1988, Koschorke showed that, up to link homotopy, connect sum is well defined on

two-component link maps [Kos88]. This turns LM4
2,2 an abelian monoid. In 1999

Bartels and Teichner showed that each element in LM4
2,2 has an inverse, establishing

that LM4
2,2 is a group [BT99]. Two-component link maps have an invariant defined by

Paul Kirk in 1988, which we now call the Kirk invariant. In 2018, Schneiderman and

Teichner showed that the Kirk invariant is a complete invariant of LM4
2,2 [ST17]. We

define this invariant since this is the inspiration for our three-component invariant.

Let f = f1 ⊔ f2 : S2
1
∐
S2

2 → S4 be a link map and define

Mi = S4∖ν(fj),

where i ̸= j and ν(fj) is the regular neighbourhood of fj.

We compute intersections λ(f1, f1) ∈ Zπ1(M1). This is not a link homotopy invariant

since the fundamental group of the complement of f2 changes over a generic link

homotopy. To fix this we use homology; since the homology of the complement

of a generic sphere in S4 is constant throughout a generic link homotopy. Define

λ(f1, f1) ∈ ZH1(M1) to be σ1(f). Swapping the roles of f1 and f2 we get another

invariant of f called σ2(f).

Definition 3.2.1. The Kirk invariant of a link map f is defined to be

σ(f) = (σ1(f), σ2(f)) ∈ Z[Z] ⊕ Z[Z].

We can realise the image of the Kirk invariant [ST17] using a technique Fenn and
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Figure 3.5: The JK-construction applied to the Whitehead link with
time moving from left to right with a single intersection
on each sphere.

Rolfsen created in their paper to construct the first example of a link homotopically

non-trivial link map in dimension two [FR86].

Construction 3.2.2 (The Jin-Kirk construction). Consider a two-component link,

L = L1∐L2 ⊂ S3 ×
{

1
2

}
⊂ S3 × I, where I = [0, 1]. Suppose the linking number

of L is zero; both components null-homotopic in the complement of the other and

both components unknotted. Consider the trace of a homotopy inside S3 ×
[

1
2 , 1

]
which fixes the second component and does a null homotopy of the first. Then take

the trace of a homotopy running backwards from S3 × {1
2} to S3 × {0} with the first

component fixed and a null-homotopy applied to the second component. Capping

off both ends of the cylinder with a D4 and both ends traces of the link with a D2

gives a link map in S4.

The construction of the link map above is, up to link homotopy, independent of

the choice of null homotopy on each component as π2 (S3∖Li) = 0, where Li is a

component of the link we started the construction with. This gives a surjective map

[ST17]

JK : L ↠ LM4
2,2 ,

where L is the set of two-component links with each component null-homotopic in

the complement of the other and both components unknotted.

Example 3.2.3. Let FR be the link map created from the JK construction described

in Figure 3.5. Then

σ(FR) =
(
t+ t−1 − 2, 2 − t− t−1

)
.
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Schniederman and Teichner proved the following result which classified two-component

link maps.

Theorem 3.2.4. Let z = 2 − t− t−1 and identify Z = z · Z [z] /z2 · Z [z]. Then the

sequence

0 LM4
2,2 z · Z [z] ⊕ z · Z [z] Z 0,σ

where the right most map is addition, is exact.

Schniederman and Teichner show that LM4
2,2 has an interesting module structure.

Theorem 3.2.5. Let R := Z [z1, z2] / (z1z2). Then LM4
2,2 is a free R-module of rank

1 and as a Z-module is free of infinite rank.
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The Heisenberg group

In this section we develop the commutator calculus and group theory necessary for

our three-component invariant. We discuss Milnor groups which will be necessary

for generalising the Kirk invariant since the n-component invariant Kirk developed

is based in homology which loses too much geometric information due to homology

being abelian.

4.1 Milnor groups and commutator calculus

Definition 4.1.1. Let G be a group normally generated by elements x1, . . . , xn ∈ G.

Then we call the group

MG := G/
〈〈[

xi, gxig
−1
]〉〉

1 ≤ i ≤ n, ∀g ∈ G

the Milnor group of G. We call G a Milnor group if G = MG.

Remark 4.1.2. There is still a question about if the choice of normal generators

effects the resulting quotient group. However, for any choice of normal generators we

will choose x1, . . . , xn for a group G, any other set of normal generators we choose

x′
1, . . . , x

′
n will have the property x′

i = gxig
−1 for some g ∈ G. This will guarantee
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that this quotient is fixed for our purposes1.

Milnor used such groups in the study of classical links up to link homotopy in [Mil54],

where he was able to classify three-component links up to link homotopy. We will

see that for three-components, one dimension up, we only care about about one

particular Milnor group. Before studying this Milnor group we will first discuss

commutator calculus and lower central series quotients.

Definition 4.1.3. Let G be a group and A and B be normal subgroups. Define

the subgroup [A,B] to be the normal subgroup generated by elements of the form

aba−1b−1, where a ∈ A and b ∈ B.

Swapping the roles of A and B in the above definition does not change the resulting

subgroup.

Lemma 4.1.4. The normal subgroups [A,B] and [B,A] are equal to each other.

Proof. Consider the commutator

[a, b] = aba−1b−1

then we have

[b, a] = [a, b]−1 .

Thus, all the normal generators of [A,B] have inverses which are normal generators

of [B,A] and so both subgroups are equal.

If we have a group G we can iteratively take commutators with G and this leads us

to the following definition.

Definition 4.1.5. Let G be a group. Then the lower central series is the series

G = G1 ⊵ G2 ⊵ G3 ⊵ · · · ⊵ Gn ⊵ · · · ,

1The author tried to find a reference to show that the Milnor quotient independent of our choice
of normal generators and was unable to find one. However, he did find that Freedman and Teichner
in [FT95], define Milnor groups relative to a choice of normal generators, this suggest they are
either possibly different or it is not known if all such quotients are equal.
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where Gk+1 = [G, Gk], the normal subgroup generated by elements of the form

[a, b] := aba−1b−1, where a ∈ G and b ∈ Gk. We call G nilpotent if for some s ∈ N,

Gs is trivial. We call G nilpotent of class n if n ∈ N is the smallest number such

that Gn+1 = {1}

Before we discuss commutator calculus, let us prove the following.

Lemma 4.1.6. If G is a group normally generated by k elements, then MG is

nilpotent of class at most k.

Proof. The proof is by induction and comes from [BT99]. In the k = 1 case the

Milnor group of G is isomorphic to Z or Z/m for some m ∈ N. Hence it is nilpotent

of class 1. Assume the result is true for k = n− 1. Let G have normal generators xi

with 1 ≤ i ≤ n and let Ai be the normal closure of the cyclic subgroup created by

xi in MG. Let x ∈ MG and y ∈ (MG)n. For all i the commutator y ∈ MG/Ai is

trivial by the inductive hypothesis. We have that y ∈ ∩n
i=1Ai. Hence, y is contained

in the center of MG, thus MGn+1 = {1}.

Proposition 4.1.7. Let G be a group and a, b, c ∈ G. Then the following equalities

hold:

[ab, c] = [a, [b, c]] [b, c] [a, c] , (4.1.1)

[a, bc] = [a, b] [b, [a, c]] [a, c] (4.1.2)
[
ab, [c, b]

]
[bc, [a, c]] [ca, [b, a]] = 1 (4.1.3)

[a, [c, b]] [b, [a, c]] [c, [b, a]] = [c, b]a [b, c] [a, c]b [c, a] [b, a]c [a, b] (4.1.4)

Proof. The proofs consist of expanding and simplifying.

Corollary 4.1.8. Let G be a group and let a ∈ Gk, b ∈ Gl and c ∈ Gm then we

have the following results:

ab ≡ ba mod Gk+l, (4.1.5)

[ab, c] ≡ [a, c] [b, c] mod Gk+l+m, (4.1.6)

[a, bc] ≡ [a, b] [a, c] mod Gk+l+m, (4.1.7)
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Proof. This proof was given in [MKS04]; we will recreate it here. Let us first prove

Congruence (4.1.5). We know

ab = [a, b] ba,

so we need to prove that

[Gk, Gl] ⊆ Gk+l. (4.1.8)

We prove this by induction. Take the case where k = 1, clearly we have [G,Gl] =

Gl+1, by the definition of the lower central series. Assume that the result holds up

to some n ∈ N. Then we have

[Gn+1, Gl] = [[G,Gn] , Gl] ⊆ [[Gn, Gl] , G] [[Gl, G] , Gn] ,

as a result of (4.1.3). By the inductive hypothesis we have [[Gn, Gl] , G] ⊆ Gn+l+1.

Furthermore, [Gl+1, Gn] ⊆ Gn+l+1. Hence, we have proven that for all k, l ∈ N

we have [Gk, Gl] ⊆ Gk+l and thus we have shown (4.1.5) holds. We now prove

Congruence (4.1.6). From Equation (4.1.1),

[ab, c] = [a, [b, c]] [a, c] [b, c] ,

and by (4.1.8) we have [Gk, [Gl, Gm]] ⊆ Gk+l+m. Congruence (4.1.7) is proved in a

similar fashion.

Let F (n) be the free group on n generators. Consider the free group on two generators

F := F (2), and its lower central series quotient F/F3.

Lemma 4.1.9. The group F/F3 admits the presentation

⟨x, y | [x, [x, y]] , [y, [x, y]]⟩ .

Proof. Let N be the normal subgroup generated by [x, [x, y]] and [y, [x, y]]. It is

clear that N ⊆ F3. We wish to show the relations defining N imply that F3 ⊆ N .

First, let us prove that for any ω ∈ F we have

[ω, [x, y]] ≡ 1 mod N . (4.1.9)
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We do this by induction of the length of the word ω. It is clear in the cases where ω

is equal to x or y. Checking their inverses we have

(
x(
[
x−1, [x, y]

]
x−1

)−1
= [x, [x, y]] .

Hence [
x−1, [x, y]

]
≡ 1 mod N.

The case for y−1 is similar. Now assume that the result holds true for words of

length n − 1. Let ω be a word of length n. Now ω = gω′ where g is equal to x, y

x−1 or y−1 and ω′ is a word of length n − 1. Assume that g = x; the proofs of the

other cases are similar. By Equation (4.1.1) and the inductive hypothesis we have

[xω′, [x, y]] = [x, [ω′, [x, y]]] [ω′, [x, y]] [x, [x, y]]

≡ 1 mod N

Every element of F2 is a product of [x, y], its inverse, and their conjugates. So any

element can be expressed as a product of these commutators and as such they can

be expressed as some minimum length as a product of commutators. We will prove

that [ω,K] ∈ N , where K is some product of commutators, by induction. The base

case is done by checking that all commutators of the form h [x, y] h̄, for some h ∈ F .

Applying Congruence (4.1.9), we have

[
ω, h [x, y]h−1

]
= h

[
h−1ωh, [x, y]

]
h−1 ≡ 1 mod N.

Similarly, [
ω, h [y, x]h−1

]
= h

[
h−1ωh, [y, x]

]
h−1 ≡ 1 mod N.

Assume this holds true for any element in F2 that can be written as product of n− 1

[x, y], its inverse, and their conjugates. Let K be an element of F2 which can be

written n elements of such commutators. Then we have K = LK ′ where L is equal

to h [x, y]h−1 or h [y, x]h−1. Again assume L = h [x, y]h−1; the proof of the other
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case is similar. Using Equation (4.1.2) and the inductive hypothesis we have

[ω, LK] = [ω, L] [L, [ω,K ′]] [ω,K ′] ≡ 1 mod N .

Hence, F3 ⊆ N as required.

Lemma 4.1.10. The groups MF and F/F3 are isomorphic.

Proof. Let N be the normal subgroup we quotient F with to get MF . We have the

following equivalence

(
([x, [x, y]])[y,x]

)−1
=
[
x, yxy−1

]
.

Thus, adding the [x, [x, y]] = 1 relation is equivalent to adding the relation [x, yxy−1] =

1. Similarly, adding the relation [y, [y, x]] = 1 is equivalent to [y, xyx−1] = 1. Thus,

we have F3 ⊆ N . We need to show [x, ωxω−1] = 1 and [y, ωyω−1] = 1 hold for any

reduced word ω when the relations for F/F3 are added. We will do this by induction

on the word length of ω where the base case is the relations given by F/F3. Let k be

one of the generators x, y or their inverses. Let ω = kω′, where ω and ω′ are freely

reduced words of length k and k − 1 respectively. Using Congruence (4.1.7) twice

we have [
x, ωxω−1

]
= [x, k]

[
k,
[
x, ω′xω′−1

]] [
x, k−1

]
mod F3

By the inductive hypothesis the central term vanishes and we have

[
x, ωxω−1

]
≡ [x, k]

[
x, k−1

]
mod F3

≡ [x, k] [k, x] mod F3

≡ 1 mod F3

Since F3 ⊆ N , these relations still hold mod N and thus N = F3.
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4.2 The Heisenberg group and its homology

We show that F/F3 is isomorphic to a group of integral matrices and use this to to

compute the homology of the group. First, we define what we mean by the homology

of a group.

Definition 4.2.1. Let G be a group. Then the group homology and cohomology of

G are defined to be

H∗(G;Z) := H∗(BG;Z), H∗(G;Z) = H∗(BG;Z),

where BG is the classifying space.

We will work exclusively with discrete finitely presented groups. Their classifying

spaces are Eilenberg-Maclane spaces, K(G, 1) i.e. connected CW complexes with

fundamental group equal to G and all higher homotopy groups vanishing.

Definition 4.2.2. We call the group of matrices

H =




1 a c

0 1 b

0 0 1


∣∣∣∣∣a, b, c ∈ Z


⊆ ALM(3,Z),

the (integral) Heisenberg group.

We will show that both F/F3 and H are isomorphic by making use of a normal form

for a presentation of F/F3.

Definition 4.2.3. Let F (n) be the free group on n generators and G be a group

such that there exist a surjective homomorphism π : F (n) → G. Then a normal

form is an injective map s : G → F (n) such that π ◦ s = IG.

We will first show the following result.
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Lemma 4.2.4. Let

X =


1 0 0

0 1 1

0 0 1

 , Y =


1 1 0

0 1 0

0 0 1

 , Z =


1 0 −1

0 1 0

0 0 1

 ∈ H.

Then 
1 a −c

0 1 b

0 0 1

 = XaZcY b.

Proof. This can be checked directly by matrix multiplication.

Proposition 4.2.5. The Heisenberg group and F/F3 are isomorphic.

Proof. Consider F/F3 with the presentation

⟨x, y, z| [x, z] , [y, z] , [x, y] = z⟩ .

Let ω be a fully reduced word in x, y and z. Using the relations we can collect all

of the z or z−1 to the back resulting in

ω = ω′zt,

where ω′ is some word in x and y. We can move each y and y−1 to the back by

passing using the relations, introducing more z and z−1. Eventually, we have the

word

xuzwyu = ω ∈ F/F3

for some u, v, w ∈ Z. Define a homomorphism ϕ : F/F3 → H by specifying that

ϕ(x) = X, ϕ(y) = Y and ϕ(z) = Z. This is well defined since

ϕ ([x, z]) = ϕ ([y, z]) = ϕ
(
[x, y] z−1

)
= 1

and is clearly surjective so all that remains to be proven is injectivity. Suppose the

map failed to be injective then we would be able to find a,b, c, a′, b′ c′ ∈ Z such that
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xazcyb ̸= xa
′
zc

′
yb

′ and

ϕ
(
xazcyb

)
= ϕ

(
xa

′
zc

′
yb

′)
,

and by Lemma 4.2.4 we have
1 a −c

0 1 b

0 0 1

 =


1 a′ −c′

0 1 b′

0 0 1

 .

Hence we have a = a′, b = b′ and c = c′. This contradicts xazcyb ̸= xa
′
zc

′
yb

′ and

completes the proof.

Consider the continuous Heisenberg group

HR =




1 a c

0 1 b

0 0 1


∣∣∣∣∣ a, b, c ∈ R


.

As a space, this is clearly homeomorphic to R3 and we can define a cocompact group

action of H on HR by matrix multiplication. We call the quotient space of this action

P . Since we are multiplying by matrices with positive determinant, multiplication by

elements of H is an orientation preserving diffeomorphism. Hence, the quotient space

is a connected, closed, orientable three-manifold. Using the long exact sequence of

the fibration, for

H ↪→ R3 → P,

we know that all homotopy groups vanish except the fundamental group which is

isomorphic to the Heisenberg group. Hence, the quotient of the space is a model for

BF/F3.

Proposition 4.2.6. The homology of the Heisenberg group are given by

Hn(F/F3) =


Z n = 0, 3

Z ⊕ Z n = 1, 2.

