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Constraining the dark matter particle mass through
galaxy-galaxy strong gravitational lensing

Qiuhan He

Abstract

We study several possible ways of constraining the dark matter particle mass

through galaxy-galaxy strong gravitational lensing, where the key underly-

ing idea is that a strong lens image could be perturbed by low-mass ha-

loes that happen to be close to light-rays emitted from a background source

galaxy. Under the Approximate Bayesian Computation framework, we de-

velop a forward-modelling procedure aimed at directly placing constraints on

the dark particle’s thermal relic mass using a set of observations. We use

mock images to demonstrate its ability to extract subhalo information from

the power spectrum of image residuals and unbiasedly recover the input mass

of the dark matter particles. We re-derive the number density of detect-

able intervening line-of-sight haloes relative to lens subhaloes in galaxy-galaxy

strong lens observations. Unlike previous methods determining the detectab-

ility through fitting deflections or idealistic images, we regard a perturber as

detectable only if adding it to a smooth model generates a statistically sig-

nificant improvement in the reconstructed image. Our new results show that

line-of-sight haloes are still important but, in most cases, no longer completely

dominate detections over those of subhaloes. Finally, we study the effects on

subhalo inference from the complexity of the lens through simulating mock

lensed images with a lens from a high-resolution hydrodynamic simulation. We

find that the commonly used lens model, a power-law profile, could wrongly

infer the subhalo information if it cannot capture the non-elliptical features of

the lens galaxy. We also consider a decomposed model for the lens mass, which

separately models the stellar and dark matter mass. We find the decomposed

model can successfully capture the complexity of the simulated galaxy and

correctly infer the subhalo information.
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Chapter 1

Introduction

In 1930s, when studying the velocities of galaxies within the Coma Cluster, Fritz

Zwicky realized that the galaxies were moving so fast that an unseen mass, hundreds

of times more massive than the stellar mass, must exist to prevent the cluster

disintegrating and for the first time he referred to such unseen mass as “dark

matter” (DM) (Zwicky, 1933, 1937). Since then, more and more astrophysical

observations like the study of galaxy motion and rotation curves (Kahn and Woltjer,

1959, Rubin and Ford, 1970) have confirmed the common existence of DM. In recent

decades, with great advances in both the observations and theories, researchers have

made many breakthroughs in cosmology and established the standard cosmological

paradigm, the Λ cold dark matter (ΛCDM) model (see Frenk and White, 2012,

for a review), which has successfully accounted for many observations, like the

inhomogeneities of cosmic microwave background (CMB) and the clustering of

galaxies.

According to the standard model, the Universe starts with a big bang from a very

hot and compact point. As the Universe expands, particles precipitate from the

thermal background as temperatures and pressure decrease. After a while, matter

clusters and creates various structures, eventually evolving into the Universe we

live in today. According to the dominant form of energy, the Universe can be di-

vided into three epochs chronologically: radiation-dominated, matter-dominated,

1



1. Introduction

and dark energy-dominated epoch. Most particles move relativistically during the

radiation-dominated epoch and matter is prevented from collapsing to form haloes

by the radiative pressure. Additionally, in the radiation-dominated epoch, most of

the time the Universe is opaque, but towards the end of the epoch, nuclei start to

capture free electrons that eventually allow photons to travel freely through the

Universe, leading to the creation of CMB. Approximately at the same time, the

Universe enters the matter-dominated epoch, in which dark matter haloes develop

gradually as gravitational forces outweigh radiation pressures. The seeds of gravita-

tional instability are thought to originate in the primordial quantum perturbations

at very early times, which later expand with the inflation of the Universe. It is

normally assumed that the perturbations have a broad spectrum. However, due to

the free streaming of dark matter particles during the radiation-dominated epoch,

some small perturbations may have been smoothed out before dark matter haloes

form. As a result of the free-streaming scheme, the mass of a dark halo has a

lower limit. The free-streaming scale, λFS, can be approximated as the addition of

two lengths, the relativistic and non-relativistic travelling lengths (Schneider et al.,

2012):

λFS ≡
∫ teq

0

v(t)
a(t)

dt ≈
∫ tnr

0

c
a(t)

dt+
∫ teq

tnr

v(t)
a(t)

dt

≈ 2ctnr
a (tnr)

(
1 + log

(
a (teq)
a (tnr)

))
,

(1.1)

where c is the speed of light, a is the scale factor, tnr and teq refer to the time

when the (dark) particles become non-relativistic and the time when the matter-

dominated epoch starts, respectively. As shown, the free-streaming scale is related

to the time when the (dark) particles precipitate from the thermal background.

The heavier the particle, the sooner it decouples from the thermal background,

resulting in a smaller free-streaming scale and therefore a lower mass a halo can

have. As a result, the lower limit for the mass of a dark halo can be approximated

by the “free-streaming” mass, mFS, as

mFS ≡ 4π
3
ρm

(1
2
λFS

)3
, (1.2)

2



1. Introduction

where ρm is the (dark) matter density at the time when the matter-dominated

epoch starts.

The core of the ΛCDM model is the hierarchical formation of self-bound dark mat-

ter haloes due to gravitational instability. Small clumps of dark matter first form

after the Universe enters into the matter-dominated epoch and those small clumps

grow into larger and larger dark matter haloes through accreting surrounding dark

matter particles and also merging with other clumps. Later on, precipitated ba-

ryonic gas from the thermal background flows into these dark haloes’ centres and

gives birth to stars and galaxies, if the dark halo is massive enough to accrete

enough gas (White and Rees, 1978, White and Frenk, 1991). As the picture de-

scribes, the theory predicts a vast abundance of dark matter haloes from a mass

scale of galaxy clusters down to around the scale given by the free-streaming of dark

matter matter particles during the radiation-dominated epoch as shown by Eq. 1.1

and 1.2. For a typical CDM particle of ∼ 100 GeVs, the corresponding lowest halo

mass is around the Earth mass (Frenk and White, 2012, Wang et al., 2020). The

theory also predicts that the mass function of those haloes (the abundance as a

function of halo mass) should be well characterised by a simple power law except

for an exponential cut-off at the very high mass end. In the intermediate mass

regime, the mass function has been well constrained by large sky surveys through

counting galaxies and is shown to agree well with the single power-law prediction

(Frenk et al., 1990, Rozo et al., 2010). However, in lower mass ranges (< 1010 M⊙)

where a dark matter halo would not be massive enough to hold a luminous galaxy

(Thoul and Weinberg, 1996, Efstathiou, 1992, Benson et al., 2002, Sawala et al.,

2016, Benitez-Llambay and Frenk, 2020), direct counting of dark haloes becomes

infeasible and the form of the mass function remains unclear. The unconstrained

low mass range of the mass function below around 1010 M⊙ leaves spaces for other

physically motivated particle candidates for DM, besides typically-assumed CDM

particles, which are traditionally expected to be a kind of super-symmetric particle

of several hundred GeV (Hut, 1977, Scherrer and Turner, 1986). Famously, by con-

3



1. Introduction

trast, a family of lighter particles called “warm” dark matter could damp relatively

larger fluctuations in the early Universe due to their later decoupling from the

thermal background, which limits the smallest size of dark halo that could form in

the early Universe. For example, if the dark matter particle is a sterile neutrino

with a mass of several keV, the lower cut-off of the mass function would be in the

range between 107 to 1010 M⊙. These models have recently received increasing

attention due to the failure to detect the signature of super-symmetric particles in

ground-based experiments (Cui et al., 2017, Aprile and Xenon Collaboration, 2017,

Akerib et al., 2017), which makes it more important and meaningful to push fur-

ther the constraint on the form of dark halo mass function to lower masses through

non-direct astrophysical methods.

Several approaches have been proposed and applied to extract abundance inform-

ation of invisible small dark matter haloes based on different astrophysical effects

of those haloes. For example, at cosmological distances, people can estimate the

line-of-sight abundance of small dark matter haloes by analyzing the spectrum

of Lyman-alpha emission from distant quasars, since every time that light passes

through a dark halo it would be partially absorbed by the gas within the halo and

thus reveal information about haloes along the line of sight (Viel et al., 2013, Iršič

et al., 2017, Garzilli et al., 2019). Similarly, people analyze strong gravitational

lensing systems to extract evidence of tiny perturbations that dark matter haloes

would cause when the background galaxy’s light happens to pass by one of them

(Koopmans, 2005, Vegetti and Koopmans, 2009a,b, Vegetti et al., 2012, Hezaveh

et al., 2016, Li et al., 2016b). For smaller scales within the Milky Way, people

can use the abundance of the Milky Way’s satellites to constrain the dark matter

halo mass function, since different dark matter models predict different numbers of

satellites, though this is complicated by baryonic physics processes (Newton et al.,

2021). In addition, with accurate position and velocity measurements of Milky

Way stellar streams from Gaia (Gaia Collaboration et al., 2018), people have star-

ted studying the perturbations caused by haloes a stream might encounter, and
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used them to infer the abundance of those small haloes (Banik et al., 2021, Her-

mans et al., 2021). Every approach has its own strengths and weaknesses. For

example, the Lyman-alpha emission analysis and studies of Milky Way satellites

can at most constrain the mass function around 109 M⊙, where below that very

little gas is ever bound in dark matter haloes making them extremely difficult to

observe. However, ideally stellar streams can place constraints down to ∼ 106 M⊙

since the measurement is made on individual stars, which are sensitive to very

small gravitational perturbations. In terms of constraints from strong lensing, it is

expected to constrain the mass function down to ∼ 107 M⊙ and has the unique ad-

vantage of constraining low mass line-of-sight dark matter haloes whose properties

are hardly affected by complicated baryonic physics. The challenge which exists

in strong lensing modelling is simultaneously solving for the unknown foreground

galaxy mass distribution and background galaxy light distribution. Much effort

has been made in this field during the past decade, however, due to the complex-

ity of the technique and the data size and quality, only a few dark matter haloes

have been detected and the constraint from strong lensing is not yet comparable

with some of other methods. However, within this decade, hundreds of times more

strong lensing systems will be discovered with better image quality by new tele-

scopes, such as the James Webb Space Telescope (JWST), Euclid Space Telescope

(EST) and China Space Station Telescope (CSST), which promise to enable much

tighter constraints on the halo mass function. In this thesis, we further investigate

the methodology of utilizing strong lensing to constrain the dark halo mass func-

tion and develop parts of the methods to prepare for the data that will be coming

soon.

To aide in the understanding of topics discussed later in this thesis, in the following

parts of this Chapter we will introduce some relevant background. In Section 1.1,

we introduce some basic models and properties of dark matter haloes. Then in

Section 1.2 we describe concepts and formulae related to the phenomenon of grav-

itational lensing. In Section 1.3, we summarize some recent progress in the field of
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subhalo lensing and finally we give an outline of this thesis in Section 1.4.

1.1 Properties of dark matter haloes

1.1.1 Halo mass function

The halo mass function describes the most fundamental property, the abundance,

of dark matter haloes. To be specific, it is defined as the number density of dark

matter haloes per unit mass. Ignoring baryonic effects, in the CDM case, the

halo mass function is almost a power law from galaxy cluster masses to an Earth

mass, while in the WDM case, due to the damping of the power spectrum of

initial perturbations, which prohibits the formation of haloes below a certain mass

threshold, the halo mass function is expected to have a cut-off at sub-galaxy mass

scales. In this thesis, following Gilman et al. (2019), we introduce a “cut-off” by

defining the halo mass function, F (M, z) as

F (M, z) ≡ d2N

dMdV
(M, z) = FCDM(M, z)

(
1 + Mhf

M

)−1.3
, (1.3)

where M is the halo mass, z is the redshift, and FCDM is the mass function in

the CDM case, which if not specified, takes the form and values given by Sheth

et al. (2001). In Eq. 1.3, the “cut-off” on the lower end of the mass function is

parameterized by the half-mode mass, Mhf , a characteristic mass corresponding to

the mass scale at which the dark matter transfer function falls to half the value of

the CDM transfer function which can be related to the mass of the dark matter

particle, MDM, by

Mhf = 1010
(
MDM
keV

)−3.33
M⊙h−1, (1.4)

where h is the Hubble parameter in units of 100 km s−1 Mpc−1 (Lovell et al., 2014)
∗.

∗The transfer function is defined as T (k) ≡
√

P (k)
P0(k) , where P (k) (P0 (k)) is the (primordial)

dark matter power spectrum.
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1.1.2. Dark matter halo profile

1.1.2 Dark matter halo profile

N-body simulations have shown that dark matter halo profiles can be accurately

described by a simple fomula, the Navarro-Frenk-White (NFW) profile

ρ (r) = ρs
r/rs(1 + r/rs)2 , (1.5)

which has has only two free parameters, the scale radius, rs and scale density, ρs.

The enclosed mass at radius, r, is then

M(r) =
∫ r

0

ρs
r′/rs(1 + r′/rs)2 · 4πr′2dr′ = 4πρsr

3
s

(
ln rs + r

rs
− r

rs + r

)
. (1.6)

It is noted that as r → ∞, M (r) ∝ ln r, and thus an NFW halo does not have a

finite mass. When referring to the mass of an NFW halo, we usually first define

a characteristic radius, r200, within which the average density of the halo is 200

times the critical density of the Universe, and then we take the total mass within

r200 as the mass of the NFW halo, which is similarly denoted as M200. The ratio

between r200 and rs is defined as the concentration of the halo, c ≡ r200/rs, and

its relation with the halo mass is called the mass-concentration relation. As a

result of the reduction in small-scale power with WDM, low mass dark haloes form

later and are thus less concentrated compared with their CDM counterparts (Lovell

et al., 2012, Schneider et al., 2012, Macciò et al., 2013, Bose et al., 2016, Ludlow

et al., 2016). According to the Copernicus Complexio simulation (coco-warm),

the mass-concentration relation in the WDM case can be empirically described as

c(M200, z) = cCDM(M200, z)
(

(1 + z)0.026z−0.04
(

1 + 60 Mhf
M200

)−0.17
)
, (1.7)

where cCDM(M200, z) is the concentration in the CDM case. Throughout our work,

we adopt the relation given by Ludlow et al. (2016) which shows remarkable agree-

ment with the recent simulations from cluster to Earth mass scales (Wang et al.,

2020). Note the relation only provides the median concentration as a function of

mass, but Wang et al. (2020) have shown that the concentration at fixed mass has

a log-normal distribution, with a standard deviation of 0.15 dex.
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For a dark matter subhalo existing in a host galaxy, its outer part can be modified

by environmental effects such as tidal stripping, which makes the outer density drop

dramatically beyond some truncation radius (Gao et al., 2004). As a result, for

subhaloes within a galaxy, we use the truncated NFW (tNFW) profile to describe

their profiles (Baltz et al., 2009), which has the form

ρ (r) = ρs
r/rs(1 + r/rs)2

(
r2

t
r2

t + r2

)n

, (1.8)

where rt is the truncation radius, and n is a parameter that controls the sharpness

of the truncation. The form of a tNFW profile just adds a truncation term to the

original NFW profile, and thus the M200, r200 and concentration can be defined

for a tNFW halo in the same way as for an NFW halo. However, baryonic physics

add more variations and complexity to the mass-concentration relation and so far

there is not a unified model to describe the relation for subhaloes. It is noted that

when n > 0, the profile has a finite mass. Specially, if n = 1, the total mass is

Mt = 4πρsr
3
s

τ2

(τ2 + 1)2

[(
τ2 − 1

)
lnτ + τπ −

(
τ2 + 1

)]
, (1.9)

where τ ≡ rt/rs.

1.2 Gravitational lensing

Gravitational lensing is a phenomenon where light rays emitted from a background

galaxy are deflected by foreground objects’ gravitational potentials. In principle,

images of cosmological objects are all “gravitationally lensed” at some level, but for

most cases the distortion is hardly seen unless, from our viewpoint, a background

galaxy happens to align with a massive foreground object, of which the chance

is very rare. Though the prediction of a cosmological scale gravitational lensing

has been made for decades, the phenomenon was only first confirmed through a

double quasar system in 1980 (Young et al., 1980). Due to the rare chance of

perfect alignment, by now only around 100 lensing systems with heavily distor-

ted background images are observed. Depending on the scale of distortion of the
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background galaxy, we usually divide the gravitational lensing into two categor-

ies, strong and weak lensing: in the strong lensing case, the background galaxy

is almost perfectly aligned with the foreground galaxy and results in multiple or

extended distorted images; In the weak lensing case, background galaxies are fur-

ther away from alignment and the distortion is hardly observable and can only be

extracted from statistical analysis. It is noted that both of these kinds of lensing

are on the distance scale between different galaxies while there is a third kind of

lensing called “micro lensing” which occurs on the scale within a galaxy. Recently,

a wandering black hole was detected through the micro lensing (Sahu et al., 2022).

In this thesis we consider only strong lensing and in this section introduce some

commonly used terminology in this particular field. For a thorough introduction to

the whole theory of lensing we recommend the book of Schneider et al. (1992) for

details. We first introduce the simplest case, a single-plane lensing system, where

the light rays are deflected only once by the massive galaxy between the distant

source galaxy and the observer. Then, based on the single-plane lensing system, we

describe multi-plane systems where light rays from distant galaxies are deflected

more than once.

1.2.1 Single-plane lensing systems

Fig. 1.1 shows a typical single-plane lensing configuration where the distant galaxy

is usually called the “source”, while the galaxy between the observer and the source

is called the “lens”. The angle ⃗̂α represents the angle by which a light ray is

deflected, called the “un-scaled” deflection angle. The geometric relation between

the observed position of the source, θ⃗, the true position, β⃗, and ⃗̂α can be written

as:

β⃗(ξ⃗) = θ⃗(ξ⃗) − Dls
Ds

⃗̂α(ξ⃗), (1.10)

where Dls is the angular diameter distance between the source and the lens, and Ds

is the angular diameter distance of the source. Under the “thin” plane assumption,
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Figure 1.1: A typical single-plane lensing system. (Modified from ht-
tps://en.wikipedia.org/wiki/Gravitational_lensing_formalism.)

where we assume all the lens mass is placed exactly on the same plane, for a lens

galaxy with 2D mass distribution of Σ(ξ), ⃗̂α can be calculated from (Eq. (2.1) of

Schneider et al. (1992))

⃗̂α(ξ⃗) = 4G
c2

∫ (ξ⃗ − ξ⃗′)Σ(ξ′)
||ξ − ξ′||2

dξ′2. (1.11)

If we substitute ξ⃗ with Dlθ⃗, where Dl is the angular diameter distance of the lens,

and define α⃗ ≡ Dls⃗̂α/Ds, then the lensing equation, Eq. 1.11, can be re-written as

α⃗(θ⃗) = 1
π

∫ (θ⃗ − θ⃗′)κ(θ⃗′)
||θ⃗ − θ⃗′||2

dθ⃗′2, (1.12)

where κ(θ⃗) ≡ Σ(θ⃗)/Σcr is called the convergence map and Σcr ≡ c2Ds
4πGDlsDl

is the

critical density of the lensing system. Since κ(θ⃗) is proportional to the surface mass

density, it is convenient to use κ(θ⃗) to visualize the 2D mass distribution of the

lens. Also, with the definitions above, Eq. 1.10 can be simplified to

β⃗(θ⃗) = θ⃗ − α⃗(θ⃗), (1.13)

and for convenience, we call α⃗ the deflection angle. Since ∇
θ⃗
ln||θ⃗ − θ⃗′|| = (θ⃗−θ⃗′)

||θ⃗−θ⃗′||2
,

we can define a lensing potential as

ψ(θ⃗) ≡ 1
π

∫
κ(θ⃗′)ln||θ⃗ − θ⃗′||dθ⃗′2, (1.14)
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1.2.2. Multi-plane lensing systems

of which the gradient is the deflection angle. We list some useful relations between

ψ(θ⃗), α⃗(θ⃗) and κ(θ⃗) below,

∇⃗ψ(θ⃗) = α⃗(θ⃗) (1.15)

∇⃗ · α⃗(θ⃗) = 2 · κ(θ⃗) (1.16)

∇2ψ(θ⃗) = 2 · κ(θ⃗). (1.17)

We can also calculate the curl of the deflection angle, ζ(θ⃗), but the curl of the

gradient of a scalar field, ψ(θ⃗), is always zero, so ζ(θ⃗) ≡ ∇ × α⃗(θ⃗) = 0. However,

this is not true in multi-plane lensing systems. In fact, most of the equations

shown above do not hold true in multi-plane cases, but with slight changes, similar

concepts can be adapted into multi-plane lensing systems.

Viewing Eq. 1.13 as a coordinate transformation between the lens and source planes,

under the first order approximation, we can describe the distortions with its Jacobi

matrix defined as

J(θ⃗) ≡ ∂β⃗

∂θ⃗
(θ⃗) = (1 − κ(θ⃗))

1 0

0 1

− γ(θ⃗)

cos 2ϕ(θ⃗) sin 2ϕ(θ⃗)

sin 2ϕ(θ⃗) − cos 2ϕ(θ⃗)

 , (1.18)

where we see that the distortion can be decomposed into two terms, the isotropic

distortion induced by the convergence and the non-isotropic distortion induced by

the “shear”, specified by its amplitude, γ(θ⃗), and direction, ϕ(θ⃗).

1.2.2 Multi-plane lensing systems

A multi-plane lensing system can be easily viewed as a combination of many single-

plane systems. First, we re-write the basic deflection angle equation, Eq. 1.10, in the

multi-plane case. Assuming that the “thin” plane assumption holds true between

each pair of planes, we can solve the lensing equation on each plane and connect

them together to get the light paths through the whole system as:

η⃗ = Ds
D1

ξ⃗1 −
N∑

i=1
Dis ˆ⃗αi(ξ⃗i), (1.19)
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where

ξ⃗j = Dj

D1
ξ⃗1 −

j−1∑
i=1

Dij
ˆ⃗αi(ξ⃗i). (1.20)

Note that the definition of ˆ⃗αi is the same as in the single-plane case, which repres-

ents the un-scaled deflection angle induced by the mass on the i-th plane. Again,

by substituting ξ⃗i with θ⃗iDi, and ˆ⃗αi with α⃗iDis/Ds, we can simplify Eq. 1.20 as

β⃗(θ⃗1) = θ⃗1 −
N∑

i=1
α⃗i(θ⃗i), (1.21)

where

θ⃗j(θ⃗1) = θ⃗1 −
j−1∑
i=1

λijα⃗i(θ⃗i) (1.22)

λij = DijDs
DjDis

, (1.23)

and Dij is the angular diameter distance between the i-th and j-th plane. In

particular, Dis is the angular diameter distance between the i-th plane and the

source plane. With respect to Eq. 1.21, the deflection angle in multi-plane cases,

α⃗(θ⃗1), is defined as

α⃗(θ⃗1) ≡
N∑

i=1
α⃗i(θ⃗i). (1.24)

Viewing the simple form of Eq. 1.24, it seems that the deflection angle in multi-

plane cases is just a linear combination of the deflection angle of each plane. How-

ever, note that the variable on the right is θ⃗i instead of θ⃗1, which actually incorpor-

ates all the complicated non-linear mapping relations between each plane in front

of the i-th plane.

Following the terms used by Gilman et al. (2019), we define the divergence and curl

of the deflection angle in the multi-plane cases to be the “effective” convergence,

κeff , and “effective” curl, ζeff , denoted as

κeff(θ⃗1) ≡ 1
2

∇
θ⃗1

· α⃗(θ⃗1) (1.25)

ζeff(θ⃗1) ≡ 1
2

∇
θ⃗1

× α⃗(θ⃗1). (1.26)

Because α⃗(θ⃗1) is a two-dimensional vector, the curl of it is a scalar field. A natural

question in multi-plane cases is whether we can define a lensing potential, of which
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the gradient is the deflection angle. In other words, is ζeff still zero in a multi-plane

lensing case? For a simple demonstration, we consider the two-plane situation.

The effective convergence and effective curl in the two-plane lensing system are

κeff = κ1(θ⃗1) + κ2(θ⃗2) − D12Ds
D2D1s

κ1(θ⃗1)κ2(θ⃗2) (1.27)

ζeff = 2D12Ds
D2D1s

γ1(θ⃗1)γ2(θ⃗2) cos 2ϕ1(θ⃗1) cos 2ϕ2(θ⃗2), (1.28)

where we use subscripts 1 and 2 to refer the corresponding quantities of plane 1

and plane 2 respectively. It is clear that ζeff is not always zero in the two-plane

case, which indicates that theoretically the deflection angle cannot be derived from

a single lensing potential. In other words, multi-plane lensing effects cannot be

perfectly represented by only one lensing plane. Although κeff cannot capture all

the features in multi-plane cases, it is still a meaningful quantity which represents

the closest single plane approximation to the mass distribution of line-of-sight ob-

jects. For an example, Fig. 1.2 shows the κeff and ζeff of a set of small dark matter

haloes sampled within the light-cone between the observer and the source galaxy,

where the main deflector’s deflections have been subtracted∗. As shown, though all

the input low-mass perturbers should be round, their shapes on the effective con-

vergence map have been stretched into “banana” shapes due to multi-plane lensing

effects. Also, we can see that the effective curl map is not always zero though in

most regions its value is very small, which confirms our conclusions above.

1.2.3 An open-source lensing package: PyAutoLens

PyAutoLens is an open source python package which is designed specifically for

strong lensing modelling (Nightingale et al., 2018, Nightingale et al., 2021b)†. Its

core feature is automated strong lensing modelling via linking a series of pipelines,

that will enable it to analyze the hundreds of thousands strong lensing systems ex-

pected to be discovered this decade (Nightingale et al., 2021b, Etherington et al.,
∗The image is generated through PyAutoLens, which is introduced Section 1.2.3.
†https://github.com/Jammy2211/PyAutoLens
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Figure 1.2: The effective convergence (left) and effective curl (right) maps of some
low-mass perturbers at multi-planes. The solid circle is the boundary of the light
cone.

