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From Binary to Ternary Fluid Systems
Alvin Chee Ming Shek

Abstract

This thesis focuses on key interfacial phenomena where the presence of

three fluid phases or components lead to new effects which are absent in their

binary system equivalents. We study three ternary fluid phenomena related to

the formation of capillary bridges, de-wetting of droplets and phase separation

of mixtures.

Firstly, we numerically study two-component capillary bridges formed

when a liquid droplet is placed in between two liquid-infused surfaces (LIS).

Two-component liquid bridges can exhibit a range of different morphologies

where the liquid droplet is directly in contact with two, one, or none of the

LIS substrates. We also characterize the capillary force, maximum separation,

and effective spring constant and find that they are influenced by the shape

and size of the lubricant ridge. Importantly, we argue that LIS are not only

“slippery” parallel to the surface, but they are also “sticky” perpendicular to

the surface.

Secondly, we investigate a novel de-wetting phenomenon whereby droplet

lift-off is driven by an incoming film of another immiscible liquid. This mech-

anism exploits the lifting force arising from the triple contact line between

the droplet, film and surrounding air. We find droplet detachment from the

substrate can occur with film thickness that is comparable to the droplet size.

As such, we believe this mechanism is potentially interesting for developing a

sustainable and more environmentally friendly way to clean.

Thirdly, we explore the spontaneous phase separation of ternary fluid

mixtures, both when all the surface tensions are equal and when they have

different values. By combining systematic computer simulations over the full

range of the composition space and theoretical analysis on the eigenvalues
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and eigenvectors of the unstable modes, here we identify four fundamental

phase separation pathways. In particular, we highlight a dominant but so-

far overlooked mechanism involving enrichment and instability of the minor

component at the fluid-fluid interface.

Another key contribution of the thesis is the development of suitable com-

putational schemes for modelling ternary fluids, required to pursue the phe-

nomena described above. Here, we employ a combination of Surface Evolver

and Lattice Boltzmann Method.
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Chapter 1

Introduction

Multi fluid systems are ubiquitous in the physical environment across various phys-

ical scales, including but not exclusive to: fluid inclusions of minerals [1, 2, 3] at

the micro scale; oil deposits and spills [4, 5, 6], at everyday scales; to more ex-

treme examples such as interactions between different particle species in plasma

[7, 8, 9] present on Earth’s magnetosphere and stellar entities, at astronomical

scales. They are also present in many biological systems ranging from smaller to

larger physical scales: within cells [10, 11, 12]; between cells and different tissue

structures [13, 14, 15]; to larger scales such as wet adhesion between insect feet

and surfaces [16, 17, 18]. Such multi-fluid systems are also relevant to many indus-

trial applications including: the formation and stability of complex emulsions for

in drug delivery [19, 20] and in the food industry[21, 22, 23]; in supercritical fluid

extraction [24, 25, 26] to remove impurities or extract desired minerals from solvent

solutions; and in the microscopic structure of metallic alloys which can affect the

mechanical strength and resistance to wear of such composites[27, 28, 29, 30].

To study fluids we must first consider which length scale is relevant to study the

desired physical scenario. In the nanometre scale, molecular dynamics theory and

simulations are usually necessary to capture the key physical aspects [31, 32, 33].

In this thesis, where we consider everyday length scales around the millimetre to

centimetre range, we will study fluid flows through continuum models, where the

1



1. Introduction

fluid dynamics can be modelled by the Navier Stokes equation [34].

For our purposes, it is important to draw special attention to the interfaces

which can occur during multi-component fluid flow. There are two types of inter-

faces which can occur with fluid flows, fluid-solid interfaces and fluid-fluid inter-

faces. Fluid-solid interactions can occur in single fluid systems, while, necessarily

fluid-fluid interfaces are only possible in multi-fluid systems. In this thesis, we

will interchangeably use the terms surface energy, surface tension and interfacial

tension.

Transitioning from a single fluid to binary fluid system we introduce the fluid-

fluid interface. Naturally as more and more fluids are present more types of fluid-

fluid interfaces are possible. The number of fluid-fluid interfaces in a N-component

fluid systems is given by N(N − 1)/2. For example there is only one type of fluid-

fluid interface between two fluids characterised by the associated interfacial energy.

However, for the ternary system there are three such possible interfaces, while for

quarternary systems 6 such interfaces are possible.

Binary fluid systems have been studied and understood for a variety of physical

scenarios, including droplets [35, 36, 19], capillary bridges [37, 38, 39], de-wetting

from surfaces [40, 41, 42].

In this thesis, we are interested in how some of these scenarios differ if an

additional fluid phase/component is introduced. We discuss key concepts in binary

fluids in the next section, followed by those for ternary fluids, and give a short

preliminary overview here.

As a short preliminary, we will be studying both how multiple fluids interact

with solid surfaces and how fluids interact with solid surfaces. We will be studying

fluids wetting surfaces, and as such it is crucial to have an understanding of key

concepts, such as the Young’s contact angle, contact angle hysteresis, and wetting

states on textured surfaces. Capillary bridges are discussed to highlight all these

interactions, and are the key feature studied in Chapter 3: Sticky SLIPS . We will

2



1.1. Key Concepts in Binary Fluids

also discuss contact line motion and briefly discuss various methods on how this

is modelled. In our thesis, we use the diffuse interface model approach, but we

also highlight other common methods. The conditions at which phase separation

occurs in a binary fluid mixture is explored and the resulting structures which can

occur are also highlighted.

When discussing ternary fluids, we will introduce the Neumann angles, a key

bulk fluid feature, which play a key role in all the results in this thesis. We also

explore how contact angles are restricted in ternary systems via the Girifalco-Good

relation. The structures which can form in three fluid interactions are also high-

lighted. These concepts are then employed in studying equilibrium and dynamic

scenarios.

While some of these concepts focus on thermodynamic equilibrium situations

such as Young’s contact angle, they are also relevant in modelling dynamic scen-

arios, e.g.the Young’s contact angle is used to model the fluid solid interaction, in

dynamically wetting scenarios. And as we will observe later the various Neumann

angles play important roles even in dynamical situations. We will then discuss the

key questions to be addressed in this thesis.

1.1 Key Concepts in Binary Fluids

We now go into details about the concepts of binary fluid systems relevant to our

thesis.

1.1.1 Young’s Contact Angle

We will first describe the Young’s contact angle, θY , which describes the contact

line between two fluids, say liquid l and gas g, meeting at a smooth solid surface,

s. Mathematically this is defined as,

cos θY = γgs − γls
γlg

, (1.1)

3



1.1.2. Contact Angle Hysteresis

Figure 1.1: The liquid droplet, (blue), rests on a solid (grey) substrate, with θ
showing the Young’s contact angle. The various surface and interfacial energies are
also highlighted.

where γgs and γls are the surface energies between the gas and solid, and liquid

and solid, and γlg is the interfacial energy between the two fluids. Fig. 1.1 shows a

schematic diagram for how the surface and interfacial energies relate to the Young’s

contact angle, which affects the resulting shape of the droplet.

From our definition of the Young’s contact angle we can also define the wetting

or spreading parameter of a fluid, l, on a surface, s, is given by S = γgs−(γls+γlg).

If S ≥ 0 then the liquid will completely wet the solid, mathematically this can be

understood as the point beyond which the Young’s contact angle reaches zero. For

S < 0, the Young’s contact angle has value between 0◦ < θY < 180◦.

1.1.2 Contact Angle Hysteresis

The Young’s contact angle is strictly valid for a droplet at equilibrium on smooth

and homogeneous surfaces. In dynamical situations, where the droplet is moving,

multiplicity in the contact angles usually results. In such scenarios, we can consider

advancing and receding contact angles, which are no longer the same, θadv and θrec.

One way to infer them is by quasi-statically varying the droplet volume placed on

the surface. θadv and θrec are the largest and smallest contact angles before the

contact line depins. Another way is to consider the front and back contact angles

of a droplet just before it moves when placed on a tilted surface. Fig. 1.2 shows a

schematical diagram of the advancing and receding angles, along with the tilt angle,

θtilt. The difference between the advancing and receding angles can be thought of

4



1.1.3. Textured Surfaces and Wetting States

Figure 1.2: The liquid droplet (blue) slides on a solid (grey) substrate, with θadv
and θrec, showing the advancing and receding angles respectively. The tilt angle
corresponds to the angle when the droplet starts to move.

as a measure of the contact angle hysteresis [43, 44].

1.1.3 Textured Surfaces and Wetting States

So far we have discussed the situation with idealised smooth solid surfaces, however

in reality most surfaces are textured to some degree. To understand such surfaces

it is useful to consider several types of wetting states. There are three categories

of relevance, the Wenzel [42], Cassie [41], and Hemi-wicking states [45]. Of course,

fluids wetting a surface may exist in a mixed state as a combination of the three.

Fig. 1.3 highlights the three states plus an example of a mixed state.

Naturally the contact angle on such surfaces must be modified. For the Wenzel

state, where the droplet penetrates the corrugations, the effective contact angle is

given by [46],

cos θW = r cos θY , (1.2)

where θW is the Wenzel contact angle and θY is the Young’s contact angle. The

roughness factor, r, is the ratio of actual area wetted by the droplet over the pro-

jected surface area of contact with the droplet. Since r ≥ 1, the effect of roughness

is to amplify the surface hydrophobicity for θY > 90◦, and it hydrophilicity for

θY < 90◦.
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1.1.3. Textured Surfaces and Wetting States

Figure 1.3: The above figure shows the different wetting states possible for a
droplet on a textured surface. The Wenzel state is shown on the top left, where the
droplet penetrates surface corrugations. An illustration of the Cassie-Baxter state
is shown in the top right where the droplet does not penetrate the corrugations,
instead resting on the top of them. In the bottom left we show the hemi-wicking
state where a liquid film precursor fills the corrugation extending from the droplet.
Finally in the bottom right we show a mixed state.

In the Cassie-Baxter state, the droplet is suspended on top of the corrugations.

Effectively, the droplet sits on a composite substrate of solid and air in the Cassie-

Baxter state. The Cassie-Baxter contact angle is given by, [46],

cos θCB = −1 + f(cos θY + 1), (1.3)

where θCB is the Cassie Baxter angle, and f is the projected area fraction of the

solid in contact with the solid, and thus f < 1.

The concept of a composite substrate can also be extended to hemi-wicking

states so long as they are stable [46]. In the geometry shown in Fig. 1.3, we can

define the critical Young’s contact angle for hemi-wicking to occur through the

following relation,

cos θc = 1− f
r − f

. (1.4)

In the geometry shown, and the fact that the top of the pillars remain dry, r

and f are equivalent to those defined for the Wenzel and Cassie states. When

6



1.1.3. Textured Surfaces and Wetting States

Figure 1.4: The above figure shows an example of a droplet removing a dust
particle from a lotus surface [47, 53]. Reprinted with permission from Springer
Nature: Planta, Purity of the sacred lotus, or escape from contamination in biolo-
gical surfaces, W. Barthlott et al., copyright 1997.

θY < θc then Hemi-wicking states are possible. This allows us to determine the

Hemi-wicking contact angle observed above the pillars to be

cos θH = f cos θY + 1− f. (1.5)

The understanding of these various wetting states have crucial implications

for the manufacture of several so called ’self-cleaning’ surfaces. Perhaps the most

common example being the superhydrophobic surfaces, inspired by the lotus effect

[47, 48, 49]. Fig. 1.4 highlights how a dust particle is removed from a lotus surface

by a droplet rolling across the textured surface [47]. In superhydrophobic surfaces,

the presence of micro and nano structures induces the creation of air gaps between

the droplet and the surface, and thus reduces the strength of capillary adhesion of

the droplet onto the surface. To retain its self-cleaning properties the droplet must

remain in the Cassie-Baxter state [41] as opposed to the Wenzel state [42]. One

of the big challenges in developing such surfaces is the susceptibility of droplets

to transition from the Cassie Baxter state to the Wenzel state due to external

perturbations, and thus much research has been done on this wetting transition

[50, 51, 52].
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1.1.4. Capillary Bridges

Figure 1.5: Here we show two examples of capillary bridges sandwiched between
two surfaces, on the left is hydrophobic, and on the right is hydrophilic.

1.1.4 Capillary Bridges

A capillary bridge occurs when a droplet is sandwiched between two surfaces. In

such a scenario the droplet induces a capillary force to act between the two surfaces.

This force can be attractive or repulsive depending on the separation between

the plates, the surface/interfacial energies and the volume of the droplet [37]. If

we consider the simplest scenario of an axisymmetric droplet between two flat

surfaces, then it is possible to calculate the capillary force between the surfaces.

Fig. 1.5 shows two schematic diagrams showing a hydrophobic capillary bridge with

θY > 90◦ (left) and a hydrophilic capillary bridge with θY < 90◦ (right).

The capillary force for such a binary fluid system is made up of two contribu-

tions, coming from the Laplace pressure and the surface tension of the droplet[37,

54]. If we consider one surface of contact between the capillary bridge and the

surface, the capillary force is given by,

Fcap = −∆PlgAls + γlgC sin θY (1.6)

where Als is area of contact between the liquid and the surface, and C is the

perimeter of the area of contact. The Laplace pressure is the pressure difference

between the liquid droplet and the surrounding gas which is related to the mean

curvature of the liquid-gas interface,

∆Plg = Pl − Pg = γ

( 1
R1

+ 1
R2

)
= 2γlgHmean, (1.7)

8



1.1.4. Capillary Bridges

Figure 1.6: The above plot shows the capillary force as a function of plate sep-
aration for a wide range of contact angles[38]. Reprinted with permission from
Langmuir, Enhancement of Capillary Forces by Multiple Liquid Bridges, E. J. De
Souza et al. Copyright 2008. American Chemical Society.

where Hmean is the mean curvature of the interface, R1 and R2 are the two prin-

cipal curvatures. The Laplace pressure can be generalised for arbitrary interfaces

regardless of whether one of the fluids is a droplet or not, where the relationship

between curvature and pressure difference is the same. The surface tension com-

ponent will always be attractive, while the pressure difference component can be

either positive or negative resulting in a repulsive or attractive contribution to the

force.

We show how the typical capillary force depends on the Young’s contact angle

and separation distance between the two surfaces in Fig. 1.6 [54, 38]. Notice how

for hydrophobic (θ > 90◦) capillary bridges, parts of the force curve can be negative,

representing a repulsive force, whereas in comparison, for hydrophilic (θ < 90◦), the

force always remains positive, regardless of separation distance. The calculated

force curves have been verified to produce good predictions for experimental results,

for chemically different substrates [54], and even in scenarios where contact angle

hysteresis can be observed [55].
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1.1.5. De-Wetting of Fluids and Contact Line Motion

The study of capillary bridges are relevant across a wide range of applications

exploiting different aspects of their properties. A set of examples are wet adhesion

devices where the adhesive force induced by the capillary bridge is utilised [56, 57].

Importantly, it is not solely the capillary force which is of interest. In the example

of liquid transfer [58, 59], the primary interest is on the shape of the capillary

bridge surface and the amount of droplet transferred from one surface to another.

1.1.5 De-Wetting of Fluids and Contact Line Motion

In this thesis we are interested in droplet removal from a surface through de-wetting

mechanisms. The fundamental aspect of such mechanisms would be the movement

of the contact line [60].

At the level of macroscopic continuum mechanics, we run into the contact line

singularity problem [61, 60, 62], which results when attempting to allow the contact

line to move while trying to maintain the no-slip boundary condition. To alleviate

this issue, it is necessary to include more microscopic physics at the contact line and

couple with the Navier-Stokes equation. We will discuss two methods briefly, slip

boundary condition and diffuse interface models [60]. In the results of this thesis

we use diffuse interface models but we will give a brief description the common

alternatives.

When introducing a slip boundary condition, the fluid velocity at the wall of

the solid becomes [60],

uz=0 = ls
∂u

∂z
, (1.8)

where ls is the characteristic slip length. There are many forms possible for the

slip length. One form can be derived from a statistical theory of liquids [62, 60]

ls ∼
ηDakBT

[γa2(1 + cos θe)]2
a. (1.9)

10



1.1.6. Phase Separation

In the above equation, η is the viscosity of the droplet, D is the diffusion coefficient,

a is a characteristic length scale representing the size of the fluid particle, and kBT

is the standard Boltzmann constant and temperature.

Another common approach is the Cox-Voinov theory, where the slip length,

in the limit of small viscosity, is be related to the contact angle through a cubic

relationship[60, 63],

θ3
ap = θ3

e + 9Ca ln
(
αlo
ls

)
. (1.10)

Here the θap is the macroscopic apparent contact angle, lo is a macroscopic length

scale which is larger than the slip-length, typically the capillary length or the size

of the droplet, Ca is the capillary number, and α is a numerical prefactor of the

order O(1).

The other method would be to use a diffuse interface approach, as is done in this

thesis. The diffuse interface approach will be discussed in detail in our Methodology

chapter. In such a scenario as the contact line moves, there is imbalance in the

chemical potential, leading to a diffusion mechanism for the effective motion, and

hence, slip of the contact line.

1.1.6 Phase Separation

So far, we have discussed multicomponent systems where the components are

already separated. In many scenarios, however, it is important to consider fluid

mixtures which are initially mixed together.

Within mixtures, many structures can form and the stability is important for

various applications. These range from tuning the formation of fractures in alloys

in metallurgy [27, 28], for manipulating the structure of polymer blends which in

turn affect their mechanical and electrical properties [64, 65, 66], and for controlling

the morphology of complex emulsions and emulsion templating for applications in

drug delivery [19, 20, 67] and in the food industry [21, 22, 23].
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One of the key mechanisms for self-assembly of such structures is phase sep-

aration induced by spinodal decomposition [27, 10, 23]. Spinodal decomposition

occurs when a mixture is no longer energetically stable to small fluctuations in

the composition density and begins to phase separate into its constituent compon-

ents. Importantly this is primarily dependent on the current state of the mixture,

the composition of the different components, the temperature and pressure of the

current system, and it is spontaneous. This contrasts with the other common separ-

ation mechanism, nucleation, because no energy barrier needs to be overcome, with

the exception of perhaps any energy needed to quench the mixture. It also leads to

global structures during the separation process. In comparison, nucleation is often

dominated by heterogeneous nucleation at defects, points which are localised, and

can seed growth of separate structures [27, 68, 10].

To describe spinodal decomposition, a common approach is to define a local

order parameter C(r, t) which describes the local concentration of the two fluid

components of the fluid mixture, and then define a free energy,

F =
∫
fb(C) + κ(∇C)2 dV. (1.11)

where fb is the bulk free energy term, and κ(∇C)2 are the gradient contributions.

The interfacial tension between the two fluids is given by the following relation

γ =
∫ 1

0

√
4κfb(C) dV. (1.12)

The evolution of the concentration can be described by the Cahn-Hilliard equation,

∂C

∂t
= M∇2µ, (1.13)

where µ is the chemical potential and M the mobility. The chemical potential is

given by the functional derivative of the free energy,

µ = ∂fb
∂C
− 2κ∇2C. (1.14)

Thus the evolution of the concentration is given by

∂C

∂t
= M

[
∂2fb
∂C2 + 2κ∇4C

]
. (1.15)
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Phase separation occurs when small perturbations of the concentration are un-

stable, i.e. when ∂C
∂t > 0. The spinodal corresponds to the set of points at which

macroscopic fluctuations become unstable and occurs when ∂2fb
∂C2 = 0. Macroscopic

fluctuations are those with wavelengths tending towards infinity, or equivalently

k → 0, thus assuming M > 0, then ∂C
∂t > 0 when ∂2fb

∂C2 > 0 as k → 0. Hence,

the spinodal occurs when ∂2fb
∂C2 = 0. Another related concept is the binodal, which

occurs when the chemical potential of both components are equal. At the binodal,

both components/phases are thermodynamically stable, and thus a mixed state is

possible.

Being able to control the structures, which result, have applications in areas

such as lithography, optical coatings, and flexible electronics [69, 70, 71]. Thus

being able to predict the structures that can occur and their evolution in time

would be highly beneficial. Typical binary fluid structures which can result are

shown in Fig. 1.7. When the composition of the two fluids are close to being equal

(C ∼ 0.5), typically bi-continuous lamellae structure occur, see Fig. 1.7 (a), while

when the compositions are far from equal (C 6=∼ 0.5), dispersed droplets typically

result see Fig. 1.7 (b)[72].

After the initial phase separation has occurred there is further coarsening gov-

erning how such domains grow in size. Typically their size grows according to

power law, R ∝ tα [73]. There are several common regimes, including, the diffusive

regime and the hydrodynamic regime [74].

The diffusive regime occurs when the fluid advection velocity is zero, u = 0

or small. During phase separation this typically occurs when the viscosity of the

fluid is large such that the Reynolds number, Re, is small, or at the early stages

of separation occurring. In the diffusive regime, the domain scales as R ∝ t
1
3 . In

scenarios where the viscosity is not too high or later on in the coarsening process,

hydrodynamics regime becomes more important. Here, the domain growth scales

as R ∝ t in the viscous regime, and as R ∝ t
2
3 in the inertial regime. In the

hydrodynamic growth regime it is also observed that significant differences can
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Figure 1.7: Here we show two typical separation pathways, the bi-continuous
lamellae structures in row (a), and dispersed droplets in row (b) [72]. Used with
permission of IOP Publishing, Ltd, from Viscoelastic phase separation, H. Tanaka,
copyright 2000; permission conveyed through Copyright Clearance Center, Inc.

occur between the structures which result, depending on the fluid viscosity [74] and

whether the system is under shear [73]. In the scenario of noise induced growth a

random perturbation forcing term is added to the equation of motion.

1.2 Key concepts in Ternary Fluids

We now go into details about the concepts of ternary fluid systems relevant to our

thesis.

1.2.1 Neumann Angles and Girifalco-Good Relation

When we introduce a third fluid to the system as mentioned earlier, we introduce

two further types of fluid-fluid interfaces. As the three fluid-fluid interfaces meet

they form a three fluid contact junction, leading to the concept of Neumann angles.

Fig. 1.8 shows a liquid lens system with three fluids. The Neumann angles can be

determined by considering the force balance at the triple contact junction,

~γ12 + ~γ13 + ~γ23 = 0. (1.16)
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Figure 1.8: Here we show a liquid lens between three fluids: 1 (red), 2 (green) and
3 (blue). We also highlight the Neumann Angles, θ1, θ2, and θ3.

