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Abstract

The study estimated ecosystem carbon stocks in the Bangladesh Sundarbans using field inventory data
with species-specific allometric models, carbon fractions and remote sensing data. The plot level
ecosystem carbon stocks were interpolated with regression kriging using a forest-type map developed
from Sentinel-2 MSI satellite imagery and GEDI-based canopy height data in Google Earth Engine
(GEE) platform. Error propagation from the field measurement and allometric models was estimated
and interpolated. The study highlighted that both the above-ground carbon (AGC) and soil organic
carbon (SOC) were significantly higher in the oligohaline zone, followed by the mesohaline and
polyhaline zone. Multiple regression results indicated that soil salinity, organic C: N and tree diameter
were the best predictor for the variability of the SOC in the Sundarbans. To understand how
individual species affects biomass estimates in mangrove forests, five species-specific and four genus-
specific allometric models were developed. At the individual tree level, the generic allometric models
overestimated AGB from 22% to 167% compared to the species-specific models. At the plot level,
mean AGB significantly differed in all generic models compared to the species-specific models.
Using measured species wood density (WD) in the allometric model showed 4.5% to 9.7% less
biomass than WD from a published database. When using plot top height and plot average height
rather than measured individual tree height, the AGB was overestimated and underestimated by
19.5% and 8.3%, respectively. The total 1 m SOC in the Sundarbans was 21.37 Teragram (Tg) and
the total AGC stocks comprised 23.91 Tg. On the other hand, the total ecosystem carbon (TEC) stocks
were 62.70 Tg, which is comparatively lower than most mangrove forests in the world. The study
demonstrated a methodology that could be used as an IPCC (Intergovernmental Panel on Climate
Change) Tier 3 approach for estimating TEC stocks in the Bangladesh Sundarbans and also to monitor
TEC stocks in mangroves and other tropical forests. The study also emphasised the importance of
spatial conservation planning to safeguard the carbon-rich zones in the Bangladesh Sundarbans from
anthropogenic tourism and development activities to support climate change adaptation and mitigation

strategies.
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Chapter 1

Introduction



1.1. Background

Mangrove vegetation can be found in 105 countries primarily in the tropics and subtropics (Hamilton
and Friess, 2018; Tang et al., 2018) (Figure 1.1). Despite accounting for just 0.1% of the Earth’s
continental surface, mangrove forests are among the most carbon-rich forest biomes due to their high
proportion of below-ground to above-ground biomass and their high capacity for carbon sequestration
(Donato et al., 2011; Atwood et al., 2017). The ability to accumulate substantial amounts of carbon in
the soil due to slow decomposition rate makes mangroves distinctive in comparison to other terrestrial

ecosystems.

Mangrove forests across the tropics are threatened by factors related to climate change and
anthropogenic impacts (Duke et al., 2007; UNEP, 2014). Data assimilated from a variety of published
sources suggests that about 50% of the mangrove biome has been lost since the 1950s (Feller et al.,
2010). The quality and quantity of this highly productive ecosystem is vulnerable to threats such as:
large-scale commercial aquaculture and agriculture (Primavera, 2006; Richards and Friess, 2016);
land reclamation (Peng et al., 2016); pollution and local and regional (few to hundreds of km?)
climate change induced stressors, such as sea-level rise (Lovelock et al., 2015a); drought (Duke et al.,
2017; Lovelock et al., 2017); increased storminess and salinity (Alongi, 2015; Sarker et al., 2016);
changed precipitation regimes, and increasing temperature and atmospheric CO, (Ward et al., 2016).
Recent estimates report global mangrove decline is 2% from 2000 to 2012, which represent a

contribution of 320 million tonnes of CO; to the atmosphere (Hamilton and Friess, 2018).

Despite the observed loss of mangrove forest area, the potential future impact of climate change
suggests that mangrove ecosystems are resilient and have the potential to expand poleward (Alongi,
2015; Feller et al., 2017) and to continue to deliver resources for local livelihoods, carbon
sequestration, biodiversity conservation and to provide other ecosystem services (Thomas et al.,
2017). However, degradation and disturbance of the vegetation promotes the remineralization of soil
carbon to CO,. Thus, conservation and restoration of mangrove forest is vital to preserve carbon

storage in soil. Nonetheless, restoration alone would not be enough to regain lost carbon in mangrove



soils over human lifespans since the carbon deposition takes thousands of years (Atwood et al., 2017).
Therefore, reducing deforestation rates and maintaining existing areas would be the optimal

conservation strategy.
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Figure 1.1: Global distribution of mangroves. Reproduced from Tang et al. (2018) CC BY 4.0.

Mangrove research has recently been gained substantial traction and momentum in international
initiatives and policies including the International Blue Carbon Initiative, the Global Mangrove
Alliance and the establishment of countries Nationally Determined Contribution (NDCs) for the Paris
Agreement of the United Nations Framework Convention on Climate Change (UNFCCC) (Taillardat
et al., 2018; Friess et al., 2020a). Because of a wider range of ecosystem goods and services provided
to society, mangroves are an integral part of the UN Sustainable Development Goals (SDGs) (Ramsar
Convention on Wetlands, 2018; Friess et al., 2020b; Worthington et al., 2020). Higher carbon
sequestration rates in mangroves compared to other tropical forests has established mangroves a
crucial factor in international incentive schemes such as United Nations Reducing Emissions from
Deforestation and forest Degradation in Developing Countries (UN REDD™") (Donato et al., 2011;
Alongi, 2012; Kauffman et al., 2020). These initiatives have led countries to conserve existing

mangroves and at the same time ensure a future reduction of greenhouse gas emissions whilst




fostering CO; sequestration (Adame et al., 2021). However, halting degradation and deforestation in
mangroves and the accurate estimation of these changes in this important ecosystem is key to such

financing mechanisms (IPCC, 2006; Alongi, 2011; Howard et al., 2014; IPCC, 2019).

The ability to sink CO,, coupled with their capacity for coastal protection and encouraging sediment
accretion, makes mangrove habitats an essential element for climate change adaptation and mitigation
strategies including carbon trading initiatives, such as REDD+ (Reducing Emissions from
Deforestation and Degradation) (Duarte et al., 2013; Lucas et al., 2014). Recent international climate
policy discussions also prioritize mangrove conservation through ‘avoided deforestation’ under PES
(Payments for Ecosystem Services) and such debates have highlighted novel funding paths for forest
protection (Hamilton and Friess, 2018). However, there are considerable challenges for the
implementation of conservation strategies, which include developing systems to quantify and monitor
the carbon stocks through ‘MRV’ (Measuring, Reporting and Verifying) activities (Locatelli et al.,
2014). Moreover, IPCC (the Intergovernmental Panel on Climate Change) sets targets with
progressively more complex methods to provide greater levels of accuracy for carbon reporting from
Tier 1 to Tier 3. The Tier 1 derives data from published global datasets, while Tier 3 uses data from
detailed and repeatable locally-derived forest inventories (Penman et al., 2003). On the other hand, the
Tier 2 is considered as intermediate which requires country-specific data to suit local conditions
(IPCC, 2019). A Tier 3 approach requires more rigorous methods, including inventory data and
models adapted to national conditions, which are repeatable, and driven by high-resolution activity

data (Harris, 2016).

1.2. Rationale

1.2.1. Difficulty to relate forest loss to carbon and CO,emissions

The first step in the assessment of carbon stocks in any forest is to map the extent and loss/gain over
time. One of the major challenges is to translate these changes in forest area to carbon stocks for the
whole ecosystem. In mangrove forests, the carbon pool comprises above- and below-ground carbon

(AGC and BGC); above-ground contains live and dead plants including stem, stump, branches, bark,



seeds and foliage, and the below-ground carbon consists of roots and soil carbon. Among these, the
soil may account for more than 50% of the total carbon stocks in a forest followed by tree carbon
including above-ground biomass (AGB) and live roots (Kauffman and Donato, 2012). The most
accurate method to quantify forest carbon is to destructively sample trees with or without roots, dry
and weigh the biomass (Brown et al., 1989). The whole-tree biomass is then converted to a mass of
carbon by multiplying by a range between 0.45 to 0.50, assuming that the carbon content in plant
biomass is constant (Twilley et al., 1992; Donato et al., 2011; Kauffman et al., 2011; Kauffman and
Donato, 2012). Therefore, measuring or estimating biomass is the key step for quantifying carbon
storage in any ecosystem. However, the destructive sampling method is very labour intensive and
time consuming and cannot be applied across a landscape or a large spatial extent. Therefore,
scientists have used variety of indirect techniques to scale up from field to global levels, including
biome-average methods, the biomass expansion factor (BEF), root-shoot ratio, allometric methods,

and remote sensing techniques (IPCC, 2006; IPCC, 2019).

Biome averaging is the simplest method which adheres to the IPCC’s Tier 1, in which the average
biomass value is obtained to approximate the carbon stocks of a region or nation. The average biome
values are compiled from inventories of the Food and Agricultural Organization (FAO) (Houghton et
al., 2001; Gibbs et al., 2007). Although this method is quick and easy, the estimation typically
underestimates the contribution of young stands as biome averages are based on mature stands. Since
the forest carbon stocks vary significantly with different geo-physical parameters, an average value
cannot represent as entire forest or country. Moreover, this method yields low accuracy because the
data are obtained only from few plots that may not represent the wider biome or region (FAO, 2010).
Many national and regional above-ground biomass calculations are based on the ‘Biomass Expansion
Factor’ (BEF). It is the average ratio between dry weight and stem weight measured from some
representative harvested trees (Brown, 1997). Default root: shoot ratios are also used to estimate
carbon stocks for national greenhouse gas (GHG) inventories. In the case of mangroves, the global

mean root: shoot ratio is 0.39 (Hamilton and Friess, 2018). However, like biome averages, these BEF



and root: shoot values can vary with vegetation type, climatic and biophysical factors of an ecosystem

(Magalhdes and Seifert, 2015).

The above-ground biomass stocks can be directly inferred from tree biometric measurements by using
an empirical allometric model (Brown, 1997). This model represents the relationship of tree biomass
with the diameter at breast height (DBH), and occasionally with tree height, and/or the wood density
of trees, derived from destructive sampling of trees. In the past, many allometric equations have been
developed for mangroves (Saenger and Snedaker, 1993; Clough et al., 1997; Saenger, 2002; Ong et
al., 2004; Comley and McGuinness, 2005; Soares and Schaeffer-Novelli, 2005; Hossain et al., 2012;
Kangkuso et al., 2016). However, one of the major limitations is the quality of the data underpinning
allometric models, which is often limited by time, cost and logistics (Chave et al., 2014). Therefore,
uncertainties arise from destructive sampling due to the difficulty to extract root and branch biomass

and also using allometric models.

Both Komiyama et al. (2005) and Chave et al. (2005) developed general allometric models for
mangrove species, however, there remains a lack of empirical data to calibrate the models especially
from mangroves in the Indian Ocean region. Therefore, the use of these equations in the ecologically
diverse Sundarbans mangroves is still contentious. The Chave et al. (2005) allometric model has been
widely used in all pan-tropical forests although it was originally developed for moist and wet forest
types. Due to the level of uncertainty in the previous allometric equation, Chave et al. (2014)
developed a new allometric model that includes tree height as a variable. Since mangroves
significantly vary in growth and form across latitudinal gradients, off-site allometric equations could
over-/funderestimate the carbon storage of any particular ecosystem. Therefore, improved calibrated
allometric models are needed from plot inventories or plot-inventory-calibrated remote sensing. This

thesis aims to develop species-specific allometric models in the Sundarbans mangrove forest.

1.2.2. Spatial distribution of carbon storage in mangrove forest and identification of key drivers

The systematic study of mangrove ecosystems has increased in the last decade because of the

mounting recognition of the importance of mangroves to climate change mitigation strategies and the



need for accurate carbon accounting at a national level. With the progressive development of the
remote sensing, scientists are using this technology extensively, and contributing significantly to a
number of high quality wall-to-wall biomass or carbon maps with high spatial resolution and accuracy
(Ni-Meister, 2015). However, the calibration is still dependent on the ground-based estimation of
carbon to allow for scaling up from plot measurements to national and global level carbon stocks

through allometric equations (Saenger and Snedaker, 1993; Fatoyinbo and Simard, 2013).

Despite the extensive use of regional and global carbon mapping, the allometric equation itself has
limitations due to the shortage of destructively sampled trees from which it is developed, and often,
the reference collection points are unrepresentative of the wider study area (Hickey et al., 2018).
Moreover, rather than being site- and species-specific, these equations include many uncertainties
when applied at larger scales (Mitchard et al., 2013). Therefore, using the same allometric equations
for all species or grouping wood density in the allometric equation would further average out species-
level variations in carbon estimates, and so major uncertainties originate from poor data on the local
distribution of carbon, which impacts to total nationally or globally summed carbon density (Mitchard
et al., 2013; Ni-Meister, 2015). Recently published global and continental AGB estimates can be
widely biased, due to an under representative sample size containing forest structural variables and the
exclusion of the climatic regime or geophysical and geomorphological variables which are the key to
understanding the spatial distribution of carbon at regional scales (Rovai et al., 2016). Therefore, it is
important to identify key drivers for the variation of carbon across the landscape. In the case of
below-ground biomass, major uncertainties arise. For example, Adame et al. (2017) found a 40%
overestimate in biomass compared with destructive field measurement. This has serious implications
on the accuracy of carbon estimation to fulfil country-specific reference levels in the UN REDD+
assessments. Therefore, country-specific or species-specific allometric models are needed to satisfy
the global financing mechanisms for mangrove forests. Identifying key drivers for the spatial variation
carbon stocks in mangrove forests should also be included in biomass or carbon assessment of

mangrove forests.



1.2.3. Lack of accurate long-term gain-loss data

Whilst mangrove forests are carbon-rich, their contribution to the global carbon balance is still poorly
understood due to a lack of historical long-term gain and loss data. One of the main requirements for
historical data is to set up a benchmark for deforestation and degradation against which carbon
emission reduction can be quantified. Due to constraints in data quality and availability, many
countries rely on remote sensing in combination with field assessments to set up an appropriate
reference level (Herold et al., 2011). Many attempts have been taken to map carbon stocks and fluxes
at a global scale (for example, Baccini et al., 2012; Avitabile et al., 2016; Baccini et al., 2017).
However, mangrove forests have largely been excluded from these global assessments because of
their small spatial extent and the difficulties of mapping these forest types (Hutchison et al., 2014)
(Table 1.1). Some global datasets included mangrove forest as a part of global tropical forests (9-14 in
Table 1.1). However, there are some recent studies which specifically focused on mangrove forest in
the world such as Bunting et al. (2018) and Bunting et al. (2022a; 2022b). A range of remote sensing
sensors and algorithms were used to map global mangrove forests. Landsat (30 m) was mostly used
for their global coverage and availability for longer time. This Landsat satellite was widely used to
make reference level in most tropical forests including mangrove forests. However, the recent high-

resolution satellites (Sentinel (10 m)) provide high potential to improve global mangrove forest covers

in the world.
Table 1.1: List of earth observation-based global/ mangrove forest cover maps.
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= University
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orest Map threshold Project
Global Multi- Hansen et
14 | Forest/Non- 281(15 TanDEM-X clustering al (2013) Independent '(\ggitg; eetal.
Forest Map classification and others
Note: WCMC-012: United Nations Environmental Programme (UNEP) World Conservation Monitoring Centre
(WCMC),

Moreover, surveying in remote mangroves is often hindered by high tides, mud, pneumatophores and
wildlife, especially in the Sundarbans (Otero et al., 2018). Therefore, remote sensing techniques, such
as optical, radar, and spaceborne or airborne LiDAR (Light detection and imaging) provide important
opportunities to quantify above-ground carbon (AGC) coupled with ground data at various scales
from individual trees to global coverage (Lucas et al., 2015). These techniques can help overcome the
need for extensive fieldwork and provide data for global scale estimation of biomass and carbon in

mangrove forests.

1.3. Aims and Objectives

This research project recognises the strengths and weaknesses of previous studies that have attempted
to quantify carbon storage in mangrove forests. The work seeks to develop local species-specific
models to estimate biomass and carbon in a very large mangrove forest by combining remote sensing

data with field data and will address the following research and methodological questions:



1. Can the existing allometric models for biomass estimation be tailored to the dominant species

of complex mangrove forests?
2. How do above- and below-ground carbon stocks vary spatially in a mangrove forest?

3. How accurately can carbon stocks be estimated by combining satellite imagery with field

inventories data?

4. Which environmental drivers determine the spatial variation of above- and below-ground

carbon stocks in a mangrove forest?
The specific aim of the research is to assess how much carbon is stored in both above- and below-
ground in the Sundarbans mangrove forest. The specific objectives of the research project are as

follows:

1. To review literature related to quantification of carbon storage in mangroves using remote
sensing. This review aims to establish commonalities and differences among the methods and
approaches used and to identify the factors affecting the quantification of carbon stocks (Chapter

2).

2. To measure soil organic carbon (SOC) in the Bangladesh Sundarbans mangrove forest and to
better understand the relationship of SOC within three salinity zones (oligohaline, mesohaline and
polyhaline) and between major forest types. The study also investigated the relationship between
physical and chemical properties and vegetation characteristics with SOC to develop dependable

predictive models of organic carbon (Chapter 4).

3. To develop species-specific allometric models and compare estimated biomass with global
models in order to understand modelled uncertainties in biomass estimation. The study also
investigated the variability of AGB in the Sundarbans by comparing measured and published
wood density values at multiple spatial scales and with different sets of tree height measurement

(Chapter 5).

4. To estimate above- and below-ground carbon stocks and uncertainties at plot scale and upscale
these to carbon stocks and their uncertainties to the Sundarbans ecosystem level to produce

ecosystem carbon map and error map based upon on a forest-type map. The study also aims to
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compare the variability of ecosystem carbon stocks with vegetation types and salinity zonation

(Chapter 6).

1.4. Thesis structure

The structure of this thesis contains seven chapters outlined below.

Chapter 2 provides an overview of carbon stocks in mangrove forests, their measurement
methodologies using remote sensing and the uncertainties involved. Given the use of a variety of
remote sensing sensors, resolutions, extrapolation algorithms, and validation methods in estimating
carbon stocks of mangroves, this review aims to establish commonalities and differences and to

identify the key factors affecting the quantification of carbon.

Chapter 3 describes an overview of the Bangladesh Sundarbans mangrove forest. It also includes the
detailed research methodologies for estimating above- and below-ground carbon estimation in the

forest.

Chapter 4 presents the guantification of SOC in the Sundarbans from sediment cores using laboratory
analysis. The chapter introduces key debates of spatial variability of SOC in different mangroves
worldwide and identified the causes of low SOC estimates in the Bangladesh Sundarbans. The chapter

is published in the journal CATENA:

Rahman, M.S., Donoghue, D.N.M., Bracken, L.J., 2021. Is soil organic carbon underestimated in the
largest mangrove forest ecosystems? Evidence from the Bangladesh Sundarbans. CATENA. 200,

105159. https://doi.org/10.1016/j.catena.2021.105159.

In this paper, all authors conceptualised the study together along with planning and research design.
M. S. Rahman collected sediment cores from the Sundarbans and did the laboratory analysis. He
prepared all graphs and wrote the manuscript. Donoghue, D. N. M. and Bracken, L. J. supervised the

study and provided comments on the draft and paper submission.

Chapter 5 describes the development of species-specific allometric models to estimate AGB in the

Sundarbans and investigates biomass variability using different sets of allometric models and
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parameters from different sources (wood density and tree height). The study also estimates
uncertainty in allometric models while estimating biomass in the Sundarbans. This chapter is

published in Environmental Research Letters:

Rahman, M.S., Donoghue, D.N.M., Bracken, L.J., Mahmood, H., 2021. Biomass estimation in
mangrove forests: a comparison of allometric models incorporating species and structural
information. Environmental Research Letters. 16(11), http://iopscience.iop.org/article/10.1088/1748-

9326/ac31ee

The contribution of authors in this article was as follows: Md. Saidur Rahman: Conceptualisation,
Data curation, Formal analysis, Investigation, Methodology, Visualisation, Writing — original draft,
Writing — review & editing. Daniel N.M. Donoghue, Louise J. Bracken: Conceptualisation,
Supervision, Funding Acquisition, Writing — review & editing. Hossain Mahmood: Data curation,

Writing — review & editing.

Chapter 6 describes the estimation of the above- and below-ground carbon stocks in the Sundarbans.
It also provides the description of the development of the forest-type map from the satellite imagery
and the prediction of carbon stocks at ecosystem level. Finally, the chapter describes methodologies to
estimate uncertainties in carbon stocks in the Sundarbans. This chapter has been prepared to submit to

the journal Global Change Biology:

Rahman, M. S., Donoghue, D. N. M. and Bracken, L. J. contributed to this chapter equally for
conceptualisation and research design. M. S. Rahman conducted the forest inventory in the
Sundarbans and prepared the chapter including data analysis, preparation of all graphs and writing.

Both Donoghue, D. N. M. and Bracken, L. J. supervised the study and review-edited the chapter.

Chapter 7 summarises the overall results to meet the research aims and discusses the implications for
the management and conservation of the Sundarbans mangrove forest. This chapter includes the main

conclusions, recommendations, and proposed future work based on findings of the research.
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Chapter 2

Dynamics of carbon stocks in mangrove forests and

estimation methods
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2.1. Introduction

Mangrove forests contain higher levels of carbon in the below-ground sediment than any other
ecosystem. The above-ground carbon also contributes high levels of carbon in any mangrove forests.
The diversity of components in mangrove forests require different quantification methods.
Researchers have developed protocols to quantify both above- and below-ground carbon stocks from
mangrove forests. A range of methodologies have also been developed to upscale field estimations to
the ecosystem level using remote sensing and GIS technologies. However, each methodology has its
own limitations and uncertainties in estimating carbon stocks. This chapter describes the methods
used to estimate carbon stocks in mangrove forests and to upscale carbon stocks to the ecosystem

level through remote sensing.

2.2. Carbon stocks in mangrove forests

Carbon stocks in a forest is the total carbon from vegetation, animals, sediments and water that absorb
carbon (Howard et al., 2014). Like terrestrial forest ecosystems, carbon stocks in mangrove forests can
be divided in to soil and biomass. However, while upland forests hold greater carbon in the above-
ground, mangrove forests largely store most carbon into organic soil and below-ground roots, which
altogether makes up to 85% carbon in the below-ground (Brown, 1997; Donato et al., 2011; Kauffman
et al., 2020). Using data from five continents, Kauffman et al. (2020) found the mean total ecosystem
carbon stocks is 856 + 32 Mg ha*, while the below-ground soil and root comprises 741 + 30 Mg ha™.
This high carbon storage in the below-ground is mainly due to accumulation of sediment and organic
matter over millions of years from both autochthonous (carbon from mangroves) and allochthonous
(carbon from outside mangroves). Due to their spreading cable root networks in the below-ground,
mangroves are often called as ‘bottom heavy plants’ (Komiyama et al., 2008). Therefore, they invest
more carbon in the below-ground roots which generates a higher root-shoot ratio compared to
terrestrial forests (Adame et al., 2017). The slow decomposition of organic matter as a result of water-
logged and anaerobic conditions allows mangrove sediments to continuously accumulate carbon

through time (Kauffman and Donato, 2012; Howard et al., 2014).
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Figure 2.1 Different components of carbon stocks in mangrove forest. Reproduced with permission from
Howard et al. (2014, p. 30).

The carbon stocks in mangroves can be divided into above-ground carbon (AGC) and below-ground
carbon (BGC). The AGC stocks comprise carbon stored in live or dead standing trees, shrubs, herbs,
dead and downed wood and pneumatophores (roots extended to above-ground) (Figure 2.1). On the
other hand, BGC is composed of carbon in soils and roots (Howard et al., 2014). Negligible
components in mangroves such as leaf litter and understorey vegetation such as seedlings, herbs,
shrubs are usually not included in the carbon stocks assessments (Kauffman and Donato, 2012;
Howard et al., 2014). The major portion of AGC comprises all living trees which are easy to quantify
through measuring diameter at breast height (1.3 m) and the height of trees. These AGC components
are heavily affected by landuse changes and constitutes a major portion of total carbon stocks
(Howard et al., 2014). The lying dead wood can comprise 2.5-5.0% of the carbon stocks, but regular
tides can export this mass to the rivers, however this may be important after cyclones as this
disturbance can yield a large amount of dead wood in the forest floor (Simard et al., 2019).

Mangroves form a range of specialised root systems namely pneumatophores, prop roots, knee roots
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in the above-ground and comprise a significant amount of carbon to the AGC (Kauffman and

Donato, 2012).

Sediment carbon constitutes the majority portion of the below-ground carbon (BGC) stocks. The dead
litter and decomposed organic matter are the main components of soil carbon stocks (Howard et al.,
2014). Living and dead roots are also an important pool of BGC, which is very difficult to measure as

mangroves produce cable networks extending across large areas (Kauffman et al., 2020).

2.3. Carbon estimation in mangrove forests

The assessment of carbon stocks has gained interest since 2011 after the paper published by Donato et
al. (2011) stating that mangroves are the most carbon-rich forests in the tropics. Standard protocols
have been developed for assessing above- and below-ground carbon stocks in mangroves including
sampling design, sample collection procedures, data interpretation and reporting (Kauffman and
Donato, 2012; Howard et al., 2014). The IPCC developed three tiers of good practice and guidelines
on assessing anthropogenic greenhouse gas (GHG) emissions and carbon removal from different
ecosystems including mangroves (IPCC, 2006). The Tier 3 approach captures variability of carbon
with greater accuracy and confidence incorporating site factors such as ecological zones, vegetation
types and environmental gradients and thus is recommended to all countries if resources are available
(IPCC, 2006; Kauffman and Donato, 2012; Howard et al., 2014). The Verified Carbon Standard
(VCS), a voluntary certification programme for GHG emission reduction projects, developed carbon
estimation methodologies specifically for the REDD™ initiative which also requires Tier 3 assessments

(VCS, 2020).

While carbon in sediments is directly measured from the sediment samples, tree carbon is estimated
from allometric models of biomass from tree structural parameters such as diameter, height and wood
density (Kauffman and Donato, 2012; Kauffman et al., 2020). Therefore, a range of regional, pan-
tropical and site-specific allometric models are available for mangroves (Komiyama et al., 2008;
Chave et al., 2014; Mahmood et al., 2019). However, the use of non-mangrove models for mangrove

species, and non-site-specific wood density does not provide the corresponding level of accuracy
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especially when estimating biomass variability with vegetation types and environmental drivers
(Owvers et al., 2018; Rahman et al., 2021c). A standard conversion factor (usually 45-50%) is used to
convert biomass into carbon (Kauffman and Donato, 2012; Howard et al., 2014). Application of a
standard conversion factor may not reflect an accurate carbon proportion since the conversion rate is
species-specific and varies with the component of trees such as stems, branches and roots (Owers et
al., 2018). Overall, the carbon stocks of a mangrove forest is not spatially homogeneous, rather it
varies due to species type, composition, structure, age, intertidal condition, salinity and other
environmental variables (Owers et al., 2018; Kauffman et al., 2020; Rahman et al., 2021b). Therefore,
site- and species-specific allometric models and site-specific variables are desirable to better reflect
carbon stocks variability(Mahmood et al., 2019; Martinez-Sanchez et al., 2020; Rahman et al.,

2021c).

2.4. Remote sensing methods for carbon measurement and upscaling

Since remote sensing imagery is widely used to upscale field inventory data to larger scales, several
guidelines have been developed to reduce and report the uncertainty of biomass or carbon
transparently (Global Observation of Forest Cover and Land Dynamics (GOFC-GOLD) sourcebook
(GOFC-GOLD, 2016), Global Forest Observations Initiative (GFOI) guideline (GFOI, 2016) and
Food and Agricultural Organisation (FAO) guideline (FAO, 2016)). While a range of available
protocols provide standard guidelines to measure and monitor carbon stocks in any forest, it is always
challenging to choose as appropriate methodology. However, the key to all these protocols is that they

all meet the requirements of the Tier 3 approach of the IPCC guidelines.

Remote sensing (RS) imageries are frequently used to upscale plot level carbon stocks estimate to
larger scales where additional environmental variables can be used to produce carbon maps at
ecosystem, national, regional or global levels. Upscaling via remote sensing can be achieved in four
ways — a) Stratify and Multiply (SM) Approach, b) Combine and Assign (CA) Approach, c)
Ecological Models (EM) Approach, and d) Direct Remote Sensing (DR) Approach (Goetz et al.,

2009). While the SM approach assigns an average carbon value to land cover/vegetation type map
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(for example, Asner et al. (2010)), the CA approach is the extension of SM which uses kriging or co-
kriging geostatistics techniques with multi-layered information in GIS (geographic information
system) (for example, Gibbs et al. (2007) and Tyukavina et al. (2015)). The EM approach uses remote
sensing (RS) information to parameterise the model (for example, Hurtt et al. (2004)) and the DR
approaches are empirical models where RS data is calibrated to field estimates using a number of
statistical and machine learning approaches such as neural network and regression tress (for example,
Baccini et al., 2008; Saatchi et al., 2011; Baccini et al., 2012). Each of these methods has limitations
in terms of data requirements and applicability. Since the SM approach uses average values for each
class, it is unable to capture the wider variability within each class (Gibbs et al., 2007; Goetz et al.,
2009). The CA approach has the advantage to use additional variables such as elevation, canopy
heights and to add weights to prioritise one variable against another. However, it suffers from a lack
of consistent spatial data (Goetz et al., 2009; Tyukavina et al., 2015; Ameray, 2018). The DM
approach is best suited for monitoring carbon sequestration at larger scales and to prepare wall-to-wall
carbon map (Goetz et al., 2015). However, for greater accuracy, the DM approach requires active RS
data such as RADAR or LiDAR for training models and validation as these sensors measure forest

biomass directly (Goetz et al., 2015).

With recent improvements in spatial and temporal resolution of RS data, scientists are able to use a
variety of remote sensing techniques to help quantify carbon in mangrove forests (Table 2.1). The
data from remote sensing sensors can be used to fill the spatial, attributional, and temporal gaps
produced from forest inventories leading to estimates closer to actual values. However, the sensor
does not provide a measurement of carbon content directly, and it is mostly related to the vegetation
parameters (for example, crown size, tree height, texture and crown shadow), which are very much
interlinked with tree biomass and carbon content (Ni-Meister, 2015). Therefore, remote sensing

studies have focused on AGC, and this can act as predictor of other carbon pools such as BGC.

With the advancement of technology, researchers are now increasingly using sensors like RADAR
(Radio Detection And Ranging), SAR (Synthetic Aperture Radar), INSAR (Interferometric Synthetic

Aperture Radar) and LiDAR (Light Detection And Ranging) because of their increased accuracy for
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measuring biomass from forests directly including mangrove forests (Table 2.1). The homogeneity of
mangrove forest and the flat underlying topography have led scientists to use canopy height models
(CHM) to measure AGB, generated from airborne and spaceborne stereo imaging, LIDAR and SAR
interferometry. By using SRTM (Shuttle Radar Topographic Mission) and ICESat GLAS (Geoscience
laser altimeter system) elevation data, Simard et al. (2010) estimated above-ground biomass in
combination with field data. Application of a digital elevation model (DEM) from SRTM was found
in Simard et al. (2006)’s study, where they measured the height of Florida mangroves, which was then
combined with field biomass data to estimate biomass for the whole forest. Allometric models were
used with the mangrove heights derived from the relationship between the ICESat GLAS canopy
waveform contribution (CWC) and SRTM elevation (Simard et al., 2008). By using a Landsat-derived

forest cover map and SRTM, Fatoyinbo et al. (2008) successfully estimated the above-ground

biomass of Mozambique mangrove with allometric models.

Table 2.1: Application of remote sensing for studying mangrove carbon measurement.

Sensor Country (Area) Biomass Accuracy Method Study
parameters RMSE
Landsat, LiDAR Northern Western Canopy height SD=+7.8Mg Regression Hickey et al.
RIEGL Q680i-S Australia AGB ha! (2018)
SRTM Global mangrove Canopy height - Regression Tang et al. (2018)
130,420 km?
Push-broom Malaysia Individual crown - Regression Suhaili and Lawen
hyperspectral sensor area (2017)
ALOS-2 PALSAR Hai Pong City, DN to normalized RMSE =0.299 Machine Pham et al. (2017)
Vietnam radar sigma zero R?2=0.78 learning
(backscatter
coefficient)
Worldview-2, ALOS Indonesia Vegetation index Empirical Wicaksono (2017)
ABNIR-2, ASTER modelling,
VNIR, Landsat OLI 8, PCA,
Hyperion Regression
hyperspectral
UAV RGB Matang Mangrove Tree height Biomass-height Regression Otero et al. (2018)
Forest, Malaysia R?=0.75
ALOS PRISM, ALOS | Mimika, Indonesia Canopy height 4.1,36,325 Regression Aslan et al. (2018)
World 3D-30m DSM Sundarbans,
Bangladesh Mahakam
Delta, Indonesia
Interferometric Mimika, Indonesia Mangrove Classification Quantile Aslan et al. (2016)
Synthetic Aperture 193,226 km? composition, canopy | 94.38%, kappa: regression
Radar (InSAR) height 0.94, MAE 3 m. methods
RMSE 7.28 m
TanDEM-X, InNSAR Sundarbans, Canopy height RMSE 0.774 m, | Regression Lee et al. (2015)
Bangladesh andindia correlation 0.852
TanDEM-X, InNSAR Mexico and Canopy height RMSE 01.069- Regression Lee and Fatoyinbo
Mozambique 1.727 m, (2015)
correlation
0.851-0.919
ALOS-2 PALSAR Hai Pong City, Backscatter 35.5mg hat, Regression Pham and Yoshino
Vietnam coefficient 41.3 mg hat (2017)
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The historical archive of optical imagery over the past few decades has brought a low-cost or error
free solution for developing countries to conduct carbon monitoring in forests. In the case of
mangroves, the most widely used optical imagery is Landsat TM (Fatoyinbo et al., 2008; Aslan et al.,
2016; Omar et al., 2016), followed by SPOT-5 (Hamdan et al., 2013), IKONOS (Proisy et al., 2007),
ALOS AVNIR-2 (Wicaksono et al., 2016), WorldView-2 (Candra et al., 2016), and GeoEye-1
(Jachowski et al., 2013). However, the accuracy of the carbon estimates is always hindered by cloud
cover, image resolution, quality, revisit time, stand complexities and shadows from canopy and
topography (Ni-Meister, 2015). These limitations can be overcome by object-based image analysis,
textural image analysis, and species-specific allometric equations. For example, Couteron (2002)
proposed a Fourier-based textural ordination method to capture structural diversity of the tree crown

in relation to the growth stage and species in VHR (Very High Resolution) images.
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Figure 2.2: Spatial scale, temporal resolution, accuracy, and cost for different methods for monitoring and
measuring carbon stocks. Modified from Bustamante et al. (2016, p. 96), License Number: 5411440943342,
License date: Oct 17, 2022.

Due to the absence of spaceborne laser scanning sensors tailored to forestry, airborne LiDAR is
considered the most accurate method to estimate biomass or to calibrate other satellite imagery (Ni-
Meister, 2015). Otero et al. (2018) demonstrated the use of an unmanned aerial vehicle (UAV) with
attached RGB camera to retrieve structural information in the Matang mangrove forest, Malaysia.
However, large scale estimates of biomass through active sensors are hampered by the associated

costs and operational limitations (Bustamante et al., 2016) (Figure 2.2). Despite these limitations,
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LiDAR data have been increasingly used in mangrove studies in the recent years (Feliciano et al.,
2017; Laurin et al., 2017; Fatoyinbo et al., 2018) and they have shown the measurement of AGC from

airborne LiDAR for mangrove forests.

The use of optical sensors is restricted to detect land cover changes and the different biophysical
properties (for example, NDVI (Normalised Difference Vegetation Index), LAl (Leaf Area Index))
and are linked statistically to the ground plot to map biomass (Lucas et al., 2015; Bustamante et al.,
2016). On the other hand, estimating biomass needs information on wood volume or tree height.
Therefore, three-dimensional (3D) remote sensing techniques have been extensively used because of
the strong relationship between forest height and biomass (Fatoyinbo and Simard, 2013; Fatoyinbo et
al., 2018). One of the main problems of using an optical and SAR (Synthetic Aperture RADAR) is the
saturation effect, especially in any heterogeneous forest with high biomass. For instance, Asbridge et
al. (2016) found SAR saturation of L-band above 100 Mg ha. However, the saturation limit is not
confined to a specific biomass level and is largely dependent on stand characteristics and
macroecological structural properties (Joshi et al., 2017). For example, Lucas et al. (2007) retrieved
low backscatter signal in the case of mangroves with large prop root system and high tides. Therefore,

the threshold level varies as a function of the structure and composition of the forest.

2.5. Errors and uncertainties in carbon measurement

Errors and uncertainties in carbon estimation are involved in every phase of carbon estimation
including the field inventory to the remote sensing measurement of area and carbon estimation. While
error is defined as the difference between the true value and actual value of measurement and
uncertainty is the lack of confidence of the parameter values (Harmon et al., 2007). Upscaling field
carbon stocks estimation using remote sensing produces uncertainty due to geolocation mismatches
with field plots, variable acquisition angles of satellite imagery, mismatches in tree representation,
scale mismatches and temporal mismatches in time series analysis (Réjou-Méchain et al., 2019). The
biomass measurement, conversion to carbon and upscaling to the ecosystem or larger scales (such as

countries, regions) involves series of statistical models which accumulates uncertainties in each step
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(Réjou-Méchain et al., 2019; Rahman et al., 2021c). The errors and uncertainties from field plots are
therefore carried into the remote sensing and to the final carbon map, which altogether make it a

challenging task to keep errors and uncertainties at low.

2.6. Conclusions

The literature review on carbon stocks dynamics in mangrove forests highlighted that the ecosystem
carbon stocks is composed of both above- and below-ground carbon — either dead or alive, and
sediment carbon. Given that the diverse nature of the different components of mangroves, each
component needs different strategies to quantify stored carbon. Allometric models are largely used to
infer biomass from tree attributes. However, for greater accuracy the carbon estimation needs species-
and site-specific allometric models and vegetation attributes such as wood density and height.

Therefore, standard protocols have been developed by different organisations and researchers.

Remote sensing is widely used to upscale field carbon estimates to the ecosystem level. Optical
sensors are mainly used to measure forest area to combine field data to estimate carbon density in
mangrove forests. Historical archives of remote sensing data allow us to monitor area or carbon stock
changes in any mangrove forest area. On the other hand, RADAR and LiDAR, either airborne or
satellite, are used to measure biomass directly however signal saturation can underestimate biomass as

a result of the canopy density, tides and the type of root system.
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Chapter 3

Study site and field work

23



3.1. The Sundarbans mangrove forest

The Sundarbans is the world’s largest contiguous mangrove forest situated across Bangladesh (6,017
km?, including water areas) and India (4,000 km?) (Figure 3.1 and 3.2). Like all other mangroves, it
also provides plethora of ecosystem services and products to the people of Bangladesh including
protection from tsunamis and cyclones (Giri et al., 2008). Because of its outstanding ecological value,
UNESCO declared a portion of the Sundarbans (1,395 km?) as a World Heritage Site in 1997
(Siddiqi, 2001). Despite its recognized national and international importance, historically this forest
has been threatened by illegal felling, land conversion, encroachment, shrimp farming, and increasing
salinity (Ellison et al., 2000) and it is threatened by climate change and sea level rise over the next
few decades (McLeod and Salm, 2006; Gilman et al., 2008; Alongi, 2015). According to the recent
IPCC forecasts, this forest would be impacted by increasing sea surface temperatures from 1 to 3°C
and 18-20 cm sea level rise, and thereby, increasing salinity 0.5 PSU (Practical Salinity Unit) by 2100
(Church et al., 2013; Collins et al., 2013). Apart from impacts from other climatic and edaphic factors,
salinity is the major determinant to vegetation change in the Bangladeshi part of the Sundarbans.
During the monsoon, this forest usually experiences a large drop in salinity due to the huge network
of upstream rivers criss-crossing through Bangladesh from the Himalayas (Hoque et al., 2006; Wahid
et al., 2007), while in the winter the opposite effect is seen due to the lack of freshwater flow (Anwar
and Takewaka, 2014). More than 90% of freshwater flow has been lost since 1974 due to the
construction of the Farakka dam in the Indian border leading to higher salinity in the Sundarbans,

especially in the western part.
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SUNDARBANS

Figure 3.1: Location of Sundarbans between Bangladesh and India. Reproduced from Ghosh et al. (2016) CC
BY 4.0.

3.1.1. Climate

The climate of the Sundarbans is warm, humid, and tropical, where annual precipitation varies from
1474 to 2265 mm and mean annual minimum and maximum temperature are between 29 °C to 31 °C

between 1948 and 2011 (Chowdhury et al., 2016; Sarker et al., 2016).

3.1.2. Geology and soils of the Sundarbans

The Sundarbans mangrove forest lies in the south-western part of the Bengal Basin, one of the most
extensive sediment reservoirs in the world composed of unconsolidated Quaternary deposits (Rudra,
2014). The rapid sedimentation followed by the tectonic collision of the Indian plate with the Tibetan
plate and the Burmese plate in the Miocene triggered the formation of the Bengal Basin (Alam, 1989).
Since the Holocene, the dynamic Ganges-Brahmaputra river system has been discharging sediments
from the Sub-Himalaya and is still delivering >1 Gt/yr of sediment to the delta plain of India and
Bangladesh (Islam et al., 1999; Syvitski and Milliman, 2007). The Sundarbans is of relatively recent

origin (3,000-year B.P.) and this mangrove has developed as a result of both fluvial and tidal forces
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depositing sediments to the GBM river mouth (Goodbred and Kuehl, 2000; Allison and Kepple, 2001;
Rogers et al., 2013). Previously, the Ganges was the main source of sediments in the Sundarbans,
however, recent changes have resulted from the merging of the Ganges and Brahmaputra which have
now migrated to the eastward, far away from the Sundarbans (Rudra, 2014; Islam, 2016b). Together
with the eastward migration of the primary GBM delta, the construction of the Farakka Barrage in the
main Ganges River and earthen embankments surrounding the Sundarbans have reduced freshwater
flow, resulting in reduced fluvial sedimentation in the Bangladesh Sundarbans. This
geomorphological change, in turn, has led to increased remobilisation of sediments by tidal forces
(Rogers et al., 2013; Hale et al., 2019; Bomer et al., 2020b). The changed pattern of freshwater flow
has resulted in a salinity gradient increasing from the east to the west of the Sundarbans. Based on the
soil salinity variation, the Sundarbans naturally divides into three distinct zones based; i) Oligohaline
(LSZ) (<2 dS/m, decisiemens per metre), ii) Mesohaline (2-4 dS/m) and iii) Polyhaline (>4 dS/m)

(Siddiqi, 2001; Chanda et al., 2016b).

The soil is mainly fine-grained, grey coloured, slightly calcareous, and mostly composed of silts to
clayey silts (Allison et al., 2003; Bomer et al., 2020a). The subsurface sediment extends up to 6 m in
depth in the landward direction and up to 4 m in depth in the seaward direction (Allison et al., 2003).
The median grain size ranges between 16-32 um reflecting the medium silt range. The average dry
bulk density (0.81 g cm-3) is higher in the Sundarbans in comparison to other mangroves in the world
(Bomer et al., 2020a). The soil physical and chemical properties are varied from the eastern to the
western part of Bangladesh Sundarbans, the eastern part is softer, more fertile and receives more fresh
sediments than the western part (Siddigi, 2001). Soils are mostly neutral to alkaline (pH 6.5-8.0),
whereas the polyhaline zone is more alkaline than the oligohaline zone. Soils of the western and
southern polyhaline zone are comparatively richer in P, K, Na, Mg, CI- and Fe, but lower in soil NH4-
and Na than the eastern oligohaline zone (Siddiqi, 2001; Sarker et al., 2016). This pronounced
differences in soil nutrients and salinity trigger the diversity and variability of vegetation composition

in different parts of the Sundarbans.
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3.1.3. Vegetation dynamics

A range of studies concluded that the extent of the Bangladesh Sundarbans was almost constant over
the last 50 years (Emach and Peterson, 2006; Giri et al., 2007; Awty-Carroll et al., 2019). Based on
per-pixel supervised classification methods, Giri et al. (2007) analysed multi-temporal satellite data
from 1970s, 1990s, and 2000s using supervised classification approach and found that the areal extent
of the Sundarbans has not changed significantly (approximately 1.2%) between 1970s to 2000s. The
forest is however constantly changing due to erosion, aggradation, deforestation and mangrove
rehabilitation programmes. The net forest area increased by 1.4% from the 1970s to 1990 and
decreased by 2.5% from 1990 to 2000. The recent updated Global Mangrove Watch (GMW)
estimates the area of the Sundarbans in 2010 as 4441.59 km? from their previous estimates of 4168.3
km?, an increase of 273.29 km? (Bunting et al., 2018; Bunting et al., 2022a). However, these studies
included coastal planted mangroves which are not inside the geographical boundary of the

Sundarbans.

After analysing four forest inventories from 1926 to 1997, Iftekhar and Saenger (2008) reported a
0.03% annual decline of vegetation cover during the period 1981-1997 attributing to this temporal
and spatial variation of salinity. Based on topographic maps and Landsat images, Reddy et al. (2016)
estimated only 6.5% forest loss from 1930 to 2014. On the other hand, Potapov et al. (2017) found no
net forest cover change as the forest gain compensated forest loss between 2000 and 2014. This raises
guestions whether there is any change in distribution of tree species, which is essential to understand
the impacts of climate change and other drivers on any ecosystem. Ghosh et al. (2016) studied the
species composition change over 38 years from 1977 to 2015 across the entire Sundarbans and found
a 9.9% decline of both Heritiera fomes and Excoecaria agallocha and 12.9%, 380.4% and 57.3% rise
in Ceriops decandra, Sonneratia apetala and Xylocarpus mekongensis, respectively. The study
classified the whole Sundarbans from the field data obtained from only the Bangladesh area.
Therefore, this study lacks representative training data and the classification accuracy is low,
especially in the Indian Sundarbans. The most recent estimation by Mahmood (2015a) showed about

53% of the dominant Heritiera fomes population has declined over 108 years from 1906, and 37% of
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the existing trees are seriously affected by ‘Top dying disease’ as a result of increased salinity. This
result urges continuous monitoring of the forest in the species level to unravel our understating of

biomass change, which would in turn help decision making regarding sustainable management of this

forest.

Figure 3.2: Sundarbans mangrove forest. Left: view from ground in low tide (Photo: Sajjad Hossain Tuhin),
Right: aerial view of species composition (Photo: Zaheer Igbal Ezaz) (February 2019).

3.1.4. Permanent sample plots

In the Sundarbans, there were 120 permanent sampling plots (PSP) which were established in the
beginning of the twentieth century to study and monitor the tree growth in 1987 (Figure 3.3). The area
of the rectangular PSP is 20 m x 100 m which comprises 2,000 m2. These locations were selected
based on salinity, forest types, accessibility and for the representation of the nature of the ecosystem.
The area is also divided into 55 compartments of variable sizes for the management as single unit.
These compartments were used to operate felling operations in different management plans in the

past.

