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Abstract

The main aim of this thesis is to perform the first accretion disc reverberation mapping
analysis on the AGN 3C 273 and 1H 2106-099 using the modern reverberation mapping
algorithms Javelin, PyceCREAM and PyROA. This is with the intention of obtaining
useful physical insights into these AGN and to compare the performance of the algorithms.
Through spectral, photometric and reverberation mapping measurements we find evidence
to suggest the accretion disc spectrum in 3C 273 follows a power law with a slightly
shallower exponent β ∼ 1 than expected from the approximated thin disc model (β = 4

3).
However the difference does not seem very significant and good agreement was found
with the more physically meaningful unapproximated thin disc model simulated with a
boundary condition at the radius of innermost stable circular orbit. We therefore conclude
3C 273 likely conforms to the thin disc model and displays the ’accretion disc size problem’
with a scale ∼ 2 − 3 larger than expected. For 1H 2106-099, we found an unexpected
discontinuity in the PyROA and Javelin lag estimates which is reflected in the spectrum
and which we cannot identify with any specific contamination. Investigating the possibility
that the discontinuity is anomalous, we obtain corrected Javelin and PyROA lag estimates
in near perfect agreement with the thin disc model without an up-scaled accretion disc.
Our PyceCREAM RM results also indicate that the discontinuity is anomalous but differ
from PyROA and Javelin in suggesting the accretion disc in 1H 2106-099 is up-scaled by a
factor ∼ 2. A secondary aim of the thesis was to investigate how the uncertainties on lag
estimates returned by the algorithms depends on the length of the observing period and
cadence of the light-curve data. Analysis on two dust reverberation mapping campaigns
returned results which suggest that the length of the light-curve relative to the expected
lag has a more significant effect on the size of the uncertainties than the cadence relative
to the lag. We then estimate the optimum light-curve length to be ∼ 10× the expected lag
and the optimum cadence to be ∼ 6× smaller than the expected lag which had associated
lag uncertainties of ∼ 11% and ∼ 10% respectively.
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CHAPTER 1

Introduction

Active galactic nuclei (AGN) are highly luminous phenomena thought to be exhibited in

the behaviour of at least 40% of all nearby galactic nuclei (Collier, 1998). AGN are notable

because they generate optical luminosities on scales similar to or greater than the total

starlight luminosity of the host galaxies they are situated within (typically ⪆ 1011L⊙).

Historically, a taxonomy developed to classify AGN based on their luminosity relative to

their host galaxy. The two largest of these subclasses of AGN are Seyfert Galaxies and

Quasars. In general, Seyfert galaxies are loosely defined as being AGN that emit at optical

luminosities comparable to the total optical starlight luminosity from their host galaxy

whilst Quasars are defined as being brighter than the starlight luminosity of their host

galaxy by typical factors of a hundred or more.

The discovery of AGN as a separate astronomical class can reasonably be traced back

to the classification of Seyfert Galaxies by Carl Seyfert (1943). Quasars were discovered

shortly afterwards in the late 1950’s by radio surveys such as the 3C catalogue (Edge et al.

1959). For more information about the history of AGN research please see Peterson (1997).

Over the decades following these discoveries, the identity of AGN and the mechanism

through which they generate their unprecedented luminosities has been a strong source of

contention for astronomers. This debate has been complicated by the fact that, owing to

their large extragalactic distances relative to observers, AGN are not currently spatially

resolvable in telescopes meaning only indirect observations can be made to ascertain their
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behaviour and structure. Nevertheless, a standard description of AGN behaviour has

since emerged and is outlined in Figure 1.1. Much of the theory addressed in the following

Figure 1.1: A schematic for the structure of the standard paradigm of AGN. The accretion
disc exists on the order of light hours/days, the broad line region (BLR) on the order of
light days, the torus on the order of light months to a year and the narrow line region (not
shown) on the order of light years. This is taken from Czerny et al (2015) and displays
the FRADO model for the formation of the BLR (see Appendix B.2.6

section was informed by Peterson (1997) and Netzer (2015).

1.1 Standard Paradigm of AGN

1.1.1 Black Hole Accretion

The most widely accepted mechanism for the production of energy in AGN is centred

around the idea that mass accretion onto the super-massive black holes (SMBH) expected

to exist at the centre of the AGN host galaxy is driving the luminosity. The development of

this model can largely be attributed to the work done by Zel’dovich & Novikov (1964) and

Salpeter (1964). In this picture the SMBH acts as a central engine, powering the heating

of in-falling material to high temperatures through the influence of its large gravitational

field. As such the AGN acts to convert a massm of in-falling matter into energy equivalent

to E = ηmc2 where η is the efficiency of energy conversion (typically assumed to be

η ∼ 0.1) and c is the speed of light. This means the luminosity L ≡ dE
dt of the AGN can
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be expressed as

L = ηṁc2, (1.1)

where ṁ ≡ dm
dt is the mass accretion rate. This model is supported by much indirect

evidence including the detection of intra-day X-ray variability (from e.g. Terrell, 1967)

which suggests the existence of a highly energetic but spatially compact source in the AGN.

In addition to this, lower limits for the mass of this source can be obtained by substituting

the measured bolometric luminosity of the central source Lbol as the Eddington luminosity

defined as

LE =
4πGcmp

σe
ME , (1.2)

where G is Newtons gravitational constant, mp is the proton mass, σe is the Thomson

cross-section and ME is the Eddington mass. The Eddington luminosity is the maximum

possible luminosity that can maintain spherical accretion meaning the Eddington mass sets

an estimate for the lower mass limit of an accreting sourceM ≥ME . These considerations

typically yield large mass estimates of M ⪆ 108M⊙ for AGN. Even larger mass estimates

can be obtained using the virial theorem

M =
f∆v2R

G
, (1.3)

where R is the radial distance from the central object in the AGN to a gravitationally

bound structure typically estimated using reverberation mapping (see Section 1.1.3), ∆v is

the rotational velocity of the orbiting structure around the central object estimated from

Doppler broadening of emission lines and f is a dimensionless scale factor that controls

the geometry/inclination of the orbiting structure. This approach yields mass estimates

typically an order of magnitude greater than those from the Eddington Luminosity. Whilst

these mass estimates are crude, taken together these observations imply the existence of

a super-massive, spatially compact central object in the AGN which is consistent with a

SMBH.

1.1.2 The Accretion Disc Structure and Variability

It is considered unlikely that the accretion occurring in AGN will be spherically symmet-

ric due to the strong likelihood that in-falling matter (from e.g. a rotating binary star)

will approach the SMBH with a non-zero angular momentum. Conservation of angular

momentum requirements would therefore constrain such in-falling material to rotate in a
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plane perpendicular to its angular momentum vector. The gradual loss of gravitational

potential energy as the matter spirals inwards would result in the material compacting

along the direction parallel to its angular momentum vector in which its angular mo-

mentum is conserved. This is ultimately thought to lead to the formation of a so called

’thin accretion disc’ around the SMBH. The physics of this thin disc model for accretion

adopted by the ’Standard Paradigm’ largely originated with the work done by Shakura

& Sunyaev (1973) and describe an optically thick, geometrically thin acretion disc as the

source of the majority of the AGN’s luminosity.

The mechanism for generating this luminosity in the classic thin disc model is vis-

cous heating in the accretion disc. By assuming the disc has a non-zero viscosity, in this

picture viscous forces acting between adjacent annuli encircling the central SMBH at dif-

ferent rotation rates generate a torque acting against the direction of rotation of the inner,

faster annulus. This torque effectively acts to slow down the rotation rate of elements in

the inner annulus by transferring their angular momentum outwards thereby resulting in

these elements spiralling inwards. In this way, the disc has a mechanism of transferring

angular momentum in local parts of the disc outwards whilst conserving the total angular

momentum of the entire disc meaning the stability of the disc as a whole is preserved.

The consequence of this friction in the disc (along with expected turbulence) is the

conversion of gravitational potential energy of in-falling elements into thermal energy to

locally heat the disc. This heating mechanism leads to an expected temperature gradient

in the disc dependent only on the radius from the SMBH r, the SMBH mass M and the

mass accretion rate ṁ of the form

T 4(r) =
3GMṁ

8πσr3

(
1−

√
rISCO
r

)
, (1.4)

where σ is the Stefan-Boltzmann constant and rISCO is the radius of innermost stable

circular orbit around the SMBH. Here the boundary condition
(
1−

√
rISCO
r

)
ensures a

hard boundary at the inner edge of the disc at rISCO but is often ignored as it becomes

insignificant at r >> rISCO distances. As such the temperature-radius relation above is

often expressed in an approximated form as

T 4(r) =
3GMṁ

8πσr3
for r >> rISCO. (1.5)

4



For a complete proof of Eq. (1.4) please see Shakura & Sunyaev (1973). Eq. (1.4) can

also be proven using the virial theorem which is suitable for the classic thin disc model

due to the inherent stability in the disc.

It is clear from Eq. (1.4) that only changes in the mass accretion rate ṁ will lead

to temperature variations for a particular annulus in a given classic accretion disc. By

assuming a stable accretion disc with an approximately constant mass accretion rate, the

thin disc model therefore provides a condition of thermal equilibrium for each annulus at

radius r in the disc. This means the classic thin disc can be modelled as a collection of

optically thick black-body emitters existing at each annulus at approximately constant

temperatures. The emission of each annulus can therefore be modelled as a black-body

spectrum with an intensity described by the Planck function

Bν(λ, T ) =
2hc

λ3
1

e
hc

λkBT − 1
, (1.6)

where h and kB are the Planck and Boltzmann constants and the temperature of each

annulus T is described by Eq. (1.4). As such the peak wavelength emitted by each black-

body annulus can be modelled by Wien’s law (T ∝ λ−1
max) which, when combined with

Eq. (1.5), gives an expectation for the peak wavelength emitted by the classic thin disc

to scale with radius as R ∝ λβ where β = 4
3 .

The total flux at a given wavelength emitted across the entire accretion disc can be

expressed as a sum of the flux contributions from each black-body annulus as

fν =

∫ Rout

Rin

Bν(λ, T ).dΩ =

∫ Rout

Rin

2hc

λ3
1

e
hc

λkBT − 1

2πRcosi

D2
.dR, (1.7)

where Rin and Rout are the inner and outer edges of the accretion disc respectively and

dΩ ≡ 2πRcosi
D2 dR is the solid angle of the disc at distances D and inclinations i with respect

to observers. A representation of the contribution to the accretion disc spectrum from

different parts of the disc is shown in Figure 1.2. It should be noted that different parts of

the accretion disc will exist under different conditions and so should emit differently to each

other. Shakura & Sunyaev (1973) argue that the inner regions of the accretion disc should

experience significant non-thermal opacity from Compton scattering which would alter

the shape of the spectrum to be more consistent with a Wien distribution. Nevertheless,

they conclude that the outer regions of the disc can be expected to have predominantly

thermal opacity and so can be well described by Plancks function Eq. (1.6) as done above.
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Figure 1.2: A representation of the accretion disc spectrum with different contributions
from different regions of the disc. Author C.P. Dullemond.

In general, the UV and optical emitting regions of the accretion disc can be expected

to lie comfortably within the Planckian regime and so can be well approximated by the

description above.

In general the continuum component of measured spectral energy distributions (SED)

of AGN, which are attributed to the accretion disc, are well described by power laws with

respect to frequency fν ∝ ν−α to at least a low order approximation. By integrating Eq.

(1.7) under certain approximations, the Planckian part of the accretion disc spectrum can

be expected to follow a power law of the form fν ∝ ν
1
3 if conforming to the thin disc

model (please see Collier, 1998 for the proof). There is circumstantial evidence for this

description of the accretion disc, namely the ’big blue bump’ spectral feature observed

in the UV and optical part of the SED of many AGN. This feature is widely considered

to be thermal in nature with many linking it to an optically thick source consistent with

an optically thick accretion disc emitting black-body spectra in the UV and optical and

even at near-IR wavelengths if accretion disc radii are sufficiently large (Landt et al. 2011,

2019). However this explanation is not unique as it can also be explained from an optically

thin source (Collier, 1998). Accretion disc reverberation mapping studies (e.g. Edelson et

al 2019) typically estimate the scale of the accretion disc to be on the order of light hours

or days.

However inconsistencies have been found between the timescales allowed by the classic

thin disc model and those observed in AGN lightcurves. In particular, it is clear from Eq.
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(1.4) that variations in the thermal flux emitted in a particular photometric band (which

originates predominantly from a specific annulus in the disc) will be controlled by changes

in the mass accretion rate which would act to perturb the local temperature of the disc

and therefore alter the emitted flux. The timescale of these flux variations would therefore

be expected to occur over ’thermal timescales’ (ie. the timescales required for local regions

of the disc to return to thermal equilibrium) which is typically on the order of months (see

W. Ishibashi & T.J.L. Courvoisier, 2009). This is inconsistent with the observations of

AGN lightcurves which regularly show flux variations on much shorter timescales typically

on the order of days and hours.

This discrepancy has lead to modifications of the standard AGN paradigm. One of

the more popular modifications is the ’lamp-post model’ which adds a second source of

luminosity into the classic thin disc description in an attempt to keep it consistent with

observations (see Niedzwiecki et al 2016). This so-called lamp-post object is modelled as

an emitter of short timescale variable flux and is located above the accretion disc such

that it beams its emission onto the disc below (hence its name). In this picture, the

lamp-post flux is reprocessed by each of the black-body annuli in the disc. This means

that the short timescale variations in the lamp-post driving lightcurve are preserved in

the reprocessed lightcurves from the disc (after a degree of blurring) thereby matching

the observed timescales. To account for the highly variable emission, the lamp-post is

expected to be constrained as a small structure and is likely located near the rISCO in order

to explain the positive correlation between wavelength and lag found by reverberation

mapping campaigns (e.g. Edelson et al, 2019). With this consideration in mind, the

lamp-post is typically modelled as a zero-dimensional structure residing above the disc

in line with its rotation axis. This has the effect of adding a second term to the classic

temperature-radius relation Eq. (1.5) to account for the additional heating in the disc by

the lamp-post such that

T 4(r) =
3GMṁ

8πσr3
+
Lb(1− a)h

4πσx3
for r >> rISCO. (1.8)

where Lb is the luminosity of the lamp-post driving flux, a is the disc albedo, h is the

height of the lamp-post above the disc and x ≡
√
r2 + h2 (see D. Starkey, K. Horne C.

Villforth, 2016).

Currently there is no consensus on the possible identity of the lamp-post. However one

compelling theory is that it can be attributed to the hypothesised accretion disc corona
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which is modelled as a plasma of relativistic electrons surrounding the inner disc. In this

picture, energetic electrons in a hot, optically thin part of the corona Compton up-scatter

a fraction of the softer UV and optical photons from the inner accretion disc into the

hard X-ray regime (defined typically at energies E ≥ 2 − 100keV). It should be noted

that Compton up-scattering is a process whereby relativistic particles impart energy and

momentum onto photons via collisions thereby transforming them to higher frequency

regimes. The hard X-rays emitted by the corona will then act as the lamp-post driving

flux to be reprocessed by the disc. There is some indirect evidence to support this model

such as observations (by e.g. Shappee et al, 2014 and McHardy et al, 2016) that suggest

X-ray lightcurves may lead UV and optical lightcurves.

1.1.3 Broad Line Region

The SED obtained from real AGN are more complicated than the idealised spectrum de-

picted in Figure 3.4 for 3C 273. Real spectra contain emission lines superimposed onto the

black-body continuum curve. A subset of observed AGN’s appear to contain two distinct

types of emission lines within their SED: ’broad emission lines’ which are loosely defined

as having full widths at half maximum (FWHM) corresponding to orbital velocities of

∼ 5000 kms−1 and ’narrow emission lines’ which are loosely defined as having FWHM

corresponding to orbital velocities of ∼ 500 kms−1 (see Collier, 1998). A taxonomy exists

based around the prevalence of these two types of emission lines with so-called Type 1

AGN being classified as having both broad and narrow emission lines present in their

SED and Type 2 AGN being classified as having only narrow emission lines present. It

should be noted that this classification scheme is widely considered to be outdated due to

the popularity of unification schemes which suggest the differences between Type 1 and 2

AGN’s are not physical in nature but are only a matter of orientation (see Section 1.1.4).

As elucidated above, the classic thin accretion disc is expected to emit as a continuum

meaning the existence of broad emission lines in the spectra of Type 1 AGN’s implies the

existence of a separate structure. As already stated, the likelihood of unification between

Type 1 and 2 AGN’s means this additional structure likely also exists in Type 2 AGN.

This so-called ’broad line region’ (BLR) is expected to exist further from the SMBH than

the accretion disc. This has been well verified by reverberation mapping campaigns which

regularly show the broad emission line lightcurves to lag with respect to the accretion disc

continuum and place the linear extent of the BLR on the order of light days (see e.g. De
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Rosa et al 2018).

In addition to broad emission lines, narrow emission lines are seen in the spectra of

Type 1 and Type 2 AGN. As a result of Doppler Broadening effects (Peterson, 1997), nar-

row emission lines are thought to originate from a separate structure significantly further

from the SMBH than the BLR called the narrow line region (NLR) which corresponds to

rotational velocities approximately an order of magnitude slower than for the broad emis-

sion lines. The NLR exists at large enough distances from the SMBH that it is spatially

resolvable for some AGN and is thought to reside at a length scale on the order of light

years (see Collier, 1998). As a result, the flux from the NLR is essentially constant over

timescales of about a decade meaning RM based on spectra can calibrate their spectral

flux scale based on the flux from the NLR.

1.1.4 The Dusty Torus

Photometric near Infrared reverberation mapping campaigns (e.g. Koshida et al, 2014)

reveal the lightcurves of near infrared bands lag with respect to the accretion disc contin-

uum on typical timescales of a few months to about a year. This suggests the existence

of a final structure to incorporate into the standard paradigm existing at the outer edge

of the AGN. At this large distance, the structure would be cool enough to be expected

to be comprised of dust sublimated from gas and would re-emit continuum flux from the

accretion disc as a black-body peaked strongly in the infrared. Unification schemes be-

tween Type 1 and Type 2 AGN incorporate this dusty structure by modelling it as a torus

enveloping the entire AGN. These unification schemes are widely accepted and attempt

to explain the observed differences between Type 1 and Type 2 AGN due to differences

in their orientation with respect to observers rather than any physical differences. In this

picture, Type 1 AGN are orientated approximately face on with respect to the observers

line of sight meaning both the BLR and NLR are exposed. Type 2 AGN are modelled as

being orientated at larger inclinations with respect to an observers line of sight meaning

the BLR is obscured by the side of the torus whilst the NLR is far enough from the SMBH

to still be visible.
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1.2 Case Studies: 3C 273 and 1H 2106-099

The two AGN 3C 273 and 1H 2106-099 are objects of major importance for the anal-

ysis carried out later in the thesis. Therefore, a brief mention of their properties and

observational history is given below.

1.2.1 3C 273

3C 273 is of historical importance as it is the first discovered Quasar and was identified as

existing at extra-galactic distances by Schmidt (1963) by the identification of the Hydrogen

Balmer series in its spectrum. This enabled an estimate of the redshift z = 0.158 and

therefore a measure of its large luminosity Lbol ∼ 1046 ergs−1 (Landt et al 2011). The

scale of this luminosity was unprecedented at the time and spurred on the creation of the

Quasar class of AGN. The large bolometric luminosity in 3C 273 indicates that its accretion

disc, BLR and torus exist on large scales. This has been verified by observations from the

infrared interferometric instrument GRAVITY on ESO’s VLT (Sturm et al. 2018; Gravity

Collaboration et al. 2020) which has spatially resolved the torus and BLR. Subsequent

observations of 3C 273 revealed its existence as a ’blazar’ which are a subset of AGN

which exhibit abnormally large short timescale variability on the day and intra-day scale

(Peterson, 1997). These unique properties are attributed to the effect of a relativistically

beamed radio jet.

Jets in AGN are well documented phenomena and exist as extended linear structures

reaching out to kpc distances that they can be well resolved spatially (see Bridle, Perly

1984). The emission received from jets extends over almost the entire electromagnetic

spectrum and is non-thermal in nature, being widely believed to originate from synchrotron

emitting relativistic particles accelerated by a magnetized accretion disc and/or a spinning

Kerr black hole (for more information please see Dutan, I., 2010). In the case of blazars

like 3C 273, the jet is expected to lie on or close to the observers line of sight meaning it is

relativistically beamed to much greater apparent luminosities. As such the jet is thought

to have a disproportionately large influence on the spectra of blazars thereby explaining

their unique properties. Specifically, 3C 273 is classified as a ’flat spectrum radio quasar’

(FSRQ) which is a subset of blazars characterised by having strong emission lines as can

be seen in Figure 3.2. Wide wavelength range spectral observations of 3C 273 taken over

the course of 40 years compiled by Soldi, S et al (2008) reveal two broad peaks in the SED

(reproduced as Figure 1.3): a lower energy hump spanning the infrared into the optical
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Figure 1.3: SED of 3C 273 spanning the radio to gamma ray regions taken from Figure 3
in Soldi et al (2008).

attributed to synchrotron radiation from the jet and a higher energy hump peaked in the

gamma ray region attributed to inverse Compton scattering by relativistic electrons (see

Berton et al 2018). Optical spectral analysis carried out by Yuan et al (2022) also reveals

a prominent blue-bump feature (as seen in Figure 3.2) which indicates that most of the

optical spectrum of 3C 273 is likely dominated by the thermal accretion disc emission

instead of the jet.

1.2.2 1H 2106-099

The AGN 1H 2106-099 is a member of the Seyfert 1 galaxy class located relatively nearby

at redshift z ∼ 0.027. As a Seyfert galaxy, 1H 2106-099 can be expected to emit at opti-

cal luminosities comparable to the total optical starlight luminosity from its host galaxy

meaning host galaxy contamination of the flux received from this AGN is an important

factor to consider. Landt et al (2011) were not able to obtain confident estimates of the

scale of the host galaxy contamination although the flattened spectrum obtained is sug-

gestive of significant levels of contamination as shown in Figure 3.15 in Section 3.4.1.

Like other Type 1 AGN’s, 1H 2106-099 has strong broad and narrow emission lines

present in its spectrum as shown in Figure 3.3. These are mostly typical of emission lines

found in other Seyfert 1 galaxies but with an unusually strong HeI line (Remillard, 1986).

Rather unusually for Seyfert 1 galaxies, 1H 2106-099 is also likely to be a strong emitter

of highly variable X-rays due to the presence of FeX lines (Remillard, 1986) which is a

high excitation line present in other strong X-ray emitters at similar relative intensities

(e.g. NGC 4151 see Remillard, 1986 and Mushotzky et al, 1980). According to the coro-

nal theory of X-ray emission in AGN’s outlined above, this may indicate a very active
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corona in 1H 2106-099. It should also be mentioned that the spectrum shown in Figure

3.15 indicates only a weak blue-bump which was similarly concluded by spectral analysis

carried out by Grossan et al (1996). In contrast to 3C 273, 1H 2106-099 does is considered

a radio-quiet AGN as it does not have a strong radio jet but is a much more active X-ray

emitter. 1H 2106-099 also emits at a bolometric luminosity approximately a factor of 10

more dimly than 3C 273 (Landt et al 2011).

1.3 Reverberation Mapping

It is incredibly difficult to obtain detailed measurements of most AGN and their central

SMBH’s due to their large extragalactic distances from observers. As such, it is not

currently possible to spatially resolve the inner regions of most AGN owing to the small

angular distances meaning no direct observations can be made to constrain the AGN’s

mass and geometry. There are a few exceptions of nearby, bright AGN (e.g. 3C 273)

for which infrared interferometry can resolve the torus and sometimes BLR. Nevertheless,

indirect methods of observing the AGN have been developed including probing the radio

emitting locations using Very Long Baseline Interferometry (e.g. Gabanyi et al, 2019), the

use of gravitational microlensing (Stalevski et al, 2012) and reverberation mapping (RM).

RM uses the fact that different spectral features of the AGN can be attributed to different

structures (following the standard paradigm) to estimate the linear distances between

these structures. By modelling the emission from these different structures as reprocessed

accretion disc flux, the observed lags between the light-curves from these structures and

the accretion disk continuum light-curve can be used to estimate the distance between the

accretion disc and the structure assuming the lag is entirely due to light travel time.

The most common form of RM is done in the BLR regime and attempts to measure

the distances between the accretion disc and the BLR for a given AGN as represented

in Figure 1.4. This is done by obtaining light-curves in photometric bands corresponding

to a strong broad emission line and a smooth, continuous part of the SED which can be

expected to originate predominantly from the BLR and accretion disc respectively. As

mentioned above, emission line light-curves are regularly found to lag with respect to the

continuum meaning, if these lags can be accurately estimated, the distance between the

accretion disc and BLR can be trivially determined. The expected relationship between
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Figure 1.4: A diagram of the mechanism of BLR RM. The upper figure shows a spherically
distributed BLR at radius r from the SMBH emitting reprocessed continuum flux as
emission line flux. The observer will see the emitting clouds lying on an ’isodelay surface’
with a lag with respect to the continuum given by Eq. (1.11). The lower figure shows the
BLR orbital velocity-time delay plane. This figure is taken from Peterson & Horne 2004.

the light-curve lag τ and linear distance r is

τ(r) =
r

c
, (1.9)

which assumes that the lag is entirely attributed to the greater light travel time taken

for the accretion disc flux to travel to the BLR and then to the observer as reprocessed

emission line flux compared to travelling straight from the accretion disc to the observer as

continuum flux. In addition to producing estimates for the general length scales in AGN,

RM campaigns can give more finely tuned measurements by carefully selecting continuum

bands and emission lines to sample light-curves which correspond to specific parts of the

accretion disc and BLR. For instance high excitation emission lines can be expected to

occur more strongly in the hotter, more strongly ionised inner part of the BLR facing the

accretion disc. RM in the BLR regime is also useful because the distance estimates it

provides can be used in Eq. (1.3) to give an independent estimate of the SMBH mass at
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the centre of the AGN (Peterson et al, 2004).