Proof. The n = 0 and n = 3 cases are obvious since BF/F3 is a connected, closed,
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orientable three-manifold. We have H1(F/F3) = Z ⊕ Z by the Hurewicz theorem.

Consider the following sequence of isomorphisms

H2 (BF/F3;Z) H1 (BF/F3;Z) HomZ (H1 (BF/F3;Z) ,Z) ,

where the first arrow is given by Poincaré duality and the last arrow is the evaluation

homomorphism. This implies H2 (BF/F3;Z) ∼= Z ⊕ Z.



Chapter 5

Algebraic topology of the

complement of two-spheres

We want to use the intersection form on a component of a three-component link

map in the complement of the other two spheres to get an element of Zπ and then

take the Milnor quotient and a choice of isomorphism to F/F3 to get an element in

Z [F/F3]. Doing this for each sphere gives an element of (Z [F/F3])3. This section

will establish that the Milnor group of the fundamental group of the complement of

two generically immersed two-spheres in S4 is isomorphic to F/F3.

Lemma 5.0.1. Let S be the image of generically immersed two-spheres given by a

n-component link map, with 2d ∈ N double points. Assume that the double points on

each sphere algebraically cancel. Then

Hi(S4∖ν(S)) =



Z, i = 0

Zn i = 1

Z2d i = 2

Zn−1 i = 3 and n > 1

0 otherwise.

The second homology is generated by Clifford tori around each intersection.
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Proof. First assume n = 1. Our goal is to use Mayer-Vietoris to compute the

homology in such a way that the generators of the homology become clear. The

tubular neighbourhood of the image of this immersion can be described as the result

of a plumbing [FQ90]. The boundary of S4∖ν(S) is a plumbed three-manifold

i.e the boundary of a plumbed four-manifold. Call this manifold Y . To compute

the homology of Y we will construct from spaces we know and use Mayer-Vietoris.

Consider

X :=
(
S2∖

4d∐
i=1

D̊2
)

× S1

with

∂X =
4d∐
i=1

S1 × S1.

There are two discs removed from S2 for each double point. We think of X as being

a cobordism between 4d− 1 tori, call this part of the boundary A, and a single torus,

call this part of the boundary B. We have H2(X) ∼= Z4d−1 and it is generated by

the 2d − 1 tori in A. Let us call this basis {β1, . . . , β4d−1}. This basis satisfies the

condition that

−
4d−1∑
i=1

βi ∈ H2(X)

is the element coming from inclusion of the boundary torus in B for some choice of

basis of H2(B) ∼= Z.

We have H1(X) ∼= Z4d, where the basis is given by a single meridian on each torus

in A together with the single shared meridian they all have. Let x1, . . . , x4d−1 and y

be these generators.

We pair up boundary components by gluing ∐d
i=1 S

1 ×S1 × I, where one end is glued

using the identity and the other is glued using either of the maps f, g : S1 × S1 →

S1 × S1 with

f(x, y) = (y, x) and g(x, y) = (ȳ, x̄).

Using Mayer-Vietoris gives:

0 H3 (Y ) H2
(∐4d S1 × S1

)
H2 (X) ⊕H2

(∐2d S1 × S1 × I
)

H2(Y ) · · ·ϕ
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We have a basis {α1, . . . , α4d} of H2(∐4d
i=1 S

1 ×S1), where αi is represented by the ith

torus. Let {γ1, . . . , γ2d} be a basis for H2
(∐2d

i=1 S
1 × S1 × I

)
where γi is a generator

of H2 (S1 × S1 × I) for the ith copy. These bases are chosen such that the map ϕ is

given by

ϕ(αi) =


βi + (−1)1+iγ⌈ i

2⌉ if 1 ≤ i ≤ 4d− 1

−∑4d−1
i=1 βi − γ2d if i = 4d,

and extended linearly. The kernel of ϕ is given by integer multiples of ∑4d
i=1 αi. Hence,

H3(Y ) ∼= Z. From another part of the long exact sequence we have

. . . H2 (Y ) H1
(∐4d

i=1 S
1 × S1

)
H1 (X) ⊕H1

(∐2d
i=1 S

1 × S1 × I
)

· · ·ψ

From this we can construct the short exact sequence

0 coker(ϕ) H2(Y ) ker(ψ) 0.

since ker(ψ) is a free abelian group, this short exact sequence splits and

H2(Y ) ∼= ker(ψ) ⊕ coker(ϕ).

As coker(ϕ) is isomorphic to Z2d. We now describe the map ψ in order to compute

H2 (Y ). We choose a basis of H1(∐4d
i=1 S

1 × S1) , {v1, w1, v2, w2, . . . , v4d, w4d}. Addi-

tionally, choose a basis {a1, b1, . . . , a2d, b2d} for H1(
∐2d
i=1 S

1 × S1 × I). These bases

are chosen such that

ψ(vi) =



xi − a⌈ i
2⌉ if i ≡ 1 mod 2

xi − b⌈ i
2⌉ if i ≡ 0 mod 2 and i ≤ 2d

xi + b⌈ i
2⌉ if i ≡ 0 mod 2 and 2d < i < 4d

−∑4d−1
i=1 xi + bd if i = 4d
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and

ψ(wi) =



y − b⌈ i
2⌉ if i is odd

y − a⌈ i
2⌉ if i ≡ 0 mod 2 and i ≤ 2d

y + a⌈ i
2⌉ if i ≡ 0 mod 2 and 2d < i ≤ 4d.

.

The kernel of the map ψ is given by multiples of

4d∑
i=1

vi −
2d∑
i=1

wi +
4d∑

i=2d+1
wi.

Hence, H2(Y ) ∼= Z2d ⊕ Z.

Using the Mayer-Vietoris sequence we have the following isomorphism

0 H2 (Y ) H2 (S4∖ν (S)) ⊕H2 (ν (S)) 0.∼= (5.0.1)

The basis of coker(ϕ) is given by 2d Clifford tori represented by each S1 ×S1 ×
{

1
2

}
⊂

S1 ×S1 ×I. Under the non-trivial map in the exact sequence (5.0.1) we see that each

of these Clifford tori bound in ν(S) and thus each generator maps into H2(S4∖ν(S)).

The only other basis element in H2(Y ) is given by the basis element of ker(ψ)

however this must then map non-trivially to H2(ν(S)) ∼= H2(S) ∼= Z and trivially

into H2(S4∖ν(S)). Hence the Clifford tori-generate the second homology of the

complement of a generically immersed sphere in S4.

In the case, where n > 1 we have H3(Y ) ∼= Zn and from the long exact sequence we

have

0 H4(S4) H3 (Y ) H3 (S4∖ν(S)) ⊕H3 (ν(S)) 0.

since H3(ν(S)) vanishes, H3 (S4∖ν(S)) ∼= Zn−1. To compute H2 (S4∖ν(S)) we

can do a similar calculation to the one-component case and show that the second

homology is Zd. It is clear that for any n ∈ N we have H1(S4∖S) = Zn.

Definition 5.0.2. We define a grope of class k (a k-grope) inductively. For k = 1

a grope is circle. A grope of class k = 2 is a compact oriented surface Σ of genus

g, with one boundary component. A k-grope is a 2-complex is defined as follows.

Let {αi, βi, i = 1, . . . , g} be the standard symplectic basis for H1(Σ). For positive
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integers pi, qi with pi + qi ≥ k and pi0 + qi0 = k for at least one index i0, a k grope

is given by gluing a pi grope to each αi and a qi grope to each βi. A closed grope is

where a 2-cell has been glued in along the boundary of Σ.

Definition 5.0.3. Let X be a CW complex. Then ϕk(X) ⊆ H2(X) is the subgroup

of elements of H2(X) which can be represented by a map of a closed class k-grope

into X. Alternatively, this subgroup can be defined as the kernel of the composition

H2(X) H2 (π1 (X)) H2
(
π1 (X) /π1 (X)k−1

)

Let f : G → K be a group homomorphism. A theorem by Stallings [Sta65] states

that there is a relationship between the induced map on group homology and the

induced maps between G and K’s lower central series quotients. This theorem can

also be used to relate statements about the topology of a space and the induced

map on lower central series quotients of the fundamental group of a space. However,

Stalling’s theorem is insufficient for our purposes since the creation and elimination

of self-intersections during a link homotopy changes the rank of the second homology

of the complement. We require the following generalisation of Stalling’s theorem.

Theorem 5.0.4 (Dwyer’s Theorem [FT95]). Let G and K be finitely generated

groups and let f : G → K be a homomorphism which induces an isomorphism on the

first group homology of these groups. Then for k ≥ 2 the following are equivalent:

1. f induces an epimorphism on H2(G)/ϕk(G) → H2(K)/ϕk(K),

2. f induces an isomorphism G/Gk → K/Kk,

3. f induces an isomorphism H2(G)/ϕk(G) → H2(K)/ϕk(K) and an injection

H2(G)/ϕk+1(G) → H2(K)/ϕk+1(K).

Like Stalling’s theorem, Dwyer’s theorem is stated in terms of groups but applies

to spaces since we can always just attach cells of degree greater than three and this

does not affect any of the statements of the theorem. Before we use Dwyer’s theorem

let us prove the following lemmas.
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Lemma 5.0.5. Let S be the image of a generic n-component link map and xi be a

meridian of the ith component. Then x1, . . . xn is a set of normal generators for the

fundamental group of S4∖S.

Proof. Define XS := S4∖ν(S). To prove the result, we will give a Kirby diagram

description of the normal bundle of S and turn the handle decomposition upside

down and glue to the boundary of XS to make S4; from this it will be clear that

we have a set of normal generators. Consider the normal neighbourhood of the

ith sphere (a description of the normal bundle is given in [GS99, Section 6.1]). A

Kirby diagram of a normal neighbourhood of an immersion is given by a single

0-handle, a single 2-handle, and k many 1-handles (one for each intersection on the

immersed surface). Turning this upside down we have a single 2-handle, k many

3-handles, and a single 4-handle. We now attach the 2-handle to the ith boundary

component, where attaching sphere of the dual two handle is a meridian of the ith

sphere. To see the 2-handle attaches to the meridian of the sphere, notice that the

2-handle of the plumbing is the thickened 2-cell of the sphere and thus the dual

handle from turning upside down the new attaching sphere is the meridian of the

sphere. The fundamental group of this new space once we have attched the two

handle is π1(S4∖ν(S))/ ⟨⟨xi⟩⟩. Doing this for each sphere we recover S4 which has

trivial fundamental group. Hence the meridians are a set of normal generators for

the complement as required.

Lemma 5.0.6. Let f be a link map and a generic immersion. We can do finger

moves on f to get another link map f̃ such that

π1
(
S4∖ν(f̃)

) ∼= Mπ1
(
S4∖ν(f)

)
.

Proof. We can do self-finger moves on each component, using a finger which misses

the other components, to introduce relations of the form [α, βαβ−1], where α, β ∈

π1(S4∖ν(f)). Since Milnor groups are nilpotent and normally generated by finitely

many elements, by Theorem 5.0.5, they are finitely presented [BT99]. Hence, we only

need to do finitely many to make the complement isomorphic to a Milnor group.



45

Proposition 5.0.7. Let f : S2∐S2∐S2 → S4 be a link map, with each compon-

ent generically immersed. Then the Milnor group of the fundamental group of the

complement of any two components is isomorphic to F/F3.

Proof. By Lemma 5.0.6 we can assume that the fundamental group of the comple-

ment of two components of the image is a Milnor group. Let K be the presentation

complex for F/F3, where F/F3 is presented by

⟨x, y | [x, [x, y]] , [y, [x, y]]⟩ .

There exists a map g : K → N where N := S4∖ν(fi ∪ fj) with i ̸= j. To calculate

H∗(K) we can compute the boundary map of the cellular chain complex using Fox

derivatives and we see that the first and second boundary maps are zero. Hence

Hn(K) =


Z n = 0

Z ⊕ Z n = 1, 2
,

where the second homology is generated by the relations given by the chosen present-

ation of F/F3. Each relation can be represented by a closed class 3 grope inside

K.

For N we showed that the second homology is generated by Clifford tori around

each intersection in Lemma 5.0.1. Since f is a link map, the meridians of the

torus are of the form α and βαβ−1, where α is a meridian of the sphere which the

intersection is on and β ∈ π1(N). Hence the (1,−1) curve on each torus is trivial

when viewed as an element of H1(N). Thus each Clifford torus generating H2(N) can

be extended to a closed class 3-grope. This implies that g induces an isomorphism

on H2(K)/ϕ3(K) → H2(N)/ϕ3(N), as both sides are equal to zero. By Dwyer’s

theorem this is equivalent to an isomorphism

g : F/F3
∼=−→ π1(N)/π1(N)3.

By Lemma 4.1.6, Milnor groups with two generators are nilpotent of at most degree

two, hence we have an isomorphism between F/F3 and the Milnor group of the
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complement of two spheres.

Corollary 5.0.8. Let f = f1 ⊔ f2 ⊔ f3 : S2∐S2∐S2 → S4 be a generic link map.

Then we can apply finger moves to f to create a link map f̃1⊔f̃2⊔f̃3 : S2∐S2∐S2 →

S4 such that

π1(S4∖ν(f̃i ∪ f̃j)) ∼= F/F3,

where i ̸= j.

Proof. By Lemma 5.0.6, finger moves can be applied to f such that the complement

of any two distinct components is a Milnor group. By Proposition 5.0.7, this Milnor

group is isomorphic to F/F3.
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The three-component link map

invariant

We now define our three-component invariant. We first do this in the case of based

link maps and then explain how to make an invariant for unbased link maps.

6.1 Based link maps

Firstly, we choose the induced orientation on Sn from the standard orientation on

Rn+1. Fix a basepoint s0 ∈ S4 and consider a generically immersed, based, link map

f = fx ⊔ fy ⊔ fz : S2
x

∐
S2
y

∐
S2
z → S4, where the basing paths for each sphere are

given by γfx , γfy and γfz respectively. Homotop γfx , fixing the end points, such that

on [1 − ε, 1], for some ε > 0, γ lies in the fibre of the normal bundle above the point

γfx(1). Let U be an open subset of fx, around γfx(1) which contains no intersections

and admits a trivialisation of the normal bundle, ϕ : U ×D2 → ν(fx)|U . We define a

meridian by the following concatenation of paths: travel along the basepoint γfx from

x0 to γfx (1 − ε), then travels along the generator of π1 (U ×D2∖U × {0}) which has

linking number +1 with fx, and then travels back along γfx from γfx (1 − ε) to the x0.

Call this meridian x. Define y and z to be similar meridians for the other respective

components. These meridians are normal generators of π1 (S4∖ν(f)) and thus are
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generators of Mπ1 (S4∖ν(f)). Let Ax, Ay and Az be the normal closures of x, y and

z respectively, inside Mπ1 (S4∖ν(f)). By Proposition 5.0.7 we have

Mπ1
(
S4∖ν(f)

)
/Ax ∼=

〈
y, z, s| [y, s] , [z, s] , [y, z] s−1

〉
Mπ1

(
S4∖ν(f)

)
/Ay ∼=

〈
z, x, t| [z, t] , [x, t] , [z, x] t−1

〉
Mπ1

(
S4∖ν(f)

)
/Az ∼=

〈
x, y, u| [x, u] , [y, u] , [x, y]u−1

〉
.

as Mπ1 (S4∖ν(f)) /Ai = Mπ1 (S4∖ (ν(fj) ⊔ ν(fk))), where i, j, k ∈ {x, y, z} and are

pairwise distinct. We define

Γx :=
〈
y, z, s| [y, s] , [z, s] , [y, z] s−1

〉
,

Γy :=
〈
z, x, t| [z, t] , [x, t] , [z, x] t−1

〉
,

Γz :=
〈
x, y, u| [x, u] , [y, u] , [x, y]u−1

〉
,

and K := ZΓx × ZΓy × ZΓz.

Remark 6.1.1. To clarify the above, we have taken a based link map and used the

basing curves for each surface to define a meridian and then chosen isomorphisms

to F/F3 using the specified meridians.

Definition 6.1.2. Let f be a based three-component link map then

σ3(f) = (σx(f), σy(f), σz(f)) := (M (λ(fx, fx)) ,M (λ(fy, fy)) ,M (λ(fz, fz))) ∈ K.

Proposition 6.1.3. The map σ3 is a based link homotopy invariant.

Proof. By Proposition 5.0.7, through a generic homotopy, the Milnor group of the

fundamental group of the complement of two spheres, described by a link map,

remains constant. We now check that under a generic homotopy the triple remains

fixed.

Considering a link map f , we check that finger moves do not affect the intersection

values. We first check that σx(f) = M(λ (fx, fx)) is not affected by any finger move

on any component. The other components will follow similarly. It is clear that doing
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a finger move on the x component does not affect the intersection number since λ is

a homotopy invariant.