By considering a cross-section of any triple contact line we can consider the

scenario in 2D without loss of generality, similar to Fig. 1.8. If we consider ~γ12 as

acting in the x-direction, then Eqn. 1.16 becomes

γ12

1

0

+ γ13

cos θ1

sin θ1

+ γ23

 cos θ2

− sin θ2

 = 0. (1.17)

From the y-component it is clear that,

γ13 sin θ1 − γ23 sin θ2 = 0 (1.18)

and thus,

γ13
sin θ2

= γ23
sin θ1

. (1.19)

We also know that

γ12 + γ13 cos θ1 + γ23 cos θ2 = 0

γ12 = −γ13

(
cos θ1 + sin θ1

sin θ2
cos θ2

)
= −γ13

cos θ1 sin θ2 + sin θ1 cos θ2
sin θ2

= −γ13
sin(θ1 + θ2)

sin θ2

= γ13
sin(2π − (θ1 + θ2))

sin θ2

= γ13
sin θ3
sin θ2

(1.20)
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Hence, we now also know that

γ12
sin θ3

= γ13
sin θ2

= γ23
sin θ1

. (1.21)

When considering the contact angles on the solid surface, it is also important

to note that the resulting contact angles between any two fluids and the solid are

not completely independent. The three possible Young’s contact angles are also

related via the Girifalco-Good relation,

γ12 cos θ12 + γ23 cos θ23 + γ31 cos θ31 = 0. (1.22)

Here the contact angle cos θij represents the contact angle measured from i to j,

and thus cos θij = − cos θji. To verify the Girifalco–Good relation consider the

Young’s contact angle definition in terms of solid-surface tensions,

cos θij = γjs − γis
γij

. (1.23)

Hence, the left-hand side of the Girifalco-Good relation becomes

γ2s − γ1s + γ3s − γ2s + γ1s − γ3s = 0. (1.24)

Where the above highlights how the left-hand side of the Girifalco-Good relation

sums to zero.

1.2.2 Liquid Infused Surfaces

In this thesis we study liquid-infused surfaces (LIS), or slippery liquid infused

porous surfaces (SLIPS), inspired by the slippery surface of the Nepenthes plant

[75, 76, 77, 78], which are often considered an alternative to superhydrophobic

surfaces [79]. Such surfaces are composed of a textured substrate imbibed by a

lubricant fluid, and when wetted by a droplet we obtain a three fluid system (the

droplet, the lubricant and the surrounding gas).

There are several aspects to LIS which lend to much interest in applications.

Its slippery nature lends naturally to applications in self-cleaning surfaces [77,
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1.2.3. Ternary Phase Separation

78, 80, 81], food packaging [82], anti-fouling surfaces [83, 84], and heat transfer

via droplet condensation [85, 86]. The presence of the lubricant which cover the

underlying substrate also inhibits bacterial growth on surfaces [87, 88], and leads

to anti-icing properties so long as the temperature is well above the freezing point

of the lubricant [81, 89, 90].

When compared to superhydrophobic surfaces, the main advantage of LIS is

that it is more resistant to pressure failure and to penetration by the droplet due

to the presence of the lubricant. However, at the same time, lubricant retention

over the lifetime of LIS is a technical challenge whose solution is still an active area

of research [91, 92].

Fig. 1.9 (a) and (b) show schematic diagrams of how such surfaces interact

with a droplet. In general, there are a number of possible wetting states. These

wetting states depend on whether the droplet is cloaked: in Fig. 1.9 (a) the droplet

is fully encapsulated by the lubricant, while Fig. 1.9 (b) shows a lubricant ridge

forming at a triple contact with the droplet and surrounding air; as well as how

much the lubricant is wetting the solid corrugations. Fig. 1.9 (a) shows the case

where the lubricant is fully wetting the solid, while Fig. 1.9 (b) presents the case

with a partially wetting lubricant. In effect there are a combination of wetting

states occurring.

1.2.3 Ternary Phase Separation

Phase separation in ternary fluid mixtures can result in various fluid structures [68,

93]. Previous works have identified several types of morphologies which differ from

binary mixtures, and their dependence on the composition have been tabulated

[68]. The analysis by Naumann et al. [68] largely focused on subtle differences

between the observed morphologies but did not attempt to define rules to predict

which structures will form. See Fig. 1.10 for a small sample of the morphologies

possible, which were obtained experimentally. When three fluids are present many
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Figure 1.9: The above set of figures shows a liquid-infused surface, with the top
row highlighting an encapsulated droplet and the bottom an non-encapsulated one.
Panels (a) and (b) are schematical diagrams of both scenarios; (c) and (d) images
of the real droplets resting on the surface; (e) and (f) showing highlighting the
raised lubricant with dye; (g) - (j) show the underlying surface structure of such
surfaces. [77].Used with permission of Royal Society of Chemistry, from Droplet
mobility on lubricant-impregnated surfaces, J. D. Smith, et al., volume 9, copyright
2013; permission conveyed through Copyright Clearance Center, Inc

Figure 1.10: Various observed morphologies resulting from varying concentrations
of three polymer blends [68]. Reprinted from Polymer Papers, E. B. Naumann,
Morphology predictions for ternary polymer blends undergoing spinodal decom-
position, 2243-2255, Copyright 1994, with permission from Elsevier.

more different topological structures are possible, when compared to the binary

fluids case discussed in Sec. 1.1.6. In Fig. 1.10 we can observe substructures

within the larger structures.

Another set of studies have utilised ternary phase separation to form various
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1.2.3. Ternary Phase Separation

Figure 1.11: The above figure shows the details of how a multi-layered emulsion
is formed from a ternary mixture. Panel (a) shows a diagram detailing the ex-
perimental use of a microfluidic glass capillary to form a multi-layered emulsion.
Panel (b) shows how the ternary droplet undergoes phase separation to form a
multi-layered emulsion droplet. Finally, panel (c) shows the phase diagram detail-
ing how the number of layers is dependent on the composition of the mixture. [94].
Used with permission of John Wiley & Sons - Books, from Tailoring of High-Order
Multiple Emulsions by the Liquid–Liquid Phase Separation of Ternary Mixtures,
Haase, Martin F. et al, volume 126, copyright 2014; permission conveyed through
Copyright Clearance Center, Inc.

emulsion structures [94, 95] for potential applications in drug delivery and emulsion

templating. Here, the studies involve forming multi-layered emulsions using micro-

fluidics. Three fluids are used, (oil, water and solvent) and it was found that the

number of layers was dependent on the composition of the ternary fluid droplet.

Fig. 1.11 shows experimental images of how the droplet forms multiple layers [94].

Other structures such as patchy and janus droplets have also drawn attention,

for similar applications [96, 97]. In the early stages the structure formation is due

to phase separation. Eventually, as the patches are enriched onto the surface of the
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1.2.3. Ternary Phase Separation

Figure 1.12: Here we show the evolution of a ternary mixture to form patchy
droplets which eventually equilibrates to a Janus droplet [97]. Used under CC-BY
license from American Chemical Society, Langmuir, Facile Production of Biode-
gradable Bipolymer Patchy and Patchy Janus Particles with Controlled Morpho-
logy by Microfluidic Routes, E. Ekanem et al. Copyright 2017.

droplets, they coalesce by undergoing Ostwald ripening. Fig. 1.12 highlights the

stages of the droplet changing structure from a mixture to a patchy droplet and

finally a Janus particle.

It is clear that the structures which are possible with ternary fluid systems are

of interest for many applications. Currently much of the research focuses on what

structures are possible [68, 98, 93, 96, 97, 94, 95]. However, to the best of our

knowledge, there is a lack of a general understanding about how such structures

form.

Much of the literature [68, 99, 93, 98, 100] focuses on using eigenvalues obtained

from linear stability analysis to understand how the three fluids grow and form

structures. This is in effect a ternary spinodal analysis [100]. However, there seems

to be an underappreciation of the role of eigenvector components on how the fluid

develop different structures. In our work we will highlight the importance of such

tools in understanding ternary mixtures undergoing phase separation.
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1.3. Binary and Ternary Fluid Systems

1.3 Binary and Ternary Fluid Systems

From a conceptual perspective, the key difference between a single component fluid

system and a binary one is the existence of a fluid-fluid interface which is usually

characterised by the interfacial tension between the two fluids. When moving

from binary to ternary fluid systems, we have additional fluid-fluid interfaces. The

Neumann angles provide a measure of how the three fluids interact with each other

at the triple contact junction with no analogy to the binary case. In this thesis

we will study and focus on three ternary fluid phenomena, Sticky Slips, Ternary

De-Wetting, and Ternary Phase Separation. Before discussing these phenomena,

we first highlight the challenges with modelling multi-fluid systems.

Our approach is to use free energy models, both for sharp interface and diffuse

interface models. There is still active research on developing and implementing

such models [101, 102, 103, 104, 105]. The introduction of a third fluid poses new

challenges to the standard derivations of the equations of motion. This is especially

true when determining the chemical potentials from the free energy models for

immiscible fluids [106, 107, 108]. Notably a new concept arises, the reducibility

and consistency of such equations of motion obtained. The terms reducibility and

consistency refer to the fact that the equations of motion, of say a N -component

system, must reduce to the equations of the motion of the N−1 component system

when a component is absent in the system. We will discuss these issues in detail

in Chapter 2: Methodology.

After Chapter 2: Methodology we will discuss our main results. Chapter 3:

Sticky SLIPS will discuss the effects of a third fluid acting as the lubricant on

the capillary forces and capillary bridge morphologies between two liquid infused

surfaces, when compared to a single liquid component capillary bridge, between

two smooth surfaces. We will highlight how it is possible to have several stable

capillary bridge morphologies and how the capillary force is enhanced due to the

presence of the third fluid. Importantly, the behaviour cannot be simply reduced
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1.3. Binary and Ternary Fluid Systems

to that of a single liquid component capillary bridge.

Our next chapter will be Chapter 4: Ternary De-Wetting, where we will discuss

a new mechanism for droplet removal by making use of the ternary fluid contact

line. In comparison to more traditional binary fluid systems we use a thin liquid

film to de-wet the droplet rather than flooding the surroundings with a cleanser

fluid. This liquid film is then slowly increased in thickness, which raises the triple

contact line and pulls the droplet with it. We will show that in the quasi-static

limit the de-wettability of a droplet can be understood by treating the stretched

droplet as a capillary bridge. Here, the Neumann angles play a key role in whether

the droplet de-wets or not.

Finally we study the phase separation pathways of ternary fluid mixtures in

Chapter 5: Ternary Phase Separation. We will categorise the various separation

pathways and resulting fluid structures which can form. Unlike the binary case

where the conditions for when phase separation would occur can be determined

by determining the spinodal, we will show that in the ternary case the spinodals

gives limited information. An often neglected part of linear stability analysis, the

eigenvector components, play a key role in the structures which can result. We also

study the phase separation pathway, where the minor component is enriched and

undergoes an instability at the interface of the two major components to determine

its dependence on the thickness of the enriched component layer formed.
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Chapter 2

Methodology

2.1 Modelling Ternary Component Systems

To model ternary component fluid systems we must first consider which material

parameters are relevant for the physical scenarios of interest. In this thesis, we

are interested in phenomena where the fluids can be represented as a continuum.

In this case, key parameters include the interfacial parameters, such as fluid-fluid

interfacial tensions and fluid-solid interaction energies, as well as the bulk para-

meters, such as the fluid density and viscosity. When modelling multi-component

fluid systems there are two broad categories of models, sharp interface [109, 110]

and diffuse interface models [111, 112, 113].

In a sharp interface model, whenever there are two or more fluid compon-

ents/phases separated from each other, we explicitly model the interface between

the two as a sharp boundary. This boundary would be a point in 1D, a line in

2D, and a surface in 3D, and importantly there is no thickness to this boundary.

Common numerical approaches that are often used with sharp interface models

include the level set method [114, 115, 116], front tracking method [117, 118, 119],

and volume of fluid method [120, 121, 122]. In this thesis we use a sharp interface

model for quasi-static study for capillary bridges, where we are solving surfaces at

equilibrium. However, it must be noted that sharp interface models can be used
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for dynamic scenarios [123], where the interface can evolve sharply and quickly, but

this can be difficult to implement numerically. We will explain this further later.

Sharp interface models map well to many physical scenarios where the inter-

facial thickness (usually of the order of several nm) between the fluids is much

smaller than the length scale of the flow. Such length scales are related usually by

the length scale of the boundaries of the system, such as the width of a channel

where the liquid is undergoing flow. However, the sharp interface approximation

breaks down when the physical scales of interest become more comparable to the

interface thickness, such as in nanofluidics [111]. The main difficulty in sharp inter-

face models is often in how the interface is tracked and how they are coupled to the

Navier-Stokes equation [123]. Correspondingly, these models are often less favour-

able to problems where the interface topologies change rapidly, such as in droplet

coalescence and breakup, or in the dynamics of fluid phase separation. Because

the interface is sharp any change from one side of the interface to the other, will

usually lead to a discontinuity of the relevant variable, such as the fluid density,

and thus the equations of motion usually cannot remain continuous across the in-

terface. The discontinuities across interfaces can be removed through the use of

diffuse interface models.

We now discuss the general features of a diffuse interface model. In the liter-

ature such a model is often called a phase field model. In such a model the local

concentration and/or density of each fluid component is represented by an order

parameter. Across an interface between either two fluid components or phases

the relevant order parameter will vary smoothly. This leads to a characteristic

interfacial width which is non-zero. There are several methods to implement these

models [124], including the finite difference method [125, 126, 127], the finite ele-

ment method [128, 129, 130], and spectral methods [131, 132]. In this thesis we

will focus on the use of the Lattice Boltzmann method (LBM) [133, 134, 135].

A major advantage of diffuse interface models is that the interface no longer

needs to be tracked explicitly [111, 136]. To introduce a diffuse interface, typically,
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a set of equations of motion, such as the Cahn-Hilliard or Allen-Cahn equations,

are used to capture the evolution of relevant order parameters, and these equations

apply everywhere throughout the simulation domain. This makes diffuse interface

models convenient for studying highly dynamic interfacial flows where the interfaces

evolve rapidly, such as during collision of droplets and phase separation. However,

the existence of a non-zero interface width means that care must be made to en-

sure the relevant physics is not affected by the length scale implicitly set by the

interfacial width. In real physical scenarios such an interface width is usually in

the nanometre scale. Computationally, it is practically impossible to simulate the

quantitatively correct interface width. For example, if we allocate 5 lattice points

to capture an interface with of 1 nm, to simulate a droplet, with a radius of 1 mm,

would require O(1018) lattice points in three dimensions, which is neither feasible

nor, in fact, necessary. In diffuse interface models, accurate simulations can be

achieved as long as the length scales of the phenomena of interest are considerably

larger than the interface width, ideally by one or more orders of magnitude. Due

to potential chaotic evolution of an interface, this would also be necessary in cases

where the motion is along an interface to ensure reliable results.

In this thesis, we will take advantage of both sharp and diffuse interface models

in different scenarios where each approach is particularly advantageous. We use a

sharp interface model to the study the quasi-static evolution of a capillary bridge

between two liquid infused surfaces, where changes of the interface topologies are

not the dominant features of interest. In our quasi-static method dynamical

effects, such as those due to viscosity, were ignored. We give an overview of our

algorithm for minimising the energy in a flow diagram shown in Fig. 2.1. We then

apply a diffuse interface model to study the dynamical evolution of fluid interfaces

during a novel de-wetting process and phase separation. We will discuss the explicit

models we employ in this thesis in the following sections of this chapter.
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Figure 2.1: The flow diagram shows an outline of the energy minimisation al-
gorithm used in Surface Evolver to obtain the capillary bridge equilibrium states.
The steps in solid boxes are the initial and end states of the algorithm. For every
separation, H, which allows for a stable capillary bridge we minimise the energy
to obtain an equilibrium configuration. This allows us to compute the relevant
quantities such as the capillary force. We then increase/decrease the separation
by a chosen amount, ∆H, and repeat the steps until we reach an instability. The
steps in dashed boxes are the repeated steps.

2.2 Sharp Interface Model

In Chapter 3: Sticky SLIPS we will study capillary bridges sandwiched between

two liquid infused surfaces (LIS) [76]. Contrasting with the more commonly stud-

ied cases of capillary bridges where only one liquid component forms the droplet

capillary bridge [37], capillary bridges between LIS are formed by two liquid com-

ponents, one being the droplet liquid and the other is the lubricant fluid infused

into the LIS. In both cases the capillary bridge is also surrounded by another fluid,

the surrounding gas. We are interested in what differences such a two component

liquid capillary bridge (ternary fluid system: droplet, liquid and gas) would have in

comparison to one-component liquid capillary bridges (binary fluid system: droplet

and gas). In our studies we vary the separation of the two LIS quasi-statically and,

as such, we can ignore dynamical effects. As we discussed previously this lends to

a suitable scenario to use a sharp interface model, because the interfaces evolve
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slowly.

2.2.1 Free Energy Formulation

To develop the model we begin by considering the binary case with one liquid

component first, as shown in Fig. 2.2 (a). This will then allow us to extend the

model to the ternary case with two liquid components, as illustrated in Fig. 2.2

(b) - (d), and allow easier comparisons of the differences and similarities between

the two cases Fig. 2.2 (b) - (d). The total free energy of the one-component liquid

capillary bridge [137, 138] is given by

Esmooth = γdgAdg + γdsAds + γgsAgs −∆PdgVd, (2.1)

= γdgAdg − γdg cos θdgAds −∆PdgVd + C1,

where the γij and Aij are the surface tension and interfacial area between compon-

ents i and j, Vd is the drop volume, and ∆Pdg is the pressure difference between

the drop and gas components. We assume the liquid drop is non-volatile, so that

its volume is a conserved quantity. For a fixed drop volume Vd, the term ∆Pdg can

be interpreted as a Lagrange multiplier. Rearranging the terms, and assuming the

capillary bridge is confined by ideal and smooth surfaces, the liquid wettability is

expressed by the material contact angle, cos θdg = (γgs − γds)/γdg. The remaining

terms sum up to a constant, C1 = γgs(Ags + Ads), which do not alter the liquid

bridge morphology, and can be neglected.

We can then extend the above model to a capillary bridge between two liquid

infused surfaces (LIS). In such a scenario the three fluid components are the lub-

ricant infused in the surface, l, the droplet sandwiched between the surfaces, d,

and the surrounding gas, g. See Fig. 2.2 (b) for a model capillary bridge between

two LIS. Here the lubricant ridges are formed around the droplet due to capillary

action. As in previous works [139, 140, 141], we divide the total free energy con-

tributions into two parts, the fluid-fluid and fluid-solid contributions, such that
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Figure 2.2: Capillary bridge geometry and parameters. Panel (a) shows a capillary
bridge between two smooth surfaces. Panel (b) shows a capillary bridge between
two LIS, where H is the separation distance, and r̂perp, r̂par are the unit vectors
perpendicular and parallel to the substrate. Panels (c) and (d) show the capillary
bridge cases where the lubricant partially and completely wetting the solid corruga-
tions, respectively. Additionally, panel (c) illustrates the definition of the Neumann
angles, θl, θd, θg, and the effective wetting contact angles, θeff

ld and θeff
lg . Panel (d)

also gives a geometrical interpretation of the apparent contact angle, θapp, and the
lubricant film thickness, d.

ELIS = EFF + EFS. The fluid-fluid contributions are

EFF = γdgAdg + γldAld + γlgAlg −∆PdgVd −∆PlgVl. (2.2)

Similar to the one-component liquid bridge case, the drop volume is assumed to

be constant. For the lubricant (subscript l), we assume the rest of the substrate

infused by the lubricant provides a virtually infinite reservoir. In experiments the

lubricant exchange between the ridge and surrounding substrate can occur on a

rather slow timescale due to the strong viscous dissipation in the thin lubricant

layer [142]. However, we will assume this exchange is still much faster than the

typical variation in the control parameters used in this work, such as the separ-

ation between the two LIS. Consequently, we employ the pressure ensemble for

the lubricant, parameterised by the pressure jump ∆Plg at the lubricant-gas inter-

face. The term −∆PlgVl in the free energy represents the energy cost for drawing

additional lubricant from the reservoir.

When the lubricant only partially wets (PW) the solid surface, see Fig. 2.2(b),
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we can write the fluid-solid contributions as

EFS(PW) = γeff
dsA

pr
ds + γeff

ls A
pr
ls + γeff

gsA
pr
gs (2.3)

= γldA
pr
ds cos θeff

ld − γlg(A
pr
ds +Apr

ls ) cos θeff
lg + C2,

where Apr
is is the projected interfacial area between fluid i and the substrate. The

index i = d, g represents either the drop or gas phase. It is worth emphasizing

that the substrate is effectively a composite of the underlying rough solid surface

and the imbibed lubricant. For simplicity, we will not resolve the details of the

composite surface. Instead, we simply assume this gives rise to an effective average

surface tension γeff
is = fγis + (1 − f)γil, with f the fraction of the projected solid

area exposed to the drop or gas phase. We also define the effective contact angle

cos θeff
ij = (γeff

js − γeff
is )/γij between phases i and j on the composite solid-lubricant

substrate. The constant term C2 = γeff
gs (Apr

ds +Apr
ls +Apr

gs) can be neglected for the

same reason that it will not affect the resulting morphology.

The limit of θld, θlg → 0◦ describes the complete wetting (CW) case, Fig.

2.2(c), where the lubricant will form a thin layer above the surface. The thickness

of the lubricant layer is determined by the intermolecular interactions between

lubricant and solid [143]. These interactions are also often called the disjoining

pressure term. To extend our calculations to this limit, we introduce

EFS(CW) =
∫

B

12πd(r)2 dA, (2.4)

where B is a constant and d is the thickness of the lubricant layer. A different

choice for this contribution would not alter the results of this study, as long as the

film thickness is small compared to the size of both the drop and the lubricant

ridge. In practice, we also do not observe major differences in the results for full

wetting and small but finite contact angles.

On LIS, the drop-gas interface does not come in contact with the solid, due

to the ubiquitous presence of a lubricant ridge, see Fig. 2.2. At the top of this

lubricant ridge, there is a triple contact line where the drop-gas (dg) interface
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2.2.1. Free Energy Formulation

meets the lubricant-gas (lg) and lubricant-drop (ld) interfaces. The three Neumann

angles, θl, θd and θg, are related to the interfacial tensions via

γld
sin θg

= γdg
sin θl

= γlg
sin θd

. (2.5)

Consequently, on LIS the definition of a material contact angle needs to be adapted.