RM requires several assumptions to hold true such, as already stated, assuming the

light travel time is the most significant timescale (and so the flux reprocessing time is

negligible). This seems likely justified when compared to the expected dynamical and

recombination timescales (see Collier, 1998 for more information). RM also assumes that

the observed continuum flux originates from a single source (namely the accretion disc)

which exists on smaller spatial scales than the BLR. In addition, the observed continuum

flux is assumed to be simply related to the ionising continuum flux reprocessed by the

BLR (but not necessarily in a linear way) such that the observed continuum flux can be

used as a substitute for the unobserved ionising flux that produces the broad emission

lines.

One complication is the fact that the response of the BLR to variations in the con-

tinuum flux will likely not be trivial (ie. one to one). Variations in the emissivity of the

material in the BLR as well as effects arising from the geometry and dynamics of the

individual gas clouds making up the BLR will act to blur the reprocessed light-curve with

respect to the continuum (see Collier, 1998). This blurring will be further compounded by

the fact that the accretion disc is expected to be an extended structure emitting as a black-

body meaning photometric light-curves being reprocessed by the BLR will not originate

from a point source but from across the whole disc. The effect of these unknown physical

conditions are represented by a transfer function ψ(τ) which controls the blurring of the

response light-curve. The majority of RM techniques assume a simple linear relationship

between the observed continuum flux fc(t) and the unobserved ionizing continuum such

that the lagged light-curve fL(t) can be represented as

fL(t) =

∫
ψ(τ)fc(t− τ).dτ. (1.10)

Eq. (1.10) takes the form of a convolution whereby the transfer function ψ(τ) controls the

response of the line light-curve to a Dirac delta continuum pulse. In essence, Eq. (1.10)

describes the lagged light-curve at time t as a weighted sum of the continuum over all

lags weighted by the transfer function which controls the influence of each part of the

continuum light-curve over the lagged light-curve at time t. Determining an appropriate

transfer function is an important consideration for any RM campaign.

More recently, RM is also performed in the torus and accretion disc regimes. Accre-

tion disc RM assumes the driving light-curve originates from the lamp-post meaning the
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majority of all continuum variability on timescales shorter than typical light travel times

within the disc can be attributed to it. This raises unique challenges for accretion disc RM

campaigns due to the fact that little variability is typically seen on these short timescales

(e.g. Mudd et al, 2018). Another complication arises from the accretion disc geometry

which means the inclination of the disc i with respect to observers should be accounted

for in the analysis. This has the effect of altering Eq. (1.9) to

τ(r, ϕ, i) =
r

c
(1 + sinicosϕ), (1.11)

where ϕ is the azimuthal angle for the reprocessing region (Starkey et al. 2016). This

consideration is generally not a concern for BLR RM as the BLR is usually modelled as

being spherically distributed around the SMBH. It should be noted that the inclination

i of the accretion disc has no effect on the mean lag obtained defined as ⟨τ⟩ ≡
∫
τψν(τ,λ)∫
ψν(τ,λ)

.

This is shown in Figure 1.5 (taken from Starkey et al. 2016) which shows the variation in

the accretion disc transfer function described below with inclination.

Figure 1.5: Variations of the accretion disc transfer function ψ with inclination i taken
from Figure 3 in Starkey et al (2016). Here the lamp-post height hx = 3rs and the mean
lag ⟨τ⟩ is represented by the vertical lines.

Like RM in the BLR regime, accretion disc RM must also take account of blurring effects

in the reprocessed light-curves by introducing a transfer function. In accretion disc RM,

the transfer function will also include the blurring introduced by the extended nature of

the lamp-post, the variable emissivity of different parts of the disc as well as the likelihood

of multiple reprocessings happening within the disc. The expected form of the transfer
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function within the accretion disc can be physically derived from the thin disc model by

invoking the Planckian description of the reprocessed flux Eq. (1.7). The form of the

accretion disc transfer function is shown below as outlined by Collier (1998) and Cackett

et al (2007)

ψν(τ |λ) =
∫ Rout

Rin

∫ 2π

0

∂Bν(T, λ)

∂T

∂T

∂Lx
δ(τ − r

c
(1 + sinicosϕ)).dΩ, (1.12)

where Lx is the driving luminosity from the lamp-post and Ω is the solid angle defined in

Eq. (1.7).

1.4 Reverberation Mapping Algorithms

Reverberation Mapping techniques rely on obtaining accurate time lag estimates between

a series of AGN light-curves, typically by assuming the lagged light-curves are linearly

related to the driving light-curve according to Eq. (1.10). Due to the finite sampling of

the data and gaps in time coverage, this involves fitting the light-curves by assuming the

reverberating light-curves are lagged, blurred versions of the driving light-curve. This is

not a trivial task as AGN light-curves appear to be aperiodic and stochastic in nature

which makes them challenging to fit.

Traditionally, lag estimates were usually obtained by determining the peak in the cross

correlation function (CCF) between light-curves after a simple interpolation had been done

between the data points (often just a linear interpolation, see Gaskell, Peterson, 1987).

However, advances in computing capabilities and the growth in machine learning in recent

years has enabled more sophisticated methods of interpolation and lag estimation to be

developed. Modern methods of RM employ Bayesian statistics to optimise the parameters

for the light-curve fits and use Markov Chain Monte Carlo (MCMC) techniques to sample

the resulting posterior distributions. This has advantages over traditional statistical meth-

ods as it leads to posterior parameter distributions (as opposed to single best-fit values)

which allows more natural estimates of uncertainties to be obtained, typically determined

by the width of these distributions. The most common RM algorithms currently in use

are Javelin (developed by Zu, Y., Kochanek C. S., Peterson B. M., 2011), PyceCREAM

(developed by Starkey, D. A., Horne, K., Villforth, C. 2016) and PyROA (developed by

Donnan , F R. et al, 2021) and will be the main methods of analysis for the rest of the

thesis. A general description of each algorithm is given below. For a brief explanation of
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MCMC and how it relates to Bayesian statistics please see the statistics background in

the Appendix A.0.1.

1.4.1 Javelin

The following explanation draws heavily from Zu, Y., Kochanek C. S., Peterson B. M.,

(2011) and is focused on the ’Rmap Model’ mode. Javelin obtains lag estimates by mod-

elling AGN light-curves as damped random walks (DRW) which is motivated by their

stochastic appearance and the power spectrum of optical light-curves being well described

by 1
ν2

power laws consistent with random walk processes (see Kelly, B. C., Bechtold, J.,

Siemiginowska, A. 2009). As such, Javelin treats AGN light-curves as stochastic time se-

ries described by the Ornstein-Uhlenbeck (O-U) process (see Gillespie, D. T. 1996) which

has as an exponential autocovariance function between times ti and tj of the form

⟨sc(ti)sc(tj)⟩ =
τdσ̂

2

2
e
−

|ti−tj |
τd (1.13)

where τd and σ̂ can be interpreted as the decorrelation timescale and the short timescale

variability respectively for the light-curve. The driver-lagged and lagged-lagged covariance

functions can also be trivially derived by assuming the lagged light-curves are linearly

related to the driver by Eq. (1.10). To do this Javelin uses a simple top-hat transfer

function defined as

ψ(t− t′) =
A

t2 − t1
t1 ≤ t− t′ ≤ t2, (1.14)

where A is the amplitude of the top-hat and t2− t1 ≡ w is the width. The average lag ⟨τ⟩

is defined as the mid-point of the top-hat whilst the width controls the degree of blurring.

To perform the fit on ND data points across NL light-curves, Javelin decomposes the

(ND × 1) light-curve data vector y into three parts

y = s+ n+ Lq, (1.15)

where s are the best-fit light-curve signals, n is the measurement error in the data, L is

a (ND × NL) matrix and q is a (NL × 1) vector with entries corresponding to the mean

fluxes of the NL light-curves in the data set. The Lq term is introduced so that the

mean fluxes can be easily removed from the data when doing the fit for the purposes of
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linear de-trending. This is an important step as much of the statistical analysis done to

fit light-curve data works on the assumption that the process is stationary (ie. the mean

and variance are time independent) despite the fact many light-curves are observed with

trends in their mean. Denney et al (2010), Li et al (2013) and Peterson et al (2014) all

demonstrate the problems long timescale trends bring to RM campaigns by introducing

a different component of variability operating on longer timescales. RM techniques will

often find solutions for both the trend and the AGN variability meaning the trends can

introduce false peaks into the lag distributions. Welsh (1999) in particular highlights

the specific effect trends have on CCF analysis in biasing the lag estimates towards zero.

Without a detrending function, RM algorithms are limited to fit only stationary periods

of the light-curves thereby limiting the accuracy of these fits as the entire data-set cannot

be used.

Javelin fits the light-curves simultaneously using a Gaussian Process by treating the

s and n parameters as random variables with Gaussian probability distributions P (s) ∝

|S|−
1
2 e−

1
2
(sTS−1s) and P (n) ∝ |N |−

1
2 e−

1
2
(nTN−1n) with covariance matrices S = ⟨ss⟩ and

N = ⟨nn⟩. In particular, the covariance matrix S is a generalisation of the O-U process

such that the diagonal autocovariance elements are given by Eq. (1.13) whilst the off-

diagonal elements correspond to covariance between separate light-curves. As such, the

DRW is encoded in the kernel of the Gaussian process. The Gaussian distributions P (s)

and P (n) enable a likelihood to be defined which give best-fit constraints for the light-

curve variability ŝ and mean q̂. The final Javelin fit s = ŝ+u has a random Gaussian term

u added to the optimum fit to give the fit the appearance of stochasticity. The optimum fit

parameters τd, σ̂ and τi, wi and Ai for each i
th light-curve are sampled using the ’emcee’

MCMC sampler (Foreman-Mackey et al 2012).

It should be mentioned that, before doing the joint light-curve analysis, Javelin first

fits the driving light-curve alone in order to calibrate the τd and σ̂ parameters by using

Log-Gaussian priors on each centred at the median cadence and standard deviation of the

light-curve data. This is done to discourage τd and σ̂ values that deviate too much from

the median sampling interval and standard deviation respectively. The purpose of this is

to try to avoid ’white-noise’ fitting solutions which involve the fitting of incorrect lags by

the algorithm sending τd → 0 (ie. treating the data points as uncorrelated) and broadening

σ̂ such that a white-noise signal with variability much shorter than the typical sampling

intervals is fit. This will always be a solution for Javelin at any lag as uncorrelated white-
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noise can be matched at any lag (see Zu, Y., Kochanek C. S., Peterson B.M., 2011). For

a more detailed explanation of the statistical method used by Javelin and the new ’disc

Mode’ please see Appendix A.0.2.

1.4.2 PyROA

The following explanation draws heavily from Donnan, F R. et al (2021). PyROA attempts

to fit light-curve data in a more traditionally statistical approach compared to the Machine

Learning method used by Javelin. Unlike Javelin, PyROA does not fit AGN light-curves

using a model of variability but rather fits each light-curve directly using a running optimal

average (ROA). The ROA is as an optimal inverse-variance weighted average of all the N

data points Di with errorbars σi in the light-curve measured at times ti such that at time

t

X(t) =

∑N
i=1DiWi(t)∑N
i=1Wi(t)

(1.16)

where the weighting of each data point to the fit

Wi(t) =
1

σ2i
e
− 1

2

(
t−ti
∆

)2
. (1.17)

This approach follows a traditional inverse variance weighted average with an added Gaus-

sian window function Eq. (1.17) which lessens the influence data points have on the fit

according to how far they are from time t and how much error they have (see Donnan , F

R. et al, 2021 for more detail). Following from the traditional inverse variance weighted

average, the variance of the fit X(t) is defined as

V ar(X(t)) =
1∑N

i=1Wi(t)
(1.18)

which determines the ’error snake’ obtained from PyROA fits.

The ∆ parameter in the weights corresponds to the width of the Gaussian window

function and therefore controls how quickly the influence data points have over the fit

diminishes with time separation. The scale of ∆ is therefore a measure of the flexibility of

the fit. If ∆ is small, X(t) is sensitive to rapid variations in the data leading to a close fit

meaning the model has a large effective number of parameters whilst if ∆ is larger, X(t) is

stiffer and can only follow slower variations in the data leading to a worse fit meaning the
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model has a smaller effective number of parameters. Clearly having too large a value of ∆

is undesirable as it leads to a poor fit but conversely having too small a value of ∆ is also

undesirable as it can lead to over-fitting noisy data. A compromise between simplicity in

the model and a good fit to the data can be found by minimising the Bayesian Information

Criterion (BIC) statistic.

The best-fit is determined for each ith light-curve by shifting the ROA by the appro-

priate lag τi and scaling it by the appropriate rms Ai and mean Bi such that

fi(t) = AiX(t− τi) +Bi. (1.19)

PyROA samples posterior distributions for the fitting parameters Ai, Bi, τi and si for

each ith light-curve using the ’emcee’ MCMC sampler (Foreman-Mackey et al 2012) with

the BIC as the likelihood and uniform priors for the parameters.

By using the same ROA X(t) for all light-curves in Eq. (1.19), PyROA assumes a

single level of blurring for all light-curves controlled by the window function in Eq. (1.17).

This means, by default, PyROA assumes a Dirac delta transfer function. To generalise this,

PyROA also allows an optional convolution between the best-fit light-curves and a model

transfer function to add an additional degree of blurring (including uniform, Gaussian and

log Gaussian forms). This is often necessary with PyROA to give it the flexibility to fit

less densely sampled data. As such, PyROA can accommodate multiple transfer functions

unlike Javelin. In this case the lag τ represents the mean time delay and a new parameter

∆i is introduced to represent the rms of the delay distribution around the mean.

One of the major advantages PyROA has compared to the other algorithms is that

it takes account of the probable underestimation of photometric error bars in AGN light-

curve data. It does this by sampling the additional error parameter si with a uniform

prior centred at zero. The original error-bars σi in the ith input light-curve data are then

inflated by adding si to them in quadrature σi →
√
σ2i + s2i . It should be mentioned

that the σi√
σ2
i +s

2
i

normalisation term in the BIC likelihood (see A.0.11) is important as it

penalises the algorithm for adding too much additional error to the variance σ2ji when the

BIC is minimised. This acts to stop the algorithm from forcing a bad fit by arbitrarily

increasing the error-bars. The effectiveness of PyROA’s scaling of the error-bars on light-

curve data was tested by Donnan , F R. et al (2021) using synthetic data where it was found

that PyROA tends to slightly overestimate the error-bars. This is a safe effect as it does

not introduce any bias and only reduces some of the certainty in the fit thereby making
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PyROA essentially unaffected by the unknown errors. For a more detailed explanation of

the method used by PyROA please see Appendix A.0.2.

1.4.3 PyceCREAM

The following explanation draws heavily from Starkey et al (2016). PyceCREAM models

the lagged light-curve flux at a particular wavelength band Fν(λ, t) by adapting the linear

response function (1.10) into a discretised, algorithmic form

Fν(λ, t) = F̄ν(λ) + ∆Fν(λ)

τmax∑
i=0

ψ(τi|λ)∆Fx(t− τi)∆τ (1.20)

where the variable component of the driving light-curve ∆Fx(t) is convolved with the nor-

malised, dimensionless transfer function ψ(τ |λ) as expected. Here ∆Fν(λ) is the variable

component of the spectrum and is used to scale the model variations to fit the data and

F̄ν(λ) is the background flux.

Of the three algorithms discussed, PyceCREAM has the strongest considerations for

the thin disc model of Shakura & Sunyaev (1973) described in Section 1.1.2 for accretion

disc RM. PyceCREAM does this by allowing the use of a physically motivated accretion

disc transfer function derived from the classic thin disc model based on Eq. (1.12). This

means that ψν(τ) is a function of Mṁ and inclination i. By taking account of the in-

clination and azimuth, PyceCREAM enables the use of the more physically correct lag

expression for accretion discs Eq. (1.11). By default PyceCREAM assumes a classic thin

disc (β = 4
3) orientated face-on (i = 0). As shown in Figure 1.5, an incorrect value for i

should have no effect on the mean lag ⟨τ⟩ derived and should only produce misshapen de-

lay distributions. It should be mentioned that for emission line light-curves, PyceCREAM

uses a top-hat transfer function for ψ(τ) like Javelin.

For accretion disc RM, PyceCREAM also incorporates the lamp-post model by in-

ferring the shape of the lamp-post driving light-curve during its fitting procedure. This

is in stark contrast to PyROA and Javelin which make no accommodation for the lamp-

post and instead treat the shortest wavelength input light-curve as the driving light-curve.

PyceCREAM attempts to infer the shape of the ’true’ driving light-curve from the data

by expressing the driving light-curve as a Fourier time series.

To perform the fit, PyceCREAM samples posterior distributions for the fitting pa-

rameters Sk, Ck (which are the Fourier coefficients), cosi, logMṁ, log∆Fν and logF̄ν(λ)

21



using an MCMC sampler. During the fitting procedure, PyceCREAM uses a bayesian

statistic called the Badness of fit (BOF) which the MCMC sampler attempts to minimise.

Uniform priors are chosen for cosi to reflect the assumption that the accretion disc is

randomly orientated in the sky. Likewise uniform priors are chosen for logMṁ, log∆Fν

and logF̄ν(λ) to express a lack of knowledge for these parameter values. Particular Gaus-

sian priors are chosen for the Fourier coefficients due to the tendency of the algorithm to

overfit with uniform priors (see A.0.2). The full set of fitting parameters and their priors

are summarised in Table 1.1 which is derived from Starkey et al. 2016.

Parameter Number of Parameters Prior

Sk and Ck 2Nk Gaussian with ⟨Sk⟩ = ⟨Ck⟩ = 0, ⟨S2
k⟩ = ⟨C2

k⟩ = σ2k
cosi 1 Uniform

log MṀ 1 Uniform

log ∆Fν Nλ Uniform

log F̄ν(λ) Nλ Uniform

Table 1.1: A table outlining the parameters fitted by pyceCREAM adapted from (Starkey
et al, 2016). The table shows the parameter (first column), the number of these parameters
(second column) and the prior on the parameters (third column).

The parameter space is significantly larger for PyceCREAM than for Javelin and Py-

ROA owing predominantly to the 2Nk lots of Fourier amplitude terms Sk and Ck that need

fitting to estimate the driving light-curve. This slows down PyceCREAM’s performance

relative to the other two algorithms. To produce the posterior distributions for these pa-

rameters PyceCREAM uses the Sk and Ck parameters, subject to the priors in Table 1.1,

to generate the driving light-curve for each iteration of the MCMC sampler. The driving

light-curve is then used to generate fits for the lagged light-curve data sets at each λ using

Eq. (1.20) and the log∆Fν and logF̄ν(λ) parameters. The transfer function is similarly

generated using the parameters cosi and logMṁ. For a more detailed explanation of the

technique used by PyceCREAM please see Appendix A.0.2.
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CHAPTER 2

Comprehensive Comparison of RM Algorithms

In this section we provide a comprehensive comparison of the three most commonly used

RM algorithms: Javelin, PyceCREAM and PyROA. As far as we know this will be the first

study to directly compare the performance of these algorithms on real observational data.

This is especially true for PyROA which, at the time of writing, is a recent algorithm and is

therefore largely untested on real astronomical data. A comparison of the performance of

these algorithms should help inform future RM campaigns about their relative strengths

and limitations and therefore help observers select software more appropriate for their

analysis. To assess their performance we tested the algorithms on published, high quality

RM data-sets for the object NGC 4151.

It is important to run several algorithms on a given data-set to ensure that any bias

in the results as a result of limitations or assumptions made in particular algorithms can

be identified. It is clear from Section 1.4 that the RM algorithms discussed operate using

very different methods meaning our comparison will be useful as it will help to indicate

how dependent the results are on the methods of the specific algorithms used. In addition

to this our comparison uses data-sets spanning all RM regimes meaning we will help to

get an indication of how each algorithm performs in each regime. This will be particularly

interesting for PyceCREAM in the accretion disc regime.
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2.1 The Data

To compare the performance of the algorithms in all three RM regimes, RM studies span-

ning the accretion disc, BLR and torus were selected. For accretion disc RM the Edelson

et al (2019) study was selected. This campaign made observations spanning the UV and

optical from 1928Å to 5468Å monitoring the W2, M2, W1, U, B and V bands. For BLR

RM the De Rosa et al (2018) study was selected. This study collated primarily spectro-

scopic observations and was supplemented with photometric observations. We selected

the 5100Å continuum data as the accretion disc light-curve and the Hβ emission line data

as the BLR light-curve. For infrared RM of the torus the Koshida et al (2014) study

was selected. We selected the V band light-curve as the accretion disc continuum and

the K band light-curve as the torus emission as they were the shortest cadence data sets

obtained. The key information of each of these data-sets for NGC 4151 is summarised

below in Table 2.1. As can be seen, each data-set is high quality being comprised of

short cadences and long observing periods relative to their expected lags. It should be

Study Type of RM Mean cadence Duration of campaign Expected lag
(days) (days) (days)

Edelson et al 2019 Accretion disc 0.249 69.245 0.96+0.51
−0.50

De Rosa et al 2018 BLR 0.899 128.285 6.50+0.99
−1.39

Koshida et al 2014 Torus 5.520 211.620 53.90+1.7
−2.4

Table 2.1: A summary of the properties of the data-sets used in the investigation for NGC
4151. The mean cadence and campaign duration is averaged over the filters used in each
data-set. The expected lag is taken from the CCF analysis done in the respective studies.
The values for Koshida et al (2014) are taken from the first observing epoch and the mean
differential lag for the Edelson et al (2019) data is taken with respect to the V band.

mentioned that observations for NGC 4151 in Koshida et al (2014) were made over eight

separate observing epochs. The following analysis is done with the first observing epoch

only. Koshida et al (2014) also performed subtraction of the accretion disc contamination

of the K band with different assumptions for the power law scaling parameter αν in the

expected thin-disc relation fν ∝ ναν . For the following analysis, we use the standard

αν = 1
3 estimates.

The following analysis used the shortest wavelength input light-curve as the driving

light-curve for Javelin and PyROA, namely the W2, V and 5100Å continuum bands for the

Edelson et al (2019), Koshida et al (2014) and De Rosa et al (2018) data-sets respectively.

The lag estimates are defined as the 50th percentiles of the posterior distributions and
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the upper and lower uncertainties as the 84th and 16th percentiles respectively ran with

10,000 iterations for the MCMC sampler.

2.2 Analysis and Results

2.2.1 Javelin

Table 2.2 shows the differential lag estimates obtained in the three RM regimes by Javelin,

PyROA and PyceCREAM as well as the ICCF (Peterson et al. 1998) methods used in De

Rosa et al (2018) and Edelson et al (2019) and the CCF methods used in Koshida et al

(2014).

Data-set Filter Differential Lag Estimate (days)
Javelin PyROA PyceCREAM Cross-Correlation

Koshida et al 2014 K 56.47+1.19
−6.91 45.08+1.04

−1.07 48.60+0.77
−0.40 53.90+1.70

−2.40

De Rosa et al 2018 Hβ 6.61+1.03
−0.94 6.86+0.24

−0.24 6.03+0.72
−0.54 6.50+0.99

−1.39

Edelson et al 2019 M2 0.485+0.608
−0.314 0.080+0.070

−0.050 0.094+0.156
−0.128 0.055+0.248

−0.239

W1 0.902+0.852
−0.537 0.110+0.090

−0.070 0.203+0.183
−0.149 −0.011+0.251

−0.264

U 1.547+0.585
−0.560 0.450+0.110

−0.130 0.490+0.242
−0.206 0.679+0.239

−0.239

B 2.003+0.957
−0.605 0.390+0.180

−0.350 0.830+0.326
−0.272 0.877+0.326

−0.352

V 1.282+1.424
−0.871 0.440+0.270

−0.310 1.270+0.412
−0.359 0.960+0.505

−0.497

Table 2.2: A summary of the lag estimates and uncertainties obtained by Javelin, PyROA
and PyceCREAM along with cross-correlation analysis for NGC 4151. The data-sets used
are Koshida et al (2014), De Rosa et al (2018) and Edelson et al (2019) and the differential
lags are determined with respect to the V, 5100Å continuum band and W2 bands for each
data-set respectively. Here the lag estimates obtained by cross-correlation methods are
taken straight from the above studies and are defined as the peak of the cross-correlation
functions derived. These results were derived using PyROA’s Dirac delta transfer function
and PyceCREAM’s accretion disc transfer function.

