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Abstract 

The study estimated ecosystem carbon stocks in the Bangladesh Sundarbans using field inventory data 

with species-specific allometric models, carbon fractions and remote sensing data. The plot level 

ecosystem carbon stocks were interpolated with regression kriging using a forest-type map developed 

from Sentinel-2 MSI satellite imagery and GEDI-based canopy height data in Google Earth Engine 

(GEE) platform. Error propagation from the field measurement and allometric models was estimated 

and interpolated. The study highlighted that both the above-ground carbon (AGC) and soil organic 

carbon (SOC) were significantly higher in the oligohaline zone, followed by the mesohaline and 

polyhaline zone. Multiple regression results indicated that soil salinity, organic C: N and tree diameter 

were the best predictor for the variability of the SOC in the Sundarbans. To understand how 

individual species affects biomass estimates in mangrove forests, five species-specific and four genus-

specific allometric models were developed. At the individual tree level, the generic allometric models 

overestimated AGB from 22% to 167% compared to the species-specific models. At the plot level, 

mean AGB significantly differed in all generic models compared to the species-specific models. 

Using measured species wood density (WD) in the allometric model showed 4.5% to 9.7% less 

biomass than WD from a published database. When using plot top height and plot average height 

rather than measured individual tree height, the AGB was overestimated and underestimated by 

19.5% and 8.3%, respectively. The total 1 m SOC in the Sundarbans was 21.37 Teragram (Tg) and 

the total AGC stocks comprised 23.91 Tg. On the other hand, the total ecosystem carbon (TEC) stocks 

were 62.70 Tg, which is comparatively lower than most mangrove forests in the world. The study 

demonstrated a methodology that could be used as an IPCC (Intergovernmental Panel on Climate 

Change) Tier 3 approach for estimating TEC stocks in the Bangladesh Sundarbans and also to monitor 

TEC stocks in mangroves and other tropical forests. The study also emphasised the importance of 

spatial conservation planning to safeguard the carbon-rich zones in the Bangladesh Sundarbans from 

anthropogenic tourism and development activities to support climate change adaptation and mitigation 

strategies.   
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1.1. Background 

Mangrove vegetation can be found in 105 countries primarily in the tropics and subtropics (Hamilton 

and Friess, 2018; Tang et al., 2018) (Figure 1.1). Despite accounting for just 0.1% of the Earth’s 

continental surface, mangrove forests are among the most carbon-rich forest biomes due to their high 

proportion of below-ground to above-ground biomass and their high capacity for carbon sequestration 

(Donato et al., 2011; Atwood et al., 2017). The ability to accumulate substantial amounts of carbon in 

the soil due to slow decomposition rate makes mangroves distinctive in comparison to other terrestrial 

ecosystems.  

Mangrove forests across the tropics are threatened by factors related to climate change and 

anthropogenic impacts (Duke et al., 2007; UNEP, 2014). Data assimilated from a variety of published 

sources suggests that about 50% of the mangrove biome has been lost since the 1950s (Feller et al., 

2010). The quality and quantity of this highly productive ecosystem is vulnerable to threats such as: 

large-scale commercial aquaculture and agriculture (Primavera, 2006; Richards and Friess, 2016); 

land reclamation (Peng et al., 2016); pollution and local and regional (few to hundreds of km2) 

climate change induced stressors, such as sea-level rise (Lovelock et al., 2015a); drought (Duke et al., 

2017; Lovelock et al., 2017); increased storminess and salinity (Alongi, 2015; Sarker et al., 2016); 

changed precipitation regimes, and increasing temperature and atmospheric CO2 (Ward et al., 2016). 

Recent estimates report global mangrove decline is 2% from 2000 to 2012, which represent a 

contribution of 320 million tonnes of CO2 to the atmosphere (Hamilton and Friess, 2018).  

Despite the observed loss of mangrove forest area, the potential future impact of climate change 

suggests that mangrove ecosystems are resilient and have the potential to expand poleward (Alongi, 

2015; Feller et al., 2017) and to continue to deliver resources for local livelihoods, carbon 

sequestration, biodiversity conservation and to provide other ecosystem services (Thomas et al., 

2017). However, degradation and disturbance of the vegetation promotes the remineralization of soil 

carbon to CO2. Thus, conservation and restoration of mangrove forest is vital to preserve carbon 

storage in soil. Nonetheless, restoration alone would not be enough to regain lost carbon in mangrove 
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soils over human lifespans since the carbon deposition takes thousands of years (Atwood et al., 2017). 

Therefore, reducing deforestation rates and maintaining existing areas would be the optimal 

conservation strategy.  

 

Figure 1.1: Global distribution of mangroves. Reproduced from Tang et al. (2018) CC BY 4.0. 

Mangrove research has recently been gained substantial traction and momentum in international 

initiatives and policies including the International Blue Carbon Initiative, the Global Mangrove 

Alliance and the establishment of countries Nationally Determined Contribution (NDCs) for the Paris 

Agreement of the United Nations Framework Convention on Climate Change (UNFCCC) (Taillardat 

et al., 2018; Friess et al., 2020a). Because of a wider range of ecosystem goods and services provided 

to society, mangroves are an integral part of the UN Sustainable Development Goals (SDGs) (Ramsar 

Convention on Wetlands, 2018; Friess et al., 2020b; Worthington et al., 2020). Higher carbon 

sequestration rates in mangroves compared to other tropical forests has established mangroves a 

crucial factor in international incentive schemes such as United Nations Reducing Emissions from 

Deforestation and forest Degradation in Developing Countries (UN REDD+) (Donato et al., 2011; 

Alongi, 2012; Kauffman et al., 2020). These initiatives have led countries to conserve existing 

mangroves and at the same time ensure a future reduction of greenhouse gas emissions whilst 
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fostering CO2 sequestration (Adame et al., 2021). However, halting degradation and deforestation in 

mangroves and the accurate estimation of these changes in this important ecosystem is key to such 

financing mechanisms (IPCC, 2006; Alongi, 2011; Howard et al., 2014; IPCC, 2019).  

The ability to sink CO2, coupled with their capacity for coastal protection and encouraging sediment 

accretion, makes mangrove habitats an essential element for climate change adaptation and mitigation 

strategies including carbon trading initiatives, such as REDD+ (Reducing Emissions from 

Deforestation and Degradation) (Duarte et al., 2013; Lucas et al., 2014). Recent international climate 

policy discussions also prioritize mangrove conservation through ‘avoided deforestation’ under PES 

(Payments for Ecosystem Services) and such debates have highlighted novel funding paths for forest 

protection (Hamilton and Friess, 2018). However, there are considerable challenges for the 

implementation of conservation strategies, which include developing systems to quantify and monitor 

the carbon stocks through ‘MRV’ (Measuring, Reporting and Verifying) activities (Locatelli et al., 

2014). Moreover, IPCC (the Intergovernmental Panel on Climate Change) sets targets with 

progressively more complex methods to provide greater levels of accuracy for carbon reporting from 

Tier 1 to Tier 3. The Tier 1 derives data from published global datasets, while Tier 3 uses data from 

detailed and repeatable locally-derived forest inventories (Penman et al., 2003). On the other hand, the 

Tier 2 is considered as intermediate which requires country-specific data to suit local conditions 

(IPCC, 2019). A Tier 3 approach requires more rigorous methods, including inventory data and 

models adapted to national conditions, which are repeatable, and driven by high-resolution activity 

data (Harris, 2016). 

1.2. Rationale  

1.2.1. Difficulty to relate forest loss to carbon and CO2 emissions  

The first step in the assessment of carbon stocks in any forest is to map the extent and loss/gain over 

time. One of the major challenges is to translate these changes in forest area to carbon stocks for the 

whole ecosystem. In mangrove forests, the carbon pool comprises above- and below-ground carbon 

(AGC and BGC); above-ground contains live and dead plants including stem, stump, branches, bark, 
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seeds and foliage, and the below-ground carbon consists of roots and soil carbon. Among these, the 

soil may account for more than 50% of the total carbon stocks in a forest followed by tree carbon 

including above-ground biomass (AGB) and live roots (Kauffman and Donato, 2012). The most 

accurate method to quantify forest carbon is to destructively sample trees with or without roots, dry 

and weigh the biomass (Brown et al., 1989). The whole-tree biomass is then converted to a mass of 

carbon by multiplying by a range between 0.45 to 0.50, assuming that the carbon content in plant 

biomass is constant (Twilley et al., 1992; Donato et al., 2011; Kauffman et al., 2011; Kauffman and 

Donato, 2012). Therefore, measuring or estimating biomass is the key step for quantifying carbon 

storage in any ecosystem. However, the destructive sampling method is very labour intensive and 

time consuming and cannot be applied across a landscape or a large spatial extent. Therefore, 

scientists have used variety of indirect techniques to scale up from field to global levels, including 

biome-average methods, the biomass expansion factor (BEF), root-shoot ratio, allometric methods, 

and remote sensing techniques (IPCC, 2006; IPCC, 2019).  

Biome averaging is the simplest method which adheres to the IPCC’s Tier 1, in which the average 

biomass value is obtained to approximate the carbon stocks of a region or nation. The average biome 

values are compiled from inventories of the Food and Agricultural Organization (FAO) (Houghton et 

al., 2001; Gibbs et al., 2007). Although this method is quick and easy, the estimation typically 

underestimates the contribution of young stands as biome averages are based on mature stands. Since 

the forest carbon stocks vary significantly with different geo-physical parameters, an average value 

cannot represent as entire forest or country. Moreover, this method yields low accuracy because the 

data are obtained only from few plots that may not represent the wider biome or region (FAO, 2010). 

Many national and regional above-ground biomass calculations are based on the ‘Biomass Expansion 

Factor’ (BEF). It is the average ratio between dry weight and stem weight measured from some 

representative harvested trees (Brown, 1997). Default root: shoot ratios are also used to estimate 

carbon stocks for national greenhouse gas (GHG) inventories. In the case of mangroves, the global 

mean root: shoot ratio is 0.39 (Hamilton and Friess, 2018). However, like biome averages, these BEF 
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and root: shoot values can vary with vegetation type, climatic and biophysical factors of an ecosystem 

(Magalhães and Seifert, 2015).  

The above-ground biomass stocks can be directly inferred from tree biometric measurements by using 

an empirical allometric model (Brown, 1997). This model represents the relationship of tree biomass 

with the diameter at breast height (DBH), and occasionally with tree height, and/or the wood density 

of trees, derived from destructive sampling of trees. In the past, many allometric equations have been 

developed for mangroves (Saenger and Snedaker, 1993; Clough et al., 1997; Saenger, 2002; Ong et 

al., 2004; Comley and McGuinness, 2005; Soares and Schaeffer-Novelli, 2005; Hossain et al., 2012; 

Kangkuso et al., 2016). However, one of the major limitations is the quality of the data underpinning 

allometric models, which is often limited by time, cost and logistics (Chave et al., 2014). Therefore, 

uncertainties arise from destructive sampling due to the difficulty to extract root and branch biomass 

and also using allometric models. 

Both Komiyama et al. (2005) and Chave et al. (2005) developed general allometric models for 

mangrove species, however, there remains a lack of empirical data to calibrate the models especially 

from mangroves in the Indian Ocean region. Therefore, the use of these equations in the ecologically 

diverse Sundarbans mangroves is still contentious. The Chave et al. (2005) allometric model has been 

widely used in all pan-tropical forests although it was originally developed for moist and wet forest 

types. Due to the level of uncertainty in the previous allometric equation, Chave et al. (2014) 

developed a new allometric model that includes tree height as a variable. Since mangroves 

significantly vary in growth and form across latitudinal gradients, off-site allometric equations could 

over-/underestimate the carbon storage of any particular ecosystem. Therefore, improved calibrated 

allometric models are needed from plot inventories or plot-inventory-calibrated remote sensing. This 

thesis aims to develop species-specific allometric models in the Sundarbans mangrove forest. 

1.2.2.  Spatial distribution of carbon storage in mangrove forest and identification of key drivers 

The systematic study of mangrove ecosystems has increased in the last decade because of the 

mounting recognition of the importance of mangroves to climate change mitigation strategies and the 



 

7 

 

need for accurate carbon accounting at a national level. With the progressive development of the 

remote sensing, scientists are using this technology extensively, and contributing significantly to a 

number of high quality wall-to-wall biomass or carbon maps with high spatial resolution and accuracy 

(Ni-Meister, 2015). However, the calibration is still dependent on the ground-based estimation of 

carbon to allow for scaling up from plot measurements to national and global level carbon stocks 

through allometric equations (Saenger and Snedaker, 1993; Fatoyinbo and Simard, 2013). 

Despite the extensive use of regional and global carbon mapping, the allometric equation itself has 

limitations due to the shortage of destructively sampled trees from which it is developed, and often, 

the reference collection points are unrepresentative of the wider study area (Hickey et al., 2018). 

Moreover, rather than being site- and species-specific, these equations include many uncertainties 

when applied at larger scales (Mitchard et al., 2013). Therefore, using the same allometric equations 

for all species or grouping wood density in the allometric equation would further average out species-

level variations in carbon estimates, and so major uncertainties originate from poor data on the local 

distribution of carbon, which impacts to total nationally or globally summed carbon density (Mitchard 

et al., 2013; Ni-Meister, 2015). Recently published global and continental AGB estimates can be 

widely biased, due to an under representative sample size containing forest structural variables and the 

exclusion of the climatic regime or geophysical and geomorphological variables which are the key to 

understanding the spatial distribution of carbon at regional scales (Rovai et al., 2016). Therefore, it is 

important to identify key drivers for the variation of carbon across the landscape. In the case of 

below-ground biomass, major uncertainties arise. For example, Adame et al. (2017) found a 40% 

overestimate in biomass compared with destructive field measurement. This has serious implications 

on the accuracy of carbon estimation to fulfil country-specific reference levels in the UN REDD+ 

assessments. Therefore, country-specific or species-specific allometric models are needed to satisfy 

the global financing mechanisms for mangrove forests. Identifying key drivers for the spatial variation 

carbon stocks in mangrove forests should also be included in biomass or carbon assessment of 

mangrove forests. 
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1.2.3. Lack of accurate long-term gain-loss data 

Whilst mangrove forests are carbon-rich, their contribution to the global carbon balance is still poorly 

understood due to a lack of historical long-term gain and loss data. One of the main requirements for 

historical data is to set up a benchmark for deforestation and degradation against which carbon 

emission reduction can be quantified. Due to constraints in data quality and availability, many 

countries rely on remote sensing in combination with field assessments to set up an appropriate 

reference level (Herold et al., 2011). Many attempts have been taken to map carbon stocks and fluxes 

at a global scale (for example, Baccini et al., 2012; Avitabile et al., 2016; Baccini et al., 2017). 

However, mangrove forests have largely been excluded from these global assessments because of 

their small spatial extent and the difficulties of mapping these forest types (Hutchison et al., 2014) 

(Table 1.1). Some global datasets included mangrove forest as a part of global tropical forests (9-14 in 

Table 1.1). However, there are some recent studies which specifically focused on mangrove forest in 

the world such as Bunting et al. (2018) and Bunting et al. (2022a; 2022b). A range of remote sensing 

sensors and algorithms were used to map global mangrove forests. Landsat (30 m) was mostly used 

for their global coverage and availability for longer time. This Landsat satellite was widely used to 

make reference level in most tropical forests including mangrove forests. However, the recent high-

resolution satellites (Sentinel (10 m)) provide high potential to improve global mangrove forest covers 

in the world.  

Table 1.1: List of earth observation-based global/ mangrove forest cover maps. 

Mangrove/ 

Global dataset 
ID Products Year Sensor/others Algorithm Validation 

Type of 

estimate 
References 

M
a
n

g
ro

v
e 

fo
re

st
  

1 WCMC-012 
1960-

96 

A wide range of 

sources 

A global 

composite 
- Synthesis 

Spalding et 

al. (1997) 

2 WCMC-011 
1999-

01 
30 m Landsat Unsupervised - Independent 

Spalding et 

al. (2010) 

3 

WCMC-

010- 

Version 1.3 

1997-
2000 

30 m Landsat 

(Global Land 

Survey) 

Hybrid 

supervised and 

unsupervised 

Secondary 

data 

sources 

Independent 
Giri et al. 
(2011) 

4 CGMFC-21 
2000-
2014 

30 m UMD and 

Other Maps-

based maps 

UMD, WCMC-
010, & 

Terrestrial Map 

(Olson et al., 
2001) 

2011- the 
USGS 

National 

Land Cover 
Dataset 

Synthesis 
Hamilton and 
Casey (2016) 

5 

Global 

carbon 
stocks 

2000-

2012 

CGMFC-21 

WCMC-10 
Regression 

Selected 

field data 
Synthesis 

Hamilton and 

Friess (2018) 

6 

Global 

Mangrove 

Watch 
(GMW) 

2010 

ALOS 

PALSAR, 

Landsat and 
SRTM (30 m) 

Classification 

(Extremely 

Randomized 
Trees 

20 M 

points from 

128 
projects 

Independent 
Bunting et al. 

(2018) 
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DEM classifier) 

7 

GMW: 
Mangrove 

Forest 

Extent 
(v2.5) 

2010 
GMW (version 
2.0), Sentinel-2 

Classification 

(XGBoost 
binary 

classifier) 

1000 
random 

points in 

each of 60 
sites 

Synthesis 
Bunting et al. 
(2022a) 

8 

GMW: 

Mangrove 
Forest 

Extent 

change (v3) 

1996-

2020 

L-band SAR 

from JAXA 

map-to-image 
change 

detection 

1000 

random 
points in 

each of 60 

sites 

Synthesis 
Bunting et al. 

(2022b) 

G
lo

b
a

l 
fo

re
st

 

9 TREES-2 
1998-
2000 

1 km SPOT4 
VEGETATION 

Unsupervised 
Landsat 
TM 

Independent 
Stibig et al. 
(2003) 

10 GLC 2000 2000 
1 km SPOT4 

VEGETATION 
Unsupervised TREES-1 Independent 

Bartholomé 

and Belward 
(2005) 

11 

University 

of Maryland 
(UMD) 

2000-

2014 
30 m Landsat Decision tree 

Google 

Earth 
Independent 

Hansen et al. 

(2013) 

12 

Global Tree 

Canopy 

Cover 

2000-
2012 

30 m Landsat 

Regression tree  

Hansen et al. 

(2013) 

- Synthesis 
Hansen et al. 
(2013) 

13 
Global 
Forest/Non-

Forest Map 

2007-

2010 

25 m PALSAR/ 

PALSAR-2 

Region specific 

rule-based 

backscatter 
threshold 

Degree 
Confluence 

Project 

Independent 
Shimada et 

al. (2014) 

 14 

Global 

Forest/Non- 
Forest Map 

2011-
2016 

TanDEM-X 

Multi-

clustering 
classification 

Hansen et 

al (2013) 
and others 

Independent 
Martone et al. 
(2018) 

 

Note: WCMC-012: United Nations Environmental Programme (UNEP) World Conservation Monitoring Centre 

(WCMC),  

 

 

Moreover, surveying in remote mangroves is often hindered by high tides, mud, pneumatophores and 

wildlife, especially in the Sundarbans (Otero et al., 2018). Therefore, remote sensing techniques, such 

as optical, radar, and spaceborne or airborne LiDAR (Light detection and imaging) provide important 

opportunities to quantify above-ground carbon (AGC) coupled with ground data at various scales 

from individual trees to global coverage (Lucas et al., 2015). These techniques can help overcome the 

need for extensive fieldwork and provide data for global scale estimation of biomass and carbon in 

mangrove forests.  

1.3. Aims and Objectives  

This research project recognises the strengths and weaknesses of previous studies that have attempted 

to quantify carbon storage in mangrove forests. The work seeks to develop local species-specific 

models to estimate biomass and carbon in a very large mangrove forest by combining remote sensing 

data with field data and will address the following research and methodological questions: 
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1. Can the existing allometric models for biomass estimation be tailored to the dominant species 

of complex mangrove forests?  

2. How do above- and below-ground carbon stocks vary spatially in a mangrove forest?  

3. How accurately can carbon stocks be estimated by combining satellite imagery with field 

inventories data? 

4. Which environmental drivers determine the spatial variation of above- and below-ground 

carbon stocks in a mangrove forest? 

The specific aim of the research is to assess how much carbon is stored in both above- and below-

ground in the Sundarbans mangrove forest. The specific objectives of the research project are as 

follows: 

1. To review literature related to quantification of carbon storage in mangroves using remote 

sensing. This review aims to establish commonalities and differences among the methods and 

approaches used and to identify the factors affecting the quantification of carbon stocks (Chapter 

2).  

2. To measure soil organic carbon (SOC) in the Bangladesh Sundarbans mangrove forest and to 

better understand the relationship of SOC within three salinity zones (oligohaline, mesohaline and 

polyhaline) and between major forest types. The study also investigated the relationship between 

physical and chemical properties and vegetation characteristics with SOC to develop dependable 

predictive models of organic carbon (Chapter 4). 

3. To develop species-specific allometric models and compare estimated biomass with global 

models in order to understand modelled uncertainties in biomass estimation. The study also 

investigated the variability of AGB in the Sundarbans by comparing measured and published 

wood density values at multiple spatial scales and with different sets of tree height measurement 

(Chapter 5).  

4. To estimate above- and below-ground carbon stocks and uncertainties at plot scale and upscale 

these to carbon stocks and their uncertainties to the Sundarbans ecosystem level to produce 

ecosystem carbon map and error map based upon on a forest-type map. The study also aims to 
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compare the variability of ecosystem carbon stocks with vegetation types and salinity zonation 

(Chapter 6). 

1.4. Thesis structure 

The structure of this thesis contains seven chapters outlined below.  

Chapter 2 provides an overview of carbon stocks in mangrove forests, their measurement 

methodologies using remote sensing and the uncertainties involved. Given the use of a variety of 

remote sensing sensors, resolutions, extrapolation algorithms, and validation methods in estimating 

carbon stocks of mangroves, this review aims to establish commonalities and differences and to 

identify the key factors affecting the quantification of carbon. 

Chapter 3 describes an overview of the Bangladesh Sundarbans mangrove forest. It also includes the 

detailed research methodologies for estimating above- and below-ground carbon estimation in the 

forest. 

Chapter 4 presents the quantification of SOC in the Sundarbans from sediment cores using laboratory 

analysis. The chapter introduces key debates of spatial variability of SOC in different mangroves 

worldwide and identified the causes of low SOC estimates in the Bangladesh Sundarbans. The chapter 

is published in the journal CATENA:  

Rahman, M.S., Donoghue, D.N.M., Bracken, L.J., 2021. Is soil organic carbon underestimated in the 

largest mangrove forest ecosystems? Evidence from the Bangladesh Sundarbans. CATENA. 200, 

105159. https://doi.org/10.1016/j.catena.2021.105159. 

In this paper, all authors conceptualised the study together along with planning and research design. 

M. S. Rahman collected sediment cores from the Sundarbans and did the laboratory analysis. He 

prepared all graphs and wrote the manuscript. Donoghue, D. N. M. and Bracken, L. J. supervised the 

study and provided comments on the draft and paper submission.  

Chapter 5 describes the development of species-specific allometric models to estimate AGB in the 

Sundarbans and investigates biomass variability using different sets of allometric models and 
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parameters from different sources (wood density and tree height). The study also estimates 

uncertainty in allometric models while estimating biomass in the Sundarbans. This chapter is 

published in Environmental Research Letters: 

Rahman, M.S., Donoghue, D.N.M., Bracken, L.J., Mahmood, H., 2021. Biomass estimation in 

mangrove forests: a comparison of allometric models incorporating species and structural 

information. Environmental Research Letters. 16(11), http://iopscience.iop.org/article/10.1088/1748-

9326/ac31ee 

The contribution of authors in this article was as follows: Md. Saidur Rahman: Conceptualisation, 

Data curation, Formal analysis, Investigation, Methodology, Visualisation, Writing – original draft, 

Writing – review & editing. Daniel N.M. Donoghue, Louise J. Bracken: Conceptualisation, 

Supervision, Funding Acquisition, Writing – review & editing. Hossain Mahmood: Data curation, 

Writing – review & editing. 

Chapter 6 describes the estimation of the above- and below-ground carbon stocks in the Sundarbans. 

It also provides the description of the development of the forest-type map from the satellite imagery 

and the prediction of carbon stocks at ecosystem level. Finally, the chapter describes methodologies to 

estimate uncertainties in carbon stocks in the Sundarbans. This chapter has been prepared to submit to 

the journal Global Change Biology: 

Rahman, M. S., Donoghue, D. N. M. and Bracken, L. J. contributed to this chapter equally for 

conceptualisation and research design. M. S. Rahman conducted the forest inventory in the 

Sundarbans and prepared the chapter including data analysis, preparation of all graphs and writing. 

Both Donoghue, D. N. M. and Bracken, L. J. supervised the study and review-edited the chapter.  

Chapter 7 summarises the overall results to meet the research aims and discusses the implications for 

the management and conservation of the Sundarbans mangrove forest. This chapter includes the main 

conclusions, recommendations, and proposed future work based on findings of the research. 
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Chapter 2  

 

 

Dynamics of carbon stocks in mangrove forests and 

estimation methods 
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2.1. Introduction 

Mangrove forests contain higher levels of carbon in the below-ground sediment than any other 

ecosystem. The above-ground carbon also contributes high levels of carbon in any mangrove forests. 

The diversity of components in mangrove forests require different quantification methods. 

Researchers have developed protocols to quantify both above- and below-ground carbon stocks from 

mangrove forests. A range of methodologies have also been developed to upscale field estimations to 

the ecosystem level using remote sensing and GIS technologies. However, each methodology has its 

own limitations and uncertainties in estimating carbon stocks. This chapter describes the methods 

used to estimate carbon stocks in mangrove forests and to upscale carbon stocks to the ecosystem 

level through remote sensing.  

2.2. Carbon stocks in mangrove forests 

Carbon stocks in a forest is the total carbon from vegetation, animals, sediments and water that absorb 

carbon (Howard et al., 2014). Like terrestrial forest ecosystems, carbon stocks in mangrove forests can 

be divided in to soil and biomass. However, while upland forests hold greater carbon in the above-

ground, mangrove forests largely store most carbon into organic soil and below-ground roots, which 

altogether makes up to 85% carbon in the below-ground (Brown, 1997; Donato et al., 2011; Kauffman 

et al., 2020). Using data from five continents, Kauffman et al. (2020) found the mean total ecosystem 

carbon stocks is 856 ± 32 Mg ha-1, while the below-ground soil and root comprises 741 ± 30 Mg ha-1. 

This high carbon storage in the below-ground is mainly due to accumulation of sediment and organic 

matter over millions of years from both autochthonous (carbon from mangroves) and allochthonous 

(carbon from outside mangroves). Due to their spreading cable root networks in the below-ground, 

mangroves are often called as ‘bottom heavy plants’ (Komiyama et al., 2008). Therefore, they invest 

more carbon in the below-ground roots which generates a higher root-shoot ratio compared to 

terrestrial forests (Adame et al., 2017). The slow decomposition of organic matter as a result of water-

logged and anaerobic conditions allows mangrove sediments to continuously accumulate carbon 

through time (Kauffman and Donato, 2012; Howard et al., 2014). 
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Figure 2.1 Different components of carbon stocks in mangrove forest. Reproduced with permission from 

Howard et al. (2014, p. 30). 

The carbon stocks in mangroves can be divided into above-ground carbon (AGC) and below-ground 

carbon (BGC). The AGC stocks comprise carbon stored in live or dead standing trees, shrubs, herbs, 

dead and downed wood and pneumatophores (roots extended to above-ground) (Figure 2.1). On the 

other hand, BGC is composed of carbon in soils and roots (Howard et al., 2014). Negligible 

components in mangroves such as leaf litter and understorey vegetation such as seedlings, herbs, 

shrubs are usually not included in the carbon stocks assessments (Kauffman and Donato, 2012; 

Howard et al., 2014). The major portion of AGC comprises all living trees which are easy to quantify 

through measuring diameter at breast height (1.3 m) and the height of trees. These AGC components 

are heavily affected by landuse changes and constitutes a major portion of total carbon stocks 

(Howard et al., 2014). The lying dead wood can comprise 2.5–5.0% of the carbon stocks, but regular 

tides can export this mass to the rivers, however this may be important after cyclones as this 

disturbance can yield a large amount of dead wood in the forest floor (Simard et al., 2019). 

Mangroves form a range of specialised root systems namely pneumatophores, prop roots, knee roots 
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in the above-ground and comprise a significant amount of carbon to the AGC (Kauffman and 

Donato, 2012). 

Sediment carbon constitutes the majority portion of the below-ground carbon (BGC) stocks. The dead 

litter and decomposed organic matter are the main components of soil carbon stocks (Howard et al., 

2014). Living and dead roots are also an important pool of BGC, which is very difficult to measure as 

mangroves produce cable networks extending across large areas (Kauffman et al., 2020).  

2.3. Carbon estimation in mangrove forests 

The assessment of carbon stocks has gained interest since 2011 after the paper published by Donato et 

al. (2011) stating that mangroves are the most carbon-rich forests in the tropics. Standard protocols 

have been developed for assessing above- and below-ground carbon stocks in mangroves including 

sampling design, sample collection procedures, data interpretation and reporting (Kauffman and 

Donato, 2012; Howard et al., 2014). The IPCC developed three tiers of good practice and guidelines 

on assessing anthropogenic greenhouse gas (GHG) emissions and carbon removal from different 

ecosystems including mangroves (IPCC, 2006). The Tier 3 approach captures variability of carbon 

with greater accuracy and confidence incorporating site factors such as ecological zones, vegetation 

types and environmental gradients and thus is recommended to all countries if resources are available 

(IPCC, 2006; Kauffman and Donato, 2012; Howard et al., 2014). The Verified Carbon Standard 

(VCS), a voluntary certification programme for GHG emission reduction projects, developed carbon 

estimation methodologies specifically for the REDD+ initiative which also requires Tier 3 assessments 

(VCS, 2020).  

While carbon in sediments is directly measured from the sediment samples, tree carbon is estimated 

from allometric models of biomass from tree structural parameters such as diameter, height and wood 

density (Kauffman and Donato, 2012; Kauffman et al., 2020). Therefore, a range of regional, pan-

tropical and site-specific allometric models are available for mangroves (Komiyama et al., 2008; 

Chave et al., 2014; Mahmood et al., 2019). However, the use of non-mangrove models for mangrove 

species, and non-site-specific wood density does not provide the corresponding level of accuracy 
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especially when estimating biomass variability with vegetation types and environmental drivers 

(Owers et al., 2018; Rahman et al., 2021c). A standard conversion factor (usually 45-50%) is used to 

convert biomass into carbon (Kauffman and Donato, 2012; Howard et al., 2014). Application of a 

standard conversion factor may not reflect an accurate carbon proportion since the conversion rate is 

species-specific and varies with the component of trees such as stems, branches and roots (Owers et 

al., 2018). Overall, the carbon stocks of a mangrove forest is not spatially homogeneous, rather it 

varies due to species type, composition, structure, age, intertidal condition, salinity and other 

environmental variables (Owers et al., 2018; Kauffman et al., 2020; Rahman et al., 2021b). Therefore, 

site- and species-specific allometric models and site-specific variables are desirable to better reflect 

carbon stocks variability(Mahmood et al., 2019; Martínez-Sánchez et al., 2020; Rahman et al., 

2021c).  

2.4. Remote sensing methods for carbon measurement and upscaling 

Since remote sensing imagery is widely used to upscale field inventory data to larger scales, several 

guidelines have been developed to reduce and report the uncertainty of biomass or carbon 

transparently (Global Observation of Forest Cover and Land Dynamics (GOFC-GOLD) sourcebook 

(GOFC-GOLD, 2016), Global Forest Observations Initiative (GFOI) guideline (GFOI, 2016) and 

Food and Agricultural Organisation (FAO) guideline (FAO, 2016)). While a range of available 

protocols provide standard guidelines to measure and monitor carbon stocks in any forest, it is always 

challenging to choose as appropriate methodology. However, the key to all these protocols is that they 

all meet the requirements of the Tier 3 approach of the IPCC guidelines.  

Remote sensing (RS) imageries are frequently used to upscale plot level carbon stocks estimate to 

larger scales where additional environmental variables can be used to produce carbon maps at 

ecosystem, national, regional or global levels. Upscaling via remote sensing can be achieved in four 

ways — a) Stratify and Multiply (SM) Approach, b) Combine and Assign (CA) Approach, c) 

Ecological Models (EM) Approach, and d) Direct Remote Sensing (DR) Approach (Goetz et al., 

2009). While the SM approach assigns an average carbon value to land cover/vegetation type map 
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(for example, Asner et al. (2010)), the CA approach is the extension of SM which uses kriging or co-

kriging geostatistics techniques with multi-layered information in GIS (geographic information 

system) (for example, Gibbs et al. (2007) and Tyukavina et al. (2015)). The EM approach uses remote 

sensing (RS) information to parameterise the model (for example, Hurtt et al. (2004)) and the DR 

approaches are empirical models where RS data is calibrated to field estimates using a number of 

statistical and machine learning approaches such as neural network and regression tress (for example, 

Baccini et al., 2008; Saatchi et al., 2011; Baccini et al., 2012). Each of these methods has limitations 

in terms of data requirements and applicability. Since the SM approach uses average values for each 

class, it is unable to capture the wider variability within each class (Gibbs et al., 2007; Goetz et al., 

2009). The CA approach has the advantage to use additional variables such as elevation, canopy 

heights and to add weights to prioritise one variable against another. However, it suffers from a lack 

of consistent spatial data (Goetz et al., 2009; Tyukavina et al., 2015; Ameray, 2018). The DM 

approach is best suited for monitoring carbon sequestration at larger scales and to prepare wall-to-wall 

carbon map (Goetz et al., 2015). However, for greater accuracy, the DM approach requires active RS 

data such as RADAR or LiDAR for training models and validation as these sensors measure forest 

biomass directly (Goetz et al., 2015).  

With recent improvements in spatial and temporal resolution of RS data, scientists are able to use a 

variety of remote sensing techniques to help quantify carbon in mangrove forests (Table 2.1). The 

data from remote sensing sensors can be used to fill the spatial, attributional, and temporal gaps 

produced from forest inventories leading to estimates closer to actual values. However, the sensor 

does not provide a measurement of carbon content directly, and it is mostly related to the vegetation 

parameters (for example, crown size, tree height, texture and crown shadow), which are very much 

interlinked with tree biomass and carbon content (Ni-Meister, 2015). Therefore, remote sensing 

studies have focused on AGC, and this can act as predictor of other carbon pools such as BGC. 

With the advancement of technology, researchers are now increasingly using sensors like RADAR 

(Radio Detection And Ranging), SAR (Synthetic Aperture Radar), InSAR (Interferometric Synthetic 

Aperture Radar) and LiDAR (Light Detection And Ranging) because of their increased accuracy for 
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measuring biomass from forests directly including mangrove forests (Table 2.1). The homogeneity of 

mangrove forest and the flat underlying topography have led scientists to use canopy height models 

(CHM) to measure AGB, generated from airborne and spaceborne stereo imaging, LiDAR and SAR 

interferometry. By using SRTM (Shuttle Radar Topographic Mission) and ICESat GLAS (Geoscience 

laser altimeter system) elevation data, Simard et al. (2010) estimated above-ground biomass in 

combination with field data. Application of a digital elevation model (DEM) from SRTM was found 

in Simard et al. (2006)’s study, where they measured the height of Florida mangroves, which was then 

combined with field biomass data to estimate biomass for the whole forest. Allometric models were 

used with the mangrove heights derived from the relationship between the ICESat GLAS canopy 

waveform contribution (CWC) and SRTM elevation (Simard et al., 2008). By using a Landsat-derived 

forest cover map and SRTM, Fatoyinbo et al. (2008) successfully estimated the above-ground 

biomass of Mozambique mangrove with allometric models.  

Table 2.1: Application of remote sensing for studying mangrove carbon measurement. 

Sensor Country (Area) Biomass 

parameters 

Accuracy 

RMSE 

Method Study 

Landsat, LiDAR 

RIEGL Q680i-S 

Northern Western 

Australia  

Canopy height SD = ± 7.8 Mg 

AGB ha-1 

Regression Hickey et al. 