2022). It can handle both imaging and interferometric data, with specific optimiz-

ations to simplify ray-tracing procedures and accelerate computation. To account

for the complexity of strong lensing systems, a variety of commonly used analytical

and pixelized models for the lens and source are available in the code. Multi-plane

ray-tracing is also added, where one can easily set up objects with their redshifts

as free parameters. In addition, the parameter fitting process is taken care of by

PyAutoLens’s sibling package PyAutoFit, which incorporates different para-

meter sampling methods, such as MCMC, Nested Sampling etc., depending on the

different levels of complexity of fitting tasks (Nightingale et al., 2021a). Depending

on the sampling package, if possible, PyAutoFit enables distribution of the fitting

task over multiple processors, which significantly reduces the time cost especially

when complex models are applied. Throughout this work, if not specified, we use

PyAutoLens for the lensing related computation, such as simulating, fitting and

analyzing.
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1.3 Strong lensing of low-mass dark matter haloes

So far, studies of the strong lensing of low-mass dark matter haloes can be roughly

categorized into two types of analysis depending on source size and the kind of

data available.

1.3.1 Point-like source

If the source is an extremely compact object, like a quasar, when lensed, one will

observe multiple point sources. Low mass “invisible” dark matter haloes along the

line of sight induce anomalies in the flux ratios amongst multiple images, and by

analysing those anomalies one can constrain the dark matter particle mass (Mao

and Schneider, 1998, Metcalf and Madau, 2001, Dalal and Kochanek, 2002, Amara

et al., 2006, Xu et al., 2012, Nierenberg et al., 2014, Xu et al., 2015, Nierenberg

et al., 2017, Gilman et al., 2019, Hsueh et al., 2020, Gilman et al., 2020a). However,

because of the limited amount of information contained in the fluxes and positions

of multiple images of a point-like source, there are degeneracies between the smooth

model assumed for the lens and the inferred properties of the low-mass perturbing

haloes. Also, some differences between the fitted macro model and the true lens

mass cannot be constrained due to the limited information, which might affect

what one infers about the low-mass perturbers.

1.3.2 Extended source

If the source is extended (e.g. an ordinary galaxy), it appears after lensing as

multiple arcs or a complete Einstein ring. Sufficiently massive dark matter haloes

along the line of sight perturb local regions of the arc in a way that is measurable

using techniques such as the pixelized potential correction method (Vegetti et al.,

2012, 2014, 2018, Ritondale et al., 2019). However, this explicit subhalo modelling

has demanding requirements on image quality and resolution and so far only three
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such detections of dark haloes with pseudo-Jaffe∗ masses below 1010 M⊙ have been

made so far: the first was made by Vegetti et al. (2010), who detected a 3.51 ±

0.15 × 109 M⊙ subhalo using Hubble Space Telescope (HST) imaging; The second

was made by Vegetti et al. (2012) via Keck Adaptive Optics, with an inferred

mass of 1.9 ± 0.1 × 108 M⊙; Finally, Hezaveh et al. (2016) found a 9.1 ± 2.5 ×

108 M⊙ subhalo using Atacama Large Millimeter/submillimeter Array (ALMA)

interferometric observations.

Attempts to detect dark haloes have been made in approximately 30 lenses (Vegetti

et al., 2014, Ritondale et al., 2019), however no other clean signals have been

found due to limited data quality. Among those 30 attempts, for some systems

significantly improved fits are found when a low-mass perturber is added as part of

the fitted model, but a later sanity check reveals these to be “false-positive” signals,

which are thought to come from the mismatch in the complexity of model and the

actual lens galaxy’s mass distribution. It is noted so far most analysis on subhalo

lensing are assuming the lens galaxy to be a single elliptical power law (Tessore and

Metcalf, 2015) with an external shear, while in reality a galaxy’s projected mass

distribution is far more complex than a simple power law. Recently Cao et al.

(2021) fitted the power law model to strong lenses simulated using mass models

derived from dynamical models of nearby SDSS-IV MaNGA (Bundy et al., 2015)

early type galaxies and showed this can bias the measurement of the local density

slopes around the Einstein ring by 13%. Also, Gomer and Williams (2021) and Van

de Vyvere et al. (2022) discuss how departures from elliptical symmetry may affect

flux ratio observations in lensed quasars. For the lensing of low-mass perturbers,

it remains unclear how much the inferred properties of the low-mass perturber are

affected by deviations of the lens from an elliptical power law profile.
∗The masses reported are masses of pseudo-Jaffe profiles (Muñoz et al., 2001). If modelled

by an NFW, the virial mass obtained is usually 0.5 ∼ 1.0 dex higher than the pseudo-Jaffe mass
(Despali and Vegetti, 2017).
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1.3.3 Sensitivity Mapping

To convert individual detections to constraints on the halo mass function, one

needs to derive “sensitivity” maps to combine results for individual haloes in many

systems (e.g. Vegetti and Koopmans, 2009a, Li et al., 2016b). To be specific, for

one particular strong lensing system, the sensitivity map quantifies the chance of

detecting a low-mass perturber at a given position, redshift, mass (and even concen-

tration). The challenge of deriving the sensitivity map exists in fully sampling the

huge parameter space of a potential low-mass perturbers, especially when includ-

ing the dimension of redshift. To overcome it, Li et al. (2017) propose an effective

mass, Meff(Mlos), for a line-of-sight halo of mass, Mlos, which is determined by

fitting a lensing image perturbed by an NFW halo at the lens redshift to the image

perturbed by a line-of-sight halo of mass, Mlos, at redshift, zlos. In other words, if

a subhalo of mass, Meff(Mlos), can be detected, a line-of-sight halo of mass, Mlos,

should also be detected. In this way, one can calculate the effective mass function

of all perturbers. Li et al. (2017) showed that, for CDM, the number of detectable

line-of-sight perturbers is 3−4 times larger than the number of subhalo perturbers.

A similar analysis was performed by (Despali et al., 2018), who derived a fitting

formula for Meff by fitting the deflection angle of a lensing system containing a

line-of-sight perturber to that of a system containing a subhalo. The analysis was

performed for lenses with different image and redshift configurations. In agreement

with the results of Li et al. (2017), they found that the contribution from CDM

line-of-sight haloes is about 3 times that from subhaloes for lenses with zl = 0.2

and zs = 1.0, and about 10 times that from subhaloes for lenses with zl = 0.5

and zs = 2.0. In addition, by statistically studying the perturbations of low mass

haloes, Çaǧan Şengül et al. (2020) also showed that line-of-sight perturbers tend

to dominate the signal for systems with a source at redshift zs = 0.5 or higher.
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1.4 Thesis Outline

This thesis focuses on constraining the halo mass function through strong gravita-

tional lensing and trying to solve some of the issues mentioned above. The rest of

the thesis is organised as follows: in Chapter 2, we extend the statistical method

of extracting abundance information of dark haloes from point-like source case to

the case of extended sources, where in principle degeneracy between macro model

and an ensemble of low-mass perturbers could be largely broken; In Chapter 3,

we revisit the topic of sensitivity mapping used to convert individual low-mass

perturber detections into constraints on the halo mass function. We investigate

previous ways of approximating lensing effects of line-of-sight low-mass perturbers

as one on the lens plane and give new estimations on the relative detectability of

line-of-sight versus on-plane low-mass perturbers; In Chapter 4, we come back to

the long-term existing question on how a galaxy’s complexity beyond a single ellipt-

ical power would affect the inference on the detections of low-mass perturbers. In

the work, we build up mock strong lensing systems with lens galaxies from hydro-

dynamical simulations and test two kinds of lens mass models, an elliptical power

law model and a stellar-dark matter two component model. Finally, in Chapter 5,

we summarize our results and discuss on some future work.
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Chapter 2

A forward-modelling method to

infer the dark matter particle mass

from strong gravitational lenses

Abstract

A fundamental prediction of the cold dark matter model of structure formation

is the existence of a vast population of dark matter haloes extending to sub-

solar masses. By contrast, other dark matter models, such as a warm thermal

relic, predict a cutoff in the mass function at a mass which, for popular models,

lies approximately between 107 and 1010 M⊙. We use mock observations to

demonstrate the viability of a forward modelling approach to extract informa-

tion about low-mass dark haloes lying along the line-of-sight to galaxy-galaxy

strong lenses. This can be used to constrain the mass of a thermal relic dark

matter particle, mDM. With 50 strong lenses at HST resolution and a max-

imum pixel signal-to-noise ratio of ∼ 50, the expected median 2σ constraint

for a CDM-like model (with a halo mass cutoff at 107 M⊙) is mDM > 4.10 keV

(50% chance of constraining mDM to be better than 4.10 keV). If, however, the

dark matter is a warm particle of mDM = 2.2 keV, our ‘Approximate Bayesian

Computation’ method would result in a median estimate of mDM between

1.43 and 3.21 keV. Our method can be extended to the large samples of strong

lenses that will be observed by future telescopes, and could potentially rule
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2.1. Introduction

out the standard CDM model of cosmogony. To aid future survey design, we

quantify how these constraints will depend on data quality (spatial resolu-

tion and integration time) as well as on the lensing geometry (source and lens

redshifts).

2.1 Introduction

A key difference between cold and warm dark matter models can be found in the

smallest haloes each can produce. Strong gravitational lensing provides a good way

to detect and measure these small haloes. As mentioned in Section 1.3, depending

on the type of strong lensing data, there are two different methods: a statistical

method for extracting information from flux ratio anomalies of lensed quasars about

ensembles of low-mass dark matter haloes; an explicit modelling of low-mass haloes

based on images of strongly lensed (regular) galaxies. There are advantages and

disadvantages to both methods: a flux ratio anomalies analysis may suffer from the

degeneracy between the macro model considered and the abundance of low-mass

dark matter halos due to the limited amount of information available in the data;

The explicit modelling method has a high requirement for the quality of an image

and can be time-consuming when searching for multiple small haloes.

Recent studies have proposed that it is also possible to extract, statistically, the

cumulative perturbation of all intervening haloes on extended lensing arcs, even

though none of these haloes could be detected individually (Brewer et al., 2016).

This approach can be viewed at some level as a combination of the two types of

methods described above. So far, most studies in this direction have focused on

determining a theoretical relation between the power spectrum of the distribution

of low-mass haloes and the image residuals after fitting a smooth “macro model”

to the lens galaxy mass distribution (Chatterjee and Koopmans, 2018, Díaz Rivero

et al., 2018, Cyr-Racine et al., 2019). There is one example using real data, in which

Bayer et al. (2018) analysed image residuals of the system SDSSJ0252+0039, ob-
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2.1. Introduction

Figure 2.1: Upper panels: the effective convergence of low mass perturbers. Lower
panels: the corresponding best-fit image residuals. The colour scale is in units of
e− pix−1 s−1. The parameters of the lens and source galaxies of the three columns
are the same except for the source redshift. The lensing systems in the left and
middle columns have a source at z = 1, while that in the right column has a source
at z = 2.5. The systems in both the left and right columns have a cutoff in the
mass function at 107 M⊙, while the one in middle column has the cutoff at 109

M⊙. The inner and outer dashed circles in each panel have radii, 0.5′′ and 2.4′′,
respectively.

taining a detection of power much higher than the prediction of the CDM model.

There remain a number of questions as to what assumptions are appropriate for

this technique. For example, to simplify the theoretical calculations, a random

Gaussian field is often assumed for the convergence of low-mass perturbers, poten-

tially omitting multiplane lensing effects (Schneider, 2014, McCully et al., 2014).

Indeed, recent studies have shown that the expected signal in a ΛCDM universe

is dominated by line-of-sight haloes at different redshifts to the lens galaxy as op-

posed to subhaloes within the lens galaxy itself (Li et al., 2016b, 2017, Despali

et al., 2018, Çaǧan Şengül et al., 2020). Here, we will focus on how the line-of-sight

low mass dark matter haloes contribute to perturbations on lensing images.

To form a visual impression of how the line-of-sight low-mass dark haloes perturb
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the images, in Fig. 2.1 we show the effective convergence (defined in Section 1.2.2),

as derived from the deflection angles (upper panels; Gilman et al., 2019, Çaǧan

Şengül et al., 2020), and the corresponding residuals obtained by fitting the smooth

lensing model to the image (lower panels). As may be seen from the effective

convergence map, even though all low-mass dark matter haloes are modelled as

spherical profiles, some are heavily stretched into arc-like features due to multiplane

lensing effects∗, which are difficult to compute analytically. Comparing the left

two columns, the “warm” case in the middle and the “cold” case in the left have

very similar residuals, particularly the large patches, even though the warm case

has far fewer low-mass dark matter haloes. This suggests that the residuals are

dominated by massive dark matter haloes and to distinguish between different

dark matter models, we need to identify the small patches. The system shown in

the third column has a higher redshift source and thus many more low-mass dark

matter haloes along the line-of-sight, which results in larger and more complicated

residuals.

In this chapter, we investigate whether a forward modeling procedure built around

the Approximate Bayesian Computation (ABC) statistical inference method can

extract meaningful information about the properties of low-mass dark matter haloes

perturbing strong lensing images. As opposed to determining a concise mathem-

atical expression, our forward modelling method relies on robust modelling of the

perturbations on lensing images induced by small dark haloes which can directly

build up a relation between the models of interest and the observations without

any further assumptions. The approach was first applied to strong lensing by

Birrer et al. (2017a) who analysed the strongly lensed quasar RXJ1131-1231. Sub-

sequently, Gilman et al. (2019) used this approach to study flux ratio anomalies of

point-like sources with a full realisation of dark matter haloes including line-of-sight

dark haloes.
∗In strong lensing, as viewed from the image plane, not only is the distant light warped by

foreground objects, like a luminous source galaxy deflected by a lens, but also the mass on distant
planes is warped by near planes, and thus we see some arc-like low-mass dark matter haloes in
these convergence maps even though they are all spherical.
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We apply the ABC framework to a simulated sample of 50 HST-resolution strongly

lensed extended sources, which is a comparable number of lenses to the high-quality

strong lensing SLACS sample (Bolton et al., 2006, but the details of our sample

are different from those of SLACS). Each simulation contains a full cosmological

realisation of small dark haloes whose redshift distribution requires analysis using

multiplane ray tracing. To apply the ABC method we simulate and refit each of

these 50 lenses 20 000 times, producing a total of 1 million lens models. The scale

of this analysis necessitates an automated framework for lens modelling, for which

we use the open source software PyAutoLens. We aim to determine whether the

cumulative distortions due to the many dark matter haloes perturbing the light of

the lensing arcs can be extracted to determine the halo mass function and hence

the dark matter particle mass. Our main goal is to demonstrate that this signal is

present in HST imaging of strong lenses and that it can, in principle, be extracted

using modern lens modeling techniques given realistic levels of noise. However, our

study is based on idealized systems: we make a number of simplifying assumptions

for the structure of the lens and source and neglect effects such as an imperfect PSF

(point spread function) model, correlated noise or inadequate lens light subtraction.

These assumptions will need to be relaxed before our methodology can reliably

be applied to real data, including, for example, a non-parametric source model

(e.g. Warren and Dye, 2003), additional complexity in the lens model (Vegetti and

Koopmans, 2009a, Nightingale et al., 2019) and a proper treatment of the PSF and

of correlated noise.

We first introduce the forward modelling procedure and lensing models in Sec-

tion 2.2. In Section 2.3 we show tests of the accuracy of this method, the de-

pendency on different lensing and observational settings, and compare our method

to other methods, discussing its possible future applications and shortcomings.

Finally, we conclude in Section 2.4. Throughout this chapter, we adopt the cosmo-

logical parameters given by WMAP9 (Hinshaw et al., 2013).
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2.2 Procedure and models

In this section we first provide an overview of our forward modelling procedure.

We then describe the parametric models we use for the mass distributions of the

main lens, dark matter haloes and light distributions of the source galaxies. We

then describe how we fit our simulated images with a combination of a smooth

parametric lens and source model, and how the residuals of each are used within

an ABC framework to place constraints on the mass function of dark matter haloes.

2.2.1 The forward modelling scheme

In Fig. 2.2, we provide an overview of the forward modelling procedure. Starting

from an observed strong lensing image (which in this chapter is simulated) we

begin by fitting it with parametric lens and source models, omitting substructure

from the lens model. This procedure gives us best-fit smooth lens mass and source

light models, as well as a map of the best-fit image residuals (the observed image

minus the best-fit model image). In this chapter, “best-fit” refers to the maximum

likelihood model determined by means of a non-linear search.

It is impossible to fit all the dark matter substructure in a similar way, because of

its low mass and low signal-to-noise (Birrer et al., 2017a). However, we can use the

best-fit source and macroscopic lens model to simulate a set of images of this lens

system, each including a random realization of dark matter substructure (we call

this set of images the “forward models”). We refit each forward model in the same

manner as we fitted the “observed” image, providing best-fit image residuals for

each forward model. We compare the forward-modelled residuals with the observed

residuals, as described in detail in Section 2.2.2, and apply ABC inference to obtain

a constraint on the cutoff in the halo mass function.
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2.2.1. The forward modelling scheme

Figure 2.2: An overview of the forward modelling procedure for one lensing system.
The observed image is fitted with a parametric lens mass model and a paramet-
ric source light model, producing a best-fit lens model, source model and image
residuals. We use this best-fit model to generate N simulated images, including
random realisations of low-mass perturbing haloes in the lens model. The number
of perturbers as a function of mass depends on the properties of the dark matter
as encoded in the “half-mode mass”, Mhf . The distribution of Mhf over the N
“forward models” follows our prior on Mhf . Each of the forward model images is fit
in the same way as the observed image to produce N sets of image residuals. These
forward model residuals are compared with the observed residuals, using ABC to
constrain Mhf .
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2.2.2 Lensing simulations

The strong lens simulations used in this chapter represent the lensing system with

three components, the lens galaxy, the source galaxy, and the line-of-sight dark

matter haloes.

2.2.2.1 Lens and source

We simulate the smooth mass distribution of our lens galaxy as a 2D singular

isothermal ellipsoid (SIE) of the form,

Σ(x, y) = σ2

2G
1√

x2q+y2/q

= c2

8πG
DA(0, zsource)

DA(zlens, zsource)DA(0, zlens)
RE√

x2q+y2/q

, (2.1)

where RE is the projected Einstein radius, which can be related to the velocity

dispersion of the profile, σ, given the lens and source redshifts (zlens and zsource,

respectively) and a cosmology. The quantity, DA (z1, z2), is the angular diameter

distance between z1 and z2; q is the axis ratio. For simplicity, we do not add any

external shear to our mock observations. However, we include an external shear

when modelling the lenses.

For the source, we adopt the Sérsic (1963) profile,

I(r) = I
′exp

[
−bn

(
r

re

)1/n
]
, (2.2)

where I ′ is the scale intensity, n is the Sersic index and bn is a function of n defined

such that re is the half-light radius. It is noted that the image residuals caused

by small perturbations to the lens model (in our case the perturbing haloes) are

effectively a product of the deflection angles due to the perturbation and the gradi-

ent of the source surface brightness (Vegetti and Koopmans, 2009a). The cuspy

centre of the Sérsic profile creates an infinite surface brightness gradient which nu-

merically causes infinite surface brightness differences. This can be overcome by

oversampling the source light, but at the expense of increased computational run
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2.2.2.2. Low-mass dark matter haloes

time. Instead, we use a Sérsic profile with a “core” (Graham et al., 2003, Trujillo

et al., 2004) to simulate the background source. This has the form,

I(r) = I
′exp

[
−bn

(
rα + rα

c
rα

e

)1/(nα)
]
, (2.3)

where rc is the “core radius”, which marks the transition radius from the Sérsic

profile to constant surface brightness. When rc → 0, the profile reduces to the

Sérsic form. The parameter, α, quantifies how quickly the profile transitions from

a regular Sérsic form to one with a constant surface brightness core. To simplify

both our simulation and modelling processes, we fix α = 2 and rc = 0.01′′. With

these parameters fixed, the source model has the same three free parameters as the

regular Sérsic profile: re, n and I
′ .

2.2.2.2 Low-mass dark matter haloes

Low-mass dark matter haloes that can perturb lensing arcs can be of two types:

subhaloes within the main lens, or central haloes at different redshifts that happen

to lie close to the path of light from the source galaxy to the observer. We will

refer to the latter as line-of-sight haloes.

The number and mass distribution of subhaloes within the lens are somewhat

uncertain. Subhaloes are subject to tidal stripping and disruption; these effects

are significantly enhanced in hydrodynamic simulations compared to dark matter

only simulations due to the presence of the dense stellar component at the centre

of the main lens (Sawala et al., 2017, Garrison-Kimmel et al., 2017, Richings et al.,

2021). The degree of disruption also depends on the details of the galaxy formation

model (Richings et al., 2020). In contrast, line-of-sight haloes are not subject to

these environmental effects and, in the mass range of interest here, they are entirely

“dark”, having never formed stars.

Recent studies (Li et al., 2016b, 2017, Despali and Vegetti, 2017, Çaǧan Şengül

et al., 2020) have shown that for the lens and source redshifts typical of SLACS

lenses (Bolton et al., 2006), the lensing perturbations mainly arise from line-of-sight
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2.2.2.2. Low-mass dark matter haloes

haloes. This is fortunate because the irrelevance of uncertain baryon effects, makes

line-of-sight haloes a particularly clean probe of a cutoff scale in the halo mass

function. In this chapter, we focus on these low-mass line-of-sight haloes whose

mass function is given by Eq. 1.3, where the CDM mass function, FCDM (M200, z),

is taken as the one from Sheth et al. (2001).

We draw low-mass dark haloes in a lightcone between the observer and the source

galaxy within an angular radius, rlc, chosen as,

rlc =

 5.0
′′

(z ≤ zlens)

5.0
′′

− 2.0
′′

× DA(zlens, z)DA(0, zsource)
DA(0, z)DA(zlens, zsource) (z > zlens)

, (2.4)

where DA is the angular-diameter distance and zlens and zsource are the redshifts of

the lens and source galaxies respectively. The angular radius of the lightcone is fixed

at 5.0′′ (this is ∼ 3 times the Einstein radius, and including haloes at larger radii

hardly affects our lensing images) in front of the main lens and gradually decreases

behind from 5.0′′ to 3.0′′ at the source redshift, which ensures that all perturbers

that might influence the lensed image of the source are included. The lightcone is

evenly divided into redshift bins, of width ∆z = 0.01, which balances the accuracy

and computational cost of the calculation (see Appendix A for details). Within

each bin, we sample from the halo mass function, assign density profiles from the

halo mass-concentration relation corresponding to that redshift, and place these

perturbing haloes randomly on the central redshift plane. Neglecting the clustering

of the line-of-sight haloes is a good approximation if, over the angular extent of

interest, the typical line-of-sight separation of pairs of haloes is much larger than

their correlation length. This is expected to be true because: (a) the intrinsic

clustering of low mass haloes is weak (Kaiser, 1984, Sheth and Tormen, 1999), and

(b) the angular extent of interest is very narrow since it is set by the width of the

Einstein ring image.

We generate low-mass haloes with M200 between 106 M⊙ and 1010 M⊙ within the

light cone. Depending on the dark matter model, a significant fraction of the mass

in the Universe can exist as collapsed objects in this mass range. To solve correctly
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the strong lensing equations (which have already assumed a background universe)

we add negative mass sheets onto each plane to compensate for the otherwise

“double-counted” mass within perturbers in the lightcone (Petkova et al., 2014,

Birrer et al., 2017b, Gilman et al., 2019). For each plane, we include a mass sheet

with constant negative surface density equal to the expected density in low-mass

haloes on that plane. This leads to a mass sheet with a surface density

Σnegative = − 1
A

∫
F (M200, z)M(M200, z, s) dM200ds dV, (2.5)

where A is the physical area of the lightcone at the plane’s redshift, F (M200, z) is

the mass function and M(M200, z, s) is the total mass of a dark halo on the plane,

which can differ from M200 due to halo truncation. The “s” denotes some other

parameters of the dark matter profile; in our case, as we discuss below, it represents

the “concentration” and “truncation radius”.

To ensure a finite mass for each input low-mass halo, instead of modelling haloes

as NFW profiles (Navarro et al., 1996, 1997), we use tNFW profile given by Eq. 1.8

with n = 1. To simplify the parameterization, we also set the truncation radius to

be the corresponding NFW’s r100, the radius within which the average density of

an NFW profile is 100 times the critical density of the universe. With the trunca-

tion radius fixed, the tNFW profiles are determined by the same two parameters

as the NFW profile, M200 and the concentration, c. To further simplify the para-

meterization, we assume M200 and c follow the mass-concentration relation given

by Ludlow et al. (2016) in the CDM case, and the relation in a WDM case is then

modified as Eq. 1.7. We use the public package COLOSSUS (Diemer, 2018) to

compute the mass-concentration relation in the CDM case. To fully capture the

distribution of those low-mass haloes, we further include log-normal scatter in the

mass-concentration relation, with a standard deviation of 0.15 dex.

Multi-plane ray tracing is necessary to calculate the effect of line-of-sight haloes on

flux ratio anomalies with sufficient precision to match observations (Gilman et al.,

2019). We use PyAutolens to simulate lenses using the light and mass profiles
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described above. To define our fiducial lens sample, we simulate 50 unique lensing

systems with different values for the lens SIE mass model (e.g. Einstein radius,

axis ratio, etc.) and source core-Sersic profile. The input Mhf is 107 M⊙. For all

50 systems we assume lens redshifts of 0.5 and source redshifts of 1.

We produce observations representative of HST imaging, with a pixel size of 0.05′′,

a Gaussian PSF with a standard deviation of 0.05′′ and background sky level of

1e−/pix/second. We set the exposure time to be 600 s. The source surface bright-

ness of each simulation is chosen such that the maximum signal-to-noise ratio (e.g.

in the brightest pixel) has a value ∼ 50. Table 2.1 summarizes the models and

parameters for our mock observations, where closed brackets indicate the range of

values from which each parameter is randomly drawn. For convenience, we use

{T}fiducial to denote the set of true parameter values used for our fiducial tests and

a superscript i to represent the parameters of the i-th lensing system. Mock images

of our 50 strong lensing systems are shown in Fig. 2.3.

2.2.3 Analysis Process

Our analysis of each mock observation consists of two steps: smooth model fitting

followed by ABC inference. Below we describe the detailed steps in this process

and illustrate them for one system.

2.2.3.1 Smooth Model Fitting

First, we fit a simple lens model to the mock lensing image. This consists of a

smooth parametric model plus an external shear for the lens galaxy mass distribu-

tion (the macro model) and a smooth parametric model for the source. We adopt

the same parametric forms we used when generating the simulated mock image, an

SIE lens mass model and a core-Sérsic source.