The Javelin lag estimates generated good light-curve fits with narrow distributions for

the torus and BLR regimes indicating good convergence. An example of the light-curve fit

obtained for the De Rosa et al (2018) data-set is shown in Figure 2.1 and the remaining

fits are shown in Figures B.2 and B.3. It should be mentioned that when Javelin is run

with its default settings, allowing the MCMC sampler to explore the full parameter space,

it has a tendency to generate messy distributions with multiple peaks. An example of

the posterior lag distribution obtained for the De Rosa et al (2018) data-set with an un-

constrained MCMC sampler is shown in Appendix Figure B.1 which had two large ’alias’

peaks. These arise due to the limited cadence and finite duration of the light-curve data.

The RM algorithm will always find a fitting solution by shifting the lagged light-curve into
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Figure 2.1: Javelin fits obtained for the 5100Å continuum and Hβ light-curves for NGC
4151 from De Rosa et al (2018). Flux units are in mJ

the two data gaps at the extremities of the light-curves where there is no data present

to object to the fit. These aliasing errors therefore exist for all finite time series and so

Javelin’s susceptibility to them is not a unique flaw.

To deal with the issue of aliasing, Javelin allows the user to impose hard boundaries

on the lag parameter space explored by the MCMC sampler. By fixing the MCMC sam-

pler to only explore lags within the time duration of the light-curve data, most aliasing

can be removed provided there are no significant data gaps within the observing period.

PyROA and PyceCREAM have similar solutions to aliasing by allowing the user to specify

uniform priors on the lag parameters. However, Javelin often requires lag-limits narrower

than those needed to address the problem of aliasing in order to obtain more constrained

lag distributions. To generate Figure 2.1, limits to the lag space between 0-10 days were

imposed. This is due to a tendency found during our investigations for Javelin to occa-

sionally produce under-constrained fits with characteristic wide, flat distributions. This

is demonstrated later in the thesis for the lag distribution obtained for 3C 273 in Figure

B.13. This is likely a consequence of the fact that Javelin bases its fit on a Gaussian

Process which, as a non-parametric process, can incorporate an arbitrarily large number

of effective parameters into its fit (see Wang, J, 2020). This can make Gaussian Pro-

cesses’ susceptible to forming overly flexible fits (in the case of Javelin, by shortening the

decorrelation timescale τd and broadening the variability magnitude σ̂). This weakness in

the algorithm was mentioned previously in Section 1.4.2 and motivates the preliminary

correction step described above which mitigates the problem.

A subtle consideration that Javelin does not take into account is the fact that the
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stated photometric error-bars present in input light-curve data is likely underestimated.

This is due to the likely presence of unaccounted systematic error introduced by physical

effects both known (e.g. induced aperture effects in the spectra, see Yu Z. et al 2020) and

unknown which are very difficult to account for in the error analysis. Javelin does not leave

room for these effects and uses the unchanged input error-bars in its fit. Underestimating

the error-bars could have a significant effect on the fit as having larger error-bars gives

the algorithm more flexibility to fit the data. In order to test the sensitivity of Javelin’s

lag estimation to the size of the error-bars, we incrementally increased the scale of the

error-bars for the De Rosa et al (2018) data-set for NGC 4151 and observed Javelin’s

associated estimate for the lag. The results are shown in Figure 2.2.

Javelin’s lag estimate was found to be remarkably consistent as the errors were increased,

Figure 2.2: Posterior lag distributions obtained by Javelin for the 5100Å continuum and
Hβ light-curves for NGC 4151 from De Rosa et al (2018). Here the MCMC sampler is
allowed to explore the full parameter space.

requiring the error-bars to be ∼ ×20 their original value to get a value outside the un-

certainty on the original estimate. As such, the result indicates that the scale of the

error-bars on light-curve data has little effect on the lag estimation of Javelin. Javelin’s

stability to large increases in the error-bars is an advantage as it means the algorithm is

little effected by the unknown error despite the fact it doesn’t take account of it. However,

as the error-bars were scaled, the uncertainty on the lag estimate increased and became

asymmetric as the error-bars became large which is an undesirable effect. This indicates

that underestimation of the error-bars is likely having a significant effect on the error

analysis on the lag estimate for Javelin. Similar observations were made by Edelson et
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al (2019) who observed that Javelin returned uncertainties ∼ 2.5 times smaller than the

cross-correlation techniques used.

2.2.2 PyROA

For the analysis on the De Rosa et al (2018) and the Koshida et al (2014) data-sets,

PyROA was used with its default Dirac delta transfer function which assumes an equal

degree of blurring for each light-curve in the data-set controlled by the Gaussian window

function width parameter ∆. For the accretion disc RM Edelson et al (2019) data-set,

the analysis was done both with the Dirac delta and a Log-Gaussian transfer function to

assess the significance of using PyROA’s different transfer functions. The Log-Gaussian

transfer function was selected in the expectation that it would generate more realistic

lag estimates for accretion disc RM due to the fact that it enforces causality and reflects

the asymmetry expected for the thin disc transfer function (1.12). The PyROA fits and

lag distributions obtained for the Koshida et al (2014) results with both strong blurring

(ie. wide Gaussian window function width prior 10 ≤ ∆ ≤ 30) and weak blurring (ie.

narrow Gaussian window function width prior 0.01 ≤ ∆ ≤ 10) are shown in Figure 2.3

with the remaining fits in the Appendix Figures B.4 and B.5. We also found no significant

difference between the PyROA lag estimates made on the Edelson et al (2019) data with

the Log-Gaussian transfer function as shown in the Appendix B.6.

2.2.3 PyceCREAM

To perform the following analysis, PyceCREAM’s accretion disc transfer function was

used to fit the accretion disc continuum bands whilst the top-hat transfer function was

used to fit the emission line and torus bands. For the use of the accretion disc transfer

function, the default PyceCREAM parameters were used including assuming a SMBH

mass M = 1 × 107M⊙, a fixed mass accretion rate ṁ = 0.1M⊙ per year and a face-on,

thin accretion disc with i = 0, β = 4
3 and efficiency η = 0.1. To compare this performance

to the top-hat transfer function, the analysis was repeated only with the top-hat transfer

function in use. PyceCREAM outputs absolute lag estimates as opposed to differential lag

estimates as it infers its own driving light-curve. To make the PyceCREAM lag estimates

consistent with the PyROA and Javelin results, we convert PyceCREAM’s absolute lag

estimates to differential lag estimates with respect to the lag of the shortest wavelength

input filter. The PyceCREAM light-curve fit for the Edelson et al (2019) data is shown
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(a) PyROA fit with strong blurring prior
10 ≤ ∆ ≤ 30

(b) PyROA fit with weak blurring prior
0.01 ≤ ∆ ≤ 10

Figure 2.3: PyROA fits obtained for the V and K bands for NGC 4151 from Koshida et
al (2014). Flux units are in mJ

(a) Differential lag estimates for all
three data-sets. Here the dashed line
y = x corresponds to total agreement
between PyceCREAM and Javelin

(b) Differential lag estimates for the Edelson et
al (2019) data. Here the dashed line y = x corre-
sponds to total agreement between PyceCREAM
and Javelin.

Figure 2.4: Differential Lag results for NGC 4151 using PyceCREAM and Javelin taken
from Koshida et al (2014), De Rosa et al (2018) and Edelson et al (2019).

in Figure 2.6 with the characteristic thin accretion disc transfer functions shown. The

remaining fits are in the Appendix Figures B.7 and B.8.
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(a) Differential lag estimates for all
three data-sets. Here the dashed line
y = x corresponds to total agreement
between PyceCREAM and PyROA

(b) Differential lag estimates for the Edelson et
al (2019) data. Here the dashed line y = x corre-
sponds to total agreement between PyceCREAM
and PyROA.

Figure 2.5: Differential Lag results for NGC 4151 using PyceCREAM and PyROA taken
from Koshida et al (2014), De Rosa et al (2018) and Edelson et al (2019).

Figure 2.6: PyceCREAM fits obtained for the W2, M2, W1, U, B and V bands for NGC
4151 from Edelson et al (2019) with the accretion disc transfer function. Flux units are
in mJ
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It should be mentioned that when attempting to run the entire Koshida et al (2014)

light-curve data for the V and K bands, PyceCREAM had a significantly longer con-

vergence time than Javelin and PyROA. This was as a result of the long Fourier series

employed by the algorithm for the long time-span Koshida et al (2014) data-set as the

number of Fourier terms Nk (defined in Eq. (A.0.19)) is controlled by the recurrence time

Trec. This means PyceCREAM’s Fourier series had to be manually truncated by setting

ωhigh = 0.4.

2.3 Discussion

As shown in Table 2.2, the lag estimates obtained by the modern RM algorithms are

approximately the same order as those obtained by the cross-correlation methods which

indicates that the modern RM algorithms have generally good agreement with the tra-

ditional methods. We found good agreement between all algorithms in the BLR regime

however Javelin overestimated with respect to PyROA and PyceCREAM in the torus and

accretion disc regimes. This could be an indication that the limits we specified in the

lag space were too wide, producing wide, under-constrained lag distributions extending

too far into longer lags thereby biasing the estimates to be larger than expected. This is

further indicated by the large uncertainties obtained by Javelin (particularly in the accre-

tion disc regime) which were larger than the uncertainty estimates made by PyROA even

though Javelin likely underestimates the photometric error-bars with respect to PyROA.

Alternatively, the disagreement between Javelin and PyROA in the torus regime could be

attributed to the difficulties encountered by PyROA in interpolating across the relatively

poor cadence in the Koshida et al (2014) data (which had an average cadence ∼ 10% of

the lag). To allow PyROA to more easily interpolate across the gaps, and avoid the over-

fitting seen in Figure 2.3(b), we increased the prior on the width of the Gaussian window

function to 10 ≤ ∆ ≤ 30 days to create a more strongly blurred fit in Figure 2.3(a). This

may have decreased the accuracy in the lag estimation due to the smoother fit being less

sensitive to shorter timescale variability in the data.

The erroneous fit produced by PyROA in Figure 2.3(b) used the default Gaussian win-

dow function uniform prior width 0.01 ≤ ∆ ≤ 10 days for the Dirac delta transfer function

and indicates some over-fitting of the data which resulted in a lag estimate strongly bi-

ased towards zero days. Over-fitting would result in the model fitting noise inherent in

the data-set which would be expected to bias the lag estimate towards zero as white noise
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time series would become indistinguishable from each-other. The over-fitting is likely a

consequence of the relatively poor cadence present in the Koshida et al (2014) data-set

which provided PyROA with a large incentive to over-fit the data in order to minimise

the BIC by minimising the χ2 term so as to compensate for the large regions of the fit

lacking data. As is clear from Eq. (A.0.11) and (A.0.13), the number of effective param-

eters (which determines the smoothness of the fit) is controlled by the Gaussian window

width ∆. In this case the default prior for the Gaussian window width 0.01 ≤ ∆ ≤ 10

was too small for the Occam’s razor term in the BIC to provide much resistance in en-

couraging a smoother fit. The susceptibility of PyROA to over-fitting compared to Javelin

and PyceCREAM is likely due to the differences in their fitting techniques. Javelin and

PyceCREAM both fit models of AGN variability to the data (ie. a DRW and the thin

disc model respectively) whilst PyROA fits the data directly (essentially using a weighted

mean). As such, PyROA may be more prone to over-fitting poorly sampled data. Our

results suggest that the correction for over-fitting in PyROA is to increase the degree of

blurring in the fit.

The worst agreement between the algorithms was found in the accretion disc regime

as seen in Figures 2.4, 2.5 and Appendix B.6. This may be as a result of the poor suitabil-

ity of the Dirac delta and top-hat transfer functions used by PyROA and Javelin in the

accretion disc RM regime. Javelin uses the top-hat transfer function to offset the com-

plexity introduced into the fitting procedure by the presence of inverse matrices in the fit

(evident in Eq. A.0.6) to run a so-called ’fast method’ (see Rybicki, G. B. & Press, W. H.

1995). Javelins dependence on this ’fast method’ improves its functionality but hampers

the physical meaningfulness of its model. This can be expected to be most significant

for accretion disc RM where a physically motivated transfer function can be derived from

(1.12) which, as shown in Figure 1.5, is characterised by an asymmetric shape fundamen-

tally different to the top-hat.

Interestingly, PyROA showed no significant difference in the lag estimates obtained

by the Dirac delta transfer function and the more physically meaningful Log-Gaussian

transfer function for the Edelson et al (2019) data as seen in Figure B.6. In addition, we

found no significant change in the PyceCREAM lag estimates between using the accre-

tion disc and top-hat transfer functions. This makes it unlikely that the inconsistencies

in the lag estimates made by Javelin and PyROA with respect to PyceCREAM in the

accretion disc RM regime is due to the inconsistencies of their transfer functions with
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the expected thin accretion disc transfer function. It also indicates that the increased

versatility of PyROA through being able to accommodate multiple transfer functions is

not very significant. Instead, the difference is likely due to the fact PyceCREAM infers a

driving light-curve whilst PyROA and Javelin must assume that the shortest wavelength

input light-curve is the driver (in this case the W2 band). This would also explain the

fact PyceCREAM overestimated the lags for the Edelson et al (2019) data with respect to

the PyROA results. By assuming the driving light-curve, which originates from near the

centre of the disc, occupies the W2 band, PyROA would estimate smaller accretion disc

sizes than PyceCREAM which makes the more physically reasonable assumption that the

driving light-curve is in the X-ray band and therefore the W2 emitting region of the disc

exists at larger distances from the SMBH.

Naively, we would expect that PyceCREAM would give the most accurate lag esti-

mates in the accretion disc RM regime due to its strong considerations for the thin disc

model. This is also suggested by the greater consistency between the PyceCREAM and

ICCF results compared with Javelin and PyROA. The markedly better performance of

Javelin and PyROA in the BLR and (to some extent) the torus regimes indicates that the

lack of ability by these algorithms to infer driving light-curves is less significant on these

larger scales where the continuum emission from the accretion disc as a whole can be well

approximated as a driving light-curve.

2.4 Summary

In this chapter we set out to compare the performance of the RM algorithms Javelin,

PyceCREAM and PyROA on the same high-quality, published data-sets spanning all

three RM regimes. This is with the intention of informing future RM campaigns on the

suitability of the algorithms in each RM regime and the significance of their limitations.

• All lag estimates were consistent in the BLR regime but were inconsistent in the

other regimes. The largest disagreement was in the accretion disk regime which we

attribute to PyceCREAM’s unique ability to infer its own driving light-curve which

would have the most significant effect on these smaller length scales.

• The disagreement between Javelin and the other two algorithms is likely a conse-

quence of Javelin returning under-constrained fits. The disagreement in the torus

regime may also be attributed to the difficulties faced by PyROA in interpolating
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over the large cadence.

• No significant difference was found in lag estimates made by PyROA and Pyce-

CREAM using different transfer functions.

34



CHAPTER 3

Accretion disc Reverberation Mapping for 3C 273 and 1H 2106-099

In this section the results of the first accretion disc RM campaigns on the AGN 3C 273

and 1H 2106-099 are analysed and discussed. The results of this analysis are of scientific

importance as it will be the first time RM is used to probe the accretion disc structure of

these two AGN. In particular, 3C 273 is of historical importance due to its role as the first

discovered quasar and has been heavily observed since its discovery meaning the unique

insights provided by this study will be a valuable addition to the wealth of literature on

this object. Conversely, the relative lack of previous observational data on 1H 2106-099

makes this study valuable as it will be (as far as I know) the first in-depth insight into

the accretion disc structure of this object. Obtaining insight into the structure of the

accretion discs of these objects is of physical significance as it will indicate how well they

each conform to the thin disc model. Differences between the results of this analysis and

the expected thin disc relationship will be significant as it could indicate new accretion disc

physics. In addition, the scale of the obtained lag measurements relative to the predicted

values could provide insight into the commonly observed ’accretion disc size problem’.

As a result of the analysis carried out below, we also hope to make lag predictions

for the JHK near-infrared bands for both objects which can be tested by future near-

infrared RM campaigns. For 3C 273, there is also discussion in the literature about

the significance of the jet emission in the optical spectrum. Therefore, a secondary aim

of the RM analysis on this object is to address this with new data. In addition to its
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scientific importance, this investigation (as far as I know) will be the first time PyROA,

PyceCREAM and Javelin have all been run on new RM data meaning it will serve as a

unique comparison of the relative performance of these algorithms. The result of these

comparisons should be of practical importance for informing future RM campaigns. The

analysis done in this chapter is part of a planned publication. For the following analysis,

we assume cosmological parameters H0 = 70kms−1Mpc−1, Ωm = 0.3 and Ωλ = 0.7.

3.1 Target Selection

3C 273 was selected for this study as it is the brightest nearby quasar which previous

studies (e.g. Sturm et al 2018; Kaspi et al 2000) have found to have large total length scales

making it an attractive target for accretion disc RM. During the course of observations,

well structured light-curves for the AGN 1H 2106-099 were also obtained thereby meriting

its inclusion into this study. 3C 273 and 1H 2106-099 have very different properties to

each other with 3C 273 existing as a more distant, more luminous Quasar than the Seyfert

1 galaxy 1H 2106-099. In addition, 3C 273 possesses a radio jet whilst 1H 2106-099

has been observed as a strong X-ray emitter. These stark differences make this study

useful in comparing the accretion disc structure of different types of AGN as well as the

performances of the RM algorithms in different luminosity and variability regimes. Some

basic properties of both sources are summarised in Table 3.1.

Object Redshift Black Hole Mass Bolometric Luminosity

z (M⊙) (ergs−1)

3C 273 0.158 8.9 ×108 1046.66

1H 2106-099 0.027 2.3 ×107 1045.10

Table 3.1: A summary of the properties of 3C 273 and 1H 2106-099. Here the SMBH
mass and bolometric luminosity estimates are obtained from Landt et al (2011).

3.2 The Observations

The observational data for this study were obtained from the Las Cumbres Observatory

(LCO) (Brown et al 2013). LCO is a global network of 25 telescopes which can provide

almost continual monitoring making it uniquely well suited for time domain astronomy

campaigns. Our data-set was collected by 1m telescopes containing a Sinistro camera
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instrument which monitored 3C 273 in the Bessell UBV filters, the SDSS g’, r’, i’ filters

and the Pan-STARRS zs filter. The source 1H 2106-099 was similarly monitored in the

Bessell U filter, the SDSS g’, r’, i’ filters and the Pan-STARRS zs filter. This provided

observational data spanning the UV to the near infrared over an observer wavelength range

3500Å−8700Å. The full light-curve data for both objects is shown in Figure 3.1 and Table

3.2 summarises the properties of the two data-sets. As can be seen, the light-curve data
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(a) The full selection of 3C 273 light-curves
observed between January 2019 to April 2022.
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(b) The full selection of 1H 2106-099 light-curves
observed between June 2019 to November 2019.

Figure 3.1: The complete light-curve data for 3C 273 and 1H 2106-099. Flux units are in
mJy and wavelengths are quoted in observer frame.

Object Mean Cadence Observing Period Number of observations

(days) (days)

3C 273 0.583 1212.9 2096

1H 2106-099 0.553 146.4 491

Table 3.2: A summary of the properties of the 3C 273 and 1H 2106-099 light-curve data.
The values are averaged over each of the filters.

obtained in this investigation is very high cadence (with ∼ 75% of the 3C 273 data and

∼ 50% of the griz 1H 2106-099 data having mean cadences of less than five minutes) and

spans long observing periods relative to the expected lags of the order of days to weeks.

37



Figure 3.2 shows the optical and near-infrared spectrum of 3C 273 taken from Landt

et al (2011) in rest frame wavelength. Included are the LCO filter wavelength centroids

and widths used to monitor 3C 273 in our campaign in order to give an indication of

the parts of the spectrum sampled by our light-curves. It should be mentioned that the

observed down-turn in the flux at the UV end of the spectrum is simply a feature of the

diminished sensitivity of the spectrograph in this wavelength regime. Table 3.3 shows the

estimated contamination levels by the BLR and radio jet for the accretion disc flux at

each of the LCO filters. This revealed only significant contamination levels for the V

Figure 3.2: Optical and near-infrared spectrum of 3C 273 taken from Landt et al (2011).
Shown are the filter centres and widths used to obtain our light-curve data.

Filter Percentage Contamination

B 2%

G 7%

V 23%

R 9%

Z 28%

Table 3.3: Estimates of the optical and near-infrared contamination for each of the fil-
ters used to monitor 3C 273. Here the I band contamination will be dominated by the
strong Hα emission line expected to occupy the spectral gap although estimates cannot
be obtained due to the gap.

and Z bands although this appears to have had no noticeable effect on the RM results.

It should be mentioned that the contamination levels were estimated assuming the LCO

filters were equally sensitive across their entire width. This is unlikely as we would expect

the sensitivity to diminish towards the edges of the filter width meaning the contamination
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estimates in Table 3.3 are upper limits. The source of the V band contamination is the

strong Hβ broad emission line evident in Figure 3.2. The Z band contamination likely

originates from the jet which we think is likely contaminating the I band at similar levels

and is probably the cause of the small bump at ∼ 7400Å seen in Figure B.9. The I band

filter for 3C 273 is also expected to be strongly contaminated by the Hα line visible in the

spectrum of 1H 2106-099 in Figure 3.3 which would be located within the spectral gap for

3C 273 due to its larger redshift.

Figure 3.3 shows the optical and near-infrared spectrum of 1H 2106-099 taken from

Landt et al (2011) in rest frame wavelength along with the LCO filter wavelength centres

and widths. Table 3.4 shows estimates for the contamination levels in each of the measured

photometric bands. This revealed significant contamination levels in all filters due to the

characteristically strong emission lines in 1H 2106-099. In particular, the R band faces

very strong contamination from the large Hα line. The effect this may have on the lag

estimates is discussed later. A detailed explanation of our method for estimating the

contamination levels using Figure B.9 and B.17 is given in Appendix B.2.1.

Figure 3.3: Optical and near-infrared spectrum of 1H 2106-099 taken from Landt et al
(2011). Shown are the filter centres and widths used to obtain our light-curve data. The
strong Hα line is evident.
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Filter Percentage Contamination

U 10%

G 22%

R 75%

Z 21%

Table 3.4: Estimates of the optical contamination for each of the filters used to monitor
1H 2106-099

3.3 3C 273

3.3.1 Theoretical lag estimates

To get an indication of the expected form of the spectrum in 3C 273, we generated simu-

lations of the accretion disc spectrum expected from the thin disc model. An example of

the obtained spectrum is shown in Figure 3.4. As can be seen the spectrum is peaked in

approximately the short wavelength UV as expected and mimics the standard black-body

shape, trailing off at larger radii which are expected to be cooler and therefore emit at lower

fluxes and longer wavelengths. The simulation also shows the effect of including/excluding

the boundary condition in Eq. (1.4). As expected, the two solutions approach one another

for r >> rISCO but there is significant differences at smaller radii. In particular, without

the boundary condition the spectrum is non-zero below rISCO which is unphysical. The

Figure 3.4: A simulation of the expected spectrum for the quasar 3C 273 generated using
the thin disc model. Fits with and without the boundary condition are shown. For more
information on how this spectrum was generated please see Appendix B.2.2.

simulation was built using Plancks function with the thin disc temperature-radius relation
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Eq. (1.4) and Wien’s law defined as

λmax =
hc

kBXT
. (3.1)

Here h is Planck’s constant, kB is Boltzmann’s constant, c is the speed of light and X

is a dimensionless scale factor which we set at the standard value X = 4.96. See Ap-

pendix B.2.2 for a detailed description of how we designed the simulation. Our use of the

standard X value may limit the realism of the simulation (see below). In addition, the

physical meaningfulness of the simulation will be hampered by the assumption that the

entire spectrum of the accretion disc is Planckian. This assumption is likely to be prob-

lematic for the inner accretion disc where Compton scattering is expected to be dominant

but is probably acceptable for the optical part of the spectrum observed by our study.

The simulation was ran with and without the boundary condition term in the thin disc

model relation Eq. (1.4).

Figure 3.5 shows the expected spectral locations of the centroid wavelengths of the

LCO filters used to monitor 3C 273 in our campaign plotted onto our thin accretion disc

simulation. By re-plotting this into a logarithmic form over the spectral range investi-

gated in this campaign, estimates for the accretion disc power law scaling factor β can

be obtained using the thin accretion disc relation logλFλ ∝ βlogλ. The expected values

of β from the simulation, both with and without the boundary condition term, are pre-

sented in Table 3.5. As can be seen, both simulated values are close to the theoretical

value of |β| = 4
3 . Here, the small difference can probably be attributed to the relatively

low resolution of the simulation although a slightly shallower value is expected from the

unapproximated simulation as the boundary condition shifts the spectrum peak to longer

wavelengths leading to a shallower descent.

Figure 3.6 shows a real logarithmic spectrum taken from Landt et al (2011) for 3C

273. Here the near infrared spectrum has been normalised around the 1µm wavelength as

done in Landt et al (2011). A linear fit is done to the spectrum as shown which generated

a measured power law exponent β estimate stated in Table 3.5. The linear fit and uncer-

tainty was determined by scipy ’curve-fit’ module. This measured β estimate is shallower

than the approximated thin disc model value |β| = 4
3 by more than 5σ. The measured β

value is more consistent with the shallower value predicted by the unapproximated thin

disc model which seems to be reflected in the RM results (see below). This suggests the

simulation is reasonably realistic despite its assumptions. In fact, we believe the uncer-
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(a) Simulated spectrum with the expected
location of the LCO filter rest wavelengths for
3C 273.