(2018) 

SRTM Global mangrove 
130,420 km2  

Canopy height - Regression Tang et al. (2018) 

Push-broom 

hyperspectral sensor  

Malaysia  Individual crown 

area  

- Regression  Suhaili and Lawen 

(2017) 

ALOS-2 PALSAR Hai Pong City, 
Vietnam 

DN to normalized 
radar sigma zero 

(backscatter 

coefficient) 

RMSE = 0.299 
R2 = 0.78 

Machine 
learning  

Pham et al. (2017)  

Worldview-2, ALOS 
ABNIR-2, ASTER 

VNIR, Landsat OLI 8, 

Hyperion 
hyperspectral 

Indonesia Vegetation index  
 

Empirical 
modelling, 

PCA, 

Regression  

Wicaksono (2017) 

UAV RGB  Matang Mangrove 

Forest, Malaysia 

Tree height  Biomass-height 

R2= 0.75 

Regression  Otero et al. (2018) 

ALOS PRISM, ALOS 

World 3D-30m DSM 

Mimika, Indonesia 

Sundarbans, 

Bangladesh Mahakam 
Delta, Indonesia 

Canopy height 4.1, 3.6, 3.25 Regression  Aslan et al. (2018) 

Interferometric 

Synthetic Aperture 

Radar (InSAR) 

Mimika, Indonesia 

193,226 km2 

Mangrove 

composition, canopy 

height 

Classification 

94.38%, kappa: 

0.94, MAE 3 m. 
RMSE 7.28 m 

Quantile 

regression 

methods 

Aslan et al. (2016)  

TanDEM-X, InSAR  Sundarbans, 

Bangladesh andIndia  

Canopy height RMSE 0.774 m, 

correlation 0.852 

Regression  Lee et al. (2015) 

TanDEM-X, InSAR  
 

 

Mexico and 
Mozambique 

Canopy height RMSE 01.069-
1.727 m, 

correlation 

0.851-0.919 

Regression Lee and Fatoyinbo 
(2015) 

ALOS-2 PALSAR Hai Pong City, 

Vietnam 

Backscatter 

coefficient 

35.5 mg ha-1, 

41.3 mg ha-1 

Regression  Pham and Yoshino 

(2017) 
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The historical archive of optical imagery over the past few decades has brought a low-cost or error 

free solution for developing countries to conduct carbon monitoring in forests. In the case of 

mangroves, the most widely used optical imagery is Landsat TM (Fatoyinbo et al., 2008; Aslan et al., 

2016; Omar et al., 2016), followed by SPOT-5 (Hamdan et al., 2013), IKONOS (Proisy et al., 2007), 

ALOS AVNIR-2 (Wicaksono et al., 2016), WorldView-2 (Candra et al., 2016), and GeoEye-1 

(Jachowski et al., 2013). However, the accuracy of the carbon estimates is always hindered by cloud 

cover, image resolution, quality, revisit time, stand complexities and shadows from canopy and 

topography (Ni-Meister, 2015). These limitations can be overcome by object-based image analysis, 

textural image analysis, and species-specific allometric equations. For example, Couteron (2002) 

proposed a Fourier-based textural ordination method to capture structural diversity of the tree crown 

in relation to the growth stage and species in VHR (Very High Resolution) images. 

 

Figure 2.2: Spatial scale, temporal resolution, accuracy, and cost for different methods for monitoring and 

measuring carbon stocks. Modified from Bustamante et al. (2016, p. 96), License Number: 5411440943342, 

License date: Oct 17, 2022. 

Due to the absence of spaceborne laser scanning sensors tailored to forestry, airborne LiDAR is 

considered the most accurate method to estimate biomass or to calibrate other satellite imagery (Ni-

Meister, 2015). Otero et al. (2018) demonstrated the use of an unmanned aerial vehicle (UAV) with 

attached RGB camera to retrieve structural information in the Matang mangrove forest, Malaysia. 

However, large scale estimates of biomass through active sensors are hampered by the associated 

costs and operational limitations (Bustamante et al., 2016) (Figure 2.2). Despite these limitations, 
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LiDAR data have been increasingly used in mangrove studies in the recent years (Feliciano et al., 

2017; Laurin et al., 2017; Fatoyinbo et al., 2018) and they have shown the measurement of AGC from 

airborne LiDAR for mangrove forests. 

The use of optical sensors is restricted to detect land cover changes and the different biophysical 

properties (for example, NDVI (Normalised Difference Vegetation Index), LAI (Leaf Area Index)) 

and are linked statistically to the ground plot to map biomass (Lucas et al., 2015; Bustamante et al., 

2016). On the other hand, estimating biomass needs information on wood volume or tree height. 

Therefore, three-dimensional (3D) remote sensing techniques have been extensively used because of 

the strong relationship between forest height and biomass (Fatoyinbo and Simard, 2013; Fatoyinbo et 

al., 2018). One of the main problems of using an optical and SAR (Synthetic Aperture RADAR) is the 

saturation effect, especially in any heterogeneous forest with high biomass. For instance, Asbridge et 

al. (2016) found SAR saturation of L-band above 100 Mg ha−1. However, the saturation limit is not 

confined to a specific biomass level and is largely dependent on stand characteristics and 

macroecological structural properties (Joshi et al., 2017). For example, Lucas et al. (2007) retrieved 

low backscatter signal in the case of mangroves with large prop root system and high tides. Therefore, 

the threshold level varies as a function of the structure and composition of the forest. 

2.5. Errors and uncertainties in carbon measurement 

Errors and uncertainties in carbon estimation are involved in every phase of carbon estimation 

including the field inventory to the remote sensing measurement of area and carbon estimation. While 

error is defined as the difference between the true value and actual value of measurement and 

uncertainty is the lack of confidence of the parameter values (Harmon et al., 2007). Upscaling field 

carbon stocks estimation using remote sensing produces uncertainty due to geolocation mismatches 

with field plots, variable acquisition angles of satellite imagery, mismatches in tree representation, 

scale mismatches and temporal mismatches in time series analysis (Réjou-Méchain et al., 2019). The 

biomass measurement, conversion to carbon and upscaling to the ecosystem or larger scales (such as 

countries, regions) involves series of statistical models which accumulates uncertainties in each step 
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(Réjou-Méchain et al., 2019; Rahman et al., 2021c). The errors and uncertainties from field plots are 

therefore carried into the remote sensing and to the final carbon map, which altogether make it a 

challenging task to keep errors and uncertainties at low. 

2.6. Conclusions 

The literature review on carbon stocks dynamics in mangrove forests highlighted that the ecosystem 

carbon stocks is composed of both above- and below-ground carbon — either dead or alive, and 

sediment carbon. Given that the diverse nature of the different components of mangroves, each 

component needs different strategies to quantify stored carbon. Allometric models are largely used to 

infer biomass from tree attributes. However, for greater accuracy the carbon estimation needs species- 

and site-specific allometric models and vegetation attributes such as wood density and height. 

Therefore, standard protocols have been developed by different organisations and researchers.  

Remote sensing is widely used to upscale field carbon estimates to the ecosystem level. Optical 

sensors are mainly used to measure forest area to combine field data to estimate carbon density in 

mangrove forests. Historical archives of remote sensing data allow us to monitor area or carbon stock 

changes in any mangrove forest area. On the other hand, RADAR and LiDAR, either airborne or 

satellite, are used to measure biomass directly however signal saturation can underestimate biomass as 

a result of the canopy density, tides and the type of root system.  
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Chapter 3  

 

Study site and field work 
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3.1. The Sundarbans mangrove forest 

The Sundarbans is the world’s largest contiguous mangrove forest situated across Bangladesh (6,017 

km2, including water areas) and India (4,000 km2) (Figure 3.1 and 3.2). Like all other mangroves, it 

also provides plethora of ecosystem services and products to the people of Bangladesh including 

protection from tsunamis and cyclones (Giri et al., 2008). Because of its outstanding ecological value, 

UNESCO declared a portion of the Sundarbans (1,395 km2) as a World Heritage Site in 1997 

(Siddiqi, 2001). Despite its recognized national and international importance, historically this forest 

has been threatened by illegal felling, land conversion, encroachment, shrimp farming, and increasing 

salinity (Ellison et al., 2000) and it is threatened by climate change and sea level rise over the next 

few decades (McLeod and Salm, 2006; Gilman et al., 2008; Alongi, 2015). According to the recent 

IPCC forecasts, this forest would be impacted by increasing sea surface temperatures from 1 to 3 o C 

and 18-20 cm sea level rise, and thereby, increasing salinity 0.5 PSU (Practical Salinity Unit) by 2100 

(Church et al., 2013; Collins et al., 2013). Apart from impacts from other climatic and edaphic factors, 

salinity is the major determinant to vegetation change in the Bangladeshi part of the Sundarbans. 

During the monsoon, this forest usually experiences a large drop in salinity due to the huge network 

of upstream rivers criss-crossing through Bangladesh from the Himalayas (Hoque et al., 2006; Wahid 

et al., 2007), while in the winter the opposite effect is seen due to the lack of freshwater flow (Anwar 

and Takewaka, 2014). More than 90% of freshwater flow has been lost since 1974 due to the 

construction of the Farakka dam in the Indian border leading to higher salinity in the Sundarbans, 

especially in the western part. 



 

25 

 

 

Figure 3.1: Location of Sundarbans between Bangladesh and India. Reproduced from Ghosh et al. (2016) CC 

BY 4.0. 

3.1.1. Climate 

The climate of the Sundarbans is warm, humid, and tropical, where annual precipitation varies from 

1474 to 2265 mm and mean annual minimum and maximum temperature are between 29 o C to 31 o C 

between 1948 and 2011 (Chowdhury et al., 2016; Sarker et al., 2016).  

3.1.2. Geology and soils of the Sundarbans 

The Sundarbans mangrove forest lies in the south-western part of the Bengal Basin, one of the most 

extensive sediment reservoirs in the world composed of unconsolidated Quaternary deposits (Rudra, 

2014). The rapid sedimentation followed by the tectonic collision of the Indian plate with the Tibetan 

plate and the Burmese plate in the Miocene triggered the formation of the Bengal Basin (Alam, 1989). 

Since the Holocene, the dynamic Ganges-Brahmaputra river system has been discharging sediments 

from the Sub-Himalaya and is still delivering >1 Gt/yr of sediment to the delta plain of India and 

Bangladesh (Islam et al., 1999; Syvitski and Milliman, 2007). The Sundarbans is of relatively recent 

origin (3,000-year B.P.) and this mangrove has developed as a result of both fluvial and tidal forces 
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depositing sediments to the GBM river mouth (Goodbred and Kuehl, 2000; Allison and Kepple, 2001; 

Rogers et al., 2013). Previously, the Ganges was the main source of sediments in the Sundarbans, 

however, recent changes have resulted from the merging of the Ganges and Brahmaputra which have 

now migrated to the eastward, far away from the Sundarbans (Rudra, 2014; Islam, 2016b). Together 

with the eastward migration of the primary GBM delta, the construction of the Farakka Barrage in the 

main Ganges River and earthen embankments surrounding the Sundarbans have reduced freshwater 

flow, resulting in reduced fluvial sedimentation in the Bangladesh Sundarbans. This 

geomorphological change, in turn, has led to increased remobilisation of sediments by tidal forces 

(Rogers et al., 2013; Hale et al., 2019; Bomer et al., 2020b). The changed pattern of freshwater flow 

has resulted in a salinity gradient increasing from the east to the west of the Sundarbans. Based on the 

soil salinity variation, the Sundarbans naturally divides into three distinct zones based; i) Oligohaline 

(LSZ) (<2 dS/m, decisiemens per metre), ii) Mesohaline (2-4 dS/m) and iii) Polyhaline (>4 dS/m) 

(Siddiqi, 2001; Chanda et al., 2016b). 

The soil is mainly fine-grained, grey coloured, slightly calcareous, and mostly composed of silts to 

clayey silts (Allison et al., 2003; Bomer et al., 2020a). The subsurface sediment extends up to 6 m in 

depth in the landward direction and up to 4 m in depth in the seaward direction (Allison et al., 2003). 

The median grain size ranges between 16-32 µm reflecting the medium silt range. The average dry 

bulk density (0.81 g cm-3) is higher in the Sundarbans in comparison to other mangroves in the world 

(Bomer et al., 2020a). The soil physical and chemical properties are varied from the eastern to the 

western part of Bangladesh Sundarbans, the eastern part is softer, more fertile and receives more fresh 

sediments than the western part (Siddiqi, 2001). Soils are mostly neutral to alkaline (pH 6.5-8.0), 

whereas the polyhaline zone is more alkaline than the oligohaline zone. Soils of the western and 

southern polyhaline zone are comparatively richer in P, K, Na, Mg, Cl- and Fe, but lower in soil NH4- 

and Na than the eastern oligohaline zone (Siddiqi, 2001; Sarker et al., 2016). This pronounced 

differences in soil nutrients and salinity trigger the diversity and variability of vegetation composition 

in different parts of the Sundarbans. 
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3.1.3. Vegetation dynamics 

A range of studies concluded that the extent of the Bangladesh Sundarbans was almost constant over 

the last 50 years (Emach and Peterson, 2006; Giri et al., 2007; Awty-Carroll et al., 2019). Based on 

per-pixel supervised classification methods, Giri et al. (2007) analysed multi-temporal satellite data 

from 1970s, 1990s, and 2000s using supervised classification approach and found that the areal extent 

of the Sundarbans has not changed significantly (approximately 1.2%) between 1970s to 2000s. The 

forest is however constantly changing due to erosion, aggradation, deforestation and mangrove 

rehabilitation programmes. The net forest area increased by 1.4% from the 1970s to 1990 and 

decreased by 2.5% from 1990 to 2000. The recent updated Global Mangrove Watch (GMW) 

estimates the area of the Sundarbans in 2010 as 4441.59 km2 from their previous estimates of 4168.3 

km2, an increase of 273.29 km2 (Bunting et al., 2018; Bunting et al., 2022a). However, these studies 

included coastal planted mangroves which are not inside the geographical boundary of the 

Sundarbans. 

After analysing four forest inventories from 1926 to 1997, Iftekhar and Saenger (2008) reported a 

0.03% annual decline of vegetation cover during the period 1981–1997 attributing to this temporal 

and spatial variation of salinity. Based on topographic maps and Landsat images, Reddy et al. (2016) 

estimated only 6.5% forest loss from 1930 to 2014. On the other hand, Potapov et al. (2017) found no 

net forest cover change as the forest gain compensated forest loss between 2000 and 2014. This raises 

questions whether there is any change in distribution of tree species, which is essential to understand 

the impacts of climate change and other drivers on any ecosystem. Ghosh et al. (2016) studied the 

species composition change over 38 years from 1977 to 2015 across the entire Sundarbans and found 

a 9.9% decline of both Heritiera fomes and Excoecaria agallocha and 12.9%, 380.4% and 57.3% rise 

in Ceriops decandra, Sonneratia apetala and Xylocarpus mekongensis, respectively. The study 

classified the whole Sundarbans from the field data obtained from only the Bangladesh area. 

Therefore, this study lacks representative training data and the classification accuracy is low, 

especially in the Indian Sundarbans. The most recent estimation by Mahmood (2015a) showed about 

53% of the dominant Heritiera fomes population has declined over 108 years from 1906, and 37% of 



 

28 

 

the existing trees are seriously affected by ‘Top dying disease’ as a result of increased salinity. This 

result urges continuous monitoring of the forest in the species level to unravel our understating of 

biomass change, which would in turn help decision making regarding sustainable management of this 

forest. 

 

 

 

 

 

 

Figure 3.2: Sundarbans mangrove forest. Left: view from ground in low tide (Photo: Sajjad Hossain Tuhin), 

Right: aerial view of species composition (Photo: Zaheer Iqbal Ezaz) (February 2019). 

3.1.4. Permanent sample plots  

In the Sundarbans, there were 120 permanent sampling plots (PSP) which were established in the 

beginning of the twentieth century to study and monitor the tree growth in 1987 (Figure 3.3). The area 

of the rectangular PSP is 20 m × 100 m which comprises 2,000 m2. These locations were selected 

based on salinity, forest types, accessibility and for the representation of the nature of the ecosystem. 

The area is also divided into 55 compartments of variable sizes for the management as single unit. 

These compartments were used to operate felling operations in different management plans in the 

past.  

Since the area of each PSP is very large, the present study took random small sized plots in each PSP. 

The location of all PSP is close to the riverside which is always subject to erosion. On the other hand, 

all PSPs did not cover the whole Sundarbans, therefore, additional 20 sample plots were taken outside 

the PSP to cover the whole Bangladesh Sundarbans. 
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Figure 3.3: Location of the permanent sample plots in the Sundarbans. Reproduced from Mahmood (2015a) 

with permission.  

3.1.5. Measurement of carbon stocks and allometric models  

Until recently, the measurement of biomass and carbon stocks in the Sundarbans was mostly based on 

field measurements from a relatively small number of sample plots, sometimes unevenly distributed 

and based on an allometric model derived from other mangroves or tropical forest. According to 

Kauffman and Donato (2012), species specific regional equations are desired to produce greater 

accuracy in carbon measurement rather than general equations. Hence, most of the earlier studies may 

not be relevant for the measurement of carbon in the Sundarbans. Several complete inventories were 

conducted in the 1930s, 1960s, 1980s and 1990s for monitoring vegetation dynamics (Iftekhar and 

Saenger, 2008). The first comprehensive attempt to measure carbon stocks in the Sundarbans was 
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undertaken in 2009-10 under the Integrated Protected Area Co-Management (IPAC) project supported 

by U.S. Forest Service (USFS) and U.S. Agency for International Development (USAID). In order to 

measure changes in carbon stocks, the carbon stock was estimated using 1997 inventory data and 

compared with similar parameters of 2009-10 inventory (BFD, 2010). In both measurements, they 

used a locally derived volume equation and conversion factors to convert volume into biomass. By 

using an allometric equation, Rahman et al. (2015a) calculated carbon stocks at the whole ecosystem 

level by combining both above and below-ground from the data obtained in 2009-10 inventory by the 

Forest Department, Bangladesh. They investigated the variation of carbon stocks in different 

species/species groups and salinity ranges. However, the allometric equation, which was developed 

from other mangroves, may not represent the mangroves of the Indian subcontinent and thereby fails 

to achieve accuracy. Based on their study, Chanda et al. (2016b) simulated the carbon stocks in the 

Sundarbans by using Markov Chain and cellular automata in order to predict future carbon storage. 

Most recently, Kamruzzaman et al. (2017) measured above-ground carbon in the medium salinity 

zone. However, this study also did not use a locally derived allometric equation despite of having 

some species-specific allometric equations from both Bangladesh and India. Very recently GOB 

(2019) estimated total ecosystem carbon stocks in the Sundarbans using a field inventory and 

developed site-specific common allometric models by Mahmood et al. (2019). 

3.2. Forest survey 

Forest survey in the mangrove forest is always challenging for its proximity to the sea which enables 

people to move from one place to another using only river way. Again, the adaptation features of 

mangroves such as dense network of upright roots (pneumatophores) reduces the accessibility inside 

forests and thereby roaming in the forest needs extra effort and time compared to terrestrial forest 

(Figure 3.4). Moreover, the Sundarbans mangrove forest contains the Royal Bengal Tiger (Panthera 

tigris) which possesses a major life risk while surveying inside the forests. There are also some other 

furious animals such as snakes and crocodiles all over the Sundarbans (Figure 3.4). Therefore, safety 

issues are of major concern before doing forest survey inside the Sundarbans. 
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Figure 3.4: Challenges for fieldwork in the Sundarbans mangrove forest. Left: venomous snake inside the forest 

plot, Right: Pneumatophores of Heritiera fomes reduce the mobility inside forest. 

 

3.2.1. Sampling design and data collection 

The field work for this study was conducted in two phases (August 2018 and between February and 

April 2019). Temporary circular plots were established in each PSP with the radius of 11.3 m that 

accounts in total 400 m2
, one-fifth of the PSP. Due to the fact that most of the PSP is located near the 

riverbank and these 120 PSPs don’t cover the whole Sundarbans, additional 20 plots were taken, 

which makes altogether 140 sample plots (Figure 3.5).  
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 Figure 3.5: Plot location in the Sundarbans mangrove forest, Bangladesh. ESRI Basemap Sources: Esri, 

HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community. 

 

The study collected biophysical information from the above-ground trees, poles, dead and down wood 

and pneumatophores. On the other hand, below-ground carbon was estimated and measured from 

roots and sediments, respectively. The study followed circular nested plot to retrieve data from all 

structural categories of above ground component. While the circular plot is designed to get data from 

the trees, it was also divided into three sub-plots with radius of 1m, 2m and 5m to take measurement 

of seedlings, saplings and poles (Figure 3.6). In case of trees and poles, Diameter at Breast Height 

(DBH) and total height was measured by a diameter tape and a Vertex III hypsometer (Haglöf, 

Sweden), respectively (Figure 3.7). In case of the presence of any buttresses, the DBH was measured 

above the buttresses (Figure 3.7). While there was any forking below the breast height (1.3 m), it was 

considered as two trees. 
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Figure 3.6: The nested circular plot and different measured components of vegetation and sediment in each 

segment. 

 

Decay status of each tree was also recorded (if any) in three statuses: Decay 1, decay 2, Decay 3 with 

increasing number indicates more decay. In order measure the wood density, wood cores were 

collected at breast height (1.3 m) with increment borer for each tree species found in the plot (Figure 

3.7). For pneumatophores, a 1 m × 1 m plot was used to count the number of pneumatophores for all 

species. For dead and down wood, two cross-sectional transect was taken to count the number of 

pieces in three categories based on diameter in the middle: Fine ( > 0.6 cm), Small ((0.6-2.5 cm) and 

Medium (2.5-7.6 cm). In case of non-tree vegetation like Nypa fruticans, the number of leaves and for 

Phoenix sylvestris, the number of stems were counted. In order to measure carbon in pneumatophores 

and other non-tree such as, some specimens with variable sizes were weighed and subsequently 

brought to the laboratory for oven drying. 

In this study, sediment samples were collected from 55 plots, of which 50 plots are from PSPs 

selected at random, and the remaining five plots are from outside PSPs to represent areas outside PSP. 

Sampling was undertaken in two phases: In the first phase, three sediment cores of 50 cm depth were 



 

34 

 

taken from 18 PSPs. After laboratory analysis of the samples from the first 18 PSPs, it was decided to 

extend the sediment sampling depth to 1 m and take two core samples from each plot because of little 

within-plot variation among the initial 54 core samples. In the second phase, an additional 37 PSPs 

were sampled with two cores sampled at each plot. Altogether, 126 sediment cores from 55 plots were 

sampled across the whole of the Bangladesh Sundarbans (Figure 3.8).  

  

  

Figure 3.7: DBH and height measurement and collection of wood core. Top-left: DBH measurement by 

diameter tape above buttress, top-right: DBH measurement above forking, bottom-left: height measurement with 

a Vertex-III hypsometer, bottom-right: wood core collection through increment borer. 
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3.2.2. Laboratory analysis 

For each core, samples were freeze-dried and re-weighted to determine the bulk density. Bulk density 

was calculated by dividing the dry mass of the soil by the volume of the soil. Soil pH and soil salinity 

(as soil conductivity) were measured from a portion of the homogenised dry soil for each core. Dried 

soils were diluted with distilled water (1:5 ratio), and subsequently, soil pH was measured using a 

Jenway 3510 Standard Digital pH Meter and soil salinity by a handheld Jenway 470 Conductivity 

Meter (Hardie and Doyle, 2012). 

  

  

Figure 3.8: Sediment collection and the determination of SOC in the laboratory. Top-left: sediment core 

collection, top-right: sediment core, bottom-left: weighing sediment sample for measuring organic carbon, 

bottom-right: loading sediment sample in the CHN analyser. 
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To determine the soil organic carbon (SOC) and nitrogen content of the soil, any large stones or twigs 

were removed from the sample and subsequently homogenised and ground with a ball mill. 40 mg of 

the sediment were then passed through an elemental analyser (Thermo Scientific Flash 2000-

NC Soil Analyzer) to derive the total carbon and nitrogen as a percentage (Figure 3.8). Inorganic 

carbon content was deducted from the total carbon to obtain the organic carbon percentage, according 

to Howard et al. (2014). The inorganic carbon content was measured from random samples across all 

salinity zones using an Analytik Jena Multi EA (Elemental Analyser) 4000. Soil organic carbon 

density (gm cm-3) for each sample and total organic carbon content (Mg ha-1) of each depth and core 

were measured according to Howard et al. (2014). 

3.3. Conclusions 

The Sundarbans is a unique ecosystem with high biodiversity compared to other mangrove forest. 

Despite some initiatives for the estimation of carbon stocks in the Sundarbans, there is no 

comprehensive study combining field inventory data with remote sensing to estimate ecosystem 

carbon stocks in the Bangladesh Sundarbans. Most studies used pan-tropical models which potentially 

do not represent species diversity and used wood density which may increase the uncertainty. In this 

regard, species-specific allometric models and carbon conversion factors may help to better 

capture the variability due to species composition. 
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Chapter 4  

 

 

Is soil organic carbon underestimated in the largest 

mangrove forest ecosystems? Evidence from the 

Bangladesh Sundarbans 
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Abstract 

Globally, mangroves sequester a large amount of carbon into the sediments, although spatial 

heterogeneity exists owing to a wide variety of local, regional, and global controls. Rapid 

environmental and climate change, including increasing sea-level rise, global warming, reduced 

upstream discharge and anthropogenic activities, are predicted to increase salinity in mangroves, 

especially in the Bangladesh Sundarbans, thereby disrupting this blue carbon reservoir. Nevertheless, 

it remains unclear how salinity affects the below-ground soil carbon despite the recognised effect on 

above-ground productivity. To address this gap, research was undertaken in the Bangladesh 

Sundarbans to compare total soil organic carbon (SOC) across three salinity zones and to explore any 

potential predictive relationships with other physical and chemical properties, and vegetation 

characteristics. Total SOC was significantly higher in the oligohaline zone (74.8 ± 14.9 Mg ha-1), 

followed by the mesohaline (59.3 ± 15.8 Mg ha-1), and polyhaline zone (48.3 ± 10.3 Mg ha-1) 

(ANOVA, F2, 500 = 118.9, p <0.001). At all sites (55 plots), the topmost 10 cm of soil contained a 

higher SOC density than the bottom depths (ANOVA, F3, 500 = 30.1, p <0.001). On average, Bruguiera 

spp. stand holds the maximum SOC measured, followed by two pioneer species Sonneratia apetala 

and Avicennia spp. Multiple regression results indicated that soil salinity, organic C: N and tree 

diameter were the best predictor for the variability of the SOC in the Sundarbans (R2 = 0.62). Despite 

lower carbon in the soil, the study highlights that the conservation priorities and low deforestation 

have led to less CO2 emissions than most sediment carbon-rich mangroves in the world. The study 

also emphasised the importance of spatial conservation planning to safeguard the soil carbon-rich 

zones in the Bangladesh Sundarbans from anthropogenic tourism and development activities to 

support climate change adaptation and mitigation strategies.  

4.1. Introduction 

Mangroves are recognised as one of the most carbon-dense forest types in the world due to their 

efficient carbon sequestration capacity into both above and below-ground carbon pools (Donato et al., 

2011; Alongi, 2012; Sanderman et al., 2018). Recent assessments of soil carbon suggest that 
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mangrove ecosystems contain, on an average, between 856 and 1,023 Mg of carbon per hectare, with 

the majority (~85%) of this carbon stored in the soil (Donato et al., 2011; Pendleton et al., 2012; 

Sanderman et al., 2018; Kauffman et al., 2020). This large amount of soil carbon is of global 

importance due to its potential to store sequestered CO2 emissions for the long term and help to 

mitigate adverse effects of climate change (McLeod et al., 2011; Duarte et al., 2013; Abdullah et al., 

2016). To recognise the importance of mangrove forests for carbon sequestration, the United Nations 

Environmental Programme (UNEP) designated this ecosystem as “Blue Carbon” along with other 

coastal vegetated ecosystems such as seagrass meadows and saltmarshes (Nellemann et al., 2009; 

Lovelock and Duarte, 2019; Macreadie et al., 2019). This growing worldwide importance of 

mangroves has led to a substantial reduction of mangrove loss leading to reductions in CO2 emissions 

in the last three decades (Friess et al., 2019). At the same time, mangroves have gained substantial 

traction in being managed, protected and restored as part of national and global climate change 

mitigation policies and actions including Nationally Determined Contributions (NDC) towards the 

Paris Agreement and the climate action goal (goal 13) under United Nations Sustainable Development 

Goals (SDG) (Taillardat et al., 2018; Friess et al., 2020a). However, variability and uncertainty in 

SOC estimation is a key barrier to the inclusion of mangroves (and other blue carbon) in national and 

international policy tools and frameworks. 

Despite covering only 0.1% of the world’s total landmass, mangroves sequester more carbon per unit 

area than any other natural ecosystem (Atwood et al., 2017; Lovelock and Duarte, 2019). With 

autochthonous inputs from the productive above-ground, mangrove soils store large quantities of 

carbon as a result of the low decomposition rate resulting from anoxic conditions (Alongi, 2002; 

Donato et al., 2011). Mangroves are also highly efficient traps for allochthonous (from outside of the 

ecosystem) inputs through their dense network of above-ground roots. The rising elevation of 

mangroves in response to sea-level rise allows large accommodation spaces to sequester more carbon 

in the soil, which barely reaches saturation (Krauss et al., 2014; Rogers et al., 2019). Therefore, 

mangroves act as an efficient carbon store despite continuous threats from deforestation, land-use 

change, sea-level rise, and climate change. 
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Blue carbon research across the globe has highlighted considerable spatial heterogeneity in soil 

organic carbon (SOC) at multiple scales (Atwood et al., 2017; Sanderman et al., 2018). At a regional 

and global scale, SOC variability has been linked to net primary productivity (Alongi, 2012; Twilley 

et al., 2017), latitude/climate (Rovai et al., 2018; Twilley et al., 2018; Kauffman et al., 2020), coastal 

geomorphology (Rovai et al., 2018; Twilley et al., 2018) and Holocene sea-level trends (Rogers et al., 

2019). These physical and biological factors and geomorphic processes promote and develop unique 

coastal environmental settings, which ultimately drive macroscale variation in SOC (Rovai et al., 

2018). The site-specific variability in SOC is largely attributed to differences in species composition 

(Ren et al., 2008), stand age (Lovelock et al., 2010; Donato et al., 2011), sources of allochthonous 

particles (Bouillon and Boschker, 2006; Yang et al., 2014), soil physicochemical properties (Freeman 

et al., 2004; Kristensen et al., 2008; Banerjee et al., 2018), elevation and tidal regimes (Liu and Lee, 

2006; Spivak et al., 2019), plant-litter biochemistry (Kristensen et al., 2008; Brodersen et al., 2019) 

and plant-microbe interactions (Fontaine et al., 2007; Alongi, 2014). Several soils and environmental 

characteristics such as pH, salinity, organic matter, precipitation and tidal inundation influence 

mangrove productivity and can also directly or indirectly influence SOC (Yando et al., 2016). 

Therefore, careful consideration of relevant factors is vital for reliable estimation of SOC at any 

particular spatial scale.  

Table 4.1: Comparison of Soil Organic Carbon (SOC) density and stocks among studies in the Sundarbans and 

globally. 

Study 

area 
Study 

Sample 

size 
Depth (cm) Methods 

Mean Soil 

organic carbon 

percentage (%) 

(range) 

Mean Soil 

organic 

carbon 

density 

(gm/cm3) 

(range) 

Mean top m 

Soil Organic 

Carbon 

Storage 

(Mg/ha) 

(range) 

S
u

n
d

a
rb

a
n

s 

B
an

g
la

d
es

h
 

Bomer et al. 

(2020a) 
56 100 cm 

Coring, 

CHN 

analyser 

0.9 (0.6-1.5) 
0.010 (0.008- 

0.011) 
- 

Khan and 

Amin (2019) 
35 

15 cm 

(0-15) 

Coring, wet 

oxidation 
0.6 (0.4 – 1.0) - - 

Sanderman 

et al. (2018) 
- 100 cm 

Literature 

and model 

based 

- - 127 (74- 463) 

Atwood et al. 

(2017) 
- 100 cm 

Literature 

and model 

based 

- - 118 

Prasad et al. 

(2017) 
400 

100 cm (1 

cm interval) 

Coring, CN 

analyser 
1.25 (0.8 – 2.4) - - 
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The Sundarbans is the largest contiguous mangrove forest in the world and is situated in the lower 

delta plain of the Ganges-Brahmaputra-Meghna (GBM) delta and stretches across political boundaries 

between Bangladesh and India (Giri et al., 2011; Sarker et al., 2016). It is either mostly excluded from 

the global estimates of mangrove SOC (Table 3.1) or is underrepresented due to a limited number of 

samples or perceived poor data quality (Donato et al., 2011; Jardine and Siikamäki, 2014; Atwood et 

al., 2017; Sanderman et al., 2018; Twilley et al., 2018; Kauffman et al., 2020). A range of studies into 

SOC content in mangrove soils of the Sundarbans have been carried out (Table 3.1), but these all have 

Hossain and 

Bhuiyan 

(2016) 

96 5 cm (0-5) 
Coring, wet 

oxidation 
1.2 (0.6 – 2.0) - - 

Rahman et 

al. (2015a) 
150 

100 cm (0-

30, 30-100) 

Coring, wet 

oxidation 
- 

0.011 (0.007 – 

0.014) 
112 (90 – 134) 

Donato et al., 

(2011) 
4 

100 cm (0-

30, 30-100) 

Coring, wet 

oxidation 
1.7 (1.6-1.7) 

0.016 (0.015– 

0.016) 
- 

Allison et al. 

(2003) 
4 

600 cm (0-

600) 

Coring, 

CHN 

analyser 

0.5 -1.1 - - 

In
d

ia
 

Dutta et al. 

(2019) 
48 

40 cm (0-

10, 10-20, 

20-30, 30-

40) 

Coring, wet 

oxidation 
1.25 (0.8-1.6) - - 

Prasad et al. 

(2017) 
300 

100 cm (1 

cm interval) 

Coring, CN 

analyser 
0.8-5.2 - - 

Dutta et al. 

(2013) 
15 

25 cm (0-5, 

5-10, 10-

15,15-20, 

20-25) 

Coring, 

TOC 

analyser 

1.8 (1.2 – 2.1) 
0.017 (0.013 – 

0.019) 
- 

Banerjee et 

al. (2012) 
140 

40 cm (0-

10, 10-20, 

20-30, 30-

40) 

Coring, wet 

oxidation 
1.0 (0.5 – 1.4) 

0.011 (0.007 – 

0.015) 
- 

Mitra et al. 

(2012) 
120 

40 cm (0-

10, 10-20, 

20-30, 30-

40) cm 

Coring, wet 

oxidation 
0.7 (0.4 – 1.1) 

0.009 (0.006 – 

0.012) 
- 

Ray et al. 

(2011) 
16 

30 cm (0-

30) 

Coring, wet 

oxidation 
0.6 (0.5-0.7) - - 

 

Global 

studies 

Kauffman et 

al. (2020) 

190 sample plot data from 5 continents 

in different soil depth 
- - 334 (33 – 789) 

Sanderman 

et al. (2018) 

Model based estimation of carbon 

from literature values of 1812 samples 
- - 361 (94-628) 

Rovai et al. 

(2018) 

Model based estimation of carbon 

from literature values of 932 samples 
- 

0.033 (0.001 – 

0.153) 
- 

Atwood et al. 

(2017) 

Literature based estimation from 1230 

sampling locations 
- - 

283 (15 – 

1527) 

IPCC (2014) Literature based estimation - - 428 

Jardine and 

Siikamäki 

(2014) 

Model based estimation of carbon 

from literature values of 932 samples 
5.7 (0.1 – 43.3) 

0.032 (0.014 – 

0.115) 

369 (272 – 

703) 

Donato et al. 

(2011) 

Field based data from Indo-pacific 

area of 25 samples 
11.9 (1.7 -21.5) 

0.043 (0.016 – 

0.076) 
- 
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limitations. The first comprehensive carbon inventory throughout the Sundarbans was completed by 

the Bangladesh Forest Department (BFD) in 2009-10; however, the wider vertical sample depth might 

have an effect on the SOC estimation within the top meter (Rahman et al., 2015a). Allison et al. 

(2003) and Donato et al. (2011) investigated soil organic carbon at greater depths (>1 m) in the 

Bangladesh Sundarbans, however, the number of samples (2 and 6 respectively) was not sufficient to 

address the variability within the forests. Studies by Khan and Amin (2019) and Hossain and Bhuiyan 

(2016) measured SOC from different parts of the Sundarbans, however, the sampling was only 

performed within the top 15 cm. All previous studies of SOC in the Sundarbans have limitations 

resulting from low spatial sampling intensity and limited analysis of soil depth range. Moreover, some 

global studies like Rovai et al. (2018) argued that past climate-based estimation overestimated SOC 

by up to 86% for deltaic settings like the Sundarbans. Therefore, accurate investigation on the spatial 

variation of soil organic carbon and the identification of major controls for such variation in the 

Bangladesh Sundarbans is urgently needed. 

Increasing salinity in the inundated mangroves stimulate a wide range of biogeochemical reactions- 

including enhancing sulphate concentrations, cation exchange, ionic and osmotic stress, acidity, and 

turbidity and at the same time reducing soil redox potential and oxygen levels (Setia et al., 2013; Luo 

et al., 2019). These soil biogeochemical changes in turn alter sediment characteristics and modify 

plant and microbe communities, which ultimately affect both the soil organic carbon pool and quality. 