We now check that a finger move on the y component does not affect Mλ(fx, fx). If

we do a finger move on the y sphere we change the fundamental group of the com-

plement of π1(S4∖ (ν(fy)
∐(fz))) to π1(S4∖ (ν(fy)

∐(fz)))
/

⟨⟨[y, gyg−1]⟩⟩ for some

g ∈ π1(S4∖ (ν(fy)
∐(fz))) [Cas86]. We thus have the following commutative diagram

π1(S4∖ (ν(fy)
∐(fz))) Mπ1(S4∖ (ν(fy)

∐(fz)))

π1(S4∖ (ν(fy)
∐(fz)))

/
⟨⟨[y, gyg−1]⟩⟩ M

(
π1(S4∖ (ν(fy)

∐(fz)))
/

⟨⟨[y, gyg−1]⟩⟩
)

.

Id

The horizontal maps are the Milnor quotient maps. Hence, group elements are

not changed by finger moves, since the finger move introduces relations already a

consequence of the relations in Mπ1 (S4∖ (fy ⊔ fz)). Hence, Mλ(fx, fx) is invariant

under finger moves on the y component. An analogous argument works for finger

moves on the z component. Hence σ3 is invariant under finger moves.

Let g be a generic immersed link map link homotopic to f . We can assume that

that both maps have the same Euler number, since cusps do not change λ nor the

fundamental group of the complement. Let F :
(
S2
x

∐
S2
y

∐
S2
z

)
× I → S4 be a

generic homotopy such that F (−, 0) = f and F (−, 1) = g. We may assume this is a

regular homotopy since both Euler numbers are the same and by Proposition 3.1.5

we may assume F is a concatenations of finger moves, Whitney moves and isotopies.

As finger moves are supported by an arc and Whitney moves are supported in the

neighbourhood of a disc we may assume F does all the finger moves when t ∈
(
0, 1

2

)
and Whitney moves when t ∈

(
1
2 , 1

)
. By the earlier argument, finger moves do

not change the triple and thus the triple is equal on f and F (−, 1
2). Running the

homotopy backwards from g to F (−, 1
2) is a sequence of finger moves, so the triple

on g and F (−, 1
2) is the same. By transitivity, σ3 is a homotopy invariant.
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6.1.1 Link maps (unbased)

Using the invariant for the based link maps we will develop an invariant for unbased

link maps. This will come from taking a quotient of K which corresponds to changing

the choice of basing paths for each sphere.

We first analyse the changes to σ3 which occur when we change the basing of a

single component. After this, we describe what happens when all the basings change.

This will give us an orbit space for the action on K that correspond to changing the

basing paths. This will be the correct quotient to describe an invariant of unbased

link maps.

Lemma 6.1.4. Let f and g be based link maps which are equal except that the

basings of the x component are different. Then for some h ∈ Γx we have

Mλ(gx, gx) = h (Mλ(fx, fx))h−1.

Proof. Let γfx : I → S4 and γgx : I → S4 be basing paths for the x component. To

prove the result we will work with the self-intersection number µ and use Theorem

2.2.3 to calculate λ. Let p ∈ fx(S2
x) be a self-intersection. Using the basing γfx , the

group element associated to the intersection is given by

γfx · f(δ1) · f(δ2) · γfx.

Recall that δ1 and δ2 are paths on S2 from f−1({γfx(1)}) to the distinct elements

p1, p2 ∈ f−1
x ({p}) respectively. Using the basing path γgx, the group element associ-

ated to the self-intersection becomes

γgx · f(δ′
1) · f(δ′

2) · γgx,

where δ′
1 and δ′

2 are defined similarly to δ1, δ2. Let α : I → im(fx) such that

α(0) = γgx(1) and α(1) = γfx(1) such that α does not pass through an intersection

at any point on the path. Also, define h = γgx · α · γ̄fx . As S2 is simply connected,



6.1. Based link maps 51

γfxγgx

fx

Figure 6.1: A schematic for the different choice of basing paths to
the x component, for the based link maps f and g in
Lemma 6.1.4

α · f(δ1) ≃ f(δ′
1) and f(δ̄2) · ᾱ ≃ f(δ̄′

2) . Using both of these homotopies we have

γgx · f(δ′
1) · f(δ̄′

2) · γ̄gx ≃ γgx · α · f(δ1) · f(δ̄2) · ᾱ · γ̄gx

≃ γgx · α · γ̄fx · γfx · f(δ1) · f(δ̄2) · γ̄fx · γfx · ᾱ · γ̄gx

= h
(
γfx · f(δ1) · f(δ̄2) · γ̄fx

)
h̄,

where h ∈ Γx. Using Theorem 2.2.3 we have proven the result.

Lemma 6.1.5. Let f be a based link map such the triple σ3(f) is equal to ∑
(i,j,k)∈Z3

aijky
isjzk,

∑
(i,j,k)∈Z3

bijkz
itjxk,

∑
(i,j,k)∈Z3

cijkx
iujyk

 ∈ K

Then for a based link map g, which is equal to f except that it differs by a basing

path to the x component, the triple σ3(g) is equal to ∑
(i,j,k)∈Z3

aijky
isj−ak+bizk,

∑
(i,j,k)∈Z3

bijkz
itj+bkxk,

∑
(i,j,k)∈Z3

cijkx
iuj−aiyk

 ∈ K,

for some a, b ∈ Z.

Proof. By the previous lemma we have

M (λ (gx, gx)) = hM (λ (fx, fx))h−1,

for some h ∈ Γx. Since h = yv1sqxzw1 for v1, qx, w1 ∈ Z then using the relations in
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Γx we have

M (λ (gx, gx)) = yv1sqxzw1

 ∑
(i,j,k)∈Z3

aijky
isjzk

 z−w1s−qxy−v1

= yv1zw1

 ∑
(i,j,k)∈Z3

aijky
isjzk

 z−w1y−v1

= yv1

 ∑
(i,j,k)∈Z3

zw1yiz−w1sjzk

 yv1

= yv1

 ∑
(i,j,k)∈Z3

aijky
isj−w1izk

 y−v1

=
∑

(i,j,k)∈Z3

aijky
isj−w1iyv1zky−v1

=
∑

(i,j,k)∈Z3

aijky
isj−w1i+v1kzk.

We now show how the other components transform. The details of this are slightly

more subtle, as the group elements associated to the intersections do not change

when considered as elements of Mπ1(S4∖fx ⊔ fz) and Mπ1(S4∖fx ⊔ fy). The reason

why the values in Γy and Γz change is because our choice of isomorphisms from

Mπ1(S4∖fx ⊔ fz) and Mπ1(S4∖fx ⊔ fy), to Γy and Γz respectively, change when

we change the basing path. In order to compute what our invariant looks like on g

we must describe the meridian of the first component of f in terms of the specified

meridians of g.

Let x′ be the meridian of the first component of g. Our goal is to find a loop

r ∈ π1(S4∖f) such x = r−1x′r, where we consider r as in Γy and Γz and r = h in

Γx.

Let γfε , γgε : I → S4 be the basing paths of the x components f and g respectively

which stop at γfx(1 − ε) and γfx(1 − ε). Recall that α : I → fx is a path between the

two basing points of g and f starting at γgx(1) and ending at γfx(1) without going

through any intersections. Let α′ be a normal push-off of α from the surface with

starting point γgx(1−ε) and with end point γfx(1−ε). Let pgx be the generator, based

at γgx(1 − ε), of π1(U × D2∖U × {0}) with positive linking number to fx, where
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U is an open subset around γgx(x) which trivialises the normal bundle. We have a

homotopy x ≃ γfε · α′ · pgx · α · γfε , which we can see by comparing Figure 6.2 and

Figure 6.3. Hence,

x ≃ γfε · α′ · pgx · α · γfε

≃ γfε · α′ · γgε · γgε · pgx · γgε · γgε · α · γfε

= r−1x′r,

where r = γgε ·α · γfε and, by definition, x′ = γgε · pgx · γgε. Considering r as an element

inside Mπ1(S4∖fy ⊔ fz) we can see that it is homotopic to h ∈ Γx. Using this we

have

M (λ(gy, gy)) =
∑

(i,j,k)∈Z3

bijkz
itjxk

=
∑

(i,j,k)∈Z3

bijkz
itj(r−1x′r)k,

where we consider r ∈ Γy. Similarly we have

M (λ(gz, gz)) =
∑

(i,j,k)∈Z3

cijk(r−1xr)iujyk,

where we consider r ∈ Γz. We consider r inside the different quotients, Γx, Γy and

Γz. Inside these quotients we find that r is equal to yv1sqxzw1 ∈ Γx, zv2tqyxw2 ∈ Γy

and xv3uqzyw3 , where vi, wi ∈ Z for 1 ≤ i ≤ 3.

Claim 6.1.6. In the above we have v1 = w3, w1 = v2 and w2 = v3.

From this claim we set v1 = −a and w1 = −b. We now have that the triple for g,

substituting in the various quotients of r, and using Γi relations we have( ∑
(i,j,k)∈Z3

aijky
−az−byisjzkzbya,

∑
(i,j,k)∈Z3

bijkz
itj(zbx′z−b)k,

∑
(i,j,k)∈Z3

cijk(yax′y−a)iujyk
)

=
( ∑

(i,j,k)∈Z3

aijky
isj−ak+bizk,

∑
(i,j,k)∈Z3

bijkz
itj+bk(x′)k,

∑
(i,j,k)∈Z3

cijk(x′)iuj−aiyk
)

.
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x
fx

Figure 6.2: A schematic showing the meridian x associated to the
surfaces basing path.

We now replace x′ with x to identify the x meridian given by g to get( ∑
(i,j,k)∈Z3

aijky
isj−ak+bizk,

∑
(i,j,k)∈Z3

bijkz
itj+bkxk,

∑
(i,j,k)∈Z3

cijkx
iuj−aiyk

)

To complete the proof, we need to account for the different possible choice of r

resulting from the choice of push off of α. The different choice of α does not effect

a and b as these are linking numbers of the path with the y and z component and

upon the inclusion of the x component all the different paths become homotopic and

thus these values are unchanged by our choice. The only value which is changed is

the power of x in Γy and Γz but this does not affect the end results as the triple is

independent of p′. This completes the proof modulo the proof of Claim 6.1.6.

Remark 6.1.7. It is clear from the proof of Lemma 6.1.5 that we only need to

consider the loop r as an element of Γx to know how to change the triple for the new

basing path and, since elements in the center do not matter, we only need to look

at the curve as an element of Γx/ [γx, γx] ∼= H1(S4∖fy ⊔ fz). As v1 is the linking of

the loop with the S2
y sphere and w1 is the linking number of the loop S2

z , it is clear

we only need to know the linking number of the loop with the other components to

calculate how the triple transforms.

We now prove the claim that was in the previous proof.
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γfϵ

fx

pgx

α

Figure 6.3: A schematic showing the result of a homotopy of the x
meridian, which used the push-off of the surface α.

Proof of Claim 6.1.6. We will prove that the following diagram commutes

Mπ1(S4∖f) Z3

Γx × Γy × Γz Z2 × Z2 × Z2,

q

Ab

Ab × Ab × Ab

where Ab is the quotient map to the abelianisation for the various groups involved.

The map q takes a group and sends it to its various representatives in each factor.

Notice that (Ab × Ab × Ab) (Γx × Γy × Γz) = H1(S4∖fy ⊔ fz) ×H1(S4∖fz ⊔ fx) ×

H1(S4∖fx ⊔ fy) ∼= Z2 × Z2 × Z2 and H1(S4∖f) ∼= Z3. The map Z3 → Z2 × Z2 × Z2

is given by

xαyβzγ 7→ ((β, γ), (α, γ), (α, β))

Proving the above diagram commutes is equivalent to showing that

Mπ1(S4∖f) Γx

H1(S4∖f) H1(S4∖fy ⊔ fz)

Ab

i

Ab

H(i)

commutes, as the roles of x, y and z are symmetric. We can write r = xαyβzγη where

η is a product of commutators. Then Ab(i(r)) = Ab(yβzγsp) = yβzγ. Computing

the other path, we have H(i) (Ab(r)) = H(i)(xαyβzγ) = yβzγ. This proves the

claim.

We now show how the triple changes when all three components change their basing

paths



56 Chapter 6. The three-component link map invariant

Corollary 6.1.8. Let g1 be a based link map with triple σ3(g1) equal to ∑
(i,j,k)∈Z3

aijky
isjzk,

∑
(i,j,k)∈Z3

bijkz
itjxk,

∑
(i,j,k)∈Z3

cijkx
isjyk

 ∈ K.

Let g2 be the same link map as g1 with potentially different basings then

σ3(g2) =
 ∑

(i,j,k)∈Z3

aijky
isj+(b−c)i+(f−a)kzk,

∑
(i,j,k)∈Z3

bijkz
itj+(d−e)i+(b−c)kxk,

∑
(i,j,k)∈Z3

cijkx
isj+(f−a)i+(d−e)kyk

 ∈ K,

for some a, b, c, d, e, f ∈ Z.

Proof. Let rx = yazbsα ∈ Γx, ry = zcxdtβ ∈ Γy and rz = xeyduγ ∈ Γz be the loops

we construct from the two basings on each component. We now repeat the proof of

Lemma 6.1.5 on each sphere: changing the x-basing we have( ∑
(i,j,k)∈Z3

aijky
isj−ak+bizk,

∑
(i,j,k)∈Z3

bijkz
itj+bkxk,

∑
(i,j,k)∈Z3

cijkx
iuj−aiyk

)
;

and changing the y-basing( ∑
(i,j,k)∈Z3

aijky
isj−ak+(b−c)izk,

∑
(i,j,k)∈Z3

bijkz
itj+(b−c)k+dixk,

∑
(i,j,k)∈Z3

cijkx
iuj−ai+dkyk

)
.

Changing the z-basing we arrive at the desired result,

( ∑
(i,j,k)∈Z3

aijky
isj+(b−c)i+(f−a)kzk,

∑
(i,j,k)∈Z3

bijkz
itj+(b−c)k+(d−e)ixk,

∑
(i,j,k)∈Z3

cijkx
iuj+(f−a)i+(d−e)kyk

)
.

One can check that the above does not depend on the order in which we changed

the basing paths. However, it is clear geometrically that this is the case.

We wish to show that we can achieve all values of a, b, c, d, e, f ∈ Z by changing

basing paths. Let g be a link map and define Bg to be the set consisting of triples

of basing paths to the x, y and z spheres. We define a map ζ : Bg ×Bg → Z6. Let

Q,Q′ ∈ Bg. Let γx, γy and γz be the basing paths for each sphere given by Q and
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let γ′
x, γ′

y and γ′
z be the basing paths in Q′. Define a loop

hx := γx · δ · γ̄′
x,

where δ is the unique path up to homotopy between the points γx(1) and γ′
x(1) which

is the image of a path in the pre-images. We define hy and hz similarly. Thus we

define

ζ (Q,Q′) :=
(

lk
(
hx, g(S2

y)
)
, lk

(
hx, g(S2

z )
)
, lk

(
hy, g(S2

z )
)
,

lk
(
hy, g(S2

x)
)
, lk

(
hz, g(S2

x)
)
, lk

(
hz, g(S2

y)
) )

.

Lemma 6.1.9. The map, ζ : Bg ×Bg → Z6, is surjective.

Proof. Let mx, my and mz be meridians defined using the basing paths of Q and let

a, b, c, d, e, f ∈ Z. Let Qm be the basing paths consisting of the paths ma
y · mb

z · γx,

mc
z ·md

x · γy and me
x ·mf

y · γz. Hence,

ζ (Qm, Q) = (a, b, c, d, e, f) .

Definition 6.1.10. Let (a, b, c, d, e, f) ∈ Z6 and( ∑
(i,j,k)∈Z3

aijky
isjzk,

∑
(i,j,k)∈Z3

bijkz
itjxk,

∑
(i,j,k)∈Z3

cijkx
iujyk

)
∈ K.

Then we define

(a, b, c, d, e, f) ·
( ∑

(i,j,k)∈Z3

aijky
isjzk,

∑
(i,j,k)∈Z3

bijkz
itjxk,

∑
(i,j,k)∈Z3

cijkx
iujyk

)

=
( ∑

(i,j,k)∈Z3

aijky
isj−ci+fk−ak+bizk,

∑
(i,j,k)∈Z3

bijkz
itj−ei+bk−ck+dixk,

∑
(i,j,k)∈Z3

cijkx
iuj−ai+ck−ek+fiyk

)
.

Lemma 6.1.11. The operation described in Definition 6.1.10 is a group action on

K by Z6.
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Proof. One must check that for all g ∈ K

(0, 0, 0, 0, 0, 0) · g = g

and

(a, b, c, d, e, f) · ((a′, b′, c′, d′, e′, f ′) · g) = (a+ a′, b+ b′, c+ c′, d+ d′, e+ e′, f + f ′) · g.