(b) Simulated spectrum for 3C 273 in logarithmic
space.

Figure 3.5: Simulated accretion disc spectrum for 3C 273 in linear and logarithmic space.

tainties estimated by ’curve-fit’ are likely underestimated as the algorithm did not fully

account for the influence of the strong broad emission lines on the linear fit. When the

linear fit is repeated allowing the broad emission lines to have a greater influence on the

fit we find the uncertainty on the β estimate more than doubles to |β| = 1.02 ± 0.13

which is now consistent with the unapproximated thin disc model simulation although the

difference with the approximated thin disc value does not seem to be very significant. A

more detailed spectral study of 3C 273 with a more sophisticated error analysis would be

needed to confirm this result.

Figure 3.6: Spectrum of 3C 273 taken from Landt et al (2011) plotted in a logarithmic
form. A linear function is fit which returns a measured power law exponent β = 1.04±0.05
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Spectral value Simulated value
With boundary condition Without boundary condition

|β| 1.04± 0.05 1.15 1.29

Table 3.5: A summary of the estimated magnitude of β values obtained from the spectral
fit in Figure 3.6 and the simulations in Figure 3.5.

For the following RM analysis, predicted absolute lag estimates were derived for each

of the LCO filters used to monitor 3C 273 using the thin accretion disc model. These lag

predictions are included in Table 3.6. To do this, the mass accretion rate was estimated

from Eq. (1.1) using the bolometric luminosity Lbol = 1046.66ergs−1 measured by Landt et

al (2011) and the standard efficiency η = 0.1. Temperature estimates were then obtained

for the regions of the accretion disc emitting at each of the LCO monitored wavelengths

using Wiens law Eq. (3.1) in rest frame. This was done both with the standard value

X = 4.96 and with estimated X values tailored to 3C 273 following the approach of Mudd

et al (2018) (see Appendix B.2.3 for the derivation of the X values and an explanation

of their necessity). This enabled the radial extent of each of the monitored parts of the

accretion disc to be estimated using the thin disc temperature-radius relation Eq. (1.4)

which was converted to a time lag estimate using Eq. (1.9) by assuming a face-on disc. For

this the SMBH mass in Table 3.1 was used and a Schwarzschild black hole was assumed

meaning rISCO = 3rg. The lag estimates were obtained with the inclusion of the bound-

ary condition term because the simulation Figure 3.3 indicated a significantly different

accretion disc emission behaviour in the optical without it.

Filter Lag Prediction (days)
X = 4.96 Xnew

U 8.85 8.92

B 12.00 10.54

G 13.57 11.46

V 16.37 13.09

R 19.50 15.06

I 25.40 18.66

Z 30.83 22.04

Table 3.6: Absolute lag predictions for the regions of the accretion disc in 3C 273 emitting
predominantly in each of the LCO filters. Two sets of predictions are obtained using the
standard X = 4.96 and a new set of X values derived following the approach of Mudd et
al (2018).
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3.3.2 Algorithm results

As can be seen in Figure 3.1(a), the light-curve for 3C 273 was divided into four distinct

observing epochs due to seasonal interruptions in the campaign. To obtain more accurate

lag estimates, we decided to analyse the epochs separately so as to remove the large data

gaps from the light-curve fits (which Chapter 4 indicates could increase the uncertainty

of lag estimation). A clear long timescale trend can also be seen in the light-curve which

has also been detected by previous campaigns (e.g. Zhang et al 2019). Linear detrending

was done to the third and fourth epochs in Figure 3.1(a) by subtracting fitted linear

polynomials from the data in order that any biasing effects on lag estimation could be

removed. This could not be done satisfactorily for the first and second epochs due to

their non-trivial trends. Linear detrending was unnecessary for the use of Javelin but was

still done for the sake of consistency with the rest of the analysis. The U band data-set

in Figure 3.1(a) was also excluded from the following analysis due to problematic fits

obtained during preliminary analysis. This is likely a result of its excessively noisy nature.

For the following analysis each of the differential lag values is made with respect to the

B filter which, as the shortest wavelength input light-curve, is assumed as the driving

light-curve.

PyROA

The differential lag estimates and uncertainties derived from PyROA for each of the fil-

ters used to monitor 3C 273 and across all four epochs is shown in Table 3.7 which also

includes the lag predictions converted into differential form. The lag estimates were ob-

tained using the default Dirac delta transfer function with a wide Gaussian window width

uniform prior 20 ≤ ∆ ≤ 30 days to impose a strong degree of blurring (see below for

explanation). The uniform lag prior was set at 0 ≤ τ ≤ 100 days to include up to 4× the

largest lag prediction in order to accomodate the potential appearance of the ’accretion

disc size problem’ which can inflate predicted lags up to 2− 4× their expected value. For

each of the light-curves, the lag parameter Markov chains were initialised at the standard

predicted values corresponding to the second column in Table 3.6 so as to achieve faster

convergence. Ultimately there was no significant difference between the lag estimates in

Table 3.7 and those obtained using the default initialisation values of 0 days. The PyROA

lag estimates were obtained using 50,000 iterations in the MCMC sampler to ensure good

convergence as demonstrated in the narrow distributions in Figure 3.7.

44



Filter Lag Estimates (days) Lag Prediction (days)
Epoch 1 Epoch 2 Epoch 3 Epoch 4 X = 4.96 Xnew

B 0 0 0 0 0 0

G 1.85+0.98
−0.98 1.33+1.08

−0.97 4.00+1.77
−1.96 52.86+4.07

−6.04 1.57 0.92

V 3.00+1.13
−1.02 2.26+2.02

−1.60 7.15+1.79
−1.84 62.25+5.26

−13.67 4.37 2.55

R 5.03+2.86
−0.92 2.31+6.18

−1.41 15.02+1.71
−2.07 92.21+3.70

−6.13 7.50 4.52

I 8.10+5.43
−1.07 6.28+11.26

−1.64 17.94+2.94
−2.37 94.62+3.51

−7.21 13.40 8.12

Z 9.66+4.76
−1.45 6.22+12.80

−1.50 33.19+2.09
−2.36 98.99+0.77

−2.96 18.83 11.50

Table 3.7: Differential lag estimates obtained by PyROA with respect to the B band over
all four observing epochs. Also included are the differential lag predictions

The fourth epoch generated unrealistically large lag estimates which is likely a result

of the lack of any clear features in this epoch for PyROA to anchor onto. This would

present difficulty for the fitting of this epoch and the lag estimates associated with this fit.

The second epoch generated lag estimates which are consistent with the Xnew predictions

but only as a result of its large uncertainties. In addition, the distributions obtained for

the second epoch had multiple peaks which indicates poor convergence. The first epoch

generated reasonable lag estimates consistent with the standard X = 4.96 predictions

at the upper end of its uncertainty limits but which are more consistent with the Xnew

lag predictions. Reasonable lag estimates were also obtained by the third epoch which,

whilst inconsistent with both sets of lag predictions, are completely consistent with the

commonly observed ’accretion disc size problem’ where accretion disc RM campaigns reg-

ularly obtain lag estimates a factor ∼ 2 − 4 larger than predicted. We consider the lag

estimates obtained by the third epoch to be more reliable due to the fact that most of

the lag distributions output by the first epoch data-set contained secondary peaks located

at the approximate values of the lag estimates obtained from the third epoch. This indi-

cates that the algorithm converged better with the third epoch data-set and that the first

epoch data-set returned secondary solutions which are consistent with the third epoch lag

estimates. In addition to this, our inability to detrend the first and second epochs may

mean some biasing effects are present in their lag estimates (although the first epoch does

appear stationary). Performing the subsequent analysis with the first epoch lag estimates

returned results which are completely inconsistent with the rest of the analysis which is

a further indication of its unreliability. The third epoch has the longest observing pe-

riod meaning, based on our conclusion from Chapter 4, it can be expected to give the

most accurate lag estimates. This appears to be the case based on the fact the relative
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uncertainties obtained by the third epoch are on average smaller than the other epochs.

For these reasons, the following 3C 273 analysis is done using the third epoch but with

the recognition that the results from the first epoch are reasonable albeit less reliable.

The fit and corner plots generated by PyROA for the third epoch are shown in Figures

3.7 and B.12 respectively. It should be mentioned that the fit in Figure 3.7 was done by

initialising the lag for the Z band at its preferred lag of 30 days. This had no effect on the

lag estimates but produced clearer corner plots.

Figure 3.7: PyROA fit to the bgriz detrended, third epoch light-curves obtained for 3C
273. Flux values are in mJy.

It should be mentioned that the PyROA fits obtained in Figure 3.7 required a strong

blurring prior. When the default Gaussian window width uniform prior 0.01 ≤ ∆ ≤ 10

days was used, fits hugging much closer to the data were obtained which generated er-

roneously small inter-band lag estimates for several filters. This indicates that there is a
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biasing effect present in the fits which is more significant at lesser blurring. To assess the

significance of this biasing effect across the different filters, PyROA was run separately on

the bgv and the riz light-curves with the Dirac delta transfer function with the default

blurring prior. The lag Markov chain for each light-curve was initialised to start half-

way between the alias peak and the expected peaks from Figure 3.7 to allow them equal

opportunity to converge to either peak. The results for the fits are shown in Appendix

Figure B.15. Interestingly, the MCMC chains for the bgv fits converged to the expected

lags whilst the riz fits converged to the alias peaks. This suggests that the biasing effect

is stronger for the longer wavelength filters.

A physical explanation for this biasing effect could be the presence of optical contam-

ination from the jet emission in 3C 273. If significant, this would be expected to bias the

differential lags towards zero as the jet would vary in flux almost simultaneously across its

optical bands (see Ghisellini et al 2017). Paltani et al (1998) found that the optical and

UV light-curve data from 3C 273 was well described by decomposing it into two compo-

nents of variability. The B component is a shorter timescale variability component which

dominates the UV and short wavelength optical which Paltani et al (1998) attributes to

emission from the accretion disc. The R component is a longer timescale variability com-

ponent which dominates the infrared and near-infrared optical which Paltani et al (1998)

attributes to emission from the jet. The SED’s estimated by Paltani et al (1998) for the B

and R components demonstrate that the I and Z optical bands monitored in our campaign

would be expected to have the strongest contamination from the jet. This could naively

explain the stronger biasing effect we detected for the I and Z filters. However, Paltani

et al (1998) estimated the timescale of variability for the B component as ≤ 2 years with

the R component being significantly longer. In fact, estimates for the variability timescale

of the R component could not be obtained as they did not measure a full period over

their 10 year data-set. This means even if the R component is strongly contaminating

our I and Z light-curves, as the high contamination estimates in Table 3.3 suggests, it will

almost certainly not introduce any variability over the short observing period of the third

epoch and so should have no real effect on the lag estimates obtained. Another possible

explanation for the bias could be a result of intra-day jet variability detected in optical

measurements of 3C 273 by Xiong et al (2017) which, if present in our light-curves would

bias the lag estimates towards zero. However this is unlikely to be significant for reasons

discussed in Appendix B.2.5.
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To investigate the origin of the trend seen in our light-curve data, we fit the quasi-

periodic variability with Sine functions which returned periods ∼ 3 years which is much

shorter than Paltani et al (1998)’s expected variability timescale of the R component but

is much more similar to the estimated timescale of the B component (albeit a little longer).

In fact, spectral observations of 3C 273 by Yuan et al (2022) found that the continuum

accretion disc emission had quasi-periodic variability on a timescale ∼ 3.39±1.13 years in

good agreement with our trend fits. This suggests that the origin of the trends in our light-

curve data is from the accretion disc which is further supported by the apparent identical

trend present in our U band light-curve which should have no significant jet component.

See Appendix B.2.4 for a detailed explanation of this procedure.

To investigate the behaviour of the trend across the four different epochs, the optical

3C 273 spectrum taken from Landt et al (2011) was normalised to each epoch of the pho-

tometric light-curve data in Figure 3.1(a). To do this, the spectrum was normalised to the

mean flux from the B band (selected due to its low contamination estimate) and the mean

fluxes of the remaining six filters were plotted onto the normalised spectrum. This was

done for all four epochs. The normalised spectra obtained for the four epochs is shown in

Figure 3.8. As can be seen the photometric data maps well onto the spectrum. Plotting

the photometric data points into a logarithmic form using ’lmfit’ allowed estimates to be

obtained for the power law exponent β from the thin disc relation λfλ ∝ λ−β for all four

epochs. These results are shown in Table 3.8. It should be mentioned that the linear fits

obtained in Figure 3.8 were done with the exclusion of the I band which is assumed to be

anomalous due to the RM results and the bolometric luminosity estimates explained in

the Discussion.

Epoch β estimate

1 0.91± 0.09

2 0.93± 0.08

3 0.89± 0.10

4 0.96± 0.09

Table 3.8: Estimates for the exponent β from the thin disc power law λfλ ∝ λ−β by
normalising the spectrum from Landt et al (2011) around the photometric light-curve
data for each epoch in Figure 3.1(a).

As can be seen the β estimates from this photometric approach are all consistent

with the shallower β values estimated from the PyROA RM results (see Discussion) and

the spectral fit when the uncertainties are considered and are all inconsistent with the
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Figure 3.8: Normalising the optical spectrum from Landt et al (2011) onto our photometric
light-curve data using the B band. This was done for all four epochs.

classic thin disc model value β = 4
3 by a significant ∼ 4σ although the uncertainties are

likely underestimated. Therefore, the results in Table 3.8 seem to prefer a shallower β

value as obtained elsewhere in the analysis although, as before, it is not clear whether the

difference with the approximated thin disk value is significant. Table 3.8 also indicates

that the third epoch has the strongest jet contamination as it generated the smallest β

magnitude which corresponds to the greatest ’redder when brighter’ (RWB) behaviour.

This is despite the fact that we considered the third epoch to have generated the most

reliable RM results which were fully consistent with the spectral analysis and the simu-

lation (which had no considerations for the jet). As such these results, along with the

spectral power laws derived from the RM results (see Discussion), are a further indication

that jet contamination would not have any significant effect on the analysis. Interestingly,

the distribution of the β estimates across the four epochs closely tracks the form of the

trend in our light-curve data. This further indicates that the trend does not originate

from long-timescale jet variability but acts to drown-out the jet signal thereby explaining

why epochs high in the trend demonstrated less RWB behaviour.

A more likely explanation for the bias in the PyROA lag estimates with default blur-

ring is a result of PyROA over-fitting the light-curve data. Figure B.11 shows the mag-

nitude of the residuals for the B band light-curve data with respect to the model PyROA

fit in Figure 3.7. As can be seen, the residuals show no discernible pattern and appear

as white noise meaning the apparent intra-day variability seen in our 3C 273 light-curves

is likely to be majority noise. As a result, the erroneous PyROA fit we obtained with
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the default blurring likely resulted in the algorithm fitting noise and returning lag esti-

mates biased towards zero as a result of the model fits approaching a white noise form and

becoming indistinguishable from each-other. Appendix Table B.2 shows the ratio of the

amplitude of the model variability fit in Figure 3.7 to the average magnitude of the residu-

als for each of the six data-sets. As can be seen, the magnitude of these residuals is similar

in scale to the amplitude of the variability fit by the algorithm which is a consequence of

the relatively featureless form of the 3C 273 light-curve data in our study. As a result,

the scale of the noise appears significant compared to our estimate of the magnitude of

the real variability which means PyROA would face a strong penalty from the χ2 term in

its BIC function for not fitting the noise. This explains PyROA’s tendency to overfit and

justifies the strong blurring used in Figure 3.7 to discourage the fitting of noise. Table B.2

also shows that the relative magnitude of the noise is larger for the I and Z bands which

could explain the greater lag bias we detected for these light-curves.

Javelin

The differential lag estimates and uncertainties derived from Javelin for each of the filters

used to monitor 3C 273 is shown in Table 3.9 which also includes the predicted lag values

converted into differential form. For the sake of consistency the following analysis is

Filter Lag Estimate (days) Lag Prediction (days)
PyROA Javelin X = 4.96 Xnew

B 0 0 0 0

G 4.00+1.77
−1.96 3.16+0.40

−0.60 1.57 0.92

V 7.15+1.79
−1.84 6.89+1.53

−3.29 4.37 2.55

R 15.02+1.71
−2.07 15.96+3.30

−9.49 7.50 4.52

I 17.94+2.94
−2.37 15.30+15.40

−7.63 13.40 8.12

Z 33.19+2.09
−2.36 39.65+3.13

−6.36 18.83 11.50

Table 3.9: Differential lag estimates obtained by Javelin and PyROA with respect to the
B band. Also included are both sets of differential lag predictions.

carried out on the third observing epoch of our light-curve data. The lag estimates were

obtained using the ’Rmap’ mode of Javelin using a restricted parameter lag space between

0− 4× the predicted lags so as to accommodate the potential emergence of the ’accretion

disc size problem’ as done for the PyROA analysis. Following the approach of Mudd et

al (2018), we also restricted the decorrelation timescale parameter to 50 − 300 days to

make it consistent with the typical decorrelation timescales found in (SDSS, Macleod et
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al 2010). These restrictions to the parameter space were necessary to help provide a more

constrained fit which is an especially important consideration in our case due to the large

parameter space introduced by six light-curves (17 parameters). Due to problems with

convergence in our preliminary fits, we decided to run the following analysis with a large

100,000 iterations in the MCMC sampler which is double the amount used for the PyROA

analysis. Figure 3.9 shows the fits and the distributions are in the Appendix Figure B.13.

Figure 3.9: Javelin fit to the bgriz detrended, third epoch light-curves obtained for 3C
273. Flux values are in mJy.
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PyceCREAM Results

RM analysis was attempted with the 3C 273 light-curve data using PyceCREAM however

erroneously flat fits with unphysically small lag estimates were obtained. This is a likely

consequence of the relatively featureless form of our 3C 273 light-curve data. The lack of

variability seen in 3C 273 over our observing period is not too surprising considering its

large luminosity meaning it can be expected to be larger than most quasars at its redshift

and therefore have longer timescale variability. Our results should be contrasted with the

successful PyceCREAM fits to 3C 120 done by Hlabathe, et al, (2020) which had very well

structured light-curve data and similarly the case for 1H 2106-099 discussed in the next

subsection.

3.3.3 Discussion

Figure 3.10 shows the differential lags and residuals obtained by PyROA with respect to

the B band for the third epoch plotted against the rest frame centroid wavelengths of the

LCO filters used to monitor 3C 273. Also shown is the expected power law τ ∝ λβ fitted

to the data points with scipy ’curve-fit’ with a classic thin disc model exponent β = 4
3 .

The fit was obtained by weighting the data points according to how large the uncertainties

were. As can be seen the measured lags are consistent with the classic thin disc model

once error-bars are taken into consideration. However, once the fit was repeated allowing

β to vary, the fitting software found a preferred power law fit to the PyROA data with

a shallower exponent β = 1.01 ± 0.39. This is remarkably consistent with the β value

measured from the spectrum in Figure 3.6 and has greater consistency with the unap-

proximated thin disc model β value from the simulation (with the boundary condition)

than the approximated value although the difference does not seem very significant. The

magnitude of the lags estimated by PyROA for the third epoch in Table 3.7 are a factor

∼ 2 − 3 larger than the standard X = 4.96 predictions and are ∼ 3 − 4× larger the lags

predicted by the Xnew values. Therefore, if 3C 273 conforms to the thin disc model, the

results of the third epoch suggest that it likely displays the widely observed ’accretion

disc size problem’. To obtain lag estimates consistent with the PyROA estimates, a value

X ∼ 7.4 would be required.

The fits obtained in Figure 3.10 were extrapolated into the JHK bands so that dif-

ferential lag predictions with respect to the B band could be made for the dust forming

regions of the outer accretion disc. Lag predictions were obtained for both the approxi-
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Figure 3.10: τ ∝ λβ power laws fit to the PyROA lag estimates both with the thin disc
model β = 4

3 value and a best-fit value β = 1.01 ± 0.39. The residuals are given with
respect to the best-fit power law.

mated thin-disc power law with β = 4
3 and the best-fit power law β = 1.01 ± 0.39. The

predictions are shown in Table 3.10 which have been converted to absolute lag predictions

derived by estimating the absolute B band lag using X = 7.4 to scale the accretion disc to

make it consistent with the PyROA RM results. These predictions will allow comparisons

with the results of upcoming near infrared RM campaigns on 3C 273 and should help

provide a preference between the approximated thin disc value β = 4
3 and our estimated

unapproximated thin disc value β ∼ 1.

Figure 3.12 shows the differential lags and residuals obtained by Javelin and PyROA

with respect to the B band plotted against the rest frame centroid wavelengths of the fil-

ters used to monitor 3C 273. As done with the PyROA analysis, a classic thin disc power

law with exponent β = 4
3 and a best-fit power law with an unfixed β were fit to the data

points using scipy ’curve-fit’ weighted by the uncertainties. As can be seen, the measured

lags fit well to the classic thin disc model once error-bars are considered. Interestingly, the

plotting software preferred a power law fit with a steeper exponent β = 1.59±0.29 for the

Javelin data which is still consistent with the classic thin disc model within its uncertainty
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Filter Lag Prediction (days)
PyROA Javelin and PyROA

β = 4
3 β ∼ 1.01 β = 4

3 β ∼ 1.16

J 110.2 99.4 115.2 108.9

H 161.2 136.1 167.7 153.0

K 235.1 184.6 243.7 214.0

Table 3.10: Absolute lag predictions for the JHK emitting regions of the accretion disc in
3C 273 interpolated from Figures 3.11 and B.14 for the PyROA and the combined PyROA
and Javelin RM results. The lag predictions were converted to absolute form by estimating
the absolute lag of the B band as ∼ 21.6 days using X = 7.4 and ∼ 24.0 using X = 8.0 to
scale the accretion disc to make it consistent with the PyROA and the combined PyROA
and Javelin RM results respectively.

(a) Extrapolation of the thin disc β = 4
3

power law.
(b) Extrapolation of the best-fit β ∼ 1.01 power
law.

Figure 3.11: Extrapolations of the classic thin disc and best-fit power laws fit to the
PyROA RM results into the near-infrared JHK regime. This allowed lag predictions in
Table 3.10 to be made.

range. However, this value is inconsistent with the shallower β values preferred by the

PyROA RM results, the spectral fit, the photometric method and the simulation.

With both the PyROA and Javelin results, the plotting software fit a power law

(weighted by the uncertainties) to Figure 3.12 with a shallower exponent β = 1.16± 0.25

which is consistent with both the shallower β values obtained by the previous analysis and

with the approximated thin disc model within its uncertainty range. In particular, this

value is very close to the unapproximated thin disc model estimate from the simulation

with the inclusion of the boundary condition term. The magnitude of the lag estimates

returned by Javelin in Table 3.9 are a factor ∼ 1.5−2 larger than the lags predicted by the

standard X = 4.96 method and a factor ∼ 3−4 larger than those predicted using the Xnew

values. Therefore, if 3C 273 conforms to the thin disc model, the Javelin results agree with
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the PyROA results in indicating that it likely displays the ’accretion disc size problem’. To

obtain lag predictions which reflect the Javelin results, a value X ∼ 8.6 would be required.

As was done with the PyROA analysis, the thin disc and best-fit power law fits in Figure

3.12 were extrapolated into the JHK regime so as to obtain lag predictions for the dust

forming parts of the accretion disc as shown in Figure B.14. The lag predictions for the

combined Javelin and PyROA results for both β = 4
3 and β = 1.16 ± 0.25 are shown in

Table 3.10. To convert these to absolute lag values, the absolute B band lag was estimated

using X = 8 to scale the accretion disc to make it consistent with the combined PyROA

and Javelin results. This X value was averaged over the X ∼ 7.4 and X ∼ 8.6 values

returned for the PyROA and Javelin RM results respectively.

Figure 3.12: τ ∝ λβ power laws fit to the combined Javelin and PyROA lag estimates both
with the thin disc model β = 4

3 value and a best-fit value β = 1.16± 0.25. The residuals
are given with respect to the best-fit power law. Also shown is the theoretical power law
expected from the lag predictions using X = 4.96.

It should also be mentioned that none of the bias apparent in the PyROA lag estimates

with default blurring were present in the Javelin fits. This is probably due to the pre-

liminary fits done to the driving light-curve in Javelin which calibrates the decorrelation

timescale to be the same order as the median sampling interval of the data. This would

act to discourage Javelin from over-fitting the noise as likely happened in PyROA. Our

restriction of the decorrelation timescale to 50− 300 days also likely helped on this front.
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It is also clear from Table 3.9 that Javelin returned lag estimates with much larger uncer-

tainties than the PyROA estimates which are as a result of the poorer convergence in the

Javelin lag distributions despite the much larger number of iterations used. This matches

observations made in Chapter 2.

