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Abstract

Spin-density functional theory (spin-DFT) has long been used to study materi-

als exhibiting collinear spin textures. Recently it has become more common to

apply non-collinear spin-DFT to tackle systems with more exotic magnetism.

In this thesis, we use spin-DFT both as a predictive tool and as a means of

explaining phenomena uncovered by experiment. We use calculations to com-

plement muon-spin spectroscopy (µSR) studies of two skyrmion hosting materi-

als, Cu2OSeO3 and GaV4S8−ySey, as well as crystallography and magnetometry

measurements of [Cu(pyz)0.5(gly)]ClO4. For Cu2OSeO3 we use structural re-

laxation to find likely stopping sites for an implanted muon. Our predicted

muon sites lead to good agreement with the measured µSR spectra. For the

GaV4S8−ySey series, we are able to see how the spin density changes upon sub-

stitution, consistent with observations of a spin-glass at high substitution. In a

pressure study of [Cu(pyz)0.5(gly)]ClO4, we find that calculated changes to the

structure well match X-ray crystallography measurements, capturing the rele-

vant changes to the Cu separation. We see dramatic change in the secondary

exchange mechanism consistent with structural distortions at high pressure.

Next, in Cr1/3MS2 (M = Nb or Ta), we predict a gap-like feature in the

density of states (DoS) which is then confirmed through magnetometry mea-

surements. This gap explains the low temperature transport and magnetism

in these materials. Extending the study to N1/3NbS2, for N in the first period

transition metals, we show that only Cr intercalation results in this gap. We

predict the magnetic properties of the series through a band filling mechanism.

Finally, we make use of a recently developed exchange and correlation (xc)

functional and implement it in castep. This functional improves the treatment

of non-collinear spin which allows us to realise a spin-ice state in Dy2Ti2O7.
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Chapter 1

Introduction

If I have seen further it is by

standing on the shoulders of

giants.

—Sir Isaac Newton

The quote that opens this chapter is perhaps one of the most succinct and

accurate descriptions of physics. The work presented in this thesis, in small

part, builds on over 100 years of research that started with the development of

quantum mechanics. In the simplest terms, in condensed matter physics, we

wish to understand the properties of materials. What causes them to behave

how they do? Quantum mechanics allows us to describe materials in terms

of the interactions between the electrons and nuclei which are the building

blocks of everything we see around us. We must throw away the old ideas

of Newton, of point particles with well defined positions and momenta, and

embrace the wavefunction and wave-mechanics [1]. While brilliant, quantum

mechanics loses some of the intuitive nature of classical mechanics which does

not help its reputation outside of the physics community. From a practical point

of view, solving quantum mechanical equations to describe realistic systems

is non-trivial. Finding ways to solve quantum systems is of such importance

that the 1998 Nobel prize in Chemistry was shared by Walter Kohn for his

involvement in the development of density functional theory (DFT), the method

of choice for quantum calculations in this thesis. We will use DFT to probe

16
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materials which display another counter-intuitive property, magnetism.

One could hand a fridge magnet to almost anyone and they would likely tell

you that it sticks to metal. A smaller group of people may recognise that this

fridge magnet will stick to metals which contain iron. However, for something so

common, a full explanation of how it sticks to a fridge seems almost impossible.

Even Richard Feynman could not do it justice [2]. Magnetism is a purely

quantum phenomenon; Niels Bohr and Hendrika van Leeuwen independently

showed in their respective theses that, using classical physics, there can be no

net magnetisation in a solid [3, 4, 5]. In this thesis we will show how DFT

calculations can be an invaluable tool in describing magnetism and magnetic

interactions in condensed matter systems. We will also implement cutting edge

methods in a DFT code which allow us to realise magnetic states which were

previously unattainable in spin-density functional theory (spin-DFT).

DFT has become a front-runner amongst methods for calculating properties

of materials from quantum mechanics. The Thomas-Fermi model, developed

not long after Schrödinger introduced his famous equation, framed the quan-

tum problem in terms of the electron density [6, 7, 1]. This paved the way

for Hohenberg and Kohn to lay out the mathematical foundation of DFT in

1964 [8] and for Kohn and Sham to devise an efficient scheme for calculations

of electronic properties in 1965 [9]. With the addition of spin-DFT [10, 11],

we are now in a position to calculate the electronic properties of materials that

exhibit magnetic ordering.

The term magnetism encompasses a whole range of configurations of electron

spins in a material, the most simple being ferromagnetism (the fridge magnet

mentioned above) and antiferromagetism. Ferromagnets have been a source

of intrigue for thousands of years [12], while antiferromagnets were discovered

more recently by Néel in 1948 [13]. More exotic magnetic states have been the

focus of consistent research for decades, an example being the search for spin

ices in the pyrochlores, culminating in the discovery of such a state in Ho2Ti2O7

in 1998 [14, 15]. Spin-DFT is a common tool for studying systems displaying
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collinear magnetism (CM), that is ferromagnetism or antiferromagnetism where

the electron spins are parallel or antiparallel [16, 17, 18]. More recently, with

the improvements in computing power and new computational methods, it is

becoming increasingly possible to apply spin-DFT to systems displaying non-

collinear magnetism (NCM). While calculations of materials hosting NCM are

not yet common, it is certainly possible to use spin-DFT to examine their prop-

erties and magnetic states. An early example of the successes of non-collinear

spin-DFT is the understanding of the Invar effect in Fe-Ni alloys [19]. By calcu-

lating the magnetic moments of the ions at a range of densities, van Schilfgaarde

et al. [19] were able to show that Fe-Ni undergoes a continuous transition to a

non-collinear state. They were then able to conclude that this magnetisation

is the cause of the high thermal expansion coefficient of this alloy. Despite

successes, relativistic effects in the form of spin-orbit coupling (SOC) were still

missing from computations of electronic structures. Known to cause a number

of magnetic phenomena such as the De Haas-Van-Alphen effect and magnetic

anisotropy [20], SOC was first included in calculations of band structures in

the 1970s [21, 22, 23]. SOC is now a common consideration when perform-

ing calculations using non-collinear spin-DFT. Implementation of non-collinear

spin-DFT in popular codes, such as castep [24], fleur [25] and vasp [26], has

allowed the wider physics community to investigate NCM in a first principles

approach. Non-collinear spin-DFT is now available in many codes with a large

diversity of implementations, which allows users to choose the code best suited

to their objectives. With the inclusion of constrained minimisation techniques

in some of the major DFT codes [27, 28], more advanced NCM structures can

be realised with spin-DFT. In general these methods add a Lagrange multiplier

into a Hamiltonian which acts as an energy penalty, biasing the electronic min-

imisation to find a state with a particular spin configuration. An example study

using such constraints can be found in Ref. [29], whereby constraints are used

to realise a series of NCM states around a curved crystal. From these states,

the authors are able to use the total energy to extract anisotropy constants as
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a function of curvature. Spin-DFT has also proven useful at comparing the rel-

ative stability of NCM states and from that, calculating Dzyaloshinskii–Moriya

interaction (DMI) constants [30]. Recent work by Mankovsky and Ebert [31],

using a Green’s function approach, applies the Liechtenstein method [32, 33] to

calculate parameters which can then be used in a micromagnetic simulation [34]

using the Landau–Lifshitz–Gilbert equation. Alternative methods for calculat-

ing properties of non-collinear magnets, including the spin-spiral stiffness, are

based on methods for calculating the magnetic susceptibility [35]. Previous

studies using this technique have yielded promising results [36, 37].

This thesis will introduce the many electron problem and motivate the need

for DFT, as well as describing how DFT calculations actually work. We will use

DFT and spin-DFT to investigate the properties of a range of materials that

host exotic magnetic states, touching on some important themes. We will study

the effects of impurities in magnetic crystals and how they contribute to the

magnetic order. Also, we will investigate the underlying interactions that cause

magnetism and how electronic structure impacts upon the spin structures found

in a material. Finally, by leveraging cutting edge developments in the theory of

DFT, we shall implement new methods for better capturing complex configura-

tions of non-collinear spins using spin-DFT. We aim to demonstrate the current

state of research in the field of DFT and how it can be used in conjunction with

experimental techniques to further our understanding of magnetism in the solid

state.
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1.1 Layout of thesis

The layout of this thesis is as follows:

Chapter 2: We derive the Hohenberg-Kohn (HK) theorems and the Kohn-

Sham (KS) scheme which forms the basis for the DFT calculations we will

present in later chapters. We introduce spin and motivate the use of spin-DFT

to perform calculations of magnetic properties. We finish by describing the im-

plementation of DFT in a plane-wave code.

Chapter 3: We look at the uses of DFT for calculating properties of ma-

terials hosting magnetic skyrmions relevant to experimental physicists. We

introduce the muon-spin spectroscopy (µSR) technique and discuss how DFT

can be used to solve the muon-site problem by calculating where an implanted

muon would stop. We report muon stopping sites in the skyrmion hosting ma-

terial, Cu2OSeO3 calculated from DFT. We also look at the applications of

spin-DFT to examine chemical substitution in the skyrmion hosts GaV4S8 and

GaV4Se8. We provide an explanation for observed magnetic properties in the

high substitution limit by examining the spin density around the magnetic ions.

Chapter 4: We report a pressure study of the magnetic exchange couplings in a

quantum magnet, [Cu(pyz)0.5(gly)]ClO4. We show that it undergoes structural

distortions that correspond to a change in the ratio between the main magnetic

exchange constants. This change suggests that the ground state magnetic struc-

ture changes from a disordered state to one that exhibits long range magnetic

order.

Chapter 5: We report a theoretical and experimental study of the electronic

structure of a selection of intercalated transition-metal dichalcogenide (TMDC)

materials. We examine the density of states (DoS) and band structures of

Cr1/3MS2 (M = Nb or Ta) and find that there is a gap-like feature at the
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Fermi level. We present experimental evidence for this gap and measure its

size. We calculate from first principles the transport properties of Cr1/3MS2

(M = Nb or Ta) and compare to experiment finding good agreement. We also

report electronic structure calculations of TMDCs intercalated with transition

metals from the first period. We show that the magnetism across the series can

be well described by electron band filling in the electronic shells of the transition

metal intercalant.

Chapter 6: We provide an overview of method for improving the non-collinear

results of the local spin-density approximation (LSDA), as well as details of how

we implemented this method in castep. By applying the new functional to

calculations of a set of simple magnetic materials, we test the implementation

and explore the effects it has on the internal magnetic fields. After demonstrat-

ing that the implementation is successful, we use it to calculate the magnetic

structure of the spin-ice material, Dy2Ti2O7. Along with comparison to the

LSDA, we show that the corrected functional improves the ability of a spin-

DFT calculation to capture complex magnetic structures.

Chapter 7: In this chapter we conclude the thesis by summarising the main

results presented throughout. Having presented our results, we place the work

in context by briefly revisiting the state of the field and discuss potential av-

enues for further development.

Apppendix A: We provide a mathematical explanation of the process involved

in finding a ground state using the variational principle. This form of energy

minimisation is used in every calculation presented in this thesis to determine

the ground state electronic structure.

Apppendix B: We present a derivation of the reciprocal representation of the

Hartree potential used to approximate electron–electron interactions. We dis-
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cuss the implications for the efficiency of a calculation by calculating the Hartree

potential in reciprocal space.

Apppendix C: We provide links and documentation for useful programs de-

veloped by the author during the completion of this thesis. This includes code

used to plot all band structures and Fermi surfaces presented in this thesis.



Chapter 2

Many electrons and density

functional theory

Protons give an atom its identity, electrons its

personality.

—Bill Bryson,

A Short History of Nearly Everything

2.1 Many electron systems

In quantum mechanics, the behaviour of a collection of quantum particles can

be determined from the many particle wavefunction, Ψ. With knowledge of Ψ

one can extract the probability distribution of all of the particles and associated

physical properties. In condensed matter, Ψ is a function of all the electrons

and the nuclei that form a material. The wavefunction is the solution to the

Schrödinger equation [1],

i~
∂

∂t
Ψ(r1, . . . , rN ;R1, . . . ,RM , t) =

Ĥ(r1, . . . , rN ;R1, . . . ,RM)Ψ(r1, . . . , rN ;R1, . . . ,RM , t),

(2.1)

23
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where Ĥ(r1, . . . , rN ;R1, . . . ,RM) is the many body Hamiltonian operator, and

r and R are the positions of the electrons and the nuclei respectively. We note

that the Schrödinger equation has no explicit spin dependence, unlike the Dirac

equation [38], and has to be added in by hand. In this thesis we will consider

only the time independent Schrödinger equation,

Ĥ(r)Ψ(r1, . . . , rN ;R1, . . . ,RM) = EΨ(r1, . . . , rN ;R1, . . . ,RM), (2.2)

where E is the total ground state energy. Throughout this thesis the atomic

unit system will be used, unless otherwise required for clarity, whereby the

electron charge, e, reduced Planck’s constant, ~, Bohr atomic radius, a0, and

the electron mass, me, are equal to one.

The Hamiltonian consists of a kinetic energy operator and a potential energy

operator,

Ĥ = T̂ + V̂ , (2.3)

T̂ = −1

2

∑

N,M

{

∇
2
N + ∇

2
M

}

, (2.4)

where ∇
2
N,M is the Laplacian operator for electrons and nuclei respectively.

Without considering additional external potentials, the potential energy oper-

ator is given by:

V̂ =
∑

i,I

ZI

|ri −RI |
+

1

2

∑

i,j,i 6=j

1

|ri − rj|
+

1

2

∑

I,J,I 6=J

ZIZJ

|RI −RJ |
, (2.5)

where r and R are the positions of the electrons and nuclei. The three terms

in Eq. 2.5 are the electron-nuclear interaction, the electron-electron interaction

and the nuclear-nuclear interaction respectively, and ZI is the nuclear charge

of the Ith nucleus. The indexing of the two sums is such that it avoids self

interaction and the factors of a half fix the double counting of electron-electron

and nuclear-nuclear interactions.
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2.1.1 Born-Oppenheimer approximation

In Eq. 2.2 the Schrödinger equation is impossible to solve exactly for any system

of interest to condensed matter due to the large number of electrons (∼ 1024),

and the interactions between them. Over the previous century many approxima-

tions and reformulations have been taken to make this problem more tractable.

The Born-Oppenheimer (BO) approximation [39] is one such way of simplifying

the Schrödinger equation. We note that the difference in mass scales of elec-

trons and nuclei is significant (mp ≈1800me), and therefore the motion of each

responds on different timescales. The electrons respond quickly to any nuclear

motion and will remain in their instantaneous ground state.

Using the BO approximation one can then separate the electronic and nu-

clear wavefunctions into product states,

Ψ(r1, . . . , rN ;R1, . . . ,RM) = Ψelec
R1,...,RM

(r1, . . . , rN)χ(R1, . . . ,RM), (2.6)

where χ is the nuclear part of the wavefunction and the nuclear positions are

treated as parameters of the electronic state. The electronic Hamiltonian is

then,

Ĥelec = T̂elec + V̂e = −1

2

∑

i

∇
2
i +

∑

i,I

ZI

|ri −RI |
+

1

2

∑

i,j,i 6=j

1

|ri − rj|
. (2.7)

The BO approximation is valid for a wide range of condensed matter sys-

tems, however it has limitations such as when considering nuclear motion in

metals or small band-gap semiconductors. For instance, it may be inappropri-

ate in the discussion of electron-phonon couplings in superconducting materi-

als [40]. In this thesis it is reasonable to assume that the BO approximation is

valid for the systems considered.
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2.2 Density functional theory

As stated above, the Schrödinger equation is impossible to solve exactly for

any condensed matter system, which has meant that research into approximate

methods has been of continued interest over the past 100 years. Density func-

tional theory (DFT) has emerged as one of the favourite methods for condensed

matter physicists to calculate properties of a wide range of solid state materials

from first principles [41]. While DFT is often less accurate than other methods

such as coupled cluster theory [42], its speed allows one to compute systems with

many hundreds of electrons with relative ease. Rather than approximating the

wavefunction like many other approaches such as Hartree-Fock theory [43] and

coupled cluster theory [42], DFT seeks to find approximations to the electronic

density. Once the density is found, observables can be obtained in much the

same way as from the wavefunction, with the added benefit that the density is

much simpler than the wavefunction, as discussed below.

It is worth exploring briefly the scale of the gain which is achieved by centring

our computation around the density, which is given by:

n(r) = N

∫

dr2 . . .

∫

drNΨ∗(r1, . . . , rN)Ψ(r1, . . . , rN), (2.8)

where n(r) is the electronic density, the parametric dependence of the wavefunc-

tion on nuclear positions has been omitted for clarity. We see that the density

has many fewer degrees of freedom (DoF) than the many particle wavefunction

with three DoF compared to 3N DoF for the wavefunction; this reduction in

dimensionality means that it is easier to store than the wavefunction and allows

for DFT to handle much larger systems than any wavefunction approach. To

estimate the real world benefit, consider a wavefunction and density stored on

a very coarse 10 × 10 × 10 grid, we can then estimate the storage requirements

of each. For only four electrons, the density would require approximately 10 kB

of storage. Whereas the wavefunction, for the same very small system, would

require 10 TB of storage; one would only have to consider seven electrons before
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we exceeded the total storage capacity currently on Earth.

This section will show that it is indeed possible to simplify the many electron

problem by using the electronic density, and introduce the Kohn-Sham (KS)

formalism which is the basis of all the calculations presented in this thesis.

2.2.1 Hohenberg-Kohn theorems

Having motivated the use of the electronic density in calculations of quantum

properties, the Hohenberg-Kohn (HK) theorems provide a sound theoretical

basis for making such a change. Hohenberg and Kohn demonstrated that the

density is sufficient to describe a system of electrons through two theorems [8].

The first Hohenberg-Kohn theorem (HK I) shows that there is a one-to-one map-

ping between the external potential and the density; since the potential defines

the Hamiltonian, the external potential also uniquely defines the wavefunction.

Since the density is uniquely defined and equivalent to the wavefunction, it is

sufficient to describe the groundstate properties of the system. We use this

density to describe properties of a system. The language of DFT is that of

functionals, that is a mapping of a function onto a number, in a similar way

that a function is a mapping of one number onto another. A common exam-

ple from DFT is an energy functional, E[n(r)], which maps the density, n(r)

onto an energy. The second Hohenberg-Kohn theorem (HK II) shows that the

groundstate density is such that it minimises the HK energy functional and can

be obtained variationally. The proof of the first theorem is in two parts.

HK I.1 Two potentials differing by more than a constant yield different

wave-functions.

Proof. We present a proof using reductio ad absurdum. Consider two poten-

tials V̂1 and V̂2 which differ by more than a constant such as the electron-nuclear

potential from two different materials; both potentials lead to the same wave-

function Ψ. For simplicity, we assume without loss of generality that Ψ = Ψ(r)

is a single particle wavefunction. The ground state energy of each potential is
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given by

(T̂ + V̂1)Ψ(r) = E1Ψ(r), (2.9)

(T̂ + V̂2)Ψ(r) = E2Ψ(r). (2.10)

Taking the difference of Eq. 2.9 and Eq. 2.10 leads to

(V̂1 − V̂2)Ψ(r) = (E1 − E2)Ψ(r), (2.11)

and since the potentials V̂1 and V̂2 are multiplicative operators, and assuming

that Ψ(r) 6= 0,

V̂1 − V̂2 = E1 − E2 = const. (2.12)

Therefore one finds a contradiction as the difference of the potentials is sim-

ply the difference of their energies, which is a constant. This proves that two

different potentials must lead to different wavefunctions.

HK I.2 Two different groundstate wavefunctions lead to two different den-

sities.

Proof. As above we employ reductio ad absurdum to show that the wave-

function uniquely defines the density. Consider two wavefunctions Ψ1 and Ψ2

which are necessarily related to two unique potentials, V̂1 and V̂2. From the

variational principle,

E1 = 〈Ψ1| Ĥ1 |Ψ1〉 < 〈Ψ2| Ĥ1 |Ψ2〉 , (2.13)

and

E2 = 〈Ψ2| Ĥ2 |Ψ2〉 < 〈Ψ1| Ĥ2 |Ψ1〉 . (2.14)

Adding Eq. 2.14 to Eq. 2.13,

〈Ψ1| Ĥ1 |Ψ1〉 + 〈Ψ2| Ĥ2 |Ψ2〉 < 〈Ψ2| Ĥ1 |Ψ2〉 + 〈Ψ1| Ĥ2 |Ψ1〉 , (2.15)
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〈

Ψ1(r)

∣

∣

∣

∣

−1

2
∇2 + V1(r)

∣

∣

∣

∣

Ψ1(r)

〉

+

〈

Ψ2(r)

∣

∣

∣

∣

−1

2
∇2 + V2(r)

∣

∣

∣

∣

Ψ2(r)

〉

<

〈

Ψ2(r)

∣

∣

∣

∣

−1

2
∇2 + V1(r)

∣

∣

∣

∣

Ψ2(r)

〉

+

〈

Ψ1(r)

∣

∣

∣

∣

−1

2
∇2 + V2(r)

∣

∣

∣

∣

Ψ1(r)

〉

,

(2.16)

cancelling kinetic energy terms and switching to integral notation,

∫

dr

{

Ψ∗
1(r)V1(r)Ψ1(r) + Ψ∗

2(r)V2(r)Ψ2(r)

}

<

∫

dr

{

Ψ∗
2(r)V1(r)Ψ2(r) + Ψ∗

1(r)V2(r)Ψ1(r)

}

,

(2.17)

using that for a single particle wavefunction, Ψ∗
i (r)Ψi(r) = ni(r), and that

potentials commute with the wavefunction,

∫

dr

{

V1(r)n1(r) + V2(r)n2(r)

}

<

∫

dr

{

V1(r)n2(r) + V2(r)n1(r)

}

,

(2.18)

finally we arrive at,

∫

dr [V1(r) − V2(r)][n1(r) − n2(r)] < 0. (2.19)

If we assume that two potentials can correspond to the same density, i.e. n1 =

n2, Eq. 2.19 is a contradiction. Therefore the proof is complete.

Having shown that the electron density is sufficient to describe a system of

electrons, we now need a way to guarantee that a density is the groundstate

solution for an ensemble of electrons. It is possible to describe the energy as a

functional of the density,

E[n] =

∫

dr n(r)Ven + FHK[n(r)], (2.20)

with

FHK[n] = T [n] + Eee[n(r)]. (2.21)

The universal functional, FHK, comprises the kinetic energy functional and the
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electron-electron interaction. There is not an exact form of this functional.

However, FHK is equivalent to the full electronic Schrödinger equation as we

have made no approximation. The key point to note about Eq. 2.21 is that

there is no dependence on the wavefunction and it provides a way of extracting

the total energy of a system directly from the density.

HK II solves the problem of finding the ground state density given the

universal functional. Consider a trial density ñ with associated wavefunction

Ψ̃,

〈Ψ̃| Ĥ |Ψ̃〉 = E[ñ] (2.22)

and

〈Ψ0| Ĥ |Ψ0〉 = E[n0], (2.23)

where n0 and Ψ0 respectively are the groundstate density and wavefunction of

Ĥ. From the variational principle we get the condition that,

E[n0] < E[ñ], (2.24)

thus proving that the groundstate density can be determined uniquely by vary-

ing the density and finding the energy minimum.

2.2.2 Kohn-Sham formalism

The HK theorems are an important step towards being able to solve systems

of electrons ab initio, however it does not solve the fundamental problem of

interacting electrons. KS theory reimagines the system of interacting electrons

as an auxiliary system of non-interacting electrons. Crucially this auxiliary sys-

tem has the same density as the fully-interacting electrons [9]. Kohn and Sham

solved two problems. First, the problem of interacting electrons. Secondly, erad-

icating the need for complex approximations to the kinetic energy functional.

The wavefuntion in a KS picture is described by a Slater determinant [44] con-

structed of KS orbitals, Φ. The significance of the KS orbitals is not a simple

matter and much discussion has been had in the literature [45, 46, 47]. How-
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Vext VKS

(b)(a)

Figure 2.1: Schematic of the KS formalism, (a) shows a system of electrons
(green) and their interaction sitting in an external potential, Vext. (b) shows
the KS system with non-interacting electrons (blue) sitting in a KS effective
potential. The effective potential includes all of the effects of the external
potential and the electron-electron interactions. In principle the KS system is
exact. However, in practice approximations are made in constructing the KS
potential.

ever, the interpretation taken in this thesis is that each KS orbital represents a

non-interaction electron state.

From the Slater determinant description of the wavefunction, the density is

given by

n(r) =
∑

i

fi|φi(r)|2, (2.25)

where φi is the ith orbital of Φ, equivalent to a single particle wavefunction and

fi is the occupancy of φi, and is a number in the range 0 to 1. The kinetic

energy functional for the KS system in terms of the orbitals is approximated

by,

Ts[n(r)] = −1

2

∑

i

fi

∫

dr φ∗
i (r)∇2φi(r), (2.26)

whereby the single-particle kinetic energy functional, Ts[n(r)], is given by a sum

over orbitals of the non-interacting single-particle kinetic energy. The electron-
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nuclear energy is defined by,

Een[n(r)] =

∫

dr n(r)Ven(r), (2.27)

and the electron-electron interaction energy is approximated by the Hartree

energy,

EH[n(r)] =
1

2

∫

dr

∫

dr′ n(r)n(r′)

|r − r′| . (2.28)

So far we have not considered the indistinguishability of electrons. The elec-

tron wavefunction must be anti-symmetric under exchange as they are Fermions

[ψ(r1, r2) = −ψ(r2, r1)]. Also, electrons are correlated, meaning that changes

in the electron density in one part of space are dependent on the electron density

in a separate part of space. In the context of DFT, correlation is defined as all of

the effects not captured thus far in the total energy functional. The remaining

effects are encompassed in the exchange and correlation (xc) functional,

Exc[n(r)] = T [n(r)] − Ts[n(r)] + Eee[n(r)] − EH[n(r)], (2.29)

where T [n(r)] and Eee[n(r)] are as defined in the universal functional (Eq. 2.21).

Given these definitions, the KS functional is expressed,

EKS[n(r)] = −1

2

∑

i

fi

∫

dr φ∗
i (r)∇2φi(r) +

1

2

∫

dr

∫

dr′ n(r)n(r′)

|r − r′|

+

∫

dr [n(r)Ven(r)] + Exc[n(r)].

(2.30)

By including the xc term (Eq. 2.29) in Eq. 2.30 we can see that the KS formu-

lation of DFT is exactly equivalent to the universal HK functional (Eq. 2.21).

A consequence of this is that the exact xc functional, if it were known, would

be as difficult to solve as the fully interaction Schrödinger equation as one must

reintroduce the full electron-electron interactions. Many approximations exist

for the xc functional, some of which are discussed in Sec. 2.4.

From the definitions presented above one can construct the KS potential
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which bounds our fictitious system of non-interacting electrons,

VKS(r) = Ven(r) +

∫

dr′ n(r′)

|r − r′| +
δExc[n(r)]

δn(r)
. (2.31)

The final term in Eq. 2.31 describes a functional derivative, much the same as

the derivative of a function, it outputs the change in a functional with respect

to some change in a function. Having derived the KS potential we arrive at the

KS equations which allows for computation of all groundstate properties,

{

− 1

2
∇

2 + VKS(r)

}

φi(r) = ǫiφi(r). (2.32)

The KS equations are a set of N coupled single-particle Schrödinger equations

in an effective KS potential. This reduction of complexity means that it is now

possible to obtain a solution. The solution must be obtained self-consistently

by improving the set of orbitals iteratively until the input orbitals are equal to

the resulting orbitals [48]. Details of numerical implementations are discussed

in Sec. 2.5.