This is clear from the algebra.

Let K̃ be the orbit space of this action.

Definition 6.1.12. Let f be a three-component link map. Then we define a map

σ̃3 : LM4
2,2,2 → K̃ by

σ̃3 (f) := [σ3(f)] ∈ K̃.

Proposition 6.1.13. The map σ̃3 is a well defined map on LM4
2,2,2.

Proof. We showed that in the based case under link homotopy the triple remains

fixed. It is clear from Lemma 6.1.5 and the definition of K̃ that the map is well

defined.

The invariant σ̃3 contains all the data of the Kirk invariant on its two-component

sublink maps.

Lemma 6.1.14. Let i : LM4
2,2,2 → LM4

2,2 be the map which forgets about the ith

sphere. Additionally, let pi : K → (Z [Z])2 be the map given by projecting onto the

factors which are not i and setting the ith meridian equal to 1. Then the following

diagram commutes
LM4

2,2,2 LM4
2,2

K (Z [Z])2 ,

σ̃3

i

σ

pi

(6.1.1)

where i is the map that forgets the ith component, and pi is the map where you

project onto two factors which are not i and sets ith component’s meridian equal to

1.
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6.2 Examples of three-component linking

behaviour

Our three-component invariant, σ̃3, can differentiate between the trivial link map

and link maps which are trivial when any component is removed, and thus can detect

linking behaviour which only occurs when there are at least three-components.

Theorem 6.2.1. Let L be the link given in the centre of Figure 6.4. Then we can

apply a null homotopy of components of the link to construct a representative of

f ∈ LM4
2,2,2 with some choice of basing path such that

σ̃3(f) =
(
z (s− 1) + z−1

(
s−1 − 1

)
, 0, x (1 − u) + x−1

(
1 − u−1

))
̸= 0.

Hence, F is link homotopically non-trivial. However, the removal of any component

gives a trivial component two-component link map.

Proof. Using Figure 6.4, we have a description of a three-component link map inside

S4 which we call f . To compute the first component of σ3, consider the null-

homotopy from the central time slice to the end. The sign of the self-intersections

in the corresponding link map is labelled on Figure 6.4. The corresponding element

of γx at the first intersection on this region is z (we could have chosen z here). The

corresponding element of Γx of the next self-intersection in this region is given by

zyz−1y−1z−1 ∈ Γx. Hence, the first component of σ3(f) is given by

z ([y, z] − 1) + z−1 ([z, y] − 1) ∈ ZΓx.

We now compute the third component of σ3. Using the Wirtinger presentation one

can show that the meridian of the first component, below the second component,

is given by y−1xy. We now study the homotopy from the start to the central time

slice. The group element associated to the first double point in this region is x ∈ Γz.

The group element associated to the next intersection in this region is y−1xy ∈ γz
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Figure 6.4: This is a sequence of times slices in D3 × I inside S4

describing a link map where we have specified a basing
paths and meridians on the central time slice by blue
points on each link component. The x component is the
component at the top on the left, the second components
is the circle round the band and the third component
is the right most component. The orientation of each
components travels through the basepoint to the left.
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this is equivalent to the group element x [x, y]. Hence the third component is

x (1 − [x, y]) + x−1 (1 − [y, x]) ∈ ZΓz.

The second component is embedded and thus the second component of σ3 vanishes.

If we remove a sphere the link becomes trivial. To see this, we use repeated applic-

ations of Lemma 6.1.14. Notice that pi(σ̃3(f)) = 0 for each i. Using that the Kirk

invariant is injective [ST17] this implies that i(f) is a trivial link map for all i which

proves the result.

Paul Kirk had a version of his invariant for more than two components [Kir88]. If

we consider the link map constructed using Figure 6.4, his invariant fails to be able

to distinguish between this non-trivial link map and a trivial link map. We will give

a name for link maps which a trivial once a component is removed.

Definition 6.2.2. We call a link map Brunnian if the removal of any single com-

ponent results in a trivial link map up to link homotopy. We will denote the set of

three-component Brunnian link maps by Bl42,2,2.

Example 6.2.3. Let f be the link map from Theorem 6.2.1 with the same basing

paths and orientations. Let g = f ◦ k where k : S2
x

∐
S2
y

∐
S2
z → S2

x

∐
S2
y

∐
S2
z which

is a reflection on S2
y and the identity elsewhere. This gives us

σ3(f) =
(
z (s− 1) + z−1

(
s−1 − 1

)
, 0, x (1 − u) + x−1

(
1 − u−1

))
σ3(g) =

(
z
(
s−1 − 1

)
+ z−1 (s− 1) , 0, x

(
1 − u−1

)
+ x−1 (1 − u)

)
.

If we consider the based verison of the invariant it is clear that these are two different

based link maps. However, we must check that the unbased case gives two distinct

equivalence classes. Let us fix the representative of σ3(g) as above. The equivalence

class for σ3(f) is described by

(
z
(
s1−a − s−a

)
+ z−1

(
s−1+a − sa

)
, 0, x

(
u−a − u1−a

)
+ x−1

(
ua − u−1+a

))
,
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where a ∈ Z. Taking the difference and looking at the first component we get

z(s1−a − s−a − s−1 + 1) + z−1(s−1+a − sa − s+ 1).

A necessary condition for both link maps to be equal is to have an a ∈ Z such that

s1−a − s−a − s−1 + 1 = 0.

Clearly, such an a must have |a| < 2. Checking each value of a remaining, it is

evident we can never solve the above equation. Hence, as unbased link maps they

are not equal.

This establishes the following.

Theorem 6.2.4. For each n ≥ 3 there exists link maps f = f1 ⊔ · · · ⊔ fn and

f ′ = f ′
1 ⊔ · · · ⊔ f ′

n such that for i, fi(S2) = f ′
i(S2), but f and f ′ are not link

homotopic

6.3 New invariants

Frequently, it is difficult to differentiate two elements of LM4
2,2,2 using σ̃3 since it can

be difficult to tell if two representatives of elements of K̃ are in the same equivalence

class. This section will focus on extracting new invariants from σ̃3 which also are

independent of our choice of basing path for each component.

Let f ∈ LM4
2,2,2 and write

σ̃3 (f) =
 ∑

(i,j,k)∈Z3

afijky
isjzk,

∑
(i,j,k)∈Z3

bfijkz
itjxk,

∑
(i,j,k)∈Z3

cfijkx
iujyk


for some choice of basing paths for each sphere, where afijk, b

f
ijk, c

f
ijk ∈ Z. Let, Af be

the unordered n-tuple of non-zero afijk. Define Bf and Cf similarly. We have the

following

Proposition 6.3.1. Let f, g be link homotopic link maps. Then Af = Ag, Bf = Bg

and Cf = Cg.
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Proof. The proposition follows from immediately from the definition of σ̃3.

Proposition 6.3.2. Let f ∈ LM4
2,2,2 with some choice of basing path. Suppose g is

a link map link homotopic to f . Then for any choice of basing path there exist an

l ∈ Z such that agilk = aijk and

j ≡ l mod gcd (i, k) .

Proof. It is clear that the exponent of s does not change if we do a link homotopy of

a based link map, so we must show that this is independent of our choice of basing

path. Notice that a change of basing paths does the following transformation:

yisjzk 7→ yisj+(b−c)i+(f−a)kzk

Hence, taking j modulo gcd (i, k) we have a number independent of our choice of

basing path, which proves the proposition.

Similar invariants can be derived by looking at the power of the t and u terms in σy

and σz respectively. These invariants are similar to Milnor’s triple linking number

introduced in [Mil54], with the only significant difference being that there is no

obvious sense in which we have symmetry relations. However, this invariant requires

us to throw away information of the other intersections. We will now construct a

similar invariant but which keeps track of all changes to the intersections.

Let n1, n2 and n3 non-negative integers with n = 2n1 + 2n2 + 2n3. Let Snk
be the

symmetric group on nk variables when nk is non-zero. We denote Sn1 × Sn2 × Sn3

by S(n1,n2,n3). This group has an action on Zn = (Z2)n1 × (Z2)n2 × (Z2)n3 given by

permuting components.

We can think of the action of S(n1,n2,n3) as being represented by a group of matrices

P(n1,n2,n3).

We define

Ak (Zn) := {x+N | x ∈ Zn and N is a submodule of Zn of rank k}.
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Definition 6.3.3. Take the quotient space

A(n1,n2,n3) :=
3∐

k=0
Ak (Zn) /P(n1,n2,n3),

and define

A :=
∐

(n1,n2,n3)∈Z3
≥0

A(n1,n2,n3).

We now wish to construct a map

µ : K → A

which descends to a well-defined map

µ : K̃ → A.

Let

v =
 ∑

(i,j,k)∈Z3

aijky
isjzk,

∑
(i′,j′,k′)∈Z3

bi′j′k′zi
′
tj

′
xk

′
,

∑
(i′′,j′′,k′′)∈Z3

ci′′j′′k′′xi
′′
uj

′′
yk

′′



and n1 = |Av|, n2 = |Bv| and n3 = |Cv|. Additionally, place an ordering on the

elements of Av, Bv, and Cv. We write the lth element of Av, where 1 ≤ l ≤ n1, as

ailjlkl
corresponding to the group element yilsjlzkl . We write the lth element of Bv

and lth element of Cv similarly. We now define µ(v) to be the set of vectors that

satisfy

n1∑
l=1

(jl + q1kl + q2il)e2l−1 +
n1∑
l=1

(ailjlkl
)e2l

+
n2∑
l=1

(j′
l + q2k

′
l + q3i

′
l) en1+2l−1 +

n2∑
l=1

(bi′
l
j′

l
k′

l
)e2l

+
n3∑
l=1

(j′′
l + q1i

′′
l + q3k

′′
l ) en1+n2+2l−1 +

n3∑
l=1

(ci′′
l
j′′

l
k′′

l
)e2l ∈ A.

where q1, q2, q3 ∈ Z and el to the vector which has all zeros except for a 1 in the lth

position.
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Proposition 6.3.4. The map µ : K → A is well defined and descends to a map on

the quotient µ : K̃ → A.

Proof. Indeterminacy arises from our choice of ordering on the intersections. How-

ever, this is accounted for by the choice of quotients used to construct A.

The submodule associated to the affine space defined by µ is dependent on the

powers of the non-commutator generators of each group element which is unchanged

by the action of Z6, which defines K̃. Furthermore, the vector given by the powers of

the commutator terms all lie in the same affine space so when considering different

representatives we assign the same affine space.

This invariant is similar to the total Milnor quotient in [DNOP20] by Davis, Nagel,

Powell and Orson. They made use of exterior algebra since Milnor’s µ̄ invariants obey

some relations by permuting elements. We do not have these symmetry relations, as

our objects that are “triple linking” are a closed loop and two immersed two-spheres.

The map µ is clearly stronger than our previous invariant which considered the power

of the commutator term of the intersection which is shown in the following example.

Example 6.3.5. Let f be the link map from Theorem 6.2.1 and g be a similar link

map which can be represented by a similar movie but the band travels around the

second component twice. We thus have

σ̃3(f) =
(
z(s− 1) + z−1(s−1 − 1), 0, x(1 − u) + x−1(1 − u−1)

)

and

σ̃3(g) =
(
z(s2 − 1) + z−1(s−2 − 1), 0, x(1 − u2) + x−1(1 − u−2)

)
.

Computing µ for each we get

µ
(
σ3 (f)

)
=
(

1 + q1, 1, q1, −1, −1 − q1, 1, −q1, −1,

1 + q1, −1, q1, 1, −1 − q1, −1, −q1, 1
)
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and

µ
(
σ3 (f)

)
=
(

2 + q1, 1, q1, −1, −2 − q1, 1, −q1, −1,

2 + q1, −1, q1, 1, −2 − q1, −1, −q1, 1
)

,

for some choice of ordering of the intersections.

Each of these affine lines has a unique real affine line in R8 which intersects every

point in the affine subspace. Computing the distance of these “completed” affine lines

from the origin we get 10 and 16 respectively. The actions of P4,0,4 are orthogonal

so both distances are unchanged by the action of P4,0,4.

If we post compose σ3 with µ we have a map from LM4
2,2,2 → A, we will often refer

to this map µ as it will be clear from context which domain we are considering.

Proposition 6.3.6. Let f ∈ LM4
2,2,2 such that the representative affine space µ (f)

is a single vector. Then f ∈ Bl42,2,2.

Proof. If µ(f) is represented by a single vector then, in σ3(f), each component is

given by a Laurent polynomial in the commutator terms, s, t and u. Remove a

component to get a two-component link map. Using Proposition 6.1.14 three times

to compute the Kirk invariant and using the injectivity of the Kirk invariant proves

the result.

For our final invariant on K̃ we seek to place a notion of size of elements of our

invariant.

Definition 6.3.7. Let A ⊂ Z3 be finite and d : Z3 × Z3 → R be a metric. We call

Dd (A) := max
(a,b)∈A×A

d(a, b),

the diameter of A.

Take a representative of σ3 (f), we define the following subset of Z3

A′
f :=

{
(i, j, k) ∈ Z3|aijk ̸= 0

}
,
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We can define the sets B′
f and C ′

f analogously. The sets A′
f and B′

f and C ′
f are

contained within equivalence classes of subsets of Z3, which we will denote by
[
A′
f

]
,[

B′
f

]
and

[
C ′
f

]
, where the equivalences classes are given by the action of Z6 on ZΓi.

Definition 6.3.8. Let f ∈ K and d : Z3 × Z3 → R be a metric. We define

W (f) := min
f∈[f ]

(
Dd

(
A′
f

)
+Dd

(
B′
f

)
+Dd

(
C ′
f

))
,

to be the width of f with respect to d.





Chapter 7

Constructing new link maps

7.1 Annular link maps

Our inspiration for Theorem 6.2.1 was to imagine taking the connect sum of two-

component link maps but around one of the tubes place an unknotted sphere such

that the tube links this sphere. Our goal is to formalise this idea and provide a

formula for σ̃3 for three-component link maps constructed via this method. We now

introduce some formalism.

Let D1, . . . Dn be disjoint embedded discs in B3 with boundary Ci such that Ci ∩

∂B3 = ∅ for all i. Additionally have all Ci lie inside R2 × {0} ∩ B3 and are not

nested in the plane.

Definition 7.1.1. A n-component 2-string link is a smooth/topologically flat proper

embedding of
n∐
i=1

S1 × [0, 1] → B3 × [0, 1] ,

such that the image of each annulus is bounded by Ci × {0} and Ci × {1}, with

compatible orientation. An Annular link map is defined similarly but we allow this

map to be an immersion with self-intersections, on the same component, in the

interior of each annulus.
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We consider annular link maps up to link homotopy i.e. a homotopy through

annular link map. Denote the set of three-component annular up to link homotopy

by ALM4
2,2,2. Let EASL4

2,2,2 ⊂ ALM4
2,2,2 be the subgroup of three-component annular

link maps which are link homotopic to a topologically flat embedded annular link map.

An embedded annular link map which maps each component as (p, t) 7→ (ft(p), t),

where each ft is an embedding for all t ∈ I, is called a pure braid .

We construct a link map from an annular link map by taking B3 × I and gluing

along another B3 × I along S2 × I giving S3 × I = B3 × I ∪S2×I B
3 × I. We now

cap off both ends of S3 × I with D4 and cap off each end of the annulus with a slice

disc which is link homotopic to the collection of disjoint Di, giving rise to a map

ALM4
2,2,2 → LM4

2,2,2. If X ∈ ALM4
2,2,2 denote its link map closure by fX ∈ LM4

2,2,2 .

The set of annular link maps can be equipped with a multiplication. Suppose we

have two annular link maps X,X ′ : ∐n
i=1 S

1 × [0, 1] → B3 × [0, 1]. We define

(X ·X ′) (p, t) =


X(p, 2t) 0 ≤ t ≤ 1

2

X ′(p, 2t− 1) 1
2 < t ≤ 1.

If we consider the set of n-component annular link maps up to link homotopy then

ALM4
2,2 becomes a group with multiplication given by

[X] · [X ′] := [X ·X ′] .

The inverse is given by considering the involution r : B3 × [0, 1] → B3 × [0, 1], with

r(p, t) = (p, 1 − t)

and also let Y : ∐n
i=1 S

1 × [0, 1] → B3 × [0, 1] with

Y (p, t) = X(p, 1 − t).

We then have a annular link map r ◦ Y : ∐n
i=1 S

1 × [0, 1] → B3 × [0, 1] for which

[r ◦ Y ] · [X] = [X] · [r ◦ Y ] = [O] ,
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Figure 7.1: An example of an embedded annular link map.

where O is the trivial annular link map. The proof that this gives an inverse can be

found in [MY21]. We can show that this multiplication is non-abelian using the σ3

invariant. We first define the following. For a annular link map X we will denote

its inverse by X.