Two alternatives are possible: either taking the slope of the drop-gas interface

immediately above the triple line, or by estimating the slope of the (virtual) drop-

gas interface if it were to continue within the lubricant ridge. Following Semprebon

et al. [139], we employ the first definition, as illustrated in Fig. 2.2(c). This

definition has an advantage that the triple line is directly visible, and therefore it

is easy to be measured in experiments. The second definition instead would better

approximate the overall drop shape in the case of large ridges. In the limit of

vanishing lubricant ridges, the two definitions coincide and the apparent contact

angle can be expressed as an average of the effective lubricant-drop and lubricant-

gas contact angles, weighted by the ratios of surface tensions:

cos θapp = − cos θeff
ld

γld
γdg

+ cos θeff
lg

γlg
γdg

= − cos θeff
ld

sin θg
sin θl

+ cos θeff
lg

sin θd
sin θl

. (2.6)

Unless specified otherwise, this equation defines the apparent angle used throughout

the thesis. It allows us to compare the wettability of droplets on LIS with those

on homogeneous surfaces, employing θapp for the former and θdg for the latter. It

should be noted here that θeff
ij , takes into account the case where the lubricant does

not fully cover the solid protrusions, as detailed in Eqn. 2.3. However, in cases

where a course grained approximation is insufficient, then it may be necessary to

explicitly consider Young’s contact angles between the solid protrusion and various

fluid interfaces. This could occur if say the solid corrugations are highly irregular,

then in effect θeff
ij can be thought of as position dependent, which would of course

depend on the precise geometry of the corrugations.
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Figure 2.3: The figure shows a sketch of how the three interfaces in our axisym-
metric model are modelled using Surface Evolver. The dots represent the vertices,
while the lines are the edges connecting the edges. In red we have the lubricant-gas
interface, green the lubricant-droplet interface, and in blue the droplet-gas inter-
face. For completeness, we also show the reflected interfaces on the left, as we only
need one set for the axisymmetric model.

2.2.2 Numerical Implementation - Surface Evolver

We compute the liquid bridge morphologies in mechanical equilibrium by numeric-

ally minimising the free energy. To do this, we employ the public domain software

Surface Evolver [144, 145]. Owing to the symmetry of the problem, we employ an

effective 2D model with rotational symmetry [139, 54, 55, 38].

The three fluid interfaces between drop, lubricant and gas are modelled by

discrete segments joining at a point representing the drop-lubricant-gas triple line

near the top and bottom of the capillary bridge. This is shown in Fig. 2.3, where

we also show for clarity a reflected image of the edges and vertices on the left.

In this effective 2D model, each of the lubricant-drop and lubricant-gas inter-

faces also meets the substrate at a point corresponding to the substrate-lubricant-

drop and substrate-lubricant-gas contact lines in the case of finite wettability. The

relevant fluid-solid energy terms can then be calculated given the positions of the

substrate-lubricant-drop and substrate-lubricant-gas contact lines.

In the case of full wetting, there are no substrate-lubricant-drop and substrate-

lubricant-gas contact lines. Instead, the fluid-solid energy is accounted by numer-

ically integrating the disjoining pressure term. In this case we ensure that the

31



2.3. Diffuse Interface Models

lubricant layer has reached a constant thickness far away from the droplet in the

case of full wetting. For this reason, we also apply a symmetric boundary condition

with the external wall for the lubricant-gas interface. In the case of asymmetric

LIS one needs only to consider different effective contact angles for the top and

bottom plates.

2.3 Diffuse Interface Models

In Chapters 4 and 5 we will study ternary fluid de-wetting and ternary phase separ-

ation respectively. In our studies of ternary fluid de-wetting, we consider scenarios

where we have a droplet detaching from a solid surface, due to displacement by an

incoming fluid film. For phase separation we attempt to understand the a priori

conditions which lead to the formation of different resulting morphologies. In both

problems, the interfaces can evolve rapidly. It is easier and more appropriate to

use a diffuse interface model, to avoid tracking the complicated evolution of the

fluid interfaces.

2.3.1 Bulk Free Energy

As a starting point we need a bulk free energy that allows for three immiscible

fluids. The ternary free energy model we base our numerical simulations is given

below [106, 146],

E =
∫ 3∑

m=1

12
ε

Σm

2

(
C2
m(1− Cm)2 + ε2

16(∇Cm)2
)
. (2.7)

Here, the local concentration per unit volume for each fluid component m is given

by Cm. The Cm’s are the order parameters which we evolve and they range from

0 to 1. The constants, Σm, are related to the interfacial tensions between the

fluid components, with γmn = Σm+Σn
2 , where γmn is the interfacial tension between

fluids m and n. For this model at equilibrium the interfacial profile, say between
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2.3.1. Bulk Free Energy

fluid m and n, is given by

Cm(x) = 1
2

(
1 + tanh

(2x
ε

))
(2.8)

Cn(x) = 1
2

(
1 + tanh

(−2x
ε

))
, (2.9)

where x is the displacement from the midpoint of the fluid interface between m

and n. The midpoint of the interface is defined when Cm = Cn = 0.5. We can thus

see that ε gives good measure for the interface width of the system.

We now must discuss how we obtain the equations of motion which govern

how our simulations evolve in time. There are two sets of equations used. First,

as we are studying fluid dynamics, we have the standard continuity and Navier-

Stokes equations. If we denote time by t, the fluid density by ρ, and use Einstein

summation convention on repeated indices, then the continuity equation is

∂tρ+ ∂α(ρuα) = 0, (2.10)

and the Navier Stokes equation is

∂t(ρuα) + ∂β(ρuαuβ) = −∂βPαβ + ∂βη(∂βuα + ∂αuβ), (2.11)

where α and β sum over the spatial coordinates. The pressure tensor Pαβ contains

the thermodynamic force that arises from the free energy in Eq. 2.7, and η is the

dynamic viscosity.

Second we also have equations that govern the evolution of the order para-

meters. These are given by the Cahn-Hilliard equation. The specific terms of the

Cahn-Hilliard equation depends on the model used, and they are written below

in Sec. 2.3.1.1 and 2.3.1.2. We also employ the constraint C1 + C2 + C3 = 1 to

ensure the total concentrations sum to 1. There are several methods to ensure this

constraint when solving the Cahn-Hilliard equation. We consider two approaches

to solve this. One follows the method used by Semprebon et al. [146], where

we coordinate-transform the concentrations and evolve the fluids in terms of the
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2.3.1.1. Semprebon Approach

auxiliary variables. The other approach is to follow Boyer et al. [106], where dir-

ectly evolving the concentration values necessitate additional terms in the chemical

potential to enforce the constraint. We will explain both approaches below.

2.3.1.1 Semprebon Approach

In Semprebon et al. [146], we make the following coordinate transformation of the

concentration values,

C1 = (ρ+ φ− ψ)/2 C2 = (ρ− φ− ψ)/2 C3 = ψ, (2.12)

with the inverse transformation being,

ρ = C1 + C2 + C3, φ = C1 − C2 ψ = C3. (2.13)

φ and ψ are auxiliary variables, and ρ is the fluid density which for our purposes is

set to be the same and equal to 1 in simulation (dimensionless) units for all three

components. We can see immediately the advantage of this model. Noticeably,

ρ is the fluid density, the evolution of which is governed by the continuity and

Navier-Stokes Equations. However, if one initialises the system with ρ = 1 then

C1 + C2 + C3 = 1 is immediately enforced.

This approach leads to the following set of Cahn-Hilliard equations,

∂φ

∂t
+∇ · (φu) = ∇ (Mφ∇µφ) , (2.14)

∂ψ

∂t
+∇ · (ψu) = ∇ (Mψ∇µψ) . (2.15)

The chemical potentials, are then obtained by taking the functional derivatives

using the auxiliary variables. For detailed derivations please see Semprebon et al
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2.3.1.2. Boyer Approach

[146]:

µφ = δE

δφ

= 12
ε

Σ1
8 (ρ+ φ− ψ)(ρ+ φ− ψ − 2)(ρ+ φ− ψ − 1)

− 12
ε

Σ2
8 (ρ− φ− ψ)(ρ− φ− ψ − 2)(ρ− φ− ψ − 1)

+ ε2

16
1
4

12
ε

[
(Σ2 − Σ1)

(
∇2ρ−∇2ψ

)
− (Σ1 + Σ2)∇2φ

]
, (2.16)

µψ = δE

δψ

= 12
ε

Σ1
8 (ρ+ φ− ψ)(ρ+ φ− ψ − 2)(ρ+ φ− ψ − 1)

− 12
ε

Σ2
8

12
ε

(ρ− φ− ψ)(ρ− φ− ψ − 2)(ρ− φ− ψ − 1)

+ 12
ε

Σ3ψ(ψ − 1)(2ψ − 1) + ε2

16
1
4
[
(Σ1 + Σ2)∇2ρ

−(Σ2 − Σ1)∇2φ− (Σ1 + Σ2 + 4Σ3)∇2ψ
]
. (2.17)

2.3.1.2 Boyer Approach

The other method follows Boyer et al. [106], where the Cahn-Hilliard equations

are written in terms of the concentrations:

∂Cm
∂t

+∇ · (Cmu) = ∇
(
Mo

Σm
∇µm

)
(2.18)

µm = −3
4εΣm∇2Cm + 12

ε
(ΣmH(Cm) + β). (2.19)

Here,

H(Cm) = Cm(1− Cm)(1− 2Cm), (2.20)

β = − 6Σ1Σ2Σ3
Σ1Σ2 + Σ1Σ3 + Σ2Σ3

C1C2C3

= −δC1C2C3. (2.21)

In this approach the chemical potentials are modified with an extra term, β. This

is in effect an interaction term which is only present when all three components are

present, and serves to enforce the constraint C1 + C2 + C3 = 1.
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2.3.1.3. Comparing Semprebon and Boyer

2.3.1.3 Comparing Semprebon and Boyer

Here we discuss the differences between the two approaches discussed in the pre-

ceding sub-sections. In the Boyer approach, all three components are treated sym-

metrically, and the reducibility of the model is analytically ensured [106]. When

we mention reducibility we refer to the fact that if one of the components is set to

be zero everywhere, the equations of motion reduce to the binary case. This can

be seen explicitly by setting any of the Cm to be zero, in which case the associated

chemical potential, µm, is set to zero uniformly.

However, if we were to do this with the Semprebon model, say ψ = 0, we

instead obtain

µψ = δE

δψ

= 12
ε

Σ1
8 (ρ+ φ)(ρ+ φ− 2)(ρ+ φ− 1)

− 12
ε

Σ2
8

12
ε

(ρ− φ)(ρ− φ− 2)(ρ− φ− 1)

+ ε2

16
1
4

12
ε

[
(Σ1 + Σ2)∇2ρ

−(Σ2 − Σ1)∇2φ
]

= 12
ε

Σ1 − Σ2
8 (1 + φ)(φ− 1)(φ)

+ ε2

16
1
4

12
ε

[
−(Σ2 − Σ1)∇2φ

]
= Σ1 − Σ2

4
12
ε

[
1
2(1 + φ)(φ− 1)φ+ ε2

16∇
2φ

]
. (2.22)

In general, the resulting chemical potential will be non-zero, except for Σ1 = Σ2.

We now consider this term more carefully. Applying the inverse transformations

and noting φ = 1− C1 = 2C1 − 1 when C3 = ψ = 0 gives

µψ = Σ1 − Σ2
4

12
ε

[
2C1(1− C1)(1− 2C1) + 2 ε

2

16∇
2C1

]

= Σ1 − Σ2
2

[12
ε
C1(1− C1)(1− 2C1) + 3

4ε∇
2C1

]
. (2.23)
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2.3.1.3. Comparing Semprebon and Boyer

Figure 2.4: Panel (a) shows the liquid lens profile obtained from equilibrating a
red droplet (fluid 1) between the green (fluid 2) and blue (fluid 3) fluids. We have
chosen Σ1 = 0.01333, Σ2 = 0.05333, and Σ3 = 0.12. Panel (b), we have plotted
the measured Neumann angles for both the Semprebon and Boyer approaches, and
compared them with the analytical Neumann angles, plotted as a solid line.

In fact, at equilibrium, where C1 has a hyperbolic tangent profile, this term is a

constant and zero. Hence, both the Semprebon and Boyer approaches are equival-

ent if we wish to study the steady or equilibrium states of the system we wish to

study. For example, both approaches produce accurate Neumann angles when we

benchmarked using a liquid lens morphology, see Fig. 2.4. In Fig. 2.4 (a) we show

an example of the liquid lens morphology obtained for three fluids coloured in red,

green and blue. The analytical profile of the equilibrium liquid lens shape is also

highlighted in orange. Fig. 2.4 (b) shows the plot of the measured Neumann angles

for both the Boyer and Semprebon approaches.

However, comparing the two approaches, we can observe some variations in the

dynamic path towards equilibrium. For instance, show that the presence of C3 is

smaller using the Boyer approach when a droplet of C1 surrounded by C2 is initial-

ised with a sharp interface Fig. 2.5. In Fig. 2.5, in the first row, Fig. 2.5 (a) - (c),

we show the droplet (red) reaching equilibrium from a sharp interface initialisation.

When observing the overall evolution of the dominant liquid components, we find

no noticeable difference between the Semprebon and Boyer approaches. However,

if we look at the evolution of C3, we can see differences in the presence of C3 as

the simulation is evolved in time. In Fig. 2.5 (d) - (f) we show the evolution of C3
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2.3.1.3. Comparing Semprebon and Boyer

Figure 2.5: Panels (a) to (c) show the droplet from initialisation to equilibrium.
In the second row (d) to (f) we display the value of C3 as it evolves in time when
using the Semprebon approach. Similarly, in the third row (g) to (i), we display
the value of C3 evolving in time using the Boyer approach. The first column shows
the initialisation at timestep 0, the second column shows timestep at 1000, and
the third column shows timestep at 10000. Here we have set Σ1 = 0.0003333,
Σ2 = 0.001, and Σ3 = 0.0016667.

using the Semprebon approach. Fig. 2.5 (g) - (i) show the results using the Boyer

approach. We observe that presence of C3 can reach a magnitude of the order 10−2

in the Semprebon approach, while in Boyer approach the presence of C3 reaches

a magnitude of the order 10−4. We can thus conclude that the Boyer approach

is more accurate. However, in the overall picture this does not necessarily have

a large quantitative impact on the results as the Semprebon approach still gives

accurate results to within 1%− 2%.
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2.3.2 Wetting Boundary Conditions

Thus far we have only mentioned the bulk fluid mechanics and thermodynamics.

However, for the problems of interest in this thesis, we also need to consider the

interaction between the fluids and solid boundaries. Throughout our work in our

thesis we employ 4 categories of such boundary conditions. These are: the no slip

boundary condition, inlet boundary conditions, outlet boundary conditions, and

the wetting boundary conditions giving the contact angles. In this section we shall

discuss the wetting boundary conditions but leave the numerical implementations

of every other boundary condition in Lattice Boltzmann in Section 2.3.4.1. For the

wetting boundary conditions, we use two methods: one based on the work of Dong

[108], and one we term the Surface Energy method. Both of these are boundary

conditions for the concentration values Cm.

2.3.2.1 Dong’s Method

If we follow the method by Dong, the wetting boundary condition prescribes the

relation

n · ∇Cm|S =
N∑
n=1

ξmnCmCn, (2.24)

ξmn = −4
ε

cos θmn, (2.25)

where n is normal to the solid surface. The notation here is that the angle is

measured from within fluid m when surrounded by fluid n. The antisymmetric

condition ξmn = −ξnm also holds.

2.3.2.2 Surface Energy Method

We also derive a separate method originating from a free energy form. Here, the free

energy functional in Eq. 2.7 is extended to include surface energy contributions,
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2.3.2.2. Surface Energy Method

which only applies at the solid boundaries.

E =
∫
V

3∑
m=1

12
ε

Σm

2

[
C2
m(1− Cm)2 + ε2

16(∇Cm)2
]

dV

+
∫
S

3∑
m=1

λm

(1
2C

2
m −

1
3C

3
m

)
dS

= EB + ES , (2.26)

where EB refers to bulk free energy and ES the surface free energy term. In this

method we introduce three variables to determine the solid surface interactions,

λm, m = 1, 2, 3. It now remains to find how the different λm are determined

as functions of the contact angles. Following standard methods of calculus of

variations,

3
4εΣmn · ∇Cm

∣∣∣∣
S

= λmCm(1− Cm) (2.27)

To determine the values of λm, consider the surface energies of each component,

Im = λm

(1
2C

2
m −

1
3C

3
m

)∣∣∣∣
s

= λm
6 . (2.28)

Therefore

γsm = λm
6 . (2.29)

From the definition of the Young’s Equation we then find

cos θmn = γsn − γsm
γmn

(2.30)

= λn − λm
3(Σm + Σn) (2.31)

Solving the equations algebraically, and noting the Girifalco-Good relation we only

have two independent equations. As such one λm is inevitably a free parameter,

Choosing λ3 as the free parameter, we define

λ1 = 3(Σ3 + Σ1) cos θ31 + λ3 (2.32)

λ2 = 3(Σ2 + Σ3) cos θ32 + λ3 (2.33)
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For concreteness, we typically choose λ3 = 0.

In the transformed coordinate system, ρ = C1 +C2 +C3, φ = C1−C2, ψ = C3,

and the gradient condition becomes

n · ∇ρ|s = 4
3ε

(
λ1C1(1− C1)

Σ1
+ λ2C2(1− C2)

Σ2
+ λ3C3(1− C3)

Σ3

)
, (2.34)

n · ∇φ|s = 4
3ε

(
λ1C1(1− C1)

Σ1
− λ2C2(1− C2)

Σ2

)
, (2.35)

n · ∇ψ|s = 4
3ε

(
λ3C3(1− C3)

Σ3

)
. (2.36)

In both the surface energy method and Dong’s method the boundary conditions

are implemented by setting concentration value of boundary nodes to ensure the

normal gradient conditions are met. To do this we consider the inverting finite

difference method (central difference approach),

∂Cm
∂x

∣∣∣∣
b

= Cm1 − Cm2
∆x , (2.37)

to obtain

Cm2 = Cm1 −∆x ∂Cm
∂x

∣∣∣∣
b
. (2.38)

Cm1 and Cm2 are defined as shown in Fig. 2.6, and ∆x is the distance from Cm1

and Cm2. Here ∂Cm
∂x is determined by the methods we have described. For surface

energy method,

∂Cm
∂x

∣∣∣∣
b

= 4
3ε
λmCm(1− Cm)

Σ1
, (2.39)

while for Dong’s method,

∂Cm
∂x

∣∣∣∣
b

=
N∑
n=1

ξmnCmCn. (2.40)

2.3.2.3 Comparing Wetting Boundary Conditions

In this section we discuss in detail the differences between the two methods. As

an example, consider the conditions for C3 when we consider it explicitly as C3 =
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Figure 2.6: Here we show a lattice of nodes, with the grey area representing a
solid surface. Two adjacent nodes Cm1 and Cm2 are highlighted. Note the physical
boundary of the solid is between the nodes simulated.

1− C1 − C2. This of course would also imply ∇C3 = −∇C1 −∇C2.

n · ∇C3 = ξ31C1(1− C1 − C2) + ξ32C2(1− C1 − C2) (2.41)

n · ∇C1 = ξ12C1C2 + ξ13C1(1− C1 − C2) (2.42)

n · ∇C2 = ξ21C1C2 + ξ23C2(1− C1 − C2) (2.43)

Relating the boundary conditions, we can explicitly show that the constraint above

is satisfied:

−n · ∇C1 − n · ∇C2 = −ξ12C1C2 − ξ13C1(1− C1 − C2)

− ξ21C1C2 − ξ23C2(1− C1 − C2)

= ξ31C1(1− C1 − C2) + ξ32C2(1− C1 − C2)

= n · ∇C3, (2.44)

where we have also used the antisymmetric relation ξmn = −ξnm.

However, when we attempt to do this for the surface energy method we obtain

a slight error.

3
4εn · ∇C3 = λ3

Σ3
(1− C1 − C2)(C1 + C2)

= λ3
Σ3

(
C1 + C2 − C2

1 − C2
2 − 2C1C2

)
= λ3

Σ3
(C1(1− C1) + C2(1− C2)− 2C1C2)

= λ3
Σ3

[3
4ε

1
λ1

n · ∇C1 + 3
4ε

1
λ2

n · ∇C2 − 2C1C2

]
(2.45)
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Notice that even if we choose a tailored value for φ3 we will not be able to perfectly

satisfy the constraint, due to the presence of cross terms.

It is clear, that if our objective is to obtain accurate contact angles it would

be best to use the form by Dong. However, due to the existence of cross terms, to

the best of our knowledge, there are no simple mathematical forms for the surface

energy density which would reproduce the conditions by Dong. If the explicit

surface energy contributions need to be calculated, then the surface energy method

is the only viable option.

2.3.3 Comparing Contact Angle Models

We will highlight the differences between the two contact angle methods, by study-

ing a droplet equilibrating on a corrugated surface, as shown in Fig. 2.7. Fig.

2.7 (a) shows the initial configuration which always the same: a droplet (in red)

surrounded by the green fluid on a corrugated surface. Then Fig. 2.7 (b) shows the

droplet equilibrium of evolving using the Semprebon bulk approach with contact

angles derived from the Surface Energy method; Fig 2.7 (c) shows the equilib-

rium state using Semprebon bulk approach with boundary conditions derived from

Dong’s method; and finally Fig. 2.7 (d) shows the case of Boyer bulk approach

with boundary conditions derived from Dong’s method. We can see from Fig. 2.7

(b) that reducibility is no longer well preserved, as the blue fluid creeps in from the

corners of the corrugation. We find this issue to be significantly diminished on flat

surfaces, and is only apparent in more complicated surface geometries. Fig. 2.7

(c) and (d) show little difference between them which suggests the main issue with

reducibility is due to the way we determine surface boundary conditions, rather

than the reducibility of the bulk model.

We also measure the droplet contact angles vs the theoretical contact angles

on a flat surface, and compare them against theoretical predictions for (i) the

Semprebon bulk approach with Dong boundary conditions and (ii) the Boyer bulk
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approach with Dong boundary conditions. The results are shown in Fig. 2.8. In

both cases the contact angles agree well above θc = 20◦ and below θc = 150◦. In

fact, the Boyer approach with Dong boundary conditions seems to be still very

accurate even up to a contact angle of θc = 170◦. In summary, it is clear that

the bulk fluid model has minimal effect on the accuracy of the measured contact

angle, as such both methods can be used reliably. Due to the superior reducibility

properties of the Boyer approach, one might come to the conclusion that the Boyer

with Dong boundary conditions is the superior approach. However, we find that the

Semprebon bulk approach is more stable across a larger range of viscosity ratios,

as such when large viscosity ratios are modelled it is superior to use the Semprebon

approach.

We conclude that when the accuracy of contact angles and Neumann angles are

the only metrics to consider, it is the superior choice to use Boyer bulk approach

with Dong boundary conditions. However, since the Semprebon bulk model is more

numerically stable for varying viscosities Semprebon model with Dong boundary

conditions is also more numerically stable when we take into account viscosity

variation. Hence, in cases where we also want to study the effects of viscosity

and gravity it was more optimal to use the Semprebon bulk approach with Dong

boundary conditions. Finally, it is worth noting that, if we decide to use an energy

minimisation method, we cannot use Dong boundary conditions as there is no

simple form to calculate the surface energy density. The step is crucial for the

energy minimisation method we use. See the thesis by Panter, [147] for the details

about the implementation of the energy minimisation procedure.