The fits obtained in Figures 3.10 and 3.12 were done with the exclusion of the I band

data point. This was because this data point appeared anomalously small which is most

obvious from the residuals. The anomaly is unlikely to come from contamination as the

main source in 3C 273 which can bias lags to smaller values is the jet which is unlikely to

have any significant effect on lag estimates (see below). The model fits for the I band in

Figures 3.7 and 3.9 appears to slightly lag behind the data which indicates the anomaly

could be a fitting issue. Table B.2 reveals that the I band light-curve has the largest

average noise magnitude relative to the amplitude of the fitted signal meaning a likely

source of the anomaly is the significant noise in this data-set obscuring the light-curve

signal. However the estimated significance of the noise in the I band is similar to that in

the Z band meaning we are probably not fully accounting for the cause of the apparent

anomaly.

Bolometric luminosity estimates were derived for each of the bgriz filters in the com-

plete light-curve data in Figure 3.1(a). This was done by scaling the unapproximated 3C

273 simulated accretion disc spectrum in Figure 3.3 to the average flux in each light-curve

in Figure 3.1(a). The bolometric luminosities were estimated by integrating the area un-

der the resultant curves and are shown in Table 3.11. As can be seen, the approximate

estimates all fall within a factor∼ 1.5 the value measured in Landt et al (2011) (given in

Table 3.1) except for the value estimated by normalising to the I band flux which is a factor

∼ 2 larger. Interestingly, the filters providing the largest bolometric luminosity estimates

coincide with the most heavily contaminated filters in Table 3.3 (with the exception of

the I band for which no contamination estimates could be obtained). This heavily implies

that the I band flux has significant contamination which most likely originates from the

jet. These findings show a possible method of obtaining crude contamination estimates in

the absence of spectral data.

The results of the spectral fit in Figure 3.6, the photometric investigation shown in Figure

3.8 and the PyROA and combined PyROA and Javelin RM results all indicate that the

expected spectral power law λfλ ∝ λ−β followed by the accretion disc of 3C 273 has a

slightly shallower exponent β ∼ 1 than expected by the approximated thin disc model
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Filter Lbol (ergs
−1)

B 5.9× 1046

G 5.8× 1046

V 7.0× 1046

R 6.8× 1046

I 9.4× 1046

Z 7.2× 1046

Table 3.11: Bolometric luminosity estimated made for 3C 273 using each of the LCO filters
used in the campaign. An estimate Lbol = 4.57× 1046ergs−1 was obtained in Landt et al
(2011).

where β = 4
3 although the difference may not be very significant. This finding is consis-

tent with our more physically correct unapproximated thin disc model simulation (with

the inclusion of the boundary condition) which is in agreement with the RM results and

the spectral fit within the updated uncertainty range and has a particularly close agree-

ment with the combined PyROA and Javelin RM results. Interestingly Fausnaugh et al

(2016) found a similar best-fit β ∼ 1 value for the accretion disc power law during their

investigations of NGC 5548. The Javelin RM results alone preferred a steeper β value in-

consistent with the the rest of the analysis but still consistent with the approximated thin

disc model. Due to the close agreement found by the rest of the analysis and the poorer

convergence seen in the Javelin posterior distributions, we think the shallower β ∼ 1 fit is

more reliable. This value is inconsistent with the findings of Figaredo et al (2020) which,

by fitting power laws to the optical bvrz bands of 3C 273, estimated an exponent value

β = 1.34 ± 0.06 in agreement with the classic thin disc model. The results of our RM

analysis are just about consistent with the findings of Figaredo et al (2020) within the

upper limits of their uncertainty range. However, if our simulation is correct, our analysis

has a stronger agreement with the unapproximated thin disc model which takes account

of the boundary condition at rISCO although it is not clear how significant the difference

is with the approximated model. As such we think it is likely that 3C 273 conforms to

the thin disc model but that this agreement could become obscured when disregarding the

boundary condition.

If 3C 273 conforms to the thin disc model, the magnitude of the lag estimates obtained

by PyROA and Javelin indicates that it displays the ’accretion disc size problem’. This

is a widely observed phenomena in both accretion disc RM studies (e.g. Cackett et al,

2018; Fausnaugh et al, 2016) and surveys (e.g. Mudd et al 2018) whereby the scale of
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the accretion disc is a factor ∼ 2 − 3 larger than predicted. This is consistent with our

PyROA and Javelin lag estimates which are a magnitude ∼ 2−3 larger than the standard

lag prediction with X = 4.96 and are a factor ∼ 3 − 4 larger than the predictions made

with Xnew. The ’accretion disc size problem’ indicates either that our understanding of

how the radius scales with wavelength in the accretion disc is wrong or that some of the

assumptions made in obtaining the lag estimates are incorrect (e.g. mass accretion rate

or efficiency). The results of our RM lag estimates suggests that the ’accretion disc size

problem’ manifests itself as a linear scaling of the entire accretion disc. A comparison of

the lag predictions obtained using the standard approach X = 4.96 to the new approach

using estimating Xnew values outlined in Mudd et al (2018) reveals that the standard

approach yielded lag predictions more similar to the estimates obtained by PyROA and

Javelin. However the likely presence of the ’accretion disc size problem’ means that nei-

ther set of lag predictions were consistent with the estimates. As such, 3C 273 appears to

be a special case and we do not form any conclusions on which method of lag prediction

is superior until they are tested on standard AGN not displaying the ’accretion disc size

problem’.

Analysis carried out on 3C 273 by Sturm et al (2018) as part of the GRAVITY col-

laboration obtained an estimated absolute lag to the Paα emitting part of the BLR of

145± 35 days which they took as an estimate for the mean radius of the BLR. Using the

’Failed Radiatively Accelerated Dust-driven Outflow’ (FRADO) model of the formation

of the BLR explained by Czerny et al (2015), we obtained an absolute mean lag estimate

for the BLR of 173.3± 11.3 days using our PyROA RM results by interpolating our best

fit power law Figure 3.11(b). Similar absolute lag estimates for the BLR of 191.4 ± 22.6

days are obtained using the best-fit combined PyROA and Javelin RM results in Figure

B.14(b). This should be contrasted with the mean BLR lag estimates obtained using the

PyROA and combined PyROA and Javelin RM results with approximated thin disc model

fits (β = 4
3) in Figures 3.11(a) and B.14(a) which gave absolute lag estimates 217.4± 17.7

and 215.4±28.4 days respectively. Therefore we obtain mean BLR lag estimates consistent

with the values measured by Sturm et al (2018) when using our shallower β ∼ 1 power

laws and get inconsistent estimates when using the standard β = 4
3 power laws. This

provides another independent indication that the spectral power law of the accretion disc

in 3C 273 is shallower than predicted by the approximated thin disc model in agreement

with the spectral fit, the PyROA and combined PyROA RM results and the photometric
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investigation. For a more detailed explanation of how we derived these lag estimates please

see Appendix B.2.6.

A point of discussion in the literature on 3C 273 is the significance of the emission

from the jet in the optical spectrum. Black-body modelling and synchrotron emission

models fit to the SED of 3C 273 by Yuan et al (2022) suggest that the optical continuum

emission is dominated by the accretion disc thermal emission indicating an insignificant jet

contribution. However the spectral observations made in Yuan et al (2022) only extended

up to rest wavelengths ∼ 5500Å meaning they did not monitor the near infrared optical

region which would be expected to be the most heavily contaminated by the jet accord-

ing to Paltani et al (1998). In addition to the findings of Paltani et al (1998) discussed

previously, broad line RM data analysed by Zhang et al (2018) revealed the presence of

very long timescale trends in the continuum light-curves of 3C 273 which were not present

in the the emission line light-curves. This observation is consistent with a significantly

contaminating jet at optical wavelengths introducing long timescale variability. Attempts

to quantify the extent of the long timescale jet contamination in the optical were done by

Li et al (2020) by modelling the disc and jet variability as DRW’s with Gaussian transfer

functions and fitting these models to measured optical continuum, radio and Hβ emission

line light-curves using a Bayesian approach which closely follows the approach of Javelin.

The fitted V band light-curve along with the expected decomposed accretion disc and

jet variability they derived is reproduced in Figure 3.13 which shows the long-timescale

accretion disk variability has a larger magnitude than the long timescale jet variability.

Based on this analysis they concluded that the jet contributes a minimum of ∼ 10% of

Figure 3.13: V band light-curve fit decomposed into the accretion disc and jet variability
components for 3C 273 taken from Li et al (2020).

the optical emission when in its low state (with the accretion disc in its high state) and a
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maximum of ∼ 40% of the optical emission when in its high state (and the accretion disc

in its low state). This is consistent with our contamination estimate for the Z band of

∼ 28% which is not caused by strong emission lines and so we attribute to the jet. This

estimate was based on thin disc model fits to the spectrum in Figure B.9 and is detailed in

Appendix B.2.1. However we detected no significant jet contamination for the bvr optical

bands which is consistent with the findings of Paltani et al (1998) and Yuan et al (2022)

by indicating the jet has no significant component at the shorter wavelength optical.

Our conclusion from the previous section that the trend observed in our 3C 273 light-

curves most likely originates from the accretion disc, as a result of the inconsistency with

the predicted timescale of the R component by Paltani et al (1998) and the presence of

this trend in the U band, does not contradict the findings of Li et al (2020). The apparent

timescale of the long term variable jet component in Figure 3.13 seems to be upwards of

∼ 3000 days (similar to the timescale for the trend seen in Zhang et al 2018) which is

in-line with the predicted variability timescale of the R component in Paltani et al (1998)

of over ∼ 10 years. Over the much shorter observing period of our study, no significant

long-timescale jet variability would be detected. As such, the trends in our light-curves

in Figure 3.1(a) could easily be attributed to the shorter timescale structure seen in the

accretion disc component in Figure 3.13. Importantly, even with the significant contam-

ination estimates made by Li et al (2020), we found no significant effect on our RM lag

estimates. As such, our results are broadly consistent with the findings of Yan-Roi Li et

al (2020), Paltani et al (1998) and Yuan et al (2022).

3.4 1H 2106-099

3.4.1 Theoretical lag estimates

We generated a simulation of the accretion disc spectrum expected from the thin disc

model for 1H 2106-099 following the approach done for 3C 273. This was done assuming

a SMBH mass M = 2.3 × 107M⊙ and bolometric luminosity Lbol = 1045.1ergs−1 (both

taken from Landt et al 2011) and assuming a standard efficiency η = 0.1. Figure 3.14(a)

shows the expected spectral locations of the centroid wavelengths of the LCO filters used

to monitor 1H 2106-099 in our campaign using our thin accretion disc simulation. By

replotting this in a logarithmic form over the spectral range investigated in this campaign,

estimates for the accretion disc power law exponent β can be obtained using the thin
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accretion disc relation λfλ ∝ −βlogλ as done for 3C 273. The expected values from the

simulation both with and without the boundary condition are presented in Table 3.12.

As can be seen, both simulations generated expected values of β close to the classic thin

disc value β = 4
3 . The simulated black-body curve for 1H 2106-099 is narrower and more

sharply peaked at shorter wavelengths than 3C 273. This is to be expected as 1H 2106-

099 has a less massive SMBH than 3C 273 meaning its accretion disc has a smaller rISCO

and so would emit at shorter wavelengths. In fact, the simulation predicts the innermost

region of the accretion disc in 1H 2106-099 would emit in the X-rays which is consistent

with observations of 1H 2106-099 as a strong X-ray emitter.

(a) Simulated spectrum with the expected
location of the LCO filter rest wavelengths for
1H 2106-099.

(b) Simulated spectrum for 1H 2106-099 in loga-
rithmic space.

Figure 3.14: Simulated accretion disc spectrum for 1H 2106-099 in linear and logarithmic
space.

Figure 3.15 shows a similarly plotted real logarithmic spectrum for 1H 2106-099 taken

from Landt et al (2011) where the near-infrared spectrum has been normalised around

the 1µm wavelength as done in Landt et al (2011). A linear fit is done to the part of

the spectrum spanning the riz LCO filters which generated a measured β value stated in

Table 3.12. Here the fit and the associated uncertainty is generated by ’lmfit’. This value

for the power law exponent strongly agrees with the standard thin-disc value and is in

fact closer to the approximated simulation than the unapproximated simulation although

the scale of the difference between the two is much less than in 3C 273. However, it

is clear from Figure 3.15 that the part of the spectrum spanned by the g and u LCO

filters diverges significantly from the thin disc model relationship. This strange spectral

behaviour could signify significant host galaxy contamination of the ug filters which would

have the expected effect of flattening the spectrum however we believe this is inconsistent

61



with the obtained RM results (see later).

Figure 3.15: Spectrum of 1H 2106-099 taken from Landt et al (2011) plotted in a loga-
rithmic form. A linear function is fit to the riz filters which returns a measured power law
exponent β = 1.38± 0.22

Spectral value Simulated value
With boundary condition Without boundary condition

|β| 1.38± 0.22 1.26 1.32

Table 3.12: A summary of the estimated magnitude of β values obtained from the spectral
fit in Figure 3.13 and the simulations in Figure 3.12.

For the following RM analysis, predicted absolute lag estimates were derived for each

of the LCO filters used to monitor 1H 2106-099 using the unapproximated thin accretion

disc model. This was done following the approach used for 3C 273 both with the standard

X = 4.96 value and with new Xnew values estimated following the approach of Mudd

et al (2018). As with the simulation, an estimated SMBH mass M = 2.3 × 107M⊙ and

bolometric luminosity Lbol = 1045.1 (taken from Landt et al 2011) were used as well as

the standard efficiency η = 0.1. The lag predictions for both treatments of X are shown

in Table 3.13 and the estimated Xnew values for each filter are shown in Table B.4. The

X values obtained for 1H 2106-099 are smaller than those obtained for 3C 273. This is to

be expected for the less steeply declining 3C 273 spectrum simulated in Figure 3.3 which

indicates annuli emitting more strongly over a range of wavelengths. As such, a larger

proportionality constant would be needed to convert from the picture of annuli emitting
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Filter Lag Prediction (days)
X = 4.96 Xnew

U 0.96 0.67

G 1.46 0.98

R 2.09 1.37

I 2.71 1.75

Z 3.28 2.10

Table 3.13: Absolute lag predictions for the regions of the accretion disc in 1H 2106-099
emitting predominantly in each of the LCO filters. Two sets of predictions are obtained
using the standard X = 4.96 and a new set of X values derived following the approach of
Mudd et al (2018).

at fixed wavelengths to the black-body annuli picture.

3.4.2 Algorithm Results

PyROA Results

The differential lag estimates and uncertainties derived from PyROA for each of the filters

used to monitor 1H 2106-099 is shown in Table 3.14 which also includes the predicted lag

values converted into differential form. Table 3.14 shows two sets of lag estimates both

with and without the discontinuity apparent in Figure 3.19 (see Discussion). Each of the

lag estimates is made with respect to the U filter which is assumed as the driving light-

curve. The lag estimates were obtained using the default Dirac delta transfer function

with the default Gaussian window width uniform prior set at 0.01 ≤ ∆ ≤ 10 days to

set a standard degree of blurring. The uniform lag prior was set between 0 ≤ τ ≤ 10

days to accommodate the potential appearance of the ’accretion disc size problem’. The

PyROA analysis was done with 50,000 iterations in the MCMC sampler to ensure good

convergence. The fits and corner plots obtained are shown in Figures 3.16 and B.19

respectively. A good fit is obtained with the sharp lag distributions indicating a good

convergence with very little scatter magnitude with respect to the model fit as shown in

Table B.5.

Javelin Results

The differential lag estimates and uncertainties derived from Javelin for each of the LCO

griz filters used to monitor 1H 2106-099 is shown in Table 3.15 which also includes the

predicted lag values converted into differential form. Table 3.15 also includes two sets of
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Filter Lag Estimates (days) Lag Prediction (days)
Unshifted Shifted X = 4.96 Xnew

U 0 0 0 0

G 0.07+0.10
−0.05 0.36+0.10

−0.05 0.50 0.31

R 1.42+0.11
−0.08 0.78+0.11

−0.08 1.13 0.70

I 1.90+0.11
−0.09 1.18+0.11

−0.09 1.75 1.08

Z 2.25+0.13
−0.12 1.55+0.13

−0.12 2.32 1.43

Table 3.14: Differential lag estimates for the regions of the accretion disc in 1H 2106-
099 emitting predominantly in each of the LCO filters. Estimates were obtained for the
unshifted and shifted power laws represented in Figures 3.19 and 3.20 respectively. Two
sets of predictions are obtained using the standard X = 4.96 and a new set of X values
derived following the approach of Mudd et al (2018).

Figure 3.16: PyROA fit to the light-curves obtained for 1H 2106-099. Flux values are in
mJy.
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lag estimates both with and without the discontinuity seen in Figure 3.22 (see Discussion).

Each of the lag estimates is made with respect to the G filter which is assumed as the

driving light-curve. The lag estimates were obtained using a parameter lag space restricted

between 0− 10 days so as to accommodate the potential emergence of the ’accretion disc

size problem’. The following analysis was run with a large 100,000 iterations in the MCMC

sampler which is double the amount used for the PyROA analysis. Figure 3.17 and B.22

shows the fits and distributions obtained from the analysis.

Filter Lag Estimate (days) Lag Prediction (days)
Unshifted Shifted X=4.96 Xnew

PyROA Javelin PyROA Javelin

G 0 0 0 0 0 0

R 1.35+0.15
−0.09 1.78+0.03

−0.07 0.42+0.15
−0.09 0.42+0.03

−0.07 0.63 0.39

I 1.83+0.15
−0.10 2.56+0.05

−0.73 0.82+0.15
−0.10 1.20+0.05

−0.73 1.25 0.77

Z 2.18+0.16
−0.13 2.57+0.29

−0.05 1.19+0.16
−0.13 1.21+0.29

−0.05 1.82 1.12

Table 3.15: Differential lag estimates for the regions of the accretion disc in 1H 2106-099
emitting predominantly in the griz LCO filters. Estimates were obtained for the unshifted
and shifted power laws corresponding to Figures 3.23 and 3.22. Two sets of predictions
are obtained using the standard X = 4.96 and a new set of X values derived following the
approach of Mudd et al (2018).

It should be mentioned that the U band was excluded from this analysis due to

erroneous U band fits we obtained which generated results completely inconsistent with

the rest of the analysis when running the full ugriz data-set. These erroneous fits and

distributions along with the lag estimates and analysis is shown in Appendix B.3.1. We

attribute this to a poor convergence due to the presence of bimodal distributions which

likely effected the U band light-curve the most due to its poor cadence making it the

least constrained data-set. This poor data-set appears to have had the largest effect on

Javelin which can be explained from our analysis in Chapter 2 where we found Javelin to

have had the greatest difficulty in converging out of the three algorithms (for the same

limits placed on the lag space) meaning it could be expected to be the most susceptible to

under-constrained data-sets. By excluding the U band we obtained no apparent erroneous

fits and improved distributions. Whilst many are still bimodal, the secondary peaks are

less significant and closer in parameter space to the primary peaks.
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Figure 3.17: Javelin fit to the light-curves obtained for 1H 2106-099 with the exclusion of
the U band. Flux values are in mJy.

PyceCREAM Results

The absolute lag estimates and uncertainties derived from PyceCREAM for each of the

LCO ugriz filters used to monitor 1H 2106-099 is shown in Table 3.16 which also includes

the predicted lag values. The lag esitmates were obtained using the accretion disc transfer

function mode of PyceCREAM with the lag parameter space restricted between 0-50 days.

The default PyceCREAM assumption of a face-on accretion disc with a mass accretion

rate ṁ = 0.1M⊙ per year and standard efficiency η = 0.1 as well as a spectral power

law with thin disc exponent β = 4
3 were used. When running the algorithm, the Fourier

series was truncated at the default Fourier frequency ωhigh = 0.5 and the SMBH mass

M = 2.3 × 107M⊙ was used and z = 0.027. The following analysis was run with 5000

iterations in the MCMC sampler which obtained good convergence as indicated by the

well peaked distributions in Figure B.24. Figure 3.18 shows the corresponding fits.
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Filter Lag Estimate (days) Lag Prediction (days)
X=4.96 Xnew

U 1.54+0.07
−0.09 0.96 0.67

G 2.32+0.10
−0.14 1.46 0.98

R 3.30+0.14
−0.21 2.09 1.37

I 4.27+0.18
−0.27 2.71 1.75

Z 5.17+0.21
−0.33 3.28 2.10

Table 3.16: Absolute lag estimates for the regions of the accretion disc in 1H 2106-099
emitting predominantly in the ugriz LCO filters obtained by PyceCREAM. Two sets of
predictions are obtained using the standard X = 4.96 and a new set of X values derived
following the approach of Mudd et al (2018).

Figure 3.18: PyceCREAM fit to the light-curves obtained for 1H 2106-099. Flux values
are in mJy.
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3.4.3 Discussion

Figure 3.19 shows the differential lag estimates obtained by PyROA with respect to the U

band plotted against the rest frame centroid wavelengths of the filters used to monitor 1H

2106-099. As is immediately clear, it appears as if the complete lag estimates conform to

two power laws with the riz and ug data points respectively fitting well to different power

laws against the expectations of a continuous τ ∝ λβ relation. To fit the lag estimates

associated with the riz filters, the data points were replotted in a logarithmic space and

fit by a linear function as shown in Figure B.18 which output an estimated value for the

power law exponent β = 1.37± 0.36 and generated the power law fit in Figure 3.19. This

approach was used due to the large uncertainties obtained when fitting the power law

directly due to the lack of data points to constrain the fit. As a result, the power law fit

for the riz filters conforms closely to the thin-disc model as expected by the spectral fit

in Figure 3.15. As can be seen, the ug data points also fit well to the thin disc power law

albeit one with a different amplitude to that fit to the riz data points.

Figure 3.19: τ ∝ λβ power laws fit to the PyROA lag estimates. As can be seen two
separate thin disc power laws can be fit to the riz and ug data points with β = 1.37± 0.36
and β = 4

3 respectively.

The PyROA RM results reflect the strange spectrum obtained in Figure 3.15 by in-

dicating that the riz filters conform closely to the thin disc model and that the ug filters

differ from this relation. One possible explanation for the discontinuity in the RM results

could be the presence of significant contamination in the ug filters to flatten the spectrum
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for these filters and bias their corresponding lags. However, we expect significant broad-

line contamination of the ug bands to decrease their differential lags with respect to the

riz filters (as the BLR exists further from the SMBH than the accretion disc) which is

the opposite to the direction of the bias seen in Figure 3.19. Similarly, whilst broad-line

contamination of the riz filters would account for the correct direction of the bias, we

did not detect any more significant contamination in the Z filter than in the G. Broad

emission line contamination of the riz filters would also not explain the flattened spectrum

obtained for the ug filters in Figure 3.15. In addition, the differential lags for the riz

filters fit well to a continuous thin disc power law which would not be expected if the BLR

contamination introduced a significant bias of the lags due to the large differences in the

BLR contamination level across the riz filters indicated by Table 3.4.

Nevertheless, the discontinuity seen in Figures 3.15 and 3.19 could be a result of an

unidentified contamination of the ug filters. In this case, the discontinuity would not be

physically present in the accretion disc which, as a result of the spectral fit in Figure

3.15, would reasonably be expected to closely follow the thin disc model. Therefore, if

the discontinuity is erroneous, the data points in Figure 3.19 would be expected to fit

a continuous thin disc power law. This scenario is represented in Figure 3.20 where the

differential lags for the riz filters with respect to the U band have been shifted down by a

constant value of 0.64 days to obtain the best-fit continuous power law from Figure 3.19

through the U band data point. This enables new differential lag estimates to be obtained

under the assumption that the discontinuity is erroneous which are shown in Table 3.14.

In this scenario, the anomalous G band lag is attributed to the biasing effect with the new

lag estimate coming from the assumption that the unbiased estimate lies on the thin disc

power law as shown as the circled point in Figure 3.20. As can be seen, these new lag

estimates are remarkably consistent with the predictions made using the Xnew values but

are inconsistently small compared to the predictions with the standard X = 4.96 value.

As such these results indicate that, if the discontinuity in the lag estimates is erroneous,

1H 2106-099 likely does not display the ’accretion disc size problem’ and that the lag

predictions made following the new treatment of X outlined in Mudd et al (2018) is more

accurate than the traditional approach for AGN without the ’accretion disc size problem’.

Figure 3.21 show the riz filters best-fit power laws for the shifted and unshifted cases

extrapolated into the JHK regime. This enabled us to obtain differential lag predictions

for the JHK bands in the scenarios where the discontinuity in the RM results is erroneous
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Figure 3.20: The scenario where the discontinuity in the lag estimates is assumed to be
erroneous. Here the riz data points have been shifted down by the U band residual and
the best fit power law τ ∝ λβ with β = 1.37 ± 0.36 is shown. The anomalous G lag is
assumed to be as a result of the biasing effect and so is shifted onto the thin disc power
law.

(Figure 3.21(a)) and physically real (Figure 3.21(b)) as shown in Table 3.17. The two

sets of predictions are very similar meaning it is unlikely we will be able to differentiate

between the two scenarios in the near-infrared RM campaigns.

Filter Lag Prediction (days)
Shifted Unshifted

J 3.24 3.88

H 5.08 5.72

K 7.77 8.41

Table 3.17: Differential lag predictions for the JHK emitting regions of the accretion disc
in 1H 2106-099 interpolated from Figure 3.21 using the PyROA RM results. Predictions
for the original results in Figure 3.21(a) and the shifted results in Figure 3.21(b) are shown.
The lag predictions are made with respect to the U band.

