University

W Durham

AR

Durham E-Theses

Distributed Real-Time Control Schemes for
Microgrids Considering Uncertain Renewable Sources
With Provisions for Resilient Operation

CRUZ-VICTORIO, MARCOS,EDUARDO

How to cite:

CRUZ-VICTORIO, MARCOS,EDUARDO (2022) Distributed Real-Time Control Schemes for
Microgrids Considering Uncertain Renewable Sources With Provisions for Resilient Operation, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/14631/

Use policy

@ This work is licensed under a Creative Commons Attribution Non-commercial No
Derivatives 3.0 (CC BY-NC-ND)

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/14631/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://etheses.dur.ac.uk

Distributed Real-Time Control
Schemes for Microgrids Considering
Uncertain Renewable Sources With

Provisions for Resilient Operation

Marcos Eduardo Cruz Victorio

A thesis presented for the degree of

Doctor of Philosophy

AB
W Durham

University

Department of Engineering
The University of Durham
United Kingdom
April 2022



Distributed Real-Time Control Schemes for Microgrids
Considering Uncertain Renewable Sources With
Provisions for Resilient Operation

Marcos Eduardo Cruz Victorio

Abstract

This thesis presents the integration and improvement of different technologies
for optimal operation of microgrids, where the objective is to minimise cost of
supply and maximise their renewable hosting capacity in a reliable and seamless
manner. To this end, this work has proposed a hierarchical control framework
for coordinating energy transactions between different stakeholders within the
microgrid, and different microgrid clusters with distributed renewable resources

integrated, in an economical and reliable manner.

The stability of the proposed primary control layer, and corresponding voltage
bus, has been investigated using Lyapunov’s direct method to ensure it re-
mains stable under all operating conditions. Meanwhile, the resiliency of the
underlying communication network to maintain a fully connected network for
the distributed control nodes has been verified mathematically using Graph
theory by ensuring the underlying Laplacian matrix for the network always
remains singular and without repeated zero eigenvalues, even following failures
in any one individual communication node. This is done to ensure that the
proposed control system is capable of reliably maintaining electrical service

under normal and faulty conditions.

The hierarchical control framework relies on implementation of Artificial Intel-
ligence (AI)-based techniques, mainly using Multi Agent Systems implemented
within the Java Agent Development Framework environment to simulate a
distributed control architecture for achieving real-time control of multiple
resources within the microgrid (and clusters of microgrids). Meanwhile, using

Machine Learning (ML), accurate forecast models have been developed for both




electricity price forecast and wind speed (for distributed renewable resources)
within the control architecture for optimising energy transactions between

relevant stakeholders within the microgrid.

To verify the accuracy and compare the results of ML-based forecast models,
this thesis proposes the use of statistical methods to ensure any differences
between different forecast models are due to the model structure rather than
randomness in the data. This comparison is carried out in addition to usual
statistical comparison of different forecast models in terms of total absolute

error, squared error and total cost.

At the hardware level, the hierarchical control system has been implemented
using a connected network of Raspberry Pi computers acting as individual
distributed control nodes with the microgrid simulated in a real-time simulator
environment realised by an OPAL-RT (series OP5700) real-time simulator to
test the viability of the control system to respond to a microgrid cluster system

in real-time.

Supervisors: Dr. Behzad Kazemtabrizi and Dr. Mahmoud Shahbazi
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CHAPTER ].

Introduction

1.1 Motivation

With the continuous global population growth, and the ever increasing of the
electricity demand and carbon emissions, different types of energy resources are
being integrated into the electric system. In this context, the microgrid has emerged
as a viable option to integrate new small-scale electricity generation known as
distributed generation. The concept of a microgrid as a building block of the smart
grid has appeared in recent years to improve the conventional model of energy

transmission in terms of reliability, demand side management and scalability [2].

A microgrid is a system capable of generating or storing its own energy and
supplying its own electric demand autonomously, where each internal source is
known as a Distributed Energy Resource (DER) [3]. The microgrid’s sources use
either conventional generation sources or Renewable Energy Source (RES), and are

connected to the grid in a Point of Common Coupling (PCC).

The study of the microgrid is often divided in two main parts, the physical layer,
which includes all the electrical components, and the information layer, which
describes the control system that regulates all the components of the physical
layer to achieve as many objectives as necessary. This layer may be organised as

a central energy management system or a collection of controllers connected by a
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communication network. Given that organisation is done at different levels and
for different time scales, the control system of the microgrid is usually divided in a
hierarchy, where the bottom levels are the fastest and follow the references provided

by the upper control levels.

In this sense, the optimal operation of the microgrid depends on the objectives
pursued by the control system, the configuration and resources available to the
microgrid. Finding the solution to the optimisation problems solved in the control
system can be done offline or online. In offline optimisation, the references for
the control system are calculated in advance to operation, as opposed to online
optimisation, where the references are generated continuously during operation.
Online optimisation allows the microgrid’s control system to respond immediately

to signals from the physical layer. This type of control is known as real-time control.

Optimal operation of the microgrid in economic terms is required to promote the
utilisation of distributed generation. This can be done in a reliable way with the
use of real-time control in a distributed control system, with the implementation of

electricity grid price forecast.

Moreover, to increase the efforts to combat climate change, the electricity sector
is encouraged to integrate renewable generation, for example, with wind turbines.
While there has been an increase of large-scale wind farms applications, the regions
suitable for their application is limited. These limits include social, economic
or environmental reasons, for which small-scale wind generation in the form of

microgrids is needed as well as part of the renewable generation integration.

However, wind energy is inherently variable and such variations are often hard
to control. For this reason any reliable power generation scheduling regime for
wind-integrated power systems relies on the accuracy of wind speed forecast. This
is done in order to maintain an optimum and stable operation which could account

for unforeseen wind variations.

This thesis is aimed to contribute to the global effort to combat climate change
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by the development of a stable, reliable, and optimal real-time control system for
the integration of conventional and renewable distributed generation in the form of

active distribution networks with the use of artificial intelligence.

1.2 Research Objectives

The main objective of this research is to find methods to streamline the imple-
mentation of distributed generation at the medium and low voltage levels, in the
distribution circuit, in order to combat climate change by reducing the amount of
conventional generation needed and simultaneously making the electricity service

cheaper and more reliable.

The main objective will be addressed by the design and development of a microgrid
control system with the following characteristics:

o Hierarchical structure to maximise scalability

e Stable power output considering the non-linear response of the circuit

e Free from single points of failure

o Fault tolerance against distributed controller faults and communication system

faults
e Optimal power schedule in terms of total cost
e Real-time operation capabilities
To verify that the control system has the characteristics detailed above, the appro-

priate test cases will be defined and simulated accordingly, presenting the simulation

response, and the corresponding analysis in each chapter through the thesis.
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1.3 Original Contributions

Given the research objectives outlined and guided by the motivation presented

above, the following contributions are presented in this thesis:

e The design and testing of a tertiary and secondary control layer based on
Multi-Agent System, suitable for multi-microgrid stochastic multi-objective
optimal operation in real-time with renewable energy integrated. Part of these

results are presented in [4-6].

e The development, testing and comparison of suitable forecast methods for
electricity price and wind speed, using non-linear auto-regressive artificial
neural networks, for facilitating distributed real-time control in microgrids.
Additionally, a forecast method comparison is presented for statistical valida-
tion and computational cost comparison. Part of these results are presented

in 7, 8].

e The implementation of a real-time distributed hierarchical control framework
together with its stability verified using Lyapunov’s stability analysis. The
conditions for asymptotic stability are presented for distributed generation
source with the proposed primary control layer. This conditions are then added
as constraints in the optimisation problem to ensure stability and optimal
operation of the microgrid. Conditions to extends the stability analysis to the
microgrid and the rest of the control system are discussed as well. Some of

these results are accepted for publication in [6].

e The design, implementation and testing of a suitable restoration service to
increase the fault-tolerance capabilities of the control system of microgrid
clusters and within a single microgrid, verified with the use of graph theory.

Some of these results are under review for publication in [6].
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Table 1.1: Peer-reviewed Publications of this research.

Research Publications

1. Cruz Victorio, M. E., Kazemtabrizi, B. & Shahbazi, M. (2021), Price
Forecast Methodologies Comparison for Microgrid Control with Multi-Agent
Systems, 14th IEEE PES Power Tech Conference. Madrid Virtual, IEEE.

2. Cruz Victorio, M. E., Kazemtabrizi, B. & Shahbazi, M. (2020), Distributed
Real-Time Power Management in Microgrids using Multi-agent Control with
Provisions of Fault Tolerance, 29th IEEE International Symposium on
Industrial Electronics. Delft, Netherlands, IEEE, 108-113.

3. Cruz Victorio, M. E., Kazemtabrizi, B. & Shahbazi, M. (2019),
Decentralised Real-time Optimisation of Power Management in Microgrids
Using Multi-Agent Control, 9th International Conference on Power and
Energy Systems. Perth, Australia, IEEE, Piscataway, NJ, 1-6.

4. Cruz Victorio, Marcos Eduardo, Kazemtabrizi, Behzad
& Mahmoud, Shahbazi (2022). Statistical Evaluation of
Wind Speed Forecast Models for Microgrid Distributed Control.
IET Smart Grid

Table 1.2: Presentations regarding this research.

Conference titles and corresponding events

1. Real-time Cost Optimisation for Power Management in Microgrids. RT20.
Online event organised by OPAL-RT Technologies in Paris.

2. Design of Distributed Control Systems for Microgrids RT21. Online event
organised by OPAL-RT Technologies in Paris.

Parts of this thesis have been published in international conferences and a journal
article as described in Table 1.1. Additionally, this research has been presented in

the international events described in Table 1.2.

1.4 Thesis outline

The chapters of this thesis are organised as follows:

Chapter 2 presents the general literature background of the methods and techniques
applied for the development of the control systems and corresponding analysis.
It starts with the general properties of a control system suitable for microgrids,
followed by the methods required to achieve stable and optimal operation with the

use of forecast methods and Multi Agent Systems. It finishes with the description of
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the hardware used for real-time simulation to validate the proposed control system.

Chapter 3 presents the stability and resilient operation of the microgrid, given
the non-linear response of the electric circuit and its interaction with the primary
controllers. The stability of operation is demonstrated with the use of the Lyapunov
stability analysis between the primary controllers and the physical layer. A restora-
tion service at the secondary control level is analysed with the use of graph theory
to establish an acceptable level of resiliency and fault tolerance for the proposed
hierarchical control system. The appropriate test case, simulations and results are

presented in terms of stability, electrical regulation and fault-tolerance.

Chapter 4 presents the study of variables required in advance to achieve optimal
real-time control in a distributed environment, namely, electricity price and wind
speed. As these variables are needed in advance, suitable forecast methods are
needed, given limited information and computational resources. Forecast models
based on auto-regression and artificial intelligence are selected for their ability to
generate the relevant inputs locally. Test cases are presented for electricity price
and wind speed, analysing the performance of the models in terms of error and

statistical significance difference.

Chapter 5 presents the proposed microgrid hierarchical control system and its
performance in terms of the global objectives of a single microgrids, namely, total
cost and renewable generation maximisation, analysed by the relevant simulated
test cases. Additionally, the tertiary control layer is presented for microgrid-cluster
operation. Simulation results from a microgrid-cluster test case that integrates the
entire control hierarchy is used to validate the multi-objective capabilities of the

proposed microgrid distributed control.

Finally, Chapter 6 concludes the thesis and explores the possible future work.
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CHAPTER 2

Background

This chapter serves as a literature review of the necessary techniques, methods,
algorithms and technologies in the design of a control system capable of meeting all

the requirements set in the previous chapter.

In this chapter, the nature of distributed generation and its advantages and disad-
vantages are discussed first [9], before presenting the hierarchical control structure
and paradigms of such control system [10-13]. This is followed by a review of
the reliability and stability methods employed to guarantee the microgrid’s ability
to maintain power supply [14, 15|, followed by the forecast method required for

optimum operation of and power management within the microgrid [16-18].

To this end, suitable forecast methods will be discussed [18]. Furthermore, in this
chapter, the underlying processes for realising distributed control the microgrids
relying Artificial Intelligence units, otherwise known as agents will also be discussed
in this chapter [19-21]. The introduction to such agents will be presented and the
chapter ends with the discussion of the technologies employed to simulate and test
the integration of all the different components for realising a hierarchical control

framework for optimum and reliable operation of microgrids [22].
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2.1 Distributed Generation and Microgrids

In conventional power grids, large central generation generate power in the order
of kilovolts. The voltage is then elevated to hundreds of kilovolts and send to the
transmission network. Power in the transmission network travels large distances
using the tranmission lines. The Transmission System Operator (TSO) is the entity
that performs the planning and management of this part of the power system

23, 24].

Power reaches substations that reduce voltage and then goes into the distribution
circuit at medium and lower voltage. The consumers are connected to the distribu-
tion circuit and are only capable of controlling their own load, in the sense that they
choose when to use electric power. It follows that in conventional power systems,
the direction of the power flow from central generation to consumers in a vertically
oriented unidirectional manner. This type of electric networks are managed by a

Distributed Network Operator (DNO) [24, 25].

With the application of modern communication and automation technologies, the
components of the distribution network, such as microgrids, become "active", in the
sense that they can interact the main grid beyond controlling their own demand,
forming an Active Distribution Network (ADN) [9]. As the operator of the circuit
must also consider the management of active components and the communication
network of the ADN, the operator of the ADN is known as Distributed System
Operator (DSO) [25].

The smart grid is the future electrical grid that is capable of two-way commu-
nication between generation and consumption by means of smart technology, by
implementation of Al into the power management and modern communication
technologies. The DERs, microgrids, and ADNs are the building blocks of the smart
grid [3, 26, 27).

The implementation of these types of distribution circuits leads to consumers being
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capable of sending power through the distribution grid, either to the main grid
or another consumer with the use of DERs [24]. With this new type of power
generation, new control systems for the active components must be developed to

maximise the benefits of distributed generation.

2.2 Microgrid Distributed Control

Most control frameworks applied to microgrids are of a hierarchical nature, using
up to three levels of control, separated by the different time frames required for
the control tasks for microgrid management [28]. The primary control is usually
intended for the physical regulation of microgrids [11]. Depending on the type of
control, the secondary can be used to regulate the power flow of the microgrid’s
sources [10, 11], for example, for load sharing, frequency restoration or supply cost
minimisation. The tertiary level can be used to regulate the power flow between the
main grid and the microgrid or between microgrids. The properties and objectives

of each control layer will be explored in the next section of this chapter.

The term "microgrid control" in this thesis is used to represent any control scheme
for such applications as optimum generation scheduling coupled with real-time
control of distributed generation assets within a microgrid to ensure demand is met
at all times, subject to the microgrid’s physical and the operational boundaries.
The control schemes can be implemented either as centralised, decentralised or in a

distributed fashion [28, 29].

In a centralised control framework, the operation of the entire microgrid relies on a
single controller, often called central energy management system [10]. In this type
of control, all the information of the system must be shared with a central controller
that provides all the control signals for the rest of the system, which limits the
privacy of users of this type of control, compared to the other control frameworks
[30]. Additionally, this type of control tends to be computationally expensive and

leaves the entire primary controllers dependant on a single secondary controller [10],
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which means that the entire operation of the microgrid is vulnerable to a single

point of failure [6].

In decentralised control, there is no communication between the different components
of the microgrid, and regulation relies on the electrical state of the physical layer
[12], which limits the type of objectives that can be achieved in this type of control.
Given that the decentralised control relies on physical measurements of the electrical
system, there is no control on the information available between controllers with
regards to use of power generation and load. In other words, in this type of control
there is no mechanism to manage the amount of information available to with

regards to load profile.