Since the area of each PSP is very large, the present study took random small sized plots in each PSP.
The location of all PSP is close to the riverside which is always subject to erosion. On the other hand,
all PSPs did not cover the whole Sundarbans, therefore, additional 20 sample plots were taken outside

the PSP to cover the whole Bangladesh Sundarbans.
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Figure 3.3: Location of the permanent sample plots in the Sundarbans. Reproduced from Mahmood (2015a)

Until recently, the measurement of biomass and carbon stocks in the Sundarbans was mostly based on
field measurements from a relatively small number of sample plots, sometimes unevenly distributed
and based on an allometric model derived from other mangroves or tropical forest. According to
Kauffman and Donato (2012), species specific regional equations are desired to produce greater
accuracy in carbon measurement rather than general equations. Hence, most of the earlier studies may
not be relevant for the measurement of carbon in the Sundarbans. Several complete inventories were
conducted in the 1930s, 1960s, 1980s and 1990s for monitoring vegetation dynamics (Iftekhar and

Saenger, 2008). The first comprehensive attempt to measure carbon stocks in the Sundarbans was
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undertaken in 2009-10 under the Integrated Protected Area Co-Management (IPAC) project supported
by U.S. Forest Service (USFS) and U.S. Agency for International Development (USAID). In order to
measure changes in carbon stocks, the carbon stock was estimated using 1997 inventory data and
compared with similar parameters of 2009-10 inventory (BFD, 2010). In both measurements, they
used a locally derived volume equation and conversion factors to convert volume into biomass. By
using an allometric equation, Rahman et al. (2015a) calculated carbon stocks at the whole ecosystem
level by combining both above and below-ground from the data obtained in 2009-10 inventory by the
Forest Department, Bangladesh. They investigated the variation of carbon stocks in different
species/species groups and salinity ranges. However, the allometric equation, which was developed
from other mangroves, may not represent the mangroves of the Indian subcontinent and thereby fails
to achieve accuracy. Based on their study, Chanda et al. (2016b) simulated the carbon stocks in the
Sundarbans by using Markov Chain and cellular automata in order to predict future carbon storage.
Most recently, Kamruzzaman et al. (2017) measured above-ground carbon in the medium salinity
zone. However, this study also did not use a locally derived allometric equation despite of having
some species-specific allometric equations from both Bangladesh and India. Very recently GOB
(2019) estimated total ecosystem carbon stocks in the Sundarbans using a field inventory and

developed site-specific common allometric models by Mahmood et al. (2019).

3.2. Forest survey

Forest survey in the mangrove forest is always challenging for its proximity to the sea which enables
people to move from one place to another using only river way. Again, the adaptation features of
mangroves such as dense network of upright roots (pneumatophores) reduces the accessibility inside
forests and thereby roaming in the forest needs extra effort and time compared to terrestrial forest
(Figure 3.4). Moreover, the Sundarbans mangrove forest contains the Royal Bengal Tiger (Panthera
tigris) which possesses a major life risk while surveying inside the forests. There are also some other
furious animals such as snakes and crocodiles all over the Sundarbans (Figure 3.4). Therefore, safety

issues are of major concern before doing forest survey inside the Sundarbans.
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Figure 3.4: Challenges for fieldwork in the Sundarbans mangrove forest. Left: venomous snake inside the forest
plot, Right: Pneumatophores of Heritiera fomes reduce the mobility inside forest.

3.2.1. Sampling design and data collection

The field work for this study was conducted in two phases (August 2018 and between February and
April 2019). Temporary circular plots were established in each PSP with the radius of 11.3 m that
accounts in total 400 m2, one-fifth of the PSP. Due to the fact that most of the PSP is located near the
riverbank and these 120 PSPs don’t cover the whole Sundarbans, additional 20 plots were taken,

which makes altogether 140 sample plots (Figure 3.5).
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Figure 3.5: Plot location in the Sundarbans mangrove forest, Bangladesh. ESRI Basemap Sources: Esri,
HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community.

The study collected biophysical information from the above-ground trees, poles, dead and down wood
and pneumatophores. On the other hand, below-ground carbon was estimated and measured from
roots and sediments, respectively. The study followed circular nested plot to retrieve data from all
structural categories of above ground component. While the circular plot is designed to get data from
the trees, it was also divided into three sub-plots with radius of 1m, 2m and 5m to take measurement
of seedlings, saplings and poles (Figure 3.6). In case of trees and poles, Diameter at Breast Height
(DBH) and total height was measured by a diameter tape and a Vertex Il hypsometer (Haglof,
Sweden), respectively (Figure 3.7). In case of the presence of any buttresses, the DBH was measured
above the buttresses (Figure 3.7). While there was any forking below the breast height (1.3 m), it was

considered as two trees.
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Figure 3.6: The nested circular plot and different measured components of vegetation and sediment in each
segment.

Decay status of each tree was also recorded (if any) in three statuses: Decay 1, decay 2, Decay 3 with
increasing number indicates more decay. In order measure the wood density, wood cores were
collected at breast height (1.3 m) with increment borer for each tree species found in the plot (Figure
3.7). For pneumatophores, a 1 m x 1 m plot was used to count the number of pneumatophores for all
species. For dead and down wood, two cross-sectional transect was taken to count the number of
pieces in three categories based on diameter in the middle: Fine ( > 0.6 cm), Small ((0.6-2.5 cm) and
Medium (2.5-7.6 cm). In case of non-tree vegetation like Nypa fruticans, the number of leaves and for
Phoenix sylvestris, the number of stems were counted. In order to measure carbon in pneumatophores
and other non-tree such as, some specimens with variable sizes were weighed and subsequently

brought to the laboratory for oven drying.

In this study, sediment samples were collected from 55 plots, of which 50 plots are from PSPs
selected at random, and the remaining five plots are from outside PSPs to represent areas outside PSP.

Sampling was undertaken in two phases: In the first phase, three sediment cores of 50 cm depth were
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taken from 18 PSPs. After laboratory analysis of the samples from the first 18 PSPs, it was decided to
extend the sediment sampling depth to 1 m and take two core samples from each plot because of little
within-plot variation among the initial 54 core samples. In the second phase, an additional 37 PSPs
were sampled with two cores sampled at each plot. Altogether, 126 sediment cores from 55 plots were

sampled across the whole of the Bangladesh Sundarbans (Figure 3.8).

Figure 3.7: DBH and height measurement and collection of wood core. Top-left: DBH measurement by
diameter tape above buttress, top-right: DBH measurement above forking, bottom-left: height measurement with
a Vertex-111 hypsometer, bottom-right: wood core collection through increment borer.
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3.2.2. Laboratory analysis

For each core, samples were freeze-dried and re-weighted to determine the bulk density. Bulk density
was calculated by dividing the dry mass of the soil by the volume of the soil. Soil pH and soil salinity
(as soil conductivity) were measured from a portion of the homogenised dry soil for each core. Dried
soils were diluted with distilled water (1:5 ratio), and subsequently, soil pH was measured using a

Jenway 3510 Standard Digital pH Meter and soil salinity by a handheld Jenway 470 Conductivity

Meter (Hardie and Doyle, 2012).

Figure 3.8: Sediment collection and the determination of SOC in the laboratory. Top-left: sediment core
collection, top-right: sediment core, bottom-left: weighing sediment sample for measuring organic carbon,
bottom-right: loading sediment sample in the CHN analyser.
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To determine the soil organic carbon (SOC) and nitrogen content of the soil, any large stones or twigs
were removed from the sample and subsequently homogenised and ground with a ball mill. 40 mg of
the sediment were then passed through an elemental analyser (Thermo Scientific Flash 2000-
NC Soil Analyzer) to derive the total carbon and nitrogen as a percentage (Figure 3.8). Inorganic
carbon content was deducted from the total carbon to obtain the organic carbon percentage, according
to Howard et al. (2014). The inorganic carbon content was measured from random samples across all
salinity zones using an Analytik Jena Multi EA (Elemental Analyser) 4000. Soil organic carbon
density (gm cm) for each sample and total organic carbon content (Mg ha) of each depth and core

were measured according to Howard et al. (2014).

3.3. Conclusions

The Sundarbans is a unique ecosystem with high biodiversity compared to other mangrove forest.
Despite some initiatives for the estimation of carbon stocks in the Sundarbans, there is no
comprehensive study combining field inventory data with remote sensing to estimate ecosystem
carbon stocks in the Bangladesh Sundarbans. Most studies used pan-tropical models which potentially
do not represent species diversity and used wood density which may increase the uncertainty. In this
regard, species-specific allometric models and carbon conversion factors may help to better

capture the variability due to species composition.
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Chapter 4

Is soil organic carbon underestimated in the largest
mangrove forest ecosystems? Evidence from the
Bangladesh Sundarbans

Rahman, M.S., Donoghue, D.N.M., Bracken, L.J., 2021. Is soil organic carbon underestimated in the
largest mangrove forest ecosystems? Evidence from the Bangladesh Sundarbans. CATENA. 200,

105159. https://doi.org/10.1016/j.catena.2021.105159.
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Abstract

Globally, mangroves sequester a large amount of carbon into the sediments, although spatial
heterogeneity exists owing to a wide variety of local, regional, and global controls. Rapid
environmental and climate change, including increasing sea-level rise, global warming, reduced
upstream discharge and anthropogenic activities, are predicted to increase salinity in mangroves,
especially in the Bangladesh Sundarbans, thereby disrupting this blue carbon reservoir. Nevertheless,
it remains unclear how salinity affects the below-ground soil carbon despite the recognised effect on
above-ground productivity. To address this gap, research was undertaken in the Bangladesh
Sundarbans to compare total soil organic carbon (SOC) across three salinity zones and to explore any
potential predictive relationships with other physical and chemical properties, and vegetation
characteristics. Total SOC was significantly higher in the oligohaline zone (74.8 + 14.9 Mg ha),
followed by the mesohaline (59.3 + 15.8 Mg ha?), and polyhaline zone (48.3 + 10.3 Mg ha?)
(ANOVA, F3 500 - 118.9, p <0.001). At all sites (55 plots), the topmost 10 cm of soil contained a
higher SOC density than the bottom depths (ANOVA, F3 s00= 30.1, p <0.001). On average, Bruguiera
spp. stand holds the maximum SOC measured, followed by two pioneer species Sonneratia apetala
and Avicennia spp. Multiple regression results indicated that soil salinity, organic C: N and tree
diameter were the best predictor for the variability of the SOC in the Sundarbans (R? = 0.62). Despite
lower carbon in the soil, the study highlights that the conservation priorities and low deforestation
have led to less CO; emissions than most sediment carbon-rich mangroves in the world. The study
also emphasised the importance of spatial conservation planning to safeguard the soil carbon-rich
zones in the Bangladesh Sundarbans from anthropogenic tourism and development activities to

support climate change adaptation and mitigation strategies.

4.1. Introduction

Mangroves are recognised as one of the most carbon-dense forest types in the world due to their
efficient carbon sequestration capacity into both above and below-ground carbon pools (Donato et al.,

2011; Alongi, 2012; Sanderman et al., 2018). Recent assessments of soil carbon suggest that
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mangrove ecosystems contain, on an average, between 856 and 1,023 Mg of carbon per hectare, with
the majority (~85%) of this carbon stored in the soil (Donato et al., 2011; Pendleton et al., 2012;
Sanderman et al., 2018; Kauffman et al., 2020). This large amount of soil carbon is of global
importance due to its potential to store sequestered CO, emissions for the long term and help to
mitigate adverse effects of climate change (McLeod et al., 2011; Duarte et al., 2013; Abdullah et al.,
2016). To recognise the importance of mangrove forests for carbon sequestration, the United Nations
Environmental Programme (UNEP) designated this ecosystem as “Blue Carbon” along with other
coastal vegetated ecosystems such as seagrass meadows and saltmarshes (Nellemann et al., 2009;
Lovelock and Duarte, 2019; Macreadie et al., 2019). This growing worldwide importance of
mangroves has led to a substantial reduction of mangrove loss leading to reductions in CO, emissions
in the last three decades (Friess et al., 2019). At the same time, mangroves have gained substantial
traction in being managed, protected and restored as part of national and global climate change
mitigation policies and actions including Nationally Determined Contributions (NDC) towards the
Paris Agreement and the climate action goal (goal 13) under United Nations Sustainable Development
Goals (SDG) (Taillardat et al., 2018; Friess et al., 2020a). However, variability and uncertainty in
SOC estimation is a key barrier to the inclusion of mangroves (and other blue carbon) in national and

international policy tools and frameworks.

Despite covering only 0.1% of the world’s total landmass, mangroves sequester more carbon per unit
area than any other natural ecosystem (Atwood et al., 2017; Lovelock and Duarte, 2019). With
autochthonous inputs from the productive above-ground, mangrove soils store large quantities of
carbon as a result of the low decomposition rate resulting from anoxic conditions (Alongi, 2002;
Donato et al., 2011). Mangroves are also highly efficient traps for allochthonous (from outside of the
ecosystem) inputs through their dense network of above-ground roots. The rising elevation of
mangroves in response to sea-level rise allows large accommodation spaces to sequester more carbon
in the soil, which barely reaches saturation (Krauss et al., 2014; Rogers et al., 2019). Therefore,
mangroves act as an efficient carbon store despite continuous threats from deforestation, land-use

change, sea-level rise, and climate change.
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Blue carbon research across the globe has highlighted considerable spatial heterogeneity in soil
organic carbon (SOC) at multiple scales (Atwood et al., 2017; Sanderman et al., 2018). At a regional
and global scale, SOC variability has been linked to net primary productivity (Alongi, 2012; Twilley
et al., 2017), latitude/climate (Rovai et al., 2018; Twilley et al., 2018; Kauffman et al., 2020), coastal
geomorphology (Rovai et al., 2018; Twilley et al., 2018) and Holocene sea-level trends (Rogers et al.,
2019). These physical and biological factors and geomorphic processes promote and develop unique
coastal environmental settings, which ultimately drive macroscale variation in SOC (Rovai et al.,
2018). The site-specific variability in SOC is largely attributed to differences in species composition
(Ren et al., 2008), stand age (Lovelock et al., 2010; Donato et al., 2011), sources of allochthonous
particles (Bouillon and Boschker, 2006; Yang et al., 2014), soil physicochemical properties (Freeman
et al., 2004; Kristensen et al., 2008; Banerjee et al., 2018), elevation and tidal regimes (Liu and Lee,
2006; Spivak et al., 2019), plant-litter biochemistry (Kristensen et al., 2008; Brodersen et al., 2019)
and plant-microbe interactions (Fontaine et al., 2007; Alongi, 2014). Several soils and environmental
characteristics such as pH, salinity, organic matter, precipitation and tidal inundation influence
mangrove productivity and can also directly or indirectly influence SOC (Yando et al., 2016).
Therefore, careful consideration of relevant factors is vital for reliable estimation of SOC at any

particular spatial scale.

Table 4.1: Comparison of Soil Organic Carbon (SOC) density and stocks among studies in the Sundarbans and
globally.

Mean Soil | Mean top m

Mean Soil | organic Soil  Organic
Study Sample organic carbon | carbon Carbon
area Study size Depth (cm) | Methods percentage (%) | density Storage
(range) (gm/cmd) (Mg/ha)
(range) (range)
Coring
Bomer et al. ' 0.010 (0.008-
(2020a) 56 100 cm CHN 0.9 (0.6-1.5) 0.011)
analyser
Khan and 15cm Coring, wet
o o Amin@og) = * (0-15) oxidation | 0-6(04-10) -
8 g Sanderman Literature
508 etal. (2018) - 100 cm and model - - 127 (74- 463)
el g : based
2| o Literature
w
Atwood et al. - 100 cm and model - - 118
(2017)
based
Prasad et al. 100cm (1 | Coring, CN
(2017) 400 cm interval) analyser 1.25(08-24) )
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India

Global
studies

Hossain and
Bhuiyan
(2016)

Rahman et
al. (2015a)

Donato et al.,
(2011)

Allison et al.
(2003)

Dutta et al.
(2019)

Prasad et al.
(2017)

Dutta et al.
(2013)

Banerjee et
al. (2012)

Mitra et al.
(2012)

Ray et al
(2011)
Kauffman et
al. (2020)

Sanderman
et al. (2018)
Rovai et al.
(2018)
Atwood et al.
(2017)

IPCC (2014)
Jardine and
Siikamaki
(2014)
Donato et al.
(2011)

Coring, wet
% 5¢m (0-5) oxidation
150 100 cm (0- | Coring, wet
30, 30-100) oxidation
4 100 cm (0- | Coring, wet
30, 30-100) oxidation
s 600 cm (0- Cgl':rl‘\lg’
600)
analyser
40 cm (0-
48 10, 10-20, Coring, wet
20-30, 30- oxidation
40)
100cm (1 | Coring, CN
300 :
cm interval) analyser
25 cm (0-5, Coring
15 5-10, 10- TOC
15,15-20, analyser
20-25)
40 cm (0-
140 10, 10-20, Coring, wet
20-30, 30- oxidation
40)
40 cm (0-
120 10, 10-20, Coring, wet
20-30, 30- oxidation
40) cm
16 30cm (0- | Coring, wet
30) oxidation

190 sample plot data from 5 continents
in different soil depth

Model based estimation of carbon
from literature values of 1812 samples

Model based estimation of carbon
from literature values of 932 samples
Literature based estimation from 1230
sampling locations

Literature based estimation

Model based estimation of carbon
from literature values of 932 samples

Field based data from Indo-pacific
area of 25 samples

1.2 (0.6 - 2.0)

1.7 (16-1.7)

05-11

1.25 (0.8-1.6)

0.8-5.2

18(1.2-21)

1.0 (05— 1.4)

0.7 (0.4-1.1)

0.6 (0.5-0.7)

5.7 (0.1-43.3)

11.9 (1.7 -21.5)

0.011 (0.007 —
0.014)

0.016 (0.015—
0.016)

0.017 (0.013 —
0.019)

0.011 (0.007 —
0.015)

0.009 (0.006 —
0.012)

0.033 (0.001 —
0.153)

0.032 (0.014 —
0.115)

0.043 (0.016 —
0.076)

112 (90 - 134)

334 (33 - 789)

361 (94-628)

283
1527)

428

15 -

369
703)

@72 -

The Sundarbans is the largest contiguous mangrove forest in the world and is situated in the lower

delta plain of the Ganges-Brahmaputra-Meghna (GBM) delta and stretches across political boundaries

between Bangladesh and India (Giri et al., 2011; Sarker et al., 2016). It is either mostly excluded from

the global estimates of mangrove SOC (Table 3.1) or is underrepresented due to a limited number of

samples or perceived poor data quality (Donato et al., 2011; Jardine and Siikamé&ki, 2014; Atwood et

al., 2017; Sanderman et al., 2018; Twilley et al., 2018; Kauffman et al., 2020). A range of studies into

SOC content in mangrove soils of the Sundarbans have been carried out (Table 3.1), but these all have
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limitations. The first comprehensive carbon inventory throughout the Sundarbans was completed by
the Bangladesh Forest Department (BFD) in 2009-10; however, the wider vertical sample depth might
have an effect on the SOC estimation within the top meter (Rahman et al., 2015a). Allison et al.
(2003) and Donato et al. (2011) investigated soil organic carbon at greater depths (>1 m) in the
Bangladesh Sundarbans, however, the number of samples (2 and 6 respectively) was not sufficient to
address the variability within the forests. Studies by Khan and Amin (2019) and Hossain and Bhuiyan
(2016) measured SOC from different parts of the Sundarbans, however, the sampling was only
performed within the top 15 cm. All previous studies of SOC in the Sundarbans have limitations
resulting from low spatial sampling intensity and limited analysis of soil depth range. Moreover, some
global studies like Rovai et al. (2018) argued that past climate-based estimation overestimated SOC
by up to 86% for deltaic settings like the Sundarbans. Therefore, accurate investigation on the spatial
variation of soil organic carbon and the identification of major controls for such variation in the

Bangladesh Sundarbans is urgently needed.

Increasing salinity in the inundated mangroves stimulate a wide range of biogeochemical reactions-
including enhancing sulphate concentrations, cation exchange, ionic and osmotic stress, acidity, and
turbidity and at the same time reducing soil redox potential and oxygen levels (Setia et al., 2013; Luo
et al., 2019). These soil biogeochemical changes in turn alter sediment characteristics and modify
plant and microbe communities, which ultimately affect both the soil organic carbon pool and quality.
Increased soil salinity affects organic matter solubility by altering flocculation of different soil
particles (Wong et al., 2009; Wong et al., 2010; Rath and Rousk, 2015). Investigations of tidal
wetlands across the world reveals a significant negative relationship between the soil organic carbon
pool and salinity (Nyman et al., 1990; Craft, 2007; Wigski et al., 2010; Morrissey et al., 2014; Hu et
al., 2016). High soil salinity decreases decomposition rates by lowering microbial activity in the soil
and lowers autochthonous carbon input by reducing plant productivity leading to lower organic
carbon in the soil (Baldwin et al., 2006; Marton et al., 2012; Setia et al., 2013; Liu et al., 2017; Zhao
et al., 2017). High salinity in general acts as an inhibitor of carbon mineralisation, however the

opposite is also evident in some studies suggesting that a small increase in salinity promotes
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mineralisation process in the oligohaline zone, while in the mesohaline and polyhaline zones, elevated
salinity reduces the mineralisation rate (Luo et al., 2019). Therefore, the impact of salinity on the soil
organic carbon pool and quality is not uniform in all wetland settings, rather it depends on the local

geomorphology and hydrological characteristics.

The aim of the present study is to estimate soil organic carbon (SOC) in the Bangladesh part of the
Sundarbans mangrove forest and to better understand the relationship of SOC within three salinity
zones (oligohaline, mesohaline and polyhaline) and major forest types. The study hypothesises that
higher salinity zones (polyhaline) would yield a lower organic soil carbon stocks as a reflection of
lower productive vegetation and altered soil physical and biological processes compared with the
lower salinity zone (oligohaline). The relationships between physical and chemical properties and
vegetation characteristics with SOC are also investigated to develop dependable predictive models for
this forest. The novelty of this study lies in the extensive stratified random sampling from across the

Bangladesh Sundarbans combined with vertical investigation of soil depth up to 1 m.

4.2. Material and methods

4.2.1. Study area

The Sundarbans is the largest single block of mangrove forest in the world and a Ramsar and
UNESCO World Heritage site (Figure 3.1) (Giri et al., 2011; Sarker et al., 2016). The Bangladesh
Sundarbans is situated between 21°30” N and 22°30” N and 89°00° E and 89°55” E. The climate of the
Sundarbans is warm, humid, and tropical, where annual precipitation varies from 1474 to 2265 mm
and mean annual minimum and maximum temperature are between 29° C to 31° C (Chowdhury et al.,
2016; Sarker et al., 2016). Based on the soil salinity variation, the Sundarbans naturally divides into
three distinct zones based; i) Oligohaline (LSZ) (<2 dS/m, decisiemens per metre), ii) Mesohaline (2-

4 dS/m) and iii) Polyhaline (>4 dS/m) (Siddigi, 2001; Chanda et al., 2016b).
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Figure 4.1: Sundarbans mangrove forest, Bangladesh. Legend colour represents three major salinity zones
(Chanda et al., 2016b). ESRI Basemap Sources: Esri, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap
contributors, and the GIS User Community.

Several studies have identified a relationship between tree species abundance along the east-west
salinity gradient (Iftekhar and Saenger, 2008; Aziz and Paul, 2015; Sarker et al., 2016; Sarker et al.,
2019a). Although Excoecaria agallocha is abundant in all three salinity zones, Heritiera fomes (the
characteristic species in the Bangladesh Sundarbans) is dominant in both the oligohaline and
mesohaline zones, whereas Ceriops decandra is abundant in the polyhaline zone (Sarker et al.,
2019a). Some pioneer species, such as Avicenna spp. and Sonneratia apetala are also present in the
mudflats all over the Sundarbans. A short description of all 23 tree species from 10 families found in

this study is presented in Table A.1.

4.2.2. Geology and soils of the Sundarbans

The Sundarbans mangrove forest lies in the south-western part of the Bengal Basin, one of the most
extensive sediment reservoirs in the world composed of unconsolidated Quaternary deposits (Rudra,
2014). The rapid sedimentation followed by the tectonic collision of the Indian plate with the Tibetan

plate and the Burmese plate in the Miocene triggered the formation of the Bengal Basin (Alam, 1989).
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Since the Holocene, the dynamic Ganges-Brahmaputra river system has been discharging sediments
from the Sub-Himalaya and is still delivering >1 Gt/yr of sediment to the delta plain of India and
Bangladesh (Islam et al., 1999; Syvitski and Milliman, 2007). The Sundarbans is of relatively recent
origin (3,000-year B.P.) and this mangrove has developed as a result of both fluvial and tidal forces
depositing sediments to the GBM river mouth (Goodbred and Kuehl, 2000; Allison and Kepple, 2001;
Rogers et al., 2013). Previously, the Ganges was the main source of sediments in the Sundarbans,
however, recent changes have resulted from the merging of the Ganges and Brahmaputra which have
now migrated eastward, far away from the Sundarbans (Rudra, 2014; Islam, 2016b). Together with
the eastward migration of the primary GBM delta, the construction of the Farakka Barrage in the main
Ganges River and earthen embankments surrounding the Sundarbans have reduced freshwater flow,
resulting in reduced fluvial sedimentation in the Bangladesh Sundarbans. This geomorphological
change, in turn, has led to increased remobilisation of sediments by tidal forces (Rogers et al., 2013;
Hale et al., 2019; Bomer et al., 2020b). The changed pattern of freshwater flow has resulted in a

salinity gradient from the east to the west of the Sundarbans.

The soil is mainly fine-grained, grey coloured, slightly calcareous, and mostly composed of silts to
clayey silts (Allison et al., 2003; Bomer et al., 2020a). The subsurface sediment extends up to 6 m in
depth in the landward direction and up to 4 m in depth in the seaward direction (Allison et al., 2003).
The median grain size ranges between 16-32 um reflecting the medium silt range. The average dry
bulk density (0.81 g cm?) is higher in the Sundarbans in comparison to other mangroves in the world
(Bomer et al., 2020a). The soil physical and chemical properties are varied from the eastern to the
western part of Bangladesh Sundarbans, the eastern part is softer, more fertile and receives more fresh
sediments than the western part (Siddigi, 2001). Soils are mostly neutral to alkaline (pH 6.5-8.0),
whereas the polyhaline zone is more alkaline than the oligohaline zone. Soils of the western and
southern polyhaline zone are comparatively richer in P, K, Na, Mg, CI- and Fe, but lower in soil NH*
and Na than the eastern oligohaline zone (Siddigi, 2001; Sarker et al., 2016). This pronounced
differences in soil nutrients and salinity trigger the diversity and variability of vegetation composition

in different parts of the Sundarbans.
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4.2.3. Sediment and tree data collection

In the Bangladesh Sundarbans, permanent sample plots (PSP) were established in 1986 by the ODA
(Overseas Development Administration) for monitoring growth, regeneration, and long-term
ecological changes (Chaffey et al., 1985). A total of 120 PSPs (20 m x 100 m) were established to
measure growth rate, regeneration, stocking, and crop composition based on salinity, forest type and
accessibility (Iftekhar and Saenger, 2008; Sarker et al., 2019b) (Figure 3.1). In this study, sediment
samples were collected from 55 plots, of which 50 plots are from PSPs selected at random, and the
remaining five plots are from outside PSPs to represent areas outside PSP. Sampling was undertaken
in two phases: In the first phase, three sediment cores of 50 cm depth were taken from 18 PSPs. After
laboratory analysis of the samples from the first 18 PSPs, it was decided to extend the sediment
sampling depth to 1 m and take two core samples from each plot because of little within-plot variation
among the initial 54 core samples. In the second phase, an additional 37 PSPs were sampled with two
cores sampled at each plot. Altogether, 126 sediment cores from 55 plots were sampled across the

whole of the Bangladesh Sundarbans (Figure 3.1).

The location of the cores within a PSP was decided by establishing a random circular plot with a
radius of 11.3 m (an area of 400 m?). Within each plot, a small circular plot was laid with a 5 m radius
and sediment cores were taken from east, west and south side (east and west for two cores) from the
centre, perpendicular to each other. The cores were taken using an open-faced auger (6 cm diameter),
which was further subdivided into four depths (0-10, 10-30, 30-50 and 50-100 cm), following the
method of Kauffman and Donato (2012). Sediment sub-samples were taken from the middle of each
core section with fixed 2.5 cm length, sealed in plastic bags and subsequently placed in an icebox to
reduce oxidation. The sub-samples were kept below 4 °C in zip-sealed plastic bags until laboratory

processing.

For vegetation data, the Diameter at Breast Height (DBH) and height were measured for all trees
within the 11.3 m radius plot. DBH was measured at 1.3 m and height was measured with a Vertex-IlI
hypsometer. For small trees with a DBH <14.5 cm, a smaller circular plot (radius 5 m) was nested

within the 11.3 m plot. The elevation of each plot was calculated by subtracting the mean tree height
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of the plot from the Digital Surface Model (DSM) taken from the TanDEM-X 90 m satellite data
(Hawker et al., 2019). For major forest types, single-species dominance was determined when the

relative composition is >75%, and the remaining forest types are termed as a Mixed type.

4.2.4. Laboratory analysis
4.2.4.1. Soil physical and chemical properties

For each core, samples were freeze-dried and re-weighted to determine the bulk density. Bulk density
was calculated by dividing the dry mass of the soil by the volume of the soil. Soil pH and soil salinity
(as soil conductivity) were measured from a portion of the homogenised dry soil for each core. Dried
soils were diluted with distilled water (1:5 ratio), and subsequently, soil pH was measured using a
Jenway 3510 Standard Digital pH Meter and soil salinity by a handheld Jenway 470 Conductivity

Meter (Hardie and Doyle, 2012).

4.2.4.2. Total soil organic carbon (SOC)

To determine the soil organic carbon (SOC) and nitrogen content of the soil, any large stones or twigs
were removed from the sample and subsequently homogenised and ground with a ball mill. 40 mg of
the sediment were then passed through an elemental analyser (Thermo Scientific Flash 2000-
NC Soil Analyzer) to derive the total carbon and nitrogen as a percentage. Inorganic carbon content
was deducted from the total carbon to obtain the organic carbon percentage, according to Howard et
al. (2014). The inorganic carbon content was measured from random samples across all salinity zones
using an Analytik Jena Multi EA (Elemental Analyser) 4000. Soil organic carbon density (gm cm)
for each sample and total organic carbon content (Mg ha) of each depth and core were measured

according to Howard et al. (2014).

4.2.5. Statistical Analysis

All statistical analysis and graphics used R 3.6.1 for Windows (R Core Team, 2019). Total organic
carbon (Mg hal), organic carbon density (gm c¢cm) and bulk density (gm cm=) among three salinity

zones and four depths were compared with two-way analysis of variance (ANOVA) test using the
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‘car’ package (Fox and Weisberg, 2019). In order to compare soil organic carbon among vegetation
types, total organic carbon (Mg hal) was compared with one-way analysis of variance (ANOVA).
The results of ANOVA are summarized in Supplementary Information. To derive the relationship
among organic carbon density (g cm™), bulk density and total nitrogen content, data from all the core
subsections (n = 512) were used. To examine the relationship among SOC and soil physical and
chemical parameters (soil salinity, pH, bulk density, Total N, organic C: N, elevation, latitude and
longitude) and vegetation characteristics (species richness, tree density, mean DBH and mean height),
stepwise multiple linear regression analysis was undertaken. SOC was considered as the dependant
variable, whereas all the selected parameters were independent variables. Correlation analysis and
principal component analysis (PCA) were carried out to decrease the number of explanatory variables
and to reduce collinearity in the regression model. All the variables were standardised before PCA
according to Legendre and Legendre (2012). Eigenvalues greater than one were retained and variables
with factor loadings >0.35 were treated as potential explanatory variables for the regression model
(Jackson, 1993). In all cases, the data were logarithmic (natural) transformed (if needed) to meet the
assumptions of normality and equal variances by using Shapiro Wilk and Levene’s tests, respectively
and subsequently back-transformed to present graphically. The graphical output of the linear model

was generated using the ‘ggplot2’ package (Wickham, 2016).

4.3. Results

4.3.1. Soil organic carbon, salinity zones and soil depth

The average SOC density varied from 0.003 gm c¢cm to 0.009 gm cm2 in different salinity zones and
soil depths (two-way ANOVA for Ln (SOC density), salinity zones, F2, s00 = 112.3, p <0.001 and soil
depths, Fs s00 = 30.1, p <0.001) (Figure 3.2, Table A.2). Both salinity zone and soil depth had a
significant interaction effect on the variability of SOC density in the Sundarbans (Fs, s00 = 3.5, p
<0.01) (Table A.2). Significantly higher SOC density was found in the topmost depth followed by the
subsequent three depths; however, SOC density in the intermediate depths (between 10-30 cm and 30-

50 cm) are not significantly different (Figure 3.2B), which indicates the unequal variability of SOC
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with soil depth. The oligohaline zone comprises higher SOC density (gm cm?) followed by

mesohaline and polyhaline zone indicating higher soil organic carbon in the low salinity areas.

(A) (B)

Y . . -3 . . . -3
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Figure 4.2: (A) The distribution of soil organic carbon (SOC) density (gm cm) in four soil depths presented as

violin-box plot, where the black vertical line represents the median and black dots are outliers. Here, the width

of violin plot represents the proportion of the data located there as a measure of kernel probability density. (B)
Average SOC density (gm cm) in three salinity zones and four soil depths.

The bulk density (BD) of the soil revealed an opposite trend as significantly higher bulk density was
observed in the higher salinity zones and in the 50-100 cm soil depth (two-way ANOVA for Ln (bulk
density (gm cm)), salinity zones, F, s00 = 22.2, p <0.001 and soil depth, Fs s00 = 46.2, p <0.001)
(Figure A.1, Table A.3). Likewise, SOC density, the soil organic carbon storage (SOC) for different
depths was significantly different among the three salinity zones and the four soil depths (two-way
ANOVA for Ln (SOC), salinity zones, F2 so0 = 118.9, p <0.001 and soil depth, F3 se0 - 526.2, p
<0.001) (Figure 3.3 & Figure 3.4, Table A.4). However, higher amounts of SOC were found in the
50-100 cm depth in comparison to above (Figure 3.4). The top meter SOC ranges from 26.2 Mg ha*
to 107.9 Mg ha* where the oligohaline zone comprises the highest SOC (74.8 Mg ha), followed by

the mesohaline (59.3 Mg ha'), and the polyhaline zone (48.3 Mg ha) (Table 3.2).
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Figure 4.3: Spatial distribution of total soil organic carbon (SOC) (Mg hat) and soil salinity (dS/cm) in the
Sundarbans. Note that circle represents the amount of SOC and gradual colour ramp reveals soil salinity
indicating green to red as from low to high salinity. Three major salinity zones are represented according to

(Chanda et al., 2016b).
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Figure 4.4: Average total soil organic carbon (Mg ha*) in different soil depth windows in three salinity zones.

Table 4.2: Overview of measured soil parameters and vegetation characteristics. Values are presented as mean
(= SD), where n > 3. Lowercase letters indicate significant variability among salinity zones, according to least-
significant difference (LSD) test at a. = 0.05.

Salinity Bulk Soil Soil Total Total Organic | Elevation | Stem Height DBH
zone density pH salinity | Soil Nitrogen | C: N (m) Density (Diameter
5 (EC Organic . . (m) at Breast
(gmcm™) dsicm) | carbon | (Mgha’) (ha”) Height)
Mg ha
e (em)

. . 0.58 7.06 1.49 74.77 2.66 21.30 3.39 5,009 7.98 8.12 (2.41)
Oligohaline (0.07)° (0.26)¢ | (0.32)¢ | (14.93)* (1.19)° (7.23)2 (1.78)° (2,485)° | (2.03)2 2
Mesohaline 0.62 743 3.07 59.30 3.52 17.30 3.67 6,876 7.88 8.60 (5.36)

(0.04)® | (0.19)° | (0.56)" | (15.80)" (1.08)2 (6.87)2 (1.01)® | (3,290)® | (2.63)? ab
Polvhaline 0.63 7.80 5.56 48.25 381 13.08 4.79 8,750 5.98 6.72 (4.12)
y (0.05)2 (0.26)* | (0.85)* | (10.32)°¢ (0.98)° (3.00)° (1.52)* (4,798)% | (1.66)° b
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4.3.2. Soil organic carbon and forest types
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Figure 4.5: Integrated violin-box plot shows average soil organic carbon (SOC) in major forest types in
the Sundarbans. The black vertical line of box plot represents the median and the width of violin plot represents
the proportion of the data located there as a measure of kernel probability density.

One-way ANOVA revealed that SOC varied with major forest types in the Sundarbans (F7, 7= 3.3, p
<0.01) (Table A.5). As shown in Figure 3.5, the average SOC content in the Bruguiera spp. stand was
the highest, with an average of 105.3 Mg ha, followed by Sonneratia spp. and Avicennia spp., with
an average of 68.7 Mg ha! and 67.1 Mg hal, respectively. The Tukey HSD test showed that the other
forest types had no significant effect on SOC content, which ranges from 50.2 Mg ha*to 67.0 Mg ha

for Ceriops and Heritiera forest types, respectively (Table A.6).
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4.3.3. Soil physical and chemical properties and vegetation characteristics

The soil physical and chemical properties and vegetation characteristics vary considerably among the
three salinity zones (Table 3.2). As expected, oligohaline zones had relatively low average soil bulk
density, pH, and soil salinity, in comparison to higher salinity zones. Additionally, significantly
higher SOC and lower total N contributes higher organic C: N in the oligohaline zone, although it is
similar to the mesohaline zone (p <0.05). BD and SOC density showed a statistically significant
negative relationship (r = -0.47, p <0.001) (Figure 3.6A). However, the soil organic carbon (SOC)
density and soil nitrogen density is significantly positively correlated with soil nitrogen density across
the Sundarbans (r = 0.66, p <0.001) (Figure 3.6B). Analysis from the satellite and tree height data
reveals that the average elevation of the topography is higher in the polyhaline zone. The average
DBH and height of the trees were statistically significantly higher in both the oligohaline and
mesohaline zone, whereas the average stem density was higher in both the mesohaline and polyhaline
zone (p <0.05). The bivariate relationships between SOC and other soil physical and chemical

properties and vegetation characteristics are presented in the supplementary Figure A.2.
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Figure 4.6: (A) Relationship between bulk density and soil organic carbon density. (B) Relationship between
soil nitrogen density and soil organic carbon density.
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4.3.4. Relationship of SOC with soil and vegetation properties

SOC content was positively correlated with tree DBH, tree height, organic C: N, latitude and
longitude, but negatively correlated with soil salinity, bulk density, soil pH, tree density and elevation
(p < 0.05) (Figure 3.7). As total nitrogen and species richness did not show any significant correlation
with SOC content, these two parameters were discarded from the subsequent PCA analysis. The
measured properties also showed a significant positive and negative correlation amongst themselves,
which indicates a source of multicollinearity, a phenomenon which makes multiple regression
unreliable. Therefore, principal component analysis was used to identify and group those properties

that influence SOC the most to overcome the influence of multicollinearity.
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Figure 4.7: Correlation matrix among SOC and other physicochemical, geophysical and vegetation properties.
The number of each block shows the Spearman’s rank correlation coefficients at p< 0.05, where red and violet
colour represents respective positive and negative correlations. The white block indicates the correlation
coefficient is statistically insignificant. The soil properties: SOC = Soil organic carbon, SS= soil salinity, BD =
Bulk density, pH= soil pH, TN = Total Nitrogen, C: N = organic C- total Nitrogen ratio, the vegetation
characteristics: SR = Species richness, TD = Tree density, DBH = mean Diameter at Breast Height, H= Mean
height and geophysical properties: E= Elevation, LAT = Latitude and LONG= Longitude.
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Principal component analysis (PCA) was performed with ten variables to assemble and isolate the
smallest possible variable subsets to explain the variation of the dataset (Figure 3.8). The PCA result
indicates that the first two principal components explained more than two-thirds of the total variation
with an eigenvalue greater than 1. The most important component (PC1) explained 49.5% with the
highest loadings (>0.35) for soil SS (soil salinity) and pH. On the other hand, the second component
showed higher loadings for tree H, DBH and soil C: N with 20% explained variation (Table A.7). As
soil SS and pH are highly correlated with each other (r = 0.76, p < 0.05) (Figure 3.7), the variable
with the highest loading, soil SS, was selected from the first component for the regression model.
Similarly, tree H was discarded due to collinearity with tree DBH and therefore, tree DBH and soil C:

N was selected from the second component.

Soil Salinity Zone
=+ Oligohaline
Meschaline

—+ Dolyhaline

0.04

PC2 (19.8% explained var.)

50 2.5 0.0 25 50
PC1 (49.5% explained var.)

Figure 4.8: Principal component analysis (PCA) biplot of soil physicochemical, geophysical and vegetation
characteristics as vectors (n = 10) and mangroves areas are coloured coded as three salinity zones (n=55). The
soil physicochemical properties included SS= soil salinity, pH= soil pH, BD = Bulk density, C: N = organic C-
total Nitrogen ratio, geophysical properties comprised LAT = Latitude, LONG= Longitude, E= Elevation, and
the vegetation characteristics included TD = Tree density, DBH = mean Diameter at Breast Height, H= Mean
height. Here, perpendicular direction signifies uncorrelated relationship, while negative and positive correlated

vectors are presented in the opposite vectors and small angle vectors, respectively.
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Table 4.3: Summary statistics of regression model. Here, SS = Soil salinity, C: N = Soil organic carbon:
Nitrogen and DBH= tree Diameter at breast height.

Model R? Adjusted R? C(p) AlIC RMSE
1.SS 0.508 0.498 18.217 -10.457 0.212
2.SSand C: N 0.590 0.574 8.650 -18.513 0.196
3.SS,C: Nand DBH 0.637 0.616 4.00 -23.255 0.186

By using the PCA-derived subset of variables, the relationship between SOC and soil and vegetation
properties was obtained by using stepwise multiple linear regression (MLR). The regression results
showed that soil salinity alone could explain 50% SOC variability in the Sundarbans, however, the
skill of the model increases to 57% and 62% when soil C: N or soil C: N and tree DBH are added to
the model (Table 3.3). Although all three regression models are highly significant (Table A.8), the
best subset of MLR model was selected based on the largest adjusted R? value and the smallest
Mallow’s Cp, AIC (Akaike Information Criteria) and RMSE (Root Mean Squared Error) and

presented in Eq.1.

Ln (SOC) = 3.439 — 0.077 SS + 0.274 Ln (C: N) + 0.017 DBH ... ... vv. vov vov o wEQ. 1

4.4. Discussions

The reported average soil organic carbon (SOC) density in this study is lower than previous estimates
for the Sundarbans and far lower than average estimates of SOC density from global mangroves
(Table 3.1). SOC density, the standardized carbon stocks measurement with depth, is the most useful
parameter to compare SOC between different forests (Donato et al., 2011; Weiss et al., 2016).
However, due to unreported bulk density, it was not possible to convert from the reported organic
carbon (%) to SOC density for most studies. Despite a greater range of soil organic carbon (SOC)
percentage in this study (0.3 — 4.4%), the average value (1.2%) is in line with most previous studies,
although higher than estimates published by Ray et al. (2011), Banerjee et al. (2012), and Allison et
al. (2003). These differences are likely to be attributed to variable sampling strategies along with

variable soil depth or different methods used for carbon estimation. Likewise SOC density, the
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average top 1 m SOC storage in the Bangladesh Sundarbans (50.9 + 15.2 Mg ha) is almost half of
the previous estimate by Rahman et al. (2015a), Sanderman et al. (2018) and Atwood et al. (2017).
Estimates of soil organic carbon could fluctuate based on the differences in sampling design, choice
of analytical method and soil depth (Howard et al., 2014; Nayak et al., 2019). In the case of
mangroves, Passos et al. (2016) found overestimation of organic carbon measured with the oxidation
method in comparison to the elemental analyser. Anaerobic microbial decomposition yields reduced
soil compounds (i.e., Fe?*, S>, Mn?*, and CI") in mangroves, which might interfere with organic
carbon determination with chemical oxidation method (Nelson and Sommers, 1996; Bisutti et al.,
2004; De Vos et al., 2007; Noébrega et al., 2015). Apart from using different methods, the SOC
variation may originate from the consideration of soil depth in the sample design as the SOC
concentration is a function of soil depth and shows considerable variability (Wuest, 2009; Kauffman
and Donato, 2012; Jandl et al., 2014). Moreover, using coring for sampling might have an influence
on soil bulk density estimation leading to lower SOC stocks estimation in deeper soils (Rau et al.,

2011; Gross and Harrison, 2018).

In comparison to global studies, the estimated top 1 m SOC stocks are lower in the Sundarbans than
the reported average from sites distributed all over the world (Table 3.1). Based on model-based
georeferenced database of mangrove SOC, the global SOC map showed that the Sundarbans contains
the lowest SOC stocks per ha in the world (Sanderman et al., 2018). Compared to direct estimates
from 190 global sites by Kauffman et al. (2020), the Sundarbans contains higher SOC than only two
other mangrove forests, the Porto Céu mangrove in Brazil (48 Mg ha) and the Bu Tinah Janoub in
the United Arab Emirates (33 Mg ha?), located in lower and higher latitudes respectively than the
Sundarbans. However, global comparison in soil carbon among tropical, subtropical and temperate
mangroves showed a contrasting relationship with latitude (Atwood et al., 2017; Twilley et al., 2018;
Kauffman et al., 2020; Ouyang and Lee, 2020). Both Kauffman et al. (2020) and Ouyang and Lee
(2020) found significantly lower soil carbon in mangroves >20 °N, although the former study had
fewer samples largely limited to the middle east hyper arid mangroves. On the other hand, Atwood et

al. (2017) and Twilley et al. (2018) documented the poor relationship between latitude and SOC

57



stocks. This poor relationship might be attributed due to the poor representation of samples in the

studies from the subtropical mangroves like the Sundarbans.