2.3.4 Lattice Boltzmann Implementation

We solve the, continuity, Navier-Stokes and Cahn-Hilliard equations using the lat-

tice Boltzmann approach. We shall show the Boyer model implementation here, the

Semprebon model is effectively the same but with different variables, see Sempre-

bon et al [146].
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Figure 2.7: Panel (a) shows the initialisation of a droplet on a corrugated sur-
face; (b) shows the equilibrated result, using the surface energy contact angle,
with Semprebon bulk approach; (c) shows the result of Semprebon bulk approach
with Dong boundary conditions; (d) shows the result of Boyer model with Dong
boundary conditions. In all cases we have set contact angles of θ12 = 90◦ and
θ31 = 30◦. For (b) and (c) Σm = 0.0033333 for m = 1, 2, 3, while for (d) we
have Σ1 = 0.0033333, Σ2 = 0.013333, and Σ3 = 0.03. By comparing cases (b)
and (d) show that surface energy method is causing the spurious growth of the
third component (blue), while the lack of spurious growth of the third component
in (c) despite non-equal surface tensions shows that the bulk irreducibility of the
Semprebon model is not signficant in causing spurious growth at the boundaries.
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Figure 2.8: Results for using and Dong’s method contact angles, when combined
with the differing bulk models.

To begin with we will give a background on the lattice Boltzmann method. In

the lattice Boltzmann method, we focus on evolving the distribution functions fi

whose moments are the physical quantities of relevance, such as the density and

momentum:

ρ =
∑
i

fi ρu =
∑
i

cifi. (2.46)

Each lattice Boltzmann scheme has a chosen stencil for the velocity discretization

of the distribution functions. The direction related to each distribution function

is given by a lattice vector ci, which will depend on the stencil used. The ones

we use are D2Q9 and D3Q19. See Fig. 2.9 for a pictorial representation of each

lattice vector in relation to the standard Cartesian directions, in both for D2Q9

and D3Q19 lattices.

In addition to the lattice vectors each distribution function is associated with a

weighting factor, wi. Combining all these together we can present a table detailing

the weightings and the lattice vectors for both lattice stencils. See Tab. 2.1 for the

D2Q9 stencil, and Tab. 2.2 for the D3Q19 stencil.

We use the Bhatnagar-Gross-Krook (BGK) collision operator to evolve the
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Figure 2.9: Here we highlight the lattice vectors for both (a) D2Q9 and (b) D3Q9
lattices. Underneath both we also highlight the Cartesian coordinate frame used.

i Cartesian vector wi
c0 (0, 0) 4/9
c1 (1, 0) 1/9
c2 (−1, 0) 1/9
c3 (0, 1) 1/9
c4 (0,−1) 1/9
c5 (1, 1) 1/36
c6 (−1,−1) 1/36
c7 (−1, 1) 1/36
c8 (1,−1) 1/36

Table 2.1: This table summarises the lattice vectors for the D2Q9 stencil. The first
column gives the lattice vector corresponding to the distribution function i, with
the second column describing the lattice vector given in Cartesian coordinates, and
the third column describing the corresponding lattice weighting.
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i spatial vector wi
c0 (0, 0, 0) 1/3
c1 (1, 0, 0) 1/18
c2 (−1, 0, 0) 1/18
c3 (0, 1, 0) 1/18
c4 (0,−1, 0) 1/18
c5 (0, 0, 1) 1/18
c6 (0, 0,−1) 1/18
c7 (1, 1, 0) 1/36
c8 (−1, 1, 0) 1/36
c9 (1,−1, 0) 1/36
c10 (−1,−1, 0) 1/36
c11 (0, 1, 1) 1/36
c12 (0,−1, 1) 1/36
c13 (0, 1,−1) 1/36
c14 (0,−1,−1) 1/36
c15 (1, 0, 1) 1/36
c16 (−1, 0, 1) 1/36
c17 (1, 0,−1) 1/36
c18 (−1, 0,−1) 1/36

Table 2.2: This table summarises the lattice vectors for the D3Q19 stencil. The
first column gives the lattice vector corresponding to the distribution function i,
with the second column describing the lattice vector given in Cartesian coordinates,
and the third column describing the corresponding lattice weighting

distribution functions

fi(x + ci∆t) = fi(x, t)−
fi(x, t)− feqi (x, t)

τ
∆t+ Fi. (2.47)

There are two main parts to the above equation, the collision and streaming steps.

To implement this numerically, one can consider the two steps separately. At each

lattice node, denoted by x, we can calculate the collision step, which is the right-

hand side of Eq. 2.47. Then we stream the distribution functions by moving them

to the nodes they point to according to their associated lattice vector, ci. We give

a pictorial representation of the streaming step in Fig. 2.10 for D2Q9. Finally we

also have a forcing term, Fi, which here captures contributions from external body

forces.

When looking at the LBM equation in Eq. 2.47, we still need to determine the

equilibrium distribution functions, feqi . There are several choices for this. Here, we
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Figure 2.10: The above figure highlights the lattice stencil centred on one lattice
node. Here, the lattice vectors are also highlighted f1−8 pointing to the nodes they
will stream to.

use the pressure tensor approach, where the thermodynamic forces resulting from

the fluid free energy is absorbed into the pressure tensor. This pressure tensor,

Pαβ, is the same as the pressure tensor which goes into the Navier-Stokes equation.

The pressure tensor is related to the chemical potential by the following,

∂βPαβ = ∂αp+
3∑

m=1
[Cm∂αµm] , (2.48)

where p = ρc2
s is the ideal gas pressure, as is standard in the lattice Boltzmann

method. This leads to the pressure tensor being given by

Pαβ =
[
pb + β −

3∑
m=1

3
4εΣm

(1
2(∂γCm)2 + Cm∂γ∂γCm

)]
δαβ

+
3∑

m=1

3
4εΣm(∂αCm)(∂βCm), (2.49)

where

pb = ρc2
s +

3∑
m=1

(1
2

12
ε

ΣmC
2
m(1− Cm)(1− 3Cm)

)
. (2.50)

In the pressure tensor approach, the thermodynamic force enters the lattice Boltzmann
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equation via the equilibrium distribution functions for the density,

feqi = wiρ

(
ciαuα
c2
s

+ uαuβ
(
ciαciβ − c2

sδαβ
)

2c4
s

)

+ wi
c2
s

(
pb + β − 3

4ε
3∑

m=1
ΣmCm∆Cm

)

+ 3
4ε

3∑
m=1

Σm

∑
α,β

wαβi (∂αCm)(∂βCm). (2.51)

For all the above equations the spatial gradient terms are determined using finite

difference.

In our work, we also choose to solve the Cahn-Hilliard equations using the

lattice Boltzmann method, one for each fluid component. The evolution of the

distribution functions, gmi, for each concentration, Cm, is given by

gmi(x + ci∆t) = gmi(x, t)−
gmi(x, t)− geqmi(x, t)

τ
∆t.

The equilibrium distribution function geqmi is then given by

geqmi = wi

(Γjµm
c2
s

+ Cmciαuα
c2
s

+Cmuαuβ
(
ciαciβ − c2

sδαβ
)

2c4
s

)
, (2.52)

where to obtain correctly scaled mobilities (Mm in the Cahn-Hilliard equation),

Mm = M0
Σm

= Γm
(
τm −

∆t
2

)
,

Γm = M0
Σm

( 2
2τm −∆t

)
. (2.53)

We now discuss how external non-thermodynamic forces are incorporated into

the lattice Boltzmann equation. There are several methods to do this but we shall

choose the exact difference method. In this case, the forcing contribution, for each

distribution function fi, can be written as

Fi = feqi (u + ∆u)− feqi (u). (2.54)

The external body force, F such as gravity is implemented through ∆u = F∆t/ρ.
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2.3.4.1 Lattice Boltzmann Boundary Conditions

We have so far detailed how the lattice Boltzmann method works in the bulk fluids.

We must also consider boundary conditions. The simplest boundary conditions we

use are the periodic boundary and symmetry boundary conditions. With periodic

boundary conditions, we simply treat the end nodes as if they are adjacent to

the other side of the simulation domain. For symmetry boundary conditions we

define axes of symmetry and then treating the nodes at the symmetry boundary

to be adjacent to themselves. Additionally, we often require three other boundary

conditions: bounce-back for ensuring no-slip boundary conditions at the solid walls,

inlet boundary condition, and outlet boundary condition.

The no-slip boundary condition is a boundary condition for the velocity of the

fluid, which is set to zero at the solid boundaries, (more generally, the same velocity

as the solid)

u|S = 0, (2.55)

where S denotes the solid surface.

In lattice Boltzmann we use the bounce-back boundary condition to implement

this. It should be clear that within the bulk after the streaming step there are no

issues, but when streaming at the nodes adjacent to the boundaries we are missing

several distribution functions as they cannot be streamed from solid boundaries.

For example, in Fig. 2.11, for the lattice nodes adjacent to the solid surface, after

streaming we will be missing the distribution functions f3, f5 and f7. To determine

these distribution functions we will use the bounce-back condition [148, 149] gives

f3(x) = f∗4 (x) (2.56)

f5(x) = f∗6 (x) (2.57)

f7(x) = f∗8 (x). (2.58)

We use the asterisk to denote the distribution functions that are computed after

the collision step, but before streaming. For other solid boundary orientations,
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Figure 2.11: In this figure we show in grey the solid boundaries. The black circles
represent the lattice nodes. The real edge of the solid boundary lies between the
two layers of nodes.

Figure 2.12: We show a channel flanked by solid boundaries shown in grey at the
top and bottom, with the inlet on the left and outlet on the right. We also show
the D2Q9 lattice vectors for the LBM method which will be present at every node.

the bounce-back boundary condition can be used in a similar manner. It also also

extends naturally to the case with D3Q19 lattice. For further details about the

bounce-back boundary, see [148, 149].

In cases where we use an inlet boundary condition, we set the inlet velocity

profile, which remains fixed throughout time. For simplicity, we use a constant

velocity profile,

u|I = vin, (2.59)

where the subscript I denotes the inlet, and vin is the inlet velocity. In principle

we could use a varying velocity profile, but for our purposes this would not have a

significant impact on the flow physics. We are primarily interested in introducing

new fluid to the simulation domain. In addition to setting the velocity, we also pre-
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scribe density and concentration values at the inlet which remain fixed throughout

time.

Similar to the bounce-back boundary condition, at the macroscopic level, the

inlet boundary condition is straightforward, equivalent to setting the velocity and

concentration values at the inlet nodes. But as with the bounce-back condition, we

are missing distribution functions at the propagation step in the lattice Boltzmann

algorithm. As an example, consider a lattice point in the middle of the channel

at the inlet, see Fig. 2.12. After the streaming step, such a node will be missing

the f1,f5 and f8 distribution functions. We now must determine how to calculate

these. If we set the inlet velocities to be only acting in the x-direction, ux, from

the moments of the distribution functions we have

f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 = ρ,

f1 + f5 + f8 = ρ− (f2 + f3 + f4 + f6 + f7) = f∗. (2.60)

We now make a choice to weigh the distribution function according to their lattice

weights [150]. Thus we have,

fi = wif
∗

w1 + w5 + w8
, i = 1, 5, 8. (2.61)

This can similarly be applied to gmi, corresponding to distribution functions for

the concentration order parameters.

For the outlet boundary condition, we use the convective boundary condition

to ensure the correct outgoing flux is determined for each relevant variable, χ,

∂tχ+ U∂αχ = 0, (2.62)

where U is the characteristic velocity chosen. There are several choices possible,

including, the average velocity, the local velocity, and the maximum velocity, [151].

In our case we choose to use the average velocity.

As with the inlet node layer we can observe we have missing distribution func-

tions. However, unlike for inlet boundary condition we use two outlet layers. The
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Lx layer, see Fig. 2.12 is treated as the final full lattice Boltzmann layer. In this

layer for the missing distribution functions after streaming, we determine them

using

fi(Lx, y, t+ ∆t) = fi(Lx, y, t) + U(Lx − 1, y, t)fi(Lx − 1, y, t)
1 + U(Lx − 1, y, t) . (2.63)

This is essentially the discretized version of Eq. 2.62. Similar equations are also

used for the gmi distribution functions.

The outermost layer at Lx + 1 is a ghost layer. No collision and streaming

is calculated here. Its purpose is to provide values for the fluid concentrations to

allow for the calculation of gradients for the outlet layer. Using the convective

boundary condition, this is given by

ρ(Lx + 1, y, t+ ∆t) = ρ(Lx + 1, y, t) + U(Lx, y, t)ρ(Lx, y, t)
1 + U(Lx, y, t)

. (2.64)

for the density, and the similarly for the concentration values.
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Chapter 3

Sticky SLIPS

3.1 Introduction

The subject of capillary bridges has received much attention in the literature due

to their ubiquity in nature and engineering applications. For example, capillary

bridges between parallel flat plates [37, 152, 153] have been considered for applic-

ations in liquid transfer [58, 59], wet adhesion device [56, 57], and for the forma-

tion of curved polymeric particles [154], while those between curved solid bodies

[155, 156, 157] occur in wet granular materials [158, 159] and in atomic force mi-

croscopy experiments [160, 161, 162]. Capillary bridges also play important roles

in the physiology of numerous insects and animals, such as in the adhesive pads

of Asian Weaver ants [163, 164] and how shorebirds trap and consume prey in-

side their beaks [165]. Furthermore, the stability of liquid bridge shapes and their

force-separation relations have been investigated for smooth and patterned sur-

faces [55, 166, 167, 168], as well as in the presence of one and multiple droplets

[168, 169, 38].

In contrast to previous works, where the capillary bridges comprise of a single

liquid component, here we study the case where they have two liquid components,

especially in the context of the so-called liquid infused surfaces (LIS) or slippery

liquid infused porous surfaces (SLIPS). These are a novel class of functional surfaces
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Figure 3.1: We once again highlight the key features of the LIS model. Here, a
capillary bridge is formed between two LIS surfaces separated by a distance H, as
shown in (a). In (b) we show the various relevant angles, including: the Neumann
angles, θl, θd, and θg; the effective contact angles θeff

ld , θeff
lg ; and the apparent contact

angle highlighted in red, θapp.

constructed by infusing textured or porous materials with wetting lubricants [76,

77, 78]. LIS can be considered as being an alternative to superhydrophobic

surfaces [170, 35, 78], with the key difference of a lubricant layer being present.

This difference has one key disadvantage which is the depletion of the lubricant

over time [92], and can be considered the key problem to be overcome for LIS to

become a reliable and tested technology.

Many applications of LIS exploit the fact that, on LIS, liquids move easily par-

allel to the substrate [76, 77, 78, 171, 172, 173, 174]. This “slippery” nature results

in numerous advantageous properties, such as self-cleaning, enhanced heat trans-

fer, anti-fouling, and anti-icing. Here, we focus instead on the adhesive properties

of droplets when displaced perpendicularly to the substrate. Since the adhesive

force now has contributions which originate not just from the liquid droplet but

also from the lubricant, we will argue that LIS are “sticky” in the perpendicular

direction.

To study capillary adhesion on LIS, we will consider a liquid droplet sandwiched
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between two parallel LIS, as illustrated in Fig. 3.1 (a). For simplicity, we assume

that gravity is negligible and consider symmetric surface properties such that the

Neumann (θl, θd and θg) and wetting contact angles (θeff
ld and θeff

lg ), illustrated in

Fig. 3.1 (b) , will be the same for the top and bottom plates. In our studies,

we focus on equilibrium rather than dynamic effects, obtained by quasi-statically

varying the separation between the substrates. As we will show later the shape

of the capillary bridge plays a key role in the capillary bridge morphologies and

capillary forces and as such we expect that the addition of gravity could have a

significant effect in cases where the droplet size is greater than the capillary length

of the droplet. The addition of gravity can be easily implemented numerically but

that was not the focus in this thesis.

The fact that capillary bridges on LIS involve two liquid components, instead

of just one, leads to several interesting phenomena. Firstly, two-component liquid

bridges can exhibit a wider range of interfacial morphologies and topologies. Mor-

phological transitions can be triggered by compressing and stretching the capillary

bridges. Secondly, to characterise the “stickiness” of LIS, we calculate the capillary

force. To demonstrate he increase in “stickiness” is not due to a simple additional

contribution, we also study the effective spring constant of the capillary bridges.

We find both the size and shape of the lubricant ridge to play an important role.

In the limit of vanishing ridge size, we observe that the adhesion force converges

to that of a perfectly smooth surface. Since perfectly smooth surfaces are challen-

ging to realise, LIS can be considered as an excellent alternative to mimic their

properties in the limit of small ridge. Additionally, LIS can also be tuned to have

stronger adhesion than an equivalent smooth surface.
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3.2 Study of capillary bridges between liquid infused

surfaces

In our studies we performed systematic numerical energy minimization, using

Surface Evolver, varying the plate separation H, the apparent contact angle θapp

[139], the lubricant Neumann angle θl, and the lubricant pressure ∆Plg. Also in the

studies shown here we focus on the so-called pressure ensemble, when determining

the volume of the lubricant ridge. In effect we control the size of the lubricant

ridge by setting the pressure difference between the lubricant ridge and surrounding

gas,Plg, as a constant, while we minimise the free energy, with respect to the other

variables. In principle we could had set the volume of the lubricant ridge, Vl,

to be a constant. Both would produce valid results but we believe the pressure

ensemble reflects a more intuitive understanding. This is because, if one would

experimentally measure the behaviour of a droplet sandwiched between liquid-

infused surfaces, it would be much more intuitive to set the volume of the droplet,

but almost impossible to fix the volume of lubricant ridge which would inevitably

form.

3.2.1 Morphology Classes

We begin by classifying the various capillary bridge morphologies we observed. One

can broadly group the bridge morphologies on LIS into three categories. Referring

to panels in Fig. 3.2 these are: (a-b) unstable bridges due to envelopment instabil-

ity, (c-f) stable bridges, and (g-h) unstable bridges due to capillary break up or

detachment. We must note here that envelopment is different from the lubric-

ant cloaking or encapsulating the droplet. In these cases the spreading parameter,

S = γdg − γlg − γld > 0, and as such it is not stable for the three fluids to meet at

a triple contact line forming Neumann angles. Instead, the lubricant forms a thin

layer around the droplet. Envelopment on the other hand is when the droplet is
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Figure 3.2: Three broad categories of the energy minimization results. The top
and bottom rows illustrate the typical morphologies for hydrophilic (θapp < 90◦)
and hydrophobic (θapp > 90◦) capillary bridges, respectively, with the exception
of (a) and (b) which can occur for both cases. First, at small separation, the
capillary bridge is unstable and the droplet is enveloped by the lubricant. Here,
the droplet can be (a) detached from or (b) attached to the substrates. The droplet
is attached to the substrate when the blue droplet makes contact the solid surface
of the LIS, detached when the droplet no longer makes contact with the surface.
Second, stable capillary bridges are formed. For hydrophilic bridges, the droplet
can be (c) detached from both substrates or (e) attached to both substrates; while
for hydrophobic bridges, the droplet can be (d) attached to both substrates or (f)
attached to only one substrate. Third, at large separation, the capillary bridges
can become unstable by (g) breaking the droplet or (h) transferring to one of the
substrates.

forced to “submerge” into the lubricant. We have also shown two broad classific-

ation of capillary bridges Fig. 3.2, hydrophilic and hydrophobic capillary bridges

in the top and bottom rows, respectively, with the exception Fig. 3.2 (a) and

(b). This is precisely defined to be when the apparent angles are θapp < 90◦ and

θapp > 90◦, respectively. In Fig. 3.2 (a) and (b) we show unstable morphologies.

Both morphologies can occur for hydrophobic capillary bridges, and can also occur

for hydrophilic capillary bridges. Strictly speaking, the minimization routine fully

converges only for morphologies labelled as stable. The unstable morphologies are

depicted to illustrate the capillary bridges as the instabilities take place. Due to

the large number of control parameters, we have computed morphology diagrams

in the form of 2D slices of the parameter space, as depicted in Fig. 3.3. For each

slice, all the remaining parameters are fixed.

To start, let us vary the apparent angle θapp and plate separation H/s in Fig.

3.3(a). We have normalised the length scale of the system by s = (3V/4π)
1
3 , which
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Figure 3.3: Morphology phase diagrams for a capillary bridge between two LIS. In
panel (a), we vary the apparent contact angle θapp and normalised separation H/s,
and fix the lubricant Neumann angle θl = 160◦ and normalised lubricant pressure
∆Plgs/γdg = −0.62. In panel (b), we vary H/s and θl, keeping θapp = 100◦ and
∆Plgs/γdg = −0.62. In panel (c), H/s and ∆Plgs/γdg are varied, with θapp = 100◦
and θl = 10◦. In all panels, the wetting contact angles for the lubricant are set
at θeff

ld = θeff
lg = 5◦. The red region denotes stable morphologies when the droplet

remains attached to both LIS substrates, blue when the droplet is detached from
both substrates, and purple when the droplet is detached from one of the substrates.
The green and yellow regions in panels (a) and (c) represent regions where multiple
morphologies are possible. These occur due to the presence of two energy minima,
and would physically represent scenarios where the droplet may be pinned or not
pinned onto the solid substrate.

is the radius of a sphere equal in volume to the droplet [54, 55, 38]. Here we have

fixed the wetting contact angles for the lubricant, θeff
ld = θeff

lg = 5◦, the lubricant

Neumann angle, θl = 160◦, and the normalised lubricant pressure, ∆Plgs/γdg =

−0.62. Such lubricant pressure results in lubricant ridge that is small compared to

the droplet size for the majority of the results shown in Fig. 3.3(a), as commonly

observed in experiments [77, 175, 176]. However, the lubricant ridge can become

comparable in size with the droplet at small separations.

The largest, red colored region in Fig. 3.3(a) identifies the most common

case of a stable liquid bridge in contact with both LIS substrates, as illustrated

in Fig. 3.2(d-e). Moving to the bottom-left of the phase diagram by decreasing

both the apparent angle and the plate separation, there also exists a morphology

in which the droplet is detached from both substrates for hydrophilic capillary

bridges (θapp < 90◦), and where lubricant menisci connect the droplet and the

substrates. Here, as we reduce the plate separation, we find the Neumann triangle

at the top of the lubricant ridge rotates such that the drop-gas interface becomes

60



3.2.1. Morphology Classes

more aligned to the direction normal to the substrate. This in turn leads to a

detachment of the lubricant-drop interface from the substrate. Such morphology

is shown in Fig. 3.2(c) and corresponds to the blue region on the phase diagram

in Fig. 3.3(a). The green region highlights the parameter space in which both

morphologies are possible. Both states can coexist because the ld contact line can

be pinned or unpinned to the LIS corrugations. This can be due to differing initial

conditions such as a droplet resting on the LIS corrugations, and thus pinned, before

a capillary bridge is formed. Or it could be possible that with enough agitation the

droplet may become unpinned while the separation distance, H, is varied. Once

unpinned the droplet needs to be forced to make contact with the LIS corrugations

to become pinned again which due to hysteresis effects may not be at the same

separation distance.