To combat these vulnerabilities, distributed secondary control emerges as an altern-
ative for microgrid control [6]. In a distributed secondary control, there are separate
control units that coordinate with each other through a separate communication
network in the form of a computational cloud to realise the power management
objectives. With the use of the cloud, each distributed controller can be designed
to manage and separate locally maintained information and information made
available to other participants in the distribution network. Distributed control has
the advantage of increased privacy for owners of distributed generation and end

users compared to the other types of control paradigms [30].

With recent efforts to move towards the ADN, with more DERs connected in the
distribution network, control systems also have to "reflect" this new nature. To
this end, Multi Agent System (MAS) is proposed as a scalable distributed control
method [31-33]. The MAS approach will be further explored in the followings
sections. Scalability is the ability of the power system to easily change or upgrade
the amount of its components, in the context of microgrids, is the ability to increase

or reduce the amount of distributed generation it contains [34].

Distributed control also adds scalability to the structure of the microgrid, as any

DER can be added or removed from the microgrid without the need to redesign the
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Distributed Control System

Local Local Local
information information information

Secondary control

Distributed Distributed Distributed
controller controller controller

mary control

Microgrid p

Figure 2.1: Distributed control system model implementation in real-time simulation.

control scheme, as the system adjusts itself [22, 35, 36].

The hierarchical and distributed control applied to microgrid control in this thesis,
along with the physical layer, is illustrated in Figure 2.1. Distributed control is
selected as the control paradigm of the secondary control as it follows the nature of

distributed generation.

The organisation, benefits and challenges of microgrid hierarchical distributed
control will be detailed in the following sections. In general terms, distributed
control is considered ideal, as it offers a good trade-off between communication
requirements, reliability, scalability and independence of the sources within the

microgrid, or across different microgrids [37].
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2.3 Hierarchical Control for Microgrids

Some of the most pressing challenges of research in microgrid control are the im-
provement of stability, scalability and cost effectiveness of the microgrid’s generation
resources(38]. A dynamical system is stable if it can remain or oscillate around an
equilibrium point or state of motion [39], in the context of power system, stability
can be measured on the variations of electrical magnitudes, such as voltage and
frequency around a defined range. This chapter introduces a hierarchical microgrid

control scheme aimed at addressing all these challenges.

The microgrid control presented in this thesis is organised in a hierarchy, where each
level has specific objectives and time response capabilities, with control references
for each layer supplied by the immediate preceding top layer. This structure is
based on the ISA-95, an international standard for hierarchical organisation between
enterprise and control systems, which allows the implementation and organisation

of additional grid services [10-13].

Fach of these layers will be presented in detail in the following subsections. The

control hierarchy is illustrated in Figure 2.2.

The primary control layer directly regulates the voltage of the individual DERs,
having one controller per resource, to maintain the power flow required considering
stability and voltage regulation limits of the DERs in the distribution circuit
[4, 5, 22].

The Secondary control layer is used to plan and coordinate an optimum power
schedule for the DERs within each microgrid [10, 11]. Many microgrids have a
centralised secondary control to maximise the economic benefits from the use of

DERs, by solving the entire microgrid’s optimisation problems, for example, supply

Tertiary control * Distribution grid regulation

¢ Microgrid regulation
* Converter regulation ‘

Figure 2.2: Hierarchical Control for microgrids.

April 2022



2.3. Hierarchical Control for Microgrids 13

cost minimisation, in a centralised way. Although, this kind of control structure tends
to be computationally expensive and leaves all the primary controllers dependant on
a single secondary controller, which means that the entire operation of the microgrid
and privacy of end users [30] are vulnerable to a single point of failure. Because of
this, the secondary control layer can be centralised, decentralised or have elements

of both [10, 13, 37].

The tertiary control level is responsible for realising control at the distribution system
level at the top most level, which includes, offering services between the main grid
and the microgrid or other microgrids in a microgrid cluster, forming a hierarchical

framework for coordinating and controlling several Microgrids simultaneously [40].

To achieve optimal operation at the secondary and tertiary control levels in real-time
control, it is necessary for the microgrids to have information about the future
electricity grid prices and weather conditions to generate its power schedule [6, 41].
This is due to start-up cost for controllable DERs, the states of charge for the Energy
Storage System (ESS) and stochastic generation for the RES, which make real-time
operation, and in turn total cost, of the microgrid dependant on its previous states

[41].

Therefore, it is essential that decisions taken at the secondary and tertiary levels
are supported by accurate forecasts of relevant variables according to their local
objectives [6, 8]. Moreover, it is essential that each source in the microgrid has its

own local forecast model, according to its needs.

Using local forecast models in the distributed control architecture also improves
the security of local information, as the information itself is not required to be
shared directly with the rest of the system. For example, a distributed controller
in the secondary control layer may communicate the power references used for its
local DER to a primary controller, without the need to inform a central energy

management system any of the characteristics of said DER [10].
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2.3.1 Primary Control Layer

Most primary controllers use two control loops to regulate the voltage and current
of the DER. The primary control of [42] is an example of a control with an inner and
outer control loop, where the outer loop sends a reference for the inner loop, making
a more stable, accurate and fast control. The most common communication-less
decentralised control is the droop control [43], however it cannot simultaneously
offer good voltage regulation and power sharing, having to trade-off one for the
other [38]. The main difference of the proposed controller for this thesis from
conventional droop control is that the proposed controller doesn’t rely on the
frequency for power regulation. I will be shown in chapter 5 that this allows the
primary control to follow the power references from secondary control to achieve cost
minimisation. Additionally, this feature of the primary controller avoids the need of
under-frequency load shedding schemes, that could result in cascading failures of

the power system [44].

2.3.1.1 Proposed Primary Controller

The designed primary controller of each DER, in this thesis, is composed of two
Proportional Integral (PI) control loops, an inner loop for voltage control and an
outer loop for power control [4, 45]. This type of control allows the regulation of
disturbances in the voltage before their effects affect the power regulation, given the
difference in the required speed of regulation [45]. The control diagram is ilustrated

in Figure 2.3.

As this control layer is designed for distributed control to ensure stability and
availability of the electricity service, its differences with other similar approaches

will be detailed in chapter 3.

In this thesis, it is assumed that all DERs are converter interfaced. The inner loop
regulates voltage and phase angle based on the reference provided by the outer loop.

The outer loop is used to direct the DER to send or receive a specific amount of
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Power
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Voltage Inner loop
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Power Outer loop calculation

Figure 2.3: Primary cascade controller design diagram.

active and reactive power, given the power references from the secondary control

layer [4].

The AC voltage signal used in the inner loop is converted to dq0 reference frame
with the Park’s Transform [46]. The dqO0 reference frame is used to convert the AC
signal into 3 constant variables at steady state, which are significantly easier to

regulate using PI control.

Park’s Transform, as defined by (2.1) and (2.2), is applied using a local clock to
provide the w t reference for PI control regulation of voltage signals, which outputs

the signal reference for the converters [4].

quO = Tvabc (2 . 1)

sin(wt) sin(wt — &) sin(wt + &)

T = | cos(wt) cos(wt—2) cos(wt+ 2F) (2.2)

1 1 1

2 2 2
The DQO transformation enables the determination of the direction of the power flow
from a single point of measurement and provide a measurement of instantaneous
active and reactive powers which could not have been possible to obtain from a
single direct measurement of voltage and current in the time domain [46, 47]. In

other words, this is done locally to obtain all the relevant information the electrical
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Figure 2.4: Short line model diagram for the power flow equations used for primary
control.

state of the DER. The stability of the proposed primary controller is analysed in

chapter 3.

The primary control layer follows the equations of power flow between two buses in
a short line model based on the lines of the distribution grid, shown in Figure 2.4,

described by:

Sg =3VsI§ (2.3)

where Sg is the apparent power sent, Vg sending bus voltage and Ig is the sending
bus current and -* indicates the complex conjugate operation. This leads to:

V8¢ — VR¢45) *

Ps+jQs = 3Vs¢( ~

(2.4)

where Pg is the active power sent, (Jg reactive power sent, Vi receiving bus voltage,
0 phase angle, R is the resistance of the line, Z = R + j X is the impedance of the

line and ¢ represents each phase.

In the case of the distribution grid and in microgrids, the lines are essentially
resistive, which means that R >> X. This allows the decoupling active and reactive
power in 2.5 in voltage amplitude and voltage phase angle control expressed by the

following equation:

V52¢ - VS¢ VR¢>COS5 . Vs¢ VR¢sin5
R TR

Ps + jQs ~ 3( ) (2.5)

The instantaneous active and reactive powers are calculated using the bus phase

current and voltages with (2.6) and (2.7) [47] and are fed back in the outer loop :
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Figure 2.5: Conceptual diagram of the hierarchical control system used in this thesis.
The grey region indicates the part of the system analysed with the use of graph
theory for control resiliency and the pink region delimits the elements analysed with
the use of Lyapunov theory for stability.

Pout = (Uaia + Ubib + Ucic) (26)

Qout = \}g[(vb - 'Uc)ia + (Uc - Ua)ib + (Ua - vb)iC] (27)

where vy, v, and v, are the phase voltages measurements and i,, 7, and . are the
phase current measurements, for simplicity, all of these are represented as V,,; and

Loyt in Figure 2.3.

The primary control level in this thesis has the objective of regulating the voltage
and phase angle of each DER while maintaining the frequency constant, following
the power references from the secondary control [4, 6] as shown in the blue region

in Figure 2.5.

Each primary controller regulates the voltage and frequency response of each DER
and ESS to be maintained within the UK standard, of 400 — 6% + 10%V;n. and
50 + 1%H z.

While the controller can maintain microgrid operation with only voltage references,
in hierarchical control, a power schedule supplied as the active and reactive power
references, P,y and Q,.y, to the input of the primary controllers to achieve the

objectives of the secondary control layer [4, 6], which is presented next.
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2.3.2 Secondary Control Layer

This control layer realises the power management of the microgrid by regulating

the primary control layer.

This control layer mainly optimises the use of the combination of DERs and ESS in
the microgrid, for example, for load sharing within the microgrid, or minimising
total supply cost of microgrid over one day. However, optimising only for the
cost of distributed generation may neglect other aspects such as reliability and
scalability, which compromise the operation of the distributed resources and the
supply of energy [10] [48], therefore, for long term cost optimisation, these aspects
of the microgrid operation must be considered. The secondary control can also be

optimised in terms of maximum use of installed renewable generation [49].

Compared to larger power plants, the formulation of the microgrid supply cost
minimisation problem can be simplified compared to the former, given the difference
in the physical response of small-scale generation. For example, cost minimisation
models for grid-connected microgrids can neglect shutdown cost, minimum up and
down time, and ramping rates, focusing instead on start up cost and operating cost
for DERs and the dynamic behaviour of the State of Charge (SOC)s of the batteries
[50]. To minimise costs with the use of batteries, energy arbitrage, which essentially
is a buying and selling strategy to take advantage of energy prices and generate

profit, has been proposed for the UK, as well as grid balancing for renewables [51].

For the case of distributed control, these simplification of the supply cost minimisa-
tion problem can be solved by integrating Model Predictive Control (MPC). MPC,
also known as Receding Horizon control, is a control method where the plant is
simulated to calculate its state in the future to select the control inputs required to

reach such state [52].

MPC requires that all system outputs be measured with the same sample rate,
this could be expensive if different parts of the system respond with dynamics at

different time scales [53]. More specifically, in MPC schemes, the simulation of
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the plant is done offline, this means that the response of the system to some given
input is calculated in advance, which greatly reduces the amount of calculations
necessary to forecast future states of the microgrid sources [54]. The MPC method
combined with a forecast method can be used in a secondary distributed control
for the optimisation of a components of the microgrid, such that the following

objectives are achieved.

2.3.2.1 Microgrid Cost Optimisation

The operation of the secondary layer as a whole has the objective of minimising
the total supply cost considering buying and selling from/to the grid, from the
perspective of the owners/operators of the DERs and ESS, over some period, for
example, one day [6, 55]. To minimise the total supply cost of the entire microgrid the

following optimisation problem is solved by the secondary control layer [29, 30, 56]:

Hlljin S ((P(i),Vie TAViel (2.8a)
j v

where c¢; is the cost function of each source j of DERs and ESS, [J is the set
containing the generation sources. P; is the active power sent by source j at each

hour ¢ and Z is the set containing the time steps.

Given the physical limitations of generators, the optimisation function includes the

following constraints [55]:

Bjpin < Pj < Pl (2.9)
SOCnin < SOC < SOC 0z (2.10)
SOC(i +1) = SOC(i) — nP(i) (2.11)
Pr(i) —ijj(z') =0,VjeJ,Viel (2.12)

As mentioned previously, the solution of the cost optimisation problem defines the

power references for the primary controllers. Apart from the cost minimisation,
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microgrids control can also be used to implement renewable generation optimisation
[41], as presented next. The calculation of the optimal power schedule for these
objectives is done by a distributed secondary control layer realised by a MAS

application.

2.3.2.2 Renewable Generation Optimisation

The use of RES has emerged as a solution to reduce carbon emissions due to
the conventional electrical generation. Microgrids can facilitate the integration of
these resources for small-scale resources in locations where large-scale renewable

integration is limited due to geographical, social or economic reasons [57].

However, an important challenge with maximisation of renewable generation in a
microgrid is its stochastic nature, which causes errors in the power schedule for this
type of generation[6, 41, 55]. Consequently, a regulation system must be put in

place to increase the reliability of the renewable generation.

In this thesis, this is achieved by coupling the renewable generation with a battery,
such that a reliable power schedule can be produced with this types of sources to
account for the variable nature of the RES generation output [41]. Integrating RES
with a suitable battery storage system has two main challenges, first, the battery
has limited capacity to compensate for the difference between the scheduled power
and the actual power generation of the RES. The second challenge is that batteries
have a limited number of cycles of charge and discharge before their performance
deteriorates significantly, for which it is important to use the batteries only when it

is necessary [55].

These challenges can be mitigated by reducing the error between the scheduled power
and the actual power generation [8, 41]. It is therefore critical for the distributed
control system to have the most accurate wind speed forecast model (in case of a
wind-based RES), to maximise the use of renewable generation and at the same time

minimise the use of batteries to increase their lifespan. The battery management to
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regulate wind-based RES is considered in chapter 5.

2.3.3 Tertiary Control Layer

Tertiary control layer is considered to be the highest control level and is used to
coordinate the interaction of several microgrids in a single electrical circuit as a
microgrid cluster [10]. This is done by applying smart pricing to the cluster, creating
incentives for the use of distributed generation, minimising the load for the main

grid [30].

Given that the tertiary control layer coordinates the operation of several microgrid
accross the distribution circuit [58], this level of control can operate at a level
equivalent to the DSO level [10]. The microgrid coordination achieved by this layer
is normally realised by solving a suitable multi-objective optimisation problem [58].

This level of control is presented in chapter 5.

2.4 Control Paradigms

As mentioned in previous sections of this chapter, microgrid hierarchical control
can be designed as centralised power management unit, with all the control tasks
being realised at a single point that concentrates all the input signals, information,
optimisation and generation of the control signals [10]. It can also be designed
as decentralised with no communication between generation sources and relying
on obeying generalised rules based on the voltage and frequency of the distribu-
tion circuit [12], or distributed which contains elements of both centralised and

decentralised control architectures [59].

The secondary control layer can be designed to mimic the centralised control schemes
of a utility transmission grid in which a single control unit regulates the operation
of the entire system and interactions between stakeholders within the system [60].

The secondary control can also be designed as fully decentralised, taking advantage
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Figure 2.6: Comparison of the elements for Microgrid control hierarchy for centralised
and distributed control.

of the already decentralised nature of DERs with their own autonomous controllers,
where there is no need for a central overseer and the system is regulated only at the
bus level [12]. The third type of secondary control is the distributed control, which
combines elements of centralised and decentralised [6, 59]. In microgrid distributed
control, each stakeholder, for example a DER, has some level of autonomy and
communicates with other entities in the microgrid, such that the network as a whole
reaches a global objective, such as minimum cost for DERs [55, 56]. Figure 2.6

illustrates the hierarchy control layer concept for central and distributed control.