The low soil carbon in the Sundarbans is largely due to high mineral sediment deposition (Sanderman
et al., 2018; Twilley et al., 2018), low burial rate (Ray et al., 2011), rapid turnover rate (Ray et al.,
2018), historical logging, stand age (Marchand, 2017), plant litter quality (Rovai et al., 2018) and
biological processes. Being both a tide and river-dominated ecosystem, the carbon allocation in the
above and below-ground is very complex, largely dependent on the local and regional geomorphic
and geophysical drivers (Twilley et al., 2018). In riverine deltas, trees invest much of the carbon to the
above-ground to keep pace with sedimentation and sea-level rise, which is evident in the oligohaline
zone with greater forest productivity (Twilley et al., 2018; Sarker et al., 2019a; Sarker et al., 2019b).
Moreover, research has highlighted that mangroves subjected to frequent cyclones leading to
temporary losses of above-ground carbon are usually followed by rapid below-ground carbon gains
during recovery process according to the ‘Ecosystem Development’ theory (Odum, 1969; Danielson
et al., 2017; Kominoski et al., 2018). These rapid carbon gains in the above-ground and the
disturbance from the catastrophic cyclones could be the source of higher autochthonous input to the
below-ground. Nonetheless, higher tidal amplitude in the Sundarbans leads to higher carbon export
totalling 7.3 Tg C yr ! to the adjacent Bay of Bengal, which is higher than any other mangroves in the
world (Ray et al., 2018). This rapid carbon turnover results in reduced burial of organic matter
(0.18%) in the soil (Ray et al., 2011). Moreover, the pronounced tidal cycle in the Sundarbans affects
carbon burial process by altering soil water chemistry (Chatterjee et al., 2013; Spivak et al., 2019).
Besides the high carbon turnover rate, the Sundarbans is believed to have become tidally active in the
recent past due to reduced freshwater flow from the Ganges-Brahmaputra-Meghna river (Rogers et
al., 2013; Hale et al., 2019). However, despite the historical reduction of sedimentation, the
Sundarbans is itself still keeping pace with sea-level rise with the highest average surface elevation
and vertical accretion rate (0.74 and 2.71 cm yr 1) compared to the worldwide average (Bomer et al.,
2020a; Bomer et al., 2020b). This high sedimentation rate is the outcome of the massive flux of clastic

sediments which attenuates the amount of organic carbon per unit area.
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The century-long historical exploitation in the Sundarbans before the felling moratorium in 1989 has
largely decreased the population of threatened tree species (Siddiqi, 2001; Sarker et al., 2011). This in
turn is likely to have lessened the continuous autochthonous input of organic matter in the forest and
reduced the overall stand age. Studies also showed that historical harvesting had altered the species
composition in the Sundarbans, with decreasing abundances of Heritiera fomes, Ceriops decandra
and Xylocarpus mekongensis and increasing for Excoecaria agallocha (Sarker et al., 2016). The SOC
stocks also depends on the age of the stands as evident in the chrono sequence study on SOC stocks in
French Guiana which revealed that the SOC varied from 4 to 107 Mg ha? from young stand to
senescent stage (Marchand, 2017). In addition, studies have suggested that lower organic carbon in
the soil is mostly associated with higher C: N of the plant litter which has resulted from lowering
decomposition speed and decreasing carbon-use efficiency of the decomposer (Bouillon et al., 2003;
Zhou et al., 2019). Compared to mangrove associates, the senescent leaves of true mangroves contain
considerably higher C: N (~33) in the Indian part of Sundarbans (Chanda et al., 2016a).
Kamruzzaman et al. (2019) observed a decreasing trend of C: N of the leaf litter in both forest floor
and buried condition starting from 40, but barely reached below 30 after 196 days of decomposition
study, suggesting N limitation in the oligohaline zone of the Bangladesh Sundarbans. The low organic
carbon can also be attributed to the abundance of leaf-consuming organisms ingesting organic litter
detritus both at surface and subsurface in burrows. The Sundarbans encompasses a wide range of
gastropod species (for example, Cerithedia cingulata, Cymia lacera) that predominantly consume

mangrove detritus (Nayak et al., 2014).

Variation in SOC stocks among different forest types is often mediated by the primary productivity,
resources allocation in different parts (for example, above and below-ground) and microorganism
activity which is driven by a number of biological (example, bioturbation and species composition)
and physical (for example, soil texture, salinity, inundation and nutrients) factors (McLeod et al.,
2011). Therefore, differing stand structure and composition of mangrove forests in different tidal
regimes yield variable SOC stocks (Lacerda et al., 1995; Gleason and Ewel, 2002). Moreover, the

long and short-term resilience and resistance of microbial communities is largely dependent on the
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structure and zonation of mangrove communities reflecting environmental gradients (Capdeville et al.,
2019). In this study, the species with higher SOC stocks such as Bruguiera spp., Sonneratia spp. and
Avicennia spp. are frequently inundated due to proximity to the river and low lands as compared to
other species in the Sundarbans (Siddiqi, 2001; Sarker et al., 2016). These high inundation regimes, in
turn, lead to increased microbial activity and a higher level of dissolved organic carbon in the (Wang
et al., 2013; Chambers et al., 2014; Chambers et al., 2016). Regular tides also bring sediments along
with high allochthonous input whereas the raised less-inundated areas foster autochthonous SOC and
less microbial activity (Lovelock et al., 2015b; Woodroffe et al., 2016). Rao et al. (1994) found
almost double C: N ratio in fresh leaves of Bruguiera spp. compared with other mangrove species,
suggesting a higher input of autochthonous carbon. Being the pioneer species in the succession of the
Sundarbans, both Sonneratia spp. and Avicennia spp. are resilient to disturbances leading to higher
SOC than climax and seral species (Table A.1) and accumulate a large quantity of organic litter in the
tidal channel close to the river or seafront (Sarker et al., 2016; Bomer et al., 2020a). The variability of
SOC stocks found here among forest types followed a similar pattern to the global studies by Atwood
et al. (2017), except for Sonneratia spp. which was found to hold less SOC stocks than Heritiera and
Ceriops. On the other hand, Kauffman et al. (2020) found significantly lower below-ground carbon
stocks in Avicennia spp., especially in the arid mangroves of Middle-East Asia, which is solely
occupied by this species. Therefore, the impact of above-ground vegetation on below-ground is

largely site-specific, and depends on a wide range of factors.

The unexplained variation of the best multiple regression models (R? = 0.64) highlights the necessity
of including other soil and environmental parameters such as soil cations and anions, clay
characteristics and texture, precipitation, temperature, and river discharge. This study did not address
these properties but suggests future studies incorporate a wider range of parameters to gain a better
understating of organic carbon dynamics in the Sundarbans. In particular, for better ecosystem
management, future research should include information relating to contextualising soil (for example,
soil texture, grain size and minerology), biogeochemical (for example, important properties of soil

and pore-water chemistry such as sulphate, oxygen, nitrate, ferric oxides in case of mangroves) and
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ecological (for example, vegetation and plat-microbe interaction) properties (Luo et al., 2019; Spivak
et al., 2019). However, soil salinity is considered as the outcome or proxy for the combined impact of
these climatic and environmental variables in the Sundarbans resulting pronounced differences of
SOC stocks among the three salinity zones (Sarker et al., 2016; Sarker et al., 2019b; Rahman et al.,
2020). Several previous studies have confirmed that salinity determines the strong zonation of tree
species and diversity in the Sundarbans, which in turn leads to comparatively higher diversity and
taller tree species in the oligohaline followed by mesohaline and polyhaline zone (Aziz and Paul,
2015; Sarker et al., 2016; Sarker et al., 2019a; Sarker et al., 2019b; Rahman et al., 2020).
Comparatively higher productive trees (for example, higher DBH and higher height) promotes organic
matter accumulation through producing higher litter mass and increases SOC stocks by forming stable
aggregates from roots and pneumatophores (Lange et al., 2015). The three salinity zones also
comprise differential soil physical and chemical properties and vegetation characteristics that usually
affects SOC storage by influencing microbial decomposition, soil water chemistry, plant-microbe
interaction, and plant litter quality. While comparing nutrient concentration in the leaf litter of
Sonneratia apetala, one of the major pioneer species in the Sundarbans, Nasrin et al. (2019) found
lowest concentrations of N, P and K and the highest concentrations of Na in the polyhaline zone,
reflecting higher C: N in the leaf litter. However, the low SOC in the polyhaline zone is also
coincided with the low C: N indicting inwelling of marine and terrestrial suspended particulate
materials (Bouillon et al., 2003). The strong positive correlation (r = 0.66, p <0.001) between carbon
and nitrogen density indicates that the source of carbon and nitrogen is likely to be same and can vary

spatially (Matsui et al., 2015).

Although the Sundarbans is considered to be of recent origin, the large accommodation space exists
due to accretion and erosion with historical relative sea-level variability (Goodbred and Kuehl, 2000;
Tyagi and Sen, 2019). Therefore, the Sundarbans might have a 3 m organic layer in the seaward
direction and much more in the landward (Allison et al., 2003). By considering this vertical depth and
the area covered by mangrove forest, the Sundarbans are likely to contain considerable volumes of

soil organic carbon. Previous research has demonstrated that mangroves holding higher carbon
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storage also have a higher rate of deforestation with 50% mangrove loss attributed to Indonesia,
which holds about 25% of soil carbon in the world’s mangroves; the figure increases to 75% when
Malaysia and Myanmar are considered (Atwood et al., 2017). Therefore, mangroves from these
countries are considered as a significant source of emissions due to high deforestation and forest
conversion (Hamilton and Friess, 2018). On the other hand, in Bangladesh, despite the lower SOC
stocks in the Sundarbans mangrove forest demonstrated by this paper, recent positive trends in forest
cover demonstrate the value of blue carbon conservation and an improved understanding of carbon
storage will be of benefit to the inclusion of mangroves in national and international climate strategies

and policies.

4.5. Conclusions

The top meter of soil organic carbon (SOC) per area in the Bangladesh Sundarbans is lower than has
previously been reported. However, the total SOC will likely to be greater if total vertical depth is
considered. The soil organic carbon stocks (SOC) in the Sundarbans is largely influenced by soil
salinity, probably by amending the forest productivity and microbial activity. The results highlighted
that increasing salinity as result of predicted sea-level rise will likely have pronounced effects on
future soil carbon accumulation rates by altering the soil environment and vegetation characteristics.
The study underlines the importance of spatial conservation planning measures and initiatives to
conserve and maximize carbon accumulation and to contribute to global climate change adaptation
and mitigation strategies. Results suggest that high sediment carbon zone in the eastern part of the
Sundarbans is highly vulnerable to tourism and economic development activities. In terms of climate
change mitigation and adaptation, the conservation of the existing carbon stocks should receive much
higher priority rather than the debates of high-low carbon stocks. The Bangladesh Sundarbans can act
as an important blue carbon hotspot due to the high sedimentation and carbon sequestration rate and
conservation priority by the government. However, disturbances such as sea-level rise, global
warming, eutrophication, and landscape development might hinder this conservation activities in the

future.
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Chapter 5

Biomass estimation in mangrove forests: a comparison
of allometric models incorporating species and
structural information

Rahman, M.S., Donoghue, D.N.M., Bracken, L.J., Mahmood, H., 2021. Biomass estimation in
mangrove forests: a comparison of allometric models incorporating species and structural
information. Environmental Research Letters. 16(11),
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Abstract

Improved estimates of above-ground biomass are required to improve our understanding of the
productivity of mangrove forests to support the long-term conservation of these fragile ecosystems
which are under threat from many natural and anthropogenic pressures. To understand how individual
species affects biomass estimates in mangrove forests, five species-specific and four genus-specific
allometric models were developed. Independent tree inventory data were collected from 140 sample
plots to compare the above-ground biomass (AGB) among both the species-specific models and seven
existing frequently used pan-tropical and Sundarbans-specific generic models. The effect of
individual tree species was also evaluated using model parameters for wood densities (from individual
trees to the whole Sundarbans) and tree heights (individual, plot average and plot top height). All nine
species-specific models explained a high percentage of the variance in tree AGB (R? = 0.97 to 0.99)
with the diameter at breast height (DBH) and total height (H). At the individual tree level, the generic
allometric models overestimated AGB from 22% to 167% compared to the species-specific models.
At the plot level, mean AGB varied from 111.36 Mg ha™ to 299.48 Mg ha*, where AGB significantly
differed in all generic models compared to the species-specific models (p <0.05). Using measured
species wood density (WD) in the allometric model showed 4.5% to 9.7% less biomass than WD from
a published database and other sources. When using plot top height and plot average height rather
than measured individual tree height, the AGB was overestimated by 19.5% and underestimated by
8.3% (p <0.05). The study demonstrates that species-specific allometric models and individual tree
measurements benefit biomass estimation in mangrove forests. Tree level measurement from the
inventory plots, if available, should be included in allometric models to improve the accuracy of forest

biomass estimates, particularly when upscaling individual trees up to the ecosystem level.

5.1. Introduction

There has been a global effort to develop accurate and efficient methods to quantify above-ground

carbon (measured as biomass) in mangrove forests (Hutchison et al., 2014; Ni-Meister, 2015; Baccini
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et al., 2017; Lagomasino et al., 2019). A range of remote sensing technologies can indirectly infer
forest biomass but field data are needed to calibrate and validate products (Gibbs et al., 2007; Chave
et al., 2019; Réjou-Méchain et al., 2019). Destructive harvesting of trees provides the most precise
estimates of above-ground biomass (AGB), yet is impractical, laborious, costly and often illegal
(Komiyama et al., 2008; Edwards et al., 2019) and so mathematical models have been developed to
estimate tree biomass from easily measured biophysical parameters (tree diameter at breast height
(DBH), height (H), or wood density (WD)) (Brown, 1997; Komiyama et al., 2005; Picard et al., 2012;
Chave et al., 2014). These models are known as allometric models. However, this method of
estimation can yield a large degree of uncertainty scaling up from individual tree biomass to plot- and
forest-level as uncertainties associated with individual trees are propagated (van Breugel et al., 2011;
Petrokofsky et al., 2012; Réjou-Méchain et al., 2019). The choice of appropriate allometric model is

therefore critical to reduce uncertainties in the estimation of forest biomass.

All allometric models have limitations since they are based on a limited number of destructively
sampled trees and often the sample locations are unrepresentative of forest heterogeneity (Weiskittel
et al., 2015; Hickey et al., 2018). These models also introduce an uncertainty when applied to species
without destructive sampling (Mitchard et al., 2013; Ngomanda et al., 2014; Mahmood et al., 2019).
For example, De Souza Pereira et al. (2018) found AGB estimation errors between minus 18% and
plus 14% when using biome-specific allometries rather than species-specific ones in Brazilian
mangrove forests. On the other hand, a few studies have shown that generic models can outcompete
locally developed models (Rutishauser et al., 2013; Stas et al., 2017). Uncertainties also arise from
inappropriate use of regression models without considering collinearity of parameters, uncritical use
of model dredging and inappropriate criteria for model selection (Sileshi, 2014; Vorster et al., 2020).
Recently published global and continental AGB estimates contain errors due to an under
representative sample size and the exclusion of the climatic regime, geophysical and
geomorphological variables, which are key to understanding the spatial distribution of biomass (Rovai
et al., 2016). Inclusion of biophysical parameters such as wood density and tree height can help to

capture geographical heterogeneity and also act as a suitable proxy of environmental drivers such as
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variations in salinity which affects the growth rate, wood density, species composition and tree height

(Mahmood et al., 2019; Rahman et al., 2020; Virgulino-Janior et al., 2020; Rahman et al., 2021b).

Although wood density is an important variable for assessing carbon content, it is rarely measured
during field inventories. Most studies identify species and then use published wood density values
from a database of generic values (Njana et al., 2016; Réjou-Méchain et al., 2019). Using the same or
grouped wood density in the allometric model tends to smooth species-level variations in AGB
(Mitchard et al., 2013; Ni-Meister, 2015). The inclusion of tree height has a large effect on individual
tree and forest AGB (Feldpausch et al., 2012). Any errors introduced during individual tree height
measurements can originate from the choice of methods and/or instruments and can be propagated as
estimates are scaled up (Larjavaara and Muller-Landau, 2013). For example, the use of Height-
Diameter (H-D) models, developed from the height and stem diameter of individual trees, often
exhibit uncertainty due to wider height-variation at different spatial scales (Feldpausch et al., 2011;
Vieilledent et al., 2012). Space-borne and air-borne LiDAR and RADAR technologies can improve
the accuracy of the height measurement and have been used to develop canopy height models (CHM)

(Fatoyinbo et al., 2021).

The Sundarbans mangrove forest is one of the largest and most bio-diverse mangroves in the world,
located across Bangladesh and India. It contains the highest carbon densities (345 Mg ha) in both
above- and below-ground among all forests in Bangladesh (GOB, 2019; Henry et al., 2021). The
Bangladesh Forest Department estimated carbon stocks in the Sundarbans in 2009 and 2015 using
pan-tropical allometric models and Sundarbans-specific generic models (BFD, 2010; Rahman et al.,
2015a; Mahmood et al., 2019; Henry et al., 2021). Other studies such as Kamruzzaman et al. (2017)
and Azad et al. (2020) used pan-tropical generic models to estimate AGB in selected areas. However,
species-specific allometric models are not yet available to estimate above-ground biomass in the
Sundarbans. Therefore, it is timely to examine whether species-specific allometric models using
measured wood densities and tree heights can yield more accurate estimates of AGB in the
Sundarbans and in mangrove forests more generally. The aim of this paper is to report research that

compares a range of sources of uncertainty in allometric models, wood density, and height
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measurement for AGB in the Sundarbans mangrove forest, Bangladesh. First, the study compares site-
and species-specific AGB between the Sundarbans and pan-tropical generic allometric models for
variability of above-ground tree biomass. Secondly, the study determines variability of AGB in the
Sundarbans by comparing measured and published wood density values at multiple spatial scales.
Thirdly, the study quantifies the impact of different methods of tree height determination on estimates

of AGB in mangrove forests.

5.2. Material and methods

5.2.1. Study area

The Bangladesh Sundarbans is situated between 21°30° N and 22°30° N and 89°00° E and 89°55’ E in
the lower plain of the Ganges-Brahmaputra-Meghna (GBM) delta covering an area of 6,017 km?
(Figure 4.1) (Giri et al., 2011; Aziz and Paul, 2015; Sarker et al., 2016). The forest is of international
significance as a Ramsar and UNESCO World Heritage site. It provides a number of valuable
ecosystem services such as protecting inland areas from storms and tidal surges (Barua et al., 2020).
The near-constant mean annual minimum and maximum temperature (29 °C — 31 °C) and high annual
rainfall (1474 mm to 2265 mm) made the climate of the Sundarbans warm and humid between 1948
and 2011 (Chowdhury et al., 2016; Sarker et al., 2016). The soil is fine-gained silt and clay and
slightly calcareous (Siddigi, 2001). The Sundarbans has a distinct salinity zonation with the high
salinity zone in the west (polyhaline) to low salinity zone (oligohaline) in the east along with medium
salinity zone (mesohaline) between (Siddigi, 2001; Chanda et al., 2016b). Salinity regulates the
geomorphology and hydrological characteristics and also the morphology, growth and distribution of

plant species (Sarker et al., 2016; Sarker et al., 2019a; Rahman et al., 2020; Rahman et al., 2021b).
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Figure 5.1: Sample plot location in the Sundarbans mangrove forest, Bangladesh. The pink star indicates tree

location by Mahmood et al. (2019).

5.2.2. Allometric models in the Sundarbans

Species-specific allometric models are not available for all species in the Sundarbans as destructive

sampling was not permitted due to an imposed felling moratorium since 1989 (Mahmood et al., 2019).

However, four species-specific models were developed through destructive sampling in the

Bangladesh Sundarbans (Table 4.1). Three generic allometric models were recently developed for 14

species by using semi-destructive sampling methods where biomass of stems and larger branches

were measured through volume and wood density, and small branches and foliage through weighing

after pruning (Mahmood et al., 2019). Published pan-tropical models have also been used to estimate

biomass in the Sundarbans (Rahman et al., 2015a; Kamruzzaman et al., 2017; Kamruzzaman et al.,

2018).
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Table 5.1: Allometric models used for measuring above-ground biomass in the Sundarbans

Model no. Site, Species Allometric model N ;gzr;(t:g[y in this paper and
Bangladesh Sundarbans and Species-specific
e PP AGB=5.49GCH?- 251.36 H - 0.07 HCH _—
1 Aegialitis rotundifolia 1075 (GCHx H xHCH) 29 Siddique et al. (2012)
2 Aegiceras corniculatum vAGB=0.48 DBH-0.13 50 Mahmood et al. (2016b)
3 Ceriops decandra AGB=4.70 GCH>*! 48 Mahmood et al. (2012)
4 Kandelia candel AGB=0.21 DBH?*+0.12 25 Mahmood et al. (2016a)
Bangladesh Sundarbans and generic model
For 14 species
5 Aglaia piculate, In(AGB)=-1.9272+2.3517 In(DBH) 260 Mahmood_2019 D
Avicennia officinalis, (Mahmood et al., 2019)
Avicennia marina,
Bruguiera gymnorrhiza,
6 Bruguiera piculate In(AGB)=-2.4317+2.1341 In(DBH) 260 Mahmood_2019 DH
Excoecaria  agallocha, +0.4953 In(H) (Mahmood et al., 2019)
Heritiera fomes,
Lumnitzera piculat,
Rhizophora piculate,
. zgr'fn%ﬁg?i;a m“;?;g}g’ I(AGB)= -6.7189+2.1634 In(DBH) | .| Mahmood_2019_DHW
Sonneratia caseolaris, +0.3752 In(H)+0.6895 In(WD) (Mahmood et al., 2019)
Xylocarpus granatum,
Xylocarpus moluccensis
World or Pantropical and generic model
i i _ 5 0.976 Chave_2014_DHW
8 Pantropical, all species AGB=0.0673x(WDx DBH?x H) 4,004 (Chave et al.. 2014)
Pan-tropical,  mangrove _ 2 Chave_2005_DHW (Chave
9 species AGB=0.0509x( WDx DBH? xH) 84 et al., 2005)
10 Pan-tropical,  mangrove | AGB= WD X exp(-1.349+1.980 In(DBH) 84 Chave_ 2005 DW
species +0.207 (In(DBH))? -0.0281 (In(DBH))?) (Chave et al., 2005)
South-East Asia, _ 246 Komiyama_2005_DW/(Ko
1 mangrove species AGB=0.251x WD*DBH 104 miyama et al., 2005)

Here AGB = Total above-ground biomass (Kg), N = Number of destructive/semi-destructive samples, DBH = Diameter at
breast height (cm), H = Total height (m), WD = Wood density (gm cm-3, model-7: kg m), GCH= Girth at collar height (cm),
HCH = Height of collar girth point (m).

5.2.3. Development of species-specific allometric model

A conceptual diagram of the research methodology is presented in the Figure 4.2. The species-specific
allometric models were developed from the semi-destructive sampling (324 individuals, 13 species,
except Sonneratia caseolaris) from Mahmood et al. (2019), where above-ground biomass (kg/tree)
was presented along with diameter at breast height (DBH) and total height (H) (Figure 4.1). Species-
specific models for Sonneratia caseolaris were not developed as the independent tree inventory data
did not have any individuals of this species. Out of 13 species, eight species (Avicennia officinalis, A.
marina, Bruguiera gymnorrhiza, B. piculate , Rhizophora piculate, R. mucronata, Xylocarpus

granatum and X. moluccensis) were merged into genus level to yield sufficient data for model fitting.
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Therefore, nine allometric models were developed for Aglaia piculate, Avicennia spp., Bruguiera
spp., Excoecaria agallocha, Heritiera fomes, Lumnitzera piculat, Rhizophora spp., Sonneratia

apetala, and Xylocarpus spp.

Objectives/ Data Allometric models
Questions

Semi-destructive
]s);:(fil:sp;:z:itf?cf ki 1. Five species-specific
- Mahmood et al. 2. Four genus-specific
allometric models (2019) (324 trees) £ ’

1. Site-specific generic: Model 5-7
How do different Tree inventory P’ :

allometric models from 140 sample
affect AGB? plots by authors 3. Species-specific: Developed models
and Model 1-4

How do different 1. Tree inventory
from 140 sample :
sources of wood plots by authors Model 7 with
density affect . DBH, H and WD
AGR? 2. Wood density
. from database

2. Pan-tropical generic: Model 8-11

How do different :
height Tree inventory Model 7 with DBH, H
from 140 sample
measurements and WD

affect AGB? plots by authors

DA DA DANADA

Figure 5.2: Conceptual diagram of the research methodology. The model numbers are labelled according to
Table 4.1. Here, DBH: Diameter at Breast Height, H: Height and WD: Wood density.

Log-linear ordinary least square regression (OLS) was used to fit models to predict above-ground
biomass for each species. The choice of log-linear regression over nonlinear regression was done by
comparing the error distribution of biomass. According to Xiao et al. (2011), the linear regression of
log-transformed data better characterizes multiplicative, heteroscedastic and lognormal error, whereas
the nonlinear regression performs additive, homoscedastic, normal error. The goodness of fit of two
models were compared and the lower value of Akaike’s information criterion (AIC) provides
significantly better fit when the magnitude of the difference of AIC is greater than 2 (Burnham and
Anderson, 2002). These two models were compared for all species following Xiao et al. (2011). In all

cases, the log-linear regression provided a significantly better fit (Table B.1). Therefore, the following
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six log-linear regression models were used to fit AGB as the dependent variable, and diameter at

breast height (DBH) and tree height (H) as independent variables.
El : In(AGB)=1n(a) +b In (DBH)
E2 : In(AGB) =In(a) +b In (H)
E3 : In(AGB) =In(a) +b In (DBH xH)
E4 : In(AGB) =In(a) +b In (DBH?xH)
E5 : In(AGB) =In(a) +b In (DBHx H?)
E6 : In(AGB)=1In(a) +b In (DBH)+c In (H)

The underlying assumptions for the regression analysis such as normality of residuals and
heteroscedasticity were used to judge the suitability of each regression model. Percent relative
standard errors (PRSE) of each regression coefficient were measured according to Sileshi (2014),
where PRSE > 25 is considered an unreliable model. The multicollinearity of each model was
measured with the variance inflation factor (VIF), where VIF > 5 indicates high collinearity among
independent variables. Due to high multicollinearity, complex models with more independent
variables were not considered in this study. After obtaining the eligible potential models for each
species, the best models were selected by the lowest second-order Akaike Information Criterion
(AlCc) and Residual Standard Error (RSE), and the highest Akaike Information Criterion weight
(AICw) and coefficient of determination (R?) values (Picard et al., 2012; Sileshi, 2014; Mahmood et
al., 2019; 2020). Models with non-significant parameter of estimates were not considered, regardless
of meeting the criteria outlined. Since, the AICw provides the likelihood of each model to be the best,
it was given highest priority compared with other parameters (Sileshi, 2014). For all models, the
correction factor (CF) was calculated to minimise systematic bias while converting biomass from In
scale to a normal scale (Sprugel, 1983). The K-fold cross-validation technique was used to validate
the best model. This technique randomly divides the original dataset into K subsets (10 in this case) of

equal sizes, where each subset is validated with K-1 subsets (James et al., 2013). The K-fold
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validation technique was also run for the Sundarbans-specific and the pantropical generic model

(model no. 7 -11 in Table 4.1) to measure tree level variability in AGB in the Sundarbans.

5.2.4. Tree inventory

Above-ground tree data were collected from 140 random sample plots within the Bangladesh
Sundarbans (Figure 4.1). Out of 140 sample plots, 120 plots were randomly placed within Permanent
Sample Plots (PSP) (20 x 100 m) established by the Bangladesh Forest Department whilst the
remaining 20 plots were outside of the PSP. These sample plots are distributed in all 55 compartments
(administrative unit) in the Bangladesh Sundarbans covering all three salinity zones (oligohaline,
mesohaline and polyhaline) and forest types (Iftekhar and Saenger, 2008; Sarker et al., 2019b). Each
plot consists of a circular plot with the radius of 11.3 m (400 m?) for measuring bigger trees (DBH >
14.5 cm) and a smaller circular plot within this of 5 m radius (79 m?) for smaller trees (DBH > 2.5 to
14.5 cm) (Figure B.1). After establishing the plots, all individual trees (DBH > 2.5 cm) were marked,
and DBH and total height (H) measured by using a diameter tape and a Vertex Il hypsometer
(Haglof, Sweden), respectively. A Haglof wood increment borer (5.15 mm diameter and 300 mm bit
length) was used to collect woody specimen at DBH point to determine the wood density (WD) of
studied species according to Wiemann and Williamson (2013). The WD (gm cm) was then measured
from the volume and dry mass of the specimen. The cylindrical volume was measured in the field
from the diameter and length of the specimen and brought to the laboratory for oven-drying at 105 °C

until constant weight was obtained.

5.2.5. Variability of Above-ground biomass in the Sundarbans

The magnitude and pattern of differences in AGB at plot level in the Sundarbans were compared by
using different allometric models with an independently collected inventory from the Sundarbans.
Plot level AGB variability was measured by actual AGB difference (Mg ha?), absolute difference

(Mg ha?) and relative absolute difference (%) among different allometric models.
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5.2.5.1. AGB variability between allometric models

Measured DBH, H and WD were used in the species-specific allometric models and other site-specific
and pan-tropical generic models (Model 7-11 in Table 4.1) to assess AGB at the individual tree level.
In order to compute plot-level AGB estimates per hectare (Mg ha™), a hectare expansion factor (HEF)
for each stem was used according to the size of the sample plot (i.e., HEF = 25 for bigger plots, and
HEF = 126.58 for smaller sub-plot) and subsequently summed up all tree biomass in each plot to get
plot biomass. To estimate biomass from the species-specific models, the developed nine species-
specific models were used alongside four published species-specific models (Model 1-4 in Table 4.1).
If no species-specific allometric model was available, models for similar genus or family level were
applied. Since measuring the girth at collar height (GCH) for Ceriops decandra and Aegialitis
rotundifolia is laborious and time consuming, DBH was measured in the field and subsequently

converted to GCH from a relationship between DBH and GCH of 50 individuals (Figure B.2).
5.2.5.2. AGB variability with wood density

Variation of tree AGB was compared with measured and database-sourced WD obtained from
published wood density including the Global WD database (Chave et al., 2009; Zanne et al., 2009),
World Agroforestry’s tree functional attributes and ecological databases (ICRAF, 2016) and from
Bangladesh Forest Research Institute (BFRI) (Sattar et al., 1995). The Sundarbans-specific generic
allometric model (Model 7: Mahmood_2019 DHW) was used for comparison of AGB from multiple
WD sources. If there was no measured wood density for any species, the WD from the same genus or
family was used. Instead of applying species WD, plot-level mean WD, salinity zone WD and
Sundarbans level WD were used to investigate how the spatial scale of WD variation on AGB
estimates in the Sundarbans. To measure salinity zone mean WD, measured WD were averaged

according to three salinity zones in the Sundarbans according to Rahman et al. (2021b).
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5.2.5.3. AGB variability with tree height

To derive the variation of AGB from different height measurements, mean height and maximum
height from each plot was used in Model 7 (Mahmood_2019_DHW). The Model 7 was used in this

case as it originated from the Sundarbans and contains both H and WD parameters.

5.2.6. Statistical Analysis

All statistical analysis and graphics used R4.0.4 for Windows in Rstudio Version-1.4.1106 (R Core
Team, 2020). The normality of residuals, heteroscedasticity and multicollinearity of each regression
model were tested with a Shapiro-Wilk normality test by using ‘R stats’ base package, studentized
Breusch-Pagan (BP) test by using ‘Imtest’ package and Variance Inflation Factor (VIF) test using
‘car’ package, respectively (Zeileis and Hothorn, 2002; Fox and Weisberg, 2019). Second-order
Akaike Information Criterion (AICc) for the fitted regression model was assessed by ‘MuMIn’
package (Barton, 2020). K-fold cross validation was run using the ‘caret’ package and model
accuracy was compared with Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
(Kuhn, 2008). Pairwise comparison of tree AGB between the species-specific and other models were
tested either by paired t-test if the underlying assumptions such as normality and heteroscedasticity
were met; otherwise, Wilcoxon signed-rank non-parametric test was used. The ‘rstatix” package was
used for Wilcoxon signed-rank test and ‘R stats’ base package was used for paired t-test (Kassambara,
2020). The graphical output was generated using the ‘ggplot2’ ‘ggeffects’ and ‘cowplot’ package

(Wickham, 2016; Ludecke, 2018; Wilke et al., 2019).

5.3. Results

5.3.1. Species-specific allometric model

Out of 54 log-linear regression models for nine species, 26 models passed all four criteria including
normality of residuals, heteroscedasticity, PRSE and VIF (Table B.2). These 26 models were then
fitted species-wise to the 324 semi-destructively harvested tree dataset with DBH and H: Aglaia

piculate (19), Avicennia spp. (41), Bruguiera spp. (31), Excoecaria agallocha (35), Heritiera fomes
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(97), Lumnitzera piculat (13), Rhizophora spp. (17), Sonneratia apetala (20), and Xylocarpus spp.

(51).
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Figure 5.3: Best species-specific allometric model for above-ground biomass in the Sundarbans.

Out of 26 models, the best nine species-specific models are presented for each species group (Table

4.2; Figure 4.3). The AIC weight shows that the best-chosen models for Aglaia piculate, Bruguiera

spp., Excoecaria agallocha, Heritiera fomes, and Xylocarpus spp. have 100% chance for being the

best model, while Avicennia spp., Lumnitzera piculat, Rhizophora spp. and Sonneratia apetala have

81%, 94%, 82%, and 71%, respectively chance to be the best model (Table 4.3). In the case of

Sonneratia apetala, while E6 models had the highest and lowest RSE and AIC value, the E4 model

was chosen based on higher AICw for its greater chance for being the best model. The adjusted

coefficient of determination (R?) varied from 0.77 to 0.99 for all models. All species-specific models

comprised a single predictor value with only DBH for six species: Aglaia piculate, Avicennia spp.,
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Bruguiera spp., Heritiera fomes, Lumnitzera piculat, and Xylocarpus spp. and with combination of

DBH and H (DBH?xH) for Excoecaria agallocha, Sonneratia apetala, and Rhizophora spp.

Table 5.2: Regression results for all species-specific allometric models in the Sundarbans.

. Eq Model Adj
Species ' : a* b c " | RSE AlCc AlC CF
P no. | In (AGB) = R? w
) El '”ég)B*Ht; n -1.9066 | 2.3784 0.9915 | 0.1047 -26.3501 1.00 1.0055
Aglala In(@) +bin
cucullata | €5 (DBHAHR) 37114 | 1.0918 0.9585 | 0.2316 3.8164 0.00 1.0980
E2 | In@)+bin(H) 45892 | 3.7109 0.8554 | 0.4324 27.5502 0.00 10272
. . In(@) +b In
Avicennia | E! e -1.5554 | 2.2069 09781 | 0.2287 0.0103 0.81 1.0265
spp. In@) +bin B
pp E4 (DBHxH) 27625 | 0.9520 09765 | 0.237 2.8854 0.19 1.0285
E1 '”%gﬁ)'“ -1.4473 | 2.2870 0.9845 | 0.1926 -0.3234 1.00 1.0187
Bruguiera E3 Ina) +bn 2.7982 | 1.5246 0.9649 | 0.2901 16.0743 0.00 1.0430
spp. (DBHxH)
In(@) +bin )
E5 (DBHAER) 3.1823 | 1.1004 09178 | 0.4439 42.4386 0.00 1.1035
In(@) +bIn
E4 (DBHEH) 25721 | 0.8623 0.9903 | 0.1539 -26.9780 1.00 1.0119
Excoecaria | e3 'E‘E(ggxbd)” -2.9335 | 14173 0.9801 | 0.2200 -1.9475 0.00 1.0245
agallocha In(@) + b In
E5 (DBHAHR) -3.3198 | 1.0359 09501 | 0.3152 50.1953 0.00 1.0509
E2 | In(a) +bin(H) ~4.0227 | 3.6582 0.8558 | 0.5919 67.3342 0.00 11015
Heritiera El Iy -+ ol -1.9944 | 2.4603 0.9931 | 0.1434 -97.2721 1.00 1.0103
fomes (DBH)
El '”%"gé’ﬁ)'" 21151 | 2.4187 0.9858 | 0.1342 -8.8255 0.94 1.0090
- E4 In@) + b In -3.2562 | 1.0631 0.9783 | 0.1663 -3.2570 0.06 1.0139
Lumnitzera (DBHxH) : : : : : : :
racemosa In(@) +bln ;
E3 (DBHxH) 4.0458 | 1.8671 0.9558 | 0.2373 5.9931 0.00 1.0286
In(@) +bin
E5 (DBHA) -4.9734 | 1.4650 0.8994 | 0.3579 16.6722 0.00 1.0661
E4 '(rI‘D(g)HZfJ)‘ -2.3744 | 0.8953 0.9467 | 0.2226 2.8788 0.82 1.0251
Rhizophora E3 In@) +bln -2.8960 | 1.5009 0.9358 | 0.2443 6.0407 0.17 1.0303
spp. I('?E;H"le)
n@) + n
E5 (DBHA) -3.4321 | 1.1161 0.9065 | 0.2948 12.4334 0.01 1.0444
In(a) +bIn
E4 (DBHxH) -2.8869 | 0.9170 0.9938 | 0.1633 -10.3304 071 1.0134
In(@) +bin
E6 -2.6715 | 1.9068 | 0.7430 | 0.9939 | 0.1625 -8.5123 0.29 1.0133
Sonneratia (DBH) + ¢ In(H)
In(@) +bin
apetala E3 (DBHxH) -3.6314 | 1.5533 0.9854 | 0.2518 6.9904 0.00 1.0322
In(@) +bin
E5 (DBHA) -4.4509 | 1.1706 0.9582 | 0.4256 27.9819 0.00 1.0948
E2 | In@+bin(H) 5.6705 | 4.2261 0.7723 | 0.9932 61.8759 0.00 16375
Xylocarpus El L <+ Bl -1.9174 | 2.3100 0.9720 | 0.1989 -15.5152 1.00 1.0200
spp. (DBH)

Here bold and light grey shaded models are the best model for each species, a* stands for In (a), all parameters of estimates (a, b
and c) are significant at p < 0.05. R% Coefficient of determination, RSE: Residual standard error, AlCc: with small sample bias
adjustment, AICw: weighted AIC, CF = Correction factor for converting log scale into normal scale.
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The 10-fold cross validation showed that the species-specific model gives the lowest average Mean
Absolute Error (MAE) of all species in comparison to three Sundarbans-specific and four pan-tropical
generic allometric models (Figure 4.4, Table B.4). The lowest average MAE revealed that the species-
specific models performed well to predict the AGB in the Sundarbans. AGB estimation at tree level
had mean relative absolute difference in MAE between 21.85% with the Mahmood 2019 DHW
model to the maximum 167.43% with the Komiyama_2005 DW model followed by the
Chave_2005_DHW and the Chave 2014 DHW model (Table B.4). The paired t-test of MAE for
species-specific models with generic models showed that there is no significant difference of MAE
with three Sundarbans-specific models (p >0.05); however, all four pan-tropical models showed
significantly higher MAE than the species specific-model (p <0.05). The largest error was obtained

for Excoecaria agallocha with the Komiyama_2005_DW model.
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Figure 5.4: Species-wise mean absolute error (MAE) of tree AGB with all allometric models after 10-fold cross
validation. The models are arranged from highest average MAE to minimum.

5.3.2. Above-ground tree biomass in the Sundarbans

The tree inventory in the Bangladesh Sundarbans indicates a total of 24 tree species. The mean DBH,
height, measured and database-sourced wood density of all tree species are presented in the Table 4.3.
The DBH and H distribution are presented in the supplementary Figures B.3 and B.4. The frequency

distribution of the top ten species based on basal area (m? ha') and tree density (trees ha) showed
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that Excoecaria agallocha, Heritiera fomes and Ceriops decandra comprise 90% of the stems in the
Sundarbans, although they represent 60% in terms of basal area (Figure 4.5). Excoecaria agallocha
and Heritiera fomes was within the top two species in both categories; Ceriops decandra was the third

in terms of tree density, however, sixth in case of basal area for its lower DBH.
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Figure 5.5: Frequency distribution of the 10 most frequently occurring species based on basal area (m? ha') and
tree density (tree hal).



Sl

No.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Table 5.3: List of tree species found in the Sundarbans with taxonomy and structural parameters.

Latin name

Aegialitis
rotundifolia Roxb.
Aegiceras
corniculatum (L.)
Blanco
Aglaia piculate
(Roxb.) Pellegr. *
Avicennia alba
Blume.
Avicennia marina
(Forssk.) Vierh.
Avicennia
officinalis L.
Bruguiera
gymnorrhiza (L.)
Lam.
Bruguiera

piculate
(Lour.) Poir.
Cerbera manghas
L. *
Ceriops decandra
(Griff.) Ding Hou
Cynometra
ramiflora L. *
Excoecaria
agallocha L.
Excoecaria indica
(willd.) Muell.
Arg. *
Heritiera
Buch. -Ham.
Hibiscus tiliaceus
L. *
Intsia bijuga
(Colebr.) Kuntze *
Kandelia  candel
(L.) Druce
Lumnitzera

piculat Willd.
Millettia  pinnata
(L.) Panigrahi*
Rhizophora

piculate Blume.
Rhizophora
mucronata Lamk.
Sonneratia apetala
Buch. -Ham.
Xylocarpus
granatum
Koen.
Xylocarpus
moluccensis
(Lam.) M. Roem

fomes

K.D.

Local
name

Nunia

Kholshi

Amur

Sada Baen

Moricha
Baen

Kala Baen

Lal Kakra

Holud Kakra

Dakur
Goran
Singra

Gewa

Batul

Sundri

Bola
Bhaila/Bhola
Vatkathi
Kirpa

Karanj
Bhora Jhana
Jhana Garjan

Keora

Dhundul

Passur

Family

Plumbaginaceae
Primulaceae

Meliaceae
Avicenniaceae
Avicenniaceae

Avicenniaceae

Rhizophoraceae

Rhizophoraceae

Apocynaceae
Rhizophoraceae
Fabaceae

Euphorbiaceae
Euphorbiaceae

Malvaceae
Malvaceae
Fabaceae
Rhizophoraceae
Combretaceae
Fabaceae
Rhizophoraceae
Rhizophoraceae

Lythraceae

Meliaceae

Meliaceae

Mean
DBH

(cm +

s.d.)
6.86 (+
2.85)

5.60 (+
2.67)

358 (+
1.16)
14.10 (=
0.85)
10.40 (+
5.26)
21.20 (+
13.40)

7.40

15.75 (+
3.95)

8.92 (+
0.08)
331 (2
0.80)
4.25 (+
1.55)
6.93 (+
4.04)

6.60

8.57 (+
6.58)

3.90

4.40 (£
0.79)
11.87 (
5.09)
5.23 (+
1.84)

5.70

13.54

15.42 (+
3.72)
29.35 (+
12.84)

18.77 (&
12.03)

1551 (+
10.80)

Mean
Height (m
+s.d)

3.94 (x
1.71)

5.73 (+
2.18)

470 (
1.62)
8.70 (
2.40)
10.87 (+
5.77)
11.56 (+
5.13)

5.80

6.96 (+
3.02)

072 (*
0.08)
397 (
0.95)
5.05 (+
1.47)
6.71 (=
2.49)

6.80

8.03 (+
4.16)

5.00

517 (+
0.81)
777 (+
1.15)
5.99 (+
1.13)

6.30

0.72

10.38 (+
2.65)
17.97 (=
5.90)

8.08 (+
2.66)

9.39 (+
3.95)

Measured Mean
Wood Density
(gmcm2£s.d.)

0.74

0.50
0.72 (+ 0.08)
055

0.61 (£0.07)

0.69 (+0.03)

0.35 (+0.01)
0.73 (x 0.07)
0.66 (+ 0.05)

0.42 (+0.08)
041

0.75 (£ 0.07)

0.58 (+0.05)
0.82 (£0.13)

0.55

0.95 (+ 0.05)

054 (+0.07)

0.58 (+0.05)

0.65 (0.09)

Mean Wood
Density from
database (gm cm-
+s.d.)**

0.50 ((+ 0.05)
0.60 ((+ 0.08)

0.62 ((+0.12)
0.70 (2 0.12)
0.64 ((0.09)

0.65 ((+ 0.08)

0.76 ((+ 0.08)

0.83 ((+0.12)

0.47 ((+ 0.05)
0.73 ((+ 0.25)
0.84 (( 0.10)

0.43 ((+ 0.06)
0.50 ((+ 0.02)

0.88 ((+0.11)
0.48 ((+ 0.06)
0.71 ((* 0.20)
0.52 ((+ 0.05)
0.83 ((+ 0.08)
0.61 (( 0.05)
0.88 ((+0.21)
0.85 ((+ 0.10)

0.53 ((+ 0.11)

0.67 ((+ 0.14)

0.65 ((+ 0.09)

* Indicates mangrove associates according to Tomlinson (2016). Abbreviation: DBH = Diameter at Breast Height. Values
without s.d. indicates single observation. ** Multiple wood density values from different sources.

The mean above-ground biomass varied from 111.36 Mg ha* with the Chave_2005_DHW model to

the highest 299.48 Mg ha for Chave_2005_DW model (Figure 4.6). Except for Chave_2005_DHW

79



and Chave_2014_DHW, all other models yielded higher AGB than the species-specific model (123
Mg hat). The mean relative absolute difference in AGB ranged from 9% with Mahmood 2019 DHW
to 142% with Chave_2005_DW. Pairwise comparison with the Wilcoxon Signed-Rank Test between
species-specific and other models showed that all generic models measured significantly different
AGB than the species-specific model in the Sundarbans (p <0.05). Both Chave 2005 DW and
Komiyama_2005_DW overestimated AGB (supplementary Table B.5). The absolute difference
between allometric models tended to increase with DBH in all species, suggesting that larger trees are
crucial for estimating AGB with a variety of available allometric model leading to a greater error and

uncertainty.
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Figure 5.6: Comparison of above-ground biomass (Mg ha') with different allometric models. The models are
arranged from the highest median AGB to the lowest. The black horizontal line of box plot for each model
represents the median and the width of violin plot represents the proportion of the data located there as a
measure of kernel probability density. The black dots represent the outliers, which are 1.5 times of the
interquartile range above the upper quartile and below the lower quartile (McGill et al., 1978)
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Table 5.4: Pairwise comparison test of plot-level AGB from species-specific and other allometric models.

Mean absolute Mean relative Wilcoxon Signed-
difference absolute Rank Test (2), p-
biomass (Mg ha!) difference (%) value

Mean difference

Model comparison biomass (Mg ha™)

Comparison of different allometric model

Species-specific — Mahmood_2019 DHW  -5.18 11.38 9.21 Z =-5.13, p <0.05
Species-specific — Chave_2014 DHW 0.79 17.38 14.07 Z =-2.89, p <0.05
Species-specific — Mahmood_2019_D -12.66 19.66 15.92 Z =-6.40, p <0.05
Species-specific — Chave_2005_DHW 12.59 21.07 17.06 Z =-6.51, p <0.05
Species-specific — Mahmood_2019_DH -21.27 23.37 18.92 Z =-7.95, p <0.05
Species-specific — Komiyama_2005_DW -52.47 52.57 42.57 Z =-10.26, p <0.05
Species-specific — Chave_2005_DW -175.67 175.75 142.31 Z =-10.26, p <0.05

Comparison from different Wood Density (WD)

Measured WD — Plot mean WD -3.16 5.83 4.53 Z =-5.86, p <0.05
Measured WD — Database WD -4.82 9.91 7.70 Z =-3.83, p <0.05
Measured WD- Salinity zone mean WD -4.08 12.46 9.68 Z =-3.54, p <0.05
Measured WD — Sundarbans mean WD -4.29 12.47 9.69 Z=-3.59, p <0.05

Comparison from different Tree Height (m)

Individual Height — Plot mean Height 10.70 10.70 8.31 Z =-13.68, p <0.05

Individual Height -Plot top Height -25.04 25.04 19.46 Z =-13.68, p <0.05

AGB was significantly higher when models used published WD values compared to species-specific
measured WD (Wilcoxon Signed-Rank Test, p <0.05) (Figure 4.7A, Table 4.4). The maximum mean
relative difference biomass was for Sundarbans mean WD followed by salinity zone mean WD and
database-derived WD. Looking at different sources of height data, using plot top height tended to
overestimate AGB by 19.46%, while using average height underestimated AGB by 8.31% compared

to the measurements from Individual species (Figure 4.7B, Table 4.4).
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Figure 5.7: Comparison of above-ground biomass with A) different wood density and B) different height
parameters. The parameters are arranged from the highest median AGB to the lowest. For details of the violin-
box plot, see Figure 4.6.