2.2.3 Total energy from Kohn-Sham orbitals

The KS energy functional given in Eq. 2.30 is only one way of calculating the

total energy of a system. It is often preferable to calculate the total energy

using the eigenenergies of the KS orbitals. We can write the KS functional in

terms of the constituent functionals,

EKS = Ts[n(r)] + Een[n(r)] + EH[n(r)] + Exc[n(r)]. (2.33)

Given the groundstate orbitals, φi, we can construct the energy of a single

orbital,

ǫi = 〈φi| T̂s + V̂en + V̂H + V̂xc |φi〉 . (2.34)
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If we now define a new energy, Ẽ, which is the energy of the orbitals,

Ẽ[n(r)] =
∑

i

fiǫi,

=
∑

i

[fi 〈φi| T̂s |φi〉] +

∫

dr [Ven(r)n(r) + VH(r)n(r) + Vxc(r)n(r)],

(2.35)

where fi is the occupancy of each orbital, we can redefine the total energy,

EKS = Ẽ[n(r)]+EH[n(r)]+Exc[n(r)]−
∫

dr [VH(r)n(r)+Vxc(r)n(r)]. (2.36)

The main benefit of reformulating the total energy in this way is that the Lapla-

cian terms relating to the kinetic energy are contained inside Ẽ, and therefore

do not need to be recomputed.

2.3 Spin-density functional theory

DFT as discussed in Sec. 2.2 is only concerned with the locations of the electrons

through the electron density. We have made no reference to the fact that elec-

trons carry angular momentum, both orbital and spin. Spin-density functional

theory (spin-DFT) [10, 11] is a logical extension to DFT which introduces elec-

tron interactions with static magnetic fields. (The magnetic fields are included

in the Hamiltonian as a Zeeman-like term, and therefore is applicable to fields

which interact with electron spins only rather than orbital momentum.)

Spin-DFT was developed with the intention of calculating the effects of

external magnetic fields on the electronic structure, although many spin-DFT

calculations are performed on materials in zero-field. While, in principle, DFT is

able to handle open-shell systems (systems with unpaired electrons), spin-DFT

is often the default choice when dealing with such systems. Spin-DFT is able

to handle such things as spontaneous magnetisation arising in ferromagnetic

materials, as it allows for the number of spin-up and spin-down electrons to

differ by more than one.

There are two types of systems we can treat with spin-DFT: systems dis-
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playing collinear magnetism (CM), where spins are constrained to be paral-

lel or antiparallel, and systems with non-collinear magnetism (NCM), where

no such constraint is applied. NCM has been of particular interest in the

last few decades, for example, the prediction and later discovery of magnetic

skyrmions [49, 50, 51].

2.3.1 Collinear spin-density functional theory

We will start by defining some terms. As well as the electron charge density,

spin-DFT is also concerned with the spin density. In a CM treatment the spins

are treated as either spin up or spin down, typically aligned in the z direction,

although this choice is arbitrary. We can define a density associated with each

of the spin-up and spin-down electrons, n↑(r), n↓(r), and the relation to the

total density,

n(r) = n↑(r) + n↓(r). (2.37)

The total number of electrons in the system is fixed, although the number of

spin-up and spin-down electrons is free to vary. We can also define the overall

spin density,

s(r) = n↑(r) − n↓(r). (2.38)

By convention the magnetisation density is given by,

mz(r) = −µBs(r), (2.39)

where µB is the Bohr magneton [52].

Since we now include spin, each of the KS orbitals and the KS energy func-

tional (Eq. 2.30) gain a spin dependence. The KS orbitals become,

φi(r) → φσ
i (r), σ =↑, ↓ (2.40)



36 Chapter 2. Many electrons and density functional theory

and the KS functional becomes,

EKS[n(r)] → EKS[n↑(r), n↓(r)]

= −1

2

∑

i

fi
∑

σ=↑,↓

∫

dr φσ∗
i (r)∇2φσ

i (r)

+
1

2

∫

dr

∫

dr′ n(r)n(r′)

|r − r′| +

∫

dr n(r)Vext(r) + Exc[n
↑, n↓],

(2.41)

where the xc functional depends explicitly on the spin-up and spin-down densi-

ties, and the kinetic energy now includes a sum over spin for the spin dependent

KS orbitals. The electron-nuclear potential has been replaced by two more gen-

eral external potentials,

V ↑
ext(r) = Ven(r) + µBBz(r)

V ↓
ext(r) = Ven(r) − µBBz(r),

(2.42)

where Bz(r) is an external magnetic field in the z direction. In atomic units,

µB = 1/2, however for clarity we will use the symbol rather than the numerical

value. The magnetic field acts differently on the spin-up and the spin-down

electrons leading to a different expression for each.

We arrive now at a new set of KS equations taking into account spin,

{

− 1

2
∇2 + VH + Vext +

δExc[n
↑, n↓]

δnσ(r)

}

φσ
i (r) = ǫσi φ

σ
i (r). (2.43)

These equations are known as the spin-unrestricted KS equations [52]. While

the Hartree and external potentials depend only on the total electronic density,

the xc potential depends explicitly on the spin densities. Any xc functionals

must be constructed to account for both densities. Equations 2.43 must be

solved self-consistently in the same way as the non-spin or spin-restricted KS

equations. There is an added complication in the solving of the unrestricted

equations in that the total number of each spin-up and spin-down electrons is

not fixed. This means that when calculating occupancies one must also vary

the number of electrons in each spin channel to find the minimum in energy.
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One common consequence of this is that a calculation will often not find the

global minimum in energy if multiple possible magnetic states can exist in the

material. An example of such an effect can be found in Fe which may be

either non-magnetic, ferromagnetic or antiferromagnetic [53, 54]. Which state

is realised will depend on the initialization of the trial orbitals.

2.3.2 Non-collinear spin-density functional theory

In the case of non-collinear spin-DFT there is no longer a restriction on the

spin being aligned with a particular axis. At every point in space the electron

spin is able to point in any local spin direction. The treatment of NCM is more

complicated than CM as the KS orbitals now becomes two-component spinors,

φi(r) =





ϕ↑
i (r)

ϕ↓
i (r)



 . (2.44)

We can define a density matrix that is generated from the spinor-wavefunction,

n̂(r) =
∑

i

fi |φi(r)〉 〈φi(r)|

=
∑

i

fi

(

ϕ↑∗
i (r), ϕ↓∗

i (r)
)





ϕ↑
i (r)

ϕ↓
i (r)



 =





n↑↑(r) n↑↓(r)

n↓↑(r) n↓↓(r).





(2.45)

It is more useful to describe the non-collinear density in terms of the charge

density and the spin density/magnetisation [55],

n̂(r) =
1

2

(

n(r)I2×2 + σ · s(r)
)

=
1

2

(

n(r)I2×2 −
1

µB

σ ·m(r)

)

,
(2.46)
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where s(r) is the vector spin density, m(r) is the vector magnetisation density,

I2×2 is the identity matrix and σ is the vector of Pauli spin matrices given by [5],

σx =





0 1

1 0



 , σy =





0 − i

i 0



 , σx =





1 0

0 −1



 . (2.47)

As the eigenvalues of the density matrix represent observable properties it is

necessarily Hermitian, therefore n↑↓ = n∗
↓↑.

There are also a number of ways of expressing a non-collinear potential. In

matrix form we have a spin potential given by,

V̂(r) =





V↑↑(r) V↑↓(r)

V↓↑(r) V↓↓(r)



 . (2.48)

This matrix is also Hermitian. Using this new matrix form for the spin potential,

we can express the Hartree and electron-nuclear terms,

V̂H(r) =
1

2





VH(r) 0

0 VH(r)



 , (2.49)

V̂en(r) =
1

2





Ven(r) 0

0 Ven(r)



 . (2.50)

Note that the spin potentials in Eq. 2.49 and Eq. 2.50 are diagonal in spin space

as there is no spin dependence on either potential.

We can also give spin potentials in terms of the contributions from a scalar

potential V (r) and a vector magnetic field B(r) [55],

V̂(r) = V (r)I2×2 + µBσ ·B(r). (2.51)

If we constrain the B-field to be along the z-axis, and take the trace of V̂(r)

then we recover the expression for a collinear potential in Eq. 2.42.

When we consider xc in non-collinear spin-DFT it becomes more compli-

cated. At present there are no widely used xc-functionals specifically designed
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for NCM [56]. Therefore we must make use of spin-dependent xc-functionals

designed for the collinear case. As these functionals are functionals of the

spin-up and spin-down densities, we perform a local rotation of the NCM den-

sity (Eq. 2.45) in spin space such that the density is locally collinear (diago-

nal) [11, 55],

n̂(r) ⇒





ñ↑↑(r) 0

0 ñ↓↓(r)



 . (2.52)

After this local rotation we are then able to calculate the xc-energy from the

standard collinear functionals,

Exc = Exc[ñ↑↑, ñ↓↓]. (2.53)

From the collinear xc-energy we can calculate the matrix elements of the locally

collinear spin potential as in Eq. 2.43,

Ṽxc(r) =





V ↑↑
xc (r) 0

0 V ↓↓
xc (r),



 (2.54)

where the matrix elements are given by,

Ṽ τ
xc(r) =

δExc[ñ↑↑, ñ↓↓]

δñτ (r)
, τ =↑↑, ↓↓ . (2.55)

Both ñ and Ṽxc must be transformed back into the locally unrotated frame by

performing the inverse transform of Eq. 2.52. It is not possible in general to

perform a global transformation, therefore it must be performed piece-wise at

each point in space.

A consequence of the potentials being 2×2 matrices is that the total energy

for a non-collinear state is calculated in a different manner than the non-spin-
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polarised case (Eq. 2.36),

EKS =
∑

i

fiǫi + EH[n(r)] + Exc[ñ]

−
∫

dr [Tr{VH(r)}n(r) + Tr{Vxc(r)}n(r)].

(2.56)

Strictly it is not necessary to perform the rotation of Vxc if one is only using

it to calculate the total energy since the trace is invariant with respect to the

choice of basis [57].

2.3.3 Hohenberg-Kohn theorems including spin

Collinear spin

In Sec. 2.3.1 and Sec. 2.3.2 we have formulated the KS equations for a ficti-

tious set of non-interacting electrons in an effective spin potential. However

the KS formalism requires that the HK theorems hold true, this is not obvi-

ously true for spin potentials. Since the development of spin-DFT by von Barth

and Hedin in 1972 [10], there has been much discussion of the validity of the

HK theorems. In the case of collinear spin-DFT, Von Barth and Hedin them-

selves show that for a single electron orbital, the spin potential is not uniquely

defined, and conclude that in general the HK theorems cannot hold. This break-

down of the HK theorems was then extended to many-electron wavefunctions

by Capelle and Vignale [58]. They show that in the case of full polarisation

(i.e. n↑ = n, n↓ = 0), there are an infinity of potentials which map to the

spin-down density. It is assumed in Eq. 2.12 that for HK I to be valid, the

wavefunction and therefore the density, must be non-zero. The case discussed

by Capelle and Vignale is a direct extension to this. It is obvious that for a

system with no density, the potential cannot be unique, however this is of little

consequence in practice as it is very uncommon to consider a such a polarised

system. This breakdown of HK I is often call a trivial non-uniqueness.

In a collinear system there is another type of non-uniqueness which is termed

a systematic non-uniqueness by Capelle and Vignale. In DFT it is possible to
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determine the potential from the density, with the freedom of a constant. This

constant shift in the potential leads to an overall shift in the total energies ob-

tained by the KS equations. As a result, only the differences in energy can be

extracted with confidence from a DFT calculation, which is rarely a problem

as this is often aligned most closely with experimental observables. In the case

of collinear DFT there is also a freedom of a second constant. As the potential

is formed from an electronic part and a magnetic part, V = Velec + µBBz, we

find that there is an extra freedom in the B-field. This second constant results

in a non-uniqueness in the magnetisation potential. We can overcome this sys-

tematic non-uniqueness by placing a constraint on the number of spin-up and

spin-down electrons (i.e. fixing the magnetisation density) [55]. Calculations,

in practice, can be performed either with or without this constraint. By omit-

ting the constraint on magnetisation we allow the system to fall into different

magnetic minima, each of which is a true magnetic configuration of the system.

Non-collinear spin

To describe the HK theorems in the context of non-collinear spin-DFT, we must

briefly stray away from the usual language used to describe DFT. Using second

quanisation, we can define a set of number operators, related to the number of

electrons. Firstly we define the total number operator,

N̂ = N̂↑ + N̂↓, (2.57)

and the magnetisation operator,

m̂ = N̂↑ − N̂↓, (2.58)

where N̂↑ and N̂↓ are the number operators for spin-up and spin-down elec-

trons respectively. A non-uniqueness of the spin potential arises when these

operators commute with the Hamiltonian [55, 59]. As the total number of

electrons is fixed, [Ĥ, N̂ ] = 0; this is also true for standard DFT. In collinear
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systems we also have a definite number of spin-up and spin-down electrons,

therefore [Ĥ, N̂↑] = [Ĥ, N̂↓] = 0. Consequently the magnetisation operator also

commutes with the Hamiltonian, this leads to the systematic non-uniqueness

discussed above. It was suggested by Eschrig and Pickett [59] that one could

find a system with a non-collinear arrangement of spins where the spin-up and

spin-down number operators commute with the Hamiltonian. This would result

in the same systematic non-uniqueness described by Capelle and Vignale for the

collinear case. However, it was shown by Gidopoulos [55] that the only way for

this to occur is for the magnetisation to be globally collinear. We can conclude

therefore that for a spin potential which is in general non-collinear, there is a

direct one-to-one mapping of the spin potential and the spin density.

2.3.4 Spin-orbit interaction

To discuss more complex magnetic phenomena, we first cover some preliminar-

ies about angular momentum. Electrons interacting with an atomic nucleus

have orbital angular momentum as well as spin angular momentum which is an

intrinsic property. In the non-relativistic limit, the quantum numbers related

with these angular momenta are good quantum numbers, meaning that angular

momentum operators commute with the electronic Hamiltonian. For the or-

bital angular momentum we have two operators, total angular momentum, L̂2,

and by convention the z-component of the orbital angular momentum, L̂z [5].

Acting on an electron wavefunction we have,

L̂2 |ψ〉 = l(l + 1)~2 |ψ〉 , (2.59)

and

L̂z |ψ〉 = ml~ |ψ〉 , (2.60)

where l is the angular momentum quantum number and ml is the magnetic

quantum number and can take values of −l,−l+1, . . . , l−1, l. We have explicitly

included ~ as the fundamental quantum mechanical unit of momentum.
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Similarly for spin angular momentum we consider two operators, Ŝ2 and Ŝz

with quantum numbers s and ms respectively. The eigenequations for these

operators are thus,

Ŝ2 |ψ〉 = s(s+ 1)~2 |ψ〉 , (2.61)

and

Ŝz |ψ〉 = ms~ |ψ〉 . (2.62)

For electrons, s takes the value of 1/2. In the same way as orbital angular

momentum, ms can take the values −s, . . . , s. Therefore the eigenvalues of Ŝz

are ~/2 and −~/2, known as spin up and spin down respectively.

A complication occurs when electrons are moving at relativistic speeds. At

these speeds, spin and orbital angular momentum are not necessarily conserved

and can transfer from one to the other, this is known as spin-orbit coupling

(SOC). In this case we define the total angular momentum, J = L + S, which

is always conserved. We can define a correction to the KS Hamiltonian which

encompasses this effect known as the Thomas interaction, ĤSO = λŜ · L̂, where

λ is a material parameter [5, 60]. We can see that this effect is a function of

the total vector spin, and therefore we must consider this in a non-collinear

treatment as we require all components.

In a crystal system, SOC can become important as it links the electron spin

to the underlying lattice. Where there is a preferential spin direction with re-

spect to the lattice, known as magnetocrystaline anisotropy, SOC provides that

link. Of particular importance to long-range magnetic ordering in a material is

the so-called Dzyaloshinskii–Moriya interaction (DMI), or anti-symmetric ex-

change interaction [61, 62]. The form of DMI can be derived by applying second

order perturbation theory to the SOC interaction [60]. This interaction causes

canting of spins and as a result, SOC is essential for the investigation of such

magnetic states.
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2.4 Exchange and correlation functionals

In this section we shall discuss the most common functionals used for calcula-

tions in condensed matter. From the introduction of the xc functional by Kohn

and Sham there has been active research into developing improved functionals

resulting in huge choice for DFT users [63, 64]. The local density approximation

(LDA) and generalised gradient approximation (GGA) are the most common

functionals and have proved to be instrumental in the success of DFT. Despite

their apparent simplicity, they can be used to model accurately a wide range of

materials while remaining computationally inexpensive.

2.4.1 Local spin-density approximation

The LDA was originally proposed by Kohn and Sham in Ref. [9] and is the oldest

xc functional. It uses the xc-energy from the homogeneous electron gas (HEG)

to model that of whatever system is being studied, it is typical for the LDA to

be generalised to include spin, known as the local spin-density approximation

(LSDA). The functional takes the form,

ELSDA
xc =

∑

σ=↑,↓

∫

dr ǫHEG
xc [n↑, n↓]nσ(r), (2.63)

where ǫHEG
xc is the xc-kernel of the HEG, defined as the xc energy per unit volume

at a given spin density, and σ is the spin. The exchange part of the xc-kernel is

known exactly while the correlation part must be parametrised from quantum

Monte Carlo calculations, the particular parematrisation used in this thesis that

of Perdew and Zunger [65].

Despite the LSDA being a coarse approximation, it has a number of benefits.

In the case of covalent, ionic and metallic systems, the LSDA will reproduce

experimental geometries within approximately 10% [66]. The LSDA works best

when applied to systems with smoothly varying densities which best approxi-

mate the HEG. Importantly for computation the LSDA is local, meaning one

only needs to have knowledge of the HEG at the density in question, this means
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it is fast to compute. There are a series of known limitations to the LSDA, pri-

marily that LSDA tends to produce densities that are overly homogeneous [66].

As a result of this homogeneity the binding energies obtained by LSDA tend to

be overpredicted in molecules, this has consequences for structural calculations

which often underpredict bond lengths compared with experiment [67, 66]. For

magnetic systems, the LSDA has been shown to produce magnetic moments

with a large variation in the accuracy [56].

2.4.2 Generalised gradient approximation

As an extension to the LSDA, GGA uses the gradient of the density in addition

to density itself, with the aim of capturing some of the effects of variations in

the density. The general form for GGAs is,

EGGA
xc =

∑

σ=↑,↓

∫

dr ǫGGA
xc [n↑, n↓,∇n↑,∇n↓]nσ(r). (2.64)

There is no unique way to define the GGA, and many different parametrisations

exist. GGAs typically fall into two distinct groups, (i) empirical functionals that

have been parametrised using experimental data from a class of materials, and

(ii) functionals that have been parametrised to preserve exact quantities. The

most common functional in group (i) is BLYP [68] which has proved to be

accurate for molecular systems, however in physics where crystalline solids are

king, the functional of choice is often that of Perdew, Burke and Ernzerhof

(PBE) [69] or PBEsol [70] from group (ii), both allow for improved accuracy

when calculating properties of solids compared to LSDA, the latter of which is

known to be still more accurate for the prediction of lattice parameters.

As with the LSDA, GGAs are not perfect, it is well known that LSDA and

GGA underestimate electronic band gaps in most materials [71, 72], occasion-

ally predicting semiconductors to be metallic, for example La2CuO4 [73]. With

regards to structural parameters, GGAs have the opposite problem to the LSDA

whereby the binding energy is underpredicted, leading to larger lattice param-
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eters than found experimentally [67]. In terms of performance, GGAs have the

added complexity of the gradient of the density. This means that the functional

is no longer purely local and this incurs a small penalty in terms of computation

speed.

2.4.3 Jacob’s ladder and beyond

The so called Jacob’s ladder of xc functionals [74] starts with Hartree theory

and steps up the ladder, reaching for the lofty heights of chemical accuracy with

the exact xc functional. The LSDA and GGAs are the first two rungs of the

ladder, the next rung belongs to meta-GGAs [75, 76] which build on the success

of GGAs by including the electron kinetic energy as well as the gradient of the

density. Meta-GGAs incur a further computational cost compared to GGAs

and as such are not as popular for general use.

It is worth mentioning hybrid functionals which do not form part of the

Jacob’s ladder. Hybrids can be found throughout the literature [77, 78, 79] and

are most often used when a particular physical quantity is poorly approximated

by standard xc functionals since they can by tuned to produce the desired result;

as such hybrid functionals may not be strictly ab initio.

When choosing an xc functional, one is faced with dozens of options, many

of which promise excellent agreement with some particular experimental param-

eter, but are computationally expensive [80]. Extreme caution must be taken

in choosing an xc functional, as one might find poorer results from a more

expensive computation.

2.5 Implementation

In order to find solutions to quantum mechanical problems using the theory

outlined above we need to be able to take the continuous parameters of the

KS equations and use discrete analogues. It is important to do this so that

accuracy can be maintained and uncertainties quantified, ideally in such a way
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that numerical errors can be made arbitrarily small.

For all calculations in this thesis, we will use the plane wave pseudopotential

approach whereby KS orbitals are represented by a plane-wave basis set and

atom cores are represented by pseudopotentials. There are a range of benefits

to this approach. For instance, the plane-wave basis set can be arbitrarily large

leading to a systematic improvement in total energy. Other approaches exist,

such as Gaussian basis sets, but these basis sets are not complete and sample

space inconsistently as they differentiate between atoms and vacuum [81, 82, 83].

2.5.1 Periodic boundary conditions

As we are interested in material properties in the solid state, we model the

materials as infinite crystals. The biggest advantage of crystals is that they are

formed of infinitely repeating units known as unit cells and this allows us to

calculate macroscopic numbers of electrons using just the electrons in the unit

cell. A requirement of periodic boundary conditions (PBC) is that the external

potential, and therefore density, is also periodic,

Vext(r + R) = Vext(r), (2.65)

and

n(r + R) = n(r), (2.66)

where R is a real space lattice vector given by

R = n1a + n2b + n3c, with n1, n2, n3 ∈ Z, (2.67)

where a, b, c are the lattice vectors that span the parallelopiped which defines

the unit cell.

From the real lattice vectors we can define the reciprocal lattice vectors,

G = ha∗ + kb∗ + lc∗, with h, k, l ∈ Z, (2.68)
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(a) (b)

Figure 2.2: The first Brillouin zones of the (a) fcc and (b) bcc cubic lattices.
Each BZ is centred at the point k = (0, 0, 0).

where a∗, b∗, c∗ are given by

a∗ =
2π

Ω
b× c, (2.69)

b∗ =
2π

Ω
c× a, (2.70)

c∗ =
2π

Ω
a× b, (2.71)

with Ω the unit cell volume given by the scalar triple product of the lattice

vectors.

2.5.2 Bloch functions

By requiring that the potential and density are periodic, this does not necessar-

ily constrain the KS orbitals to be periodic. However, from the definition of the

density we know that the magnitude of the KS orbitals must have the lattice

periodicity, therefore

φk
i (r + R) = φk

i (r)eik·R, (2.72)
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where k is a constant vector, i indicates the orbital, and R is a real lattice

vector. From here we arrive at the Bloch theorem [84], which states that an

orbital can be expressed as a lattice periodic function and a plane wave,

φk
i (r) = uki (r)eik·r, with (2.73)

uki (r + R) = uki (r). (2.74)

The vector k is a vector in reciprocal space and is therefore also periodic.

However, this time the periodicity is that of the reciprocal lattice, therefore the

KS orbitals are constant under the tranformation k → k +G. This periodicity

in reciprocal space allows us to define a reciprocal analogue to the unit cell,

whereby all k-vectors exist uniquely inside this reciprocal unit cell,

k = k1a
∗ + k2b

∗ + k3c
∗, with − 1

2
≤ ki ≤

1

2
, i = 1, 2, 3. (2.75)

This set of k-points is known as the first Brillouin zone (BZ), and is uniquely

defined for a particular lattice. There are a number of ways to describe the

Brilloun zone, but simply it is the locus of points in reciprocal space which are

closer to the origin than any other lattice point, i.e. the Wigner-Seitz cell of

the reciprocal lattice [5].

Neglecting symmetry, there exists a unique set of KS orbitals for any choice

of k in the BZ, k is therefore another continuous variable which we must sen-

sibly discretise (see 2.5.4). Each set of orbitals at every k-point represents N

electrons, and each orbital is normalised such that

∫

dr φk∗
i (r)φk

i (r) = 1. (2.76)

When the orbitals are constructed from Bloch waves, the density becomes

n(r) =
∑

k

∑

i

fk
i wk|φk

i (r)|2 (2.77)
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with
∑

k

wk = N, (2.78)

where wk is the weighting of the k-vectors such that the total number of elec-

trons is conserved, and fk
i is the occupancy of the ith band at k. As we can

use the symmetry of the crystal to reduce the number of k-points we include,

the weighting is modified to account for the symmetry equivalent k-points rep-

resented by each k-point.

2.5.3 Plane waves and reciprocal space

Knowing that the orbitals contain a lattice periodic part aids us in choosing

basis functions. In this thesis the basis functions used are plane waves. Using

a plane-wave basis, any KS orbital can be written as,

φσ
i,k(r) =

1√
Ω

∑

G

cσi,k(G)ei(G+k)·r, (2.79)

where G is a reciprocal lattice vector and cσi,k(G) are complex wavefunction

coefficients in reciprocal space and can be computed through a Fourier transform

(FT),

cσi,k(G) =
1√
Ω

∫

Ω

dr φσ
i,k(r)e−i(G+k)·r. (2.80)

A consequence of using a plane-wave basis is that it becomes convenient to

define many of the objects in reciprocal space, which in some cases leads to

significant efficiency savings. These savings are only possible because of an

algorithm known as a fast Fourier transform (FFT), which reduces the scaling

of the FT from O(N2) to O(N log(N)). Firstly, for the non-interacting kinetic

energy operator in Eq. 2.32, we can make use of the properties of exponentials
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to simplify the derivatives,

1

2
∇

2φσ
i,k(r) =

1√
2Ω

∇
2

(

∑

G

cσi,k(G)ei(G+k)·r
)

=
−1√
2Ω

(

∑

G

(G + k)2cσi,k(G)ei(G+k)·r
)

,

(2.81)

which simply involves multiplying the orbital coefficients by a prefactor. Not

only is this easy to implement, it also avoids including unnecessary uncertainty

through numerical differentiation techniques. Next we consider the Hartree

term in Eq. 2.31, which when expressed in real space involves an integral which

is both slow and numerically challenging. However, by employing reciprocal

space the Hartree potential is given by

VH(G) =
n(G)

G2 . (2.82)

For more details see App. B.