Increased soil salinity affects organic matter solubility by altering flocculation of different soil 

particles (Wong et al., 2009; Wong et al., 2010; Rath and Rousk, 2015). Investigations of tidal 

wetlands across the world reveals a significant negative relationship between the soil organic carbon 

pool and salinity (Nyman et al., 1990; Craft, 2007; Więski et al., 2010; Morrissey et al., 2014; Hu et 

al., 2016). High soil salinity decreases decomposition rates by lowering microbial activity in the soil 

and lowers autochthonous carbon input by reducing plant productivity leading to lower organic 

carbon in the soil (Baldwin et al., 2006; Marton et al., 2012; Setia et al., 2013; Liu et al., 2017; Zhao 

et al., 2017). High salinity in general acts as an inhibitor of carbon mineralisation, however the 

opposite is also evident in some studies suggesting that a small increase in salinity promotes 
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mineralisation process in the oligohaline zone, while in the mesohaline and polyhaline zones, elevated 

salinity reduces the mineralisation rate (Luo et al., 2019). Therefore, the impact of salinity on the soil 

organic carbon pool and quality is not uniform in all wetland settings, rather it depends on the local 

geomorphology and hydrological characteristics.  

The aim of the present study is to estimate soil organic carbon (SOC) in the Bangladesh part of the 

Sundarbans mangrove forest and to better understand the relationship of SOC within three salinity 

zones (oligohaline, mesohaline and polyhaline) and major forest types. The study hypothesises that 

higher salinity zones (polyhaline) would yield a lower organic soil carbon stocks as a reflection of 

lower productive vegetation and altered soil physical and biological processes compared with the 

lower salinity zone (oligohaline). The relationships between physical and chemical properties and 

vegetation characteristics with SOC are also investigated to develop dependable predictive models for 

this forest. The novelty of this study lies in the extensive stratified random sampling from across the 

Bangladesh Sundarbans combined with vertical investigation of soil depth up to 1 m. 

4.2. Material and methods 

4.2.1. Study area 

The Sundarbans is the largest single block of mangrove forest in the world and a Ramsar and 

UNESCO World Heritage site (Figure 3.1) (Giri et al., 2011; Sarker et al., 2016). The Bangladesh 

Sundarbans is situated between 21º30’ N and 22º30’ N and 89º00’ E and 89º55’ E. The climate of the 

Sundarbans is warm, humid, and tropical, where annual precipitation varies from 1474 to 2265 mm 

and mean annual minimum and maximum temperature are between 29o C to 31o C (Chowdhury et al., 

2016; Sarker et al., 2016). Based on the soil salinity variation, the Sundarbans naturally divides into 

three distinct zones based; i) Oligohaline (LSZ) (<2 dS/m, decisiemens per metre), ii) Mesohaline (2-

4 dS/m) and iii) Polyhaline (>4 dS/m) (Siddiqi, 2001; Chanda et al., 2016b). 
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Figure 4.1: Sundarbans mangrove forest, Bangladesh. Legend colour represents three major salinity zones 

(Chanda et al., 2016b). ESRI Basemap Sources: Esri, HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap 

contributors, and the GIS User Community. 

Several studies have identified a relationship between tree species abundance along the east-west 

salinity gradient (Iftekhar and Saenger, 2008; Aziz and Paul, 2015; Sarker et al., 2016; Sarker et al., 

2019a). Although Excoecaria agallocha is abundant in all three salinity zones, Heritiera fomes (the 

characteristic species in the Bangladesh Sundarbans) is dominant in both the oligohaline and 

mesohaline zones, whereas Ceriops decandra is abundant in the polyhaline zone (Sarker et al., 

2019a). Some pioneer species, such as Avicenna spp. and Sonneratia apetala are also present in the 

mudflats all over the Sundarbans. A short description of all 23 tree species from 10 families found in 

this study is presented in Table A.1.  

4.2.2. Geology and soils of the Sundarbans 

The Sundarbans mangrove forest lies in the south-western part of the Bengal Basin, one of the most 

extensive sediment reservoirs in the world composed of unconsolidated Quaternary deposits (Rudra, 

2014). The rapid sedimentation followed by the tectonic collision of the Indian plate with the Tibetan 

plate and the Burmese plate in the Miocene triggered the formation of the Bengal Basin (Alam, 1989). 
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Since the Holocene, the dynamic Ganges-Brahmaputra river system has been discharging sediments 

from the Sub-Himalaya and is still delivering >1 Gt/yr of sediment to the delta plain of India and 

Bangladesh (Islam et al., 1999; Syvitski and Milliman, 2007). The Sundarbans is of relatively recent 

origin (3,000-year B.P.) and this mangrove has developed as a result of both fluvial and tidal forces 

depositing sediments to the GBM river mouth (Goodbred and Kuehl, 2000; Allison and Kepple, 2001; 

Rogers et al., 2013). Previously, the Ganges was the main source of sediments in the Sundarbans, 

however, recent changes have resulted from the merging of the Ganges and Brahmaputra which have 

now migrated eastward, far away from the Sundarbans (Rudra, 2014; Islam, 2016b). Together with 

the eastward migration of the primary GBM delta, the construction of the Farakka Barrage in the main 

Ganges River and earthen embankments surrounding the Sundarbans have reduced freshwater flow, 

resulting in reduced fluvial sedimentation in the Bangladesh Sundarbans. This geomorphological 

change, in turn, has led to increased remobilisation of sediments by tidal forces (Rogers et al., 2013; 

Hale et al., 2019; Bomer et al., 2020b). The changed pattern of freshwater flow has resulted in a 

salinity gradient from the east to the west of the Sundarbans.  

The soil is mainly fine-grained, grey coloured, slightly calcareous, and mostly composed of silts to 

clayey silts (Allison et al., 2003; Bomer et al., 2020a). The subsurface sediment extends up to 6 m in 

depth in the landward direction and up to 4 m in depth in the seaward direction (Allison et al., 2003). 

The median grain size ranges between 16-32 µm reflecting the medium silt range. The average dry 

bulk density (0.81 g cm-3) is higher in the Sundarbans in comparison to other mangroves in the world 

(Bomer et al., 2020a). The soil physical and chemical properties are varied from the eastern to the 

western part of Bangladesh Sundarbans, the eastern part is softer, more fertile and receives more fresh 

sediments than the western part (Siddiqi, 2001). Soils are mostly neutral to alkaline (pH 6.5-8.0), 

whereas the polyhaline zone is more alkaline than the oligohaline zone. Soils of the western and 

southern polyhaline zone are comparatively richer in P, K, Na, Mg, Cl- and Fe, but lower in soil NH4- 

and Na than the eastern oligohaline zone (Siddiqi, 2001; Sarker et al., 2016). This pronounced 

differences in soil nutrients and salinity trigger the diversity and variability of vegetation composition 

in different parts of the Sundarbans.  
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4.2.3. Sediment and tree data collection 

In the Bangladesh Sundarbans, permanent sample plots (PSP) were established in 1986 by the ODA 

(Overseas Development Administration) for monitoring growth, regeneration, and long-term 

ecological changes (Chaffey et al., 1985). A total of 120 PSPs (20 m × 100 m) were established to 

measure growth rate, regeneration, stocking, and crop composition based on salinity, forest type and 

accessibility (Iftekhar and Saenger, 2008; Sarker et al., 2019b) (Figure 3.1). In this study, sediment 

samples were collected from 55 plots, of which 50 plots are from PSPs selected at random, and the 

remaining five plots are from outside PSPs to represent areas outside PSP. Sampling was undertaken 

in two phases: In the first phase, three sediment cores of 50 cm depth were taken from 18 PSPs. After 

laboratory analysis of the samples from the first 18 PSPs, it was decided to extend the sediment 

sampling depth to 1 m and take two core samples from each plot because of little within-plot variation 

among the initial 54 core samples. In the second phase, an additional 37 PSPs were sampled with two 

cores sampled at each plot. Altogether, 126 sediment cores from 55 plots were sampled across the 

whole of the Bangladesh Sundarbans (Figure 3.1).  

The location of the cores within a PSP was decided by establishing a random circular plot with a 

radius of 11.3 m (an area of 400 m2). Within each plot, a small circular plot was laid with a 5 m radius 

and sediment cores were taken from east, west and south side (east and west for two cores) from the 

centre, perpendicular to each other. The cores were taken using an open-faced auger (6 cm diameter), 

which was further subdivided into four depths (0-10, 10-30, 30-50 and 50-100 cm), following the 

method of Kauffman and Donato (2012). Sediment sub-samples were taken from the middle of each 

core section with fixed 2.5 cm length, sealed in plastic bags and subsequently placed in an icebox to 

reduce oxidation. The sub-samples were kept below 4 OC in zip-sealed plastic bags until laboratory 

processing. 

For vegetation data, the Diameter at Breast Height (DBH) and height were measured for all trees 

within the 11.3 m radius plot. DBH was measured at 1.3 m and height was measured with a Vertex-III 

hypsometer. For small trees with a DBH <14.5 cm, a smaller circular plot (radius 5 m) was nested 

within the 11.3 m plot. The elevation of each plot was calculated by subtracting the mean tree height 
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of the plot from the Digital Surface Model (DSM) taken from the TanDEM-X 90 m satellite data 

(Hawker et al., 2019). For major forest types, single-species dominance was determined when the 

relative composition is >75%, and the remaining forest types are termed as a Mixed type. 

4.2.4. Laboratory analysis 

4.2.4.1. Soil physical and chemical properties  

For each core, samples were freeze-dried and re-weighted to determine the bulk density. Bulk density 

was calculated by dividing the dry mass of the soil by the volume of the soil. Soil pH and soil salinity 

(as soil conductivity) were measured from a portion of the homogenised dry soil for each core. Dried 

soils were diluted with distilled water (1:5 ratio), and subsequently, soil pH was measured using a 

Jenway 3510 Standard Digital pH Meter and soil salinity by a handheld Jenway 470 Conductivity 

Meter (Hardie and Doyle, 2012). 

4.2.4.2. Total soil organic carbon (SOC) 

To determine the soil organic carbon (SOC) and nitrogen content of the soil, any large stones or twigs 

were removed from the sample and subsequently homogenised and ground with a ball mill. 40 mg of 

the sediment were then passed through an elemental analyser (Thermo Scientific Flash 2000-

NC Soil Analyzer) to derive the total carbon and nitrogen as a percentage. Inorganic carbon content 

was deducted from the total carbon to obtain the organic carbon percentage, according to Howard et 

al. (2014). The inorganic carbon content was measured from random samples across all salinity zones 

using an Analytik Jena Multi EA (Elemental Analyser) 4000. Soil organic carbon density (gm cm-3) 

for each sample and total organic carbon content (Mg ha-1) of each depth and core were measured 

according to Howard et al. (2014). 

4.2.5. Statistical Analysis 

All statistical analysis and graphics used R 3.6.1 for Windows (R Core Team, 2019). Total organic 

carbon (Mg ha-1), organic carbon density (gm cm-3) and bulk density (gm cm-3) among three salinity 

zones and four depths were compared with two-way analysis of variance (ANOVA) test using the 
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‘car’ package (Fox and Weisberg, 2019). In order to compare soil organic carbon among vegetation 

types, total organic carbon (Mg ha-1) was compared with one-way analysis of variance (ANOVA). 

The results of ANOVA are summarized in Supplementary Information. To derive the relationship 

among organic carbon density (g cm-3), bulk density and total nitrogen content, data from all the core 

subsections (n = 512) were used. To examine the relationship among SOC and soil physical and 

chemical parameters (soil salinity, pH, bulk density, Total N, organic C: N, elevation, latitude and 

longitude) and vegetation characteristics (species richness, tree density, mean DBH and mean height), 

stepwise multiple linear regression analysis was undertaken. SOC was considered as the dependant 

variable, whereas all the selected parameters were independent variables. Correlation analysis and 

principal component analysis (PCA) were carried out to decrease the number of explanatory variables 

and to reduce collinearity in the regression model. All the variables were standardised before PCA 

according to Legendre and Legendre (2012). Eigenvalues greater than one were retained and variables 

with factor loadings >0.35 were treated as potential explanatory variables for the regression model 

(Jackson, 1993). In all cases, the data were logarithmic (natural) transformed (if needed) to meet the 

assumptions of normality and equal variances by using Shapiro Wilk and Levene’s tests, respectively 

and subsequently back-transformed to present graphically. The graphical output of the linear model 

was generated using the ‘ggplot2’ package (Wickham, 2016).  

4.3. Results  

4.3.1. Soil organic carbon, salinity zones and soil depth  

The average SOC density varied from 0.003 gm cm-3 to 0.009 gm cm-3 in different salinity zones and 

soil depths (two-way ANOVA for Ln (SOC density), salinity zones, F2, 500 = 112.3, p <0.001 and soil 

depths, F3, 500 = 30.1, p <0.001) (Figure 3.2, Table A.2). Both salinity zone and soil depth had a 

significant interaction effect on the variability of SOC density in the Sundarbans (F6, 500 = 3.5, p 

<0.01) (Table A.2). Significantly higher SOC density was found in the topmost depth followed by the 

subsequent three depths; however, SOC density in the intermediate depths (between 10-30 cm and 30-

50 cm) are not significantly different (Figure 3.2B), which indicates the unequal variability of SOC 
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with soil depth. The oligohaline zone comprises higher SOC density (gm cm-3) followed by 

mesohaline and polyhaline zone indicating higher soil organic carbon in the low salinity areas.  

 

Figure 4.2: (A) The distribution of soil organic carbon (SOC) density (gm cm-3) in four soil depths presented as 

violin-box plot, where the black vertical line represents the median and black dots are outliers. Here, the width 

of violin plot represents the proportion of the data located there as a measure of kernel probability density. (B) 

Average SOC density (gm cm-3) in three salinity zones and four soil depths.  

 

The bulk density (BD) of the soil revealed an opposite trend as significantly higher bulk density was 

observed in the higher salinity zones and in the 50-100 cm soil depth (two-way ANOVA for Ln (bulk 

density (gm cm-3)), salinity zones, F2, 500 = 22.2, p <0.001 and soil depth, F3, 500 = 46.2, p <0.001) 

(Figure A.1, Table A.3). Likewise, SOC density, the soil organic carbon storage (SOC) for different 

depths was significantly different among the three salinity zones and the four soil depths (two-way 

ANOVA for Ln (SOC), salinity zones, F2, 500 = 118.9, p <0.001 and soil depth, F3, 500 = 526.2, p 

<0.001) (Figure 3.3 & Figure 3.4, Table A.4). However, higher amounts of SOC were found in the 

50-100 cm depth in comparison to above (Figure 3.4). The top meter SOC ranges from 26.2 Mg ha-1 

to 107.9 Mg ha-1 where the oligohaline zone comprises the highest SOC (74.8 Mg ha-1), followed by 

the mesohaline (59.3 Mg ha-1), and the polyhaline zone (48.3 Mg ha-1) (Table 3.2). 

 

 



 

50 

 

 

 

 

Figure 4.3: Spatial distribution of total soil organic carbon (SOC) (Mg ha-1) and soil salinity (dS/cm) in the 

Sundarbans. Note that circle represents the amount of SOC and gradual colour ramp reveals soil salinity 

indicating green to red as from low to high salinity. Three major salinity zones are represented according to 

(Chanda et al., 2016b). 
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Figure 4.4: Average total soil organic carbon (Mg ha-1) in different soil depth windows in three salinity zones.  

 

Table 4.2: Overview of measured soil parameters and vegetation characteristics. Values are presented as mean 

(± SD), where n ≥ 3. Lowercase letters indicate significant variability among salinity zones, according to least-

significant difference (LSD) test at α = 0.05. 

Salinity 

zone 

Bulk 

density 

(gm cm-3) 

Soil 

pH 

Soil 

salinity 

(EC 

dS/cm) 

Total 

Soil 

Organic 

Carbon 

(Mg ha-

1) 

Total 

Nitrogen 

(Mg ha-1) 

Organic 

C: N 

Elevation 

(m) 

Stem 

Density 

(ha-1) 

Height 

(m) 

DBH 

(Diameter 

at Breast 

Height) 

(cm) 

Oligohaline  
0.58 

 (0.07) b 

7.06 

(0.26) c 

1.49 

(0.32) c 

74.77 

(14.93) a 

2.66 

(1.19) b 

21.30 

(7.23) a 

3.39 

(1.78) b 

5,009 

(2,485) b 

7.98 

(2.03) a 

8.12 (2.41) 

a 

Mesohaline 
0.62 

(0.04) ab 

7.43 

(0.19) b 

3.07 

(0.56) b 

59.30 

(15.80) b 

3.52 

(1.08) a 

17.30 

(6.87) a 

3.67 

(1.01) ab 

6,876 

(3,290) ab 

7.88 

(2.63) a 

8.60 (5.36) 

ab 

Polyhaline 
0.63 

(0.05) a 

7.80 

(0.26) a 

5.56 

(0.85) a 

48.25 

(10.32) c 

3.81 

(0.98) a 

13.08 

(3.00) b 

4.79 

(1.52) a 

8,750 

(4,798) a 

5.98 

(1.66) b 

6.72 (4.12) 

b 



 

52 

 

4.3.2. Soil organic carbon and forest types 

 

 Figure 4.5: Integrated violin-box plot shows average soil organic carbon (SOC) in major forest types in 

the Sundarbans. The black vertical line of box plot represents the median and the width of violin plot represents 

the proportion of the data located there as a measure of kernel probability density. 

 

One-way ANOVA revealed that SOC varied with major forest types in the Sundarbans (F7, 47 = 3.3, p 

<0.01) (Table A.5). As shown in Figure 3.5, the average SOC content in the Bruguiera spp. stand was 

the highest, with an average of 105.3 Mg ha-1, followed by Sonneratia spp. and Avicennia spp., with 

an average of 68.7 Mg ha-1 and 67.1 Mg ha-1, respectively. The Tukey HSD test showed that the other 

forest types had no significant effect on SOC content, which ranges from 50.2 Mg ha-1 to 67.0 Mg ha-1 

for Ceriops and Heritiera forest types, respectively (Table A.6). 
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4.3.3. Soil physical and chemical properties and vegetation characteristics 

The soil physical and chemical properties and vegetation characteristics vary considerably among the 

three salinity zones (Table 3.2). As expected, oligohaline zones had relatively low average soil bulk 

density, pH, and soil salinity, in comparison to higher salinity zones. Additionally, significantly 

higher SOC and lower total N contributes higher organic C: N in the oligohaline zone, although it is 

similar to the mesohaline zone (p <0.05). BD and SOC density showed a statistically significant 

negative relationship (r = -0.47, p <0.001) (Figure 3.6A). However, the soil organic carbon (SOC) 

density and soil nitrogen density is significantly positively correlated with soil nitrogen density across 

the Sundarbans (r = 0.66, p <0.001) (Figure 3.6B). Analysis from the satellite and tree height data 

reveals that the average elevation of the topography is higher in the polyhaline zone. The average 

DBH and height of the trees were statistically significantly higher in both the oligohaline and 

mesohaline zone, whereas the average stem density was higher in both the mesohaline and polyhaline 

zone (p <0.05). The bivariate relationships between SOC and other soil physical and chemical 

properties and vegetation characteristics are presented in the supplementary Figure A.2.  

 

 

 

 

 

 

 

Figure 4.6: (A) Relationship between bulk density and soil organic carbon density. (B) Relationship between 

soil nitrogen density and soil organic carbon density.  
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4.3.4. Relationship of SOC with soil and vegetation properties 

SOC content was positively correlated with tree DBH, tree height, organic C: N, latitude and 

longitude, but negatively correlated with soil salinity, bulk density, soil pH, tree density and elevation 

(p < 0.05) (Figure 3.7). As total nitrogen and species richness did not show any significant correlation 

with SOC content, these two parameters were discarded from the subsequent PCA analysis. The 

measured properties also showed a significant positive and negative correlation amongst themselves, 

which indicates a source of multicollinearity, a phenomenon which makes multiple regression 

unreliable. Therefore, principal component analysis was used to identify and group those properties 

that influence SOC the most to overcome the influence of multicollinearity. 

 

Figure 4.7: Correlation matrix among SOC and other physicochemical, geophysical and vegetation properties. 

The number of each block shows the Spearman’s rank correlation coefficients at p< 0.05, where red and violet 

colour represents respective positive and negative correlations. The white block indicates the correlation 

coefficient is statistically insignificant. The soil properties: SOC = Soil organic carbon, SS= soil salinity, BD = 

Bulk density, pH= soil pH, TN = Total Nitrogen, C: N = organic C- total Nitrogen ratio, the vegetation 

characteristics: SR = Species richness, TD = Tree density, DBH = mean Diameter at Breast Height, H= Mean 

height and geophysical properties: E= Elevation, LAT = Latitude and LONG= Longitude. 
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Principal component analysis (PCA) was performed with ten variables to assemble and isolate the 

smallest possible variable subsets to explain the variation of the dataset (Figure 3.8). The PCA result 

indicates that the first two principal components explained more than two-thirds of the total variation 

with an eigenvalue greater than 1. The most important component (PC1) explained 49.5% with the 

highest loadings (>0.35) for soil SS (soil salinity) and pH. On the other hand, the second component 

showed higher loadings for tree H, DBH and soil C: N with 20% explained variation (Table A.7). As 

soil SS and pH are highly correlated with each other (r = 0.76, p < 0.05) (Figure 3.7), the variable 

with the highest loading, soil SS, was selected from the first component for the regression model. 

Similarly, tree H was discarded due to collinearity with tree DBH and therefore, tree DBH and soil C: 

N was selected from the second component. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Principal component analysis (PCA) biplot of soil physicochemical, geophysical and vegetation 

characteristics as vectors (n = 10) and mangroves areas are coloured coded as three salinity zones (n = 55). The 

soil physicochemical properties included SS= soil salinity, pH= soil pH, BD = Bulk density, C: N = organic C- 

total Nitrogen ratio, geophysical properties comprised LAT = Latitude, LONG= Longitude, E= Elevation, and 

the vegetation characteristics included TD = Tree density, DBH = mean Diameter at Breast Height, H= Mean 

height. Here, perpendicular direction signifies uncorrelated relationship, while negative and positive correlated 

vectors are presented in the opposite vectors and small angle vectors, respectively.  
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Table 4.3: Summary statistics of regression model. Here, SS = Soil salinity, C: N = Soil organic carbon: 

Nitrogen and DBH= tree Diameter at breast height. 

Model R2 Adjusted R2 C(p) AIC RMSE 

1. SS 0.508 0.498 18.217 -10.457 0.212 

2. SS and C: N 0.590 0.574 8.650 -18.513 0.196 

3. SS, C: N and DBH 0.637 0.616 4.00 -23.255 0.186 

 

By using the PCA-derived subset of variables, the relationship between SOC and soil and vegetation 

properties was obtained by using stepwise multiple linear regression (MLR). The regression results 

showed that soil salinity alone could explain 50% SOC variability in the Sundarbans, however, the 

skill of the model increases to 57% and 62% when soil C: N or soil C: N and tree DBH are added to 

the model (Table 3.3). Although all three regression models are highly significant (Table A.8), the 

best subset of MLR model was selected based on the largest adjusted R2 value and the smallest 

Mallow’s Cp, AIC (Akaike Information Criteria) and RMSE (Root Mean Squared Error) and 

presented in Eq.1.  

Ln (SOC) = 3.439 − 0.077 SS + 0.274 Ln (C: N) + 0.017 DBH … … … … … … ..Eq. 1 

4.4. Discussions 

The reported average soil organic carbon (SOC) density in this study is lower than previous estimates 

for the Sundarbans and far lower than average estimates of SOC density from global mangroves 

(Table 3.1). SOC density, the standardized carbon stocks measurement with depth, is the most useful 

parameter to compare SOC between different forests (Donato et al., 2011; Weiss et al., 2016). 

However, due to unreported bulk density, it was not possible to convert from the reported organic 

carbon (%) to SOC density for most studies. Despite a greater range of soil organic carbon (SOC) 

percentage in this study (0.3 – 4.4%), the average value (1.2%) is in line with most previous studies, 

although higher than estimates published by Ray et al. (2011), Banerjee et al. (2012), and Allison et 

al. (2003). These differences are likely to be attributed to variable sampling strategies along with 

variable soil depth or different methods used for carbon estimation. Likewise SOC density, the 



 

57 

 

average top 1 m SOC storage in the Bangladesh Sundarbans (50.9 ± 15.2 Mg ha-1) is almost half of 

the previous estimate by Rahman et al. (2015a), Sanderman et al. (2018) and Atwood et al. (2017). 

Estimates of soil organic carbon could fluctuate based on the differences in sampling design, choice 

of analytical method and soil depth (Howard et al., 2014; Nayak et al., 2019). In the case of 

mangroves, Passos et al. (2016) found overestimation of organic carbon measured with the oxidation 

method in comparison to the elemental analyser. Anaerobic microbial decomposition yields reduced 

soil compounds (i.e., Fe2+, S2−, Mn2+, and Cl−) in mangroves, which might interfere with organic 

carbon determination with chemical oxidation method (Nelson and Sommers, 1996; Bisutti et al., 

2004; De Vos et al., 2007; Nóbrega et al., 2015). Apart from using different methods, the SOC 

variation may originate from the consideration of soil depth in the sample design as the SOC 

concentration is a function of soil depth and shows considerable variability (Wuest, 2009; Kauffman 

and Donato, 2012; Jandl et al., 2014). Moreover, using coring for sampling might have an influence 

on soil bulk density estimation leading to lower SOC stocks estimation in deeper soils (Rau et al., 

2011; Gross and Harrison, 2018).  

In comparison to global studies, the estimated top 1 m SOC stocks are lower in the Sundarbans than 

the reported average from sites distributed all over the world (Table 3.1). Based on model-based 

georeferenced database of mangrove SOC, the global SOC map showed that the Sundarbans contains 

the lowest SOC stocks per ha in the world (Sanderman et al., 2018). Compared to direct estimates 

from 190 global sites by Kauffman et al. (2020), the Sundarbans contains higher SOC than only two 

other mangrove forests, the Porto Céu mangrove in Brazil (48 Mg ha-1) and the Bu Tinah Janoub in 

the United Arab Emirates (33 Mg ha-1), located in lower and higher latitudes respectively than the 

Sundarbans. However, global comparison in soil carbon among tropical, subtropical and temperate 

mangroves showed a contrasting relationship with latitude (Atwood et al., 2017; Twilley et al., 2018; 

Kauffman et al., 2020; Ouyang and Lee, 2020). Both Kauffman et al. (2020) and Ouyang and Lee 

(2020) found significantly lower soil carbon in mangroves >20 °N, although the former study had 

fewer samples largely limited to the middle east hyper arid mangroves. On the other hand, Atwood et 

al. (2017) and Twilley et al. (2018) documented the poor relationship between latitude and SOC 
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stocks. This poor relationship might be attributed due to the poor representation of samples in the 

studies from the subtropical mangroves like the Sundarbans. 

The low soil carbon in the Sundarbans is largely due to high mineral sediment deposition (Sanderman 

et al., 2018; Twilley et al., 2018), low burial rate (Ray et al., 2011), rapid turnover rate (Ray et al., 

2018), historical logging, stand age (Marchand, 2017), plant litter quality (Rovai et al., 2018) and 

biological processes. Being both a tide and river-dominated ecosystem, the carbon allocation in the 

above and below-ground is very complex, largely dependent on the local and regional geomorphic 

and geophysical drivers (Twilley et al., 2018). In riverine deltas, trees invest much of the carbon to the 

above-ground to keep pace with sedimentation and sea-level rise, which is evident in the oligohaline 

zone with greater forest productivity (Twilley et al., 2018; Sarker et al., 2019a; Sarker et al., 2019b). 

Moreover, research has highlighted that mangroves subjected to frequent cyclones leading to 

temporary losses of above-ground carbon are usually followed by rapid below-ground carbon gains 

during recovery process according to the ‘Ecosystem Development’ theory (Odum, 1969; Danielson 

et al., 2017; Kominoski et al., 2018). These rapid carbon gains in the above-ground and the 

disturbance from the catastrophic cyclones could be the source of higher autochthonous input to the 

below-ground. Nonetheless, higher tidal amplitude in the Sundarbans leads to higher carbon export 

totalling 7.3 Tg C yr−1 to the adjacent Bay of Bengal, which is higher than any other mangroves in the 

world (Ray et al., 2018). This rapid carbon turnover results in reduced burial of organic matter 

(0.18%) in the soil (Ray et al., 2011). Moreover, the pronounced tidal cycle in the Sundarbans affects 

carbon burial process by altering soil water chemistry (Chatterjee et al., 2013; Spivak et al., 2019). 

Besides the high carbon turnover rate, the Sundarbans is believed to have become tidally active in the 

recent past due to reduced freshwater flow from the Ganges-Brahmaputra-Meghna river (Rogers et 

al., 2013; Hale et al., 2019). However, despite the historical reduction of sedimentation, the 

Sundarbans is itself still keeping pace with sea-level rise with the highest average surface elevation 

and vertical accretion rate (0.74 and 2.71 cm yr−1) compared to the worldwide average (Bomer et al., 

2020a; Bomer et al., 2020b). This high sedimentation rate is the outcome of the massive flux of clastic 

sediments which attenuates the amount of organic carbon per unit area.  
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The century-long historical exploitation in the Sundarbans before the felling moratorium in 1989 has 

largely decreased the population of threatened tree species (Siddiqi, 2001; Sarker et al., 2011). This in 

turn is likely to have lessened the continuous autochthonous input of organic matter in the forest and 

reduced the overall stand age. Studies also showed that historical harvesting had altered the species 

composition in the Sundarbans, with decreasing abundances of Heritiera fomes, Ceriops decandra 

and Xylocarpus mekongensis and increasing for Excoecaria agallocha (Sarker et al., 2016). The SOC 

stocks also depends on the age of the stands as evident in the chrono sequence study on SOC stocks in 

French Guiana which revealed that the SOC varied from 4 to 107 Mg ha-1 from young stand to 

senescent stage (Marchand, 2017). In addition, studies have suggested that lower organic carbon in 

the soil is mostly associated with higher C: N of the plant litter which has resulted from lowering 

decomposition speed and decreasing carbon-use efficiency of the decomposer (Bouillon et al., 2003; 

Zhou et al., 2019). Compared to mangrove associates, the senescent leaves of true mangroves contain 

considerably higher C: N (~33) in the Indian part of Sundarbans (Chanda et al., 2016a). 

Kamruzzaman et al. (2019) observed a decreasing trend of C: N of the leaf litter in both forest floor 

and buried condition starting from 40, but barely reached below 30 after 196 days of decomposition 

study, suggesting N limitation in the oligohaline zone of the Bangladesh Sundarbans. The low organic 

carbon can also be attributed to the abundance of leaf-consuming organisms ingesting organic litter 

detritus both at surface and subsurface in burrows. The Sundarbans encompasses a wide range of 

gastropod species (for example, Cerithedia cingulata, Cymia lacera) that predominantly consume 

mangrove detritus (Nayak et al., 2014).  

Variation in SOC stocks among different forest types is often mediated by the primary productivity, 

resources allocation in different parts (for example, above and below-ground) and microorganism 

activity which is driven by a number of biological (example, bioturbation and species composition) 

and physical (for example, soil texture, salinity, inundation and nutrients) factors (McLeod et al., 

2011). Therefore, differing stand structure and composition of mangrove forests in different tidal 

regimes yield variable SOC stocks (Lacerda et al., 1995; Gleason and Ewel, 2002). Moreover, the 

long and short-term resilience and resistance of microbial communities is largely dependent on the 
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structure and zonation of mangrove communities reflecting environmental gradients (Capdeville et al., 

2019). In this study, the species with higher SOC stocks such as Bruguiera spp., Sonneratia spp. and 

Avicennia spp. are frequently inundated due to proximity to the river and low lands as compared to 

other species in the Sundarbans (Siddiqi, 2001; Sarker et al., 2016). These high inundation regimes, in 

turn, lead to increased microbial activity and a higher level of dissolved organic carbon in the (Wang 

et al., 2013; Chambers et al., 2014; Chambers et al., 2016). Regular tides also bring sediments along 

with high allochthonous input whereas the raised less-inundated areas foster autochthonous SOC and 

less microbial activity (Lovelock et al., 2015b; Woodroffe et al., 2016). Rao et al. (1994) found 

almost double C: N ratio in fresh leaves of Bruguiera spp. compared with other mangrove species, 

suggesting a higher input of autochthonous carbon. Being the pioneer species in the succession of the 

Sundarbans, both Sonneratia spp. and Avicennia spp. are resilient to disturbances leading to higher 

SOC than climax and seral species (Table A.1) and accumulate a large quantity of organic litter in the 

tidal channel close to the river or seafront (Sarker et al., 2016; Bomer et al., 2020a). The variability of 

SOC stocks found here among forest types followed a similar pattern to the global studies by Atwood 

et al. (2017), except for Sonneratia spp. which was found to hold less SOC stocks than Heritiera and 

Ceriops. On the other hand, Kauffman et al. (2020) found significantly lower below-ground carbon 

stocks in Avicennia spp., especially in the arid mangroves of Middle-East Asia, which is solely 

occupied by this species. Therefore, the impact of above-ground vegetation on below-ground is 

largely site-specific, and depends on a wide range of factors.  

The unexplained variation of the best multiple regression models (R2 = 0.64) highlights the necessity 

of including other soil and environmental parameters such as soil cations and anions, clay 

characteristics and texture, precipitation, temperature, and river discharge. This study did not address 

these properties but suggests future studies incorporate a wider range of parameters to gain a better 

understating of organic carbon dynamics in the Sundarbans. In particular, for better ecosystem 

management, future research should include information relating to contextualising soil (for example, 

soil texture, grain size and minerology), biogeochemical (for example, important properties of soil 

and pore-water chemistry such as sulphate, oxygen, nitrate, ferric oxides in case of mangroves) and 
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ecological (for example, vegetation and plat-microbe interaction) properties (Luo et al., 2019; Spivak 

et al., 2019). However, soil salinity is considered as the outcome or proxy for the combined impact of 

these climatic and environmental variables in the Sundarbans resulting pronounced differences of 

SOC stocks among the three salinity zones (Sarker et al., 2016; Sarker et al., 2019b; Rahman et al., 

2020). Several previous studies have confirmed that salinity determines the strong zonation of tree 

species and diversity in the Sundarbans, which in turn leads to comparatively higher diversity and 

taller tree species in the oligohaline followed by mesohaline and polyhaline zone (Aziz and Paul, 

2015; Sarker et al., 2016; Sarker et al., 2019a; Sarker et al., 2019b; Rahman et al., 2020). 

Comparatively higher productive trees (for example, higher DBH and higher height) promotes organic 

matter accumulation through producing higher litter mass and increases SOC stocks by forming stable 

aggregates from roots and pneumatophores (Lange et al., 2015). The three salinity zones also 

comprise differential soil physical and chemical properties and vegetation characteristics that usually 

affects SOC storage by influencing microbial decomposition, soil water chemistry, plant-microbe 

interaction, and plant litter quality. While comparing nutrient concentration in the leaf litter of 

Sonneratia apetala, one of the major pioneer species in the Sundarbans, Nasrin et al. (2019) found 

lowest concentrations of N, P and K and the highest concentrations of Na in the polyhaline zone, 

reflecting higher C: N in the leaf litter. However, the low SOC in the polyhaline zone is also 

coincided with the low C: N indicting inwelling of marine and terrestrial suspended particulate 

materials (Bouillon et al., 2003). The strong positive correlation (r = 0.66, p <0.001) between carbon 

and nitrogen density indicates that the source of carbon and nitrogen is likely to be same and can vary 

spatially (Matsui et al., 2015).  

Although the Sundarbans is considered to be of recent origin, the large accommodation space exists 

due to accretion and erosion with historical relative sea-level variability (Goodbred and Kuehl, 2000; 

Tyagi and Sen, 2019). Therefore, the Sundarbans might have a 3 m organic layer in the seaward 

direction and much more in the landward (Allison et al., 2003). By considering this vertical depth and 

the area covered by mangrove forest, the Sundarbans are likely to contain considerable volumes of 

soil organic carbon. Previous research has demonstrated that mangroves holding higher carbon 
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storage also have a higher rate of deforestation with 50% mangrove loss attributed to Indonesia, 

which holds about 25% of soil carbon in the world’s mangroves; the figure increases to 75% when 

Malaysia and Myanmar are considered (Atwood et al., 2017). Therefore, mangroves from these 

countries are considered as a significant source of emissions due to high deforestation and forest 

conversion (Hamilton and Friess, 2018). On the other hand, in Bangladesh, despite the lower SOC 

stocks in the Sundarbans mangrove forest demonstrated by this paper, recent positive trends in forest 

cover demonstrate the value of blue carbon conservation and an improved understanding of carbon 

storage will be of benefit to the inclusion of mangroves in national and international climate strategies 

and policies. 