5.4. Discussions

The results show that the species-specific allometric models provide the lowest average mean absolute
error (MAE) for all species in the Sundarbans (Figure 4.4, Table B.4). However, the three
Sundarbans-specific generic models showed no significant difference of mean MAE at tree-level
compared with the species-specific models (Table B.4). At plot-level, all local and pan-tropical
generic models either overestimated or underestimated AGB when compared to local species-specific
models (Figure 4.6). Several studies have concluded that site-specific AGB models estimate biomass
or carbon with less error than regional or pan-tropical models; as seen in studies in the Sundarbans
mangrove forest (Mahmood et al., 2019), lowland Dipterocarp forest in Indonesia (Basuki et al.,
2009), degraded landscape in Northern Ethiopia (Mokria et al., 2018), central African forest
(Ngomanda et al., 2014) and Mexican tropical humid forests (Martinez-Sanchez et al., 2020). In
contrast, only a few studies report better performance from regional or pan-tropical models and these
appear to result from large uncertainties in the data used to build the local model; for example, West
Africa (Aabeyir et al., 2020). The accuracy of these generic models for a particular forest depends on
whether these models incorporate sufficient samples from that forest. Chave et al. (2014) point out

that the discrepancy between local models and their own model (Chave_2014 DHW) in wet forests
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(including mangroves) is largely due to failure to address the wider variation of tree form and other
characteristics like buttresses, which are common in the Sundarbans. Their previous model
(Chave_2005_DW) overestimated AGB in the Sundarbans because of its inability to estimate biomass
from larger trees (DBH > 42 cm) (Chave et al., 2005). However, surprisingly, the worldwide generic
models for mangroves also overestimate AGB, possibly because of the samples drawn from the

mangroves of Asia-Pacific and Australia (Komiyama et al., 2008).

The structure and morphological characteristics of all mangroves vary according to their ability to
adapt to environmental conditions such as salinity, which is less pronounced in other wet and dry
tropical areas (Ball and Pidsley, 1995; Tomlinson, 2016). Environmental drivers such as salinity and
water deficit are considered the main stressors for the growth and development of mangroves,
including the Sundarbans. For example, the third most abundant species in the Sundarbans, C.
decandra, is a multi-stemmed bushy species, on the other hand, the top two, H. fomes and E.
agallocha are tree-like structures. The pantropical models yielded a large error in the dwarf, bushy
species and other true mangrove species in the Sundarbans (Table B.5). Moreover, the extreme
salinity has reduced the stature (Rahman et al., 2015a), trunk diameter (Rahman et al., 2020) and the
leaf area (Khan et al., 2020b) of H. fomes and S. apetala, present in all three salinity zones in the
Sundarbans. Due to this morphological variation, Banerjee et al. (2013) highlighted the importance of

developing models based on salinity zonation.

This study demonstrates that when using measured wood densities and individual tree heights, generic
equations yield accurate estimates of AGB in mangroves at the plot scale (Figure 4.7). Most species
had a higher published WD than the measured value seen in Table 4.3 (Henry et al., 2010). The use of
WD from different databases such as the Global WD database resulted in a 9% variation for species
having multiple values, which could provide a significant variation in AGB if upscaled (Réjou-
Méchain et al., 2019). Averaging WD at the plot scale, salinity zone scale or ecosystem scale also
introduces errors. While WD is considered an important variable to capture a range of characteristics
such as high density versus low density timber species, climax versus pioneer species or primary

versus secondary species, the use of WD value from the secondary sources or averaging them in the
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higher scales might not reflect the true biomass (Slik et al., 2008; Kenzo et al., 2009). Phillips et al.
(2019) noted significant AGB error in the Amazon rainforest while scaling up from the plot level to
forest and Amazon-wide level. Yuen et al. (2016) observed 31 Mg ha' higher AGB with the

difference of measured and published WD of only 0.13 gm/cm?.

Among nine developed models, six showed that DBH alone is a strong predictor of AGB across the
Bangladesh Sundarbans. The remaining three models of E. agallocha, S. apetala, and Rhizophora spp.
showed sensitivity to height. However, the inclusion of top height or average height instead of using
individual tree height can increase the error at the plot level and above. Kearsley et al. (2013)
observed a 24% overestimation of AGB in the central Congo Basin by using a regional Height-
Diameter relationship developed by Feldpausch et al. (2012) compared to the local relationship. On
the other hand, using mean height could reduce the difficulty of taking height measurements in dense
forests, yet may lead to a significant underestimation of AGB (Hunter et al., 2013). The difficulty of
measuring height under a dense forest canopy allows researchers to use a H-D relationship or to use
bioclimatic variables in allometric models. However, these also lead to non-uniform bias in biomass

estimation (Réjou-Méchain et al., 2019).

Although species-specific WD and individual height data can be used to accurately estimate AGB at
the plot and ecosystem level, collecting species information is impractical in highly diverse mixed
tropical forests such as in Amazonia, Southeast Asia and the Congo basin, which comprise of more
than 53,000 tree species (Feldpausch et al., 2012; Slik et al., 2015). Mangroves, by comparison
exhibit less diversity. Developing allometric models for dominant species could improve the biomass
inventory. For example, in the Sundarbans only 28 species were recorded (24 in this survey) and just
three species (E. agallocha, H. fomes and C. decandra) constitute about 90% of stand density (Figure
4.5), which implies that developing three allometric models is enough to produce acceptable AGB
estimates in the Sundarbans (GOB, 2019). The model used for C. decandra was developed by
destructive sampling from Mahmood et al. (2012) and so this study recommends developing models

with destructive samples from all salinity zones for H. fomes and E. agallocha.
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The errors and uncertainties in the individual tree and plot level AGB estimates will result in large
errors when scaling up to the ecosystem, region or country level by remote sensing (RS) techniques.
Réjou-Méchain et al. (2019) described the errors due to poor choice of allometric models and failure
to capture variabilities of WD and H as uniform and non-uniform bias. Uniform bias systematically
propagates over- or underestimation whereas non-uniform bias is related to an inability to capture the
variabilities across landscapes, for example, WD and H variation among successional stages or
environmental gradients such as the salinity in the Sundarbans (Rahman et al., 2020). These two types
of bias, in addition to mapping errors resulting from the use of remote sensing, may result in serious
anomalies in national and global carbon budgets and result in poor understanding of species

contribution to ecosystem processes and function in mangroves.

5.5. Conclusions

This study developed and tested five species-specific and four genus-specific allometric models for
the nine most important species in the Sundarbans. All developed models explained a high percentage
of the variance in tree AGB (R? = 0.97 to 0.99) using measured diameter at breast height (DBH) and
total height (H) data. At the individual tree level, the generic allometric models overestimated AGB
between 22% to 167% compared to the species-specific models and at the plot level, they showed
statistically significant AGB differences compared to the species-specific models (p<0.05).
Measured wood density (WD) showed 5-10% less biomass than WD from database and other sources,
and AGB was overestimated by up to 20% when using plot top height and underestimated by 8%
using plot average height data rather than individual tree heights. The study concludes that biomass
estimation in mangroves forests always benefit from species-specific models and individual tree
measurements when appropriate input data are available. Tree level measurements from inventory
plots play an important role for the improved estimation of forest biomass while scaling from
individual trees up to the ecosystem level. Improved estimates of AGB will improve support our
understanding of the productivity of mangrove forests, information that is needed for the long-term

conservation of these fragile ecosystems that face many natural and anthropogenic pressures.
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Chapter 6

Mapping ecosystem carbon stocks in the Bangladesh
Sundarbans
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6.1. Introduction

Mangrove forests throughout the world provide a range of ecosystem services to local and global
communities (Himes-Cornell et al., 2018; Friess et al., 2020b). Their role in sequestering atmospheric
CO; as biomass in woody material and as organic matter in sediments plays an important role in
mitigating climate change (Duarte, 2017; Kauffman et al., 2020; Macreadie et al., 2021). Despite
these benefits, it is estimated that about half the area of the world’s mangrove forests have been lost
during the last century (Feller et al., 2010). Nevertheless, data from FAO and independent research
suggests that the decline of mangrove has reduced to about 7% in the last three decades and
mangroves continue to be lost or degraded due to a range of anthropogenic activities, pollution and
climate change (FAO, 2020; Goldberg et al., 2020; Su et al., 2021). A single unit loss of mangrove
forest emits more greenhouses gases than other tropical forests due to high carbon density in the forest
sediments (Donato et al., 2011; Kauffman et al., 2020). Therefore, a global alliance to curb mangrove
destruction and fostering conservation and restoration of degraded mangrove forest has recently been
established via national and international policies and practices such as UN REDD*, Payment for
Ecosystem Services (PES), International Blue Carbon Initiative and the Global Mangrove Alliance

Blue Carbon initiatives (Taillardat et al., 2018; Friess et al., 2020a).

The ecosystem carbon stocks is mainly composed of both above- and below-ground carbon from tree
body parts (either dead or alive) and sediment carbon (IPCC, 2006; Donato et al., 2011). While
sediment carbon is directly measured from sediment samples, tree carbon components are estimated
from allometric models as biomass derived from tree structural parameters such as diameter, height
and wood density of trees (Kauffman and Donato, 2012; Kauffman et al., 2020). Therefore, a range of
regional, pan-tropical and site-specific allometric models are available for mangroves (Komiyama et
al., 2008; Chave et al., 2014; Mahmood et al., 2019). However, the use of non-mangrove models for
mangrove species, and non-site-specific wood density does not provide the corresponding level of
accuracy, especially when estimating biomass variability with vegetation types and environmental
drivers (Owers et al., 2018; Rahman et al., 2021c). A standard conversion factor (usually 45-50%) is

used to convert biomass into carbon (Kauffman and Donato, 2012; Howard et al., 2014). Application
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of a standard conversion factor does not reflect the accurate carbon proportion since the conversion
rate is species-specific and varies with the component of trees such as stems, branches and roots
(Owers et al., 2018). Overall, the carbon stocks of a mangrove forest is not spatially homogeneous,
rather it depends on spatial variability resulting from species type, composition, structure, age,
intertidal condition, salinity and other environmental variables (Owers et al., 2018; Kauffman et al.,
2020; Rahman et al., 2021b). Therefore, site- and species-specific allometric models and site-specific
variables such as wood density and conversion factors are desirable to better reflect the carbon stock

(Mahmood et al., 2019; Martinez-Sanchez et al., 2020; Rahman et al., 2021c).

Remote sensing (RS) imagery is frequently used to upscale plot level carbon stocks to larger scales
where additional environmental variables can be used to produce carbon maps at ecosystem, national,
regional or global level. Upscaling through remote sensing can be done in four ways; a) Stratify &
Multiply (SM) Approach, b) Combine & Assign (CA) Approach, ¢) Ecological Models (EM)
Approach and d) Direct Remote Sensing (DR) Approach (Goetz et al., 2009). While the SM approach
assigns an average carbon value to a land cover/vegetation type map (for example, Asner et al.
(2010)), the CA approach is the extension of SM which uses kriging or co-kriging geostatistics
techniques with multiple-layers of information in GIS (geographic information system) (for example,
Gibbs et al. (2007) and Tyukavina et al. (2015)). The EM approach uses remote sensing (RS) to
parameterise the model (Hurtt et al., 2004) and the DR approaches are basically empirical models
where RS data is calibrated to field estimates using a number of statistical and machine learning
approaches such as neural networks and regression tress (Baccini et al., 2008; Saatchi et al., 2011;
Baccini et al., 2012). Each of these methods has limitations in terms of data requirements and
applicability. Since the SM approach uses average value for each class, it is unable to capture the
wider variability within that class (Gibbs et al., 2007; Goetz et al., 2009). The CA approach has the
advantage that it uses additional variables such as elevation, canopy height and adds weights to
prioritise one variable over another. However, it suffers from a lack of consistent spatial data (Goetz
et al., 2009; Tyukavina et al., 2015; Ameray, 2018). The DM approach is best suited for monitoring

carbon sequestration at larger scales and to prepare wall-to-wall carbon maps (Goetz et al., 2015).
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However, for greater accuracy, this DM approach requires active RS data such as RADAR or LiDAR
for training models and validation as these sensors measure forest biomass directly (Goetz et al.,
2015). Upscaling field carbon stocks measurements through remote sensing introduces uncertainty
from geolocation mismatch with field plots, variable acquisition angles of satellite images and
mismatches in scale (Réjou-Méchain et al., 2019). The biomass measurement, conversion to carbon
and upscaling to the ecosystem level or larger scales (such as countries, regions) involves using a
series of statistical models that accumulate uncertainties in each step (Réjou-Méchain et al., 2019;
Rahman et al., 2021c). The errors and uncertainties from field plots are incorporated into the remote
sensing-based forest area estimates to generate the final carbon map. Altogether it is a challenging

task to keep errors and uncertainties in carbon estimation as low as possible.

Until recently, the estimation of carbon stocks in the Bangladesh Sundarbans was mostly based on
field measurements that used the same allometric models for all species, which originated from other
mangroves or tropical forests (Rahman et al., 2021c). The first comprehensive attempt to quantify
carbon stocks in the Sundarbans was undertaken by Rahman et al. (2015a) with the inventory data
from the Bangladesh Forest Department (BFD, 2010). By using the same data, Chanda et al.
(2016b) simulated the blue carbon by using Markov Chain and cellular automata in order to
predict future carbon stocks in the Sundarbans. A range of studies have estimated carbon stocks
and sequestration in some parts of the Sundarbans such as in the oligohaline zone (Kamruzzaman
et al., 2017; Kamruzzaman et al., 2018; Ahmed and Kamruzzaman, 2021), mesohaline zone
(Azad et al., 2020) and in all three salinity zones (Ahmed and Kamruzzaman, 2021). The use of
pantropical allometric models in all these studies may not represent the mangroves of the Indian
subcontinent well and so fail to achieve the desired level of accuracy. However, the Bangladesh
Forest Inventory (BFI) estimated total ecosystem carbon in the Sundarbans and other forests by
developing common allometric models for major species (Mahmood et al., 2019; Henry et al.,
2021). At present, species-specific allometric models are available for 14 species in the
Sundarbans, which can be used to estimate carbon stocks with a greater accuracy (Hossain et al.,

2016; Rahman et al., 2021c). Both Chanda et al. (2016b) and GOB (2019) estimated the total
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ecosystem carbon stocks in the Bangladesh Sundarbans through remote sensing with the SM
approach by assigning average values of each vegetation class or total land area, thus overlooking
the distribution of species. In this regard, species-specific allometric models and conversion
factors may capture the variability due to species. On the other hand, the species distribution in
the Sundarbans is controlled by a range of environmental drivers such as salinity intrusion,
historical harvesting, increasing community size, siltation, diseases and soil alkalinity (Sarker et al.,
2016; Sarker et al., 2019b; Rahman et al., 2020). Upscaling plot level estimations with a forest-type
map should capture these environmental and biotic stressors affecting ecosystem carbon stocks in

the forest.

The aim of this research is to estimate carbon stocks in the Bangladesh Sundarbans at different spatial
scales and to quantify uncertainty in the estimation. The study hypothesises that the use of species-
specific allometric models, wood density and carbon fraction will yield above- and below-ground
carbon stocks at the individual, plot and ecosystem scales with reduced uncertainty. The specific
objectives of this study are to: 1) Estimate above- and below-ground carbon stocks at plot scale; 2)
Compare the variability of ecosystem carbon stocks with vegetation types and salinity zonation; 3)
Produce a forest-type map by comparing pixel-based and object-based classification methods; 4)
Upscale plot level carbon stocks to the Sundarbans ecosystem level to produce an ecosystem carbon

map by using forest-type map.

6.2. Methods

6.2.1. Study site

The study was conducted in the Bangladesh Sundarbans, situated between 21° 14" N and 22° 25" N
latitude and 89° 34" E and 89" 43" E longitude and which comprises about 60% of the world’s largest
mangrove forest, the Sundarbans. The forest is internationally recognised as a Ramsar and UNESCO
World Heritage site and home of world famous Royal Bengal Tiger (Panthera tigris tigris) (Aziz and

Paul, 2015). About 7.5 million people are directly and indirectly dependent on the Sundarbans and it
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provides a number of valuable ecosystem services for their wellbeing, livelihood and protection from
cyclones and tidal surges (Abdullah et al., 2016; Barua et al., 2020; Rahman et al., 2021a). The
climate of this forest can be described as warm, humid, and tropical, with annual precipitation varying
from 1,474 to 2,265 mm and mean annual minimum and maximum temperature varying from 29 °C to
31 °C between 1948 and 2011 (Sarker et al., 2016; Rahman et al., 2020). Silt and clay are the

dominant soil texture in this forest (Siddigi, 2001).

The Bangladesh Sundarbans shows a distinct salinity gradient from east to west and therefore, several
studies have demarcated three distinct salinity zones based on soil salinity — i) Oligohaline (<2 dS/m,
ii) Mesohaline (2-4 dS/m) and iii) Polyhaline (>4 dS/m) (Figure 3.1) (Siddigi, 2001; Chanda et al.,
2016b). Salinity influences the geomorphology and hydrological characteristics which ultimately
regulates the morphology, growth and distribution of plant species (Sarker et al., 2016; Sarker et al.,
2019a; Rahman et al., 2020; Rahman et al., 2021b). The composition and diversity of tree species is
heavily controlled by the east-west salinity gradient (Sattar et al., 1995; Iftekhar and Saenger, 2008;
Sarker et al., 2019a; Sarker et al., 2019b). Overall, Excoecaria agallocha is abundant in all three
salinity zones, whereas the characteristic tree species, Heritiera fomes is present in both oligohaline
and mesohaline zones and Ceriops decandra in the polyhaline zone (Sarker et al., 2019b; Rahman et
al., 2021a). Besides these species, some pioneer species such as Avicenna spp. and Sonneratia apetala
are also abundant in the mudflats all over the Sundarbans. The list of species from the vegetation

survey is presented in the Table 4.3.

6.2.2. Sampling design and data collection

The Forest Department of Bangladesh (BFD) regularly monitors the tree growth and regeneration
from 120 permanent sampling plots (PSP), established at the beginning of the twentieth century
(Chaffey et al., 1985). The area of the rectangular PSP is 20 m x 100 m comprising a total of 2,000
m2. In each PSP, a temporary circular plot was established from August 2018 to April 2019 with the
radius of 11.3 m (400 m? in total), one-fifth of the PSP, to collect biophysical attributes from the

forest. As most of the PSPs are located near the riverbank and these PSPs do not cover seaward side

91



(Southern part of the Bangladesh Sundarbans), an additional 20 plots were established, which

comprises in total of 140 plots (Figure 5.1).
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Figure 6.1: Plot location in the Sundarbans mangrove forest, Bangladesh.

The circular plot was designed to collect data from trees. Two additional circular plots were taken
inside the main plot with a radius of 5 m and 1 m to collect information from poles (DBH < 14.5 cm)
and pneumatophores (Figure 5.2). Additionally, 2-3 sediment cores were taken from each plot for soil
carbon measurement and two-cross sectional transects were established to collect information on

down wood lying on the forest floor.
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Figure 6.2: The nested circular plot and measured components inside the plot.

6.2.3. Estimation of above-ground carbon

The above-ground carbon of a forest consists of carbon from live and dead trees, non-woody species,
poles, saplings, and seedlings, dead and downed wood, pneumatophores and litter. Since seedlings
and saplings constituted a negligible amount of carbon, these two components were not measured in
the field inventory (Kauffman and Donato, 2012). Above-ground biomass (AGB) for each component
was estimated with the collected biophysical attributes from the forest plots separately for each
component. Species-specific carbon fraction for stem and root biomass were developed for seven
species in the Sundarbans by Chanda et al. (2016b). The average carbon fraction for stem and root is
51.8% and 48.9%, respectively. These species-specific values were used to convert biomass into

carbon for stem and root biomass. In the case of unavailability for any species, the value of same
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family or wood density was used. In the case of dead and down wood and pneumatophores, the
average value of root biomass (48.9%) was used. After calculating the carbon stocks of each
component, the above- and below-ground carbon was converted into a unit area scale (per hectare).
Therefore, a hectare expansion factor (HEF) was used for the main and sub-plot (i.e., HEF = 25 for
main plots, and HEF = 126.58 for smaller sub-plot) and expressed as Mg ha. The detailed data

collection method and measurement of biomass are described below.
6.2.3.1. Standing live trees

The standing live trees from sampling plots are divided in to two categories, i) Trees: DBH is greater
than 14.5 cm and ii) Poles: DBH is between 2.5 -14.5 cm as the number of poles are more abundant
than trees and getting information from all poles was time consuming, laborious and risky due to
animal attack. In case of trees and poles, DBH was measured with a diameter tape and total height
was measured using a Vertex-111 hypsometer (Haglof, Sweden). From each plot, the WD (gm cm®)
was measured from one representative tree for each species with a wood specimen collected with a
Haglof wood increment borer (diameter 5.15 mm and bit length 300 mm) following Wiemann and
Williamson (2013). The nine developed genus- and species-specific allometric models from Rahman
et al. (2021c) (Chapter 4, Table 4.2) were used to estimate AGB of individual tree and pole in kg.
Additionally, four locally derived species-specific models (Model 1-4 in Table 4.1) were also used for
the respective tree species. In all cases, measured biophysical parameters such as DBH, H and WD
were used in all models, as necessary. In cases where species-specific models were not available,
models from the same genus or family were used. For Ceriops decandra and Aegialitis rotundifolia,

DBH was converted to Girth at Collar Height (GCH) as described in the 4.2.5.1.
6.2.3.2. Standing dead trees and non-woody components

Standing dead trees were recorded as three categories of decay status depending on the amount of
existing dead branches and twigs during the time of sampling: Decay I: dead trees with large branches
along with small branches and twigs; Decay Il: dead trees with only major large branches; and Decay

I11: dead stems with no or few small or large branches (Kauffman and Donato, 2012). The biomass of
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each category of standing dead trees was calculated by using subtraction following Kauffman and
Donato (2012). The biomass of Decay | trees was estimated by subtracting 2.5% from the calculation
of live tree biomass since these trees are without foliage according to Kauffman and Donato (2012).
The biomass of decay Il categories is commonly 10-20% of live tree biomass as these trees are
without foliage and fine branches (Kauffman and Donato, 2012) and mid value of 15% was used in
this study. The best approach to measure biomass of the decay Ill dead trees is to calculate volume
and subsequently multiplied by wood density according to Kauffman and Donato (2012). However,
this estimation requires tree base diameter data in addition to DBH and height of trees to calculate the
taper function. Since this study did not measure the base diameter of dead trees, it used an arbitrary
value of 50% of live tree biomass for decay Ill dead trees as these trees are mostly without any

foliage, and have fine and large branches (Kauffman and Bhomia, 2017).

In the case of non-woody species, the number of leaves of Nypa fruticans and the number of stems of
Phoenix paludosa were also recorded from each sample plot. A few representatives of leaves and
stems of variable sizes were brought to the laboratory for oven drying at 70 °C for leaves and 105 °C
for stems to determine the dry biomass per specimen. The average dry biomass of these leaves and

stems were used to calculate total biomass of non-woody vegetation for each plot.
6.2.3.3. Dead wood and pneumatophores

In each sample plot, two cross-sectional transects were laid inside the plot to calculate the mass of
dead and downed wood. At each transect, the diameter of each downed wood was measured using
digital slide calliper and divided in to four categories based on the diameter at the mid-point: fine (>
0.6 cm), small (0.6-2.5 cm), medium (2.5-7.6 cm) and large (< 7.6 cm). The carbon stocks of different
sized down wood was calculated by using the volumetric equation described in Kauffman and Donato
(2012). In order to convert biomass to carbon, the specific gravity (gm cm=) for each class was used

following Kauffman and Donato (2012).

Mangroves exhibit numerous pneumatophores above-ground which contain a high biomass. The

central 1 m sub-plot was used to count the number of pneumatophores. Some representative

95



pneumatophores of variable sizes were cut and subsequently brought to the laboratory for oven drying
at 105°C to determine the dry biomass and the average conversion factor was then applied to get dry

biomass of all measured pneumatophores.

6.2.4. Below-ground carbon measurement

The below-ground carbon is composed of mainly of carbon from roots and soil. The root carbon was
measured using allometric models and incorporating soil carbon measurements from laboratory
analysis. Species-specific conversion factors were used to convert root biomass into root carbon

following Chanda et al. (2016b).

6.2.4.1. Below-ground root biomass

Mangroves form cable root systems underneath the surface; therefore, extraction and measurement of
root biomass is labour intensive and difficult (Kauffman and Donato, 2012; Adame et al., 2017).
Common or species-specific allometric models are largely used to infer root biomass in relation to
above-ground parameters of trees such as DBH, height and/or wood density (Komiyama et al., 2005).
However, after analysing available global datasets on below-ground root biomass, Adame et al.
(2017) concluded that using common allometric models overestimates root biomass compared with
using species-specific models. Therefore, the root biomass was estimated from species-specific
allometric models from different mangrove forests (Table 5.1). Where allometric models were not
available for any species, the common allometric model for root biomass, developed by Komiyama et

al. (2005), was used to estimate root biomass of all trees and poles.

Table 6.1: List of species-specific allometric models for estimating root biomass in mangrove forest.

Target species Used models QIEOKE;TC models R? N Source Study area

Sonneratia spp.

Sonneratia apetala | (S. alba and S. | 0.230 WD (DBH?H)%74° | 0.94; 30 Kusmana et al. | Central Java,

. (2018) Indonesia
caseolaris)
Avicennia alba, A. Avicennia Comley and | Darwin
marina, A. marina 1.28 DBH7 0.80; 14 McGuinness harbour,
officinalis (2005) Australia
Bruguiera . unknown; | Tamai et al. | Southern
piculate , Bruguiera spp.

2 0.909 H
B. gymnorrhiza 0.0188 (DBH?H) 11 (1986) Thailand
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Ceri_op_s_decandra, Cerions Comley and | Darwin

Aegialitis austrzflis 0.159 DBH'%% 0.87;9 McGuinness harbour,

rotundifolia (2005) Australia

Rhizophora Rhizophora mgaanr%ve

piculate, R. 120p 0.00698 DBH261 99:11 Ong et al. (2004) g
apiculata Forest,
mucronata .
Malaysia

Xylocarpus Xylocarpus Poungparn et al. | Southern

ranatum, 255 .99; : .

g(. moluccensis granatum 0.145 DBH 0.99; 6 (2002) Thailand
. Kandelia 2710.834 unknown; | Hoque et al. | Manko

Kandelia candel obovata 0.0483 (DBH“H) 5 (2011) Wetland, Japan

Aegiceras

corniculatum,

Aglaia piculate,

Cerbera manghas,

Cynometra

ramiflora,

Excoecaria Common Komivama et al

agallocha, allometric 0.199 WD°8%°pBH?22 0.95; 26 Y " | Thailand

co (2005)
Excoecaria indica, models

Heritiera fomes,
Hibiscus tiliaceus,
Intsia bijuga,
Lumnitzera
piculat,
Millettia pinnata

Here B = Dry biomass, N = Number of samples, GCH = Girth at collar height, HT = Total Height, HCH = Height at
collar girth point, DBH = Diameter at breast height (1.3 m), R? = Coefficient of determination, WD = wood density
(gm cm’3)

6.2.4.2. Soil carbon

The 1 m soil carbon stocks data was collected for 55 plots from Rahman et al. (2021b) and the method

for sample collection and analysis is described in sections 3.2.3 and 3.2.4.

6.2.5. Mapping forest types

Upscaling ecosystem carbon stocks require interpolation of field estimates to the extent of the forest
and the development a mapped forest types to enable the regulation of the carbon stocks in any
ecosystem. Since both above- and below-ground carbon stocks varies with forest type (Rahman et al.,
2015a; Rahman et al., 2021b), a forest type map was produced from Sentinel-2 surface reflectance
using Google Earth Engine (GEE). GEE is a cloud computing platform providing high-performance
computing resources for processing, rapid prototyping and visualization of complex spatial analyses

from a large geospatial dataset (Chen et al., 2017; Gorelick et al., 2017). GEE is useful to pick multi-

97



temporal cloud-free satellite images to produce temporal (for example, yearly) mosaics. A wide range
of classifiers are also available in the platform such as Classification and Regression Trees (CART),
Support Vector Machine (SVM), Continuous | Bayes classifier, Decision Tree (DT), Linear

Regression, Maximum Entropy classifier and Random Forest (RF).

6.2.6. Dataset composition

Sentinel-2 MSI (Multispectral Instrument) surface reflectance (SR) imagery was selected to develop a
cloud-free composite dataset during the fieldwork period from February 2019 to April 2019 (Figure
5.3). This period is the dry winter in the Sundarbans and therefore less likely to have cloudy pixels.
Sentinel-2 MSI is a wide-swath multi-spectral imaging mission by European Space Agency (ESA)
providing some image bands of 10 m resolution for monitoring of vegetation, soil and water (ESA,
2022). Cloud free images (0% cloudy pixels) were filtered from the Sentinel-2 SR level-2A image
collection available in GEE platform as ‘COPERNICUS/S2_SR’ within the specified period. The
study used six image bands B2, B3, B4, B6, B8 and B11 representing Blue, Green, Red, Red edge 2,
Near Infra-red (NIR) and Short-wave infra-red 1 (SWIR) respectively. Since the resolution of B6 and
B11 bands is 20 m, these were resampled (bilinear) to 10 m harmonising with other bands. A separate
cloud cover filtering was used for the initial 16 images by using the quality pixel band of Sentinel 2,
which allowed dense and cirrus clouds and shadows to be masked. Three spectral indices including
NDVI (Normalised Difference Vegetation Index, Modified Normalised Difference Water Index
(MNDWI) and Bare Soil Index (BSI) were used to discriminate pixels between forests, water and bare
soil areas. NDVI is a widely used vegetation index to indicate measures of vegetation health, therefore
it helps to discriminate among different tree species and with bare soil and water. On the other hand,
MNDWI and BSI are widely used for land use mapping to discriminate water and bare soil than other

land use types. The derivation of each index is given below-

NIR - RED

NDV] = ———............ ... ....EQ. 1 (Rouse et al., 1974).
NIR + RED

MNDW] = SREENZSWIRL o .......EQ. 2 (Xu, 2006)
GREEN+ SWIR1
BS] = (SWIR1+RED)—(NIR+BLUE)

" (SWIR1+ RED) + (NIR + BLUE) """

wee er o -EQ. 3 (Rikimaru et al., 2002)
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Here, NIR = Near Infra-Red band (B8), RED = Red band (B4), GREEN = Green band (B3), SWIR1 =
Short wave Infra-Red band (B11) and BLUE = Blue band (B2). The band number in parentheses
indicates the band name in Sentinel-2. The resolution of SWIR1 is 20 m, therefore it was

downsampled to 10 m before calculating the index.

In addition to the above data, the study also included the global forest canopy height map, 2019,
developed through integration of the Global Ecosystem Dynamics Investigation (GEDI) and Landsat
time series data (Potapov et al., 2021). Since the Bangladesh Sundarbans have a height gradient from
the east to the west part, the inclusion of canopy height data in the classification is expected to help
classify different forest-types (Lee et al., 2015; Rahman et al., 2021b). The 30 m height map was then

converted to 10 m through bilinear resampling in GEE.

T
0 510 20km

[T
0 510 20km

Figure 6.3: Median composite image of Sentinel-2 image collection of the Sundarbans, Bangladesh visualised in
A) RGB colour and B) False colour.

The Bangladesh Sundarbans covers three tiles of Sentinel-2 MSI satellite images with mainly
T45QYE, but also T45QXE and T45QYD. The initial image filtering provided 17 cloud free images
with the selected 6 bands during the field work period between February to April’ 2019. All these
image collections were used to calculate the median to compose the 10 m base data cube (BDC).
Thus, the final composite image is composed of 10 bands including Sentinel-2 (6), spectral indices (3)

and a canopy height band.
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6.2.7. Determination of forest type

Forest type was determined according to the composition of each species (the percentage of
individuals of trees and poles) presented in each sample plot. Single species dominance (for example,
Heritiera only) was considered when the composition of a species is > 70%. If one species was > 50%
and another species > 25%, then the plot was named by those two species such as
Heritiera_Excoecaria. If one species was > 50% and there was no other species > 25%, then the
forest-type was designated as single species followed by “Mixed” type (for example,
Xylocarpus_Mixed). If there was no dominant single species (< 50%) then the sample plot was
considered as “Mixed”. The plot forest-type data was used to extract spectral signatures or pixel
values of all bands of the final composite image. These extracted values were then used in a
hierarchical clustering to merge similar forest-types and to identify unique forest-types discriminating
spectral signatures and other values in the composite image. The hierarchical clustering was

conducted with the “ggdendro” package by using Euclidean distance computation along with the

“Ward.2” agglomeration method in R 4.0.4 for Windows (Murtagh and Legendre, 2014).

6.2.8. Forest type classification

A supervised classification method was used to classify forest types in the Sundarbans, where plot
forest-type was used to train the classifier (Chen and Stow, 2002). To train the classifier, 70% of field
plots were chosen randomly and the remaining 30% were used to validate the forest-type map. The
randomisation was done in such a that each class must be included at least once as both training and
validation. Since the Bangladesh Sundarbans consists of approximately 40% water and barren land,
15 points were marked each as water and barren land in the GEE interface through visual inspection
from high-resolution satellite imagery using Google Maps data inside the GEE environment. The
randomisation for both validation and training To match with the size of sample plots, a circular

buffer of 11.3 m was established for each point.

Both pixel-based and object-based image classification methods were used in this study with two

machine learning classifiers, Random Forest (RF) and Support Vector Machine (SVM) (Figure 5.4).
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The classification was conducted in the GEE environment using the code developed by Tassi and
Vizzari (2020) with necessary modifications. The object-based classification (also referred as
Geographic Object-based Image Analysis (GEOBIA)) uses image segmentation and clustering
techniques to make clusters of the same land uses and provides better results on high resolution data
(Ren and Malik, 2003; Blaschke, 2010; Solano et al., 2019). On the other hand, the pixel-based
classification approach is more suited to low resolution data and creates a “salt-pepper” effect with
high resolution data (Messina et al., 2020). The object-based classification includes the Gray-Level
Co-occurrence Matrix (GLCM) to calculate cluster textural indices and the Simple Non-Iterative
Clustering (SNIC) algorithm to identify spatial clusters, which is widely used to improve the accuracy

in land use and land cover (LULC) classification (Mahdianpari et al., 2020; Stromann et al., 2020).

Machine Learning (ML) classifiers such as RF and SVM have been shown to outperform the
traditional maximum likelihood algorithms for land use and land cover classification (LULC)
(Ghimire et al., 2012; Mondal et al., 2019). Being non-parametric methods, these classifiers have the
advantage that they do not require any statistical assumptions for data distribution (Tassi and Vizzari,
2020). The RF classifier is a collection of multiple trees, where each tree casts a random vote to the
most popular class by using a random vector sampled independently from training datasets (Breiman,
2001). This classifier uses ‘bootstrap aggregating’ or ‘bagging’ to select training data for each class
and each pixel is assigned to a class according to the most popular vote from all tree predictors
(Ghimire et al.,, 2012). RF generally performs better than other popular classifiers in LULC
classification including in mangrove forests (Adam et al., 2014; Mondal et al., 2019). On the other
hand, SVM, a non-linear classifier, identifies boundaries between classes rather than assigning points
to a class (Pal and Mather, 2005). It separates classes based on a user defined kernel function and
parameters that are optimised using machine-learning to maximise the margin from the closest point
to the hyperplane. Therefore, it requires the choice and tuning of kernels and other input parameters
(Huang et al., 2002). However, both classifiers require high quality training datasets to train the

classifier.
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The GEE code executes the pixel-based (PB) and object-based (OB) approach one after another either
with RF or SVM classifiers with the same composite dataset, and training data. The flowchart of all
datasets and methodologies is presented in Figure 5.4. The GEE codes for creating composites,

classification and accuracy assessments are provided via the following two links-

1) https://code.earthengine.google.com/e56d1cab4e8cd9af89a4ead037189fd8

2) https://code.earthengine.google.com/62de8534047d05f27103b61c24031623

Y
Pixel- and object-based classification in GEE
(Random forest and Support vector machine Enhanced Bayesian Kriging regression prediction
classifier)
| L
v v l 1
|,  Accuracy Forest-type SOC map AGC map TEC map
assessment map

Figure 6.4: The methodological workflow implemented in Google Earth Engine (GEE) and GIS environment.

The PB approach followed quick classification of images with the desired forest-type and accuracy
assessment. However, for SVM, a band normalisation of the input dataset was done before executing
the code. A radial basis function kernel (RBF) was applied for SVM with gamma = 1 and cost = 10
following Tassi and Vizzari (2020). In case of RF classifier, the number of trees (DT) was set to 60.
This is achieved by checking the lowest Out-Of-Bag error (OOB) in the GEE by using “Explain”
function through increasing the number of trees from 10 to 200. In the pixel-based output map, a final
morphological operation “focal mode” was performed with the default 1.5 m radius to reduce the “salt
and pepper” effect. In the OB method, both SNIC and GLCM was applied together where SNIC

requires a regular grid of seeds as input using the “Image.Segmentation.seedGrid” function. This
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function requires to state the superpixel seed location spacing in pixels. Therefore, to run SNIC,
various seed spacings such as 5, 10, 15, 20 were applied and the best combination was compared with

accuracy assessment following Tassi and Vizzari (2020).

6.2.9. Validation

For validation, 30% of sample plots were used and the uncertainty in classification was measured by
using an error matrix. The same training samples were run for each combination of methods and
classifiers. Users, Producers and overall accuracy were calculated for each of the forest types
according to Olofsson et al. (2014). Quantity disagreement and allocation disagreement were also
calculated as described by Pontius and Millones (2011) and Warrens (2015). The quantity
disagreement is the deviation from perfect agreement between the classified and training classes and

the allocation disagreement reflects the error due to differences in the spatial allocation of each class.

6.2.10. Prediction of soil carbon and total ecosystem carbon stocks

Soil organic carbon, above-ground carbon and total ecosystem carbon stocks were predicted using co-
kriging in GIS (ArcGIS Pro 2.9.1). Enhanced Bayesian Kriging Regression Prediction (EBKRP) was
used to interpolate carbon stocks in places where measurements were not taken. This method is
relatively new and is a hybrid interpolation method combining simple kriging and ordinary least
squares (OLS) regression. EBKRP is the extension of Empirical Bayesian Kriging where an
explanatory variable raster, such as a forest-type map is used that affect the dependent variable
(Krivoruchko, 2012; ESRI, 2022b). The input raster acts as a prior distribution for the Bayesian
analysis and the combination of regression analysis and kriging make interpolations more precise than
estimated by only kriging or regression (Krivoruchko and Gribov, 2020; ESRI, 2022b). The
combination of kriging and regression has the advantage of separating the mean and error of the
dependent variable, whereas OLS with regression models, the mean value as a weighted sum of the
explanatory variables and simple kriging models the error term using a semivariogram/covariance
model (ESRI, 2022b). However, estimation of the mean value and error term are computed

simultaneously.
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In this study, soil organic carbon (SOC) was predicted with the forest-type map, Digital Elevation
Model (DEM), aspect and slope (Figure 5.5). The forest-type map from this study was used to predict
SOC using the data from 55 sample plots. The DEM of the Bangladesh Sundarbans was calculated by
subtracting the GEDI canopy height map from the Digital Surface Model (DSM) taken from the
TanDEM-X 12 m satellite data (Krieger et al., 2006; Hawker et al., 2019). In this case, both were
resampled to 10 m resolution to match with forest-type map. From the DEM, aspect and slope were
created by using ArcMap 10.7.1. For the prediction of TEC and AGC stocks, the plot level carbon

stocks were combined with the forest-type map.
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Figure 6.5: Remote sensing dataset used in classification of forest types and geostatistical interpolation. A)
Canopy height map in the Sundarbans using Landsat 8 and GEDI by Potapov et al. (2021), B) Digital elevation
model (DEM), C) Aspect and D) Slope in the Sundarbans from TanDEM-x (12.5 m) (Krieger et al., 2006).

In ArcGIS Pro 2.9.1, four available semivariogram models (Exponential, Nugget, Whittel and K-

Bessel) were used to produce covariate surfaces and the model with least Residual Mean Squared
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Error (RMSE) was used for the final prediction. The spatial autocorrelation of the error term
diminishes relatively quickly for the Exponential model and slowly for Whittle model compared to
other options. On the other hand, the Nugget model assumes the error term is spatially independent,
whereas K-Bessel is quite flexible to reduce the error term either slowly or quickly or anywhere in

between (ESRI, 2022b).

6.2.11. Error and uncertainty analysis

The measurement errors as a result of the combination of instrument errors and human errors
propagate into the plot-level ecosystem carbon stocks through using allometric models to estimate
individual tree AGC and below-ground root carbon from DBH, height and wood density (Réjou-
Méchain et al., 2017; Réjou-Méchain et al., 2019). The plot-level error was estimated by using
the “AGBmonteCarlo” function of the BIOMASS R package, where the overall error propagation is
estimated by using the probability distributions of errors from trees and allometric model parameters
by running 1000 Monte Carlo simulations (Réjou-Méchain et al., 2017). The package estimates AGC
and SD (standard deviation) for each tree which is then scaled to plot-level. The accuracy of the
height measuring instrument (Vertex-111 hypsometer) is 1%, and so 1% of total height of each tree
was considered as instrumental error. For diameter error, the default “chave 2004” was used in
“Dpropag” argument representing large and small errors on 5 and 95% of all trees respectively
(Chave et al., 2004). The error due to measurement of wood density was obtained as the SD of wood
density for each species from the Table 4.3. The function was modified to employ species-specific
allometric models and their respective residual standard errors from the Table 4.2. The plot-level
above-ground error was used to interpolate spatial distribution of AGC error and the uncertainty of
soil carbon (Standard Deviation) was combined to obtain a spatial distribution of TEC error in the

Sundarbans.

6.2.12. Statistical analysis

All statistical analysis and graphics were accomplished in R 4.0.4 for Windows (R Core Team, 2021).

The performance of each interpolation method was evaluated through the cross-validation statistics
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produced by ArcGIS pro-2.9.1. In the cross-validation method, the observed value is removed one by
one from the analysis to predict that value from the remaining values and the error is calculated from
the difference of measured and estimated values. The default statistical diagnostics from ArcGIS Pro
was used to compare the performance of each interpolation model such as Mean Error (ME), Root
Mean Squared Error (RMSE), Average Standard Error (ASE), Mean Standardized Error (MSE), Root
Mean Square Standardized Error (RMSSE) and average Continuous Ranked Probability Score

(CRPS).

The Mean Error (ME) represents the arithmetic averaged difference between the measured and the
predicted values. The positive and negative values represent overestimation and underestimation of
predicted values (Li and Heap, 2011). The Root Mean Square Error (RMSE) is a commonly used
cross-validation parameter which indicates the accuracy of prediction of measured values. The
smallest RMSE signifies the best model in cross validation. The Average Standard Error (ASE) is the
arithmetic average of prediction errors, whereas Mean Standardized Error (MSE) provides the average
of the standardized errors. The value of MSE is closer to zero for better models. If the RMSE is
similar to ASE then the model predicts the observed values well. On the other hand, when the ASE is
greater than RMSE, this indicates overestimation, and when lower than the RMSE, this indicates
underestimation. The Root Mean Square Standardized Error (RMSSE) is the square root of MSE
which signifies a better model when close to 1. The RMSSE > 1 indicates a general underestimation,
while the RMSSE < 1 indicates a general overestimation of predicted variables. The geostatistical
wizard of EBKRP in ArcGIS Pro 2.9.1 has a separate statistical parameter called average Continuous
Ranked Probability Score (CRPS), which measures predictive cumulative distribution function and
calculates deviation to each observation. This parameter has the advantage over other parameters for
comparing the full distribution rather than single values and the ideal value should be as small as
possible (ESRI, 2022a). To facilitate selection of the best interpolation methods, both RMSE and

CRPS were prioritised over other statistical parameters.

The Total Ecosystem Carbon stocks (TEC, Mg hal) among different components (standing trees,

pneumatophores, dead wood, below-ground root and soil) were compared with one-way analysis of
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variance (ANOVA) using the ‘car’ package (Fox and Weisberg, 2019). Similarly, the TEC among
three salinity zones and eight forest types were compared with a two-way ANOVA test. In all cases,
data were logarithmic (natural) transformed to meet the assumptions of normality and equal variances
by using Shapiro Wilk and Levene’s tests, respectively, and subsequently back-transformed to present
graphically. All graphical output was generated using the ‘ggplot2’ package in R (Wickham, 2016)

and maps were produced with ArcMap 10.7.1 and ArcGIS pro 2.9.1.

6.3. Results

6.3.1. Determination of forest type class

The composition of each species from all sample plots comprised 18 forest-types. These forest-types
were used to extract surface reflectance, spectral index and height map values from the Sentinel-2
composite(Figure C.1 and C.2). The spectral reflectance of water and bare land showed strong
discrimination in all 6 bands of Sentinel-2 MSI imagery. On the other hand, mangrove tree species
showed different of spectral reflectance in the red edge, near infra-red and short-wave infra-red bands
(Figure C.1). All spectral indices and the GEDI height map data showed differentiation for water and
barren land, but there is not much differentiation among species type except for Sonneratia in the case
of MNDWI (Figure C.2). However, forest species showed different canopy heights in the GEDI
height map, which demonstrates the importance of these data for clustering different species. The 2 m
average canopy height of water pixel in the GEDI height data and higher MNDWI of Sonneratia
showed the influence of tidal current which can affect the classification for these two forest-types
(Figure C.2). The Sonneratia spp. usually grows close proximity to the river, therefore it is difficult to

separate this species with water from the spectral signatures during high tides.
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Figure 6.6: Dendogram showing hierarchical clustering analysis of different forest-type. The vertical lince was
used to choose 10 forest-types from the clustering techniques.

The hierarchical clustering analysis showed that both barren land and water formed distinct clusters
far from the vegetated forest-types (Figure 5.6). Among mangrove species, Bruguiera,
Xylocarpus_Mixed, Avicennia and Heritiera formed distinct clusters. The other four clusters are
mixed types which can be recognised as Excoecaria_Heritiera, Avicennia_Sonneratia,
Excoecaria_Mixed and Ceriops_Excoecaria. The Excoecaria_Heritiera groups are mainly the
combination of Heritiera and Excoecaria along with some Sonneratia_Mixed plots.
Avicennia_Sonneratia forest-type is the combination of Avicennia and Sonneratia and some dominant
Sonneratia plots. Excoecaria_Mixed includes plots where Excoecaria is the dominant species either
alone or with mixed species and there is no dominant species such as Mixed and exceptionally

Heritiera_ceriops. The last cluster includes both Ceriops and Excoecaria together or Ceriops alone.

6.3.2. Mapping forest-types in the Sundarbans

The Sentinel-2 MSI imagery composite of the Bangladesh Sundarbans was classified into ten forest-
types. The best forest-type classification maps with both PB and OB along with RF and SVM
classifier are presented in Figure 5.7. All maps show a gradient of forest-type with dominant Heritiera

in the east and Excoecaria in the central part and the combination of Ceriops and Excoecaria in the
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west. However, the map produced with the SVM classifier has more Heritiera_Excoecaria than only
Heritiera in the eastern Sundarbans (Figure 5.7). In the case of the RF classifier, both PB and OB
yielded a similar percentage of total area occupied by each forest-type. The biggest differences were
observed when using the SVM classifier with the OB method, where Bruguiera is absent and the area
of Heritiera and Heritiera_Excoecaria is decreased and increased by 6% and 9%, respectively, as
compared to the classified map of OB with the RF method (Figure C.3). The total area of all classified
maps is 865,691 ha including 54%, 53% and 52% water area in classified maps of PB_RF, OB _RF

and OB_SVM methods, respectively.