Definition 7.1.2. Let B be a three-ball contained inside B̊3. Let X be a three-

component annular link map with one of the components contained in a B × I ⊂

B3 × I where the other components do not intersect B × I and the image of this

component is a Ci × I for some i ∈ {1, 2, 3}. The other two components are the

image of a JK construction which has not been capped off. Then we call X a

three-component JK construction.

Proposition 7.1.3 ([MY21]). The group of annular link maps up to link homotopy

is non-abelian if n ≥ 3.

Proof. Consider the three-component JK construction inside B3 × I based on the

JK construction using the Whitehead link, where the second component is trivial.

Denote this by X, and similarly denote its inverse in ALM4
2,2,2 by X. Let J be the

annular link map described by Figure 7.1, inside the B3 × I. Consider the stacking

XJX, with link map closure fXJX . We have

σ3(fXJX) = (z(s− 1) + z̄(s̄− 1), 0, x(1 − u) + x̄(1 − ū)) ,

as it is the same link map as in Theorem 6.2.1. Consider the link map closure fXXJ .

Notice that we can retract the tubes given by J so that this is the same link map

given by the closure of XX. This gives a trivial link map [MY21] and thus XJX

and XX̄J are not equivalent.

Definition 7.1.4. Let L ⊂ B3 be an oriented n-component link of circles. The
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group of singular concordances of L is the set of flat topological immersions

n∐
i=1

S1 × I → B3 × I,

which is a link map such that image of the boundary each annulus is L× {0} and

L×{1} with compatible orientation and the only self-intersections are in the interior

of each component, up to link homotopy. We denote this group by C (L) and the

group operation is given by stacking the concordances.

To prove this has a group structure is similar to showing that the group of annular

link maps also has a group structure.

Proposition 7.1.5. Let L and L′ be concordant links in B3. Then the groups C(L)

and C(L′) are isomorphic.

Proof. A similar proof is given in [MY21]. Let Y be a concordance between L′ and L

and let X ∈ C (L) and X ′ ∈ C (L′). We have two homomorphisms ξ : C(L) → C(L′),

ξ′ : C(L′) → C(L) defined by

ξ(X) = Y XY

and

ξ′(X ′) = Y X ′Y.

We have

ξ′ ◦ ξ(X) = Y Y XY Y ∼lh X.

Hence, ξ′ ◦ ξ = IdC(L). Similarly, ξ ◦ ξ′ = IdC(L′).

Corollary 7.1.6 ([MY21]). Let L be a n-component slice link. The group of singular

concordances of L up to link homotopy is non-abelian for n ≥ 3.

Proof. By the previous proposition, the group of (singular) concordances of a slice

link up to link homotopy is isomorphic to the group of annular link map. Hence,

we only have to show that the group of annular link maps isn’t abelian for n ≥ 3.

However, this is shown in Proposition 7.1.3.
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7.1.1 A three-component annular link map invariant

Both Proposition 7.1.3 and Corollary 7.1.6 were proven in [MY21] by showing that

the subgroup of embedded annular link maps is non-abelian, using the longitudes of

each component; whereas we studied the self-intersections of annular link maps.

We now create an invariant of annular link maps which incorporates the longitude

information but also records self-intersection information similar to our invariant for

link maps.

First we specify a choice of basing path for each annular link map with three

components. Take the basepoint to be (s0, 0) ∈ B3 × I and let pi be a point in a

tubular neighbourhood of the ith component of the unlink O3 inside B3 × {0}. We

define a meridian for the ith component by taking a path from (s0, 0) to pi with the

curve lying only inside B3 × {0} and disjoint from the discs Di. Finally, travel along

a small loop around the ith component, such that the linking number is positive,

and return along the path which took you to pi. We call the meridians x, y and z

for the first second and third components respectively. The basing curves for the

ith component is given by taking the same path to pi for the meridians and then

travelling radially down the fibre of the normal bundle to the ith component.

Definition 7.1.7. We call such a collection of meridians and basing curves a basing

system for a annular link map.

We defined basing systems for annular link map above in terms of the unlink in the

B3 ×{0} time slice. However, if B3 ×{t}∩X = O3 ×{t} at t ∈ I we will say there is

a basing system there too, where we take the basepoint to be (s0, t) for these other

basing systems. Hence, we will often talk about a basing system at t ∈ I.

Annular link maps specify an automorphism of the lower central series quotients of

the fundamental group of the complement of the unlink. To prove this we will first

prove the following Lemma.
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Lemma 7.1.8. Let X be the image of a generic n-component annular link map

inside B3 × I. Then Mπ1 (B3 × I∖X) is isomorphic to the Milnor free group on

n-generators.

Proof. We can apply finger moves to the annular link map such that π1 (B3 × I∖X) =

Mπ1 (B3 × I∖X), which are normally generated by meridians of the unlink in

B3 × {1}. Using Seifert-Van Kampen we have

π1
(
S3 × I∖X

)
= π1

(
B3 × I∖X

)
∗ π1

(
B3 × I

)
= π1

(
B3 × I∖X

)
,

where S3 × I∖X = B3 × I∖X ∪S2×I B
3 × I. Capping off S3 × {1} with D4 and

choosing slice discs for each component which are link homotopic to the standard

embedding of discs bounded by the n-component unlink call these discs ∆.

This gives a collection of singular but disjoint slice discs for the unlink in D4. We

call this collection ∆′. By Seifert-Van Kampen, we have

π1
(
D4∖∆′

)
= π1

(
S3 × I∖X

)
∗F (n) π1(D4∖∆),

Since π1(D4∖∆) ∼= F (n) where the generators of F (n) is the choice of meridians of

the unlink we made previously. However, the amalgamation identifies the generators

of π1(S3 × I∖X) and π1(D4∖∆), Hence

π1
(
B3 × I∖X

) ∼= π1
(
D4∖∆′

)

By a result in [FT95], we have that Mπ1 (D4∖∆′) ∼= MF (n). This proves the

result.

Lemma 7.1.9. Let X be a Annular link map. Then the inclusion maps

ji :
(
B3 × {i}∖O3, (s0, i)

)
→
(
B3 × I∖X, (s0, i)

)
,

where i = 0, 1, induces an isomorphism on the Milnor groups of the fundamental

groups of each space.

Proof. By Lemma 7.1.8, we have that the Milnor group of the complement of X
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inside B3 × I is the Milnor free group on three-generators. It is clear that since we

are sending generators to generators and both are the free Milnor object of the same

number of generators we have an isomorphism.

We define

πO3 := π1
(
B3 × {0}∖O3, (s0, 0)

)
,

πO′
3

:= π1
(
B3 × {1}∖O3, (s0, 1)

)
,

πiX := π1
(
B3 × I∖X, (s0, i)

)
.

By Lemma 7.1.9

(j0)∗ : MπO3 → Mπ0
C

(j1)∗ : MπO′
3

→ Mπ1
C

are isomorphisms. Let α : [0, 1] → (B3 × I∖X) be given by

α(t) = (s0, t).

Let ψα : π0
X → π1

X be the isomorphism defined by

γ 7→ ᾱ · γ · α.

Hence, we have two isomorphisms

(j1)−1
∗ ◦ ψα ◦ (j0)∗ : MπO3 → MπO′

3
,

(j0)−1
∗ ◦ ψ−1

α ◦ (j1)∗ : MπO′
3

→ MπO3 .

A more geometric description of the content of these isomorphisms is to consider the

basing system for the annular link map lying in the t = 0 and another basing system

lying in the t = 1 slice. Let the mi and the m′
i be meridians for the ith component

at each time slice t = 0 and t = 1 respectively. We can map

m′
i 7→ (j0)−1

∗ ◦ ψ−1
α ◦ (j1)∗(m′

i) = g−1
i migi ∈ MπO3
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for some gi ∈ Mπ03 . This gi is represented by a longitude of the ith component

of the annular link map which we can decompose in terms of the meridians of the

basing system at t = 0.

Definition 7.1.10. Let X be an annular link map with a basing system at both

t = 0 and t = 1. Then the ith longitude is a loop based at (s0, 0) and is defined by

concatenating the following paths:

• use the basing system at t = 0 travel to from (s0, 0) to (pi, 0).

• Next, take a path in a regular neighbourhood of the ith component, which at no

point lies in the fibre above a double point, and travels between (pi, 0) to (pi, 1).

• Use the basing system at t = 1 to travel from (pi, 1) to (s0, 1).

• Finally, travel along the path α : [0, 1] → B3 × I defined by α(t) = (s0, 1 − t).

Once we have fixed a choice of basing path and meridians at either end of the cylinder

there are, up to homotopy, Z2 many choices of longitude of the ith component,

determined by the linking number of the longitude with the ith component and

how much “wraps around” the annulus. To deal with this indeterminacy we always

choose longitudes with this linking number equal to zero. The indeterminacy given

by wrapping round the cylinder does not affect the end result up to homotopy, as

we have an unlink in the boundary.

Remark 7.1.11. For three-component JK constructions we will always assume that

the longitudes of the ith component is trivial in Γi.

Let Aut(MF (3)) be the group of automorphisms of the free Milnor group on three

generators, with the usual group structure given by composition of functions. Recall
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that K = ZΓx × ZΓy × ZΓz. We will define a map Φ : Aut(MF (3)) → Aut(K)

where Aut(K) is the group of Z linear ring automorphisms of K. Notice that for

ψ ∈ Aut(MF (3)) there exists a map ψi : Γi → Γi such that

MF (3) MF (3)

Γi Γi

ψ

ψi

commutes for each i ∈ {x, y, z}. We use the same notation for these maps to denote

extension to the corresponding group ring.

Evaluating ψ on each of the generators we have

ψ(x) = τ−1
x xτx,

ψ(y) = τ−1
y yτy, and

ψ(z) = τ−1
z zτz.

Denote the image of τi in the quotient group by [τi] ∈ Γi.

Given (a, b, c) ∈ K, we define Φ : Aut(MF (3)) → Aut(K) to be

Φ(ψ)(a, b, c) =
(
[τx]ψx(a) [τx]−1 , [τy]ψy(b) [τy]−1 , [τz]ψz(c) [τz]−1

)
.

Lemma 7.1.12. The map Φ : Aut(MF (3)) → Aut(K) is a group homomorphism.

Proof. Let α, β ∈ AutMF (3). We wish to show that that Φ(β ◦ α) = Φ(β) ◦ Φ(α).

We write

Φ(α)(a, b, c) =
(
[τx]αx(a) [τx]−1 , [τy]αy(b) [τy]−1 , [τz]αz (c) [τz]−1

)

and

Φ(β)(a, b, c) =
(
[υx] βx(a) [υx]−1 , [υy] βy(b) [υy]−1 , [υz] βz(c) [υz]−1

)
.

We calculate

β ◦ α(x) = β
(
τ−1
x xτx

)
= β(τ−1

x )β(x)β(τx)
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= β(τ−1
x )υ−1

x xυxβ(τx),

Defining similarly on y and z, we have

Φ(β ◦ α)(a, b, c) =
(

[υx] βx([τx]) (β ◦ α)x (a) βx([τx]−1) [υx]−1 ,

[υy] βy([τy]) (β ◦ α)y (b) βy([τy]−1) [υy]−1 , [υz] βz([τz]) (β ◦ α)z (a) βz([τz]−1) [υz]−1
)

=
(

[υx] βx([τx])βx (αx (a)) βx([τx]−1) [υx]−1 ,

[υy] βy([τy])βy (αy (a)) βy([τy]−1) [υy]−1 , [υz] βz([τz])βz (αz (a)) βz([τz]−1) [υz]−1
)

As (β ◦ α)i = βi ◦ αi we have

Φ(β ◦ α)(a, b, c) = Φ(β)
((

[τx]αx(a) [τx]−1 , [τy]αy(b) [τy]−1 , [τz]αz (c) [τz]−1
))

= Φ(β) ◦ Φ(α) ((a, b, c)) ,

as required.

Define

L := K ⋊ Aut(MF (3))

where we treat K an abelian group given by addition. The group multiplication in

L is defined to be

(x1, y1) (x2, y2) := (x1 + Φ(y1) (x2) , y1 ◦ y2) ,

a semi-product, where Φ determines the action of MF (3) on K.

A link homotopy invariant for annular link maps is given by the following: let X

be a annular link map in B3 × I, let Xx, Xy and Xz be the x, y and z components

respectively. Define

Θx(X) = Mλ (Xx, Xx) ∈ ZΓx

where the normal push-off which is used keeps the boundary of Xx inside B̊3 ×{0, 1},

and the interior of Xx inside B̊3 × I̊, and we use the basing system at B3 × {0} to
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compute λ (Xx, Xy) and to specify an isomorphism to ZΓx. We define Θy(X) and

Θz(X) similarly. Let η(X) be the element of Aut(MF (3)) given by considering the

isomorphisms Mπ1(B3 × {1}∖O3, (s0, 1)) → Mπ1(B3 × {0}∖O3, (s0, 0)) given by X.

Definition 7.1.13. Let X be an annular link map. We define

Θ(X) := ((Θx(X),Θy (X) ,Θz (X)) , η(X)) ∈ L.

Proposition 7.1.14. Let X and X ′ be link homotopic annular link maps. Then

Θ (X) = Θ (X ′) .

Proof. The proof for the factors involving Θx, Θy and Θz are the same as for the case

of three-component link maps. We must show that the longitudes are unaffected by

link homotopy. However, this is clear because the link homotopy is a concatenations

of isotopy, cusps, Whitney moves and finger moves. These moves do not affect the

longitude. This completes the proof.

Theorem 7.1.15. The map

Θ : ALM4
2,2,2 → L,

is a group homomorphism.

Proof. We must show that

Θ(X ·X ′) =
(

(Θx(X),Θy(X),Θz(X)) + Φ(η(X)) (Θx(X ′),Θy(X ′),Θz(X ′)) ,

η(X) ◦ η(X ′)
)

.

We will first show that the stacking operation on annular link maps corresponds

to composition in Aut(MF (3)). Let g ∈ π1(B3 × {1}∖O3) ∼= MF (3) and let

α0, α 1
2

: I → B3 × I∖ (X ·X ′) where

α0(t) =
(
s0,

t

2

)
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and

α 1
2
(t) =

(
s0,

1 + t

2

)
.

Rebase g to get α 1
2
·g·α 1

2
and think of it as an element of π1

(
B3 ×

[
1
2 , 1

]
∖X ′,

(
s0,

1
2

))
.

We then pull this back using the induced map on the Milnor group of the funda-

mental groups given by B3 × {1
2}∖O3 ↪→ B3 × I∖X. This gives us an element of

MF (3) ∼= Mπ1
(
B3 × {1

2},
(
s0,

1
2

))
and equal to η(X ′)(g). We follow a similar argu-

ment rebasing using α0 so that the induced map from the stacking is η(X) ◦ η(X ′),

as required.

We need to check the effect of stacking on the self-intersection information. We may

assume that the intersections on X and X ′ have cancelling sign. The intersection on

the X region is not affected since those intersections will use the same meridians and

basing paths to decompose the group elements and thus their contributions are not

affected. We must check that the values of the intersections in the X ′ region. First

notice that the Θx(X ′),Θy(X ′),Θz(X ′) are equal to the sum of the intersections

on the X ′ region using the basing system at B3 × {1
2}. We now must rebase and

describe the group elements using the basing system at B3×{0}. To calculate Θx(X ′)

intersections using the meridians of the basing system at B3 × {0} we apply the

automorphism on Γx induced by η(X). We then must take into account our choice of

basing path. However, this is just conjugation by the longitude of the x component

of X as required. The proofs for the y and z components are analogous.

From the construction of Θ we have the following result.

Theorem 7.1.16. The following diagram commutes

ALM4
2,2,2 LM4

2,2,2 LM4
2,2

L K̃ (Z [Z])2 .

Θ

i

σ̃3 σ

pi

(7.1.1)

Proposition 7.1.17. Let X be an embedded three-component annular link map such

that Θ(X) = (a, ϕ) where a ≠ 0. Then X is not link homotopic to a topologically

flat embedding.



7.1. Annular link maps 81

7.1.2 Describing link maps

We now wish to construct link maps by giving a description of a annular link maps

and then calculating Θ to determine the values of σ3 and σ̃3 after taking the closure.

Definition 7.1.18. We call an embedded annular link a ribbon braid if it is the

trace of an isotopy in B3, where for each time slice we have an unlink with each

component lying in a B3 ∩ R2 × {q} for some q ∈ R2.

Remark 7.1.19. This is different from how ribbon braids are defined in [ABMW14],

where the components lying in a plane parallel to each other condition is loosened.