Further decreasing the plate separation leads to an instability related to the

coalescence of the two lubricant menisci. The lubricant floods the space in between

the LIS substrates and envelopes the droplet. In our studies, since we use the pres-

sure ensemble for the lubricant, this continues indefinitely. However, in practice,

especially in the limit of starved lubricant regime, it will do so until the lubricant

from the drop surrounding is depleted. This envelopment instability is unique to

LIS where the capillary bridge has two liquid components. Inspecting the data

reported in Fig. 3.3(a), we further observe that the envelopment instability occurs

at larger separation as we decrease the apparent angle. Typically, the envelop-

ment occurs with the droplet detached from the surfaces for hydrophilic bridges

(θapp < 90◦), as illustrated in Fig. 3.2(a); and with the droplet attached to the

surfaces for hydrophobic bridges (θapp > 90◦), illustrated in Fig. 3.2(b).

The capillary bridges also become unstable at large plate separation. Similar

to conventional one-component capillary bridges on non-infused surfaces, this can

occur in two ways. The drop can break in two as in Fig. 3.2(g), typically observed

for hydrophilic capillary bridges. Alternatively, the droplet may detach from one

of the substrates, as illustrated in Fig. 3.2(h), commonly found for hydrophobic
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bridges. Since we ignore gravity in the studies shown, the droplet can move to the

top or bottom substrate with equal probability triggered by numerical noise during

minimization. The detailed dynamics of these instabilities are beyond the scope of

the work we show here.

Next, we study the role of the lubricant Neumann angle θl, in particular to

characterize the envelopment instability at small H/s. Fig. 3.3(b) shows a phase

diagram as a function of H/s and θl. We now fix θapp = 100◦, while the other

parameters are set as before in Fig. 3.3 (a). It is worth noting that the other two

Neumann angles are no longer independent variables when an apparent angle and

one of the Neumann angles are defined. Here we employ the lubricant Neumann

angle as control parameter, as it provides a good measure of the shape of the

lubricant ridge.

We clearly observe that the system is more prone to envelopment instability

for smaller θl. Considering the force balance at the droplet-lubricant-gas contact

line, this is because smaller θl implies the droplet-gas surface tension becomes

more dominant in magnitude over the droplet-lubricant and lubricant-gas surface

tensions. As such, the system can lower its free energy by reducing any droplet-

gas interface. In contrast, the detachment instability at large H/s is relatively

insensitive to θl.

In Fig. 3.3(a) we observe that the stability region for bridge morphologies

where the drop is detached from both substrates, as depicted in Fig. 3.2(c), is

limited to θapp < 90◦. We now investigate whether this morphology can occur

also for θapp > 90◦ for a different combination of parameters. We find the critical

parameter is the lubricant pressure ∆Plg. Thus, we present a morphology phase

diagram as a function of separation H/s and ∆Plgs/γdg in Fig. 3.3(c). Here we

fix θeff
ld = θeff

lg = 5◦, θapp = 100◦, and θl = 10◦. Interestingly, the morphology

where the droplet is detached from both substrates is not found to be stable for

hydrophobic bridges. Rather, we find a morphology where the droplet is only

directly in contact with one of the substrates, as illustrated in Fig. 3.2(f), when
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Figure 3.4: Schematic of the capillary bridge profile. Here, y1(x) (solid line) is
the drop-gas interface, y2(x) (dashed line) is the lubricant-gas interface, and y3(x)
(dotted line) is the lubricant-drop interface.

we increase ∆Plgs/γdg (becoming less negative). Physically, increasing ∆Plgs/γdg

corresponds to reducing the energy costs of drawing lubricant from the reservoir,

leading to lubricant meniscus size which is comparable to the droplet size. In the

phase diagram of Fig. 3.3(c), this morphology is indicated by the purple region,

bounded from below by the envelopment instability and from above by the droplet

detachment instability. The two instability boundaries terminate in a cusp located

at ∆Plgs/γdg = −0.053 and H/s = 2.896. It is also worth commenting that the

morphology in Fig. 3.2(f) is observed for a wide range of θl. Here we have fixed

θl = 10◦ because lower θl allows a broader range of plate separation in which the

morphology is stable. The yellow region corresponds to parameter regime where

the morphologies of Fig. 3.2(d) and (f) are both possible.
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3.2.2 Capillary Forces

3.2.2.1 Calculating the Forces and the Spring Constant

A natural measure of the “stickiness” of capillary bridges between LIS surfaces is

given by the capillary force exerted by the bridges on the two substrates. This

force can be directly calculated from the profile of a liquid bridge in mechanical

equilibrium, as illustrated in Fig. 3.4.

The capillary force exerted by the liquid bridge can be directly calculated from

the equilibrium profile. To derive the force, consider variation of the free energy

of the system induced by varying the plate separation, H → H + δH, following a

similar approach carried out for one-component liquid bridges [138, 37, 137]. Since

we are considering symmetric surfaces, it is mathematically more convenient to set

the origin of our coordinate system to be at the middle of the liquid bridge. If we

define the yi(x) to represent each interface’s radial distance from the axial centre

of the bridge, then the surfaces are located at ±H/2, as defined in Fig 3.4. As

such, exploiting symmetry, we only need to consider the profile curves from x = 0

to x = L = H/2. Under this variation, the position of the drop-lubricant-gas triple

contact line varies from l→ l+ δl, and correspondingly the profile curves also vary

as yi(x)→ ȳi(x) = yi(x) + gi(x).

The free energy upon extending the plate separation by δH = 2δL is given by

ELIS(L+ δL)
2π

=
∫ l+δl

0
γdgȳ1(x)(1 + (ȳ′1)2(x))1/2 − ∆Pdg

2 ȳ2
1(x) dx

+
∫ L+δL

l+δl
γlgȳ2(x)(1 + (ȳ′2)2(x))1/2 − ∆Plg

2 ȳ2
2(x) dx

+
∫ L+δL

l+δl
γldȳ3(x)(1 + (ȳ′3)2(x))1/2 − ∆Pdl

2 ȳ2
3(x) dx

+ γld cos θeff
ld ȳ

2
3(L+ δL)− γlg cos θeff

lg ȳ
2
2(L+ δL). (3.1)

The first variation of the free energy leads to the well-known Euler-Lagrange or

shape equation for each of the fluid interface, yi(x), as derived in [138, 37, 137].
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In addition, it leads to boundary conditions at x = l and x = L. For the former,

considering the variation in δl gives us[
γdg

(1 + (y′1)2)1/2 −
γlg

(1 + (y′2)2)1/2 −
γld

(1 + (y′3)2)1/2

]
y(l)

−
[∆Pdg

2 − ∆Plg
2 − ∆Pdl

2

]
y(l)2 = 0. (3.2)

where we have used y(l) = yi(l). The second term in the above equation is identic-

ally zero, since the pressure terms cancel one another. Furthermore, the square

bracket in the first term corresponds to the force balance of the surface tensions

projected in the x-direction. Similarly, the variation in δy(l) results in[
γdgy

′
1

(1 + (y′1)2)1/2 −
γlgy

′
2

(1 + (y′2)2)1/2 −
γldy

′
3

(1 + (y′3)2)1/2

]
= 0, (3.3)

which is the force balance of the surface tensions projected in the y-direction.

Note that for these derivations we have used the geometrical relation gi(l + δl) =

δyi(l)− y′i(l)δl.

We can do a similar analysis for the boundary condition at x = L. Considering

the variation in δy2(L) and δy3(L), we recover the expected contact angle equations

for the lubricant-gas and lubricant droplet interfaces,[
γlg

y2y
′
2

(1 + y′2
2)

1
2

]
x=L
− γlg cos θeff

lg y2(L) = 0, (3.4)[
γld

y3y
′
3

(1 + y′3
2)

1
2

]
x=L

+ γld cos θeff
ld y3(L) = 0. (3.5)

Finally, to determine the actual force we must choose a point along x to evalu-

ate. There are two natural locations to evaluate the capillary force, at the substrate

or in the middle of the bridge. At the substrate, the capillary force is given by

F = δ(2E)
δ(2L)

∣∣∣∣
x=L

= 2π
[
γlg

y2

(1 + y′2
2)

1
2

+ γld
y3

(1 + y′3
2)

1
2

]
x=L

− π
[
∆Pdgy2

3 + ∆Plg(y2
2 − y2

3)
]
x=L

(3.6)
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The first term can be interpreted as the surface tension forces of both the

lubricant-gas and lubricant-droplet interfaces acting perpendicular to the substrate,

while the second term corresponds to force contributions due to the droplet and

lubricant pressures relative to the surrounding gas pressure. This is the more

generally useful way to determine the force.

Alternatively, the capillary force can be conveniently computed at the sym-

metry plane located at x = 0 in the schematic diagram in Fig. 3.4, in which

y′1 = 0. In this case, the force expression simplifies to

F = 2π
[
γdg

y1

(1 + y′1
2)

1
2

]
x=0
− π ∆Pdgy2

1

∣∣∣
x=0

,

= 2πγdgrd − π∆Pdgr2
d. (3.7)

Here rd is the radial distance of the droplet-gas interface. This term is simpler

and easier to calculate fo the symmetric case, but would no longer confer any

advantages if one was to pursue the studies for asymmetric capillary bridges. In

Fig. 3.5 we show these comparisons. We use the derivative of the energy calculated

using a simple finite difference method for one force calculation, FE . This is then

compared with force calculated directly from the capillary bridge profile at various

points along the capillary bridge: FB, at the bottom; FT at the top; FM at the

middle. As can be seen that for the methods of force calculation are equivalent,

and holds true for hydrophilic-like and hydrophobic-like capillary bridges.

A complementary measure of the “stickiness” is given by the spring constant

of the bridge, Keq, when the capillary force vanishes. To calculate Keq, we can

employ a simple linear relation between the calculated force and the displacement

from the capillary bridge equilibrium distance. Following Hooke’s Law,

F = −Keq(H −Heq),

where Heq is the capillary bridge separation when F = 0. By fitting how F var-

ies with H near the equilibrium distance, Keq can be obtained. An increasing

spring constant would mean that any “snapping” forces experienced during ca-
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Figure 3.5: We plot the force calculated in four ways: FE gives the force calcu-
lated by the derivative of the energy; FB is the force calculated for the bottom
surface contact; FT the force calculated for the top surface contact; FM the force
calculated from the middle of the bridge. All panels show the results for θl = 160◦,
∆Plgs/γdg = −0.62, with surface contact angles θlg = θld = 5◦. They differ in
the apparent angles used. Panel (a) shows the case of θapp = 60◦; (b) shows the
case of θapp = 100◦; (c) shows the case of θapp = 120◦. We have explored three
cases to highlight the agreement for the various methods of force calculations for
hydrophilic (θapp < 90◦), and hydrophobic (θapp > 90◦) capillary bridges. It can
also be observed in (b) that the force reaches a maximum before detaching. This
means that the droplet is detaching in a relatively controlled manner instead of
“snapping off” once it reaches its maximum force. Experimentally one could thus
measure the maximum force more accurately.

pillary bridge formation or stretching would be increased, which could have im-

plications when measuring the surface tension of the droplet and stability of the

capillary bridges.

3.2.2.2 Effects on the Capillary Forces and Spring Constants due to

Material Variations

Having discussed the spectrum of different liquid bridge morphologies between

two LIS substrates, we now address the key question of how the forces exerted

by stable capillary bridges are affected by the presence of the lubricant. We will

start by considering cases in which the lubricant ridge is small and flat, which we

can achieve by setting large lubricant Neumann angle and low lubricant pressure.

Here we use θl = 160◦, and ∆Plgs/γdg = −0.62. Fig. 3.6(a) and (b) show the

(normalised) force contour plots as a function of the (apparent) contact angle and

plate separation for a capillary bridge on smooth surfaces and LIS, respectively. For

the latter, we focus on cases where the droplet is directly in contact with both LIS
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Figure 3.6: (a) and (b) Force contour plots as a function of contact angle (θdg
or θapp) and substrate separation for smooth solid surfaces and LIS, respectively.
For the latter, we have set θl = 160◦, θeff

ld = θeff
lg = 5◦ and ∆Plgs/γdg = −0.62.

The white lines trace the separation for which the force is zero. (c) Capillary force
as a function of the substrate separation for contact angles θapp = 60◦, 100◦ and
120◦. The LIS cases are represented by triangles and circles for when the droplet
is attached and detached from the substrates, while those for smooth surfaces are
represented by solid lines.

substrates. The parameter space explored here is the same as in the morphology

diagram in Fig. 3.3(a).

In this limit in which the lubricant ridge is small and flat, the capillary forces

obtained are quantitatively very similar for LIS and for smooth solid surfaces. For

hydrophilic capillary bridges (θapp < 90◦), the force is always attractive and mono-

tonically decreases as one increases H/s; while for hydrophobic capillary bridges

(θapp > 90◦), the force is repulsive at short separation and attractive at large separ-

ation. Following Eqs. 3.6 and 3.7, this is because while the surface tension contri-

butions are always attractive, the pressure contributions can be either attractive or

repulsive. The contour of zero force, corresponding to the equilibrium separation

distance, Heq, is marked by the white lines in Fig. 3.6 (a) and (b). Consequently,

it can be observed that there is no equilibrium separation for hydrophilic capillary

bridges, implying that the LIS plates will prefer to stick together. Of course in

reality due to the finite size of the droplet and the fact the separation distance can

never truly reach zero, the force will never reach infinity. From these results, we

can also conclude that the apparent contact angle is a suitable control parameter

to compare capillary bridges on conventional smooth, non-infused surfaces and LIS

in the limit of small lubricant ridges.
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The main difference between one-component liquid bridges on non-infused sur-

faces and two-component liquid bridges on LIS, as shown in Fig. 3.6, is found

at small H/s for θapp < 90◦, as we approach the parameter space in which the

detached droplet and enveloped morphologies in Figs. 3.2(a) and (c) are preferred.

To better illustrate this point, Fig. 3.6(c) plots the capillary force F as a function

of separation H for three contact angles, 60◦, 100◦ and 120◦. The LIS cases are

shown with triangular and circular markers for when the droplet is attached and

detached from the substrates, while those for one-component capillary bridge on

smooth solid surfaces are shown with solid lines. As illustrated in Fig. 3.6(c), we

see the force deviates strongly at small H/s for θapp = 60◦. This is due to signific-

ant amount of lubricant being drawn from the reservoir, increasing the attractive

force of the capillary bridge.

This deviation illustrates the importance of the lubricant ridge in the resulting

capillary force. Since the shape and size of the ridge depends on the Neumann and

lubricant contact angles, as well as the lubricant pressure, we further investigate

how these parameters affect the strength of the capillary adhesion of the droplet

on LIS. To study these effects we have chosen to employ an apparent angle of

θapp = 100◦ as an exemplary case. Such contact angle value is quite typical in

experiments [77, 175], though of course the apparent contact angle can be varied

depending on the materials involved.

The effect of altering the wetting contact angles for the lubricant θeff
lg , θeff

ld and

the Neumann angle θl at fixed apparent angle is shown in Fig. 3.7. Fig. 3.7(a)-(c)

show contour plots of the (normalised) force as function of θl and H/s for different

lubricant contact angles. In all three plots we have chosen ∆Plgs/γdg = −0.62.

For comparison, we also show the force contour plot for one-component capillary

bridge with θdg = 100◦ in Fig. 3.7(d).

The case with completely wetting lubricant is shown in Fig. 3.7(a). In such

a scenario, the contact angles are no longer relevant. Theoretically this leads to

an extra degree of freedom, the thickness of the lubricant layer. To control this we

69



3.2.2.2. Effects on the Capillary Forces and Spring Constants due to Material Variations

Figure 3.7: (a-c) Force contour plots as a function of the lubricant Neumann
angle θl and normalised separation H/s. In panels (a-c), we have respectively set
θeff
ld , θeff

lg = 0◦, 5◦, and 30◦. In all cases, we have θapp = 100◦ and ∆Plgs/γdg =
−0.62. For the complete wetting case, we have also chosen a Hamaker constant
of B/γdgs2 = 2.6 × 10−8. (d) Force contour plot as a function of H/s for a one-
component capillary bridge with θdg = 100◦.

need to include the physics of disjoining pressure, and we have chosen a Hamaker

constant of B/γdgs2 = 2.6 × 10−8 to ensure the thickness of the lubricant layer is

several orders of magnitude, O(103), smaller than the droplet size V 1/3
d , as is typical

in experiments [143, 142]. We have also studied cases with larger disjoining pressure

(data not shown), and the only difference is that the lubricant layer thickness offsets

the value of H/s when comparing the capillary forces. From the plot in Fig. 3.7(a),

the maximum capillary force and separation distance increases with decreasing θl.

The same tendency in the variation of θl is observed in Fig. 3.7(b) and (c),

where we now employ partially wetting lubricants with θeff
lg = θeff

ld = 5◦ and 30◦.

We note that, for panel (c), there is no available solution for θl > 120◦ because the

three angles forming the lubricant ridge must sum to less than 180◦. Comparing

the results in Fig. 3.7(a)-(d), it is also clear that the capillary adhesion is stronger

on LIS than for one-component capillary bridge on smooth surfaces, and that this

“stickiness" is amplified for more wetting lubricants. We find the capillary force

on LIS can be up to 40% higher than that on smooth solid surfaces. Taking the

results in Fig. 3.7 together, the shape of the lubricant ridge is an important factor

to manipulate the strength of the capillary force.

Next, we address the issue of the size of the lubricant ridge, which can be tuned

by varying the lubricant pressure. Fig. 3.8 (a) illustrates the case for a droplet
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Figure 3.8: (a) Normalised capillary force as a function of normalised separation
for several values of normalised lubricant pressure and an apparent angle of θapp =
100◦. For comparison, the force curves for one-component capillary bridge is also
shown for θdg = 90◦, 100◦. (b-c) Force contour plots as a function of the normalised
separation and normalised lubricant pressure when the droplet is connected to (b)
both LIS substrates and (c) only one of the LIS substrates. Here we have used
θl = 10◦, and θeff

ld , θ
eff
lg = 5◦.

with θapp = 100◦, θl = 10◦, θeff
ld = θeff

lg = 5◦, while ∆Plgs/γdg is varied. Here, the

force curves only exist over a certain range of H/s, bounded by the envelopment

instability from below and the detachment instability from above, as discussed in

the previous section.

It is known that the apparent angle as defined in Eq. 2.6 is valid for the

limit of vanishing ridge. As we make ∆Plgs/γdg less negative, the lubricant ridge

increases in size in comparison to the droplet size, and this can lead to a reduction

in the measured geometric apparent angle [139, 140]. For hydrophobic cases, this

angle will always be bounded from below by 90◦. Therefore, to test whether the

increase in the capillary force is simply due to changes in the effective apparent

angle, we also plot force curves for one-component capillary bridges in Fig. 3.8(a)

for contact angles θdg = 90◦, 100◦, to allow for easy comparison. We find that we

can even exceed the force from the 90◦ case for certain separation distances. This

implies that the apparent angle alone is insufficient to fully describe the increase

in capillary force.

Fig. 3.8(b) and (c) summarise the force contour plots as a function of ∆Plgs/γdg

and H for the stable morphologies where the droplet is directly attached to both

LIS substrates and only one of the substrates respectively. In both scenarios, the

capillary force increases with increasing ∆Plgs/γdg at constant H/s, and decreases
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Figure 3.9: In both plots, the circles and triangles correspond to θeff
ld , θ

eff
lg = 5◦ and

30◦, respectively; while the straight and dashed lines represent ∆Plgs/γdg = −0.31
and −0.62. The apparent contact angle is set at θapp = 120◦. (a) Equilibrium
separation Heq as a function of the lubricant Neumann angle. (b) Effective spring
constant, Keq as a function of the lubricant Neumann angle. The results for one-
component capillary bridge on smooth surfaces are shown by the dotted lines.

with H/s at constant ∆Plgs/γdg. However, comparing the two contour plots, the

capillary force is affected differently. This is most clearly illustrated by the force

curves in Fig. 3.8(a). The cases of ∆Plgs/γdg = −0.17 and −0.12 have a different

shape, with a greater dip in force near their maximum separation where droplet

detachment occurs. This is because these cases correspond to morphology in Fig.

3.2(f), where the droplet is only directly connected to one of the LIS substrates.

Here, the capillary force is dominated by the drawn lubricant. In contrast, the cases

of ∆Plgs/γdg = −0.56 and −0.37 correspond to the morphology in Fig. 3.2(d),

where the droplet dominates the capillary force response.

3.2.3 Equilibrium Separation and Spring Constant

To further corroborate our findings on the adhesion of a liquid droplet on LIS, in

this subsection we will consider how the equilibrium separation, Heq, and spring

constant, Keq, of the capillary bridge compare to those for one-component capillary

bridge on non-infused, smooth solid surfaces.

We first note that, for one-component capillary bridge on non-infused surfaces,

there is always an equilibrium separation in which the capillary force F = 0 for
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θdg > 90◦. In contrast, this is not the case on LIS. In particular, the envelopment

instability often kicks in before the capillary bridge can reach its equilibrium sep-

aration distance for small but negative value of ∆Plgs/γdg. For θapp = 100◦, this

instability significantly limits the range of parameters where the capillary bridge

can reach F = 0. As such, in this subsection, we have chosen to focus on results

with θapp = 120◦. The qualitative behaviour is the same for different apparent

angles.

Fig. 3.9 summarises our findings. In panel (a), we first study how the equilib-

rium separation is affected by the Neumann angle, θl, the wetting contact angles

for the lubricant, θeff
lg , θeff

ld , and the lubricant pressure, ∆Plgs/γdg. For compar-

ison, the one-component liquid bridge case is also shown as the black dotted line.

Overall, we find the equilibrium separation is slightly smaller for LIS than for a

one-component bridge. From the four curves for Heq, we also observe that we ap-

proach the one-component liquid bridge case as we increase θl and make ∆Plgs/γdg

more negative. This is consistent with our observation in the previous subsection

that the lubricant ridge morphology impacts the capillary force, so that as the ridge

vanishes, LIS are equivalent to smooth surfaces in this limit.

We also study the effective spring constant, Keq, around the equilibrium separ-

ation in Fig. 3.9(b). Keq is always greater than that for the one-component liquid

bridge implying that, not only capillary forces are larger on LIS, but also the result-

ing capillary bridges are stiffer due to the lubricant drawn from the LIS substrates.

This would mean that capillary bridges can also be more stable around the equi-

librium separation, as the “snapping” force which returns the capillary bridge to

equilibrium is stronger.