Accuracy assessment was done using a confusion matrix according to the 30% of training samples
kept for validation. Based on the overall accuracy of the confusion matrix, the pixel-based
classification with the RF classifier showed the highest accuracy followed by OB (seed spacing 10)
with SVM (Table 5.2). The forest-type map showed that the land area of Bangladesh Sundarbans is
396,675 ha. The Hertiera_Excoecaria type was the most dominant forest type (39.58%) in the central
and eastern part of the Sundarbans followed by Excoecaria_Mixed (25.96%) and Ceriops-Excoecaria
(17%). The Heritiera fomes alone constitutes about 13.61% of the total land area and is mostly

concentrated in the eastern part of the Sundarbans (Figure C.3).

109



(A) Pixel-Based RF (B) Object-based_RF
0510 20KM
0 510 Z20KM
A
Object-based SVM
(€ Jec-based orest-type

0 510 20KM
-

Water

Avicennia
Avicennia_Sonmeratia
Bruguiera

Ceriops Excoecaria
|| Excoecaria and Mixed

Heritiera
Heritiera Excoecaria

Xylocarpus Mixed

Barren Land

Figure 6.7: Forest-type map in the Sundarbans using A) Pixel-based classification with RF, B) Object-based
classification with RF and C) Object-based classification with SVM.
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Table 6.2: Comparison of overall accuracies (percentage) among PB and OB classification with RF and SVM
classifiers. In case of OB method, difference seed spacing was compared.

Pixel based Object-based classification

Forest types | Classifier Classification Seed spacing (no. of pixels)
5 10 15 20
Random Forest (RF) 66.3 53.8 57.7 | 48.1 |52.9
10 forest-
types Support Vector Machine 45.2 63.5 63.7 | 529 | 587
(SVM)

Good practice guideline was followed to the report accuracy assessment for the area estimation of all
forest-types, according to Olofsson et al. (2014), and the detailed error matrix of pixel-based with RF
classification is provided in the Table 5.3. The advantage of using the good practice guideline is that it
implements a probability sampling design in order to quantify accuracy and area estimation, and
reports the estimated error matrix in terms of the proportion of area and uncertainty by reporting

confidence intervals for accuracy and area parameters (Olofsson et al., 2014).
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Table 6.3: Confusion matrix of the most accurate forest-type classification in the Sundarbans.

< g8 £ 3 o 2 5G| Area
5 S S < E 53 = 2 28 89 S _ » &2 | proporti
g 2 g E S 58 S S 58 2 X £e g 538 on (Wi
= < 3 @ Sa ] T T i <= NS = S<H
Water 0.4741 0.0000 0.0677 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.542 (9(-)822) 0.5418
Avicennia 0.0000 0.0014 0.0000 0.0005 0.0000 0.0000 0.0000 0.0009 0.0000 0.0000 | 0.003 (9653?) 0.0028
Avicennia_ 0.50
Sonmerats 0.0000 0.0014 0.0042 0.0000 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.008 o) 0.0083
Bruguiera 0.0000 0.0000 0.0000 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.001 (}6%(3) 0.0015
Ceriops_ 0.0000 0.0000 0.0000 0.0000 0.0659 0.0120 0.0000 0.0000 0.0000 0.0000 | 0.078 0.85 0.0779
Excoecaria ' ' : : ) ) ' ) ' ' ) (¢0.19) )
E/I’Sweca”a and |4 0000 0.0000 0.0044 0.0000 0.0352 0.0661 0.0000 0.0044 0.0088 0.0000 | 0119 | 0-96 0.1190
ixed (£0.14)
Heritiera 0.0000 0.0000 0.0000 0.0000 0.0000 0.0208 0.0416 0.0000 0.0000 0.0000 | 0.062 (9(-)622) 0.0624
Heritiera_ 0.50
Escoponria 0.0000 0.0000 0.0076 0.0000 0.0000 0.0756 0.0076 0.0907 0.0000 0.0000 | 0.181 Goan 0.1813
f}'ocarp“s— 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000 | 0.001 1.00 0.0014
ixed (x0.00)
Barren land 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0036 | 0.004 (}6%(3) 0.0036
Total 0.474 0.003 0.084 0.002 0.104 0.174 0.049 0.096 0.010 0.004
Overall
S 1.00 0.50 0.05 0.64 0.63 0.38 0.85 0.94 0.11 1.00 A
(495% Cl) (£0.17) (0.21) (£0.09) (+0.09) (£0.10) (+0.08) (+0.16) (£0.16) (0.01) (0.17) 075
(0.09)
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The confusion matrix with proportions of area of each class showed that the pixel-based (with RF)
classification achieved an overall accuracy of 75% with a 95% confidence of being between 66% and

84% (Table 5.3). The quantity disagreement was 0.15 and allocation disagreement was 0.08.

6.3.3. Spatial distribution of soil organic carbon

By using the EBKRP kriging interpolation method, the SOC stocks were interpolated for the entire
Bangladesh Sundarbans using the forest-type map and with a combination of elevation, slope and
aspect. The interpolation result was checked and compared with different interpolation methods such
as Exponential, Nugget, Whittle and K-Bessel. Different combinations of datasets and
semivariograms provided different distributions of SOC. The statistics of cross-validation showed that
the model with forest-type only (K-Bessel semivariogram) provided the lowest RMSE and CRPS
(Table 5.4). However, the positive ME and RMSSE (lower than 1) indicates overestimation of the
predicted values. The overestimation is also evident as ASE is greater than RMSE for the best
interpolation model. However, the inclusion of the DEM, aspect and slope did not improve the

prediction of SOC in the Sundarbans (Table 5.4).
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Table 6.4: Cross-validation statistics of each Enhanced Bayesian Kriging Regression prediction (EBKRP) model
for the prediction SOC in the Sundarbans. The bold value indicates the best value for all statistics.

SOC prediction with forest

Enh q SOC prediction with forest | SOC prediction with forest types, DEM, slope and
nhance types types and DEM aspect

Bayesian

Kriging P—

Regression Semivariogram type

prediction = _ = _ = _
GeKRA) | 2 5| 2| B3| E| &| 2| % E| 8| &%
model c > = @ c > = @ c > = @
arameter 8 > | 2 8 2| 5| 9 8 2| | 9
P S| Z ¥ g = ¥ e ¥

] w i

Mean Error

(ME) -0.17 | 10.07 | -0.14 0.2 085 | 1246 | -0.84 | 087 @ -0.2 316 | -0.26 | 0.13
Root Mean

Square error | 11.32 | 23.27 | 1148 | 1123 | 1319 | 20.71 | 13.68 | 1277 | 1261 | 1956 | 1321 | 1231
(RMSE)

Mean

standardized 0.001 | 1417 | 0005 | 003 | -0.05 | 144 | -0.05 | -0.05 | -0.002 | 3.69 | -0.006 | 0.02
Error (MSE)

Root-Mean-

Square
Standardized 094 | 2327 | 098 | 092 | 097 | 4411 | 099 | 095 | 094 | 1389 | 095 | 092
Error

(RMSSE)

Average

Standard 127 | 635 | 1291 | 1289 | 1429 | 635 | 1499 | 1393 | 1430 | 6.35 | 1526 | 13.87
Error (ASE)

Average

Continuous

Ranked 6.41 | 17.36 | 6.53 6.38 723 | 1579 | 755 | 7.03 7.06 13.36 | 7.38 6.86
Probability
Score (CRPS)

The predicted SOC stocks in the Sundarbans varied between 17.87 to 99.44 Mg ha* with an average
of 54.41 Mg hal. The central northern Sundarbans had higher SOC compared to western and
southern areas (Figure 5.8). The standard error for SOC ranges from 1.15 Mg ha™ to 15.57 Mg ha'
with an average of 10.31 Mg ha®. The SOC stocks of the Bangladesh Sundarbans was 21.37

Teragram (Tg) with a 95% confidence of being between 13.20 Tg and 29.55 Tg.
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Figure 6.8: Spatial distribution of A) SOC stocks and B) SOC prediction standard errors in the Sundarbans.
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6.3.4. Total ecosystem carbon stocks (TEC)

Above-ground carbon comprises the carbon stocks from living and dead standing trees,
pneumatophores and dead lying wood on the forest floor. The standing trees included the non-tree
species such as Nypa fruticans and Phoenix paludosa from which leaves and stems were harvested to
measure the dry weight of each specimen. The average dry weight of a N. fruticans leaf is 1065.6 +
342.68 gm (n = 9) and P. paludosa stem is 1813.24 £ 444.75 gm (n = 6). For dead wood, the mean
diameter of different sized dead wood was measured. The mean diameters are as follows; fine dead
wood (0.35 £ 0.10 cm, n = 51), small dead wood (1.86 + 0.48 cm, n = 242), medium dead wood (4.47
+ 1.32 cm, n = 213) and large dead wood (12.75 + 4.60 cm, N = 41). The quadratic mean of different
dead wood comprises 0.37 cm for fine, 1.92 cm for small and 4.67 cm for medium dead wood. For
measuring biomass of pneumatophores of different species, the average length, diameter, green

weight and dry weight were measured and are presented in the Table C.1.

3501
3251 °
300+
2751
2501
2251
2001
175+
150+
125+ e ‘

100+ ° ¢

75+ |
50 . |
I
- i
25 . i;l

*

Organic Carbon Stock (Mg ha‘])

Standing trees Pneumatophores  Down wood Root Soil (Im) Total

Aboveground Belowground
Forest Component

Figure 6.9: The ecosystem carbon stocks (Mg ha*) among different components in the Sundarbans. The black
horizontal line of box plot represents the median and the black dot represents outliers.
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The plot level above- and below-ground components were combined to estimate total ecosystem
carbon stocks. The below-ground SOC were taken from the 55 measured plots and for the remaining
plots, the predicted SOC was retrieved from Figure 5.8. The average TEC in the Sundarbans is 170 (+
51.7). One way ANOVA revealed that the carbon stocks varied significantly among different
components. The average AGC was significantly higher (63.6 + 27.6 Mg ha) in standing live trees
followed by below-ground soil (58.7 + 14.3 Mg ha?), below-ground root (40.4 + 18.9 Mg ha),

pneumatophores (5.5 + 6.68 Mg ha') and downed wood (1.65 + 1.4 Mg ha') (p < 0.01) (Figure 5.9).

The two-way ANOVA of natural logarithmic organic carbon stocks revealed that the TEC in the
Sundarbans varied significantly with forest-type F 123 = 55.6, p <0.001 and salinity zones F7, 123 = 6.6,
p <0.001 (Figure 5.10A, Table C.3). However, there was no interaction effect of both salinity zones
and forest types on TEC in the Sundarbans (p > 0.05). The carbon stocks for each component varied
significantly with salinity zones in the Sundarbans (Figure C.10). The TEC was significantly higher in
the oligohaline zone (201.5 + 42.5 Mg ha*) followed by the mesohaline zone (181.3 + 48.3 Mg ha)

and the polyhaline zone (131.4 + 35.6 Mg ha') (p < 0.01) (Figure 5.10B).
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Figure 6.10: Integrated violin-box jitter plot shows the ecosystem carbon stocks (Mg ha*) among A) forest type
and B) salinity zones. The black horizontal line of box plot represents the median and the width of violin plot
represents the proportion of the data located there as a measure of kernel probability density. The black dots
represent the data distributions.
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6.3.5. Prediction of AGC and TEC

The plot level AGC and TEC stocks from 140 plots were interpolated using the EBKRP kriging
interpolation method (Figure 5.11 and 5.12). In both cases the model with the K-Bessel
semivariogram produced the lowest RMSE and CRPS (Table 5.5). The geostatistics parameter of
crossvalidation for both AGC and TEC showed negative ME and RMSSE values greater than 1
indicating underestimation of predicted values. The underestimation is also evident as ASE is lower

than the RMSE for the best interpolation model.

Table 6.5: Cross-validation statistics of each Enhanced Bayesian Kriging Regression prediction (EBKRP) model
for the prediction AGC and TEC in the Sundarbans. The bold value indicates the best value for all statistics.

Above-ground carbon with forest type Total Ecosysterr}:)zirbon with forest
Enhgnced Bayes!an Semivariogram type
Kriging Regression
prediction (EBKRP) I _ T _
model parameter € 2} % 2 = g g 2
c =y = ot c =y = et
O : 1 o : 1
g z 2 v S z = v
i ]
Mean Error (ME) -10.36 -20.46 -10.80 -9.69 -9.54 -26.90 -10.11 -8.86
Root Mean Square
28.49 37.90 28.80 28.19 40.99 58.51 41.18 40.72
Error (RMSE)
Mean Standardized
Error -0.23 -0.58 -0.25 -0.21 -0.14 -0.55 -0.16 -0.12
Root-Mean-Square
Standardized Error
1.09 175 113 1.04 1.15 1.99 121 1.06
(RMSSE)
Average Standard
Error (ASE) 2348 19.51 23.04 2433 34.38 27.68 33.29 36.37
Average Continuous
Ranked Probability 15.01 19.95 15.22 14.85 12.43 31.97 22.60 12.19
Score (CRPS)

The AGC stocks in the Sundarbans ranges from 15.46 Mg ha* to 90.51 Mg ha? with an average of
60.29 Mg ha® (Figure 5.11). The higher TEC stocks is in the central north, north-eastern and south-
eastern part of the Sundarbans, which is mostly dominated by Heritiera, Heritiera-Excoecaria,

Bruguiera and Xylocarpus species. The prediction standard error for AGC ranges from 3.32 Mg ha*
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to 19.80 Mg ha® with an average of 13.32 Mg ha®. The total AGC stocks in the Sundarbans

comprises 23.91 Teragram (Tg) with a 95% confidence of being between 13.15 Tg and 34.27 Tg.

The TEC in the Sundarbans ranges from 83.63 Mg ha* to 240.14 Mg ha* with an average of 157.86
Mg ha? (Figure 5.12). The higher TEC stocks are distributed in the central north and north-eastern
part of the Sundarbans, which is mostly dominated by Heritiera, Bruguiera and Xylocarpus species.
The prediction standard error ranges from 9.31 Mg ha™ to 35.46 Mg ha* with an average of 23.94 Mg

ha™.
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(A) Above-ground carbon stock (AGC) in the Bangladesh Sundarbans
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Figure 6.11: Spatial distribution of A) AGC stocks and B) AGC prediction standard errors in the Sundarbans.
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(A) Total ecosystem carbon stock in the Bangladesh Sundarbans
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Figure 6.12: Spatial distribution of A) TEC stocks and B) TEC prediction standard errors in the Sundarbans.
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The present study found 3,966.75 km? forest land area out of 6326.8 km? inside the Bangladesh
Sundarbans which contributed 62.70 Teragram (Tg) TEC with a 95% confidence of being between
43.29 Tg and 81.14 Tg. Summing up the estimates of the respective species composition classes, it
can be seen that 23.91 Tg C is locked in the above-ground compartments and 38.79 Tg C is stored in

the below-ground compartments in the Bangladesh Sundarbans mangrove forest.

6.4. Discussions

By using a random forest classifier, the pixel-based classification provided the most accurate forest-
type classification map in the Bangladesh Sundarbans showing a gradient of species mixture from
Heritiera fomes in the east to the Excoecaria agallocha dominated in central and west along with
Ceriops decandra. The forest-type map shows similar patterns of these three major species with a
map developed by the Bangladesh Forest Department (BFD) showing 14 species groups based on
aerial survey data from 1995 and 1 m pan-sharpened IKONOS images in 2013 (Dasgupta et al.,
2017). Several forest inventories identified 24-27 species in the Sundarbans, however, these three
species alone or their assemblages constitute 97% area of the Sundarbans (Rahman et al., 20153;
Dasgupta et al., 2017; GOB, 2019; Sarker et al., 2019a; Rahman et al., 2021c). The other species do
not form sufficient mono-specific patches to capture with 10-30 m resolution satellite data. This study
found that Hertiera_Excoecaria is the most dominant followed by Excoecaria_Mixed, Ceriops-
Excoecaria (17%) and Heritiera only. On the other hand, Chanda et al. (2016b) found the same first
two compositions as the most dominant followed by Heritiera and Ceriops-Excoecaria. This

difference might be attributed to the use of different satellite data in different years.

Several studies have reliably classified major forest types of mangrove forests using Landsat imagery
including the Sundarbans (Long and Giri, 2011; Ghosh et al., 2016; Kumar et al., 2021). Using
maximum likelihood classifier, Ghosh et al. (2016) classified decadal composite images from Landsat
2,5, 7 and 8 satellites between 1977 to 2015 and identified changes of vegetation composition for five
species (Heritiera fomes, Excoecaria agallocha, Ceriops decandra, Sonneratia apetala and

Xylocarpus mekongensis) in the Bangladesh Sundarbans with an accuracy between 72-89%. The
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classification accuracy has increased in some studies while discriminating between forest and non-
forest categories in the Sundarbans (for example: Awty-Carroll et al., 2019; Hasan et al., 2020). By
using Continuous Change Detection and Classification (CCDC) methods on the Landsat (4, 5, 7 and
8) archive from 1988 to 2017, Awty-Carroll et al. (2019) classified mangrove to non-mangrove areas
in the Sundarbans with an overall accuracy of 94.5%. Therefore, classification of detailed species
assemblages with sufficient accuracy is still a challenge with Landsat imagery. However, the use of
high-resolution data, vegetation indices, canopy height, DEMs and the use of machine learning
algorithm has improved classification accuracies in many studies (Pham et al., 2019; Rahman et al.,
2019). Sentinel-2 MSI has provided better resolution in shortwave bands (20 m) that have provided
reliable classification of mangrove species in most mangrove forests (Baloloy et al., 2020; Cissell et

al., 2021; Ghorbanian et al., 2021; Liu et al., 2021).

Using Sentinel-2 MSI imagery and machine learning classifiers, this study provided a forest-type map
with a reasonable accuracy of 75%. The quantity disagreement was higher than allocation
disagreement indicating that much disagreement arises from errors due to the quantity mapped for
each class rather than the spatial distribution of forest types. As evident from the classification maps,
forest-types comprising two or more species showed less users accuracy, such as Excoecaria and
Mixed, Avicennia_ Sonneratia and Heritiera_Excoecaria. On the other hand, Bruguiera, Xylocarpus
and non-vegetated types such as water and barren land showed the highest classification accuracy.
The low producers accuracy indicates that classifiers failed to capture the forest-type of these
reference point such as Xylocarpus_Mixed and Avicennia_Sonneratia. The confusion arises for these
species due to similar spectral signatures, similar value of indices, or similar GEDI canopy height.
The tidal influence on the spectral signatures especially close to river or canal banks is also an
important source of classification error (Baloloy et al., 2020; Xia et al., 2021). Capturing seasonal
variation or using knowledge of ecological zonation of each species benefits the classification
accuracy. Moreover, using high-resolution data or adding LiDAR or RADAR data will produce better

mangrove classification in the Sundarbans in future (Pham et al., 2019; Rahman et al., 2019).
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The object-based classification combines pixels of similar spatial properties and provides meaningful
objects of interest and therefore successfully classified mangroves in many regions (Conchedda et al.,
2008; Pham et al., 2019). However, comparison of error matrices suggests that the pixel-based
classifier captured the most accurate forest-type in the Sundarbans. The 10 m Sentinel-2 MSI is 25%
of the area of the sample plots, therefore each sample plot is composed of mixed pixels. In case of the
object-based approach, the information from multiple pixels smooths out across one object. On the
other hand, the pixel-based approach retains the distribution of species-type and therefore showed
greater accuracy compared to object-based approach. The diversity of species in the Sundarbans is not
homogenous and is largely dependent on linear distance from the riverbank. For example, Sarker et al.
(2019b) found that the alpha and beta diversity is the highest at a distance of 1500 m and gamma
diversity at 800 m from the river bank. The pixel-based approach might better capture these variations

in species types in the Sundarbans.

The above— and below-ground carbon stocks is largely dependent on a range of variables such as
forest-type, salinity, water discharge, climatic and other environmental factors (Rahman et al., 20213;
Rahman et al., 2021b). Regression kriging is a widely used interpolation method to upscale plot level
information to larger scales, where the predicted variables are dependent on a range of covariate
variables (Keskin and Grunwald, 2018). Enhanced Bayesian Kriging Regression Prediction (EBKRP)
is used in a few studies to interpolate SOC in many regions and proved to be the best interpolation
method among all available alternatives (Mallik et al., 2020; Sahu et al., 2021). The interpolation of
SOC with forest types did not improve by adding DEM data from the TanDEMXx mission or slope or
aspect. The DEM is actually the Digital Surface Model (DSM) representing the top of vegetation in
the Sundarbans. From the forest-type map, it is evident that the Sundarbans has an east-west gradient
of species-assemblages reflecting a variation of species height as evident in GEDI forest height map
(Figure 5.5). Therefore, the forest type-map and the DEM might be correlated. On the other hand, the
slope and aspect didn’t have any marked impact on the SOC stocks as the Sundarbans is within 2-4 m

above mean sea level (MSL) (Payo et al., 2016; Rahman et al., 2021b).
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Results showed that the TEC and AGC stocks in the Sundarbans is higher in the central north and
north-eastern part of the Sundarbans. Spatial modelling of biodiversity by Sarker et al. (2019b)
revealed that the most species-rich mangrove species are confined to the northern and eastern regions
in the Sundarbans. Species in these areas receive more freshwater due to proximity of two large
rivers, the Baleshwar and Passur, ensuring suitable less-salty conditions for salt-intolerant plant
species. The species-rich communities in these regions might encounter more above- and below-
ground carbon in this region. The high carbon-rich area is mostly dominated by Heritiera fomes
dominated areas along with Excoecaria, Bruguiera and Xylocarpus spp. Since the plot level mean
AGC was significantly higher for Bruguiera, Heritiera fomes and Heritiera-Excoecaria, the below-
ground root carbon is also expected to be higher for these species as used allometric models for root
carbon are obtained from above-ground tree parameters. On the other hand, SOC is also higher in the

north-eastern zone compared to other parts of the Sundarbans.

Results from this study show that the total ecosystem carbon stocks is 62.70 Teragram (Tg) in the
Sundarbans, which is 55% lower than recent estimation by BFD using a recent national forest
inventory (GOB, 2019). Chanda et al. (2016b) estimated TEC in the Sundarbans in 2016 is 91.19 Tg
using the data and procedures from Rahman et al. (2015a). Both studies used common local and pan-
tropical allometric models which might estimate higher TEC than this study. Moreover, these studies
used a stratify & multiply (SM) approach which uses average values with the area of each species
from remote sensing imagery, which can over- or underestimate carbon stocks. The uncertainty
analysis of this study shows that the TEC can vary between 43.29 Tg and 81.14 Tg with a 95%
confidence interval. The TEC varied significantly within salinity zones. Rahman et al. (2015)
estimated ecosystem carbon stock for salinity zones which varies from 117 for polyhaline, 229 for
mesohaline and 336 for oligohaline zone. Similarly, Chanda et al. (2016b) also found similar findings
for three salinity zones, although the values are lower than Rahman et al. (2015) and higher than this
study. The vegetation composition, growth and yield of mangroves is dependent on the salinity of the
Sundarbans, which can affect the above- and below-ground biomass or carbon (Siddique et al., 2017;

Rahman et al., 2020; Rahman et al., 2021b).
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Table 6.6: Comparison of ecosystem carbon stocks in the Sundarbans

Below- Below-
No, of Above- ground Ecosystem
- ground .
sample plot | Salinity ground soil carbon stocks
Study - root 1
& plot size/ Zones carbon carbon (1 (Mg ha™)
. 1 carbon
Satellite (Mg ha) 1 m) (Mg
(Mg ha) 1
hat)
. 5 54 (18 -
This study 140 (400 m?) All 60 (16 -91) | 41(9-126) 100) 158 (83 — 240)
Ahmed et al 128 (35— ”
: 50 (100 m?) All (23-161), - -
(2021) 274) 9 (7-13) *
Ahmed and
Kamruzzaman 6 (400 m?) Oligohaline 122 66 - -
(2021)
ey
3
© Azad et al. 2 . 117 (58 - ) )
% (2020) 18 (600 m?) Mesohaline 195) 67 (35-99)
c
c >
.-
2 v | GOB (2019) 1,653 (400) m? All 49 33 182 345
o
S<
s § K
3 amruzzaman » . . _ 3 ) )
% etal. (2018) 6 (400) m Oligohaline | 77 (26 —158) | 42 (7-71)
n
@ Sanderman et ) ) 127 (74- )
IE al. (2018) Model based All 463)
Atwood et al. .
(2017) Literature based All - - 118 -
Kamruzzaman 2 . .
etal. (2017) 21,100 m Oligohaline 77 42 - -
Chanda et al. ’
(2016b) 150, 1570 m All - - - 258 (172 — 343)
Rahman et al. 2 112
(20153) 150, 1570 m All 89 (25-153) | 38(12-63) (90— 134) 260 (160 — 360)
190 Plot data
Kauffman et al. . 334
(2020) frorr_] five Global 115 - (33— 789) 856
continents
Simard et al. SRTM and
(2019) ICESat/GLAS Global 62 - - -
@ Sanderman et 361 (94-
g al. (2018) Model based Global - - 628) -
[
= | Atwood etal. . 283
© - - -
S (2017) Literature based Global (15— 1527)
S Jardine and 369
< | Siikamaki Model based Global - - (272 703) -
(2014)
IPCC (2014) Literature based Global 83 - 428 511
Donato et al. field data from . o
(2011) the Indo-Pacific Indo-Pacific 159 - 864 1023

N.B: (*) * Fine root biomass (diameter <2 mm), (**) indicates soil carbon measurement for more than 1 m depth. SRTM: Shuttle
Radar Topography Mission, ICESat/GLAS: Ice, Cloud and land Elevation Satellite / Geoscience Laser Altimeter System
(GLAS). Studies presented as biomass value were converted into carbon assuming 50% biomass is carbon (Howard et al., 2014).
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The estimated average above-ground carbon stocks in the Sundarbans is lower than all other local and
global estimates, except the recent national forest inventory by GOB (2019) (Table 5.6). Using
species-specific allometric models, the below-ground root carbon stocks is quite similar to many
studies (for example, Kamruzzaman et al. (2017), Rahman et al. (2015a) and Kamruzzaman et al.
(2018)), however the rest available studies estimated higher root carbon stocks. The difference arises
due to the species composition since all studies used common allometric models as a relationship
between above-ground tree structure to below-ground root carbon stocks. The major difference was
found for below-ground soil carbon where this study is the lowest compared to all local and global
studies. The 1 m soil carbon stocks was almost 25% of the latest national inventory estimation, and
50% than Rahman et al. (2015a). A range of factors are associated with lower carbon stocks in the
Sundarbans compared to other mangroves or global average values. Such can be explained by high
mineral sediment deposition (Sanderman et al., 2018; Twilley et al., 2018), low burial rate (Ray et al.,
2011), rapid turnover rate (Ray et al., 2018), historical logging, stand age (Marchand, 2017), plant

litter quality (Rovai et al., 2018) and biological processes.

Mangroves play a vital role in supporting biodiversity and also mitigating climate change through
soaking up carbon dioxide and storing carbon in both above- and below-ground biomass and
sediments. The present study used field inventories, species-specific allometric models and species-
specific carbon fractions to estimate total ecosystem carbon stocks in the Bangladesh Sundarbans and
upscale plot level carbon to ecosystem level through GIS-based interpolation. However, the study
measured only 1 m depth of SOC despite the Sundarbans having organic carbon in 4-6 m depth of
sediments (Allison et al., 2003). However, the 2013 IPCC Supplement to the 2006 IPCC Guidelines
suggests that impact of forest management and anthropogenic activities is up to a depth of 1 m, below

which the carbon stocks is almost intact (IPCC, 2014).

The study is intended to develop a tier 3 level assessment of ecosystem carbon stocks in the

Bangladesh Sundarbans with increasing accuracy by using available models, cloud computing
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platforms and software. Reducing uncertainties in carbon estimation is one of the key research
agendas to reduce error at the global scale. However, carbon estimates often ignore error propagated
from allometric models (Vorster et al., 2020). Therefore, the carbon maps produced in the study
considered reducing errors from field data by developing species-specific and site-specific allometric
models or generic models with species level structural information such as wood density and tree
height. To reduce error from carbon maps, terrestrial LIDAR scanning could be an option for
individual- and plot-level biomass estimates (Réjou-Méchain et al., 2019). The error propagation
during upscaling local scale carbon estimates to the ecosystem scale can be minimised through using
Airborne LiDAR and very fine-resolution optical satellite images. UAV-based LiDAR can also be
used for improved accuracy of carbon estimation in forests. However, the recent advances of satellite
missions such GEDI (Global Ecosystem Dynamics Investigation), Icesat-2 (Ice, Cloud, and Land
Elevation Satellite-2) or NISAR (NASA-ISRO SAR) could reduce the error propagation if calibrated
to the wide range of ground data collected from forests around the world. The accurate error
propagation in biomass products and the pathways to overcome the uncertainties would then pave the
way to meet requirements of international environmental policies and other applications (Herold et al.,

2019; Réjou-Méchain et al., 2019).

6.5. Conclusions

The remote sensing pixel-based classification of Sentinel-2 MSI using the GEDI height map provided
the most accurate forest-type classification with 10 forest-types across the Bangladesh Sundarbans.
The Hertiera_Excoecaria type was the most dominant forest type followed by Excoecaria_Mixed and
Ceriops-Excoecaria. The plot level TEC varied significantly within both salinity zones and by forest-
type (p < 0.05). The interpolation of plot level data with forest-type maps revealed that the SOC and
AGC in the Sundarbans was 21.37 Tg and 23.92 Tg, respectively. On the other hand, the total
ecosystem carbon stocks comprised 62.70 Tg with a 95% confidence of being between 43.29 Tg and
81.14 Tg. The central-north and north-eastern part of the Bangladesh Sundarbans is the most carbon

rich forest in both above- and below-ground components. Therefore, this carbon-rich area should be a
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conservation priority. The uncertainty assessments from the field estimation, allometric models,
classification to the interpolation all provide confidence in the estimates of total ecosystem carbon
stocks in the Sundarbans. The methodology used in this study provides a robust approach for
estimating ecosystem carbon stocks in any mangrove forest and the method can be extended to track

and monitor carbon dioxide emissions.
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Chapter 7

General Discussions and Conclusions

130



7.1. Overview of thesis findings

The overall aim of this thesis was to estimate total ecosystem carbon stocks, uncertainties behind
carbon stocks estimation and to understand spatial variability of carbon stocks in the Bangladesh
Sundarbans. In the chapter 2, a synthesis of peer-reviewed literature on carbon stocks in mangrove
forests were compiled and analysed. The available methodologies, either field inventory or remote
sensing or a combination for the estimation of ecosystem carbon stocks were discussed. A short
description of the Bangladesh Sundarbans and used research methodologies are presented in the
chapter 3. The methods for upscaling plot-level carbon stocks measurements to the ecosystem level
through remote sensing, and the variety of remote sensing sensors for estimating carbon stocks were
presented. Previous estimates of below- and above-ground carbon stocks in the Sundarbans were
discussed and research gaps were identified which helped to inform the research design used in this

study.

Chapter 4 introduced the use of sediment coring to quantify soil carbon stocks (SOC) up to 1 m soil
depth at four narrow depth intervals. This study represents one of the first to quantify SOC using a
CHN analyser, which is known to be more accurate than other methods. The study finds that levels of
SOC in the Sundarbans are much lower than those reported in previously published work and those
used in global models. Explanations for this low SOC were explored and these include high mineral
sediment deposition, low burial rate, rapid turnover rate, historical logging, stand age, plant litter
quality and biological processes are important. Soil salinity is key factor that influences the spatial
variability of SOC in the Sundarbans along with the C: N ratio and diameter of trees. The study also
found that SOC stocks is significantly different amongst vegetation types where Bruguiera spp. stands
hold the maximum SOC measured, followed by two pioneer species Sonneratia apetala and
Avicennia spp. The result from this chapter answers research question 2 and 4 with regards below-

ground SOC stocks.

In response to research question 1, chapter 5 explored the variability of above-ground biomass (AGB)

using different sets of allometric models and model parameters (wood density and height). The
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biomass variability indicates uncertainties in biomass estimation using generic models or model
parameters that do not closely represent the local conditions. Using independent datasets from
Mahmood et al. (2019), the study developed and tested five species-specific and four genus-specific
allometric models which explained a high percentage of the variance in tree AGB using measured
diameter at breast height (DBH) and total height (H) data. The generic allometric models
overestimated AGB between 22% to 167% compared to the species-specific models at the plot level.
Using measured wood density (WD) in allometric models estimated 5-10% less biomass than WD
from database and other sources, and AGB was overestimated when using plot top height and

underestimated using plot average height data rather than individual tree heights.

In chapter 6, the study estimated the above- and below-ground carbon stocks in the Sundarbans in
both plot and ecosystem level to satisfy research question 2, 3 and 4. Based on the forest-type
classification map, Hertiera Excoecaria was the most dominant forest type followed by
Excoecaria_Mixed and Ceriops-Excoecaria. After analysing the field inventory, the estimated plot
level TEC varied significantly with both salinity zone and forest-type. The interpolation of plot level
data with the forest-type map revealed that the SOC and AGC in the Sundarbans was 21.37 Tg and
23.92 Tg, respectively. On the other hand, the total ecosystem carbon stocks comprised 62.70 Tg with
a 95% confidence of being between 43.29 Tg and 81.14 Tg. The central-north and north-eastern part
of the Bangladesh Sundarbans contains the most carbon rich forests for both the above- and below-
ground components. Standard prediction error maps were also developed for AGC, SOC and TEC.
The study demonstrated a systematic and easily replicable approach for estimating ecosystem carbon

stocks that can be replicated in any mangrove forest.

Each data chapter (4, 5 and 6) had separate aims and specific questions. The main findings can be
categorised as- 1) low SOC in the Sundarbans, 2) the importance of species-specific allometric
models, 3) spatial variability of carbon stocks, and 4) carbon stocks responses to environmental
drivers. The main findings are discussed below along with practical implications of the findings,

limitations and potential improving areas are discussed below.
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7.1.1. Low SOC in the Sundarbans

Despite mangroves having a high carbon density in the below-ground sediment, surprisingly this
study reveals that the Sundarbans contains lower levels of soil organic carbon than has been reported
in most mangroves in the world. Compared to direct estimates from 190 sites across the world by
Kauffman et al. (2020), the Sundarbans contains higher SOC than only two other mangrove forests,
the Porto Céu mangrove in Brazil (48 Mg ha) and the Bu Tinah Janoub in the United Arab Emirates
(33 Mg hal), located at lower and higher latitudes respectively than the Sundarbans. However, the
differences in sampling strategy and methodologies can also yield large differences in SOC stocks,

which needs to be investigated further.

The low soil carbon in the Sundarbans is largely due to high mineral sediment deposition (Sanderman
et al., 2018; Twilley et al., 2018), low burial rate (Ray et al., 2011), rapid turnover rate (Ray et al.,
2018), historical logging, stand age (Marchand, 2017), plant litter quality (Rovai et al., 2018) and
biological processes. Being both a tidal and river-dominated ecosystem, the carbon allocation in the
above and below ground is very complex and highly dependent on the local and regional geomorphic
and geophysical drivers (Twilley et al., 2018). Nonetheless, higher tidal amplitude in the Sundarbans
leads to higher carbon export totalling 7.3 Tg C yr ! to the adjacent Bay of Bengal, which is higher
than any other mangrove system (Ray et al., 2018). This rapid carbon turnover results in reduced
burial of organic matter (0.18%) in the soil (Ray et al., 2011). Moreover, the pronounced tidal cycle in
the Sundarbans affects carbon burial process by altering soil water chemistry (Chatterjee et al., 2013;
Spivak et al., 2019). Besides the high carbon turnover rate, the Sundarbans is believed to have become
tidally active in the recent past due to reduced freshwater flow from the Ganges-Brahmaputra-Meghna
river (Rogers et al.,, 2013; Hale et al., 2019). However, despite the historical reduction of
sedimentation, the Sundarbans is itself still keeping pace with sea-level rise with the highest average
surface elevation and vertical accretion rate (0.74 and 2.71 cm yr ') compared to the worldwide
average (Bomer et al., 2020a; Bomer et al., 2020b). This high sedimentation rate is the outcome of the

massive flux of clastic sediments which attenuates the amount of organic carbon per unit area.
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The century-long historical exploitation in the Sundarbans before the felling moratorium in 1989 has
largely decreased the populations of threatened tree species (Siddigi, 2001; Sarker et al., 2011). This
in turn is likely to have lessened the continuous autochthonous input of organic matter in the forest
and reduced the overall stand age. Studies also showed that historical harvesting had altered the
species composition in the Sundarbans, with decreasing abundances of Heritiera fomes, Ceriops

decandra and Xylocarpus mekongensis and increasing for Excoecaria agallocha (Sarker et al., 2016).

7.1.2. The importance of species-specific allometric models in biomass estimation

Chapter 4 concludes that biomass estimates of mangrove forests are the most precise when species-
specific models and individual tree measurements are used. Several studies have concluded that site-
specific AGB models estimate biomass or carbon with less error than regional or pan-tropical models;
for example, Sundarbans mangrove forest (Mahmood et al., 2019), lowland Dipterocarp forest in
Indonesia (Basuki et al., 2009), degraded landscape in Northern Ethiopia (Mokria et al., 2018), central
African forest (Ngomanda et al., 2014) and Mexican tropical humid forests (Martinez-Sanchez et al.,
2020). Uncertainty in biomass estimation arises when the developed allometric model for one species
is applied to another species. Similarly, site-specific allometric models are needed to represent forest
heterogeneity (Weiskittel et al., 2015; Hickey et al., 2018). For example, De Souza Pereira et al.
(2018) found AGB estimation errors between minus 18% and plus 14% when using biome-specific
allometries rather than species-specific ones in Brazilian mangrove forests. Rovai et al. (2016)
concluded that recently published global and continental AGB estimates contain errors due to an
under representative sample size and the exclusion of the climatic regime, geophysical and
geomorphological variables, which are key to understanding the spatial distribution of biomass.
Therefore, inclusion of biophysical parameters such as wood density and tree height can help to
capture geographical heterogeneity and also act as a suitable proxy of environmental drivers such as
variation in salinity which affects the growth rate, wood density, species composition and tree height

(Mahmood et al., 2019; Rahman et al., 2020; Virgulino-Junior et al., 2020; Rahman et al., 2021b).
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Species-specific allometric models are also important for estimating below-ground root biomass.
After analysing the available global datasets on below-ground root biomass, Adame et al. (2017)
concluded that using common allometric models overestimates root biomass up to 40% compared
with using species-specific models. However, a few studies have shown that generic models can
outcompete locally developed ones (Rutishauser et al., 2013; Stas et al., 2017). Aabeyir et al. (2020)
also found better performance of regional or pan-tropical models as local models incurred large
uncertainties in West Africa. The accuracy of these generic models for a particular forest depends on
whether these models incorporate sufficient samples from that forest. Chave et al. (2014) point out
that the discrepancy between local models and their own generic model in wet forests (including
mangroves) is largely due to failure to address the wider variation of tree form and other

characteristics like buttresses, which are common in the Sundarbans.

7.1.3. Spatial variability of carbon stocks in the Sundarbans

The developed SOC, AGC and TEC stocks map showed spatial variability of carbons stocks in the
Sundarbans where the north-eastern part is the most carbon-rich forest in the Sundarbans (Figure 5.8;
5.11 and 5.12). A range of studies in the Sundarbans found that the total ecosystem carbon is
significantly higher in the oligohaline zone followed by mesohaline and polyhaline (Rahman et al.,
2015a; Chanda et al., 2016b; GOB, 2019). The oligohaline zone is mostly composed of north-eastern
Sundarbans, while mesohaline is the central zone and the polyhaline zone consists of an area from

western and southern part (Figure 3.1).

The area with the highest TEC stocks is dominated by Heritiera, Heritiera-Excoecaria, Bruguiera and
Xylocarpus species. Spatial modelling of biodiversity by Sarker et al. (2019b) revealed that the most
species-rich mangrove species are confined to the northern and eastern regions in the Sundarbans.
Species in this area receive more freshwater due to proximity of two large rivers, the Baleshwar and
Passur, ensuring suitable less-salty conditions for salt-intolerant plant species. The species-rich
communities in these regions might encounter more above- and below-ground carbon in this region.

The high carbon-rich area is mostly dominated by Heritiera fomes along with Excoecaria, Bruguiera
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and Xylocarpus spp. Since the plot level mean AGC was significantly higher for Bruguiera, Heritiera
fomes and Heritiera-Excoecaria, the below-ground root carbon is also expected to be higher for these
species based on allometric models for root carbon obtained from above-ground tree parameters.
Rahman et al. (2015a) also found that Heritiera dominated vegetation hold the highest carbon stocks,
while Ahmed and Kamruzzaman (2021) found Avicennia contains the highest carbon stocks. Since
the carbon stocks varies with forest type, the spatial variation of carbon is assumed from the

distribution of species type in the Sundarbans.

7.1.4. Carbon stocks responses to environmental drivers

Results from the chapter 3 and chapter 5 highlight that the TEC and SOC stocks in the Sundarbans are
largely influenced by the salinity zone and forest-type. In addition, the predictive model from chapter
3 indicates that the SOC is also affected by C: N and diameter of trees as a proxy. In the Sundarbans,
hydro-geomorphological changes in rivers along the downstream-upstream gradient alter habitat
quality that results in spatial variability in species distributions (Angiolini et al., 2011). The variation
of the amount of freshwater flow in the Bangladesh Sundarbans also varies in an east-west direction,
where major rivers and tributaries are located in the eastern part of the Sundarbans making the area a
low saline zone (Aziz and Paul, 2015). Soil and water salinity is considered as the outcome of the
combined impact of these climatic and environmental variables resulting in pronounced differences of
SOC and TEC stocks among the three salinity zones (Sarker et al., 2016; Sarker et al., 2019b; Rahman
et al., 2020). Several previous studies have confirmed that salinity determines a strong zonation of
tree species and biodiversity in the Sundarbans, which in turn leads to comparatively higher diversity
and taller tree species in the oligohaline, followed by mesohaline and polyhaline zone (Aziz and Paul,
2015; Sarker et al., 2016; Sarker et al., 2019a; Sarker et al., 2019b; Rahman et al., 2020).
Comparatively higher productive trees (for example, higher DBH and higher height) promotes organic
matter accumulation through producing higher litter mass and increases both AGC and SOC stocks by
forming stable aggregates from roots and pneumatophores (Lange et al., 2015). The three salinity

zones also comprise differential soil physical and chemical properties and vegetation characteristics
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that usually affects SOC storage by influencing microbial decomposition, soil water chemistry, plant-

microbe interaction, and plant litter quality.

Variation in SOC stocks among different forest types are often mediated by the primary productivity,
resources allocation in different parts (for example, above- and below-ground) and microorganism
activity is driven by a number of biological (for example, bioturbation and species composition) and
physical (for example, soil texture, salinity, inundation and nutrients) factors (McLeod et al., 2011).
Therefore, differing stand structure and composition in mangrove forests in different tidal regimes
yield variable AGC and SOC stocks (Lacerda et al., 1995; Gleason and Ewel, 2002). Moreover, the
long and short-term resilience and resistance of microbial communities are largely dependent on the
structure and zonation of mangrove communities reflecting environmental gradients (Capdeville et al.,
2019). In this study, species with higher TEC and SOC stocks, such as Bruguiera spp., Sonneratia
spp. and Avicennia spp. are frequently inundated due to proximity to the river and low land elevation
compared to other species in the Sundarbans (Siddiqgi, 2001; Sarker et al., 2016). These high
inundation regimes, in turn, may lead to increased microbial activity and a higher level of dissolved
organic carbon (Wang et al., 2013; Chambers et al., 2014; Chambers et al., 2016). Regular tides also
bring sediments along with high allochthonous input whereas the raised less-inundated areas foster
autochthonous SOC and less microbial activity (Lovelock et al., 2015b; Woodroffe et al., 2016). Rao
et al. (1994) found almost double the C: N ratio in fresh leaves of Bruguiera spp. compared with other
mangrove species, suggesting higher input of autochthonous carbon. Being the pioneer species in the
succession of the Sundarbans, both Sonneratia spp. and Avicennia spp. are resilient to disturbances
leading to higher SOC than climax and seral species (Table A.1) and accumulate a large quantity of
organic litter in the tidal channel close to the river or seafront (Sarker et al., 2016; Bomer et al.,

2020a).

7.2. Practical implications

The study used robust methods to measure plot-level carbon stocks by using the best available

methods for each component and subsequently upscaled estimates to the ecosystem level using remote
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sensing imagery. Being a signatory of nationally determined contributions (NDCs) to the United
Nations Framework Convention on Climate Change (UNFCCC), Bangladesh is committed to provide
reports on greenhouse gas (GHG) emissions and projected scenarios. Bangladesh has recently
completed a REDD+ readiness phase and the implementation phase will start in future (GOB, 2018).
To satisfy the requirement of these international policy schemes, Bangladesh needs robust estimates
of GHG emissions and their uncertainties from all sectors including forests. This study demonstrated
an IPCC Tier 3 approach for estimating ecosystem carbon stocks in the Bangladesh Sundarbans which

can be used to monitor ecosystem carbon stocks in mangroves and other forests in Bangladesh.

According to IPCC guidelines for the forestry sub-sector, Bangladesh has established a Forest
Reference Level (FRL) for the historical reference period 2000-2015 (GOB, 2021). According to the
report, the estimated emissions from the forestry sector is 1.19 MtCOze/year (metric tons of carbon
dioxide equivalent), and the estimated removal is 0.81 MtCO-e/year. On the other hand, the projected
reduction is 409.41 Mt CO.e along with reduction aim to reduce this by 22% by 2030. However, the
report showed emissions in 2012 (0.37) which is projected the same in 2030. Keeping constant for
this projected period indicates that the gain and loss would be counterbalanced by 2030 (GOB, 2021).
However, as a signatory of the pledge to halt and reverse deforestation by 2030 at COP26
(Conference of Parties) in 2021, Bangladesh promised to curb deforestation. Additionally, protection
of existing forests and planting targets in the degraded forest might mitigate more carbon loss by
2030. This study demonstrates the estimation and prediction of both above- and below-ground carbon
stocks with greater accuracy which can be considered in the national greenhouse gas reporting and
estimations. Including mangrove soil carbon in the report, especially the Sundarbans and coastal
forests and adding the growth would achieve the 2030 target and can even act as a carbon credit to

compensate other sectors like transportation or energy sectors.

The study developed five species-specific and four genus-specific allometric models to estimate
above-ground biomass for nine species in the Sundarbans. These models only need diameter at breast

height and height from the field survey to compute biomass. The study also calculated wood density
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for most tree species which can be used in models. These site-specific wood density values will
provide estimates of biomass with higher accuracy. Moreover, the spatial variation of wood density of
the same species will provide better insights into the species-specific responses to environmental

changes.