4.5. Conclusions  

The top meter of soil organic carbon (SOC) per area in the Bangladesh Sundarbans is lower than has 

previously been reported. However, the total SOC will likely to be greater if total vertical depth is 

considered. The soil organic carbon stocks (SOC) in the Sundarbans is largely influenced by soil 

salinity, probably by amending the forest productivity and microbial activity. The results highlighted 

that increasing salinity as result of predicted sea-level rise will likely have pronounced effects on 

future soil carbon accumulation rates by altering the soil environment and vegetation characteristics. 

The study underlines the importance of spatial conservation planning measures and initiatives to 

conserve and maximize carbon accumulation and to contribute to global climate change adaptation 

and mitigation strategies. Results suggest that high sediment carbon zone in the eastern part of the 

Sundarbans is highly vulnerable to tourism and economic development activities. In terms of climate 

change mitigation and adaptation, the conservation of the existing carbon stocks should receive much 

higher priority rather than the debates of high-low carbon stocks. The Bangladesh Sundarbans can act 

as an important blue carbon hotspot due to the high sedimentation and carbon sequestration rate and 

conservation priority by the government. However, disturbances such as sea-level rise, global 

warming, eutrophication, and landscape development might hinder this conservation activities in the 

future.   
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Chapter 5  

 

Biomass estimation in mangrove forests: a comparison 

of allometric models incorporating species and 

structural information 
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Abstract 

Improved estimates of above-ground biomass are required to improve our understanding of the 

productivity of mangrove forests to support the long-term conservation of these fragile ecosystems 

which are under threat from many natural and anthropogenic pressures. To understand how individual 

species affects biomass estimates in mangrove forests, five species-specific and four genus-specific 

allometric models were developed. Independent tree inventory data were collected from 140 sample 

plots to compare the above-ground biomass (AGB) among both the species-specific models and seven 

existing frequently used pan-tropical and Sundarbans-specific generic models. The effect of 

individual tree species was also evaluated using model parameters for wood densities (from individual 

trees to the whole Sundarbans) and tree heights (individual, plot average and plot top height). All nine 

species-specific models explained a high percentage of the variance in tree AGB (R2 = 0.97 to 0.99) 

with the diameter at breast height (DBH) and total height (H). At the individual tree level, the generic 

allometric models overestimated AGB from 22% to 167% compared to the species-specific models. 

At the plot level, mean AGB varied from 111.36 Mg ha-1 to 299.48 Mg ha-1, where AGB significantly 

differed in all generic models compared to the species-specific models (p < 0.05). Using measured 

species wood density (WD) in the allometric model showed 4.5% to 9.7% less biomass than WD from 

a published database and other sources. When using plot top height and plot average height rather 

than measured individual tree height, the AGB was overestimated by 19.5% and underestimated by 

8.3% (p < 0.05). The study demonstrates that species-specific allometric models and individual tree 

measurements benefit biomass estimation in mangrove forests. Tree level measurement from the 

inventory plots, if available, should be included in allometric models to improve the accuracy of forest 

biomass estimates, particularly when upscaling individual trees up to the ecosystem level.  

5.1. Introduction 

There has been a global effort to develop accurate and efficient methods to quantify above-ground 

carbon (measured as biomass) in mangrove forests (Hutchison et al., 2014; Ni-Meister, 2015; Baccini 
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et al., 2017; Lagomasino et al., 2019). A range of remote sensing technologies can indirectly infer 

forest biomass but field data are needed to calibrate and validate products (Gibbs et al., 2007; Chave 

et al., 2019; Réjou-Méchain et al., 2019). Destructive harvesting of trees provides the most precise 

estimates of above-ground biomass (AGB), yet is impractical, laborious, costly and often illegal 

(Komiyama et al., 2008; Edwards et al., 2019) and so mathematical models have been developed to 

estimate tree biomass from easily measured biophysical parameters (tree diameter at breast height 

(DBH), height (H), or wood density (WD)) (Brown, 1997; Komiyama et al., 2005; Picard et al., 2012; 

Chave et al., 2014). These models are known as allometric models. However, this method of 

estimation can yield a large degree of uncertainty scaling up from individual tree biomass to plot- and 

forest-level as uncertainties associated with individual trees are propagated (van Breugel et al., 2011; 

Petrokofsky et al., 2012; Réjou-Méchain et al., 2019). The choice of appropriate allometric model is 

therefore critical to reduce uncertainties in the estimation of forest biomass. 

All allometric models have limitations since they are based on a limited number of destructively 

sampled trees and often the sample locations are unrepresentative of forest heterogeneity (Weiskittel 

et al., 2015; Hickey et al., 2018). These models also introduce an uncertainty when applied to species 

without destructive sampling (Mitchard et al., 2013; Ngomanda et al., 2014; Mahmood et al., 2019). 

For example, De Souza Pereira et al. (2018) found AGB estimation errors between minus 18% and 

plus 14% when using biome-specific allometries rather than species-specific ones in Brazilian 

mangrove forests. On the other hand, a few studies have shown that generic models can outcompete 

locally developed models (Rutishauser et al., 2013; Stas et al., 2017). Uncertainties also arise from 

inappropriate use of regression models without considering collinearity of parameters, uncritical use 

of model dredging and inappropriate criteria for model selection (Sileshi, 2014; Vorster et al., 2020). 

Recently published global and continental AGB estimates contain errors due to an under 

representative sample size and the exclusion of the climatic regime, geophysical and 

geomorphological variables, which are key to understanding the spatial distribution of biomass (Rovai 

et al., 2016). Inclusion of biophysical parameters such as wood density and tree height can help to 

capture geographical heterogeneity and also act as a suitable proxy of environmental drivers such as 
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variations in salinity which affects the growth rate, wood density, species composition and tree height 

(Mahmood et al., 2019; Rahman et al., 2020; Virgulino-Júnior et al., 2020; Rahman et al., 2021b). 

Although wood density is an important variable for assessing carbon content, it is rarely measured 

during field inventories. Most studies identify species and then use published wood density values 

from a database of generic values (Njana et al., 2016; Réjou-Méchain et al., 2019). Using the same or 

grouped wood density in the allometric model tends to smooth species-level variations in AGB 

(Mitchard et al., 2013; Ni-Meister, 2015). The inclusion of tree height has a large effect on individual 

tree and forest AGB (Feldpausch et al., 2012). Any errors introduced during individual tree height 

measurements can originate from the choice of methods and/or instruments and can be propagated as 

estimates are scaled up (Larjavaara and Muller-Landau, 2013). For example, the use of Height-

Diameter (H-D) models, developed from the height and stem diameter of individual trees, often 

exhibit uncertainty due to wider height-variation at different spatial scales (Feldpausch et al., 2011; 

Vieilledent et al., 2012). Space-borne and air-borne LiDAR and RADAR technologies can improve 

the accuracy of the height measurement and have been used to develop canopy height models (CHM) 

(Fatoyinbo et al., 2021).  

The Sundarbans mangrove forest is one of the largest and most bio-diverse mangroves in the world, 

located across Bangladesh and India. It contains the highest carbon densities (345 Mg ha-1) in both 

above- and below-ground among all forests in Bangladesh (GOB, 2019; Henry et al., 2021). The 

Bangladesh Forest Department estimated carbon stocks in the Sundarbans in 2009 and 2015 using 

pan-tropical allometric models and Sundarbans-specific generic models (BFD, 2010; Rahman et al., 

2015a; Mahmood et al., 2019; Henry et al., 2021). Other studies such as Kamruzzaman et al. (2017) 

and Azad et al. (2020) used pan-tropical generic models to estimate AGB in selected areas. However, 

species-specific allometric models are not yet available to estimate above-ground biomass in the 

Sundarbans. Therefore, it is timely to examine whether species-specific allometric models using 

measured wood densities and tree heights can yield more accurate estimates of AGB in the 

Sundarbans and in mangrove forests more generally. The aim of this paper is to report research that 

compares a range of sources of uncertainty in allometric models, wood density, and height 
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measurement for AGB in the Sundarbans mangrove forest, Bangladesh. First, the study compares site- 

and species-specific AGB between the Sundarbans and pan-tropical generic allometric models for 

variability of above-ground tree biomass. Secondly, the study determines variability of AGB in the 

Sundarbans by comparing measured and published wood density values at multiple spatial scales. 

Thirdly, the study quantifies the impact of different methods of tree height determination on estimates 

of AGB in mangrove forests. 

5.2. Material and methods 

5.2.1. Study area  

The Bangladesh Sundarbans is situated between 21º30’ N and 22º30’ N and 89º00’ E and 89º55’ E in 

the lower plain of the Ganges-Brahmaputra-Meghna (GBM) delta covering an area of 6,017 km2 

(Figure 4.1) (Giri et al., 2011; Aziz and Paul, 2015; Sarker et al., 2016). The forest is of international 

significance as a Ramsar and UNESCO World Heritage site. It provides a number of valuable 

ecosystem services such as protecting inland areas from storms and tidal surges (Barua et al., 2020). 

The near-constant mean annual minimum and maximum temperature (29 oC – 31 oC) and high annual 

rainfall (1474 mm to 2265 mm) made the climate of the Sundarbans warm and humid between 1948 

and 2011 (Chowdhury et al., 2016; Sarker et al., 2016). The soil is fine-gained silt and clay and 

slightly calcareous (Siddiqi, 2001). The Sundarbans has a distinct salinity zonation with the high 

salinity zone in the west (polyhaline) to low salinity zone (oligohaline) in the east along with medium 

salinity zone (mesohaline) between (Siddiqi, 2001; Chanda et al., 2016b). Salinity regulates the 

geomorphology and hydrological characteristics and also the morphology, growth and distribution of 

plant species (Sarker et al., 2016; Sarker et al., 2019a; Rahman et al., 2020; Rahman et al., 2021b).  
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Figure 5.1: Sample plot location in the Sundarbans mangrove forest, Bangladesh. The pink star indicates tree 

location by Mahmood et al. (2019).  

5.2.2. Allometric models in the Sundarbans 

Species-specific allometric models are not available for all species in the Sundarbans as destructive 

sampling was not permitted due to an imposed felling moratorium since 1989 (Mahmood et al., 2019). 

However, four species-specific models were developed through destructive sampling in the 

Bangladesh Sundarbans (Table 4.1). Three generic allometric models were recently developed for 14 

species by using semi-destructive sampling methods where biomass of stems and larger branches 

were measured through volume and wood density, and small branches and foliage through weighing 

after pruning (Mahmood et al., 2019). Published pan-tropical models have also been used to estimate 

biomass in the Sundarbans (Rahman et al., 2015a; Kamruzzaman et al., 2017; Kamruzzaman et al., 

2018). 
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Table 5.1: Allometric models used for measuring above-ground biomass in the Sundarbans 

Model no. Site, Species Allometric model N 
Identity in this paper and 

source 

Bangladesh Sundarbans and Species-specific  

1 Aegialitis rotundifolia 
AGB=5.49GCH2- 251.36 H – 0.07 HCH 

+0.75 (GCH× H ×HCH) 
29 Siddique et al. (2012) 

2 Aegiceras corniculatum √AGB= 0.48 DBH-0.13 50 Mahmood et al. (2016b) 

3 Ceriops decandra AGB= 4.70 GCH2.41 48 Mahmood et al. (2012) 

4 Kandelia candel AGB= 0.21 DBH2+0.12 25 Mahmood et al. (2016a) 

Bangladesh Sundarbans and generic model  

5 

For 14 species  

Aglaia  piculate, 

Avicennia officinalis, 

Avicennia marina, 

Bruguiera gymnorrhiza, 

Bruguiera  piculate , 

Excoecaria agallocha, 

Heritiera fomes, 

Lumnitzera  piculat, 

Rhizophora  piculate, 

Rhizophora mucronata, 

Sonneratia apetala, 

Sonneratia caseolaris, 

Xylocarpus granatum, 

Xylocarpus moluccensis 

 

ln(AGB)= -1.9272+2.3517 ln(DBH) 

 

 

260 
Mahmood_2019_D 

(Mahmood et al., 2019)  

6 

 

ln(AGB)= -2.4317+2.1341 ln(DBH) 

+0.4953 ln(H) 

 

260 
Mahmood_2019_DH 

(Mahmood et al., 2019)  

7 
ln(AGB)= -6.7189+2.1634 ln(DBH) 

+0.3752 ln(H)+0.6895 ln(WD)  
260 

Mahmood_2019_DHW 

(Mahmood et al., 2019) 

World or Pantropical and generic model 

8 Pantropical, all species AGB= 0.0673×(WD× DBH2× H)
0.976

 4,004 
Chave_2014_DHW 

(Chave et al., 2014)  

9 
Pan-tropical, mangrove 

species  
AGB= 0.0509×( WD× DBH2 ×H) 84 

Chave_2005_DHW (Chave 

et al., 2005)  

10 
Pan-tropical, mangrove 

species 

AGB= WD × exp(-1.349+1.980 ln(DBH) 

+0.207 (ln(DBH))2 -0.0281 (ln(DBH))3)  
84 

Chave_2005_DW  

(Chave et al., 2005) 

11 
South-East Asia, 

mangrove species 
AGB= 0.251× WD×DBH2.46  104 

Komiyama_2005_DW(Ko

miyama et al., 2005)  

Here AGB = Total above-ground biomass (Kg), N = Number of destructive/semi-destructive samples, DBH = Diameter at 

breast height (cm), H = Total height (m), WD = Wood density (gm cm-3, model-7: kg m-3), GCH= Girth at collar height (cm), 

HCH = Height of collar girth point (m). 

5.2.3. Development of species-specific allometric model 

A conceptual diagram of the research methodology is presented in the Figure 4.2. The species-specific 

allometric models were developed from the semi-destructive sampling (324 individuals, 13 species, 

except Sonneratia caseolaris) from Mahmood et al. (2019), where above-ground biomass (kg/tree) 

was presented along with diameter at breast height (DBH) and total height (H) (Figure 4.1). Species-

specific models for Sonneratia caseolaris were not developed as the independent tree inventory data 

did not have any individuals of this species. Out of 13 species, eight species (Avicennia officinalis, A. 

marina, Bruguiera gymnorrhiza, B.  piculate , Rhizophora  piculate, R. mucronata, Xylocarpus 

granatum and X. moluccensis) were merged into genus level to yield sufficient data for model fitting. 
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Therefore, nine allometric models were developed for Aglaia  piculate, Avicennia spp., Bruguiera 

spp., Excoecaria agallocha, Heritiera fomes, Lumnitzera  piculat, Rhizophora spp., Sonneratia 

apetala, and Xylocarpus spp.  

 

Figure 5.2: Conceptual diagram of the research methodology. The model numbers are labelled according to 

Table 4.1. Here, DBH: Diameter at Breast Height, H: Height and WD: Wood density. 

Log-linear ordinary least square regression (OLS) was used to fit models to predict above-ground 

biomass for each species. The choice of log-linear regression over nonlinear regression was done by 

comparing the error distribution of biomass. According to Xiao et al. (2011), the linear regression of 

log-transformed data better characterizes multiplicative, heteroscedastic and lognormal error, whereas 

the nonlinear regression performs additive, homoscedastic, normal error. The goodness of fit of two 

models were compared and the lower value of Akaike’s information criterion (AIC) provides 

significantly better fit when the magnitude of the difference of AIC is greater than 2 (Burnham and 

Anderson, 2002). These two models were compared for all species following Xiao et al. (2011). In all 

cases, the log-linear regression provided a significantly better fit (Table B.1). Therefore, the following 
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six log-linear regression models were used to fit AGB as the dependent variable, and diameter at 

breast height (DBH) and tree height (H) as independent variables.  

E1 : ln (AGB) = ln(a) +b ln (DBH) 

E2 : ln(AGB) = ln(a) +b ln (H) 

E3 : ln(AGB) = ln(a) +b ln (DBH ×H) 

E4 : ln(AGB) = ln(a) +b ln (DBH
2
×H) 

E5 : ln(AGB) = ln(a) +b ln (DBH× H2) 

E6 : ln (AGB) = ln(a) +b ln (DBH)+c ln (H)   

The underlying assumptions for the regression analysis such as normality of residuals and 

heteroscedasticity were used to judge the suitability of each regression model. Percent relative 

standard errors (PRSE) of each regression coefficient were measured according to Sileshi (2014), 

where PRSE > 25 is considered an unreliable model. The multicollinearity of each model was 

measured with the variance inflation factor (VIF), where VIF > 5 indicates high collinearity among 

independent variables. Due to high multicollinearity, complex models with more independent 

variables were not considered in this study. After obtaining the eligible potential models for each 

species, the best models were selected by the lowest second-order Akaike Information Criterion 

(AICc) and Residual Standard Error (RSE), and the highest Akaike Information Criterion weight 

(AICw) and coefficient of determination (R2) values (Picard et al., 2012; Sileshi, 2014; Mahmood et 

al., 2019; 2020). Models with non-significant parameter of estimates were not considered, regardless 

of meeting the criteria outlined. Since, the AICw provides the likelihood of each model to be the best, 

it was given highest priority compared with other parameters (Sileshi, 2014). For all models, the 

correction factor (CF) was calculated to minimise systematic bias while converting biomass from ln 

scale to a normal scale (Sprugel, 1983). The K-fold cross-validation technique was used to validate 

the best model. This technique randomly divides the original dataset into K subsets (10 in this case) of 

equal sizes, where each subset is validated with K-1 subsets (James et al., 2013). The K-fold 
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validation technique was also run for the Sundarbans-specific and the pantropical generic model 

(model no. 7 -11 in Table 4.1) to measure tree level variability in AGB in the Sundarbans. 

5.2.4. Tree inventory 

Above-ground tree data were collected from 140 random sample plots within the Bangladesh 

Sundarbans (Figure 4.1). Out of 140 sample plots, 120 plots were randomly placed within Permanent 

Sample Plots (PSP) (20 × 100 m) established by the Bangladesh Forest Department whilst the 

remaining 20 plots were outside of the PSP. These sample plots are distributed in all 55 compartments 

(administrative unit) in the Bangladesh Sundarbans covering all three salinity zones (oligohaline, 

mesohaline and polyhaline) and forest types (Iftekhar and Saenger, 2008; Sarker et al., 2019b). Each 

plot consists of a circular plot with the radius of 11.3 m (400 m2) for measuring bigger trees (DBH > 

14.5 cm) and a smaller circular plot within this of 5 m radius (79 m2) for smaller trees (DBH > 2.5 to 

14.5 cm) (Figure B.1). After establishing the plots, all individual trees (DBH > 2.5 cm) were marked, 

and DBH and total height (H) measured by using a diameter tape and a Vertex III hypsometer 

(Haglöf, Sweden), respectively. A Haglöf wood increment borer (5.15 mm diameter and 300 mm bit 

length) was used to collect woody specimen at DBH point to determine the wood density (WD) of 

studied species according to Wiemann and Williamson (2013). The WD (gm cm-3) was then measured 

from the volume and dry mass of the specimen. The cylindrical volume was measured in the field 

from the diameter and length of the specimen and brought to the laboratory for oven-drying at 105 oC 

until constant weight was obtained.  

5.2.5. Variability of Above-ground biomass in the Sundarbans 

The magnitude and pattern of differences in AGB at plot level in the Sundarbans were compared by 

using different allometric models with an independently collected inventory from the Sundarbans. 

Plot level AGB variability was measured by actual AGB difference (Mg ha-1), absolute difference 

(Mg ha-1) and relative absolute difference (%) among different allometric models. 
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5.2.5.1. AGB variability between allometric models 

Measured DBH, H and WD were used in the species-specific allometric models and other site-specific 

and pan-tropical generic models (Model 7-11 in Table 4.1) to assess AGB at the individual tree level. 

In order to compute plot-level AGB estimates per hectare (Mg ha-1), a hectare expansion factor (HEF) 

for each stem was used according to the size of the sample plot (i.e., HEF = 25 for bigger plots, and 

HEF = 126.58 for smaller sub-plot) and subsequently summed up all tree biomass in each plot to get 

plot biomass. To estimate biomass from the species-specific models, the developed nine species-

specific models were used alongside four published species-specific models (Model 1-4 in Table 4.1). 

If no species-specific allometric model was available, models for similar genus or family level were 

applied. Since measuring the girth at collar height (GCH) for Ceriops decandra and Aegialitis 

rotundifolia is laborious and time consuming, DBH was measured in the field and subsequently 

converted to GCH from a relationship between DBH and GCH of 50 individuals (Figure B.2). 

5.2.5.2. AGB variability with wood density 

Variation of tree AGB was compared with measured and database-sourced WD obtained from 

published wood density including the Global WD database (Chave et al., 2009; Zanne et al., 2009), 

World Agroforestry’s tree functional attributes and ecological databases (ICRAF, 2016) and from 

Bangladesh Forest Research Institute (BFRI) (Sattar et al., 1995). The Sundarbans-specific generic 

allometric model (Model 7: Mahmood_2019_DHW) was used for comparison of AGB from multiple 

WD sources. If there was no measured wood density for any species, the WD from the same genus or 

family was used. Instead of applying species WD, plot-level mean WD, salinity zone WD and 

Sundarbans level WD were used to investigate how the spatial scale of WD variation on AGB 

estimates in the Sundarbans. To measure salinity zone mean WD, measured WD were averaged 

according to three salinity zones in the Sundarbans according to Rahman et al. (2021b). 
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5.2.5.3. AGB variability with tree height 

To derive the variation of AGB from different height measurements, mean height and maximum 

height from each plot was used in Model 7 (Mahmood_2019_DHW). The Model 7 was used in this 

case as it originated from the Sundarbans and contains both H and WD parameters.  

5.2.6. Statistical Analysis 

All statistical analysis and graphics used R4.0.4 for Windows in Rstudio Version-1.4.1106 (R Core 

Team, 2020). The normality of residuals, heteroscedasticity and multicollinearity of each regression 

model were tested with a Shapiro-Wilk normality test by using ‘R stats’ base package, studentized 

Breusch-Pagan (BP) test by using ‘lmtest’ package and Variance Inflation Factor (VIF) test using 

‘car’ package, respectively (Zeileis and Hothorn, 2002; Fox and Weisberg, 2019). Second-order 

Akaike Information Criterion (AICc) for the fitted regression model was assessed by ‘MuMIn’ 

package (Bartoń, 2020). K-fold cross validation was run using the ‘caret’ package and model 

accuracy was compared with Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) 

(Kuhn, 2008). Pairwise comparison of tree AGB between the species-specific and other models were 

tested either by paired t-test if the underlying assumptions such as normality and heteroscedasticity 

were met; otherwise, Wilcoxon signed-rank non-parametric test was used. The ‘rstatix’ package was 

used for Wilcoxon signed-rank test and ‘R stats’ base package was used for paired t-test (Kassambara, 

2020). The graphical output was generated using the ‘ggplot2’ ‘ggeffects’ and ‘cowplot’ package 

(Wickham, 2016; Lüdecke, 2018; Wilke et al., 2019). 

5.3. Results  

5.3.1. Species-specific allometric model 

Out of 54 log-linear regression models for nine species, 26 models passed all four criteria including 

normality of residuals, heteroscedasticity, PRSE and VIF (Table B.2). These 26 models were then 

fitted species-wise to the 324 semi-destructively harvested tree dataset with DBH and H: Aglaia 

 piculate (19), Avicennia spp. (41), Bruguiera spp. (31), Excoecaria agallocha (35), Heritiera fomes 
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(97), Lumnitzera  piculat (13), Rhizophora spp. (17), Sonneratia apetala (20), and Xylocarpus spp. 

(51). 

 

Figure 5.3: Best species-specific allometric model for above-ground biomass in the Sundarbans.  

Out of 26 models, the best nine species-specific models are presented for each species group (Table 

4.2; Figure 4.3). The AIC weight shows that the best-chosen models for Aglaia  piculate, Bruguiera 

spp., Excoecaria agallocha, Heritiera fomes, and Xylocarpus spp. have 100% chance for being the 

best model, while Avicennia spp., Lumnitzera  piculat, Rhizophora spp. and Sonneratia apetala have 

81%, 94%, 82%, and 71%, respectively chance to be the best model (Table 4.3). In the case of 

Sonneratia apetala, while E6 models had the highest and lowest RSE and AIC value, the E4 model 

was chosen based on higher AICw for its greater chance for being the best model. The adjusted 

coefficient of determination (R2) varied from 0.77 to 0.99 for all models. All species-specific models 

comprised a single predictor value with only DBH for six species: Aglaia  piculate, Avicennia spp., 
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Bruguiera spp., Heritiera fomes, Lumnitzera  piculat, and Xylocarpus spp. and with combination of 

DBH and H (DBH2×H) for Excoecaria agallocha, Sonneratia apetala, and Rhizophora spp. 

Table 5.2: Regression results for all species-specific allometric models in the Sundarbans. 

 

Species 
Eq. 

no. 

Model, 

ln (AGB) = 
a* b c 

Adj. 

R2 
RSE AICc AICW CF 

Aglaia 

cucullata 

E1 
 ln(a) + b ln 

(DBH) 
-1.9066 2.3784  0.9915 0.1047 -26.3501 1.00 1.0055 

E5 
ln(a) + b ln 
(DBH×H2) 

3.7114 1.0918  0.9585 0.2316 3.8164 0.00 1.0980 

E2  ln(a) + b ln (H) 4.5892 3.7109  0.8554 0.4324 27.5502 0.00 1.0272 

Avicennia 

spp. 

E1 
ln(a) + b ln 

(DBH) 
-1.5554 2.2069  0.9781 0.2287 0.0103 0.81 1.0265 

E4 
ln(a) + b ln 

(DBH2×H) 
-2.7625 0.9520  0.9765 0.237 2.8854 0.19 1.0285 

Bruguiera 

spp. 

E1 
ln(a) + b ln 

(DBH) 
-1.4473 2.2870  0.9845 0.1926 -9.3234 1.00 1.0187 

E3 
ln(a) + b ln 

(DBH×H) 
-2.7982 1.5246  0.9649 0.2901 16.0743 0.00 1.0430 

E5 
ln(a) + b ln 
(DBH×H2) 

-3.1823 1.1004  0.9178 0.4439 42.4386 0.00 1.1035 

Excoecaria 

agallocha 

E4 
ln(a) + b ln 

(DBH2×H) 
-2.5721 0.8623  0.9903 0.1539 -26.9780 1.00 1.0119 

E3 
ln(a) + b ln 
(DBH×H) 

-2.9335 1.4173  0.9801 0.2200 -1.9475 0.00 1.0245 

E5 
ln(a) + b ln 

(DBH×H2) 
-3.3198 1.0359  0.9591 0.3152 50.1953 0.00 1.0509 

E2 ln(a) + b ln (H) -4.0227 3.6582  0.8558 0.5919 67.3342 0.00 1.1915 

Heritiera 

fomes 
E1 

ln(a) + b ln 

(DBH) 
-1.9944 2.4603  0.9931 0.1434 -97.2721 1.00 1.0103 

Lumnitzera 

racemosa 

E1 
ln(a) + b ln 

(DBH) 
-2.1151 2.4187  0.9858 0.1342 -8.8255 0.94 1.0090 

E4 
ln(a) + b ln 

(DBH2×H) 
-3.2562 1.0631  0.9783 0.1663 -3.2570 0.06 1.0139 

E3 
ln(a) + b ln 
(DBH×H) 

-4.0458 1.8671  0.9558 0.2373 5.9931 0.00 1.0286 

E5 
ln(a) + b ln 

(DBH×H2) 
-4.9734 1.4650  0.8994 0.3579 16.6722 0.00 1.0661 

Rhizophora 

spp. 

E4 
ln(a) + b ln 

(DBH2×H) 
-2.3744 0.8953  0.9467 0.2226 2.8788 0.82 1.0251 

E3 
ln(a) + b ln 

(DBH×H) 
-2.8960 1.5009  0.9358 0.2443 6.0407 0.17 1.0303 

E5 
ln(a) + b ln 

(DBH×H2) 
-3.4321 1.1161  0.9065 0.2948 12.4334 0.01 1.0444 

Sonneratia 

apetala 

E4 
ln(a) + b ln 

(DBH2×H) 
-2.8869 0.9170  0.9938 0.1633 -10.3304 0.71 1.0134 

E6 
ln(a) + b ln 

(DBH) + c ln(H) 
-2.6715 1.9068 0.7430 0.9939 0.1625 -8.5123 0.29 1.0133 

E3 
ln(a) + b ln 

(DBH×H) 
-3.6314 1.5533  0.9854 0.2518 6.9904 0.00 1.0322 

E5 
ln(a) + b ln 

(DBH×H2) 
-4.4509 1.1706  0.9582 0.4256 27.9819 0.00 1.0948 

E2 ln(a) + b ln (H) -5.6705 4.2261  0.7723 0.9932 61.8759 0.00 1.6375 

Xylocarpus 

spp. 
E1 

ln(a) + b ln 

(DBH) 
-1.9174 2.3100  0.9720 0.1989 -15.5152 1.00 1.0200 

Here bold and light grey shaded models are the best model for each species, a* stands for ln (a), all parameters of estimates (a, b 

and c) are significant at p < 0.05. R2: Coefficient of determination, RSE: Residual standard error, AICc: with small sample bias 

adjustment, AICw: weighted AIC, CF = Correction factor for converting log scale into normal scale. 
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The 10-fold cross validation showed that the species-specific model gives the lowest average Mean 

Absolute Error (MAE) of all species in comparison to three Sundarbans-specific and four pan-tropical 

generic allometric models (Figure 4.4, Table B.4). The lowest average MAE revealed that the species-

specific models performed well to predict the AGB in the Sundarbans. AGB estimation at tree level 

had mean relative absolute difference in MAE between 21.85% with the Mahmood_2019_DHW 

model to the maximum 167.43% with the Komiyama_2005_DW model followed by the 

Chave_2005_DHW and the Chave_2014_DHW model (Table B.4). The paired t-test of MAE for 

species-specific models with generic models showed that there is no significant difference of MAE 

with three Sundarbans-specific models (p >0.05); however, all four pan-tropical models showed 

significantly higher MAE than the species specific-model (p <0.05). The largest error was obtained 

for Excoecaria agallocha with the Komiyama_2005_DW model.  

 

Figure 5.4: Species-wise mean absolute error (MAE) of tree AGB with all allometric models after 10-fold cross 

validation. The models are arranged from highest average MAE to minimum.  

5.3.2. Above-ground tree biomass in the Sundarbans 

The tree inventory in the Bangladesh Sundarbans indicates a total of 24 tree species. The mean DBH, 

height, measured and database-sourced wood density of all tree species are presented in the Table 4.3. 

The DBH and H distribution are presented in the supplementary Figures B.3 and B.4. The frequency 

distribution of the top ten species based on basal area (m2 ha-1) and tree density (trees ha-1) showed 
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that Excoecaria agallocha, Heritiera fomes and Ceriops decandra comprise 90% of the stems in the 

Sundarbans, although they represent 60% in terms of basal area (Figure 4.5). Excoecaria agallocha 

and Heritiera fomes was within the top two species in both categories; Ceriops decandra was the third 

in terms of tree density, however, sixth in case of basal area for its lower DBH. 

 

Figure 5.5: Frequency distribution of the 10 most frequently occurring species based on basal area (m2 ha-1) and 

tree density (tree ha-1). 
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Table 5.3: List of tree species found in the Sundarbans with taxonomy and structural parameters. 

 

The mean above-ground biomass varied from 111.36 Mg ha-1 with the Chave_2005_DHW model to 

the highest 299.48 Mg ha-1 for Chave_2005_DW model (Figure 4.6). Except for Chave_2005_DHW 

Sl 

No. 

Latin name  Local 

name 

Family Mean 

DBH 

(cm ± 

s.d.) 

Mean 

Height (m 

± s.d.) 

Measured Mean 

Wood Density 

(gm cm-3 ± s.d.) 

Mean Wood 

Density from 

database (gm cm-3 

± s.d.)** 
1. Aegialitis 

rotundifolia Roxb. 
Nunia  Plumbaginaceae 

6.86 (± 
2.85) 

3.94 (± 
1.71) 

- 0.50 ((± 0.05) 

2. 

 

Aegiceras 

corniculatum (L.) 

Blanco 

Kholshi Primulaceae 
5.69 (± 
2.67) 

5.73 (± 
2.18) 

0.74 0.60 ((± 0.08) 

3. Aglaia  piculate 

(Roxb.) Pellegr. * 
Amur Meliaceae  

3.58 (± 

1.16) 

4.70 (± 

1.62) 
0.50 0.62 ((± 0.12) 

4. Avicennia alba 
Blume. 

Sada Baen Avicenniaceae 
14.10 (± 

0.85) 
8.70 (± 
2.40) 

0.72 (± 0.08) 0.70 ((± 0.12) 

5. Avicennia marina 

(Forssk.) Vierh. 

Moricha 

Baen 
Avicenniaceae 

10.40 (± 

5.26) 

10.87 (± 

5.77) 
0.55 0.64 ((± 0.09) 

6. Avicennia 
officinalis L. 

Kala Baen Avicenniaceae 
21.20 (± 
13.40) 

11.56 (± 
5.13) 

0.61 (± 0.07) 0.65 ((± 0.08) 

7. Bruguiera 

gymnorrhiza (L.) 

Lam. 

Lal Kakra Rhizophoraceae 7.40 5.80 - 0.76 ((± 0.08) 

8. Bruguiera 

 piculate  

(Lour.) Poir. 

Holud Kakra Rhizophoraceae 
15.75 (± 

3.95) 
6.96 (± 
3.02) 

0.69 (± 0.03) 0.83 ((± 0.12) 

9. Cerbera manghas 
L. * 

Dakur Apocynaceae 
8.92 (± 
0.08) 

0.72 (± 
0.08) 

0.35 (± 0.01) 0.47 ((± 0.05) 

10. Ceriops decandra 

(Griff.) Ding Hou 
Goran Rhizophoraceae 

3.31 (± 

0.80) 

3.97 (± 

0.95) 
0.73 (± 0.07) 0.73 ((± 0.25) 

11. Cynometra 
ramiflora L. * 

Singra Fabaceae 
4.25 (± 
1.55) 

5.05 (± 
1.47) 

0.66 (± 0.05) 0.84 ((± 0.10) 

12. Excoecaria 

agallocha L. 
Gewa Euphorbiaceae 

6.93 (± 

4.04) 

6..71 (± 

2.49) 
0.42 (± 0.08) 0.43 ((± 0.06) 

13. Excoecaria indica 
(Willd.) Muell. 

Arg. * 

Batul Euphorbiaceae 6.60 6.80 0.41 0.50 ((± 0.02) 

14. Heritiera fomes 
Buch. -Ham. 

Sundri Malvaceae 
8.57 (± 
6.58) 

8.03 (± 
4.16) 

0.75 (± 0.07) 0.88 ((± 0.11) 

15. Hibiscus tiliaceus 

L. * 
Bola Malvaceae 3.90 5.00 - 0.48 ((± 0.06) 

16. Intsia bijuga 
(Colebr.) Kuntze * 

Bhaila/Bhola Fabaceae 
4.40 (± 
0.79) 

5.17 (± 
0.81) 

- 0.71 ((± 0.20) 

17. Kandelia candel 

(L.) Druce 
Vatkathi Rhizophoraceae 

11.87 (± 

5.09) 

7.77 (± 

1.15) 
0.58 (± 0.05) 0.52 ((± 0.05) 

18. Lumnitzera 
 piculat Willd. 

Kirpa Combretaceae 
5.23 (± 
1.84) 

5.99 (± 
1.13) 

0.82 (± 0.13) 0.83 ((± 0.08) 

19. Millettia pinnata 

(L.) Panigrahi* 
Karanj Fabaceae 5.70 6.30 0.55 0.61 ((± 0.05) 

20. Rhizophora 
 piculate Blume. 

Bhora Jhana  Rhizophoraceae 13.54 0.72 - 0.88 ((± 0.21) 

21. Rhizophora 

mucronata Lamk. 
Jhana Garjan Rhizophoraceae 

15.42 (± 

3.72) 

10.38 (± 

2.65) 
0.95 (± 0.05) 0.85 ((± 0.10) 

22. Sonneratia apetala 
Buch. -Ham. 

Keora Lythraceae 
29.35 (± 
12.84) 

17.97 (± 
5.90) 

0.54 (± 0.07) 0.53 ((± 0.11) 

23. Xylocarpus 

granatum K.D. 
Koen. 

Dhundul Meliaceae 
18.77 (± 

12.03) 

8.08 (± 

2.66) 
0.58 (± 0.05) 0.67 ((± 0.14) 

24. Xylocarpus 

moluccensis 

(Lam.) M. Roem 

Passur Meliaceae 
15.51 (± 
10.80) 

9.39 (± 
3.95) 

0.65 (± 0.09) 0.65 ((± 0.09) 

* Indicates mangrove associates according to Tomlinson (2016). Abbreviation: DBH = Diameter at Breast Height. Values 

without s.d. indicates single observation. ** Multiple wood density values from different sources. 
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and Chave_2014_DHW, all other models yielded higher AGB than the species-specific model (123 

Mg ha-1). The mean relative absolute difference in AGB ranged from 9% with Mahmood_2019_DHW 

to 142% with Chave_2005_DW. Pairwise comparison with the Wilcoxon Signed-Rank Test between 

species-specific and other models showed that all generic models measured significantly different 

AGB than the species-specific model in the Sundarbans (p <0.05). Both Chave_2005_DW and 

Komiyama_2005_DW overestimated AGB (supplementary Table B.5). The absolute difference 

between allometric models tended to increase with DBH in all species, suggesting that larger trees are 

crucial for estimating AGB with a variety of available allometric model leading to a greater error and 

uncertainty. 