We use PyAutoLens to fit the mock images, and adopt PyMultiNest with

constant sampling efficiency mode switched on (Feroz et al., 2009, Buchner et al.,
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Parameter Range or Value
Lens Elliptical Isothermal

centre (x, y) [′′] (0.0, 0.0)
RE [′′] [1.2, 1.6]

axis ratio [0.6, 0.95]
position angle [◦] 30

redshift 0.5
External Shear

magnitude A 0
position angle [◦] 0

Source Elliptical Core-Sersic
centre (x, y) [′′] ([−0.3, 0.3], [−0.3, 0.3])

re [′′] [0.1, 0.5]
n [1.5, 2.5]

I′ [e− pix−1 s−1] 7.4
axis ratio [0.5, 0.95]

position angle [◦] [10, 100]
rc [′′] 0.01
α 2.0
γ 0.0

redshift 1.0
Dark haloes Truncated NFW profile

FCDM Sheth et al. (2001)
cCDM Ludlow et al. (2016)

σlog10 cCDM 0.15 dex
tNFW τ r100/rs
Mhf [M⊙] 107

Image
pixel size [′′] 0.05

PSF σ [′′] 0.05
texp [s] 600

background sky [e− pix−1 s−1] 1.0
max S/N of pixels ∼ 50

Table 2.1: Fiducial model parameters. Closed brackets indicate the range from
which values are randomly drawn.
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2.2.3.1. Smooth Model Fitting

Figure 2.3: Fiducial mock strong lensing images. A total of 49 mock images are
shown, with the last of our set of 50 shown in the upper panel of Fig. 2.4. The
images are simulated with parameters randomly drawn according to Table 2.1.

2014) for the non-linear optimisation. Table 2.2 shows the inferred parameters for

this fit, alongside the true input values for the first mock image. To distinguish

between the true inputs and the best-fit values we label the latter as {F}i
fiducial,

where a superscript, i, denotes the best-fit parameters for the i-th lensing system.

This table shows that the inferred and input lens model are close, but not in perfect

agreement; this is due to the effects of the low-mass dark matter haloes. We will

show later that this small mismatch does not affect our calculation.

In the upper and lower panels of Fig. 2.4 we show the “observed” image and best-
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{T}1
fiducial {F}1

fiducial

Lens Elliptical Isothermal

centre (x, y) [′′] (0.0, 0.0) (-0.001+0.002
−0.002, -0.001+0.003

−0.003)

RE [′′] 1.342 1.342+0.002
−0.003

axis ratio 0.618 0.617+0.005
−0.005

position angle [◦] 30.0 30.0+0.4
−0.4

External Shear

magnitude 0 0.002+0.002
−0.002

position angle [◦] 0 159+37
−41

Source Elliptical Core-Sersic

centre (x, y) [′′] (−0.072, 0.259) (0.071+0.001
−0.001, 0.253+0.001

−0.001)

re [′′] 0.244 0.240+0.005
−0.004

n 1.85 1.81+0.05
−0.05

I
′ [e− pix−1 s−1] 7.4 7.3+0.2

−0.2

axis ratio 0.85 0.85+0.01
−0.01

position angle [◦] 41 40+2
−2

Table 2.2: The true input and best-fit parameters for the first lensing system. The
errors listed in this table are 3-σ limits. Notice that we fit a system with additional
low-mass perturbers, and thus the inconsistency of the best-fit parameters and the
true values is expected. Parameters fixed during fitting are not shown here.

fit residuals for one of our 50 mock observations. To develop intuition on how

the low-mass perturbers affect the image residuals, we further show the “effective

convergence” of low mass perturbers and the corresponding best-fit residuals in

Fig. 2.1. We assume a very small constant noise to show the residuals clearly.

The three strong lensing systems shown have the same lens and source galaxy

as in Fig. 2.4, except that the source for the system of the right-hand column is

at z = 2.5. For a clear comparison, we make sure that the three systems share

the same realisation of low mass perturbers. To achieve this, instead of applying

the mass function described by Mhf in Eq. 1.3, we draw haloes from the mass

function of Sheth et al. (2001) but discard those with M200 below a certain value.

Furthermore, we assume no correlation between Mhf and the mass-concentration
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Figure 2.4: Upper panel: the mock image of the first system. Lower panel: the
corresponding residuals after fitting a smooth macro model.

relation. Please note that this change of low-mass perturber realisation is only

implemented for Fig. 2.1; in the rest of this chapter, we use the mass function and

mass-concentration relation described by Eq. 1.3 and Eq. 1.7 respectively.

In Fig. 2.1, the systems in the left and right columns have a cutoff in the mass

function at 107 M⊙, while the system in the middle column has a cutoff at 109

M⊙. As seen from the left two columns, the system with a lower cutoff in the

mass function has far more low-mass perturbers and thus more subtle structure
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in the residuals. When comparing the left and the right columns, we see that the

number of low-mass perturbers increases significantly with the source redshift and

the “profiles” of individual perturbers are more heavily distorted because of the

multi-plane lensing effect. Also, for a higher redshift source galaxy, the residuals

are larger.

2.2.3.2 ABC inference through forward modelling

Approximate Bayesian Computation (ABC) is a likelihood-free method suitable for

problems where the likelihood is difficult to express analytically, but model predic-

tions are relatively easy to simulate. It has been widely applied in astrophysics, for

example in studies of large-scale structure, planet surveys and reionization (Akeret

et al., 2015, Hahn et al., 2017, Davies et al., 2018, Hsu et al., 2020). Birrer et al.

(2017a), Gilman et al. (2019, 2020a,c) and Enzi et al. (2020) have also used ABC to

constrain dark matter substructure using strong lensing data. To begin, one defines

a summary statistic which measures the similarity between the observational data

and the simulations. In principle, any statistic (as long as it contains information

of interest) can be used as a measure of similarity, but different statistics may have

different requirements on data quality, sampling efficiency, etc. A good statistic

captures as much of the characteristic information of different models as possible:

in our case, the lensing perturbations from low-mass dark matter haloes. Finding

a proper summary statistic is a challenging part of ABC and it is beyond the scope

of this chapter to investigate the many possible candidate summary statistics. In-

stead, following Bayer et al. (2018), we use the power spectrum of the best-fit image

residuals to construct a summary statistic that we hope can extract information

on the number of low-mass dark matter haloes perturbing the lens.

Based on the best-fit source and macro model for the lens, {F}1
fiducial, we simulate

images of this best-fit source and lens combination with the addition of low-mass

haloes along the line-of-sight. We uniformly sample log10Mhf/M⊙ between 7 and 10

(corresponding to assuming a flat prior on log10Mhf between 107 M⊙ and 1010 M⊙)
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2.2.3.2. ABC inference through forward modelling

and, for each sampled Mhf value, we draw a random realisation of low-mass dark

matter haloes with the appropriate mass function and mass-concentration relation.

We do this for 20,000 values of Mhf , producing a corresponding lensed image in

each case and then fit each of these 20,000 images to obtain the best-fit image

residuals. We have confirmed that our results are converged with 20,000 samples.

Note that the forward-modelled images are simulated from the known lens and

source galaxies, so when performing the fitting, we add narrow priors centred on

the parameter values of the known best-fit lens and source models to accelerate

the fitting processes. Since our only goal is to find the maximum likelihood model,

once our priors contain the correct solution, the size of the priors does not affect

our results. In Table 2.3, we summarize the type and size of the priors we used

for the fitting processes. To make sure the priors we take are broad enough to

find the maximum likelihood model, we fit 4000 different realisations with both the

listed priors and 5 times larger priors and then compare the maximum likelihoods

obtained. Here, “5 times larger priors” means that for the priors listed in Table 2.3,

if it is a Gaussian prior, then the sigma is taken 5 times larger than the value listed.

In Fig. 2.5, we show the histogram of the difference of the log maximum likelihood.

As shown, the log maximum likelihood results of larger and smaller priors are very

close with only ∼ 1.0 difference, which verifies that the priors we take are broad

enough to contain the maximum likelihood model.

Next, for the images of the best-fit residuals, we set pixels outside the annular region

between 0.5′′ and 2.4′′ to be 0 and then Fourier transform the residual image and

azimuthally average to obtain the 1-D power spectrum, P (k). In the upper panel

of Fig. 2.6, we show power spectra for the forward-modelled residuals as black lines

(for clarity we only plot 100 of them); the red curve marks the power spectrum of

the image residuals of the original observation. Each line is composed of 15 P (ki)

values with the ki logarithmically spaced between ∼ 1.5 arcsec−1 and 85 arcsec−1

(∼ 2π / (4.2 arcsec) to 2π / (0.07 arcsec)).

Although we have converted the images into power spectra, we cannot simply
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2.2.3.2. ABC inference through forward modelling

Prior

Lens Elliptical Isothermal

centre (x, y) [′′] G(input, 0.01)

RE [′′] G(input, 0.008)

axis ratio G(input, 0.03)

position angle [◦] G(input, 2.0)

External Shear

magnitude G(0.0, 0.05)

position angle [◦] U(0.0, 180.0)

Source Elliptical Core-Sersic

centre (x, y) [′′] G(input, 0.01)

re [′′] G(input, 0.015 × input)

n G(input, 0.1)

I
′ [e− pix−1 s−1] G(input, 0.16 × input)

axis ratio G(input, 0.02)

position angle [◦] G(input, 2.0)

Table 2.3: Priors used in fitting processes. G(a, b) represents a Gaussian prior
centering on a with standard deviation b. U(a, b) represents a uniform prior between
a and b. The “input” here refers to the corresponding input value used when
simulating the mock image.

use the 1D “power spectrum” as our statistic. The reason is that each power

spectrum is composed of 15 different values and for ABC to converge at a point

in a 15-dimensional space, a very small acceptance rate must be set, which, in

turn, requires far more forward models. To further reduce the “dimensionality”

of the statistic, following Fearnhead and Prangle (2012), we generate a summary

statistic from a linear combination of the logarithm of the power spectrum values

at different k,

log10M̂hf =
15∑

i=1
βi log10

[
P (ki)/arcsec2

]
+ β0. (2.6)

We use log10M̂hf as the summary statistic for the ABC inference. The coefficients

{βi} (including β0) are obtained by minimizing the differences between the input
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2.2.3.2. ABC inference through forward modelling

Figure 2.5: Histogram of the differences between the log maximum likelihood ob-
tained with the priors listed in Table 2.3 and that obtained with 5 times larger
priors.

log10Mhf values used in the forward models and their corresponding log10M̂hf .

Specifically, we find the values of {βi} that minimise,

20000∑
j=1

∥∥∥log10M̂
(j)
hf − log10M

(j)
hf

∥∥∥2
, (2.7)

where log10M̂
(j)
hf is computed from the j-th forward-modelled power spectrum and

M
(j)
hf is the corresponding input half-mode mass. Since the forward-modelled power

spectrum is systematically different for different macro lensing configurations, we

optimize {βi} separately for each of our 50 lensing systems. In the middle panel of

Fig. 2.6, we plot the value of log10M̂hf for each forward-modelled simulation as a

black point. The horizontal dashed red line marks the value of log10M̂hf given by

the mock observation.

We accept the forward-modelled simulations with the 1% of log10M̂hf values closest

to the observed log10Mhf (Eq. 2.6), which are shown as blue points in the middle

panel of Fig. 2.6. The set of Mhf values associated with those blue points are then a

sample drawn from the posterior distribution of Mhf (following the ABC method);

their density can be used to estimate the posterior density of Mhf .
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2.2.3.2. ABC inference through forward modelling

Figure 2.6: Upper panel: the power spectrum computed from the best-fit image
residuals. The red line is the power spectrum of the mock observation. Black
lines are for 100 forward models. Middle panel: the summary statistic, log10M̂hf ,
computed from the power spectra. The black points are log10Mhf for the forward
models. The horizontal dashed red line marks the value for the mock observation
and points 1% closest to it are marked in blue. Lower panel: The posterior
distribution of Mhf , formed by collecting together the Mhf of the blue points is
shown in the middle panel. The vertical dashed red line marks the true input of
Mhf . The black dashed curve is a kernel density estimate corresponding to the
histogram.
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2.3. Results and Discussion

In the lower panel of Fig. 2.6 we plot the posterior density for log10Mhf , where

the vertical dashed red line shows the true input, Mhf = 107 M⊙. It is clear that

with just one system and the data quality of our fiducial setup, we are not able to

derive a tight constraint on Mhf . While improved data quality might improve this

somewhat, a single lens system will always be limited by the stochastic nature of

the distribution of the low-mass dark matter haloes we are trying to detect. Just

because a particular value of Mhf allows perturbers of a given mass this does not

mean that there will happen to be one in a location where it produces detectable

image residuals. As such, tight constraints will rely on combining results from

multiple systems.

2.3 Results and Discussion

In this Section, we will first show that the forward modelling procedure described

above can correctly recover the input value of Mhf when combining results from

multiple lenses. Then we will explore how the precision of the constraints depends

upon the lensing configuration and image quality of the lenses in an observed

sample. We will then compare the strength of our method with the method based

on quasar flux ratio anomalies.

2.3.1 Tests of the accuracy of the method

By repeating the procedure described above for each observed system we can obtain

a constraint from our mock observations of 50 lensing systems. Just as for a real set

of 50 observed systems, the posterior probability density for Mhf will not necessarily

peak at the true value. To assess whether our method is biased, we create 500 sets

of 50 observed lenses. Running the full procedure described above 500 times, each

time for 50 different lenses, would be prohibitively expensive because of the very

large number of forward models this would require. We therefore use the same set

of 50 macro lens and source model parameters ({T}fiducial) for each of our 500 sets,
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2.3.1. Tests of the accuracy of the method

only changing the realisations of low-mass dark matter haloes between the sets of

50 observed images. This allows us to reuse the same forward models for each of

our 500 sets.

In principle, we should generate a new set of forward models for each of the 500 sets

(together 25000 lenses) because the particular realisation of the dark matter haloes

affects the best-fit macro model, which is the model used to generate the forward

model images. We will see later that even though there is a slight mismatch in

best-fit models for different realisations, we can still correctly recover the true Mhf .

Similarly, to examine how the method behaves with different input (true) values for

Mhf , we further simulate 500 sets of 50 observations with Mhf = 108 and 109 M⊙

and apply ABC inference to them, all using the same forward models previously

simulated.

Note that some care needs to be taken when combining results from multiple ABC

calculations. This is because ABC produces an estimate of the posterior distribu-

tion, rather than the likelihood. Combining multiple measurements in a traditional

Bayesian analysis (with a calculable likelihood function) is a case of multiplying

the likelihoods of the different measurements together to get a total likelihood and

then multiplying this by the prior in order to find (something proportional to) the

posterior distribution. In this chapter we use a flat prior on log10 Mhf , and thus the

posterior density (per unit log10 Mhf) we obtain is proportional to the likelihood.

This means that the posterior densities per unit log10 Mhf for individual systems

(such as the blue histograms in the lower panel of Fig. 2.6) can be multiplied to-

gether to produce something proportional to the joint likelihood, which can then

be multiplied by a prior (once) to get the posterior.

Before multiplying individual constraints, to reduce the noise and obtain a smooth

likelihood, we apply a kernel density estimation method to the distribution of

log10 Mhf with a kernel width of 0.3 dex. We have tested smaller kernel sizes, but

the constraints quickly become noisy without significant improvement. To correct

for boundary effects, we choose the “renormalization” correction for our kernel
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2.3.1. Tests of the accuracy of the method

Figure 2.7: Tests on the fiducial setting. The left column shows the constraints on
Mhf (adopting a flat prior on logMhf) and the right columns the constraints on
1/mDM (adopting a flat prior on 1/mDM). From top to bottom, panels correspond
to true Mhf values of 107, 108, 109 M⊙, marked by the black vertical dashed lines.
Blue dashed curves are individual constraints for each set of 50 lensing systems (for
clarity, we only plot 50 out of 500 here). The red curve is the average constraint
from the 500 sets. In the right column we use the mean posteriors to place 2σ(95%)
credible interval limits (upper limits on 1/mDM for the top 2 panels and a both
upper and lower limit for the bottom one). The hatched regions are where Mhf <
107 M⊙, which is outside the range probed by our forward models.

density estimations.∗ As an example, the kernel density estimation for the fiducial

result is shown as the black dashed curve in the lower panel of Fig. 2.6.

The left column of Fig. 2.7 shows our test results for three different cases with true

input Mhf of 107 M⊙, 108 M⊙ and 109 M⊙ from top to bottom, respectively. Each
∗We use the public package PyQt-Fit to implement the kernel density estimation (see

“https://pythonhosted.org/PyQt-Fit/”).
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2.3.1. Tests of the accuracy of the method

blue line is a constraint from 50 systems (for clarity, we only show 50 blue lines in

the plots). Any one set of 50 observations will not necessarily have a posterior that

peaks at the true value, so in order to assess whether our results are systematically

biased – as opposed to just subject to random error – we plot a mean posterior

distribution from the 500 sets of 50 observations. These are the red lines in Fig. 2.7;

they peak close to the input values of Mhf , suggesting that our method is unbiased.

Using these mean posteriors we compute the ratio of the posterior between the peak

value and the values at Mhf = 107 M⊙ and Mhf = 109 M⊙. With an input value

of Mhf = 107 M⊙, the recovered constraint shows that the model with Mhf = 109

M⊙ is disfavoured with a posterior density ∼ 327 times smaller than that of the

peak. In a WDM universe (e.g. with Mhf = 109 M⊙), Mhf = 107 M⊙ would be

ruled out, with a mean posterior density ∼ 242 times smaller than at the peak.

In the right column of Fig. 2.7, we show our posterior distribution in terms of

1/mDM, which is the way in which constraints on the DM particle mass from the

Lyman-α forest are typically expressed (Iršič et al., 2017). Note that the 1/mDM

posteriors are not simply theMhf posteriors transformed to a new parameterisation.

Instead, we transform the likelihood as a function of Mhf to the likelihood as a

function of 1/mDM following Eq. 1.4, and then adopt a flat prior on 1/mDM (as

done in Lyman-α studies). This is different from a flat prior on log10Mhf and so

the posteriors are not actually the same in the two columns of Fig. 2.7.

Depending on the “behaviour” of the red curves, we place either a 2σ (95%) upper

or lower limit on 1/mDM. For the cases with true Mhf = 107 and 108 M⊙, we

place an upper limit, while for the case with Mhf = 109 M⊙ we place both lower

and upper limits. These limits are shown as vertical dashed red lines in the figure.

We can see that with 50 fiducial-like lensing systems, at 2σ level, one can rule out

particle candidates with mDM less than 3.38 keV and 2.44 keV in universes with

true mDM = 8.86 and 4.44 keV respectively, or rule out particles with mDM > 3.77

keV and mDM < 1.21 keV in a universe with true mDM = 2.22 keV. We view the 2σ

limits in the first two panels as conservative because we do not assign any posterior
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Figure 2.8: Histograms of 2σ (95%) upper or both upper and lower limits on
1/mDM. From left to right the input half-mode mass is Mhf = 107, 108 and 109

M⊙, with the corresponding DM particle masses written in the relevant panel. The
limits are upper limits on 1/mDM (i.e. a lower limit on the DM particle mass),
except for the case of Mhf = 109 M⊙ where both histograms of upper (solid line)
and lower (dashed line) limits on 1/mDM are shown. The black dashed lines mark
the true inputs. The vertical blue lines mark the medians of the histograms and
corresponding median values are also listed.

mass to the shaded regions in our computation. If we had simply assumed that the

posterior density in the shaded region was the same as at ∼ 0.12 keV−1, the upper

limits would have been tighter.

Note that the constraints discussed above are average results. Observations of any

50 specific lensing systems would yield a constraint like one of the blue dashed

lines in the figures, which might be tighter or looser than the average constraint.

To demonstrate actual constraint one would expect to get with 50 observations, in

Fig. 2.8 we show the histograms of 2σ limits from the 500 different realisations of

a set of lensing observations (for true mDM = 8.86, 4.44 keV, we compute lower 2σ

limits, and for true mDM = 2.22 keV, we compute lower and upper 2σ limits). As

shown by the histograms, when true mDM = 8.86 keV, the median 2σ constraint we

would get is 1/mDM < 0.24 keV, and thus mDM > 4.10 keV. In other words, there

is 50% chance to constrain mDM better than 4.10 keV with 50 lenses of similar

settings. If true mDM = 4.44 keV, the median 2σ constraint is mDM > 3.01 keV. If

true mDM=2.22 keV, the median constraint obtained is 1.43 keV< mDM < 3.21 keV.
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2.3.2. Dependency on the lensing configuration

2.3.2 Dependency on the lensing configuration

Having shown that with a large number of lensing systems the forward modelling

procedure can correctly recover the true Mhf (albeit with fairly broad posteriors),

we now explore how the constraints change when the properties of the lenses and

sources are varied. In particular, we vary the lens and source redshifts, the image

S/N ratio, and the image resolution.

To show clearly how the constraints depend upon a specific parameter, we only

change one parameter value at a time. For example, to investigate how the result

changes for a higher redshift source, we only change the source redshift, and leave

the image resolution, Einstein radius, surface brightness, etc., unchanged from the

{T}fiducial values. Notice that the parameters listed in Table 2.1 are observational

rather than intrinsic physical quantities, so by fixing a parameter, we refer to

fixing a particular observational quantity. For example, keeping the source surface

brightness unchanged from a redshift of 1 to 2.5 means that the source galaxy at

z = 2.5 is actually intrinsically brighter because of cosmological dimming. The

reason for changing quantities in this way is that we want to focus on how the

results change from an observational perspective and thus provide a basic idea of

what type of lensing configuration has most constraining power, which may help

inform future observational designs.

In total, we have carried out five additional tests: placing the lens at a lower

redshift of 0.2, denoted as {T}lz=0.2; placing the source at a higher redshift of

2.5, denoted as {T}sz=2.5; doubling the exposure time, denoted as {T}exp=1200;

lowering the resolution, with pixel size of 0.1′′ and PSF σ of 0.08′′, similar to the

expected resolution of images from the Euclid Space Telescope (Collett, 2015),

denoted as {T}Euclid; assuming a similar resolution to that of the China Space

Station Telescope (CSST), with pixel size of 0.075′′ and PSF σ of 0.08′′, denoted

{T}CSST. To first focus on the changes caused by different settings, without being

affected by set-of-observations to set-of-observations noise, we compare the mean
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2.3.2. Dependency on the lensing configuration

posteriors from 500 sets of 50 observed systems (i.e. the equivalents of the red lines

in Fig. 2.7).

In the left column of Fig. 2.9 we plot the expected Mhf posteriors for different

lensing configuration using different colours. Blue, green, red, cyan, orange and

purple correspond to the settings, {T}fiducial, {T}lz=0.2, {T}sz=2.5, {T}exp=1200,

{T}Euclid and {T}CSST, respectively. Different rows show results assuming different

true inputs of Mhf , which are marked as vertical dashed black lines. As in Fig. 2.7,

we plot 1/mDM posteriors in the right column and place upper (in the top two

panels) or both lower and upper (in the bottom panel) 2σ limits on 1/mDM, which

are marked as vertical dashed lines. The red, green and blue curves show how the

results vary with the lens and source redshifts.

Increasing either the source or lens redshift improves the constraints because (at

fixed Einstein radius) the volume in which low-mass dark matter haloes are projec-

ted close to the observed Einstein ring increases as either redshift is increased. The

comparison between the cyan and blue curves shows that increasing the S/N ratio

(exposure time) results in a better constraint. Also, better angular resolution gives

better constraints when comparing the fiducial setting (blue curve) and the Euclid

/ CSST resolution setting (orange / purple curves), but the improvement is not

significant. Although a worse constraint is obtained with lower image resolution,

we see that even with lower angular resolution we can distinguish between models

with Mhf of 107 M⊙ and 108 M⊙. The advantage of Euclid and CSST will be

sample sizes that are vastly larger than 50. Note that future Euclid/CSST obser-

vations will likely be different from the sample we simulate here: they will have,

for example, different lens/source redshift distributions, data quality and Einstein

radii. Those differences can potentially make our predictions here different from

future real observations.

Similarly, we use average constraints above to demonstrate the result dependency

on lensing configurations, while for the constraints from individual sets of 50 strong

lensing systems with different lensing configurations, we refer the 2σ limit histo-
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Figure 2.9: Average constraints from 50 lensing systems with different settings. As
in Fig. 2.7, the left panels show the constraints on Mhf and the right panels the
constraints on 1/mDM. Blue, green, red, cyan, orange and purple lines correspond
to the results of settings, {T}fiducial, {T}lz=0.2, {T}sz=2.5, {T}exp=1200, {T}Euclid
and {T}CSST respectively. The vertical dashed black lines mark the true input
values and the color lines the corresponding 2σ upper limits (top 2 panels) or both
upper and lower limit (bottom panel) on 1/mDM.

grams in Fig. 2.10. Colors of the histograms follow the meaning of Fig. 2.9. The

vertical dashed line mark the true input and the left regions below our test range

are plotted in shadow. For each setting, we list the medians of 2σ constraints in

corresponding colors. As shown, the dependency reflected from the histograms is

the same as that from the average constraints in Fig. 2.9. Among all the settings,

the setting with a higher redshift source gives the best constraint, where when true

mDM = 8.86 keV, the median 2σ constraint one could get is mDM > 5.20 keV.

To summarize, the tests shown here agree with the expectation that lensing systems
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Figure 2.10: Histograms of 2σ (95% upper) limits (solid lines) and lower limits
(dahsed lines, only in the rightmost panel) on 1/mDM. The vertical black dashed
lines mark the true input mDM in each panel. The colours of the histograms
follow the meaning of in Fig. 2.9. The medians of the histograms are also listed in
corresponding colors in the panels.

with longer exposure times, higher resolution, and more low-mass dark matter

haloes (higher source redshifts and a larger area around the Einstein arcs) give

tighter constraints.

2.3.3 Model assumptions and limitations

Our method makes a number of simplifying assumptions which we now summarize

and describe in more detail.

By simulating low-mass dark matter haloes with the mass function of Eq. 1.3 we

neglect lensing perturbations from subhaloes within the lens galaxy. This is a good

approximation since, as Li et al. (2017) have shown, for realistic lensing configur-

ations the signal is dominated by line-of-sight haloes, rather than by subhaloes in

the lens. In any case, this assumption makes our results conservative, as includ-

ing subhaloes would boost the lensing perturbations, increasing the signal we can

extract from the lens model residuals. On the other hand, there are uncertainties

regarding subhaloes that do not affect line-of-sight haloes, for example, the extent

of tidal disruption (Despali et al., 2018, Richings et al., 2020); marginalising over

these uncertainties would weaken the constraint on Mhf .