The main difference between distributed control and fully decentralised microgrid
control is that in the distributed control the controllers are connected in a com-
munication network additional to the electrical network [4]. In the decentralised
approach there is no communication between the controllers in the secondary control

layer [12]. This is illustred in Figure 2.5.

In the case of a secondary distributed control, the forecast models used to solve the
microgrid cost optimisation must have the highest possible accuracy at the least
computational cost without requiring external signals to operate [8]. A slow forecast

model might increase the delay in the microgrid response, deviating it from the
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optimal point of operation, while dependency on external signals would effectively

centralise the control to the signal, defeating the purpose of distributed control.

Despite the fact that centralised secondary controls become vulnerable to single
points of failure, completely decentralised systems heavily rely on the transmission
of information as either voltage or frequency signals, which require the DERs and
loads to operate as inertia-based systems, which limits their ability to respond
to sudden load changes or nonlinear loads [10]. The distributed control offers a
solution that implements the best of both approaches and it is therefore selected as

the control paradigm in this thesis.

To minimise the computational requirements of the communication network in a
distributed environment, some systems such as the one presented in [61] use an event-
triggered communication mechanism instead of periodically sending information
between the controllers of the distributed system. Therefore, these systems are
vulnerable to cascade a fault in the communication network when a sender node is
lost and the receiving nodes wait indefinitely for its message. There is therefore a
need for distributed control methods that are capable of maintaining stable and

reliable operation under normal and faulty conditions and simultaneously achieve
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optimal operation [5]. The following section introduces the reliability and stability

requirements for the microgrids and the methods employed to analyse them.

2.5 Reliability and Stability

In any system that changes over time, such as any power system, is defined as a
dynamic system. A dynamic system is defined by its states X and how they change
over time. A dynamic system described by its states X and a function X = f has
an equilibrium point in X, if f(zeq) = 0. A system is Lyapunov stable if after
a disturbance, starting from equilibrium, the states of the system remains in the
vicinity of x¢4. If the system can become arbitrarily close to x., then the system is
said to be asymptotically stable. If the system is asymptotically stable for x., from
any point in the domain of x, then the system is said to be globally asymptotically
stable. If after the disturbance the system does not become close to any equilibrium

point, the system is said to be unstable [14, 15].

While the microgrid must enable the optimal power scheduling for cost minimisa-
tion, it must also be able to maintain stable operation, load and DER variations
notwithstanding [58]. Consequently, the limits of operation of the primary control
are defined for asymptotic stability operation, to guarantee that the primary control

is stable, using Lyapunov stability analysis.

For the case of non-linear systems, there are two methods based on Lyapunov
analysis [14]. In the first method, known as the indirect method, the system
is linearised around the equilibrium point, however this method is valid only for
stability in the small-signal case. The second method, known as the direct method, is
based on verification of Lyapunov’s theorems of the equilibrium point in combination
with Lyapunov functions. The functions used to verify the stability of a nonlinear

system in the direct method are named Lyapunov functions.

Given that the second method models the non-linear properties of the system, the

second method is useful to analyse the stability of the system for the large-signal
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case as well. Similarly, with this method is possible to draw conclusions about the
global stability of the systems [14]. Because of these properties, the Lyapunov’s
second method, or direct, is selected to analyse for the stability of the microgrid
in combination with the proposed control scheme. This method will be further

explored in chapter 3.

Resilient operation in the context of microgrids refers to the ability of the system
withstand or adapt to adverse conditions, either in the physical layer or in the
information layer [39]. Reliability, while it can be measured using certain indices such
as loss of energy or load expectation [62], ability to withstand extreme conditions
[3], in general terms, reliability refers to the ability of the system to operate as
expected [48, 63]. Most of research has been focused on the faults in the physical

layer as they impose a threat to life and property [64, 65].

Systems that are fault-tolerant to certain type of faults have been developed to
combat these threats, taking advantage of distributed control. In [22] the use of
graph theory for the study of changing communication networks of MAS applications.
This is the case for fault-tolerance in the MAS components and communication
links. In [64] multiple controllers called replicas are used for the same resource
to maintain the availability of the microgrid’s control system due to delays in
real-time control, this however increases the number of controllers required for each
microgrid’s actuator. In [66] the use of graph theory is used in a MAS application
in real-time control to show stable operation, however this approach only covered
communication interruptions. In [65] a similar approach is used for power line faults

in offline simulations.

Distributed control allows a higher level of resilient operation, as faulty controller
does not necessary lead to system breakdown [56]. However, there is still a need to
verify that distributed control schemes can maintain stable operation in real-time
controllers under faulty conditions for any single component of the control system

6].
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To guarantee resilient operation of the secondary control in the event of loss of one
of the nodes of the communication network of the secondary control, the restoration
service [5] is implemented in this thesis. This ability of the proposed control is
analysed in terms of graph theory, with the MAS communication network modelled
as a connected graph and applied to real-time control scenarios. The mechanisms for

resilient microgrid operation of each layer are explained in the following subsections.

It is crucial that interactions between stakeholders within a microgrid remain optimal
as they continue to grow in size and complexity [67]. Most importantly, microgrids
should be able to continue to facilitate integration of distributed generation systems
in line with the global decarbonisation goals of energy systems. To this end, the two
main concerns of the distributed generation system are their economic efficiency and
their reliability [58]. Suitable control methods must be designed to maximise both
the economic efficiency and reliability at the same time. These control methods
should be capable of generating the optimal power schedule, considering uncertainties
due to electricity price variations as well as occurrence of faults in a reliable and
efficient manner [5, 6, 58]. For improved reliability, [68] presents distributed controls

that maintain operation in the event of any component outages.

A lot of effort has been put into designing control strategies to optimise the power
schedules of microgrids, however, there is a need to verify that such control systems
are reliable in terms of stability during normal operation and fault conditions, while

at the same time remain optimal [5, 6, 58|.

FEach layer of the microgrid control design in this thesis is designed to guarantee
resilient and stable operation while maintaining optimal cost [5]. The stability of
the primary layer is verified with the use of Lyapunov’s stability analysis while
the secondary layer implements the appropriate price forecast methods based on
Auto-Regression (AR) and fault-tolerance mechanisms [6]. The resilience of the

secondary layer is verified mathematically using graph theory.

Defining the conditions in which a control system is stable is of critical importance
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in microgrids because they must be capable to regulate the voltage in low inertia
conditions that make it more vulnerable to changes in the internal generation and
demand. While the small signal analysis has been used in microgrid stability analysis,
the large-signal analysis can properly define the nonlinear transient response of the

system and define the stability limits of the system [69].

The use of the Lyapunov method to guarantee the stability of a microgrid controller
can be found in control systems such as in [70]. Similarly, in [38] the Lyapunov
stability method is applied to a single DER as a general tool of analysis for microgrids
of any size for small signals in droop control, used in decentralised control. The
Lyapunov analysis is used in this thesis to guarantee stability for large enough
disturbances in large enough time scales that may not be captured in individual
simulation cases, which could neglect such dynamics otherwise for distributed control.

In other words, the stability is guaranteed independently from the simulation model.

For the resilience of the communication network formed by the MAS, the system
must remain fully connected even after the loss of one of the nodes [5]. This can be
mathematically verified with the use of graph theory, in particular with the use of
the characteristic polynomial, also known as L-polynomial, of the connected graph
modelling the underlying communication system for the agents within the MAS

system [71, 72].

To verify the stability and resiliency of the control system proposed, the power flow
of the line model used and the primary control applied is studied to guarantee the

power availability in the microgrid.

The analysis is carried out by solving the analytical response of the primary
controllers, which is composed of an inner and outer loop. For the inner loop, the
study of the transfer function is done to establish its stability. The outer loop is
analysed using Lyapunov’s second method to determine the conditions for local
asymptotic stability, given as the domain of the state variables used. Figure 2.5

shows in pink the area analysed for stability.
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The second part of power availability of the microgrid is its resilient operation under
normal and under faulty conditions. In the case of distributed control, the resilient
operation refers to the ability of the control system to continue operation when
one of its components becomes faulty without breakdown of the rest of the system
[48, 63]. This can be verified with the use of graph theory for the connectivity of the
microgrid’s communication network [5, 6], which is analysed in chapter 3. Figure
2.5 shows in grey the area of the control system analysed for resilient operation

using graph theory.

Once the design of the distributed control system allows the operation ofs the
microgrid even in the event of loss of communication between its components, the
microgrid control must also be able to achieve optimal operation based on a power

management goal [5, 58].

To achieve optimal operation microgrid control system must be able to realise
forecasts about the relevant variables affecting it, in this case grid price, to account
for the non-linear behaviour of its components [58, 73]. The next section describes
suitable forecast methods for distributed control as they rely only on historical
data that can be stored and shared locally in each controller, such that they do not

centralise the control system.

2.6 Forecast Methods

To achieve optimal operation at the secondary and tertiary control layers and max-
imise the economic benefits of distributed generation, it is necessary for microgrids
to have information about available generation in the DERs in advance [58, 73].
This is the case due to start-up costs for controllable DERs, the state of charge
for the case of ESS and stochastic generation for the case of RES, which make the
optimal operation of the microgrid dependant on its previous, current and future

states [6].
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The use of forecast methods for the optimal operation of microgrids has been
reported previously for centralised control, such as in [74] and in [75], where the
power generation forecast were realised by an Auto regressive External (ARX)
model for one-minute ahead predictions, and in [75] where an ARX model is used

as part of a day-ahead electricity price forecast.

However, to maximise reliability of the microgrids, the forecast methods should be
compatible with the distributed control paradigm, such that the forecast methods
do not introduce single points of failure as in centralised forecast methods [8]. To
achieve optimal operation in a distributed environment, auto-regression forecast
models are proposed as a suitable solution. Additionally, the fast time response is
needed to allow real-time control when interacting with the primary control layer

[5-8).

AR models are statistical models, based on linear-regression for time-series forecast-
ing. They do not implement any physical description of the model, but rather, are
entirely based on the past values of the series to predict the future values [16, 17].
They are however, for the same reason, suitable for distributed control as forecasting

models [18].

One type of such AR models is the persistence model, which is based on the idea
that the changes in two consecutive samples of a time series are small enough to
obtain a good approximation of the next sample, considering only the previous
sample to forecast the next one [76]. For its simplicity, this model serves as a point

of comparison with other forecast models [65, 77, 78].

Markov Chain Monte Carlo (MCMC) methods are Bayesian methods used to
estimate the parameters that describe a Probability Density Function (PDF) [79].
MCMC methods have been used with distributed generation to estimate solar
generation [80], and in [81] for wind speed forecasting. In [75, 82], a combined
approach of machine learning with maximum likelihood estimation is utilised to

predict day ahead market clearing prices, while in [50] scenarios are predicted to
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minimise total supply cost for a microgrid. In [83] price prediction is used for
optimal load control and is established that there is a high correlation of the hour

prices of one day and next day, and prices of the same week day.

Applications of Monte Carlo and Artificial Neural Network (ANN) methods have
appeared in the literature, such as in [84], where a centralised energy management
system used a deep neural network as a simulation tool to extract samples of a
multi microgrid system’s response to price signal, with the objective of minimising

peak to average ratio power and maximise energy profits for the DSO.

ANNSs are among the latest forecast models used as time-series forecasting models
[75, 82, 85-87]. They are very powerful forecast tools because of the flexibility of
their architecture and training, which allows the use of virtually any time-series

data as their input.

ANNSs are organised in groups of connected layers of neurons, with a non-linear
functions applied to the output of each layer, known as activation functions [8]. In
other words, the activation function is the non-linear transformation applied to the

data that allows the ANN to model the non-linear properties of the data.

Some of the most common activation functions used in forecast models include
the Logistic Sigmoid function, Tangent Hyperbolic function and Rectifier Linear

88, 89).

The Non-linear Auto-Regression Network (NARNET) is a type of ANN which is
designed to generate future time steps in a non-linear time-series, without the need
of any other external input [90]. With regards to the way of organising the layers
of the NARNET, there are three main ways, having a single layer, layers connected

in series and layers connected in parallel [82, 87].

The characteristics of the NARNET make it ideal for forecasting in a distributed
control setting because the control would not be subject to vulnerabilities caused

by dependence of external signals [8].
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For each of the forecast requirements needed to achieve optimal operation of the

microgrid, the following subsections describe the methods used.

2.6.1 Electric Price Forecast Methods

In this thesis two main price forecast methodologies are tested and compared for
UK wholesale electricity price forecast. The transactions realised in future case
studies are based on this results, given some adjustment to reflect the prices and

costs of the electricity retail market.

The first one is an AR model built with the MCMC method ,which is further
optimised with numerical and heuristic solvers, referred in this thesis as Weighted

Average (WA) model [5, 17].

Price forecasting with AR models requires some assumptions based on the observed
data: Price is considered to be normally distributed for a specific hour [91], and a
high correlation exists between an hour price, and the prices for the same hour for
the previous day and seven days ago as the demand tends to follow these patterns

83).

MCMC models have been applied in renewable generation [80, 81|, as well for
modelling load uncertainties in microgrid optimisation [92]. The Metropolis-Hasting

[93] is used for its easy implementation for the MCMC.

The second family of methods are based on the NARNET model mentioned previ-
ously, which are computationally expensive for training, although execution only
requires a small amount of computational resources [8]. The reason is that in order
to find the optimal model and to take into account randomness in the training

process, many iterations of the training need to be done.

Examples of ANNs that have been used for time series forecasting are found in
[75, 82, 87]. For the case of intra-day price prediction, the entire day values can be
considered as a single vector or wavelet [75] to model features that the ANN can

learn.
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Figure 2.8: NARNET basic architecture. The price variables are used to indicate
that the input can be the historical actual price p and the output 7 is the forecast.

Both of the price forecast methodologies are described in the following subsections.

2.6.1.1 Weighted Average Model

This method is a combination of an auto-regression model, and statistical parameters
added via the MCMC. The contribution of each term in this model is defined as
a weighted average. Each of the weights is obtained by optimising the model in
terms of total error, using the Quasi-Newton (QN) Method. The QN algorithm is

described in appendix A.

MCMC methods, as described in [79], are a common tool for dynamic price forecast
in distributed generation. MCMC methods are used in this thesis to estimate mean
and standard deviation of electricity prices at every hour. The WA combines this
estimation with the past prices using an Auto-regression component to generate

the price forecast.

2.6.1.2 Non-linear Auto-Regressive Neural Network Model

The second family of price forecast methods analysed in this thesis is a type of
artificial intelligence in the form of a NARNET. The key difference between the
NARNET and a conventional ANN is the use of the delay and feedback, to use the

i-th value of a time series to obtain the 7 + 1-th value.

The three architectures analysed in this thesis are shown in Figure 2.9. The main

difference between the different architectures is the number and organisation of the
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hidden layers inside the network. In all cases, the NARNET models a time series

as a function of its past values, in this case, the electricity price [94]:

aay(t) = fann(m(t — 1), 7 (t — d)) (2.13)

where d is the number of elements in the delay vector Dgy,, which functions as the
memory in the NARNET, Il is vector of price estimates 7 for a day at time ¢,
and funy, is the NARNET mathematical model. The first block in a NARNET is
the update of the delay vector D, that contains the prices of each past day as its

elements:

Dann(t) = [ptfla <o ,pt—d]T (214)

where p; are the prices at each time ¢t. As the NARNET operates, the values shift
positions to the next time step, eliminating the oldest information first, while the
vector Dgnn is completed with the network’s feedback loop. The mathematical
model of the layers in the NARNET, and the model of the NARNET itself is known
as the forecast model’s transfer function. The transfer function for each hidden

layer is described by the logistic sigmoid function[95]:

1
(1 _|_ eiWIDann)

fSigmoid(WlDann) = (215)

Where Wi is the matrix of weights of the hidden layer, with a number of rows
equal to the number of neurons in the layer. The open loop transfer function of a

NARNET with a single hidden layer is:
fseries - WQfSigmoid(WlDann(t) + Bl) + BQ (216)

where Ws is the matrix of weights in the output layer of the NARNET, By is the

bias vector of the hidden layer and Bs is the bias vector in the output layer.