 

 

 

 

 

 

 

 

Figure 5.6: Comparison of above-ground biomass (Mg ha-1) with different allometric models. The models are 

arranged from the highest median AGB to the lowest. The black horizontal line of box plot for each model 

represents the median and the width of violin plot represents the proportion of the data located there as a 

measure of kernel probability density. The black dots represent the outliers, which are 1.5 times of the 

interquartile range above the upper quartile and below the lower quartile (McGill et al., 1978)  
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Table 5.4: Pairwise comparison test of plot-level AGB from species-specific and other allometric models. 

 

AGB was significantly higher when models used published WD values compared to species-specific 

measured WD (Wilcoxon Signed-Rank Test, p <0.05) (Figure 4.7A, Table 4.4). The maximum mean 

relative difference biomass was for Sundarbans mean WD followed by salinity zone mean WD and 

database-derived WD. Looking at different sources of height data, using plot top height tended to 

overestimate AGB by 19.46%, while using average height underestimated AGB by 8.31% compared 

to the measurements from Individual species (Figure 4.7B, Table 4.4).  

Model comparison 
Mean difference 

biomass (Mg ha-1) 

Mean absolute 

difference 

biomass (Mg ha-1) 

Mean relative 

absolute 

difference (%) 

Wilcoxon Signed-

Rank Test (Z), p-

value 

Comparison of different allometric model 

Species-specific – Mahmood_2019_DHW -5.18 11.38 9.21 Z = -5.13, p <0.05 

Species-specific – Chave_2014_DHW 0.79 17.38 14.07 Z = -2.89, p <0.05 

Species-specific – Mahmood_2019_D -12.66 19.66 15.92 Z = -6.40, p <0.05 

Species-specific – Chave_2005_DHW 12.59 21.07 17.06 Z = -6.51, p <0.05 

Species-specific – Mahmood_2019_DH -21.27 23.37 18.92 Z = -7.95, p <0.05 

Species-specific – Komiyama_2005_DW -52.47 52.57 42.57 Z = -10.26, p <0.05 

Species-specific – Chave_2005_DW -175.67 175.75 142.31 Z = -10.26, p <0.05 

Comparison from different Wood Density (WD) 

 

Measured WD – Plot mean WD -3.16 5.83 4.53 Z = -5.86, p <0.05 

Measured WD – Database WD -4.82 9.91 7.70 Z = -3.83, p <0.05 

Measured WD- Salinity zone mean WD -4.08 12.46 9.68 Z = -3.54, p <0.05 

Measured WD – Sundarbans mean WD -4.29 12.47 9.69 Z= -3.59, p < 0.05 

Comparison from different Tree Height (m) 

Individual Height – Plot mean Height 10.70 10.70 8.31 Z = -13.68, p <0.05 

Individual Height -Plot top Height -25.04 25.04 19.46 Z = -13.68, p <0.05 
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Figure 5.7: Comparison of above-ground biomass with A) different wood density and B) different height 

parameters. The parameters are arranged from the highest median AGB to the lowest. For details of the violin-

box plot, see Figure 4.6. 

5.4. Discussions 

The results show that the species-specific allometric models provide the lowest average mean absolute 

error (MAE) for all species in the Sundarbans (Figure 4.4, Table B.4). However, the three 

Sundarbans-specific generic models showed no significant difference of mean MAE at tree-level 

compared with the species-specific models (Table B.4). At plot-level, all local and pan-tropical 

generic models either overestimated or underestimated AGB when compared to local species-specific 

models (Figure 4.6). Several studies have concluded that site-specific AGB models estimate biomass 

or carbon with less error than regional or pan-tropical models; as seen in studies in the Sundarbans 

mangrove forest (Mahmood et al., 2019), lowland Dipterocarp forest in Indonesia (Basuki et al., 

2009), degraded landscape in Northern Ethiopia (Mokria et al., 2018), central African forest 

(Ngomanda et al., 2014) and Mexican tropical humid forests (Martínez-Sánchez et al., 2020). In 

contrast, only a few studies report better performance from regional or pan-tropical models and these 

appear to result from large uncertainties in the data used to build the local model; for example, West 

Africa (Aabeyir et al., 2020). The accuracy of these generic models for a particular forest depends on 

whether these models incorporate sufficient samples from that forest. Chave et al. (2014) point out 

that the discrepancy between local models and their own model (Chave_2014_DHW) in wet forests 
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(including mangroves) is largely due to failure to address the wider variation of tree form and other 

characteristics like buttresses, which are common in the Sundarbans. Their previous model 

(Chave_2005_DW) overestimated AGB in the Sundarbans because of its inability to estimate biomass 

from larger trees (DBH > 42 cm) (Chave et al., 2005). However, surprisingly, the worldwide generic 

models for mangroves also overestimate AGB, possibly because of the samples drawn from the 

mangroves of Asia-Pacific and Australia (Komiyama et al., 2008).  

The structure and morphological characteristics of all mangroves vary according to their ability to 

adapt to environmental conditions such as salinity, which is less pronounced in other wet and dry 

tropical areas (Ball and Pidsley, 1995; Tomlinson, 2016). Environmental drivers such as salinity and 

water deficit are considered the main stressors for the growth and development of mangroves, 

including the Sundarbans. For example, the third most abundant species in the Sundarbans, C. 

decandra, is a multi-stemmed bushy species, on the other hand, the top two, H. fomes and E. 

agallocha are tree-like structures. The pantropical models yielded a large error in the dwarf, bushy 

species and other true mangrove species in the Sundarbans (Table B.5). Moreover, the extreme 

salinity has reduced the stature (Rahman et al., 2015a), trunk diameter (Rahman et al., 2020) and the 

leaf area (Khan et al., 2020b) of H. fomes and S. apetala, present in all three salinity zones in the 

Sundarbans. Due to this morphological variation, Banerjee et al. (2013) highlighted the importance of 

developing models based on salinity zonation.  

This study demonstrates that when using measured wood densities and individual tree heights, generic 

equations yield accurate estimates of AGB in mangroves at the plot scale (Figure 4.7). Most species 

had a higher published WD than the measured value seen in Table 4.3 (Henry et al., 2010). The use of 

WD from different databases such as the Global WD database resulted in a 9% variation for species 

having multiple values, which could provide a significant variation in AGB if upscaled (Réjou-

Méchain et al., 2019). Averaging WD at the plot scale, salinity zone scale or ecosystem scale also 

introduces errors. While WD is considered an important variable to capture a range of characteristics 

such as high density versus low density timber species, climax versus pioneer species or primary 

versus secondary species, the use of WD value from the secondary sources or averaging them in the 
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higher scales might not reflect the true biomass (Slik et al., 2008; Kenzo et al., 2009). Phillips et al. 

(2019) noted significant AGB error in the Amazon rainforest while scaling up from the plot level to 

forest and Amazon-wide level. Yuen et al. (2016) observed 31 Mg ha-1 higher AGB with the 

difference of measured and published WD of only 0.13 gm/cm3. 

Among nine developed models, six showed that DBH alone is a strong predictor of AGB across the 

Bangladesh Sundarbans. The remaining three models of E. agallocha, S. apetala, and Rhizophora spp. 

showed sensitivity to height. However, the inclusion of top height or average height instead of using 

individual tree height can increase the error at the plot level and above. Kearsley et al. (2013) 

observed a 24% overestimation of AGB in the central Congo Basin by using a regional Height-

Diameter relationship developed by Feldpausch et al. (2012) compared to the local relationship. On 

the other hand, using mean height could reduce the difficulty of taking height measurements in dense 

forests, yet may lead to a significant underestimation of AGB (Hunter et al., 2013). The difficulty of 

measuring height under a dense forest canopy allows researchers to use a H-D relationship or to use 

bioclimatic variables in allometric models. However, these also lead to non-uniform bias in biomass 

estimation (Réjou-Méchain et al., 2019). 

Although species-specific WD and individual height data can be used to accurately estimate AGB at 

the plot and ecosystem level, collecting species information is impractical in highly diverse mixed 

tropical forests such as in Amazonia, Southeast Asia and the Congo basin, which comprise of more 

than 53,000 tree species (Feldpausch et al., 2012; Slik et al., 2015). Mangroves, by comparison 

exhibit less diversity. Developing allometric models for dominant species could improve the biomass 

inventory. For example, in the Sundarbans only 28 species were recorded (24 in this survey) and just 

three species (E. agallocha, H. fomes and C. decandra) constitute about 90% of stand density (Figure 

4.5), which implies that developing three allometric models is enough to produce acceptable AGB 

estimates in the Sundarbans (GOB, 2019). The model used for C. decandra was developed by 

destructive sampling from Mahmood et al. (2012) and so this study recommends developing models 

with destructive samples from all salinity zones for H. fomes and E. agallocha. 
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The errors and uncertainties in the individual tree and plot level AGB estimates will result in large 

errors when scaling up to the ecosystem, region or country level by remote sensing (RS) techniques. 

Réjou-Méchain et al. (2019) described the errors due to poor choice of allometric models and failure 

to capture variabilities of WD and H as uniform and non-uniform bias. Uniform bias systematically 

propagates over- or underestimation whereas non-uniform bias is related to an inability to capture the 

variabilities across landscapes, for example, WD and H variation among successional stages or 

environmental gradients such as the salinity in the Sundarbans (Rahman et al., 2020). These two types 

of bias, in addition to mapping errors resulting from the use of remote sensing, may result in serious 

anomalies in national and global carbon budgets and result in poor understanding of species 

contribution to ecosystem processes and function in mangroves.  

5.5. Conclusions  

This study developed and tested five species-specific and four genus-specific allometric models for 

the nine most important species in the Sundarbans. All developed models explained a high percentage 

of the variance in tree AGB (R2 = 0.97 to 0.99) using measured diameter at breast height (DBH) and 

total height (H) data. At the individual tree level, the generic allometric models overestimated AGB 

between 22% to 167% compared to the species-specific models and at the plot level, they showed 

statistically significant AGB differences compared to the species-specific models (p < 0.05). 

Measured wood density (WD) showed 5-10% less biomass than WD from database and other sources, 

and AGB was overestimated by up to 20% when using plot top height and underestimated by 8% 

using plot average height data rather than individual tree heights. The study concludes that biomass 

estimation in mangroves forests always benefit from species-specific models and individual tree 

measurements when appropriate input data are available. Tree level measurements from inventory 

plots play an important role for the improved estimation of forest biomass while scaling from 

individual trees up to the ecosystem level. Improved estimates of AGB will improve support our 

understanding of the productivity of mangrove forests, information that is needed for the long-term 

conservation of these fragile ecosystems that face many natural and anthropogenic pressures.  
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Chapter 6  

 

Mapping ecosystem carbon stocks in the Bangladesh 

Sundarbans 
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6.1. Introduction  

Mangrove forests throughout the world provide a range of ecosystem services to local and global 

communities (Himes-Cornell et al., 2018; Friess et al., 2020b). Their role in sequestering atmospheric 

CO2 as biomass in woody material and as organic matter in sediments plays an important role in 

mitigating climate change (Duarte, 2017; Kauffman et al., 2020; Macreadie et al., 2021). Despite 

these benefits, it is estimated that about half the area of the world’s mangrove forests have been lost 

during the last century (Feller et al., 2010). Nevertheless, data from FAO and independent research 

suggests that the decline of mangrove has reduced to about 7% in the last three decades and 

mangroves continue to be lost or degraded due to a range of anthropogenic activities, pollution and 

climate change (FAO, 2020; Goldberg et al., 2020; Su et al., 2021). A single unit loss of mangrove 

forest emits more greenhouses gases than other tropical forests due to high carbon density in the forest 

sediments (Donato et al., 2011; Kauffman et al., 2020). Therefore, a global alliance to curb mangrove 

destruction and fostering conservation and restoration of degraded mangrove forest has recently been 

established via national and international policies and practices such as UN REDD+, Payment for 

Ecosystem Services (PES), International Blue Carbon Initiative and the Global Mangrove Alliance 

Blue Carbon initiatives (Taillardat et al., 2018; Friess et al., 2020a). 

The ecosystem carbon stocks is mainly composed of both above- and below-ground carbon from tree 

body parts (either dead or alive) and sediment carbon (IPCC, 2006; Donato et al., 2011). While 

sediment carbon is directly measured from sediment samples, tree carbon components are estimated 

from allometric models as biomass derived from tree structural parameters such as diameter, height 

and wood density of trees (Kauffman and Donato, 2012; Kauffman et al., 2020). Therefore, a range of 

regional, pan-tropical and site-specific allometric models are available for mangroves (Komiyama et 

al., 2008; Chave et al., 2014; Mahmood et al., 2019). However, the use of non-mangrove models for 

mangrove species, and non-site-specific wood density does not provide the corresponding level of 

accuracy, especially when estimating biomass variability with vegetation types and environmental 

drivers (Owers et al., 2018; Rahman et al., 2021c). A standard conversion factor (usually 45-50%) is 

used to convert biomass into carbon (Kauffman and Donato, 2012; Howard et al., 2014). Application 
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of a standard conversion factor does not reflect the accurate carbon proportion since the conversion 

rate is species-specific and varies with the component of trees such as stems, branches and roots 

(Owers et al., 2018). Overall, the carbon stocks of a mangrove forest is not spatially homogeneous, 

rather it depends on spatial variability resulting from species type, composition, structure, age, 

intertidal condition, salinity and other environmental variables (Owers et al., 2018; Kauffman et al., 

2020; Rahman et al., 2021b). Therefore, site- and species-specific allometric models and site-specific 

variables such as wood density and conversion factors are desirable to better reflect the carbon stock 

(Mahmood et al., 2019; Martínez-Sánchez et al., 2020; Rahman et al., 2021c).  

Remote sensing (RS) imagery is frequently used to upscale plot level carbon stocks to larger scales 

where additional environmental variables can be used to produce carbon maps at ecosystem, national, 

regional or global level. Upscaling through remote sensing can be done in four ways; a) Stratify & 

Multiply (SM) Approach, b) Combine & Assign (CA) Approach, c) Ecological Models (EM) 

Approach and d) Direct Remote Sensing (DR) Approach (Goetz et al., 2009). While the SM approach 

assigns an average carbon value to a land cover/vegetation type map (for example, Asner et al. 

(2010)), the CA approach is the extension of SM which uses kriging or co-kriging geostatistics 

techniques with multiple-layers of information in GIS (geographic information system) (for example, 

Gibbs et al. (2007) and Tyukavina et al. (2015)). The EM approach uses remote sensing (RS) to 

parameterise the model (Hurtt et al., 2004) and the DR approaches are basically empirical models 

where RS data is calibrated to field estimates using a number of statistical and machine learning 

approaches such as neural networks and regression tress (Baccini et al., 2008; Saatchi et al., 2011; 

Baccini et al., 2012). Each of these methods has limitations in terms of data requirements and 

applicability. Since the SM approach uses average value for each class, it is unable to capture the 

wider variability within that class (Gibbs et al., 2007; Goetz et al., 2009). The CA approach has the 

advantage that it uses additional variables such as elevation, canopy height and adds weights to 

prioritise one variable over another. However, it suffers from a lack of consistent spatial data (Goetz 

et al., 2009; Tyukavina et al., 2015; Ameray, 2018). The DM approach is best suited for monitoring 

carbon sequestration at larger scales and to prepare wall-to-wall carbon maps (Goetz et al., 2015). 
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However, for greater accuracy, this DM approach requires active RS data such as RADAR or LiDAR 

for training models and validation as these sensors measure forest biomass directly (Goetz et al., 

2015). Upscaling field carbon stocks measurements through remote sensing introduces uncertainty 

from geolocation mismatch with field plots, variable acquisition angles of satellite images and 

mismatches in scale (Réjou-Méchain et al., 2019). The biomass measurement, conversion to carbon 

and upscaling to the ecosystem level or larger scales (such as countries, regions) involves using a 

series of statistical models that accumulate uncertainties in each step (Réjou-Méchain et al., 2019; 

Rahman et al., 2021c). The errors and uncertainties from field plots are incorporated into the remote 

sensing-based forest area estimates to generate the final carbon map. Altogether it is a challenging 

task to keep errors and uncertainties in carbon estimation as low as possible. 

Until recently, the estimation of carbon stocks in the Bangladesh Sundarbans was mostly based on 

field measurements that used the same allometric models for all species, which originated from other 

mangroves or tropical forests (Rahman et al., 2021c). The first comprehensive attempt to quantify 

carbon stocks in the Sundarbans was undertaken by Rahman et al. (2015a) with the inventory data 

from the Bangladesh Forest Department (BFD, 2010). By using the same data, Chanda et al. 

(2016b) simulated the blue carbon by using Markov Chain and cellular automata in order to 

predict future carbon stocks in the Sundarbans. A range of studies have estimated carbon stocks 

and sequestration in some parts of the Sundarbans such as in the oligohaline zone (Kamruzzaman 

et al., 2017; Kamruzzaman et al., 2018; Ahmed and Kamruzzaman, 2021), mesohaline zone 

(Azad et al., 2020) and in all three salinity zones (Ahmed and Kamruzzaman, 2021). The use of 

pantropical allometric models in all these studies may not represent the mangroves of the Indian 

subcontinent well and so fail to achieve the desired level of accuracy. However, the Bangladesh 

Forest Inventory (BFI) estimated total ecosystem carbon in the Sundarbans and other forests by 

developing common allometric models for major species (Mahmood et al., 2019; Henry et al., 

2021). At present, species-specific allometric models are available for 14 species in the 

Sundarbans, which can be used to estimate carbon stocks with a greater accuracy (Hossain et al., 

2016; Rahman et al., 2021c). Both Chanda et al. (2016b) and GOB (2019) estimated the total 
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ecosystem carbon stocks in the Bangladesh Sundarbans through remote sensing with the SM 

approach by assigning average values of each vegetation class or total land area, thus overlooking 

the distribution of species. In this regard, species-specific allometric models and conversion 

factors may capture the variability due to species. On the other hand, the species distribution in 

the Sundarbans is controlled by a range of environmental drivers such as salinity intrusion, 

historical harvesting, increasing community size, siltation, diseases and soil alkalinity (Sarker et al., 

2016; Sarker et al., 2019b; Rahman et al., 2020). Upscaling plot level estimations with a forest-type 

map should capture these environmental and biotic stressors affecting ecosystem carbon stocks in 

the forest. 

The aim of this research is to estimate carbon stocks in the Bangladesh Sundarbans at different spatial 

scales and to quantify uncertainty in the estimation. The study hypothesises that the use of species-

specific allometric models, wood density and carbon fraction will yield above- and below-ground 

carbon stocks at the individual, plot and ecosystem scales with reduced uncertainty. The specific 

objectives of this study are to: 1) Estimate above- and below-ground carbon stocks at plot scale; 2) 

Compare the variability of ecosystem carbon stocks with vegetation types and salinity zonation; 3) 

Produce a forest-type map by comparing pixel-based and object-based classification methods; 4) 

Upscale plot level carbon stocks to the Sundarbans ecosystem level to produce an ecosystem carbon 

map by using forest-type map.  

6.2. Methods 

6.2.1. Study site 

The study was conducted in the Bangladesh Sundarbans, situated between 21° 14ʺ N and 22° 25ʺ N 

latitude and 89° 34ʺ E and 89° 43ʺ E longitude and which comprises about 60% of the world’s largest 

mangrove forest, the Sundarbans. The forest is internationally recognised as a Ramsar and UNESCO 

World Heritage site and home of world famous Royal Bengal Tiger (Panthera tigris tigris) (Aziz and 

Paul, 2015). About 7.5 million people are directly and indirectly dependent on the Sundarbans and it 
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provides a number of valuable ecosystem services for their wellbeing, livelihood and protection from 

cyclones and tidal surges (Abdullah et al., 2016; Barua et al., 2020; Rahman et al., 2021a). The 

climate of this forest can be described as warm, humid, and tropical, with annual precipitation varying 

from 1,474 to 2,265 mm and mean annual minimum and maximum temperature varying from 29 oC to 

31 oC between 1948 and 2011 (Sarker et al., 2016; Rahman et al., 2020). Silt and clay are the 

dominant soil texture in this forest (Siddiqi, 2001).  

The Bangladesh Sundarbans shows a distinct salinity gradient from east to west and therefore, several 

studies have demarcated three distinct salinity zones based on soil salinity — i) Oligohaline (<2 dS/m, 

ii) Mesohaline (2-4 dS/m) and iii) Polyhaline (>4 dS/m) (Figure 3.1) (Siddiqi, 2001; Chanda et al., 

2016b). Salinity influences the geomorphology and hydrological characteristics which ultimately 

regulates the morphology, growth and distribution of plant species (Sarker et al., 2016; Sarker et al., 

2019a; Rahman et al., 2020; Rahman et al., 2021b). The composition and diversity of tree species is 

heavily controlled by the east-west salinity gradient (Sattar et al., 1995; Iftekhar and Saenger, 2008; 

Sarker et al., 2019a; Sarker et al., 2019b). Overall, Excoecaria agallocha is abundant in all three 

salinity zones, whereas the characteristic tree species, Heritiera fomes is present in both oligohaline 

and mesohaline zones and Ceriops decandra in the polyhaline zone (Sarker et al., 2019b; Rahman et 

al., 2021a). Besides these species, some pioneer species such as Avicenna spp. and Sonneratia apetala 

are also abundant in the mudflats all over the Sundarbans. The list of species from the vegetation 

survey is presented in the Table 4.3. 

6.2.2. Sampling design and data collection 

The Forest Department of Bangladesh (BFD) regularly monitors the tree growth and regeneration 

from 120 permanent sampling plots (PSP), established at the beginning of the twentieth century 

(Chaffey et al., 1985). The area of the rectangular PSP is 20 m × 100 m comprising a total of 2,000 

m2. In each PSP, a temporary circular plot was established from August 2018 to April 2019 with the 

radius of 11.3 m (400 m2
 in total), one-fifth of the PSP, to collect biophysical attributes from the 

forest. As most of the PSPs are located near the riverbank and these PSPs do not cover seaward side 
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(Southern part of the Bangladesh Sundarbans), an additional 20 plots were established, which 

comprises in total of 140 plots (Figure 5.1).  

 

Figure 6.1: Plot location in the Sundarbans mangrove forest, Bangladesh. 

The circular plot was designed to collect data from trees. Two additional circular plots were taken 

inside the main plot with a radius of 5 m and 1 m to collect information from poles (DBH < 14.5 cm) 

and pneumatophores (Figure 5.2). Additionally, 2-3 sediment cores were taken from each plot for soil 

carbon measurement and two-cross sectional transects were established to collect information on 

down wood lying on the forest floor. 
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Figure 6.2: The nested circular plot and measured components inside the plot. 

6.2.3. Estimation of above-ground carbon 

The above-ground carbon of a forest consists of carbon from live and dead trees, non-woody species, 

poles, saplings, and seedlings, dead and downed wood, pneumatophores and litter. Since seedlings 

and saplings constituted a negligible amount of carbon, these two components were not measured in 

the field inventory (Kauffman and Donato, 2012). Above-ground biomass (AGB) for each component 

was estimated with the collected biophysical attributes from the forest plots separately for each 

component. Species-specific carbon fraction for stem and root biomass were developed for seven 

species in the Sundarbans by Chanda et al. (2016b). The average carbon fraction for stem and root is 

51.8% and 48.9%, respectively. These species-specific values were used to convert biomass into 

carbon for stem and root biomass. In the case of unavailability for any species, the value of same 
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family or wood density was used. In the case of dead and down wood and pneumatophores, the 

average value of root biomass (48.9%) was used. After calculating the carbon stocks of each 

component, the above- and below-ground carbon was converted into a unit area scale (per hectare). 

Therefore, a hectare expansion factor (HEF) was used for the main and sub-plot (i.e., HEF = 25 for 

main plots, and HEF = 126.58 for smaller sub-plot) and expressed as Mg ha-1. The detailed data 

collection method and measurement of biomass are described below. 

6.2.3.1. Standing live trees 

The standing live trees from sampling plots are divided in to two categories, i) Trees: DBH is greater 

than 14.5 cm and ii) Poles: DBH is between 2.5 -14.5 cm as the number of poles are more abundant 

than trees and getting information from all poles was time consuming, laborious and risky due to 

animal attack. In case of trees and poles, DBH was measured with a diameter tape and total height 

was measured using a Vertex-III hypsometer (Haglöf, Sweden). From each plot, the WD (gm cm-3) 

was measured from one representative tree for each species with a wood specimen collected with a 

Haglöf wood increment borer (diameter 5.15 mm and bit length 300 mm) following Wiemann and 

Williamson (2013). The nine developed genus- and species-specific allometric models from Rahman 

et al. (2021c) (Chapter 4, Table 4.2) were used to estimate AGB of individual tree and pole in kg. 

Additionally, four locally derived species-specific models (Model 1-4 in Table 4.1) were also used for 

the respective tree species. In all cases, measured biophysical parameters such as DBH, H and WD 

were used in all models, as necessary. In cases where species-specific models were not available, 

models from the same genus or family were used. For Ceriops decandra and Aegialitis rotundifolia, 

DBH was converted to Girth at Collar Height (GCH) as described in the 4.2.5.1. 

6.2.3.2. Standing dead trees and non-woody components 

Standing dead trees were recorded as three categories of decay status depending on the amount of 

existing dead branches and twigs during the time of sampling: Decay I: dead trees with large branches 

along with small branches and twigs; Decay II: dead trees with only major large branches; and Decay 

III: dead stems with no or few small or large branches (Kauffman and Donato, 2012). The biomass of 
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each category of standing dead trees was calculated by using subtraction following Kauffman and 

Donato (2012). The biomass of Decay I trees was estimated by subtracting 2.5% from the calculation 

of live tree biomass since these trees are without foliage according to Kauffman and Donato (2012). 

The biomass of decay II categories is commonly 10-20% of live tree biomass as these trees are 

without foliage and fine branches (Kauffman and Donato, 2012) and mid value of 15% was used in 

this study. The best approach to measure biomass of the decay III dead trees is to calculate volume 

and subsequently multiplied by wood density according to Kauffman and Donato (2012). However, 

this estimation requires tree base diameter data in addition to DBH and height of trees to calculate the 

taper function. Since this study did not measure the base diameter of dead trees, it used an arbitrary 

value of 50% of live tree biomass for decay III dead trees as these trees are mostly without any 

foliage, and have fine and large branches (Kauffman and Bhomia, 2017).  

In the case of non-woody species, the number of leaves of Nypa fruticans and the number of stems of 

Phoenix paludosa were also recorded from each sample plot. A few representatives of leaves and 

stems of variable sizes were brought to the laboratory for oven drying at 70 °C for leaves and 105 °C 

for stems to determine the dry biomass per specimen. The average dry biomass of these leaves and 

stems were used to calculate total biomass of non-woody vegetation for each plot.  

6.2.3.3. Dead wood and pneumatophores  

In each sample plot, two cross-sectional transects were laid inside the plot to calculate the mass of 

dead and downed wood. At each transect, the diameter of each downed wood was measured using 

digital slide calliper and divided in to four categories based on the diameter at the mid-point: fine (> 

0.6 cm), small (0.6-2.5 cm), medium (2.5-7.6 cm) and large (< 7.6 cm). The carbon stocks of different 

sized down wood was calculated by using the volumetric equation described in Kauffman and Donato 

(2012). In order to convert biomass to carbon, the specific gravity (gm cm-3) for each class was used 

following Kauffman and Donato (2012).  

Mangroves exhibit numerous pneumatophores above-ground which contain a high biomass. The 

central 1 m sub-plot was used to count the number of pneumatophores. Some representative 
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pneumatophores of variable sizes were cut and subsequently brought to the laboratory for oven drying 

at 105°C to determine the dry biomass and the average conversion factor was then applied to get dry 

biomass of all measured pneumatophores.  

6.2.4. Below-ground carbon measurement 

The below-ground carbon is composed of mainly of carbon from roots and soil. The root carbon was 

measured using allometric models and incorporating soil carbon measurements from laboratory 

analysis. Species-specific conversion factors were used to convert root biomass into root carbon 

following Chanda et al. (2016b). 

6.2.4.1. Below-ground root biomass 

Mangroves form cable root systems underneath the surface; therefore, extraction and measurement of 

root biomass is labour intensive and difficult (Kauffman and Donato, 2012; Adame et al., 2017). 

Common or species-specific allometric models are largely used to infer root biomass in relation to 

above-ground parameters of trees such as DBH, height and/or wood density (Komiyama et al., 2005). 

However, after analysing available global datasets on below-ground root biomass, Adame et al. 

(2017) concluded that using common allometric models overestimates root biomass compared with 

using species-specific models. Therefore, the root biomass was estimated from species-specific 

allometric models from different mangrove forests (Table 5.1). Where allometric models were not 

available for any species, the common allometric model for root biomass, developed by Komiyama et 

al. (2005), was used to estimate root biomass of all trees and poles.  

Table 6.1: List of species-specific allometric models for estimating root biomass in mangrove forest. 

Target species  Used models  
Allometric models  

B (Kg) = 
R2; N Source Study area  

Sonneratia apetala 

Sonneratia spp. 

(S. alba and S. 

caseolaris)  
0.230 𝑊𝐷 (𝐷𝐵𝐻2𝐻)0.740 0.94; 30 

Kusmana et al. 

(2018) 

Central Java, 

Indonesia 

Avicennia alba, A. 

marina, A. 

officinalis 

Avicennia 

marina 
1.28 𝐷𝐵𝐻1.17 0.80; 14 

Comley and 

McGuinness 

(2005) 

Darwin 

harbour, 

Australia 

Bruguiera 

 piculate , 

B. gymnorrhiza  

Bruguiera spp. 
 

0.0188 (𝐷𝐵𝐻2𝐻)0.909 

unknown; 

11 

Tamai et al. 

(1986) 

Southern 

Thailand 
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Ceriops decandra, 

Aegialitis 

rotundifolia 

 

Ceriops 

australis 
0.159 𝐷𝐵𝐻1.95 0.87; 9 

Comley and 

McGuinness 

(2005) 

Darwin 

harbour, 

Australia 

Rhizophora 

 piculate, R. 

mucronata  

Rhizophora 

apiculata 
0.00698 𝐷𝐵𝐻2.61 99;11 Ong et al. (2004) 

Matang 

Mangrove 

Forest, 

Malaysia 

Xylocarpus 

granatum, 

X. moluccensis 

 

Xylocarpus 

granatum 
0.145 𝐷𝐵𝐻2.55 0.99; 6 

Poungparn et al. 

(2002) 

Southern 

Thailand 

Kandelia candel  
Kandelia 

obovata 
0.0483 (𝐷𝐵𝐻2𝐻)0.834 

unknown; 

5 

Hoque et al. 

(2011) 

Manko 

Wetland, Japan 

Aegiceras 

corniculatum, 

Aglaia  piculate, 

Cerbera manghas, 

Cynometra 

ramiflora, 

Excoecaria 

agallocha, 

Excoecaria indica, 

Heritiera fomes, 

Hibiscus tiliaceus, 

Intsia bijuga, 

Lumnitzera 

 piculat, 

Millettia pinnata 

Common 

allometric 

models 
0.199 𝑊𝐷0.899𝐷𝐵𝐻2.22 0.95; 26 

Komiyama et al. 

(2005) 
Thailand 

Here B = Dry biomass, N = Number of samples, GCH = Girth at collar height, HT = Total Height, HCH = Height at 

collar girth point, DBH = Diameter at breast height (1.3 m), R2 = Coefficient of determination, WD = wood density 

(gm cm-3) 

 

6.2.4.2. Soil carbon  

The 1 m soil carbon stocks data was collected for 55 plots from Rahman et al. (2021b) and the method 

for sample collection and analysis is described in sections 3.2.3 and 3.2.4.  

6.2.5. Mapping forest types 

Upscaling ecosystem carbon stocks require interpolation of field estimates to the extent of the forest 

and the development a mapped forest types to enable the regulation of the carbon stocks in any 

ecosystem. Since both above- and below-ground carbon stocks varies with forest type (Rahman et al., 

2015a; Rahman et al., 2021b), a forest type map was produced from Sentinel-2 surface reflectance 

using Google Earth Engine (GEE). GEE is a cloud computing platform providing high-performance 

computing resources for processing, rapid prototyping and visualization of complex spatial analyses 

from a large geospatial dataset (Chen et al., 2017; Gorelick et al., 2017). GEE is useful to pick multi-
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temporal cloud-free satellite images to produce temporal (for example, yearly) mosaics. A wide range 

of classifiers are also available in the platform such as Classification and Regression Trees (CART), 

Support Vector Machine (SVM), Continuous I Bayes classifier, Decision Tree (DT), Linear 

Regression, Maximum Entropy classifier and Random Forest (RF).  

6.2.6. Dataset composition 

Sentinel-2 MSI (Multispectral Instrument) surface reflectance (SR) imagery was selected to develop a 

cloud-free composite dataset during the fieldwork period from February 2019 to April 2019 (Figure 

5.3). This period is the dry winter in the Sundarbans and therefore less likely to have cloudy pixels. 

Sentinel-2 MSI is a wide-swath multi-spectral imaging mission by European Space Agency (ESA) 

providing some image bands of 10 m resolution for monitoring of vegetation, soil and water (ESA, 

2022). Cloud free images (0% cloudy pixels) were filtered from the Sentinel-2 SR level-2A image 

collection available in GEE platform as ‘COPERNICUS/S2_SR’ within the specified period. The 

study used six image bands B2, B3, B4, B6, B8 and B11 representing Blue, Green, Red, Red edge 2, 

Near Infra-red (NIR) and Short-wave infra-red 1 (SWIR) respectively. Since the resolution of B6 and 

B11 bands is 20 m, these were resampled (bilinear) to 10 m harmonising with other bands. A separate 

cloud cover filtering was used for the initial 16 images by using the quality pixel band of Sentinel 2, 

which allowed dense and cirrus clouds and shadows to be masked. Three spectral indices including 

NDVI (Normalised Difference Vegetation Index, Modified Normalised Difference Water Index 

(MNDWI) and Bare Soil Index (BSI) were used to discriminate pixels between forests, water and bare 

soil areas. NDVI is a widely used vegetation index to indicate measures of vegetation health, therefore 

it helps to discriminate among different tree species and with bare soil and water. On the other hand, 

MNDWI and BSI are widely used for land use mapping to discriminate water and bare soil than other 

land use types. The derivation of each index is given below- 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 – 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
… … … … … ….Eq. 1 (Rouse et al., 1974). 

𝑀𝑁𝐷𝑊𝐼 =  
𝐺𝑅𝐸𝐸𝑁− 𝑆𝑊𝐼𝑅1

𝐺𝑅𝐸𝐸𝑁+ 𝑆𝑊𝐼𝑅1
… … … … … ….Eq. 2 (Xu, 2006) 

𝐵𝑆𝐼 =  
(𝑆𝑊𝐼𝑅1 + 𝑅𝐸𝐷) – (𝑁𝐼𝑅 + 𝐵𝐿𝑈𝐸)

(𝑆𝑊𝐼𝑅1 + 𝑅𝐸𝐷) + (𝑁𝐼𝑅 + 𝐵𝐿𝑈𝐸)
… … … … … ….Eq. 3 (Rikimaru et al., 2002) 
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Here, NIR = Near Infra-Red band (B8), RED = Red band (B4), GREEN = Green band (B3), SWIR1 = 

Short wave Infra-Red band (B11) and BLUE = Blue band (B2). The band number in parentheses 

indicates the band name in Sentinel-2. The resolution of SWIR1 is 20 m, therefore it was 

downsampled to 10 m before calculating the index.  

In addition to the above data, the study also included the global forest canopy height map, 2019, 

developed through integration of the Global Ecosystem Dynamics Investigation (GEDI) and Landsat 

time series data (Potapov et al., 2021). Since the Bangladesh Sundarbans have a height gradient from 

the east to the west part, the inclusion of canopy height data in the classification is expected to help 

classify different forest-types (Lee et al., 2015; Rahman et al., 2021b). The 30 m height map was then 

converted to 10 m through bilinear resampling in GEE.  

  

Figure 6.3: Median composite image of Sentinel-2 image collection of the Sundarbans, Bangladesh visualised in 

A) RGB colour and B) False colour.  

The Bangladesh Sundarbans covers three tiles of Sentinel-2 MSI satellite images with mainly 

T45QYE, but also T45QXE and T45QYD. The initial image filtering provided 17 cloud free images 

with the selected 6 bands during the field work period between February to April’ 2019. All these 

image collections were used to calculate the median to compose the 10 m base data cube (BDC). 