The use of remote sensing and cloud computing facilities in the study will allow us to monitor the
Sundarbans and other forests and understand the carbon stocks changes. Time-series monitoring of
changes in biomass or carbon provides the opportunity to estimate net gain and loss in carbon, which
is important to calculate GHG emissions. Timely monitoring of GHG emissions is vital to satisfy the
country’s target to achieve for national and international policy goals. The GEE platform provides us
opportunity to analyse imagery and store data in the cloud free of cost. Use of this cloud-based

platform to monitor forest biomass is a good option for developing countries like Bangladesh.

The ecosystem carbon stocks maps provide us with spatial variability of both above- and below-
ground carbon stocks in the Sundarbans. Since the most carbon-rich and biodiverse portions are in the
North-Eastern part of the Sundarbans, these areas should get conservation priority. The dominant
species in these areas is Heritiera fomes, which is the iconic species after which the Sundarbans is
named. These are the home of many threatened species including the Irrawaddy dolphin. After
assuming the importance of conserving these areas, the BFD declared three wildlife sanctuaries and
three dolphin sanctuaries. However, establishing a coal plant near the Sundarbans is regarded as
contentious policy by the Government of Bangladesh (Khan et al., 2020a). The study underlines the
importance of spatial conservation planning measures and initiatives to conserve and maximise
carbon accumulation in this carbon-rich area and to contribute to global climate change adaptation

and mitigation strategies.

Reducing uncertainties in carbon estimation is one of the key research agendas to reduce error in
carbon maps at the global scale. The present study used field inventories, species-specific allometric
models and species-specific carbon fractions to estimate total ecosystem carbon stocks in a large

mangrove forest and upscale plot level carbon to ecosystem level through GIS-based interpolation.
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The study developed a tier 3 level assessment of ecosystem carbon stocks with increasing accuracy by
using available models, cloud computing platforms and software. The use of remote sensing in cloud
computing platforms showed the repeatable methodologies for carbon estimation in mangrove forests
which satisfies the requirements of IPCC Tier 3 approach of carbon accounting. The uncertainty
assessments from the field estimation, allometric models, forest-types classification and GIS-based
interpolation provide confidence in the estimates of total ecosystem carbon stocks. The methodology
used in this study provides a robust approach for estimating ecosystem carbon stocks in any mangrove
forest and the method can be extended to track and monitor carbon dioxide emissions in any forests in

the world.

7.3. Limitations and future directions

The study estimated ecosystem carbon stocks in the Sundarbans through field inventory and remote
sensing. The estimation of carbon stocks at one time does not provide the changes in carbon stocks
which is necessary for tracking greenhouse gas emissions from the Sundarbans. Estimation of carbon
stocks at multiple times is necessary to understand CO, emissions from the Sundarbans. Therefore,
time-series estimation is necessary to monitor changes. The present study did not estimate the carbon
stocks in the past. Therefore, future research should consider back calculation of carbon stocks from
previous decades that can act as a baseline or reference level for greenhouse emissions in the

Sundarbans.

The study quantified SOC up to 1 m soil depth, however, the organic layer in the Sundarbans consists
up to 4-6 m of sediments varied from landward to seaward zone (Allison et al., 2003). In order to
capture the total SOC from the Sundarbans, future studies should expand carbon stocks measurement
to include the whole organic layer. The assessment of complete soil organic carbon is necessary to
fully understand the below-ground carbon dynamics in the Sundarbans including outwelling organic

carbon to the Bay of Bengal.
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The present study estimated below-ground root carbon with species-specific allometric models.
However, Adame et al. (2017) found using allometric models overestimated root biomass by 40%
compared to direct coring. Therefore, destructive methods are preferable to using models. Moreover,
site-specific models are not available for root carbon. The present study used a coring method to
measure root carbon, however, it only measured fine and medium roots. The bigger roots were largely
excluded in the coring method. Using both coring and models will estimate fine and medium roots
twice, therefore it will be double-counted. Therefore, only species-specific allometric models were
used for root biomass. However, excavating large trenches or pits (for example, 1 m x 1 m) would be
the best option compared to other methods to reduce uncertainty. After comparing root biomass
measured from trenches and other methods such as allometric models and coring, Adame et al. (2017)
found significantly higher root biomass in trenches from different mangrove forests. Therefore, future

studies should improve estimation of root carbon through digging trenches or pits.

The forest type map in the Sundarbans showed that 54% of the Bangladesh Sundarbans is rivers,
canals and low inundated areas. These areas also hold a high amount carbon in the sediments and
macrophytes either exported from mangroves or that originate from the photosynthesis of algae and
aquatic plants in the water (Cole et al., 2007). Estimating carbon stocks from rivers and canals is
important for total budgeting of carbon stocks from the whole mangrove and also for understanding
the outwelling dynamics of mangroves. Therefore, future studies should take these watery areas in to

account to estimate ecosystem carbon stocks in the Sundarbans.

Satellite based biomass estimation programmes such as the GEDI (Global Ecosystem Dynamics
Investigation, since 4/2019) and ICESat-2 (since 10/2018) missions provide near global coverage of
forest heights and biomass products. Very recently the world GEDI biomass/carbon product was
released. The study could not compare the locally-derived carbon map with the GEDI carbon map.
Therefore, future studies should compare or use these satellite-based carbon products with the carbon

estimation from field inventories.
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Continuous monitoring of above-ground carbon is critical for forest management in support of climate
impact mitigation. Therefore, several cloud-based platforms have been developed for continuous
monitoring of tropical forest including mangroves such as Global Forest Watch and Global Mangrove
Watch. However, these platforms monitor the coverage of forests and deforestation. Integrating
ecosystem level carbon estimation from various forests is a prerequisite if these global platforms are
to monitor global forest/mangrove carbon. The methodologies followed in this thesis can be
integrated with cloud-based platforms to monitor mangrove forest carbon in the Sundarbans and other
mangrove forests. Satellite based biomass/carbon missions (GEDI or ICESat-2) can be integrated with
the existing coverage product to monitor carbon in forests. In such cases, the use of GEE apps could
be a promising monitoring tool as it provides a platform for querying, analysing and publishing real-

time apps free of cost.

7.4. Conclusions

Using field inventories and remote sensing data, the estimated total soil organic carbon and above-
ground carbon in the Sundarbans was 21.37 Tg and 23.92 Tg, respectively. The total ecosystem
carbon stocks comprised 62.70 Tg with a 95% confidence of being between 43.29 Tg and 81.14 Tg.
The ecosystem carbon stocks in the Sundarbans are relatively low compared to most published
estimates of carbon stocks levels from mangroves across the world. This is due to the fact that the top
meter of soil organic carbon (SOC) per area is lower than most mangrove forest in the world.
However, the SOC will be higher if complete organic depth of soil is measured. In terms of reducing
GHG, mangrove forests should be conserved whatever the amount of carbon stored in the forest for its
wide range of ecosystem services. In terms of climate change mitigation and adaptation, the
conservation of the existing carbon stocks should receive much higher priority rather than the debates

of high-low carbon stocks.

The forest-type classification showed that the Hertiera_Excoecaria type was the most dominant forest
type followed by Excoecaria_Mixed and Ceriops-Excoecaria. The central-north and north-eastern part

of the Bangladesh Sundarbans contains the most carbon rich forests in both above- and below-ground
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components. Therefore, this carbon-rich part should be a conservation priority for forest management
and policy development. However, this north-eastern area of the Sundarbans is highly vulnerable to
tourism and economic development. Therefore, the study underlines the importance of spatial
conservation planning measures and initiatives to conserve and maximize carbon accumulation and to

contribute to global climate change adaptation and mitigation strategies.

This study developed five species-specific and four genus-specific allometric models for the nine
most important species in the Sundarbans. At the individual tree level, the generic allometric models
overestimated AGB between 22% to 167% compared to the species-specific models and at the plot
level, they showed statistically significant AGB differences compared to the species-specific models.
Measured wood density (WD) showed 5-10% less biomass than WD from databases and other
sources, and AGB was overestimated by up to 20% when using plot top height and underestimated by
8% using plot average height data rather than individual tree heights. The study concludes that
biomass estimation in mangroves forests always benefit from species-specific models and individual

tree measurements when appropriate input data are available.

The uncertainty assessments from the field estimation, allometric models, classification to the
interpolation all provide confidence in the estimates of total ecosystem carbon stocks in the
Sundarbans. The methodology used in this study provides an approach for estimating ecosystem
carbon stocks in any mangrove forest and the method can easily be extended to track and monitor

carbon dioxide emissions.

The plot level total ecosystem carbon varied significantly with both salinity zones and forest-type.
The soil organic carbon stocks (SOC) is also largely influenced by soil salinity, probably by amending
the forest productivity and microbial activity. The results highlighted that increasing salinity as a
result of predicted sea-level rise will likely have pronounced effects on future soil carbon
accumulation rates by altering the soil environment and vegetation characteristics. The Bangladesh
Sundarbans can act as an important blue carbon hotspot due to the high sedimentation and carbon

sequestration rate and conservation priorities by the Bangladesh government. However, disturbances
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such as sea-level rise, global warming, eutrophication, and landscape development might hinder this

conservation activities in the future.
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ARTICLE INFO ABSTRACT

Keywords: Globally, mangroves sequester a large amount of carbon into the sediments, although spatial heterogeneity exists
S"l! Qrganic carbon owing to a wide variety of local, regional, and global controls. Rapid environmental and climate change,
:a%'ln:y zhones including increasing sea-level rise, global warming, reduced upstream discharge and anthropogenic activities,
ol dept]

are predicted Lo increase salinity in the mangroves, especially in the Bangladesh Sundarbans, thereby disrupling

Mangrove forest
"8 this blue carbon reservoir. Nevertheless, it remains unclear how salinity affects the belowground soil carbon

The Sundarbans K ! A
despite the recognised effect on above ground productivity. To address this gap, research was undertaken in the

Bangladesh Sundarbans to compare total soil organic carbon (SQC) across three salinity zones and to explore any
potential predictive relationships with other physical, chemical properties and vegetation characteristics. Total
SOC was significantly higher in the oligohaline zone (74.8 + 14.9 Mg ha 1), followed by the mesohaline (59.3 +
158 Mg ha~1), and polyhaline zone (48.3 = 10.3 Mg ha™1) (ANOVA, Ty, 500 = 118.9, p < 0.001). At all sites, the
topmost 10 cm of soil contained higher SOC density than the bottom depths (ANOVA, F5 5g0 = 30.1, p < 0.001).
On average, Bruguiera sp. stand holds the maximum SOC measured, followed by two pioneer species Sonneratia
apetala and Avicennia sp. Multiple regression results indicated that soil salinity, organic C:N and tree diameter
were the best predictor for the variability of the SOC in the Sundarbans (R = 0.62). Despite lower carbon in the
soil, the study highlights that the conservation priorities and low deforestation rate have led to less CO; emis-
sions than most sediment carbon-rich mangroves in the world, The study also emphasised the importance of
spatial conservation planning to safeguard the soil carbon-rich zones in the Bangladesh Sundarbans from
anthropogenic tourism and development activities to support climate change adaptation and mitigation
strategies.

1, Introduction

Mangroves are recognised as one of the most carbon-dense forest
types in the world due to their efficient carbon sequestration capacity
into both above and below ground carbon pools (Donato et al., 2011;
Alongl, 2012; Sanderman et al., 2018). Recent assessments of soil carbon
suggest that mangrove ecosystems contain, on an average, between 856
and 1023 Mg of carbon per hectare, with the majority (~85%) of this
carbon stored in the soil (Donato et al., 2011; Pendleton et al., 2012;
Sanderman et al., 2018; Kauffman et al., 2020). This large amount of soil
carbon is of global importance due to its potential to store sequestered
CO; emissions for the long term and help mitigate adverse effects of
climate change (McLeod et al., 2011; Duarte et al., 2013; Abdullah et al.,
2016). To recognise the importance of mangrove forests for carbon

sequestration, United Nations Environmental Programme (UNEP)
designated this ecosystem as “Blue Carbon” along with other coastal
vegetated ecosystems such as seagrass meadows and saltmarshes (el
lemann et al., 2009; Lovelock and Duarte, 2019; Macreadie et al., 2019).
This growing worldwide importance of mangroves has led to a sub-
stantial reduction of mangrove loss leading to reductions in COy emis-
sions in the last three decades (Friess et al., 2019). At the same time,
mangroves have gained substantial traction in being managed, protected
and restored as part of national and global climate change mitigation
policies and actions including Nationally Determined Contributions
(NDC) towards the Paris Agreement and climate action goal (goal 13)
under United Nations Sustainable Development Goals (SDG) (Taillardat
et al,, 2018, Friess et al., 2020). However, variability and uncertainty in
SOC estimation is a key barrier to the inclusion of mangroves (and other
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blue carbeon) in national and international policy tools and frameworks.

Despite covering only 0.1% of the world’s total landmass, mangroves
sequester more carbon per unit area than any other natural ecosystems
(Atwood et al., 2017; Lovelock and Duarte, 2019), With autochthonous
inputs from the productive above-ground, mangrove soils store large
quantities of carbon as a result of the low decompesition rate resulting
from anexic eonditions (Donato et al., 2011; Alongi, 2012). Mangroves
are also highly efficient traps for allochthonous inputs through their
dense network of above ground roots. The rising elevation of mangroves
in response to sea-level rise allows large accommodation spaces to
sequester more carbon in the soil, which barely reaches saturation
(Krauss et al., 2014; Rogers et al., 2019). Therefore, mangroves act as an
efficient carbon store despite continuous threats from deforestation,
land-use change, sea-level rise, and climate change.

Blue carbon research across the globe has highlighted considerable
spatial heterogeneity in soil organic carbon (SOC) at multiple scales
(Atwood et al,, 2017; Sanderman et al., 2018). At a regional and global
scale, SOC variability has been linked to net primary productivity
(Alengi, 2012; Twilley etal., 2017), latitude/climate (Rovai et al,, 2018;
Twilley et al., 2018; Kauffman et al.,, 2020), coastal geomorphology
(Rovai et al,, 2018; Twilley et al.,, 2018) and Holocene sea-level trends
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(Rogers et al, 2019). These physical and biological factors and
geomorphic evolutionary processes promote and develop unique coastal
environmental settings, which ultimately drive macroscale variation in
SOC (Rovai et al., 2018). The site-specific variability in SOC is largely
atributed to differences in species composition (Ren et al., 2008), stand
age (Lovelock et al, 2010; Donato etal, 2011), sources of allochthonous
particles (Bouillon and Boschker, 2006; Yang et al., 2014), soil physical
and chemical properties (Freeman et al., 2004; Kristensen et al., 2008;
Banerjee et al., 2018), elevation and tidal regimes (Liu and Lee, 2006;
Spivak et al., 2019), plant-litter biochemistry (Kristensen et al., 2008;
Brodersen et al., 2019) and plant-microbe interactions (Fontaine et al.,
2007; Alengi, 2014), Several soils and environmental characteristics
such as pH, salinity, organic matter, precipitation and tidal inundation
influence the mangrove productivity and can also directly or indirectly
influence SOC (Yando et al.,, 2016). Therefore, careful consideration of
relevant factors is vital for reliable estimation of SOC at a particular
spatial scale.

The Sundarbans is the largest contiguous mangrove forest in the
world and is situated in the lower delta plain of the Ganges-
Brahmaputra-Meghna (GBM) delta, and stretches across political
boundaries between Bangladesh and India (Giri et al,, 2011; Sarker

Table 1

Comparison of Soil Organic Garbon (SOC) density and stock among studies in the Sundarbans and globally.

Study area Study Sample Depth (¢m) Methods Mean Soil organic Mean Soil organic Mean top m Soil
size carbon percentage carbon density (gm/ Organic Carbon
(%) (range) em’) (range) Storage (Mg/ha)
(range)
Sundarbans  Bangladesh  Bomer et al. 56 100 em Coring, CHN 0.9 (0.6-1.5) 0.010 (0.008-0.011) -
(2020a) anal yser
Khan and Amin 35 15 ¢m (0-15) Coring, wet 0.6 (0.4-1.0) - -
(2019) oxidation
Sanderman - 100 em Literature and - - 127 (74-463)
etal. (2018) Model based
Atwood et al. - 100 em Literature and - - 118
(2017) Mode based
Prasad et al. 400 100 ¢m (1 em Coring, CH 1.25(0.8-2.4) - -
(2017) interval ) anal yser
Hossain and 96 5 em (0-5) Coring, wet 1.2 (0.6-2.0) - -
Bhuiyan (2016) oxidation
Rahman et al. 150 100 em (0-30, Coring, wet - 0.011 (0.007-0.014) 112 (90-134)
(2015) 30-100) oxidation
Donato et al., 4 100 em (0-30, Coring, wet 1.7 (1.6-1.7) 0.016 (0.015- 0.016) -
(2011) 30-100) oxidation
Allison et al. 4 600 ¢m (0-600) Coring, CHN 0.5-1.1 - -
(2003) anal yser
ndia Dutta et al. 48 40 ¢m (0-10,10-20,  Coring, wet 1.25(0.8-1.6) - -
(2019) 20-30, 30-40) oxidation
Prasad et al. 300 100 em (1 em Coring, CH 0.8-5.2 - -
(2017) interval ) anal yser
Dutta et al. 15 25 ¢m (0-5, 5-10, Coring, TOC 1.6 (1.2-2.1) 0.017 (0.013-0.019) .
(2013) 10-15,15-20, anal yser
20-25)
Banerjee et al. 140 40 ¢m(0-10,10-20,  Coring, wet 1.0 (0.5-1.4) 0.011 (0.007-0.015) -
(2012) 20-30, 30-40) oxidation
Mitra et al. 120 40 em (0-10, 10-20,  Coring, wet 0.7 (0.4-1.1) 0.009 (0.006-0.012) -
(2012) 20-30, 30-40) ¢cm oxidation
Ray et al. 16 30 ¢m (0-30) Coring, wet 0.6 (0.5-0.7) - -
(2011) oxidation
Global studies Kauffman et al. 190 sample plot data from 5 continents in different - - 334 (33-789)
(2020) soil depth
Sanderman Model based estimation of carbon fiom literature - - 361 (94-628)
etal. (2018) values of 1812 samples
Rovai et al. Model based estimation of carbon from literature - 0.033 (0.001-0.153) -
(2018) values of 932 samples
Atwood et al. Literature based estimation from 1230 sampling - - 283 (15-1527)
(2017) locations
IPCC (2014) Literature based estimation - - 428
Jardine and Model based estimation of carbon from literature 5.7 (0.1-43.3) 0.032 (0.014-0.115) 369 (272-703)
Siikamaki values of 932 samples
(2014)
Donato et al. Field based data from Indo-pacific area of 25 11.9(1.7-21.5) 0.043 (0.016-0.076) -
(2011) samples
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et al.,, 2016). It is either mostly excluded from the global estimates of
mangrove SOC (Table 1), or is underrepresented due to a limited num-
ber of samples or perceived poor data quality (Donato et al, 2011;
Jardine and Siikamaki, 2014; Atwood et al,, 2017; Sanderman et al.,
2018; Twilley etal,, 2018; Kauffman et al,, 2020). Arange of studies into
SOC content in mangrove soils of the Sundarbans have been carried out
(Table 1), but these all havelimitations. The first comprehensive carbon
inventory throughout the Sundarbans was completed by the Bangladesh
Forest Department (BFD) in 2009-10; however, the wider vertical
sample depth might have an effect on the SOC estimation within the top
meter (Rahman et al,, 2015). Allison et al. (2003) and Donato et al.
(2011) investigated soil organic carbon at greater depth (>1 m) in the
Bangladesh Sundarbans, however, the number of samples (2 and 6
respectively) was not sufficient to address the variability inside the
forests. Studies by Khan and Amin (2019) and Hossain and Bhuiyan
(2016) measured SOC from different parts of the Sundarbans, however,
the sampling was only performed within the top 15 cm. These all the
previous studies of SOC in the Sundarbans have limitations resulting
from low spatial sampling intensity and limited analysis of soil depth
range. Moreover, some global studieslike Rovai et al. (2018) argued that
past climate-based estimation overestimated SOC by up to 86% for
deltaie settings like the Sundarbans. Therefore, accurate investigation
on the spatial variation of soil organic carbon and the identification of
major eontrols for such variation in the Bangladesh Sundarbans is ur-
gently needed.

Increasing salinity in the inundated mangroves stimulate a wide
range of biogeochemical reactions- including enhancing sulphate con-
centrations, cation exchange, ionic and osmotic stress, acidity, and
turbidity and at the same time reducing soil redox potential and oxygen
levels (Setia et al,, 2013; Luo et al., 2019). These soil biogeochemical
changes in turn alter sediment characteristies and modify plant and
mierobe eommunities, which ultimately affect both the soil organie
carbon pool and quality. Increased soil salinity affects organic matter
solubility by altering flocculation of different soil particles (Wong et al,,
2009; Wong et al, 2010; Rath and Rousk, 2015). The Investigations of
tidal wetlands across the world reveals a significant negative relation-
ship between the soil organic earbon pool with salinity (Nyman et al,
1990; Craft, 2007; Wigski et al,, 2010; Morrissey et al., 2014; Hu et al.,
2016). High soil salinity decreases decomposition rates by lowering
mierobial activities in the soil and lowers autochthonous carbon input
by reducing plant productivity leading to lower organic carben in the
soil (Baldwin et al.,, 2006; Marton et al, 2012; Setia et al.,, 2013; Liu
et al., 2017; Zhao et al, 2017). High salinity in general acts as an in-
hibiter of carbon mineralisation, however the opposite is also evident in
some studies suggesting that a small increase in salinity promotes min-
eralisation process in the oligohaline zone, while in the mesohaline and
polyhaline zones, elevated salinity reduces the mineralisation rate (Luo
etal.,, 2019), Therefore, the impact of salinity on the soil organie carbon
pool and quality is not uniform in all wetland settings in the weorld,
rather it depends on the local geomorphology and hydrological
characteristics.

The aim of the present study is to estimate soil organic earbon (SOC)
in the Bangladesh part of the Sundarbans mangrove forest and to better
understand the relationship of SOC with three salinity zones (oligoha-
line, mesohaline and polyhaline) and major forest types. The study
hypothesises that higher salinity zones (polyhaline) would yield a lower
organic soil carbon stock as a reflection of lower productive vegetation
and altered soil physical and biological processes compared with the
lower salinity zone (oligohaline). The relationships between physical,
chemieal properties and vegetation characteristics with SOC are also
investigated to develop dependable predictive models for this forest. The
novelty of this study lies in the extensive statified random sampling
from all over Bangladesh Sundarbans combined with vertical investi-
gation of soil depth up to 1 m.
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2, Material and methods
2.1, Study area

The Sundarbans is the largest single block of mangrove forest in the
world and a Ramsar and UNESCO World Heritage site (Fig. 1) (Girietal.,,
2011; Sarker et al,, 2016). The Bangladesh Sundarbans is situated be-
tween 21°30'N and 22°30°N and 89°00’E and 89°55'E. The climate of
the Sundarbans is warm, humid, and tropical, where annual precipita-
tion varies from 1474 to 2265 mm and mean annual minimum and
maximum temperature is between 29 °C and 31 °C (Chowdhury et al,,
2016; Sarker et al,, 2016). Based on the salinity variation, the Sundar-
bans naturally divides into three distinct zones based on the soil salinity;
i) Oligohaline (LSZ) (<2 dS/m, ii) Mesohaline (2-4 dS/m) and iii) Pol-
yhaline (=>4 dS/m) (Siddiqi, 2001; Chanda et al., 2016b). Several studies
have identified a relationship between tree species abundance along the
east-west salinity gradient (Iftekhar and Saenger, 2008; Aziz and Paul,
2015; Sarker et al., 2016; Sarker et al., 2019a). Although Excoecaria
ggallocha is abundant in all three salinity zones, Heritiera fomes (char-
acteristic species in Bangladesh Sundarbans) is dominant in both the
oligohaline and meschaline zones, whereas Ceriops decandra is abundant
in the polyhaline zone (Sarker et al.,, 2019a). Some pioneer species, such
as Avicenna spp. and Sonneratia apetala are also present in the mudflats
all over the Sundarbans. A short description of all 23 tree species from 10
families found in this study is presented in Table A.1.

2.2. Geology and soils of the Sundarbans

The Sundarbans mangrove forest lies in the south-western part of the
Bengal Basin, one of the most extensive sediment reservoirs in the world
composed of unconsolidated Quaternary deposits (Rudra, 2014). The
rapid sedimentation followed by the tectonic collision of the Indian plate
with the Tibetan plate and the Burmese plate in the Miocene triggered
the formation of the Bengal Basin (Alam, 1989). Since the Holocene, the
dynamic Ganges-Brahmaputra river system has been discharging sedi-
ments from the Sub-Himalaya and is still delivering =1 Gt of sediment to
the delta plain of India and Bangladesh (Islam et al,, 1999; Syvitski and
Milliman, 2007). The Sundarbans is of relatively recent origin (3000-
year B.P.) and this mangrove has developed as a result of both fluvial
and tidal forces depositing sediments to the GBM river mouth (Goodbred
and Kuehl, 2000; Allison and Kepple, 2001; Rogers et al., 2013). Pre-
viously, the Ganges was the main source of sediments in the Sundarbans,
however, recent changes have resulted from the merging of the Ganges
and Brahmaputra which have now migrated to the eastward, far away
from the Sundarbans (Rudra, 2014; Islam, 2016). Together with the
eastward migration of the primary GBM delta, the eonstruction of the
Farakka barrage in the main Ganges River and earthen embankments
surrounding the Sundarbans have reduced freshwater flow, resulting in
reduced fluvial sedimentation in the Bangladesh Sundarbans. This
geomorphological change, in turn, hasled to increased remobilisation of
sediments by tidal forces (Rogers et al,, 2013; Hale et al., 2019; Bomer
etal, 2020b). The changed pattern of freshwater flow has resulted in a
salinity gradient inereasing from the east to the west of the Sundarbans.

The soil is mainly fine-grained, grey coloured, slightly calcareous,
and mostly composed of silts to clayey silts (Allison et al., 2003; Bomer
etal,, 2020a). The subsurface sediment extends up to 6 m in depth in the
landward direction and up to 4 m in depth in the seaward direction
(Allison et al.,, 2003). The median grain size ranges between 16 and 32
pm reflecting the medium silt range. The average dry bulk density (0.81
gem ) ishigher in the Sundarbans in eomparison to other mangroves in
the world (Bomer et al., 2020a). The soil physical and chemical prop-
erties are varied from the eastern to the western part of Bangladesh
Sundarbans, the eastern part is softer, more fertile and receives more
fresh sediments than the western part (Siddigi, 2001). Soils are mostly
neutral to alkaline (pH 6.5-8.0), whereas the polyhaline zone is more
alkaline than the oligohaline zone. Soils of the western and southern
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Fig. 1. Sundarbans mangrove forest, Bangladesh. Legend colour represents three major salinity zones (Chanda et al,, 2016b). ESRI Basemap Sources: Esri, HERE,
Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community.

polyhaline zone are comparatively richer in P, K, Na, Mg, Cl and Fe, but
lower in soil NH* and Na than the eastern oligohaline zone (Siddiqj,
2001; Sarker et al., 2016). This pronounced differences in soil nutrients
and salinity trigger the diversity of vegetation composition in different
parts of the Sundarbans.

2.3. Sediment and tree data collection

In the Bangladesh Sundarbans, permanent sample plots (PSP) were
established in 1986 by the ODA (Overseas Development Administration)
for monitoring growth, regeneration, and long-term ecological changes
(Chaffey et al, 1985). A total of 120 PSPs (20 m x 100 m) were
established to assess growth rate, regeneration, stocking, and crop
composition based on salinity, forest type and accessibility (Iftelkhar and
Saenger, 2008; Sarker et al.,, 2019b) (Fig. 1). In this study, sediment
samples were collected from 55 plots, of which 50 plots are from PSPs
selected atrandom, and the remaining five plots are from outside PSPs to
represent areas outside PSP. Sampling was undertaken in two phases: In
the first phase, three sediment cores of 50 cm depth were taken from 18
PSPs. After laboratory analysis of the samples from the first 18 PSPs, it
was decided to extend the sediment sampling depth to 1 m and take two
core samples from each plot because of little within-plot variation
among the initial 54 core samples. In the second phase, an additional 37
PSPs were sampled with two cores sampled at each plot. Altogether, 126
sediment cores from 55 plots were sampled across the whole of the
Bangladesh Sundarbans (Fig. 1).

The location of the cores within a PSP was decided by establishing a
random circular plot with a radius of 11.3 m (an area of 400 m?). Within
each plot, a small circular plot was laid with 5 m radius and sediment
cores were taken from east, west and south side (east and west for two
cores) from the centre, which is perpendicular to each other. The cores
were taken using an open-faced auger (6 ecm diameter), which was
further subdivided into four depths (0-10, 10-30, 30-50 and 50-100
cm), following the method of Kauffman and Donato (2012). Sediment

1Ic4

sub-samples were taken from the middle of each core section with fixed
2.5 cm length, sealed in plastic and subsequently placed in an icebox to
reduce oxidation. The sub-samples were kept below 4 °C in zip-sealed
plastic bags until laboratory processing.

For vegetation data, the Diameter at Breast Height (DBH) and height
were measured for all trees within the 11.3 m radius plot. DBH was
measured at 1.3 m and height was measured with a Vertex-III hyp-
someter. For small trees with a DBH < 14.5 cm, a smaller circular plot
(radius 5 m) was nested within the 11.3 m plot. The elevation of each
plot was calculated by subtracting the mean tree height of the plot from
the Digital Surface Model (DSM) taken from the TanDEM-X 90 m sat-
ellite data (Hawker et al., 2019). For major forest types, single-species
dominance was determined when the relative composition is >75%,
and the remaining forest types are termed as mixed type.

2.4. Laboratory analysis

2.4.1. Soil physical and chemical properties

For each core sub-samples, samples were freeze-dried and re-
weighted to determine the bulk density. Bulk density was calculated
by dividing the dry mass of the soil by the volume of the soil. Soil pH and
soil salinity (as soil conductivity) were measured from a portion of the
homogenised dry soil for each core. Dried soils were diluted with
distilled water (1:5 ratio), and subsequently, soil pH was measured using
a Jenway 3510 Standard Digital pH Meter and soil salinity by a hand-
held Jenway 470 Conductivity Meter (Hardie and Doyle, 2012).

2.4.2. Total soil organic carbon (SOC)

To determine the soil organic carbon (SOC) and nitrogen content of
the soil, any large stones or twigs were removed from the sample and
subsequently homogenised and ground with a ball mill. A few milli-
grams (~40 mg) of the sediment was then passed through an ele-
mental analyser (Thermo Scientific Flash 2000-NC Soil Analyzer) to
derive the total carbon and nitrogen as a percentage. Inorganic carbon
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content was deducted from the total carbon to get organic carbon per-
centage, according to Howard et al. (2014), The inorganic carbon con-
tent was measured from some random samples across all salinity zones
using an Analytik Jena Multi EA (Elemental Analyser) 4000, Soil organic
carbon density (gm cm 3 far each sample and total organic carbon
content (Mg ha 1) of each depth and core were measured according to
Howard et al. (2014).

2.5, Statistical analysis

All statistical analysis and graphics used R 3.6.1 for Windows (R Core
Team, 2019). Total organic carbon (Mg ha 1, organic carbon density
(gm cm %) and bulk density (gm em 3 among three salinity zones and
four depths were compared with two-way analysis of variance (ANOVA)
test using the ‘car’ package (Fox and Weisberg, 2019). In order to
compare soil organic carbon among vegetation types, total organic
carbon (Mg ha 1) was compared with one-way analysis of variance
(ANQVA). The results of ANOVA are summarized in Supplementary
Information. To derive the relationship among organic carbon density (g
em %), bulk density and total nitrogen content, data from all the core
subsections (n = 512) were used. To examine the relationship among
SOC and soil physical and chemical parameters (soil salinity, pH, bulk
density, Total N, organic C:N, elevation, latitude and longitude) and
vegetation characteristics (species richness, tree density, mean DBH and
mean height), stepwise multiple linear regression analysis was under-
taken. SOC was considered as the dependant variable, whereas all the
selected parameters were independent variables. Correlation analysis
and principal component analysis (PCA) were carried out to decrease the
number of explanatory variables and to reduce collinearity in the
regression model. All the variables were standardised before PCA ac-
cording to Legendre and Legendre (2012), Eigenvalues greater than one
were retained and variables with factor loadings >0.35 were treated as
potential explanatory variables for the regression model (Jackson,
1003). In all cases, the data were logarithmic (natural) transformed (if
needed) to meet the assumptions of normality and equal variances by
using Shapiro Wilk and Levene’s tests, respectively and subsequently
back-transformed to present graphically. The graphical output of the
linear model was generated using the ‘ggplot2’ package (Wickham,
2016).

(A) o L . 33
Soil Organic Carbon Density (gm cm ™)
0,000 0.005 0.010 0015
/'_’—\‘\\
0-10- <
—
_/
_
5 1030+ <
S
=)
= -
T 30.500 —=- I
2 —
.
50-1007 —

(B)

Soil Depth (Cm)

Catena 200 (2021) 105159

3. Results
3.1. Soil organic carbon, salinity zones and soil depth

The average soil organic carbon (SOC) density significantly varied
from 0.003 gm em ? to 0.009 gm em 2 in different salinity zones and
s0il depths (two-way ANOVA for Ln (SOC density), salinity zones, Fa, 509
=112.3, p < 0.001 and soil depths, F3 500 = 30.1, p < 0.001) (Fig. 2,
Table A.2). Both salinity zone and soil depth had a significant interaction
effect on the variability of SOC density in the Sundarbans (Fe, 500 = 3.5,
p < 0.01) (Table A.1). Significantly higher SOC density was found in the
topmost depth followed by the subsequent three depths; however, SOC
density in the intermediate depths (between 10-30 cm and 30-50 cm)
are not significantly different (Fig. 2b), which indicates the unequal
variability of SOC with soil depth. The oligohaline zone comprises
higher SOC density (gm cm 2) followed by mesohaline and polyhaline
zone indicating higher soil organic carbon in the low salinity areas.

The bulk density (BD) of the soil revealed an opposite trend as
significantly higher bulk density was observed in the higher salinity
zones and in the 50-100 cm soil depth (two-way ANOVA for Ln (bulk
density (gm cm , salinity zones, Fp 500 = 22.2, p < 0.001 and soil
depth, F3, 590 = 46.2, p < 0.001) (Fig. A.1, Table A.3). Likewise, SOC
density, the soil organic carbon storage (SOC) for the different depths
was significantly different among the three salinity zones and the four
soil depths (two-way ANOVA for Ln (SOC), salinity zones, Fy 500 =
118.9, p < 0.001 and soil depth, F3 spo = 526.2, p < 0.001) (Fig. 3 &
Fig. 4, Table A.4). However, higher amounts of SOC were found in the
50-100 em depth in comparison to the top three depths (Fig. 4). The top
meter SOC ranges from 26.2 Mgha ! to 107.9 Mgha ! in the Sundar-
bans, where oligohaline zone comprises the highest SOC (74.8 Mgha 1),
followed by the mesohaline (59.3 Mg ha 1), and the polyhaline zone
(48.3Mgha 1) (Table 2).

3.2, Soil organic carbon and forest types

One-way ANOVArevealed that SOC varied with major forest types in
the Sundarbans (Fy, 47 = 3.3, p < 0.01) (Table A.5). As shown in Fig. 5,
the average SOC content in the Bruguiera sp. stand was the highest, with
an average of 105.3 Mg ha !, followed by Sonneratia sp. and Avicennia
sp., with an average of 68.7 Mg ha 1 and 67.1 Mg ha 1, respectively.
The Tukey HSD test showed that the other forest types had no significant

Soil Organic Carbon Density (gm cm )

0.004 0.005 0.006 0.007 0.008 0,009
Salinity Zone
0-104 . I—-—|
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== Polyhaline
10-30- / I /I—-|
30-50 |——|
50-100 }—L

Fig. 2. (4) The distribution of soil organic carbon (SOC) density (gm em™) in four soil depths presented as violin-box plot, where the black vertical line represents
the median and black dots are outliers. Here, the width of violin plot represents the proportion of the data located there as a measure of kernel probability density. (B)

Average SOC density (gm cm™) in three salinity zones and four soil depths.
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effect on SOC content, which ranges from 50.2 Mg ha !t067.0 Mgha !
for Ceriops and Heritiera forest types, respectively (Table A.6).

3.3. Soil physical, chemical properties and vegetation characteristics

The soil physical, chemical properties and vegetation characteristics
varied considerably among the three salinity zones (Table 2). As
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expected, oligohaline zones had relatively low average soil bulk density,
PH, and soil salinity, in comparison to higher salinity zones. Addition-
ally, significantly higher SOC and lower total N contributes higher
organic C:N in the oligohaline zone, although it is similar to the meso-
haline zone (p < 0.05). BD and SOC density showed a statistically sig-
nificant negative relationship (r = —0.47, p < 0.001) (Fig. 6A).
However, the soil organic carbon (SOC) density and soil nitrogen density
is significantly positively correlated with soil nitrogen density across the
Sundarbans (1 = 0.66, p < 0.001) (Fig. 6B). Analysis from the satellite
and tree height data reveals that the average elevation is higher in the
polyhaline zone. The average DBH and height of the trees were statis-
tically significantly higher in both the oligohaline and mesohaline zone,
whereas the average stem density was higher in both the mesohaline and
polyhaline zone (p < 0.05). Bivariate relationship between SOC and
other soil physical, chemical properties and vegetation characteristics
are presented in the supplementary Fig. A.2.

3.4. Relationship of SOC with soil and vegetation properties

SOC content was positively correlated with tree DBH, tree height,
organic C:N, latitude, and longitude, but negatively correlated with soil
salinity, bulk density, soil pH, tree density and elevation (p < 0.05)
(Fig. 7). As total nitrogen and species richness did not show any sig-
nificant correlation with SOC content, these two parameters were dis-
carded from the subsequent PCA analysis. The measured properties also
showed a significant positive and negative correlation among them-
selves, which indicates a source of multicollinearity, a phenomenon
which makes multiple regression unreliable. Therefore, principal
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Table 2
Overview of measured soil parameters and vegetation characteristics. Values are presented as mean (+SD), where n > 3. Lowercase letters indicate significant
variability among salinity zones, according to least-significant difference (LSD) test at o — 0.05,

Salinity Bulk density  Soil pH Soil salinity Total Soil Total Nitrogen ~ Organic Elevation Stem Height DBH (Diameter at
zone gm cm % (EC dS/cm) Organie Carbon (Mg ha B N (m) Density (m) Breast Height)
(Mg ha™!) (ha™ ) (em)

Oligohaline ~ 0.58 (0.07)®  7.06 1.49(0.32) ¢ 74.77 (14.93) 2 266 (1.19)°  21.30 3.39(1.78) 5,009 7.98 8.12(241)°
(0.26)° (7.23)" b (2,485)" (203)*

Mesohaline 0.62 (0.04) 7.43 3.07 (0.56) " 5930 (15.80) b 3.52(1.08) ° 17.30 367 (1.01) 6,876 7.88 8.60 (5.30) a

ab 019" (6.87)° a (3,290) (2.63)°

Polyhaline  0.63 (0.05)°  7.80 556 (0.85)°  48.25(10.32) 3.81 (0.98) ° 13.08 479(152) 8750 5.98 6.72 (412)"

(0.26) (3.00)° o (4,798)* (1.66)"
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component analysis was used to identify and group those properties that
influence SOC the most and to overcome the influence of
multicollinearity.

Principal component analysis (PCA) was performed with ten vari-
ables to assemble and isolate the smallest possible of subsets to explain
the variation of the dataset (Fig. 8). The PCA result indicates that the
first two principal components explained more than two-thirds of the
total variation with an eigenvalue greater than 1. The most important
component (PC1) explained 49.5% with the highest loadings (>>0.35) for
soil 8§ (soil salinity) and pH. On the other hand, the second component
showed higher leadings for tree H, DBH and soil C:N with 20% explained
variation (Table A.7). As 501l SS and pH are highly correlated with each
other (r=0.76, p < 0.05) (Fig. 7), the variable with the highest loading,
soil 8§, was selected from the first component for the regression model.
Similarly, tree H was discarded due to collinearity with tee DBH and
therefore, tree DBH and soil C:N was selected from the second
component.

By using the PCA-derived subset of variables, the relationship be-
tween SOC and soil and vegetation properties was obtained by using
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stepwise multiple linear regression (MLR). The regression results
showed that soil salinity alone could explain 50% SOC variability in the
Sundarbans, however, the percentage increases to 57% and 62% when
soil C:N or soil C:N and tree DBH are added to the model (Table 3).
Although all three regression models are highly significant (Table A.8),
the best subset of MLR model was selected based on the largest adjusted
R? value and the smallest Mallow’s Cp, AIC (Akaike Information
Criteria) and RMSE (Root Mean Squared Error) and presented in Eq. (1).

Ln (SOC) =3.439-0.077 §8§+0.274 Ln (C : N) +0.017 DBH €8]
4. Discussion

The reported average soil organic carbon (SOC) density in this study
islower than previous estimates from the Sundarbans and far lower than
average estimates of SOC density from global mangroves (Table 1), SOC
density, the standardized carbon stock measurement with depth, is the
most useful parameter to compare SOC between different forests
(Donato et al, 2011; Weiss et al., 2016). However, due to unreported
bulk density, it was not possible to convert from the reported organic
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Table 3

Summary statistics of regression model. Here, $§  Soil salinity, G Soil

organic carbon: Nirogen and DBH  tree Diameter at breast height.
Model R? Adjusted B*  C(p) AIC RMSE
1.88 0.508 0.498 18.217 —10.457 0.212
2,58 and C:N 0.590 0.574 8.650 —18.513 0.196
3,55, G and DBH 0.637 0.616 4.00 —23.255 0.186

carbon (%) to SOC density for most of the local and world studies.
Despite a greater range of soil organic carbon (SOC) percentage in this
study (0.3-4.4%), the average value (1.2%) is in line with most previous
studies, although higher than estimates published by Ray et al. (2011),
Banerjee et al. (2012), and Allison et al. (2003). These differences are
likely to be atributed to variable sampling strategies along with variable
soil depth or different methods used for carbon estimation. Likewise
SOC density, the average top 1 m SOC storage in the Bangladesh Sun-
darbans (50.9 £ 15.2 Mg ha 1y js almost half of the previous estimate by
Rahman et al. (2015), Sanderman et al. (2018) and Atwood etal. (2017).
Estimates of soil organic carbon could fluctuate based on the differences
in sampling design, choice of analytical method and soil depth (Howard
et al., 2014; Nayak et al, 2019). In the case of mangroves, Passos et al,
(2016) found overestimation of organic carbon measured with the
oxidation method in comparison to the elemental analyser. Anaerobic
microbial decomposition yields reduced soil compounds (i.e., Fe?', §2
Mn?*, and €1 )in mangroves, which might interfere with organic car-
bon determination with chemical oxidation method (Nelson and Som-
mers, 1996; Bisutti et al., 2004; De Vos et al, 2007; Nébrega et al,,
2015). Apart from using different methods, the SOC variation originates
from the consideration of soil depth in sample design as the SOC

concentation is a function of soil depth and shows considerable vari-
ability (Wuest, 2009; Kauffman and Donato, 2012; Jandl et al., 2014).
Moreover, using coring for sampling might have an influence on soil
bulk density estimation leading to lower SOC stock estimation in deeper
soils (Rau et al., 2011; Gross and Harrison, 2018).

In eomparisen to global studies, the estimated top 1 m SOC stock is
lower in the Sundarbans than the reported average from sites distributed
all over the world (Table 1), Based on model-based georeferenced
database of mangrove SOC, the global SOC map showed that the Sun-
darbans contains the lowest SOC stocks per ha in the world (Sanderman
et al, 2018). Compared to direct estimates from 190 sites across the
world by Kauffman et al. (2020), the Sundarbans contains higher SOC
than only two other mangrove forests, the Porto Céu mangrove in Brazil
(48 Mg ha 1) and the Bu Tinah Janoub in the United Arab Emirates (33
Mg ha 1, located in lower and higher latitudes respectively than the
Sundarbans. However, global comparison in soil carbon among tropical,
subtropical and temperate mangroves showed a contrasting relationship
with latitudes (Atwood etal,, 2017; Twilley etal., 2018; Kauffman et al.,
2020; Ouyang and Lee, 2020). Both Kauffman et al. (2020) and Ouyang
and Lee (2020) found significantly lower soil carbon in mangroves
»20°N, although the former study had fewer samples largely limited to
the middle east hyper arid mangroves. On the other hand, Atwood et al.
(2017) and Twilley et al. (2018) documented the poor relationship be-
tween latitude and SOC stocks. This poor relationship might be attrib-
uted due to the poor representation of samples in the studies from the
subopical mangroves like the Sundarbans.

The low soil carbon in the Sundarbans is largely due to high mineral
sediment deposition (Sanderman et al., 2018; Twilley et al., 2018), low
burial rate (Ray et al,, 2011), rapid turnover rate (Ray et al., 2018),
historical logging, stand age (Marchand, 2017), plant litter quality
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(Rovai et al., 2018) and biological processes. Being both a tide and river-
dominated ecosystem, the carbon allocation in the above and below
ground is very complex, largely dependent on the local and regional
geomorphic and geophysieal drivers (Twilley et al,, 2018). In riverine
deltas, trees invest much of the carbon to the above ground to keep pace
with sedimentation and sea-level rise, which is evident in the oligoha-
line zone with greater forest productivity (Twilley et al., 2018; Sarker
eral, 2019a; Sarker et al., 2019b), Moreover, research has highlighted
that mangroves subjected to frequent cyclones leading to temporary
losses of above ground carbon are usually followed by rapid below
ground cartbon gains during recovery process according to the
‘Eeosystem Development’ theory (Odum, 1969; Danielson et al,, 2017;
Kominoski et al,, 2018). These rapid carbon gains in the above ground
and the disturbance from the catastrophic cyclones could be the source
of higher autochthonous input to the below ground. Nonetheless, higher
tidal amplitude in the Sundarbans leads to higher carbon export total-
ling7.3 Tg Cyr ! to the adjacent Bay of Bengal, which is higher than any
other mangroves in the world (Ray et al, 2018). This rapid carbon
turnover results in reduced burial of organic matter (0.18%) in the soil
(Ray et al,, 2011). Moreover, the pronounced tidal eycles in the Sun-
darbans affects carbon burial process by altering soil water chemistry
(Chatterjee et al., 2013; Spivak et al., 2019), Besides high carbon tm-
overrate, the Sundarbans is believed to have become tidally active in the
recent past due to reduced freshwater flow from the Ganges-
Brahmaputwa-Meghna river (Rogers et al, 2013; Hale et al, 2019),
However, despite the historieal reduction of sedimentation, the Sun-
darbans is itself still keeping pace with sea-level rise with the highest
average surface elevation and vertical accretion rate (0.74 and 2.71 em
yr 1y compared to the worldwide average (Bomer et al,, 2020a; Bomer
el al, 2020b). This high sedimentation rate is the outcome of the
massive flux of clastic sediments which attenuates the amount of organic
carbon per unit area.