As NARNETS are also used for wind speed forecasting in this thesis, more of it

details will be presented at the end of this section.
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Complementary to accuracy and error metrics, total cost is another way to assess
the effectiveness of a forecast model when applied to a specific test case [96]. The
total cost resulting from the use of the price forecast methods, along with the

operation of the rest of the control system is presented in chapter 5.

2.6.2 Wind Speed Forecast Methods

In this subsection, the families of wind speed forecast methods applicable to distrib-
uted control are presented. Similar to grid price forecast methods, these methods

are based on AR methods and ANN models.

As explained previously for the AR models, the persistence model serves as the
simplest auto regressive model that can be implemented, often used as a point
of comparison with another forecast model [65, 77, 78]. An evaluation of the
performance of the persistence model can also be used as an indication of the
magnitude of variation in the data is, when studying forecast models applied to
different data sets. The following subsections provide a description of the suitable
methods for real-time distributed control. The mathematical formulation of these

models is described in chapter 4.

2.6.2.1 Persistence Model

The persistence model is basically the assumption that the difference between one
sample and the next is small when the sampling frequency is sufficiently small, and

therefore the wind speed one step ahead will remain mostly unchanged [78].

The effectiveness of the persistence model depends on the location and sampling
frequency. This model would not be suitable for generating forecasts with time
horizons larger than one hour. This model will be used as a baseline to compare

the rest of the wind speed forecast models [65].
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2.6.2.2 ARMA model

The Auto Regression Moving Average (ARMA) model uses two principles to realise
its forecast. This models combines the past values with information about past errors
to realise its forecast. This methods allows the modelling of complex behaviours
with relatively low amount of weights used during execution [97]. However, as past
errors are required, this model needs to run for a number of time-steps equal to
the amount of past errors required [17]. In contrast, auto-regression only requires
information about the past behaviour of the intended variable to be predicted and
not past performance of the model itself, which simplifies optimisation of the model

for minimal error and operation.

2.6.2.3 Auto-regression Model

This model also produces the forecast of the wind speed only with past values,
with the difference that in this thesis it is optimised using the Quasi-Newton solver
to minimise the total error, from a given starting point. The advantages of this
method are the convergence of the solution and the quicker generation of the solution

compared to the ANNs [8].

This forecast model is defined as follows:

Far(t) =Y Wanr(di)Yus(t — d;),¥di € Dar (2.17)

Where F4p is the AR wind speed forecast, realised by the sum of the wind speed
samples Y, multiplied by the wagr; elements in the vector of weights Wxpr for
the AR model. The elements of this sum are indexed by the d; hours in the set

Dar=[t—1...t —dag], where dap is the delay size of this model.

The weights wapr; are optimised with the Quasi-Newton method by solving the

following least squares problem:
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Figure 2.9: NARNET Architectures used for this study. a) single hidden layer. b)
series hidden layers. ¢) parallel hidden layers.

min Y (Yus(t) — Fag(t)?,Vt € T (2.18)
War t

In equation 2.18, all the weights Wag ;, grouped in the Wxpg vector, are tuned to
minimise the total summation of the squared errors applied to the entire historical

sample data available of T" samples.

2.6.2.4 NARNET Model

As mentioned previously, in this type of ANN, the output is feedback to the input,
with an internal matrix called Delay that stores information and serves as a memory
in time-series forecasting. This network then produces the forecast based only on

past values of the time series, in this case, past values of wind speed [7, 8, 77].

In this study the connections between the layers is defined by three different

architectures tested shown in Figure 2.9.

Each hidden layer in the NARNET has the following function:

A1 = fa(Wi A + B) (2.19)
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where A;y1 is the output of the layer [, A; is the input of the layer, w; is the weight
matrix of the layer, B; is the bias of the layer and A; is the input of the NARNET.
Each hidden layer has an activation function f, at the end, which encodes the
non-linear properties of the data, in other words, is the function that allows the

NARNET to forecast non-linear time series. The output layer function is [98]:

A = WA + B (2.20)

In this study, three activation functions are used for the hidden layers of the

NARNET forecast model:

1
fLogsig = l+e= (221)
2
fSigmoid = 1+ e -1 (2.22)
frerv = maz (0, z) (2.23)

where fr4sig is the Logistic Sigmoid function, fgigmoiq is the hyperbolic tangent

Sigmoid function and fr.ry is the Rectified Linear Unit (ReLU) function [88, 89, 98|.

The input A7 at a specific time ¢ is stored in the NARNET as part of an internal
vector Dgy,, that also contains past values of the input, in other words, Dgun
represents the "memory" of the NARNET. In this case, Dy, contains past values
of Y5 up to t used to generate the wind speed at time ¢ + 1, also for the following
generation transfer functions, the suffix indicate the sizes of the vectors and matrices
involved, rather that enumerating the layers in which they belong, this is is done to

illustrate how these elements are affected by the parameters set on the model.

Given the complexity of the NARNET, and the randomness introduced in the
training of the ANN, this method may produce different results in terms of accuracy

for the same size of the internal matrices each time the training is done [7].

NARNET training method
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The NARNET is a machine learning method driven by historical data. The model
produces different results each time it is run even when the inputs are the same

because of the randomness induced in the training process [7, §].

The training process is randomised for two reasons: to mitigate the bias from the
selection of the training, testing and validation sets and secondly to better explore
the accuracy the model can achieve depending on the sets mentioned before. In

other words, this mechanism aids in the generalisation of the model for new data.

The training algorithm for the NARNET is the Levenberg-Marquardt algorithm,
which minimises the Mean-Squared Error (MSE) of the NARNET bewteen the
training values, which are the actual wind speeds, and the output values by adjusting
the weights and biases at each layer. The minimisation problem solved by the

training algorithm is defined as follows:

. Z (sz(t) — Fk(t))2
min t Ny VteT (2.24)

The method uses the back-propagation algorithm to obtain the Jacobian of the
errors with respect to the weights and updates the weights using a gradient descent
method similar to the quasi-Newton and Newton methods [98]. The training method
can be summarised as follows. The network is initialised with all the weights and
biases randomised with values between —1 and 1, using a uniform distributed PDF.
From this starting point the weights and biases are updated using the Levenberg-
Marquardt back-propagation algorithm, following the direction of steepest descend
until the stop criterion is met. The stop criterion is met when any of these conditions
is met: 1) The epochs have reached a maximum of 1000, an epoch is completed
when the algorithm uses all the training data once. 2) The performance goal of
MSE = 0 is achieved. 3) The gradient of the performance is 121075 or lower. 4)

The maximum validation check of 6 epochs is reached.

In this training method, the entire data set is divided in three sets, namely, the

training set, the validation set and the testing set. The training set is the set of
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samples used directly to obtain the weights and biases updates of the NARNET,

therefore the weights and biases are heavily biased by the training set.

To prevent over-fitting of the NARNET, the validation set is used as a separate
calculation of the performance of the NARNET. When the performance from the
validation check is continuously deteriorating up to the maximum of 6 epochs, the
training stops. This allows the NARNET model to be validated while avoiding

over-fitting [8].

However, the validation set indirectly influences the weights of the NARNET during
training. For this reason the test set is not used during training but as its name
implies, it used to test the performance of the NARNET once it is training. The
training, testing and validation set are randomly selected from the entire data set
in ratios of 70%, 15% and 15% accordingly. The entire training method for the
NARNET is summarised in Figure 2.10.

Once the variables required for optimal scheduling of the microgrid are available to
the control system, the secondary control layer must solve its optimisation using

the methods discussed next.

2.7 Optimisation Solvers

Power flow management must be done in the microgrid to coordinate the different
generation sources such that regulation is maintained during operation [4]. However,
power management should also use the generation sources such that their operation

is optimal given one or more microgrid objectives based on the stakeholders involved.

In this thesis, optimisation is a major component of power schedule generation for

cost minimisation as well as in the optimisation of accurate renewable generation.

The main optimisation tools are based on convex programming, dynamic pro-

gramming, stochastic programming, robust programming, and heuristic methods

2].
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Figure 2.10: Summary of the training process of the NARNET model.

The heuristic methods have the benefit that they can handle the non-linear problems
of optimal power management and are relatively easy to program [4, 55]. The
disadvantage of heuristic methods is that, given their use randomness to solve
the optimal power management, the computation time required to generate the
solutions and the solution itself is random [4]. This means that the same inputs
can generate different solutions and take different amounts of time to reach such

solution.

To maintain the ability of the microgrid’s control system to continuously regulate the
microgrid in a reliable way, tot only is important to show the ability of the secondary
control to generate optimal power schedules, but also its ability to be deployed in a
real-time control system and in a distributed control environment. This may not

be achieved with the heuristic or any other centralised offline optimisation solver
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[4]. Comparison in terms of total cost achieved by different optimisation solvers,

and computational time used, is presented in chapter 5.

For the case of the optimisation of the forecast models both heuristic and numerical
solvers can be used, both of which are useful in the verification of the solution found

to maximise accuracy achieved [8, 99].

Further in the thesis, the use of Genetic Algorithm and Quasi-Newton solvers
are used to optimise the Auto-regression forecast models [8]. The auto-regression
models used in this thesis can be optimised using linear programming, given the
nature of the minimisation problems required to be solved. A gradient descent
method is employed in the optimisation of the Artificial Neural Networks in the
training algorithm for electrical grid price and wind speed forecast [98]. Results for
the optimisation in terms of accuracy of the forecast methods used in this thesis is

presented in chapter 4.

The optimisation requirements for microgrid control can also be solved by the MAS
approach, with the benefits in control distribution and computational speed [4, 6].

The MAS approach is described in the next section.

2.8 Multi Agent Systems

To realise the hierarchical control system in a distributed environment, the use
of individual units of artificial intelligence called agents is proposed as mentioned

previously in this chapter in the form of a Multi-Agent System [100, 101].

The agents are organised in virtual groups called containers, which are connected
in a communication network. This networks of agent containers that are used to
achieve a more complex task is what composes the basic structure of the MAS

platform.

Most MAS platform applications contain three standard agents for operation: The

Agent Management system (AMS) agent that deals with the creation of agents,
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Other Multi-Agent
Platforms

Figure 2.11: Basic organisation of the elements in a MAS application. The arrows
indicate the communication between the agents. The platform can be distributed
in as many computers (hardware) as required. [1]

Directory Facilitator (DF) agent that coordinate agent service offers and request,
and the Remote Monitoring Agent (RMA) which deals with the interface across
the platform. The container that hosts the AMS and the DF of the MAS platform
is known as the main-container, only one main-container can be active in the
platform at a time [6, 102]. The rest of the containers contain the agents used for a
specific application, such as realising the microgrid’s distributed control. Figure

2.11 illustrates the basic elements of the MAS platform.

The agents have three main properties that allow the realisation of global optimisa-
tion tasks in a distributed environment. This properties are: 1) The agents follow
simple algorithms called behaviours depending on the information available to them.
2) The agents have the ability to send and receive message from other agents using
the Agent Communication Language (ACL) protocol. 3) they are easy to multiply,
such that the global tasks requirement can be realise by a combination of multiple

agents [22, 102].

MAS applications include management of: natural resources [103], single microgrids
[19] or a combination of microgrids [20, 21]. Plug-and-play design of MAS ensures
that any component can be added or removed at any point in the system without
re-engineering the controls, making it suitable for distributed control [104, 105].
Agents need to act coordinately, either by consensus to carry on most of their

actions [106], or by following a leader agent [107-109].
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Examples of the MAS approach in microgrid control are found in [22, 110] where the
MAS was used for a consensus protocol for power flow distribution between a central
controller and distributed primary controllers. However, these control systems have
a central node of operation for the forecast methods required, which represents a
single point of failure. To avoid this vulnerability, in this thesis independent forecast

methods are available at each node with local information as presented in [5].

Given their optimisation capabilities, MAS applications are used to minimise power
losses or maximise the economic benefit in microgrids, benefiting from separating
control tasks in different sub problems, for asynchronous and parallel operation
[33, 111]. These simplified sub problems can be solved by individual agents for

optimal power flows [112].

This arrangement prevents single points of failure and maximise the scalability and
adaptability of the control system, such that the distributed generation sources can

be added or removed from the microgrid.

Most of distributed controls that apply MAS, do it by programming the agents
either by cooperation or competition [10, 113]. This defines the rate at which
agents communicate, in this sense, event-triggered agents require less computational
resources for communication than state-dependent agents, as some agents may not
need to be updated at the same rate as others in the system [114], state-dependent

agents heavily rely on high frequency communication [115].

For the resilient operation of the MAS implementation in this thesis, the platform
is distributed in separate hardware devices. The device hold an agent container
connected to each of the primary controllers for the microgrid control, along with
the capacity to launch the main-container. The devices are connected in a ring
communication topology, such that a main-container is available at all times in the
platform [5]. The analysis of the resilient operation of the MAS communication

network is presented in chapter 3.

In the context of hierarchical control, optimal operation of the microgrids with
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Figure 2.12: MAS implementation in real-time simulation for distributed control.

the use of MAS is achieved by breaking the control objectives in simple tasks that
are carried over by individual agents [4, 5]. The combined operation of the agents
generate the required forecast signals as well as the power schedule, which is used
as a reference point for the primary control layer. Figure 2.12 represents the MAS
application and its interaction in the microgrid control system. Results for the
optimal operation of the microgrids with the MAS applications, given their different

objectives, are found in chapter 5.

2.8.1 Communication Protocols

A characteristic feature of the distributed control is the communication network
employed to maintain organisation of the control systems. Depending on the purpose

of the communication task, different communication protocols are used.

the backbone of the communication between the agents described previously is the
ACL messages [102]. These messages not only carry the information passed from
one agent to another, but can also describe the type of message and description
of the sender and intended receiver. Because of this, the ACL messages allow the

formation of the communication network even when information about the receiver,
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for example, address, is not known from the sender point.

Additionally to the ACL messages, in the context of microgrid distributed control,
the Transmission Control protocol (TCP) is used to communicate the devices that
realise the MAS platform, either between or with the primary control layer, requiring
the definition of Hypertext Transfer Protocol (HTTP) addresses for each container,
for containers in the same device, the containers may share the same HT'TP address,

using different ports [6, 102].

The main communication protocol between the secondary control layer, realised by
the MAS platform, and the primary level is the TCP/IP, through a defined socket

for connection, which is composed by an IP address and port.

For the case of the restoration service of the MAS platform, User Datagram
Protocol (UDP) packet monitoring is implemented. With this service, the devices
that realise the MAS platform are pinging the connection to each other [32]. This

service and its contribution to resilient operation are presented in chapter 3.

For the case of the tertiary control layer, with the Message Transport Protocol (MTP)
defined by the Foundation of Intelligent Physical Agents (FIPA), is possible to send
ACL messages over different MAS platforms. To send a ACL message between
two agents in different platforms, an MTP address is required additionally to the
TCP/IP address [32, 33].

The communication components that allow sharing messages between agents in

separate computers and in separate MAS platforms can be visualised in Figure 2.13.

2.9 Simulation Tools

All of the methods introduced in this chapter to solve the different problems of

optimal and reliable microgrid management need to be tested with conditions as
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Figure 2.13: Elements used in MAS communication between MAS platforms. The
blue arrows represent a communication link of ACL messages between agents.

realistic as possible. This subsection will describe the hardware used at each part

of the design to test it.

In the context of control systems testing, Hardware In the Loop (HIL) simulation,
refers to a type of simulation that combines hardware and software components
into the simulation model, where the software contains a virtual or mathematical
representation of the model, and the rest of the software and the hardware represent
the control system. This type of simulation is ideal to test the ability of the control
system to respond to real-time conditions in terms of operation under normal and

faulty conditions [73].