Thus, the final composite image is composed of 10 bands including Sentinel-2 (6), spectral indices (3) 

and a canopy height band.  

(A) (B) 
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6.2.7. Determination of forest type  

Forest type was determined according to the composition of each species (the percentage of 

individuals of trees and poles) presented in each sample plot. Single species dominance (for example, 

Heritiera only) was considered when the composition of a species is ≥ 70%. If one species was ≥ 50% 

and another species ≥ 25%, then the plot was named by those two species such as 

Heritiera_Excoecaria. If one species was ≥ 50% and there was no other species ≥ 25%, then the 

forest-type was designated as single species followed by “Mixed” type (for example, 

Xylocarpus_Mixed). If there was no dominant single species (< 50%) then the sample plot was 

considered as “Mixed”. The plot forest-type data was used to extract spectral signatures or pixel 

values of all bands of the final composite image. These extracted values were then used in a 

hierarchical clustering to merge similar forest-types and to identify unique forest-types discriminating 

spectral signatures and other values in the composite image. The hierarchical clustering was 

conducted with the “ggdendro” package by using Euclidean distance computation along with the 

“Ward.2” agglomeration method in R 4.0.4 for Windows (Murtagh and Legendre, 2014). 

6.2.8. Forest type classification 

A supervised classification method was used to classify forest types in the Sundarbans, where plot 

forest-type was used to train the classifier (Chen and Stow, 2002). To train the classifier, 70% of field 

plots were chosen randomly and the remaining 30% were used to validate the forest-type map. The 

randomisation was done in such a that each class must be included at least once as both training and 

validation. Since the Bangladesh Sundarbans consists of approximately 40% water and barren land, 

15 points were marked each as water and barren land in the GEE interface through visual inspection 

from high-resolution satellite imagery using Google Maps data inside the GEE environment. The 

randomisation for both validation and training To match with the size of sample plots, a circular 

buffer of 11.3 m was established for each point.  

Both pixel-based and object-based image classification methods were used in this study with two 

machine learning classifiers, Random Forest (RF) and Support Vector Machine (SVM) (Figure 5.4). 
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The classification was conducted in the GEE environment using the code developed by Tassi and 

Vizzari (2020) with necessary modifications. The object-based classification (also referred as 

Geographic Object-based Image Analysis (GEOBIA)) uses image segmentation and clustering 

techniques to make clusters of the same land uses and provides better results on high resolution data 

(Ren and Malik, 2003; Blaschke, 2010; Solano et al., 2019). On the other hand, the pixel-based 

classification approach is more suited to low resolution data and creates a “salt-pepper” effect with 

high resolution data (Messina et al., 2020). The object-based classification includes the Gray-Level 

Co-occurrence Matrix (GLCM) to calculate cluster textural indices and the Simple Non-Iterative 

Clustering (SNIC) algorithm to identify spatial clusters, which is widely used to improve the accuracy 

in land use and land cover (LULC) classification (Mahdianpari et al., 2020; Stromann et al., 2020). 

Machine Learning (ML) classifiers such as RF and SVM have been shown to outperform the 

traditional maximum likelihood algorithms for land use and land cover classification (LULC) 

(Ghimire et al., 2012; Mondal et al., 2019). Being non-parametric methods, these classifiers have the 

advantage that they do not require any statistical assumptions for data distribution (Tassi and Vizzari, 

2020). The RF classifier is a collection of multiple trees, where each tree casts a random vote to the 

most popular class by using a random vector sampled independently from training datasets (Breiman, 

2001). This classifier uses ‘bootstrap aggregating’ or ‘bagging’ to select training data for each class 

and each pixel is assigned to a class according to the most popular vote from all tree predictors 

(Ghimire et al., 2012). RF generally performs better than other popular classifiers in LULC 

classification including in mangrove forests (Adam et al., 2014; Mondal et al., 2019). On the other 

hand, SVM, a non-linear classifier, identifies boundaries between classes rather than assigning points 

to a class (Pal and Mather, 2005). It separates classes based on a user defined kernel function and 

parameters that are optimised using machine-learning to maximise the margin from the closest point 

to the hyperplane. Therefore, it requires the choice and tuning of kernels and other input parameters 

(Huang et al., 2002). However, both classifiers require high quality training datasets to train the 

classifier.  
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The GEE code executes the pixel-based (PB) and object-based (OB) approach one after another either 

with RF or SVM classifiers with the same composite dataset, and training data. The flowchart of all 

datasets and methodologies is presented in Figure 5.4. The GEE codes for creating composites, 

classification and accuracy assessments are provided via the following two links-  

1) https://code.earthengine.google.com/e56d1cab4e8cd9af89a4ead037189fd8 

2) https://code.earthengine.google.com/62de8534047d05f27103b61c24031623 

 

Figure 6.4: The methodological workflow implemented in Google Earth Engine (GEE) and GIS environment. 

The PB approach followed quick classification of images with the desired forest-type and accuracy 

assessment. However, for SVM, a band normalisation of the input dataset was done before executing 

the code. A radial basis function kernel (RBF) was applied for SVM with gamma = 1 and cost = 10 

following Tassi and Vizzari (2020). In case of RF classifier, the number of trees (DT) was set to 60. 

This is achieved by checking the lowest Out-Of-Bag error (OOB) in the GEE by using “Explain” 

function through increasing the number of trees from 10 to 200. In the pixel-based output map, a final 

morphological operation “focal mode” was performed with the default 1.5 m radius to reduce the “salt 

and pepper” effect. In the OB method, both SNIC and GLCM was applied together where SNIC 

requires a regular grid of seeds as input using the “Image.Segmentation.seedGrid” function. This 

https://code.earthengine.google.com/e56d1cab4e8cd9af89a4ead037189fd8
https://code.earthengine.google.com/62de8534047d05f27103b61c24031623
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function requires to state the superpixel seed location spacing in pixels. Therefore, to run SNIC, 

various seed spacings such as 5, 10, 15, 20 were applied and the best combination was compared with 

accuracy assessment following Tassi and Vizzari (2020). 

6.2.9. Validation  

For validation, 30% of sample plots were used and the uncertainty in classification was measured by 

using an error matrix. The same training samples were run for each combination of methods and 

classifiers. Users, Producers and overall accuracy were calculated for each of the forest types 

according to Olofsson et al. (2014). Quantity disagreement and allocation disagreement were also 

calculated as described by Pontius and Millones (2011) and Warrens (2015). The quantity 

disagreement is the deviation from perfect agreement between the classified and training classes and 

the allocation disagreement reflects the error due to differences in the spatial allocation of each class.  

6.2.10. Prediction of soil carbon and total ecosystem carbon stocks 

Soil organic carbon, above-ground carbon and total ecosystem carbon stocks were predicted using co-

kriging in GIS (ArcGIS Pro 2.9.1). Enhanced Bayesian Kriging Regression Prediction (EBKRP) was 

used to interpolate carbon stocks in places where measurements were not taken. This method is 

relatively new and is a hybrid interpolation method combining simple kriging and ordinary least 

squares (OLS) regression. EBKRP is the extension of Empirical Bayesian Kriging where an 

explanatory variable raster, such as a forest-type map is used that affect the dependent variable 

(Krivoruchko, 2012; ESRI, 2022b). The input raster acts as a prior distribution for the Bayesian 

analysis and the combination of regression analysis and kriging make interpolations more precise than 

estimated by only kriging or regression (Krivoruchko and Gribov, 2020; ESRI, 2022b). The 

combination of kriging and regression has the advantage of separating the mean and error of the 

dependent variable, whereas OLS with regression models, the mean value as a weighted sum of the 

explanatory variables and simple kriging models the error term using a semivariogram/covariance 

model (ESRI, 2022b). However, estimation of the mean value and error term are computed 

simultaneously.  
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In this study, soil organic carbon (SOC) was predicted with the forest-type map, Digital Elevation 

Model (DEM), aspect and slope (Figure 5.5). The forest-type map from this study was used to predict 

SOC using the data from 55 sample plots. The DEM of the Bangladesh Sundarbans was calculated by 

subtracting the GEDI canopy height map from the Digital Surface Model (DSM) taken from the 

TanDEM-X 12 m satellite data (Krieger et al., 2006; Hawker et al., 2019). In this case, both were 

resampled to 10 m resolution to match with forest-type map. From the DEM, aspect and slope were 

created by using ArcMap 10.7.1. For the prediction of TEC and AGC stocks, the plot level carbon 

stocks were combined with the forest-type map. 

 

Figure 6.5: Remote sensing dataset used in classification of forest types and geostatistical interpolation. A) 

Canopy height map in the Sundarbans using Landsat 8 and GEDI by Potapov et al. (2021), B) Digital elevation 

model (DEM), C) Aspect and D) Slope in the Sundarbans from TanDEM-x (12.5 m) (Krieger et al., 2006). 

In ArcGIS Pro 2.9.1, four available semivariogram models (Exponential, Nugget, Whittel and K-

Bessel) were used to produce covariate surfaces and the model with least Residual Mean Squared 
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Error (RMSE) was used for the final prediction. The spatial autocorrelation of the error term 

diminishes relatively quickly for the Exponential model and slowly for Whittle model compared to 

other options. On the other hand, the Nugget model assumes the error term is spatially independent, 

whereas K-Bessel is quite flexible to reduce the error term either slowly or quickly or anywhere in 

between (ESRI, 2022b). 

6.2.11. Error and uncertainty analysis 

The measurement errors as a result of the combination of instrument errors and human errors 

propagate into the plot-level ecosystem carbon stocks through using allometric models to estimate 

individual tree AGC and below-ground root carbon from DBH, height and wood density (Réjou-

Méchain et al., 2017; Réjou-Méchain et al., 2019). The plot-level error was estimated by using 

the “AGBmonteCarlo” function of the BIOMASS R package, where the overall error propagation is 

estimated by using the probability distributions of errors from trees and allometric model parameters 

by running 1000 Monte Carlo simulations (Réjou-Méchain et al., 2017). The package estimates AGC 

and SD (standard deviation) for each tree which is then scaled to plot-level. The accuracy of the 

height measuring instrument (Vertex-III hypsometer) is 1%, and so 1% of total height of each tree 

was considered as instrumental error. For diameter error, the default “chave 2004” was used in 

“Dpropag” argument representing large and small errors on 5 and 95% of all trees respectively 

(Chave et al., 2004). The error due to measurement of wood density was obtained as the SD of wood 

density for each species from the Table 4.3. The function was modified to employ species-specific 

allometric models and their respective residual standard errors from the Table 4.2. The plot-level 

above-ground error was used to interpolate spatial distribution of AGC error and the uncertainty of 

soil carbon (Standard Deviation) was combined to obtain a spatial distribution of TEC error in the 

Sundarbans.  

6.2.12. Statistical analysis 

All statistical analysis and graphics were accomplished in R 4.0.4 for Windows (R Core Team, 2021). 

The performance of each interpolation method was evaluated through the cross-validation statistics 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/error-propagation
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produced by ArcGIS pro-2.9.1. In the cross-validation method, the observed value is removed one by 

one from the analysis to predict that value from the remaining values and the error is calculated from 

the difference of measured and estimated values. The default statistical diagnostics from ArcGIS Pro 

was used to compare the performance of each interpolation model such as Mean Error (ME), Root 

Mean Squared Error (RMSE), Average Standard Error (ASE), Mean Standardized Error (MSE), Root 

Mean Square Standardized Error (RMSSE) and average Continuous Ranked Probability Score 

(CRPS). 

The Mean Error (ME) represents the arithmetic averaged difference between the measured and the 

predicted values. The positive and negative values represent overestimation and underestimation of 

predicted values (Li and Heap, 2011). The Root Mean Square Error (RMSE) is a commonly used 

cross-validation parameter which indicates the accuracy of prediction of measured values. The 

smallest RMSE signifies the best model in cross validation. The Average Standard Error (ASE) is the 

arithmetic average of prediction errors, whereas Mean Standardized Error (MSE) provides the average 

of the standardized errors. The value of MSE is closer to zero for better models. If the RMSE is 

similar to ASE then the model predicts the observed values well. On the other hand, when the ASE is 

greater than RMSE, this indicates overestimation, and when lower than the RMSE, this indicates 

underestimation. The Root Mean Square Standardized Error (RMSSE) is the square root of MSE 

which signifies a better model when close to 1. The RMSSE > 1 indicates a general underestimation, 

while the RMSSE < 1 indicates a general overestimation of predicted variables. The geostatistical 

wizard of EBKRP in ArcGIS Pro 2.9.1 has a separate statistical parameter called average Continuous 

Ranked Probability Score (CRPS), which measures predictive cumulative distribution function and 

calculates deviation to each observation. This parameter has the advantage over other parameters for 

comparing the full distribution rather than single values and the ideal value should be as small as 

possible (ESRI, 2022a). To facilitate selection of the best interpolation methods, both RMSE and 

CRPS were prioritised over other statistical parameters. 

The Total Ecosystem Carbon stocks (TEC, Mg ha-1) among different components (standing trees, 

pneumatophores, dead wood, below-ground root and soil) were compared with one-way analysis of 
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variance (ANOVA) using the ‘car’ package (Fox and Weisberg, 2019). Similarly, the TEC among 

three salinity zones and eight forest types were compared with a two-way ANOVA test. In all cases, 

data were logarithmic (natural) transformed to meet the assumptions of normality and equal variances 

by using Shapiro Wilk and Levene’s tests, respectively, and subsequently back-transformed to present 

graphically. All graphical output was generated using the ‘ggplot2’ package in R (Wickham, 2016) 

and maps were produced with ArcMap 10.7.1 and ArcGIS pro 2.9.1.  

6.3. Results  

6.3.1. Determination of forest type class 

The composition of each species from all sample plots comprised 18 forest-types. These forest-types 

were used to extract surface reflectance, spectral index and height map values from the Sentinel-2 

composite(Figure C.1 and C.2). The spectral reflectance of water and bare land showed strong 

discrimination in all 6 bands of Sentinel-2 MSI imagery. On the other hand, mangrove tree species 

showed different of spectral reflectance in the red edge, near infra-red and short-wave infra-red bands 

(Figure C.1). All spectral indices and the GEDI height map data showed differentiation for water and 

barren land, but there is not much differentiation among species type except for Sonneratia in the case 

of MNDWI (Figure C.2). However, forest species showed different canopy heights in the GEDI 

height map, which demonstrates the importance of these data for clustering different species. The 2 m 

average canopy height of water pixel in the GEDI height data and higher MNDWI of Sonneratia 

showed the influence of tidal current which can affect the classification for these two forest-types 

(Figure C.2). The Sonneratia spp. usually grows close proximity to the river, therefore it is difficult to 

separate this species with water from the spectral signatures during high tides. 
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Figure 6.6: Dendogram showing hierarchical clustering analysis of different forest-type. The vertical lince was 

used to choose 10 forest-types from the clustering techniques. 

The hierarchical clustering analysis showed that both barren land and water formed distinct clusters 

far from the vegetated forest-types (Figure 5.6). Among mangrove species, Bruguiera, 

Xylocarpus_Mixed, Avicennia and Heritiera formed distinct clusters. The other four clusters are 

mixed types which can be recognised as Excoecaria_Heritiera, Avicennia_Sonneratia, 

Excoecaria_Mixed and Ceriops_Excoecaria. The Excoecaria_Heritiera groups are mainly the 

combination of Heritiera and Excoecaria along with some Sonneratia_Mixed plots. 

Avicennia_Sonneratia forest-type is the combination of Avicennia and Sonneratia and some dominant 

Sonneratia plots. Excoecaria_Mixed includes plots where Excoecaria is the dominant species either 

alone or with mixed species and there is no dominant species such as Mixed and exceptionally 

Heritiera_ceriops. The last cluster includes both Ceriops and Excoecaria together or Ceriops alone.  

6.3.2. Mapping forest-types in the Sundarbans 

The Sentinel-2 MSI imagery composite of the Bangladesh Sundarbans was classified into ten forest-

types. The best forest-type classification maps with both PB and OB along with RF and SVM 

classifier are presented in Figure 5.7. All maps show a gradient of forest-type with dominant Heritiera 

in the east and Excoecaria in the central part and the combination of Ceriops and Excoecaria in the 
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west. However, the map produced with the SVM classifier has more Heritiera_Excoecaria than only 

Heritiera in the eastern Sundarbans (Figure 5.7). In the case of the RF classifier, both PB and OB 

yielded a similar percentage of total area occupied by each forest-type. The biggest differences were 

observed when using the SVM classifier with the OB method, where Bruguiera is absent and the area 

of Heritiera and Heritiera_Excoecaria is decreased and increased by 6% and 9%, respectively, as 

compared to the classified map of OB with the RF method (Figure C.3). The total area of all classified 

maps is 865,691 ha including 54%, 53% and 52% water area in classified maps of PB_RF, OB_RF 

and OB_SVM methods, respectively. 

Accuracy assessment was done using a confusion matrix according to the 30% of training samples 

kept for validation. Based on the overall accuracy of the confusion matrix, the pixel-based 

classification with the RF classifier showed the highest accuracy followed by OB (seed spacing 10) 

with SVM (Table 5.2). The forest-type map showed that the land area of Bangladesh Sundarbans is 

396,675 ha. The Hertiera_Excoecaria type was the most dominant forest type (39.58%) in the central 

and eastern part of the Sundarbans followed by Excoecaria_Mixed (25.96%) and Ceriops-Excoecaria 

(17%). The Heritiera fomes alone constitutes about 13.61% of the total land area and is mostly 

concentrated in the eastern part of the Sundarbans (Figure C.3).  
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Figure 6.7: Forest-type map in the Sundarbans using A) Pixel-based classification with RF, B) Object-based 

classification with RF and C) Object-based classification with SVM. 
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Table 6.2: Comparison of overall accuracies (percentage) among PB and OB classification with RF and SVM 

classifiers. In case of OB method, difference seed spacing was compared. 

 

Good practice guideline was followed to the report accuracy assessment for the area estimation of all 

forest-types, according to Olofsson et al. (2014), and the detailed error matrix of pixel-based with RF 

classification is provided in the Table 5.3. The advantage of using the good practice guideline is that it 

implements a probability sampling design in order to quantify accuracy and area estimation, and 

reports the estimated error matrix in terms of the proportion of area and uncertainty by reporting 

confidence intervals for accuracy and area parameters (Olofsson et al., 2014). 

Forest types Classifier 

Pixel based 

Classification 

 

Object-based classification 

Seed spacing (no. of pixels) 

5 10 15 20 

10 forest-

types 

Random Forest (RF) 66.3 53.8 57.7 48.1 52.9 

Support Vector Machine 

(SVM) 
45.2 63.5 63.7 52.9 58.7 
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Table 6.3: Confusion matrix of the most accurate forest-type classification in the Sundarbans. 
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%
 C

I)
 

Area 

proporti

on (Wi) 

Water 0.4741 0.0000 0.0677 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.542 0.88 
(±0.23) 

0.5418 

Avicennia 0.0000 0.0014 0.0000 0.0005 0.0000 0.0000 0.0000 0.0009 0.0000 0.0000 0.003 0.50 
(±0.31) 

0.0028 

Avicennia_ 

Sonneratia 
0.0000 0.0014 0.0042 0.0000 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000 0.008 0.50 

(±0.31) 
0.0083 

Bruguiera  0.0000 0.0000 0.0000 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.001 1.00 
(±0.00) 

0.0015 

Ceriops_ 

Excoecaria 
0.0000 0.0000 0.0000 0.0000 0.0659 0.0120 0.0000 0.0000 0.0000 0.0000 0.078 0.85 

(±0.19) 
0.0779 

Excoecaria and 

Mixed 
0.0000 0.0000 0.0044 0.0000 0.0352 0.0661 0.0000 0.0044 0.0088 0.0000 0.119 0.56 

(±0.14) 
0.1190 

Heritiera 0.0000 0.0000 0.0000 0.0000 0.0000 0.0208 0.0416 0.0000 0.0000 0.0000 0.062 0.67 
(±0.23) 

0.0624 

Heritiera_ 

Excoecaria 
0.0000 0.0000 0.0076 0.0000 0.0000 0.0756 0.0076 0.0907 0.0000 0.0000 0.181 0.50 

(±0.14) 
0.1813 

Xylocarpus_ 

Mixed 
0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000 0.001 1.00 

(±0.00) 
0.0014 

Barren land 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0036 0.004 1.00 
(±0.00) 

0.0036 

Total 0.474 0.003 0.084 0.002 0.104 0.174 0.049 0.096 0.010 0.004    

Producers 

accuracy 

(±95% CI) 

1.00 
(±0.17) 

0.50 
(±0.21) 

0.05 
(±0.09) 

0.64 
(±0.09) 

0.63 
(±0.10) 

0.38 
(±0.08) 

0.85 
(±0.16) 

0.94 
(±0.16) 

0.11 
(±0.01) 

1.00 
(±0.17) 

 

Overall  

Accura

cy 

0.75 

(±0.09) 
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The confusion matrix with proportions of area of each class showed that the pixel-based (with RF) 

classification achieved an overall accuracy of 75% with a 95% confidence of being between 66% and 

84% (Table 5.3). The quantity disagreement was 0.15 and allocation disagreement was 0.08.  

6.3.3. Spatial distribution of soil organic carbon  

By using the EBKRP kriging interpolation method, the SOC stocks were interpolated for the entire 

Bangladesh Sundarbans using the forest-type map and with a combination of elevation, slope and 

aspect. The interpolation result was checked and compared with different interpolation methods such 

as Exponential, Nugget, Whittle and K-Bessel. Different combinations of datasets and 

semivariograms provided different distributions of SOC. The statistics of cross-validation showed that 

the model with forest-type only (K-Bessel semivariogram) provided the lowest RMSE and CRPS 

(Table 5.4). However, the positive ME and RMSSE (lower than 1) indicates overestimation of the 

predicted values. The overestimation is also evident as ASE is greater than RMSE for the best 

interpolation model. However, the inclusion of the DEM, aspect and slope did not improve the 

prediction of SOC in the Sundarbans (Table 5.4). 
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Table 6.4: Cross-validation statistics of each Enhanced Bayesian Kriging Regression prediction (EBKRP) model 

for the prediction SOC in the Sundarbans. The bold value indicates the best value for all statistics. 

Enhanced 

Bayesian 

Kriging 

Regression 

prediction 

(EBKRP) 

model 

parameter 

SOC prediction with forest 

types 

SOC prediction with forest 

types and DEM 

SOC prediction with forest 

types, DEM, slope and 

aspect 

 

Semivariogram type 
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Mean Error 

(ME) 

 

-0.17 10.07 -0.14 0.2 -0.85 12.46 -0.84 -0.87 -0.2 3.16 -0.26 0.13 

Root Mean 

Square error 

(RMSE) 

11.32 23.27 11.48 11.23 13.19 20.71 13.68 12.77 12.61 19.56 13.21 12.31 

Mean 

Standardized 

Error (MSE) 

 

0.001 14.17 0.005 0.03 -0.05 14.4 -0.05 -0.05 -0.002 3.69 -0.006 0.02 

Root-Mean-

Square 

Standardized 

Error 

(RMSSE) 

 

0.94 23.27 0.98 0.92 0.97 44.11 0.99 0.95 0.94 13.89 0.95 0.92 

Average 

Standard 

Error (ASE) 

 

12.7 6.35 12.91 12.89 14.29 6.35 14.99 13.93 14.30 6.35 15.26 13.87 

Average 

Continuous 

Ranked 

Probability 

Score (CRPS) 

6.41 17.36 6.53 6.38 7.23 15.79 7.55 7.03 7.06 13.36 7.38 6.86 

 

The predicted SOC stocks in the Sundarbans varied between 17.87 to 99.44 Mg ha-1 with an average 

of 54.41 Mg ha-1. The central northern Sundarbans had higher SOC compared to western and 

southern areas (Figure 5.8). The standard error for SOC ranges from 1.15 Mg ha-1 to 15.57 Mg ha-1 

with an average of 10.31 Mg ha-1. The SOC stocks of the Bangladesh Sundarbans was 21.37 

Teragram (Tg) with a 95% confidence of being between 13.20 Tg and 29.55 Tg. 
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Figure 6.8: Spatial distribution of A) SOC stocks and B) SOC prediction standard errors in the Sundarbans.  
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6.3.4. Total ecosystem carbon stocks (TEC) 

Above-ground carbon comprises the carbon stocks from living and dead standing trees, 

pneumatophores and dead lying wood on the forest floor. The standing trees included the non-tree 

species such as Nypa fruticans and Phoenix paludosa from which leaves and stems were harvested to 

measure the dry weight of each specimen. The average dry weight of a N. fruticans leaf is 1065.6 ± 

342.68 gm (n = 9) and P. paludosa stem is 1813.24 ± 444.75 gm (n = 6). For dead wood, the mean 

diameter of different sized dead wood was measured. The mean diameters are as follows; fine dead 

wood (0.35 ± 0.10 cm, n = 51), small dead wood (1.86 ± 0.48 cm, n = 242), medium dead wood (4.47 

± 1.32 cm, n = 213) and large dead wood (12.75 ± 4.60 cm, N = 41). The quadratic mean of different 

dead wood comprises 0.37 cm for fine, 1.92 cm for small and 4.67 cm for medium dead wood. For 

measuring biomass of pneumatophores of different species, the average length, diameter, green 

weight and dry weight were measured and are presented in the Table C.1.  

 

Figure 6.9: The ecosystem carbon stocks (Mg ha-1) among different components in the Sundarbans. The black 

horizontal line of box plot represents the median and the black dot represents outliers.  



 

117 

 

The plot level above- and below-ground components were combined to estimate total ecosystem 

carbon stocks. The below-ground SOC were taken from the 55 measured plots and for the remaining 

plots, the predicted SOC was retrieved from Figure 5.8. The average TEC in the Sundarbans is 170 (± 

51.7). One way ANOVA revealed that the carbon stocks varied significantly among different 

components. The average AGC was significantly higher (63.6 ± 27.6 Mg ha-1) in standing live trees 

followed by below-ground soil (58.7 ± 14.3 Mg ha-1), below-ground root (40.4 ± 18.9 Mg ha-1), 

pneumatophores (5.5 ± 6.68 Mg ha-1) and downed wood (1.65 ± 1.4 Mg ha-1) (p < 0.01) (Figure 5.9).  

The two-way ANOVA of natural logarithmic organic carbon stocks revealed that the TEC in the 

Sundarbans varied significantly with forest-type F2, 123 = 55.6, p <0.001 and salinity zones F7, 123 = 6.6, 

p <0.001 (Figure 5.10A, Table C.3). However, there was no interaction effect of both salinity zones 

and forest types on TEC in the Sundarbans (p > 0.05). The carbon stocks for each component varied 

significantly with salinity zones in the Sundarbans (Figure C.10). The TEC was significantly higher in 

the oligohaline zone (201.5 ± 42.5 Mg ha-1) followed by the mesohaline zone (181.3 ± 48.3 Mg ha-1) 

and the polyhaline zone (131.4 ± 35.6 Mg ha-1) (p < 0.01) (Figure 5.10B).  

 

Figure 6.10: Integrated violin-box jitter plot shows the ecosystem carbon stocks (Mg ha-1) among A) forest type 

and B) salinity zones. The black horizontal line of box plot represents the median and the width of violin plot 

represents the proportion of the data located there as a measure of kernel probability density. The black dots 

represent the data distributions. 
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6.3.5. Prediction of AGC and TEC 

The plot level AGC and TEC stocks from 140 plots were interpolated using the EBKRP kriging 

interpolation method (Figure 5.11 and 5.12). In both cases the model with the K-Bessel 

semivariogram produced the lowest RMSE and CRPS (Table 5.5). The geostatistics parameter of 

crossvalidation for both AGC and TEC showed negative ME and RMSSE values greater than 1 

indicating underestimation of predicted values. The underestimation is also evident as ASE is lower 

than the RMSE for the best interpolation model.  

Table 6.5: Cross-validation statistics of each Enhanced Bayesian Kriging Regression prediction (EBKRP) model 

for the prediction AGC and TEC in the Sundarbans. The bold value indicates the best value for all statistics. 

Enhanced Bayesian 

Kriging Regression 

prediction (EBKRP) 

model parameter 

Above-ground carbon with forest type 
Total Ecosystem Carbon with forest 

type  

Semivariogram type 
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Mean Error (ME) 

 
-10.36 -20.46 -10.80 -9.69 -9.54 -26.90 -10.11 -8.86 

Root Mean Square 

Error (RMSE) 
28.49 37.90 28.80 28.19 40.99 58.51 41.18 40.72 

Mean Standardized 

Error 

 

-0.23 -0.58 -0.25 -0.21 -0.14 -0.55 -0.16 -0.12 

Root-Mean-Square 

Standardized Error 

(RMSSE) 

 

1.09 1.75 1.13 1.04 1.15 1.99 1.21 1.06 

Average Standard 

Error (ASE) 

 

23.48 19.51 23.04 24.33 34.38 27.68 33.29 36.37 

Average Continuous 

Ranked Probability 

Score (CRPS) 

15.01 19.95 15.22 14.85 12.43 31.97 22.60 12.19 

 

The AGC stocks in the Sundarbans ranges from 15.46 Mg ha-1 to 90.51 Mg ha-1 with an average of 

60.29 Mg ha-1 (Figure 5.11). The higher TEC stocks is in the central north, north-eastern and south-

eastern part of the Sundarbans, which is mostly dominated by Heritiera, Heritiera-Excoecaria, 

Bruguiera and Xylocarpus species. The prediction standard error for AGC ranges from 3.32 Mg ha-1 
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to 19.80 Mg ha-1 with an average of 13.32 Mg ha-1. The total AGC stocks in the Sundarbans 

comprises 23.91 Teragram (Tg) with a 95% confidence of being between 13.15 Tg and 34.27 Tg. 

The TEC in the Sundarbans ranges from 83.63 Mg ha-1 to 240.14 Mg ha-1 with an average of 157.86 

Mg ha-1 (Figure 5.12). The higher TEC stocks are distributed in the central north and north-eastern 

part of the Sundarbans, which is mostly dominated by Heritiera, Bruguiera and Xylocarpus species. 

The prediction standard error ranges from 9.31 Mg ha-1 to 35.46 Mg ha-1 with an average of 23.94 Mg 

ha-1.  
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Figure 6.11: Spatial distribution of A) AGC stocks and B) AGC prediction standard errors in the Sundarbans.  



 

121 

 

 

Figure 6.12: Spatial distribution of A) TEC stocks and B) TEC prediction standard errors in the Sundarbans.  
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The present study found 3,966.75 km2 forest land area out of 6326.8 km2 inside the Bangladesh 

Sundarbans which contributed 62.70 Teragram (Tg) TEC with a 95% confidence of being between 

43.29 Tg and 81.14 Tg. Summing up the estimates of the respective species composition classes, it 

can be seen that 23.91 Tg C is locked in the above-ground compartments and 38.79 Tg C is stored in 

the below-ground compartments in the Bangladesh Sundarbans mangrove forest.  

6.4. Discussions 

By using a random forest classifier, the pixel-based classification provided the most accurate forest-

type classification map in the Bangladesh Sundarbans showing a gradient of species mixture from 

Heritiera fomes in the east to the Excoecaria agallocha dominated in central and west along with 

Ceriops decandra. The forest-type map shows similar patterns of these three major species with a 

map developed by the Bangladesh Forest Department (BFD) showing 14 species groups based on 

aerial survey data from 1995 and 1 m pan-sharpened IKONOS images in 2013 (Dasgupta et al., 

2017). Several forest inventories identified 24-27 species in the Sundarbans, however, these three 

species alone or their assemblages constitute 97% area of the Sundarbans (Rahman et al., 2015a; 

Dasgupta et al., 2017; GOB, 2019; Sarker et al., 2019a; Rahman et al., 2021c). The other species do 

not form sufficient mono-specific patches to capture with 10-30 m resolution satellite data. This study 

found that Hertiera_Excoecaria is the most dominant followed by Excoecaria_Mixed, Ceriops-

Excoecaria (17%) and Heritiera only. On the other hand, Chanda et al. (2016b) found the same first 

two compositions as the most dominant followed by Heritiera and Ceriops-Excoecaria. This 

difference might be attributed to the use of different satellite data in different years.  

Several studies have reliably classified major forest types of mangrove forests using Landsat imagery 

including the Sundarbans (Long and Giri, 2011; Ghosh et al., 2016; Kumar et al., 2021). Using 

maximum likelihood classifier, Ghosh et al. (2016) classified decadal composite images from Landsat 

2, 5, 7 and 8 satellites between 1977 to 2015 and identified changes of vegetation composition for five 

species (Heritiera fomes, Excoecaria agallocha, Ceriops decandra, Sonneratia apetala and 

Xylocarpus mekongensis) in the Bangladesh Sundarbans with an accuracy between 72-89%. The 
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classification accuracy has increased in some studies while discriminating between forest and non-

forest categories in the Sundarbans (for example: Awty-Carroll et al., 2019; Hasan et al., 2020). By 

using Continuous Change Detection and Classification (CCDC) methods on the Landsat (4, 5, 7 and 

8) archive from 1988 to 2017, Awty-Carroll et al. (2019) classified mangrove to non-mangrove areas 

in the Sundarbans with an overall accuracy of 94.5%. Therefore, classification of detailed species 

assemblages with sufficient accuracy is still a challenge with Landsat imagery. However, the use of 

high-resolution data, vegetation indices, canopy height, DEMs and the use of machine learning 

algorithm has improved classification accuracies in many studies (Pham et al., 2019; Rahman et al., 

2019). Sentinel-2 MSI has provided better resolution in shortwave bands (20 m) that have provided 

reliable classification of mangrove species in most mangrove forests (Baloloy et al., 2020; Cissell et 

al., 2021; Ghorbanian et al., 2021; Liu et al., 2021).  

Using Sentinel-2 MSI imagery and machine learning classifiers, this study provided a forest-type map 

with a reasonable accuracy of 75%. The quantity disagreement was higher than allocation 

disagreement indicating that much disagreement arises from errors due to the quantity mapped for 

each class rather than the spatial distribution of forest types. As evident from the classification maps, 

forest-types comprising two or more species showed less users accuracy, such as Excoecaria and 

Mixed, Avicennia_ Sonneratia and Heritiera_Excoecaria. On the other hand, Bruguiera, Xylocarpus 

and non-vegetated types such as water and barren land showed the highest classification accuracy. 

The low producers accuracy indicates that classifiers failed to capture the forest-type of these 

reference point such as Xylocarpus_Mixed and Avicennia_Sonneratia. The confusion arises for these 

species due to similar spectral signatures, similar value of indices, or similar GEDI canopy height. 

The tidal influence on the spectral signatures especially close to river or canal banks is also an 

important source of classification error (Baloloy et al., 2020; Xia et al., 2021). Capturing seasonal 

variation or using knowledge of ecological zonation of each species benefits the classification 

accuracy. Moreover, using high-resolution data or adding LiDAR or RADAR data will produce better 

mangrove classification in the Sundarbans in future (Pham et al., 2019; Rahman et al., 2019). 
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The object-based classification combines pixels of similar spatial properties and provides meaningful 

objects of interest and therefore successfully classified mangroves in many regions (Conchedda et al., 

2008; Pham et al., 2019). However, comparison of error matrices suggests that the pixel-based 

classifier captured the most accurate forest-type in the Sundarbans. The 10 m Sentinel-2 MSI is 25% 

of the area of the sample plots, therefore each sample plot is composed of mixed pixels. In case of the 

object-based approach, the information from multiple pixels smooths out across one object. On the 

other hand, the pixel-based approach retains the distribution of species-type and therefore showed 

greater accuracy compared to object-based approach. The diversity of species in the Sundarbans is not 

homogenous and is largely dependent on linear distance from the riverbank. For example, Sarker et al. 

(2019b) found that the alpha and beta diversity is the highest at a distance of 1500 m and gamma 

diversity at 800 m from the river bank. The pixel-based approach might better capture these variations 

in species types in the Sundarbans.  