We neglect any uncertainties on the amplitude and shape of the (CDM) halo mass
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function. The amplitude is fixed by the value of the cosmological parameter, σ8,

which is known to better than 1% from cosmic microwave background data (Planck

Collaboration et al., 2020). The shape is known very precisely from cosmological

simulations (Wang et al., 2020). There is, however, some degeneracy between the

amplitude of the halo mass function and the half-mode mass. Some lensing studies,

such as that of Gilman et al. (2019) based on flux ratio anomalies, have included

the amplitude of the mass function as a free parameter to be fit at the same time

as the subhalo mass function.

In this chapter we have assumed an SIE lens mass model, whereas in studies of

real lenses a power-law mass model with external shear is widely used (e.g. Ve-

getti et al., 2014, Dye et al., 2014). This gives the mass model more freedom to

fit the residuals, reducing the signal left over from substructures. Even then, the

mass model may only provide an approximate fit to the lens and result in residuals

not associated with subhaloes, at which point even more complex mass profiles

(Nightingale et al., 2019), or a potential corrections-based approach may be re-

quired (Vegetti and Koopmans, 2009a). We assume a core-Sérsic model for the

source light, whereas studies using real data often use a non-parametric approach

that reconstructs a source’s irregular morphology (see Warren and Dye, 2003, Suyu

et al., 2006). Gilman et al. (2020b) show how such an approach may absorb part of

the residual signal of the low-mass perturbers, reducing the available information

on the halo mass function. PyAutoLens has all the necessary functionality to

test these assumptions and this will be the topic of future work.

Our method implicitly attributes all image residuals to the presence of perturb-

ing dark matter haloes when, in reality, there could be other sources of mismatch

between a true lens and source model and the best-fit macro model. In the idealized

setup used here we have shown that this allows us to obtain a correct measurement

of the input half-mode mass. In reality, other sources of perturbations will contrib-

ute to the power spectrum of the image residuals, including a deficient model for the

smooth component of the lens, an inaccurate description of the telescope PSF and
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artefacts or correlated noises introduced by the data reduction process. Not tak-

ing these effects into account may bias our inference of the subhalo mass function.

Currently, the impact of any individual effect is unclear and further investigation is

required, noting that all effects that impact the signal can, in principle, be included

in our forward modeling procedure and marginalized over.

On a positive note, our use of the power spectrum to define a summary statistic to

extract the signal from the residuals is likely to be suboptimal. A more carefully

crafted summary statistic or a machine learning-based approach (see Brehmer et al.,

2019, Diaz Rivero and Dvorkin, 2020) can potentially improve the signal that can

be extracted from a lens system and thus provide better constraints on Mhf than

shown here. It could also make the estimation less sensitive to systematic sources

of residuals as shown by Birrer et al. (2017a), and so increase the constraining

power of the forward modelling method.

2.3.4 Comparison with flux ratio anomalies

A theoretical investigation of the constraining power of flux ratio anomalies was

performed by Gilman et al. (2019), who subsequently applied their method to real

observations, placing constraints on both the dark matter mass function and the

mass-concentration relation (Gilman et al., 2020a,c). It is interesting to compare

our approach with that of Gilman et al. (2019). Note, however, that, as we just

discussed, these authors treat the amplitude and slope of the halo mass function as

free parameters, whereas our tests assume a halo mass function with only one free

parameter, Mhf . In our tests, for a universe with true Mhf = 107 M⊙, our fiducial

calculation gives an upper 2σ constraint (average constraint shown in Fig. 2.7),

Mhf = 108.25 M⊙, which is slightly smaller than the upper constraints quoted by

Gilman et al., Mhf = 108.34 M⊙, for a 2% uncertainty on flux measurements (see

Figure 8 of Gilman et al., 2019). Given the different assumptions in the two studies

this comparison serves to show that the constraints that they provide are roughly

comparable.
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When considering the relative performance of our method and those based on flux

ratio anomalies it is pertinent to consider the mass scales to which each method is

sensitive. The “coldest” case in our tests assumes Mhf = 107 M⊙ and our signal

is heavily influenced by the lensing effects of larger perturbers with M200 ∼ 107−8

M⊙. The small detection area of flux ratio anomalies results in a lack of sensitivity

to subhaloes with these relatively high masses (as these subhaloes are rare), but the

“point-like” sources (with highly variable surface brightnesses over a small region)

provide sensitivity down to dark matter haloes with M200 ∼ 106 M⊙, a scale that

is not accessible with our approach. However, another problem faced by flux ratio

anomalies is that the sparsity of information means that the degeneracy between

anomalies caused by substructure and by a complex smooth halo is not easily

broken, which can bias the inference on the abundance of substructures (Xu et al.,

2015, Hsueh et al., 2018). The two approaches are therefore complementary and,

together, can provide constraints on the halo mass function over a broad range of

masses.

2.4 Conclusions

In this chapter we have presented a method based on forward modelling applied

to the analysis of resolved strong lensing arc data that can constrain a cutoff in

the dark matter halo mass function. The key idea is to simulate a large number

of strong lensing images (forward models) based on the best-fit macro model, with

the addition of perturbations to the lens model from low-mass dark matter haloes

(whose number depends on the assumed nature of the dark matter). These images

can then be fit in the same manner as the original observed image, and the best-fit

image residuals for the observed system can be compared with the best-fit image

residuals for the forward models. This comparison is made by means of the power

spectrum of the image residuals within the Approximate Bayesian Computation

framework and leads to a posterior distribution for the half-mode mass (Mhf) which
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describes the cutoff in the halo mass function. Our main results may be summarized

as follows:

• For mock observed lenses constructed from parametric source light profiles

and lens mass models, we confirm that information on low-mass dark matter

haloes can be extracted from the power spectrum of the best-fit image resid-

uals. As demonstrated in Fig. 2.7, with a large number of observed lenses, a

forward modelling procedure can correctly recover the true input half-mode

mass, Mhf in average (the red curves). However, the scatter in the constraint

is significant even though results for 50 systems have been combined together

(blue curves), which may be attributed to the large intrinsic scatter in real-

isations of low-mass dark matter haloes. Taking the scatter into accounts,

we compute the histograms of 2σ limits (see Fig. 2.8) and find that, with 50

lensing systems, for our fiducial settings (see Table 2.1), if the true (thermal)

mDM is 8.86 keV (Mhf = 107 M⊙), the median 2σ constraint on mDM is that

mDM > 4.10 keV (or there is 50% chance that the mDM can be constrained

better than 4.10 keV at 2σ level). Conversely, in a WDM universe where the

true (thermal) mDM is 2.22 keV (Mhf = 109 M⊙), one could get a median

measure of mDM to be between 1.43 keV and 3.21 keV at 2σ level.

• We have tested the dependency of the method on different lensing configura-

tions and image quality settings. As shown in Fig. 2.9 & 2.10, the dependency

agrees with expectations: higher redshift sources and/or larger areas around

the Einstein arcs, and better data quality (longer exposure time and/or higher

resolution) all result in a tighter constraint. Among our tests, the one with

sources placed at z = 2.5 produced the strongest constraint: in a universe

with true mDM = 8.86 keV (Mhf = 107 M⊙), particles with mass less than

5.20 keV can be ruled out at the 2σ level (see medians of the histograms in

Fig. 2.10). Although a slightly worse constraint is obtained from images with

the resolution of Euclid/CSST, 50 systems can still provide a constraint on
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Mhf , and with Euclid/CSST data we will have many more than 50 strong

lenses. We defer a thorough test using mock strong lensing samples similar

to those expected from Euclid/CSST to future work.

Throughout this study we have made several simplifying assumptions, particularly

in using parametric models for the lens mass distributions and the source light

profiles. The effects of removing these assumptions will need to be investigated

before we can safely apply our technique to real observations. We have shown

that, in principle, information on low-mass dark matter haloes can be statistically

extracted from the power spectrum of the image residuals. In the near future, we

hope that using a more powerful summary statistic together with more advanced

lens modelling techniques (such as pixelized sources) can improve the power of

this technique. With thousands of new strong lensing observations expected from

future space telescopes, there is every prospect of pinning down the mass of the

dark matter particles using this forward modelling technique.
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Chapter 3

Re-investigating sensitivity

mappings of line-of-sight and

on-lens low-mass haloes

Abstract

We rederive the number density of intervening line-of-sight haloes relative to

lens subhaloes in galaxy-galaxy strong lensing observations, where these per-

turbers can generate detectable image fluctuations. Previous studies have

calculated the detection limit of a line-of-sight small-mass dark halo by com-

paring the lensing deflection angles it would cause, to those caused by a subhalo

within the lens. However, this overly simplifies the difference in observational

consequences between a subhalo and a line-of-sight halo. Furthermore, it does

not take into account degeneracies between an extra subhalo and the uncer-

tain properties of the main lens. More in keeping with analyses of real-world

observations, we regard a line-of-sight halo as detectable only if adding it to a

smooth model generates a statistically significant improvement in the recon-

structed image. We find that the number density of detectable line-of-sight

perturbers has been overestimated by as much as a factor of two in the pre-

vious literature. For typical lensing geometries and configurations, very deep

imaging is sensitive to twice as many line-of-sight perturbers as subhaloes,
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but moderate depth imaging is sensitive to only slightly more line-of-sight

perturbers than subhaloes.

3.1 Introduction

Strong lensing systems that exhibit giant arcs or Einstein rings can appear measur-

ably perturbed if any of the light from the source passes sufficiently close to a small

dark halo (Koopmans, 2005, Vegetti and Koopmans, 2009a,b, Vegetti et al., 2012,

Hezaveh et al., 2016, Li et al., 2016b). In order to detect a small dark halo expli-

citly, one needs to model the tiny perturbations to the image that are caused by a

small halo. The measurement is difficult but applying sophisticated data analysis

and modelling tools to high resolution imagery, it is possible to detect small haloes

projected near the Einstein radius of the lens and infer their mass (e.g. Koopmans,

2005, Vegetti and Koopmans, 2009a). So far three haloes with pseudo-Jaffe mass

smaller than 1010 M⊙ have been detected.

To constrain the nature of the dark matter with this technique it is, of course,

necessary to know the expected number of lensing perturbers in CDM and other

models of interest. The perturbers can be either subhaloes of the main lens or

“field” line-of-sight haloes that are not part of the main lens but appear projected

near its Einstein radius. To reduce the complexity, an “effective” mass concept

was proposed to approximate the lensing perturbation of a line-of-sight halo as a

subhalo. By doing so, people have computed that the expected number detect-

able line-of-sight low-mass perturbers is several times of that of the subhaloes (Li

et al., 2017, Despali et al., 2018, hereafter, L17 and D18 respectively), which is

an encouraging result because it greatly simplifies the theoretical analysis. Unlike

for subhaloes, whose mass function is affected by environmental effects, calculat-

ing the mass function of dark central haloes in the mass range of interest - below

the threshold for star formation - is straightforward since these haloes have never

been affected by baryons. Thus, a standard calculation of the mass function based
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on dark-matter-only simulations (Frenk et al., 1988) gives very precise results (see

Zavala and Frenk, 2019, for a recent review).

By contrast, the mass function of subhaloes is determined by a number of pro-

cesses, such as tidal stripping or tidal shocking, that alter the mass distribution

and can destroy the subhalo. To calculate these processes requires modelling the

host galaxy in detail, including its baryonic components. This is, of course, a much

more complicated problem than simply following the evolution of dark matter ha-

loes. Significant advances, however, have been achieved in recent years with a new

generation of cosmological hydrodynamics simulations that can produce realistic

galaxy populations (e.g. Vogelsberger et al., 2014, Schaye et al., 2015). Here, we

will make extensive use of the high-resolution hydrodynamics simulation of Rich-

ings et al. (2021) of a galaxy and its environment which includes the relevant baryon

physics processes.

L17 and D18 both made an important assumption: that the perturbation induced

by a subhalo can always be well fitted by the perturbation induced by a line-of-

sight halo with an NFW profile. This assumption, however, may not be exactly true

because the deflection angles produced by a line-of-sight halo can be very different

from that of a subhalo in certain redshift ranges. Furthermore, these earlier studies

did not carry out complete modelling of the lensing process, for example, assuming

realistic noise levels, and this may further bias the results.

In this chapter, we revisit the importance of the contribution of line-of-sight per-

turbers by modelling a set of realistic strong lensing mock images. In earlier studies,

the comparison of deflection angles was used to decide whether a perturber is de-

tectable or not, through the concept of an “effective mass”. Here we derive the

detectable mass threshold for line-of-sight perturbers by directly evaluating the

difference in log-likelihood between a model with a perturber and a model without

a perturber. The new threshold is now directly obtained from modelling image

fluxes and thus it is more straightforward and robust, where it takes into account

factors from flux modelling processes previously not considered, like the degeneracy
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between the perturber and the macro model. We also investigate the dependence

of the relative contribution of the two types of object on the redshift and the

signal-to-noise (S/N) ratio of the observations.

An independent study of the sensitivity function using PyAutoLens is provided

by Amorisco et al. (2022). This work reassuringly reaches the same conclusion as us

on the dependence of the sensitivity function on the redshift of the perturbing halo,

despite using a different approach to calculate the sensitivity function and mock

strong lens datasets with different properties. Looking at only line-of-sight haloes,

this study highlights the impact that the intrinsic scatter in halo concentrations has

on the sensitivity function, and shows that the dependency of the concentration–

mass relation on the dark matter model improves strong lensing as a probe of dark

matter. In this chapter, we explicitly include subhaloes within the lens galaxy (in

addition to line-of-sight haloes), accounting for their different mass function and

density profiles due to baryonic physics. Thus, we set out to answer whether the

line-of-sight or lens galaxy subhalos dominate the constraints on dark matter.

The structure of the chapter is as follows. In Section 3.2, we describe how we

construct mock lenses, how we compute the sensitivity map and the method we

use to translate sensitivity maps into constraints on the halo mass function. In

Section 3.3, we present our results and in Section 3.4, we summarize our conclusions.

Throughout the chapter we adopt the Planck cosmological parameters (Planck

Collaboration et al., 2016): H0 = 67.7 km s−1 Mpc−1, Ωm = 0.307 and ΩΛ = 0.693.

3.2 Method

3.2.1 Mock Lenses

We construct five sets of mock lenses, including examples with different image

configurations, redshifts, noise levels and angular resolution. For simplicity we set

the density distribution of all primary lenses to be SIEs (Eq. 2.1). We do not add
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external shear in the mock lenses. However, when modelling the lens we do include

the external shear as part of our mass model (Witt and Mao, 1997).

To simulate the source galaxies, similar to last chapter, we assume a core-Sérsic as

Eq. 2.3, of which the small core in our model helps to remove potential numerical

inaccuracies induced by the cuspy nature of the regular Sérsic profile. Throughout

our tests in this chapter we also fix α = 2.0 and rc = 0.01′′.

The fiducial mock image setup has a nearly complete Einstein ring with the lens

galaxy at redshift, z = 0.5, and the source galaxy at z = 1. The emission of the

lens galaxy is omitted here. The mock image has similar angular resolution to

HST imaging, where the pixel size is 0.05′′ and a Gaussian PSF is assumed where

σ = 0.05′′ (FWHM of ∼ 0.118′′). For the noise level, we try to set it to be similar

to the best cases in the SLACS sample (Bolton et al., 2006), where the maximum

S/N in the image pixels is around 40 for a 2000s exposure. We adopt a background

sky noise level of 0.1 e− pix−1 s−1, which is estimated from HST images of SLACS

lenses. To add noise to each mock image, the background sky is added to the lensed

source image, the data is converted to units of counts and Poisson noise values are

drawn and added to every pixel. The source intensity is adjusted to make the

maximum pixel S/N be ∼ 40 and the data is then converted back to e−s−1. The

lens and source parameters of the fiducial setting is shown in the third column of

Table 3.1.

Based on this fiducial setup, we also change the appropriate parameters to explore

the effects of different image configurations, lens galaxy redshifts, noise levels and

angular resolution. We summarize our mock images (without adding any low mass

haloes) in Fig. 3.1, where each setting’s name is labelled in the upper left of each

panel. The details of each setting are as follows:

• ER-EXP2000 — This is our fiducial setting, a nearly complete Einstein ring

with a radius of 1.5′′, corresponding to an Einstein mass of 6.4 × 1011 M⊙

within 9.4 kpc.
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Einstein Ring Quad

Lens (x, y) [(′′, ′′)] (0.0, 0.0) (0.0, 0.0)
RE [′′] 1.5 1.5

q 0.95 0.65
θ [◦] 30 30

External Shear magnitude 0.0 0.0
θ [◦] 0.0 0.0

Source (x, y) [(′′, ′′)] (0.1, 0.1) (-0.05, 0.1)
re [′′] 0.2 0.2

q 0.52 0.7
θ [◦] 30 30

I
′ [e− pix−1 s−1] 2.2 2.3

n 2.5 2.0
rc [′′] 0.01 0.01
α 2.0 2.0

Table 3.1: Parameters of the lens and source galaxies for the Einstein Ring and
Quad images in our mock simulations.

• ER-EXP8000 — It has the same setting as our fiducial mock except the

exposure time increases to 8000s, of which the maximum pixel S/N is ∼ 80.

• ER-EXP2000-LOWZ — The main lens in this case is located at redshift, z =

0.22, while the source is still at z = 1. When changing the lens redshift, we

keep its Einstein radius (in arcsec) and noise level unchanged. At this redshift,

a 1.5′′ Einstein radius corresponds to an Einstein mass of 1.3×1011 M⊙ within

5.5 kpc.

• QUAD-EXP2000 — In this setting, we simulate an image with quadruple

arcs with the same noise level and angular resolution as the fiducial case.

The lens and source parameters of this configuration are listed in the fourth

column of Table 3.1.

• ER-CSST — We also simulate a configuration with lens and source properties

as in the fiducial case but with the same image resolution as the China Space

Station Telescope (CSST). The CSST resolution is slightly worse than for the

HST, with a pixel size of 0.075′′ and a PSF σ of 0.08′′ (FWHM of ∼ 0.188′′).

We note that the hardware design of the CSST is not fully determined yet, so
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for our purpose here, which is to study purely resolution effects, we assume it

has similar noise conditions as the HST except for the resolution. Since the

pixel area is 2.25 times larger, the background sky noise is also increased to

0.225 e− pix−1 s−1. The image simulated here may therefore be treated as a

pixel binned version of the fiducial mock image using a larger pixel and PSF

size of the CSST.

• ER-JWST — The image resolution of this case is close to that of James Webb

Space Telescope (JWST) images, which have a pixel size of 0.03′′ and a PSF

σ of 0.013′′ (FWHM of ∼ 0.03′′). Note that now the pixel areas are 0.36

times those of the previous case; the noise is also changed consistently to be

0.036 e− pix−1 s−1.

In Table 3.2 we summarize the key features of the five mock settings (the quantities

of the last three columns are defined in our results part, Section 3.3).

We perturb the images of the mock lenses with two types of objects. One are

small-mass dark matter haloes along the line-of-sight and the other are subhaloes

within the host halo of the lens galaxy. We model the line-of-sight haloes with

spherical NFW profiles (Eq. 1.5) following the mass-concentration relation given

by Ludlow et al. (2016).

For subhaloes associated with the lens, we simulate them as a tNFW profile with

n = 2 in Eq. 1.8 (see Eq. A.26∼A.33 of Baltz et al., 2009, for relevant equations).

Particularly, the total mass of the subhalo can be written as (Eq. A.29 of Baltz

et al., 2009)

Mtot = 4πρsr
3
s

τ2

2 (τ2 + 1)3

[
2τ2

(
τ2 − 3

)
lnτ −

(
3τ2 − 1

) (
τ2 + 1 − τπ

)]
, (3.1)

where τ ≡ rt/rs. rt and rs are the truncated radius and scale radius, respectively.

We derive the mean relation between rs, rt and Mtot using the high-resolution

hydrodynamical simulation by Richings et al. (2021). This is a zoom, high resolu-

tion resimulation of a halo with M200 (the mass within r200, the radius where the
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3.2.1. Mock Lenses

Figure 3.1: Mock observations of the galaxy-galaxy strong lens systems that we
investigate. The name of each setting is shown on the top left of each panel.
“ER-EXP2000” is our fiducial mock image. “ER-EXP8000” has a 8000s exposure.
“ER-EXP2000-LOWZ” has a main lens located at z = 0.22. “QUAD-EXP2000” is
an image with quadruple arcs. “ER-CSST” uses the resolution of CSST, which has
a pixel size of 0.075′′ and a PSF sigma of 0.08′′ (FWHM of 0.188′′). “ER-JWST”
uses the resolution of JWST, which has a pixel size of 0.03′′ and a PSF sigma of
0.013′′ (FWHM of 0.03′′). Parameters of the lens and source parameters for the
Einstein Ring and Quad images are listed in Table 3.1. The key features of the
systems are listed in Table 3.2. The images are shown in log10 scale, and the unit
of the color bar is e− pix−1 s−1.

enclosed density is 200 times the critical density of the Universe) of 1013.1 M⊙ at

z = 0.18 selected from the eagle simulation volume (Schaye et al., 2015) and resim-

ulated with 17 times better gas mass resolution than eagle, mg = 1.8 × 105 M⊙,

and about 100 times better dark matter mass resolution than eagle, mDM =

8.3 × 104 M⊙. Such high resolution allows us to resolve the internal structure of

subhaloes more massive than 108 M⊙. Haloes were identified using the friends-

of-friends algorithm (Davis et al., 1985) and subhaloes using the SUBFIND al-

gorithm (Springel et al., 2001); the density profiles of subhaloes in the mass range

108 ∼ 1011 M⊙ were fit with the tNFW formula to derive the values of rs, rt and

Mtot.
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3.2.1. Mock Lenses

Since in actual observations, only subhaloes around the Einstein radius matter, we

only select subhaloes whose projected positions fall in an annular region between

0.5′′ and 3.0′′ from the lens centre to derive the relations between rs, rt and Mtot.

To improve the statistics, we rotated the simulated halo 10000 times at random.

For the mock lenses at z = 0.22 and z = 0.5 we make use of the snapshots at

z = 0.183 and z = 0.503 respectively. To make sure the derived relations are not

dominated by any particular subhalo, e.g. by one very close to the Einstein radius

in 3D, we carry out bootstrap tests whereby we repeat the same procedure 200

times and each time we derive the linear relations from a random re-sample of all

subhaloes. The linear relation is computed by minimizing a χ2 defined as:

χ2 =
N∑

i=1
Wi (yi − (m× xi + c))2 , (3.2)

where m, c are the linear relation slope and intercept, (xi, yi) is the coordinate of

the i-th data point and Wi is the number of times the i-th data point is repeated in

the sample. We then take the median linear relations from the 200 tests to model

the subhaloes.

Taking the snapshot at z = 0.183 as an example, in Fig. 3.2, we plot the values of

Mtot, rs and τ (rt/rs) for subhaloes as blue circles. The area of each circle reflects

how many times each subhalo fell on the annular region around the Einstein radius,

which is taken as a weight for the point when deriving the linear relation. For this

lens system we find,

log10

(
rs

kpc

)
= (0.60 ± 0.09) log10

(
Mtot
M⊙

)
− (4.85 ± 0.77)

log10 (τ) = (−1.21 ± 0.10) log10

(
rs

kpc

)
+ (0.59 ± 0.04) .

(3.3)

For the lens at z = 0.5 we find,

log10

(
rs

kpc

)
= (0.49 ± 0.06) log10

(
Mtot
M⊙

)
− (3.90 ± 0.54)

log10 (τ) = (−1.21 ± 0.09) log10

(
rs

kpc

)
+ (0.55 ± 0.03) ,

(3.4)
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Figure 3.2: Relations between Mtot, rs and τ for subhaloes in an annulus between
1.0′′ and 3.0′′ encompassing the Einstein radius, at snapshot z = 0.183. The
relations were obtained by rotating the lensing galaxy and its subhaloes 10000
times and selecting those subhaloes that fall in the region of interest in projection.
The area of each blue point represents how many times a subhalo falls in this
region. The dashed orange and solid red lines show the running means and best fit
linear relations for the data taking account of the weight of each data point.

64



3.2.2. Sensitivity Mapping

Figure 3.3: Interior mean surface density profiles of tNFW and NFW at z = 0.22
(dashed lines) and z = 0.5 (solid lines). Red lines are the tNFW profiles and blue
lines show the NFW profiles. All the haloes plotted here have mass of 109 M⊙. For
tNFW, the mass refers to the total mass, while for NFW, the mass refers to M200.

where the errors are the 1σ scatter determined from the bootstrap resampling.

In Fig. 3.3, we show the interior mean surface density profiles of tNFW subhaloes

of mass Mtot = 109 M⊙ for two different lens redshifts, and the same profiles of

central haloes of mass M200 = 109 M⊙ for two different lens redshifts. The profiles

of the tNFW model were derived from the mean linear relations between Mtot, rs,

and rt described above. Clearly, the tNFW profiles are more compact and have

higher amplitude than the NFW profiles of the same mass.

3.2.2 Sensitivity Mapping

A process called sensitivity mapping is performed to quantify the detectability of

a perturbing halo that is nearby a strongly lensed source. One begins by modeling

a strong lens dataset to infer an accurate model for the lens’s mass and source’s

light (Nightingale et al., 2019). Using this model, one can then simulate a new

realization of the strong lens which includes a dark matter perturber at a given
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(x, y) position in the image-plane and with an input mass and redshift. This

simulated dataset assumes the same image resolution and PSF of the true dataset

and also has consistent signal-to-noise properties.

The mock dataset is now fitted with two lens models: (i) a lens mass model which

does not include a dark matter perturber and; (ii) a lens mass model which does.

By comparing a goodness-of-fit measure of each model-fit (e.g. the maximum log

likelihood value) one therefore quantifies how sensitive the lens dataset is to a dark

matter perturber, given its input location and mass. If the lens model including

the perturber has a much improved goodness-of-fit compared to the model which

does not, the perturber was necessary to fit the data accurately, indicating that the

strong lens data is sensitive to perturbers at the location and with that mass. If

the goodness-of-fits are comparable, the perturber does not improve the lens model

and therefore it is too far from the lensed source or too low mass to be detectable.