The control system developed through this thesis is tested in an OPAL-RT real-time
simulator connected to a communication network of Raspberry Pis as the secondary
control [4-6]. The reason to use this configuration is to test the ability of the system
to respond at real-time in terms of electrical variables and test the communication
algorithms against realistic technical limitations to make the tests of the control

system as close to real operation as possible.

Inside the real-time simulator, the microgrid electric circuit is modelled using the
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components provided by the Simscape Library by MATLAB and microgrid blocks
developed by the Electric Power HIL Controls Collaborative (EPHCC) [4]. Similarly,

the primary controllers are modelled inside the real-time simulator.

The secondary and tertiary control layers are realised by MAS platforms in external
devices [5, 6]. The simulator is configured to be used as a TCP/IP server to allow
the communication between the devices and the simulated model. Depending on
the test case, the devices are communicated using TCP/IP or UDP communication
protocols. For the test cases of this thesis, the devices are Raspberry Pis and

external PCs.

2.10 Summary

In this chapter, the necessary technologies and methods for the design for the control

system are presented.

It is established that a distributed control hierarchy is the main focus of the control
schemes employed in this thesis. This type of control is selected for its scalability
in the number of distributed generation sources and their respective controllers
in the microgrid. This includes the ability to maintain the rest of the microgrid
components in the case of unforeseen changes in the control system under faulty

conditions.

Solutions for economically and environmentally optimal operation without the
use of centralised power management are introduced in this chapter as suitable
distributed forecast methods, in the form of artificial intelligence integrated in the
control system. Two methods of artificial intelligence employed for this purpose
are introduced in this chapter, the Multi-Agent System and the Artificial Neural
Networks. Additionally, other technologies used to compare the performance of

these methods are also introduced in this chapter.

Finally, this chapter presents the real-time simulation technologies that are employed
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in the rest of the chapters in this thesis.
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CHAPTER 3

Distributed Real-Time Control

Stability and Reliability

3.1 Introduction

With the growing demand for decarbonisation of energy systems. To this end, there
has been an increasing effort to integrate small-scale distributed generation sources,
which will include renewable as well as conventional generation resources, with the

electric demand locally in form of microgrids.

To achieve stable and optimal operation, many microgrid applications rely on the
use of centralised power management systems, however, this approach leaves the
operation of the microgrid with the risk of single point of failure vulnerability.
Consequently, in this chapter (and in this thesis), the control schemes for microgrids

are designed with a distributed architecture.

The proposed distributed control system analysed in this chapter is the hierarchical
control based on MAS as introduced in chapter 2. The microgrid and the distributed
control system implemented in this thesis for real-time control is shown in Figure

3.1.

Given that the microgrid is used to implemented and coordinate the use of distributed

generation, combined with the electrical load over time, it is necessary to have a
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Figure 3.1: Distributed control System model implementation in real-time simulation.
The pink region delimits the Lyapunov stability analysis. The grey region, which is
the MAS platform, delimits the region of reliability analysis by graph theory. The
green block represents the physical layer, while the rest of the blocks represent the
hierarchical control system.

control system capable of maintaining and regulate voltage stability, such that end

users have a safe and reliable electrical service.

In this chapter, the necessary equations to guarantee stability of the electrical
circuit, achieved by the distributed control system used in this thesis are presented.
The stability is analysed in the physical layer, represented by the green area in
Figure 3.1, considering the interaction between buses, and the interaction between

the primary controllers with its corresponding DER.

This analysis is done with the use of Lyapunov stability theory [14], deriving the
conditions of voltage and current for stable operation given the design of the circuit
and primary controllers. The Lyapunov second method is selected for this analysis
given that it considers the non-linear components of AC power flow in the short line

model and therefore includes the large-signal case. Because of this, the conclusions
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drawn from this method can be extended to cases outside the specific simulation

test cases in this thesis.

Additionally, graph theory is employed for verifying the resiliency of the secondary
control layer. This is done by analysing the connectivity of the MAS communic-
ation network, modelled as a connected graph using its underlying characteristic

polynomial.

The characteristic polynomial, also known as the L-polynomial is used to verify the
connectivity of the MAS network under normal and faulty conditions. This is done
to further validate the stability of operation of the microgrid distributed control

system proposed.

The reliability and resilient operation of the proposed control system is validated
in this chapter with a simulation test case. The test case consists of a real-time
simulation to demonstrate the operation of the system under normal and faulty

conditions. Simulation results will be presented at the end of this chapter.

3.2 Stability Analysis

Although distributed generation offers several benefits to the electricity grid, such
as minimising power line congestion, reducing transmission losses by bringing gen-
eration closer to consumption, and allowing the integration of small-scale renewable

generation, it is most important to guarantee that such systems are reliable.

This means that there is a need for verifying that the control systems operating
distributed generation are stable during transient and steady state of operation.
The verification for stability of the microgrid with the proposed hierarchical control
system in this thesis is done at the primary control layer and its interaction with

the physical layer.

By delimiting the electrical conditions at which the interaction between buses is

stable, the primary control layer can be designed to operate each of the buses within
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some given range. In this case the buses are regulated to operate within the UK

standard of 400V}, at 50H z for the three phase system in the distribution circuit.

Each primary controller, which is shown in Figure 3.2, is designed as a PI control
with a double feedback loop, an inner loop for the regulation of the voltage of the

DERs and ESSs and an outer loop for the regulation of the power output.

This is similar to the concept of droop control, where droop control is designed to
mimic the inertia of rotational machines of the transmission circuit, in the sense
that the frequency is dependant on the active power and the voltage is dependant
on the reactive power. The paradigm of droop controllers is that the power lines of
the distribution circuit are used as a communication network in fully decentralised

control.

In other words, in decentralised droop control the DERs communicate information
regarding their generation without the need of an additional communication network,
by affecting the frequency at which the circuit operates. In contrast, in this thesis
the distributed control paradigm is employed, which uses a separate communication
network to realise the microgrid control. Given that the stability of the microgrids
depends essentially on the response of the primary control layer and its modelling,
the main differences of the conventional droop control and the control used here

are listed in Table 3.1.
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Table 3.1: Main properties of the hierarchical control of the droop control and the
proposed control in a microgrid

H Droop Control Proposed Controller

Frequency is affected
Main effect by active power and

of physical layer Voltage is affected

by reactive power

Voltage is affected by active
power and phase angle is
affected by reactive power

T ¢ No communication, it A separate communication
eo ) . .
P L relies on local network is maintained by
Communication
measurements the controllers

In the primary controllers of this thesis, the power output control is based on the
power between the source and the rest of the system, which is regarded as simple
short power line model between two buses from the point of view of the outer loop

in each of the primary controllers.

The controller is modelled in terms of the voltage and phase angle interactions with

the active and reactive power P and @ between two buses as follows:

LS / )

P = o575 (BVs = RVeosd — wLVpsind) (3:-1)
LS :

Q= 73 aps (RVasind +wLVs — wLVpcosd) (3:2)

Where Vg is the sending bus voltage, Vi is the receiving bus voltage, delta the
phase angle of the receiving bus, w the angular frequency of the system, R the
resistance of the power line connecting the buses and L the impedance of the power
line. Given the non-linear components of these equations, the Lyapunov’s second
method introduced in Chapter 2 is selected to delimit the conditions for stability of

the primary controllers.

With the use of the Lyapunov’s second method its possible to establish the limits
to which the system will reach stability for a given set point. Secondly, the current
response is analysed to delimit the speed response between the secondary level

and primary level. The stability criterion of this method is presented in the next
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subsection, similarly, details on how this method is used in this thesis are found in

Appendix C.

Once the primary controllers are guaranteed to maintain voltage stability of the
system during transient and steady state, there is a need to ensure that the
secondary control is resilient. The resilient operation of the secondary control layer
is guaranteed by implementation of the restoration service of the communication
network formed by the distributed controllers in the secondary control layer. This is
analysed by calculating the characteristic polynomial of the communication network
before and after faults using graph theory. These polynomials indicate if the network
remains fully connected and operational, which is the main advantage of distributed

control over centralised control schemes.

The stable design of the control layers provide a foundation to the entire control
system on which the optimal operation can be integrated. The stable and resilient
operation required for the reliable operation of the microgrid is analysed in this

chapter.

3.2.1 Lyapunov Stability

The following subsections will outline the necessary conditions to guarantee the
steady state stability of the system analytically using Lyapunov’s direct method,
which is required for non-linear systems, as it is in this case, analysing the system

as a large-signal model. This analysis is done over the pink region in Figure 3.1.

The system stability can be analysed by analysing the stability of each control loop,

shown in the blue region in Figure 3.2, in the primary control layer as follows:

3.2.1.1 Inner Loop

The inner loop regulates the voltage of the power converter with the aid of the LCL

filter depicted in the green region of Figure 3.2. The dynamics of the inner loop
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consider the effect of the LCL filter and the line connecting the two buses. The
stability is established by the stability of the current with respect to the voltage

output from the power converter V; and the bus voltage Vg:

dI,
Vi :LUd—f + Ve (3.3)
1
Vo =z / (Iy — Is)dt (3.4)
dI
Vo =Ls—~ + RIs + Vs (3.5)

where Iy is the converter output current, Ig is the bus current, Ly the inductance
at the converter side, Lg the inductance at the bus side, C' the capacitance and Vi

the capacitor voltage of the LCL filter. Transfer functions for Ig are:

=15 ! (3.6)
"""V T LyLsCs3 + RLyCs2 + (Ly + Lg)s + R ‘
I LyCs? +1
Ty = 25 — ves T (3.7)

Vs LyLgCs®+ RLyCs?+ (Ly + Lg)s + R

As there are no sign changes in the terms of the denominators, and all terms are
positive, all roots have negative real parts, which guarantees open loop stability
with respect to Vg. In the same manner, it is possible to calculate gains for the PI
control such that the system is closed loop stable with respect to V7. A step by

step calculation is shown in appendix B.

3.2.1.2 OQuter Loop

As the inner function is stable, the outer loop must be asymptotically stable [15] to
establish stability of the entire cascade control [116]. The outer loop models the

dynamics of power flow between buses with the following equation:

Vs

Ss = SR +w2L2(

(RVg — RVRicosd — wLVgsind)
(3.8)

+i(RVgsind + wLVg — wLVgcosd))
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Where Sg is the apparent power sent, Vg sending bus voltage, Vg is the receiving
bus voltage, J is the phase angle between Vi and Vg, w is the angular frequency, R

is the resistance of the line and L is the inductance of the line.

Selecting Vi and § as the variables and treating the rest of parameters as constant,
the following system of equations can be formulated for the active power P and

reactive power () sent from the converter to the bus:

P(Vg,0) = K1(RVRcosd +wLVgsind — RVg) (3.9)

Q(Vg,6) = K1(wLVRcosé — RVgsind — wLVg) (3.10)
3Vs

K== A1

'Ry W2I2 (3:-11)

By selecting the appropriate state variables, X; and X3, the close loop integral

control is formulated a follows:

Ve=X1+Vg (3.12)
-0 =X (3.13)
P(Xl, XQ) = Kl(Xl(RCOSXQ + stinXg) (314)

+Vs(Recos Xy + wLsinXs) — RVs)
Q(X1, X9) = K1 (X1 (wLcosXy — RsinXy) (3.15)

+Vs(wLcosXy — RsinXs) — wLVs)
X, = —K (X1 (Rcos X3 + wLsinX>) (3.16)

+Vs(Rcos Xy + wLsinX3) — RVy)

X9 = —K1(X1(wLcosXo — RsinXs) (3.17)

+Vs(wLcosXs — RsinXs) —wLVs)

which has a solution in X (0) = 0, where X = [X;X5]T. To demonstrate Lyapunov
local Asymptotic Stability by the direct method, a candidate function ¥V must have

the following properties [14, 117]:
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V(0) =0 (3.18)
V(X)>0,X#0,X € Dy (3.19)
V(X) = o0, [[X]] = o0 (3.20)
V(0)=0 (3.21)
V(X)<0,X #0,X € Dy (3.22)

The function V and domain Dx are selected as follows:

1 1
V(X) :§X12 + §X22, X € Dy (3.23)

Dx ={X e R|V(X) <a, 0 € Dx, Dx is continuous} (3.24)

As V has infinitely many solutions, Dx is constrained such that it delimits a closed
contour inside one of the closed levels curves at value o around the origin, such that
the domain Dy only contains one solution for V(X) = 0 and V(z) = 0 at X = 0,

to comply with the properties of a Lyapunov’s candidate function.

Calculating the derivative and substituting the time derivatives from the system in

(3.12) the following is obtained:

V(X) =X1X1 + XoXo, X € Dy (3.25)
= — K1(X1(X1(Reos Xy — wLsinXa)+
Vs(ReosXy — wLsinXa) — RVs)—
Xo(X1(wLcos Xz + RsinXo)+

Vs(wLcosXy + RsinXs) —wLVy))

given (3.23) and (3.25), the conditions in (3.18) are true, and therefore V is a

Lyapunov function, and therefore, that the primary control is locally asymptotically
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stable around the equilibrium point in X = 0. The stability limits of the voltage
imply a stability limit in the power that can be exchanged from one bus to another
in the grid, as the voltage drop is directly proportional to the current in the cable
and in turn, proportional to the power flow. Additionally, given that X has infinitely
many solutions, which means Dx # R, it can also be concluded that systems based

on this line models do not have a global asymptotic stable equilibrium point.

Figure 3.3 shows a rendering of V(X) with the level curves on top, showing that
the derivative is concave with a single root at 0 for a domain that delimits any of

the closed level curves.

Figure 3.4 shows the level curves of V overlaid with the trajectories of X to show
that the system is locally asymptotically stable if the starting disturbance point is
inside one of the closed level curves for an arbitrarily small error as all trajectories,
shown as the blue arrows, point towards X = 0. The step by step calculations for

the outer loop stability is presented in appendix C.

3.2.1.3 Current Stability

Once the delimitation in the domain of the references for the primary controller is
established, the next step is guaranteeing that there is enough time between the
response of each control layer, such that the control layers do not interfere with
each other. This is done by establishing the speed limits between the inner control
loop and the outer control loop, as the latter receives its reference point from the

secondary control layer.

To guarantee that the two loops do not interfere with each other, the time domain

response of the line current I(t) between the buses is calculated:

V2Vssin(wt) = RI(t) + LCZ(;) + V2Vgsin(wt + 0) (3.26)

With Laplace transform equation:
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Figure 3.3: Visualisation of the properties of (3.25) to verify that (3.23) is a
Lyapunov function. Given a closed level curve (shown at the top) as the domain
Dx the conditions V(0) =0 and V(X) < 0,X # 0, X € Dx are verified.
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KyS K3 Ky

:32+w2+32+w2+%+3

I(s) (3.27)

Where Ko, K3 and K4 are constants that are obtained by solving the following

matrix:
L 0 1 Ky 0
R L 0 Ky | = —V/2Vgsin(6) (3.28)
0 R w? Ky V2Vsw — v/2Vgcos(9)

With rest initial conditions, the current in time domain is expressed as follows:

V2

i(t) = m((Lw(VRcosé — Vs) — RVgsind)cos(wt)
+ (R(wVs — Vgeosd) — Vrsind Lw)sin(wt)

+ (L(wVs — Vgcosd) + RVRsiné)e*%t) (3.29)

It can be observed in (3.29) that the transient state depends only on the last term,
lasting 5 R/L seconds, after which the current stabilises. If the current and voltage
are stable, then it follows that the output power will also be stable, following the
reference set by the secondary controller. This sets an upper limit on how fast the
outer loop can operate and a lower limit on how slow the inner loop must be to
prevent interference between each other, in other words, to guarantee stability, the
secondary control must be slow enough to allow the primary control to stabilise the

current before setting a new power reference.

The equations described in this subsection are derived in appendix D.