Let X := X1J1X2 . . . Jn−1Xn be a stacking of annular link maps where the Xi are

three-component JK constructions and the Ji are ribbon braids. We wish to describe

X in such a way which makes it easier to calculate the σ̃3 value of the link map

closure fX . We will draw on the work of [ABMW14] and [BH08] to do this.

Let p1, . . . , pn be pairwise distinct elements in I̊. Let f : ∐n
i=1 Ii ↪→ I × I with

Ii = [0, 1] and f(j) = {pi} × {j} with j ∈ ∂Ii be a topologically flat, transverse

immersion such that f(i) = (x, i) for some x ∈ I. For all double points p, place a

partial ordering on each elements in the pre-image. If we can say that one element

in the pre-image is less than or greater than the other - using the partial ordering -

then we delete a small neighbourhood of the lower point, if we cannot this is called

a welded crossing and we place a circle around this crossing. We call this a virtual

braid diagram.

Definition 7.1.20. We call the set of virtual braid diagrams, up to standard Re-

idmeister moves; virtual Reidemeister moves described in Figures 7.3, 7.4, 7.5, 7.6;

and the over crossing move shown in Figure 7.7, welded braids.

We can stack welded braids together to produce new welded braids. This gives

a group structure on the set of welded braids. Denote this group W. There is a

well defined map from W to ribbon braids called the tube map which is discussed
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Figure 7.2: A welded crossing

Figure 7.3: The first virtual Reidemeister move.

Figure 7.4: The second virtual Reidemeister move.

Figure 7.5: The third virtual Reidemeister move.

Figure 7.6: The fourth virtual Reidemeister move.

Figure 7.7: Overcrossing on welded braids.
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in [ABMW14] and due to the results of Brendle and Hatcher [BH08] this is an

isomorphism. Hence we can represent ribbon braids by a welded braid diagram.

Definition 7.1.21. Let L be a welded braid, where each strand is oriented from

I × {0} to I × {1}, an overstrand is a piece of arc with each endpoint being either

the boundary or the underpass of a classical crossing, with no classical crossing in

the interior of this piece of the arc. Let O(L) be the set of overstrands of L and let

C(L) be the set of classical crossings of L. For c ∈ C(L) we define the following:

• ϵc is the sign of the crossing at c

• s0
c is the overstrand containing the highest pre-image at the crossing,

• s−
c is the overstrand whose boundary element is the lowest preimage of c and

the orientation of the strand point into the crossing,

• s+
c is the overstrand whose boundary element is the lowest preimage of c and

the orientation of the strand point out of the crossing.

The fundamental group of L is defined to be

π1 (L) :=
〈
O (L) | s+

c =
(
s−
c

)(s0
c)ϵc

∀c ∈ C(L)
〉

.

Brendle and Hatcher, in [BH08], showed that the tube map provides the following

isomorphism

π1 (L) ∼= π1
(
B3 × I∖Tube(L)

)
.

In fact, there is a one-to-one correspondence between the generators and relations,

coming from classical crossing of the welded braid and Wirtinger presentation given

by a broken surface diagram for the image of L under the tube map 1. Thus, we can

use welded braids to compute longitudes of elements and compute the isomorphisms

of Aut(MF (3) induced by a ribbon braid, which makes constructing examples easier.

1A comprehensive account of broken surface diagrams can be found in [ABMW14].
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Figure 7.8: A welded braid description of the ribbon braid described
in 7.1, where the x-component is starts and ends on the
left, the y-component starts and ends in the centre, and
the z-component is on the right.

It follows that we can use these diagrams to specify any automorphisms of MF (3)

using results from [ABMW14].

Example 7.1.22. Consider the welded braid as in Figure 7.8. Then the longit-

ude of the x-component is overstrand of the y component. Hence the element

ψ ∈ Aut(MF (3)) described by this welded braid is given by

ψ(x) = y−1xy,

where ψ(y) = y and ψ(z) = z.

Definition 7.1.23. Let f ∈ LM4
2,2 and g ∈ F/F3 then we define σgi (f) to be the

Laurent polynomial σi(f) evaluated on g.

Definition 7.1.24. Let X be a three-component annular link map and i ∈ {1, 2, 3}.

Then X i is a two-component annular link map which is X with the ith component

removed.

Let X := X1J1X2 . . . Jn−1Xn be a stacking of JK constructions. Furthermore, we

define:

• Let ki and k′
i be the difference of the number of positive and negative classical

crossing of a longitude of the x, with the y and z components respectively, for

the Welded Braid which is mapped to the substack J1 . . . Ji−1 under the tube

map, when i > 1. We set k1 = k′
1 = 0.
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• Let li and l′i be the difference of the number of positive and negative classical

crossing of a longitude of the y component, with the z and x components

respectively, for the welded braid which is mapped to the substack J1 . . . Ji−1

under the Tube map, when i > 1. We set l1 = l′1 = 0.

• Let mi and m′
i be the difference of the number of positive and negative classical

crossing of a longitude of the z component, with the x and y components

respectively, for the welded braid which is mapped to the substack J1 . . . Ji−1

under the tube map, when i > 1. We set m1 = m′
1 = 0.

Theorem 7.1.25. Let fX be a link map arising from the stacking X. Then, for

some choice of basing path, we have

σx (fX) =
n∑
i=1

zk
′
i−liσy1

(
fX3

i

)
z−k′

i+li + yki−m′
iσz1

(
fX2

i

)
y−ki+m′

i

σy(fX) =
n∑
i=1

zli−k
′
iσx2

(
fX3

i

)
z−li+k′

i + xl
′
i−miσz1

(
fX1

i

)
x−l′i+mi

σz (fX) =
n∑
i=1

ym
′
i−kiσx2

(
fX2

i

)
y−m′

i+ki + xmi−l′iσy2
(
fX1

i

)
x−mi+l′i .

Proof. In this proof, we will use µ for our calculation instead of λ. Hence, we will

assume that the sum of the signed intersections are zero.

Recall that η(Xi) = Id as Xi is a three-component JK construction and for each Ji

we have θp(Ji) = 0 for p ∈ {x, y, z}. We first calculate Θ and then using commutative

diagram (7.1.1) we will map to the image of the link map closure under σ3. As Θ is

a homomorphism

Θ(X) =
(

(θx(X1), θy(X1), θz(X1))

+
n∑
i=2

Φ
(
η
(
Πi−1
j=1Jj

))
(θx(Xi), θy(Xi), θz(Xi)) , η(J1 . . . Jn−1)

)
.

We now calculate Θx(Xi), the calculations for θy(Xi) and θz(Xi) are similar. As

Xi is a three-component JK construction there are three cases depending on which

component is embedded. In the case where the x component is embedded we know

that θx(Xi) = 0 and thus σ1

(
fX3

i

)
= 0 and σ1

(
fX2

i

)
= 0. Hence, the claim is true
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in this first case. The next case to consider is to suppose x has self-intersections

and y is the embedded component, split from the other two components. For

each intersection on the x component we associate an element of Γx. Since the

y component is split from the rest of the components, the group elements of the

intersections of the x components are powers of the z meridian coming from the

basing system at B3 × { 1
21+2n−2i }. Taking the sum over all the intersections of the

x component and considering their values inside Γx/Ay and we have σ1(fX2
i
). Thus

θx(Xi) = σz1(fX2
i
). Since σy1(fX3

i
) = 0 we have

Θx(Xi) = σz1(fX2
i
) + σy1(fX3

i
).

A similar argument shows that this equation holds in the remaining case. We now

show that

Φ(η(J1 . . . Ji−1)) ((θx(Xi), θy (Xi) , θz(Xi)))

=
(
zk

′
i−liσy1

(
fX3

i

)
z−k′

i+li + yki−m′
iσz1

(
fX2

i

)
y−ki+m′

i ,

zli−k
′
iσx2

(
fX3

i

)
z−li+k′

i + xl
′
i−miσz1

(
fX1

i

)
x−l′i+mi ,

ym
′
i−kiσx2

(
fX2

i

)
y−m′

i+ki + xmi−l′iσy2
(
fX1

i

)
x−mi+l′i

)
.

Since Φ (η(J1 . . . Ji−1)) can be determined by τ ix ∈ Γx, τ iy ∈ Γy, τ iz ∈ Γz, the longitudes

of the x,y and z longitudes of J1 . . . Ji−1. We know that as the longitude of a

component welded braid which represents the J1 . . . Ji−1 is equivalent to the longitude

of the corresponding component of J1 . . . Ji−1. Given τx = ykizk
′
isp

x
i , τy = zlixl

′
itp

y
i

and τz = xmiym
′
iup

z
i , where pxi , p

y
i , p

z
i ∈ Z. Thus evaluating Φ (η(J1 . . . Jn)) on θx(Xi)

gives

τxσ
z−liyzli

1 (fX3
i
)τ−1
x + τxσ

z−mi′yzm′
i

1

(
fX2

i

)
τ−1
x

= zk
′
iσz

−liyzli

1 (fX3
i
)z−k′

i + ykiσz
−mi′yzm′

i

1

(
fX2

i

)
y−ki

= zk
′
i−liσy1

(
fX3

i

)
z−k′

i+li + yki−m′
iσy1

(
fX3

i

)
z−ki+m′

i

A similar result shows the required effect on θy(Xi) and θz(Xi). Using commutative
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K1

J1

K2

J2
K3

Figure 7.9: A schematic for the proof of Theorem 7.1.25 where the
red point represents the basepoint we want to make our
calculations from and the blue represent the basepoints
we use to make our initial calculations of the intersec-
tions of Ki before we then rebase and use the isomorph-
ism induced by the stack of singular pure braids to the
left of the basepoint.

diagram (7.1.1), we have the result.

This result gives the image of σ̃3 for three-component link maps which are the result

of connect sum of link maps which have two components which non-trivially link

and another component split from those two which is trivial. One may wonder if

all values of ki, k′
i, li, l

′
i,mi,m

′
i are possible. All values can be achieved because the

welded crossing introduce no relations and you can always move strands into position

using welded crossings, which do not add any extra information into the longitude

in Γi.

It follows from Theorem 7.1.25 that connect sum does not give a well defined group

structure like in the two-component case for link maps.

Corollary 7.1.26. There exists different choices of tubings for connect sum giving

different resulting link homotopy classes in LM4
2,2,2.
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Proof. Let J be the braid described by Figure 7.1 and let X be the three-component

JK construction which keeps the y component trivial and let X be the reversed

mirror image of this JK construction. Applying σ3 to the link maps fXJX and

fXJJX . From Theorem 7.1.25 we have

σ3 (fXJX) = (z (s− 1) + z (s− 1) , 0, x (1 − u) + x (1 − u))

σ3 (fXJJX) =
(
z
(
s2 − 1

)
+ z

(
s2 − 1

)
, 0, x

(
1 − u2

)
+ x

(
1 − u2

))
.

Using Example 6.3.5, we can see that these link maps are distinct from one another.

It is worth noting that Theorem 7.1.25 and the proof of Proposition 7.1.3 show

that the group of embedded annular link map up to link homotopy is not a normal

subgroup of the group of annular link maps. This is because if we take J ∈ EASL4
2,2,2

such that

Θ(J) = ((0, 0, 0), η)

with eta ̸= Id. Let X ∈ SL4
2,2,2 such that

Θ(X) = ((θx(X), θy(X), θz(X)), Id)

with (θx(X), θy(X), θz(X)) ̸= (0, 0, 0). Then we can arrange that

Θ(XJX) = (a, η) ∈ L

such that a ̸= 0. However the EASL4
2,2,2 is contained in the following normal

subgroup.

Proposition 7.1.27. Let N be the set of annular link maps such that their link map

closures are Brunnian. Then N is a normal subgroup of the group of singular link

concordances.

Proof. We first show N is a subgroup and then prove that it is normal. Let Y1 and

Y2 be annular link maps whose link map closures are Brunnian. We will show that
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fY1Y2 is a Brunnian link map. As Θ is a homomorphism

Θ (Y1Y2) =
(

(θx(Y1), θy(Y1), θz(Y1)) + Φ(η(Y1)) ((θx(Y2), θy(Y2), θz(Y2))) ,

η(Y1) ◦ η(Y2)
)

.

Taking the link map closure we know that for some choice of basing paths we have

σ̃3 (fY1Y2) = (θx(Y1), θy(Y1), θz(Y1)) + Φ(η(Y1)) ((θx(Y2), θy(Y2), θz(Y2)))

where we have added using the basings provided by the annular link map. Recall

the map pi : K̃ → (Z [Z])2 where we project onto the factors which aren’t i and in

each component set the ith meridian equal to 1. We will do the case for i = 3 as the

other cases are similar We have that

p3
(
σ̃3 (fY1Y2)

)
=
(
σ1(fY 3

1
) + σ1(fY 3

2
), σ2(fY 3

1
) + σ2(fY 3

2
)
)

Since the link map closures of each annular link map is trivial the terms in each sum

is zero and by the injectivity of the Kirk invariant Y1Y2 is in N .

Suppose that Y ∈ N , we will show that Y ∈ N . Note that

σ̃3 (fY ) = Φ
(
η(Y )−1

)
(−θx(Y ),−θy(Y ),−Θz(Y ))

Applying the map pi for each i and using the injectivity of the Kirk invariant we

have Y ∈ N .

As the trivial annular link map is clearly in N we have shown that N is a subgroup.

We now show that N is normal. Let X ∈ ALM4
2,2,2 and Y ∈ N . We will just focus

on the intersection information of XYX since the automorphism data is not relevant

when we map to LM4
2,2. The intersection information is given by

(θx(X), θy(X), θz(X)) + Φ (η(X)) (θx(Y ), θy(Y ), θz(Y ))

+ Φ (η(XY ))
(
θx(X), θy(X)), θz(X)

)
.
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Since

(
θx(X), θy(X), θz(X)

)
= −Φ(η(X)−1) ((θx(X), θy(X), θz(X)))

= −Φ(η(X)) ((θx(X), θy(X), θz(X))) ,

the intersection information becomes

(θx(X), θy(X), θz(X)) + Φ (η(X)) (θx(Y ), θy(Y ), θz(Y ))

− Φ
(
η(XYX)

)
(θx(X), θy(X)), θz(X))

We now write

p3
(
σ̃3 (fXYX)

)
=
(
σ1(X3) − σ1(X3), σ2(X3) − σ2(X3)

)
= (0, 0).

By injectivity of the Kirk invariant removing the third component gives a trivial link

map. A similar result can be shown for removing the first and second component

and this proves the result.

Hence, the normal closure of the set of three-component embedded link maps is

contained within N .

7.1.3 Other constructions

Schneiderman and Teichner showed how to turn LM4
2,2 into a module over the ring

Z [z1, z2] / (z1z2) [ST17]. Since we cannot turn LM4
2,2,2 into an abelian group using

connect sum, we cannot give a module structure for the three-component case.

However, we can use their ideas to construct new link maps.

Suppose we have a three-component link map f where we have done enough finger

moves so that the complement of any two of the spheres is F/F3. Take an oppositely

oriented normal push off of the x component. Then tube both copies of the x

component along a commutator of the meridians of the y and z components. This

gives a new three-component link map which we will denote by µ[y,z] · f .
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Lemma 7.1.28. The map µ[y,z] · f is a well defined element of LM4
2,2,2.

Proof. This proof is a similar argument used in [ST17] to establish a similar operation

on two-component link maps.

We can also define similarly constructions on the y and z components. Denote these

link maps by µ[z,x] · f and µ[x,y] · f respectively. We can iterate and combine these

operations on any given link map.

There is a subset of LM4
2,2,2 on which we will calculate some values of σ3 where we

have applied these operations.

Proposition 7.1.29. Let f ∈ Bl42,2,2. Then for any choice of basing curves of the

components and meridians and n ≥ 2 we have:

1. σ̃3(µn[y,z] · f) = ((2 − s− s̄)n σx(f), 0, 0),

2. σ̃3(µn[z,x] · f) =
(
0, (2 − t− t̄)n σy(f), 0

)
,

3. σ̃3(µn[x,y] · f) = (0, 0, (2 − u− ū)n σz(f)).

Proof. Assume that the complement of any two components of f is already F/F3.

We will only prove the first item on the list since the rest are automatically proven

by symmetry. Make a choice of basing path and meridian and for each component.

Notice that for all j ∈ N we have

σx
(
µj[y,z] · f

)
= λ

(
(1 − s)µj−1

[y,z] · f, (1 − s)µj−1
[y,z] · f

)
= (2 − s− s̄)λ

(
µj−1

[y,z] · f, µj−1
[y,z] · f

)
= (2 − s− s̄)j σx(f).