2.5.4 Brillouin-zone sampling and plane-wave cut-off en-

ergies

We introduced above the idea of Bloch wavevectors, k, and the BZ. Of course we

must limit ourselves to a finite number of k-points to describe the wavefunction,

noting that as long as the orbitals are smoothly varying in reciprocal space this is

a valid approximation. One common method of generating a k-point set is that

of Monkhorst and Pack (MP) [85] whereby in fractional coordinates the k-points

lie on a Nx × Ny × Nz grid centred around (0,0,0). A MP grid is particularly

useful as it samples the BZ evenly and without bias and the number of k-points

can be increased to improve the sampling by increasing the dimensions of the

grid. It is often the case in calculations of crystals that one would want to make

use of the crystal symmetry to improve upon calculation times, this can easily

be handled by a MP grid because it is unbiased. By applying crystal symmetry,

that is identifying all translations, rotations, inversions and mirrors, one can
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fold the k-point set down to an irreducible wedge, the weighting of each k-point

is then adjusted by the number of symmetry equivalent points each k-point

in the irreducible wedge accounts for. This allows us to reduce the number of

k-points in the calculation without any loss of accuracy.

Each plane wave included in the basis has a corresponding G-vector and in

principle we would require an infinite set of G-vectors to describe the system

properly. However we note that in the regions of interest, the KS orbitals tend

to be smoothly varying and therefore largely independent of high frequency

plane waves in the basis. We can then define a maximum G-vector, excluding

all G-vectors larger than this value, this leads to a G-sphere in reciprocal space.

This maximum G-vector, Gcut, is typically defined in terms of a kinetic energy

Ecut,

|Gcut| =
√

2Ecut, (2.83)

this is why it is common in the literature for basis cut-offs in plane-wave codes

to be quoted in units of energy. From the definition of the density being the

square of the KS orbitals, for the density to be known to the same level of

accuracy one must technically use twice the number of plane waves. However,

it is often worth using fewer for the computational gain. Being able to set the

accuracy of the basis set simply with an energy is one of the biggest advantages

of using a plane-wave basis. In the case of local basis functions it is not always

possible to systematically improve upon convergence in such a controlled way.

When considering a new system it is always important to determine the

best choice of k-point set and energy cut-off as they are both highly system

dependent. In most cases k-point convergence and plane wave convergence are

largely independent, with k-points depending mostly on the cell geometry and

the basis set depending mostly on the species. However, care must always be

taken to ensure the convergence is robust.
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2.5.5 Pseudopotentials

Having mentioned many advantages of plane-wave basis sets, there is one partic-

ular inconvenience that arises from their use. The choice of a plane-wave basis

has no a priori assumption of the shape of the orbitals: plane waves can be

used to build up any periodic function. However, this means that one must use

a much larger set of basis functions compared to a basis set which presupposes

the shape of the orbitals. Pseudopotentials are therefore crucial to the use of a

plane-wave basis set as they allow us to use far fewer basis functions [86, 87].

To motivate the use of pseudopotentials we first recognise that not all electrons

in our system contribute equally to the properties of interest and can broadly

be separated into core and valence electrons. The core electrons are close to the

nucleus, and occupy low energy states, being so low in energy they contribute

little to the physical properties of the system. We use the frozen core approx-

imation to treat all core electrons up to some cut-off radius rc along with the

nucleus as a non-polarisable core which is pre-computed. A pseudopotential is

an effective potential for the valence electrons which incorporates the core ef-

fects, and is such that the behaviour of the valence electrons outside the cut-off

radius is the same as one would obtain in an all-electron treatment. The orbitals

in a full electron treatment inside the core region typically oscillate with high

frequencies, this means that many more precious basis functions are required

to capture these oscillations. Under a pseudopotential approximation most of

this oscillatory behaviour is smoothed out and requires fewer plane waves, see

Fig. 2.3.

Broadly there are two types of pseudopotentials used in solid state calcula-

tions: norm-conserving [88] and ultrasoft [89]. Norm-conserving pseudopoten-

tials are generated such that the pseudo-wavefunction outside of the core region

leads to the same density as the all electron wavefunctions. However, this con-

traint sometimes means the resulting potential leads to a pseudo-wavefunction

which is not significanly smoother. By relaxing this charge constraint of norm-

conserving pseudopotentials, ultrasoft pseudopotentials are able to have much
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Figure 2.3: Schematic of a pseudopotential and resulting wavefunction. The
divergence of the Coulomb potential (blue solid line) results in fast oscillations
in the wavefunction below the cut-off radius (red solid line), the pseudopotential
(blue dashed line) removes these oscillations in the new approximate wavefunc-
tion (red dashed line). The cut-off radius is shown by the vertical dotted line.

larger cut-off radii resulting in fewer plane waves needed for same level of ac-

curacy. Due to the smaller basis set, calculations using ultrasofts are generally

slightly faster than if a norm-conserving pseudopotential were used.

The pseudopotentials are also where SOC is included if desired. The orbital

contribution of the electron angular momentum comes from their interaction

with atomic orbitals. Rather than directly including SOC in the Hamiltonian,

it is more convenient to alter the pseudopotentials to include the effects. In-

stead of solving the Schrödinger equation for each atom, the Dirac equation is

used to account for relativistic effects of the electrons [90, 91]. For each atomic

orbital, instead of simply storing the l quantum numbers, we store the j quan-
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tum numbers which include spin. Unlike the Schrödinger equation, the Dirac

equation includes both spin and SOC [92].

2.6 Calculating properties

We have built up a catalogue of theory and numerical approaches to define

all of the interesting physical objects required to build up the KS orbitals and

Hamiltonian in a computer. From what now is essentially bytes of data stored

in memory (often in a large parallel machine), we need to be able to obtain

meaningful physical properties. There is a wide selection of available codes one

could use to calculate material properties from DFT, each with slightly different

approaches to suit their intended audience. For all calculations in this thesis

the plane-wave pseudopotential code castep is used [24]. Through its use of

plane waves it is designed to be system agnostic and gives uniformly accurate

results regardless of the chemistry of the material [93].

DFT allows us to calculate a large number of properties including structural,

spectral and optical properties [94], and using extensions to standard DFT

one can obtain effects that on the surface would be surprising from a static

zero temperature theory, such as phonons using density functional perturbation

theory (DFPT) [95, 96].

2.6.1 Energy minimisation

The first step in any electronic structure calculation is calculating the total en-

ergy, this can be done in one of two ways: either by direct diagonalisation or by

gradient descent methods. Diagonalisation of the Hamiltonian is mathemati-

cally the most obvious route. When all terms in the Hamiltonian are expressed

in reciprocal space,

ĤKS(G)cσi,k(G) = ǫσi,kc
σ
i,k(G), (2.84)

the single-particle KS equation is an eigenvalue equation with cσi,k(G) as the

eigenfunctions. However, when using a plane-wave basis set this diagonalisation
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is extremely slow due the the number of basis functions used.

Instead we use an iterative approach using gradient descent methods known

as the self-consistent field (SCF) calculation. Below we present an outline of

an iterative minimisation to show the principles involved, for a more detailed

discussion see App. A. In this case we need to find the downhill direction of

the total energy with respect to the orbitals, this can be achieved through a

functional derivative of the total energy with respect to the orbitals,

δEtot

δ 〈φσ
ik(r)| =

δ

δ 〈φσ
ik(r)| 〈φ

σ
ik(r)| ĤKS |φσ

ik(r)〉

= ĤKS |φσ
ik(r)〉 .

(2.85)

A functional derivative, or variational derivative, is much the same as a standard

derivative, however instead of investigating the change of a function, f(x), with

respect to a variable, dx, we look at the change of a functional, F [f(x)], with re-

spect to a small change in a function, ǫg(x) [38]. From Eq. 2.85 we can see that

the gradient of the total energy is obtained by applying the Hamiltonian to the

orbitals. This means that for any set of orbitals and their corresponding Hamil-

tonian we can find the downhill direction, using this gradient we can update

the orbitals by stepping down hill and recalculate the density and Hamiltonian

for the new orbitals,

φ(r) → n(r) → Ĥ(r), (2.86)

where the arrows indicate a mapping from the density to the Hamiltonian as

described by the HK theorems. The above method is known as ensemble density

functional theory (EDFT) [97], and is a robust method which is guaranteed to

find a stable minimum. At all points in an EDFT minimisation the approximate

orbitals correspond exactly to the density and the Hamiltonian, it is therefore

a fully self-consistent method.

While robust, EDFT is often slow, which is where a different method can

be employed: density mixing (DM) [98, 99]. In a DM minimisation the density

does not strictly correspond to the trial orbitals, as at each iteration a new
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Figure 2.4: Example of simple one-dimensional gradient descent algorithm
applied to (a) a simple one-minimum system and (b) a more complex system
with multiple shallow minima. Each scatter point indicated the result of a single
run of the gradient descent algorithm starting from an initial random value of
cG. In (b) the colour of the points indicates which minimum the result is closest,
from left to right: blue, red, green. Inset plot shows a zoomed in version of the
energy landscape.

guess of the density is formed by mixing some fraction of the previous density

into the new density. Due to the mixing, the density and orbitals are never

self-consistent until the orbitals reach convergence. DM is typically faster than

EDFT, however it is not guaranteed to monotonically decrease the energy and

this can lead to numerical issues often known as charge/spin sloshing where

the energy bounces back and forth around a minimum. This often occurs in

materials with complex energy landscapes.

In practice the convergence criteria is set by the user and once the changes in

energy from each iteration falls below this level the calculation terminates. The

level of convergence depends on the type of calculation, typically

10−6 eV/atom is sufficiently accurate for the calculating most electronic prop-

erties, while a finer tolerance of 10−8 eV/atom may be needed for calculations

using DFPT which are more sensitive to the ground state orbitals.
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Minimisation in non-collinear systems

Minimising the energy is often the least problematic part of a DFT study. One

may encounter the issues described above with DM, but it is usually possible to

optimise the mixing parameters to avoid spin sloshing. If that fails, switching

to an EDFT minimisation will almost always lead to a ground state, just not

as quickly. There is a more fundamental issue in the minimisation when con-

sidering calculations involving non-collinear spins. Firstly, for a system which

can host NCM, there are typically multiple stable spin configurations, meaning

that there are multiple minima in the energy landscape. On top of this, the

energy difference between non-collinear states is often very small. In the work

of Edström et al. [29], they show energies calculated by varying the magnetic

structure of a curved magnet. The difference in the energy of these states is

of the order 0.5 meV/atom. These represent very difficult energy scales for

minimisation algorithms as the minima are shallow. Example calculations of

a one-dimensional gradient descent algorithm comparing the performance be-

tween a simple one-minimum system and a system with multiple shallow min-

ima is shown in Fig. 2.4. For each of the deep potential well, Fig. 2.4a, and the

shallow well, Fig. 2.4b, we have performed multiple calculations from randomly

initialised positions with the same energy tolerance and step size. In the case

of the single deep well, the results are closely clustered around the analytical

minimum within the convergence tolerance set in the calculation. This most

closely approximates the minimisation of a DFT calculation without consider-

ing spin. For the multiple shallow minimum case, the results are spread out

around the analytic minima. The initial position determines which minimum

the calculation falls into which is why spin initialisation is often required for

spin-DFT calculations. The spread of the results is a consequence of the shal-

low minima replicating the effects of non-collinear spins. It is often difficult to

guarantee that the calculation will find the desired non-collinear state. This is

the reason why, in many cases, energy penalties which favour a particular spin

configuration are often included in the Hamiltonian [27, 28].
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2.6.2 Spectral calculations

Some of the most important ways of gaining insight into a materials is by

investigating their band structure and density of states (DoS) [100, 101, 102].

A band structure describes the dispersion relation, E(k), where k is the set of

k-points in the first BZ that forms a path through the high symmetry points.

From a self-consistent groundstate calculation in DFT, so long as the density

is well converged with respect to k-points and basis set, the orbitals can be

evaluated at any k-point. An example of a DFT band structure is shown in

Fig. 2.5 where the k axis is path through the BZ, Greek letters represent points

inside the BZ and Latin letters represent points on the surface of the BZ. Strictly,

a band structure in the KS scheme is an approximation to the fully interacting

band structure as each band represents a non-interaction KS orbital rather

than an interacting electron. For example, from Fig. 2.5 we see that Si has

am indirect band-gap which is known from experiment and that PBE captures

the s-orbital shape of the bands at the Γ-point. However, this highlights the

band-gap problem in DFT as the PBE gap is approximately 0.57 eV compared

to ∼1.1 eV found experimentally [103].

The procedure for calculating the DoS in DFT is essentially the same as a

band structure, instead of sampling the BZ along a high symmetry path one

chooses a set of k-points which uniformly sample the BZ. As with choosing SCF

k-points, the obvious choice is a MP grid. In principle the same grid could be

used as for the electronic minimisation. However, this would usually produce

a very coarse DoS. Because the k-point set is finite the resulting DoS would

be a series of δ-functions rather than a smooth curve, to better approximate

a continuous DoS various broadening schemes are applied such as Gaussian or

Lorentzian. More recently, adaptive broadening techniques such as introduced

by Yates et al. [105] have been used to increase resolution. Instead of using a

fixed-width Gaussian to broaden each peak (which may exaggerate effects of

flatter bands) the Gaussian width is varied based on the gradient of the each

band. Even broadening the peaks, we can see in Fig. 2.5 that we are left with
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Figure 2.5: Band structure (left) and DoS (right) of Si calculated under PBE,
two atoms of Si were included in the unit cell. The Fermi level is shown by the
dotted line. For the band structure the path through the BZ is given in terms
of high symmetry points for the cubic crystal system. Plots produced using
dispersion.py [104] (See App. C)

a function which is not entirely smooth, this can be improved by increasing the

k-point-grid. The MP grid used for the DoS in Fig. 2.5 is 25×25×25 compared

with a 9×9×9 for the minimisation.

2.6.3 Band structures with spin

It is possible to calculate the band structure of a material using spin-DFT [106,

107]. For a collinear magnetic material, a band structure is a useful tool for

identifying magnetic states. In a collinear treatment, we treat the spin-up and

spin-down electrons separately through the coupled KS equations (Eq. 2.43),

therefore we have two sets of eigenenergies, ǫ↑,↓i , associated with each spin. This

allows us to effectively plot two band structures, one for each of the spins.

Figure 2.6 shows a band structure of body centred cubic (bcc) Fe calculated

using the LSDA. Just from the band structure we can see that bcc Fe has an

overall magnetic moment, either ferromagnetic or ferrimagnetic, as the spin up
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Figure 2.6: Spin polarised band structure of bcc Fe calculated under the
LSDA. Spin up and spin down bands are shown in red and blue respectively.
The splitting of the spin up and spin down bands shows there is a ferromagnetic
moment. The Fermi level is shown by the dotted line. Plots produced using
dispersion.py [104] (See App. C)

and spin down bands are non-degenerate. If, for example, a material had no

overall magnetic moment, such as a paramagnet or an antiferromagnet, these

bands would be degenerate. Therefore it is possible to get a quick understanding

of the magnetism of a material from its spin-polarised band structure.

In calculations where the spin is treated as non-collinear, the band structures

are not as immediately illuminating as a collinear band structure. We are not

able to categorise the electrons into purely spin up and spin down, and we only

have one eigenenergy related to each spinor wavefunction. CM is a special case

of NCM, so it is possible to find a collinear solution. However as this state

would still be described by spinor orbitals, special effort would be required to

project the spin onto a global quantisation axis, in which case one could plot

spin up and spin down bands. In general this is not the case and only one set

of bands is presented from a non-collinear spin-DFT calculation.
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2.6.4 Forces and geometry optimisation

It is often the case that a crystal structure is known from some experimental

technique and electronic structure calculations are needed on the material, it is

unlikely that the experimental structure is the equilibrium structure according

the whichever approximation in DFT is being employed. At zero temperature

one would expect there to be no forces acting upon a unit cell and its atoms, and

that the atomic positions would be such that the total energy is minimised. We

can calculate atomic forces by brute force, calculating finite differences by mov-

ing each atom a little and calculating the resulting Hessian matrix. This method

would be extremely inefficient. Fortunately there is a simple way to calculate

forces from first principles through the Hellmann-Feynman theorem [108, 109],

which states that for the forces on the Ith nucleus is given by

F I = − ∂E

∂RI

=

〈

ΦR

∣

∣

∣

∣

∣

∂Ĥ
∂RI

∣

∣

∣

∣

∣

ΦR

〉

, (2.87)

where RI is the position of the Ith nucleus and |ΦR〉 is a general electronic

wavefunction which depends parametrically on the nuclear positions. The ben-

efit of this approach is that we can calculate the downhill direction for each of

the nuclei without having to vary the orbitals. Instead we only need to compute

the derivative of the Hamiltonian, many terms of which can be calculated in

reciprocal space, which we have previously shown to be quick and efficient.

2.6.5 Mulliken population analysis

Knowing the overall electron density is indeed very helpful, however we may

often want to reduce the complexity even further. From the language of chem-

istry, we may wish to know about local atomic charges and spins, or perhaps

bond occupancies. Given a plane-wave basis set, this is not something that is

immediately achievable since the basis set is delocalised. The most common way

of calculating atomic charges is Mulliken population analysis [110], which de-

rives the charges from the occupancies of a linear combination of atomic orbitals
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(LCAO). We must then project our orbitals calculated on a plane-wave basis

set onto a new LCAO basis. The procedure for this projection was provided

by Sanchez-Portal et al. [111] and implemented in castep using the procedure

by Segall et al. [112, 113].

A plane-wave basis and an LCAO basis differ in a few key ways. Firstly

a plane-wave basis set is orthonormal whereas LCAO basis functions are not.

Secondly, plane-wave bases form a complete set, an LCAO does not. This is not

to say that an LCAO basis is inherently worse than plane waves, just suitable

for different systems such as molecules.

Given that the plane-wave basis set is complete, we are projecting eigenstates

onto a smaller Hilbert space spanned by the LCAO functions. The ability of

the atomic basis to represent the eigenstates is given by a spilling factor, which

quantifies the degree of orthogonality between the plane-wave and the LCAO

bases.

2.7 Practicalities

We have now outlined the underlying theory and implementation of a plane-

wave, pseudopotential DFT code. Here, we will briefly discuss the process

involved in performing DFT calculations using castep. A more detailed de-

scription of performing these calculations may be found in the castep docu-

mentation [114]. Starting from defining the material parameters, we will outline

how one chooses the type of calculation to perform along with the level of the-

ory. We will go on to cover details specific to the sort of magnetic calculations

presented in this thesis. Finally, we will discuss the running of a castep cal-

culation on large distributed computers.

2.7.1 Crystal structure

Before one can do anything with a DFT code, one must define the locations

of the atoms, and in the case of a periodic system, the unit cell. In castep,
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the way to define a structure is by using a .cell file, this contains information

about the atoms, the lattice, the k-points and the symmetry. One can build a

.cell file by hand, or use tools to do it automatically, typically from a .cif

which is one of many crystallographic standard file formats. Care must be taken

in converting from a .cif, as if they are generated by experimental structure

refinement, they may have fractional occupancies of some atomic sites. Where

possible one should seek to use a primitive unit cell, which can significantly

decrease compute time. Symmetry is also a consideration, we mentioned above

that the crystal symmetry can be used to reduce the k-point set and speed up

the calculation. However, symmetry is not always advisable, particularly in the

case of NCM calculations, where one desires to find a magnetic structure which

is not consistent with the crystal symmetry.

2.7.2 Level of theory

The purpose of a calculation informs what level of theory one may wish to

include. A decision must be made about the choice of xc functional, we have only

highlighted a small number of functionals available and some of their attributes.

All calculations in this thesis, with the exception of calculations performed in

Chap. 6, use either the LSDA or PBE functionals.

The treatment of spin is also an important consideration, one which is not

always obvious. At a basic level, one should use the level of theory best suited

to the expected magnetism. For example, if a material is expected to be non-

magnetic, use non-spin-polarised DFT; if the material in question contains ex-

otic non-collinear spin structures, use a NCM spin-DFT treatment. However, it

is rarely that straightforward. If one wishes to perform a structural relaxation

of a magnetic material, using spin-DFT is likely a poor choice. Each time a

geometry optimisation step is taken, it is possible that the next SCF calcula-

tion may result in a slightly different magnetic structure, meaning comparisons

between iterations may fail. Equally, if the aim of the calculation is to examine

the effects of SOC, a NCM treatment will be required, even if the material is
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non-magnetic.

2.7.3 Initialisation

If a calculation is done using spin-DFT, it is likely because the desired outcome

includes some sort of magnetic state. As many possible magnetic states exist in

magnetic materials, it is unlikely that the desired spin structure will be realised

without clever initialisation. Instead of using a fully random initial density to

seed the calculation, we can impose some spin projected onto some or all of

the atoms in the cell. This initial spin can either be collinear or non-collinear.

This does not in any way mean that the results are less valid as the solution is

still self-consistent. If the initialised spin configuration is not physical, it will

not be present in the solution. One consideration when using spin initialisation

is the choice of minimisation algorithm. If we choose DM, the initial density

including the spin will be mixed into successive minimisation steps, increasing

the likelihood of finding the minimum associated with that particular magnetic

configuration. On the other hand, as EDFT is fully self consistent at each step

in the minimisation, the initial density is replaced after a single step. That is

not to say that using EDFT renders spin initialisation pointless, as the first step

may be enough to start the minimisation from a region in phase space close to

the desired solution.

2.7.4 Parallelisation

We have mentioned that DFT is highly favoured amongst first principles ap-

proaches mostly due to its speed. That is not to say that DFT calculations are

not computationally expensive. While the smallest calculations comprising a

few atoms (∼ 10) will comfortably run on a mid-range laptop, many calcula-

tions require the use of supercomputers. castep is a parallel code written to

take advantage of the many computer cores available on large supercomputers.

As a user, the parallelism of a calculation is worth considering to achieve the

best efficiency, both of time and resources. The two main forms of parallelism
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in castep are k-point and G-vector, with k-point parallelism being prefer-

able. The aim is to reduce the amount of communication occurring between

processes on the supercomputer. The orbitals defined in Eq. 2.79 shows the

dependence on k-point and G-vector. By distributing fully over k-points, there

are a full set of orbitals on each parallel process, therefore we are able to solve

the KS equations at the same time for different k-points. In this case commu-

nication overhead is low as each process has its own set of orbitals, only the

total density must be shared across the nodes. We gain extra time savings if

we further distribute the orbitals by G-vector. More of the calculations can be

performed in parallel if we share out the plane wave coefficients of the orbitals.

However, as we no longer have full orbitals stored on each process, some addi-

tional communication overhead is required to recombine the orbitals. A poor

parallelisation scheme can be detrimental to a calculation, possibly resulting in

wasted resources or in the worse case the calculation may take too long to fit

within any time limits imposed on the machine. Over parallelisation is also a

possibility. In this case, there may not be enough G-vectors. If one uses more

processes than the product of k-points and G-vectors, some processes may be

without any data.
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DFT in practice: Understanding

skyrmion hosting materials

The antidote for a blended poison will be equal to

more than the sum of the antidotes for each of the

separate components.

—J. K. Rowling,

Harry Potter and the Half Blood Prince

In this chapter we shall explore how density functional theory (DFT) can be

used to add insight to experimental measurements, with a particular focus on

skyrmion hosting materials. There are some experimental techniques such as

angle-resolved photoemission spectroscopy (ARPES) [115] and resonant x-ray

scattering [116] that allow us to directly probe the electronic structure of a ma-

terial. However, no technique allows one to extract the level of detail available

from a DFT calculation. We will start by presenting calculations of the muon

stopping sites in Cu2OSeO3, applicable to muon-spin spectroscopy (µSR) ex-

periments. Next, we will demonstrate the use of spin-density functional theory

(spin-DFT) to probe the effects of chemical substitution in GaV4S8−ySey. We

use our calculations to show that upon substitution, the S rich crystals and Se

rich crystals display distinctly different distributions of spin density that affect

the stability of magnetic states. The aim of this chapter is to showcase many

67
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(a) (b)

Figure 3.1: Illustrations of isolated magnetic skyrmions. Skyrmions are named
by the type of domain wall created by a cut through the centre, the two types
are (a) Bloch skyrmion and (b) a Néel skyrmion.

of the techniques outlined in Chap. 2, and how they can be used to probe a

number of material properties.

The work in this chapter is based on published works in Ref. [117] and

Ref. [118]. The DFT calculations were performed by myself and the data anal-

ysed alongside collaborators at the University of Durham. Muon site calcula-

tions were performed first by hand by myself and then as part of the testing of

the MuFinder program [119].

3.1 Introduction

Skyrmions in condensed matter systems are magnetic topological objects that

exhibit vortex-like spin configurations [50, 51]. A skyrmion is a spin texture

characterised by a winding of magnetic moments around a central point. We

can assign a numerical value to this winding by counting the number of times

the spins wrap around a sphere. In the case of a skyrmion, the absolute value

of this topological winding number must be greater than or equal to 1, and

is a fundamental property of the skyrmion. Due to this topological feature,

skyrmions cannot undergo any continuous transformation which results in a spin

texture with trivial winding. In physical terms this relates to an energy barrier

for the creation and destruction of magnetic skyrmions. Magnetic skyrmions
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have been the subject of much research as they promise to offer solutions in

low energy data storage. Figure 3.1 shows examples of skyrmions found in

condensed matter. Skyrmions are in general incommensurate with the unit cell

of a material, with sizes ranging up to approximately 100 nm [120]. Even though

the size of skyrmions means that direct calculation of the skyrmion state in spin-

DFT is often impossible with current computers, spin-DFT can still be a useful

tool in providing insight into the magnetic properties of these materials. DFT is

invaluable as an aid to the experimental physicist as it can provide information

about a material which is otherwise inaccessible by experimental techniques,

such as density of states (DoS) and band structures of bulk materials. We

can treat spin at three different levels in DFT: fully non-collinear with spinor

wavefunctions, spin polarised with spin-up and spin-down densities, or finally

we can assume all spins are paired using standard DFT.

3.1.1 Muon spin-spectroscopy

Experimental techniques for studying magnetic phenomena can be broadly put

into two groups: first we have methods that look at the bulk magnetism such as

neutron scattering [121], and we have methods that look at local magnetic effects

such as µSR [122, 123]. In µSR, spin-polarised positive muons (µ+) are fired at

a sample where they come to a rest at some unknown location in the crystal.

Being spin-half fermions, the muons precess in the local magnetic field of the

sample, the frequency of this precession is proportional to the field strength.

The muons have a short average lifespan, 2.19 µs [124], and eventually decay

into a positron (e+) and two neutrinos. The positron is emitted on average

along the direction of the muon spin, and its decay direction is detected by an

array of detectors placed around the sample. A typical experimental setup is

shown in Fig. 3.2. By counting the proportion of positrons hitting the front and

back detectors as a function of time, one can use the positron distribution to

infer the spin direction of the implanted muons and use this to determine the

magnetic field at the muon stopping site.
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Figure 3.2: Schematic of a typical µSR experimental set up with a positive
muon travelling from left to right. A positive muon enters a sample with its
spin anti-aligned with its momentum. Front and back positron detectors are
labelled F and B respectively.