3.2.1.4 Interconnected Stability

Although the stability analysis is done for the interaction of one bus with its
neighbour, this aids in the definition for the conditions of stability in the microgrid,

seen as a series of interconnected nonlinear dynamical systems.
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The following theorem is applied for interconnected systems of the form:

X = f1 (X (t), Xa(t)) (3.30)

Xy = fo (X (t), Xo(t)),t > 0 (3.31)

With initial conditions X (0) = X9, X2(0) = X209, Where f are the functions that
describe the interconnected system with state space X. If Xy is input to state stable
for X1, and bounded with respect to X; uniformly in X, then the interconnected
system is bounded [118]. In this case, the system is bounded by Dx to guarantee

asymptotic stability.

Provided each DER/ESS controller in the microgrid fulfils the conditions set for
asymptotic stability for each bus, no element in the circuit is unstable, load and
power references vary sufficiently slow and there is a bus with constant voltage
(infinite bus), namely, the main grid, a radial microgrid following this control system

will always reach steady state stability.

The reason lies in the interaction of the last bus in the system with its neighbour,
which can be seen as an interconnected nonlinear system of the form set in 3.30. If
all elements are individually asymptotic stable, it follows that the last bus (bus,,)
of the circuit, counting from the infinite bus, can always set its voltage difference
with its neighbour to follow the power reference after a finite time, stabilising it.
This process is repeated with the bus,_; until it reaches the bus connected to the
infinite bus, which is stable by definition, which in turn makes the interconnected

system bounded by Dx.

Additionally as the states of any element are always within the domain Dy, and
provided the power references change sufficiently slow, any power oscillations will
diminish until power stability is reached throughout the microgrid, as each system

is asymptotic Lyapunov stable.
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As long as all the previous conditions described are met, the primary controllers
will reach stable operation, however the control system must also be resilient at the
secondary control level. The next section will briefly review the mathematical theory
used to assure the connectivity in the communication network of the secondary

control and therefore guarantee its resilience.

3.3 Resilient Operation

In addition to verify the reliability of the microgrid’s control regarding transient
and steady state operation, it is also important to verify that in the case of a faulty
node, the remaining components of the microgrid continue stable operation. For the
case of a distributed control system, this needs to be true for the fault of any single

component, which is done by implementing the restoration service described next.

The restoration service is implemented in the MAS platform which realises the
secondary control layer of the microgrid. This service allows any of the distributed
computers in the communication network to deploy the main container if the
computer hosting it is down or unexpectedly disconnected from the network. This
means that any single computer that realises the secondary control layer can be
restored in case of faulty operation. The region in which this service has impact is

delimited by the grey region in Figure 3.1.

This service enumerates the computers forming the platform based on the order in
which they connect and forms a UDP communication ring between them. The oldest
computer in the network becomes the current leader of the platform by deploying

the main-container.

If the leader computer is disconnected from the platform, the next oldest computer
takes the leadership of the platform by incorporating the host address and port of

the previous leader and launching a back-up of the main container.

This mechanisms allows a seamless fault-tolerance operation from the point of
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the view of any other computer in the platform, as from their point of view, the

main-container simply updated its address.

In the case where there is no computer available that can launch the main container,
the platform will be lost and the primary control will no longer receive updates for
their power references. In this scenario, the microgrid itself maintains operation at

a stable point, although without a smart power management system.

Another possible scenario covered by the restoration service is that the fault occurs
in the communication link and not in the computer itself. In this case the secondary
control is divided in two platform and each communication network can operate
independently, however, this means that each platform is more vulnerable to faults
as each can only rely on a fraction of actual computers available for subsequent

faults.

The ring topology, in the formation of the communication network, is selected as
the default configuration of the communication network given that it requires the
minimum communication links between computers that allow redundancy. In other
words, the loss of any single computer does not cause disconnection of the remaining
computers in the network, which is verified by the mathematical properties of the

network with the use of graph theory as shown in the following section.

3.3.1 Secondary Control Layer Resilience

In this section the resiliency of the MAS communication network in the secondary
control layer against faults is analysed by modelling the underlying MAS commu-
nication network as a connected graph. First, the necessary elements of graph
theory are introduced, followed by the design of the restoration service in the MAS

platform.
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3.3.1.1 Graph Theory Overview

Any communication network can be represented by a graph, which in turn has
mathematical properties that can be analysed to check the connectivity of the
network, regardless of its size. This is necessary to guarantee that the distributed
control can maintain operation in the event of loss of any of its communication

nodes.

A graph G can be represented by vertices Vg and edges Eg between them. They

are represented by the equation:

G = Vg, Eg) (3.32)

For the set of vertices Vj:

Vg = {v1,...,00} (3.33)
Elements of Eg are denoted as the pair of vertices the edge connecting v; from v;:

(v5,05) € Eg (3.34)

For every graph G we can define the adjacency matrix A of size n x n with elements

ajj:

1 (v,0) €E
o] | 0T (3.35)

0 (vi,0) ¢ Eg

And the degree matrix ® of size n x n with elements 9j:

Noi=j
0 = , (3.36)
0 i#]
where N is the amount of neighbours for each node v;, in other words, the number

of elements of Eg formed with v;. These matrices are used to build the Laplacian

matrix £ of the graph, defined as:
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L=D-A (3.37)

The eigenvalues of the Laplacian, which have information about the graph, can
be found by finding the roots of its L-polynomial, also known as characteristic

polynomial, according to the following;:

IL— M| =0 (3.38)

where I is the identity matrix. The roots in terms of A\ are the eigenvalues. Each
L-polynomial has n eigenvalues from Ay to A,. A fully connected graph only contains
one eigenvalue equal to zero, given that the Laplacian matrix is singular. For the
case of the union of disjoint sub-graphs with individual L-polynomials €, in the set

IC of sub-graphs, the resulting L-polynomial € is:

¢=]]e. Vsek (3.39)

Given that each sub-graph contains the eigenvalue A\ = 0 as a solution of the
characteristic polynomial, the number of solutions A = 0 for a given characteristic
polynomial indicate the number of separate sub-graphs in the corresponding graph
[119]. In other words, the smallest exponent of the L-polynomial reflects the number
of separate networks in the system. If this exponent is 1, then the communication
network is fully connected. The next subsection describes the mechanism implemen-
ted in the MAS to guarantee this mathematical property in the microgrid control

under normal and faulty conditions.

3.3.1.2 Restoration Service

The proposed MAS control has this service installed to maintain the operation
of the microgrid even during faulty conditions in one part of the system, which
increases the reliability of the system overall, as the rest of the system remains in

operation.
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Figure 3.5: Graph representation of modes of failure of the MAS communication
network covered by the restoration service. the functioning nodes are represented
by the green nodes and in red the faulty nodes and communication links.

The fault-tolerance mechanism could be triggered in any of the following cases,
which are represented in Figure 3.5: a. The communication link between containers

is broken; b. Loss of agent container in the MAS; or c. Loss of the main container

in the MAS.

For the first case, each side of the communication link will assume that the other
side is no longer in the system. The side without a main container will launch a
copy of the main container from the backup and assume leadership of the remaining
container or containers in the network. This case results in two independent MAS

applications working in the same microgrid.

In the second case, the primary controller keeps the last instruction sent by the
secondary control at the corresponding lost container. The TCP/IP port would
become available to be controlled by another container if there is a communication
link available between the MAS and the primary control. If this is not the case,

then the primary controller will follow the last instruction until the fault is cleared.

In the third case, the next backup in the UDP ring launches a copy of the main
container and assumes the address of the original main container. In this scenario,
only the main container backups in the UDP ring will be notified, while the transition
is seamless for the rest of the control system. There is also no effect from the primary

controller point view as this type of fault can only be detected from the UDP ring.
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This mechanism allows for fault-tolerance without a central controller, which is
a common argument against distributed and decentralised controllers in terms of
reliability. The hierarchical control with all the mechanisms described for optimal
power schedule and resilient operation will be implemented in the test case for its

evaluation.

3.4 Simulation Test Case

First, a simulation model is presented to compare the droop control with the
proposed approach. This test is done mainly to verify that the proposed control can
achieve the same level of stability of the electric circuit, with the additional benefits
of directly controlling the power references of the primary controllers, independently

from the frequency of the electric circuit.

For this test, the frequency is set across the microgrid’s voltage according to the
power/frequency slope and the total power either received or sent by the main
grid. The power of each DER source is then controlled based on the local frequency
measurement and a frequency reference of 50H z using a PI control. This is expressed

by:

VDER = eref - Kdroopp(fref - f) (340)

6DER = 5ref - KdroopQ(_QDER) (3‘41)

Where Vpgr is the DER voltage, V,.ef is the reference voltage, Ky o0pp is the active
power PI gain, f,.; is the reference frequency, f is the frequency of the system,
dper is the DER phase angle, d,¢s is the DER phase angle reference, Kgroop,, is
the reactive power PI gain, and @ pgp is the measured reactive power of the DER.
This control rule is intended to follow the principle that in mainly resistive lines,
active power depends on bus voltage, and the droop characteristic that frequency
depends on power [10]. The reactive power control is added with a reference of 0,

to account for the reactance component in the lines.
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Figure 3.6: Circuit diagram for control comparison test.

Droop control

Power reference of main bus | 1.1kW
Power /frequency slope 0.0015

Active power PI 0.5 10
Reactive power PI 0.2 )
Proposed control
Inner loop PI gains 0.2 12
Active power PI gains 0 10
Reactive power PI gains 0 5

Table 3.2: Simulation Parameters for control Comparison test.

The test case circuit diagram is shown in3.6. All of the lines shown have an
impedance of Z = 1 +40.3Q2. The load at bus 3 starts at 2.3kW and then after 4
seconds drops to 2kW, at t = 5s. The load at bus 6 has the same initial conditions,
however, at t = 2s its load drops to 1.7kW. For the load in bus &, the initial value
is 2kW, changing at t = 6s to 1.4kW. An additional 0.4kV ARs load is added in

each load bus. Table 3.2 shows the parameters used for the simulation.

Additionally, a real-time simulation model is presented in this section to test and
validate the stability and resilient operation of a microgrid with the proposed control

system. The simulation model consists in a real-time microgrid model of the physical
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layer and primary control layer implemented on an OPAL-RT real-time simulator,

combined with a communication network built with two Raspberry Pis and a PC.

The real-time simulation is used to verify the viability of the control system in a much
more realistic scenario than the offline optimisation and simulation. Additionally
to this, the real-time interaction between the MAS platform and the real-time
simulator allow to verify the ability of the control scheme proposed to remain stable

under normal and faulty conditions.

Simulation results show a stable operation in terms of voltage and frequency in
both conditions, which validates the stability analysis presented in this chapter.
This is done to address the gap in the demonstration of real-time control system in

real-time simulation [66].

The physical layer of the microgrid simulation model tested is composed of 3
controllable DERs, a Fuel Cell (FC) a Micro Turbine (MT) and a battery as the
ESS as shown in Figure 3.7 with the same cost function parameters as presented
in [5]. The percentages show the load distribution and the numbers represent the
buses that are being measured in the next section. The power lines and load over

time are the same as described in [5].

As mentioned previously, the MAS platform is realised in a network of one PC and
two Raspberry Pi that are connected to an OPAL-RT real-time simulator. Each
device hosts an agent container, and depending on the order in which they connect
to the MAS platform, each contains the agent main container or a main container
backup. The network formed by the devices forms an UDP ring between the main

container and the main container back-ups as described in [5].

The power schedule generated during the simulation is the result of the optimisation
process realised in the secondary control layer. while this is part of the simulation
process, the methods used to generate the power schedule are explored in chapters

4 and 5 of this thesis.

Three 24-hours scenarios are run, in the first scenario, all the DERs operating
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continuously; in the second scenario, a fault is induced at the ESS secondary control
at 12:00 to test the fault-tolerance mechanism of the secondary control layer and
the stability maintained by the primary control layer; in the third scenario, a fault

is induced in the main container to observe the restoration service.

The first scenario is intended to show, through real-time simulation, the stability
achieved using the proposed control system, including the asymptotic stability of
of the primary control layer when interacting with the secondary control layer.
Additionally it shows the global stability of the microgrid, following the conditions

set for the stability of the primary controllers interconnected by the electrical circuit.

The second scenario is intended to show that the conditions verified in the first
scenario are still valid when one bus no longer receives power references and the
primary controller affected is only set to maintain voltage stability. This case
represents distributed controller faults, communication faults or simply components
being disconnected from the microgrid. From the point of view of the secondary
control layer, this scenario verifies the resilient operation of the secondary control

layer when a container is lost or disconnected from the MAS platform.

The third case is designed to show the ability of the proposed control system to
maintain resilient operation in the scenario that the main container of the MAS
platform is lost unexpectedly due to communication or controller failure. This
scenario shows that from the point of view of the primary control layer, these types

of failure do not affect the operation of the microgrid’s circuit layer.

These scenarios are selected to represent all possible types of failures of single
components of the proposed control system to highlight the fault-tolerance ability
and stability of said system. While multiple failures are possible, the probability
of such events is considered too low compared to the case of single failure; and

therefore are left out of the scope of the fault-tolerance design in this thesis.
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Figure 3.7: Microgrid Circuit test model.
3.5 Simulation Results and Discussion

3.5.1 Droop and proposed control comparison results

Results for the simulation test case are presented for the power response of each
source and the frequency response comparison as shown in the figures 3.8, 3.9 and

3.10.

It can be seen that the proposed controller can achieve stability within similar time
frames. For the case of the droop control, the power supplied by each source is
dependant on the distance from the main grid. The reason is that the power is

dependant on the bus voltage and frequency deviation. Additional considerations are
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Figure 3.8: Active power response of the DERs and main grid in the droop control
case.
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Figure 3.9: Active power response of the DERs and main grid in the proposed
control case.
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Figure 3.10: Frequency response comparison for the droop control and the proposed
control for the same simulation case.

required to adjust power supplied by each DER, given a cost function or maximum

power capacity for proportional power sharing.

For the case of the proposed controller, it can be seen that the DERs can be
controlled to supply the same power (first 5 seconds of simulation) or different
powers (last 5 seconds of simulation) directly by supplying the power references
from the distributed secondary control. This can be done independently from the

load, frequency and bus voltages connected to each DER.

This is useful in cases where it may become beneficial for the microgrid to temporary
allow more power to be drawn from the main bus, for example, when the grid prices
drops below the internal cost, and then simply adjust the power references when
grid prices become larger and cost of internal generation, allowing cost minimisation,

or in general, any other microgrid objective apart from power sharing.

It can also be seen that the proposed controller does not depend on the frequency,
and can be set to maintain the required frequency throughout the simulation,

allowing a much more stable frequency compared to the droop control.
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Figure 3.11: ESS control response under normal operation.

Results for the real-time simulation test case are presented for the system under
normal conditions and the system under fault conditions. In all cases, the control

system is capable of maintaining stability of operation.

3.5.2 System Performance Under Normal Conditions

It can be observed in Figure 3.11 that the primary control layer regulates the voltage
according to the changes of the load and accommodates for the power references

from the secondary control simultaneously.

As is can be seen in the Figure 3.12 the voltages for the buses across the microgrid
remain within the current UK standard of voltage deviation tolerance of -6 % and

+10% for the distribution circuit.

Each of the primary controllers adjust the bidirectional active power flow and
maintains the reactive power and frequency constant by adjusting the phase angle

as shown in Figure 3.13.
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Figure 3.12: Microgrid normal Voltage response.
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Figure 3.13: Phase angle response across the microgrid under normal operation.
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Figure 3.14: Secondary ESS control response with fault at noon.

For the secondary control layer, the calculation of the L-polynomial applying

equation (3.38), yields:
A0 —12X5 4 5101 — 92)3 + 69A% — 18X =0 (3.42)

Which has only one eigenvalue equal to zero, and therefore the communication

network is fully connected.

3.5.3 System Performance Under Fault Conditions

For the fault case, the voltage variations are smaller as there is no power transfer
from the ESS to the microgrid after the fault of the secondary control at noon.

However, the voltage is stable for the rest of the day as seen in Figure 3.14.