For computing the other components first consider what happens when j = 1. This

operation changes the group elements corresponding to the intersections by replacing
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the meridians of x with some power the commutators t or u. We now have

σy(µ[y,z] · f) =
∞∑

i=−∞
aiz

i

and

σz(µ[y,z] · f) =
∞∑

i=−∞
biy

i,

where ai ∈ Z [t, t−1] and bi ∈ Z [u, u−1] where āi = a−i and b̄i = b−i. The above

sums are finite since there is finitely many intersections on each sphere. For all

i ∈ Z we have ai(1) = bi(1) = 0 since f is a Brunnian link map. When we apply

µ[y,z] again, the σy and σz terms vanish as the only dependence on x is contained

in the commutator terms ai and bi. So setting x equal to a commutator makes

ai(1) = bi(1) = 0 and thus

σy(µ2
[y,z] · f) = 0

and

σz(µ2
[y,z] · f) = 0.

These terms remain trivial under repeated application of µ[y,z]. This proves the result,

as we can realise the homotopies of each disc as a link homotopy of the sphere.



Chapter 8

n-component link maps

We now define an n-component link map homotopy invariant. We will mostly sketch

out the process and not prove things explicitly since the proofs will be analogous to

the three-component case. We first need to prove the following proposition.

Proposition 8.0.1. The fundamental group complement of k generically immersed

spheres given by a link map is isomorphic to the free Milnor group on k generators,

where a meridian of each sphere is a generator.

Proof. Let f be an k-component link map and apply finger moves to arrange that the

complement is a Milnor group. Using compactness we can apply a link homotopy to

f which moves it it below into the southern hemisphere of S4. For each component

of f , do a link homotopy which takes a finger from each sphere and brings up to the

northern hemisphere and the intersection with the equatorial S3 is a single connected

component, resulting in n-component unlink at the equator.

We then cut along the equator and this decomposes S4 into two D4 both with the

same n-component unlink in their boundary S3, where each component bounds an

immersed disc in the four-ball and does not intersect any other component. On both

discs we do finger moves to make the fundamental group of the complement a Milnor

group. Using a result from [FT95] we know that the fundamental group of each of
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these complements is Milnor free group on k generators. Using Seifert-Van Kampen

this proves the result.

Let f = f1 ⊔ . . . fn : S2
1
∐
. . .
∐
S2
n → S4 be a based link map. For each basing path

we associate a meridian of the component , similar to the three-component case.

Call these meridians x1, . . . xn. Let

τ = (n, n− 1, . . . , 2, 1) ∈ Sn,

recall Sn is the symmetric group on n variables. Then define

Γi :=
〈
xτ i−1(1), xτ i−1(2), . . . , xτ i−1(n) | xτ i−1(1), r1, r2, r3, . . . , rs

〉

where r1, . . . , rs are the minimal relations for the free Milnor group on n generators.

Clearly each Γi is the Milnor group on n− 1 generators

Definition 8.0.2. Let f = f1 ⊔ . . . ⊔ fn : S2
1
∐
. . .
∐
S2
n → S4 be a based link map

then we define

σn(f) = (M (λ (f1, f1)) , . . . ,M (λ (fi, fi)) , . . . ,M (λ (fnfn))) ∈
n∏
i=1

ZΓi.

Proposition 8.0.3. Let f and g be link homotopic based link maps. Then

σn(f) = σn(g).

Proof. The proof of this result is analogous to the proof of Proposition 6.1.3.

We now find the correct quotient to consider which removes the dependence on

basing and gives a unbased link map invariant.

Choose another set of basing paths for f , similarly to the three component case, this

pair of basing curves specifies elements of an n-tuple of (g1, g2, . . . , gn) ∈ ∏n
i=1 Γi.

Let g̃i ∈ Γj where i ̸= j where g̃i is defined to be the image of gi under the sequence

of maps

Γi ↠ Γi/ ⟨⟨xj⟩⟩ ↪→ Γj,
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where the left most arrow is the quotient map and the right most map is the natural

inclusion map. The notation omits which generator we have omitted, however it

will be clear from the context. We define the following map ψgi
: ZΓi → ZΓi where

ψgi
(r) = girg

−1
i . Furthermore, let ϕigj

: ZΓi → ZΓi with

ϕigj
(xk) =


g̃−1
j xkg̃j k = i

xk otherwise

extended linearly. Define wi : ZΓi → ZΓi where

wi := ψgτi−1(1)
◦ ϕigτi−1(2)

◦ ϕigτi−1(3)
◦ . . . ◦ ϕigτi−1(n)

.

Define an action by

(g1, . . . gn) · (r1, . . . , rn) = (w1 (r1) , w2 (r2) , . . . , wn (rn)) .

This action corresponds to the changing basing paths similarly to the action defined

in Lemma 6.1.11 in the three-component case. We define our n-component invariant.

Definition 8.0.4. Let f be an n-component link map. Choose a collection of basing

paths for each sphere. Define

σi (f) := M (λ (fi, fi)) .

Define

σ̃n (f) = (σ1 (f) , . . . σn (f)) ∈
n∏
i=1

ZΓi/ ∼ .

Let 1 ≤ i1 < · · · < ik ≤ n let us define the map

(i1, . . . , ik) : LM4
2, . . . , 2︸ ︷︷ ︸

n

→ LM4
2, . . . , 2︸ ︷︷ ︸

n−k

where (i1, . . . , ik) (f) is the link map f where we forget about each ij sphere. Define

the p(i1,...,ik) : ∏n
i=1 ZΓi/ ∼→ ∏n−k

i=1 ZΓi/ ∼ to be the projection onto the factors

which are not one of the ij and set all xij = 1 and relabel.
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Proposition 8.0.5. The following diagram commutes

LM4
2,...,2 LM4

2,...,2

∏n
i=1 ZΓi/ ∼ ∏n−k

i=1 ZΓi/ ∼ ,

σ̃n

i

σ̃n−k

where i := (i1, . . . , ik).

The proof is omitted.



Chapter 9

Noncommutative Blanchfield forms

and the intersection form

We now shift our focus away from link homotopy and turn our attention to how we

can use the intersection form on a four-manifold with a single boundary component

to recover linking information on the boundary. Explicitly, we show we can compute

the Blanchfield pairing on a three-manifold in terms of intersections forms of four-

manifolds for relatively weak assumptions.

9.1 Organisation of Chapter 9

In Section 9.2, we recall the relevant algebra to make sense of localisation with

non-commutative rings; define the twisted Blanchfield pairing. In Section 9.3, we

proceed carefully through Conway’s proof method checking his method extends to

the non-commutative case with the twisted Blanchfield pairing and then prove the

result.
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9.2 Algebraic and topological preliminaries

9.2.1 Algebra

We revise the basics of the Ore-condition.

Definition 9.2.1. Let R be a ring. We call S ⊂ R a multiplicative subset if 0 ̸∈ S,

1 ∈ S and if whenever a, b ∈ S then ab ∈ S.

We restrict ourselves to the following multiplicative subsets.

Definition 9.2.2. Let R be a ring with involution and S ⊂ R a multiplicative

subset. We say that S satisfies the left Ore-condition if for all a ∈ R and for all

s ∈ S we have

• Sa ∩Rs ̸= ∅,

• if as = 0 then there exists a u ∈ S such that ua = 0,

We further specify that S is closed under involution and does not contain any zero-

divisors.

Definition 9.2.3. Let R be a ring and S ⊂ R be a multiplicative subset which

satisfies the left Ore-condition. We define the localisation

RS := R × S/ ∼

where (a, s) ∼ (b, t) if ∃c, d ∈ R such that

1. ca = db

2. cs = dt ∈ S.

As with localisation of commutative rings, we denote the equivalence class (a, s) by
a
s
. The following proposition allows us to turn RS into a ring,. We omit the proof

but one can be found in [Ore31].
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Proposition 9.2.4. Let R be a ring and S ⊂ R satisfy the left Ore-condition then

RS can be turned into a ring by defining the addition to be

a

s
+ b

t
= ca+ db

u

where c, d ∈ R such that cs = dt = u ∈ S. We define the multiplication to be

a

s
· b
t

= ka

lt

where k ∈ R and l ∈ S such that ks = lb.

Remark 9.2.5. As we restrict ourselves to multiplicative subsets which do not

contain zero divisors, the inclusion R → RS is an injective ring homomorphism. It

is known that RS as a left-R module is flat [Ste75].

Definition 9.2.6. Let N be a left R-module. We call the kernel of the canonical

map N → RS ⊗N the S-torsion submodule, denoted by NS.

By a Corollary 3.3 in [Ste75] we have that

NS = {x ∈ N | ∃s ∈ S s.t sx = 0}.

9.2.2 The Blanchfield form

Recall from Chapter 2 that we defined a map ⟨−,−⟩ : Rn × Rn → R, we now

provide the following generalisation. Let P = R,RS or RS/R and define the map

⟨−,−⟩ : Rn × P ⊗R R
n → P where

⟨v, p⊗ w⟩ = vwTp.

One can easily show that this pairing is well defined and sesquilinear with respect

to R.

Definition 9.2.7. We call a multiplicative subset of S ⊂ R sensible if the above

bilinear map is non-singular for all P ∈ {R,RS, RS/R}.
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One can check that the map

κ : Homright −Zπ
(
C∗(X, Y ; Λ), P ⊗R R

n
)

→ Homleft −R (C∗(X, Y ;Rn), P )

f 7→ ((v ⊗ σ) 7→ ⟨v, f(σ)⟩)

is an isomorphism of left R-modules if S is sensible.

H i (X, Y ;P ⊗Rn) → H i
(
Homleft −R (C∗(X, Y ;Rn), P )

)
.

We use this to define an evaluation map

p : H i
(
Homleft −R (C∗(X, Y ;Rn), P )

)
→ Homleft−R (Hi (X, Y ;Rn) , P ).

we define ev := p ◦ κ.

Let M be a connected, closed, orientable three-manifold. Consider the sequence of

maps

T S
PD−1
−−−→ H2(M ;Rn)S

→ ker
(
H2(M ;Rn) → H2(M ;RS ⊗R R

n)
)

β−1
−−→ H1(M ;RS/R ⊗R R

n)/ ker(β)
ev−→ Homleft −R (T S, RS/R),

(9.2.1)

where T S is the S-torsion submodule of the first map is the inverse of the Poincaré

duality map; the second map is the inclusion map; the third map is the “inverse” of

the Bockstein map from the long exact sequence induced by the short exact sequence,

0 → C∗ (M ;Rn) → C∗ (M ;RS ⊗R R
n) → C∗ (M ;RS/R ⊗R R

n) → 0,

once we have descended to the quotient using the first isomorphism theorem; and

the fourth arrow is the evaluation map. We must show this final map is well-defined.
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Lemma 9.2.8. The map

ev : H1 (X, Y,RS/R ⊗Rn) → Homleft −R (H1 (X, Y ;Rn) , RS/R)

descends to a map

H1 (M,RS/R ⊗Rn) / ker(β) → Homleft −R (T S;RS/R).

Proof. Let ϕ ∈ ker(β) and q∗ : H1 (M ;RS ⊗Rn) → H1 (M ;RS/R ⊗Rn) be the

induced map from the short exact sequence. By the long exact sequence there exists

ψ ∈ H1 (M ;RS ⊗Rn) such that q∗ ◦ ψ = ϕ. We want to show that

ev(q∗ ◦ ψ)(x) = 0

for all x ∈ T S.

Consider the diagram

H2(X, Y ;RS ⊗Rn) H2(X, Y ;RS/R ⊗Rn)

Homleft −R (H1 (X, Y ;Rn) , RS) Homleft −R (H1 (X, Y ;Rn) , RS/R),

q∗

ev ev

q̃∗

(9.2.2)

we will show that this diagram commutes. We have

ev(q∗ ◦ ψ)
(

k∑
i=1

xi ⊗ σi

)
=

k∑
i=1

xiq (f(σi))

Since the quotient map commutes with the involution we have

ev(q∗ ◦ ψ)
(

k∑
i=1

xi ⊗ σi

)
=

k∑
i=1

xiq
(
ψ(σi)

)
.

Taking the other path we have

(q̃∗ ◦ ev)
(

k∑
i=1

xi ⊗ σi

)
= q

(
k∑
i=1

xiψ(σi)
)

=
k∑
i=1

xiq
(
ψ(σi)

)
,

thus the diagram commutes. If x ∈ T S then there exists an s ∈ S such that sx = 0.
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Hence

ev(ψ)(x) = s−1s ev(ψ)(sx) = s−1 ev(ψ)(0) = 0.

By the commutativity of (9.2.2) we have the result.

Define

Ω : T S → Homleft −R (T S;RS/R).

to be the map coming from the sequence of maps in (9.2.1).

Definition 9.2.9. The Blanchfield pairing is defined by

Bl : T S × T S → RS/R

(a, b) 7→ Ω(b)(a).

Proposition 9.2.10. Let S be sensible. Then the blanchfield pairing is non-singular

if and only if the evaluation map

p : H i
(
Homleft −R (C∗(X, Y ;Rn), P )

)
→ Homleft −R (H∗(X, Y ;Rn), P )

is an isomorphism.

Proof. The adjoint of the blanchfield form is Ω = p ◦κ ◦ β−1 ◦PD−1. If S is sensible

then Ω is an isomorphism if and only if p is an isomorphism, as all other functions in

the composition are isomorphisms, and the Blanchfield form is non-singular if and

only if Ω is an isomorphism.

9.3 Establishing the main result

9.3.1 Outline of the proof

We outline our proof method inspired by Conway. Let W be a orientable, con-

nected, compact four-manifold with boundary M . We want to show how one can
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compute Blanchfield form using the intersection form of W . We have the following

commutative diagram

0 0 0

0 C∗ (W,M ;Rn) C∗ (W,M ;RS ⊗Rn) C∗ (W,M ;RS/R ⊗Rn) 0

0 C∗ (W ;Rn) C∗ (W ;RS ⊗Rn) C∗ (W ;RS/R ⊗Rn) 0

0 C∗ (M ;Rn) C∗ (M ;RS ⊗Rn) C∗ (M ;RS/R ⊗Rn) 0,

0 0 0

i
(W,M)
R,RS

i
(W,M),W )
R

i
(W,M)
RS,RS/R

i
(W,M),W )
RS

i
(W,M),W )
RS/R

iWR,RS

iW,M
R

iW
RS,RS/R

iW,M
RS

iW,M
RS/R

iMR,RS
iM
RS,RS/R

(9.3.1)

where each column and row is exact. When we descend to cohomology we use the

same notation for each map.

First, we establish that there exists a pairing

θ : ∂−1
(
T S
)

× ∂−1
(
T S
)

→ RS,

where ∂ : H2(W,M ;Rn) → H1(M ;Rn) is the boundary map in the long exact

sequence of the pair for (W,M) and the form fits into a commutative diagram

∂−1
(
T S
)

× ∂−1
(
T S
)

RS

T S × T S RS/R

−θ

∂×∂

Ω

We then show there is another map

ψ : ∂−1
(
T S
)

× ∂−1
(
T S
)

→ RS/R

which is defined by considering taking elements x, y ∈ ∂−1
(
T S
)

then r, s ∈ S such

that r∂(x) = s∂(y) = 0. Using the long exact sequence of the pair

· · · H2(W ;Rn) H2(W,M ;Rn) H1(M ;Rn) · · ·q ∂ (9.3.2)

we have that there are x0, y0 ∈ H2(W ;Rn) such that q(x0) = rx and q(y0) = sy. We
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then define

ψ(x, y) = 1
r
λ(x0, y0)

1
s

.

We then show that θ = ψ and prove the result.

9.3.2 Covering the Blanchfield pairing

The next series of lemmas will establish the existence of θ which is a “lift” of the

Blanchfield form. Let us define

(
i
(W,M),W
RS

)−1
: iWR,RS

(
ker

(
iW,MRS

◦ iWR,RS

))
→ H2(W,M ;RS ⊗Rn)

ker
(
i
(W,M),W
RS

) .

which is defined by the following. Consider x ∈ ker
(
iW,MRS

◦ iWR,RS

)
, by definition,

iW,MRS

(
iWR,RS

(x)
)

= 0. By exactness, there exists y ∈ H2(W,M ;RS ⊗ Rn) such that

iWR,RS
(x) = i

(W,M),W
RS

(y). We thus define
(
i
(W,M),W
RS

)−1
(iWR,RS

(x)) = y where y is

thought of as an element of H2(W ;RS⊗Rn)

ker
(
i
(W,M),W
RS

) . The quotient considered makes this map

well defined by the first isomorphism theorem.

Definition 9.3.1. We say a diagram of left R-modules of the form

A0 A1 · · · An−1 An

B1 An+1

... ...