The above– and below-ground carbon stocks is largely dependent on a range of variables such as 

forest-type, salinity, water discharge, climatic and other environmental factors (Rahman et al., 2021a; 

Rahman et al., 2021b). Regression kriging is a widely used interpolation method to upscale plot level 

information to larger scales, where the predicted variables are dependent on a range of covariate 

variables (Keskin and Grunwald, 2018). Enhanced Bayesian Kriging Regression Prediction (EBKRP) 

is used in a few studies to interpolate SOC in many regions and proved to be the best interpolation 

method among all available alternatives (Mallik et al., 2020; Sahu et al., 2021). The interpolation of 

SOC with forest types did not improve by adding DEM data from the TanDEMx mission or slope or 

aspect. The DEM is actually the Digital Surface Model (DSM) representing the top of vegetation in 

the Sundarbans. From the forest-type map, it is evident that the Sundarbans has an east-west gradient 

of species-assemblages reflecting a variation of species height as evident in GEDI forest height map 

(Figure 5.5). Therefore, the forest type-map and the DEM might be correlated. On the other hand, the 

slope and aspect didn’t have any marked impact on the SOC stocks as the Sundarbans is within 2-4 m 

above mean sea level (MSL) (Payo et al., 2016; Rahman et al., 2021b).  
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Results showed that the TEC and AGC stocks in the Sundarbans is higher in the central north and 

north-eastern part of the Sundarbans. Spatial modelling of biodiversity by Sarker et al. (2019b) 

revealed that the most species‐rich mangrove species are confined to the northern and eastern regions 

in the Sundarbans. Species in these areas receive more freshwater due to proximity of two large 

rivers, the Baleshwar and Passur, ensuring suitable less-salty conditions for salt‐intolerant plant 

species. The species-rich communities in these regions might encounter more above- and below-

ground carbon in this region. The high carbon-rich area is mostly dominated by Heritiera fomes 

dominated areas along with Excoecaria, Bruguiera and Xylocarpus spp. Since the plot level mean 

AGC was significantly higher for Bruguiera, Heritiera fomes and Heritiera-Excoecaria, the below-

ground root carbon is also expected to be higher for these species as used allometric models for root 

carbon are obtained from above-ground tree parameters. On the other hand, SOC is also higher in the 

north-eastern zone compared to other parts of the Sundarbans. 

Results from this study show that the total ecosystem carbon stocks is 62.70 Teragram (Tg) in the 

Sundarbans, which is 55% lower than recent estimation by BFD using a recent national forest 

inventory (GOB, 2019). Chanda et al. (2016b) estimated TEC in the Sundarbans in 2016 is 91.19 Tg 

using the data and procedures from Rahman et al. (2015a). Both studies used common local and pan-

tropical allometric models which might estimate higher TEC than this study. Moreover, these studies 

used a stratify & multiply (SM) approach which uses average values with the area of each species 

from remote sensing imagery, which can over- or underestimate carbon stocks. The uncertainty 

analysis of this study shows that the TEC can vary between 43.29 Tg and 81.14 Tg with a 95% 

confidence interval. The TEC varied significantly within salinity zones. Rahman et al. (2015) 

estimated ecosystem carbon stock for salinity zones which varies from 117 for polyhaline, 229 for 

mesohaline and 336 for oligohaline zone. Similarly, Chanda et al. (2016b) also found similar findings 

for three salinity zones, although the values are lower than Rahman et al. (2015) and higher than this 

study. The vegetation composition, growth and yield of mangroves is dependent on the salinity of the 

Sundarbans, which can affect the above- and below-ground biomass or carbon (Siddique et al., 2017; 

Rahman et al., 2020; Rahman et al., 2021b).  
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Table 6.6: Comparison of ecosystem carbon stocks in the Sundarbans  

 

Study 

No, of 

sample plot 

& plot size/ 

Satellite 

Salinity 

zones 

Above-

ground 

carbon 

(Mg ha-1) 

Below-

ground 

root 

carbon 

(Mg ha-1) 

Below-

ground 

soil 

carbon (1 

m) (Mg 

ha-1) 

Ecosystem 

carbon stocks 

(Mg ha-1) 

 

T
h

e 
S

u
n

d
a

rb
a

n
s,

 B
a

n
g

la
d

es
h

 

W
o

rl
d

 s
tu

d
y

 

This study 140 (400 m2) All 60 (16 – 91) 41 (9 – 126) 
54 (18 – 

100) 
158 (83 – 240) 

Ahmed et al. 

(2021) 
50 (100 m2) All 

128 (35 – 

274) 

79  
(23 – 161), 

9 (7-13) * 

- - 

Ahmed and 

Kamruzzaman 
(2021) 

6 (400 m2) Oligohaline 122 66 - - 

Azad et al. 

(2020) 
18 (600 m2) Mesohaline 

117 (58 – 

195) 
67 (35 – 99) - - 

GOB (2019) 1,653 (400) m2 All 49 33 182 345 

Kamruzzaman 

et al. (2018) 
6 (400) m2 Oligohaline 77 (26 – 158) 42 (7 – 71) - - 

Sanderman et 
al. (2018) 

Model based All - - 
127 (74- 

463) 
- 

Atwood et al. 

(2017) 
Literature based All - - 118 - 

Kamruzzaman 

et al. (2017) 
21, 100 m2 Oligohaline 77 42 - - 

Chanda et al. 

(2016b) 
150, 1570 m2 All - - - 258 (172 – 343) 

Rahman et al. 
(2015a) 

150, 1570 m2 All 89 (25 – 153) 38 (12 – 63) 
112  

 (90 – 134) 
260 (160 – 360) 

W
o

rl
d

 a
v

er
a

g
e 

Kauffman et al. 
(2020) 

190 Plot data 

from five 

continents 

Global 115 - 
334 

 (33 – 789) 
856 

Simard et al. 
(2019) 

SRTM and 
ICESat/GLAS 

Global 62 - - - 

Sanderman et 

al. (2018) 
Model based Global - - 

361 (94-

628) 
- 

Atwood et al. 

(2017) 
Literature based Global - - 

283  

(15 – 1527) 
- 

Jardine and 

Siikamäki 
(2014) 

Model based Global - - 
369 

 (272 – 703) 
- 

IPCC (2014) Literature based Global 83 - 428 511 

Donato et al. 

(2011) 

field data from 

the Indo-Pacific 
Indo-Pacific 159 - 864 ** 1023 

N.B: (*) * Fine root biomass (diameter <2 mm), (**) indicates soil carbon measurement for more than 1 m depth. SRTM: Shuttle 

Radar Topography Mission, ICESat/GLAS: Ice, Cloud and land Elevation Satellite / Geoscience Laser Altimeter System 

(GLAS). Studies presented as biomass value were converted into carbon assuming 50% biomass is carbon (Howard et al., 2014). 
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The estimated average above-ground carbon stocks in the Sundarbans is lower than all other local and 

global estimates, except the recent national forest inventory by GOB (2019) (Table 5.6). Using 

species-specific allometric models, the below-ground root carbon stocks is quite similar to many 

studies (for example, Kamruzzaman et al. (2017), Rahman et al. (2015a) and Kamruzzaman et al. 

(2018)), however the rest available studies estimated higher root carbon stocks. The difference arises 

due to the species composition since all studies used common allometric models as a relationship 

between above-ground tree structure to below-ground root carbon stocks. The major difference was 

found for below-ground soil carbon where this study is the lowest compared to all local and global 

studies. The 1 m soil carbon stocks was almost 25% of the latest national inventory estimation, and 

50% than Rahman et al. (2015a). A range of factors are associated with lower carbon stocks in the 

Sundarbans compared to other mangroves or global average values. Such can be explained by high 

mineral sediment deposition (Sanderman et al., 2018; Twilley et al., 2018), low burial rate (Ray et al., 

2011), rapid turnover rate (Ray et al., 2018), historical logging, stand age (Marchand, 2017), plant 

litter quality (Rovai et al., 2018) and biological processes.  

Mangroves play a vital role in supporting biodiversity and also mitigating climate change through 

soaking up carbon dioxide and storing carbon in both above- and below-ground biomass and 

sediments. The present study used field inventories, species-specific allometric models and species-

specific carbon fractions to estimate total ecosystem carbon stocks in the Bangladesh Sundarbans and 

upscale plot level carbon to ecosystem level through GIS-based interpolation. However, the study 

measured only 1 m depth of SOC despite the Sundarbans having organic carbon in 4-6 m depth of 

sediments (Allison et al., 2003). However, the 2013 IPCC Supplement to the 2006 IPCC Guidelines 

suggests that impact of forest management and anthropogenic activities is up to a depth of 1 m, below 

which the carbon stocks is almost intact (IPCC, 2014).  

The study is intended to develop a tier 3 level assessment of ecosystem carbon stocks in the 

Bangladesh Sundarbans with increasing accuracy by using available models, cloud computing 
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platforms and software. Reducing uncertainties in carbon estimation is one of the key research 

agendas to reduce error at the global scale. However, carbon estimates often ignore error propagated 

from allometric models (Vorster et al., 2020). Therefore, the carbon maps produced in the study 

considered reducing errors from field data by developing species-specific and site-specific allometric 

models or generic models with species level structural information such as wood density and tree 

height. To reduce error from carbon maps, terrestrial LiDAR scanning could be an option for 

individual- and plot-level biomass estimates (Réjou-Méchain et al., 2019). The error propagation 

during upscaling local scale carbon estimates to the ecosystem scale can be minimised through using 

Airborne LiDAR and very fine-resolution optical satellite images. UAV-based LiDAR can also be 

used for improved accuracy of carbon estimation in forests. However, the recent advances of satellite 

missions such GEDI (Global Ecosystem Dynamics Investigation), Icesat-2 (Ice, Cloud, and Land 

Elevation Satellite-2) or NISAR (NASA-ISRO SAR) could reduce the error propagation if calibrated 

to the wide range of ground data collected from forests around the world. The accurate error 

propagation in biomass products and the pathways to overcome the uncertainties would then pave the 

way to meet requirements of international environmental policies and other applications (Herold et al., 

2019; Réjou-Méchain et al., 2019).  

6.5. Conclusions 

The remote sensing pixel-based classification of Sentinel-2 MSI using the GEDI height map provided 

the most accurate forest-type classification with 10 forest-types across the Bangladesh Sundarbans. 

The Hertiera_Excoecaria type was the most dominant forest type followed by Excoecaria_Mixed and 

Ceriops-Excoecaria. The plot level TEC varied significantly within both salinity zones and by forest-

type (p < 0.05). The interpolation of plot level data with forest-type maps revealed that the SOC and 

AGC in the Sundarbans was 21.37 Tg and 23.92 Tg, respectively. On the other hand, the total 

ecosystem carbon stocks comprised 62.70 Tg with a 95% confidence of being between 43.29 Tg and 

81.14 Tg. The central-north and north-eastern part of the Bangladesh Sundarbans is the most carbon 

rich forest in both above- and below-ground components. Therefore, this carbon-rich area should be a 
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conservation priority. The uncertainty assessments from the field estimation, allometric models, 

classification to the interpolation all provide confidence in the estimates of total ecosystem carbon 

stocks in the Sundarbans. The methodology used in this study provides a robust approach for 

estimating ecosystem carbon stocks in any mangrove forest and the method can be extended to track 

and monitor carbon dioxide emissions. 
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Chapter 7  

 

General Discussions and Conclusions 
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7.1. Overview of thesis findings 

The overall aim of this thesis was to estimate total ecosystem carbon stocks, uncertainties behind 

carbon stocks estimation and to understand spatial variability of carbon stocks in the Bangladesh 

Sundarbans. In the chapter 2, a synthesis of peer-reviewed literature on carbon stocks in mangrove 

forests were compiled and analysed. The available methodologies, either field inventory or remote 

sensing or a combination for the estimation of ecosystem carbon stocks were discussed. A short 

description of the Bangladesh Sundarbans and used research methodologies are presented in the 

chapter 3. The methods for upscaling plot-level carbon stocks measurements to the ecosystem level 

through remote sensing, and the variety of remote sensing sensors for estimating carbon stocks were 

presented. Previous estimates of below- and above-ground carbon stocks in the Sundarbans were 

discussed and research gaps were identified which helped to inform the research design used in this 

study. 

Chapter 4 introduced the use of sediment coring to quantify soil carbon stocks (SOC) up to 1 m soil 

depth at four narrow depth intervals. This study represents one of the first to quantify SOC using a 

CHN analyser, which is known to be more accurate than other methods. The study finds that levels of 

SOC in the Sundarbans are much lower than those reported in previously published work and those 

used in global models. Explanations for this low SOC were explored and these include high mineral 

sediment deposition, low burial rate, rapid turnover rate, historical logging, stand age, plant litter 

quality and biological processes are important. Soil salinity is key factor that influences the spatial 

variability of SOC in the Sundarbans along with the C: N ratio and diameter of trees. The study also 

found that SOC stocks is significantly different amongst vegetation types where Bruguiera spp. stands 

hold the maximum SOC measured, followed by two pioneer species Sonneratia apetala and 

Avicennia spp. The result from this chapter answers research question 2 and 4 with regards below-

ground SOC stocks. 

In response to research question 1, chapter 5 explored the variability of above-ground biomass (AGB) 

using different sets of allometric models and model parameters (wood density and height). The 
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biomass variability indicates uncertainties in biomass estimation using generic models or model 

parameters that do not closely represent the local conditions. Using independent datasets from 

Mahmood et al. (2019), the study developed and tested five species-specific and four genus-specific 

allometric models which explained a high percentage of the variance in tree AGB using measured 

diameter at breast height (DBH) and total height (H) data. The generic allometric models 

overestimated AGB between 22% to 167% compared to the species-specific models at the plot level. 

Using measured wood density (WD) in allometric models estimated 5-10% less biomass than WD 

from database and other sources, and AGB was overestimated when using plot top height and 

underestimated using plot average height data rather than individual tree heights.  

In chapter 6, the study estimated the above- and below-ground carbon stocks in the Sundarbans in 

both plot and ecosystem level to satisfy research question 2, 3 and 4. Based on the forest-type 

classification map, Hertiera_Excoecaria was the most dominant forest type followed by 

Excoecaria_Mixed and Ceriops-Excoecaria. After analysing the field inventory, the estimated plot 

level TEC varied significantly with both salinity zone and forest-type. The interpolation of plot level 

data with the forest-type map revealed that the SOC and AGC in the Sundarbans was 21.37 Tg and 

23.92 Tg, respectively. On the other hand, the total ecosystem carbon stocks comprised 62.70 Tg with 

a 95% confidence of being between 43.29 Tg and 81.14 Tg. The central-north and north-eastern part 

of the Bangladesh Sundarbans contains the most carbon rich forests for both the above- and below-

ground components. Standard prediction error maps were also developed for AGC, SOC and TEC. 

The study demonstrated a systematic and easily replicable approach for estimating ecosystem carbon 

stocks that can be replicated in any mangrove forest. 

Each data chapter (4, 5 and 6) had separate aims and specific questions. The main findings can be 

categorised as- 1) low SOC in the Sundarbans, 2) the importance of species-specific allometric 

models, 3) spatial variability of carbon stocks, and 4) carbon stocks responses to environmental 

drivers. The main findings are discussed below along with practical implications of the findings, 

limitations and potential improving areas are discussed below.  
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7.1.1. Low SOC in the Sundarbans 

Despite mangroves having a high carbon density in the below-ground sediment, surprisingly this 

study reveals that the Sundarbans contains lower levels of soil organic carbon than has been reported 

in most mangroves in the world. Compared to direct estimates from 190 sites across the world by 

Kauffman et al. (2020), the Sundarbans contains higher SOC than only two other mangrove forests, 

the Porto Céu mangrove in Brazil (48 Mg ha-1) and the Bu Tinah Janoub in the United Arab Emirates 

(33 Mg ha-1), located at lower and higher latitudes respectively than the Sundarbans. However, the 

differences in sampling strategy and methodologies can also yield large differences in SOC stocks, 

which needs to be investigated further.  

The low soil carbon in the Sundarbans is largely due to high mineral sediment deposition (Sanderman 

et al., 2018; Twilley et al., 2018), low burial rate (Ray et al., 2011), rapid turnover rate (Ray et al., 

2018), historical logging, stand age (Marchand, 2017), plant litter quality (Rovai et al., 2018) and 

biological processes. Being both a tidal and river-dominated ecosystem, the carbon allocation in the 

above and below ground is very complex and highly dependent on the local and regional geomorphic 

and geophysical drivers (Twilley et al., 2018). Nonetheless, higher tidal amplitude in the Sundarbans 

leads to higher carbon export totalling 7.3 Tg C yr−1 to the adjacent Bay of Bengal, which is higher 

than any other mangrove system (Ray et al., 2018). This rapid carbon turnover results in reduced 

burial of organic matter (0.18%) in the soil (Ray et al., 2011). Moreover, the pronounced tidal cycle in 

the Sundarbans affects carbon burial process by altering soil water chemistry (Chatterjee et al., 2013; 

Spivak et al., 2019). Besides the high carbon turnover rate, the Sundarbans is believed to have become 

tidally active in the recent past due to reduced freshwater flow from the Ganges-Brahmaputra-Meghna 

river (Rogers et al., 2013; Hale et al., 2019). However, despite the historical reduction of 

sedimentation, the Sundarbans is itself still keeping pace with sea-level rise with the highest average 

surface elevation and vertical accretion rate (0.74 and 2.71 cm yr−1) compared to the worldwide 

average (Bomer et al., 2020a; Bomer et al., 2020b). This high sedimentation rate is the outcome of the 

massive flux of clastic sediments which attenuates the amount of organic carbon per unit area.  
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The century-long historical exploitation in the Sundarbans before the felling moratorium in 1989 has 

largely decreased the populations of threatened tree species (Siddiqi, 2001; Sarker et al., 2011). This 

in turn is likely to have lessened the continuous autochthonous input of organic matter in the forest 

and reduced the overall stand age. Studies also showed that historical harvesting had altered the 

species composition in the Sundarbans, with decreasing abundances of Heritiera fomes, Ceriops 

decandra and Xylocarpus mekongensis and increasing for Excoecaria agallocha (Sarker et al., 2016).  

7.1.2. The importance of species-specific allometric models in biomass estimation 

Chapter 4 concludes that biomass estimates of mangrove forests are the most precise when species-

specific models and individual tree measurements are used. Several studies have concluded that site-

specific AGB models estimate biomass or carbon with less error than regional or pan-tropical models; 

for example, Sundarbans mangrove forest (Mahmood et al., 2019), lowland Dipterocarp forest in 

Indonesia (Basuki et al., 2009), degraded landscape in Northern Ethiopia (Mokria et al., 2018), central 

African forest (Ngomanda et al., 2014) and Mexican tropical humid forests (Martínez-Sánchez et al., 

2020). Uncertainty in biomass estimation arises when the developed allometric model for one species 

is applied to another species. Similarly, site-specific allometric models are needed to represent forest 

heterogeneity (Weiskittel et al., 2015; Hickey et al., 2018). For example, De Souza Pereira et al. 

(2018) found AGB estimation errors between minus 18% and plus 14% when using biome-specific 

allometries rather than species-specific ones in Brazilian mangrove forests. Rovai et al. (2016) 

concluded that recently published global and continental AGB estimates contain errors due to an 

under representative sample size and the exclusion of the climatic regime, geophysical and 

geomorphological variables, which are key to understanding the spatial distribution of biomass. 

Therefore, inclusion of biophysical parameters such as wood density and tree height can help to 

capture geographical heterogeneity and also act as a suitable proxy of environmental drivers such as 

variation in salinity which affects the growth rate, wood density, species composition and tree height 

(Mahmood et al., 2019; Rahman et al., 2020; Virgulino-Júnior et al., 2020; Rahman et al., 2021b). 
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Species-specific allometric models are also important for estimating below-ground root biomass. 

After analysing the available global datasets on below-ground root biomass, Adame et al. (2017) 

concluded that using common allometric models overestimates root biomass up to 40% compared 

with using species-specific models. However, a few studies have shown that generic models can 

outcompete locally developed ones (Rutishauser et al., 2013; Stas et al., 2017). Aabeyir et al. (2020) 

also found better performance of regional or pan-tropical models as local models incurred large 

uncertainties in West Africa. The accuracy of these generic models for a particular forest depends on 

whether these models incorporate sufficient samples from that forest. Chave et al. (2014) point out 

that the discrepancy between local models and their own generic model in wet forests (including 

mangroves) is largely due to failure to address the wider variation of tree form and other 

characteristics like buttresses, which are common in the Sundarbans.  

7.1.3. Spatial variability of carbon stocks in the Sundarbans 

The developed SOC, AGC and TEC stocks map showed spatial variability of carbons stocks in the 

Sundarbans where the north-eastern part is the most carbon-rich forest in the Sundarbans (Figure 5.8; 

5.11 and 5.12). A range of studies in the Sundarbans found that the total ecosystem carbon is 

significantly higher in the oligohaline zone followed by mesohaline and polyhaline (Rahman et al., 

2015a; Chanda et al., 2016b; GOB, 2019). The oligohaline zone is mostly composed of north-eastern 

Sundarbans, while mesohaline is the central zone and the polyhaline zone consists of an area from 

western and southern part (Figure 3.1).  

The area with the highest TEC stocks is dominated by Heritiera, Heritiera-Excoecaria, Bruguiera and 

Xylocarpus species. Spatial modelling of biodiversity by Sarker et al. (2019b) revealed that the most 

species‐rich mangrove species are confined to the northern and eastern regions in the Sundarbans. 

Species in this area receive more freshwater due to proximity of two large rivers, the Baleshwar and 

Passur, ensuring suitable less-salty conditions for salt‐intolerant plant species. The species-rich 

communities in these regions might encounter more above- and below-ground carbon in this region. 

The high carbon-rich area is mostly dominated by Heritiera fomes along with Excoecaria, Bruguiera 
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and Xylocarpus spp. Since the plot level mean AGC was significantly higher for Bruguiera, Heritiera 

fomes and Heritiera-Excoecaria, the below-ground root carbon is also expected to be higher for these 

species based on allometric models for root carbon obtained from above-ground tree parameters. 

Rahman et al. (2015a) also found that Heritiera dominated vegetation hold the highest carbon stocks, 

while Ahmed and Kamruzzaman (2021) found Avicennia contains the highest carbon stocks. Since 

the carbon stocks varies with forest type, the spatial variation of carbon is assumed from the 

distribution of species type in the Sundarbans.  

7.1.4. Carbon stocks responses to environmental drivers 

Results from the chapter 3 and chapter 5 highlight that the TEC and SOC stocks in the Sundarbans are 

largely influenced by the salinity zone and forest-type. In addition, the predictive model from chapter 

3 indicates that the SOC is also affected by C: N and diameter of trees as a proxy. In the Sundarbans, 

hydro-geomorphological changes in rivers along the downstream-upstream gradient alter habitat 

quality that results in spatial variability in species distributions (Angiolini et al., 2011). The variation 

of the amount of freshwater flow in the Bangladesh Sundarbans also varies in an east-west direction, 

where major rivers and tributaries are located in the eastern part of the Sundarbans making the area a 

low saline zone (Aziz and Paul, 2015). Soil and water salinity is considered as the outcome of the 

combined impact of these climatic and environmental variables resulting in pronounced differences of 

SOC and TEC stocks among the three salinity zones (Sarker et al., 2016; Sarker et al., 2019b; Rahman 

et al., 2020). Several previous studies have confirmed that salinity determines a strong zonation of 

tree species and biodiversity in the Sundarbans, which in turn leads to comparatively higher diversity 

and taller tree species in the oligohaline, followed by mesohaline and polyhaline zone (Aziz and Paul, 

2015; Sarker et al., 2016; Sarker et al., 2019a; Sarker et al., 2019b; Rahman et al., 2020). 

Comparatively higher productive trees (for example, higher DBH and higher height) promotes organic 

matter accumulation through producing higher litter mass and increases both AGC and SOC stocks by 

forming stable aggregates from roots and pneumatophores (Lange et al., 2015). The three salinity 

zones also comprise differential soil physical and chemical properties and vegetation characteristics 
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that usually affects SOC storage by influencing microbial decomposition, soil water chemistry, plant-

microbe interaction, and plant litter quality.  

Variation in SOC stocks among different forest types are often mediated by the primary productivity, 

resources allocation in different parts (for example, above- and below-ground) and microorganism 

activity is driven by a number of biological (for example, bioturbation and species composition) and 

physical (for example, soil texture, salinity, inundation and nutrients) factors (McLeod et al., 2011). 

Therefore, differing stand structure and composition in mangrove forests in different tidal regimes 

yield variable AGC and SOC stocks (Lacerda et al., 1995; Gleason and Ewel, 2002). Moreover, the 

long and short-term resilience and resistance of microbial communities are largely dependent on the 

structure and zonation of mangrove communities reflecting environmental gradients (Capdeville et al., 

2019). In this study, species with higher TEC and SOC stocks, such as Bruguiera spp., Sonneratia 

spp. and Avicennia spp. are frequently inundated due to proximity to the river and low land elevation 

compared to other species in the Sundarbans (Siddiqi, 2001; Sarker et al., 2016). These high 

inundation regimes, in turn, may lead to increased microbial activity and a higher level of dissolved 

organic carbon (Wang et al., 2013; Chambers et al., 2014; Chambers et al., 2016). Regular tides also 

bring sediments along with high allochthonous input whereas the raised less-inundated areas foster 

autochthonous SOC and less microbial activity (Lovelock et al., 2015b; Woodroffe et al., 2016). Rao 

et al. (1994) found almost double the C: N ratio in fresh leaves of Bruguiera spp. compared with other 

mangrove species, suggesting higher input of autochthonous carbon. Being the pioneer species in the 

succession of the Sundarbans, both Sonneratia spp. and Avicennia spp. are resilient to disturbances 

leading to higher SOC than climax and seral species (Table A.1) and accumulate a large quantity of 

organic litter in the tidal channel close to the river or seafront (Sarker et al., 2016; Bomer et al., 

2020a).  

7.2. Practical implications 

The study used robust methods to measure plot-level carbon stocks by using the best available 

methods for each component and subsequently upscaled estimates to the ecosystem level using remote 
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sensing imagery. Being a signatory of nationally determined contributions (NDCs) to the United 

Nations Framework Convention on Climate Change (UNFCCC), Bangladesh is committed to provide 

reports on greenhouse gas (GHG) emissions and projected scenarios. Bangladesh has recently 

completed a REDD+ readiness phase and the implementation phase will start in future (GOB, 2018). 

To satisfy the requirement of these international policy schemes, Bangladesh needs robust estimates 

of GHG emissions and their uncertainties from all sectors including forests. This study demonstrated 

an IPCC Tier 3 approach for estimating ecosystem carbon stocks in the Bangladesh Sundarbans which 

can be used to monitor ecosystem carbon stocks in mangroves and other forests in Bangladesh. 

According to IPCC guidelines for the forestry sub-sector, Bangladesh has established a Forest 

Reference Level (FRL) for the historical reference period 2000-2015 (GOB, 2021). According to the 

report, the estimated emissions from the forestry sector is 1.19 MtCO2e/year (metric tons of carbon 

dioxide equivalent), and the estimated removal is 0.81 MtCO2e/year. On the other hand, the projected 

reduction is 409.41 Mt CO2e along with reduction aim to reduce this by 22% by 2030. However, the 

report showed emissions in 2012 (0.37) which is projected the same in 2030. Keeping constant for 

this projected period indicates that the gain and loss would be counterbalanced by 2030 (GOB, 2021). 

However, as a signatory of the pledge to halt and reverse deforestation by 2030 at COP26 

(Conference of Parties) in 2021, Bangladesh promised to curb deforestation. Additionally, protection 

of existing forests and planting targets in the degraded forest might mitigate more carbon loss by 

2030. This study demonstrates the estimation and prediction of both above- and below-ground carbon 

stocks with greater accuracy which can be considered in the national greenhouse gas reporting and 

estimations. Including mangrove soil carbon in the report, especially the Sundarbans and coastal 

forests and adding the growth would achieve the 2030 target and can even act as a carbon credit to 

compensate other sectors like transportation or energy sectors.  

The study developed five species-specific and four genus-specific allometric models to estimate 

above-ground biomass for nine species in the Sundarbans. These models only need diameter at breast 

height and height from the field survey to compute biomass. The study also calculated wood density 
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for most tree species which can be used in models. These site-specific wood density values will 

provide estimates of biomass with higher accuracy. Moreover, the spatial variation of wood density of 

the same species will provide better insights into the species-specific responses to environmental 

changes. 

The use of remote sensing and cloud computing facilities in the study will allow us to monitor the 

Sundarbans and other forests and understand the carbon stocks changes. Time-series monitoring of 

changes in biomass or carbon provides the opportunity to estimate net gain and loss in carbon, which 

is important to calculate GHG emissions. Timely monitoring of GHG emissions is vital to satisfy the 

country’s target to achieve for national and international policy goals. The GEE platform provides us 

opportunity to analyse imagery and store data in the cloud free of cost. Use of this cloud-based 

platform to monitor forest biomass is a good option for developing countries like Bangladesh.  

The ecosystem carbon stocks maps provide us with spatial variability of both above- and below-

ground carbon stocks in the Sundarbans. Since the most carbon-rich and biodiverse portions are in the 

North-Eastern part of the Sundarbans, these areas should get conservation priority. The dominant 

species in these areas is Heritiera fomes, which is the iconic species after which the Sundarbans is 

named. These are the home of many threatened species including the Irrawaddy dolphin. After 

assuming the importance of conserving these areas, the BFD declared three wildlife sanctuaries and 

three dolphin sanctuaries. However, establishing a coal plant near the Sundarbans is regarded as 

contentious policy by the Government of Bangladesh (Khan et al., 2020a). The study underlines the 

importance of spatial conservation planning measures and initiatives to conserve and maximise 

carbon accumulation in this carbon-rich area and to contribute to global climate change adaptation 

and mitigation strategies.  

Reducing uncertainties in carbon estimation is one of the key research agendas to reduce error in 

carbon maps at the global scale. The present study used field inventories, species-specific allometric 

models and species-specific carbon fractions to estimate total ecosystem carbon stocks in a large 

mangrove forest and upscale plot level carbon to ecosystem level through GIS-based interpolation. 
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The study developed a tier 3 level assessment of ecosystem carbon stocks with increasing accuracy by 

using available models, cloud computing platforms and software. The use of remote sensing in cloud 

computing platforms showed the repeatable methodologies for carbon estimation in mangrove forests 

which satisfies the requirements of IPCC Tier 3 approach of carbon accounting. The uncertainty 

assessments from the field estimation, allometric models, forest-types classification and GIS-based 

interpolation provide confidence in the estimates of total ecosystem carbon stocks. The methodology 

used in this study provides a robust approach for estimating ecosystem carbon stocks in any mangrove 

forest and the method can be extended to track and monitor carbon dioxide emissions in any forests in 

the world. 

7.3. Limitations and future directions 

The study estimated ecosystem carbon stocks in the Sundarbans through field inventory and remote 

sensing. The estimation of carbon stocks at one time does not provide the changes in carbon stocks 

which is necessary for tracking greenhouse gas emissions from the Sundarbans. Estimation of carbon 

stocks at multiple times is necessary to understand CO2 emissions from the Sundarbans. Therefore, 

time-series estimation is necessary to monitor changes. The present study did not estimate the carbon 

stocks in the past. Therefore, future research should consider back calculation of carbon stocks from 

previous decades that can act as a baseline or reference level for greenhouse emissions in the 

Sundarbans. 

The study quantified SOC up to 1 m soil depth, however, the organic layer in the Sundarbans consists 

up to 4-6 m of sediments varied from landward to seaward zone (Allison et al., 2003). In order to 

capture the total SOC from the Sundarbans, future studies should expand carbon stocks measurement 

to include the whole organic layer. The assessment of complete soil organic carbon is necessary to 

fully understand the below-ground carbon dynamics in the Sundarbans including outwelling organic 

carbon to the Bay of Bengal. 
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The present study estimated below-ground root carbon with species-specific allometric models. 

However, Adame et al. (2017) found using allometric models overestimated root biomass by 40% 

compared to direct coring. Therefore, destructive methods are preferable to using models. Moreover, 

site-specific models are not available for root carbon. The present study used a coring method to 

measure root carbon, however, it only measured fine and medium roots. The bigger roots were largely 

excluded in the coring method. Using both coring and models will estimate fine and medium roots 

twice, therefore it will be double-counted. Therefore, only species-specific allometric models were 

used for root biomass. However, excavating large trenches or pits (for example, 1 m × 1 m) would be 

the best option compared to other methods to reduce uncertainty. After comparing root biomass 

measured from trenches and other methods such as allometric models and coring, Adame et al. (2017) 

found significantly higher root biomass in trenches from different mangrove forests. Therefore, future 

studies should improve estimation of root carbon through digging trenches or pits.  

The forest type map in the Sundarbans showed that 54% of the Bangladesh Sundarbans is rivers, 

canals and low inundated areas. These areas also hold a high amount carbon in the sediments and 

macrophytes either exported from mangroves or that originate from the photosynthesis of algae and 

aquatic plants in the water (Cole et al., 2007). Estimating carbon stocks from rivers and canals is 

important for total budgeting of carbon stocks from the whole mangrove and also for understanding 

the outwelling dynamics of mangroves. Therefore, future studies should take these watery areas in to 

account to estimate ecosystem carbon stocks in the Sundarbans.  

Satellite based biomass estimation programmes such as the GEDI (Global Ecosystem Dynamics 

Investigation, since 4/2019) and ICESat-2 (since 10/2018) missions provide near global coverage of 

forest heights and biomass products. Very recently the world GEDI biomass/carbon product was 

released. The study could not compare the locally-derived carbon map with the GEDI carbon map. 

Therefore, future studies should compare or use these satellite-based carbon products with the carbon 

estimation from field inventories. 
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Continuous monitoring of above-ground carbon is critical for forest management in support of climate 

impact mitigation. Therefore, several cloud-based platforms have been developed for continuous 

monitoring of tropical forest including mangroves such as Global Forest Watch and Global Mangrove 

Watch. However, these platforms monitor the coverage of forests and deforestation. Integrating 

ecosystem level carbon estimation from various forests is a prerequisite if these global platforms are 

to monitor global forest/mangrove carbon. The methodologies followed in this thesis can be 

integrated with cloud-based platforms to monitor mangrove forest carbon in the Sundarbans and other 

mangrove forests. Satellite based biomass/carbon missions (GEDI or ICESat-2) can be integrated with 

the existing coverage product to monitor carbon in forests. In such cases, the use of GEE apps could 

be a promising monitoring tool as it provides a platform for querying, analysing and publishing real-

time apps free of cost. 

7.4. Conclusions 

Using field inventories and remote sensing data, the estimated total soil organic carbon and above-

ground carbon in the Sundarbans was 21.37 Tg and 23.92 Tg, respectively. The total ecosystem 

carbon stocks comprised 62.70 Tg with a 95% confidence of being between 43.29 Tg and 81.14 Tg. 

The ecosystem carbon stocks in the Sundarbans are relatively low compared to most published 

estimates of carbon stocks levels from mangroves across the world. This is due to the fact that the top 

meter of soil organic carbon (SOC) per area is lower than most mangrove forest in the world. 

However, the SOC will be higher if complete organic depth of soil is measured. In terms of reducing 

GHG, mangrove forests should be conserved whatever the amount of carbon stored in the forest for its 

wide range of ecosystem services. In terms of climate change mitigation and adaptation, the 

conservation of the existing carbon stocks should receive much higher priority rather than the debates 

of high-low carbon stocks. 

The forest-type classification showed that the Hertiera_Excoecaria type was the most dominant forest 

type followed by Excoecaria_Mixed and Ceriops-Excoecaria. The central-north and north-eastern part 

of the Bangladesh Sundarbans contains the most carbon rich forests in both above- and below-ground 
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components. Therefore, this carbon-rich part should be a conservation priority for forest management 

and policy development. However, this north-eastern area of the Sundarbans is highly vulnerable to 

tourism and economic development. Therefore, the study underlines the importance of spatial 

conservation planning measures and initiatives to conserve and maximize carbon accumulation and to 

contribute to global climate change adaptation and mitigation strategies. 

This study developed five species-specific and four genus-specific allometric models for the nine 

most important species in the Sundarbans. At the individual tree level, the generic allometric models 

overestimated AGB between 22% to 167% compared to the species-specific models and at the plot 

level, they showed statistically significant AGB differences compared to the species-specific models. 

Measured wood density (WD) showed 5-10% less biomass than WD from databases and other 

sources, and AGB was overestimated by up to 20% when using plot top height and underestimated by 

8% using plot average height data rather than individual tree heights. The study concludes that 

biomass estimation in mangroves forests always benefit from species-specific models and individual 

tree measurements when appropriate input data are available.  

The uncertainty assessments from the field estimation, allometric models, classification to the 

interpolation all provide confidence in the estimates of total ecosystem carbon stocks in the 

Sundarbans. The methodology used in this study provides an approach for estimating ecosystem 

carbon stocks in any mangrove forest and the method can easily be extended to track and monitor 

carbon dioxide emissions. 

The plot level total ecosystem carbon varied significantly with both salinity zones and forest-type. 

The soil organic carbon stocks (SOC) is also largely influenced by soil salinity, probably by amending 

the forest productivity and microbial activity. The results highlighted that increasing salinity as a 

result of predicted sea-level rise will likely have pronounced effects on future soil carbon 

accumulation rates by altering the soil environment and vegetation characteristics. The Bangladesh 

Sundarbans can act as an important blue carbon hotspot due to the high sedimentation and carbon 

sequestration rate and conservation priorities by the Bangladesh government. However, disturbances 
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such as sea-level rise, global warming, eutrophication, and landscape development might hinder this 

conservation activities in the future.   
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Appendix A 

 

Is soil organic carbon underestimated in the largest mangrove 

forest ecosystems? Evidence from the Bangladesh Sundarbans 
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Table A.1. List of tree species found in the Sundarbans with taxonomy, distribution in salinity zones, inundation 

condition and succession stage.  