3.1.2 DFT+µ

DFT has become the preeminent tool for seeking the muon stopping site in

a technique dubbed density functional theory + µ (DFT+µ). Early work was

carried out in the 1990s [125, 126, 127] before a new concerted effort in 2013 [128,

129, 130]. In a DFT+µ calculation, the muon is treated as a light H ion, i.e.

a single proton. Muons are much heavier than electrons (mµ ≈ 200me) yet

still not as heavy as a proton, this calls into question the use of the Born-

Oppenheimer (BO) approximation since the muon may exhibit some quantum

behaviour which we neglect. There have been some attempts to quantify this

quantum nature [131, 128], however for the materials presented here we can

assume these effects are small and proceed with the BO approximation. Since

positive muons are used in µSR rather than negative muons, using a H ion

models the muon as a proton impurity; these impurities have been long studied

with DFT [132]. Implanted muons in µSR are ultra-dilute, therefore there

is a vanishing probability that muons will interact with each other. Using

periodic boundary conditions (PBC) means that if the calculation cell is too

small, the muon will interact with its periodic image. It if often necessary
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to build a supercell if the unit cell is not sufficiently large to prevent self-

interaction, this is common practice in impurity studies using DFT [133]. We

can perform a series of geometry optimisation calculations (see Sec 2.6.4) with

one µ+ per cell initially placed at random in the unit cell. When all the forces

have been resolved, the resultant µ+ position is a candidate muon stopping

site. By using the crystal symmetry, one can reduce the number of initial

random positions by eliminating symmetry equivalent starting positions. Since

a geometry optimisation is not a dynamical process, we gain no information

about the stopping mechanism or the path taken to the site. Careful analysis

of the resulting sites is important as many of the sites may not be realised

experimentally, for example there may be a large energy barrier for a muon to

enter a particular region of the crystal which is not reflected in the energy of the

site. The final µ+ positions will typically correspond to only a small number of

muon stopping sites. However, we will have a set of distinct coordinates for each

initial position. By looking at a combination of the symmetry of the sites and

the total energy, it is possible to group the sites together and conclude which

clusters are likely to represent the true physically muon stopping sites.

3.2 Muon sites in Cu2OSeO3

Skyrmions were discovered in the insulating, multiferroic material, Cu2OSeO3

in 2012 [134], sparking a cascade of new research [135, 136, 137]. Cu2OSeO3

is a cubic non-centrosymmetric material with the space group P213, it com-

prises tertrahedra of Cu2+ ions [138]. There are two inequivalent Cu ions which

exist with a 3:1 ratio, the spins on each inequivalent Cu ion point in oppo-

site directions forming a ferrimagnetic state [139]. The lack of inversion cen-

tre in Cu2OSeO3 leads to non-zero Dzyaloshinskii–Moriya interaction (DMI).

Competition between the DMI and Heisenberg exchange is what leads to the

stabilisation of Bloch skyrmions (Fig. 3.1a) in Cu2OSeO3 [136].

For skyrmion-hosting materials to have useful applications, it is important

to understand the spin dynamics of skyrmions. There have been reports of
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skyrmion dynamics in Cu2OSeO3 in the GHz regime: counterclockwise, breath-

ing, and clockwise modes [140]. There have also been reports in Cu2OSeO3

of THz excitations in high-energy magnon bands [141, 142, 143, 144]. To in-

vestigate potential dynamics which occur in the MHz regime one can employ

longitudinal-field µSR, where the sample is placed into a magnetic field aligned

along the muon beam direction. To fully understand these results one must

know the magnetic field distribution at the muon site in these materials. As

such, knowing where the muon stops, and the number of potential stopping sites

can allow us to probe this distribution; if the magnetic structure of a material is

known, we can use the muon stopping site coordinates to simulate the expected

spectra and compare to experiment [145].

3.2.1 Computational methods

To ensure the calculations of the muon stopping sites are accurate, we performed

convergence testing on Cu2OSeO3. The two parameters which contribute to the

overall convergence are the plane-wave cut-off radius and the Monkhorst and

Pack (MP) k-point sampling, discussed in Sec. 2.5.4. The energy dependence

of cut-off energy and k-point grid size is mostly independent. Therefore while

testing one parameter, the other may be held fixed. For k-point convergence, it

is sensible to use a moderate value for the cut-off energy as this typically leads to

more accurate convergence. For the plane-wave cut off we performed non-spin

polarised DFT calculations to obtain the total energy for a range of cut-off radii

(energies) from 100 eV to 2900 eV. The final cut-off energy is chosen to be large

enough to assume that the calculation is converged and we can compare the

resultant total energies of the lower cut-off calculations to the final energy. The

MP grid was held fixed at 3×3×3. When converging the MP grid, the cut-off

energy was fixed at 600 eV and we calculated the total energy for all the odd

cubic grids from 1×1×1 to 15×15×15. For the calculations of Cu2OSeO3 we

have chosen an acceptable convergence tolerance of 10 meV/atom which allows

us to resolve the energy differences of each muon site. Looking at Fig. 3.3,



3.2. Muon sites in Cu2OSeO3 73

0 500 1000 1500 2000 2500 3000
Cut off Energy (eV)

0
10 6
10 5
10 4
10 3
10 2
10 1
100
101
102

|E
E 0

| (
eV

/at
om

) (a)

1 3 5 7 9 11 13 15
MP grid size, n×n×n

0
10 6
10 5
10 4
10 3
10 2

|E
E 0

| (
eV

/at
om

) (b)

Figure 3.3: Convergence testing of (a) plane-wave basis set and (b) k-
point set for Cu2OSeO3. The grey dotted line shows a convergence criteria
of 10 meV/atom. The energy E0 is assumed to be the value obtained by using
the highest convergence parameter in each case. Absolute values are used to
enable the use of a log scale.

we see our convergence tolerance requires a plane-wave cut off of 800 eV and a

3×3×3 MP grid. As a useful rule of thumb, the larger the direct space unit cell,

the smaller the MP grid required for good convergence. The change in energy

as one increases the size of the MP grid is not monotonic, for Cu2OSeO3 this

can be seen clearly in Fig. 3.3b.

To calculate the muon stopping sites in Cu2OSeO3, we performed DFT+µ

calculations under the Perdew, Burke and Ernzerhof (PBE) exchange and cor-

relation (xc) functional. We randomly generated 52 initial positions which sam-

pled a symmetry-reduced region of the unit cell. These initial coordinates were

generated using MuFinder [119]. To model the muon, we used an ultrasoft



74 Chapter 3. Understanding skyrmion hosting materials

H pseudopotential and included a charge of +1e to account for the surplus

electron. We experimentally determined lattice parameters of a = b = c =

8.925 Å [146] which we held fixed throughout the geometry optimisation cal-

culations. This unit cell is large enough to limit self interaction between the

muon and its periodic images, therefore we performed all calculations on the

primitive cell. Due to the large size and the number of calculations required,

using a supercell would be prohibitively computationally expensive.

3.2.2 Results and discussion

In Cu2OSeO3 we find that the positions of the muons are clustered into three

distinct sites shown in Fig. 3.5, with coordinates given in Table 3.1. The sites

we find are different from those previously reported in Ref. [147], which were

found by locating the minima of the electrostatic potential in the crystal with

no muon present. The energy distribution of the candidate sites is shown in

Fig. 3.4. We can see that energy alone is not a sufficient metric for grouping

together the sites. Although it is possible to see plateaus in the energy, they do

not always correspond to a single site. By including the symmetry of the site,

we are able to more effectively group the sites into meaningful clusters. From

Fig. 3.4, we can see that only 27 of the 52 positions calculated make up the

three sites, the remaining positions do not fit into these clusters, often having no

symmetry relation with any other site. In addition, the remaining geometries

are much higher in energy.

Sites 1 (Fig. 3.5b) and 2 (Fig. 3.5c) are each located approximately 1 Å

from the nearest O ion, which is common for muon stopping sites due to the

electronegativity of O [149]. All three sites have low relative energy differences,

suggesting that they could all be occupied. However, site 3 is notable in that

it sits along the Cu–O bond inside the tetragonal cage of Cu ions and causes

significant distortion of the crystal, with the nearest Cu ion being displaced by

approximately 0.7 Å, or 35% of the undistorted bond length. The initial muon

positions that relax to this final site are mostly initialized inside the Cu cage.
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Figure 3.4: Energies of final muon position in Cu2OSeO3 grouped by muon
site. Energy is a good, but not sufficient, predictor of the muon site clustering.

Due to the large local distortions of the crystal, it is unlikely a muon relaxing

outside this tetrahedron would have sufficient energy to occupy this site due

to the significant energy barrier to entering the cage. We therefore conclude

that site 3 is unoccupied, leaving two sites which matches the experimental

observations with zero-field µSR of two magnetic sites [147]. Muon sites 1 and

2 show no significant distortion of the Cu or Se ions. However, the O ions local

to the muon are commonly shifted so as to be closer to the muon, sometimes

by up to 1 Å.

Muon site Fractional coordinates Energy (eV)
1 (0.906, 0.590, 0.100) 0.0
2 (0.172, 0.365, 0.319) 0.09
3 (0.224, 0.670, 0.289) 0.15

Table 3.1: Fractional positions of the muon stopping sites in Cu2OSeO3. En-
ergies are given relative to the lowest energy muon site.

Knowing the positions of the muon stopping sites from DFT allows for

simulation of the magnetic field distributions of a known magnetic structure,

hence allowing for comparison to experimental data [150]. There have been a
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(a)

(b) (c)

(d)

Figure 3.5: (a) Example positions of the three lowest energy stopping sites in
Cu2OSeO3. Close up views of the local environment for (b) the lowest energy,
(c) the second lowest energy and (d) the highest energy site which sits inside
the Cu tetrahedron. Cu, O and Se atoms are shown in blue, red and orange
respectively. Images produced with vesta [148].
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Figure 3.6: Spectral intensities as a function of magnetic field for three mag-
netic structures. (a) Helical, (b) conical and (c) skyrmion lattice. Black and red
lines show distributions from µSR experiments for zero-field cooling and field
cooling protocols respectively. Field distributions calculated from muon stop-
ping sites in Table 3.1 shown in solid colour. Image reproduced from Ref. [118].

number of examples in the literature where calculating the field distributions

from DFT+µ can aid in the interpretation of µSR data [117, 118, 151]. The

muon stopping sites calculated above are used to produce field distributions for

Cu2OSeO3, shown in Fig. 3.6. Simulated fields agree well with the experimental

data for the conical and helical phases, and less well for the skyrmion phase.

This suggests that there are dynamic processes on the muon timescale which are

not captured in the simulation, which is calculated from a static magnetic state.

We are able to make inferences about the dynamics of the skyrmion lattice as a

result of first principles calculations, independently of analysing the µSR data.
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Figure 3.7: Convergence testing of (a) plane-wave basis set and (b) k-point set
for GaV4S8 (red) and GaV4Se8 (blue). The grey dotted line shows a convergence
criteria of 10 meV/atom. The energy E0 is assumed to be the value obtained
by using the highest convergence parameter in each case. Absolute values are
used to enable the use of a log scale.

3.3 Substitution in GaV4S8−ySey

Both GaV4S8 and GaV4Se8 host magnetic skyrmions, although rather than the

Bloch type skyrmions found in bulk materials such as Cu2OSeO3 and MnSi [50],

GaV4S8 and GaV4Se8 host lattices of Néel skyrmions (see Fig. 3.1b) [152, 153,

154]. As it is uncommon to find Néel skyrmions in bulk systems, the discovery

has led to significant research over the last decade [155, 156, 157, 158].

Chemical substitution has been shown to have a positive effect on the sta-
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bility and lifetime of Bloch skyrmions, as well as increasing the energy bar-

rier for their creation [159, 160, 161]. High level substitution in GaV4S8−ySey

(y = 2, 4) has been shown to destroy the skyrmion lattice and create a spin-

glass state [162, 163]. We will present calculations of lower level substitution in

GaV4S8−ySey (y = 1, 7), examining the effects it has on the spin density around

the V tetrahedra.

3.3.1 Computational methods

We performed convergence calculations on both GaV4S8 and GaV4Se8 to deter-

mine the cut-off energy and k-point grid required to produce accurate depictions

of the spin density. Figure 3.7 shows the convergence testing of both materi-

als. From the figure we can see that to converge the calculations to better than

10 meV/atom, we require a cut-off energy of 1000 eV and a 3×3×3 k-point grid,

which we have used for all calculations. Calculations carried out on substituted

materials are performed with the same convergence parameters.

We performed all calculations on a primitive unit cell containing one for-

mula unit of each material. There are four symmetry inequivalent S/Se sites

in GaV4S8 and GaV4Se8 which are available for substitution, see Fig. 3.8. Ex-

perimentally, it is found that the substituent sits on different sites in GaV4S8

than in GaV4Se8 [164]. We consider two different possible substitution sites

in each of GaV4S8 and GaV4Se8, performing DFT calculations with Se substi-

tuted onto the S3 and S4 sites in GaV4S8 and with S substituted onto the Se1

and Se2 sites in GaV4Se8. These sites have been shown to be those realised

experimentally [164].

GaV4S8 and GaV4Se8 are both Mott insulators [165] exhibiting strongly

correlated electron behaviour [166]. Both the local spin-density approximation

(LSDA) and the PBE functional are not sufficient to capture all the correlated

effects. When using DFT to study correlated materials, it is common to include

a Hubbard U [167]. A Hubbard U acts as a local Coulomb repulsion localised on

an atomic orbital. To correctly identify a value of U to use in our calculations,
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Figure 3.8: Crystal structure of GaV4Se8 showing the inequivalent Se sites.
Ga, V and Se atoms are shown in green, purple and orange respectively.

we performed several PBE+U calculations on both GaV4S8 and GaV4Se8 over

the range U = 0.5 to 3.0 eV on the V d-orbitals. Figure 3.9 shows the effect

on the spin density per V ion in GaV4S8 and GaV4Se8 as a function of U . In

both materials, the magnetisation reaches a constant value around U = 2.5 eV,

which is the value used for all subsequent calculations. It has previously been

reported that it is not possible to open the band gap using any physical value of

U [168]. We have calculated the band structure of GaV4S8 with and without the

Hubbard U to show this effect, see Fig. 3.10. With no Hubbard U , Fig. 3.10a,

there is a clear metallic character to the bands with plenty of bands in both

spin channels crossing the Fermi level. Including U = 2.5 eV, Fig. 3.10b, there

is a clear change in the bands in both spin channels, opening up a gap in the

spin-up channel. However, there are still bands crossing the Fermi level. We can

see that by including the Hubbard U lifts the degeneracy of some of the spin-up
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Figure 3.9: Integrated spin density per V ion as a function of Hubbard U in
GaV4S8 and GaV4Se8. In each case the U has been added to the V d-orbitals.

and spin-down bands which contributes to the increase in magnetic moment.

3.3.2 Results and discussion

We wish to explain the changes in magnetism upon low-level substitution in

GaV4S8−ySey by performing spin-DFT calculations on the two materials cor-

responding to y = 1 and y = 7. Upon substitution we see changes in the

distribution of spin density. We compare the difference in spin density in the

substituted materials with the spin density in the pristine materials for both can-

didate substitution sites. Changes in the spin density for GaV4S8 and GaV4Se8

are shown in Fig. 3.11 and Fig. 3.12 respectively. Regardless of the choice of

substitution site, we find that the changes in spin are more dramatic at the S

end of the series. Changes in the spin density for y = 1 are spread throughout

the crystal, inducing spin on the substituted Se and surrounding atoms as well

as in the V tetrahedra. On the other end of the spectrum, changes in the spin

density are more muted, either centring on the substituent or the V tetrahedra,

but not both. We can see that in Fig. 3.11b and Fig. 3.12b that the change in

spin density on the V ions retains d-orbital character. This indicates that there
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Figure 3.10: Band structure of GaV4S8 (a) without inclusion of a Hubbard
U and (b) with a Hubbard U of 2.5 eV on the V d-orbitals. Spip-up bands are
shown in red and spin-down bands are shown in blue. Plots produced using
dispersion.py [104] (See App. C).

is simply a scaling in the amount of spin on these ions, this is notable in the

case of y = 7 (Fig. 3.12b) as this is occurs despite the substitution site being

located close to the V tetrahedra. It has been reported [164] that there is a

decrease in the magnetisation upon substitution which occurs faster in the S

substituted material. Our calculations reflect that the changes in spin density

are not uniform upon substitution at each end of the series.

Analysis of experimental measurements taken using µSR find two internal

fields in GaV4S8 with a third field appearing upon substitution. This third

field is larger than the next highest field by a factor of 3, suggesting a change

in the magnetic moments or a change in spin distribution [117]. Muon stop-

ping sites have previously been reported in this material [163]. One of the

muon stopping sites lies close to the V tetrahedron, which would probe this

change in spin magnitude. The changes in spin distribution calculated around
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(a)

(b)

Figure 3.11: Difference in spin density between GaV4S8 and GaV4S8−ySey,
y = 1 with Se substitution on the (a) S3 and (b) S4 sites. Ga, V, S and
Se atoms are shown in green, purple, yellow and orange respectively. Images
produced with vesta [148].

the V tetrahedra in GaV4S8 could provide an explanation for this increase in

the measured field. Further details about the experimental work can be found

in Ref [117]. Additionally, by changing the spin distribution around V ions

in both GaV4S8 and GaV4Se8, it is possible that this could induce changes to

the exchange pathways. Skyrmions are formed by competing exchange interac-

tions and changing these pathways could cause the glasslike magnetic ground

state found in GaV4S8−ySey for y = 2 and y = 4 [163]. In reality, the level of
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(a)
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Figure 3.12: Difference in spin density between GaV4Se8 and GaV4S8−ySey,
y = 7 with S substitution on the (a) Se1 and (b) Se2 sites. Ga, V, S and
Se atoms are shown in green, purple, yellow and orange respectively. Images
produced with vesta [148].

substitution would not be necessarily uniform throughout the crystal. Differ-

ent regions in the crystal could have higher levels of substitution which would

exhibit the changes in spin density which we see from spin-DFT calculations,

while other regions may more closely resemble the pure crystal. As skyrmions

are long range topological objects, higher levels of substitution are more likely

to interfere with the exchange mechanisms over a larger region of the skyrmion

lattice.
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3.4 Conclusions

In conclusion, we have shown how spin-DFT can be used to give a deeper

understanding of experimental data, and help to explain phenomena in complex

magnetic systems. Even when the magnetic structure of a material is beyond

the current capabilities of spin-DFT calculations, we can examine the electronic

structure to look for the physics which underpins the long range magnetism.

We have introduced the DFT+µ technique used to complement the analysis

of µSR experiments, and showed how we can use standard DFT methods to

locate the muon stopping site, something which is usually inaccessible exper-

imentally. We found that there are three distinct muon stopping sites in the

skyrmion host, Cu2OSeO3, although in reality only two of the sites are occu-

pied, consistent with experimental findings. The third site is located within a

Cu tetrahedron which would likely be inaccessible to an implanting muon.

We have also showed how spin-DFT can give us information about the dis-

tribution of the electrons and their spin density. We presented calculations on

the chemical substitution of the Mott insulators GaV4S8 and GaV4Se8. We

showed that changes in the spin density are greater upon substitution at the S

end of the series. For y = 1, the changes in the spin density affect the entire

crystal, both around the substituent and inside the V tetrahedra. At the other

end of the series, the changes in spin density are less pronounced. Changes in

the spin density surrounding the V ions could indicate an altering of the ex-

change pathways, explaining why substitution destroys the skyrmion lattice in

these materials in favour of a glasslike state.
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Magnetic coupling in

[Cu(pyz)0.5(gly)]ClO4

’Twas brillig, and the slithy toves

Did gyre and gimble in the wabe:

All mimsy were the borogoves,

And the mome raths outgrabe.

—Lewis Carroll,

The Jabberwocky

In this chapter, we will present results of density functional theory (DFT) cal-

culations on the effects of pressure on the magnetic interactions in a molecular

material, [Cu(pyz)0.5(gly)]ClO4 [169]. DFT gives us the ability to study the

energy of different magnetic configurations, by comparing these energies, one

can extract the strength of the exchange coupling between magnetic ions. In

this chapter we will examine how one can calculate coupling parameters from

DFT and apply the method to study the effects of pressure on the magnetic

behaviour of [Cu(pyz)0.5(gly)]ClO4.

The work in this chapter is based on calculations performed by myself at

the University of Durham and is yet to be published. Analysis of the results is

my own, with useful input from collaborators at the University of Durham and

Warwick University. X-ray crystallography measurements were carried out by

86
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collaborators at Warwick University.

4.1 Introduction

4.1.1 Magnetic exchange

In Chap. 2 we discuss the Schrödinger equation and the Hamiltonian which

links the equation to a physical system. There is no mention of magnetism

explicit in the Hamiltonian we discussed above; all magnetic behaviours arise

due to Coulomb interactions between electrons. However, rather than trying

to understand all of the complexities of the many-body Hamiltonian, we wish

to examine only the parts which determine magnetic effects. We are often able

to apply a low energy model to our Hamiltonian which approximates magnetic

interactions. Starting with a two electron system, comparing the difference

between a singlet [|↑↓〉] and a triplet [|↑↑〉, |↓↓〉, 1√
2
(|↑↓〉+ |↓↑〉)] state, we arrive

at an effective Hamiltonian for the spin part of the wavefunction [5],

Ĥspin = −JS1 · S2, (4.1)

where S1(2) is the spin of electron 1(2) and J is a constant which describes the

magnitude of the exchange between each pair of spins. This can be extended

to many-body systems, known as the Heisenberg model [5],

Ĥspin =
∑

i>j

Ji,jSi · Sj, (4.2)

where Si is the spin on the ith magnetic ion and Ji,j is the exchange interaction

strength between each pair of ions. The negative sign has been absorbed by

Ji,j such that J > 0 corresponds to antiferromagnetic alignment [170]. This

model can be used to find the interaction strengths between each magnetic ion.

The nearest neighbour interactions often dominate and therefore the exchange

parameters for more distant interactions can often be approximated as zero.
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4.1.2 Magnetism in molecular crystals

When looking for magnetic effects in condensed matter, the traditional place

to look is in inorganic materials such as Fe, Ni, Co and their alloys. However,

organic materials that host long range magnetism have become a relevant class

for studying magnetic behaviour [171]. To study particular effects in magnetism,

such as the effects of dimensionality, using traditional inorganic magnets one

needs to find a material which exhibits the desirable features [169]. Depending

on the magnetic interactions in the material, the magnetic dimensionality can

be different to the structural dimension [172]. In a molecular magnet, the

interactions are between molecules rather than atoms, and as such tend to

be weaker due to their separations. Therefore, by either growing the crystals

under specific conditions, or by applying external pressures, one can change the

structure and alter the magnetic interactions [171, 172]. This ability to tune

the magnetic interactions allows such materials to be a testing ground for new

physics and the search for new magnetic states. In particular, applying pressure

can cause a transition across a quantum critical point (QCP), for example this

could lead to a change in the magnetic state of the system [173, 174].

An example of a molecular crystal which displays long range magnetic or-

dering is [Cu(pyz)0.5(gly)]ClO4 (pyz = pyrazine = C4H4N2; gly = glycine =

C2H5NO2) [169, 175]. [Cu(pyz)0.5(gly)]ClO4 is formed of corrugated sheets of

weakly coupled antiferromagentic S = 1/2 Cu–pyz–Cu dimers, which are each

connected to 4 other dimers through a glycine group. Each molecular sheet is

connected to other layers through ClO4 molecules. The structure is shown in

Fig. 4.1.1a. Previous studies of the magnetism in [Cu(pyz)0.5(gly)]ClO4 show

that the ground state shows no long-range magnetic order [169].

There are three dominant exchange pathways in [Cu(pyz)0.5(gly)]ClO4: the

intradimer exchange interaction, Jpyz, is mediated by the pyrazine ring joining

the Cu dimers; the main interdimer exchange, J ′
gly is mediated through the

glycine ligands and the second interdimer coupling mediated though the ClO4,

with coupling strength J ′′
ClO4

. These exchange pathways are shown in Fig 4.1.1.
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It has previously been shown that J ′′
ClO4

is much weaker than the other two

couplings [175] resulting in a quasi-two-dimensional magnetic structure, where

the magnetism is constrained to the plane of the corrugated sheets.

By applying pressure to a molecular system, one can reduce the energy gap

between the singlet and triplet state [171, 170, 176, 174]. It may be possible to

apply enough pressure to cause a flip in the singlet and triplet energy levels and

thereby switch the magnetic coupling from antiferromagnetic to ferromagnetic.

We present a first principles study on the effects of pressure on the magnetism

and structure of the molecular magnetic material, [Cu(pyz)0.5(gly)]ClO4. We

will show how pressure causes changes in the structure which alter the exchange

pathways.

4.2 Computational methods

To determine the effects of pressure on the exchange couplings in

[Cu(pyz)0.5(gly)]ClO4, we performed spin-density functional theory (spin-DFT)

calculations treating exchange and correlation (xc) with the Perdew, Burke and

Ernzerhof (PBE) functional [69]. Calculations were converged to better than

1 meV/atom using a plane wave cutoff of 1500 eV and a 5×5×3 Monkhorst

and Pack (MP) k-point grid [85]. This level of convergence is smaller than

the energy gaps between different states, allowing us to confidently differen-

tiate their relative energies. The experimental structure when treated under

the generalised gradient approximation (GGA) resulted in unphysical pressures

which prevented the stabilisation of any long-range magnetic states. To obtain

a crystal structure that is consistent with DFT, we performed a geometry opti-

misation calculation allowing all atoms and cell parameters to relax. From the

resulting DFT-relaxed cell, a further set of geometry optimisation calculations

were performed with the addition of isotropic pressure applied over a range of 0

to 60 kbar [177]. As before, all unit cell parameters were allowed to relax such

that we can determine changes to the structure due to the external pressure.

Using a single unit cell rather than a supercell, we are not able to describe
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Figure 4.1.1: (a) Structure of molecular magnetic material,
[Cu(pyz)0.5(gly)]ClO4. (b) Cu—pyrazine and Cu—glycine groups show-
ing their respective exchange pathways, H and ClO4 groups have been
removed for clarity. (c) Exchange pathways mediated by the ClO4 groups,
H and pyrazine rings have been removed for clarity. Images produced with
vesta [148].

all three of the exchange pathways discussed above. Instead we consider two

exchange coupling constants, the intradimer coupling J0 = Jpyz and an effective

interdimer coupling Jeff , where Jeff = 4(J ′
gly + J ′′

ClO4
). The four in the above

equation accounts for the fact that there are four times as many interdimer

pathways as intradimer pathways per unit cell. A supercell would be required

to extract all three coupling constants. However, due to the large number of
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Figure 4.2.1: Spin density of the antiferromagnetic ground state of
[Cu(pyz)0.5(gly)]ClO4. Labels on the Cu ions refer to the order of ions con-
sidered in each different spin configuration. Images produced with vesta [148].

atoms in the single unit cell, the computational costs would be prohibitively

large.

Calculating exchange constants using DFT involves comparing the total

energies of different spin states. From a single pair of electrons, we can calculate

the difference in energy between the singlet and the triplet state [178],

J = ET − ES. (4.3)

One can then extend this to a system of multiple atoms by considering pairwise

interactions [179]. We can express the total energy of any spin state in terms
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of J0 and Jeff ,

E = J0
∑

i

S1,i · S2,i + Jeff
∑

m,n,i,j

Sm,i · Sn,i + E0, (4.4)

where i and j label the dimers and m and n represent each magnetic state.