Figure 3.22 shows the differential lag estimates obtained by Javelin with respect to

the G band plotted against the centroid griz wavelengths. Again, the same discontinuity

between the g and riz filters is obtained. Also shown are thin disc and best-fit power
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(a) Extrapolation of the shifted power law
corresponding to Figure 4.30.

(b) Extrapolation of the unshifted power law cor-
responding to Figure 4.29.

Figure 3.21: Extrapolations of the shifted and unshifted best-fit power law fit to the riz
PyROA RM results into the JHK regime corresponding to Figures 3.16 and 3.15 respec-
tively. Here βbest = 1.37± 0.36. This allowed lag predictions in Table 3.16 to be made.

laws fitted to the riz data-points. The best-fit power law exponent was derived by fitting

a linear function to the logarithmic relation of the riz filters as done in Figure B.18 for

PyROA. This generated a preferred exponent value β = 1.12 ± 0.20 which is consistent

with the expected thin disc relation and the preceding analysis when the uncertainty is

taken into consideration (although it is still less consistent than the PyROA RM results).

Following the approach done in the PyROA analysis, Figure 3.23 shows the τ − λ re-

Figure 3.22: τ ∝ λβ power laws fit to the Javelin lag estimates. We have fitted the best-fit
β = 1.12± 0.20 and the thin disc model β = 4

3 respectively.

lation with the riz data points shifted down by a constant value of 1.33 days so as to
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Figure 3.23: The scenario where the discontinuity in the lag estimates is assumed to be
erroneous. Here the riz data points have been shifted down by the G band residual and
the best fit power law τ ∝ λβ with β = 1.12± 0.20 is shown.

get a continuous best-fit power law through the G data point. This is done to represent

the realistic differential lags expected in the scenario that the discontinuity seen in Figure

3.22 is erroneous. This generated expected differential lags with respect to the G band

which are consistent with those obtained from the PyROA analysis and those predicted

using the Xnew values as shown in Table 3.15. As such, the conclusion from the PyROA

analysis that 1H 2106-099 does not likely display the ’accretion disc size problem’ (in the

event that the discontinuity is erroneous) is supported by Javelin. So too is the indication

that the lag predictions made with the Xnew values are more accurate than those made

following the traditional approach of X = 4.96 for AGN not displaying the ’accretion disc

size problem’. As done for the PyROA analysis, the power laws fit in the scenarios that

the discontinuity between the g and riz filters is erroneous and physically reflected in the

accretion disc are extrapolated so as to obtain lag predictions in the JHK regime as shown

in Figure B.23. In both cases the thin disc and best-fit power laws with β = 1.12 ± 0.20

are fit and the lag predictions for the best-fit power laws are shown in Table B.7. As can

be seen the sets of predictions made using the thin disc and best-fit power laws are very
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similar over these wavelengths and the predictions obtained by Javelin are consistent with

those made by PyROA in the previous analysis.

Table 3.18 shows the bolometric luminosity estimates made by normalising the simu-

lation for the accretion disc spectrum for 1H 2106-099 onto each of the ugriz photometric

data-sets as done for 3C 273. As can be seen, the estimates obtained for all ugriz filters

are all within ∼ 2× the value obtained in Landt et al (2011) (stated in Table 3.1). This is

a significant difference and indicates that the discontinuity in the lag estimates could be a

result of contamination resulting in an erroneously large bolometric luminosity estimate.

Filter Lbol (ergs
−1)

U 6.7× 1044

G 9.9× 1044

R 2.0× 1045

I 2.5× 1045

Z 2.7× 1045

Table 3.18: Bolometric luminosity estimated made for 1H 2106-099 using each of the LCO
filters used in the campaign. An estimate Lbol = 1.3× 1045ergs−1 was obtained in Landt
et al (2011).

Figure 3.24 shows the absolute lags and residuals obtained by PyceCREAM plotted

against the rest frame centroid wavelengths of the ugriz filters. As can be seen, the ob-

tained lag estimates show a perfect thin disc relationship with best-fit β = 1.34 ± 0.01

and does not reproduce the discontinuity obtained in the PyROA and Javelin RM re-

sults. However, this is not surprising as PyceCREAM’s accretion disc transfer function

mode fits a thin disc relationship by definition meaning the thin disc relationship obtained

does not say much about the structure of the accretion disc. The magnitude of the lag

estimates obtained by PyceCREAM are a factor ∼ 2 larger than the predictions made

with X = 4.96 and a factor ∼ 2 − 3 larger than the predictions made with the Xnew

values and the shifted Javelin and PyROA lag estimates. This would indicate that 1H

2106-099 displays the ’accretion disc size problem’ in contrast to the shifted PyROA and

Javelin RM results. This fits in with observations made in Chapter 2 about the tendency

of PyceCREAM to produce larger lag estimates than PyROA. This is on account of Pyce-

CREAM’s ability to derive its own driving light-curve and the likely effect this has on the

algorithm assuming a scaled up accretion disc with respect to the other algorithms. Inter-

estingly the PyceCREAM lag estimates are more similar in magnitude to the PyROA and

Javelin unshifted riz lag estimates being a factor ∼ 0.5 − 1 smaller. Since PyceCREAM
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Figure 3.24: τ ∝ λβ power laws fit to the PyceCREAM lag estimates with β = 4
3 and a

best-fit β = 1.34± 0.01.

forces an accretion disc spectral fit it will be unable to detect the discontinuity apparent

in the PyROA and Javelin results. If this discontinuity is anomalous, as indicated by the

erroneous bolometric luminosity estimates in Table 3.18, the PyceCREAM results may

therefore be more accurate than the Javelin and PyROA estimates.

To test this we derived a second set of bolometric luminosity estimates for 1H 2106-

099 using the lag estimates in Table 3.16. This is possible for the PyceCREAM results as

the algorithm returns absolute lag estimates rather than differential lag estimates. These

bolometric luminosity estimates were obtained by reversing the method with which we

obtained our lag predictions using the absolute lag estimates for each filter as the input

and a value X ∼ 6.9 to scale the accretion disc to make it consistent with the larger lag es-

timates made by PyceCREAM. This returned consistent bolometric luminosity estimates

for each of the lags in Table 3.16 with an average value Lbol = 1.26× 1045ergs−1 which is

almost exactly the same as the value measured in Landt et al (2011). This indicates that

the PyceCREAM results are accurate and that the discontinuity seen in the PyROA and

Javelin results is likely anomalous.

Overall, the consistency in the bolometric luminosity estimate derived from the Pyce-
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CREAM RM results indicates that the discontinuity seen in our PyROA and Javelin lag

estimates is likely a result of contamination. This also suggests that 1H 2106-099 dis-

plays the ’accretion disc size problem’ like 3C 273 although this is not clear due to the

strong consistency in the shifted PyROA and Javelin lag estimates with the lag predic-

tions made with the Xnew values (which these results indicate could be a more accurate

method than the standard approach with X = 4.96). However, without being able to

identify a potential source for this contamination, there is a possibility that the observed

discontinuity could reflect a discontinuity in the structure of the accretion disc in contrast

to the continuous thin disc model adhered to by 3C 273. Our PyROA and Javelin analysis

revealed that the ug and riz data points each fit well to thin disc power laws τ ∝ λ
4
3 but

with different amplitudes. This could suggest that the ug and riz emitting regions of the

accretion disc could exist in disconnected rings. A model similar to this is put forward

by Nixon et al (2012) which argues that accretion discs tilted with respect to the rotation

axis of their spinning SMBH would likely break apart into separate rings under the stress.

In the absence of any more evidence this explanation is just conjecture but is is hoped

the physicality of the discontinuity in the 1H 2106-099 data will be tested by upcoming

near-infrared RM campaigns.

As done for the PyROA and Javelin analysis, the best-fit thin disc relationship ob-

tained by PyceCREAM was extrapolated into the JHK regime as shown in Figure B.25.

This enabled lag predictions to be made for the JHK bands stated in Table B.6. It is hoped

that future near-infrared RM campaigns on 1H 2106-099 would help provide a preference

between the thin accretion disc indicated by the PyROA and Javelin RM results or the

scaled up accretion disc indicated by the PyceCREAM results.

As explained in the Introduction, the traditional theory for light-curve reprocessing in

the accretion disc of AGN follows the lamp-post model and typically assumes the driving

light-curve occupies the X-ray regime. However, accretion disc RM of NGC 5548 carried

out by Fausnaugh et al (2017) with PyceCREAM revealed a poor match between the

model driving light-cure and the measured hard and soft X-ray light-curve data suggest-

ing the driving light-curve may not be in the X-ray regime. Similar investigations of NGC

5548 by Gardner and Done (2017) revealed that reprocessing of the measured hard X-ray

light-curve data into the optical regime produced light-curves with too short a lag and

too much short timescale variability. Instead, Gardner and Done (2017) suggest the far

UV as an alternative for the driving light-curve. To test the suitability of the UV regime
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as the driving light-curve in 1H 2106-099, we superimposed the model driving light-curve

obtained by PyceCREAM in Figure 3.18 onto the measured U band data after normalising

the U band data around a common offset and scale as the driving light-curve as shown in

Figure 3.25. As can be seen, a relatively poor match is obtained with the majority of the

U band data points existing outside the uncertainty limits of the model driver. In partic-

ular, the U band data appears to lag with respect to the driver. This does not necessarily

rule out the UV as the driver particularly as the far-UV regime identified by Gardner and

Done (2017) was not sampled in our investigation and, being at a shorter wavelength than

our U data-set, would be expected to be more consistent with the model driver.

Figure 3.25: 1H 2106-099 U band data-set superimposed onto the model driver from
PyceCREAM. As can be seen a relatively poor match is obtained.

It is apparent that the results obtained for 3C 273 and 1H 2106-099 using Javelin

are less consistent with the rest of the analysis than the results obtained using PyROA.

In addition, the Javelin lag estimates generally had larger uncertainties. This is likely a

problem of convergence, despite the fact Javelin was run with double the number of itera-

tions as PyROA, which is suggested by the wide distributions obtained for 3C 273 and the

bimodal distributions obtained for 1H 2106-099. This reinforces the convergence problem

highlighted for Javelin in Chapter 2. A key reason for this is likely the fact that Javelin

fits top-hat transfer functions which introduces two additional parameters per light-curve

compared to the Dirac delta fits performed by PyROA. A Dirac delta transfer function

forces the algorithm to maintain a consistent shape for all the light-curves in the set which

will impose greater constraints on the fit compared to a top-hat transfer function. Javelin’s

Gaussian process method may also contribute to the poorer constraints although it would
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be largely mitigated by the preliminary fitting done to calibrate the parameters (as ex-

plained in Chapter 2).

This problem appears to have been exacerbated in 3C 273 due to the relatively fea-

tureless form of the light-curve data which would further loosen the constraints on the

fit. For 1H 2106-099, the problem appears to be linked to the U band data-set which,

as a result of its poor cadence, would also provide a lack of constraints on the fit. Our

PyROA 3C 273 analysis also reproduced the over-fitting problem we found in Chapter 2

which we attributed to the large magnitude of the noise in our light-curves relative to the

fitted signal in Figure 3.7. As in Chapter 2, we found the solution to this over-fitting was

to increase the blurring by widening the Gaussian window width ∆. Therefore it appears

that for less well-structured and poorly sampled light-curves, PyROA outperforms Javelin

provided a large degree of blurring is placed on the PyROA fit. To get an improved per-

formance with Javelin, it helps to add additional constraints to the fit as we tried to do

with restrictions to the lag and decorrelation timescale spaces. With improved computing

power, running Javelin with more iterations would also help it to converge better.

Our 1H 2106-099 analysis reproduced PyceCREAM’s preference for a scaled up ac-

cretion disc relative to PyROA which we attributed to its ability to infer a driving light-

curve. The strong agreement obtained by the bolometric luminosity derived from the

PyceCREAM lag estimates with the value measured by Landt et al (2011) also agrees

with out conclusion in Chapter 2 that PyceCREAM appears to be more suitable in the

accretion disc RM regime than Javelin and PyROA. These results also indicate that the

forced thin disc spectral fit done by PyceCREAM may make the algorithm less strongly

effected by contamination in the light-curve data compared to PyROA and Javelin.

3.5 Summary:

In this Chapter we performed the first accretion disc RM analysis of 3C 273 and 1H 2106-

099 with the algorithms Javelin, PyceCREAM and PyROA. We used the lag estimates

obtained to investigate the accretion disc structure to compare to previous findings and

to obtain lag predictions for the near-infrared JHK bands to be tested by upcoming RM

campaigns. We also explored the performances of the three algorithms for both sets of

light-curve data.

• We found a slightly shallower spectral power law exponent β ∼ 1 than expected for
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3C 273 which is nevertheless consistent with our unapproximated thin disc model

simulation. This suggests 3C 273 conforms to the thin disc model and appears to

display an accretion disc with a factor ∼ 2− 3 larger than expected.

• We found jet contamination estimates in the optical as well as timescales for the

accretion disc and radio jet in 3C 273 consistent with previous findings.

• We found an unexpected discontinuity in the PyROA and Javelin lag results and

spectrum of 1H 2106-099 which, if real, could indicate a discontinuous accretion disc.

• Our results suggest the discontinuity is anomalous and that the PyceCREAM lag

estimates are most accurate, indicating the accretion disc in 1H 2106-099 is a factor

∼ 2 larger than expected. However this is not entirely clear as we also estimate

PyROA and Javelin lags, corrected for the discontinuity, in close agreement with

predictions from the thin disc model.

• We found a problem of convergence with Javelin with the relatively featureless 3C 273

light-curves and the poor cadence U band in 1H 2106-099. We also found a tendency

for PyROA to over-fit the 3C 273 data-set which was corrected by imposing a strong

degree of blurring on the fit. Both these findings are consistent with our conclusion

from Chapter 2.
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CHAPTER 4

Design of RM Campaigns

With the arrival of the new Vera C. Rubin telescope the astronomical community is ex-

pected to receive a large influx of new RM data over the coming years. However, to my

knowledge, currently no formal considerations have been made about how best to opti-

mise the selection criteria of these data to make them most compatible for analysis by

modern RM algorithms. To take full advantage of the new data to be collected, and to

inform in general the ideal design of a RM campaign, it is therefore important to tailor

the data selection criteria to minimise the uncertainties on the lag estimates made by RM

algorithms. In particular, the two most relevant selection criteria for observing campaigns

to consider are the length of the observing period and the cadence (ie. the time separation

between consecutive observations).

To obtain accurate lag estimates it is preferable for the observing period to be long

as this means the expected lag can be sampled more often and the chances to catch

pronounced variability features are increased. In addition, it is preferable for observing

campaigns to have shorter cadence data as this means the expected lag period can be

sampled more intensely. However, due to resource constraints, RM campaigns must often

prioritise one of these criteria over the other, choosing either longer observing periods less

frequently sampled or shorter observing periods more frequently sampled. In this chapter

we will attempt to make the first determinations about the dependence of the uncertainties

on lag estimates made by modern RM algorithms to the length of the observing period and
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the average cadence of the light-curve data. This will be done with the aim of informing

future RM campaigns about the data criteria they should be selecting for to get the most

accurate results for analysis.

4.1 The data-sets

The following investigation is based on the dust RM campaigns Koshida et al (2014) and

Minezaki et al (2019). These studies use the near-infrared K band as the torus emission

and the V band and a combination of the I and R bands for the accretion disc emission

for Koshida et al (2014) and Minezaki et al (2019) respectively.

Koshida et al (2014) is comprised of a sample of 17 type 1 AGN’s observed by the

multicolour imaging photometer (MIP) located on the MAGNUM telescope, Hawaii. This

data-set is relatively homogeneous, being entirely comprised of Seyfert 1 galaxies located

at low redshifts 0.002 ≤ z ≤ 0.04. All 17 objects were incorporated into my investigation.

Minezaki et al (2019) was a larger study comprised of a sample of 31 type 1 AGN’s also

observed by the MIP mounted on the MAGNUM telescope. From this sample, Minezaki et

al (2019) were only able to detect an optical lag with respect to the K band for 25 objects.

Of these objects, 3 produced inconclusive lag estimates from CCF analysis. Therefore, I

incorporated the remaining 22 objects for which successful lag estimates could be obtained

into my investigation. Minezaki et al (2019) is a higher redshift survey than Koshida

et al (2014) and is more diverse, being comprised of AGN with larger redshift ranges

0.06 ≤ z ≤ 0.6 and luminosity ∼ 1.5 orders of magnitude greater in range than Koshida

et al (2014).

Both studies obtained their lag estimates using a CCF method and the ’Rmap’ mode

of Javelin. For the purposes of investigating modern RM algorithms, we selected the lag

estimates and uncertainties obtained by Javelin for analysis. We quote all lag estimates in

the observer frame so that our results are consistent with the expected findings of observers.

An additional consideration relevant for both studies is the accretion disc contamination

subtraction. For the following analysis, we use the lag estimates derived from the β = 1
3

subtraction as this exponent value is consistent with the thin disc model and so is a more

standard choice.

By including both data-sets, we help ensure our investigation has a large amount of

data relative to the near-infrared RM data available. We also introduce a large variety

of AGN redshift and luminosity properties into the study. This should help reduce the
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likelihood of bias appearing from an over-representation of a particular kind of AGN. The

diversity of the combined data-set is shown in Figure 4.1 which demonstrates that our

investigation will be sensitive to a large range of lag values ranging from ∼ 25− 300 days.

However, it should be noted that this sensitivity decreases at larger lags likely due to the

difficulty in obtaining good quality light-curve data at higher redshifts. Including both

Figure 4.1: A histogram of the lag estimates contained within the Koshida et al (2014)
and the Minezaki et al (2019) studies as well as the combined data-set. A large range of
estimated lags is obtained by combining the two studies although the sensitivity drops off
at longer lag estimates

high and low redshift AGN will also provide a useful comparison for the dependencies of the

uncertainties on lag estimates in both redshift regimes. Our investigation could therefore

help inform the selection of data during the transition to higher redshift campaigns.

4.2 Method

For the measure of the uncertainty in the lag estimate we decided to use the error relative

to the magnitude of the lag estimate output by Javelin rather than the absolute lag

uncertainty. Relative error is a more attractive parameter to measure lag uncertainty than

absolute error as it is a more meaningful expression of the significance of the uncertainty

on the measurement. In addition to this, our combined data-set showed a strong linear

correlation between the magnitude of the estimated lag and the scale of the absolute error

on that estimate as shown in Figure 4.2. This is likely a result of the Malmquist bias which

means the higher redshift Minezaki et al (2019) survey is biased to select for larger, more

luminous objects that generate longer lags in RM campaigns which, if not compensated

81



Figure 4.2: A demonstration of the correlation found between Javelin lag estimates and
absolute/relative error estimates for Koshida et al (2014) and Minezaki et al (2019) data-
sets. The weakened correlation and fitted gradient with relative error justifies its use as
the parameter for lag uncertainty. The correlations are determined by Spearman’s rank.

adequately by an increased length of the observing period, would be expected to give

less certain lag estimates. Figure 4.2 suggests that the use of relative error weakens the

effect of the Malmquist bias on the uncertainty estimate meaning we can more effectively

compare AGN across different redshift regimes. Observers should be aware of this effect

during the transition to higher redshift campaigns.

For the investigation, we decided to use the length of the light-curve relative to the

estimated lag as a parameter (which we represent as γ) rather than using the length of

the observing period. This parameter is defined as

γ =
tN − t0
τ

, (4.1)

where tN − t0 is the length of the observing period for a light-curve consisting of N data

points with an expected lag of τ . The light-curve length relative to the expected lag is

a more meaningful parameter for measuring the uncertainty on lag estimates because the

length of the observing period can be expected to have an effect on the uncertainty in lag

estimates only in so far as it is relative to the expected lag. Having longer light-curve data

relative to an expected lag means the expected lag is sampled more often and so more

accurate estimates on the lag is expected.

Similarly, we decided to use the expected lag relative to the average cadence of the

light-curve as a parameter (which we represent as ϵ) for the investigation rather than the
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absolute average cadence. This parameter is defined as

ϵ =
τ

⟨tn − tn−1⟩
, (4.2)

where ⟨tn− tn−1⟩ is the average cadence in the light-curve data. The expected lag relative

to the average cadence is a more meaningful parameter for measuring the uncertainty on

lag estimates than the absolute average cadence which is expected to have an effect on

the uncertainty in lag estimates only in so far as it is relative to the expected lag. Having

shorter average cadences relative to the expected lag means the expected lag period is

more heavily sampled and so more accurate lag estimates are expected.

We also decided to include parameters to account for the influence of data gaps on

the uncertainties of lag estimates. Both the frequency and size of the data gaps would

decrease the proportion of the light-curve covered by data and so we decided to introduce

two new parameters to account for these variables. We define the density of data gaps

(represented as ρ) as the number of gaps relative to the length of the observing period.

Similarly, we define the average gap size relative to the light-curve length (represented as

δ).

A subtlety that should be addressed is the distinction between data gaps and regular

cadence in the light-curve data. To quantitatively define this we generated histograms

of the time separation between consecutive observation for each object in our study. We

defined two definitions for the boundary between gaps and cadence corresponding to the

upper 1σ and 2σ boundaries for the histograms. This was done to determine how sensitive

the following analysis would be to the subjective choice of how many σ to define the gaps in

relation to. In addition, the following analysis was also run with a third definition of gaps

defined as all inter-data time separations greater than 20 days applied uniformly across

all objects. This is to act as a control case to assess the effectiveness of the statistical

definition of gaps defined above. A detailed explanation of our method for defining gaps

is given in Appendix B.4.1.

One final complexity introduced by the Koshida et al (2014) data-set is the fact

that 10 out of the 17 objects in this study had lag estimates which were determined as

weighted means over the estimates from multiple observing epochs. This would introduce

an additional dependence on the uncertainties of the lag estimates. The multi-epoch data

was kept in the study and was treated as single continuous light-curves where the data in

overlapping regions were only included once. The light-curve length for the multi-epoch
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data was determined as a sum of the length of the individual epochs and the remaining

parameters were averaged over all epochs.

4.3 Analysis and Results

The following analysis is focused on investigating the relation between the relative error on

lag estimates and the γ and ϵ parameters. We focus on the correlation of these parameters

with the relative error and the form of their trend. Determining the strength of the corre-

lation gives an indication of which of the two parameters RM campaigns should prioritise

to reduce the relative error. We use Spearman’s rank from the ’stats’ module in ’scipy’ as

a measure of the correlation strength. Obtaining a reasonable fit to the relation of the γ

and ϵ parameters with relative error will help us to determine estimates for the optimum

parameter values which yield the lowest relative errors beyond which diminishing returns

are obtained (the so-called ’sweet spot’). Having a reasonable fit to these relations would

also allow RM campaigns to estimate the relative errors they can expect from light-curves

of a particular length and cadence relative to an expected lag. Figures 4.3 and 4.4 show

the obtained relations between the relative error and the light-curve length relative to the

expected lag (ie. γ) and the expected lag relative to the average cadence (ie. ϵ) respectively

using 1σ gap definition as detailed in the Appendix. We chose the 1σ definition arbitrarily

as we found no significant difference between the 1σ and 2σ definitions as seen in Figure

B.29 in the Appendix. The expected negative correlations were obtained and the trends

also indicate asymptotes with both axes which makes intuitive sense. An asymptote with

the y-axis is to be expected as the relative error would tend to infinity in the limit that

the light-curve length tends to zero or the average cadence tends to infinity (ie. the limit

where no data is present). Likewise, an asymptote with the x-axis is to be expected as the

relative error would not be expected to ever reach zero. The magnitude of the obtained

correlations would suggest that the light-curve length relative to the expected lag has a

larger effect on the relative error than the lag relative to the average cadence. Figures 4.3

and 4.4 are fit with a logarithmic function of the form y =ln
(
|x+a|2
|x−b|2

)
. This function was

selected as a logarithmic function matches the asymptotic expectations mentioned above.

It should be mentioned that the function diverges from the expected asymptote outside

the data range but was selected as it appears to fit the ’sweet spot’ well. However, as

this investigation is based on real data, there is likely significant covariance between the

parameters. Examples of these covariances are demonstrated in Figure 4.5.
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Figure 4.3: The derived relationship between the relative error on Javelin lag estimates
and the ’light-curve length relative to the expected lag’ (parameter γ) for the Koshida et
al (2014) and Minezaki et al (2019) data-sets. The Spearman’s rank correlation measure-
ments are shown. A logarithmic function is fit to the data and the ’sweet spot’ is derived
as the location where the gradient of the function is -1.

Figure 4.4: The derived relationship between the relative error on Javelin lag estimates
and the ’lag relative to the average cadence’ (parameter ϵ) for the 1σ gap definition. A
logarithmic function is fit to the data and the ’sweet spot’ is shown.

In particular, we found significant correlation between the average cadence and light-

curve length with the γ and ϵ parameters. This highlights the fact that longer light-curve

lengths relative to expected lags can be obtained by either having longer observing periods
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(a) The covariant relationship between the
average cadence with the γ parameter
for the Koshida et al (2014) and Minezaki
et al (2019) data-sets with the 1σ gap
definition given in the Appendix.