Bp−1 An+m−1

Bp Bp+1 · · · Bp+q−1 An+m = Bp+q

α1

β1

α2 αn−1 αn

αn+1

β2 αn+2

βp−1 αn+m−1

βp αn+m

βp+1 βp+2 βp+q−1 βp+1

anticommutes if αn+m ◦ · · · ◦ α1 = −βp+q ◦ · · · ◦ β1.
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Lemma 9.3.2. The following diagram anticommutes.

ker(H2(W ;Rn) → H2(W ;RS ⊗Rn) iW,MR ker(H2(W ;Rn) → H2(M ;RS ⊗Rn)

iWR,RS
ker(H2(W ;Rn) → H2(M ;RS ⊗Rn) H1(M ;RS/R⊗Rn)

kerβ

H2(W,M ;RS⊗Rn)

ker
(
i
(W,M),M
RS

) H2(W,M ;RS/R⊗Rn)
im(δRS/R◦iM

RS,RS/R
)

iW,M
R

iWR,RS
β−1

(
i
(W,M),W
RS

)−1
δRS/R

i
(W,M)
RS,RS/R

(9.3.3)

Proof. Conway shows that if we have nine cochain complexes as in (9.3.1) we can

establish the result. While Conway’s uses cohomology with commutative ring for his

proof, the method works for non-commutative rings. This is because Conway makes

no use of commutativity of the coefficients and uses a mixture of diagram chasing

and exactness arguments. The proof is in the Appendix of [Con18].

Lemma 9.3.3. Let W be a four-manifold such that H1 (W ;Rn) is S-torsion free.

Then the following statements hold:

1. Poincaré duality restricts to a well-defined map

∂−1
(
T S
)

→ ker
(
H2 (W ;Rn) → H2 (M ;RS ⊗R R

n)
)

2. Poincaré duality restricts to a map

T S → iW,MR

(
ker

(
H2 (W ;Rn) → H2 (M ;RS ⊗Rn)

))
.

Proof. To prove the first item we consider the following diagram:

H2 (W,M ;Rn) H2 (W ;Rn) H2 (W ;RS ⊗Rn)

H1 (M ;Rn) H2 (M ;Rn) H2 (M ;RS ⊗Rn) .

PD−1

∂

iWR,RS

iW,M
R

iW,M
RS

PD−1 iMR,RS

(9.3.4)

Let x ∈ ∂−1
(
T S
)
. We must show that

(
iWR,RS

◦ iW,MR ◦ PD
)

(x) = 0. Choose s ∈ S
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such that s∂ (x) = ∂ (sx) = 0. Hence,

(
iWR,RS

◦ iW,MR ◦ PD−1
)

(x) = s−1s
(
iWR,RS

◦ iW,MR ◦ PD−1
)

(x)

= s−1
(
iWR,RS

◦ iW,MR ◦ PD−1
)

(sx)

= s−1
(
iWR,RS

◦ PD−1 ◦∂
)

(sx)

= s−1
(
iWR,RS

◦ PD−1
)

(s∂(x))

= 0.

We now prove the second item. Let a ∈ T S. As H1 (W ;Rn) is S-torision free there

exist an x ∈ H2 (W,M ;Rn) such that ∂(x) = a. Since a is a S-torsion element we

know PD−1(x) ∈ ker (H2 (W ;Rn) → H2 (M ;RS ⊗Rn)). Taking iW,MR

(
PD−1(x)

)
we

see by commutativity of (9.3.4) that PD(a) = iW,MR (PD(x)) as required.

Lemma 9.3.4. For the four-manifold W with ∂W = M the following hold

1. The evaluation map on H2 (W,M ;RS) induces a well defined map

ev : H
2 (W,M ;RS ⊗Rn)
ker

(
i
(W,M),W
RS

) → HomR (∂−1 (T S) , RS).

2. The evaluation map on H2 (W,M ;RS/R ⊗Rn) induces a well defined map

ev : H
2 (W,M ;RS/R ⊗Rn)

im
(
δRS/R ◦ iMRS ,RS/R

) → HomΛ (∂−1 (T S) , RS/R).

Proof. Let ϕ ∈ ker (H2 (W,M ;RS ⊗Rn) → H2 (W ;RS ⊗Rn)). We must show that

after applying ev and restricting to ∂−1(T S) we have the zero map. By the long

exact sequence of the pair

ϕ ∈ im
(
H1(M ;RS ⊗Rn)

δRS−−→ H2(W,M ;RS ⊗Rn)
)

.

Then, for some ψ ∈ H1(M ;RS ⊗ Rn), we have δRS
ψ = ϕ. For x ∈ ∂−1(T S) there

exists an s ∈ S such that s∂(x) = 0 and

ev(δRS
ψ)(x) = ev(ψ)(∂(x)) = s−1s ev(ψ)(∂(x)) = s−1 ev(ψ)(s∂(x)) = 0.
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We now prove the second item. Let ϕ be an element of H1(M ;RS ⊗Rn). Similarly

we must show that δRS/R ◦ iMRS ,RS/R
◦ϕ maps to zero under the evaluation map, when

restricted to ∂−1(T S). Applying iMRS ,RS/R
and δRS/R and evaluating we have

ev
(
δRS/R ◦ iMRS ,RS/R

◦ ϕ
)

(x) = ev(iMRS ,RS/R
◦ ϕ)(∂(x)),

Since ϕ takes values in RS it vanishes on S-torsion elements. This proves the result.

Lemma 9.3.5. Let W be a compact, connected, orientable, four-manifold with

boundary ∂W = M and H1 (W ;Rn)S-torsion free. In the following diagram the

triangle and squares commute and the pentagon anticommutes.

∂−1
(
T S
)

T S

H1(M ;RS/R⊗Rn)
ker(β)

H2(W,M ;RS⊗Rn)
ker(i(W,M),W

RS
)

H2(W,M ;RS/R⊗Rn)

im
(
δRS/R◦iM

RS,RS/R

) HomR (T S, RS/R)

HomR (∂−1 (T S) , RS) HomR (∂−1 (T S) , RS/R)

∂

(
i
(W,M),W
RS

)−1
◦iWR,RS

◦PD

β−1◦PD
ev ◦β−1◦PD

evδRS/R

i
(W,M)
RS,RS/R

ev ev ∂∗

(9.3.5)

Proof. By Lemmas 9.3.2 and 9.3.3 the pentagon containing ∂−1(T S) commutes. The

lowest rectangle commutes by Lemma 9.3.4. The rectangle on the right, containing

∂∗, clearly commutes. The triangle on the upper right clearly commutes by the

definition of the Blanchfield form.

From the left most column of (9.3.5) we can define a pairing on ∂−1
(
T S
)
. Consider

the composition

Θ : ∂−1
(
T S
) PD−−→ ker

(
H2 (W ;Rn) → H2 (∂W ;RS ⊗Rn)

)
iWR,RS−−−→ ker

(
H2 (W ;Rn) → H2 (M ;RS ⊗Rn)

)
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→ H2 (W,M ;RS ⊗Rn)
ker

(
i
(W,M),W
RS

)
ev−→ HomΛ (∂−1 (T S) , RS).

We define a pairing on the ∂−1
(
T S
)

by

θ(x, y) := Θ(y)(x).

By the previous lemma the following diagram commutes

∂−1
(
T S
)

× ∂−1
(
T S
)

RS

T S × T S RS/R

−θ

∂×∂ q

Bl

as ev ◦β−1 ◦ PD−1 is the adjoint of the Blanchfield form.

9.3.3 Showing the forms are equal

We recall the definition of ψ. Suppose x, y ∈ ∂−1(T S). Then there exists an r, s ∈ S

such that r∂(x) = s∂(y) = 0. From the long exact sequence of the pair, there exists

x0, y0 ∈ H2(W ;Rn) which map to rx and sy. We now define the pairing by

ψ(x, y) = 1
r
λ (x0, y0)

1
s

.

Lemma 9.3.6. The pairing ψ is well-defined.

Proof. Let x′
0 ∈ H2(W ;Rn) and a non-zero r′ ∈ S be such that i (x′

0) = r′x. Then

we have

1
r
λ (x0, y0)

1
s

− 1
r′λ (x′, y0)

1
s

=
(
λ (x0, y0)

r
− λ (x′

0, y0)
r′

)
1
s

.

From the definition of addition there exist p, p′ ∈ R such that pr = p′r′ ∈ S. Hence,(
λ (x0, y0)

r
− λ (x′

0, y0)
r′

)
1
s

=
(
pλ (x0, y0)

pr
− p′λ (x′

0, y0)
p′r′

)
1
s
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=
(
λ (px0 − p′x′

0, y0)
pr

)
1
s

.

As q (px0 − p′rx′
0) = (pr − p′r′)x = 0 we have

λ (px0 − p′x′
0, y0) = 0.

Using that the intersection form is hermitian and a similar argument on the second

component shows the pairing is well-defined.

We now show that θ and ψ are equal. First we define some notation which will be

helpful in the proof. We define j : ∂−1
(
T S
)

→ RS ⊗ im (q) as

j(x) = 1
r

⊗ q (x0) ,

for some x0 ∈ H2(W ;Rn) such that q(x0) = rx. This map is well-defined as
1
r

⊗ q (x0) = 1
r

⊗ rx = 1 ⊗ x. Let

K : = ker
(
H2 (W ;Rn)

iW,M
R−−−→ H2 (M ;Rn)

iMR,RS−−−→ H2 (M ;RS ⊗Rn)
)

.

From Lemma 9.3.2 we have a map (i(W,M),W
RS

)−1 which we will relabel to

k∗ : iWR,RS
(K) → H2 (W,M ;RS ⊗Rn)

ker
(
i
(W,M),W
RS

)
Let V := H2 (W ;Rn) and consider the following diagram

RS ⊗ V
ker(q) RS ⊗ im (q) ∂−1

(
T S
)

RS ⊗ i
(W,M),W
R ◦ PD (V ) K

HomΛ
(
RS ⊗ V

ker(q) , RS

)
RS ⊗ iWR,RS

◦ i(W,M),W
Λ ◦ PD (V ) iWR,RS

(K)

HomΛ (∂−1 (T S) , RS) RS ⊗ k∗ ◦ iWR,RS
◦ i(W,M),W

R ◦ PD (V ) H2(W,M ;RS⊗Rn)

ker
(
i
(W,M),W
RS

)

IdRS
⊗q

∼=

Φ̃

IdRS
⊗PD

j

PD

IdRS
⊗iWR,RS

iWR,RS

j∗(IdRS
⊗(q−1)∗)

ẽv mult

IdRS
⊗k∗

k∗

ẽv mult

ev
(9.3.6)

Proving that ψ and θ are equal will be a consequence of proving that this diagram
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commutes, but first we will define some of the maps in the diagram above. The map

Φ̃ : RS ⊗ V
ker(q) → Hom

(
RS ⊗ V

ker(q) , RS

)
is defined by

Φ̃ (b⊗ [y0]) (a⊗ [x0]) = aΦ ([y0]) ([x0]) b̄,

where the map Φ is the adjoint of the intersection form. The mult map is defined by

mult (a⊗ ϕ) = a · ϕ.

The map ẽv : RS ⊗ k∗ ◦ iWR,RS
◦ i(W,M),W

R ◦ PD−1 (V ) → HomR

(
RS ⊗ V

ker(q) , RS

)
is

defined by

ẽv (b⊗ ϕ) (x) = ev(ϕ)(x)b.

We define ẽv : RS ⊗ iWR,RS
◦ i(W,M),W

R ◦ PD−1 (V ) → HomR

(
RS ⊗ V

ker(q) , RS

)
by

ẽv (b⊗ ϕ) (a⊗ x) = a ev(ϕ)(x)b.

We must show all the maps in the diagram are also well defined. The right most

column is well defined by Lemma 9.3.3. The central Poincaré duality map is well

defined as PD−1 ◦q = i
(W,M),W
R ◦ PD. We must show that i(W,M),W

R ◦ PD−1 (V ) ⊂ K

to show the mult maps are well-defined. However, this is true by exactness, as

iW,MR ◦ i(W,M),W
R = 0. It follows that mult is well-defined. Finally, we show the ẽv

maps are well-defined but this follows from our observations of i(W,M),W
R ◦PD−1 (V ) =

PD−1 ◦q(V ).

Proposition 9.3.7. The pairings θ and ψ are equal.

Proof. Showing that the diagram (9.3.6) commutes will prove the result, as ev ◦k∗ ◦

iWR,RS
◦PD−1 is the adjoint of θ and j∗

(
IdRS

⊗ (q−1)∗)◦Φ̃◦(IdRS
⊗q)◦j is the adjoint

of ψ. By the definition of Φ, we have that the upper left hand square commutes.

The bottom right square and lower triangle also commute. We now prove that the

upper right rectangle commutes. For x ∈ ∂−1
(
T S
)
, mapping under j we have

j(x) = 1
r

⊗ q (x0) .
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Applying
(
IdRS

⊗iWR,RS

)
◦
(
IdRS

⊗ PD−1
)
, we have 1

r
⊗iWR,RS

◦PD−1 ◦(q(x0)). Applying

the multiplication map we have

mult
(1
r

⊗ iWR,RS
◦ PD−1 ◦(q(x0))

)
= mult

(1
r

⊗ riWR,RS
◦ PD−1 (x)

)
= iWR,RS

◦PD−1 (x) ,

as required. We finally prove that the lower left square commutes. Let ϕ ∈

H2 (W,M ;Rn), b ∈ RS and x ∈ ∂−1
(
T S
)
. By the definition of j, ((IdRS

⊗q−1) ◦ j) (x) =
1
r

⊗ [x0] where x0 ∈ H2 (W ) such that q (x0) = rx where r ∈ R. Thus

ẽv
(
b⊗

(
iWR,RS

◦ i(W,M),W
R

)
(ϕ)

) (((
idRS

⊗ q−1
)

◦ j
)

(x)
)

= ẽv
(
b⊗

(
iWR,RS

◦ i(W,M),W
R

)
(ϕ)

)(1
r

⊗ [x0]
)

= 1
r

(
ev
((
iWR,RS

◦ i(W,M),W
R

)
(ϕ)

)
, [x0]

)
b̄

= 1
r

(ev(ϕ) (q (x0))) b̄

= ev(ϕ)(x)b̄.

Taking the other path to the left hand corner we have

ẽv
((
b⊗ k∗ ◦ iWR,RS

◦ i(W,M),W
R

)
(ϕ)

)
(x) = ev(i(W,M)

R,RS
(ϕ)) (x) b = ev(ϕ)(x)b̄. (9.3.7)

We will clarify the first equivalence in (9.3.7). Consider the following commutative

diagram:

H2(W,M ;Rn) H2(W,M ;RS ⊗Rn)

H2(W ;Rn) H2(W ;RS ⊗Rn)

H2(M ;RS ⊗Rn).

i
(W,M)
R,RS

i
(W,M),W
R

i
(W,M),W
RS

i
(W,M)
R,RS

iW,M
RS

(9.3.8)

Suppose an element of K is equal to i(W,M),M
R (η) for some η ∈ H2(W,M ;R). From

commutativity of the diagram, we know that i(W,M)
R,RS

(η) = k∗ ◦ iWR,RS
◦ i(W,M),W

R (η)

in H2(W,M ;RS⊗Rn)

ker
(
i
(W,M)
R,RS

) . Now that we have established (9.3.7) we have completed the

proof.
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Proof of Theorem 1.2.1. Recall we can identify

ker (H1(M ;Rn) → H1(W ;Rn)) = H2(W,M ;Rn)/ im(q).

It is clear that T S ⊂ ker (H1(M ;Rn) → H1(W ;Rn)) as H1(W ;Rn) is S-torsion free.

Suppose that [x] , [y] ∈ T S. Then for some r, s ∈ S, r [x] = s [y] = 0. Choose lifts

x, y ∈ H2(W,M ;Rn). It follows that

Bl ([x] , [y]) = −θ(x, y) = −ψ(x, y),

by Lemma 9.3.5 and Proposition 9.3.7. We must show that the choices of lifts do

not affect the end result. Suppose x′ is a lift of [x]. Then by the long exact sequence

there exists some v ∈ H2(W ;Rn) such that q(v) = x − x′. Since r [x] = r [x′] = 0,

for some r ∈ S we have q(rv) = rq(v) = r(x− x′). For some s ∈ S we have s [y] = 0

and

ψ(x− x′, y) = 1
r
λ(rv, y0)

1
s

= λ(v, y0)(1, s) = ev(PD−1(q(y0)))(v)1
s

= ev(PD−1(sy))(v)1
s

= ev(PD−1(y))(v)

as this takes values in R we have proved the result. Using that λ is hermitian we can

similarly show that a different choice of lift for [y] does not change the result.

Corollary 9.3.8. If M is the boundary of a four-manifold W such that the conditions

of Theorem 1.2.1 are satisfied, then the Blanchfield form is hermitian.

Proof. By Theorem 1.2.1, for some choice of x0, y0 ∈ H2(W ;Rn)

Bl([x] , [y]) = 1
r
λ(x0, y0)

1
s

= 1
r
λ(y0, x0)

1
s

= 1
s
λ(y0, x0)

1
r

= Bl([y] , [x])
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