Alongside the two exchange parameters, J0 and Jeff , there is a third unknown,

E0, which describes all of the energy contributions common to each state and not

related to the arrangement of spins. There is no inversion centre in

[Cu(pyz)0.5(gly)]ClO4, introducing the possibility of non-zero

Dzyaloshinskii–Moriya interaction (DMI) which may contribute to the spin

Hamiltonian. However, we perform all calculations using collinear spin-DFT

which precludes the computation of the DMI which favours canting of non-

collinear spins

To calculate the coupling constants, we follow the method outlined in

Ref. [180]. A single unit cell containing four Cu ions was used in all calcula-

tions of the spin configurations. This allows us to extract 16 different magnetic

states. However, as the system is degenerate with respect to a global spin flip,

only eight of the possible states are unique. We are able to save on the computa-

tional effort by not calculating the ferromagnetic state, as this is not necessary

to calculate the two effective exchange parameters. Using the seven configura-

tions, we can formulate a set of simultaneous equations, shown in Table 4.1. We

have more equations than unknown parameters; as the calculations provide an

over-complete description of the possible spin states, spin configurations that

are equivalent in our model can be used to estimate the uncertainty in the cou-

plings. Using the variance in the total energies of equivalent configurations, we

are able to calculate the standard error.

For each unit cell relaxed under pressure, a full set of magnetic calculations

were performed. In each case, the magnetic ions were initialised with spins

corresponding to the desired spin state. Self-consistent field (SCF) calculations

were performed to calculate the total energy of each configuration using the

density mixing (DM) scheme to more reliably preserve the spin initialisations
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Spin configuration Energy
↑↓↑↑ E0

↑↓↓↑ 2J0 + Jeff + E0

↑↓↓↓ E0

↑↑↓↑ E0

↑↑↑↓ E0

↑↓↑↓ 2J0 − Jeff + E0

↑↑↓↓ −2J0 + Jeff + E0

Table 4.1: Energies of configurations of spins in [Cu(pyz)0.5(gly)]ClO4 in terms
of the electronic portion of the energy E0 and the intradimer, J0, and interdimer,
Jeff , couplings. The spins of each configuration correspond to the label given to
each Cu ion shown in Fig. 4.2.1.

throughout the minimisation. Once each calculation had finished, the final

spin state was confirmed by examining the Mulliken population analysis. An

example of one of the antiferromagnetic calculations is shown in Fig. 4.2.1.

The total energies can be used to form a matrix relating to the simultaneous

equations in Table 4.1, which can then be solved to determine the coupling

parameters.

4.3 Results and discussion

4.3.1 Structural effects

We find that by relaxing the experimental structure at ambient pressure, the

unit cell volume calculated from DFT is approximately 25% larger than found

experimentally. This increase is consistent with the known properties of

GGAs [67]. The increase is not uniform across all unit cell directions. We

find increases of 3.1%, 6.7% and 17% in the a, b and c directions respectively,

which is expected due to the different bonding mechanisms present each direc-

tion. These effects may be exaggerated when compared to experiment. The

covalent bonds that form the corrugated sheets of dimers are more accurately

described using GGA DFT than the weaker interdimer bonds [181, 182], this

has the effect of increasing the interdimer spacing. DFT does not capture Van
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Figure 4.3.1: Effect of pressure on the structure of [Cu(pyz)0.5(gly)]ClO4.
(a) Percentage change in distance between Cu ions along the exchange pathways
as a function on pressure applied isotropically. (b) Percentage change in lattice
parameters as a function of pressure. (c) Percentage change in unit cell angle
β with pressure, fitting lines are added to highlight the distinct regimes.

der Waals (VDW) forces, while it may be possible to include these effects em-

pirically, this would be unnecessary at higher pressures.

The effects of externally applied pressure on the unit cell of
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[Cu(pyz)0.5(gly)]ClO4 are shown in Fig. 4.3.1. The distances between Cu ions

along exchange pathways are shown in Fig. 4.3.1a, where it can be seen that the

most dramatic changes occur between the Cu ions along the exchange pathway

mediated by ClO4 (J ′′
ClO4

). The Cu–Cu distance is decreased by approximately

1 Å with the application of 20 kbar. There is a small discontinuous change in

the glycine exchange pathway, in the order of 3%. The Cu spacing along the

Cu–pyz–Cu direction changes the least, less than 2% over the entire range, due

to the covalent bonding. All lattice parameters decrease with applied pressure,

with the decrease being continuous for a and c. However, there is a discontinuity

in b at approximately 20 kbar (Fig. 4.3.1b). The discontinuity in b corresponds

to a change in the unit cell angle β, and while β always decreases with increasing

pressure, the rate of decrease slows at around 20 kbar, as seen in Fig. 4.3.1c.

Further changes to the structure are shown in Fig. 4.3.2 which shows changes

in various angles between the molecular units. The angle between the bonds

connecting the Cu ions to the pyrazine ligands, termed the pyrazine kink angle

(Fig. 4.3.2a), is essentially constant across the entire range of applied pressures.

The rigidity of the dimer is due to the covalent bonding. We see more dramatic

changes in the other molecular angles shown in Fig. 4.3.2b-d. The largest change

is observed in the interlayer dihedral angle (Fig. 4.3.2b). We calculate a sharp

decrease in the dihedral angle around 20 kbar, the same pressure at which we

see changes to the lattice. At high pressures, the dihedral angle becomes mostly

constant around 112◦, a change of approximately 15◦ from ambient pressure.

The angle between the Cu ion and the pyrazine ligand, called the pyrazine

twist angle (Fig. 4.3.2c) decreases with applied pressure, although the overall

change is small at less than 2◦. We see similar changes in the angle between the

pyrazine and glycine ligands, Fig. 4.3.2d.

There are two main factors which contribute to the structural changes we see

at around 20 kbar. Firstly, the change in the interlayer dihedral angle allows for

more efficient packing along the b axis. This also accounts for the discontinuous

change in the lattice parameter b. Secondly, a change in the orientation of ClO4
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Figure 4.3.2: Dimer angles as a function of applied pressure. (a) the kink
angle of the Cu dimer along the pyrazine ligand. (b) dihedral angle between
the interlayer Cu dimers. (c) twist angle of the Cu dimer with respect to the
pyrazine ligand. (d) tilt angle between the pyrazine and glycine ligands. Inset
diagrams highlight each angle.

molecules above 20 kbar allows for closer packing. The orientation of ClO4

molecules above and below the transition pressure are shown in Fig. 4.3.3a and

Fig. 4.3.3b respectively. The orientation of the ClO4 molecules remains mostly

constant in the two pressure regimes.

DFT is known to have some systematic problems with determining geome-

tries. Using the PBE functional, we expect that the ambient pressure cell will

be larger than the true cell, which we indeed find. For similar reasons, changes
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(a) 18 kbar (b) 22 kbar

Figure 4.3.3: Structure of [Cu(pyz)0.5(gly)]ClO4 under pressure of (a) 18 kbar
and (b) 22 kbar. There is a change in orientation of the ClO4 molecules (high-
lighted in blue) in (b) which persists at higher pressure. Images produced with
vesta [148].

to the molecular components of the crystal due to the application of pressure

are likely to differ from experiment in some key ways. Firstly, as PBE-DFT

binds covalent bonds less tightly than reality, and under predicts the effects of

intermolecular bonds, it is possible that relative changes to the positions of the

dimers may be exaggerated. The under predication of the intermolecular bonds

is greater than for the covalent bonding, this may account for the large change

in the interlayer Cu–Cu distance. We also see evidence of this with the pyrazine

kink angle, which does not change as we apply pressure, it is likely that due to

the underestimation of the interlayer bonding, it is energetically favourable to

alter some other part of the crystal structure rather than the strong Cu–pyz–Cu

bonds. Accounting for these effects, one would expect that the structural tran-

sitions which we calculate to occur at 20 kbar to be measured at a lower applied

pressure. Despite these systematic issues, we can still rely on the calculations

to capture the main physical trends relevant to the magnetic exchange.

4.3.2 Magnetic effects

We find that for each structure calculated under pressure, it is possible using

spin-DFT to find sufficient spin states to calculate values for J0 and Jeff . An
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Figure 4.3.4: Ratio of calculated coupling constants J and Jeff as a function
of isotropic pressure, dotted lines indicate the two distinct regimes.

example of the spin distribution for one of the configurations can be seen in

Fig.4.2.1. We see that spin is not just localised on the Cu ions, but also on the

neighbouring molecules. We find localisation of spin onto the N in the pyrazine

ligands as well as on the O in the glycine ligands, Fig. 4.2.1. In both cases,

these are the closest neighbours to the Cu. Notably there is insignificant spin

localised on the ClO4 molecules. It is likely that this localised spin on the ligands

contributes to the stronger exchange interaction seen in along these pathways.

At ambient pressure, the spin configuration with the lowest total energy and

therefore the possible ground state magnetic structure, is antiferromagnetic

both within the Cu dimers and between the dimers, this suggests that both

J0 and Jeff describe antiferromagnetic interactions. Projecting the spin density

onto the Cu ions using Mulliken analysis reveals that there is no change in the

magnetic moments as a function of pressure, it remains constant at 0.5µB. We

therefore do not have to consider variations in the magnitude of the spins in

our calculation of the exchange couplings.

The effect of pressure on the exchange constants of [Cu(pyz)0.5(gly)]ClO4



4.3. Results and discussion 99

can be seen in Fig. 4.3.4. At all pressures J0 and Jeff are found to be posi-

tive, indicating that the magnetic interactions are antiferromagnetic, consistent

with the antiferromagentic state having the lowest energy. There are two dis-

tinct regimes for the coupling constants as with the structural parameters, with

the coupling strengths changing from those found at ambient pressure above

20 kbar. Across the full range of pressures the coupling constant J0 remains

quite stable around J0 = 8 K, with a small increase at the highest pressures to

J0 ≈ 9 K. For the second coupling constant, Jeff , the behaviour is more complex:

in the region below 20 kbar the coupling is roughly half the value of J0, and

at higher pressures Jeff increases, such that the ratio J0/Jeff ≈ 1. In the re-

gion around the structural transition the effect on the coupling constants is less

clear, but the general trend shows that Jeff increases with increasing pressure

over a range of approximately 10 kbar to its final value above 20 kbar. Since

Jeff included the effects of exchange along both the glycine ligand and the ClO4

molecule, it is sensitive to changes in those pathways. From the structural data,

we see that there are significant changes in the Cu–Cu accounting for the Jeff ,

including a small discontinuity in the Cu–gly–Cu distance corresponding to the

change in interlayer dihedral angle. It is also possible that the reorientation of

the ClO4 molecules could cause changes in the exchange mechanism by aligning

different atomic orbitals.

The change in Jeff at the transition pressure indicates a closing of the singlet-

triplet gap in [Cu(pyz)0.5(gly)]ClO4. This effect has been observed previously in

similar quantum magnets [176, 183, 184]. In the case of TlCuCl3, this transition

across the QCP leads to change in the ground state magnetic structure, going

from a quantum disordered state to a long-range antiferromagnetic state. Due

to the increase in the interdimer coupling, Jeff in [Cu(pyz)0.5(gly)]ClO4, it is

possible that at the calculated transition pressure of 20 kbar, there is a transition

from the known disordered state to an antiferromagnetic state, as in TlCuCl3.
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Figure 4.3.5: X-ray diffraction measurements of the structure of
[Cu(pyz)0.5(gly)]ClO4 with the application of pressure. Pressure is applied by
placing the crystal in a diamond anvil cell. Figure provided by experimental
collaborators at Warwick University.

4.3.3 Comparison to experiment

We can compare the predictions of the effects of pressure on

[Cu(pyz)0.5(gly)]ClO4 to measurements of the structural parameters made with

X-ray diffraction, shown in Fig. 4.3.5. Notably, we see a second order change

in the β cell angle when measured experimentally. This matches well with

DFT predictions shown in Fig. 4.3.1c. The change in β occurs at lower pres-

sure than calculated, this may due to the underestimation of bonding forces

using PBE causing the transition to occur at higher pressures in the calcula-

tions. We also note that the Cu–pzy–Cu distance is seen to remain stable with

applied pressure, much as predicted by our DFT calculations. The DFT calcu-

lations predict well the changes to the spacing of the Cu ions, with the largest

changes occurring in the Cu–ClO4–Cu distances along the secondary interdimer

exchange pathway. The main deviation from theory seen in the experimental

data is the lack of discontinuity in the b lattice parameter. Correspondingly,

measurements show that the cell volume varies fairly continuously. However,

our DFT calculations capture the main trends in the structural data and also in

measurements of the exchange constants. From magnetometry measurements,

the effective interdimer coupling increases upon the application of pressure as
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the interdimer Cu–Cu distances decrease [185]. Also, the intradimer exchange

coupling remains mostly constant, as predicted by our DFT calculations.

4.4 Conclusions

We have used DFT to investigate the effects of pressure on the structure and

magnetic interactions of a quantum magnet, [Cu(pyz)0.5(gly)]ClO4. We have

shown that by performing structural relaxations under pressure, we find that

there is a first order discontinuity in the b lattice parameter and a second order

discontinuity in the β cell angle, both at 20 kbar. We also found that the Cu

dimers undergo a reorientation at the same pressure. DFT predictions of the

effects of pressure on the structure agree well with X-ray diffraction measure-

ments. In addition, we calculated the pressure dependence of two exchange

coupling constants, corresponding to exchange along the pyrazine ligand and

an effective coupling constant combining the effects of the interdimer and the

inter layer exchange pathways. We found that there is a change in the mag-

netic exchange indicative of a QCP at the same pressure that causes changes

to the structure. The effective coupling constant Jeff doubles from its ambient

pressure value such that the ratio of coupling parameters is nearly equal. This

type of change to the interdimer coupling has been observed before in TlCuCl3

and is associated with a change from a quantum disordered ground state to a

long-range antiferromagnetic state. It is likely that the application of pressure

drives such a transition in [Cu(pyz)0.5(gly)]ClO4.

Molecular magnet systems provide a playground for observing the building

blocks of magnetism. We are unable to distinguish between changes in the

glycine mediated and ClO4 mediated exchange constants in our calculations.

However, it is possible given the change in the Cu–ClO4–Cu distance as a func-

tion of pressure that the exchange along this direction could drive the change

in the ratio calculated. If that were the case, the application of pressure would

induce a change in the dimensionality of the magnetism in this system, go-

ing from quasi-two-dimensional to a three-dimensional magnet. DFT proves to
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be an invaluable technique for understanding these types of systems and the

electron interactions that determine the magnetic behaviour.



Chapter 5

Magnetism in intercalated

transition-metal dichalcogenides

“It’s a type of galvanic force” I said, then

hesitated. “Which is a fancy way of

saying that I’ve got no idea at all.”

—Patrick Rothfus,

The Name of the Wind

This chapter presents theoretical studies on examples of intercalated transition-

metal dichalcogenides (TMDCs), of the form N1/3MX2 where N and M are

each different transition metals, and X is a chalcogen. There are many pos-

sible combinations, some of which exhibit magnetic properties with potential

technological importance. In this chapter, we will focus on the sulfides, where

X = S. The main focus is on the low temperature magnetism and transport

of Cr1/3NbS2 and Cr1/3TaS2 which have gained recent attention for the dis-

covery of a chiral soliton lattice (CSL). This CSL has possible applications for

spintronic devices. Building on the previously reported electronic structure for

Cr1/3NbS2, we present new work that leads to an explanation of the low tem-

perature transport properties, along with new magnetometry measurements

which support the findings of our density functional theory (DFT) calcula-

tions. We highlight from the calculations of the density of states (DoS) that

103
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both Cr1/3NbS2 and Cr1/3TaS2 are half-metals, and in both materials there is a

small gap-like feature in one of the spin channels which we assert explains the

low-temperature physics. This gap is then confirmed by magnetometry mea-

surements and agrees with the results of the DFT calculations. Further, we

present the results of electronic structure calculations of a range of materials in

the same class of the form N1/3NbS2 where N is a transition metal in the first

period. We show that the electronic structure is remarkably simple, and can be

almost entirely explained by the filling of d-orbitals at the Fermi-level.

This chapter is based mostly on work found in Ref. [106]. The DFT calcu-

lations were performed by myself and the data analysed alongside collaborators

at the University of Durham. Magnetometry measurements were performed by

Thomas Hicken at the University of Durham on samples prepared at Warwick

University.

5.1 Introduction

Research into the TMDCs goes as far back as the 1970s [186, 187, 188], how-

ever since the discovery of graphene in 2004 [189], two-dimensional materials in

general have seen a resurgence with the goal of developing new low-dimensional

devices. Amongst the many materials which can be exfoliated to form low di-

mensional solids are the TMDCs, which have the form MX2 where M is a tran-

sition metal and X is a chalcogen [190, 191, 192, 193]. These materials display

properties which are of interest across a wide range of disciplines, for example,

NbS2 exhibits low-temperature type-II superconductivity [194, 195, 196] and

MoS2 lamellae are semiconducting while the bulk is insulating [197, 198]. More

recently, the metal-ion-intercalated TMDCs have attracted attention [199, 200].

The general structure of the intercalated material can be seen in Fig. 5.1.2. Of

interest here are the Cr intercalated materials Cr1/3NbS2 and Cr1/3TaS2 which

have long been known to host a helimagnetic ground state [201, 202]. Adding

Cr ions between the TMDC layers has the effect of removing the inversion sym-

metry, and as a result these materials can exhibit Dzyaloshinskii–Moriya inter-
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Figure 5.1.1: Schematic of a chiral soliton with the applied H-field applied
vertically in the plane of the figure.

action (DMI). The helices found in these materials have long periods relative

to their unit cell size [202, 203], and are thought to be caused by the compe-

tition of DMI and spin-orbit coupling (SOC). Cr1/3NbS2 has been long known

to host chiral helimagnetism, but the discovery of the CSL in Cr1/3NbS2 [204]

and later in Cr1/3TaS2 [205] has renewed interest in these materials. A CSL

can be described by a helix separated by regions of ferromagnetic order (see

Fig. 5.1.1); it can be formed in these materials by applying a magnetic field

along the c axis. Being an example of topological magnetism [51], there are

hopes that such materials will have technological applications.

There have been reports of unusual low-temperature transport in Cr1/3NbS2,

specifically a large change in the Seebeck coefficient around T = 40 K [203],

and an increase in the Hall coefficient below T = 50 K [206]. There have been

attempts to explain these observations, firstly a suggestion that SOC becomes

important at low temperatures and induces changes in the dominant transport

mechanism [203]. Also, it has been suggested that an increase in the helical

length below T = 40 K, which is caused by a decrease in the DMI could be re-

sponsible. However, none of these explanations account for all observations. We

posit that all of these phenomena can be explained by examining the electronic

structure. Both the Seebeck effect, where a temperature gradient induces a po-

tential difference across a sample, and the Hall effect, where a voltage is caused

transverse to the applied current, are sensitive to the underlying electronic

structure. In this chapter we will present experimental and ab initio results
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Figure 5.1.2: Structure of the intercalated TMDCs. The chemical form is
N1/3MX2 where N are the intercalated atoms (blue), M is the transition-metal
(green) and X is the chalcogen (yellow). The layers form the standard TMDCs
which are held together via van der Waals interactions. Image produced with
vesta [148].

which provide a complete explanation for all observed properties. This is based

on transitions which occur across a gap-like feature found in the DoS of both

Cr1/3NbS2 and Cr1/3TaS2. We shall also report electronic structure calculations

of a range of intercalated TMDCs which should allow one to make predictions

about which materials would warrant further experimental investigation.

5.2 Computational details

DFT calculations of Cr1/3MS2 (M = Nb or Ta) were performed using the plane-

wave, pseudopotential code, castep [24]. Experimental lattice parameters were

used, a = b = 5.76 Å, c = 11.84 Å and a = b = 5.74 Å, c = 11.90 Å for

Cr1/3NbS2 and Cr1/3TaS2 respectively. Since TMDCs are Van der Waals (VDW)

materials, using the experimental lattice parameters is preferable to performing
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a geometry optimisation since DFT is known to not capture VDW [181, 182].

Had calculations been performed on a geometry-optimised cell, the TMDC lay-

ers would likely be unphysically far apart. As a result, there are residual forces

on the S and Nb atoms, however these are all less than 0.5 eV/Å per atom.

Exchange and correlation (xc) interactions were treated under the generalised

gradient approximation (GGA), using the Perdew, Burke and Ernzerhof (PBE)

functional [69]. Ultrasoft pseudopotentials were used to approximate electrons

in the atomic core. The total energy was found using a self-consistent field

(SCF) calculation under the ensemble density functional theory (EDFT) scheme

with a tolerance of 10−5 eV/atom. Calculations were performed with a plane-

wave basis cut off of 1400 eV and Monkhorst and Pack (MP) SCF k-point

sampling of 15×15×15 [85], leading to convergence better than 10 meV per

atom. Cr1/3MS2 (M = Nb or Ta) have long period helimagnetic groundstates

at low temperature [203, 202] such that the local arrangement of magnetic mo-

ments is approximately ferromagnetic. We use spin-density functional theory

(spin-DFT) to realise a ferromagnetic configuration with a Cr magnetic moment

of approximately 3~/2.

Spectral calculations were performed to generate band structures and pro-

jected density of states (PDoS) for both Cr1/3NbS2 and Cr1/3TaS2. When cal-

culating the DoS a 25×25×25 MP k-point grid was used for Cr1/3NbS2, and

15×15×15 for Cr1/3TaS2. To calculate the PDoS, we perform a Mulliken anal-

ysis of the spectral wavefunction at every k-point to project the wavefunction

onto a linear combination of atomic orbitals (LCAO). We are then able to de-

termine the relative character of each band and calculate the contribution of

each LCAO state to the overall DoS. The output of the DoS calculations were

used to generate Fermi surfaces by locating which bands cross the Fermi level

and performing 3D interpolation to estimate the surface. Fermi surfaces were

calculated using castep2fs [207] with the aid of the Atomic Simulation Envi-

ronment (ASE) [208] to analyse the Brillouin zone (BZ) of the materials. As

the calculations require interpolation on the spectral k-point grid, the Fermi
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surfaces of Cr1/3NbS2 are produced with a higher degree of reliability.

We performed further calculations of the band structures and DoS of

Cr1/3NbS2 and Cr1/3TaS2 using SOC to determine the effect it has on the elec-

tronic structure around the Fermi level. Calculations were carried out using

relativistic pseudopotentials with a fully non-collinear treatment of electron

spins. The quantisation axis for these calculations was set along the c axis such

that we returned the same ferromagnetic state as for the non-SOC calculations.

The Seebeck coefficients for Cr1/3NbS2 and Cr1/3TaS2 were calculated using

the boltztrap code [209], initialised using the electronic structure calculations

described above. boltztrap is an implementation of the Boltzmann transport

equations which allow for the calculation of transport properties from the en-

ergy dispersion relation. While most transport properties require an estimation

of the relaxation time, the Seebeck calculations presented here are independent

of this parameter. Transport properties depend on the temperature of the sam-

ple and any applied potential difference, which has the effect of shifting the

Fermi energy. We calculated the Seebeck coefficient in both materials over a

temperature range of 1 to 300 K and chemical potential spanning 1.36 meV

with 0.14 meV spacing centered around the Fermi level calculated from DFT.

To reduce the effects of noise at low temperatures, we used 100 and 200 lattice

points per k-point for Cr1/3NbS2 and Cr1/3TaS2 respectively to account for the

relative k-point densities. We find that the Seebeck coefficient is highly sensitive

to the choice of chemical potential. To best match the experimental Seebeck

coefficient in Cr1/3NbS2 the value of Fermi energy was taken as approximately

−18 meV with respect to the Fermi energy predicted by DFT. This is within

the uncertainty of our calculations. Due to the practicalities of measuring the

Seebeck coefficient, it is difficult to ensure that the measurement is taken at pre-

cisely zero bias, this is also reflected in the choice of Fermi energy. In Cr1/3TaS2

it is expected that the Seebeck coefficient behaves similarly to that of Cr1/3NbS2

so a value of approximately −6 meV with respect to the DFT Fermi energy was

chosen.
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Figure 5.2.1: Band structures of (a) Cr1/3NbS2 and (b) Cr1/3TaS2 along a
high symmetry path in the BZ. Spin-up and spin-down bands are coloured red
and blue respectively. Plots produced using dispersion.py [104] (See App. C)

In addition, we performed calculations of the electronic structure ofN1/3NbS2

where N are the transition metals in the first period. For each material a plane-

wave cut off of 1700 eV was used along with a MP k-point grid of 7×7×7 for

convergence better than 1 meV/atom. Xc was treated using the PBE functional.

The lattice parameters of each material were held fixed at the experimental val-

ues of Co1/3NbS2, a = b = 5.77 Å, c = 11.89 Å. Because of the VDW nature

of the materials the structural parameters are insensitive to the choice of in-

tercalant [210, 211]. Therefore, it is a valid approximation to hold the lattice

constants fixed across the series. Each calculation was performed using the den-

sity mixing (DM) scheme with a ferromagnetic spin initialisation of 1~/2 per

ion. There have been reports on the magnetic structure of some of these mate-

rials, for example N1/3NbS2 (N = V, Mn) have been found to be ferromagnetic

at low T while N1/3NbS2 (N = Co, Ni, Fe) are antiferromagnetic [212, 211, 213].

To capture some of the correlation effects that often contribute to long range

magnetic order, we included a small Hubbard U of between 2.0 eV and 2.5 eV

on the N d-orbitals. These values were chosen as the smallest value required to

form a ferromagnetic state. A Hubbard U acts as a local Coulombic repulsion
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which is often used to address the band gap problem, but in magnetic ions can

be used to localise spin. It was only possible to realise a ferromagnetic mo-

ment in some of the materials in this series, while Sc1/3NbS2, Cu1/3NbS2 and

Zn1/3NbS2 were all found to be non-magnetic. While a ferromagnetic state is

not the groundstate in some of the materials studied, these calculations still

provide interesting insight into the behaviour of the series as a whole. We will

limit our discussion below to only those materials where we find a ferromagnetic

state in our calculations. In a collinear system any magnetic state which is re-

alised is degenerate under a global spin flip, therefore when the total moment of

these ferromagnetic calculations is negative, we apply a global flip of the spins

to allow for comparison.

5.3 Results and discussion

5.3.1 Electronic structure of Cr1/3MS2 (M = Nb or Ta)

The band structures of Cr1/3NbS2 and Cr1/3TaS2 can be seen in Fig. 5.2.1.

The band structure of Cr1/3NbS2 matches previous work [203] and shares many

similar features with that of Cr1/3TaS2. The complicated structure around the

Γ-point is the main contributor to the DoS at the Fermi level. In both mate-

rials the ferromagnetic moment on the Cr ions has lifted the spin degeneracy,

resulting in distinct bands for the spin-up and spin-down electrons.

Figure 5.3.1 shows the PDoS for Cr1/3NbS2 and Cr1/3TaS2. The largest con-

tribution to the DoS at the Fermi level comes from the spin-up channel, with no

contribution from the spin-down channel. The bands in the spin-down channel

are strongly peaked at the Γ-point suggesting delocalized electrons; those in

the spin-up channel are much more flat, indicating a more localised character.