It is necessary to perform two full fits to each mock dataset, to infer the maximum

log likelihood of each model, for two reasons. First, the image fluxes we are fitting

have noise and thus the maximum likelihood model may not be the true input

model (although see Amorisco et al., 2022). Second, due to the existence of a small

perturber in the mock data and the possible degeneracy between it and the main

lens mass, when fitting a model without a small perturber, the maximum likelihood

model is offset with respect to the true input and can only be found via a full fit.

By repeating this process on a grid of perturber (x,y) location, mass and redshift

one produces a sensitivity map. In this work, we assume a grid of 27 steps in the

y and x directions, and a grid of 25 steps in redshift between z = 0.02 and z =

0.98. For a given object, its angular size decreases with redshift, so the angular

size of the sensitive region also decreases with redshift. To save computational

resources, we decrease the angular size of the explored region as the redshift in-

creases. Furthermore, for the same reason, rather than exploring a grid of mass

values, we look for the lowest value of the perturber’s mass that corresponds to

the goodness-of-fits threshold of detection by a binary search algorithm (in log10
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Figure 3.4: The binary search procedure for mth at (xp, yp, zp). Lth is the detection
threshold and throughout this paper, we take it to be 10.
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scale). The mass boundaries for the binary search are 106 M⊙ and 1011 M⊙ and

the stop criterion for the iteration is that |∆log10 (m)| < 0.01. For every grid cell,

we simulate a new strong lens dataset and fit it with the two lens models described

above using the nested sampling algorithm dynesty (Speagle, 2020). For efficiency,

we use tight priors on every model-fit that exploit our knowledge of what values

of lens mass model and source model were used when simulating the data. This

could negatively impact dynesty’s estimate of the Bayesian evidence, therefore we

opt to simply compare maximum log likelihood values when producing a sensitiv-

ity map. At the end, the “sensitivity map” is a grid of (xp, yp, zp, mth), which

means that a perturber at (xp, yp, zp) is detectable when it has a mass over the

threshold mass, mth. Please note when fitting the mock image with a lens mass

model including a perturber model, the perturber model’s redshift is fixed to be zp

while its position and mass are free (the concentration follows Ludlow et al. (2016)

which is a function of m and zp.). Fig. 3.4 summarizes the procedure of computing

mth for at (xp, yp, zp). Our method is conceptually analogous to that of Amorisco

et al. (2022), albeit there are differences in the fitting algorithm used.

3.2.3 Detection threshold

L17 and D18 have derived the detection threshold of a line-of-sight perturbing halo

by directly modelling the lensing effect of a subhalo, i.e. a perturber at the redshift

of the lens. If a line-of-sight halo of mass, m, best fits the lensing effect of a subhalo

of mass, msub, then this is defined as the effective mass of the line-of-sight halo.

If a line-of-sight halo has an effective mass larger than the detection threshold for

the subhalo, it is considered detectable. However, in many cases, the line-of-sight

halo at redshift z is not a good description of the image perturbation. As a result,

although one can always find a particular value of m for a line-of-sight halo that

gives the smallest χ2 in the fit of the image distortion generated by the subhalo,

the two models are not equivalent.

In Fig. 3.5, we show how the deflection angles produced by our lens are altered by
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the addition of a perturbing halo. The main lens is a singular isothermal sphere

(SIS) located at z = 0.5, at the centre of the image, and the source is at z = 1.0. The

upper panel shows the deflections caused by a M200 = 109 M⊙ NFW halo located

on the main lens plane; the colour indicates the amplitude of the deflections (in

units of 0.001′′) and the arrows mark their directions. In this case there are no

non-linear multi-plane lensing effects, and so the change in the deflection angles

due to a perturbing halo are just the deflection angles of the perturbing halo itself,

which point towards the perturber’s centre. In the lower panel we plot the change

in the total deflection angles when a M200 = 108.67 M⊙ NFW halo at z = 0.2

perturbs the lensing due to the main lens (subtracting the total deflection angle

with the deflection caused only by the main lens). Because of multi-plane lensing

effects (Schneider et al., 1992, Fleury et al., 2021) the change in the deflection

angles are no longer isotropic about the perturber centre (Gilman et al., 2019, He

et al., 2022b). Tracing from the observer backwards, the deflection of light rays

by the perturber alters where those rays intersect the main lens plane, which in

turn alters the deflection angles those rays receives from the main lens. It is clear

that the lensing effects of line-of-sight perturbers at different redshifts cannot be

reproduced by appropriately scaled subhaloes since the deflection patterns in the

two cases are completely different. Note that the mass of the line-of-sight perturber

in the lower panel was chosen to best reproduce the deflection angle field in the

annulus between 1.0′′to 2.0′′of the case in the top panel with a 109 M⊙ halo in

the main lens plane (following Eq. 15 in D18), so according to L17 and D18, the

perturbers in the two panels have the same “effective mass”, but clearly they have

quite different effects.

Degeneracies between the effects of the low-mass perturber and the main lens can

also affect our estimation. As suggested in Fig. 3.5, the deflection angles far from

the perturber’s centre can be easily absorbed by slightly shifting and stretching

the main lens. Furthermore, the degeneracies between the effects of perturbers and

the main lens galaxy can be different at different redshifts due to their distinct
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Figure 3.5: Comparison of the deflection angles caused by a 109 M⊙ NFW halo at
lens plane (z = 0.5) (upper panel) and a line-of-sight NFW halo in front of the lens
plane (z = 0.2) whose mass is 108.67 M⊙, as derived by fitting the deflection angle
of the NFW halo at the main lens plane (lower panel). Both panels are derived
by subtracting the total deflection angles of both main lens and perturber with
the deflection generated only by the main lens. The colours show the amplitude
of deflections (in units of 0.001′′). The arrows represent the direction of deflection
angle vectors. In the lower panel, the asymmetric pattern of arrows at the centre of
the main lens is subject to numerical noise because the deflection angle at the exact
centre of an SIS is not well defined, where the profile’s density is infinite and the
density gradient (deflection angle) is not continuous. Since the perturber and the
SIS are not on the same plane in the lower panel case, the inaccurate angles next to
the SIS’s centre are then not perfectly subtracted, which results in the asymmetric
pattern of arrows in the centre. The arrows in other locations are reliable.
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deflection patterns, making the problem even more complicated.

In order to take into full account the complex effects discussed above, in this paper

we no longer compare deflection angles as L17 and D18 did. Instead, to quantify

the lensing effects of perturbers at different redshifts we directly fit image fluxes,

a procedure that more closely reproduces what would happen on real data. We

now define a new threshold for detection through the log-likelihood∗ improvement

brought about by including a perturber when fitting lensing images. Specifically,

we first fit the mock image with only a main lens and record the maximum log-

likelihood value. We then fit the same image with a model containing both a main

lens and a perturbing halo and record the log-likelihood of the best-fit model as well.

If the log-likelihood difference between the two fits is larger than a pre-established

threshold, we consider the perturber to be detectable.

In the tests we have carried out, the uncertainty in the modelling comes exclusively

from the statistical noise in the image data. The log-likelihood difference can be

directly related to a significance level, with a log-likelihood difference of 10 roughly

corresponding to 4 ∼ 5σ significance. Note that in real observations, a threshold

based on the log-likelihood difference or the Bayesian evidence might not be readily

related to the true significance of a detection due to the possible presence of various

systematic effects in the data and analysis method (Vegetti et al., 2012, Ritondale

et al., 2019).

3.2.4 Number density of perturbers

For each mock lens, we calculate the number of line-of-sight perturbing haloes

within a radius of 3 arcsec. The total number of line-of-sight perturbers with a

mass in the range [mlow,mhigh] in a light cone corresponding to the ith pixel can

be written as,
∗The log likelihoods are defined using a natural (base e) logarithm.
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Nlos =
∫ zs

0

∫ mhigh

mlow

d2N

dmdV
dVsens

dz
dmdz , (3.5)

where d2N
dmdV (z) is the halo mass function at redshift z (e.g. Sheth et al., 2001) and

dVsens = Ωsens(m, z)χ2 dχ
dz

dz , (3.6)

where Ωsens(m, z) is the total solid angle corresponding to the areas on the redshift

plane of z that are sensitive to perturbers more massive than m.

For comparison, we also calculate the number of detectable subhaloes for each

mock image. For CDM, high-resolution N-body simulations have shown that the

mass function of subhaloes follows a power law (Springel et al., 2008). Thus, the

cumulative perturber density of subhaloes in the mass range, [m1,m2], in a host

halo of mass, M200, may be written as,

Σsub,cdm(m1 < m < m2|M200) = Σ0
1 − α

((
m2
M⊙

)1−α

−
(
m1
M⊙

)1−α
)
, (3.7)

where α = 1.9 (Springel et al., 2008, Gao et al., 2012) and Σ0 is a normalization

parameter that depends on m200 and can be determined from cosmological sim-

ulations. In this work, we estimate this normalization using the same simulation

(Richings et al., 2021) that we used to extract the density structure of subhaloes.

To obtain a sufficiently large sample of subhaloes within the region of interest in

order to derive the subhalo mass function, we follow the same strategy as before:

we rotate the lens 10000 times, and only select those subhaloes that fall on the

region of interest in projection. We compute the average number of subhaloes of

mass 107 ∼ 1011 M⊙ for each projection. To obtain an estimate on the error, we

repeat the same procedure 200 times, each time resampling from all the subhaloes

in the simulation before projecting along 10000 different lines-of-sight. We take

the median value and 1σ limits as our estimate. Assuming α = 1.9, for a lens

at z = 0.22, we derive the normalization (from the snapshot at z = 0.183) to be

(6.7 ± 0.6) × 105 arcsec−2. For a lens at z = 0.5, we derive the normalization (from

the snapshot at z = 0.503) to be (2.3 ± 0.2) × 106 arcsec−2.
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To ensure that our result based on this one particular simulated halo is not an

outlier, we compute the normalisation of the subhalo mass function from haloes

in the Eagle simulation in a similar way as above. Due to the poorer resolution

of Eagle, when calculating the normalisation we only count subhaloes of mass

109 ∼ 1011 M⊙. We select haloes in Eagle with mass within 0.1 dex of that

of the main halo used in this study and apply the same method to compute Σ0.

For z = 0.22, there are 78 haloes and Σ0 = (4.3 ± 1.5) × 105 arcsec−2, where the

errors indicate the 1σ (34%) scatter. For z = 0.5, there are 63 Eagle haloes and

Σ0 = (1.8 ± 0.9) × 106 arcsec−2. We see that the number of Eagle subhaloes

around halos of a given mass has a large scatter and there can be differences of

2 ∼ 3 times within Eagle itself. At z = 0.22, the value of Σ0 obtained for the halo

analysed here is 1σ high compared to the distribution in Eagle, while at z = 0.5,

the results are in even better agreement. In conclusion, the value of Σ0 derived in

this work is comparable to values for Eagle haloes and our results based on one

particular resimulation should be representative.

3.3 Results

In Fig. 3.6 we show the sensitivity function for our mock lens images as a function

of redshift. Each sub-panel displays a map of mth (see colour bar) for line-of-sight

haloes placed at a given redshift plane, for 5 redshifts. In all cases, the source

is at z = 1 and the lens at z = 0.5, except in the third row, where the lens is

at z = 0.22. For all mock lenses, the threshold mass of a detectable perturber

is lowest near the lens redshift and raises rapidly towards both higher and lower

redshifts; however, the general pattern of the sensitivity maps remains similar at

each redshift. This pattern varies considerably from one lensing system to another.

Visually, it appears similar to the corresponding pattern of the lensing image. The

value of mth is lowest in the region where the surface brightness is highest and

highest in the region where there is no light. Although the sensitivity maps for
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Figure 3.6: The sensitivity function of LOS perturbers. Each subpanel shows the
detection limit for a perturber (a line-of-sight NFW halo) placed at a given redshift
plane. The colour bar gives the scale of log10 (mth/M⊙). 6 panels on the same row
show the sensitivity function for a mock lens at 6 redshifts: 0.1, 0.2, 0.3, 0.5, 0.7,
0.9. For every column, the image size is marked by a scale bar in the top row.
The label of each mock is given at the left of each row. In all cases the source is
at z = 1 and the lens is at z = 0.5, except in the third row, where the lens is at
z = 0.22. The image sizes decrease with the redshift is because the angular size of
regions of interests decreases with the redshift.

different systems are quite different, the trend of their evolution with redshift is

similar.

The ability to detect low-mass dark haloes increases significantly with the exposure

time of the imaging. For our fiducial 2000s exposures, our lensing systems are
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sensitive to line-of-sight perturbers of mass ∼ 108 M⊙ only around the lens redshift.

For 8000s, however, perturbers of mass ∼ 108 M⊙ can be detected over a much

broader redshift range, from z = 0.1 to z = 0.7. In the bottom two rows of Fig. 3.6,

we show the sensitivity function for the imaging quality achievable with the CSST

and JWST, which have different resolutions. We find that with a lower image

resolution, CSST lensing images are still sensitive to perturbers of mass ∼ 108 M⊙,

although the overall sensitivity is somewhat lower than with HST resolution. While

for the JWST resolution imaging, the sensitivity is higher.

We now turn our attention to the all-important question of whether the distortions

to the Einstein rings are dominated by line-of-sight perturbers or by subhaloes.

We trace the position of each pixel on the image plane at a series of redshifts and

calculate the threshold mass for detection, mth (z). In Fig. 3.7, we plot the ratio,

log10 (mth(z)/mth(zl)), as a function of redshift, z, for our different mock lensing

systems. The colour bands are the regions enclosing 70% of the pixels, while the

means are shown as solid lines. For comparison, we also plot the relation and scatter

derived by D18 in grey. In D18 (as well as in L17), a line-of-sight halo at lower

redshift is easier to detect than a halo of the same mass at the lens redshift. Our new

calculations predict the different behaviour. For all configurations, the detection

threshold mass increases with ∆z = |z − zl|. For lenses at redshift zl = 0.5, the

detection threshold for line-of-sight haloes at z = 0.1 is ∼ 0.3 dex higher than for

haloes at zl.

To predict the number density of detectable subhaloes, we calculate sensitivity

maps for subhaloes with truncated NFW profiles, as described in Section 3.2.1. In

Fig. 3.8, we compare sensitivity maps for subhaloes (right) to those for line-of-sight

haloes placed at the lens redshift of the same lensing system (left). The maps on

the left are the same as in the subpanels of Fig. 3.6 at the corresponding (lens)

redshift, while the right panels show the detection limits for subhaloes. The mass

of an NFW halo is defined to be M200, while the mass of the subhalo (tNFW) is

defined as the total mass given by Eq. 3.1. As expected, the threshold mass for
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Figure 3.7: The mass threshold-redshift relation, log10

(
mth(z)
mth(zl)

)
, as a function of

redshift, z, for all of our mock settings. Four of them have a lens at z = 0.5 and a
source is at z = 1, while one has a lens at z = 0.22. The relation is calculated for
each pixel on the image plane. The shaded regions enclose 70% of the pixels. For
comparison, the relation and the scatter derived by D18 for our fiducial setting are
shown in grey. The relations shown here are only for line-of-sight NFW perturbers
and there is no subhalo (tNFW perturbers) involved in this comparison.

detecting a subhalo is lower than that for detecting an NFW halo of the same mass

by about 0.5 dex, because a subhalo is much more compact than a halo of the same

mass. In the following calculations, we will use the sensitivity maps for the tNFW

haloes to estimate the number of detectable subhalo perturbers.

In the left panel of Fig. 3.9, we show, as solid lines, the expected cumulative

number of detectable line-of-sight perturbers derived, as a function of redshift;

different colours correspond to different systems. We can see that the number of

detections rises sharply around the lens redshift and then becomes flat. For the

two different mock lenses at zl = 0.5, with a 2000s exposure (blue and green lines),

0.85 and 0.64 line-of-sight haloes can be detected per lens. The differences between

the two configurations are small, which may be due to the fact that the two mock

images have a similar number of high S/N pixels. For the lens at zl = 0.22, the

number of expected detections decreases to about 0.39 per lens (red line), which
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Figure 3.8: Sensitivity maps for NFW line-of-sight perturbers (left) and for tNFW
subhalo perturbers (right). In all cases the source is at z = 1 and the lens at
z = 0.5, except in the fourth row, where the lens is at z = 0.22. All perturbers are
on the same redshift plane of the main lens.
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Figure 3.9: The cumulative number of detectable line-of-sight perturbers per lens
for different lens configurations as a function of redshift (left). The number of
line-of-sight haloes relative to the number of detectable subhaloes as a function of
redshift (right). In all cases the source is at z = 1 and the lens at z = 0.5, except
for the red line, where the lens is at z = 0.22. The normalization of the subhalo
mass function at two main lens redshifts is also listed on the right panel.

is ∼ 45% of that of the zl = 0.5 lenses. Fig. 3.9 also shows that a high S/N ratio

(orange line) helps reveal low-mass perturbers: if the exposure time increases to

8000s, the number of detectable line-of-sight perturbers increases to 2.5 per lens.

We also see that by increasing the image resolution, the detectability of small

perturbers increases. With CSST resolution only ∼ 0.72 line-of-sight perturber

can be detected per lens, but with a higher resolution as the JWST, the detectable

number increases to 1.06 per lens.

On the right panel of Fig. 3.9, we show the relative importance of line-of-sight

haloes and subhaloes. According to our calculation, for mock lenses at zl = 0.5, the

predicted number of detectable line-of-sight haloes is about 1.3 times the number

of detectable subhaloes. For the low redshift mock, zl = 0.22, the line-of-sight halo

contribution is lower and close to that of subhaloes. For the high S/N mock, the

relative importance of line-of-sight haloes increases, such that it becomes ∼ 2.0

times the number of detectable subhaloes.
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3.4 Discussion and Conclusion

In this chapter we have revisited a key question relevant to the search for low-

mass haloes in strong lensing systems: what is the relative contribution to the

sensitivity function of line-of-sight (main) haloes versus subhaloes in the lens. The

main difference between this and previous works is that, instead of fitting the

deflection angle map or an idealized image set, we have quantified the expected

number of line-of-sight perturbers by means of realistic modelling carried out on a

set of mock lensing images with realistic levels of noise. Contrary to previous work,

we find that the lensing effect of a line-of-sight perturber is largest if the perturber

is located near the lens redshift, and the strength of the signal decreases rapidly

as the redshift difference between the perturber and the lens plane increases. Two

reasons account for the difference: firstly, previous work assumed that the effects

of a perturber at one redshift could be accounted for by a perturber at a different

redshift, while Fig. 3.5 demonstrates that the effects can be quite different because

of multi-plane lensing effects; secondly, previous work did not take into account

the degeneracy between the main lens and the small halo in the fitting process,

whereby changes to the main lens model can absorb a significant part of the small

perturber’s lensing signal. Our calculation shows that the contribution from line-of-

sight haloes is still important, but does not dominate the total number of detectable

perturbers for most of our mock lenses as was previously thought: previous studies

overestimated the expected total number of perturbers.

In a sense, our new results present an unwanted challenge for the interpretation

of future detections of low-mass haloes. Unlike the line-of-sight field dark matter

haloes of interest (whose masses are below the minimum required to make a galaxy)

which are unaffected by baryons and thus retain their pristine structure, subhaloes

are changed by their environment, e.g. tidal stripping and disruption. A detailed

quantification of these processes needs understanding in detail the structure of the

galaxy, including its baryonic component. This requires full modelling of galaxy
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formation such as that presented by Richings et al. (2020) for a lens system of the

kind in which we are interested for low-mass halo and subhalo detection.

In this chapter we have assumed, for simplicity, that the distribution of line-of-sight

haloes is not correlated with the lens host halo. In reality, line-of-sight haloes are

more strongly, and anisotropically clustered around the region of the host halo than

average (Richings et al., 2021). In a recent paper, Lazar et al. (2021) investigated

the number density of line-of-sight perturbers in the simulations from the FIRE∗

and IllustrisTNG† projects; they find that the number of haloes correlated with the

lens is about 35% larger than average, in agreement with the results of Richings

et al. (2021). Future work aimed at constraining the nature of the dark matter

from strong lensing data will need to take this sort of correlation into account.

One caveat of our work is that we do not consider the scatter in the mass-concentration

relation. For a halo or subhalo of a given mass, the higher the concentration, the

higher the central density and lensing signal. A recent study by Minor et al. (2021)

shows that this effect can introduce a bias of 3 for a subhalo of mass 109 M⊙

and 6 for one of mass 1010 M⊙. In a more recent study, Amorisco et al. (2022)

show that the scatter in the mass-concentration relation boosts the detection of

line-of-sight perturbers and helps distinguish between CDM and WDM. A halo

of mass less than mth but of higher than average concentration may still produce

a strong enough lensing signal to be detected and vice versa. When the halo or

subhalo mass function rises at the low mass end, the effect of scatter in the mass-

concentration relation can boost the number of detectable perturbers significantly,

helping distinguish different dark matter models. We remind our readers that the

results discussed here are for analyses of resolved lensing systems where the sources

are extended. Effects of mass-concentration relation and multi-plane lensing have

been taken into account in previous similar studies on constraining low-mass per-

turbers’ abundance in lensing systems with an unresolved source (Gilman et al.,
∗http://fire.northwestern.edu
†https://www.tng-project.org
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2019, 2020c).

In this chapter, we also show that the ability to detect low-mass haloes increases

with the exposure time of the image. For example, increasing the exposure time

from 2000s to 8000s, increases the number of total detectable perturbers by a factor

of 2. At face value, deeper imaging may seem not quite as efficient an observing

strategy as observing more lenses. However, longer exposure times crucially in-

crease the sensitivity to haloes of lower mass, which are important in constraining

the identity of the dark matter.
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Chapter 4

Effects of lens galaxy’s complexity

on subhalo inference with a

cosmological simulation

Abstract

We test commonly-used techniques for explicitly detecting subhaloes super-

posed in images of strongly lensed galaxies. For the lens we take a simulated

galaxy in a ∼ 1013 M⊙ halo grown in a high-resolution cosmological hydro-

dynamical simulation, which we view from two different directions. Though

the resolution is high, we note the simulated galaxy still has an artificial core

which adds additional complexity to the baryon dominated region. To re-

move particle noise, we represent the projected galaxy mass distribution by

a series of Gaussian profiles which precisely capture the features of the pro-

jected galaxy. We first model the lens mass as a (broken) power-law density

profile and then search for small haloes. Of the two projections, one has a reg-

ular elliptical shape, while the other has distinct deviations from an elliptical

shape. For the former, the broken power-law model gives no false positives

and correctly recovers the mass of the superposed small halo, but for the latter

we find false positives and the inferred halo mass is overestimated by ∼ 4 − 5

times. We then use a more complex model in which the lens mass is decom-

posed into stellar and dark matter components. In this case, we show that we
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can capture the simulated galaxy’s complex projected structures and correctly

infer the input small halo. By improving the lens mass model, we argue this

enables more robust subhalo inference that can detect lower mass subhaloes,

strengthening the technique’s ability to test alternative models of dark matter.

4.1 Introduction

Strong gravitational lensing serves as a promising tool to probe the existence of

small invisible dark matter haloes. These dark haloes perturb the images of lensed

galaxies when they fall along the path of light from the source to the observer

(Koopmans, 2005, Vegetti and Koopmans, 2009a,b). The perturber’s mass of in-

terest is usually less than 0.1% that of the lens galaxy, necessitating percent level

accuracy of the main lens’s mass, which places stringent requirements on the model

of the lens galaxy’s mass distribution. Inaccuracies in the lens mass model may cre-

ate “false-positive” detections, where the low-mass perturber could “fill in” for the

mass model’s missing complexity. Previous studies have discussed false-positive

subhalo detections (Vegetti et al., 2010, Ritondale et al., 2019), where they ap-

ply strict criteria to ensure all detections are genuine. This includes requiring a

high enough increase of Bayesian evidence that tests on mock data demonstrate

the signal cannot be due to an inaccurate mass model (Vegetti et al., 2012) and

verifying that a consistent low-mass perturber detection is made when pixelised

corrections to the gravitational potential are applied (Koopmans, 2005, Vegetti

and Koopmans, 2009a, Vegetti et al., 2010, 2012). In certain lenses these poten-

tial corrections clearly account for missing complexity in the lens galaxy’s mass,

thereby correctly flagging a candidate detection as a false positive.

This motivates the investigation of more complex lens models, which could improve

the inference on low-mass perturbers by accounting for this missing complexity in

the lens galaxy’s mass. The detections of low-mass perturbers so far all assume a

simple parametric model for the lens’s mass, the elliptical power-law (Tessore and
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Metcalf, 2015) with an external shear (Hezaveh et al. (2016) also included a fourth-

order multipole term). However, recent studies have highlighted deficiencies with

this model: Cao et al. (2021) fitted this model to strong lenses simulated using mass

models derived from dynamical models of nearby SDSS-IV MaNGA (Bundy et al.,

2015) early type galaxies and showed this can bias the measurement of the local

density slopes around the Einstein ring by 13%; Gomer and Williams (2021) and

Van de Vyvere et al. (2022) discuss how departures from elliptical symmetry may

affect H0 inference in lensed quasars; Nightingale et al. (2019) have also showed

that departures from elliptical symmetry are observed in the luminous emission of

three strong lenses.

In this chapter, we therefore use a hydrodynamic simulation to test the robustness

of different parametric lens mass models, focusing on their efficacy for the task of

detecting individual low-mass perturbers. To keep it simple, through this chapter,

we limit our tests only on subhaloes, perturbers within the lens galaxy, and leave

those line-of-sight perturbers for our future work. By using a simulation, we can

compare the lens galaxy’s true complex mass distribution to the lens model we fit

and if it fails understand why. We perform two tests: (i) we do not add a subhalo

to the lens galaxy when generating the mock data and investigate whether a lens

model with a subhalo produces a false-positive signal; (ii) we include a subhalo

when creating the mock data and test how accurately its mass and position are

recovered. We first apply an extension of the commonly used power law profile to

fit the main lens (O’Riordan et al., 2019, 2020, 2021), followed by a “decomposed”

model which models the lens mass as a combination of stars and dark matter (Dye

and Warren, 2005, Nightingale et al., 2019). Our goal is to understand whether

modelling the lens mass as a power law profile is sufficient for detecting subhaloes,

and if not, whether there is a better model that can provide a correct inference.