Moreover, In Figure 3.15 it can be seen that the bus 3 voltage decreases as a result
of the ESS not being used, and that the rest of the buses are adjusted for the

remaining power flows. A similar adjustment can be seen for the phase angle in
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Figure 3.15: Microgrid Voltage response under fault conditions.
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Figure 3.16: Phase angle response across the microgrid under ESS fault conditions.
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Figure 3.16. The microgrid remains stable and within the UK standard range in

both cases in the transient state and steady state for the entire simulation.

With the loss of the ESS container, the L-polynomial of the communication network

of the secondary control becomes:
—A5 4+ 10A = 33X3 + 4002 — 230 =0 (3.43)

Which, as in the previous case only has one eigenvalue equal to zero and therefore
indicates that the rest of the network remains fully connected. In other words,
the distributed controllers that remain in the secondary control layer are able to
communicate with each other, maintaining their ability to achieve optimal operation
in the rest of the microgrid. In the case that the fault is cleared, the controller can
rejoin the MAS platform and resume its operation. This demonstrates that the

proposed model allows resilient operation under normal and faulty conditions.

3.5.4 Main-container Restoration

A fault of the main-container is induced in the system to test connectivity of the
containers after applying the service restoration to the secondary control layer.
From the L-polynomial calculated after the fault of the main-container, it can be
seen that the network remains fully connected. As depicted in its graph in Figure
3.17. Activation of the service is only reflected in the ACL messages from the AMS,

as the creation of the copy is informed to other back-ups as shown in Figure 3.18.

After the fault,the network reforms to exclude the faulty node, with an L-polynomial
of:
—A% 8 — 2003 4802 — 50 =0 (3.44)

which also has only one root equal to zero. This indicates that the restoration
service prevents breakdown of the MAS system and therefore maintains stable
operation of the secondary control layer. As no effect can be observed from the
point of view of the physical layer or primary controllers, the real-time response of

this case is the same as the system performance under normal conditions.
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b) Fault of main

containe

Figure 3.17: Graph of the MAS network. a) before and b) after main-container
fault in orange, back-ups in yellow, and containers in green.
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Figure 3.18: ACL messages of the AMS showing service restoration.

3.6 Summary

This chapter presented the methods to guarantee that the system is stable and
reliable during normal and faulty conditions. The test cases in this chapter refer to
the performance of the control system designed in terms of voltage regulation and

fault-tolerance, for the primary and secondary control respectively.

The conditions for stability for the primary level control are analysed with the direct
Lyapunov method considering both the resistive and reactive components in a short-
line model. The system developed in this thesis has shown that it may continue

stable operation within allowed margins even in events of DER disconnection
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and instantaneous changes in the load, which is equivalent to connection and

disconnection of loads over time.

The control system has also shown that is capable to operate at real time and can
transition between loads, within the UK standard of voltage variations for the mains

grid with varying loads.

Simulation results of the secondary control layer shows that the control system
is not computationally expensive even with the UDP fault-tolerance mechanism.
However, the ping between the nodes, that is, adjusting the time tolerance of the
restoration service, can be adjusted to accommodate the computational resources

available and communication requirements.
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CHAPTER 4

Forecast models for Optimal

Operation in Distributed Control

4.1 introduction

As stated in previous chapter, a central theme of this thesis, and a crucial part
of recent developments in smart grids technology, is the distributed nature of the
underlying control scheme applied to the microgrid. In particular, distributed
control schemes are a better match for a microgrid with distributed energy resources
integrated, which is the system of choice in this thesis. On the other hand, the goal
of any control scheme is to realise a technically and economically viable operation
within the microgrid. To this end, any cost minimisation framework applied within
the control scheme has to take account for the non-linear properties of the distributed
generation resources (for example in form of start-up costs) and energy storage

systems (for example in form of State of Charge) integrated within the microgrid.

While internal generation by itself contributes to alleviate congestion in the main
grid and could contribute to maintaining the bus voltages within an acceptable
range, for the grid-connected microgrids, there is the possibility to interact with the
main grid in such a way the the internal generation is used to minimise the supply

cost from the point of view of the microgrid.
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Microgrids can also contribute to the efforts of electricity decarbonisation by
integrating small-scale renewable generation, such as small-scale wind generation,
in regions where large-scale renewable generation is not feasible for social, economic

or environmental reasons.

However, in microgrid’s real-time distributed control, for the case of price, informa-
tion such as electricity price is not available to the microgrid before the microgrid
applies its power schedule, which affect total cost over time. For renewable gener-
ation, in this case wind power generation, maintaining a reliable power schedule
requires information about future wind speeds combined with controllable energy

generation for regulation.

For this reason, the use of accurate forecasting methods becomes necessary to
achieve optimal operation in the microgrid, and in this chapter, electricity grid price
and wind speed forecast methods are presented. However, in order to maintain
distributed control (as the control scheme of choices in this thesis), the forecast
methods cannot cause single points of failure in the system, in other words, suitable
forecast methods should be as independent as possible from external signals to

maintain the benefits of distributed control in terms of reliability.

The forecast methods presented in this chapter are designed to address these
requirements for realising real-time distributed control with the use of artificial
intelligence. More specifically, two methods namely, auto-regression and artificial
neural networks, are presented in this chapter for purposes of developing forecast
models for both electricity price and wind speed, which are fast enough to be

deployed in a distributed control system.

For the price forecast methods, the auto-regression method is combined with the
MCMC method. In all cases, the parameters of the AR methods are calculated as
the solution for the least squares minimisation errors of the models, with the use of
the Quasi-Newton method. The ANN method is the NARNET architecture. These

forecast methods are chosen for their ability to generate the forecast signal without
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the need of external signals that could centralise the control system and in turn
generate a single point of failure, and because these methods offer a good trade
off between accuracy and computational power, that allows them to be deployed
in a distributed communication network and operate in the real-time simulation

environment.

While many efforts have been channelled to develop forecast models with high
accuracy, there are very few studies about the statistical significant difference
between the presented wind speed forecast models. In other words, many authors
often do not explain if the difference in performance is due to difference in the
actual model architectures, size of the models, or if the difference is due to other

factors, such as randomness in the data used [16, 76, 78, 85, 86, 88, 120-128|.

This chapter presents suitable wind speed forecast models for distributed control.
The performance of the models is analysed in terms of total error and statistical
significance difference between the models, considering a suitable PDF of the errors
given that the inherent variations of wind speed, accentuated by the sampling rate

of the data, generate heavier tails than the normal distribution.

As mentioned previously, the determination of statistical significance difference
could be as important as the performance of the forecast model. The statistical
evaluation method in this thesis is based on the Diebold-Mariano (DM) test, which
is used to compare the performance of two forecast models between them and against
true values [129]. In this case, the DM-test is applied to historical wind speed
data and the wind speed forecast models. With this comparison, it is possible to
determine if the difference in performance between two models is due to a significant
difference between the architecture of each model and the size of the models, or if

the difference is due to randomness in the data.

The DM-test can also be used to compare several runs of similar models, especially
in the case of NARNETS that may produce different results for the same parameters

and data set, due to the inherent randomness in the training and testing stages of
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the model.

While in previous works a statistical significance difference test was carried out, the
actual parameters of the compared ANNs, which define the amount of calculations
required to realise a forecast, are not mentioned. Therefore, the models are not
compared in terms of computational requirements [126], whereas it is also important
for the application of distributed control to have the most accurate model at the
lowest computational requirement possible. In [130] no variation of the activation
function, (the non-linear function of the ANN’s layers that allows the ANN to
learn non-linear patterns) was introduced, which limits the evaluation of the ANN
forecast model. Similar limitations in the wind speed forecast model comparison

are found in [99].

The statistical evaluation has been carried out previously with electricity prices using
Non-linear Auto-Regression with Exogenous Variables (NARX) neural networks
[89, 131], and for the statistical comparison of solar irradiance forecast models [132].
However, the NARX model is dependant on external signals for the exogenous
variables, which make this model unsuitable for distributed control, as opposed to

the NARNET which performs the forecast with local information.

In the case of DM-test in the context of wind speed forecast, while presented in [77],
there was no consideration in the PDF of the error distribution,while in [65, 133] the
DM test of the error residuals was applied to a normal distribution when converted

into probability of the hypothesis tested.

This chapter includes the further development of the forecast models presented in
[5, 7], applied to wind speed forecast suitable to be implemented in a distributed
control setting at a local distributed controller level. The forecast models are
therefore part of the secondary control of a distributed control system applied to a

hierarchical microgrid control [40] (seen in Figure 3.1).

This chapter includes the further development of the forecast models presented in [5,

7], applied to wind speed forecast suitable to be implemented in a distributed control

April 2022



4.2. Price Forecast Method 85

setting at a local distributed controller level. The forecast models are therefore part
of the secondary control of a distributed control system applied to a hierarchical
microgrid control [40] (seen in Figure 3.1). To realise the operation of distributed
control scheme, distributed controllers need to dedicate computational resources
to maintain the communication network connecting the controllers. Additionally
to this, to achieve real-time control, the distributed controller must have access to
the forecast signals within a few milliseconds. In consequence, the forecast models
are required to use the least amount of computational resources, while maintaining
the highest accuracy possible. For this reason, the amount of weights of a forecast
model is of interest as a point of comparison for models with a similar performance

in terms of total error.

To validate the forecast models, the accuracy of the models is measured in the
appropriate test case in terms of Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE), while the total cost of operating the microgrid
is analysed in combination of the cost optimisation process presented in the next
chapter. For the case of the grid price forecast methods, they are compared in
this chapter in terms of total error, combined with the cost minimisation achieved,
which will be explored in the next chapter. For the case of the wind speed forecast
models, they are evaluated in terms of RMSE with a persistence model and the
ARMA model as a point of reference [97]. Additionally, the DM-test is evaluation

is also performed for all the wind speed forecast models.

4.2 Price Forecast Method

To achieve supply cost minimisation in the microgrid, it is necessary that the
distributed internal generation is used only when the accumulated internal cost is
smaller than the cost of using energy directly from the grid. Given that the DERs
have non-linear components in the cost with respect to time, such as start-up cost,

it becomes necessary that the electricity spot price is known in advance, which in a
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distributed control framework is translated as the necessity to integrate forecast

methods into the control scheme that are compatible with said distributed paradigm.

Two families of methods that are suitable for such distributed control framework
are presented next for price forecast, both of which are AR based as introduced in

chapter 2.

4.2.1 Weighted Average Model

This method is an algebraic combination of an auto-regression component of the
electricity prices, equivalent to the "short-term memory" of other Al based methods;
and the use of the MCMC simulation to add a statistical component to the price
forecast which serves as the "long-term memory" of the method, as it summarises
the historical behaviour of the price data in a few statistical term. The contribution
of each of the terms used in this method is defined by the weighted average of terms,

which is optimised to minimise error using the Quasi-Newton method [79].

In this price forecast method, the MCMC method is used to estimate the parameters
0. of a PDF P given a data set D, in this case, estimate the mean electricity price
T and its corresponding standard deviation estimate o., by the formation of a
chain © = [0, ...#6,, ]. Following the Metropolis-Hasting algorithm, from a point 6;,
and a proposed set of parameters 03- = 0; + 0., where 0, is a random variation in

any direction, the next element is selected as:

0 Z <elln@)
Ojr1= (4.1)
0; otherwise

Where Z is a random variable with uniform distribution in the range [0, 1], and «

is the acceptance ratio, defined as:

_ P(D/O)P¥)

~ P(D/O)P(H) (4.2)
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where P(D/6') and P(D/#) are the likelihoods of 6’ and 6, given the price data D,
P(¢') and P(6) are the priors on 6 and 6. The priors are the parameters evaluated
in the normal distribution with respect to 6y, which is selected empirically as the

starting point of the chain ©.

The chain continues to grow until the change in its average is below a given tolerance,
in this case 107%, or maximum number of iterations of 4000, this stop criterion is

used to guarantee convergence. Finally, the estimated parameters are calculated as:

[ﬁe Je]T =0, = 1 Zej, V0j €0 (4.3)
¢ J

T ne
Where n, is the number of elements 6; in the chain, and 6, is the vector containing
the estimated parameters that describe the PDF of the electricity price. It is

important to notice that given that the elements of the chain are vectors, the

summation is done as an element-wise operation.

The estimated price 7; using this method is obtained as follows:

T = WamPi—24 + WamsPi—168 + WamsTa T WamaTh + WamsTe (44)

where p;_o4 is the price for the previous day, p;_13¢ is the price for the previous
week, T, is the average price for the same day of the week, 7, the average price of

the season and 7, is the average price of the entire data.

The averages 7, are estimated from the UK data set using the MCMC with
Metropolis-Hastings method, and the weights w; are obtained by solving a least

squares regression problem:

min Z(pZ — 1i(Wam))3, Vi € D (4.5a)

am 7

(4.5b)
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where W, is a vector containing the weights of (4.4) for the hours ¢ in the data

set D.

While there are many different MCMC methods [79, 134], the method used in this
thesis is the Metropolis-Hasting method. This MCMC sub-method describes the

acceptance ratio that generate the elements of the Markov chain:

~ P(D/0)P(0) '
where a is the acceptance, P(D/6) is the likelihood of the proposed ', given the
data D, P(#’) is the prior on ', P(D/0) is the likelihood of the current 6 and P(0)

the prior on 6.

Given that the likelihood is computed as the product of all the evaluation of the
data under the PDF with the current and proposed parameters, the computation
may underflow, therefore the log-likelihood of the acceptance is taken instead. The

next element 6,1 of the Markov chain is then chosen as:

0 7 < o(Ln(@)
0js1 =2 (4.7)

0; otherwise

where Z is a random number taken from a uniform distribution function. After a
long enough chain is generated, the final parameters for the posterior are Monte

Carlo approximated as:

1
0. = o > 6, Vo€ (4.8)
where n. is the number of elements in the chain © = [#; ...0,, ], and 6. contains

the mean hour price and standard deviation estimation.

MCMC stop criterion: To optimise computational resources of the control
system during real-time operation, two stop criterion are added to the MCMC

method.
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Figure 4.1: Evolution of the average of the markov chain for the price of hour 1,
the arrow shows the end of the burn-in stage.

The first stop criterion limits the relative change of the average value of the Markov
chain after each iteration to a minimum of 1 x 1079, therefore the chain stops
growing when the following inequality is true:

[T =Tl _ g0 (4.9)

Ty
The second stop criterion is reaching maximum cycles per calculated hour price, in

this study the limit is empirically chosen as 4000 for each element estimated using

this method.

In Figure 4.1 the convergence of the average of the markov chain is shown for
the price estimation of one hour. The arrow points the end of the burn-in stage,

elements in this stage are discarded for the price estimation.

4.2.2 NARNET model

The second family of AR methods for the price forecasting is the NARNET. As the
NARNET allows more variation in the ways the mathematical price forecast model
is constructed, as well as the variation of the training parameters. This section will

review the different configurations of the NARNET, referred as architectures.
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Figure 4.2: NARNET architectures used for the grid price forecast method.

As mentioned in chapter 2, the NARNET model is a type of ANN that considers past
values of some input to generate the next values of said input, which is considered
as part of a time-series. This network then produces the forecast based only on past
values of the time series, in this case, past values of electricity grid prices. For this
forecast method, the day prices are treated as the input vector for the ANN, which
in turn outputs the next day price prediction, using a given delay size. The delay
matrix inside the NARNET serves as the "short-term memory" while the neurons

serve as the "long-term memory" equivalent in other Al based methods.

In this study the connections between the layers is defined by three different
architectures tested shown in Figure 4.2, which are the a) single hidden layer, b)

the hidden layer in series and c) the parallel hidden layers.