It has previously been reported that Cr1/3NbS2 is a low-carrier-concentration

metal or heavily-doped semiconductor [203]. However, in the spin-up channel

there is more density around the Fermi level, which, in addition to the inte-

ger spin per unit cell [214], suggests both materials are half-metallic [215]. A
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Figure 5.3.1: (a) and (b) PDoS of d-orbital contributions from transition
metals in Cr1/3NbS2and Cr1/3TaS2. (c) and (d) Regions around the Fermi
level showing the pseudogap feature in the spin-up channel. Spin-up densities
are positive and spin-down densities are negative. The dashed line shows the
location of the Fermi level. Adaptive broadening is applied tp the peaks [105]
in the optados code [216, 94].

half metal is characterised by a gap at the fermi level in one channel of a spin-

resolved DoS, that is to say it is conducting in one spin-channel while insulating

or semi-conducting in the other. There is a small gap-like feature at the Fermi

level in the spin-up channel, with a width of approximately ∆E = 80–90 meV

in both materials, where there is a reduction in the DoS to almost zero. This

gap was first reported by Ghimire et al. [203] where it was called a ‘pseudogap’.

However, no further mention of this feature was made by the authors and no

suggestion that it is the driving force behind the low-temperature physics.

We have also performed calculations with the inclusion of SOC. A compari-

son of the spectral calculations with and without SOC are shown in Fig. 5.3.2.

We note that there are no significant changes to the electronic structure and

the pseudogap remains the same. Using a non-collinear treatment of electrons

means it is no longer trivial to decompose electrons into spin-up and spin-down
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Figure 5.3.2: Band structures and DoS of (a) Cr1/3NbS2 and (b) Cr1/3TaS2

calculated with SOC (solid lines) and without (dashed lines). Plots produced
using dispersion.py [104] (See App. C) and optados [216, 94].

channels, and therefore the total DoS is plotted. Despite using the total DoS

the pseudogap at the Fermi level is still identifiable since there are no spin-

down states due to the half-metallic nature of these materials. In the band

structures, we find that around the Fermi level in Cr1/3MS2 (M = Nb or Ta)

the energy difference is small, approximately 10 meV in Cr1/3NbS2 and 15 meV

in Cr1/3TaS2. The effect of SOC in Cr1/3TaS2 is expectedly larger due to the

increased mass of Ta.

Given the distinct spin dependence of the DoS and location of the pseudogap,

we would expect spin dynamics to occur at low temperatures as spin-up elec-
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trons fluctuate across the pseudogap. We will go on to discuss other theoretical

calculations as well as experimental work which also highlight the importance of

the pseudogap in driving both electronic and magnetic effects in these materials.

Figure 5.3.3 shows the Fermi surfaces for Cr1/3NbS2 and Cr1/3TaS2. Both

sets of Fermi surfaces are similar which reflects the similarity in the DoS at the

Fermi level. In the case of Cr1/3NbS2 we see clear evidence of Fermi surface nest-

ing, which has been previously reported experimentally in this material [217].

The parent material NbS2 stands out amongst TMDCs as it does not exhibit

charge density waves (CDW) while other similar materials do [218, 219]. Many

TMDCs show Fermi surface nesting which drives the instability leading to the

formation of CDW. The nesting in Cr1/3NbS2 is limited which likely accounts for

its structural stability and lack of evidence of CDW. We can also see the same

nesting characteristics in Cr1/3TaS2, however this is limited by the resolution of

the calculations.

We can use individual electron orbitals to examine the effects of

half-metalicity in real space. By looking at the spatial distribution of each

electron we begin to see more clearly the effects of the pseudogap for spin-up

electrons and the true gap for spin-down electrons. We are interested in seeing

how the distribution of electrons changes as we excite electrons at the gap, there-

fore the distributions of the highest occupied and lowest unoccupied electron

states are shown in Fig. 5.3.4. In the case of spin-up electrons [Figure. 5.3.4a]

there are electron states localised around the Cr ions which have d-orbital char-

acter both occupied and unoccupied. Spin-up electrons in the highest occupied

state would therefore be able to excite into into the lowest unoccupied state and

remain localised on the Cr ions. For the spin-down electrons [Figure. 5.3.4b] we

see a completely different distribution. The highest occupied electron state is

localised on the Cr ions as is the case for spin-up electrons. However, looking

at the lowest unoccupied electron state, we see that this is no longer localised

on the Cr. This is the same effect as there being a gap in the PDoS for spin-

down electrons. Excitation of the highest occupied electrons into unoccupied
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Figure 5.3.3: Fermi surfaces as calculated from DFT for (a) Cr1/3NbS2, and
(b) Cr1/3TaS2. Two spin-up bands cross the Fermi energy, and are shown in blue
and orange. The yellow band is spin down. Image produced using castep2fs [207]
(see App. C)

states around the Cr would require significantly more energy than the spin-up

electrons, certainly much more energy than available at the temperatures of

interest in these materials.
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Figure 5.3.5: Predicted temperature dependence of the change in µ for (a)
Cr1/3NbS2 and (b) Cr1/3TaS2 excluding critical behaviour. Total change, and
change in Cr and M d orbitals are shown.

5.3.2 Transport and magnetic properties of Cr1/3MS2

(M = Nb or Ta)

Figure 5.3.5 shows the predicted temperature dependence of the magnetic mo-

ment in Cr1/3NbS2 and Cr1/3TaS2. This temperature dependence of the moment

is calculated from the DoS using the Fermi-Dirac distribution. As DFT is a 0 K

theory, we have no knowledge of how temperature would modify the magnetic

state, therefore our model does not capture the critical behaviour as one ap-

proaches the magnetic transition. The moment is calculated using,

µ(T ) =

∫ ∞

−∞
dǫ[g↑(ǫ) − g↓(ǫ)]fFD(T ;EF), (5.1)

where µ is the magnetic moment, g↑(↓) are the spin up (down) DoS, fFD is the

Fermi-Dirac distribution and EF is the Fermi energy. By multiplying the DoS

of each spin channel with the Fermi-Dirac distribution one obtains the number

of electrons of each spin. Taking the difference, we can approximate the total

moment to first order. As we are interested only in temperatures of order 50 K

which is much lower than the Curie temperature, TC, for both materials, our

approximation is valid. In both materials, µ peaks at approximately 40 K.
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Figure 5.3.6: Seebeck coefficient S = Tr(Sµν)/3 for (a) Cr1/3NbS2 and (b)
Cr1/3TaS2. In (a), S is compared with experiment [203] and is also shown with
temperatures scaled according to the gap size, as described in the text. In (b)
the range of the possible values of the Seebeck coefficient due to uncertainty in
the Fermi energy is shown.

Figure 5.3.6a–b shows Tr (Sµν) /3, with a maximum reflecting the presence of

the pseudogap. This prediction of the Seebeck coefficient of Cr1/3NbS2 qualita-

tively matches the measurements in the low-temperature regime [203], although

around TC the computed behaviour deviates from experiment due to the onset

of the magnetic transition. As stated above the boltztrap calculations are

only valid well below TC. The gap found in our calculations is slightly larger

than the measured gap (see Sec. 5.3.3), causing the features in Sµν to occur at

higher T compared to those found experimentally. (As this is not a true gap, it

is likely this is unrelated to the band gap problem highlighted in Chap. 2.) In

Fig. 5.3.5a we have used the measured gap to scale the temperature to better

compare to the experimental data (T → T∆Eexp/∆EDFT), this results in good

agreement with the peak position found in the measurements.

We find similar behaviour in Sµν for Cr1/3TaS2 [Figure. 5.3.5b], this is ex-

pected due to the level of similarities between the electronic structure of the two

materials. Although it is not possible to estimate the Hall coefficient without

knowledge of the relaxation time [209], it is likely that the pseudogap explains

the observed features in the Hall coefficient of Cr1/3NbS2 reported by Ghimire
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Figure 5.3.7: Example measurements of the phase lag, φ, of AC susceptibility
measurements on Cr1/3MS2 (M = Nb or Ta) (a,b). Solid lines are the fits
to the data, a Gaussian for Cr1/3NbS2 and a sigmoid for Cr1/3TaS2. Central
temperature position of the fits are shown in (c,d), this then is used to extract
activation energies, Ea.

et al. [203].

From the DoS we find a pseudogap in both Cr1/3NbS2 and Cr1/3TaS2. In

each quantity calculated from our electronic structure of both materials, we see

peaks in each at the same characteristic temperature, consistent also with exper-

imental work. The pseudogap is seen as the cause of all of this low temperature

behaviour, which could not otherwise be elucidated without first principles cal-

culations. We will present below experimental evidence that directly shows that

the pseudogap exists in both materials.

5.3.3 Experimental results

We performed AC susceptibility measurements on Cr1/3NbS2 and Cr1/3TaS2 to

investigate the impact of the pseudogap on the magnetism. In an AC suscep-
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tibility measurement, a time varying magnetic field is applied to the sample

and the resulting magnetisation is observed. The measured susceptibility is

in general complex with an in-phase (real) component, χ′, and an out-of-phase

(imaginary) component, χ′′, which relates to dissipative processes, where energy

is lost from the system [220]. The complex susceptibility can be decomposed

into an amplitude, χ =
√

χ′2 + χ′′2, (the size of the induced magnetisation)

and the phase lag, φ = arctan(χ′′/χ′), (how much the induced oscillations lag

behind the applied field). We show in Fig. 5.3.7a–b the measured phase lag as a

function of temperature for a selection of indicative frequencies. The tempera-

ture dependence of the phase lag can be fitted in both cases, for Cr1/3NbS2 the

data are best described using a Gaussian function, while for Cr1/3TaS2 a sig-

moid function is better. We have extracted the central locations of each fit T ∗

as a characteristic temperature of each fit, using the peak of the Gaussian and

the inflection point of the sigmoid, to see the effects of frequency on the distri-

butions. Given the close similarity of the electronic structure of each material,

more investigation is warranted to discover why the AC susceptibility phase lag

has different functional forms. The dependence of T ∗ on frequency is shown in

Fig. 5.3.7c–d, and we find that 1/T ∗ is linear with the logarithm of frequency.

This relationship follows an Arrhenius law, which are used to describe activated

processes,

f = Ce−Ea/kBT
∗

, (5.2)

where f is the frequency, C is an amplitude, kB is the Boltzmann constant and

Ea is an activation energy. The gradient of the straight lines in Fig. 5.3.7c–d give

the activation energy which can be interpreted as an energy gap. For Cr1/3TaS2

we extract a value of Ea = 103 ± 3 meV which is the same order of magnitude

as the pseudogap found from the DFT calculations. The gap obtained for

Cr1/3NbS2 is Ea = 43.7 ± 1.1 meV which is below the lower estimate of our

calculations but still the correct order of magnitude, this is the value used to

scale the calculated Seebeck data discussed in Sec. 5.3.2.

In addition to the AC susceptibility measurements, muon-spin spectroscopy
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Figure 5.3.8: Spin-up (left) and spin-down (right) band structures of the in-
tercalated TMDCs where the intercalated transition-metal has a 3d shell which
is less than half filled. Plots produced using dispersion.py [104] (See App. C)
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Figure 5.3.9: (Left) spin-up and (right) spin-down band structures of the in-
tercalated TMDCs where the intercalated transition-metal has a 3d shell which
is more than half filled. Plots produced using dispersion.py [104] (See App. C)
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(µSR) measurements have been carried out. Measurements of the spin dynamics

have been taken using µSR (see Ref. [106] for details) and show behaviour

consistent with the pseudogap.

5.3.4 Band filling in N1/3NbS2

Across the first period, from Sc to Zn, each atom has an extra 3d-electron. For

d-orbitals, l = 2, so there are 5 ml states per spin for a total of ten available

states. In single atoms, one would expect that each extra electron would sit in

the next available atomic orbital. In real materials with many electrons and var-

ious atomic species, typically the filling of electrons is far more complicated than

this simple atomic picture. We present here results from electronic structure

calculations which show that this simple picture can be applied to the electron

configurations in intercalated TMDCs. Figure. 5.3.8 shows the band structures

of N1/3NbS2 (N = Ti, V, Cr, Mn) while Fig. 5.3.9 shows the band structures

of N1/3NbS2 (N = Fe, Co, Ni). We note that as we progress from Ti1/3NbS2

through to Mn1/3NbS2, in Fig. 5.3.8, the band structure of the spin-down elec-

trons (right) remains essentially static while changes occur in the bands of the

spin-up electrons. The opposite effect can be seen in the band structures of

Fe1/3NbS2–Ni1/3NbS2. In this case the spin-up bands are the ones which are

mostly static, with the spin-down bands changing across the series, although

this is less prominent for these materials. The static nature of a subset of the

bands in the band structure has consequences for the magnetic moment found

on the magnetic ions, Fig. 5.3.10. We can see that for the materials where the

intercalant has a less than half-filled 3d-shell, the magnetic moment increases

across the series, and then begins to drop again as we move to the materials

with a more than half-filled shell. Taking Mn1/3NbS2 as an example, if we were

to naively assume that the moment is simply obtained by adding electrons to

the spin-up sub shells of the Mn 3d-orbital, one would expect a total moment

of 5~/2, however this is not what we see. By looking more closely at the orbital

populations, Fig. 5.3.11, we can see that this picture is not quite correct. In
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Figure 5.3.10: Bar graph showing the magnitude of total spin as a function
of transition-metal, N , in N1/3NbS2.

the first half of the period, we add approximately one electron to the spin-up

subshells, once we reach Mn the spin-up shells are filled at which point we start

filling the spin-down shells. This explains the decrease in moment as we ap-

proach the end of the series. We also see that there is just less than one electron

populating the spin-down shells of all materials, it is this electron that accounts

for the difference in Mn magnetic moment which one might naively assume to

be 5~/2.

By looking at the DoS of the intercalated TMDCs we can make comparisons

to the DoS of Cr1/3NbS2 and Cr1/3TaS2, particularly with regards the pseudogap

which we know to produce interesting magnetic and transport effects. All of

the DoS in N1/3NbS2 can be seen in Fig. 5.3.12 with the exception of Cr1/3NbS2

which is shown in Fig. 5.3.1a. As with the band structures of these materials,

the DoS show remarkable similarities in the spin-up and spin-down channels.

We can identify in many of the materials the region of reduced DoS in the spin-

down channel which we identify makes Cr1/3NbS2 and Cr1/3TaS2 half metals.
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Figure 5.3.11: Bar graph showing the electron population of the spin-up (or-
ange) and spin-down (blue) 3d-orbitals of the transition-metal, N , in N1/3NbS2.

Only for the materials where the intercalant has a less than half-filled 3d-orbital

do we find this reduction at the Fermi level. Many of the same features in the

DoS are present across the series, however their relative position is shifted,

for example in Fig. 5.3.12b we see the same pseudogap feature in the spin-up

channel ∼0.6 eV above the Fermi level. It is interesting that the properties of

these materials are determined by band-filling effects due strictly to the choice

of intercalant. In the Cr intercalated materials, the pseudogap is found at the

Fermi level because of the electron configuration of Cr. Rather than being a

feature of the class of materials as a whole, intercalation with Cr is required to

form the pseudogap.
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Figure 5.3.12: DoS of transition-metal intercalated TMDCs with the inter-
calant coming from the first period of the transition metals. PDoS contributions
for the transition-metal d-orbitals are shown as the main contributor to the
total DoS around the Fermi level. Peaks are broadened using adaptive broad-
ening [105] in the optados code [216, 94].
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5.4 Conclusions

In conclusion, we have shown that electronic structure calculations can be used

to explain all observed low temperature properties of Cr1/3NbS2 and Cr1/3TaS2,

both materials we find to be half-metals contrary to previous reports. The pres-

ence of a small depression in the DoS in the spin-up channel in both materials

allows dynamic fluctuation to occur at the Fermi level at low temperatures.

These calculations do not require the added complication of SOC to capture

the pseudogap, which in turn allows us to conclude that these low tempera-

ture effects are not driven by changes in the DMI. In addition to these first

principles calculations, we have used AC susceptibility to confirm the existence

of the pseudogap. We measured the gap width within good agreement of the

DFT results. Throughout both the theoretical calculations and experimen-

tal results, we noted remarkable similarities between the materials Cr1/3NbS2

and Cr1/3TaS2, this is further supported by the recent discovery of the CSL in

Cr1/3TaS2. As well as performing calculations on the Cr intercalated materials,

we presented a broad study of the intercalated TMDCs. We have demonstrated

that the electronic structure of the materials can be mostly predicted simply by

the number of 3d-electrons in the intercalant. A simple band filling model can

be applied to these materials. To replicate the desirable properties of Cr1/3NbS2

and Cr1/3TaS2, materials with a pseudogap at the Fermi level should be sought.

Our research is crucial for directing this search, as we now know that it is Cr

rather than other species which leads to this feature. We might suggest in-

vestigation of materials such as Cr1/3MoS2 or Cr1/3WS2 for similar magnetic

features. Overall our work shows how important it is to consider not only

experimental techniques when studying materials with potential technological

application, but also to include rigorous first principles studies.



Chapter 6

Source-corrected local spin

density approximation

When you look at the book again many

years later, you find yourself there, too, a

slightly younger self, slightly different, as

if the book had preserved you like a

pressed flower.

—Cornelia Funke,

Inkspell

In this chapter, we present our implementation of a correction to the local spin-

density approximation (LSDA) developed by Sharma et al. [56] in castep [24].

We will highlight the relevant physics that motivates this method and provide

a mathematical description. We will show how the method can be implemented

in a plane-wave pseudopotential density functional theory (DFT) code. Then,

we shall present results of testing the implementation on a series of magnetic

materials and the tuning of free parameters in the method. We shall then, using

the new implementation, present the results of calculation on the pyrochlore

material, Dy2Ti2O7. Using this correction to an existing functional, we shall

show that we are able to realise non-collinear magnetic structures in Dy2Ti2O7

which are not possible using the standard functionals.

127
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The implementation presented in this chapter was carried out by myself

under the supervision of Stewart Clark at the University of Durham. All cal-

culations presented in this chapter were performed by myself and the analysis

is my own. A publication of these results is in preparation.

6.1 Introduction

We have discussed in Chap. 2 the difference between collinear and non-collinear

systems. A system displaying collinear magnetism (CM) rather than non-

collinear magnetism (NCM) can be said to have a global quantisation axis

along which all the spins in the system is aligned. This is not the case for

non-collinear spins, where each electron spin can have a different local direc-

tion. We often discuss spin in a system in terms of the spin density, or equiv-

alently the magnetisation as defined in Eq. 2.39, rather than in terms of the

spins of individual electrons. The magnetisation is a continuous vector field in

the case of NCM, although this field becomes discretised onto a grid to perform

calculations. By convention, in a spin-density functional theory (spin-DFT)

calculation with collinear spin, the quantisation axis is along the z direction.

However, if a system displays CM along a different axis, we can reproduce this

behaviour by setting a quantisation axis along this axis and performing a calcu-

lation where the spin density is treated as non-collinear. The magnetisation will

be aligned with this quantisation axis, although we retain the ability to describe

the magnetisation and the potentials in three-dimensions. This allows us to de-

scribe the non-collinearity of the underlying fields, that is to say the degree to

which the fields deviate from flowing along one global direction. Capturing the

non-collinear behaviour of the fields is critical to reproducing realistic magnetic

states using spin-DFT.

The accuracy of a DFT calculation depends heavily on the choice of ex-

change and correlation (xc) functional. Whenever one performs a DFT calcula-

tion, one must choose from a vast selection of xc functionals [64, 221]. Different

xc functionals capture aspects of a physical system with varying accuracy, and if
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comparison to experimental methods is sought, the xc functional will determine

how accurately the calculations describe the physical quantity in question. For

example, if one wished to describe structural parameters of a material, rather

than using the Perdew, Burke and Ernzerhof (PBE) [69] functional, one might

consider the PBEsol functional [70] as it results in better agreement with ex-

periment [222]. Materials which show exotic long-range and non-collinear spin

textures have been a focus for researchers for many years, with ab initio methods

for capturing this non-collinearity appearing in the 1980s [11]. Much research

has gone into developing xc functionals specific to non-collinear spin [223, 224].

However, there are no functionals that consistently replicate experimental mag-

netic states over a wide range of materials. Most currently available xc func-

tionals are simple extensions to functionals designed for collinear systems. We

will briefly outline the process here.

For calculations of magnetic properties there are two key parameters, the

charge density n(r) and the magnetisation density m(r). In a non-collinear

treatment, the electron potentials become 2×2 matrices and the vector mag-

netisation arises from the three Pauli spin matrices [55]. In standard DFT we

have an xc functional Exc[n(r)] and an associated xc-potential, Vxc(r), given by

the functional derivative:

Vxc(r) =
δExc[n(r)]

δn(r)
. (6.1)

For a non-collinear potential, we can express it in terms of a scalar potential

and a vector magnetic field [55, 56, 58],

Vxc(r) = Vxc(r)I2×2 + µBBxc(r) · σ, (6.2)

where Bxc is the vector component of the xc potential, σ is the vector where

each element is one of the Pauli spin matrices, µB is the Bohr magneton, and

I2×2 is the identity matrix. Calculating the xc spin-potential for a non-collinear

density is not an easy matter. We cannot use the expression in Eq. 6.1 directly
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as the density in a non-collinear treatment is not a scalar field. We can define

each term in Eq. 6.2 separately. The scalar potential Vxc(r) can be defined as

in Eq. 6.1 taking the density to be the scalar part of the non-collinear density

in Eq. 2.46. The vector term, or the magnetic field, can be defined,

µBBxc(r) =
δExc[s(r)]

δs(r)
, (6.3)

where s(r) is the vector spin density. However, we do not have an approximation

for Exc[s(r)] at present. Currently available parametrisations only exist for

collinear systems where there are a well defined number of spin-up and spin-

down electrons, i.e. Exc[n
↑, n↓].

To make use of the functionals we have such as LSDA, at each point in

space, one must rotate the vector spin density such that it lies along the z axis,

allowing us to decompose it into spin-up and spin-down densities which can be

used to calculate Exc [11, 59]. As the resulting energy is calculated piece-wise,

it imposes a non-physical constraint that the magnetisation must be locally

collinear with Bxc(r).

Sharma et al. [56] highlight a further problem with standard functionals.

From Gauss’s law for magnetism, for any arbitrary magnetic field, B, the di-

vergence of the field should be zero, i.e. ∇ · B = 0. This argument follows

from the absence of magnetic sources. However, Sharma et al. [56] point out

that this condition is not met for the most common functionals LSDA and PBE

and suggest a method for improving these functionals. We outline their method

here.

Starting from the Helmholtz theorem, a vector field can be decomposed into

two components, one of that is divergence free and one that is curl free [225],

B(r) = ∇×A + ∇φ. (6.4)

To ensure that the magnetic field is source free we must explicitly subtract

the term which contributes to the divergence of the field, ∇φ. We have the
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freedom to select the gauge and chose φ such that it is the solution to the

Poisson equation,

∇2φ(r) = −4π∇ ·B. (6.5)

The source-free magnetic field can then be defined,

B̃(r) ≡ B(r) +
1

4π
∇φ(r). (6.6)

Sharma et al. [56] then define the magnetic field as,

Bxc(r) = sB̃(r), (6.7)

where s is an empirical scaling parameter.

6.2 Implementation

We have implemented the above method in the plane-wave pseudopotential

code castep. Rather than defining a brand new xc functional, the source-free

LSDA described by Sharma et al. [56] is an alteration of the existing functional.

A user of this functional need not do anything other than they would for a

calculation using LSDA. Each time the xc energy and potential is calculated,

this potential is used to construct the xc magnetic field, Bxc(r). Using the

procedure described above, we can then calculate the source-free field, B̃xc(r),

and reconstruct the spin potential. It is this potential that then used in the

Hamiltonian of the system. Critically, this is not a one shot approach, the

correction is calculated every time the xc potential is required and is therefore

self-consistent.

We shall describe the process of calculating the correction in a plane-wave

code. Starting from a general non-collinear spin potential [55],

Vxc =





V ↑↑(r) V ↑↓(r)

V ↓↑(r) V ↓↓(r)



 , (6.8)
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we can define the components of the magnetic field from Eq. 6.6 in terms of the

matrix elements of the potential,

Bx
xc(r) =

V ↑↓(r) + V ↓↑(r)

2
, (6.9)

By
xc(r) =

V ↓↑(r) − V ↑↓(r)

2 i
, (6.10)

Bz
xc(r) =

V ↑↑(r) − V ↓↓(r)

2
. (6.11)

We can take advantage of Vxc being Hermitian and only store one of the off-

diagonal components, this reduces memory usage in a large computation.

Having arrived at an expression for Bxc(r) we make use of the plane-wave

basis set to efficiently solve the Poisson equation in Eq. 6.5. In a plane-wave

basis, φ(r) can be expressed,

φ(r) =
∑

Gj

cGj
eiGj ·r, (6.12)

where G are the reciprocal lattice vectors and cG are the Fourier expansion

coefficients of φ(r). The Fourier expansion allows us to efficiently compute the

Laplacian of the scalar potential φ,

∇2φ(r) = −
∑

Gj

|Gj|2cGj
eiGj ·r. (6.13)

We can also express Bxc(r) in terms of its Fourier coefficients, bGj
,

Bxc(r) =
∑

Gj

bGj
eiGj ·r. (6.14)

It can be shown that for a given vector Gj, the Fourier coefficients of ∇ ·Bxc(r)

can be given as

F [∇ ·Bxc(r)](Gj) = iGj · bGj
, (6.15)

where F denotes a Fourier transform (FT). By rearranging Eq. 6.5 and substi-
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tuting the reciprocal space expressions in Eq. 6.13 and Eq. 6.15, we come to an

expression for the Fourier coefficients of φ(r),

cGj
=

iGj · bGj

4π|Gj|2
. (6.16)

Knowing these coefficients we can build the source-free magnetic field and recon-

struct the spin potential using Eq. 6.2. We note that the corrected xc potential

is no longer strictly local as we use knowledge of the gradient of the potential

when solving the Poisson equation.

In addition to the treatment of non-collinear spin, we have implemented the

correction for use when the calculation uses only collinear spin. The mathemat-

ical formalism for the collinear implementation is almost identical as presented

above. The only difference is that we set the off diagonal terms in Eq. 6.8 to

zero, thereby allowing us to separate subsequent expressions into spin-up and

spin-down terms aligned along the z direction.

6.3 Testing on magnetic materials

To test the validity of the implementation of the source-corrected LSDA, we

performed various calculations on a range of elemental magnets and magnetic

compounds. The materials chosen for our testing are: Fe, Co, Ni, Ni3Al, FeTe

and BaFe2As2. These materials are ideal for testing due to their large magnetic

moments and small unit cells. With the exception of BaFe2As2, calculations

for each material can be performed on a laptop in a handful of minutes. The

main focus of the testing is on body centred cubic (bcc), or α-Fe, where we

performed magnetic calculations on a geometry optimised cell. For Fe, total

energies are converged to better than 10 meV using a 7×7×7 Monkhorst and

Pack (MP) k-point-grid and a planewave cut off radius of 1600 eV. We used

norm-conserving relativistic pseudopotentials throughout. In the interests of

speed and efficiency, we performed all calculations on the other test materials

using castep default cut-off energy and MP k-point-grids. Each of the materi-
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als tested have a ferromagnetic phase which we investigate using a quantisation

axis aligned with the crystallographic c direction. We initialised spin along this

direction in each material to ensure that the energy minimisation returned a

state with long range magnetic order. We considered spin-orbit coupling (SOC)

in all calculations for testing purposes unless otherwise stated.

6.3.1 Energy minimisation

While calculations using this functional are relatively straight forward, there are

numerical issues which complicate the calculations in more complex systems.

These numerical issues arise from the choice of energy minimisation scheme.