The century-long historical exploitation in the Sundarbans before the
felling moratorium in 1989 has largely decreased the populations of
threatened tree species (Siddiqi, 2001; Sarker et al., 2011). This in turn
islikely to have lessened the continuous autochthonous input of organic
matter in the forest and reduced the overall stand age. Studies also
showed that historical harvesting had altered the species composition in
the Sundarbans, with decreasing abundances of Heritiera fomes, Geriops
decandra and Xylocarpus mekongensis and increasing for Excoecaria
agallecha (Sarker etal, 2016). The SOC stock also depends on the age of
the stands as evident in the Chrono sequence study on SOC stocks in
French Guiana which revealed that the SOC varied from 4 to 107 Mg
ha ! from young stand to senescent stage (Marchand, 2017). In addi-
tion, studies have suggested that lower organic carbon in the soil is
mostly associated with higher C:N of the plant litter which has resulted
from lowering decomposition speed and decreasing carbon-use effi-
ciency of the decomposer (Bouillon et al, 2003; Zhou et al., 2019),
Compared to mangrove associates, the senescent leaves of true man-
groves contain considerably higher C:N (~33) in the Indian part of
Sundarbans (Chanda et al., 201 6a). Kamruzzaman et al. (2019) observed
a deereasing trend of C:N of the leaf litter in both forest floor and buried
condition starting from 40, but barely reached below 30 after 196 days
of decomposition study, suggesting N limitation in the oligohaline zone
of the Bangladesh Sundarbans. The low organie carbon can also be
attributed by the abundance of leaf-consuming organisms ingesting
organic litter detritus both at surface and subsurface in burrows. The
Sundarbans encompasses a wide range of gastropod species (e.g., Cer-
ithedia cingulata, Cymia lacera) that predominantly consume mangrove
detritus (Mayak et al,, 2014).

Variation in SOC stocks among different forest types is often medi-
ated by the primary productivity, resources allocation in different parts
(e.g. above and below ground) and microorganism activity is drivenby a
number of biological (e.g. bioturbation and species composition) and
physical (e.g. soil texture, salinity, inundation and nutrients) factors
(McLeod et al, 2011). Therefore, differing stand structure and

198

Catena 200 (2021) 105159

composition of mangrove forests in different tidal regimes yield variable
SOCstock (Lacerda etal,, 1995; Gleason and Ewel, 2002). Moreover, the
long and short-term resilience and resistance of microbial communities
are largely dependent on the strueture and zonation of mangrove com-
munities reflecting environmental gradients (Capdeville et al., 2019). In
this study, the species with higher SOC stock such as Bruguiera sp,,
Sonneratia sp. and Avicennia sp. are frequently inundated due to prox-
imity to the river and low land than other species in the Sundarbans
(8iddiqi, 2001; Sarker et al,, 2016). These high inundation regimes, in
turm, lead to increased microbial activity and a higher level of dissolved
organic carbon in the sediment (Wang et al., 2013; Chambers et al,
2014; Chambers et al., 2016). Regular tides also bring sediments along
with high allochthonous input whereas the raised less-inundated areas
foster autochthonous SOC and less microbial activity (Lovelock et al,
2015; Woodroffe et al., 2016). Rao et al. (1994) found almost double C:N
ratio in fresh leaves of Bruguiera sp. compared with other mangrove
species, suggesting higher input of autochthonous carbon. Being the
pioneer species in the succession of the Sundarbans, both Sonneratia sp.
and Avicennia sp. are resilient to disturbances leading to higher SOC than
climax and seral species (Table A.1) and accumulate a large quantity of
organic litter in the tidal channel elose to the river or seafront (Sarker
et dal.,, 2016; Bomer et al, 2020a). The variability of SOG stocks among
forest types followed a similar pattern to the global studies by Atwood
etal. (2017), except for Sonneratia sp. which was found to hold less SOC
stock than Heritiera and Ceriops. On the other hand, Kauffiman et al.
(2020) found significantly lower below ground carben stocks in Avi-
cennia sp., especially in the arid mangroves of Middle-East Asia, which is
solely oceupied by this species. Therefore, the impact of above ground
vegetation of below ground is largely site-specific, and it depends on a
wide range of factors.

The unexplained variation of the best multiple regression madels (R
= 0.64) highlights the necessity of including other soil and environ-
mental parameters such as soil cations and anions, clay characteristics
and texture, precipitation, temperature, and river discharge. This study
did not address these properties and suggests future studies incorporate
a wider range of parameters to gain a better understating of organic
carbon dynamics in the Sundarbans. In particular, for better ecosystem
management, future research should include information relating to
contextualising soil (e.g. soil texture, grain size and minerology),
biogeochemical (e.g. important properties of soil and pore-water
chemistry such as sulphate, oxygen, nitrate, ferric oxides in case of
mangroves) and ecological (e.g. vegetation and plat-microbe interac-
tion) properties (Luo et al,, 2019; Spivak et al.,, 2019). However, soil
salinity is considered as the outcome of the combined impact of these
climatic and environmental variables in the Sundarbans resulting pro-
nounced differences of SOC stock among the three salinity zones (Sarker
etal, 2016; Sarker etal., 2019b; Rahman et al., 2020). Several previous
studies have confirmed that salinity determines the stong zonation of
tree species and diversity in the Sundarbans, which in turn leads to
comparatively higher diversity and taller tree species in the oligohaline
followed by mesohaline and polyhaline zone (Aziz and Paul, 2015;
Sarker et al., 2016; Sarker et al., 2019a; Sarker et al., 2019b; Rahman
et al., 2020). Comparatively higher productive trees (e.g. higher DBH
and higher height) promotes organic matter accumulation through
producing higher litter mass and increases SOC stock by forming stable
aggregates from roots and pneumatophores (Lange et al, 2015). The
three salinity zones also comprise differential soil physical, chemical
properties and vegetation characteristics that usually affects SOC stor-
age by influencing microbial decomposition, soil water chemistry,
plant-microbe interaction, and plant litter quality. While comparing
nutrient concentration in the leaf litter of Sonneratia apetala, one of the
major pioneer species in the Sundarbans, Nasrin et al. (2019) found
lowest concentrations of N, P and K and the highest concentrations of Na
in the polyhaline zone, reflecting higher C:N in the leaf litter. However,
the low SOC in the polyhaline zone is also coincided with the low CN
indieting inwelling of marine and terrestrial suspended particulate
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materials (Bouillon et al,, 2003). The strong positive correlation (r =
0.66, p < 0.001) between carbon and nitrogen density indicates that the
source of carbon and nitrogen s likely to be same and can vary spatially
(Matsui et al., 2015).

Although the Sundarbans is considered to be of recent origin, the
large accommedation space exists due to accretion and erosion with
historical relative sea-level variability (Goodbred and Kuehl, 2000;
Tyagi and Sen, 2019). Therefore, the Sundarbans might have a 3 m
organic layer in the seaward direction and mueh more in the landward
(Allison et al., 2003). By eonsidering this vertical depth and the area
covered by mangrove forest, the Sundarbans are likely to contain
considerable volumes of soil organic carbon. Previous research has
demonstrated that mangroves holding higher carbon storage also have a
higher rate of deforestation with 50% mangrove loss attributed to
Indonesia, which holds about 25% of soil carbon in the world’s man-
groves; the figure increases to 75% when Malaysia and Myanmar are
considered (Atwood et al, 2017). Therefore, mangroves from these
countries are considered as a significant source of emissions due to high
deforestation and forest conversion (Hamilton and Friess, 2018). On the
other hand, in Bangladesh, despite the lower SOC stock in the Sundar-
bans mangrove forest demonstrated by this paper, recent positive trends
in forest cover demonstrate the value of blue carbon conservation and an
improved understanding of carbon storage will be of benefit to the in-
clusion of mangroves in national and international climate strategies
and policies.

5. Conclusion

The top meter of soil organic earbon (SOC) per area in the
Bangladesh Sundarbans is lower than has previously been reported.
However, the total SOC will likely to be greater if total vertical depth is
considered. The soil organic earben stock (SOC) in the Sundarbans is
largely influenced by soil salinity, probably by amending the forest
productivity and microbial activity. The results highlighted that
increasing salinity as result of predicted sea-level rise will likely have
pronounced effects on future soil earbon accumulation rates by altering
the soil environment and vegetation characteristics. The study un-
derlines the importance of spatial eonservation planning measures and
initiatives to conserve and maximize carbon accumulation and to
contribute to global climate change adaptation and mitigation strate-
gies. Results suggest that high sediment carbon zone in the eastern part
of the Sundarbans is highly vulnerable to tourism and economic devel-
opment activities. In terms of climate change mitigation and adaptation,
the conservation of the existing carbon stock should receive much higher
priority rather than the debates of highlow carbon stock. The
Bangladesh Sundarbans can act as an important blue carbon hotspot due
to the high sedimentation and carbon sequestration rate and conserva-
tion prierity by the government. However, disturbances such as sea-
level rise, global warming, eutrophication, and landseape development
might hinder this conservation activities in the future.
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Table A.1. List of tree species found in the Sundarbans with taxonomy, distribution in salinity zones, inundation
condition and succession stage.

Latin name Local name Family Salinity zone Inundation Succession
condition stage

Aegiceras corniculatum (L.) Blanco Kholshi Primulaceae M, P WL, WH S
Aglaia piculate (Roxb.) Pellegr. * Amoor Meliace o WH S
Avicennia alba Blume. Sada Baen Avicenniaceae P WL Pr
Avicennia marina (Forssk.) Vierh. Moricha Baen Avicenniaceae P WL Pr
Avicennia officinalis L. Kala Baen Avicenniaceae O, M, P WL Pr
Bruguiera gymnorrhiza (L.) Lam. Lal Kakra Rhizophoraceae O, M, P WL S,C
Bruguiera piculate (Lour.) Poir. Holud Kakra Rhizophoraceae O, M, P WL S,C
Cerbera manghas L. * Dakur Apocynaceae 0o WO S
Ceriops decandra (Griff.) Ding Hou Goran Rhizophoraceae O, M,P wo C
Cynometra ramiflora L. * Singra Fabaceae 0o WH S
Excoecaria agallocha L. Gewa Euphorbiaceae O, M, P WH, WO S
Excoecaria indica (Willd.) Muell. Arg. * Batul Euphorbiaceae (0] WH S
Heritiera fomes Buch. -Ham. Sundri Malvaceae O,M,P WO C
Hibiscus tiliaceus L. * Bola Malvaceae o,M WH S
Intsia bijuga (Colebr.) Kuntze * Bhaila Fabaceae o, M WH S
Kandelia candel (L.) Druce Vatkathi Rhizophoraceae M, P WL S
Lumnitzera piculat Willd. Kirpa Combretaceae P WH, WO S
Millettia pinnata (L.) Panigrahi* Karanj Fabaceae (0] WL S
Rhizophora piculate Blume. Bhora Jhana Rhizophoraceae M, P WL S
Rhizophora mucronata Lamk. Jhana Garjan Rhizophoraceae M, P WL S
Sonneratia apetala Buch. -Ham. Keora Lythraceae O, M,P WL Pr
Xylocarpus granatum K.D. Koen. Dhundul Meliaceae M, P WH S
Xylocarpus mekongensis Pierre. Passur Meliaceae O, M,P WH, WO S

* Indicates mangrove associates according to Tomlinson (2016). Abbreviation: Salinity zone- O = oligohaline, M =
Mesohaline, P = Polyhaline. Inundation: WL = Waterlogged during Low tide, WH= Waterlogged during High tide, WO =
Waterlogged Occasionally. Successional stage: Pr = Pioneer, S = seral and C = Climax. Source: Siddigi (2001); Mahmood
(2015b); Rahman et al. (2015b); Islam (2016a); Sarker et al. (2016)
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Table A.2 Two-way ANOVA results for SOCD (gm c¢cm3) in different salinity zones and soil depths.

Source DF SS MSS F p
Soil Depth 3 6.4 21 30.1 <0.0001
Salinity Zone 2 15.9 7.9 112.3 <0.0001
Soil Depth*Salinity Zone 6 15 0.2 35 <0.01
Residuals 500 355 0.07

Table A.3 Two-way ANOVA results for Bulk density (gm cm) in different salinity zones and soil depths.

Source DF SS MSS F p
Soil Depth 3 0.9 0.3 46.2 <0.0001
Salinity Zone 2 0.3 0.2 22.2 <0.0001
Soil Depth*Salinity Zone 6 0.01 0.003 0.5 >0.5
Residuals 500 35 0.007

Table A.4 Two-way ANOVA results for SOC (Mg ha?) storage in different salinity zones and soil depths.

Source DF SS MSS F p
Soil Depth 3 108.7 36.2 526.2 <0.0001
Salinity Zone 2 16.4 8.2 118.9 <0.0001
Soil Depth*Salinity Zone 6 1.4 0.2 33 <0.003
Residuals 500 344 0.07
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Table A.5 One-way ANOVA result for SOC in different forest types.

Source DF SS MSS F p
Forest types 7 5704 8149 3.3 <0.01
Residuals 47 11715 249.3

Table A.6 Tukey HSD Post-hoc test for the average soil organic carbon (SOC) (Mg ha?) in different forest
types. Different letters indicate significant differences at P<0.05. Data are mean Standard Deviation (SD).

Forest Types SOC (Mg ha')
Mean +SD HSD rank
Bruguiera spp. 105.3 3.6 a
Sonneratia spp. 68.7 20.1 ab
Avicennia spp. 67.1 9.3 ab
Heritiera spp. 67.0 13.2 b
MIXED 61.3 28.7 b
Xylocarpus spp. 58.8 4.6 b
Excoecaria spp. 56.3 15.9 b
Ceriops spp. 50.2 9.7 b
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Table A.7 PCA (Principal Component Analysis) results based on soil physical and chemical properties and
vegetation properties. Bold values correspond highly correlated values (PCs > 0.35) and underlined values

Model

(Intercept)

Soil Salinity

(Intercept)
Soil Salinity
Ln (C:N)

(Intercept)
Soil Salinity
Ln (C: N)
Mean DBH

represent non-correlated variables with the respective PCs highest loading.

Principal Component PC1 | PC2
Eigenvalue 495 | 1.97
Percentage of total variance (%) | 49.5 | 19.8
Cumulative percentage (%0) 495 | 69.3
BD -0.27 | 0.02

pH -0.36 | 0.24

SS -0.37 | 0.29

TD -0.33 | -0.25

DBH 026 | 0.49

H 0.34 | 038

E -0.32 | -0.32

CIN 0.21 | -0.40

LAT 0.33 | -0.31

LONG 0.32 | -0.17

Table A.8 Step-wise multiple linear regression

Unstandardized coefficient

Standardized

coefficient
B Standard error Beta

4.449 0.057

-0.111 0.015 -0.712
3.594 0.270

-0.083 0.016 -0.534
0.273 0.085 0.338
3.439 0.263

-0.077 0.016 -0.499
0.274 0.080 0.339
0.017 0.007 0.220

t

78.161
-7.391

13.330
-5.106
3.230

13.072
-4.972
3.415
2.579

Dependent variable: Ln (SOC)
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Significance

0.000
0.000

0.000
0.000
0.002

0.000
0.000
0.001
0.013

Lower

4.335
-0.141

3.053
-0.116
0.103

2911
-0.109
0.113
0.004

Upper

4.563
-0.081

4.135
-0.050
0.443

3.967
-0.046
0.436
0.031
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Figure A.1. (A) Integrated violin-box plot shows the distribution of bulk density in four soil depth, where the
black dots are outliers. (B) Average bulk density in three salinity zones and four soil depths.
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properties and vegetation characteristics in the Sundarbans.
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Appendix B

Biomass estimation in mangrove forests: a
comparison of allometric models incorporating

species and structural information
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Abstract

Improved estimates of aboveground biomass (AGB) are required to improve our understanding of
the productivity of mangrove forests to support the long-term conservation of these fragile
ecosystems which are under threat from many natural and anthropogenic pressures. To understand
how individual species affects biomass estimates in mangrove forests, five species-specific and four
genus-specific allometric models were developed. Independent tree inventory data were collected
from 140 sample plots to compare the AGB among the species-specific models and seven frequently
used pan-tropical and Sundarbans-specific generic models. The effect of individual tree species was
also evaluated using model parameters for wood densities (from individual trees to the whole
Sundarbans) and tree heights (individual, plot average and plot top height). All nine developed
models explained a high percentage of the variance in tree AGB (R* = 0.97-0.99) with the diameter
at breast height and total height (H). At the individual tree level, the generic allometric models
overestimated AGB from 22% to 167% compared to the species-specific models. At the plot level,
mean AGB varied from 111.36 Mg ha™! t0299.48 Mg ha™!, where AGB significantly differed in all
generic models compared to the species-specific models (p <0.05). Using measured species wood
density (WD) in the allometric model showed 4.5%-9.7% less biomass than WD from published
databases and other sources. When using plot top height and plot average height rather than
measured individual tree height, the AGB was overestimated by 19.5% and underestimated by
8.3% (p <0.05). The study demonstrates that species-specific allometric models and individual
tree measurements benefit biomass estimation in mangrove forests. Tree level measurement from
the inventory plots, if available, should be included in allometric models to improve the accuracy
of forest biomass estimates, particularly when upscaling individual trees up to the ecosystem level.

1. Introduction

There has been a global effort to develop accur-
ate and efficient methods to quantify aboveground
carbon {measured as biomass) in mangrove forests
(Hutchison et al 2014, Ni-Meister 2015, Baccini et al
2017, Lagomasino ef al 2019). A range of remote sens-
ing (RS) technologies can indirectly infer forest bio-
mass but field data are needed to calibrate and val-
idate products (Gibbs et al 2007, Chave et al 2019,

© 2021 The Author(s). Published by IOP Publishing Ltd
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Réjou-Méchain et al 2019). Destructive harvesting of
trees provides the most precise estimates of above-
ground biomass (AGB), vet is impractical, labori-
ous, costly and often illegal (Komiyama et al 2008,
Edwards et al 2019) and so mathematical models have
been developed to estimate tree biomass from eas-
ily measured biophysical parameters (tree diameter
at breast height (DBH), height (H), or wood dens-
ity (WD)) (Brown 1997, Kotniyama et al 2005, Picard
etal 2012, Chave et al 2014). These models are known
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as allometric models. However, this method of estim-
ation can yield a large degree of uncertainty scaling
up from individual tree biomass to plot and forest-
level as uncertainties associated with individual trees
are propagated (van Breugel et al 2011, Petrokofsky
et al 2012, Réjou-Méchain et al 2019). The choice
of appropriate allometric model is therefore critical
to reduce uncertainties in the estimation of forest
biomass.

All allometric models have limitations since they
are based on a limited number of destructively
sampled trees and often the sample locations are
unrepresentative of forest heterogeneity (Weiskittel
et al 2015, Hickey et al 2018). These models also
introduce an uncertainty when applied to species
without the destructive sample (Mitchard et al 2013,
Ngomanda et al 2014, Mahmood et al 2019). For
example, de Souza Pereira et af (2018) found AGB
estimation errors between minus 18% and plus 14%
when using biome-specific allometries rather than
species-specific ones in Brazilian mangrove forests.
On the other hand, a few studies have shown that gen-
eric models can outcompete locally developed ones
(Rutishauser et al 2013, Stas et al 2017). Uncertain-
ties also arise from inappropriate use of regression
models without considering collinearity of paramet-
ers, uncritical use of model dredging and inappropri-
ate criteria for model selection (Sileshi 2014, Vorster
et al 2020). Recently published global and continental
AGB estimates contain errors due to an under repres-
entative sample size and the exclusion of the climatic
regime, geophysical and geomorphological variables,
which are key to understanding the spatial distribu-
tion of biomass {Rovai et al 2016). Inclusion of bio-
physical parameters such as WD and tree height can
help to capture geographical heterogeneity and also
act as a suitable proxy of environmental drivers such
as variation in salinity which affects the growth rate,
WD, species composition and tree height (Mahmood
etal 2019, Rahman et al 2020, 2021, Virgulino-Junior
et al 2020).

Although WD is an important variable for assess-
ing carbon content, it is rarely measured during field
inventories. Most studies identify species and then
use published WD values from a database of gen-
eric values (Njana et al 2016, Réjou-Méchain et al
2019). Using the same, or grouped, WD in the allo-
metric model tends to smooth species-level variations
in AGB (Mitchard ef a 2013, Ni-Meister 2015). The
inclusion of tree height has a large effect on individual
tree and forest AGB (Feldpausch et al 2012). Any
errors introduced during individual tree height meas-
urements can originate from the choice of methods
and/or instruments and can be propagated as estim-
ates are scaled up (Larjavaara and Muller-Landau
2013). For example, the use of height-diameter
(H-D) models, developed from the height and stem
diameter of individual trees, often exhibit uncertainty
due to wider height-variation at different spatial
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scales (Feldpausch et al 2011, Vieilledent et al 2012).
Space-borne and air-borne LiDAR and RADAR tech-
nologies can improve the accuracy of the height meas-
urement and have been used to develop canopy height
models (Fatoyinbo et al 2021).

The Sundarbans mangrove forest is one of the
largest and most bio-diverse mangroves in the world,
located between Bangladesh and India. Tt contains
the highest carbon densities (345 Mg ha™!) in
both above- and below-ground among all forests
in Bangladesh (GOB 2019, Henry et af 2021). The
Bangladesh Forest Department estimated carbon
stocks in the Sundarbans in 2009 and 2015 using pan-
tropical allometric models and Sundarbans-specific
generic models (BFD 2010, Rahman et al 2015,
Mahmood et al 2019, Henry et al 2021). Other stud-
ies such as Kamruzzaman et al (2017) and Azad et al
(2020) used pan-tropical generic models to estim-
ate AGB in selected areas. However, species-specific
allometric models are not yet available to estimate
AGB in the Sundarbans. Therefore, it is timely to
examine whether species-specific allometric models
using measured wood densities and tree heights can
yield more accurate estimates of AGB in the Sundar-
bans and in mangrove forests more generally. The
aim of this paper is to report research that com-
pares a range of sources of uncertainty in allomet-
ric models, WD, and height measurement for AGB in
the Sundarbans mangrove forest, Bangladesh. First,
the study compares site- and species-specific AGB
between the Sundarbans and pan-tropical generic
allometric models for variability of aboveground tree
biomass. Secondly, the study determines variability
of AGB in the Sundarbans by comparing measured
and published WD values at multiple spatial scales.
Thirdly, the study quantifies the impact of different
methods of tree height determination on estimates of
AGB in mangrove forests.

2. Material and methods

2.1. Study area

The Bangladesh Sundarbans is situated between
21°30" N and 22°30' N and 89°00 E and 89°55" E
in the lower delta plain of the Ganges—Brahmaputra—
Meghna delta covering an area of 6017 km? (figure 1)
(Girietal 2011, Aziz and Paul 2015, Sarker et al 2016).
The forest is of international significance as a Ramsar
and UNESCO World Heritage site. [t provides a num-
ber of valuable ecosystemn services such as protecting
inland areas from storms and tidal surges (Barua et al
2020). The near-constant mean annual minimum
and maximum temperature (29 “C-31 °C) and high
annual rainfall (1474-2265 mm) made the climate
of the Sundarbans warm and humid between 1948
and 2011 (Chowdhury et al 2016, Sarker et al 2016).
The soil is fine-gained silt and clay and slightly cal-
careous (Siddiqi 2001). The Sundarbans has a distinct
salinity zonation with the high salinity zone in the
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Figure 1. Sample plot location in the Sundarbans mangrove forest, Bangladesh. The pink star indicates tree location by Mahmood

etal (2019).

west (polyhaline) to low salinity zone (oligohaline)
in the east along with medium salinity zone (meso-
haline) between (Siddiqi 2001, Chanda et al 2016).
Salinity regulates the geomorphology and hydrolo-
gical characteristics and also the morphology, growth
and distribution of plant species (Sarker et al 2016,
2019a, Rahman et al 2020, 2021).

2.2. Allometric models in the Sundarbans

Species-specific allometric models are not available
for all species in the Sundarbans as destructive
sampling was not permitted due to an imposed felling
moratorium of all species since 1989 (Mahmood
et al 2019). However, four species-specific models
were developed through destructive sampling in the
Bangladesh Sundarbans (table 1). Three generic allo-
metric models were recently developed for 14 species
by using semi-destructive sampling methods where
biomass of stems and larger branches were measured
through volume and WD, and small branches and
foliage through weighing after pruning (Mahmood
et al 2019). Published pan-tropical models have also
been used to estimate biomass in the Sundarbans
{Rahman et al 2015, Kamruzzaman et al 2017, 2018).

2.3. Development of species-specific allometric
model

A conceptual diagram of the research methodology
is presented in the figure 2. The species-specific

212

allometric models were developed from the semi-
destructive sampling data (324 individuals, 13 spe-
cies, except Sonneratia caseolaris) from Mahmood
et al (2019), where AGB (kg/tree) was presented
along with DBH and total height (H) (figure 1).
Species-specific models for S. caseolaris were not
developed as the independent tree inventory data did
not have any individuals of this species. Out of 13
species, eight species (Avicennia officinalis, Avicen-
nia marina, Bruguiera gymnorrhiza, Bruguiera sex-
angula, Rhizophora apiculata, Rhizophora mucronata,
Xylocarpus granatum and Xylocarpus moluccensis)
were merged into genus level to yield sufficient
data for model fitting. Therefore, nine allometric
models were developed for Aglaia cucullata, Avicen-
nia sp., Bruguiera sp., Excoecaria agallocha, Heritiera
fomes, Lumnitzera racemosa, Rhizophora sp., Sonnera-
tia apetala, and Xylocarpus sp.

Log-linear ordinary least square regression was
used to fit models to predict AGB for each species.
The choice of log-linear regression over nonlinear
regression was done by comparing error distribution
of biomass. According to Xiao et al (2011), the lin-
ear regression of log-transformed data better char-
acterizes multiplicative, heteroscedastic and lognor-
mal error, whereas the nonlinear regression performs
additive, homoscedastic, normal error. The good-
ness of fit of two models were compared and the
lower value of Akaike’s information criterion (AIC)
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Figure 2. Conceptual diagram of the research methodology. The model numbers are labeled according to table 1. Here, DBH:

diameter at breast height, H: height and WD: wood density.

provides significantly better fit when the magnitude
of the difference of AIC is greater than 2 (Burnham
and Anderson 2002). These two models were com-
pared for all species following Xiao et al (2011). In all
cases, the log-linear regression provided significantly
better fit (table A.1 available online at stacks.iop.org/
ERL/16/124002/mmedia). Therefore, the following
six log-linear regression models were used to fit AGB
as the dependent variable, and DBH and tree height
(H) as independent variables

E1: In(AGB) =In(a) + bln(DBH)
E2:In(AGB) = In(a) +bln(H

E3:In(AGB) = In(a) + bln(DBH x H)
E4:In (AGB) = In(a) +bIn(DBH? x H)
E5:1n (AGB) = In(a) +bIn(DBH x H?)
Es: In(AGB) = In(a) + bln(DBH) + cIn(H).

The underlying assumptions for the regres-
sion analysis such as normality of residuals and
heteroscedasticity were used to judge the suitabil-
ity of each regression model. Percent relative stand-
ard errors (PRSEs) of each regression coefficient
was measured according to Sileshi (2014), where
PRSE > 25 is considered an unreliable model. The
multicollinearity of each model was measured with
the variance inflation factor (VIF), where VIF > 5
indicates high collinearity among independent vari-
ables. Due to high multicollinearity, complex models
with more independent variables were not considered
in this study. After obtaining the eligible potential
models for each species, the best models were selec-
ted by the lowest second-order Akaike information

5

L1+

criterion (AICc) and residual standard error (RSE),
and the highest Akaike information criterion weight
(AICw) and coefficient of determination (R?) val-
ues (Picard et al 2012, Sileshi 2014, Mahmood et al
2019, 2020). Models with non-significant parameter
of estimates were not considered regardless of meet-
ing the criteria outlined. Since, the ATCw provides
the likelihood of each model to be the best, it was
given highest priority compared with other para-
meters (Sileshi 2014). For all models, the correction
factor was calculated to minimize systematic bias
while converting biomass from In scale to normal
scale (Sprugel 1983). The K-fold cross-validation
technique was used to validate the best model. This
technique randomly divides the original dataset into
K subsets (ten in this case) of equal sizes, where
each subset is validated with K — 1 subsets (James
et al 2013). The K-fold validation technique was also
run for Sundarbans-specific and pantropical generic
model (Model no. 7-11 in table 1) to measure tree
level variability in AGB in the Sundarbans.

2.4, Tree inventory

Aboveground tree data were collected from 140 ran-
dom sample plots within the Bangladesh Sundarbans
(figure 1). Out of 140 sample plots, 120 plots
were randomly placed within permanent sample plot
(PSP) (20 x 100 m) established by the Bangladesh
Forest Department whilst the remaining 20 plots were
outside of the PSP. These sample plots are distributed
to all 55 compartments in the Bangladesh Sundarbans
covering all three salinity zones (oligohaline, meso-
haline and polyhaline) and forest types (Iftekhar and
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Saenger 2008, Sarker et al 2019b). Each plot con-
sists of a circular plot with the radius of 11.3 m
(400 m?)} for measuring bigger trees (DBH > 14.5 cm)
and a smaller circular plot within this of 5 m radius
(79 m?) for smaller trees (DBH > 2.5-14.5 cm) (figure
A.1). After establishing the plots, all individual trees
(DBH > 2.5 cm) were marked, and DBH and total
height (H) measured by using a diameter tape and a
Vertex ITT hypsometer (Haglsf, Sweden), respectively.
Haglof wood increment borer (5.15 mm diameter and
300 mm bit length) was used to collect woody spe-
cimen at DBH point to determine the WD of stud-
ied species according to Wiemann and Williamson
(2013). The WD (gm cm ~2) was then measured from
the volume and dry mass of the specimen. The cyl-
indrical volume was measured in the field from the
diameter and length of the specimen and brought to
the laboratory for oven-drying at 105 °C until con-
stant weight.

2.5. Variability of AGB in the Sundarbans

The magnitude and patterns of differences in AGB at
plot level in the Sundarbans were compared by using
different allometric models with an independent set
of collected inventory data from the Sundarbans. Plot
level AGB variability was measured by actual AGB
difference (Mg ha™1), absolute difference (Mg ha™!)
and relative absolute difference (%) among different
allometric models.

2.5.1. AGB variability with allometric models
Measured DBH, H and WD were used in the species-
specific allometric models and other site-specific and
pan-tropical generic models (Model 7-11 in table 1)
to assess AGB at the individual tree level. In order
to compute plot-level AGB estimation per hectare
(Mgha™!), a hectare expansion factor (HEF) for each
stern was used according to the size of the sample plot
(i.e. HEF = 25 for bigger plots, and HEF = 126.58
for smaller sub-plot) and subsequently summed up
all tree biomass in each plot to get plot biomass.
To estimate biomass from the species-specific mod-
els, the developed nine species-specific models were
used alongside four published species-specific mod-
els (Model 1-4 in table 1). If no species-specific allo-
metric model was available, models for similar genus
or family level were applied. Since measuring the
girth at collar height (GCH) for Ceriops decandra
and Aegialitis rotundifolia is laborious and time con-
sumning, DBH was measured in the field and sub-
sequently converted to GCH from the developed rela-
tionship between DBH and GCH of 50 individuals
(figure A.2).

2.5.2. AGB variability with WD

Variation of tree AGB was compared with meas-
ured and databases-sourced WD obtained from
published WD databases including the global WD
database (Chave et al 2009, Zanne et al 2009),
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World  Agroforestry’s tree functional attributes
and ecological databases (ICRAF 2016) and from
Bangladesh Forest Research Institute (Sattar et al
1995). The Sundarbans-specific generic allometric
model (Model 7: Mahmood_2019_DHW) was used
for comparison of AGB from multiple WD sources. If
there was no measured WD for any species, the WD
from the same genus or family was used. Instead of
applying species WD, plot-level mean WD, salinity
zone WD and Sundarbans level WD were used to
investigate how the spatial scale of WD variation on
AGB estimates in the Sundarbans. To measure salin-
ity zone mean WD, measured WD were averaged
according to three salinity zones in the Sundarbans
according to Rahman et af (2021).

2.5.3. AGB variability with tree height

To derive the variation of AGB from different
height measurement, mean height and maximum
height from each plot was used in Model 7 (Mah-
mood_2019_DHW). The Model 7 was used in this
case as it is originated from the Sundarbans and it
contains both H and WD parameters.

2.6. Statistical analysis

All statistical analysis and graphics used R4.0.4 for
Windows in RStudio Version-1.4.1106 (R Core Team
2020). The normality of residuals, heteroscedasticity
and multicollinearity of each regression model were
tested with Shapiro-Wilk normality test by using ‘R
stats’ base package, studentized Breusch-Pagan test
by using ‘Imtest’ package and VIF test using ‘car’
package, respectively (Zeileis and Hothorn 2002, Fox
and Weisberg 2019). AICc for fitted regression model
was assessed by ‘MuMIn’ package (Barton 2020). K-
fold cross validation was run using ‘caret’ package
and model accuracy was compared with mean abso-
lute error (MAE) and root mean squared error (Kuhn
2008). Pairwise comparison of tree AGB between the
species-specific and other models were tested either
by paired ¢-test if the underlying assumptions such
as normality and heteroscedasticity were met; oth-
erwise, Wilcoxon signed-rank non-parametric test
was used. The ‘rstatix’ package was used for Wil-
coxon signed-rant test and ‘R stats’ base package was
used for paired #-test (Kassambara 2020). The graph-
ical output was generated using the ‘ggplot2’ ‘ggef-
fects” and ‘cowplot’ package ( Wickham 2016, Liidecke
2018, Wilke et al 2019).

3. Results

3.1. Species-specific allometric model

Out of 54 log-linear regression models for nine spe-
cies, 26 models passed all four criteria including
normality of residuals, heteroscedasticity, PRSE and
VIF (table A.2). These 26 models were then fitted
species-wise to the 324 semi-destructively harves-
ted tree dataset with DBH and H: A. cucullata (19),
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Figure 3. Best species-specific allometric mo

Avicennia sp. (41), Bruguiera sp. (31), E. agallocha
(35), H. fomes (97), L. racemosa (13), Rhizophora sp.
(17), S. apetala (20), and Xylocarpus sp. (51).

Out of 26 models, the best nine species-specific
models are presented for each species group (table 2;
figure 3). The AICw shows that the best-chosen mod-
els for A. cucullata, Bruguiera sp., E. agallocha, H.
fomes, and Xylocarpus sp. have 100% chance for being
the best model, while Avicennia sp., L. racemosa,
Rhizophora sp. and S. apetala have respectively 81%,
94%, 82%, and 71% chance to be the best model
(table 3). In the case of S. apetala, while E6 models
had the highest and lowest RSE and AIC value, the
E4 model was chosen based on higher AICw for its
greater chance for being the best model. The adjusted
coefficient of determination (R?) varied from 0.77 to
0.99 for all models. All species-specific models com-
prised single predictor value with only DBH for six
species: A. cucullata, Avicennia sp., Bruguiera sp., H.
formes, L. racemosa, and Xylocarpus sp. and with com-
bination of DBH and H (DBH? x H) for E. agallocha,
S. apetala, and Rhizophora sp.

The ten-fold cross showed that
the species-specific model gives the lowest aver-
age MAE of all species in comparison to three
Sundarbans-specific and four pan-tropical generic
allometric models (figure 4, table A.4). The lowest

validation
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del aboveground biomass in the Sundarbans,

average MAE revealed that the species-specific mod-
els performed well to predict the AGB in the Sundar-
bans. AGB estimation at tree level had mean rel-
ative absolute difference in MAE between 21.85%
with Mahmood_2019_DHW mode] to the maximum
167.43% with Komiyama_2005_DW model followed
by Chave 2005 DHW and Chave 2014 DHW (table
A.4). The paired t-test of MAE for species-specific
models with generic models showed that there is no
significant difference of MAE with three Sundarbans-
specific models (p > 0.05); however, all four pan-
tropical models showed significantly higher MAE
than the species specific-model (p < 0.05). The
largest error was obtained for E. agallocha with Kom-
iyama_2005_DW.

3.2. Aboveground tree biomass in the Sundarbans

The tree inventory in the Bangladesh Sundarbans
indicates a total of 24 tree species. The mean DBH,
height, measured and database-sourced WD of all
tree species are presented in the table 3. The DBH and
H distribution are presented in the supplementary
figures A.3 and A.4. Frequency distribution of the
topmost ten species based on basal area (m? ha=!)
and tree density (trees ha—!) showed that E. agallocha,
H. fornes and C. decandra comprise 909 of the stems
in the Sundarbans, although they represent 60% in
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Figure 4. Species-wise mean absolute error (MAE) of tree AGB with all allometric models after ten-fold cross validation. The
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Figure 5. Prequency distribution of the ten most frequently occurring species based on basal area (m?® ha™!) and tree density

terms of basal area (figure 5). E. agallocha and H.
fomes was within the top two species in both categor-
ies; C. decandra was the third in terms of tree density,
however, the sixth in case of basal area for its lower
DBH.

The mean AGB varied from 111.36 Mg ha™!
with the Chave_2005_DHW model to the highest
299.48 Mg ha=! for Chave_2005_DW model
(figure 6). Except for Chave 2005 DHW and
Chave_2014_DHW, all other models yielded higher
AGB than the species-specific model (123 Mg ha™!).
The mean relative absolute difference in AGB ranged
from 9% with Mahmood 2019 DHW to 142% with
Chave 2005_DW. Pairwise comparison with the
Wilcoxon signed-rank test between species-specific

and other models showed that all generic mod-
els measured significantly different AGB than the
species-specific model in the Sundarbans (p < 0.05).
Both Chave_2005_DW and Komiyama_2005_DW
overestimated AGB (supplementary table A.5). The
absolute difference between allometric models ten-
ded to increase with DBH in all species, suggesting
that larger trees are crucial for estimating AGB with
a variety of available allometric model leading to a
greater error and uncertainty.

AGB was significantly higher when models used
published WD compared to species-specific meas-
ured WD (Wilcoxon signed-rank test, p < 0.05)
(figure 7(A), table 4). The maximum mean relative
difference biomass was for Sundarbans mean WD
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followed by salinity zone mean WD and database-
derived WD. Looking at different sources of height
data, using plot top height tended to be overes-
timate AGB by 19.46%, while using average height
underestimated AGB by 8.31% compared to the
measurements from individual species (figure 7(B),
table 4).

4, Discussion

The results show that the species-specific allometric
models provide the lowest average MAE for all spe-
cies in the Sundarbans (figure 4, table A.4). However,
the three Sundarbans-specific generic models showed
no significant difference of mean MAE at tree-level
compared with the species-specific models (table
A4). At plot-level, all local and pan-tropical gen-
eric models either overestimated or underestimated
AGB when compared to local species-specific mod-
els (figure 6). Several studies have concluded that
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site-specific AGB models estimate biomass or car-
bon with less error than regional or pan-tropical
models; for example, Sundarbans mangrove forest
(Mahmood et af 2019), lowland Dipterocarp forest
in Indonesia (Basuki ef af 2009), degraded landscape
in Northern Ethiopia (Mokria et al 2018), central
African forest (Ngomanda et al 2014) and Mexican
tropical humid forests (Martinez-Sanchez et af 2020).
In contrast, only a few studies report better perform-
ance from regional or pan-tropical models and these
appear result from large uncertainties in the data used
to build the local model; for example, West Africa
(Aabeyir et al 2020). The accuracy of these generic
models for a particular forest depends on whether
these models incorporate sufficient samples from that
forest. Chave et al (2014) point out that the dis-
crepancy between local models and their own model
(Chave_2014_DHW) in wet forests (including man-
groves) is largely due to failure to address the wider
variation of tree form and other characteristics like
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buttresses, which are common in the Sundarbans.
Their previous model (Chave 2005 DW) overestim-
ated AGB in the Sundarbans because of its inability
to estimate biomass from larger trees (DBH > 42 cm)
(Chave et al 2005). However, surprisingly, the world-
wide generic models for mangroves also overestimate
AGB, possibly because of the samples drawn from the
mangroves of Asia-Pacific and Australia (Komiyama
etal 2008).

The structure and morphological characteristics
of all mangroves vary according to their ability to
adapt to environmental conditions such as salinity,
which is less pronounced in other wet and dry tropical
areas (Ball and Pidsley 1995, Tomlinson 2016). Envir-
onmental drivers such as salinity and water deficit
are considered the main stressors for the growth and
development of mangroves, including the Sundar-
bans. For example, the third most abundant species
in the Sundarbans, C. decandra, is a multi-stemmed
bushy species, on the other hand, the top two, H.
fores and E. agallocha are tree-like structures. The
pantropical models yielded a large error in the dwarf,
bushy species and other true mangrove species in
the Sundarbans (table A.5). Moreover, the extreme
salinity has reduced the stature (Rahman et af 2015),
trunk diameter (Rahman et al 2020) and the leaf
area (Khan et al 2020) of H. fomes and S. apetala,
present in all three salinity zones in the Sundarbans.
Due to these wider morphological variation, Banerjee
etal (2013) highlighted the importance of developing
models based on salinity zonation.

This study demonstrates that when using meas-
ured wood densities and individual tree heights, gen-
eric equations yield accurate estimates of AGB in
mangroves at the plot scale (figure 7). Most species
had a higher published WD than the measured value
seen in table 3 (Henry et al 2010). The use of WD from
different databases such as the Global WD database
resulted in a 9% variation for species having multiple
values, which could provide a significant variation in
AGB if upscaled (Réjou-Méchain et al 2019). Aver-
aging WD at the plot scale, salinity zone scale or eco-
system scale also introduces errors. While WD is con-
sidered an important variable to capture a range of
characteristics such as high density versus low dens-
ity timber species, climax versus pioneer species or
primary versus secondary species, the use of WD
value from the secondary sources or averaging them
in the higher scales might not reflect the true bio-
mass (Slik et al 2008, Kenzo et al 2009). Phillips et al
(2019) noted significant AGB error in the Amazon
rainforest while scaling up from the plot level to forest
and amazon-wide level. Yuen et al (2016) observed
31 Mg ha=! higher AGB with the difference of meas-
ured and published WD of only 0.13 gm cm~>.

Among nine developed models, six models
showed that DBH alone is a strong predictor of AGB
across the Bangladesh Sundarbans. The remaining
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three models of E. agallocha, S. apetala, and Rhizo-
phora sp. showed sensitivity to height. However, the
inclusion of top height or average height instead of
using individual tree height can increase the error
at the plot level and above. Kearsley et al (2013)
observed 24% overestimation of AGB in the cent-
ral Congo Basin by using a regional height—diameter
relationship developed by Feldpausch et al (2012)
compared to the local relationship. On the other
hand, using mean height could reduce the difficulty
of taking height measurements in dense forests, yet
may lead to a significant underestimation of AGB
(Hunter et af 2013). The difficulty of measuring
height under a dense forest canopy allows researchers
to use H-D relationship or to use bioclimatic vari-
ables in allometric models. However, these also lead
to non-uniform bias in biomass estimation (Réjou-
Méchain et al 2019).

Although species-specific WD and individual
height data can be used to accurately estimate AGB
at the plot and ecosystem level, collecting species
information is impractical in highly diverse mixed
tropical forests such as in Amazonia, Southeast Asia
and the Congo basin, which comprise of more
than 53 000 tree species (Feldpausch et al 2012, Slik
et al 2015). Mangroves, by comparison exhibit less
diversity. Developing allometric models for domin-
ant species could improve the biomass inventory.
For example, in the Sundarbans only 28 species were
recorded (24 in this survey) and just three species
(E. agallocha, H. fomes and C. decandra) constitute
about 90% of stand density (figure 5), which implies
that developing three allometric models is enough
to produce acceptable AGB estimates in the Sundar-
bans (GOB 2019). The model used for C. decandra
was developed by destructive sampling from Hossain
et al (2012) and so this study recommends develop-
ing models with destructive samples from all salinity
zones for H. fomes and E. agallecha.

The errors and uncertainties in the individual
tree and plot level AGB estimates will result in large
errors when scaling up to the ecosystem, region or
country level by RS techniques. Réjou-Méchain et al
(2019) described the errors due to poor choice of allo-
metric models and failure to capture variabilities of
WD and H as uniform and non-uniform bias. Uni-
form bias systematically propagates over- or under-
estimation whereas non-uniform bias is related to
an inability to capture the variabilities across land-
scapes, for example, WD and H variation among
successional stages or environmental gradients such
as the salinity in the Sundarbans (Rahman et al
2020). These two types of bias, in addition to map-
ping errors resulting from the use of RS, may result
in serious anomalies in national and global carbon
budgets and result in poor understanding of species
contribution to ecosystem processes and function in
mangroves.
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5. Conclusion

This study developed and tested five species-specific
and four genus-specific allometric models for the
nine most important species in the Sundarbans. All
developed models explained a high percentage of the
variance in tree AGB (R? = 0.97-0.99) using meas-
ured DBH and total height (H) data. At the indi-
vidual tree level, the generic allometric models over-
estimated AGB between 22% and 167% compared to
the species-specific models and at the plot level, they
showed statistically significant AGB differences com-
pared to the species-specific models (p < 0.05). Meas-
ured WD showed 5%-10% less biomass than WD
from databases and other sources and AGB was over-
estimated by up to 20% when using plot top height
and underestimated by 8% using plot average height
data rather than individual tree heights. The study
concludes that biomass estimation in mangroves
forests always benefit from species-specific models
and individual tree measurements when appropri-
ate input data are available. Tree level measurements
from inventory plots play an important role for the
improved estimation of forest biomass while scal-
ing from individual trees up to the ecosystemn level.
Tmproved estimates of AGB will improve support
our understanding of the productivity of mangrove
forests, information that is needed for the long-term
conservation of these fragile ecosystems that face
many natural and anthropogenic pressures.

Data availability statement

The primary inventory data from the Bangladesh
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etal(2019). The data that support the findings of this
study are openly available at the following URT/DOT:
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30 June 2022.

Acknowledgments

We are grateful to Commonwealth Scholarship Com-
mission in the UK for the PhD scholarship to the
first author. We want to extend our gratitude to the
Bangladesh Forest Department for giving permis-
sion for fieldwork in the Sundarbans and Forestry
and Wood Technology Discipline, Khulna University
for allowing study leave to the first author, We are
also grateful to Institute of Hazard, Risk and Resi-
lience for research grants and Department of Geo-
graphy, Durhamn University for allowing laboratory
analysis and to Ustinov College, Durham University
for a travel grant. We acknowledge the important
contribution to all field assistants and forest officials
involving in the tree inventory in the Sundarbans.

14

£LO

M S Rahman et a/

Funding

The study was funded by Commonwealth Scholarship
Commission in the UK {Grant Number BDCS-2017-
55).

Conflict of interest

The authors agreed that they have no conflict of
interest.

Credit authorship contribution statement

Md Saidur Rahman: conceptualization, data cura-
tion, formal analysis, investigation, methodology,
visualization, writing—original draft, writing—
review and editing.

Daniel N M Donoghue, Louise ] Bracken: con-
ceptualization, investigation, supervision, funding
acquisition, writing—review and editing.

Hossain Mahmood: data curation, writing—
review and editing.