3.3 Conclusion

In summary we have studied two-component capillary bridges formed when a li-

quid droplet is sandwiched between two LIS. The lubricant ridge morphology was
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shown to be important in determining the capillary force, the maximum substrate

separation, and the effective spring constant, which are all enhanced by lowering

the lubricant-gas pressure difference ∆Pog, the lubricant Neumann angle θl, and

the lubricant contact angles θeff
ld , θ

eff
lg relative to the drop and gas phases. The para-

meter ∆Plg affected the overall size of the lubricant ridge, θl changed the shape

of the ridge, and θeff
ld , θ

eff
lg tuned the adhesion between the lubricant and the solid

surface. Varying these parameters we found that, for a given drop apparent contact

angle, a capillary force could be achieved on LIS which was up to 40% higher than

that for the one-component case. Conversely, in the limit of a vanishing lubricant

ridge, the properties of the two-component capillary bridge tended to those of a

one-component bridge between smooth, solid substrates.

In contrast to the one-component capillary bridge, a two-component capillary

bridge also had a richer set of possible morphologies. Due to the presence of the

lubricant, the capillary bridge could be stable with the liquid droplet directly in

contact with two, one or none of the LIS substrates. At small separation, we have

further identified a new envelopment instability, where the lubricant fills the space

in between the two substrates.

While the facts that LIS have low contact angle hysteresis and are thus “slip-

pery” parallel to the surface have been extensively discussed in the literature, here

we point out that, at the same time, they are potentially “sticky” perpendicular

to the surface. This suggests LIS are a unique class of liquid repellent surfaces.

For instance, on superhydrophobic surfaces, liquid droplets are suspended on top

of the surface textures in the Cassie-Baxter state, and as a result, they move easily

both parallel and perpendicular to the surface [177, 178, 39]. In the Wenzel state,

liquid drops penetrate the surface corrugations leading to both large contact angle

hysteresis and strong adhesion [177, 178, 39], and so they are “sticky” in both

directions.
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Chapter 4

Ternary De-Wetting

4.1 Introduction

The importance of cleaning has long been recognised, likely since the beginning of

sentient human history. Correspondingly, a significant amount of research has been

done into developing a wide variety of cleaning processes and products [40, 179,

180]. This ranges from studying the fluid mechanics of confined and free surface

flows typically involved in cleaning processes [181, 182], incorporating various ways

of introducing additional mechanical perturbations [183, 184, 185, 186], improving

the chemistry and chemical actions of the cleaning agents [180, 187, 188], and

better understanding of how the undesirable soils can finally be removed from the

substrate and captured elsewhere [189, 190].

Recent years, however, have seen a new challenge in the field of cleaning. Driven

by environmental concerns and aspirations for more sustainable development, there

is now an urge to develop cleaning mechanisms that employ significantly less re-

sources, including the use of water and surfactants [191, 192, 193, 194, 195]. There

is currently over 40% gap in global water supply and demand [196], and cleaning

tasks consume a sizable proportion of household water (∼ 16.5% for clothes washer

usage alone according to a 2016 Report by the Water Research Foundation) [197].

There is also strong recognition to reduce surfactant consumption, both because
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many surfactants are not environmentally friendly [198, 191] and because it requires

significant energy and CO2 emissions to produce them [199].

Motivated by this challenge to clean under constrained resources, here we study

the fluid dynamics of droplet lift-off driven by an invading film of another immiscible

liquid, as illustrated in Fig. 4.1. This mechanism exploits the lifting force arising

from the Neumann triangle at the contact line between the droplet, the invading

film, and the surrounding air. Hence, this mechanism necessarily involves three

fluid phases, unlike other, more well-studied de-wetting phenomena that typically

involve two fluid phases [200, 201, 202]. Furthermore, in contrast to traditional

cleaning processes that harness an abundant amount of water-based formulation,

here we demonstrate that this ternary de-wetting mechanism can enable droplet

lift-off and removal from the surface only when the film thickness is comparable

to the droplet size.

We organise this chapter as follows. In Section 4.2, we discuss the simula-

tion geometry and computational methods used in our work. In Section 4.3, we

introduce previous results, by Jack Panter, and what we term the ternary lift-

off mechanism in the quasi-static limit, and critically discuss the importance of

the interfacial tensions between the various fluids involved. All sections labelled

as “Previous Results” were primarily due to the work of Jack Panter. Then, in

Section 4.4, we study the possible roles of dynamics in enhancing and/or limiting

droplet removal, including the effects of the invading film velocity, as well as the

densities and viscosities of the droplet and liquid film. Finally, we summarise the

most salient points of our work in Section 4.5.

4.2 Model and Method

We use two numerical methods for the results presented in this chapter. The

results are divided into two parts, the quasi-static results obtained by using an

energy minimisation method, and the dynamic simulations by lattice Boltzmann
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simulation. In both cases we use a diffuse interface model as described in Chapter

2: Methodology. Special credit must be given to Jack Panter who produced all the

quasi-static results, and for full details on his energy minimisation method please

see his thesis [147].

4.2.1 Simulation Geometry

The typical simulation geometry studied in this chapter is shown in Fig. 4.1. A

soil droplet (shown in yellow), d, is placed on a solid surface with a contact angle

of θdg in the presence of the surrounding gas, g (see Fig. 4.1a). For the rest of this

chapter, unless otherwise stated, we use θdg = 60◦. We find the value of θdg is not

critical and only affects the start of our dynamical simulations. The more critical

variable is the droplet contact angle θdl in the presence of the formulation film (l,

shown in blue), as illustrated in Fig. 4.1b, which we will vary broadly.

The three fluids have interfacial tensions between one another that we denote

by γdl, γdg and γlg. The three fluid interfaces meet at the triple contact line, and

using force balance argument, they form certain angles known as the Neumann

angles, θl, θd, and θg. These angles satisfy the following relations [139],

γdl
sin θg

= γdg
sin θl

= γlg
sin θd

. (4.1)

4.2.2 Previous Results - Quasi-Static Simulations

We give a brief overview of how the energy minimisation is applied for this chapter.

For the quasi-static simulations, we wish to achieve minimum energy configurations

of a sessile soil droplet of fixed volume, partially immersed in a layer of the formu-

lation film.

The free energy is defined by three contributions,

E = Eb + Es + Ec, (4.2)
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Figure 4.1: Schematic diagram of our simulation geometry. In yellow we have
the soil droplet, in blue the formulation film, while the solid substrates are shown
in grey. In panel (a) we show the soil droplet resting on the substrate with no
formulation present. This is characterised by the droplet-gas contact angle, θdg.
Panel (b) shows the case when we introduce the formulation film to the system,
with the droplet forming a contact angle θdl in the presence of the formulation.
At the triple contact line we highlight the various interfacial tensions, γdl, γdg
and γlg, and Neumann angles, θl, θd, and θg. Finally we show the inlet velocity,
vin, through a liquid-filled aperture of height Hwall which leads to the formulation
height velocity, vh, moving upwards.

where Eb is the bulk free energy and Es is the surface free energy. Both are defined

in Chapter 2: Methodology, where we have used the Surface Energy method to

define Es. Ec is the constraining potential, which serves to ensure the volume of

the droplet is fixed. This is given by

Ec = kc (Vd − V o
d ) , (4.3)

where kc is the constraint strength, V o
d is the desired droplet volume, and Vd is the

droplet volume at a given step in the free energy minimisation. Throughout, we fix

kc = 1.0×10−6 and V o
d = 6.0×105, both expressed in lattice units. The value for kc

was determined by trial and error to ensure numerical stability, while V o
d is chosen

as an input volume for the droplet which has been kept constant throughout.

To achieve equilibrium fluid configurations, the total free energy Eb +Es +Ec

is minimised. To do this efficiently, we treat the system as axisymmetric about the

centre of the droplet, and discretise the domain into a 2D square array of 200 ×

150 nodes. The lattice spacing is ε/4. The minimisation is carried out using the

L-BFGS algorithm [203, 204] due to its computational and memory efficiency.
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To simulate the quasi-static introduction of the formulation film, the system

is initialised in a configuration like that shown in Fig 4.1b, featuring a droplet in

the centre of the system, with a formulation film of depth Hwall. At the inlet to

the system, the film height is fixed at Hwall. The energy of this configuration is

then minimised. In each subsequent iteration, we use the previously minimised

configuration as input, increase Hwall at the boundary by 1 lattice unit, and re-

minimise the energy.

In addition to the minimum energy configurations, we also find the energy

barrier to detaching a droplet from the surface to form a liquid lens at fixed film

height Hwall. To do this, the system must exhibit multistability - both a partially-

submerged sessile drop and a detached lens are stable at the same Hwall. We

then use the simplified string method [205], in which an interpolated chain of 40

images is initialised between the two metastable states, then evolved to converge

on the minimum energy pathway. The highest energy point along this minimum

energy pathway defines the transition state. The energy difference between the

sessile droplet state and the transition state defines the minimum energy barrier to

lifting the sessile droplet off the surface in this ternary system, labelled ∆ET . As

a comparison, we have also calculated the energy barrier to lift a droplet off the

substrate when the droplet is completely submerged in liquid (no gas is present in

the system). The energy barrier in this binary system is labelled as ∆EB. This is

calculated as the difference in energy between a sessile drop of contact angle θdl,

and a fully detached drop, so that

∆EB = 4πRod2γdl

(
1− Rod

Rd

)
. (4.4)

Rod is the radius of a spherical drop of volume V o
d , and Rd is the radius of curvature

of the sessile drop, defined as

Rd = Rod

[
4

(1− cos θdl)2 (2 + cos θdl)

] 1
3

. (4.5)
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4.2.3 Dynamic Simulations

For the dynamic simulations we use the same bulk free energy term. Here we use

Dong’s method for determining the contact angles. In this chapter, we use the

lattice Boltzmann method to solve the fluid equations of motion. Typically, our

simulation domain consists of a 3D domain of 50 x 50 x 240 nodes. We also use

symmetric boundary conditions for two symmetry planes to reduce the amount of

lattice nodes needed for the simulation, in effect reducing the number of lattice

nodes by a factor of 4, as opposed to a full domain of 100 x 100 x 240. Inlet

boundary conditions are also used to allow constant in-flow of the formulation

liquid with velocity vin (See Fig. 4.1 (b); this leads to a characteristic formulation

height velocity, vh), and a convective boundary condition at the outlet to allow

fluids to leave the simulation, as described by Wang et al. [206].

We initialise a droplet equivalent in volume to a spherical droplet with radius

of 20 lattice units when taking into account the symmetry. For all the dynamical

results presented here in this chapter we have initialised the droplet as hemispher-

ical cap with contact angle of 60◦, with the centre at zero on the symmetry axis.

The inlet height was chosen to be 5 lattice units, while the initial film height was

chosen to be 10 lattice units.

4.3 Previous Results - Quasi-Static Limit

4.3.1 Previous Results - Ternary Lift-Off Mechanism

We begin by considering the quasi-static limit, where the formulation is introduced

infinitely slowly, before including the effects of dynamics in the next section. In this

limit, we simply use energy minimization methods as discussed in Section 4.2.2,

and dynamic material parameters, such as viscosity, do not play any role. In this

section, we will also focus on the case where the soil droplet is small enough (below

the capillary length) such that the effects of gravity can be ignored. Later on for
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(a) Fully dewetting

Hr=0.35

Hr=1.22

Hr=0.70

Hr=1.40

Hdrop

Hwall

Hr=1.61Hr=1.42

(b) No dewetting

Figure 4.2: The two outcomes possible on quasi-statically increasing the liquid
height Hr about a sessile droplet, where Hr = Hwall/Hdrop. (a) Snapshots of
the fully de-wettting transition for θdl = 90o, γdg/γlg = 1.0, γdl/γlg = 0.1. (b)
Snapshots of the transition where no de-wetting occurs, for θdl = 90o, γdg/γlg = 2.0,
γdl/γlg = 2.5. In all panels, the axis of rotation is on the left.

a subset of the dynamic results we will introduce gravity, but for the quasi-static

limit none of the results have gravity implemented.

Upon increasing the liquid height at the boundary, Hwall, one of two transitions

can occur, illustrated in Fig. 4.2. The first, shown in Fig. 4.2(a), sees the droplet

stretched and raised by the three-fluid contact line, to completely de-wet from the

underlying substrate. This results in a lens forming at the liquid-gas interface. The

second, shown in Fig. 4.2b, sees the droplet also being stretched and raised by the

three-fluid contact line, however instead of the droplet detaching from the surface,

the liquid detaches from the droplet to result in a fully submerged sessile drop. We

label the height of this submerged sessile drop Hdrop.

In Fig. 4.3, we show phase diagrams demarcating the fully and no de-wetting

states as functions of the droplet, formulation and gas interfacial tensions for five

representative droplet-formulation contact angles. The regions marked with black-

filled squares highlight fully de-wetting systems, whereas white-filled indicate where

no de-wetting occurs. Note that blank regions indicate systems where one fluid is
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Figure 4.3: Phase diagrams of droplet de-wettability for varying interfacial tension
ratios, γld/γlg and γdg/γlg, at five different contact angles, θdl. We also indicate
in panel (c) the 6 sets of interfacial tension ratios we choose to study further in
Section 4.4. The squares in black show the regions where ternary lift-off occurs,
while the white squares the regions where they do not. Outside the squares we
have a region where the three-fluid interface is no longer stable.

completely spreading on the interface between the other two, meaning no three-

fluid contact line is possible. As we are primarily concerned with the impact of the

three-fluid contact line on de-wetting, we do not consider these states further.

Considering first only the regions marked with black squares (fully de-wetting

systems), strikingly we see full de-wetting is able to be achieved for contact angles

substantially less than 180◦, the angle required for full dewetting in binary sys-

tems. We also observe several general trends. First, it is clear that as the droplet-

formulation contact angle, θdl, increases the droplet is more likely to de-wet at

various surface tensions ratios. This is to be expected, as it corresponds to the

situation where the incoming formulation liquid increasingly has more favourable

interfacial energy with the surface when compared to the droplet.

From Fig. 4.3, we also observe that the interfacial tensions strongly influence

the de-wettability of the system. As can be seen in Fig. 4.3(a-c), decreasing γdg/γlg

can lead to the transition from no de-wetting to full de-wetting. Meanwhile, most

clearly seen in Fig. 4.3(c), at a fixed γdg/γlg, increasing γld/γlg also leads to a

transition from no de-wetting to full de-wetting. Both of these observations suggest

that full de-wetting in ternary systems is promoted by large γlg and large γld. In a

sense, this contrasts with the simplified view of using more surfactant to reduce the

formulation interfacial tension, γlg, to induce de-wetting for the binary case. Here,

we highlight that although reducing the overall interfacial tensions is beneficial, it
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is not strictly necessary to have formulation interfacial tension smaller than that

of the droplet.

These trends can be understood from two complementary perspectives, based

on either energetic or geometric arguments. Energetically, we consider the inter-

facial properties that energetically stabilise the liquid lens upon de-wetting, as

opposed to the sessile droplet upon submersion. Full de-wetting may therefore

be represented as a competition against submersion. Relative to the submerged

droplet, the lens has: (1) a larger droplet-gas interfacial area, (2) a smaller liquid-

gas interfacial area, (3) a smaller droplet-surface contact area. Respectively, the

interfacial properties that stabilise the lens relative to the submerged state are

then: (1) a smaller droplet-gas interfacial tension γdg, which principally stabilises

the lens; (2) a larger liquid-gas interfacial tension γlg, which principally destabilises

the submerged droplet; (3) a large droplet-liquid interfacial tension θdl, which also

principally destabilises the submerged droplet.

4.3.1.1 Theoretical Understanding

Geometrically, we can understand fully versus no de-wetting using an analogy with

capillary bridges. For a capillary bridge, both its shape and its stability limit are

strongly determined by its contact angles [37, 207, 54]. In our analogy here, illus-

trated in Fig. 4.4a, the bottom contact angle is given by the droplet-formulation

contact angle θdl. The effective top contact angle at the interface with the sur-

rounding gas, which we denote by θt, is less obvious. However, if we assume the

gas-droplet and gas-formulation interfaces to be relatively flat, we can approximate

the top apparent contact angle by

cos θt ≈
γlg − γdg
γld

. (4.6)

We can now rationalise that by decreasing γdg, increasing γlg, or incrreasing γld,

the effective contact angle θt is lowered, and so the droplet tends to spread more

at the gas interface. Indeed, as is well-understood in the capillary bridge literature
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Formulation γdg/γlg γld/γlg
1 0.6 0.5
2 0.7 0.6
3 0.6 1.0
4 1.5 1.0
5 1.5 1.5
6 1.1 0.6

Table 4.1: This table details the surface tension ratios chosen for formulae 1-6.

[208, 209, 210], for the droplet to be transferred from the bottom (here, the solid)

to the top (here, effectively the gas interface) substrate, the bottom contact radius

rb must reach zero faster than the top contact radius rt (See Fig. 4.4a). This is

expected to take place if θt < θdl. In addition, depending on the effective contact

angles at the top and bottom substrates, we can have convex and concave capillary

bridge shapes, as shown in Fig. 4.4(b-c): the former when θt + θdl > 180◦, and the

latter when θt + θdl < 180◦.

In Fig. 4.3(c), we have also indicated three cases (1, 2 and 3) of surface tension

ratios with θt < 90◦, and three cases (4, 5 and 6) with θt > 90◦. We will further

study these six surface tension ratios in Section 4.4. The precise ratios are given

in Tab. 4.1. These six formula were chosen for a mixture of surface tension ratios,

some are directly related to experimental measurements while others were chosen to

give a good sampling of the ratios possible, with a good combination of γdg/γlg ≤ 1

and γdg/γlg ≥ 1, with γld/γlg ≤ 1 and γdg/γlg ≥ 1.

4.3.2 Previous Results - Film Height for Inducing De-Wetting

The next question we address is the minimum amount of formulation that is re-

quired to enable the ternary lift-off mechanism, shown in Fig. 4.5. To do this, we

focus on the fully de-wetted regions in the phase diagrams of Fig. 4.3 and plot the

ratio of two characteristic heights in this problem, Hwall/Hdrop, at the minimum

Hwall required for full de-wetting. Hdrop is the height of the sessile droplet when

fully submerged by liquid. Examining, for example, Fig. 4.5d, we observe that
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(b) Concave shaped (c) Convex shaped

(a) Capillary bridge shape

rt

rb

θt

θdl

Figure 4.4: (a) An analogy with the capillary bridge geometry. We show the
definitions of the contact radii, rt and rb, and contact angles, θt and θdl, at the
top and bottom substrates. The axis of rotation is indicated in the centre of the
system. (b) Example concave shape. (c) Example convex shape.

Hwall is minimised at small γdg/γlg, and large γld/γlg. Under these conditions, a

typical lens morphology will protrude substantially more into the gas region than

into the liquid region beneath. Thus, a stable lens is able to be formed at small

values of Hwall. Meanwhile, upon increasing the solid substrate wettability (de-

creasing θdl), Hwall/Hdrop required for full de-wetting increases. This is because

at small θdl, the droplet coats a relatively large solid surface area, and Hdrop is

relatively small. Thus, the liquid film must be made relatively thick in order to

stretch the drop vertically enough to reduce the large drop-solid contact area to

zero.

However, in all cases, Hwall is always comparable to Hdrop. Thus, we can

conclude that the amount of formulation required is much less than that required

for a more traditional approach to cleaning where the liquid formulation would

flood the system.
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Figure 4.5: The ratio ofHwall/Hdrop when fully de-wetting takes place as a function
of the interfacial tension ratios, γld/γlg and γdg/γlg, for five different contact angles,
θdl. Hwall/Hdrop provides an estimate for the amount of formulation required for
the ternary lift-off mechanism.

0.0

1.0

2.0

γ l
d/
γ l

g

1.00.0 2.0
γdg/γlg

0.5

1.5

2.5

1.00.0 2.0
γdg/γlg

1.00.0 2.0
γdg/γlg

1.00.0 2.0
γdg/γlg

1.00.0 2.0
γdg/γlg

(a) θdl=30o (b) θdl=60o (c) θdl=90o (d) θdl=120o (e) θdl=150o

0.0

0.2

0.4

0.6

0.8

1.0

Δ
E

T /Δ
E

B

1
2

3 5

4
6

Figure 4.6: The energy barrier ratio, ∆ET /∆EB, as a function of the interfacial
tension ratios, γld/γlg and γdg/γlg, for five different contact angles, θdl. In black are
the regions which ternary lift-off fully de-wets the droplet, while the white regions
are equivalent to regions where ternary lift-off will never be possible as the droplet
is submerges without forming a triple contact line. For θdl = 30◦ we also show rare
cases where ∆ET /∆EB > 1, identified via black circles.

4.3.3 Previous Results - Reduction in Energy Barriers

We now return to the no de-wetting regions in the phase diagrams of Fig. 4.3. Even

though the ternary lift-off mechanism is not sufficient to fully de-wet the system, it

does not necessarily mean we cannot make use of the mechanism, at least partially.

To explore this aspect, using the string method as described in Section 4.2.2, we

compare the theoretical energy barrier for droplet lift-off when (i) the droplet is

fully submerged by the formulation, ∆EB; and (ii) the droplet is partially in contact

with a formulation film, ∆ET . For the calculation of ∆ET , we vary the film height

and choose the lowest possible energy barrier. We plot the ratio of ∆ET /∆EB on

the phase diagrams for varying contact angles in Fig. 4.6. The black regions are
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the regions which can fully de-wet by the ternary lift-off mechanism. The regions

in white are regions where ternary lift-off is not possible because the equilibrium

results suggests the droplet will remain submerged. More precisely, this is a result

of a combination of two effects. In our quasi-static results we must still increase our

fluid formulation amount in finite steps by increasing Hwall this can possibly lead

to overshooting any increase causing the results to remain submerged. However,

we believe these results are still accurate and relevant as there will always be a

region of the phase space where any stretching is minimal, in which case it would

be experimentally and numerically difficult to detect. These regions would thus

show as lacking any detectable stretching numerically. In general, we observe, with

exception of the case of θdl = 30◦, that ∆ET /∆EB < 1. This suggests that we can

still make use of the ternary lift-off mechanism to reduce the energy required to be

inputted to de-wet the droplet, for example by introducing additional mechanical

agitations, flows, or buoyancy effects.

4.4 Finite Velocities

Building on the quasi-static limit observations, we now wish to consider the effect

of finite velocities on the droplet lift-off phenomenon. Since the simulation time

involved is significantly more for the dynamic simulations, we are unable to explore

the whole phase space. Instead, we choose to study in detail 6 surface tension ratios,

as indicated in Fig. 4.3. We shall denote these as formulations (1)-(6).

Throughout, we will discuss how the interfacial and dynamic properties influ-

ence the three overarching dynamic dewetting mechanisms, illustrated in Fig. 4.7.