The calculations performed by Sharma et al. [56] involve minimising the to-

tal energy through Hamiltonian diagonalisation. In the calculations presented

above, the total energy is obtained using the density mixing (DM) minimisation

scheme. Both of these schemes result in the correct final energy. However, using

the ensemble density functional theory (EDFT) minimisation scheme [97] often

results in a failure to reach the tightest convergence tolerances. The problem

arises from the fact that EDFT is a fully variational minimisation technique,

that is to say, at each step in the self-consistent field (SCF) calculation, the en-

ergy and the density are fully consistent. This is not the case in the DM scheme

where the energy and the density are not required to be consistent until the end

of the minimisation. In a normal calculation, the xc potential is calculated from

the density. We calculate the xc energy for any particular functional using the

density, and then calculate the xc potential from the energy functional. How-

ever, by introducing the correction to the xc potential, Eq. 6.6, the potential

no longer corresponds to the xc energy,

δExc[n̂(r)]

δn̂(r)
6= Ṽxc(r). (6.17)

A flow chart outlining this process can be seen in Fig. 6.3.1.

The potential calculated by applying the correction is used to construct the

Hamiltonian operator for the next step in the minimisation. The Hamiltonian
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Figure 6.3.1: Flow chart for the EDFT minimisation with an extra step for
calculating the source-free correction.

informs the down-hill direction for the energy minimisation, as discussed in

Sec. 2.6.1 and App. A. The result of applying the correction is that the Hamil-

tonian is no longer guaranteed to be the steepest descent direction in the energy

landscape. However, as the correction to the potential is typically small, the

corrected Hamiltonian remains a down-hill direction, at least early in the cal-

culation where changes in energy are larger between SCF steps. The numerical

issues arise when the SCF calculation is coming to the end. At the end of the

minimisation, one typically looks for changes in energy that are of the order

10−6 eV/atom, this is approaching the magnitude of the energy cost of the

source-free correction. With these final SCF steps, the minimisation direction

found using the source-corrected Hamiltonian leads to an energy that is higher

than the previous step. At this point in the calculation, it is not possible to find

a search direction which lowers the energy causing the minimisation algorithm

to terminate, believing it has found the minimum energy. A schematic of this

final SCF step is shown in Fig. 6.3.2.

When using the spin-DFT minimisation scheme to calculate properties with

the source-corrected LSDA, the results are not strictly self consistent. However,
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Figure 6.3.2: Schematic of a single step of an EDFT energy minimisation
including source-free correction during which the minimisation fails. The solid
line represents the energy calculated from the uncorrected xc functional and the
dotted line represents the unknown energy due to the source-corrected function.
The energies are depicted as being static while in practice due to the self-
consistent nature of the calculations, the energy landscape would change as we
change the expansion coefficients cG.

this is true of all minimisation schemes as we must always accept some numerical

tolerance in the convergence of minimisation. It is not possible to know a

priori if the corrected LSDA functional will cause the minimisation to fail or at

what level of convergence. Due to the random initialisation of the Kohn-Sham

(KS) orbitals, the path the minimisation takes through parameter space will

change, even between different calculations performed on the same material.

The inconsistency between the energy and the corrected potential is always

present, even if the minimisation does not fail. It may be possible that the

inconsistency happens to be smaller than the electronic convergence tolerance

of the calculation. Figure 6.3.3 shows an example SCF calculation performed

on Ni using the EDFT scheme where the inconsistency leads to a failure. The

minimisation performs six iterations normally before it is unable to find a search

direction that lowers the total energy. It then performs a further two iterations
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where all search directions lead to a higher energy before terminating. It is

worth noting that this does not lead to any errors being produced by castep

as it appears to have found a legitimate energy minimum. In practice, this

inconsistency between the energy and the potential causes only minor issues for

most calculations tested. The energy minimisation shown for Ni in Fig. 6.3.3

represents an extreme case where the changes in energy before failure are large

(∼ 10−2 eV). For most calculations performed, the changes in energy reach a

much tighter tolerance of approximately 10−5 eV/atom before running out of

search directions. Rather than resulting in the complete failure of the correction

when used in conjunction with an EDFT minimisation, the results must be

considered carefully to determine if the energy convergence is suitable for the

desired application. For example, if one is determining the most stable magnetic

configuration in a crystal by comparing the energies of multiple non-collinear

spin-DFT calculations, it is important that the convergence of each calculation

is comparable as a small change in energy could change the order of the total

energies.

6.3.2 Magnetic fields

A useful way to visually test the effects of the correction to Bxc is to examine the

magnetic field lines. It is easy to see from magnetic field lines if the source terms

have been correctly removed from the field. Using electric fields as an analogy,

electric field lines emerge radially outwards from a point charge. However, to

create a system that is source-free, we may add a second point charge of opposite

sign. The field lines now will emerge from one charge and flow into the second

charge, forming loops. Due to Maxwell’s equations (∇ ·B = 0), we know that

magnetic fields ought to follow this second scheme.

The magnetic field lines presented below are all calculated from the contri-

bution to the total potential from Vxc. We have ignored all other contributions

to the potential, and as such these do not represent physical fields. Starting

from a point in the unit cell, we calculate the direction and magnitude of the
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Figure 6.3.3: Minimisation of total energy of Ni using the EDFT under the
source-corrected LSDA. The change in energy, ∆E is relative to the total energy
at the previous step.

field from the xc potential at that point. Using a small step size we move along

the direction of magnetic field at that point. We then use this new position in

the unit cell to calculate the field and repeat the process. Connecting up these

points produces a near-continuous path through the unit cell which approxi-

mates the field lines. As the potential is discretised onto a grid, we make use of

interpolation to evaluate the field at arbitrary points between the grid points.

Due to this interpolation, particularly in regions of low magnetic field strength

where numerical noise dominates, we produce field lines that are not smooth.

However, as the magnitude is insignificant in these regions, the field lines are

less important.

In Fig. 6.3.4, we compare the field lines due to Bxc in α-Fe. Using both

the LSDA and the source-free LSDA we find magnetic moments on each atom

aligned along the c axis. We can see in Fig. 6.3.4a the field lines arising from the

LSDA without the source correction. These lines are all parallel and flow only

in the c direction. As we have set a quantisation axis for these calculations along
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(a)

(b)

Figure 6.3.4: Xc magnetic fields of of α-Fe shown along the a (left) and c
(right) crystal directions. (a) Fields calculated using standard LSDA functional
and (b) fields calculated using source-free LSDA with s = 1. Colour of the field
lines represents the magnitude of the field at that point, from white at low fields
to red at high fields. Vectors show the direction of the field flow with size and
colour representing magnitude. Where the field magnitude is lower than 10%
of the maximum, vectors have been omitted for clarity. Magnetic moments lie
in the negative c direction in both cases. Images produced using nc cryst [226]
(See App. C).
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the c direction, the spin density is all aligned along this axis. It is clear that

these field lines for α-Fe are globally collinear with the magnetisation, one of

the main issues with the LSDA highlighted by Sharma et al. [56]. In a physical

system, there is no requirement for the magnetic field and the magnetisation to

be collinear at each point in space. This is one aspect of magnetic phenomena

not captured by the LSDA. As we use periodic boundary conditions (PBC), the

calculations are of infinite crystals rather than isolated unit cells. For the LSDA,

the field lines are parallel throughout the entire infinite crystal, implying the

presence of a magnetic source at the surface. If we instead study the field lines

due to the source-corrected functional, Fig. 6.3.4b, we see that the field lines are

different. The field lines form closed loops around the Fe ions, following similar

patterns one sees by sprinkling Fe filings around a bar magnet. These field

lines are continuous across the PBC. As we have used the same quantisation

axis in both calculations, the magnetisation is also collinear with the c axis

when using the source-free LSDA. It is clear then that the field lines for Bxc

are no longer constrained to be locally collinear with the magnetisation when

the source terms are removed.

We see similar results when we calculate the Bxc field lines in hexagonal

close packed (hcp)-Co, Fig. 6.3.5. Using the LSDA, Fig. 6.3.5a, we again see

parallel field lines aligning with the magnetisation which lies along the c axis for

both Co ions. From the source-corrected LSDA, Fig. 6.3.5b, we see improved

non-collinearity of the field lines. Close to the Co ions, field lines emerge from

the centre of the ion and terminate again at the centre of the ion. The be-

haviour further from the Co in the interstitial region is more complicated due

to interactions between both ions.

We see from the field line calculations of both Fe and Co that the source-

corrected functional results in more physical magnetic field lines in elemental

ferromagnets. An example of the effects of the source-corrected functional on

the xc field lines on a non-elemental magnet, FeTe, can be seen in Fig. 6.3.9b. In

this case, the field lines flow between the layers of Fe ions past the Te ions. It is
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(a) (b)

Figure 6.3.5: Magnetic field lines due to xc in hcp-Co calculated with (a)
LSDA and source-free (b) LSDA calculated with s = 1. Colour of the field lines
represents the magnitude of the field at that point, from white at low fields to
red at high fields. Images produced using nc cryst [226] (See App. C).

less obvious that the xc field lines in FeTe represent a source-free field. We lose

the simplicity of the elemental magnets by including non-magnetic ions which

complicate the exchange interactions. However, we still see the improved non-

collinearity of the magnetic field around the ions arising from the source-free

functional.

6.3.3 Free scaling parameter

The definition of the source-free LSDA, Eq. 6.7, has a free parameter, s, which

scales the source-free xc magnetic field. This parameter is used to empirically

alter the magnetic field to better reproduce experimental results. Sharma et al.

[56] argue that the best value of this parameter is s = 1.12 as this best replicates

the magnetic moments for the materials they tested. We have performed a series

of calculations varying this parameter to find an appropriate value for studying

magnetism in condensed matter.

We start by examining the effects of this empirical scaling parameter on

α-Fe. We performed a series of calculations on Fe by varying s between 0.5
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Figure 6.3.6: Magnetic moment on the Fe ions in bcc-Fe as a function of
empirical scaling parameter, s, of the xc magnetic field.

and 1.4 and looking at the change in the magnetic moment on the Fe ions.

The change in magnetic moment is shown in Fig. 6.3.6. For these calculations

we have neglected SOC as we expect the effects to be small in this material.

At low values of s, the magnetic moment is much lower than the experimental

value of 2.2µB [56]. As s is increased, the magnetic moment increases sharply

before levelling off above s = 1.0 to a magnetic moment of around 2.9µB due to

saturation of the magnetic moment by the large field. The scaling parameter

alters the magnitude of the internal magnetic field, hence the increase in the

magnetic moment. The increase in the magnetic moment is not linear as one

would expect from increasing a static external magnetic field. We see that

increasing s also affects Bxc, leading to an increased magnitude and density of

field lines. One would expect that scaling the internal magnetic field may cause

changes to the underlying electronic structure that determine the magnetic

moment. To that effect, we performed calculations of the band structure of Fe

as a function of s, some example band structures can be seen in Fig. 6.3.7. If we

were applying an external field to a collinear system with spin-up and spin-down

bands in the band structure, we would expect to see a lifting of the degeneracy
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Figure 6.3.7: Band structures calculated using the source-free functional.
Each band structure is calculated using different values of the scaling parameter
s. Plots produced using dispersion.py [104] (See App. C).

of the bands through Zeeman splitting. Looking at Fig. 6.3.7a and Fig. 6.3.7b,

we can see there are some bands that open up at the M point as we increase

s. Of course with a non-collinear band structure we cannot say for certain if

these bands are spin-up or spin-down even though our calculation produces a

ferromagnet. As we get to higher values of s, instead of increasing the splitting

of the bands, we see that the bands begin to rigidly shift downwards. This is

consistent with the observations of the magnetic moments as this rigid shift

would have a limited effect on the size of the moments.

Next we present results of the effects of s on a non-elemental magnet, FeTe.



144 Chapter 6. Source-corrected local spin density approximation

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
s

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0
In

teg
ra

ted
 sp

in
 p

er
 F

e (
B
)

Figure 6.3.8: Magnetic moment on the Fe ions in FeTe as a function of em-
pirical scaling parameter, s, of the xc magnetic field.

In Fig. 6.3.8 we show the integrated spin density in FeTe as a function of s.

Much like the magnetic moment of α-Fe, we see a large increase in the spin

density at low values of s in FeTe. Rather than a plateau in the magnetisation

at higher values of s, we see a reduced rate of increase. This suggests that the

values of s tested in FeTe are not sufficient to saturate the magnetisation, unlike

Fe. The general trend is a constant increase in the magnetisation as s increases,

as we saw in elemental Fe. As Fig. 6.3.8 shows the integrated spin density of

FeTe rather than the magnetic moment as for Fe, it is possible that increasing

s also increases the magnetisation in the interstitial region.

We can also investigate the effects of the scaling parameter on the magnetic

field lines, allowing us to gain a better understanding of the entire field rather

than reducing it to a single number. The field lines of Bxc calculated from the

source-free LSDA using two different values of s are shown in Fig. 6.3.9. We

have chosen values that represent the two distinct regimes in the magnetisation

shown in Fig. 6.3.8. Using a low value of s = 0.6, Fig. 6.3.9a, we see that the

field lines are split into two different regions. There are the field lines resulting

from the field due to the bottom layer of Fe ions and the field lines resulting
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(a) s = 0.6 (b) s = 1.0

Figure 6.3.9: Magnetic field lines due to xc in FeTe with example empirical
scaling of the magnetic field (a) s = 0.6 and (b) s = 1.0. Fe is shown in orange
and Te is shown in gold. Colour of the field lines represents the magnitude of
the field at that point, from white at low fields to red at high fields. Images
produced using nc cryst [226] (See App. C).

from the top layer. Between the layers at the centre of the crystal along the

c axis, there is a region of low field strength. In this case the field lines flow

through the Te ions and back down towards the face centred Fe ion. For the

higher value of s where we see an increase in the magnetisation, we show the

field lines for the case of s = 1.0 in Fig. 6.3.9b. We can no longer split the field

into two regions; for the higher values of s, the field lines flow from the bottom

layer of Fe ions to the top layer. The Te ions, despite not having any magnetic

moments, influence the direction of the field lines. Rather than flowing directly

upward through the crystal, the field lines flow through and around the Te ions.

By increasing the field strength with the scaling parameter, the magnetic field

is strong enough to flow through the entire crystal rather than splitting into

two different domains. This shows that using a single parameter, we are able

to dramatically change the underlying magnetic field, altering the interactions

between the magnetic ions.

Given the investigations into the effects of the scaling parameter s, there is
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insufficient evidence to show that any particular value of s systematically results

in improvements to the field and resulting magnetic properties. By scaling

the internal field, it is possible to tune the resulting magnetic moment, this

could be used to reproduce experimentally measured values. While a particular

value may systematically improve the results of calculations of a particular

class of materials, it is unlikely that this improvement would be realised for any

arbitrary material. The use of this parameter is dependent on the purpose of the

calculations performed. Scaling the magnetic moment to experimental values

may allow for better comparison to experiment for other calculated properties

by removing systematic errors from the calculations. For our purposes, we are

interested in a first principles approach to studying magnetism, therefore all

further calculations are performed with s = 1.

6.3.4 Magnetic moments

One of the main results of the source-corrected xc functional presented by

Sharma et al. [56] is that it leads to improved magnetic moments in condensed

matter when compared to the uncorrected LSDA. We have performed non-

collinear spin-DFT calculations on the materials in our test set to examine the

magnetisation in each using both the corrected and uncorrected LSDA. Using

the DM scheme, we are able to ensure that spin initialisations are held through-

out the SCF calculation to result in a ferromagnetic state. We have looked at

the integrated magnetisation density normalised by the number of magnetic ions

in the system. The results of these calculations are shown in Table 6.1. We see

a systematic increase in the total amount of spin in each system. Interestingly,

in the case of Ni3Al, the LSDA finds no overall magnetic state. While using the

source-free LSDA we realise a non-zero moment on the Ni ions. In each case ex-

cept for Ni3Al, the integrated magnetisation density per magnetic ion is higher

than the experimental magnetic moment, even when using the LSDA. When

using the source-free LSDA, the magnetisation is often much larger than the

experimental moment. As we are using the total integrated magnetisation to
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Material
Integrated spin density
per magnetic ion (µB) Experimental

moment (µB)
LSDA Source-free LSDA

Fe 2.15 2.71 2.2 [56]
Co 1.76 1.96 1.57 [227]
FeTe 2.41 2.78 2.25 [228]
Ni 0.95 1.00 0.65 [56]
Ni3Al 0.00 0.15 0.077 [56]
BaFe2As2 0.91 2.86 0.87 [229]

Table 6.1: Calculated spin density per magnetic ion calculated with the source-
free LSDA and uncorrected LSDA.

approximate the magnetic moment on the ions, it is possible that spin density

in the regions between the atoms could be artificially increasing the estimate.

Using a Mulliken projection could lead to a better approximations to experi-

ment. As we find that the source-free LSDA implemented in castep leads to

magnetic moments that are too large compared with experiment, this also sug-

gests that we should avoid using any value of the scaling parameter that would

lead to yet larger moments. The increase in moment when using the source-free

LSDA functional is likely due to the increased internal magnetic field we find

compared to the LSDA.

6.4 Spin ice in Dy2Ti2O7

In this section, we use the source-corrected LSDA to perform non-collinear

spin-DFT calculations on the pyrochlore material, Dy2Ti2O7, making use of

the improved non-collinearity to realise its magnetic structure.

6.4.1 Introduction

In a system with antiferromagnetic exchange interactions between magnetic

ions, the crystal structure plays a role in how the magnetic moments can be

arranged. In a cubic crystal displaying antiferromagnetic exchange, it is possible

for each ion to have the opposite spin of its neighbours [5]. An issue occurs when
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(a) (b)

Figure 6.4.1: Geometrical frustration caused by antiferromagnetic exchange
interactions in (a) a triangular lattice and (b) a tetrahedral lattice.

the arrangement of ions is a different geometry, such as a triangular lattice in two

dimensions. In that case it is impossible to satisfy all of the interactions, at least

two of the ions will have the same spin as one neighbour. In three dimensions,

this effect is seen in tetrahedral lattices, where two of the spin site are unable to

satisfy their interactions. This is known as geometric frustration in magnetism

(Fig. 6.4.1) and can lead to a variety of exotic magnetic structures. Frustration

is known to stabilise magnetic skyrmions [230, 231] as well as spin-ice states in

pyrochlore materials [12, 14].

Spin-ices gain their name from similarities to the properties of water-ice,

H2O. Linus Pauling described the behaviour of the H atoms in single crystal

samples of ice [232], showing that two H atoms are located close to an O atom

while two others are located further away. This two-in, two-out description

of H atoms can be applied exactly to the magnetic moments in some of the

pyrochlore materials which comprise corner sharing tetrahedra of metal ions.

In a spin-ice, two of the spins point inward to the centre of the tetrahedron while

the other two point outwards from the centre [233]. Arising from frustration,

there are many degenerate ways of arranging the spins on the corners of the
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tetrahedron. The possible combinations of spins in pyrochlore spin-ices grow

exponentially with the size of the crystal, leading to a residual entropy in these

systems when cooled to low temperatures [12]. The same entropy was shown

experimentally by Pauling with water-ice.

One of the most famous examples of a spin-ice pyrochlore is Dy2Ti2O7 which

comprises corner sharing tetrahedra of Dy3+ ions. These tetrahedra are integral

to the formation of the spin-ice state, whereby two spins point in and two spins

point out along the local 〈111〉 axis. The spin-ice state in Dy2Ti2O7 has been

widely studied over the previous 30 years [233, 234, 235, 236, 237], although

there have been limited first principles simulations of this state. A spin-ice

is inherently non-collinear and highly degenerate, thus it provides a challenge

for spin-DFT calculations, particularly with the xc functionals currently at our

disposal.

Not only does the spin ice state in Dy2Ti2O7 provide a way to investigate

the residual entropy in water-ice, it is also well known for demonstrating mag-

netic monopoles. In 2008, quasiparticles resembling magnetic monopoles were

discovered in Dy2Ti2O7 by Castelnovo et al. [238]. These are formed by creating

defects in the two-in, two-out structure. By inducing a flip of one of the spins

in a tetrahedron, the result is a three-in, one-out tetrahedron. But, as these are

corner sharing tetrahedra, this causes the neighbouring tetrahedron to have a

one-in, three-out spin configuration [239, 236]. For a typical tetrahedron, the

divergence of the magnetisation is zero as we have equal amounts of spin flowing

into the tetrahedron as flowing out. In the defect tetrahedron, we have more

spin flowing in one direction than the other. Of course globally throughout

the crystal the internal magnetic field is divergence-free, but locally a spin-ice

tetrahedron with a defect appears like a magnetic monopole. By flipping one

spin, one creates two tetrahedra with non-typical spin configurations. However

by flipping a second spin in the second tetrahedron we can move this defect

along through the crystal. Therefore, the two monopoles are free to exist in-

dependently in the crystal. Dy2Ti2O7 is an important material for testing the
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fundamental properties of magnetism and it is important that first-principles

studies of this material are able to capture the physics underpinning the spin-

structure. We shall present results of spin-DFT calculations where we make use

of the source-corrected LSDA functional to stabilise the spin-ice state.

6.4.2 Computational methods

We calculated the spin structure of Dy2Ti2O7 using a primitive crystallographic

cell including 22 atoms, using lattice parameters of 7.19 Å calculated by DFT

structural relaxation [240]. The primitive cell is sufficient to capture the spin-ice

ground state and is preferable to performing calculations on the conventional

cell which is four times larger. Calculations of the spin structure of Dy2Ti2O7

were calculated with a 5×5×5 MP k-point-grid with a plane-wave cut-off of

840 eV. The convergence testing is shown in Fig. 6.4.2. The SCF calculation

was performed using the EDFT minimisation scheme. Due to the complicated

electronic and spin structure of Dy2Ti2O7, it was not possible to find an energy

minimum using the DM scheme and we therefore used the EDFT scheme for

our calculations. This would have been preferable to avoid the minimisation

issues discussed in Sec. 6.3.1. We performed identical calculations treating xc

with both LSDA and the newly implemented source-free LSDA to compare the

resulting spin configurations. In the case of both LSDA and the source-corrected

LSDA we initialise a non-collinear spin on each of the Dy ions along the direction

of the local 〈111〉 direction. Based on testing of the scaling parameter, s, in

Sec. 6.3.3 and on further testing done on Dy2Ti2O7, we conclude that there is

no a priori reason to use a any value other than s = 1.

6.4.3 Results and discussion

First we shall look at the magnetic field lines due to xc in Dy2Ti2O7. The xc

magnetic fields for both functionals are shown in Fig. 6.4.3. The structures

of the field lines are more complicated than we see in the ferromagnetic Fe

and the other simple magnets discussed above. However, it is still possible to
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Figure 6.4.2: Convergence testing of (a) plane-wave basis set and (b) k-point
set for Dy2Ti2O7. The energy E0 is assumed to be the value obtained by using
the highest convergence parameter in each case. Absolute values are used to
enable the use of a log scale.

see that the field lines remain locally collinear around the Dy ions in the case

of the LSDA (Fig. 6.4.3a), aligning with the magnetisation which is localised

around these ions. In the interatomic regions it is less clear that the field

lines are collinear, largely due to the lack of significant spin density, which is

instead dominated by numerical noise. However, for the source-free functional

(Fig. 6.4.3b) the field lines display more non-collinearity and no longer strictly

follow the magnetisation as we have seen in the cases of simple magnets. We

will show below that by better capturing the physics of the internal fields using

the source-corrected LSDA, we are able to realise the experimental magnetic

structure.
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(a)

(b)

Figure 6.4.3: Magnetic field lines of Bxc for a primitive unit cell of Dy2Ti2O7

calculated using the (a) LSDA and the (b) source-corrected LSDA, The opacity
of the field lines represents the relative strength of the field. For the LSDA field
there is a local collinearity with the spin projected onto the Dy atoms, whereas
for the source-free functional Bxc is no longer aligned with the magnetisation.
Dy, Ti and O ions are shown in green, silver and red respectively. Images
produced using nc cryst [226] (See App. C).
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(a) (b)

Figure 6.4.4: Example magnetic configurations of Dy2Ti2O7 calculated using
(a) LSDA and source-free (b) LSDA are shown in the conventional unit cell.
Dy ions and Ti ions are shown in green and silver respectively. The red arrows
show the non-collinear spin density projected onto a local atomic basis for the
Dy ions. Oxygen atoms are not shown for simplicity. Images produced with
vesta [148].

The improvement in non-collinearity provided by the source-free LSDA leads

us to realise a spin-ice structure in Dy2Ti2O7 which we find is not possible using

LSDA despite using the same initialisation. The resulting spin structures are

shown in Fig. 6.4.4 where we have taken our spin density and projected it onto

the Dy ions using Mulliken analysis. We have taken our results calculated

from the primitive unit cell and transformed to the conventional cell which is

more commonly seen in the literature. These calculations were performed a

number of times, and in each case for the given convergence parameters, we

realise a spin-ice-like state using the source-free LSDA functional. It is not

possible to truly describe a spin-ice using spin-DFT because a spin-ice is an

inherently correlated system with many possible degenerate groundstates that

exist in a quantum superposition. As spin-DFT is a variational process, we

force the system to settle into one distinct groundstate rather than coexisting

in all possible groundstates. Our calculations using the source free functional

produce one possible groundstate of a spin-ice system, following the two-in,

two-out ice rule. We therefore refer to it as a spin-ice for simplicity. Conversely,
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while the LSDA results in a non-collinear configuration of spins, there is no

apparent structure and a different arrangement is found each time, Fig. 6.4.4a.

This is indicative of the randomly-initialised orbitals falling into a different local

minimum each time we perform the calculation. By removing the unphysical

source terms from the Bxc it appears we simplify the energy landscape which

aids in the minimisation. The source-free functional is able to reliably reproduce

the experimental non-collinear magnetic structure of a well known and much

studied spin-ice material, Fig. 6.4.4b. Including the source-free correction seems

to induce an anisotropy which favours spin alignment in the two-in, two-out

pattern. In addition, as we saw with the magnetic moment of our set of test

materials, the magnetic moment on the Dy3+ is increased under the source-free

functional, from 5.0 µB using LSDA to 5.2 µB with the source-free functional.

Realising the spin-ice structure in Dy2Ti2O7 using the newly implemented

source-free functional is not completely straight forward. There are some nu-

merical considerations that must be addressed. Firstly, the convergence crite-

ria used in these calculations are slightly below what we would typically use

for magnetic calculations. The calculations are converged to approximately

50 meV/atom rather than better than 10 meV/atom which would be more ac-

curate for the energy scales of magnetic interactions [241]. This uncertainty is

dominated by the plane-wave cut-off. However, we find that increasing the size

of the plane-wave cut-off complicates the energy minimisation. The energy min-

imisation is trying to find the optimal value of the plane-wave coefficients that

form the set of KS orbitals with the minimum energy. Therefore, the dimen-

sionality of the parameter space is that of the number of plane-wave coefficients.

For even a moderate system, this can be in the order of 5000 coefficients. By

increasing the plane-wave cut-off we increase the dimension of the search space,

and increase the difficultly of the minimisation. The energy landscape of a non-

collinear system is already challenging for variational minimisation, as there

exists many shallow minima. That is to say that significant changes in the spin

configuration correspond to small changes in energy. We find that the calcula-
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tions performed with higher cut-off energies fail to find the spin-ice state, not

because it is not a stable solution of the source-free Hamiltonian, but because

the scale of parameter space prevents the minimisation reaching the desired

spin configuration.