(b) The covariant relationship between the aver-
age gap size and gap density parameter for the
Koshida et al (2014) and Minezaki et al (2019)
data-sets. Here the results are shown for the 1σ
gap definition defined in Section 4.2.

Figure 4.5: Examples of covariant relationships between light-curve parameters.

for a given lag or by having shorter expected lags for a given light-curve length (which

can be expected to be more densely sampled). Similarly, longer expected lags relative to

the average cadence can be obtained by having shorter cadence data for a given expected

lag or by having longer lags for a given cadence (which can be expected to require longer

observing periods).

In order to get a more meaningful conclusion we decided to produce sub-samples from

the combined data-set where one or the other of the γ or ϵ parameters is controlled. This

was done using the 1σ gap definition. The first sub-sample was produced by sampling

Figure 4.6 along a narrow vertical slice of ±1.5 δ units which selects objects with ap-

proximately the same number of data points sampling their expected lag periods. The

first sub-sample was used to determine the dependence of relative error on the light-curve

length relative to the lag whilst keeping the effect of cadence on the relative error approx-

imately controlled. The second sub-sample was produced by sampling Figure 4.6 along a

narrow horizontal slice of ±2 γ units which selects objects with approximately the same

sampling frequency of the expected lag in their observing period. The second sub-sample

was used to determine the dependence of relative error on the expected lag relative to

the average cadence whilst keeping the effect of light-curve length on the relative error

approximately controlled. The slices in Figure 4.6 were made in the densest part of the
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Figure 4.6: The covariant relationship between the ’light-curve length relative to expected
lag’ and the ’lag relative to expected cadence’ parameters for the Koshida et al (2014)
and Minezaki et al (2019) data-sets. Here the results are shown for the 1σ gap definition
defined in Section 3.2 and the Spearman’s rank correlation measurements are shown. The
dashed lines indicate the sub-samples selected for Figure B.32

parameter space in order to maximise the amount of data in the sub-samples. The width

of these slices were determined so that approximately the same number of data points

would be selected for each sub-sample as the number of data points would likely effect the

strength of the correlations obtained. It should also be noted that all the objects from the

Koshida et al (2014) data-set selected had 1 epoch meaning the sub-sample controls for

the number of epochs.

The resulting sub-samples generated truncated versions of Figures 4.3 and 4.4. We

found a weak negative correlation with relative error still apparent for the γ parameter

but got no significant correlation for ϵ. Therefore these results agree with the conclusion

from the full data-set in suggesting that having longer observing periods relative to the

expected lag is more important in reducing the relative error on lag estimates in RM cam-

paigns than having more densely sampled lag periods.

To get an indication of the trend between the γ and ϵ parameters with the relative

error, we decided to use the full data-sets due to the lack of data in the sub-samples.

The logarithmic functions in Figures 4.3 and 4.4 were fit to the data with some difficulty

(due to the scatter) using ’scipy’ curve-fit module. We define the ’sweet spot’ to be the

parameter values which correspond to a gradient of magnitude 1 for the fitted function
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in Figures 4.3 and 4.4. Beyond this point increases (decreases) in the light-curve length

(average cadence) will give diminishing returns because decreasing the relative error by

the same amount will require greater increases (decreases) in the length of the observing

period (average cadence). The ’sweet spot’ in Figure 4.3 corresponds to a light-curve

length ∼ 10× the expected lag which has an associated relative error of ∼ 11%. Likewise,

the ’sweet spot’ in Figure 4.4 corresponds to an average cadence ∼ 6× smaller than the

expected lag which has an associated relative error of ∼ 10%.

4.4 Discussion

Figure B.29-B.31 shows a large difference between the results obtained using the statisti-

cal definition of gaps and the definition of gaps being larger than 20 days. The statistical

definition generated clearer trends with a stronger correlation. This highlights the un-

suitability of using a blanket gap definition which would likely introduce gaps into the

cadence definition and thereby increase the scatter to obscure the trend. Interestingly, no

significant difference in correlation was found between the 1σ and 2σ definitions of gaps

which indicates that our statistical definition is reasonably stable to subjective choices.

This provided the motivation for continuing the analysis done in the previous section with

just the 1σ definitions.

We obtained significantly weaker correlations for the Minezaki et al (2019) data-set

than Koshida et al (2014) for all relative error relations. This is likely a result of the

fact that Minezaki et al (2019) covered a much larger range of redshift and luminosity

meaning it likely contains unidentified parameters which vary between different types of

AGN, which are largely controlled for in the more homogeneous Koshida et al 2014 study,

and act to introduce scatter into the relations. This scatter is more significant for the

cadence relation in Figure 4.4 than the light-curve length relation in Figure 4.3 meaning

it may have effected our final conclusion regarding the relative importance of these two

parameters.

Both the data-sets investigated are obtained from near-infrared RM campaigns which

would likely make the data atypical compared to other RM regimes. In particular, in-

frared RM can be expected to detect longer lags than the other regimes which means it

is likely that the combined data-set is biased to have longer observing periods and longer

average cadences. As such, the relative unimportance found between the ϵ parameter and

the relative error could be a result of the fact that the data-set did not sample small
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enough cadences for there to be a significant effect on the relative error. This effect can be

expected to be more pronounced for higher redshift surveys which would be expected to

detect even longer lags and could provide another explanation for the significantly weaker

correlations found in the Minezaki et al (2019) data-set. To generalise the results of this in-

vestigation, future investigations should include both accretion disc and BLR RM studies.

As a result of the fact real RM data was used in this study, there is significant covariance

between the parameters due to our consequent inability to control all variables. There is

also a strong possibility that unidentified variables also exist in the data. Whilst efforts

were made to control the covariance between the γ and ϵ parameters in the final analysis,

this was done in a crude way due to the small sample size which meant neither parameter

was fully controlled for in the sub-samples taken. Both of these issues could be addressed

by future investigations incorporating synthetic data into their study. This would allow

parameters to be definitely controlled and an arbitrarily large number of data points to

be generated.

4.5 Summary

In this chapter we attempted to measure the effect of the length and cadence of light-

curve data relative to an expected lag on the uncertainty associated with lag estimates

made by RM algorithms. This was done using dust RM data-sets with the intention of

informing future RM campaigns on selecting the optimal light-curve data. To do this we

measured the strength of the light-curve parameters with relative error and fit functions

to the relations to estimate their optimum values.

• Our results indicate that the light-curve length relative to the expected lag has a

larger influence on the uncertainties of lag estimates than the expected lag relative

to the average cadence.

• We estimate the optimum value of the light-curve length to be ∼ 10× the expected

lag and the optimum cadence to be ∼ 6× smaller than the expected lag which had

associated uncertainties of ∼ 11% and ∼ 10% respectively.
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CHAPTER 5

Conclusions

The main aim of the thesis was to perform the first accretion disc reverberation mapping

analysis of the AGN 3C 273 and 1H 2106-099 using the RM algorithms Javelin, Pyce-

CREAM and PyROA so as to obtain insight into the structure of the accretion disc and

to compare the performance of the algorithms in the process. Linear fits to the spectrum

of 3C 273, the results of the PyROA and combined PyROA and Javelin RM analysis and

the normalising of the spectrum to our photometric light-curve data all independently

suggest that the spectral power law in 3C 273 has a slightly shallower exponent β ∼ 1

than expected by the approximated thin disc model value β = 4
3 in contrast to previous

findings. This shallower exponent allowed us to obtain predictions for the mean BLR lag

which are in better agreement with previous estimates than predictions made with the

standard thin disc model value. However, a simulation we created of the accretion disc

spectrum in 3C 273 based on the more physically meaningful unapproximated thin disc

model (with a boundary condition at rISCO) returned a shallower exponent with reason-

ably good agreement with the findings of our analysis. We therefore conclude that 3C 273

likely conforms to the thin disc model in which case it appears to display the ’accretion

disc size problem’ with a scale ∼ 2 − 3 larger than expected. The PyROA and Javelin

RM results for 1H 2106-099 revealed an unexpected discontinuity which is reflected in the

spectrum and which we cannot attribute to any specific contamination. This may indicate

a discontinuous accretion disc although we do not have enough evidence to conclude this.
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Investigating the possibility that the discontinuity is anomalous, we corrected the Javelin

and PyROA results for the discontinuity to obtain lag estimates in near perfect agreement

with the unapproximated thin disc model predictions without an up-scaled accretion disc.

The PyceCREAM results revealed no discontinuity as the algorithm assumes a continuous

thin disc power law although we obtained accurate bolometric luminosity estimates using

the PyceCREAM lag estimates indicating these lag estimates may be accurate and that

the discontinuity is anomalous. These results suggest 1H 2106-099 has an accretion disc

scaled up by a factor ∼ 2 larger than expected which we consider to be more accurate than

the accretion disc scale suggested by Javelin and PyROA due to the bolometric luminosity

findings although this is not entirely clear. Using our results we made lag predictions for

the dust forming JHK regimes of the accretion disc both with the standard β = 4
3 and the

shallower β ∼ 1 in 3C 273 and with and without the discontinuity in 1H 2106-099. This

will allow our conclusions to be tested by upcoming near-infrared RM campaigns. Overall

we found the Javelin results to be less constrained than the other algorithms meaning we

consider its lag estimates as less reliable.

Our results likely show two more examples of AGN which display the ’accretion disk

size problem’ which further validates the existence of this phenomenon although this is less

clear for 1H 2106-099. We also concluded that both the AGN we investigated conform to

the thin disc model meaning our results support the standard description of AGN accre-

tion discs. Future investigations should investigate a wider spectral range in 1H 2106-099

in order to help identify the likely contamination we found. RM should also be done on

both sources in the near-infrared JHK bands to test our predictions.

A secondary aim of the thesis was to investigate how the uncertainties on lag esti-

mates made by Javelin depended on the length and cadence of the light-curve data in

the dust RM regime. Investigations on two dust RM campaigns suggested that the light-

curve length relative to the expected lag has a more significant effect on the size of the

uncertainties than the cadence relative to the lag. We estimated the optimum light-curve

length to be ∼ 10× the expected lag and the optimum cadence to be ∼ 6× smaller than

the expected lag which had associated uncertainties of ∼ 11% and ∼ 10% respectively.
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APPENDIX A

Additional Explanation

A.0.1 MCMC

All three of the algorithms under discussion in the thesis use an MCMC approach. It will

therefore be useful to briefly summarise the purpose and typical techniques of MCMC.

The main purpose of MCMC is to obtain a set of samples of the parameters θi from the

posterior distribution conditioned on a set of data D. The posterior distribution is defined

by Bayes’ equation

p(θ|D) =
p(D|θ)p(θ)
p(D)

. (A.0.1)

Here p(D|θ) is the likelihood function and p(θ) is the prior distribution which reflects prior

knowledge about the values of θ. Typically uniform distributions are used to express a

lack of prior knowledge about parameter values whilst peaked distributions are used to

express preferred values. For the purposes of parameter optimisation, the evidence term

p(D) serves simply as a normalisation. For more information please see Trotta (2016).

The most widely used MCMC algorithm is the Metropolis-Hastings algorithm developed

by Metropolis, N. et al (1953) and Hastings, W. (1970). This involves initialising at

a certain position in the parameter space X1 and then sampling subsequent proposal

positions Y from a transition distribution Q(X;Y ) (which acts effectively as a prior). The

transition distribution is commonly chosen as a multivariate Gaussian in the parameter
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space centred at Xt for the tth step in the Markov chain. The probability of acceptance

for the proposal Y is defined as

P = min

(
1,
p(Y |D)

p(Xt|D)

Q(Xt;Y )

Q(Y ;Xt)

)
, (A.0.2)

and, if accepted, leads to an update in the Markov chain Xt+1 = Y or otherwise a repeat

in the Markov chain Xt+1 = Xt (Foreman-Mackey et al 2012). In the limit t → ∞ a

stationary set of samples representative of the posterior distribution will be obtained. In

practice, for the case of RM algorithms, typically at least several thousand iterations are

required. MCMC algorithms usually also require a ’burn-in’ step during which the sam-

pler is calibrated to move into the correct region of the parameter space before samples

are recorded. It should be mentioned that Javelin and PyROA use a different MCMC

algorithm called the ’stretch move’ algorithm used in the software package ’emcee’ devel-

oped by Foreman-Mackey et al (2012) whilst PyceCREAM uses another variation of the

MCMC algorithm.

A.0.2 RM algorithms

Javelin

The following explanation draws heavily from Zu, Y., Kochanek C. S., Peterson B. M.,

(2011). Javelin obtains lag estimates by modelling AGN light-curves as damped random

walks (DRW) described by the Ornstein-Uhlenbeck (O-U) process

dX(t) = − 1

τd
X(t)dt+ σ̂

√
dtϵ(t) + bdt, (A.0.3)

where for our purposes X(t) is the light-curve flux at time t, τd is the characteristic time

scale, σ̂ is the diffusion constant, ϵ(t) is a temporally uncorrelated unit Gaussian random

variable and b is the mean light-curve flux. For further explanation on the O-U process

as well as a summary on stochastic differential equations in general please see Gillespie

(1996).

The O-U process has an exponential autocovariance function for the driving light-

curve signal sd(t) between times ti and tj of the form

⟨sd(ti)sd(tj)⟩ =
τdσ̂

2

2
e
−

|ti−tj |
τd . (A.0.4)
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The correlation will become insignificant over timescales |ti − tj | >> τd meaning the

light-curve will appear as white noise on these scales. The parameter τd can therefore

be interpreted as the decorrelation timescale for the light-curve and σ̂ can be interpreted

as the variability over short timescales. The driver-lagged and lagged-lagged covariance

functions are derived by assuming the lagged light-curves are linearly related to the driver

by Eq. (1.10). To do this Javelin uses the simple top-hat transfer function Eq. (1.14).

To perform the fit, Javelin decomposes the light-curve data vector into three parts

y = s + n + Lq as explained above. Javelin fits the light-curves simultaneously using a

Gaussian Process by treating the s and n parameters as random variables with Gaussian

probability distributions. The Gaussian distributions P (s) and P (n) enable a likelihood

to be defined

P (y|s, p, q) ∝ |SN |−
1
2

∫
δ(y − (s+ n+ Lq))e−

1
2
(sTS−1s)e−

1
2
(nTN−1n). dDN s dDNn

∝ |SN |−
1
2

∫
e−

1
2
(sTS−1s)e−

1
2
(y−(s+n+Lq)TN−1y−(s+n+Lq)). dDN s,

(A.0.5)

where p are the set of parameters τd, σ̂, A and w ≡ t2 − t1 Javelin will try to optimise

for the fit. Maximising this likelihood with respect to s and q gives the following best-fit

constraints for the lightcurve variability and mean

ŝ = SC−1(y − Lq)

= (N−1 + S−1)−1N−1(y − Lq̂)

q̂ = CqL
TC−1y,

(A.0.6)

where C ≡ S + N and Cq ≡ (LTC−1L)−1. Here ŝ determines the optimal fit to the

lightcurve data which has an associated uncertainty ⟨∆s2⟩ = s − sTC⊥s where C⊥ ≡

C−1 − C−1LCqL
TC−1. This determines the ’error snake’ present in Javelin fits. To

properly define ŝ and q̂, Javelin must optimise the parameters p with respect to the data.

It does this using the likelihood

P (y|p) ∝ |S+N|−
1
2

√
Cqe

− 1
2
yTC⊥

−1y, (A.0.7)

which is derived by marginalising over the likelihood Eq. (A.0.5) assuming uniform priors

for P (s) and P (q).

Posterior distributions for the fitting parameters τd, σ̂ and τi, wi and Ai for each
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ith light-curve (contained in the covariance matrix of ŝ) are sampled using the ’emcee’

MCMC sampler using Eq. (A.0.7) as the likelihood and uniform priors for Ai and wi. For

τd and σ̂, Gaussian priors centred on the best fit values obtained through the preliminary

step are chosen with widths chosen to match the upper and lower 1σ confidence regions

from the preliminary posterior distributions. Typically, the optimised parameter values

are determined as the 50th percentiles of the posterior distributions and the upper and

lower uncertainties as the 84th and 16th percentiles respectively. Javelin then plots the

fitted light-curves using

s = ŝ+ u, (A.0.8)

where ŝ is the optimal light-curve fit Eq. (A.0.6) using the optimised fitting parameters

and u is a random Gaussian term added to introduce the appearance of stochasticity to

the light-curve. Javelin is able to interpolate between measured data points by appending

the data vector y with a set of fake data points yf over a grid of unmeasured times.

Javelin has recently been updated with a ’disc Model’ mode designed specifically for

accretion disc reverberation mapping. In contrast to the original ’Rmap Model’ which

samples the lag directly as a free parameter, the ’disc Model’ samples the lag τ between λ

and λα emitting regions of the disc indirectly by instead sampling the parameters α and

β which are constrained by the classic thin disc equation

τ =
α

c

[(
λ

λα

)β
− 1

]
. (A.0.9)

Eq. (A.0.9) is derived from the thin disc relationship R ∝ λβ of Shakura N.I., Sunyaev

R.A., (1973) (as outlined in section 1.1.2) and is equivalent to imposing a thin disc prior

on the lag. As such, β controls the power law scaling of disc radius with wavelength and

α sets the length scale of the disc and corresponds to the radius of the λα emitting region

for the standard thin disc model (with β = 4
3). For more detail see Mudd et al (2018).

A brief mention should be made to the RM algorithm MICA developed by Li et al

(2016) for BLR RM. This takes a non-parametric approach to fitting the light-curve data

by using a Gaussian process with a damped random walk kernel following a similar method

as used in Javelin. The key distinction is in MICA’s treatment of the transfer function as a

sum of displaced Gaussian functions allowing arbitrary, complex transfer function shapes

to be formed. This is expected to more realistically model the effects of the complex
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BLR geometry on the response function than the simple top-hat transfer function used in

Javelin. As such MICA could be used as a more sophisticated alternative to Javelin.

PyROA

The following explanation draws heavily from Donnan, F R. et al (2021). PyROA fits each

light-curve using a running optimal average (ROA) X(t) which is defined as an optimal

inverse-variance weighted average of all the N data points Di with errorbars σi measured

at times ti with an added Gaussian window function. At time t the ROA is defined as

X(t) =

∑N
i=1Di

1
σ2
i
e
− 1

2

(
t−ti
∆

)2
∑N

i=1
1
σ2
i
e
− 1

2

(
t−ti
∆

)2 . (A.0.10)

Here the ∆ parameter in the weights corresponds to the width of the Gaussian window

function and therefore controls how quickly the influence data points have over the fit di-

minishes with time separation as outlined above. To find a compromise between smooth-

ness and closeness of fit the algorithm minimises the Bayesian Information Criterion (BIC)

statistic defined as

BIC = −2lnP (D|M) + PlnN. (A.0.11)

Here P (D|M) is the likelihood for model M . By assuming Gaussian measurement errors

on the data, PyROA defines the likelihood as

P (D|M) =

N∏
i=1

σi√
σ2i + s2i

e
− 1

2

(
Di−fi√
σ2
i
+s2

i

)
(A.0.12)

where fi and si are the model value and the added error corresponding to each data point

Di in the light-curve.

The parameter P in the BIC Eq. (A.0.11) is defined as the total number of parameters

in the fit P ≡ 4 + Px. Px corresponds to the effective number of parameters of the fit

(controlled by ∆) with the four remaining parameters in P being the rms flux Ai, mean flux

Bi, lag τi and added error si for each i
th light-curve. The effective number of parameters

Px is defined as the sensitivity of the model X(ti) to changes in each data point Di and is
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quantified over all N data points as

Px(∆) =

N∑
i=1

∂X(ti)

∂Di
=

N∑
i=1

(
1
σi

)2

∑
k

1
σ2
k
e
− 1

2

(
ti−tk

∆

)2 . (A.0.13)

To perform the fit, PyROA samples posterior distributions for the fitting parameters

Ai, Bi, τi and si for each ith light-curve using the ’emcee’ MCMC sampler (Foreman-

Mackey et al 2012) with the BIC Eq. (A.0.11) as the likelihood and uniform priors for

the parameters. For each iteration in the MCMC algorithm, each ith light-curve data set

is shifted back in time by τi (with τi ≡ 0 for the driving light-curve) and normalised such

that each data point Di → Di−Bi
Ai

. This has the effect of stacking the light-curves on top

of each other. After adding the extra error parameter si in quadrature to the error bars

of each light-curve σi →
√
σ2i + s2i , the stacked light-curves are treated as a single merged

light-curve and the ROA X(t) is determined using a grid of 1000 equally spaced points

ranging from the initial to the final times of the combined data set. After normalising

the ROA X(t) → X(t)−X̄(t)
σx

(where X̄(t) and σx are the mean and standard deviation

respectively for the ROA) the model fit is then determined for each individual light-curve

as

fi(t) = AiX(t− τi) +Bi. (A.0.14)

Typically, the optimised parameter values are determined as the 50th percentiles of the

posterior distributions and the upper and lower uncertainties as the 84th and 16th per-

centiles respectively.

PyceCREAM

The following explanation draws heavily from Starkey et al (2016). PyceCREAM models

the lagged light-curve flux by adapting the linear response function Eq. (1.10) into a

discretised form

Fν(λ, t) = F̄ν(λ) + ∆Fν(λ)

τmax∑
i=0

ψ(τi|λ)∆Fx(t− τi)∆τ (A.0.15)
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where the variable component of the driving light-curve ∆Fx(t) is convolved with the nor-

malised, dimensionless transfer function ψ(τ |λ) as expected. Here ∆Fν(λ) is the variable

component of the spectrum and is used to scale the model variations to fit the data and

F̄ν(λ) is the background flux.

The accretion disc transfer function ψ(τ) is derived (following the approach of Starkey,

D., et al, 2017) by differentiating the reprocessed accretion disc flux fν,L in Eq. (1.10) by

the driving lamp-post flux fν,D(t− τ) such that

∂fν,L(λ, t)

∂fν,D(t− τ)
=

∫ ∞

0
ψν(τ

′|λ)δ(τ − τ ′).dτ ′ = ψν(τ |λ)

=⇒ ψν(τ |λ) =
∫
Ω

∂Bν(T, λ)

∂fν,D(t− τ)
δ(τ − τ ′(r, θ, i)).dΩ

=

∫
Ω

∂Bν(T, λ)

∂T

∂T

∂Lx

∂Lx
∂fν,D

δ(τ − r

c
(1 + sinicosϕ)).dΩ.

(A.0.16)

Here the second equation originates from the Planckian description of accretion disc flux

Eq. (1.6) and Lx is the driving luminosity of the lamp-post. Due to the normalised

definition of ψ(τ) in PyceCREAM, the ∂Lx
∂fν,D

term just introduces a factor of 4π into the

transfer function that has no effect on the result. As such, Eq. (A.0.16) is equivalent to

the accretion disc transfer function Eq. (1.12). PyceCREAM evaluates Eq. (A.0.16) in a

discretised form over a grid of radii rir and azimuthal angles θiA

ψν(τ |λ) =
∑
ir

∑
iA

∂Bν(T (rir, θiA), λ)

∂T

× ∂T

∂Lx

∂Lx
∂Fx

fc(rir)δ(τ − τ ′(rir, θiA, i))∆Ω

(A.0.17)

where ∆Ω = rir∆rir∆θ
D2 and fc is the fraction of the disc covered by black-body emitting

material (see Starkey, D., et al, 2017).

Bν and T are defined by Plancks function Eq. (1.6) and a thin disc temperature-radius

relation of the form T = T0
(
r0
r

) 1
β where T0 takes the form Eq. (1.8) including the lamp-

post term. This means that ψν(τ) is a function of Mṁ and inclination i.

PyceCREAM attempts to infer the shape of the driving light-curve (using the lamp-

post model) from the data by expressing the driving light-curve as a Fourier time series

with Nk terms

∆Fx =

Nk∑
k=1

Ckcos(ωkt) + Sksin(ωkt) (A.0.18)
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where Ck and Sk are Fourier amplitude coefficients and ωk = k∆ω is the kth Fourier

frequency. The maximum and minimum Fourier frequencies ωlow ≡ ∆ω and ωhigh ≡ Nk∆ω

are set by default as

ωhigh =
2π

∆̄t

ωlow =
1

2

2π

Trec

(A.0.19)

where ∆̄t is the mean time separation between adjacent points and Trec is the recurrence

time for the Fourier series. Trec should be set to be longer than the time-span of the data

plus the width of the transfer function to ensure that the periodicity of the Fourier series

does not appear in the light-curve fits which are expected to be aperiodic.

During the fitting procedure, PyceCREAM uses a bayesian statistic called the Badness

of fit (BOF) which the MCMC sampler attempts to minimise. BOF is defined as

BOF = −2lnP (M |D)

= χ2 +

N∑
i=1

ln(σ2i )− 2lnP (M) + constant
(A.0.20)

where P (M |D) is the bayesian posterior distribution with Npar parameters M and N

data points D with corresponding error-bars σi. The second expression in Eq. (A.0.20)

comes from Bayes equation assuming Gaussian errors on the data points where χ2 ≡∑N
i=1

(
Di−fi
σi

)
is the standard chi-squared statistic and fi are the model values at measured

times.