In Fig. 4.7(a-d), snapshots of the dewetting transition show how the droplet is

fully dewetted from the surface, to form a liquid lens. This mechanism is compar-

able to the quasi-static full de-wetting mechanism shown in Fig. 4.2a. In dynamic

simulations, we also observe a partial dewetting mechanism, shown in Fig. 4.7(e-

h), in which only a portion of the droplet is removed from the surface to form a
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Figure 4.7: Typical dynamical evolution for the (a)-(d) fully de-wetting, (e) - (h)
partially de-wetting, and (i) - (l) no de-wetting cases. In each case it can be
seen we initialise a droplet resting on the surface in the same way, shown in the
left column and as we move right we show snapshots increasing in time during the
evolution of the system.

lens. The rest remains submerged as a sessile drop. Finally, Fig. 4.7(i-l) show the

dynamic no de-wetting mechanism, whereby the liquid completely envelopes the

drop, with no liquid detached from the surface. This mechanism is comparable to

the quasi-static no de-wetting mechanism shown in Fig. 4.2 (b).

4.4.0.1 Varying Liquid Viscosities and Contact Angles

In this sub-section, we shall look at the effects of varying the droplet-formulation

contact angle, θdl, as well as the viscosities of droplet, ηd, and formulation, ηl. The

viscosity of the surrounding gas is negligible (ηg � ηd, ηl) and does not significantly

affect our simulation results. For concreteness, here we choose a moderate input

velocity such that the Capillary number is Ca = ηlvh/γlg = 0.032. We will explore

varying the input velocities in Section 4.4.0.3. We will also compare cases where
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gravity is absent and present. For the latter, we will focus on the scenario where

the droplet and formulation have the same density. The Bond number is given by

Bo = ρgL2/γdg = 28.8.

Fig. 4.8 shows the outcomes of the simulation results for all 6 formulations,

both in the absence and presence of gravity, as we vary the droplet-lubricant vis-

cosity ratio and contact angle. We classify the results into three categories of

de-wettability: no de-wetting, partial de-wetting and fully de-wetting cases. Addi-

tionally, we also highlight the boundary between no de-wetting and fully de-wetting

states for formulations (4) to (6) in the quasi-static limit (see the dashed lines).

For formulations (1) to (3), the boundary values are smaller than θdl = 90◦ and

thus are not shown.

From Fig. 4.8, we can capture a number of general trends. First, comparing the

cases with and without gravity, the downward action of gravity is to oppose the lift

force arising from the force balance at the three-phase contact line, leading to poorer

de-wettability as expected. Indeed, simulation results exploring buoyancy effects

due to different droplet and formulation densities are provided later in Section

4.4.0.4. When the formulation has a larger density than the droplet, it provides an

upward buoyancy force that assists the de-wetting of the droplet. In contrast, when

the droplet has a larger density than the formulation, the droplet lift-off becomes

even more less effective.

Second, comparing the results to the quasi-static limit, introducing a finite

inlet velocity typically reduces the effectiveness of the ternary lift-off mechanism,

as some fully de-wetting states in the quasi-static limit become partially or even

no de-wetting states. This is because, with increasing velocity, there is a limited

time for the capillary force to deform and lift the droplet. However, as we will see

later, this is not always the case due to another competing mechanism.

Following the same argument as in the previous paragraph, we further expect

that the increasing the droplet viscosity relative to the formulation viscosity will
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Figure 4.8: De-wetting states as a function of viscosity ratios and contact angles
for formulations (1)-(6). All of the above systems utilize a characteristic capillary
number of Ca = 0.032. For formulations (4)-(6), the dashed line shows the the
boundary between full and no de-wetting in the quasi-static limit without gravity.
The fully de-wetting states are marked by blue circles, partial de-wetting states by
yellow triangles, and no de-wetting states by red crosses.
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Figure 4.9: Droplet fraction remaining on the substrate as a function of droplet-
formulation viscosity ratio for formulations 1, 2, 3, and 6 for the partially de-wetting
states. Panels (a) and (b) show the zero gravity cases at contact angles θdl = 90◦
and 100◦, respectively. Panels (c), (d), and (e) show the equal density cases at
contact angles θdl = 90◦, 100◦ and 110◦.

make it more difficult to deform the droplet, leading to poorer de-wettability for

the system. We can clearly this behaviour for formulations (4)-(6) in Fig. 4.8,

where fully de-wetting states turn into partial or no de-wetting states for smaller

ηl/ηd. Interestingly, such dependency is less obvious for formulations (1)-(3), and

we can even find the opposite trend, see e.g. Fig. 4.8 for formulation 1 along the

line corresponding to θdl = 110◦.

The complex dependency of the ternary lift-off mechanism on the droplet-

formulation viscosity ratio can be further seen when we plot the droplet fraction

remained on the substrate for the partially de-wetting states, VRem. Fig. 4.9 (a-b)

show the cases with zero gravity and θdl = 90◦, 100◦, while Fig. 4.9 (c-e) show

the equal density cases between the droplet and formulation with θdl = 90◦, 100◦,

110◦. Formulation (3) is the simplest to understand, as increasing the viscosity

ratio decreases VRem, which follows our argument on the deformation of the droplet.

However, for formulations (1) and (2), the droplet fraction broadly behaves non-

monotonically with variations in ηl/ηd. The non-monotonic behaviour is because a
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varying number of satellite droplets can form as the droplet is stretched. This leads

to varying amounts of droplet remaining after each satellite droplet is detached,

we have chosen to measure the results after the point at which no further satellite

droplets form and detach. We found that with the addition of gravity fewer satellite

droplets formed and detached, the overall trend when comparing Fig. 4.9 (a) with

(c) and (b) with (d) shows that the percentage of droplet remaining increases

when gravity is introduced. This is expected of course as gravity acts downward

which means any effective uplifting force must be increased to compensate if the

the droplet is to be removed. Perhaps the most surprising results are those of

formulation (6) which has the opposite trend to formula (3). This suggests there is

another mechanism at play at finite velocities that is competing with the ternary

lift-off mechanism, one which is driven by the kinetic energy inputted into the

system.

4.4.0.2 Momentum Aided Lift-Off

To better understand the non-monotonic behaviour observed in the previous sec-

tion, we now investigate the de-wetting pathways that can be observed in our

simulations. We find that, beyond the typical scenarios shown in Fig. 4.7, the mo-

mentum imparted by the invading formulation film can give rise to highly complex

droplet lift-off dynamics.

We show exemplar cases of such momentum aided lift-off in Fig. 4.10. First,

in panels (a) to (c), we see a fully de-wetting state where the complete droplet

removal occurs in two stages. Initially, the droplet forms a neck which breaks

the droplet in two as it is lifted. Then, the droplet fraction on the substrate

rebounds of the substrate and fully lifts off due to the momentum imparted to

the droplet. Second, panels (d) to (f) show a partially de-wetting state where the

droplet becomes stretched and forms a long neck sustained by the droplet upward

velocity, after which it breaks twice, once from the main droplet at the gas interface

and a second time from the bottom substrate, leading to the formation of a satellite
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droplet. Finally, in panels (g) to (i), we observe that the droplet is stretched by

the incoming formulation but it is then detached from the gas interface. It is the

momentum given to the droplet which breaks the droplet in two and results in a

partially de-wetting state.

In fact, the mechanism in Fig. 4.10(d-f) with the formation of multiple de-

tached droplets is commonly found for formulations (1) and (2) near the boundary

between fully and partially de-wetting states and we identify this as a key reason

why we can observe an upward trend on the amount of droplet remaining as func-

tion of increasing viscosity ratio ηl/ηd in Fig. 4.9.

4.4.0.3 Varying Input Velocity

To better understand the interplay between the ternary droplet lift-off and the

momentum aided lift-off mechanisms, in this sub-section we vary the input velocity

of the formulation film. For each formulation, we carry out two sets of velocities

and the results are shown in Fig. 4.11. In the top section we use slower velocity,

corresponding to Ca = 0.0032, or 10 times slower than our previous results. The

bottom section shows the results for Ca=0.064 or 2 times faster than our previous

results.

As we reduce the input velocity, we are approaching the quasi-static limit

where ternary lift-off mechanism is dominating. For formulations (1)-(3), where

the droplet typically has a concave shape, we see that all cases studied are now

fully de-wetting. This means, for these cases, the kinetic energy has a negative

impact to the de-wettability of the system. For formulations (4)-(6), where the

droplet has a convex shape, we find that there is no partially de-wetting states at

all, and many partially de-wetting states in Fig. 4.8 are now no de-wetting states.

This is most obviously observed for formulation 6. This confirms that, indeed, the

kinetic energy inputted to the system provides another mechanism for de-wetting,

at least to enable partial droplet removal.
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Figure 4.10: Examples on the relevance of momentum driven droplet lift-off. (a-c)
A fully de-wetting state where the initial droplet remnant bounces off the surface.
(d-f) A partially de-wetting state with a satellite droplet formed and lifted due to
the fluid momentum. (g-i) A partially de-wetting state without any initial droplet
fraction captured at the gas interface.
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Our observation further suggests that some states which are no de-wetting

in the quasi-static limit can be at least partially de-wetted by introducing more

kinetic energy. This is confirmed in Fig. 4.11 when we double the inlet velocity.

For concave shaped droplets, formulations (1)-(3), de-wettability becomes worse

for increasing velocity as more resultant states turn from full to partially de-wetted

states. However, interestingly, most of the no de-wetting states become partially

de-wetting for the convex droplets, for formulations (4)-(6).

Velocity can thus be seen as an aid for de-wetting in some cases while a

hindrance in others. From our current set of results, velocity can thus been seen as

a leveller to some degree as the results for all formulae become much more similar,

but there is still some dependency on the formulation, contact angles, and viscosity.

Practically speaking, one could use this knowledge to aid in optimising a strategy

for cleaning. In scenarios where the soil can be de-wetted by ternary lift-off then

the formulation velocity should be minimised and vice-versa. In cases where there

is a mixture of soils, cleaning could be divided into multi-stage processes. As a

very qualitative example of cleaning in a washing machine, this would mean that

an optimal strategy could be to introduce water very slowly to begin with, then

rinsing and re-introducing water at a faster rate. However, the precise physics here

would of course be very different due to difficulties in introducing a thin layer of

formulation, so very extensive further studies will need to be made to concretely

draw this conclusion.

4.4.0.4 Varying Density Ratios

Here we consider varying the density ratio between the droplet and the film. We

choose density ratios of ρd/ρl = 0.8 and 1.5 to identify any general trends.

For the lower density ratio, as shown in Fig. 4.12, the droplet de-wettability

is enhanced. In fact, we notice the phase diagram are ostensibly very similar and

we no longer observed no de-wetting states. This is due to the buoyancy force as

95



4.4.0.4. Varying Density Ratios

Figure 4.11: De-wetting states as a function of droplet-formulation viscosity ratio
and contact angle for formulations 1-6. The top section utilizes a characteristic
capillary number of Ca = 0.0032, while the bottom section Ca = 0.064. The
densities of the soil droplet and liquid formulation are the same.
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Figure 4.12: De-wetting states as a function of varying viscosity ratios and contact
angles for formulations (1)-(6). All of the above systems utilize a characteristic
capillary number of Ca = 0.0032, and the density ratio of droplet over formulation
is 0.8.

the soil droplet has a lower density compared to the formulation. Due to buoyancy

effects, any droplet residue also has a maximum size for the partially de-wetting

states.

Perhaps more interesting are the results for the higher density ratio case, as

shown in Fig. 4.13, where downward gravitational force inhibits droplet lift-off.

We highlight how formulations (1), (2) and (3) are classified as partially de-wetting

states, while formulations (4), (5) and (6) only have no de-wetting states. When

we track the typical dynamical process for formulation (1)-(3), we observe only a

very small amount of droplet is actually detaching, see Fig. 4.14. For formulations

(4)-(6), no amount of detached droplet can be detected.

4.5 Conclusion

In this work we have studied a novel de-wetting phenomenon that exploits the up-

ward capillary force resulting from the triple contact line between the droplet, film

and surrounding gas phases. By introducing the film formulation in a controlled
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Figure 4.13: De-wetting states as a function of varying viscosity ratios and contact
angles for formulations (1)-(6). All of the above systems utilize a characteristic
capillary number of Ca = 0.0032, and the density ratio of droplet over formulation
is 1.5.

Figure 4.14: Typical dynamic evolution for the partially de-wetted state for a
density ratio of ρd/ρl = 1.5.

manner, we demonstrated that we can achieve droplet removal from the substrate,

i.e. cleaning, without the need to flood the system with the formulation liquid.

In fact, the required film thickness is comparable to the size of the droplet. We

believe this is a promising mechanism to consider for cleaning under constrained

resources, where we would like to reduce the amount of water and surfactants used.

We further showed that the film velocity has a complex, non-monotonic in-

fluence on the efficacy of droplet lift-off. For small velocities, increasing the film

in-flow generally makes the de-wetting process less effective because it reduces the

time for which capillary forces deform and lift the droplet. For larger velocities,

however, we find that the momentum imparted to the droplet can either helps (typ-
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ically, for convex shaped droplets) or works against (typically, for concave shaped

droplets) the de-wetting of the droplet.

The effectiveness of the lift-off mechanisms also depend strongly on the droplet

wettability on the surface, θdl, and the surface tension ratios between the fluid

phases involved. In particular, for the latter, we argued their relevance can be

captured using the notion of an effective contact angle, θt, at the air interface.

Droplet de-wettability is better the smaller θt is compared to θdl.

We hope this systematic simulation study will inspire experimental demonstra-

tions of the ternary de-wetting mechanism. In this respect, it will be interesting to

develop cleaning formulations that optimise for this droplet lift-off mechanism. Fu-

ture work could also involve more detailed studies on the effect of density variations

between the droplet and the formulation, and when the droplet and/or formulation

are viscoelastic. Another possible direction for future work is to consider adding

external mechanical perturbations to aid droplet removal.
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Chapter 5

Ternary Phase Separation

5.1 Introduction

Spontaneous phase separation of fluid mixtures is important for a wide range of

processes. For example, in nature, it is known to give rise to structural colours

in living creatures, such as observed in birds and butterflies [211, 212]. More

recently, it has also been shown to play fundamental roles in volcanic eruptions

[213, 214] and in the organisation of cellular matters, leading to the formation of

the so-called biomolecular condensates or membraneless organelles [215, 11, 216]. In

industry, better understanding of the phase separation process is necessary, among

others, for tuning the formation of fractures in alloys in the field of metallurgy

[27, 28], for manipulating the structure of polymer blends which in turn affect their

mechanical and electrical properties [64, 65, 66], and for controlling the morphology

of complex emulsions for applications in drug delivery [19, 20] and in the food

industry [21, 22, 23].

Extensive theoretical and experimental studies on phase separation have been

carried out in the case where the fluid mixtures separate into two distinct, im-

miscible fluid components [217, 73, 218, 219]. For such binary fluid case, it is

now generally well understood when spontaneous phase separation occurs, what

the resulting morphologies are, and how the separated domains coarsen, both with
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and without the influence of hydrodynamics [220, 218, 221]. However, the general

problem of phase separation is significantly more complex, and there are numerous

instances where the fluid mixtures separate into more than two immiscible compon-

ents. These scenarios, in contrast, have received less attention and remain poorly

understood.

Our focus in this work is on phase separation of three immiscible fluid com-

ponents. In the literature, this ternary fluid case has primarily been studied in the

context of thin films of polymer blends [222, 223, 224] where the evolution of their

morphologies for a number of specific polymer compositions have been tabulated

experimentally [68]. There is also growing interest in ternary fluid phase separ-

ation for other applications, such as a novel route for the production of complex

droplet emulsions and nanoparticles [225, 95, 226]. In addition, from the modelling

side, there have been efforts to simulate phase separation pathways that reproduce

the experimental observations [68, 99], including scaling analysis on the domain

coarsening [227, 228, 229]. Yet, despite these advances, there is still limited under-

standing in one of the most fundamental aspects of ternary fluid phase separation:

how to predict and characterise the different possible distinct morphologies and

phase separation pathways as function of the fluid composition. To provide in-

sights, surprisingly, works to date have primarily relied on a simple linear stability

analysis to demarcate the ternary phase diagram into regions with zero, one and

two positive eigenvalues [68, 99, 93]. As we will demonstrate here, considering

only the sign of the eigenvalues do not allow qualitative, let alone quantitative,

predictions for the morphologies that can form.

Our contribution here is three-fold. First, we group the possible morpholo-

gies and separation pathways into 4 distinct families. Second, we rationalise these

groupings by extending the prevailing linear stability analysis and harnessing in-

formation provided by the resulting eigenvalues and eigenvectors. Third, we study

the ternary fluid phase separation mechanism where the minor fluid component

is enriched and undergoes an instability at the interfaces between the two more
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major components to determine the quantity of enrichment above which instability

occur. We also found that this mechanism is the dominant mechanism across the

composition phase space. We further show that the theoretical framework can be

applied when the interfaces all have the same surface tension, as well as when they

all take different values.

In contrast with the previous result chapters where solid interface effects had

significant impact on the results, in this chapter we study phase separation to isolate

any ternary fluid features resulting from fluid-fluid interactions only. From this we

can conclude that bulk ternary fluid interactions also lead to genuine differences

from the binary case without the need for solid interfaces.

In all situations studied in this work, we initialise each simulation by intro-

ducing small random concentration perturbations (white noise) on top of a homo-

geneous mixture at a given composition, typically with an amplitude of 10−4 of

the fluid density. In this range, we verify the simulation results do not sensitively

depend on the choice of noise amplitude. The simulation method used here is the

lattice Boltzmann method, using the bulk free energy as described in Eq. 2.7 in

Chapter 2.

5.2 Equal Surface Tension Case

We first focus on the simplest scenario where the surface tensions between any two

pair of liquids are equal. We will consider the more general case in the next section.

5.2.1 Morphologies and Pathways

Let us start by considering the structures which can occur as the ternary fluid mix-

tures undergo phase separation. We find there are four distinct types of separation

pathways, which typically lead to four morphology classes.
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Figure 5.1: Four types of spontaneous phase separation pathways for ternary fluid
mixtures: (a-c) direct ternary separation, (d-f) primary and secondary bulk phase
separation, (g-i) enrichment and instability at interface, and (j-l) binary-like phase
separation.
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Type I of ternary phase separation is when all three fluid components begin

to simultaneously separate. This is exemplified in Fig. 5.1(a-c), leading to what

we term a lattice morphology. Here, separate domains corresponding to the three

fluids are interspersed among each other, and domain coarsening occurs due to

rearrangement and coalescence of alike domains.

For types II and III of ternary phase separation, the pathways consist of two

stages, in contrast to only one stage for type I above. Fig. 5.1(d-f) illustrate type

II where primary and secondary bulk separation (spinodal decomposition) occur

consecutively. This most commonly leads to what we term the worm morphology,

where there is a chain of alternating fluid domains. During the primary spinodal

(panel e), two components (e.g. without any loss of generality, C1 and C2) remain

mixed and together they separate out from the third (e.g. C3) component. During

the secondary bulk phase separation (panel f), the two initially mixed components

undergo another spinodal decomposition.

An example of type III of ternary phase separation is shown in Fig. 5.1(g-i).

Despite being the most occurring pathway (see phase diagrams in the following

sections), surprisingly it has not been systematically described. If we focus on

non-nucleation effects, unlike for the binary phase separation where spinodal de-

composition is the sole driving mechanism for spontaneous phase separation, in

ternary fluid case, we have an alternative mechanism. Here, the primary spinodal

is followed by the enrichment of the minority component at the interface (panel h).

When there is sufficient third component at the interface, this component eventu-

ally becomes unstable and form small droplets at the fluid-fluid interface (panel i).

This type of ternary phase separation gives rise to patchy droplet morphology.

Finally, for type IV, as in Fig. 5.1(j-l), when there is insufficient minor com-

ponent at the interface, the phase separation pathway is akin to the binary fluid

case. Here, the smallest minority component is never fully phase separates but it

is typically concentrated at the interface between the two more major components.
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Our simulation results are consistent with previous works describing ternary

phase separation pathways [68, 99]. However, many of the extensive morphologies

and pathways previously tabulated are not fundamental and a result of stochastic

collision and coalescence of different fluid structures. In contrast, here we have

elucidated the four fundamental types of phase separation mechanisms.

5.2.2 Phase Diagram

Building on the four fundamental phase separation mechanisms identified in the

previous sub-section, a natural question arises: can we predict which pathway and

morphology will form given the mixture composition? In the literature to date, the

phase diagram for ternary phase separation is commonly interpreted by performing

a linear instability analysis and looking into the eigenvalues. This is a standard

tool to understand phase separation via spinodal decomposition [27, 28, 230].

Suppose the system is initialised as a homogeneous mixture with small per-

turbations in composition, such that, in 1-D,

Cm(x, t = 0) = Am +
∞∑
k

cos(kx)αmk(t = 0), (5.1)

where the Am’s are the initial concentrations, and the αmk(t)’s describe the amp-

litudes of the perturbations, and k represents the wave vectors of the infinitely

many possible modes for the perturbations. If we substitute the above equation

into the Cahn-Hilliard equation, with zero initial velocity, to linear order we obtain

(the prime denotes a time derivative)α′1k(t)
α′2k(t)

 =

D1 + F11 F12

F21 D2 + F22


α1k(t)

α2k(t)

 (5.2)

with

Di = −3
4 εk4 − 12

ε
(6A2

i − 6Ai + 1)k2, (5.3)

Fi1 = 12δ
εΣi

(A2(1− 2A1 −A2))k2, (5.4)

Fi2 = 12δ
εΣi

(A1(1− 2A2 −A1))k2. (5.5)
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Without any loss of generality, we have explicitly considered variations in C1 and

C2. The third concentration can be obtained by using the constraint C3 = 1−C1−

C2. From Eqn. 5.2, the eigenvalues can then be determined:

λ± = −b±
√
b2 − 4c

2 , (5.6)

b = −(D1 + F11 +D2 + F22), (5.7)

c = (D1 + F11)(D2 + F22)− F12F21. (5.8)

The eigenvalues can be used to differentiate between three regions in the phase

diagram: (i) where both eigenvalues are negative, (ii) where one is positive and one

negative, and (iii) where both eigenvalues are positive. These regions are shown in

Fig. 5.2 (a) in green, blue and red respectively. In our phase diagrams the corners

of the triangle correspond to when one component is maximal, i.e. C1 = 1.0 for

the bottom right corner, C2 = 1.0 for the top corner, and C3 = 1.0 for the bottom

left corner.

Numerically, we can also construct a phase diagram by varying the initial fluid

composition and observing the resulting fluid structures in the simulations. This

phase diagram is shown in Fig. 5.2 (b). Here, we have used red to represent

direct ternary phase separation, gray for two-step primary and secondary spinodal

decomposition, orange for enrichment and instability at interface, and blue for

binary-like phase separation. When comparing the the two phase diagrams in Fig.

5.2 (a) and (b), we can immediately conclude that knowing only the eigenvalues

is far from adequate for predicting ternary fluid phase separation. Hence, our

next aim is to develop a simple phenomenological model that better describe the

numerical phase diagram shown in Fig. 5.2(b).