ORCID iDs

Md Saidur Rahman © https://orcid.org/0000-0001-
6849-4105

Daniel N M Donoghue @ https://orcid.org/0000-

0002-9931-9083
Louise ] Bracken
1268-5516
Hossain Mahmood @ https://orcid.org/0000-0002-
9174-005X

https://orcid.org/0000-0002-

References

Aabeyir R, Adu-Bredu S, Agyare W A and Weir M ] C 2020
Allometric models for estimating aboveground biomass in
the tropical woodlands of Ghana, West Aftica For. Ecosyst.
741

Azad M S, Kamruzzaman M and Osawa A 2020 Quantification
and understanding of above and belowground biemass in
medium saline zone of the Sundarbans, Bangladesh: the
relationships with forest attributes J. Sustain. For. 39 331-45

Aziz A and Paul A R 2015 Bangladesh Sundarbans: present status
of the environment and biota Diversity 7 24269

Baccini A, Walker W, Carvalho L, Farina M, Sulla-Menashe D and
Houghton R A 2017 Tropical forests are a net carbon source
based on aboveground measurements of gain and loss
Science 358 2304

Ball M C and Pidsley $ M 1995 Growth responses to salinity in
relation to distribution of two mangrove species, Sonneratia
alba and 8. lanceolata, in northern Australia Funct. Ecol.
977-85

Banetjee K, Sengupta K, Raha A and Mitra A 2013 Salinity based
allometric equations for biomass estimation of Sundarban
mangroves Biotnass Bioenergy 56 382-91

Bartori K 2020 MuMIn: multi-model inference. R package version
1.43.17 (available at: https:;//CRAN.R-project.org/
package=MuMIn) (Accessed 01 March 2020)

Barua S K, Boscolo M and Animon 2020 Valuing forest-based
ecosystem services in Bangladesh: implications for research
and policies Ecosyst, Serv. 42 101069

Basuki T M, van Laake P B, Skidmore A K and Hussin Y A 2009
Allometric equations for estimating the above-ground



IO Publishing

EBnviron. Res. Lett. 16 (2021) 124002

biomass in tropical lowland Dipterocarp forests For. Ecol.
Manage, 257 1684-94

BFD 2010 Integrated Resources Management Plans for the
Sundarbans (2010-2020) I (Dhaka: Nishorgo Network,
Forest Department, Government of Bangladesh)

Brown S 1997 Estimating biomass and biomass change of tropical
forests: a primer (Rome: FAO Porestry Paper 134)

Burnham K P and Anderson D R 2002 Information and
Likelihood Theory: A Basis for Model Selection and
Inference A practical information-theoretic approach. Model
Selection and Multimodel Inference 2ud edn vol 2
K P Burnham and D R Anderson (Berlin: Springer) pp
49-97

Chanda A et al 2016 Blue carbon stock of the Bangladesh
Sundarban mangroves: what could be the scenario aftera
century? Wetlands 36 103345

Chave ] et al 2005 Tree allometry and improved estimation of
carbon stocks and balance in tropical forests Oecologia
14537-99

Chave ] et al 2014 Improved allometric models to estimate the
aboveground biomass of tropical trees Glob, Change Biol,
203177-90

Chave ] et al 2019 Ground data are essential for biomass remote
sensing missions Surv, Geophys. 40 863-80

Chave J, Coomes D, Jansen S, Lewis S L, Swenson N G and
Zanne A E 2009 Towards a wotldwide wood economics
spectrum Eeol. Lett. 12 351-66

Chowdhury M Q, de Ridder M and Beeckman H 2016 Climatic
signals in tree rings of Heritiera fornes Buch.-Ham. in the
Sundarbans, Bangladesh PLoS One 11 0149738

de Souza Pereira F R, Kampel M, Gomes Soares M L,

Estrada G C D, Bentz C and Vincent G 2018 Reducing
uncertainty in mapping of mangrove aboveground biomass
using airborne discrete return lidar data Remote Serns.
10637

Rdwards D P, Socolar ] B, Mills S C, Burivalova Z, Koh L P and
Wilcove D S 2019 Conservation of tropical forests in the
anthropocene Curt. Biol. 29 R1008-R20

Fatoyinbo T et al 2021 The NASA AfriSAR campaign: airborne
SAR and lidar measurements of tropical forest structure and
biomass in support of current and future space missions
Remote Sens. Environ. 264112533

Feldpausch T Ret af 2011 Height-diameter allometry of tropical
forest trees Biogeosciences 8 1081-106

Feldpausch T Ret af 2012 Tree height integrated into
pantropical forest biomass estimates Biogeosciences
93331403

Fox ] and Weisberg S 2019 An {R} Companion to Applied
Regression (Thousand Oaks, CA: Sage)

Gibbs H K, Brown §, Niles ] O and Foley ] A 2007 Monitoring and
estimating tropical forest carbon stocks: making REDD a
reality Environ, Res. Lett. 2 045023

Giri C, Octieng B, Tieszen L L, Zhu Z, Singh A, Loveland'T,
Masek J and Duke N 2011 Status and distribution of
mangrove forests of the world using earth observation
satellite data Glob. Ecol. Biogeogr. 20 154-9

GOB 2019 Tree and forest resources of Bangladesh: report on the
Bangladesh forest inventory Porest Department, Ministry of
Environment, Forest and Climate Change, Government of
the People’s Republic of Bangladesh, Dhaka, Bangladesh.

Henry M et al 2021 A multi-purpose National Forest Inventory in
Bangladesh: design, operationalisation and key results For.
Ecosyst. 812

Henry M, Besnard A, Asante W A, Eshun J, Adu-Bredu S,
Valentini R, Bernoux M and Saint-André L 2010 Wood
density, phytomass variations within and among trees, and
allometric equations in a tropical rainforest of Africa For.
Ecol. Manage. 260 1375-883

Hickey 5 M, Callow N J, Phinn §, Lovelock C Eand Duatte CM
2018 Spatial complexities in aboveground carbon stocks of a
semi-arid mangrove community: a remote sensing
height-biomass-carbon approach Bstuar. Coast. Shelf Sci.
200194201

15

224

M S Rahman et al

Hossain M, Saha C, Rubaiot Abdullah S M, Saha S and
Siddique M R H 2016a Allometric biomass, nutrient and
carbon stock models for Kandelia candel of the Sundarbans,
Bangladesh Trees 30 700-17

Hossain M, Shaikh M A A, Saha C, Abdullah S M R, Saha $ and
Siddique M R H 2016b Above-ground biomass, nutrients
and carbon in Aegiceras corniculatum of the Sundarbans
Open J. For. 6 72-81

Hossain M, Siddique M R H, Bose A, Limon S H,

Chowdhury M RK and Saha § 2012 Allometry,
above-ground biomass and nutrient distribution in Ceriops
decandra (Griffith) Ding Hou dominated forest types of the
Sundarbans mangrove forest, Bangladesh Wetlands Eeol.
Manage. 20 53948

Hunter M O, Keller M, Victoria D and Morton D C 2013 Tree
height and tropical forest biomass estimation Biogeosciences
10 838599

Hutchison J, Manica A, Swetnam R, Balmford A and Spalding M
2014 Predicting global patterns in mangrove forest biomass
Conserv. Lett, 7 23340

ICRAF 2016 Tree Punctional attributes and Ecological Databases:
Wood density (available at: http://db worldagroforestry.org//
wd) (Accessed 25 March 2020)

Iftekhar M and Saenger P 2008 Vegetation dynamics in the
Bangladesh Sundarbans mangroves: a review of forest
inventories Wetlands Ecol. Manage. 16 291-312

James G, Witten D, Hastie T and Tibshirani R 2013 An
Introduction to Statistical Learning vol 112 (Berlin: Springer)

Kamruzzaman M, Ahmed S and Osawa A 2017 Biomass and net
primary productivity of mangrove communities along the
Oligohaline zone of Sundarbans, Bangladesh For. Ecosyst.
416

Kamruzzaman M, Ahmed S, Paul $, Rahman M M and Osawa A
2018 Stand structure and carbon storage in the oligohaline
zone of the Sundarbans mangrove forest, Bangladesh For.
Sci. Technol. 14 23-23

Kassambara A 2020 Rstatix: pipe-friendly framework for basic
statistical tests (available at: https://cran.r-project.org/web/
packages/rstati/rstatiz. pdf) (Accessed 25 March 2020)

Kearsley E et af 2013 Conventional tree height-diameter
relationships significantly overestimate aboveground
carbon stocks in the Central Congo Basin Nat, Commun.
42269

Kenzo T et af 2009 Development of allometric relationships for
accurate estimation of above- and below-ground biomass in
tropical secondary forests in Sarawak, Malaysia J. Trop. Ecol.
25371-86

Khan M N I, Khatun S, Azad M $ and Mollick A § 2020 Leaf
morphological and anatomical plasticity in Sundri
(Heritiera fornes Buch.-Ham.) along different canopy light
and salinity zones in the Sundarbans mangrove forest,
Bangladesh Glob. Ecol. Conserv. 23 ¢01127

Komiyama A, OngJ E and Poungparn $2008 Allometry, biomass,
and productivity of mangrove forests: a review Aguat. Bot.
8912837

Komiyama A, Poungparn $ and Kato $ 2005 Common allometric
equations for estimating, the tree weight of mangroves J.
Trop. Beol 21 471-7

Kuhn M 2008 Building predictive models in R using the caret
package J. Szat. Softw. 28 1-26

Lagomasino D, Fatoyinbo T, Lee S, Peliciane B, Trettin C,
Shapiro A and Mangora M M 2019 Measuring mangrove
carbon loss and gain in deltas Environ. Res. Lett, 14 025002

Larjavaara M and Muller-Landau H C 2013 Measuring tree height:
a quantitative comparison of two common field methods in
a moist tropical forest Methods Ecol. Bvol. 4793-801

Liidecke D 2018 ggeftects: tidy data frames of marginal effects
from regression models J. Open Source Softw. 3 772

Mahmood H, Siddique M R H, Abdullah SM R, Islam S M Z,
Matiew H, Igbal M Z and Akhter M 2020 Semi-destructive
method to derive allometric aboveground biomass model
for village forest of Bangladesh: comparison of regional and
pantropical models J. Trop. For. Sci. 32 246-56



1OP Publishing

EBnviron. Res. Lett. 16 (2021) 124002

Mahmood H, Siddique M R H, Rubaiot Abdullah S M, Costello L,
Matieu H, Igbal M Z and Akhter M 2019 Which option best
estimates the above -ground biomass of mangroves of
Bangladesh: pantropical or site- and species-specific
models? Wetlands Ecol. Manage, 27 553-69

Martinez-Sénchez J L, Martinez-Garza C, Cdmara L and
Castillo O 2020 Species-specific or generic allometric
equations: which option is better when estimating the
biomass of Mexican tropical humid forests? Carbon Manage.
11241-9

MeGill R, Tukey ] W and Larsen W A 1978 Variations of box plots
Am, Stat, 32 12-16

Mitchard E T, Saatchi S S, Baccini A, Asner G P, Goetz S J,

Harris N L and Brown S 2013 Uncertainty in the spatial
distribution of tropical forest biomass: a comparison of
pan-tropical maps Carbon Balance Manage. 8 10

Mokria M, Mekuria W, Gebrekitstos A, Aynekulu E, Belay B,
Gashaw T and Bréuning A 2018 Mixed-spedies allometric
equations and estimation of aboveground biomass and
carbon stocks in restoring degraded landscape in northern
Ethiopia Enviren. Res. Lett, 13 024022

Neomanda A et al 2014 Site-specific versus pantropical allometric
equations: which option to estimate the biomass of a moist
central African forest? For. Ecol. Manage. 312 1-9

Ni-Meister W 2015 Aboveground terrestrial biomass and carbon
stock estimations from multisensor remote sensing Land
Resources Monitoring, Modeling, and Mapping with Remote
Sensing 1 ed P S Thenkabail (Boca Raton, FL: CRC Press)
pp 47-67

Njana M A, Meilby H, Eid T, Zahabu E and Malimbwi R E 2016
Importance of tree basic density in biomass estimation and
associated uncertainties: a case of three mangrove species in
Tanzania Ann. For, Sci. 73 1073-87

Petrokofsky G, Kanamaru H, Achard F, Goetz S J, Joosten H,
Holmgren P, Lehtonen A, Menton M C S, Pullin A S and
Wattenbach M 2012 Comparison of methods for measuring
and assessing carbon stocks and carbon stock changes in
terrestrial carbon pools. How do the accuracy and precision
of current methods compare? A systematic review protocol
Environ, Bvidence1 6

Phillips O L, Sullivan M J P, Baker T R, Monteagudo Mendoza A,
Vargas P N and Vasquez R 2019 Species matter: wood
density influences tropical forest biomass at multiple scales
Surv. Geophys. 40 913-35

Picard N, Saint-André L and Henry M 2012 Marual for Building
Tree Volume and Biotnass Allometric Equations: From Field
Measurement to Prediction Pood and Agricultural
Qrganization of the United Nations, Rome, and Centre de
Coopération Internationale en Recherche Agronomique
pour le Développement, Montpellier

R Core Team 2020 R: A Language and Bnvironment for Statistical
Computing (Vienna: R Foundation for Statistical
Computing)

Rahman M M, Khan M N [, Hoque A K Fand Ahmed 12015
Carbon stock in the Sundarbans mangrove forest: spatial
variations in vegetation types and salinity zones Wetlands
Ecol, Manage. 23 269-83

Rahman M S, Donoghue D N M and Bracken L] 2021 Is soil
organic carbon underestimated in the largest mangrove
forest ecosystems? Evidence from the Bangladesh
Sundarbans CATENA 200 105159

Rahman M S, Sass-Klaassen U, Zuidema P A, Chowdhury M Q
and Beeckman H 2020 Salinity drives growth dynamics of
the mangrove tree Sonneratia apetala Buch,-Ham., in the
Sundarbans, Bangladesh Dendroch logia 62 125711

Réjou-Méchain M et af 2019 Upscaling forest biomass from field
to satellite measurements: sources of errors and ways to
reduce them Surv. Geophys. 40 331-911

Rovai A S et al 2016 Scaling mangrove aboveground biomass
from site-level to continental-scale Glob, Bcol, Biogeogr.

25 286-98

16

225

M S Rahman et a/

Rutishauser E, Noor'an F, Laumonier Y, Halperin ], Rufi'ie,
Hergoualch K and Verchot L 2013 Generic allometric
models including height best estimate forest biomass
and carbon stocks in Indonesia For. Ecol. Manage.

307 219-25

Sarker $ K, Matthiopoulos J, Mitchell $ N, Ahmed Z U,

Mamun M B A and Reeve R 2019a 19305-2010s: the world’s
largest mangrove ecosystem is becoming homogeneous Biol.
Conserv. 236 79-91

Sarker S K, Reeve R, Paul N K and Matthiopoulos J 2019b
Modelling spatial bio diversity in the world’s largest
mangrove ecosystem—the Bangladesh Sundarbans: a
baseline for conservation Divers. Distrib, 25 72942

Sarker S K, Reeve R, Thompson J, Paul N K and Matthiopoulos ]
2016 Are we failing to protect threatened mangroves in the
Sundarbans wotld heritage ecosystem? Sci. Rep. 6 21234

Sattar M A, Bhattachatjee D K and Sarker S B 1995 Physical,
mechanical and seasoning properties of 45 lesser used or
unused forest timbers of Bangladesh and their uses
Bangladesh ]. For. Sci, 24 11-21

Siddiqi N A 2001 Mangrove Forestry in Bangladesh (Chittagong:
Institute of Forestry & Environmental Sciences, University
of Chittagong)

Siddique M R H, Mahmood H and Chowdhury M R K 2012
Allometric relationship for estimating above-ground
biomass of Aegialitis rotundifolia Roxb. of Sundarbans
mangrove forest, in Bangladesh J. For. Res, 23 23-28

Sileshi G W 2014 A critical review of forest biomass estimation
models, common mistakes and corrective measures For.
Ecol. Manage. 329 237-54

SHk W Fet af 2015 An estimate of the number of tropical tree
species Proc. Natl Acad. Sci. 112 74727

Slik ] W B, Bernard C S, Breman F C, van Beek M, Salim A and
Sheil D 2008 Wood density as a conservation toal:
quantification of disturbance and identification of
conservation -priority areas in tropical forests Conserv. Biol.
22 1299-308

Sprugel D 1983 Correcting for bias in log-transformed allometric
equations Ecology 64 209-10

Stas S M, Rutishauser E, Chave J, Anten N P R and Laumonier Y
2017 Estimating the aboveground biomass in an old
secondary forest on limestone in the Moluccas, Indonesia:
comparing locally developed versus existing allometric
models For. Ecol. Manage. 389 27-34

Tomlinson P B 2016 The Botany of Mangroves (Cambridge:
Cambridge University Press)

van Breugel M, Ransijn J, Craven D, Bongers F and Hall 7 $2011

Estimating carbon stock in secondary forests: decisions and
uncertainties associated with allometric biomass models For.
Ecol. Manage. 262 1648-57
Vieilledent G, Vaudry R, Andriamanchisoa S F D,
Rakotonarivo O S, Randrianasole H Z, Razafindrabe H N,
Rakotoarivony C B, Ebeling ] and Rasamoelina M 2012 A
universal approach to estimate biomass and carbon stock in
tropical forests using generic allometric models Ecol. Appl.
22 572-83

Virguline-Junior P C C, Carneiro D N, Nascimento W R Jr.,
Cougo M F and Pernandes M E B 2020 Biomass and carbon
estimation for scrub mangrove forests and examination of
their allometric associated uncertainties PLoS One
15 20230008

Vorster A G, Bvangelista P H, Stovall A E Land Ex §2020
Variability and uncertainty in forest biomass estimates from
the tree to landscape scale: the role of allometric equations
Carbon Balance Manage. 15 8

Weiskittel A R, MacFarlane D W, Radtke P J, Affleck DL R,
Temesgen H, Woodall C W, Westfall ] A and Coulston JW
2015 A call to improve methods for estimating tree biomass
for regional and national assessments J. For. 113 41424

Wickham H 2016 Ggplot2: Flegant Graphics for Data Analysis
(Betlin: Springer)



IOP Publishing

Environ. Res. Lett. 16 (2021) 124002

Wiemann M C and Williamson G B 2013 Biomass determination
using wood specific gravity from increment cores General
Technical Report, FPL-GTR-225 Forest Products Laboratory,
USDA Forest Service vol 9 p 225

Wilke C O, Wickham H and Wilke M C O 2019 Streamlined Plot
Theme and Plot Annotations for ‘ggploi2 (available at: https://
wilkelab.org/cowplot/index.html) (Accessed 01 March 2020)

Xiao X, White E P, Hooten M B and Durham $ L2011 On the
use of log-transformation vs, nonlinear regression for
analyzing biological power laws Ecology
92 183794

17

M § Rahman et o/

Yuen J Q, Fung T and Ziegler A D 2016 Review of allometric
equations for major land covers in SE Asia: uncertainty and
implications for above - and below-ground carbon estimates
For. Ecol. Manage. 360 323-40

Zanne A E, Lopez-Gonzalez G, Coomes D A, Ilic ], Jansen S,
Lewis S L, Miller R B, Swenson N G, Wiemann M C and
Chave ] 2009 Data from: towards a worldwide wood
economics spectrum, Dryad, dataset (https:;//doi.org/
10,5061/dryad.234)

Zeileis A and Hothorn T 2002 Diagnostic checking in regression
relationships R News 2 7-10



Table B.1. The choice of model parameters between log-linear and nonlinear regression.

Species No.of  Nonlinear Log- AAICc Error type Proposed
trees AlCc linear method
AlCc

Aglaia cucullata 19 88.45 82.1 6.35 Multiplicative log- Loglinear
normal error

Avicennia spp. 42 444.13 380.01 64.12 Multiplicative log- Loglinear
normal error

Bruguiera spp. 31 309.35 254.73 54.62 Multiplicative log- Loglinear
normal error

Excoecaria agallocha 35 201.08 141.22 59.86 Multiplicative log- Loglinear
normal error

Heritiera fomes 97 941.98 742.45 199.53 Multiplicative log- Loglinear
normal error

Lumnitzera racemosa 13 71.56 58.66 12.9 Multiplicative log- Loglinear
normal error

Rhizophora spp. 18 160.29 158.19 21 Multiplicative log- Loglinear
normal error

Sonneratia apetala 20 259.73 192.52 67.21 Multiplicative log- Loglinear
normal error

Xylocarpus spp. 51 504.67 431.99 72.68 Multiplicative log- Loglinear

normal error

AlCc: Second variant of AIC that corrects small sample size, AAICc: the difference between AIC of two models.
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Table B.2: Eligibility test results for six log-linear regression models for each species.

Percent relative :
Species Model | Shapiro-wilk BP test for standard error \i/na:‘lreI\?ir:)Cr?

no. normality test | heteroscedasticity . (PFSSE : factor (VIF)
El W =0.96, p = 0.61 BP = 1.68, p = 0.20 5.74 2.24
E2 W =0.95,p =045 BP =0.62, p=0.43 16.32 9.97
Aglaia E3 W =0.94p=0.24 BP = 4.55,p = 0.03 6.59 3.44
cucullata E4 W =0.97,p=0.78 BP =5.21, p = 0.02 493 2.37
E5 W =0.92,p=0.17 BP =3.03, p = 0.08 9.04 5.04

E6 W =0.94, p =0.28 BP =5.18, p = 0.07 9.10 5.49 4787 | b=5.89,¢c=5.89
El W =0.95, p = 0.06 BP =3.37, p = 0.07 9.37 2.37
E2 W =0.87, p = 0.00 BP =0.24, p=0.63 2247 | 1214
Avicennia E3 W =0.92,p=0.01 BP =0.09, p=0.76 6.95 3.19
spp. E4 W =0.95, p = 0.07 BP =0.05, p = 0.83 6.51 2.45
E5 W =0.93,p=0.01 BP =2.07,p=0.14 9.53 4.72

E6 W =0.93, p=0.02 BP =2.36,p=0.31 14.45 3.84 4987 | b=276,¢c=276
El W =0.94,p=0.11 BP =0.00, p = 0.98 9.34 2.29
E2 W =0.93, p=0.03 BP =0.39, p=0.53 20.07 | 1211
Bruguiera E3 W =0.97, p = 0.47 BP =1.07, p=0.30 8.98 3.48
spp. E4 W =0.91,p=0.01 BP =0.87,p=0.35 6.46 2.23
E5 W =0.96, p = 0.29 BP=0.77,p=0.38 13.00 5.46

E6 W =0.93, p = 0.04 BP =0.75, p = 0.69 8.99 3.53 27.04 | h=2.80,c=280
E1l W =0.98,p=0.74 BP =8.16, p = 0.00 3.45 1.40
E2 W =0.95, p = 0.08 BP =0.00, p = 0.97 11.81 7.03
Excoecaria E3 W =0.95p=0.11 BP =0.00, p = 0.99 478 2.44
agallocha E4 W =0.96,p=0.22 BP =1.40,p=0.24 3.56 1.71
E5 W =0.94, p = 0.06 BP=0.14,p=0.71 6.50 3.54

E6 W =0.99, p =0.95 BP =9.03,p=0.01 5.61 3.68 5318 | b=6.54,c=6.54
El W =0.99, p = 0.89 BP =2.42,p=0.12 2.79 0.85
E2 W =0.98, p = 0.20 BP =24.46, p = 0.00 8.85 4.64
Heritiera E3 W =0.98,p=0.18 BP = 15.80, p = 0.00 3.91 1.70
fomes E4 W =0.97, p =0.05 BP = 9.67, p = 0.00 3.02 1.18
E5 W =0.99, = 0.43 BP = 2155, p = 0.00 5.12 2.41

E6 W =0.99, p=0.84 BP =7.80, p = 0.02 4.88 2.08 63.82 | b=574,c=5.74
El W =0.90, p =0.15 BP =0.59, p = 0.44 7.89 3.46
E2 W =0.92,p=0.28 BP =0.33, p = 0.57 4057 | 27.69
Lumnitzera E3 W =0.93,p=0.32 BP=0.14,p=0.71 10.30 6.20
racemosa E4 W =0.88, p=0.07 BP =0.02, p=0.88 7.85 4.30
E5 W =0.93,p =0.33 BP =0.02, p=0.90 14.76 9.61

E6 W =0.93,p=0.34 BP =3.25, p=0.20 18.70 5.32 180.93 | b=213,c=2.13
El W =0.96, p = 0.58 BP =6.73,p = 0.01 24.47 6.13
E2 W =0.89, p = 0.05 BP =0.02, p=0.90 31.41 | 14.99
Rhizophora E3 W =0.93,p=0.18 BP =0.15, p = 0.69 16.55 6.53
spp. E4 W =0.94, p=0.37 BP =3.31, p=0.07 17.01 5.92
E5 W =0.96,p=0.71 BP =0.42, p=0.52 18.35 8.00

E6 W =0.96, p = 0.65 BP =5.42, p = 0.07 30.21 | 13.08 86.45 | b=23.65c=23.65
E1l W =0.96, p = 0.49 BP =5.48, p = 0.02 10.40 2.63
E2 W =0.95p =044 BP =0.70, p = 0.40 22.94 | 12.36
Sonneratia E3 W =0.98,p=0.91 BP =1.26,p=0.26 6.60 2.80
apetala E4 W =0.97,p=0.68 BP =0.12,p=0.73 4.91 1.81
E5 W =0.97,p=0.72 BP=2.32,p=0.13 1007 | 479

E6 W =0.99, p = 1.00 BP =0.35, p = 0.84 9.09 3.01 2162 | b=353,¢c=3.53
El W =0.98, p=0.52 BP =0.27, p = 0.60 8.02 2.40
E2 W =0.96,p=0.13 BP =4.95 p=0.03 71.04 | 17.49
Xylocarpus E3 W =0.95, p = 0.05 BP =8.68, p = 0.00 9.68 417
spp. E4 W =0.98, p = 0.54 BP =5.79, p = 0.02 7.02 2.77
E5 W =0.96, p=0.11 BP =12.43,p = 0.00 14.85 6.58

E6 W =0.99, p=0.97 BP =0.32,p=0.85 9.09 2.95 3874 | b=155,c=155

N.B: Bold and light shaded grey models are not eligible due to results from one or more test.
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Table B.3: Detailed validation results for all allometric equation.

Species Model RMSE MAE
(Ln Kg Tree?) (Ln Kg Tree?)

Aglaia cucullata Species-specific 0.09 0.08
Mahmood_2019 DHW 0.12 0.11

Mahmood_2019 DH 0.09 0.08

Mahmood_2019 D 0.12 0.11

Chave_2014 DHW 0.36 0.33

Chave_2005_DW 0.17 0.15

Chave_2005_DHW 0.22 0.19

Komiyama_2005_DW 0.58 0.57

Avicennia spp. Species-specific 0.16 0.13
Mahmood_2019 D 0.22 0.17

Mahmood_2019 DH 0.22 0.17

Mahmood_2019 DHW 0.24 0.19

Chave_2014_DHW 0.40 0.34

Chave_2005_DW 0.26 0.19

Chave_2005_DHW 0.31 0.26

Komiyama_2005_DW 0.39 0.32

Bruguiera spp. Species-specific 0.19 0.18
Mahmood_2019_DHW 0.26 0.21

Mahmood_2019 DH 0.35 0.31

Mahmood_2019_D 0.37 0.32

Chave_2014 DHW 0.44 0.39

Chave_2005_DW 0.24 0.20

Chave_2005_DHW 0.33 0.28

Komiyama_2005_DW 0.27 0.22

Excoecaria agallocha Species-specific 0.14 0.12
Mahmood_2019 DHW 0.18 0.14

Mahmood_2019_DH 0.38 0.36

Mahmood_2019 D 0.43 0.40

Chave_2014_DHW 0.56 0.49

Chave_2005_DW 0.22 0.17

Chave_2005_DHW 0.41 0.34

Komiyama_2005_DW 1.08 1.06

Heritiera fomes Species-specific 0.14 0.12
Mahmood_2019 DHW 0.16 0.12

Mahmood_2019_DH 0.20 0.16

Mahmood_2019 D 0.27 0.23

Chave_2014_DHW 0.21 0.16

Chave_2005_DW 0.17 0.13

Chave_2005_DHW 0.21 0.16

Komiyama_2005_DW 0.17 0.13

Lumnitzera racemosa Species-specific 0.20 0.20
Mahmood_2019 DHW 0.15 0.12

Mahmood_2019 DH 0.16 0.13

Mahmood_2019_D 0.14 0.11

Chave_2014 DHW 0.44 0.41

Chave_2005_DW 0.20 0.16

Chave_2005_DHW 0.31 0.26

Komiyama_2005_DW 0.13 0.10

Rhizophora spp. Species-specific 0.22 0.21
Mahmood_2019_DHW 0.28 0.25

Mahmood_2019_DH 0.22 0.18
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Mahmood_2019_D 0.23 0.19
Chave_2014_DHW 0.23 0.19
Chave_2005_DW 0.45 0.41
Chave_2005_DHW 0.25 0.21
Komiyama_2005_DW 0.49 0.44
Sonneratia apetala Species-specific 0.24 0.21
Mahmood_2019_DHW 0.23 0.18
Mahmood_2019 DH 0.35 0.30
Mahmood_2019_D 0.34 0.25
Chave_2014_DHW 0.24 0.20
Chave_2005_DW 0.33 0.26
Chave_2005_DHW 0.21 0.17
Komiyama_2005_DW 0.59 0.50
Xylocarpus spp. Species-specific 0.19 0.16
Mahmood_2019 DHW 0.17 0.13
Mahmood_2019_DH 0.19 0.15
Mahmood_2019 D 0.22 0.18
Chave_2014_DHW 0.46 0.41
Chave_2005_DW 0.30 0.26
Chave_2005_DHW 0.36 0.31
Komiyama_2005_DW 0.36 0.29
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Table B.4: Pair-wise comparison test for mean absolute error (MAE) between species-specific and other
allometric equations.

Model comparison Mean Mean absolute Mean relative  Paired t-test (t), p-
difference difference MAE absolute value
MAE (Ln (Ln Kg tree?) difference
Kg tree?) MAE (%)
Species-specific — Mahmood_2019_DHW -00.0004 0.034 21.85 t=-0.03,p=0.98
Species-specific — Chave_2005_DW -0.05 0.06 39.89 t=-2.46, p <0.05
Species-specific — Mahmood_2019 DH -0.04 0.07 44.61 t=-1.40, p =0.20
Species-specific — Mahmood_2019_D -0.06 0.09 54.04 t=-1.71,p=0.13
Species-specific — Chave_2014 DHW -0.08 0.10 61.07 t=-3.03, p <0.05
Species-specific - Chave_2005_DHW -0.17 0.18 110.93 t=-3.62, p <0.05
Species-specific — Komiyama_2005_DW -0.24 0.27 167.43 t=-2.37, p <0.05

N.B: (-) negative signs indicates higher MAE than Species-specific model
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Table B.5: Summary of individual tree above-ground biomass differences between different allometric equations. Differences are shown for all sizes (All) and by diameter at

breast height (DBH) classes. The negative difference indicates higher biomass than the species-specific equations. In all cases, the denominators for calculating relative
differences are the species-specific biomass estimates. The bold percentages show mean relative difference of biomass greater than 50%.

Species-specific-
Chave_2005_DW

Species-specific-
Komiyama_2005_DW

Species-specific-
Mahmood_2019 D

Species-specific-
Mahmood_2019 DH

Species-specific-
Mahmood_2019 DHW

Species-specific-
Chave_2014_DHW

Species-specific-
Chave_2005_DHW

Diameter
i range Mean Mean Mean Mean Mean Mean Mean
Species Mean . Mean . Mean . Mean . Mean 3 Mean - Mean -
(cm) Difference Rfeflatlve Difference R;Iatlve Difference, Rfeflatwe Difference, Rfeflatwe Difference R;Iatlve Difference R:flatlve Difference R:flatlve
(Kg) Difference (Kg) Difference (Kg) Difference (Kg) Difference (Kg) Difference (Kg) Difference (Kg) Difference
(%) (%) (%) (%) (%) (%) (%)
r(ﬁﬁ%‘;’}!gﬁa 25-15 21.22 -874.23 2135 -879.65 1135 | -467.86 | -1486 | -612.12 | -12.09 -498.37 7.27 -299.54 -5.95 -245.28
Aegiceras 25-15 -11.40 -137.20 -12.69 -152.64 3.92 -47.16 -3.78 -45.41 -6.16 -74.14 -5.36 -64.44 -3.62 -43.51
corniculatum
Cl’lgu'ﬁga 25-15 0.85 23.25 0.18 5.04 0.16 4.27 0.08 2.14 0.70 19.21 1.39 37.98 177 48.39
Avg’lig”'a 25-15 -78.18 -104.71 -48.61 -65.10 0.15 0.20 221 2.96 -4.37 5.86 5.38 7.20 1251 16.76
Ax:gfir‘n”;a 25-15 21.09 -45.38 -10.31 2218 -12.70 2732 0.76 -1.63 257 553 7.67 -16.50 -2.20 -4.74
All -1320.16 ~465.52 224.80 79.27 70.74 2494 50.93 -17.96 3953 13.94 -37.86 1335 2204 777
Avicennia 25-15 1767 49.92 -10.90 -30.80 -0.38 -1.06 -0.05 0.15 2.35 6.64 6.07 17.16 9.34 26.40
Sfficinalia | 15:1-30 -310.15 -168.26 -100.36 5445 34.29 -18.61 1811 9.83 1314 713 1115 -6.05 3.85 2.09
30.1-45 273223 ~419.62 529.94 ~81.39 168.14 | 2582 | -12355 | -18.98 95.04 1463 91.94 1412 56.66 -8.70
> 451 -11010.72 760.81 ~1472.09 101.72 45873 | 3170 | -366.50 | -25.32 30118 20.81 31266 | 2160 | -263.86 | -18.23
Bruguiera | 55 15 2.84 12.18 0.56 2.42 7.73 33.15 6.47 27.78 7.38 31.67 1091 46.84 12.65 54.29
gymnorrhiza
Bruouiera All -144.98 91.39 -35.72 2252 9.72 6.13 36.81 23.21 13.44 8.48 -12.88 8.12 0.28 0.18
Sexfn Sl | 25-15 ~19.09 -38.09 6.72 1341 554 11.06 1255 25.04 6.37 1271 0.81 161 556 11.09
9 15.1-30 ~197.99 296.90 4793 2346 1148 562 47.03 23.02 16.42 8.04 -18.64 9.12 1.94 -0.95
Cerbera All 6.47 2927 256 1157 1052 4760 -10.80 48.82 1.24 562 6.80 30.76 8.73 39.47
o b 25-15 1.25 10.09 0.24 1.93 4.09 32.99 4.42 _35.64 167 13.44 4.60 37.07 573 46.21
g 15.1-30 37.37 61.33 1374 2255 -36.25 59.49 -36.29 59.56 046 0.75 15.62 25.63 20.71 33.98
Ceriops 25-15 -1.29 7165 -2.09 -115.82 0.74 -41.20 -0.98 5437 -1.05 -58.28 -0.41 22,61 -0.03 -1.66
decandra
Cynometra |, 545 -1.24 -24.78 -2.28 -45.40 -0.22 -4.38 -0.58 -11.47 -0.33 -6.55 0.78 15.60 1.44
ramiflora 28.78
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Al -9.07 -54.75 -4.84 -29.19 701 | -4232 | 625 | -37.70 -0.77 -4.65 2.30 13.89 4.01 24.17
Excoecaria | 25-15 -2.76 2352 -2.48 2115 401 | 3424 | 362 | -30.89 0.08 -0.69 2.19 18.67 3.46 29.49
agallocha | 15.1-30 -95.27 -110.96 -37.79 44,01 4950 | 5765 | 4348 | 5065 | -10.24 | -11.93 4.39 5.11 12.34 14.37

301-45 | -864.88 -303.91 -225.91 79.38 22207 | _-78.03 | -187.75 | 6597 | -87.04 | -3058 | 5051 | -17.75 | -2794 | -0.82

Exicn";i‘;z”a 25-15 1.20 1152 -0.22 -2.15 -2.75 2629 | 240 | -23.00 0.94 8.98 3.17 30.33 4.27 40.87

Al -69.83 -117.23 -21.46 -36.02 6.28 10.54 1145 19.22 4.14 6.95 -0.27 -0.46 4.62 7.76

Heritiera |  2.5-15 -7.20 -43.61 -6.21 -37.64 117 7.09 2.18 13.21 0.04 0.26 -0.00 -0.03 1.93 11.70

fomes 151-30 |  -255.85 -121.43 7563 -35.90 20.90 9.92 42.85 20.34 15.02 7.13 -6.83 -3.24 9.37 4.45

301-45 | -2064.05 -249.34 -275.88 -33.33 18338 | 2215 | 20581 | 2486 | 167.98 | 2029 | 14068 | 1699 | 17462 |  21.09

tH”'ig'(fgl‘J‘SS 25-15 -0.43 -13.27 -1.47 -45.33 045 | <1397 | -0.49 -15.29 -0.53 -16.39 0.17 5.16 0.69 2121

Intsia bijuga 2.5 - 15 113 -27.44 -2.46 59.73 089 | -21.65 | -101 | -2455 -0.99 -24.10 -0.03 -0.84 0.64 15.48

Kandelia Al -75.41 -226.29 -49.03 -147.15 2115 | -6346 | -27.99 | -8400 | -1874 |  -56.23 587 | -1760 |  -150 -4.50

py 2.5-15 -13.14 -77.15 -13.92 -81.75 1128 | -6621 | 951 | -5586 -7.72 -45.36 497 | 2019 | -216 | -1269

151-30 |  -199.95 -303.36 -119.26 -180.94 4089 | 6204 | -6495 | -9854 | -40.76 | 6184 | -7.65 | -1161 | -0.17 -0.26

Lumnitzera | 5515 -4.97 -61.62 -6.83 -84.78 -0.63 -7.83 08 | -1032 -2.27 -28.18 -1.19 -14.82 0.12 1.50
racemosa

'l\o"l'r:'r‘?:tf 25-15 -0.74 -9.76 -2.43 -32.04 470 | 2237 | 151 | -19.89 -0.67 -8.85 0.80 10.59 1.84 24.25

R;;:f:&g?;a 25-15 -58.83 -79.90 -42.78 -58.10 10.08 13.69 18.03 24.49 -5.79 -7.86 1783 | 2422 | 897 | -1219
Rhizophor Al -212.15 -178.00 -110.80 -92.97 4.05 3.40 10.78 9.05 2369 | -1988 | -3455 | -2899 | 2213 | -1856
o | 2.5-15 -89.31 -139.08 -65.59 -102.14 2.29 3.57 2.07 3.22 1522 | -2370 | -1476 | -2298 | -696 | -10.84

151-30 | -335.00 -192.36 -156.01 -89.58 5.81 3.33 19.50 1120 | 3216 | -1847 | 5435 | -31.21 | -3729 | -21.41
Al -1858.13 -366.88 -248.60 -49.09 17156 | 3388 | 5558 | -1097 | -41.08 811 | 10842 | 2141 | 8182 | -16.16
Somneratia 25715 -32.52 -101.39 2172 6773 1060 | -3306 | -1462 | -4557 4.22 1315 0.24 0.75 3.68 11.47
(;r;gfgfa'a 151-30 | -266.56 -118.05 -49.31 -21.83 51.65 | -2287 1.26 0.56 6.43 2.85 -19.21 8,51 162 0.72
30.1-45 | 242531 -333.93 -371.56 5116 24366 | -3355 | -72.99 | -10.05 | -68.84 948 | -176.00 | -24.23 | -136.99 | -18.86
>45.1 -8305.17 -571.50 -932.80 -64.19 60235 | -4145 | -277.95 | -1913 | -197.52 | 1359 | -389.51 | -26.80 | -340.32 | -23.42
Al -675.34 -339.03 -187.10 -93.92 152 0.76 3312 | -1662 -8.94 -4.49 37.90 1903 | 49.72 24.96
Xylocarpus | 25-15 -4.58 -41.25 -6.23 -56.20 0.12 1.12 112 | -10.05 -0.62 -5.56 2.17 19.58 3.45 3111
granatum | 151-30 |  -411.34 -226.70 -157.56 -86.83 -5.24 2890 | -2802 | -1544 | -13.94 -7.68 2211 12.19 35.50 19.57
30.1-45 | -2808.89 -446.79 -637.44 -101.39 24.62 392 | -11242 | -17.88 | -10.58 168 | 15671 | 2493 | 18488 | 2941
Al -486.22 -326.97 -124.10 -83.45 2286 | -1537 | -2457 | -1652 | -1880 |  -1264 | -6.27 -4.22 4.00 2.69
ol 25-15 -16.39 -72.14 -12.97 -57.08 478 | 2102 | -271 | -11.93 -3.91 -17.23 355 | -1562 | -0.62 -2.74
meykgf]zmis 151-30 | -382.37 -210.66 -135.76 -74.80 2555 | -1408 | 2813 | -1550 | -19.85 | -1093 -2.78 153 1158 6.38
301-45 | -2669.08 -430.48 -565.32 -91.18 -104.26 | 1682 | -11110 | -1792 | -8347 | -1346 | -3665 | 591 -3.54 -0.57
>45.1 -9261.24 -759.12 -1615.71 -132.43 4068 333 | -23547 | 1930 | -110.35 | -004 | 20117 | 1649 | 24367 | 1997
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Tree (DBH >14.5¢m)

Pole(2.5cm <DBH < 14.c¢m )

11.3m

Figure B.1: The nested circular plot and different measured components of vegetation in each segment.
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30- GCH=0.118+3.39 DBH, R*=0.99
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Diameter at Breast Height (DBH) (cm)

Figure B.2: Relationship between DBH and GCH of Ceriops decandra.
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Figure B.3: Histogram of DBH of all trees from tree inventory in the Sundarbans.
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Figure B.4: Histogram of H of all trees from tree inventory in the Sundarbans.
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Surface Reflactance

Appendix C

Species
Water
Avicennia

b s

Avicennia-Sonneratia
0.37 Bruguiera

Ceriops
Ceriops-Excoecaria
Excoecaria
Iixcoecaria-Ceriops
0.2 Excoecaria-Heritieria
Excoecaria-Mixed
Heritiera
Heritiera-Ceriops
Heritiera-txcoecaria
Heritiera-Mixed
Mixed

Sonneratia

Xylocarpus-Mixed

0.1+

NN NS EREE

b4

Barren land

Figure C.1: Surface reflectance of different bands of Sentinel-2 for different forest-type.
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Index

r12

BSI NDVI MNDWI GEDI
Index name

(w) y3s_Y Adoue)

Species

bdob

hd ekt 4

¥

Water

Avicennia
Avicennia-Sonneratia
Bruguiera

Ceriops
Ceriops-Lxcoecaria
Lxcoecaria
Excoecaria-Ceriops
Excoecaria-Heritieria
Excoecaria-Mixed
Heritiera
Heriliera-Ceriops
Heriliera-L'xcoecaria
Heritiera-Mixed

= Mixed

Sonneratia

- Xylocarpus-Mixed

b

Barren land

Figure C.2: Spectral indices for Sentinel-2 bands and GEDI forest height map for different forest-type.
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100 -
Forest-type
[~ -
o 73 |:’ Barren land
= B iocarpus-Mixed
g . Heritiera-Excoecaria
;: . Heritiera
3 50 - |:| Excoecaria and Mixed
o . Ceriops-Excoecaria
% B Bruguiera
g . Avicennia-Sonneratia
5 . .
& 25- . Avicennia
. Water
0-

PB RF OB RF OB SVM
Classification method

Figure C.3: Spectral indices for Sentinel-2 bands and GEDI forest height map for different forest-type. Here
PB_RF: Pixel-based Random Forest, OB_RF: Object-based Random Forest and OB_SVM: Object-based
Support Vector Machine classification.
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(A) v (102) Exponential, RMSE = 11.32 Mg/ha
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Figure C.4: Spectrum of semivariograms for different models A) Exponential, B) Nugget, C) Whittle and D) K-
Bessel for predicting SOC in the Sundarbans using only forest-type. The RMSE of each model is presented on
the top of each figure. The solid red line indicates median and red dashed lines indicate the 25 and 75™
percentile of the distribution. The cross symbols indicate the average value of predictions. The darkness of each
blue line is proportionate to its corresponding weight, where thinner lines indicate lower weights for predictions.
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Figure C.5: Scatterplot of predicted values versus true values for all models A) Exponential, B)
Nugget, C) Whittle and D) K-Bessel for predicting SOC in the Sundarbans using only forest-type. Red dots
indicate the plot level SOC measurement, the grey line indicates 1:1 line, where the predicted values are equal to
the true values and the blue line indicates the regression line.
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Figure C.6: Spectrum of semivariograms for different models A) Exponential, B) Nugget, C) Whittle and D) K-
Bessel for predicting SOC in the Sundarbans using forest-type and DEM. The description of all components is
provided in the Figure C.4.
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Figure C.7: Scatterplot of predicted values versus true values for all models A) Exponential, B) Nugget, C)
Whittle and D) K-Bessel for predicting SOC in the Sundarbans using forest-type and DEM. Detailed figure
description is provided in the Figure C.5.
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Figure C.8: Spectrum of semivariograms for different models A) Exponential, B) Nugget, C) Whittle
and D) K-Bessel for predicting SOC in the Sundarbans using forest-type, DEM, slope and aspect. The
description of all components is provided in the Figure C.4.
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Figure C.9: Scatterplot of predicted values versus true values for all models A) Exponential, B) Nugget, C)
Whittle and D) K-Bessel for predicting SOC in the Sundarbans using forest-type, DEM, slope and aspect.
Detailed figure description is provided in the Figure C.5.
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Table C.1: The average length, diameter, green and dry weight of pneumatophores of different species in the

Sundarbans.

Species Average Average Average green | Average dry | Number  of

length (cm) | diameter weight (gm) weight (gm) | samples (n)
(cm)

Heritiera fomes 17.87£55 3.11+0.6 78.73+£49.8 34.59 + 24.6 41

Xylocarpus 15.38 £ 5.0 3.00x0.6 65.40 + 3543 | 30.96 +19.5 23

moluccensis

Bruguiera spp. 13.1+23 6.22+0.4 168.53+2.9 49.06+1.2 9

Sonneratia 26.65+140 | 29709 81.69 £ 60.9 32.64 £25.3 15

apetala

Avicennia spp. 10.87+2.3 1.77+04 21.17+£29 6.59+1.2 9
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Table C.2 One-way ANOVA results for TEC (Mg ha™) stocks among different components.

Source DF SS MSS F p
Carbon components 5 1660.8 332.2 1470 <0.0001
Residuals 756 170.8 0.2

Table C.3 Two-way ANOVA results for TEC (Mg ha') stocks among forest type and salinity zones in the

Sundarbans.

Source DF SS MSS F p
Salinity zones 2 5.3 2.65 55.6 <0.0001
Forest-type 7 2.2 0.31 6.6 <0.0001
Salinity Zone * Forest-type 7 0.2 0.04 0.7 >0.05
Residuals 123 5.9 0.05
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Figure C.10: The total ecosystem carbon stocks (TEC) in the Sundarbans in three salinity zones.
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Figure C.11: Spectrum of semivariograms for different models A) Exponential, B) Nugget, C) Whittle and D)
K-Bessel for predicting AGC in the Sundarbans using forest-type. The description of all components is provided
in the Figure C.4.
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Figure C.12: Scatterplot of predicted values versus true values for all models A) Exponential, B) Nugget, C)
Whittle and D) K-Bessel for predicting AGC in the Sundarbans using forest-type. Detailed figure description is
provided in the Figure C.5.
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Figure C.13: Spectrum of semivariograms for different models A) Exponential, B) Nugget, C) Whittle and D)
K-Bessel for predicting TEC in the Sundarbans using forest-type. The description of all components is provided
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Figure C.14: Scatterplot of predicted values versus true values for all models A) Exponential, B) Nugget, C)
Whittle and D) K-Bessel for predicting TEC in the Sundarbans using forest-type. Detailed figure description is
provided in the Figure C.5.
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