The lnP (M) term in Eq. (A.0.20) corresponds to the prior distributions for the

fitting parameters. Uniform priors are chosen for the cosi, logMṁ, log∆Fν and logF̄ν(λ)

parameters. However when uniform priors are chosen for the Sk and Ck parameters,

PyceCREAM has a tendency to overfit the data by using too many high frequency Fourier

terms to form the driving light-curve. This is because for uniform priors BOF ∝ χ2

meaning the algorithms attempts to minimise the BOF becomes equivalent to minimising

χ2. As a result, the algorithm is encouraged to fit the data as closely as possible which it

does by forming long Fourier chains to generate an overly flexible driving light-curve. To

mitigate this, PyceCREAM instead uses Gaussian priors for Sk and Ck defined by

P (M) =

Nk∏
k=1

e−
1
2
C2

k+S
2
k

σ2
k

2πσ2k
. (A.0.21)
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Here the mean of the Gaussian prior is defined as ⟨Ck⟩ = ⟨Sk⟩ = 0 and the variances as

⟨S2
k⟩ = ⟨C2

k⟩ = σ2k where σ2k is defined as

σ2k ≡
P0∆ω

2

(
ω0

ωk

)2

. (A.0.22)

This is effectively a ’random walk prior’ for Sk and Ck such that

⟨S2
k⟩+ ⟨C2

k⟩ = P0∆ω

(
ω0

ωk

)2

(A.0.23)

where P0∆ω is the amplitude of the power spectrum of the random walk at ω0 (see Uttley

et al, 2002). It is clear that Eq. (A.0.23) would help to prevent higher frequency Fourier

amplitudes from being over represented as ⟨S2
k⟩ + ⟨C2

k⟩ ∝ 1
ω2
k
. Interestingly, a power

spectrum of the form Eq. (A.0.23) is consistent with power spectra thought to drive

observed X-ray variability (see Uttley et al, 2002; McHardy et al, 2006) which means this

prior is effectively a preference that the driving lightcurve is in the form of X-rays. There

is some observational evidence to support this idea (e.g. McHardy et al, 2014).
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APPENDIX B

Additional and Auxiliary Results

B.1 Comprehensive comparison of RM algorithms

B.1.1 Javelin

Figure B.1: Posterior lag distributions obtained by Javelin for the 5100Å continuum and
Hβ light-curves for NGC 4151 from De Rosa et al (2018). Here the MCMC sampler is
allowed to explore the full parameter space.
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Figure B.2: Fit obtained by Javelin for the V and K band light-curves for NGC 4151 from
Koshida et al (2014). Flux units are in mJ

Figure B.3: Fit obtained by Javelin for the Edelson et al (2019) data for NGC 4151. Flux
units are in mJ
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B.1.2 PyROA

Figure B.4: Fit obtained by PyROA for the 5100Å continuum and Hβ bands from De
Rosa et al (2018) with the Dirac delta transfer function for NGC 4151. Flux units are in
mJ
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Figure B.5: Fit obtained by PyROA for the Edelson et al (2019) data-set using the Dirac
delta transfer function for NGC 4151. Flux units are in mJ

(a) Dirac delta transfer function. (b) Log-Gaussian transfer function.

Figure B.6: Differential Lag results for NGC 4151 using Javelin and PyROA taken from
Koshida et al (2014), De Rosa et al (2018) and Edelson et al (2019). Here the dashed line
y = x corresponds to total agreement between Javelin and PyROA.
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B.1.3 PyceCREAM

Figure B.7: Fit obtained by PyceCREAM for the De Rosa et al (2018) data-set using the
accretion disc transfer function for the 5100Å continuum and a top-hat transfer function
for the Hβ band for NGC 4151. Flux units are in mJ
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Figure B.8: Fit obtained by PyceCREAM for the Koshida et al (2014) data-set using the
accretion disc transfer function for the V band and a top-hat transfer function for the K
band for NGC 4151. Flux units are in mJ
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B.2 Reverberation Mapping of 3C 273

B.2.1 Contamination Estimates

Figure B.9 shows a more complete version of Figure 3.3 spanning the UV to the near

infrared optical with a wavelength range 3000Å−21000Å. Also shown is the expected thin

accretion disc relation fλ ∝ λ−
7
3 fitted to the spectrum using scipy’s ’curve-fit’ module. By

Figure B.9: Spectrum of 3C 273 spanning the UV to the near infrared taken from Landt
et al (2011). The thin disc power law relation fλ ∝ λ−

7
3 is fit to the spectrum.

using the expected thin disc fit in Figure B.9 as an estimate of the accretion disc specific

flux fλ at wavelength λ, estimates for the percentage flux contamination in each of the

measured photometric bands can be obtained. This is done by determining the ratio of

the area under the spectrum in Figure B.9 to the area under the fitted thin disc curve in

each of the LCO filters. This could not be done for the U band due to the instrumentation

effect mentioned above. Similarly, accurate contamination measurements for the I band

in 3C 273 could not be obtained due to the gap in the spectrum at this wavelength. The

estimated contamination levels are shown in Table 3.3 and 3.4

B.2.2 Design of the Simulation

Our simulation of the accretion disc spectrum in 3C 273 assumes a Schwarzschild SMBH

meaning the inner boundary of the accretion disc was set at rISCO = 3rg where rg ≡ 2GM
c2

is

the Schwarzschild radius. The outer edge was set at an arbitrarily large radius of 10,000 rg

with the accretion disc modelled as a series of radial slices increasing in increments of 1rg.

To perform the simulation, the temperature of each disc increment was determined using
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the thin disc temperature-radius relation Eq. (1.4) with SMBH mass M = 8.9 × 108M⊙

and bolometric luminosity Lbol = 1046.66ergs−1 which was used to determine ṁ using the

relation Eq. (1.1) with a standard efficiency η = 0.1 (all values are taken from Landt et al

(2011)). This was done both with and without the boundary condition term in Eq. (1.4)

thereby generating the two simulations shown in Figure 3.3. The predominant wavelength

emitted by each disc increment was then determined from the derived temperature T using

Wien’s law Eq. (3.1) with the standard value X = 4.96. To determine the expected flux

fν0 emitted at λ0, Plancks function relation Eq. (1.7) was used with the assumption of a

face-on disc with respect to observers.

B.2.3 X considerations and derivation

The use of Wiens law Eq. (3.1) (with X = 1) in the temperature radius relation Eq. (1.4)

assumes that the flux emitted at wavelength λ from the disc is emitted entirely from a

particular annulus at temperature T . As such it ignores the contribution to λ from the

rest of the disc which is expected to emit as a black-body continuum. The dimensionless

constant X is added to Eq. (3.1) to act as a scale factor to account for the contribution

to λ from the rest of the disc. A value of X = 4.96 is used for the standard Wien’s

displacement law. However, following the approach of Mudd et al (2018), a corrective X

value can be derived for a particular wavelength λ0 emitted by a particular AGN accretion

disc by

X =
⟨Rλ0⟩
Rλ0

. (B.2.1)

Here Rλ0 is the disc radius emitting predominantly at λ0 using Wiens law with X = 1.

⟨Rλ0⟩ is the flux weighted mean radius and can be interpreted as the average radial location

of the part of the disc emitting predominantly at λ0 taking account of the contributions

to λ0 from the entire disc’s continuum black-body emission. As such, ⟨Rλ0⟩ is defined as

⟨Rλ0⟩ =
∫ Router

Rinner
BνR

2.dR∫ Router

Rinner
BνR.dR

. (B.2.2)

X can therefore be interpreted as a scale factor converting the simplistic description of

accretion disc emission tied to a particular annulus to the more physically correct descrip-

tion involving the entire disc emitting as a black-body.
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To test the effectiveness of Mudd et al (2018) treatment of X, we derived lag pre-

dictions for 3C 273 using both the standard approach X = 4.96 and the new approach

outline above which are shown in column 3 of Table 3.6. To derive the X values for each of

the LCO filters used to monitor 3C 273 in our campaign, ⟨Rλ0⟩ was calculated using Eq.

(B.2.2) and substituting the temperature-radius relation Eq. (1.4) into Plancks function

Eq. (1.6) using theM , ṁ and rISCO values used to obtain the lag predictions in Table 3.6.

Here Rinner ≡ 3rg and Router ≡ 10000rg as done in the simulation. Rλ0 was determined

by substituting Wiens law Eq. (3.1) with X = 1 into the temperature radius relation

Eq. (1.4). The estimated X values for each of the observed filters in 3C 273 is shown

in Table B.1. As can be seen they are not too dissimilar from the standard X = 4.96

and decrease in magnitude with increasing wavelength. This makes intuitive sense as the

longer wavelength filters will have smaller contributions from the brightest, inner regions

of the accretion disc meaning the ratio between assuming a single emitting annulus Rλ0

and the full flux weighted mean radius ⟨Rλ0⟩ can be expected to be smaller.

Filter Xnew

U 4.99

B 4.52

G 4.39

V 4.22

R 4.11

I 3.96

Z 3.88

Table B.1: A set of proportionality factors X for Wiens law (4.1) derived following the
approach of Mudd et al (2018) for each of the LCO filters used to observe 3C 273.

B.2.4 Investigating the trend

The trends in our 3C 273 light-curve data appear to have a quasi-periodic character and

were reasonably well fit by Sine functions with ’lmfit’ (Newvillem, M et al 2016) assuming

linear interpolation across the gaps. An example of the fit obtained for the B band trend

is shown in Figure B.10(a). To test the apparently identical trend present in our U band

light-curve, the U band data-set was subtracted from the remaining light-curves in Figure

4.1(a). This was done by shifting each light-curve back by the expected differential lags

shown in Table 3.6 and then normalising the flux of each data-set by subtracting its mean

f̄ and scaling it by its standard deviation σ such that fnew = f−f̄
σ . Each optical light-curve
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was then cut-down to select for data points most similar in time to those in the U band

light-curve to keep the data sets dimensionally consistent. The subtracted light-curves

obtained have the appearance of white noise with only the possibility of weak residual

trends apparent. An example of the residual B band light-curve after subtraction of the U

band is shown in Figure B.10(b). This indicates that the trend in the U band is the same

as in the other light-curves which further refutes the possibility that the trend originates

from the jet as the U band light-curve is expected to have no significant jet contribution.

However the usefulness of the U band subtraction is limited due to the large scatter in

this data-set.

(a) Sine fit to the B band light-curve
allowing the amplitude and period of the
quasi-periodic oscillation to be estimated.

(b) The residual light-curve left after subtraction
of the U band from the B band.

Figure B.10: Investigations of the long-term trend in 3C273 with the B filter used as an
example.

B.2.5 Intra-day Jet variability

Another possible explanation for the bias found in our default PyROA fits could be a

result of intra-day variability detected in optical measurements of 3C 273 in the vri bands

carried out by Xiong et al (2017) which they attribute to the effects of relativistic shocks

in the jet. Xiong et al (2017) could not detect any significant time lag between their

measured v and i intra-day variable light-curves. These results could explain why the

short timescale variability fits in Figure B.15(b) returned zero biased lags if the apparent

intra-day variability in our light-curves can be attributed to the jet. In addition, our

light-curve data for 3C 273 is remarkably well sampled with ∼ 83% of all observations

having cadences on the intra-day scale and ∼ 75% having cadences on scales less than the

most significant jet intra-day timescale (according to Xiong et al (2017)) of 154 minutes.

Therefore if there is intra-day variability originating from the jet in 3C 273, our data-set
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would likely detect it. That said, there are significant overlaps in the error-bars of our flux

measurements on the intra-day scale. When selecting for ’meaningful’ variability, defined

as the nearest pairs of data-points with a difference in flux greater than the sum of their

error-bars, we found only ∼ 10−15% of our data across all six light-curves displayed intra-

day variability that we could be confident existed and only ∼ 6% displayed variability on

the significant 154 minutes timescale. On top of this, the intra-day variability detected

by Xiong et al (2017) was not very significant with most of it occurring on amplitudes

≤ 10% and only being detected on 7 out of the entire 105 nights they observed (although

this may be a result of their relatively short observing periods).

B.2.6 BLR lag estimates

The ’Failed Radiatively Accelerated Dust-driven Outflow’ (FRADO) model of the forma-

tion of the BLR explained by Czerny et al (2015) models the formation of the BLR as

originating from dusty outflows from the accretion disc. Under this model, the inner edge

of the BLR can be expected to form at the same radius as the part of the accretion disc

with an effective temperature of ∼ 1000K at which point dust begins to form. Using

our PyROA RM results, the predominant wavelength emitted by the 1000K region of the

accretion disc in 3C 273 can be estimated using Wiens law Eq. (3.1) with a value X = 7.4

to make it consistent with the up-scaled accretion disc suggested by our PyROA lag esti-

mates. This can be expected to emit predominantly at ∼ 19500Å rest wavelength which

places it between the H and K bands as can reasonably be expected. By assuming the

1000K region of the accretion disc exists at the same radius as the inner edge of the BLR

and that the K emitting region exists at the outer edge of the BLR where the torus begins

to form (as per the FRADO schematic shown in Figure 1.1) a mean lag for the BLR in

3C 273 can be estimated by interpolating the best-fit power law in Figure 3.7(b) at these

wavelengths and averaging over the expected lags. This was converted to absolute lags for

our PyROA RM results by estimating the B band lag at 21.6 days with X = 7.4. Similar

absolute lag estimates were obtained using the best-fit combined PyROA and Javelin RM

results with a value X = 8 to scale the accretion disc appropriately. The lag values are

given in Section 3.3.2.

B.2.7 Assorted Graphs
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Filter Signal amplitude relative to noise amplitude

B 2.00

G 3.46

V 3.47

R 3.34

I 1.59

Z 1.60

Table B.2: Estimates for the amplitude of the model fit by PyROA in Figure 3.7 to the
magnitude of the residuals.

Figure B.11: Distribution of the residuals in the B band light-curve with respect to the
model fit by PyROA in Figure 3.7.
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Figure B.12: PyROA corner plots to the 3C 273 fits in Figure 3.7.
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Figure B.13: Posterior distributions obtained by Javelin for the fit in Figure 3.9. The dis-
tributions are for the decorrelation timescale τd and short timescale variability amplitude
σ̂ and then the lag τ , tophat width w and scale s for each light-curve.
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(a) Extrapolation of the thin disc β = 4
3

power law.
(b) Extrapolation of the best-fit β ∼ 1.16 power
law.

Figure B.14: Extrapolations of the thin disc and best-fit power laws fit to the combined
PyROA and Javelin RM results into the near-infrared JHK regime. This allowed lag
predictions in Table 3.10 to be made.

(a) PyROA fits for bgv filters in 3C 273.
The MCMC chains converged to the
expected lags.

(b) PyROA fits for riz filters in 3C 273. The
MCMC chains converged towards zero indicating
a stronger bias for longer wavelengths.

Figure B.15: Zero bias dependence on wavelength tests. For each filter the Markov chain
was initialised half-way between zero and its expected lag. Blurring was controlled across
the 6 filters.
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B.3 Reverberation Mapping of 1H 2106-099

B.3.1 Erroneous Javelin Fits

The differential lag estimates for 1H 2106-099 obtained for all ugriz filters by Javelin is

shown in Table B.3. The fits and distributions we obtained are shown in Figures B.20 and

B.21. Figure B.16 shows the differential lags and residuals obtained by Javelin with respect

Filter Lag estimate (days) Lag Prediction (days)
X=4.96 Xnew

U 0 0 0

G 0.74+0.13
−0.09 0.50 0.31

R 2.41+0.15
−0.31 1.13 0.70

I 2.54+0.04
−0.07 1.75 1.08

Z 2.59+0.12
−0.12 2.32 1.43

Table B.3: Differential lag estimates for the regions of the accretion disc in 1H 2106-099
emitting predominantly in each of the LCO filters. Two sets of predictions are obtained
using the standard X = 4.96 and a new set of X values derived following the approach of
Mudd et al (2018).

to the U band plotted against the rest frame centroid ugriz wavelengths. As can be seen

the same discontinuity between the ug and riz filters is obtained as found with PyROA.

However, the two power laws show the opposite behaviour as found with the PyROA

analysis with the ug appearing steeper and the riz shallower. Thin disc power laws have

been well fitted to the ug and riz filters with scipy ’curve-fit’. However, when a power

law with an unfixed exponent is fit to the riz filters following the logarithmic approach

done for the PyROA results, an unrealistically small exponent β = 0.19±0.06 is preferred

which is completely inconsistent with all the preceding analysis. We do not have much

confidence in the lag estimates in Table B.3 due to the erroneous U band model fit seen in

Figure B.20 which appears to lag behind the U band data. This would have a significant

effect on the small lags we are attempting to measure. In particular, the erroneous U

band fit would result in anomalously large differential lag estimates for the g band which

the algorithm has likely compensated for by shifting the riz lags upwards resulting in

the compact lags seen in Figure B.16. The reason for this is probably explained by the

presence of many bimodal distributions in Figure B.21 which indicates the algorithm had

multiple preferred fitting solutions. In particular, many of the top-hat width distributions

are bimodal with a sharp peak at ∼ 0 which we found grew more significant as the analysis

was run with more iterations. As such, in the limit of a large number of parameters we
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would expect Javelin to fit the light-curve data with Dirac delta transfer functions and

return lag estimates approaching the solutions returned in the Dirac delta PyROA fits.

The distributions therefore indicate a problem with convergence which is more significant

for the U band fit as it has the poorest cadence and is therefore the least constrained.

Figure B.16: τ ∝ λβ power laws fit to the Javelin lag estimates. As can be seen two
separate thin disc power laws can be fit to the riz and ug data points with β = 0.19± 0.06
and β = 4

3 respectively.

B.3.2 Assorted Graphs

Figure B.17: Spectrum of 1H 2106-099 spanning the UV to the near infrared taken from
Landt et al (2011). The thin disc power law relation fλ ∝ λ−

7
3 is fit to the spectrum.
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Filter Xnew

U 3.82

G 3.70

R 3.63

I 3.59

Z 3.56

Table B.4: A set of proportionality factors X for Wiens law (4.1) derived following the
approach of Mudd et al (2018) for each of the LCO filters used to observe 1H 2106-099.

Filter Signal amplitude relative to noise amplitude

U 16.5

G 20.1

R 28.2

I 21.4

Z 10.8

Table B.5: Estimates for the amplitude of the model fit by PyROA in Figure 3.16 to the
magnitude of the residuals.

Figure B.18: Plotting of riz PyROA lag estimates in logarithmic space. A linear fit
returned an estimated power law exponent β = 1.37± 0.36

Filter Lag Prediction (days)

J 8.67

H 12.65

K 18.42

Table B.6: Absolute lag predictions for the JHK emitting regions of the accretion disc in
1H 2106-099 interpolated from Figure B.25 using the PyceCREAM RM results.
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Figure B.19: PyROA corner plots to the 1H 2106-099 fits in Figure 3.16.

Filter Lag Prediction (days)
Shifted Unshifted

J 2.68 4.02

H 4.18 5.52

K 6.23 7.56

Table B.7: Differential lag predictions for the JHK emitting regions of the accretion disc
in 1H 2106-099 interpolated from Figures B.23 using the Javelin RM results. Predictions
for the original results in Figure 3.22 and the shifted results in Figure 3.23 are shown. The
lag predictions are made with respect to the G band.
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Figure B.20: Javelin fit to the full ugriz light-curves obtained for 1H 2106-099. Flux values
are in mJy.
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Figure B.21: Distributions for the 1H 2106-099 fits in Figure B.20.
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Figure B.22: Distributions for the griz 1H 2106-099 Javelin fits in Figure 3.17.

(a) Extrapolation of the shifted power law
corresponding to Figure 3.23.

(b) Extrapolation of the unshifted power law cor-
responding to Figure 3.22.

Figure B.23: Extrapolations of the shifted and unshifted best-fit power law fit to the riz
Javelin RM results into the JHK regime corresponding to Figures 3.23 and 3.22 respec-
tively. Here βbest = 1.12± 0.20. This allowed lag predictions in Table B.7 to be made.
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Figure B.24: PyceCREAM distributions for Figure 3.18.
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Figure B.25: Extrapolations of the best-fit power law fit to the PyceCREAM RM results
into the JHK regime. This allowed lag predictions in Table B.6 to be made.
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B.4 Design of dust RM campaigns

B.4.1 Definition of gaps

Histograms of the time separation between consecutive data points were generated for

all objects within the Koshida et al (2014) and Minezaki et al (2019) data-sets and Log-

Gaussian functions were fit using ’lmfit. An example histogram for SDSS J0007-0054 is

shown in Figure B.26 from the Minezaki et al (2019) study. This was done reasonably well

with the exception of PG 0953+414 and SDSS J0957-0023 from Minezaki et al (2019).

Due to a lack of observing data, these objects generated inconclusive histograms and so

were excluded from the investigation. New histograms were then generated for the

Figure B.26: A histogram of the time separation between consecutive data points for SDSS
J0007-0054 from Minezaki et al (2019). Light-curve data from both the R and K bands is
included. A Log-Gaussian distribution was fit to the histogram.

remaining objects in terms of the natural logarithm of the inter-data time separations

which took an approximately Gaussian form as expected. This was determined by fitting

Gaussian distributions to each histogram using ’lmfit’ as shown below for SDSS J0007-

0054 from the Minezaki et al (2019) study in Figure B.27. It should be mentioned that

LBQS 1026-0032 and SDSS J2326-0030 generated incomplete Gaussian fits and so were

excluded from the investigation due to the inability of the plotting software to accurately

determine the Gaussian fitting parameters.

Each histogram was then normalised using the Gaussian mean µ and standard devi-

ation σ fitted parameters by transforming each bin as x → x′ = x−µ
σ . The normalised
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Figure B.27: A histogram of the natural logarithm of the time separation between consec-
utive data points for SDSS J0007-0054 from Minezaki et al (2019). Light-curve data from
both the R and K bands is included. A Gaussian distribution was fit to the histogram.

histograms were then added together to produce a combined histogram which more closely

resembled a Gaussian distribution due to the central limit theorem. The combined his-

togram for the Minezaki et al (2019) objects is shown in Figure B.28. This enabled a

Gaussian distribution to be well fitted to the combined histogram with the fitting param-

eters being used to determine the upper 84th and 97.5th percentiles. These were then

used to define the boundary between gaps and cadence for each object in the study by

performing inverse normalisation x′84/97.5 → x84/97.5 = σx84/97.5 + µ and then converting

back to the Log-Gaussian form by ex84/97.5 . As such two separate definitions for gaps were

derived based on the upper 1σ and 2σ boundaries from the Gaussian histograms.

The preceding statistical method of defining the gaps was performed separately for

the Koshida et al (2014) and the Minezaki et al (2019) data-sets. This was because the

two studies had starkly different typical cadences and so could be expected to have very

different average gap sizes. It should be mentioned that the standard deviation used to

define the boundary between gaps and cadence refers to the standard deviation in the

Gaussian histograms and not the original Log-Gaussian distributions. We decided to de-

fine the gaps in relation to the Gaussian histograms as 2QZ J1345-0231 and PG 1613+658

from Minezaki et al (2019) both generated poor Log-Gaussian fits with unusable fitting

parameter estimates but generated acceptable Gaussian fits after they had been trans-

formed.
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Figure B.28: A normalised histogram of the natural logarithm of the time separation be-
tween consecutive data points for the complete Minezaki et al (2019) data-set. A Gaussian
distribution was fit to the histogram.

Therefore the Gaussian approach was chosen in the interests of not excluding these

objects from the study particularly as PG 1613+658 was the last of the Palomar–Green

(Schmidt & Green 1983) survey to remain in the study. Moreover, recalculating the gap

boundary in terms of the Log-Gaussian standard deviation revealed no significant differ-

ence compared to the Gaussian standard deviation except for 4 objects. However, using

the Gaussian approach for these 4 objects resulted in under-estimates for the gap bound-

ary with respect to the Log-Gaussian approach which is a relatively safe effect for the

following cadence analysis as gaps will not be included in the cadence definition. The only

consequence would be slightly smaller cadence estimates.

B.4.2 Assorted Graphs
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Figure B.29: The derived relationship between the relative error on Javelin lag estimates
and the ’lag relative to the average cadence’ for the Koshida et al (2014) and Minezaki
et al (2019) data-sets. Here the results are shown for the three different gap definitions
defined in Section 4.2. The Spearman’s rank correlation measurements are shown.

Figure B.30: The derived relationship between the relative error on Javelin lag estimates
and the density of gaps for the Koshida et al (2014) and Minezaki et al (2019) data-sets.
Here the results are shown for the three different gap definitions defined in Section 4.2.
The Spearman’s rank correlation measurements are shown.
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Figure B.31: The derived relationship between the relative error on Javelin lag estimates
and the average gap size relative to the light-curve length for the Koshida et al (2014)
and Minezaki et al (2019) data-sets. Here the results are shown for the three different
gap definitions defined in Section 4.2. The Spearman’s rank correlation measurements are
shown.

(a) The relationship between the γ
parameter and the relative error on lag
estimates after controlling for the ϵ
parameter.

(b) The relationship between the ϵ
parameter and the relative error on lag
estimates after controlling for the γ
parameter.

Figure B.32: Sub-samples selected from Figure 4.4.
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