Latin name  Local name Family Salinity zone Inundation 

condition 

Succession 

stage 

Aegiceras corniculatum (L.) Blanco Kholshi Primulaceae M, P WL, WH S 

Aglaia  piculate (Roxb.) Pellegr. * Amoor Meliace  O WH S 

Avicennia alba Blume. Sada Baen Avicenniaceae P WL Pr 

Avicennia marina (Forssk.) Vierh. Moricha Baen Avicenniaceae P WL Pr 

Avicennia officinalis L. Kala Baen Avicenniaceae O, M, P WL Pr 

Bruguiera gymnorrhiza (L.) Lam. Lal Kakra Rhizophoraceae O, M, P WL S, C 

Bruguiera  piculate  (Lour.) Poir. Holud Kakra Rhizophoraceae O, M, P WL S, C 

Cerbera manghas L. * Dakur Apocynaceae O WO S 

Ceriops decandra (Griff.) Ding Hou Goran Rhizophoraceae O, M, P WO C 

Cynometra ramiflora L. * Singra Fabaceae O WH S 

Excoecaria agallocha L. Gewa Euphorbiaceae O, M, P WH, WO S 

Excoecaria indica (Willd.) Muell. Arg. * Batul Euphorbiaceae O WH S 

Heritiera fomes Buch. -Ham. Sundri Malvaceae O, M, P WO C 

Hibiscus tiliaceus L. * Bola Malvaceae O, M WH S 

Intsia bijuga (Colebr.) Kuntze * Bhaila Fabaceae O, M WH S 

Kandelia candel (L.) Druce Vatkathi Rhizophoraceae M, P WL S 

Lumnitzera  piculat Willd. Kirpa Combretaceae P WH, WO S 

Millettia pinnata (L.) Panigrahi* Karanj Fabaceae O WL S 

Rhizophora  piculate Blume. Bhora Jhana  Rhizophoraceae M, P WL S 

Rhizophora mucronata Lamk. Jhana Garjan Rhizophoraceae M, P WL S 

Sonneratia apetala Buch. -Ham. Keora Lythraceae O, M, P WL Pr 

Xylocarpus granatum K.D. Koen. Dhundul Meliaceae M, P WH S 

Xylocarpus mekongensis Pierre. Passur Meliaceae O, M, P WH, WO S 

* Indicates mangrove associates according to Tomlinson (2016). Abbreviation: Salinity zone- O = oligohaline, M = 

Mesohaline, P = Polyhaline. Inundation: WL = Waterlogged during Low tide, WH= Waterlogged during High tide, WO = 

Waterlogged Occasionally. Successional stage: Pr = Pioneer, S = seral and C = Climax. Source: Siddiqi (2001); Mahmood 

(2015b); Rahman et al. (2015b); Islam (2016a); Sarker et al. (2016) 
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Table A.2 Two-way ANOVA results for SOCD (gm cm-3) in different salinity zones and soil depths. 

Source DF SS MSS F p 

Soil Depth 3 6.4 2.1 30.1 <0.0001 

Salinity Zone 2 15.9 7.9 112.3 <0.0001 

Soil Depth*Salinity Zone 6 1.5 0.2 3.5 <0.01 

Residuals 500 35.5 0.07   

 

 

Table A.3 Two-way ANOVA results for Bulk density (gm cm-3) in different salinity zones and soil depths. 

Source DF SS MSS F p 

Soil Depth 3 0.9 0.3 46.2 <0.0001 

Salinity Zone 2 0.3 0.2 22.2 <0.0001 

Soil Depth*Salinity Zone 6 0.01 0.003 0.5 >0.5 

Residuals 500 3.5 0.007   

 

Table A.4 Two-way ANOVA results for SOC (Mg ha-1) storage in different salinity zones and soil depths. 

Source DF SS MSS F p 

Soil Depth 3 108.7 36.2 526.2 <0.0001 

Salinity Zone 2 16.4 8.2 118.9 <0.0001 

Soil Depth*Salinity Zone 6 1.4 0.2 3.3 <0.003 

Residuals 500 34.4 0.07   

 

 

 

 

 



 

205 

 

 

Table A.5 One-way ANOVA result for SOC in different forest types. 

Source DF SS MSS F p 

Forest types 7 5704 8149 3.3 <0.01 

Residuals 47 11715 249.3   

 

Table A.6 Tukey HSD Post-hoc test for the average soil organic carbon (SOC) (Mg ha-1) in different forest 

types. Different letters indicate significant differences at P<0.05. Data are mean ±Standard Deviation (SD). 

 

Forest Types SOC (Mg ha-1) 

Mean ± SD HSD rank 

Bruguiera spp. 105.3 3.6 a 

Sonneratia spp. 68.7 20.1 ab 

Avicennia spp. 67.1 9.3 ab 

Heritiera spp. 67.0 13.2 b 

MIXED 61.3 28.7 b 

Xylocarpus spp. 58.8 4.6 b 

Excoecaria spp. 56.3 15.9 b 

Ceriops spp. 50.2 9.7 b 
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Table A.7 PCA (Principal Component Analysis) results based on soil physical and chemical properties and 

vegetation properties. Bold values correspond highly correlated values (PCs > 0.35) and underlined values 

represent non-correlated variables with the respective PCs highest loading.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.8 Step-wise multiple linear regression  

Model Unstandardized coefficient Standardized 

coefficient 

t Significance Lower Upper 

β Standard error Beta 

1 (Intercept) 

Soil Salinity 

4.449 

-0.111 

0.057 

0.015 

 

-0.712 

78.161 

-7.391 

0.000 

0.000 

4.335 

-0.141 

4.563 

-0.081 

2 (Intercept) 

Soil Salinity 

Ln (C: N) 

3.594 

-0.083 

0.273 

0.270 

0.016 

0.085 

 

-0.534 

0.338 

13.330 

-5.106 

3.230 

0.000 

0.000 

0.002 

3.053 

-0.116 

0.103 

4.135 

-0.050 

0.443 

3 (Intercept) 

Soil Salinity 

Ln (C: N) 

Mean DBH 

3.439 

-0.077 

0.274 

0.017 

0.263 

0.016 

0.080 

0.007 

 

-0.499 

0.339 

0.220 

13.072 

-4.972 

3.415 

2.579 

0.000 

0.000 

0.001 

0.013 

2.911 

-0.109 

0.113 

0.004 

3.967 

-0.046 

0.436 

0.031 

Dependent variable: Ln (SOC) 

 

Principal Component PC1 PC2 

Eigenvalue 4.95 1.97 

Percentage of total variance (%) 49.5 19.8 

Cumulative percentage (%) 49.5 69.3 

BD -0.27 0.02 

pH -0.36 0.24 

SS -0.37 0.29 

TD -0.33 -0.25 

DBH 0.26 0.49 

H 0.34 0.38 

E -0.32 -0.32 

C/N 0.21 -0.40 

LAT 0.33 -0.31 

LONG 0.32 -0.17 
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Figure A.1. (A) Integrated violin-box plot shows the distribution of bulk density in four soil depth, where the 

black dots are outliers. (B) Average bulk density in three salinity zones and four soil depths. 
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Figure A.2. Bivariate relationship between soil organic carbon with different soil physicochemical, geophysical 

properties and vegetation characteristics in the Sundarbans.  
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Appendix B 

 

Biomass estimation in mangrove forests: a 

comparison of allometric models incorporating 

species and structural information 
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Table B.1. The choice of model parameters between log-linear and nonlinear regression. 

Species No. of 

trees 

Nonlinear 

AICc 

Log-

linear 

AICc 

ΔAICc Error type Proposed 

method 

Aglaia cucullata 19 88.45 82.1 6.35 Multiplicative log-

normal error 

Loglinear 

Avicennia spp. 42 444.13 380.01 64.12 Multiplicative log-

normal error 

Loglinear 

Bruguiera spp. 31 309.35 254.73 54.62 Multiplicative log-

normal error 

Loglinear 

Excoecaria agallocha 35 201.08 141.22 59.86 Multiplicative log-

normal error 

Loglinear 

Heritiera fomes 97 941.98 742.45 199.53 Multiplicative log-

normal error 

Loglinear 

Lumnitzera racemosa 13 71.56 58.66 12.9 Multiplicative log-

normal error 

Loglinear 

Rhizophora spp. 18 160.29 158.19 2.1 Multiplicative log-

normal error 

Loglinear 

Sonneratia apetala 20 259.73 192.52 67.21 Multiplicative log-

normal error 

Loglinear 

Xylocarpus spp. 51 504.67 431.99 72.68 Multiplicative log-

normal error 

Loglinear 

AICc: Second variant of AIC that corrects small sample size, ΔAICc: the difference between AIC of two models. 
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Table B.2: Eligibility test results for six log-linear regression models for each species. 

 

  

Species 
Model 

no. 

Shapiro-wilk 

normality test 

BP test for 

heteroscedasticity 

Percent relative 

standard error 

(PRSE) 

Variance 

inflation 

factor (VIF) 
a b c 

Aglaia 

cucullata 

E1 W = 0.96, p = 0.61 BP = 1.68, p = 0.20 5.74 2.24   

E2 W = 0.95, p = 0.45 BP = 0.62, p = 0.43 16.32 9.97   

E3 W = 0.94, p = 0.24 BP = 4.55, p = 0.03 6.59 3.44   

E4 W = 0.97, p = 0.78 BP = 5.21, p = 0.02 4.93 2.37   

E5 W = 0.92, p = 0.17 BP = 3.03, p = 0.08 9.04 5.04   

E6 W = 0.94, p = 0.28 BP = 5.18, p = 0.07 9.10 5.49 47.87 b = 5.89, c = 5.89 

Avicennia 

spp. 

E1 W = 0.95, p = 0.06 BP = 3.37, p = 0.07 9.37 2.37   

E2 W = 0.87, p = 0.00 BP = 0.24, p = 0.63 22.47 12.14   

E3 W = 0.92, p = 0.01 BP = 0.09, p = 0.76 6.95 3.19   

E4 W = 0.95, p = 0.07 BP = 0.05, p = 0.83 6.51 2.45   

E5 W = 0.93, p = 0.01 BP = 2.07, p = 0.14 9.53 4.72   

E6 W = 0.93, p = 0.02 BP = 2.36, p = 0.31 14.45 3.84 49.87 b = 2.76, c = 2.76 

Bruguiera 

spp. 

E1 W = 0.94, p = 0.11 BP = 0.00, p = 0.98 9.34 2.29   

E2 W = 0.93, p = 0.03 BP = 0.39, p = 0.53 29.07 12.11   

E3 W = 0.97, p = 0.47 BP = 1.07, p = 0.30 8.98 3.48   

E4 W = 0.91, p = 0.01 BP = 0.87, p = 0.35 6.46 2.23   

E5 W = 0.96, p = 0.29 BP = 0.77, p = 0.38 13.00 5.46   

E6 W = 0.93, p = 0.04 BP = 0.75, p = 0.69 8.99 3.53 27.04 b = 2.80, c = 2.80 

Excoecaria 

agallocha 

E1 W = 0.98, p = 0.74 BP = 8.16, p = 0.00 3.45 1.40   

E2 W = 0.95, p = 0.08 BP = 0.00, p = 0.97 11.81 7.03   

E3 W = 0.95, p = 0.11 BP = 0.00, p = 0.99 4.78 2.44   

E4 W = 0.96, p = 0.22 BP = 1.40, p = 0.24 3.56 1.71   

E5 W = 0.94, p = 0.06 BP = 0.14, p = 0.71 6.50 3.54   

E6 W = 0.99, p = 0.95 BP = 9.03, p = 0.01 5.61 3.68 53.18 b = 6.54, c = 6.54 

Heritiera 

fomes 

E1 W = 0.99, p = 0.89 BP = 2.42, p = 0.12 2.79 0.85   

E2 W = 0.98, p = 0.20 BP = 24.46, p = 0.00 8.85 4.64   

E3 W = 0.98, p = 0.18 BP = 15.80, p = 0.00 3.91 1.70   

E4 W = 0.97, p = 0.05 BP = 9.67, p = 0.00 3.02 1.18   

E5 W = 0.99, = 0.43 BP = 21.55, p = 0.00 5.12 2.41   

E6 W = 0.99, p = 0.84 BP = 7.80, p = 0.02 4.88 2.08 63.82 b = 5.74, c = 5.74 

Lumnitzera 

racemosa 

E1 W = 0.90, p = 0.15 BP = 0.59, p = 0.44 7.89 3.46   

E2 W = 0.92, p = 0.28 BP = 0.33, p = 0.57 40.57 27.69   

E3 W = 0.93, p = 0.32 BP = 0.14, p = 0.71 10.30 6.20   

E4 W = 0.88, p = 0.07 BP = 0.02, p = 0.88 7.85 4.30   

E5 W = 0.93, p = 0.33 BP = 0.02, p = 0.90 14.76 9.61   

E6 W = 0.93, p = 0.34 BP = 3.25, p = 0.20 18.70 5.32 180.93 b = 2.13, c = 2.13 

Rhizophora 

spp. 

E1 W = 0.96, p = 0.58 BP = 6.73, p = 0.01 24.47 6.13   

E2 W = 0.89, p = 0.05 BP = 0.02, p = 0.90 31.41 14.99   

E3 W = 0.93, p = 0.18 BP = 0.15, p = 0.69 16.55 6.53   

E4 W = 0.94, p = 0.37 BP = 3.31, p = 0.07 17.01 5.92   

E5 W = 0.96, p = 0.71 BP = 0.42, p = 0.52 18.35 8.00   

E6 W = 0.96, p = 0.65 BP = 5.42, p = 0.07 30.21 13.08 86.45 b = 3.65, c = 3.65 

Sonneratia 

apetala 

E1 W = 0.96, p = 0.49 BP = 5.48, p = 0.02 10.40 2.63   

E2 W = 0.95, p = 0.44 BP = 0.70, p = 0.40 22.94 12.36   

E3 W = 0.98, p = 0.91 BP = 1.26, p = 0.26 6.60 2.80   

E4 W = 0.97, p = 0.68 BP = 0.12, p = 0.73 4.91 1.81   

E5 W = 0.97, p = 0.72 BP = 2.32, p = 0.13 10.07 4.79   

E6 W = 0.99, p = 1.00 BP = 0.35, p = 0.84 9.09 3.91 21.62 b = 3.53, c = 3.53 

Xylocarpus 

spp. 

E1 W = 0.98, p = 0.52 BP = 0.27, p = 0.60 8.02 2.40   

E2 W = 0.96, p = 0.13 BP = 4.95, p = 0.03 71.04 17.49   

E3 W = 0.95, p = 0.05 BP = 8.68, p = 0.00 9.68 4.17   

E4 W = 0.98, p = 0.54 BP = 5.79, p = 0.02 7.02 2.77   

E5 W = 0.96, p = 0.11 BP = 12.43, p = 0.00 14.85 6.58   

E6 W = 0.99, p = 0.97 BP = 0.32, p = 0.85 9.09 2.95 38.74 b = 1.55, c = 1.55 

N.B: Bold and light shaded grey models are not eligible due to results from one or more test.  



 

229 

 

Table B.3: Detailed validation results for all allometric equation. 

Species Model RMSE 

(Ln Kg Tree-1) 

MAE 

(Ln Kg Tree-1) 

Aglaia cucullata Species-specific 0.09 0.08 

Mahmood_2019_DHW 0.12 0.11 

Mahmood_2019_DH 0.09 0.08 

Mahmood_2019_D 0.12 0.11 

Chave_2014_DHW 0.36 0.33 

Chave_2005_DW 0.17 0.15 

Chave_2005_DHW 0.22 0.19 

Komiyama_2005_DW 0.58 0.57 

Avicennia spp. Species-specific 0.16 0.13 

Mahmood_2019_D 0.22 0.17 

Mahmood_2019_DH 0.22 0.17 

Mahmood_2019_DHW 0.24 0.19 

Chave_2014_DHW 0.40 0.34 

Chave_2005_DW 0.26 0.19 

Chave_2005_DHW 0.31 0.26 

Komiyama_2005_DW 0.39 0.32 

Bruguiera spp. Species-specific 0.19 0.18 

Mahmood_2019_DHW 0.26 0.21 

Mahmood_2019_DH 0.35 0.31 

Mahmood_2019_D 0.37 0.32 

Chave_2014_DHW 0.44 0.39 

Chave_2005_DW 0.24 0.20 

Chave_2005_DHW 0.33 0.28 

Komiyama_2005_DW 0.27 0.22 

Excoecaria agallocha Species-specific 0.14 0.12 

Mahmood_2019_DHW 0.18 0.14 

Mahmood_2019_DH 0.38 0.36 

Mahmood_2019_D 0.43 0.40 

Chave_2014_DHW 0.56 0.49 

Chave_2005_DW 0.22 0.17 

Chave_2005_DHW 0.41 0.34 

Komiyama_2005_DW 1.08 1.06 

Heritiera fomes Species-specific 0.14 0.12 

Mahmood_2019_DHW 0.16 0.12 

Mahmood_2019_DH 0.20 0.16 

Mahmood_2019_D 0.27 0.23 

Chave_2014_DHW 0.21 0.16 

Chave_2005_DW 0.17 0.13 

Chave_2005_DHW 0.21 0.16 

Komiyama_2005_DW 0.17 0.13 

Lumnitzera racemosa Species-specific 0.20 0.20 

Mahmood_2019_DHW 0.15 0.12 

Mahmood_2019_DH 0.16 0.13 

Mahmood_2019_D 0.14 0.11 

Chave_2014_DHW 0.44 0.41 

Chave_2005_DW 0.20 0.16 

Chave_2005_DHW 0.31 0.26 

Komiyama_2005_DW 0.13 0.10 

Rhizophora spp. Species-specific 0.22 0.21 

Mahmood_2019_DHW 0.28 0.25 

Mahmood_2019_DH 0.22 0.18 
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Mahmood_2019_D 0.23 0.19 

Chave_2014_DHW 0.23 0.19 

Chave_2005_DW 0.45 0.41 

Chave_2005_DHW 0.25 0.21 

Komiyama_2005_DW 0.49 0.44 

Sonneratia apetala Species-specific 0.24 0.21 

Mahmood_2019_DHW 0.23 0.18 

Mahmood_2019_DH 0.35 0.30 

Mahmood_2019_D 0.34 0.25 

Chave_2014_DHW 0.24 0.20 

Chave_2005_DW 0.33 0.26 

Chave_2005_DHW 0.21 0.17 

Komiyama_2005_DW 0.59 0.50 

Xylocarpus spp. Species-specific 0.19 0.16 

Mahmood_2019_DHW 0.17 0.13 

Mahmood_2019_DH 0.19 0.15 

Mahmood_2019_D 0.22 0.18 

Chave_2014_DHW 0.46 0.41 

Chave_2005_DW 0.30 0.26 

Chave_2005_DHW 0.36 0.31 

Komiyama_2005_DW 0.36 0.29 
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Table B.4: Pair-wise comparison test for mean absolute error (MAE) between species-specific and other 

allometric equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Model comparison Mean 

difference 

MAE (Ln 

Kg tree-1) 

Mean absolute 

difference MAE 

(Ln Kg tree-1) 

Mean relative 

absolute 

difference 

MAE (%) 

Paired t-test (t), p-

value 

Species-specific – Mahmood_2019_DHW -00.0004 0.034 21.85 t = -0.03, p = 0.98 

Species-specific – Chave_2005_DW -0.05 0.06 39.89 t= -2.46, p <0.05 

Species-specific – Mahmood_2019_DH -0.04 0.07 44.61 t = -1.40, p =0.20 

Species-specific – Mahmood_2019_D -0.06 0.09 54.04 t = -1.71, p = 0.13 

Species-specific – Chave_2014_DHW -0.08 0.10 61.07 t= -3.03, p <0.05 

Species-specific - Chave_2005_DHW -0.17 0.18 110.93 t= -3.62, p <0.05 

Species-specific – Komiyama_2005_DW -0.24 0.27 167.43 t = -2.37, p <0.05 

 N.B: (-) negative signs indicates higher MAE than Species-specific model 
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Table B.5: Summary of individual tree above-ground biomass differences between different allometric equations. Differences are shown for all sizes (All) and by diameter at 

breast height (DBH) classes. The negative difference indicates higher biomass than the species-specific equations. In all cases, the denominators for calculating relative 

differences are the species-specific biomass estimates. The bold percentages show mean relative difference of biomass greater than 50%. 

 

Species 

Diameter 

range 

(cm) 

Species-specific- 

Chave_2005_DW 

Species-specific- 

Komiyama_2005_DW 

Species-specific- 

Mahmood_2019_D 

Species-specific- 

Mahmood_2019_DH 

Species-specific- 

Mahmood_2019_DHW 

Species-specific- 

Chave_2014_DHW 

Species-specific-  

Chave_2005_DHW 

Mean 

Difference 

(Kg) 

Mean 

Relative 

Difference 

(%) 

Mean 

Difference 

(Kg) 

Mean 

Relative 

Difference 

(%) 

Mean 

Difference 

(Kg) 

Mean 

Relative 

Difference 

(%) 

Mean 

Difference 

(Kg) 

Mean 

Relative 

Difference 

(%) 

Mean 

Difference 

(Kg) 

Mean 

Relative 

Difference 

(%) 

Mean 

Difference 

(Kg) 

Mean 

Relative 

Difference 

(%) 

Mean 

Difference 

(Kg) 

Mean 

Relative 

Difference 

(%) 

Aegialitis 

rotundifolia 
2.5 - 15 -21.22 -874.23 -21.35 -879.65 -11.35 -467.86 -14.86 -612.12 -12.09 -498.37 -7.27 -299.54 -5.95 -245.28 

Aegiceras 

corniculatum 
2.5 - 15 -11.40 -137.20 -12.69 -152.64 -3.92 -47.16 -3.78 -45.41 -6.16 -74.14 -5.36 -64.44 -3.62 -43.51 

Aglaia 

cucullata 
2.5 - 15 0.85 23.25 0.18 5.04 0.16 4.27 0.08 2.14 0.70 19.21 1.39 37.98 1.77 48.39 

Avicennia 

alba 
2.5 - 15 -78.18 -104.71 -48.61 -65.10 0.15 0.20 -2.21 -2.96 -4.37 -5.86 5.38 7.20 12.51 16.76 

Avicennia 

marina 
2.5 - 15 -21.09 -45.38 -10.31 -22.18 -12.70 -27.32 -0.76 -1.63 -2.57 -5.53 -7.67 -16.50 -2.20 -4.74 

Avicennia 

officinalis 

All -1320.16 -465.52 -224.80 -79.27 -70.74 -24.94 -50.93 -17.96 -39.53 -13.94 -37.86 -13.35 -22.04 -7.77 

2.5 - 15 -17.67 -49.92 -10.90 -30.80 -0.38 -1.06 -0.05 -0.15 2.35 6.64 6.07 17.16 9.34 26.40 

15.1 - 30 -310.15 -168.26 -100.36 -54.45 -34.29 -18.61 -18.11 -9.83 -13.14 -7.13 -11.15 -6.05 3.85 2.09 

30.1 - 45 -2732.23 -419.62 -529.94 -81.39 -168.14 -25.82 -123.55 -18.98 -95.24 -14.63 -91.94 -14.12 -56.66 -8.70 

> 45.1 -11010.72 -760.81 -1472.09 -101.72 -458.73 -31.70 -366.50 -25.32 -301.18 -20.81 -312.66 -21.60 -263.86 -18.23 

Bruguiera 

gymnorrhiza 
2.5 - 15 2.84 12.18 0.56 2.42 7.73 33.15 6.47 27.78 7.38 31.67 10.91 46.84 12.65 54.29 

Bruguiera 

sexangula 

All -144.98 -91.39 -35.72 -22.52 9.72 6.13 36.81 23.21 13.44 8.48 -12.88 -8.12 0.28 0.18 

2.5 - 15 -19.09 -38.09 -6.72 -13.41 5.54 11.06 12.55 25.04 6.37 12.71 0.81 1.61 5.56 11.09 

15.1 - 30 -197.99 -96.90 -47.93 -23.46 11.48 5.62 47.03 23.02 16.42 8.04 -18.64 -9.12 -1.94 -0.95 

Cerbera 

manghas 

All -6.47 -29.27 -2.56 -11.57 -10.52 -47.60 -10.80 -48.82 1.24 5.62 6.80 30.76 8.73 39.47 

2.5 - 15 1.25 10.09 0.24 1.93 -4.09 -32.99 -4.42 -35.64 1.67 13.44 4.60 37.07 5.73 46.21 

15.1 - 30 -37.37 -61.33 -13.74 -22.55 -36.25 -59.49 -36.29 -59.56 -0.46 -0.75 15.62 25.63 20.71 33.98 

Ceriops 

decandra 
2.5 - 15 -1.29 -71.65 -2.09 -115.82 -0.74 -41.20 -0.98 -54.37 -1.05 -58.28 -0.41 -22.61 -0.03 -1.66 

Cynometra 

ramiflora 
2.5 - 15 -1.24 -24.78 -2.28 -45.40 -0.22 -4.38 -0.58 -11.47 -0.33 -6.55 0.78 15.60 1.44 

 

 

28.78 
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Excoecaria 

agallocha 

All -9.07 -54.75 -4.84 -29.19 -7.01 -42.32 -6.25 -37.70 -0.77 -4.65 2.30 13.89 4.01 24.17 

2.5 - 15 -2.76 -23.52 -2.48 -21.15 -4.01 -34.24 -3.62 -30.89 -0.08 -0.69 2.19 18.67 3.46 29.49 

15.1 - 30 -95.27 -110.96 -37.79 -44.01 -49.50 -57.65 -43.48 -50.65 -10.24 -11.93 4.39 5.11 12.34 14.37 

30.1 - 45 -864.88 -303.91 -225.91 -79.38 -222.07 -78.03 -187.75 -65.97 -87.04 -30.58 -50.51 -17.75 -27.94 -9.82 

Excoecaria 

indica 
2.5 - 15 1.20 11.52 -0.22 -2.15 -2.75 -26.29 -2.40 -23.00 0.94 8.98 3.17 30.33 4.27 40.87 

Heritiera 

fomes  

All -69.83 -117.23 -21.46 -36.02 6.28 10.54 11.45 19.22 4.14 6.95 -0.27 -0.46 4.62 7.76 

2.5 - 15 -7.20 -43.61 -6.21 -37.64 1.17 7.09 2.18 13.21 0.04 0.26 -0.00 -0.03 1.93 11.70 

15.1 - 30 -255.85 -121.43 -75.63 -35.90 20.90 9.92 42.85 20.34 15.02 7.13 -6.83 -3.24 9.37 4.45 

30.1 - 45 -2064.05 -249.34 -275.88 -33.33 183.38 22.15 205.81 24.86 167.98 20.29 140.68 16.99 174.62 21.09 

Hibiscus 

tiliaceus 
2.5 - 15 -0.43 -13.27 -1.47 -45.33 -0.45 -13.97 -0.49 -15.29 -0.53 -16.39 0.17 5.16 0.69 21.21 

Intsia bijuga 2.5 - 15 -1.13 -27.44 -2.46 -59.73 -0.89 -21.65 -1.01 -24.55 -0.99 -24.10 -0.03 -0.84 0.64 15.48 

Kandelia 

candel 

All -75.41 -226.29 -49.03 -147.15 -21.15 -63.46 -27.99 -84.00 -18.74 -56.23 -5.87 -17.60 -1.50 -4.50 

2.5 - 15 -13.14 -77.15 -13.92 -81.75 -11.28 -66.21 -9.51 -55.86 -7.72 -45.36 -4.97 -29.19 -2.16 -12.69 

15.1 - 30 -199.95 -303.36 -119.26 -180.94 -40.89 -62.04 -64.95 -98.54 -40.76 -61.84 -7.65 -11.61 -0.17 -0.26 

Lumnitzera 

racemosa 
2.5 - 15 -4.97 -61.62 -6.83 -84.78 -0.63 -7.83 -0.83 -10.32 -2.27 -28.18 -1.19 -14.82 0.12 1.50 

Millettia 

pinnata 
2.5 - 15 -0.74 -9.76 -2.43 -32.04 -1.70 -22.37 -1.51 -19.89 -0.67 -8.85 0.80 10.59 1.84 24.25 

Rhizophora 

apiculata 
2.5 - 15 -58.83 -79.90 -42.78 -58.10 10.08 13.69 18.03 24.49 -5.79 -7.86 -17.83 -24.22 -8.97 -12.19 

Rhizophora 

mucronata 

All -212.15 -178.00 -110.80 -92.97 4.05 3.40 10.78 9.05 -23.69 -19.88 -34.55 -28.99 -22.13 -18.56 

2.5 - 15 -89.31 -139.08 -65.59 -102.14 2.29 3.57 2.07 3.22 -15.22 -23.70 -14.76 -22.98 -6.96 -10.84 

15.1 - 30 -335.00 -192.36 -156.01 -89.58 5.81 3.33 19.50 11.20 -32.16 -18.47 -54.35 -31.21 -37.29 -21.41 

Sonneratia 

apetala 

All -1858.13 -366.88 -248.60 -49.09 -171.56 -33.88 -55.58 -10.97 -41.08 -8.11 -108.42 -21.41 -81.82 -16.16 

2.5 - 15 -32.52 -101.39 -21.72 -67.73 -10.60 -33.06 -14.62 -45.57 -4.22 -13.15 0.24 0.75 3.68 11.47 

15.1 - 30 -266.56 -118.05 -49.31 -21.83 -51.65 -22.87 1.26 0.56 6.43 2.85 -19.21 -8.51 -1.62 -0.72 

30.1 - 45 -2425.31 -333.93 -371.56 -51.16 -243.66 -33.55 -72.99 -10.05 -68.84 -9.48 -176.00 -24.23 -136.99 -18.86 

> 45.1 -8305.17 -571.50 -932.80 -64.19 -602.35 -41.45 -277.95 -19.13 -197.52 -13.59 -389.51 -26.80 -340.32 -23.42 

Xylocarpus 

granatum 

All -675.34 -339.03 -187.10 -93.92 1.52 0.76 -33.12 -16.62 -8.94 -4.49 37.90 19.03 49.72 24.96 

2.5 - 15 -4.58 -41.25 -6.23 -56.20 0.12 1.12 -1.12 -10.05 -0.62 -5.56 2.17 19.58 3.45 31.11 

15.1 - 30 -411.34 -226.70 -157.56 -86.83 -5.24 -2.89 -28.02 -15.44 -13.94 -7.68 22.11 12.19 35.50 19.57 

30.1 - 45 -2808.89 -446.79 -637.44 -101.39 24.62 3.92 -112.42 -17.88 -10.58 -1.68 156.71 24.93 184.88 29.41 

Xylocarpus 

mekongensis 

All -486.22 -326.97 -124.10 -83.45 -22.86 -15.37 -24.57 -16.52 -18.80 -12.64 -6.27 -4.22 4.00 2.69 

2.5 - 15 -16.39 -72.14 -12.97 -57.08 -4.78 -21.02 -2.71 -11.93 -3.91 -17.23 -3.55 -15.62 -0.62 -2.74 

15.1 - 30 -382.37 -210.66 -135.76 -74.80 -25.55 -14.08 -28.13 -15.50 -19.85 -10.93 -2.78 -1.53 11.58 6.38 

30.1 - 45 -2669.08 -430.48 -565.32 -91.18 -104.26 -16.82 -111.10 -17.92 -83.47 -13.46 -36.65 -5.91 -3.54 -0.57 

>45.1 -9261.24 -759.12 -1615.71 -132.43 40.68 3.33 -235.47 -19.30 -110.35 -9.04 201.17 16.49 243.67 19.97 
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Figure B.1: The nested circular plot and different measured components of vegetation in each segment. 
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Figure B.2: Relationship between DBH and GCH of Ceriops decandra. 
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Figure B.3: Histogram of DBH of all trees from tree inventory in the Sundarbans. 
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 Figure B.4: Histogram of H of all trees from tree inventory in the Sundarbans. 
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Appendix C 

 

 

Figure C.1: Surface reflectance of different bands of Sentinel-2 for different forest-type. 
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Figure C.2: Spectral indices for Sentinel-2 bands and GEDI forest height map for different forest-type. 
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Figure C.3: Spectral indices for Sentinel-2 bands and GEDI forest height map for different forest-type. Here 

PB_RF: Pixel-based Random Forest, OB_RF: Object-based Random Forest and OB_SVM: Object-based 

Support Vector Machine classification. 
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Figure C.4: Spectrum of semivariograms for different models A) Exponential, B) Nugget, C) Whittle and D) K-

Bessel for predicting SOC in the Sundarbans using only forest-type. The RMSE of each model is presented on 

the top of each figure. The solid red line indicates median and red dashed lines indicate the 25th and 75th 

percentile of the distribution. The cross symbols indicate the average value of predictions. The darkness of each 

blue line is proportionate to its corresponding weight, where thinner lines indicate lower weights for predictions. 
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 Figure C.5: Scatterplot of predicted values versus true values for all models  A) Exponential, B) 

Nugget, C) Whittle and D) K-Bessel for predicting SOC in the Sundarbans using only forest-type. Red dots 

indicate the plot level SOC measurement, the grey line indicates 1:1 line, where the predicted values are equal to 

the true values and the blue line indicates the regression line.  
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Figure C.6: Spectrum of semivariograms for different models A) Exponential, B) Nugget, C) Whittle and D) K-

Bessel for predicting SOC in the Sundarbans using forest-type and DEM. The description of all components is 

provided in the Figure C.4.  
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Figure C.7: Scatterplot of predicted values versus true values for all models  A) Exponential, B) Nugget, C) 

Whittle and D) K-Bessel for predicting SOC in the Sundarbans using forest-type and DEM. Detailed figure 

description is provided in the Figure C.5. 
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 Figure C.8: Spectrum of semivariograms for different models A) Exponential, B) Nugget, C) Whittle 

and D) K-Bessel for predicting SOC in the Sundarbans using forest-type, DEM, slope and aspect. The 

description of all components is provided in the Figure C.4. 
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Figure C.9: Scatterplot of predicted values versus true values for all models  A) Exponential, B) Nugget, C) 

Whittle and D) K-Bessel for predicting SOC in the Sundarbans using forest-type, DEM, slope and aspect. 

Detailed figure description is provided in the Figure C.5. 
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Table C.1: The average length, diameter, green and dry weight of pneumatophores of different species in the 

Sundarbans.  

Species Average 

length (cm) 

Average 

diameter 

(cm) 

Average green 

weight (gm) 

Average dry 

weight (gm) 

Number of 

samples (n) 

Heritiera fomes 17.87 ± 5.5 3.11 ± 0.6 78.73 ± 49.8 34.59 ± 24.6 41 

Xylocarpus 

moluccensis 

15.38 ± 5.0 3.00 ± 0.6 65.40 ± 35.43 30.96 ± 19.5 23 

Bruguiera spp. 13.1 ± 2.3 6.22 ± 0.4 168.53 ± 2.9 49.06 ± 1.2 9 

Sonneratia 

apetala 

26.65 ± 14.0 2.97 ± 0.9 81.69 ± 60.9 32.64 ± 25.3 15 

Avicennia spp. 10.87 ± 2.3 1.77 ± 0.4 21.17 ± 2.9 6.59 ± 1.2 9 
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Table C.2 One-way ANOVA results for TEC (Mg ha-1) stocks among different components. 

Source DF SS MSS F p 

Carbon components 5 1660.8 332.2 1470 <0.0001 

Residuals 756 170.8 0.2   

 

 

 

Table C.3 Two-way ANOVA results for TEC (Mg ha-1) stocks among forest type and salinity zones in the 

Sundarbans. 

Source DF SS MSS F p 

Salinity zones 2 5.3 2.65 55.6 <0.0001 

Forest-type 7 2.2 0.31 6.6 <0.0001 

Salinity Zone * Forest-type 7 0.2 0.04 0.7 > 0.05 

Residuals 123 5.9 0.05   
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Figure C.10: The total ecosystem carbon stocks (TEC) in the Sundarbans in three salinity zones. 
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Figure C.11: Spectrum of semivariograms for different models A) Exponential, B) Nugget, C) Whittle and D) 

K-Bessel for predicting AGC in the Sundarbans using forest-type. The description of all components is provided 

in the Figure C.4. 
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Figure C.12: Scatterplot of predicted values versus true values for all models  A) Exponential, B) Nugget, C) 

Whittle and D) K-Bessel for predicting AGC in the Sundarbans using forest-type. Detailed figure description is 

provided in the Figure C.5. 
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Figure C.13: Spectrum of semivariograms for different models A) Exponential, B) Nugget, C) Whittle and D) 

K-Bessel for predicting TEC in the Sundarbans using forest-type. The description of all components is provided 

in the Figure C.4. 
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Figure C.14: Scatterplot of predicted values versus true values for all models  A) Exponential, B) Nugget, C) 

Whittle and D) K-Bessel for predicting TEC in the Sundarbans using forest-type. Detailed figure description is 

provided in the Figure C.5. 

 