Hydrodynamic simulations have previously been used to simulate galaxy-galaxy

strong lensing images (Metcalf and Petkova, 2014, Xu et al., 2017, Mukherjee et al.,

2018, Despali et al., 2020, Enzi et al., 2020, Mukherjee et al., 2021, Ding et al., 2021).
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Converting particle data into a corresponding deflection angle field (necessary for

lensing) is non-trivial. A common problem is that the mass profiles of galaxies

found in hydrodynamic simulations have a sub-kpc core in their centre. The strong

lens imaging then produces a bright central image feature, which is not observed in

real strong lenses (Bolton et al., 2012, Shu et al., 2016). These cores are believed to

be due to the limited resolution of the simulations, with previous works assuming

a particle resolution of ∼ 105 M⊙. Our simulation, which has a particle resolution

∼ 10 times that of Illustris-1, still forms a core and central image. We incorporate

this feature into our lens modeling such that we can still investigate dark matter

subhalo detection. We also mitigate systematic effects related to particle noise in

the simulation (Xu et al., 2009) and truncation effects which introduce an artificial

shear (Van de Vyvere et al., 2020, Ding et al., 2021).

Testing with galaxies from the Illustris simulation (Vogelsberger et al., 2014), Xu

et al. (2017) demonstrated that deviations of simulated galaxies from a simple el-

liptical power-law profile affect inference on the Hubble constant. More recently,

Enzi et al. (2020) used 10 galaxies from the Illustris-1 simulation to test the power-

law lens assumption for substructure lensing, and showed no degeneracy between

the complexity of the true mass distribution of their mock lenses and the inferred

substructure abundance. However, their work focused on the statistical proper-

ties of subhaloes’ signals and did not test individual subhalo detection. To fully

understand how the use of simple parametric lens models affects the detection of

individual substructure, testing with mock lenses extracted from simulations is

necessary.

This chapter is structured as follows: in Section 4.2, we introduce our simulation

data and the way we simulate strong lensing images from particle data. In Sec-

tion 4.3, we introduce how we model the lensing images and search for subhaloes.

In Section 4.4, we show the power law fitting results. In Section 4.5, we introduce

a more complex lens model where we model the lens’ stellar and dark components

separately and then we show how it behaves for our tests. In Section 4.6, we dis-
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cuss our results. Finally, in Section 4.7, we summarize our results. Throughout

the chapter we adopt the Planck cosmology (Planck Collaboration et al., 2016), of

which H0 = 67.7 km s−1 Mpc−1, Ωm = 0.307 and ΩΛ = 0.693.

4.2 Mock Lensing Images

4.2.1 Particle data

We create our lens galaxy by using data from the same cosmological hydrodynam-

ical zoom-in simulation of a ∼ 1013 M⊙ galaxy group as we use to derive subhalo

abundances in chapter 3 (Richings et al., 2021). However, in this chapter, we only

need the macro structure of the main galaxy and thus we only select particles be-

longing to the main halo identified by the SUBFIND algorithm (Springel et al.,

2001) with particles belonging to subhaloes excluded. The simulated galaxy is se-

lected from the EAGLE 100 Mpc box-size simulation (Schaye et al., 2015) and was

first identified by Despali and Vegetti (2017) as having similar properties to lenses

from the Sloan Lens ACS (SLACS) survey (Bolton et al., 2006). The friends-of-

friends (FOF) ID of the halo is 129. To resolve dark matter haloes with masses

down to ∼ 106 M⊙, this zoom-in simulation applies a novel technique whereby

there are many more dark matter particles than gas particles. Unlike the common

construction of initial conditions in hydrodynamic simulations, where each dark

matter particle in a dark-matter-only simulation is split into a pair of dark mat-

ter and gas particles, the simulation we use initializes 7 dark matter particles per

gas particle, resulting in dark matter and gas particle mass of 8.3×104 M⊙ and

10.7×104 M⊙, respectively. At z = 0, the dark matter halo of the zoom-in simula-

tion’s galaxy group has a mass of M200 = 1013.14 M⊙ and size of r200 = 506 kpc.

The Plummer-equivalent gravitational softening length is 0.05 kpc.

In Fig. 4.1, we show the convergence profile of different components of the simulated

galaxy assuming the lens and source galaxy to be at z = 0.2 and 2.5, respectively.
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Inside the central ∼ 0.7 arcsec, the baryonic mass is larger than the dark matter

mass, and the central density of stellar mass is around 4 times higher than that

of the dark matter. A constant-density core with a size of ∼ 0.1 arcsec exists in

the central region, which is a result of the finite resolution of the simulations. This

phenomenon has been seen in several other studies that simulate strong lens images

from simulation data (Mukherjee et al., 2018, Enzi et al., 2020, Ding et al., 2021),

and it can produce a dim central image in simulated strong lensing images that

is rarely seen in real observations (Winn et al., 2004, Quinn et al., 2016). The

core feature introduces additional complexity beyond realistic massive ellipticals

and thus might lead to an overestimation on the baryonic effects in our tests.

Fortunately, for the lens configurations considered in this work, the central image

is sufficiently dim and small that one can mask it out without it impacting the lens

modelling and subhalo inference, an approach also followed by Enzi et al. (2020).

To do this, we artificially increase the assumed error on the flux in the region

containing the central image to such high values that they are effectively removed

from the goodness-of-fit measurement.∗

4.2.2 Simulating strong lensing images

4.2.2.1 Mock lenses

To simulate images that are strongly lensed by the particle distribution from a

hydrodynamical simulation one needs a method which can determine the corres-

ponding deflection angle map. There are two common ways of approaching this:

(i) derive the projected density distribution of the particle data and solve for its

potential via a Fast Fourier Transform (FFT) or; (ii) assume analytic profiles rep-

resenting each particle enabling deflection angles to be easily computed, such that
∗We previously attempted to remove the central image by applying a mask that removed the

data in the central region altogether. However, we found that this introduced systematics due to
edge effects associated with the source-plane pixelisation. Pixels at the edge of the mask (which
have non-negligible flux due to the central image) were not appropriately regularized because their
neighbours were not traced to the source plane (see Nightingale et al., 2018).
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Figure 4.1: Convergence of different components of the simulated galaxy. Yellow,
blue and red represents the stars, dark matter and total matter respectively, as-
suming the lens at z = 0.2 and source at z = 2.5. At the redshit of the lens z = 0.2,
1 arcsec corresponds to 3.3 kpc in angular size.

the overall deflection field is the sum over all particles. For the latter method, the

computational cost can be greatly reduced by using a k-d tree algorithm (Bentley,

1975), making it faster than the FFT method at comparable resolution (Metcalf

and Petkova, 2014, Petkova et al., 2014). However, neither method offers a well

posed way of quantifying particle noise in the deflection angles, which can closely

resemble the deflection angles of a dark matter subhalo in a strong lens (Xu et al.,

2009). Besides the particle noise, these above methods also face the boundary

truncation effect, which is that when truncating the particle data in an improper

way (e.g. a square boundary applied to an elliptically shaped galaxy), an artificial

shear component is introduced (Van de Vyvere et al., 2020). The shear magnitude

depends on the galaxy’s profile, the truncation area size and the truncation scheme

used, and an improper truncation on the particle mass data can induce several

percent bias to H0 inference (Van de Vyvere et al., 2020, Ding et al., 2021).

To avoid particle noise and the boundary truncation effect, we therefore instead

fit analytic profiles to the simulated galaxy’s particle data and use these profiles

to compute our lens galaxy’s deflection angle field. We approximate the projected

mass distribution of the simulated galaxy using the multiple Gaussian expansion
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Figure 4.2: Iso-density contours of the projected stellar mass distribution of our
simulated galaxy. The contours measured directly from the particle data using
GLAMER (Metcalf and Petkova, 2014, Petkova et al., 2014) are shown in black,
while those for the best-fit MGE are in red. The contours are evenly log-spaced
in projected density. From inside to outside, each contour decreases by 0.4 order.
Note that only very inner part (within 5 arcsec) of this image is observable and the
reason we plot it on a much larger region is to show that the MGEs represent the
lens’ stellar mass well to a very large range. For clarity, later plots are all zoomed
in to the region around the Einstein radius.

(MGE) method, which is widely used for modelling galaxy surface brightness pro-

files in studies of galaxy stellar dynamics (e.g. Cappellari, 2008, Li et al., 2016a,

2019, He et al., 2020). Li et al. (2016a) applied the expansion method to both

galaxies and dark matter haloes in Illustris simulation, showing that it has flex-

ibility to capture irregular and asymmetric features in a galaxy’s light or mass

distribution. The deflection angles (and other lensing quantities) of an elliptical

Gaussian profile can be easily computed (Shajib, 2019), making lens simulations

convenient and fast.

We compute the deflection angles of the simulated galaxy separately for its stellar

and dark matter components, and then add them together to get the total deflection

angles. The gas component is omitted because its contribution to the total mass in

the galaxy’s central region is negligible. We add subhaloes to the deflection angle

map via an analytic mass profile.
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We set the lens galaxy to be at redshift z = 0.2, and the source galaxy at z =

2.5. We first use GLAMER (Metcalf and Petkova, 2014, Petkova et al., 2014)

to generate convergence maps, where each particle is represented by a smoothed

b-spline in 3D. For each star particle the smoothing length is the distance to its

8th nearest (stellar) neighbour and for each dark matter particles it is the distance

to its 64th nearest (dark matter) neighbour. We then use the MGE code of Cap-

pellari (2002) to decompose the convergence maps into multiple Gaussian profiles,

where the Gaussian components share the same centre but are free to have different

amplitudes, sizes, position angles and axis ratios. As an example, Fig. 4.2 shows

contours tracing the particle data input (dark lines) and MGE best-fit (red lines) of

the simulation’s projected stellar mass distribution. The MGE-fitting code decom-

poses the stellar component into 13 individual Gaussian profiles and Fig. 4.2 shows

asymmetric features such as the twist in ellipticity are well captured by the MGEs.

The relative errors between the input profile and best-fit MGEs are smaller than

∼ 5%. We apply the same routine to the simulation’s dark matter particles and

then add the best-fit Gaussian profiles together to represent the simulated galaxy’s

total projected mass distribution.

In the top-left panel of Fig. 4.3, we show the convergence (i.e. the projected density

divided by the critical surface density for lensing) of the MGE representation of the

simulated galaxy, where a pointy “American football-like” shape can be seen. To

investigate how lens model fits change depending on the shape of the convergence,

we rotate the same galaxy to view it along a different line of sight, intentionally

choosing a viewing angle that produces a rounder convergence map, which is shown

on the bottom left panel of Fig. 4.3. Following equation (43) of Shajib (2019),

we compute MGE deflection angles for both projections, which are then used to

simulate strong lensing images. For an accurate computation of each image pixel’s

flux, we treat every pixel with a 4 × 4 subgrid so that for each image pixel 16 light

rays are traced to the source plane, with the pixel flux set to their mean value.
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Figure 4.3: Input stellar (left column) and dark matter (middle column) conver-
gence maps of our simulated galaxy along two different lines of sight (the two rows).
The corresponding strong lensing images are shown in the right column. The top
row is for the line of sight that produces pointy shaped iso-convergence contours,
and the bottom row shows the projection with a rounder convergence field. The red
crosses on the mock images mark the positions where we will later place subhaloes.

4.2.2.2 Mock sources

Similarly, we simulate source galaxies using the cored Sérsic profile as Eq. 2.3 with

n = 2. The choice of our mock source, a single elliptical cored Sérsic profile is

simple compared to observed lenses where source galaxies are more complex and

show features such as multiple star forming clumps, spiral structures and extremely

compact centres. Our choice here is to make it straight forward to test the effects

of using different lens mass models. Our lens modelling procedure uses pixelised

source reconstructions which are able to fit the more complex sources seen in real

data (Nightingale et al., 2019).

4.2.2.3 Subhaloes

Some of our mock lensed images include a dark matter subhalo in the lens galaxy

near one of the arcs. We represent subhaloes using the spherical NFW profile
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(Eq. 1.5) assuming the mass-concentration relation of Ludlow et al. (2016). Fol-

lowing equation (A.18) of Baltz et al. (2009), we analytically compute its deflection

angles and add it to that inferred via the MGE fit to the stellar and dark com-

ponents. Mock lenses are generated with an input subhalo of two different masses,

M200 = 5 × 108 M⊙ or M200 = 5 × 109 M⊙.

4.2.2.4 Data Quality

We simulate mock images similar to observations of the HST/ACS Wide Field

Camera, with a pixel size of 0.05′′and a Gaussian PSF with a standard deviation

of 0.05′′∗.

We set the normalisation of the source’s surface brightness to give a S/N of ∼ 80

in the brightest pixel of the lensed source’s image, whilst adjusting the background

noise level to closely match that expected from a few HST orbits. For our mocks,

the background sky noise is 0.1 e−pixel−1s−1. This S/N represents observations

that are around double the highest S/N sources observed currently with Hubble,

for example the SLACS sample. Using such high S/N data is a choice we made to

ensure our tests of deficiencies in the lens mass model are easier to distinguish from

noise in the mock data. The right column of Fig. 4.3 shows the two mock images,

where a source galaxy is lensed by the two different line-of-sight projections (the

corresponding projected densities are shown on the left). For mock datasets which

include a subhalo, the positions marked by red crosses showing the locations of the

subhalo that we add. In Table 4.1, we summarize the relevant parameters used to

simulate these images.
∗The actual PSF σ for HST/ACS is ∼0.034′′and the pixel size is 0.04′′, so our tests are slightly

worse than real HST observations in terms of resolution. However, in terms of the PSF modelling,
we assume we have perfect knowledge of the PSF, which goes in the other direction of being
optimistic.
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Projection 1 Projection 2

Input Lenses

Stellar MGE number 13 11

Dark MGE number 5 5

redshift 0.2

Input Sources Cored Sérsic

centre(x, y) [(′′, ′′)] (0.08, -0.03)

axis ratio 0.55

position angle [◦] 30

I
′ [e− pix−1 s−1] 2.0

re [′′] 0.11

n 2.0

rc [′′] 0.01

redshift 2.5

Input Subhaloes (if added) Spherical NFW profile

centre(x, y) [(′′, ′′)] (0.81, 0.12) (0.32, -0.71)

M200 [M⊙] 5 × 108 or 5 × 109

mass-concentration relation Ludlow et al. (2016)

redshift 0.2

Image Settings

pixel size [′′] 0.05

PSF σ [′′] 0.05

background noise level [e− pix−1 s−1] 0.1

exposure time [s] 8000

maximum pixel S/N ∼ 80

Table 4.1: Parameters used to simulate the mock lensing images.
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4.3 Method

4.3.1 Mass Models

4.3.1.1 Broken Power Law

The simulated lens galaxy has an artificial ∼ 0.1 kpc constant density core, which

forms a spurious central, demagnified image. We mask this central image by manu-

ally decreasing the contribution of central image pixels to the likelihood calcula-

tion, but must also ensure our mass model parameterization is able to represent

the cored density, to avoid biasing our reconstruction of the lensed source’s arcs

(Enzi et al., 2020). We therefore assume the elliptical broken power law (eBPL)

profile (O’Riordan et al., 2019, 2020, 2021) with convergence

κ(r) =

 κb (rb/r)t1 , r ≤ rb

κb (rb/r)t2 , r > rb

, (4.1)

where rb is the break radius, κb is the convergence at the break radius, t1 is the

inner slope and t2 is the outside slope. When rb = 0, the eBPL reduces to the

standard power law profile with 3D density ρ(r) ∝ r−γ , as used in many lens

studies. The ellipticity is introduced by setting r =
√

(x/q)2 + y2, where q is the

axis ratio. In practice, we parameterize a model’s axis ratio and position angle, θ,

in terms of two components of ellipticity:

e1 = 1 − q

1 + q
sin 2θ , e2 = 1 − q

1 + q
cos 2θ . (4.2)

With two additional parameters describing the profile’s centre, the eBPL model has

8 free parameters. Degeneracies between certain parameters in the eBPL profile,

for example the two different slopes, make it challenging to fit efficiently and avoid

inferring local maxima. We therefore assume priors that lessen these degeneracies

and simplify parameter space, where we constrain rb ≤ 0.4′′, t1 ≤ 0.5 and t2 > 0.5.

For some cases, we further limit the Einstein radius to be larger than 0.5′′. All eBPL
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models are fitted with an additional external shear in the lens model, which provides

further flexibility in stretching and squeezing of the mass profile that can capture

some asymmetric features in the lens’s convergence (Cao et al., 2021). Similar to

the ellipticity parameterization, the external shear is also parameterized with two

components γ1ext and γ2ext, where the shear’s magnitude, γext, and position angle,

θext, can be recovered as

γext =
√
γ2

1ext + γ2
2ext , tan 2θext = γ2ext

γ1ext
. (4.3)

For modelling of a subhalo, we take the same NFW form we use to simulate the

image.

4.3.1.2 Source reconstruction

The final lens models of our analysis – from which all results in the main content

of this chapter are taken – reconstructs the source galaxy using a pixelisation

that adapts to the source’s surface brightness distribution (see Nightingale et al.,

2018, for a discussion of systematics this approach removes compared to other

pixelisations). However, before using this pixelised source, a number of initial fits

are performed which estimate the parameters of the lens mass model efficiently

(for details see the next subsection). These fits assume either a parametric source

which is modelled using the Sérsic profile (rc = 0 in Eq. 2.3) or a pixelised source

where the density of pixels adapts to the magnification, leading to smaller pixels

in more magnified areas of the source plane. In appendix B we also show that we

reproduce our main conclusions assuming a parametric cored-Sérsic source model.

4.3.2 Fitting procedure

We use a technique built in PyAutoLens called “non-linear search chaining” to

compose pipelines which break the lens modelling procedure into a series of sim-

pler model fits. This allows us to begin modelling our data with a simple lens
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model (e.g. an isothermal mass profile and a Sérsic source) and via a sequence of

non-linear searches gradually increase the model complexity, so as to eventually

fit the desired more complex lens model (in this work, mass models which include

a dark matter subhalo and with a source reconstructed on the brightness-based

pixelisation). Non-linear search chaining is implemented via the probabilistic pro-

gramming language PyAutoFit (Nightingale et al., 2021a). We use the nested

sampling algorithm Dynesty to perform all model fits.

We employ the Source, Light and Mass (SLaM) pipelines that are distributed with

PyAutoLens ∗. The SLaM pipelines were used in the work of Cao et al. (2021)

and Etherington et al. (2022) and our analysis closely follows theirs, albeit we

end with an additional pipeline that determines whether including a subhalo in

the lens model increases the Bayesian evidence relative to the model without a

subhalo. Like in Cao et al. (2021), we do not need to model the lens light and

therefore employ a model fitting procedure consisting of four distinct pipelines

which each focuses on fitting a specific aspect of the model. These pipelines are,

in order: (i) the parametric source pipeline; (ii) the pixelised source pipeline; (iii)

the lens mass pipeline and; (iv) the subhalo pipeline. Each pipeline consists of one

or more non-linear searches that fit a unique lens model parameterization, which

Fig. 4.4 shows a flow chart of, which we will now explain in detail.

4.3.2.1 Parametric source pipeline

The parametric source pipeline aims to initialize a robust model for the lens galaxy’s

mass by fitting a source galaxy that has a smooth analytic form. The primary

reason for this pipeline is that a robust model for the lens galaxy’s mass is ne-

cessary to avoid pixelised source reconstructions inferring the unphysical solutions

described by Maresca et al. (2021), where the reconstruction inferred is a demag-

nified version of the lens data. This pipeline assumes an SIE mass model (Eq. 2.1)

with an external shear and a Sérsic profile for the source surface brightness.
∗https://github.com/Jammy2211/autolens_workspace
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Figure 4.4: The fitting procedure we use to search for subhaloes.

4.3.2.2 Pixelised source pipeline

The pixelised source pipeline is composed of four search phases. The first search

fits for parameters describing the resolution of the magnification based pixelisation

and the regularization coefficient of the constant regularization scheme, with the

lens mass model fixed to the result of the parametric source pipeline. The second

search re-fits the lens mass model using the pixelisation and regularization inferred

previously. The third search fits for parameters that derive the surface brightness

based pixelisation and the luminosity weighted regularization scheme, where the
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lens mass model is fixed to the best-fit values inferred in the previous search. The

fourth search again re-optimizes the lens mass model now using the brightness

based pixelisation and regularization and we finally re-fit the pixelisation and reg-

ularization parameters again one last time, ensuring that the source reconstruction

is tailored to the properties of the source it is fitting.

4.3.2.3 Mass pipeline

This pipeline fits a more complex lens mass, either the eBPL model plus an ex-

ternal shear or the decomposed model that separately models the stellar and dark

components plus an external shear. This pipeline consists of two searches. It first

fits the new lens mass model with fixed source pixelisation parameters. The priors

of the (broken) power law model’s centres, elliptical components, Einstein radius

are updated using information of the previous best-fit models. We set those priors

to be Gaussian priors centering on corresponding best-fit values of previous models

and their widths are set manually using values which balance reducing the size of

parameter space to ensure an efficient fit whilst being broad enough not to remove

physically plausible solutions. For other parameters (like the break radius, inner

(outer) slopes, and external shear) we assume broad uniform priors that are not in-

formed by the previous mass model fits. Having now fitted this more complex mass

model, we again update the source pixelisation and regularization parameters using

the best-fit lens mass model of the first step. This is the final fit which updates

the pixelisation and regularization parameters, with all remaining fits focusing on

the lens (and subhalo) mass models.

4.3.2.4 Subhalo pipeline

This pipeline performs Bayesian model comparison to determine if a lens model

with a subhalo is preferred over a lens model without a subhalo. The pipeline

begins by fitting the same lens mass model (with fixed source pixelisation and
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regularization parameters) inferred at the end of the mass pipeline, with all priors

inherited from this fit. This provides us with an estimate of the Bayesian evidence

of the lens model without a subhalo. We then fit lens models which include an NFW

subhalo. For the subhalo’s mass, we assume a uniform prior on log10 (m200/M⊙)

between 6 and 11.

Due to the complexity of our parameter space (which consists of the mass models

of both the main lens galaxy and a subhalo) we found it was common for the

inferred posterior to correspond to a local likelihood maximum (as opposed to

the global maximum). To mitigate this, we scan for subhaloes using a grid of

non-linear searches, where each search confines the (x, y) image-plane coordinates

of the subhalo to a small 2D square segment of the image-plane. We perform 25

independent model fits, corresponding to a 5×5 grid, which divides the image region

between −1.0′′ and 1.0′′ into sub regions with sizes of 0.4′′ × 0.4′′. The parameters

of the main lens are fit for simultaneously along with the subhalo parameters in

each of these 25 fits.

To determine whether the lens model with a subhalo is favoured by the data over

the model without a subhalo, we must choose a statistical quantity with which to

compare them. Obvious choices are the Bayesian evidence or differences in max-

imum log likelihood values. Similar to chapter 3, we choose to use the maximum

log likelihood to compare models which do and do not include a subhalo. However,

the Bayesian evidence is as an output of dynesty and we have verified that our res-

ults are unchanged using this quantity. We denote the difference between the two

maximum log likelihoods to be ∆L, such that if ∆L in certain cells of the subhalo

search are large it suggests the existence of a subhalo within one of those certain

grids. Instead, if all log likelihood differences are very small, then it indicates no

subhaloes of a sufficiently high mass to be detected are present in the image. For

this paper, we take the threshold as follows: if ∆L ≤ 5, we call it a non-detection;

if 5 < ∆L ≤ 10, we call it a plausible detection; if ∆L > 10, we call it a detection.

If the subhalo grid search has a plausible detection (∆L > 5) the subhalo pipeline
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performs one more fit, which fits for both the main lens and subhalo parameters.

The subhalo’s (x, y) position is no longer confined to a square segment of the

grid search and we instead place a Gaussian prior on the x and y positions. The

2D Gaussian prior is centred at the maximum-likelihood subhalo position inferred

previously using the grid search, with a relatively large standard deviation of 0.5′′.

For the subhalo’s mass, we retain a prior uniform in log10M between 106 M⊙ and

1011 M⊙.

4.4 Power Law Tests

We first use our simulated lenses to test the broken power law profile, which is

commonly assumed in strong lensing studies to model the mass distribution of the

lens galaxy (Vegetti et al., 2014, Collett and Auger, 2014, Dye et al., 2015, Ene

et al., 2018). Our tests are divided into two parts: (i) how do power-law fits behave

for the case where no subhalo is present in the mock data; (ii) can the power-law

correctly recover the subhalo’s properties when there is one present in the mock

data. For convenience, we call the tests where no subhalo is added “smooth tests”,

and tests where there is a subhalo added “subhalo tests”.

4.4.1 Smooth test results

In Fig. 4.5, we show the input and recovered images from the best-fit smooth model

when fitted to simulated images that do not include a subhalo (this corresponds to

the first model fit in the subhalo pipeline and will act as the model we compare to

models including a subhalo in a moment). For visual clarity, we have removed the

central image caused by the core of the simulated galaxy, however note that this

region is included in the model-fit with high error values. For both projections, the

reconstructed images in the middle panel are similar to the input images shown on

the left. The normalized residuals (residuals divided by the noises) shown in the

right panel confirm the good fit, showing no clear or obvious correlated residuals.
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Figure 4.5: Left column: the mock lensing images. Middle column: the best
recovered images using an eBPL to model the lens mass. Right column: the
corresponding normalized residuals (residuals divided by the noises). The top row
show the case of Projection 1 and the bottom row show the case of Projection 2.
The color bar unit for the left two column images is e− pix−1 s−1. The units of the
y and x axes are arcsec.

It is noted that the best-fit eBPL model’s break radius for projection 1 and 2

are ∼ 0.2′′and 0.1′′respectively, which confirms that the core is able to affect the

lensing even though the central image has been masked out. Using an eBPL model

is therefore necessary to account for the core.