From the numerical results, while the red region in Fig. 5.2(a) with two positive

eigenvalue covers a significant area, we find the direct ternary phase separation

scenario is very limited. Across all surface tension values we have studied, direct

ternary phase separation is limited to compositions where all the concentrations

satisfy 1
3 ± 5%. This is the region marked as red in Fig. 5.2(c). Geometrically, the
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Figure 5.2: Phase diagrams obtained (a) from considering the signs of the eigenval-
ues from linear instability analysis, (b) from lattice Boltzmann simulation results,
and (c) from the phenomenological model proposed in this work. In panel (a), the
red, blue and green regions have two, one, and zero positive eigenvalues. In panels
(b) and (c), red denotes the direct ternary phase separation mechanism, gray the
primary and secondary bulk phase separation mechanism, orange the enrichment
and instability at the interface mechanism, blue the binary-like mechanism, and
green no phase separation. Note that the colour scheme for the eigenvalues, panel
(a), is not equivalent to the colour scheme used for the other two, panels (b) and
(c).

lattice morphology is favoured for such composition as there simply is not enough

space for the other types of morphologies to form.

Next, we will study the two-step primary and secondary spinodal decomposi-

tion scenario. To do this, it is useful to consider the full linearised solution for the

evolution of the perturbation amplitude, given by

α(t) = B+ expλ+t e+ +B− expλ−t e−, (5.9)

where B± are fixed by the initial conditions, and e± are the two eigenvectors

corresponding to eigenvalues λ±, as given in Eq. (5.6). For equal surface tension

considered in this section, when A1 = A2 = A, we find D1 = D2 = D and

Fi1 = Fi2 = F , and the full linearised solution simplifies to

α(t) = B+ expλ+t

1

1

+B− expλ−t

 1

−1

 (5.10)

with eigenvalues

λ± = D + 2F, D. (5.11)

The λ− mode is the standard binary mode of separation where D > 0 leads to

unstable situation. Here, the perturbations in C1 and C2 grow with opposite signs.
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In contrast, for the λ+ mode, the two components grow together at the same rate.

Looking at the equation for F , its sign depends on a term proportional to (1−3A).

Hence, if A < 1
3 , F > 0, and λ+ > λ−. This condition corresponds to the gray

points in Fig. 5.2(c). In fact, this condition should be a continuous line, but it

appears discrete due to how we sample the phase diagram for consistency with the

full numerical results in Fig. 5.2(b).

Dominant λ+ mode explains the primary spinodal observed in Fig. 5.1(d-f),

where two components grow together for a significant period and separate from the

third fluid component. If the initial condition satisfiesA1+A2 < A3, as is the case in

Fig. 5.1(d-f), the third component forms the background, while we observe droplets

composed of C1 and C2 components. In contrast, if A1 + A2 > A3, we find the

opposite with C3 droplets and a continuous phase of C1 and C2 mixture. However,

these mixed domains cannot grow together indefinitely. At some point, they will

enter the spinodal region for the binary mixture and the two components will

undergo the secondary bulk phase diagram. As we step off from the A1 = A2 <
1
3

line, we can derive that the eigenvectors do not support any two components to

co-grow at the same rate. This limits the region in the ternary phase diagram that

phase separates via the two step spinodal pathway.

For the rest of the phase diagram where there is at least one positive eigen-

value, considering the full linear solution leads to the conclusion that ternary phase

separation is dominated by the two more major components, in agreement with the

numerical results. Further, from energetic arguments, it is favourable for the minor

component to be enriched at the interface, instead of uniformly diffused in the bulk

of the major components. The remaining task in this case is to understand if and

how the instability at interface takes place. Enrichment and instability at the in-

terface is a novel mechanism that is not present is spontaneous phase separation

of binary fluids.

To study this we simulate fluid strips in 2-D initialised with the following
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Figure 5.3: Evolution of the minority component initialised at the interface for
(a-b) a = 3ε/8 and (c-d) a = ε/2.

concentration profile, as shown in Fig. 5.3:

C1(r) = 1− C2(r)− C3(r), (5.12)

C2(r) = 1
2

(
1 + tanh

(2(r −R+ a)
ε

))
, (5.13)

C3(r) = 1
2

(
1− tanh

(2(r −R− a)
ε

))
, (5.14)

where r is the distance from the centre of a fluid strip, R is half the thickness of the

strip, and a is the shift from an equilibrium hyperbolic tangent profile for a strip

of C2 surrounded by C3. With increasing a > 0, we effectively introduce additional

minority fluid component C1 at the interface between C2 and C3. Numerically

we find the minority component at the interface is stable for small a, Fig. 5.3(a-

b), but it becomes unstable for large a, Fig. 5.3(a-b). The transition occurs

as a ∼ ε/2, irrespective of the thickness of the strip. Hence, this instability is

primarily determined by the amount of the minority component at the interface,

relative to the interface length between the two major components. In addition,

since this mode of phase separation requires an instability to form droplets, it is

only possible when the spatial dimension is larger than two. It cannot occur in

1-D.

With this observation we can make a simple phenomenological model for when

patchy droplets will occur. We first determine when spinodal decomposition will

occur, i.e. when at least one of the eigenvalues is positive. Then we consider the
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cases where type I and II do not occur. In these cases there are two possibilities

left for phase separation, either following type III or IV pathway.

To predict the boundary between types III and IV, we make the following

approximations. We assume that the minor component is evenly distributed at the

interfaces. Without any loss of generality, here we have chosen fluid component 1

to be the minor component. Given the total amount of minor component present

is V1, and the interface length is LI , then we can approximate the thickness of

the minor component layer at the interfaces between C2 and C3 to be w ∼ V1/LI .

Following the results shown in Fig. 5.3, we expect instability leading to droplets

formation to occur above w ∼ 2a ∼ ε.

If phase separation between the two major components (e.g. C2 and C3) con-

tinues indefinitely, LI will decrease and w will increase monotonically with time.

Hence, eventually we can expect the enrichment and instability mechanism to take

place. However, in our simulations, we often observe meta-stable states where the

phase separated droplets are well separated and they do not coalesce further. This

limits the decrease in LI and the increase in w. If the number of such droplets is N ,

then the total interface length is LI ∼ 2πrdN , where rd is the characteristic radius

of the droplet given by rd ∼ (V1/πN)1/2. Combining this with the relations derived

in the previous paragraph we find the enrichment and instability mechanism to be

observed when

ε ∼
(

2πV1
N

)1/2
∼
(

2π V1
VT

VT
N

)1/2
∼
(

2πA1
n

)1/2
. (5.15)

Here A1 is the average concentration of the C1 component in the system, VT is the

total volume of the simulation, and n is the typical density of isolated droplets.

Fitting n to obtain the best comparison between the phase diagrams in Fig. 5.2(b-

c), we obtain n ∼ 1.7 x10−4. In practice, the number of isolated droplets observed

does vary depending on the initial concentrations. However, they are in the same

order as the fitted value of n. Importantly, as n is an intensive variable, our

argument holds independent of the system size.
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Figure 5.4: Phase diagrams for non equal surface tensions where Σ3 = 9Σ1, Σ2 =
4Σ1. In panel (a), the red, blue and green regions have two, one, and zero positive
eigenvalues. Panel (b) is the numerically obtained phase diagram, while panel (c)
is our theoretical prediction. In panels (b) and (c), red denotes the direct ternary
phase separation mechanism, gray the primary and secondary bulk phase separation
mechanism, orange the enrichment and instability at the interface mechanism, blue
the binary-like mechanism, and green no phase separation. Note that the colour
scheme for the eigenvalues, panel (a), is not equivalent to the colour scheme used
for the other two, panels (b) and (c).

5.3 Non-Equal Surface Tensions

Having elucidated the case for equal surface tensions, we now generalise our argu-

ment for the non equal surface tensions case. As a representative example, here we

choose Σ3 = 9Σ1, Σ2 = 4Σ1 in the free energy model, such that γ23/γ12 = 2.6 and

γ13/γ12 = 2.0. This set of parameters corresponds to the formation of Neumann

angles θ1 = 63.9◦, θ2 = 136.3◦, and θ3 = 159.8◦ at the three phase contact line.

A major difference for non-equal surface tensions is the occurrence of secondary

bulk separation. The criteria needs to be broadened, as it is possible for secondary

bulk separation to occur even if the eigenvector components are not equal. This

is because the different surface tensions give rise to varying growth rates for each

of the fluid component, and this has a complex interplay with the initial fluid

concentrations. Similar to the equal surface tension criteria, we focus on the largest

positive eigenvalue and its corresponding eigenvector. Following Eq. (5.10), with

e1 and e2 the components of the eigenvector with the largest positive eigenvalue, we

consider two possible conditions for secondary bulk phase separation to be observed.

First, if C1 = C2 and e1 = e2, where the two components grow together. This is the

same condition as discussed in the previous section, but in fact this condition is rare
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to achieve when the surface tensions of the fluid interfaces are not equal. As before,

without any loss of generality, we explicitly consider concentration variations in C1

and C2, and the third component can be obtained via C3 = 1−C1−C2. Second, if

one component has a lower initial concentration (C1 < C2), but its fluctuation has

a faster growth rate e1 > e2 (or vice versa for C2 < C1). In such a case, the two

components are mixed together for some period before eventually phase separating.

Using this updated condition for the secondary bulk phase separation, along

with the other conditions as described for equal surface tensions, we can compare

the resulting phase diagrams. Fig. 5.4 (a) shows the eigenvalue analysis, while

(b) and (c) which represent the numerical and theoretical results respectively. As

before, the eigenvalue analysis has little predictive value for the morphologies ob-

served in the simulations. Comparing Figs. 5.4(b) and (c), we further find that our

analysis extends to general surface tension values. It is clear that the key trends

are captured for each phase separation mechanism, even though the boundaries of

the different regions are less accurate when compared to the equal surface tension

case.

The deviations observed are mainly due to two reasons. First, at the bound-

ary between binary-like and enrichment mechanisms, the minor component does

not always enrich at the interface, especially when its total amount is very small

compared to the simulation size. Here, the minor component remains mixed in the

background components. Such tendency is more common with increasing surface

tension, as it becomes more costly energetically to create interfaces.

Second, at the boundary between enrichment and secondary bulk phase sep-

aration mechanisms, there are several sources of uncertainties to classify the phase

separation mechanism. In particular, the separation between the two more minor

components may take place within a small droplet and before the components

clearly reach their expected bulk values. Furthermore, the condition C1 < C2 and

e1 > e2 may not be sufficient to induce secondary bulk separation as e1 may need

to be significantly larger than our algorithm would predict.
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To further highlight the importance of the eigenvectors in the phase separation

dynamics, consider the results shown in Fig. 5.5. Here, we initialise the simulation

with A1 = 0.1 (red), A2 = 0.7 (green), and A3 = 0.2 (blue), and the normal-

ised eigenvector corresponding to the largest positive eigenvalue is calculated to be

(e1, e2, e3) = (−0.580, 0.788,−0.208). In agreement with our updated condition,

both C1 and C3 remain mixed together for a significant length of time as the com-

posite droplets emerge from the C2 background. Then, despite the C1 component

being the most minor component, we observe it separates out before the second

minor component C3. This is precisely because the eigenvector component for C1

is twice larger compared to C3. The component C3 eventually begins to enrich at

the interfaces to form patches.

Finally, we make a geometric observation of why the worm morphology is not

possible here during phase separation. Since the Neumann angle θ1 < 90◦, the

domains enriched in C1 will form concave capillary bridges with negative pressure

compared to their surroundings. These will lead to the surrounding domains quickly

merging together, and as a result, the worm morphology cannot be supported.

5.4 Conclusion

In this work, we have systematically simulated spontaneous phase separation of

ternary fluid mixtures across the composition space, both when all the fluid sur-

face tensions are equal and when they all have different values. We have identified

four fundamental phase separation mechanisms, which we term as (I) direct ternary

phase separation, (II) primary and secondary bulk phase separation, (III) enrich-

ment and instability at interface, and (IV) binary-like. Typically, these mechanisms

respectibely lead to lattice, worm, patchy droplet and droplet morphologies.

In contrast to binary phase separation, to understand the phase separation

pathways, we have shown that the eigenvalues alone are insufficient, and it is im-

portant to consider both the eigenvalues and eigenvectors. Such consideration is
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Figure 5.5: Phase separation dynamics for initial concentrations: C1 = 0.1 (red),
C2 = 0.7 (green), and C3 = 0.2 (blue), with time evolving from left to right. Panels
(a-c) show all components at once, while panels (d-f) and (g-i) only show C1 and
C3.

in good agreement with direct simulation results, and it leads us to the conclusion

that the enrichment and instability at interface mechanism is the dominant mech-

anism in ternary fluid phase separation. Yet, surprisingly, to our knowledge, it has

been overlooked so far in the literature.

We have also studied a range of viscosity ratios (up to a maximum of 10, data

not shown). We find no significant changes in the resulting separation pathways,

though it remains an open question how larger ratios may affect the phase separ-

ation dynamics. In the future, it will also be interesting to extend the study to

three dimensional phase separation and to consider more than three fluid compon-

ents, including when the components are all immiscible and when they are partially

miscible.
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Chapter 6

Conclusion

In this thesis, we were interested in key interfacial phenomena where key ternary

fluid effects are seen, which have no analogy from the binary system. We studied

three problems: capillary bridges, de-wetting and phase separation.

First, we studied how the force of a capillary bridge between two liquid infused

surfaces (LIS) compared with a capillary bridge between two smooth surfaces at

varying interfacial tensions and contact angles. For single component liquid capil-

lary bridges, the capillary force, in the absence of external forces such as gravity,

can be determined by three factors: the interfacial tension of the droplet-gas inter-

face, the Young’s contact angle of the droplet and the volume of the droplet. For

capillary bridges on liquid-infused surfaces, there are two liquid components. We

found that in addition to the interfacial tensions, contact angles and volumes of

the liquids, the interaction between the three fluids characterised by the Neumann

angles also play a significant role in determining the capillary force.

By using the concept of an apparent contact angle, we attempted to create one

to one comparisons with the single component capillary bridge. Our observations

highlighted that the apparent contact angle alone could not describe the capillary

force behaviour, reinforcing the notion that there are ternary effects which cannot

be captured using purely binary concepts. The Neumann angles have a significant

impact on the shape of the lubricant ridge where the flatter the lubricant ridge the
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closer the capillary force would behave like the binary case. However, we found

for sharp lubricant ridges the capillary force can be enhanced. Additionally we

found several capillary bridge morphologies which have no analogue with the single

liquid component capillary bridges. Again, we found that the Neumann angles and

apparent contact angle both play a critical role in whether such capillary bridge

morphologies are possible.

We also introduced a novel mechanism for cleaning by studying the de-wetting

of a soil droplet from a flat substrate using the triple fluid contact to pull the and

stretch droplet away from the surface. Our approach relies on the physics at the

triple fluid junction differing from a binary fluid system.

By explicitly simulating the movement of the liquid-gas interfaces, our stud-

ies showed how such a scenario can be understood to some degree as a capillary

bridge, but with the surrounding gas acting as the top surface. Drawing from our

knowledge of Neumann angles and apparent contact angles, we can understand

qualitatively why certain interfacial tension formulations can result in soil droplets

de-wetting (or not). Importantly the Young’s contact angles on the solid surface are

insufficient to determine the de-wettability of the droplet. The Neumann angles

at the droplet-formulation-gas triplet point also play a significant factor on the

droplet’s de-wettability.

We further found that when significant momentum is inputted into the system

the momentum can aid or hinder de-wetting. we saw two categories of behaviour:

for convex droplets momentum is usually beneficial to partially remove the soil in

comparison to when little momentum is inputted; while momentum is detrimental

for concave droplets. Crudely, the criteria for convex and concave droplets can be

determined from the Neumann angles and the surface contact angles, which again

highlights the importance of the triple contact junction, and further reinforces that

this mechanism is truly a ternary fluid effect.

From the perspective of resource usage, we found such a controlled input of
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cleaning formulation has the potential to minimise their use, both in raw materials

and energy in comparison to more traditional methods of cleaning. This differs

from a binary approach which would typically involve flooding the system with

cleanser fluid and then relying on momentum and altering the contact angles of

the soil droplet to induce de-wetting. Practically speaking, the formulation could

be introduced slowly by soaking or slowly submerging the surface. So long as the

three fluid contact line has enough time to form, then ternary lift-off should be

possible.

Finally, we studied how phase separation is affected by three fluid interactions.

We have categorised the possible structures which can result, identifying four sep-

aration pathways and morphologies. This contrasts with phase separation in binary

fluids which can be thought of having only one type of separation pathway.

We highlight how in a ternary mixture there are two scenarios which involve

two stages of phase separation: secondary bulk separation, and enrichment and

instability at interface. Such scenarios are simply not possible in binary fluids

mixtures. By performing linear stability analysis we gained an understanding of

when such structures and separation pathways occur. Unlike for the binary case,

we highlighted the importance of considering the eigenvector components which

result when performing linear stability analysis, and not just the eigenvalues alone

as is typical in the literature.

6.1 Future Work

There are several possibilities for future research. From the modelling perspective,

it will be interesting to develop a fully consistent free energy model and method for

both the bulk fluid physics and fluid-solid interactions that can be extended to N-

component cases. There are already several works in the literature in this direction

[108, 106, 107, 104]. A good N-component model will need to be reducible and avoid
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Figure 6.1: Here we show experimental results of a droplet moving upside down
on a liquid infused surface. Used under Creative Commons Attribution 4.0 In-
ternational License license from Nature, Scientific Reports, Self-propelled droplet
transport on shaped-liquid surfaces, G Launay et al. Copyright 2020.

spurious condensation at the interface and/or contact line. It must also allow the

interfacial tensions to be freely varied including for complete spreading cases.

Thus far liquid infused surfaces have been considered primarily for its slippery

properties. However, we have highlighted that such surfaces are only slippery in the

direction parallel to the surface, and they can be quite sticky in the perpendicular

direction. There are already some studies which highlight this stickiness [231], but

more in depth experimental evidence of the effect of varying interfacial tensions is

needed. For example, see Fig. 6.1 where a droplet is shown moving upside down on

LIS [231], highlighting the sticky nature of LIS. It would also be optimal for future

experimental research to focus on regimes where the surface structures are well

wetted to provide enough lubricant to form a large lubricant ridge to emphasise

any effects varying surface tension would have. Precise experiments could be

performed to verify the force curves. These could follow the method used by de

Souza et al [54], but this time using LIS as the substrates. Here they attach the

upper substrate to a cantilever mechanism, and measure the deflection to calculate

the capillary force. Care however, must be taken to ensure the effect of gravity is

minimised by ensuring the droplet size is well below the relevant capillary length.

We envision that LIS being sticky and slippery can open up new areas for

applications. An example could be the atmospheric capture of water vapour [232],

where the strong capillary adhesion combined with the slippery could be used to

capture water vapour and its slippery surface to transport the captured water.
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In this thesis, a novel mechanism for de-wetting droplets has been studied

numerically, but experimental verification is also required. To verify our results, it

would be optimal to study small droplets such that gravity effects are minimised, so

the lift-off mechanism is more apparent. If it is necessary to study larger droplets,

it would be ideal to begin with scenarios where the soil and formulation have equal

or similar density. We have already shown that buoyancy can play a significant

role in affecting the outcome, and to isolate the lift-off mechanism, these factors

cannot be ignored.

As part of the overall strategy on resource constrained cleaning, we could con-

sider other related methods to de-wet a droplet. In cases where full de-wetting is

not possible, we can consider adding kinetic energy from other external perturb-

ations. For example, one can consider oscillating the solid substrate or inducing

pressure waves to the system. If such a method does allow for de-wetting, then

significant reductions in resources, such as water and surfactant usage, could be

attained even in cases where spontaneous ternary lift-off is not possible.

In such a study one would need to take care that oscillations are applied at

different liquid film thicknesses, as the ternary lift-off mechanism has been shown

to stretch droplets similar to a capillary bridge. We have shown that the energy

barrier between a de-wetted and a stretched droplet decreases as the thickness of

the liquid film is increased. One could infer from such an observation that less

kinetic energy would be needed to de-wet the droplet if the liquid film thickness

is increased. An experiment could be performed where a soil droplet is resting

on a substrate. Formulation could be introduced in two ways. One method could

be to place the substrate in a box with an inlet for the formulation very similar

to the method modelled here. Another could be to have a bath of the formulation

and slowly submerge the substrate with the soil droplet into the bath, thereby

simulating the scenario of a formulation film lifting the soil droplet.

We have also studied phase separation in 2D for ternary mixtures. Perhaps the

next simplest step is to verify if our results have analogues when undergoing phase
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separation in 3D. It seems plausible that secondary bulk separation is likely to occur

in a similar manner. However, it is not so obvious the enrichment and instability

of the interface mechanism would be completely analogous. In our analysis we

highlighted that such a process is dependent on the interface length. Naturally,

when extended to 3D this would have to become an interfacial area. We have

also highlighted that instability at interfaces is not possible in 1D as there is no

direction for the minor component to flow to coalesce and separate out from the

interface. Hence, it seems likely that the extra dimension may have much more of

a significant impact here.

To verify these experimentally we could follow the method by Nauman et al.

[68], where for 2D cases they studied a film composed of a mixture of polymers

and solvents to verify some of the structures which can form. A similar set of

studies can be performed, for greater variety of polymers and solvents. However,

the difficulty lies in any potential 3D experiments. Here, it is not obvious how easy

it would be to verify structures visually if the various fluids are not transparent.

This may lead to a strong limitation in the variety of fluids studied which can lead

to concrete results. To alleviate this to some degree 3D simulations can be studied

in tandem, especially if the 3D structures found numerically produces characteristic

cross-sectional profiles.

More broadly, we can also study phase separation for N-component fluid mix-

tures. The key questions here would be if similar separation pathways are possible,

and whether there may even be a limit to how complicated structures can form.

For instance, there is a mathematical theorem known as the four colour theorem

[233], which states that no more than four colours are needed to cover a 2D space

with no two adjacent areas being the same colour. It would be interesting to study

whether quaternary mixtures may be the limit to possible structural complexity

when mixtures phase separate.

Another open question is what would be the equivalent of Neumann angles

in higher order mixtures. Is it even possible to have anything more complicated,

120



6.1. Future Work

Figure 6.2: Here we show numerical results for quaternary fluid mixtures undergo-
ing phase separation for equal surface tensions . Each different shade from white to
black is a separate fluid. Reprinted from Physica A: Statistical Mechanics and its
Applications, 387, H. G. Lee et al., A second-order accurate non-linear difference
scheme for the N -component Cahn–Hilliard system, volume 13, Copyright 2008,
with permission from Elsevier.

such as a four phase junction. Fig. 6.2 shows numerical simulations obtained for

quaternary fluid mixtures undergoing phase separation by Kim et al. [234]. From

their work they do not observe any four-fluid junction. However, we must note

that such simulations by Kim et al. [234] did not test significant variations on the

phase space, rather they used the simulations to validate the numerical method

they developed.
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