In addition to the fundamental issues with the minimisation inherent to

variational approaches to non-collinear systems, we also face issues relating

to the EDFT scheme. In all calculations of the spin-ice state in Dy2Ti2O7

using EDFT, we find that the calculation terminates before reaching the full

convergence criteria. However, we note that the change in energy between

interactions of SCF minimisation consistently reaches ∼ 10−5 eV/atom. It is

possible that this reduced SCF convergence of the spin-ice state accounts for

the slight imperfections seen in the spin directions shown in Fig. 6.4.4. While

the spins clearly point in the characteristic two-in, two-out structure, they do

not point perfectly into the centre of the tetrahedron with an average deviation

of 13◦. As a result of this deviation, we find that the system is not perfectly

antiferromagnetic as one would expect from a spin-ice.

6.5 Conclusions

In conclusion, we have implemented a recently developed xc functional in a

plane-wave code, castep. This functional is a correction to the LSDA which

removes magnetic sources from the resulting xc magnetic field, with the aim of

improving the ability to describe non-collinear states. We have demonstrated

that our implementation of this functional is correct by performing calculations

on a number of simple magnetic materials. By examining the magnetic field

lines of Fe due to the LSDA and the source-corrected LSDA, we have shown

that by removing source terms from the functional, the field lines behave more

physically, resembling the fields of a magnetic dipole. While the magnetisation

density found in these materials is effectively collinear due to the inclusion of

a quantisation axis, the magnetic field exhibits non-collinear properties. This

decoupling is made possible by correcting the source terms in the xc functional.
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We have extensively tested the physical consequences of the scaling param-

eter of the corrected xc field. By examining the effects this parameter has on

the magnetic moments and on the band structure, we conclude that the no

scaling should be applied to the magnetic field to preserve the first principles

nature of the calculations. Scaling the field causes shifting in the orbital bands

and an increase in the magnetic moment. While scaling the field may improve

agreement with experiment, we opt for a first principles approach using s = 1.

We discussed an issue that arises when performing a fully self-consistent

minimisation technique using the corrected-functional. As we do not know the

energy corresponding to the corrected xc potential, the energy minimisation can

fail to reach the minimum within a tight tolerance. However, we show that the

failure typically occurs towards the end of the minimisation near completion.

In these cases, we conclude that caution must be taken to determine if the final

energy is converged well enough for the users’ needs.

Finally, we applied the newly implemented functional to the famous spin-ice

material Dy2Ti2O7. We find that where the LSDA is unable to capture the spin-

ice state, even with spin-initialisation, the source-free functional reproducibly

realises a spin-ice configuration in Dy2Ti2O7. This is due to the enhanced

non-collinearity of the underlying xc magnetic field. The availability of this

functional in castep should allow the calculation of exotic magnetic textures

which were previously inaccessible.
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—Ralph Vaughan Williams,

Fantasia on a Theme

by Thomas Tallis

The intention of this thesis has been to showcase density functional theory

(DFT) as an incredibly useful tool for understanding the behaviour of magnetic

materials. DFT is remarkably versatile; we have presented results where it is

used to complement experimental measurements and give support to conclu-

sions drawn from experiment. We have also used DFT as a predictive tool,

investigating particulars of the electronic structure in a material, highlighting

possible avenues of experimental investigation. By providing a detailed dis-

cussion of the underlying theory of DFT and how it is adapted to work on a

computer (Chap. 2), going forward we are able to critically discuss applications

of DFT whilst being aware of its limitations.

We have used spin-density functional theory (spin-DFT) to investigate the

properties of materials hosting exotic magnetism. Magnetic skyrmions have

been one of the most hotly researched topics in condensed matter in the last

decade. We have shown that DFT can be an important tool in the understand-

ing of skyrmion materials. In Chap. 3 we probed two such materials, Cu2OSeO3

157
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and GaV4S8−ySey with a range of DFT techniques. For Cu2OSeO3, we are able

to leverage structural relaxation, a particular strength of DFT, to locate the

stopping sites of an implanted positive muon, modelled as light H ion. Known

as density functional theory + µ (DFT+µ), finding the muon stopping sites

allows us to simulate the spectra measured in a muon-spin spectroscopy (µSR)

experiment. As µSR is a technique that probes the magnetic environment lo-

cally around the implanted muon, knowing its location is a great benefit. In

Cu2OSeO3, we are able to locate three candidate muon stopping sites. How-

ever, by examining the local geometry and the total energy of the three sites,

we are able to conclude that only two of the sites would likely be accessible to

the muon. In combination with some potential magnetic structures, these sites

are used to simulate the muon spectra to good agreement. In GaV4S8−ySey,

we probe the effects of chemical substitution on magnetic behaviours. DFT

allows us to easily alter the chemical makeup of a crystal. In this case we can

swap out single atoms in the unit cell and look at the changes it induces in the

spin-density. We find that swapping a S atom for a Se atom and vice versa

in GaV4S8 and GaV4Se8 leads to dramatic changes in the spin density around

the substituent and the magnetic V ions. From experimental observations, it

is known that both materials in their pure form host Néel skyrmions, and that

large substitutions cause a change to a spin-glass state [162, 164, 163]. We are

able, with spin-DFT, to look at the distribution of spin density around each

atom. We see that the changes are quite different upon substitution in the two

materials, this is consistent with experimental observations of the spin-glass

state which occurs at higher levels of substitution of Se in GaV4S8.

Furthermore, we have used spin-DFT to probe the magnetic interactions of

condensed matter by calculating, from first principles, the exchange coupling in

a quantum magnet, [Cu(pyz)0.5(gly)]ClO4 [169] (Chap. 4). By comparing the

total energy of several different spin configurations, we can apply a simple model

of the exchange couplings to find the strength along each pathway. Making use

of geometry optimisation, we can apply pressure to the crystal and repeat the
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calculations to see how the exchange changes. We find that the application of

pressure causes significant changes to the structure with the largest effect being

in the distance between Cu ions between the dimer layers. The exchange can be

described by two constants, one along the intradimer bonds and one effective

constant accounting for exchange between the dimers. The effective interdimer

exchange coupling constant increases as the dimers are pushed closer together

and is approximately equal to the intradimer coupling at high pressure.

We have shown that the electronic structure of a material can reveal a lot

about behaviours that can be observed experimentally. Using spin-DFT calcu-

lations, we can look at the details of the electron states at the Fermi energy. In

particular, for the intercalated transition-metal dichalcogenides (TMDCs) ma-

terials Cr1/3NbS2 and Cr1/3TaS2, in Chap. 5 we find that there is a reduction in

the density of states (DoS) at the Fermi level that we then measured using AC

susceptibility. From the electronic structure we were also able to reproduce from

first principles the measured transport properties of these materials [203]. From

the similarities in the DoS between Cr1/3NbS2 and Cr1/3TaS2, it is reassuring

that the chiral soliton lattice (CSL) known about in Cr1/3NbS2 for a number of

years [204] was recently discovered in Cr1/3TaS2 [205]. We again leverage the

ability of DFT to build crystals without expensive and time-consuming synthe-

ses. We can easily change the intercalant and perform calculations of the band

structure to observe how it changes with the metal ion. Interestingly, we see

that the band structures reflect an electron filling effect whereby the atomic

orbitals of the transition metal get filled sequentially. This allows us to predict

the magnetic moment of the intercalant using only the number of electrons in

the 3d orbital.

Finally, in Chap. 6, we implement a method for improving the results of

non-collinear spin-DFT calculations. By realising that the local spin-density ap-

proximation (LSDA) results in an exchange and correlation (xc) magnetic field

that contains unphysical magnetic sources, the correction described in Ref. [56]

aims to systematically improve the calculations of non-collinear magnetic fields.
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We detailed the process of implementing this correction in the castep code and

extensively test its validity using a range of magnetic materials. We then inves-

tigate how using this functional improves results of materials of active research

interest by studying the spin-ice pyrochlore Dy2Ti2O7 [15]. Using the corrected

functional, we are able to repeatedly stabilise the famous two-in, two-out spin

texture, known as a spin-ice, on the Dy ions in Dy2Ti2O7. This is a remark-

able result as similar attempts using the LSDA routinely return spins that are

randomly oriented. These developments in the theory of spin-DFT are crucial

to the continued normalisation of spin-DFT as a tool used by experimentalists

and theorists alike.

7.1 Future outlook

The intercalated TMDCs appear to be one of the most promising classes of

materials for studying chiral magnetism and work is being done to find further

examples hosting exotic spin textures. Our calculations of the electronic struc-

ture of TMDCs intercalated with first period transition metals are invaluable

for predicting the behaviours of these materials. To further develop our abil-

ity to predict the magnetic behaviour of these materials, calculations including

variations in the unit cell size could be performed. Our calculations include a

fixed cell size across the series due to the lack of experimental lattice parame-

ters for most of the materials. Changing the lattice may lead to results which

better approximate the experimental electronic structure. Since we find that

the changes in the magnetism are dominated by the intercalant, varying the

underlying TMDC could result in desirable electronic and transport properties

while preserving the magnetism. Using DFT for these purposes is much quicker

and cheaper than synthesising crystals.

The ability of DFT calculations to explain experimental data is a key

strength. One of the clearest examples of this is DFT+µ, where µSR experi-

ments are complemented so very well by calculations that it is now almost ex-

pected that muon-site calculations accompany an experiment. The development
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of MuFinder by Huddart et al. [119] is a great step in allowing experimentalists

to wield the power of DFT to aid their experiments. Future work is needed to

assess the nature of the quantum muon, examining how quantum effects of the

muon in the crystal affect observations of the magnetism. It may be possible

that DFT+µ could one day encompass the study of this quantum behaviour as

readily as locating muon stopping sites.

A large part of the progress seen in the field of DFT calculations since its

inception has been down to improvements in computing power. Studying ma-

terials with 1,000 atoms in the unit cell is very much a possibility using modern

supercomputers. We cannot however brute force every problem in DFT, some

of the challenges we face require improvements to underlying theory as well as

computational algorithms. Magnetism in DFT is one of the frontiers of current

development, we have shown in this thesis that using spin-DFT can uncover

properties of magnetic materials that are difficult, if not impossible to access

from any other technique. It is now almost commonplace to use spin-DFT to

calculate the exchange coupling constants between atoms. Going forward, the

next focus should be using spin-DFT to discover more material parameters such

as Dzyaloshinskii–Moriya interaction (DMI) constants and magnetocrystalline

anisotropy constants. There has been promising work in this field, but appli-

cations are limited to simple crystals. We envisage spin-DFT forming part of

a magnetic production line, whereby magnetic parameters are determined from

first principles then used in micromagnetic simulations to predict magnetic phe-

nomena in materials which can then be studied experimentally. To reach that

stage, we first need to be able to reliably form arbitrary non-collinear states in

spin-DFT so as to compare the energies. Techniques that apply constraints to

the energy minimisation are a good step in this direction.

In addition to the commensurate non-collinear magnetism mentioned above,

lots of magnetic objects are incommensurate with primitive unit cells. The

work by Müller et al. [242] is a promising step in this direction. By employing a

generalised Bloch formalism, the authors use the ground state orbitals as Bloch
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functions to describe long range magnetic and electronic states such as spin-

helices and charge density waves (CDW). While the theory is relatively easy to

comprehend, implementing it in a plane-wave pseudopotential code like castep

is an involved process. We have begun the process of including this method in

castep and future work should focus on completing this effort and applying

it to incommensurate magnetic materials. It is the hope of the author that it

will soon become routine to perform spin-DFT calculations to investigate non-

collinear magnetism, including large non-collinear structures such as skyrmions.



Appendix A

Energy minimisation

In many cases, a DFT code is used as a black box. Other than choosing a

task and perhaps deciding upon an xc functional, many users will have little

understanding of what happens under the hood. This does a disservice to the

many talented people who have written the code that actually allows us to

simply find the groundstate. The electronic minimisation is the most important

part of any calculation, it is how we find the groundstate which is the jumping

off point for all the many exciting DFT applications.

There are broadly two possible ways to the find the groundstate, direct di-

agonalisation and iterative minimisation [243, 242]. As stated in Sec. 2.5.3, we

use a plane wave basis set with the primary drawback of immense numbers of

basis functions, this means that direct minimisation via Hamiltonian diagonal-

isation is going to be a tremendous bottleneck to any calculation [244]. We

therefore use iterative approaches, we shall further restrict our discussion to the

fully variational method known as ensemble density functional theory (EDFT).

Many people performing calculations would be familiar with density mixing

(DM), however the process is a few steps removed from the elegance of EDFT.

In Sec. 2.6.1 we outline how one can calculate a gradient, here we shall

compute the gradient from the functional derivative. We shall suppress k-point
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indices for simplicity. Starting from the Kohn-Sham (KS) energy functional,

EKS[n] =
∑

i
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we wish to find how the energy changes when we vary the orbitals,
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(A.2)

We can use the chain rule to make the above slightly easier,

δEKS[n]

δ 〈φi(r)| =
δEKS[n]

δn(r)

δn(r)

δ 〈φi(r)| = 2
δEKS[n]

δn(r)
|φi(r)〉 , (A.3)

which gives us a choice in terms of which derivative to perform for each term in

the KS energy. Combining terms, such that we only consider the effective KS

energy, Eeff [n] = Een[n] + EH[n] + Exc[n], we get the expression,

δEKS[n]

δ 〈φi(r)| =
δ

δ 〈φi(r)|
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+ 2
δEeff [n]

δn(r)
|φi(r)〉 . (A.4)

Performing the above functional derivatives,

δEKS[n]

δ 〈φi(r)| = −∇
2 |φi(r)〉 + Veff(r) |φi(r)〉 , (A.5)

which we can simplify in terms of the KS Hamiltonian,

δEKS[n]

δ 〈φi(r)| = 2Ĥ |φi(r)〉 . (A.6)

The simplicity of this is useful in a computational sense: rather than having

to calculate the gradient using a finite difference method we have an analytical

form. This gradient can then be used to perform a line search to improve the

orbitals,

|φi(r)〉 → |φi(r)〉 − λ(Ĥ − ǫi) |φi(r)〉 , (A.7)

where we have absorbed the factor of 2 into the step length, λ and ǫi the
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eigenvalue of Ĥ used as a Lagrange multiplier. Having updated the orbitals,

we must ensure that the new set are orthonormal, this can be done using the

Gram–Schmidt procedure [245].

This gives a mathematical route for finding gradients and updating one’s

position in phase space. These are the ingredients needed for an energy min-

imisation given the necessity of self-consistency. We can use these tools to

find the energy minimum using any number of standard techniques such as a

conjugate gradient or steepest descent algorithm [243].

Energy minimisation is used in every calculation in this thesis, and is of par-

ticular consequence for determining the ground state of the source-free potential

discussed in Chap. 6. Understanding how a minimisation works is important

for understanding where the method fails.



Appendix B

Hartree potential and energy in

reciprocal space

It can be seen in Eq. 2.31 that we have to consider two different real space vari-

ables r and r′ when calculating the Hartree potential. In addition, due to the

long range nature of the Hartree potential the integral must be performed over

all space, it is certainly not sufficient to truncate the integral over the unit cell.

If one were to only consider real points inside the unit cell and discretised the

grid into N points, calculation of the potential would require O(N2) operations.

By rewriting the potential in reciprocal space we can significantly improve this

scaling.

The Hartree potential can be expressed in terms of the density through a

Poisson equation,

∇2VH(r) = −n(r). (B.1)

Noting that the potential and the density can each be represented in reciprocal

space,

VH(r) =
1

Ω

∑

G

VH(G)eiG·r, and (B.2)

n(r) =
1

Ω

∑

G

n(G)eiG·r, (B.3)

we can rewrite Eq. B.1 and make use of the plane wave basis for the differenti-
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ation,
1

Ω

∑

G 6=0

G2VH(G)eiG·r =
1

Ω

∑

G 6=0

n(G)eiG·r

⇒ VH(G) =
∑

G

n(G)

G2 .

(B.4)

The resuling form of VH requires only computation of order O(N), even with the

addition of the fast Fourier transform (FFT) required to transform the poten-

tial and density into reciprocal space, O(N log(N)), the total computation effort

is greatly reduced. Similar terms as above can be found for all three electro-

static potentials, electron–electron, electron–nuclear and nuclear–nuclear, each

of which has an infinite contribution when G = 0 [246]. Fortunately it can be

shown that these infinities cancel in a charge neutral system and can therefore

do not need to be calculated.



Appendix C

Software tools

Presented here are the tools developed throughout this PhD that aid in the

analysis of castep output. All software is publicly available by scanning the

QR code below or at this link: https://www.github.com/zachary-hawk.
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dispersion.py

dispersion.py is a castep post processing tool for displaying band structures

and phonon dispersions. It has a number of different options which allow for

customisations to the plotted spectra. Here are the options:

seed The castep seed used in the calculations.

--save This flag suppresses the output plot and saves it to file.

-m/--multi Set the bands to be multicoloured rather than black.

-l/--line Pass a floating point number to us as the linewidth of the

bands.

--lim This accepts two values as the energy range (band structure)

or frequency (phonons) to display.

-s/--spin Plot the spin-up and spin-down bands in different colours to

identify magnetic features.

--overlay This allows the user to plot two band structures or phonon

dispersions on top of one another.

--overlay_labels

Change the labels of the subsequent plots which have been

overlayed.

--n_up Only display the specified spin up bands by the index.

--n_down Only display the specified spin down bands by the index.

--fontsize Set the font size of the figure labels.

--title Select a title for the plot.

--fig Add figure labels, for example ‘(a)’ or ‘(ii)’.

-e/--exe Change the file extension for a saved plot.

--dos Plot a density of states (DoS) vertically alongside a band

structure, read from .dat file.

--path Generate a suggested path through the Brillouin zone (BZ)

or convert labels into BZ coordinates.
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--pdos Read a castep .pdos file and use information to assign or-

bital characters to each band.

--species Change the default projected density of states (PDoS) from

orbitals to species.

--phonon Plot a phono dispersion from a .phonon file rather than a

band structure.

-b/--bandgap Add indicating arrows to a band structure to show the band

gap.

--no_plot Suppress plotting without saving. Perhaps useful if you only

need band gap information

-E/--optados Use castep Fermi energy if optados error persists.

-as/--aspect_ratio

Aspect ratio for plots, either “letter” or “square”.

-z/--zero Prevent Fermi level being shifted to 0 eV

--show Set choice of spin bands to be plotted, choose “up”, “down”

or “both”.

--show_axes Turn off axis labels, choose “x”, “y”, “both” or “none”.

--stretch Stretch factor to manually alter the aspect ratio of the figure.

--pickle Save the resulting figure as a Python pickle file for later use.
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castep2fs

Figure C.0.1: Fermi surface of Al calculated using the castep tool
castep2fs [207]. The smoothness of the surface can be improved by including
more k-points in the DoS calculation. Alternatively if computational resources
are limited, artificial smoothness can be added.

A Fermi surface is a fundamental property of a material, representing the

surface of constant energy of the highest occupied states in the BZ. It is a 3D

representation of the electron filling in k-space. The ideal Fermi surface of a free

electron metal is a sphere which has volume of a half of the BZ, meaning one

electron filling a doubly valent state. In real materials with electron interactions

and external potentials, the Fermi surfaces can become rather complicated, with
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Figure C.0.2: Schematic of k-point interpolation for finding the Fermi surface.
Colour plots show an example energy landscape in the first Brillouin zone with
the black lines representing the analytic Fermi surface (line in 2D). Red dotted
lines show resulting Fermi surface from interpolation of sampled k-points (grey
crosses). The number of k-points sampled in each direction is given by nk.

the surface spanning multiple BZs.

castep2fs provides a simple tool to extract an estimate of the Fermi surface

of a metal from a density functional theory (DFT) DoS. An example of the Fermi

surface produced by castep2fs is shown in Fig. C.0.1, with castep input files

shown in Fig. C.0.4 and Fig. C.0.3. Note in Fig. C.0.4 the high number of

spectral k-points used, this is required as the points on the Fermi surface must

be calculated by interpolating the k-point grid. A demonstration of the principle
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in 2D is shown in Fig. C.0.2. The options available for castep2fs are:

seed The castep seed used in the calculations.

-B/--background

Change the background colour

--save Save image of the Fermi surface.

-fs, --fermi Suppress plot the of Fermi surface, show only the BZ.

-c/--colour Change the colouring scheme to one of the the Matplotlib

colour maps.

--show Select which bands to show, spin-up, spin-down or both.

--nsurf Choose which surfaces to plot by band index.

-p, --primitive

Display the primitive cell

-s/--smooth Degree of smoothing used on the surfaces to compensate for

finite grids.

-v/--velocity Colour Fermi Surfaces by Fermi Velocity.

-m/--mass Colour Fermi Surfaces by effective mass.

-o/--opacity Opacity of the Fermi surfaces.

-z/--zoom Zoom in to the BZ.

-P/--position The position vector of the camera used to view the Fermi

surface.

-f/--faces Show faces surounding the Brillouin zone.

-B/--background

Choose the background colour scheme, Document, ParaView,

night or white.

-O,--offset Offset energy for the surface, useful if the Fermi energy is not

well believed.

-a/--axes Toggle axes visibility.

--axis_labels Toggle axes labels.
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--pdos Use PDoS to color fermi surface.

--species Project PDoS onto species rather than orbitals

--gif Option to generate an orbital .gif.

-d/--dryrun Fermi surface analysis without displaying results.

--slice Plot a slice of the energy for a band in the BZ.

--holes Calculate electron and hole orbits.

--super Display a supercell of the BZ.

--path Plot a path through the BZ from a list of high symmetry

points.

TASK : SPECTRAL

SPECTRAL_TASK: DOS

XC_FUNCTIONAL : LDA

SPIN_POLARISED : T

WRITE_CELL_STRUCTURE : T

PDOS_CALCULATE_WEIGHTS : T

Figure C.0.3: Example castep .param file for Fermi surface calculation of
Al.

%BLOCK LATTICE_CART

2.855954790000000 0.000000000000000 0.000000000000000

1.427977395000000 2.473329400199852 0.000000000000000

1.427977395000000 0.824443133399951 2.331877321319162

%ENDBLOCK LATTICE_CART

%BLOCK POSITIONS_FRAC

Al 0.000000000000000 0.000000000000000 0.000000000000000

%ENDBLOCK POSITIONS_FRAC

SPECTRAL_KPOINTS_MP_GRID : 15 15 15

SYMMETRY_GENERATE

SNAP_TO_SYMMETRY

Figure C.0.4: Example castep .cell file for Fermi surface calculation of Al.
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nc cryst

-i, --initmag Plot initial magnetic moment vectors.

-c, --castep Read <seed>.castep file to determine moments. Only for

NCM calculation.

-f, --field Read formatted potential or density to produce field. Only

for NCM calculation.

-o/--orient Orientation of the crystal structure, takes values

‘a, b, c, a*, b*, c*’.

-B/--bond Set maximum bond length.

--save Save image.

-d/--delete Delete atoms.

-p/--position Camera position vector.

-V/--volumetric

Provide file with volumetric data: .xsf .den_fmt .pot_fmt

accepted.

-I/--iso Isosurface value for volumetric data.

--colour HEX code for Isosurface colouring.

-z/--zoom Zoom multiplier.

-e/--exclude Exclude atoms outside first unit cell.

-l/--lines Disable plotting of field lines of a provoded field lines.

-P/--plane Three points in fractional coordinates to define a plane for

B-field.

-w/--widget Disable interactive widgets.

-s/--saturation

Saturation level for sections.

-S, --spin Plot spin isosurfaces from .den_fmt.

-C, --charge Plot charge isosurfaces from .den_fmt.
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-r/--reduction

Factor used to reduce the size of atoms, useful for visualising

volumetric data without loss of context.

--flip Flip the spin indices.

--vec_field Plot a vector field of the spin density

-vc/--vec_cutoff

Magnitude cut off for inclusion in vector field

-tol/--vec_tol

Tolerance for grouping vectors in vector field

--fmag Turn off opacity for field lines
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D. Caliste, I. E. Castelli, S. J. Clark, A. Dal Corso, et al., Reproducibility

in density functional theory calculations of solids, Science 351, aad3000

(2016).

[94] A. J. Morris, R. J. Nicholls, C. J. Pickard, and J. R. Yates, OptaDOS:

A tool for obtaining density of states, core-level and optical spectra

from electronic structure codes, Comput. Phys. Commun. 185, 1477–1485

(2014).

185

https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1063/1.1749559
https://doi.org/10.1103/physrev.112.685
https://doi.org/10.1103/physrevlett.48.1425
https://doi.org/10.1103/physrevb.41.7892
https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1103/physrevb.71.115106
https://doi.org/10.1080/14786430802247171
https://doi.org/10.1080/14786430802247171
https://doi.org/10.1126/science.aad3000
https://doi.org/10.1126/science.aad3000
https://doi.org/10.1016/j.cpc.2014.02.013
https://doi.org/10.1016/j.cpc.2014.02.013


[95] X. Gonze, Perturbation expansion of variational principles at arbitrary

order, Phys. Rev. A 52, 1086 (1995).

[96] K. Refson, P. R. Tulip, and S. J. Clark, Variational density-functional

perturbation theory for dielectrics and lattice dynamics, Phys. Rev. B.

73, 155114 (2006).

[97] N. Marzari, D. Vanderbilt, and M. C. Payne, Ensemble density-functional

theory for ab initio molecular dynamics of metals and finite-temperature

insulators, Phys. Rev. Lett. 79, 1337 (1997).

[98] M. C. Payne, M. P. Teter, D. C. Allan, T. Arias, and J. D. Joannopoulos,

Iterative minimization techniques for ab initio total-energy calculations -

molecular-dynamics and conjugate gradients, Rev. Mod. Phys. 64, 1045–

1097 (1992).

[99] D. Alfe, Ab initio molecular dynamics, a simple algorithm for charge ex-

trapolation, Comput. Phys. Commun. 118, 31–33 (1999).

[100] Y. Xia, D. Qian, L. Wray, D. Hsieh, G. Chen, J. Luo, N. Wang, and

M. Hasan, Fermi surface topology and low-lying quasiparticle dynamics of

parent Fe1+xTe/Se superconductor, Phys. Rev. Lett. 103, 037002 (2009).

[101] E. Kirstein, D. Yakovlev, M. Glazov, E. Zhukov, D. Kudlacik, I. Kali-

tukha, V. Sapega, G. Dimitriev, M. Semina, M. Nestoklon, et al., The
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[152] I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L. Eng, J. White, H. M.

Rønnow, C. Dewhurst, M. Mochizuki, K. Yanai, et al., Néel-type skyrmion
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and L. Mélési, Pressure-Induced Quantum Phase Transition in the Spin-

Liquid TlCuCl3, Phys. Rev. Lett. 93, 257201 (2004).

[177] L. J. Bartolotti and R. G. Parr, The concept of pressure in density func-

tional theory, J. Chem. Phys. 72, 1593–1596 (1980).

[178] E. Ruiz, J. Cano, S. Alvarez, and P. Alemany, Broken symmetry ap-

proach to calculation of exchange coupling constants for homobinuclear

and heterobinuclear transition metal complexes, J. Comput. Chem. 20,

1391–1400 (1999).
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