We now consider the results of the subhalo search. The left column of Fig. 4.6 shows

the results of the subhalo phase, using the quantity ∆L (defined in Section 4.3.2.4)

inferred in every cell of the subhalo-position grid. The upper and lower panels

show the results of Projection 1 and 2 respectively. For Projection 1, where the

input galaxy has a pointy shaped convergence, grids around the top-left luminous

arc have ∆L over 10, and the highest ∆L is ∼ 21.4 for the left most grid cell of the

third row from bottom. For the grid cell with ∆L ∼ 21.4, a subhalo with m200 of

109.8+0.4
−0.5 M⊙ is inferred around that region. Given that the simulated lens galaxy

we fitted here does not contain a subhalo, this signal is a false-positive. However,
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Figure 4.6: When modelling the lens mass distribution with an eBPL, substructures
are (too) easily detected. Colours indicate the increase in maximum log likelihood,
∆L, when a subhalo is included inside 0.4′′ ×0.4′′ squares during a fit to a lens that
has: no subhaloes (left), a subhalo of mass 5 × 108 M⊙ (middle), or a subhalo of
mass 5 × 109 M⊙ (right). Top and bottom rows show the results for Projection 1
and 2 (with different colour scales). White triangles mark the true locations of the
subhaloes. Note the false-positive detections in the left panels; the best-fit subhalo
masses in the other panels are also overestimated by a factor four to five.

for Projection 2 which has a rounder convergence, no grid has a ∆L > 5. Assuming

our criteria of requiring ∆L > 5 the inclusion of an additional subhalo model using

the eBPL is therefore correctly not favoured by the data and the eBPL gives the

correct answer for this projection. However, it should be noted ∆L values of ∼ 3−4

are still visible, indicating that at a very low level the subhalo is still improving

the fit to the data.

Having shown the performance of using an eBPL to fit images without a subhalo

present, we now test whether the same pipeline can correctly recover a subhalo’s

properties when a subhalo is included when generating the mock data. For both

projections, we add an NFW-like subhalo of M200 = 5 × 108 M⊙ or 5 × 109 M⊙ at

the positions marked by the red crosses in Fig. 4.3.

Similar to our earlier analysis, we first check the ∆L maps. The middle column of
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Fig. 4.6 shows ∆L maps for the cases where a 5×108 M⊙ subhalo is added and the

right panels show the results for a 5×109 M⊙ subhalo. The upper and lower panels

show the results of Projection 1 and 2 respectively. For Projection 1, grid cells near

the subhalo’s true input location (marked as white triangles in the image) show

clear increases in ∆L. For the 5 × 108 M⊙ subhalo case, the maximum ∆L is ∼

24.0 (for the rightmost cell on the fourth row from bottom) and for the 5×109 M⊙

case, the maximum ∆L is ∼ 81.4 (also for the rightmost cell on the fourth row

from bottom). Note that the colourbar saturates (for cells with ∆L > 40) in the

top-right panel.

Based on the detections shown in the ∆L maps, we continue the subhalo pipeline

and fit a model where we no longer confine the subhalo within a particular square

cell, and instead use a 2D Gaussian prior on the subhalo position, centered on the

best-fit position from the “grid-search” phase, with a standard deviation of 0.5′′.

In Fig. 4.7, we show the posterior of the subhalo parameters for both the case with

a 5 × 108 M⊙ subhalo (red) and a 5 × 109 M⊙ subhalo (blue). The true input

values are marked by the dashed lines. As shown, for both cases, the subhalo’s

mass is significantly overestimated and the true input subhalo masses are excluded

by 99% confidence regions. When the input subhalo has a mass of 5 × 108 M⊙, the

recovered subhalo mass is overestimated by ∼ 5 times with a value of 109.4+0.4
−0.4 M⊙

inferred, whereas for the input subhalo with 5 × 109 M⊙, the recovered mass is

overestimated by around 4 times and has a value of 1010.3+0.2
−0.2 M⊙.

4.4.2 Subhalo test results

For Projection 2, with an input subhalo of 5×108 M⊙, the maximum ∆L is only 3.4,

therefore no subhalo is detected and we do not analyse the posterior on the subhalo

properties. When the input subhalo mass is 5 × 109 M⊙, the maximum ∆L is 9.7

providing us with a plausible detection. We take this plausible detection and refine

the fit, with the resulting posterior for the subhalo parameters plotted in Fig. 4.8

. For Projection 2, the subhalo’s mass is recovered to be 1010.1+0.5
−1.2 M⊙ where the
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Figure 4.7: Posterior probability distribution of the subhalo model parameters,
after the subhalo refining phase, when modelling the Projection 1 lens mass with
an eBPL. Red and blue correspond to the cases of a 5 × 108 and 5 × 109 M⊙ input
subhalo respectively. The 2D contours cover the 68% and 99% credible regions.
For 1D posteriors, the vertical dashed lines mark the true input values.
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4.4.2. Subhalo test results

Figure 4.8: Subhalo parameters’ posteriors of the subhalo refining phase, when
modelling the Projection 2 lens mass with an eBPL. Only the case of a 5 × 109 M⊙
input subhalo is shown (the case of a 5 × 108 M⊙ subhalo does not lead to a clear
detection). The 2D contours cover the 68% and 99% confidence regions. For 1D
posteriors, the vertical dashed lines mark the true input values.
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errors mark the 99% confidence regions. It is noted that in Fig. 4.8, although the

subhalo’s true parameters are recovered within 99% confidence regions (the light

blue regions), the best-fit M200 and y coordinate are clearly offset from the true

input and in a case of smaller errors (higher S/N images), the true inputs might

be ruled out.

4.4.3 Parametric Source

To verify that our conclusions are not a result of a systematic associated with our

pixelised source model, in Appendix B we re-perform all of the above fits assuming

a cored Sérsic profile for the source. For Projection 1 we see nearly identical

behaviour in terms of false positives and the subhalo inference, however the ∆L

values are much larger; of order ∼ 250 compared to the values of ∼ 25 seen for the

pixelised source. This is expected, as the greater flexibility of the pixelised source

reduces our sensitivity to a subhalo and therefore also false positives (Gilman et al.,

2020c). For Projection 2, fits to the smooth data now infer a false positive with

∆L = 18.1. This does not contradict the results using a pixelised source above,

instead the values of ∆L =∼ 3 − 4 shown in Fig. 4.6 have simply been boosted

above our threshold value of ∆L = 5 because fitting a cored Sérsic increases our

sensitivity to subhaloes (and false positives). Thus, the eBPL does still produce

false positive detections when it fits Projection 2, however to see these using a

pixelised source one would likely require much higher S/N data.

4.4.4 Summary

For Projection 1, we saw false positive detections and an inability to recover an

input subhalo’s mass correctly. In contrast, for Projection 2, we did not infer a false

positive detection (when assuming a pixelised source) and the subhalo’s true mass

is covered by the posterior. Taking into account the different convergence shapes

of the two projections (see figure 4.3), we speculate the inaccurate inferences on
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subhaloes for Projection 1 are caused by the clear mismatch in the shape of the

eBPL and the more elliptical input profile. We also speculate the better perform-

ance seen for Projection 2 is because its rounder convergence is easier for the eBPL

to model. However, due to the limited number of projections available, we cannot

generalize these conclusions any further. We only saw the eBPL produced false

positives in Projection 1 and there is a possibility that it is a different property

of the lens driving this result. When analysing real lens systems we will look to

see whether departures from ellipticity in the lens galaxy’s light (Nightingale et al.

2022, in prep.) are correlated with subhalo detections, possibility indicating a false

positive signal.

4.5 A Decomposed Model

Motivated by the inability of the eBPL to provide a robust subhalo inference, we

now consider the decomposed model, which models a galaxy’s stellar and dark mat-

ter mass separately. This includes sufficient freedom to capture complex features

such as a pointy convergence profile, or other departures from elliptical symmetry.

4.5.1 Model introduction

In most strong lens images, we observe not only the lensed source’s light, but also

the light emitted from the lens galaxy, which should approximately trace its stellar

mass distribution. For example, through inspection of the lens galaxy’s light profile,

we can estimate the position angle and axis ratio of the lens’s stellar mass profile.

More detailed light profile fits can provide us with a more detailed model of the

stellar mass distribution. We now explore the potential of utilizing this information

and if it can allow us to correctly recover the subhalo information hidden in the

source’s lensed images. We fit the lens’s mass using a decomposed model which

treats the lens galaxy’s stellar mass and its dark matter mass separately. This type

of model has been fitted in many previous studies (Dye and Warren, 2005, Suyu
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et al., 2014, Wong et al., 2017) and Nightingale et al. (2019) showed using HST

imaging of three SLACS lenses that such models capture variations in ellipticity

and position angle within a galaxy that are indicative of pointy mass distributions.

For the stellar mass, we assume it exactly traces the stellar light, which allows us

to directly transform between the two by multiplying by a constant mass-to-light

ratio (M/L) parameter, which can be described as

κ(r) = Ψ · I(r) , (4.4)

where I(r) corresponds to the light profile and Ψ is its “mass-to-light ratio”. For

simplicity, we directly take the input stellar mass of the simulation’s particle data as

our lens light and therefore do not consider a more realistic galaxy light simulation

process. In that sense, the “I(r)” is equivalent to the convergence profile and thus

Ψ becomes a dimensionless quantity and is set to be 1.0.

To utilize the “lens light” information, we model the “lens light“ with three cored

Sérsic profiles as described by Eq. 2.3. We opt for the cored Sérsic because of

the simulated galaxy’s core; for real lenses we anticipate that the regular non-

cored Sérsic profile will suffice. We impose that the 3 cored Sérsic profiles share

the same centre, but allow for them to have different position angles and axis

ratios. We use three profiles because fits using two profiles do not fully capture the

features of the “lens light” (e.g. clear spatially-correlated normalised residuals are

seen when the best-fit two cored Sérsic model is subtracted from the true stellar

mass distribution). In Fig. 4.9, we show the input lens light (left column), best-fit 3

cored Sérsic profiles (middle column) and corresponding normalised residuals (right

column). For both projections (upper row corresponds to the Projection 1 and the

lower one is for the Projection 2) the light is well fit by three cored Sérsics. Later,

in our lens mass modelling, we fix the stellar mass distribution to be exactly the

same as the best-fit three cored Sérsic profiles obtained from fitting the lens light,

except for a free Ψ which changes the overall normalisation of the projected stellar

mass distribution.
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Figure 4.9: Left column: the mock lens light images. Middle column: the best
recovered images using three cored Sérsics to model the lens light. Right column:
the corresponding normalized residuals. The top row show the case of Projection
1 and the bottom row show the case of Projection 2. The units of the y and x axes
are arcsec.

In addition to the stellar mass, we include an elliptical NFW profile into the lens

model (to account for the dark matter). This has six free parameters: a scale

radius, rs, and scale convergence, κNFW; two ellipticity components; and the 2D

coordinates of the halo centre. As in the eBPL case, we include an external shear

in the decomposed lens model.

Neither cored Sérsic nor elliptical NFW profiles have analytical formulae for their

deflection angles. For fast computation we follow Shajib (2019) and use a sum of

2D Gaussian profiles to approximate the cored Sérsic and elliptical NFW profiles.

The resulting deflection angles are simply a sum of the deflection angles of the

individual Gaussian profiles, which can be efficiently computed using analytical

formulae. To be specific, in our work, in most cases we approximate a cored Sérsic

profile by 30 Gaussian profiles with their standard deviations uniformly distributed

in the log10 space between 0.01re and 50re, where re is the effective radius of

the cored Sérsic. Similarly, for an elliptical NFW profile, we also approximate it
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with 30 Gaussians and the standard deviations of those Gaussians are uniformly

distributed in the log10 space between 0.0005rs and 30rs. We noticed that one

of the best-fit cored Sérsic components to the “lens light” of Projection 2 has

a Sérsic index of 0.51 and for that profile the decomposition formula (Eq. 5 of

Shajib (2019)) becomes numerically unstable. For that one particular case, we

instead decompose the Sérsic profile into a sum of Gaussians using Cappellari

(2002)’s method, which optimizes the standard deviations and amplitudes of those

Gaussians at the same time. We have tested our choices of the parameters of the

Gaussian decomposition method across a large variety of cored Sérsics and elliptical

NFW profles to ensure that errors of approximating the deflection angles are much

smaller than the perturbation of a subhalo of interest. In Table 4.2, we summarize

our lens model parameters.

The approach we follow cannot be straightforwardly translated to real data. For

example, we have modelled the lens’s light in the absence of the source light and

ignored potential complications such as a radial gradient in the mass-to-light ratio.

The goal of this work is not to present a method that can be directly transferred

to the fitting of real data, but simply to show that when sufficient complexity

is added to the lens mass model one’s inference on subhalo properties improves.

Nevertheless, Nightingale et al. (2019) have already shown how PyAutoLens can fit

this type of model to real data and we expand on this further in section 4.6.3.

4.5.2 Results

We now present results using the decomposed model, following the same structure

we used for the eBPL results, whereby we begin with the smooth test results (where

no subhalo is present in the simulated data) followed by results where the simulated

data includes a subhalo.

In Fig. 4.10, we compare the input and best-fit model images for smooth cases. As

shown by the normalized residuals in the third column, no clear correlated residuals
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Projection 1 Projection 2

Stellar Mass 3 Core Sersics

centre(x, y) [(′′, ′′)] (0.008, -0.036) (0.003, 0.022)

I
′ {0.44, 0.60, 0.31} {0.32, 0.50, 1.06}

re [′′] {0.65, 0.02, 4.42} {0.11, 0.18, 2.39}

rc [′′] {0.14, 0.27, 0.25} {0.35, 0.13, 0.02}

n {1.44, 4.36, 4.91} {2.64, 0.51, 2.31}

position angle [◦] {-62, -59, -45} {-27, 69, -73}

axis ratio {0.33, 0.82, 0.82} {0.90, 0.89, 0.90}

Ψ [0.8, 1.2]

redshift 0.2

MGE {n, rmin, rmax} {30, 0.01re, 50re}

Dark Matter Mass NFW

centre(x, y) [(′′, ′′)] [-0.1, 0.1]

log10 κNFW [-2, 0.3]

rs [′′] [10, 50]

e1 [-1.0, 1.0]

e2 [-1.0, 1.0]

redshift 0.2

MGE {n, rmin, rmax} {30, 0.0005rs, 30rs}

External Shear

γ1ext [-0.2, 0.2]

γ2ext [-0.2, 0.2]

Subhalo Spherical NFW

centre(x, y) [(′′, ′′)] ([-1.0, 1.0], [-1.0, 1.0])

log10 M200 [M⊙] [6, 11]

mass-concentration relation Ludlow et al. (2016)

Table 4.2: Parameters and priors for the decomposed model. Parameters with
values shown in “()” or “{}” are fixed during the modelling. Parameters with
values shown as “[a, b]” are fit for, with a uniform prior between a and b.
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Figure 4.10: Left column: the mock lensing images. Middle column: the best
recovered images using the decomposed model to fit the lens mass. Right column:
the corresponding normalized residuals (residuals divided by the noise). The top
row show the case of Projection 1 and the bottom row show the case of Projection
2. The colour bars for the left two columns are in units of e− pix−1 s−1.

exist, which indicates an overall good fit with the decomposed model. Comparing

the results with the equivalent BPL results in Fig. 4.5, we see that the BPL results

are indistinguishable from the decomposed model results in terms of the residuals,

which confirms again that “subhalo-like” perturbations cannot be detected visually

from the residual maps and we have to rely on careful statistical comparisons to

make inferences about subhaloes.

In the left column of Fig. 4.11, we first show the maximum log likelihood difference

maps when modelling the smooth image with the decomposed model described

above. For both projections the decomposed model fits the image accurately with

a maximum ∆L value below 5, correctly indicating that no subhalo exists in the

lens galaxy. Unlike the eBPL, the decomposed model does not give false-positive

signals in our “smooth tests”.

In the middle and right columns of Fig. 4.11, we show the ∆L maps when a

5 × 108 M⊙ or 5 × 109 M⊙ subhalo is added to the lens galaxy at the positions
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Figure 4.11: Modelling the lens with a decomposed stellar + dark matter model
removes false-positive detections, and yields correct subhalo masses. Colours in-
dicate the increase in maximum log likelihood, ∆L, when a subhalo is included in
the fit to a lens that: has no subhaloes (left), has a subhalo of mass 5 × 108 M⊙
(middle), or has a subhalo of mass 5 × 109 M⊙ (right). The position of the subhalo
in the fit is free to vary within squares of side 0.4′′. The top and bottom rows show
the results for Projection 1 and 2 (with different colour scales). White triangles
mark the true locations of the subhaloes.

marked by the white triangles. For Projection 1 (upper panels), the regions where

we detect the maximum ∆L is consistent with the position of each input subhalo.

For an input subhalo of 5 × 108 M⊙, the result shows a plausible detection where

the maximum ∆L is 9.3, whereas for an input subhalo of mass 5 × 109 M⊙, the

detection is even clearer with a maximum ∆L of 36.0. Having successfully detected

the subhalo in each case, we continue on to the subhalo refining fit, with Fig. 4.12

showing the inferred posteriors of the subhalo parameters. For both cases, the

subhalo parameters are correctly recovered within 99% credible regions. For a

5 × 108 M⊙ subhalo, the recovered value is 108.9+0.8
−2.6 M⊙, and for a 5 × 109 M⊙

subhalo, the recovered value is 109.5+0.5
−0.4 M⊙.

For Projection 2, we only get a detection when the true subhalo mass is 5×109 M⊙,

with a maximum ∆L of 15.8 (in the middle cell of the bottom row). With a

5 × 108 M⊙ subhalo, all subhalo-position cells have ∆L < 5, corresponding to no
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Figure 4.12: The posteriors on the subhalo parameters from the subhalo refining
phase, fitting the decomposed model to mock data generated using Projection 1.
Red and blue colours show the cases with an input subhalo mass of 5 × 108 and
5 × 109 M⊙ respectively. The 2D contours cover the 68% and 99% confidence
regions. For 1D posteriors, the vertical dashed lines mark the true input values.
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Figure 4.13: The same as Fig. 4.12, but for Projection 2. Only the case with a
5 × 109 M⊙ subhalo is shown (a 5 × 108 M⊙ subhalo is not clearly detected).

detection. In Fig. 4.13, we show the subhalo posteriors obtained from the subhalo

refining phase for the 5 × 109 M⊙ case. We recover the input subhalo mass, with a

99% credible region onM200 of 109.5+0.4
−0.7 M⊙. For the non-detection of the 5×108 M⊙

subhalo, we do not believe this is a failure of the decomposed model, but instead a

limitation of the data quality. In fact, if we check the inferred subhalo parameters

for the sub grid cell which contains the input subhalo, the inferred subhalo’s mass is

108.7+0.7
−2.5 M⊙, which is still consistent with the true input mass. Thus, our inference

on the subhalo’s parameters is consistent with the truth, but we have insufficient

S/N for the model to be favoured in terms of ∆L.
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We note that in Fig. 4.12 and 4.13, the posterior distributions are not smooth,

having a “patchy” appearance in the 2D marginalised posteriors and “wiggles”

in the 1D posteriors. These arise due to the pixelised source plane. The source

plane pixelisation is created from a Voronoi tessellation of generating points, where

the generating points are first placed in the image plane and then mapped into

the source plane. Changes to the mass model change the mapping from image

plane back to the source plane, such that the positions and shapes of the source-

plane pixels varies as the lens mass model is changed. Certain locations for pixel

boundaries may be more or less able to reproduce the observed data, leading to

small changes to the mass model parameters capable of macroscopic changes to

the likelihood. This phenomenon is more significant for more complex mass models

which have more parameters and freedom to allocate those source pixel grids on the

source plane. As a result, we get unsmooth posteriors for our decomposed model.

The work of Etherington et al. (2022) discusses this further and presents a solution

using a cap on the log likelihood of the model-fit.

4.5.3 Parametric Source

In Appendix B, we again verify that our conclusions hold when we assume a cored

Sérsic profile for the source. For both projections, the decomposed model does not

give a false positive; with the highest value of ∆L = 2.5. Note that, for a cored

Sérsic source, false positives were detected for both projections. Given that fits

assuming a cored Sérsic for the source give a much higher sensitivity to subhaloes

and false positives, this further strengthens our conclusion that adding the right

type of complexity to the decomposed mass model removes the presence of false

positives. As a result of this increased sensitivity, the 5 × 108 M⊙ subhalo is also

detected successfully in Projection 2, which is not the case for the pixelised source.
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4.5.4 Offset True Positive Detections

In the right panels of Fig. 4.11 we note increases of ∆L =∼ 10 − 15 away from

the true location of the M200 = 5 × 109 M⊙ subhalo for both projections. These

are solutions where an offset dark matter subhalo closely mimics the perturbing

effects of the actual subhalo in the data. However, it is not a perfect representation

of the actual subhalo, which is why fits at the true location infer higher overall

log likelihood values. We do not consider these as false-positive detections because

they are caused by the true presence of a detectable subhalo in the data. Should

this behaviour be seen in real data we therefore should not discount the signal as a

false positive. In fact, a candidate subhalo detection should be made and followed

up with a second subhalo search which includes the first subhalo in the model, so

as to validate the detection.

4.5.5 Summary

For both projections the decomposed model is a success. When we do not include

a subhalo in the input lens galaxy, it returns no detections. When a subhalo is

included in the mock data, it is able to correctly infer the existence of the subhalo

through an increase in ∆L (at least for three out of the four cases we tried).

Furthermore, it recovers the masses and positions of the subhaloes within 99%

credible regions. By utilizing (idealized) “lens light” information, the decomposed

model therefore successfully captures complexity in the mass profile (e.g. the non-

elliptical shape) that the eBPL could not. The success of the decomposed model

confirms that for subhalo detection, it is vital to model the lens galaxy’s mass

accurately.
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4.6 Discussion

4.6.1 Implications for strong lensing subhalo detection

Our results confirm that if a dark matter subhalo is located near the emission of a

strongly lensed source galaxy, its perturbing effects mean that its presence can be

inferred. For gravitational imaging∗, our work demonstrates this for first time by

simulating the lens galaxy using a mass distribution derived from the particle data

of a cosmological simulation, which therefore does not make idealized assumptions

like a single axis of ellipticity. However, we also showed that assuming an overly

simplistic mass model for the lens galaxy which lacks certain complexity compared

to the true underlying mass distribution has two negative effects on the subhalo

inference: (i) it may lead to false-positive detections of a dark matter subhalo even

though a subhalo is not present in the data and; (ii) when a subhalo is truly present

in the data it may lead to systematic biases on the inferred subhalo mass by a factor

of 4 − 5.

The notion that a mismatch in mass profile shape could lead to false-positive

subhalo detections supports the analysis of Ritondale et al. (2019), who noted sev-

eral false-positive signals found in real lensing systems in the BELLS-GALLERY

sample. For example, they noted an increase in log Bayesian evidence of 72 in the

lens SDSSJ0755+3445, but demonstrated – using a potential correction technique

(Koopmans, 2005, Vegetti and Koopmans, 2009b) – that the mass model could be

improved by small corrections over a large angular scale, as opposed to a localised

correction reminiscent of a subhalo. This indicates that the subhalo-like signal is

probably due to the mismatch in the macro models, as we saw in our tests. False

positives are also partly the reason why Vegetti et al. (2014) and Vegetti et al.

(2018) require Bayesian evidence increases of 50 and 100 to claim a dark matter

detection; values below this threshold may be false positives (the authors also re-
∗Similar tests on flux ratios have previously been explored by Hsueh et al. (2018).
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quire validation via potential corrections). Whilst the false positives in this work

did not create Bayesian evidence increases above 30, the overall size of the increase

depends on the properties of the strong lens and sources simulated, the S/N of the

data and model used to fit the data. In Appendix B false positives with evidence

increases above 200 are inferred. Therefore, our results do not indicate that

previous detections of dark matter subhaloes in strong lenses are false

positives. Instead, they show the importance of techniques like the potential cor-

rections and we provide insight on why these methods are able to distinguish a

subhalo detection from missing complexity in the mass model.

4.6.2 Is our simulated lens galaxy realistic?

It is important to consider how realistic the simulated galaxy used in this work is.

As discussed previously, the galaxy was selected to be similar to lens galaxies from

the SLACS survey. It has a typical halo mass for a SLACS lens and its stellar mass

and size (i.e. the half-light radius) follow recent observations of massive galaxies

(Huang et al., 2018). The central galaxy has a complex shape, with isophotes that

change shape when viewed from different directions, and where the shapes of the

isophotes can vary with radius for a fixed viewing direction. We speculated that

this departure from elliptical symmetry drove the false positives, because they are

only seen for the projection where the mass distribution is highly elliptical. A

varying isophotal shape with radius is commonly seen in observations of massive

elliptical galaxies with comparable mass to SLACS strong lenses. For example,

over 1/3 of galaxies with stellar masses above 1011.5 M⊙ taken from the MASSIVE

survey show isophotal position-angle rotations (Goullaud et al., 2018), known as

“isophotal twists” (see Oh et al. (2017) for similar results in lower mass early-type

galaxies). Similar features are also reported in three strong lenses by Nightingale

et al. (2019). We therefore believe this aspect of our simulation is representative

of real strong lenses and is a plausible cause of some of the false positives in the

SLACS and BELLS-GALLERY lenses discussed previously.
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The simulated galaxy also has a sub-kpc core, which generates a central image in

our mock lens images. This phenomenon is seen in other works which simulate

strong lenses from cosmological simulations (Mukherjee et al., 2018, Despali et al.,

2020, Ding et al., 2021), with the core due to insufficient simulation resolution.

Central images of this brightness are not seen in real observations of strong lenses,

therefore such a large core is unrealistic. To ensure it does not impact our tests, the

mass model parameterizations fitted in this work all included cores. We masked

the central image so as to ensure the mass models did not utilize additional inform-

ation that is not present in real images of strong lenses. Whilst this aspect of the

simulated lens is therefore not realistic, the mass modeling performed in this work

ensures we can generalize our conclusions to the analysis of real data.

4.6.3 Application to real data

Our next step is applying the decomposed model to real data. We expect that

we will be able to fit mass models which omit parameters that account for a core,

given that the core feature is a consequence of the inadequate simulation resolution.

For the decomposed model, we will likely fit regular Sérsic functions instead of the

cored Sérsics fitted in this work.

The decomposed model verified that if a mass model can accurately capture the

lens galaxy’s complexity, it will improve the subhalo inference. This work used

information from the simulation that is not available when analysing real data,

for example we utilized our true knowledge of the lens’s stellar mass distribution.

Nevertheless, we believe these models can be translated to real data, where the

light emitted from the lens galaxy acts as a tracer for the stellar mass, information

which is often omitted when modeling a strong lens (e.g. by assuming a power-

law mass model). This approach to lens modeling was explored in Nightingale

et al. (2019), who fitted a decomposed stellar plus dark matter to three strong

lenses. The authors showed that all three lenses showed isophotal twists in their

stellar emission and that when this was modelled using two stellar components with
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different ellipticities and position angles it improved the mass model compared to

a model assuming a single elliptical geometry. We are now investigating whether

these lens systems produce subhalo detections, which would be indicative of a false

positive.

The decomposed model must also make assumptions in converting light to mass.

For example, whether the Sérsic profiles representing each stellar component share

the same mass-to-light ratio or whether each ratio is a free parameter in the model.

For each component, one must also choose whether the lens model accounts for a

radially varying M/L (Napolitano et al., 2005, Tortora et al., 2011, Ge et al.,

2021). The assumption of an elliptical NFW profile to describe the dark matter

poses another possible mismatch. The main concern on small scales is whether the

central slope, which in simulations is affected by the presence of baryons, is equal

to the NFW one. To take this into account when modelling real data, we could

model the dark matter as a profile with a free central slope, e.g. a generalized NFW

profile (Zhao, 1996), or explicitly model the way baryons are expected to alter the

dark matter distribution (Cautun et al., 2020, Callingham et al., 2020). We do

not expect this to be a significant issue since for galaxy-galaxy strong lensing, the

dark matter mass is typically sub-dominant in the region of interest (e.g. Li et al.,

2016a, 2019). In future work we will seek to understand the importance of all these

different assumptions with a view to improving the dark matter subhalo inference.

4.6.4 Subhalo Sensitivity

If the decomposed model can be successfully fitted to real data, it also has im-

plications for how sensitive strong lensing is to low mass dark matter subhaloes.

Firstly, if the method is able to reduce or remove the Bayesian evidence thresholds

applied by works like Vegetti et al. (2014) to remove false positives, this will make

us sensitive to lower mass subhaloes (which produce smaller evidence increases).

Furthermore, because the decomposed model uses the stellar light as additional in-

formation which constrains the mass model, this may further boost one’s sensitivity
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to subhaloes by reducing the degeneracy between the lens galaxy’s mass model and

subhalo. This will require that sensitivity mapping of a strong lens, which quanti-

fies what mass subhaloes one will detect if truly present in the data (Despali et al.,

2020, He et al., 2022a, Amorisco et al., 2022), is performed using the decomposed

model, as opposed to the power law model assumed in previous studies. The same

level of care will be necessary in understanding how robust assumptions associated

with the M/L and dark matter are.

4.6.5 Other Lensing Studies

A mass model mismatch has also been discussed in the analysis of strongly lensed

quasars. Hsueh et al. (2017) showed that the flux ratio anomalies observed in lens

system CLASS B0712+472 can be largely resolved by additionally adding a disk

profile to the lensing model. The works of Gomer and Williams (2020, 2021), Cao

et al. (2021), Van de Vyvere et al. (2022) show that such mismatches can impact

on the inference of the Hubble constant via time-delay cosmology.

4.7 Conclusions

With a large increase in the number of observed galaxy-galaxy strong lenses ex-

pected within this decade, strong lensing could soon push the constraints on the

halo mass function to low enough masses that it provides evidence in favour of

or against warm dark matter models. However, detecting dark matter subhaloes

through strong lensing is a challenging problem due to the complexity of the lens

galaxy’s mass distribution. In this work, we use a massive elliptical galaxy extrac-

ted from a state-of-the-art hydrodynamic simulation to create mock strong lens

images. We represent the simulated galaxy’s projected mass distribution as a sum

of elliptical Gaussian profiles, which shows departures from the idealized elliptically

symmetric mass models typically employed to analyse strong lenses (e.g. the power

law profile (Tessore and Metcalf, 2015)). We project the same simulated galaxy
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along two different line-of-sight directions, with one projection producing a pointy

“American football like”-shape and the other one appearing rounder.

For each projection, we simulate three strong lens imaging datasets. The first

dataset does not include a dark matter subhalo, whereas the other two include a

M200 = 5 × 108 M⊙ and M200 = 5 × 109 M⊙ dark matter subhalo near the lensed

source’s light. To every dataset, we fit two lens mass models: (i) an elliptical

broken power law (eBPL) mass model (O’Riordan et al., 2019) which represents

the overall mass distribution of the lens galaxy (e.g. stars and dark matter) and;

(ii) a decomposed model that models the stellar and dark matter mass separately

(using the stellar particle data from the simulation to constrain part of the stellar

mass model). For both models, we investigate fits which include a dark matter

subhalo in the lens mass model, and therefore quantify whether we can accurately

recover a dark matter subhalo when it is included in the simulation as well as

whether we incorrectly infer the presence of a subhalo when it is not truly there; a

false positive.

Our main results can be summarized as follows:

• When using an eBPL model to fit the lens mass to the pointy projection

without a dark matter subhalo, a false-positive detection is inferred at over

3σ confidence. For the same projection, when a 5 × 108 M⊙ or 5 × 109 M⊙

subhalo is added to the mock lens, the fit correctly recovers the subhalo but

overestimates its mass by a factor of 4 − 5, with the true input mass outside

the inferred 99% credible regions. However, when modelling data from the

projection with a rounder convergence, the eBPL model does not give a false-

positive and recovers the input 5 × 109 M⊙ subhalo’s mass accurately (the

5 × 108 M⊙ subhalo is not detected due to insufficient data quality).

• When using the decomposed model to fit the lens mass, for both projections,

we get no false positives and correctly recover the properties of an input

subhalo when there is sufficient data quality to detect it.
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The eBPL total mass model therefore shows undesirable results, including false

positives and an inaccurate estimate of the subhalo mass, which the decomposed

mass model does not. We speculate that this is because the eBPL parameterization

does not capture aspects of the simulated lens’s mass distribution. In particular, the

eBPL does not capture the varying ellipticity and orientation seen in the pointy

projection’s mass distribution. The decomposed mass model does not assume a

single elliptical mass distribution and can therefore account for this variation in

ellipticity and orientation. Its improved model of the lens galaxy’s mass therefore

offers an improved subhalo inference which does not suffer false-positive detections.

Our results do not imply that previous detections of dark matter subha-

loes in strong lenses are false positives (e.g. Vegetti et al. (2014)). These

studies are fully aware of the false positive phenomena and they require a subhalo

detection to pass stringent criteria to be considered a genuine dark matter subhalo.

This includes a pixel-based correction to the gravitational potential (Koopmans,

2005) which accounts for the types of deficiencies in the mass model discussed in

this work. In fact, our work demonstrates that dark matter substructures can be

successfully detected in images of strong lenses, even when the lens galaxy’s mass

distribution is more complex than the mass model assumed to fit it.

Our work highlights the benefits of using cosmological simulations to test strong

lens modeling methodology. When the eBPL showed inaccurate results, we were

able to compare directly to the simulation’s particle data in order to understand

what complexity the model is missing. This is not possible when analysing real

images of strong lenses. We are now looking to apply what we have learned in this

study to real data, and fit strong lenses from existing lens samples with decomposed

mass models which, crucially, relax the assumption of a single axis of ellipticity.

Applying the models to real data has challenges, for example instead of relying on

the simulation’s stellar particle data we will need to use the lens’s light to constrain

the stellar mass (Nightingale et al., 2019). However, the pay-off could be huge,

allowing us to more reliably detect lower mass dark matter substructures, that could
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potentially push our sensitivity down to pivotal masses of M200 = 5×108 M⊙ where

many viable alternatives to the cold dark matter model begin to make different,

testable predictions.
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Chapter 5

Overall Conclusions & Future

Work

ΛCDM, as the most commonly accepted cosmology paradigm, has been extremely

successful in explaining and predicting many observations. It describes a universe in

which structures form hierarchically from small scales to large due to gravitational

instability, where dark matter, as the dominant matter component, plays a key role.

However, although dark matter exists widely throughout the Universe, its nature

remains unclear and understanding the nature of dark matter has become one of the

most important and challenging tasks for modern physics. In this thesis, we focus

on methods of constraining the dark matter particle mass through perturbations

to strong gravitational lensing images by dark matter haloes, which utilize the fact

that dark matter models with different particle masses predict different “cut-off”

masses to their halo mass functions. In particular, constraints at the sub-galaxy

mass range can rule out the cold dark matter model or its popular alternative,

warm dark matter, with the latter typically corresponding to a particle with a

mass of several keV. In this thesis, we study topics related to constraining the halo

mass function in that mass range through strong gravitational lensing. Below we

summarize our work for each chapter and briefly discuss some relevant challenges

and future work.
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In chapter 2, we investigate a forward-modelling procedure applied to a set of strong

lensing systems to directly place constraints on the dark matter halo mass function.

The method follows the work of Gilman et al. (2019), but is modified and developed

to be used on lensing images with extended arcs. To be specific, our inference

procedure is built under the Approximate Bayesian Computation framework (see

Fig. 2.2 for the flow chart of the procedure). We first simulate a large number of

strong lensing images (forward models) based on the best-fit macro model, with

different simulated images having different populations of low-mass dark matter

haloes, corresponding to different dark matter models (with different mass function

cut-offs). Then we analyze those simulated images in the same way as we analyzed

the original observation and compare the best-fit residuals of simulations with the

observed best-fit residuals. We use the power spectrum of residuals as a summary

statistic to quantify the “similarities” between the observation and different models

and further derive the posterior distribution for the location of a cut-off in the halo

mass function.

We find that for our mock tests, the true input cut-offs can be correctly and un-

biasedly recovered through analyzing the power spectrum of best-fit residuals using

the forward-modelling procedure (see Fig. 2.7, 2.8, 2.9 & 2.10). For a relatively

“cold” dark matter model, where the particle mass is 8.86 keV, particles with mass

less than 4.10 keV lie outisde of the 95% credible region, while for a warmer case

with a true mass of 2.22 keV, the recovered 95% credible region is between 1.43

and 3.21 keV. It is noted that with the standard data quality we assume, which is

comparable with the highest quality systems from the SLACS sample, even com-

bining 50 systems together still results in large intrinsic scatter in the distributions

of low-mass perturbers (see blue dashed lines in Fig. 2.7). We have also investig-

ated how the procedure would behave for different quality observations. We find

(see Fig. 2.9 & 2.10), that the signal would be boosted with deeper images, higher

resolution and a larger intercepting volume for luminous arcs along the line of sight

(as there are then more perturbers for a given DM model). We find that with worse
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resolution than typical HST images, like EST and CSST images, the method can

still put some constraints on the mass range of interest, which makes it promising

for future observations that will produce catalogues of many tens of thousands of

strong lensing images.

In chapter 3, we re-investigate the sensitivity maps of line-of-sight and in-lens low-

mass perturbers. The sensitivity function quantifies the chance of detecting a dark

halo of a certain mass at a certain position for a given strong lensing system. In

previous work, to reduce the complexity introduced by the freedom of a perturber’s

redshift, an “effective mass” is assumed to exist whereby the perturber would pro-

duce the same lensing effects as a halo at the lens plane with mass equal to this

effective mass. The “effective mass” is usually obtained through fitting to deflec-

tion angle fields. In our work, we instead take a more brute-force way to compute

the sensitivity maps which involves repeatedly simulating and modelling strong

lens images of a specific lens systems with a low-mass perturber added at different

places with different masses (see Fig. 3.4 for the flow chart of the procedure). The

key difference between our methods and previous method is that we now involve

more realistic modelling processes on datasets with realistic noise.

We find that an NFW perturber causes the largest lensing perturbation when close

to the lens redshift which is contrary to previous findings where a perturber pro-

duces a larger perturbation as it gets closer to the observer (see Fig. 3.7). Two

possible reasons account for the difference: first, the previously used assumption

that a line-of-sight perturber is equivalent to a perturber in the main lens plane with

a mass equal to an “effective mass” is not a good approximation, as many asym-

metric deflection patterns (caused by multi-plane lensing) are ignored as shown

in Fig. 3.5; Second the degeneracy between the macro model and the low-mass

perturber is ignored in previous work, and the perturbation of a low-mass halo in-

front of the lens can be more easily absorbed by modifying the main lens than for

a peturber in the macro lens plane. With our new method of computing the sens-

itivity, we further compare the relative contributions of line-of-sight and on-lens
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perturbers. For the abundance and properties of on-lens haloes, we calibrate them

with a high-resolution hydrodynamic simulation run by Richings et al. (2021). Our

calculation shows that the contribution from line-of-sight haloes is still important,

but no longer dominates the total number of detectable perturbers in most cases

(see Fig. 3.9). We have also explored how the detectable number of low-mass per-

turbers would change with different image settings (see Fig. 3.9). We find that

the benefit from increasing exposure time might not be as large as observing more

systems because increasing exposure time by 4 times only doubles the detectable

numbers.

In chapter 4, we explore how the complexity of the lens galaxy’s mass distribution

would affect subhalo detection. We build up our mock lensing images by taking our

lens galaxy from a high-resolution hydrodynamic simulation, where we expect the

simulated galaxy to have similar complexity to realistic galaxies such as asymmetry

and twisting ellipticity. However, although having the highest resolution of a hy-

drodynamical simulation of a galaxy group so far, the simulated galaxy still suffers

an unrealistic central density core, with a size of several hundred parsecs due to the

limited resolution. To avoid the effects of particle noise and potential boundary

truncation effects as seen in typical strong lensing simulations from particle data,

we instead use a sum of many 2D Gaussians to model the mass distribution of

different components of the simulated galaxy (a so-called multi Gaussian expan-

sion), and simulate lensing images based on these best-fit Gaussians. We project

the simulated galaxies into two different line-of-sight directions to obtain differ-

ent galaxy “shapes”. Finally, we simulate images for both projections with and

without a subhalo to test how different mass models affect subhalo inference. Two

kinds of lens mass models are tested in our work: an elliptical (broken) power law

and a decomposed model, where we separately model the stellar and dark matter

component of the lens galaxy. The source is modelled as a pixelised one.

We find that for one projection where the galaxy exhibits “pointy” deviations from

ellipticity (also known as “discy”), the power law model gives a clear false-positive
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signal when fitting to an image without a subhalo, and overestimates the subhalo’s

mass by 4−5 times when a 5×108 or 5×109 M⊙ subhalo is input (Fig. 4.6 & 4.7).

However, when fitting to a projection with a rounder 2D shape of the lens galaxy,

the power law model returns no-false positives for the case without a subhalo and

recovers the true values of a 5×109 M⊙ input subhalo within the 3σ credible region

(Fig. 4.6 & 4.8). When using the decomposed model to fit the lens mass, for both

projections, we get no false-positive signals in the no-subhalo cases and correctly

recover the input subhalo except for missing a 5 × 108 M⊙ one in Projection 2

due to limited data quality (Fig. 4.11, 4.12 & 4.13). This work confirms that an

incorrect inference on the number and properties of subhaloes could be made due to

a mismatch between the lens mass model and the real lens mass distribution, and

indicates the necessity of extending our lens mass models with more complexity

when searching for subhaloes through strong lensing.

Overall, in the thesis we have improved various aspects of methods that use strong

lensing to constrain the halo mass function, thus preparing for the imminent dis-

covery of hundreds of thousands of galaxy-galaxy strong lensing systems from new

telescopes. We note we still make many assumptions and simplifications and there

is further development needed to apply the models and methods of this thesis to

realistic observations. This will be the aim of our future work. For the forward-

modelling method developed in chapter 2, the challenge exists in the accuracy one

can reach for the macro model. We could imagine that the subhalo signals could

be biased or totally removed by a significant mismatch in either the lens mass or

source light distributions. We have seen in chapter 4 that a mismatch between the

lens model and true mass distribution could lead to an incorrect inference on the

properties of detected subhaloes, and we would expect similar things could happen

with the forward-modelling method. There are modifications that can possibly

solve these issues. One is to further improve the mass and source model such that

the scale of any mismatch in the macro structures is smaller than the perturbations

due to low-mass haloes. Another is to search for a better summary statistic than
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the power spectrum that is more sensitive to the perturbations of low-mass haloes.

Considering the large number of possible summary statistics, we think this might

be best done through a training-based machine learning technique, which hopefully

can automatically extract the characteristic imprints of low-mass halo perturba-

tions to strong lensing images. The obstacle faced by the sensitivity mappings

discussed in chapter 3 is more on the engineering side rather than the science. The

bottleneck is the speed of computing the sensitivity maps when using a pixelised

source, which is much slower than the parametric source model used in our work.

However, in the worst case of not finding a way to speed up these calculations,

we can still afford to compute sensitivity maps for several lensing systems which

can already put a strong constraint on the halo mass function. Finally, for the

work of chapter 4, as we mention, although the decomposed model does well at

capturing the complexity of the simulated galaxy, it might not be so successful in

real applications where the stellar mass may not exactly trace the stellar light, and

a more complex model with a gradient in the mass-to-light ratio may be necessary.

One interesting and important piece of future work in this direction is to simulate

full lensing images with lens light (even colour) also generated from simulated data

and then use them as a guide to explore the complexity we need in our models.

Also, at that stage, a more complex source than a simple cored-Sérsic should be

used when simulating mock images, to ensure that the method is not limited to

dealing with the case of simple source morphologies.
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Appendix A

A.1 Determining Multiplane Resolution

In chapter 2, we simulate the effect of line-of-sight haloes by dividing the lightcone

from the observer to the source galaxy into a number of intervals and approxim-

ating low-mass dark matter haloes within a given redshift interval as lying on a

single plane at the central redshift. Reducing the redshift interval, ∆z, between

two neighbouring planes (increasing the number of multiplanes) will increase the

accuracy of the approximation to the line-of-sight effects, but will also increase the

computational cost. The smallest allowable ∆z should be determined by the ac-

curacy one would like to achieve in the inference of Mhf . In practice, one needs to

make sure the “difference” caused by approximating line-of-sight effects into multi-

planes is smaller than the “difference” caused by changing Mhf by the amount one

would like to distinguish.

Fig. A.1 shows an example of the amplitudes of the differences in deflection angles

when changing the values of ∆z and Mhf . The two panels are computed from the

same macro settings (a spherical isothermal sphere model with RE of 1.5′′ at z =

0.5 and a source at z = 1.0) and the same low-mass dark matter haloes (generated

from a distribution with Mhf = 107 M⊙). To simplify the test, instead of using

the mass function described in the main body of the paper, we impose a “sharp
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cut” on the mass function, such that no haloes are drawn with M200 smaller than

Mhf . Also, we assume that there is no correlation between Mhf and the mass-

concentration relation to make sure massive haloes are unchanged when changing

Mhf .

The upper panel of Fig. A.1 shows the amplitudes of the differences in deflection

angles when changing ∆z from 0.01 to 0.001 (a very high resolution setting which

we take as the “accurate” result). The lower panel shows the amplitudes of the

differences in deflection angles when changing Mhf from 107 M⊙ to 107.1 M⊙. As

seen from the figure, the patterns of the differences caused by changing ∆z and

Mhf are different. We use the mean amplitude of the difference in deflection angles

within the annular region 1.0′′ – 2.0′′ (the region between the two dashed circles in

the figure) to quantify the “differences”. The mean difference caused by changing

∆z is 3.47 × 10−5 arcsec, which is smaller than the mean difference caused by

changing Mhf by 0.1 dex, 2.42 × 10−4 arcsec, suggesting that ∆z of 0.01 would not

affect the ability to distinguish between models with Mhf = 107 M⊙ and 107.1M⊙.

The results shown in Fig. A.1 are for a special case, so we repeat the same pro-

cedure for 128 different realisations of low-mass dark matter haloes. The orange

histogram in Fig. A.2 shows the distribution of the log10 ratio of the mean differ-

ence in amplitudes defined previously, that is the ratio of the mean difference in the

deflection angles between models with Mhf = 107 and M⊙ = 107.1 divided by the

mean difference in the deflection angles for the ∆z given in the legend. As shown

by the orange histogram, the ratios from all of the 128 realisations are larger than

one, indicating that the differences caused by approximating line-of-sight effects

using multiplanes separated by 0.01 in redshift is smaller than the difference cause

by changing Mhf by 0.1 dex. Also, we plot the histogram of ratios for other values

of ∆z. As may be seen, increasing ∆z increases the differences caused by changing

∆z and, in some cases, the differences are larger than those caused by changing

Mhf by 0.1 dex. To summarize, the value of ∆z we adopt for our tests, ∆z = 0.01,
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Figure A.1: Upper panel: amplitude of the differences in deflection angles caused
by changing ∆z from 0.01 to 0.001. Lower panel: amplitude of the differences in
deflection angles caused by changing Mhf from 107 M⊙ to 107.1 M⊙. The region
between two dashed circles is the annulus between 1.0′′ and 2.0′′. The unit of the
colourbar is arcsecs.
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Figure A.2: Histograms of the log10 ratio of the mean amplitude of the differences
in deflection angles caused by changing ∆z and Mhf . Blue, orange, green and red
colors shows results for ∆z = 0.005, 0.01, 0.02 and 0.05 respectively.

does not affect our inference of Mhf to an accuracy of 0.1 dex.
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B.1 Parametric source results

The work of chapter 4 primarily focuses on the lens mass distribution. The effects

of source modelling on the subhalo inference is seldom discussed. In this section,

to give a brief idea on how our results would be affected by source modelling, we

fit the same mock data with the same mass models discussed above but with a

parametric source model. To be specific, the source model we apply here has the

same form used to simulated the data, which is an elliptical cored Sérsic profile.

When simulating mock data, we have fixed its break radius to be 0.01′′, but when

using it as a source model, we set its break radius to be a free parameter.

The increase in log likelihood for many model-fits including a subhalo, ∆L, are

higher when we assume that the source is an elliptical cored Sérsic profile as opposed

to a pixelised source. This is because the pixelised source models have a much

higher level of freedom in how they fit the data. If a mass model provides a

good – but not perfect – fit, the pixelisation can make small adjustments to the

source pixel values to fit the data equally well (Gilman et al., 2020c). This is

appropriately penalized using a Bayesian framework (see Suyu et al. (2006) and

Nightingale et al. (2018)), but nevertheless produces smaller likelihood contrasts

than fitting a parametric source model like the cored Sérsic profile, which has a lot
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less freedom in adjusting its parameters in order to account for an inaccurate mass

model. This is also dependent on the fact that the elliptical cored Sérsic profile was

used to both simulate and fit the mock strong lenses; had there been a mismatch

here parametric fits would likely not give such large ∆L values.

In Fig. B.1, we show ∆L when fitting the data with an eBPL profile. For projection

1, for both the smooth case and a 5 × 108 M⊙ subhalo input case, the eBPL plus

cored Sérsic source model returns similar results, with a highest ∆L giving ∼ 250

at the middle left region indicating the existence of a 1010.1+0.2
−0.1 M⊙ subhalo, which

is not consistent with our input (e.g. it is a false positive). For the case of a

5×109 M⊙ input subhalo, the highest ∆L is ∼ 600 around the middle right region,

which is consistent with our input. For this case, we further model the subhalo by

freeing its position and the posterior we get is shown in color red in Fig. B.2. We

see that although the position is estimated around the true input, the subhalo’s

mass is overestimated by around 4 times, which is similar to our previous findings

for a pixelised source.

For projection 2, we see that for the smooth test case, false-positive signals show

up in upper right regions with the highest ∆L to be ∼ 18. Read from the grid

of highest ∆L, the best-fit subhalo’s mass is 109.3+0.4
−0.5 M⊙. False positives were

not detected for this projection using a pixelised source. For the case of an input

subhalo of 5 × 108 M⊙, there are some plausible signals around the middle right

regions with the highest ∆L to be ∼ 8. The mass of the plausible subhalo obtained

in this case is 109.6+0.2
−0.5 M⊙. For the third case where a 5 × 109 M⊙ subhalo added,

the ∆L map returns the correct answer with the highest ∆L to be 120 at the place

where we input the subhalo. For this one, similarly, we further model the subhalo

by freeing its position. The posterior is shown in color blue in Fig. B.2. We see

that the input subhalo can be well recovered in this case.

In Fig. B.3, we show ∆L maps of modelling the data with the decomposed model

plus a cored Sérsic source. We see that the results are similar to the pixelisation

results: for smooth tests, no clear false-positive signals show up. For subhalo tests,
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B.1. Parametric source results

Figure B.1: ∆L maps of using eBPL + cored Sérsic source model. Colours indicate
the increase in maximum log likelihood, ∆L, when a subhalo is included inside
0.4′′ × 0.4′′ squares during a fit to a lens that has: no subhalos (left), a subhalo
of mass 5 × 108 M⊙ (middle), or a subhalo of mass 5 × 109 M⊙ (right). Top and
bottom rows show the results for Projection 1 and 2 (with different colour scales).
White triangles mark the true locations of the subhaloes.

the highest ∆L is consistent with the region of an input subhalo. In Fig. B.4,

we further plot the posteriors obtained for the detected subhaloes. Overall, input

subhaloes can be recovered to a good level although for the 5 × 109 M⊙ subhalo

cases, the recovered masses are slightly offset to the true value, albeit this is close

enough that it could simply be due to noise in the mock observation.
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B.1. Parametric source results

Figure B.2: Posteriors of detected subhalo parameters of eBPL + cored Sérsic
model. The red posteriors show the results for an input of a 5 × 109 M⊙ subhalo
in Projection 1. The blue posteriors show the results for an input of a 5 × 109 M⊙
subhalo in Projection 2. The 2D contours cover the 68% and 99% confidence
regions. The dashed lines in corresponding colors marked the true input values.
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B.1. Parametric source results

Figure B.3: ∆L maps of using stellar + dark matter + cored Sérsic source model.
Colours indicate the increase in maximum log likelihood, ∆L, when a subhalo is
included inside 0.4′′ ×0.4′′ squares during a fit to a lens that has: no subhalos (left),
a subhalo of mass 5 × 108 M⊙ (middle), or a subhalo of mass 5 × 109 M⊙ (right).
Top and bottom rows show the results for Projection 1 and 2 (with different colour
scales). White triangles mark the true locations of the subhaloes.
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B.1. Parametric source results

Figure B.4: Posteriors of detected subhalo parameters of the stellar + dark matter
+ cored Sérsic source model. The green, grey, red and blue posteriors respectively
show the results for: an input of a 5×108 M⊙ subhalo in Projection 1; an input of a
5×109 M⊙ subhalo in Projection 1; an input of a 5×108 M⊙ subhalo in Projection
2; an input of a 5 × 109 M⊙ subhalo in Projection 2. The 2D contours cover the
68% and 99% confidence regions. The dashed lines in corresponding colors marked
the true input values.
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