These architectures can also be expressed as transfer functions, as presented in

chapter 2, as follows:

The general transfer functions of the entire NARNET, with d delay size, g x 1 input
size and u neurons in each layer is described as follows for the single hidden layer
[7, 98]:

Fsingle = qui(fa(wuxquann,dqxl + Bixl)) + Bq><1 (4-10)
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For the series hidden layers:

Fseries - Wqxu(fa(Wuxu(fa(Wuxquzmn,dqx1) + Bi><1) + qul)) + qul (4-11)

For the parallel hidden layers:

Fparallel = quu(fa(vvixquann,dqxl + Bixl))+

quu(fa(Wuxquann,dqxl + Bux1)) + Bgx1

In equations (4.10), (4.11) and (4.2.2), the subscripts show the size of each matrix

to illustrate the complexity of the NARNET, in particular from the matrix product

Wixqu(mn,dqx 1-

Recalling that Dy, is the delay vector, or "memory" of the NARNET, defined as:

Dann(t) = [ptfla cee 7pt—d]T (412)

As the NARNET operates, the values in D, shift positions with the next time
step, eliminating the oldest information first, while D, is updated through the

network’s feedback loop.

For the MAS application, an agent implements one of the NARNET models or the
WA model for the price forecast, which is then sent to the corresponding DER or ESS
agent to generate the power references for the primary control. The performance in

terms of total cost of using either of the forecast models is analysed in chapter 5.

The NARNET models used for price forecast in this thesis are trained using the
Levenberg-Marquardt back-propagation algorithm, by randomly separating 15% of
the time steps for training, 15% for validation and the rest for evaluation, according

to the training algorithm presented in chapter 2.
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4.3 Wind Speed Forecast Method

One of the most important factors that limit the amount of renewable generation
used, compared to conventional generation, is the reliability that the energy is
available as scheduled. Accurate power schedule from renewable generation is

therefore necessary to further promote this type of electricity generation sources.

As mentioned previously, the forecast methods in this section are suitable for
wind speed forecasting in a distributed control architecture for microgrids. All
of the methods presented in this section are ultimately data-driven and differ
in how the data is handled in each case, which would generate different output
forecasts outputs. These models will be analysed in terms of accuracy and statistical

significance difference.

The forecast methods in the next subsections are used to model the wind speed as

follows:

Ys(t) = F(t) +€(t) (4.13)

where Y, is the historical wind speed and ¢ is time, F' represents one of the forecast
model in the following subsections and € is the error at time ¢, in other words, the
difference between the real wind speed and the wind speed forecast for the same t.

Each of the forecast models are described next.

4.3.1 Persistence model

The persistence model is the simplest forecast model and is defined as:
Fi(t) =Yys(t—1) (4.14)

where F7 is the wind speed forecast. The model is basically the assumption that the
difference between one sample and the next is small when the sampling frequency is
sufficiently small, and therefore the wind speed one step ahead will remain mostly

unchanged. The effectiveness of the persistence model depends on the location
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and sampling frequency. This model would not be suitable for generating forecasts
with time horizons larger than one hour. This model will be used as a baseline to

compare the Neural Network models, with the use of the DM-test.

4.3.2 ARMA model

This method was been recently used in wind speed forecast in scenarios of limited
information, making it suitable for distributed control systems, and therefore is

useful as point of comparison for other forecast models [97].

This model combines the Auto-regression model with a correction of the average
depending on the error obtained in previous evaluations of the model. The model
is defined as follows:

Fy(t) = Wo + Y Wali)Yus(t —i) + D We(j)e(t — j) (4.15)

ieP JjeQ

where F5 is the ARMA model, W are the model parameters, W, is a constant, W,
is a vector containing the weights for the auto-regression model and W, contains
the elements for the moving average model, P = {1,...,Parma}, Parma refers to
the order of the auto regression component, @ = {1,..., Qarnma} and Qg4 is
the order of the moving average model. The parameters of this model and the AR
model are obtained with the Quasi-Netwon method, which will be discussed in the
next subsection. This model will also be used as a point of comparison against the

other models in terms of accuracy and with the use of the DM-test.

4.3.2.1 Auto-regression Model

This model also produces the forecast of the wind speed only with past values.
with the difference that it does not require the information of the previous errors.
The advantages of this method are the convergence of the solution and the quicker

generation of the solution compared to the NARNET.
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This forecast model is defined as follows:
Fy(t) =Y We(i)Yus(t —i), Vi€ Dag (4.16)

where F3 is the AR wind speed forecast, realised by the weighted sum of wind speed
samples Y,,s with a lag order, or delay size, dar. In 4.16 the set Dgr = [1...daR]
multiplied by the vector containing the W; optimised weights, from Y,,s(t — dag)
to Yys(t —1).

The weights W are optimised with the Quasi-Newton method by solving the following

least squares problem:

min Zt(sz(t) — F(t)’vteT (4.17)
where the set T'=[1,..., Np| represents the times at which the historical data is

taken, for Np total available samples, for the k-th forecast model.

In equation 4.17, all the weights are tuned to minimise the total summation of the

squared errors applied to the entire set of historical sample data available.

In this case, the fitting algorithm of the model starting with all the weights set to 1
and the weights are updated in the direction of highest decrease of equations 4.17
and 3.33, also known as the cost function, until the stop criterion is met. The stop
criterion is met in this case in any of the following cases: 1) the cost function is
equal to 0. 2) The change in the cost function is equal or below the 12107°. 3)
The change in the weights is equal or below 121076, 4) Iterations have reached a

maximum of 1200.

4.3.3 NARNET model

The NARNET for wind speed forecast is the same model described previously for the
price forecast method. The difference between these models are the configuration

and sizes of the inputs and parameters of the ANN, and that the input of this
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Figure 4.3: NARNET Architectures used for wind speed forecast. a) single hidden
layer. b) series hidden layers. ¢) parallel hidden layers.

NARNET is a scalar, in other words, it receives the wind speeds for every time
steps as opposed to the vector input of the price forecast method. The architectures

used for wind speed forecast are illustrated in Figure 4.3.

4.4 DM-test for Forecast Model Evaluation

The DM-test is used in this thesis for hypothesis testing, in this case, the DM-test
is used to calculate the probability of the null hypothesis. Before presenting the
calculation required to perform the test, a conventional evaluation of the wind speed
forecast methods is realised, then each wind speed forecast method is compared
against the others and the true wind speed values to determine if the differences in
accuracy are due to randomness in the true data set or because a forecast model is

actually more accurate than others.

To compare the forecast models using the DM-test, each model is first evaluated in
terms of RMSE, following the results from [7]. The RMSE is defined as follows for

the k-th forecast model:
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RMSE = \/Zt(sz(t) - F’“(t»Q,w eT (4.18)
Nr

Then, the wind speed forecast models are analysed in terms of statistical significant
difference, repeating the experiment and performing the DM-test of every realisation

of each of the models presented in the previous section.

Here, the null hypothesis is that the forecast models have the same accuracy, and
the difference in the performance is due to randomness in the dataset, or because
the compared models are nested. A model F, is nested in F}, when F,, = F, + F, for
any F, function. Therefore, a rejection of the Null hypothesis concludes that there
is a statistically significant difference between the models and a better performance

is due to a better model.

The DM-test is essentially based on the ratio of the mean and covariance of the
errors, encapsulated in the difference of errors between models. The DM-test is
based on the principle that the errors from a valid forecast model are covariance
stationary, which means that the residuals, or errors, of a valid model should behave
as a random series. This test also assumes that the time series requiring forecast is
infinite, and therefore, any set used for test calculation is a sample of the entire

series.

The test requires 3 sets as inputs and provides a probability value (p-value) that the
null hypothesis is true. The inputs are the true wind speed Y,,s, and the output of
the two models that are being compared. When the p-value is sufficiently small, the
null hypothesis is rejected. When this occurs, a statistically significant difference in

accuracy between the forecast models is concluded.

From each pair of forecast model outputs F, and Fjp, the squared errors e are

calculated as:

eq(t) = (Yus(t) — F,(t))2,Vte T (4.19a)

er(t) = (Yus(t) — Fy(t)2,Vt €T (4.19b)
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The loss differential function d is defined as:

d(t) = eq(t) — ep(t) (4.20)

From this new set, the sample mean of the differential d is obtained. To determine
if a deviation from zero of this value is statistically significant, this value is divided

by an estimation of the standard deviation of the differential series.

Next, the autocovariance 7 of each lag up to h is calculated:

v(h) = Cou(d(t),d(t + h)) (4.21)

where C'ov is the covariance function. Then, the variance is estimated as [129]:

vy = 1O +]\2[TZ "0 vien (4.22)

where H = [1...h], which represents the set of lags of the autocovariance. Finally,

the DM-test output is calculated as:

d

This test is adjusted using the Harvey adjustment, which corrects the test for
heavy-tailed distributions of the loss differential. This correction is used because
the data set contains outliers with respect to the normal distribution function given
the nature of wind speed, therefore, the normal distribution function does not
accurately describe the loss differential distribution [129]:

1- “th(h—1
DM, = \/(NT * Zh; Ny n=1) by, (4.24)
T

The p-value p is obtained by calculating the student’s-t Cumulative Distribution

Function (CDF) of DM;:

D= /DMI F(+122{)(1+t2)—K2“dt (4.25)
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where I'(+) is the Gamma function, t is the integration variable and K is the number
of degrees of freedom [135]. For this test, K = Np — 1. p represents the probability
that the null hypothesis is true. In this case, if 0.05 < p < 0.10 the significance is
regarded as weak and if p < 0.05 the forecast models are regarded as statistically
significantly different, in either of these cases, the null hypothesis is rejected. The

null hypothesis is not rejected in any other case.

Given that a specific time horizon requirement in a microgrid application depends
on factors such as available storage and the cost functions of other resources, the
forecast methods will be evaluated at the prediction of one step ahead, such that is
possible to realise the model evaluation between any combination of two models.
While it is possible to increase the time horizon as done in [7], all of these methods

continuously update the forecast to always be one step ahead as time progresses.

4.5 Test Cases

The test cases in this section are used to evaluate the accuracy of the proposed price
and wind speed forecast methods. The price forecast models are evaluated mainly in
terms of total RMSE and MAPE. For the case of wind speed forecast, the DM-test
evaluation is included for these methods as well. As the total cost achieved by the
microgrid power management system also depends on the optimisation capabilities

of such system, the cost analysis is analysed in chapter 5.

4.5.1 Electricity Price and Wind Speed Data

The price forecast methods are tested to generate one day ahead prices, using the
UK wholesale market. The UK price data used is from Nord Pool, for each hour
over the period from the 29-12-2017 to 27-02-2020. During this time, price has
sunk and spiked several times, and the monthly averages have decreased as seen in

Figure 4.4.
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Figure 4.4: UK price data for the wholesale electricity market used for the price
forecast methods.

While this set is used for the wholesale electricity market, rather than the retail
market, this case study is designed to evaluated realistic price variations that could
affect a day-ahead price scheme for microgrids, which could operate at either level

of the electricity market, depending on the size.

The wind speed data used in this chapter is the historical wind speed data of four
years, 2016, 2017, 2018 and 2019, taken every 30 minutes, at the Auchencorth Moss
Atmospheric Observatory in Scotland, UK. The original dataset was obtained from
[136]. The samples in this dataset are measured in m/s, with a total of 58655

samples.

For this study, the wind speed samples with values equal or higher than 30m/s were
removed, with the remaining dataset having 58448 samples, of which 16499 represent
the data for 2016, 17014 for 2017, 17514 for 2018 and 7628 for 2019, which is 99.6%
of the original dataset. This set is composed of 97.45% of the possible samples,
given that there are samples missing in this set. No form of extrapolation was

used to fill the gaps given that the natural wind speed variations is enough to treat
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Figure 4.5: Auchencorth Moss wind speed, South East Scotland (55°47’36” N,
3°14’41” W). This dataset represents 99.6% of the total data available for this
period.

the samples as consecutive. For reference, 87 samples of this set are above 15m/s
(0.1485%) and 58568 (99.8515%) are between 0m/s and 15m/s. The variation of

the wind speed over this period is illustrated in Figure 4.5.

This set was selected, among other reasons, because it is freely available, has a good
resolution compared to others which average for days or months, is sufficiently long
to allow the statistically significantly difference test which relies in the variance of
the error in a time series and becomes more reliable with more data and finally
because the location provides data applicable for microgrid applications of onshore
wind speed forecast, as opposed to large offshore wind farms, which have different

environmental conditions.

4.5.2 Forecast Model Training

Each of the models was fitted, optimised or trained according to the data and the
models described in previous sections. The hardware used for this study includes

the Durham University super computer known as Hamilton. One node of Hamilton
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was used, comprising 24 CPU cores with 2x Intel Xeon E5-2650v4 model processors
at 2.6GHz and 64GB RAM. Other hardware used for training includes a desktop
with an i7-6700 CPU at 3.40GHz with 16 GB of RAM and a desktop with an i5-7500
CPU at 3.40 GHz with 8 GB of RAM. The software for training and fitting is
MATLAB R2019a (9.6.0.1099321) 64-bit and the DM-test was done in the Scientific

Python Development Environment, Spyder 4.1.5, with Python 3.8.5 64-bit.

The NARNET model architectures were trained with different number of delay
sizes ranging from 20 (10 hours) up to 672 (2 weeks), number of neurons from 5 to
265 and the three activation functions discussed previously, with the most relevant
ones presented in the results section. The selection of these parameters was based

on [7], and the time required to realise the training and performance of the model.

The ARMA model, used as point of comparison, was optimised for the order P =5
and Q = 30, compared with [97], that used orders P = 2 and Q = 1 and following
the autocorrelation of the data set, this is considered enough to maximise the

performance of the ARMA model.

The AR model was optimised for different sizes of delay, varying from 1 to 240. The
ARMA and AR models are fitted using the data from 2016 to 2018 and the data
from 2019 is left for error testing. For the case of the NARNET, the subsets are
selected at random, as explained earlier. A total of 95 realisation where done for
the single layer architecture, 45 realisation for the Parallel architecture and 18 for

the Series architecture.

The difference in the amount of realisations done is due to the training time and
performance in terms of RMSE. However, each combination of architecture and
activation function was realised at least 6 times to account for randomness in the
NARNET training. A total of 400 forecast models were computed, and every
pair combination was evaluated with the DM-test, the number of realisations are

summarised in Table 4.1.
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Model ‘ Architecture | Number of realisation
single 95
NARNET series 18
parallel 45
AR - 240
ARMA - 1
persistence - 1

Table 4.1: Summary of wind speed forecasts model realisation.

4.5.3 Case studies

For the first case study of price forecast, the MCMC price forecast method is used
to generate a one week price estimation, from the 27/09/2019 to 03/10/2019, using
the price data from 16/05/19 to 26/09/19 in GBP/MWHh, obtained from Nord Pool.
This is done to obtain the mean and standard deviation of the posterior at each
hour for a normal distribution and for each hour of the same weekday, using an
heuristic model considering as starting values the hour prices of the previous day as

follows:

+ o +
m=R0THTHM (4.26)
3
where 7; is the MCMC price estimation, pg is the price at the same hour of the
previous day, po is the mean MCMC estimation over the entire data of the same

hour and p; the mean estimation with the same week day and same hour.

The standard deviation oo used for the confidence interval is calculated as:

oo+ 01
2

(4.27)

o9 =

Where o is the MCMC estimation using the entire data of the same hour and o

the estimation using the data with the same hour and same week day.

For the second case study of the price forecast method, the electricity price methods
are tested for four data scenarios: a) the entire price data set, b) the entire price
data set without the 20 most significant outlier days, ¢) weekdays only and d)
weekdays only without the outliers. Each of these scenarios was run 10 times for

each configuration of the tested price forecast methods. For the case of the WA,
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the forecast is optimised with each solver. For the NARNET model, the forecast is
tested with varying number of neurons in the hidden layers between 5 or 10 and the
size of delay in each of the architectures shown in Figure 4.2 is tested for one week
of delay and two weeks. In this case the price forecast models are those presented

in the corresponding WA model and NARNET model subsections in this chapter.

The electricity price forecasts obtained are evaluated calculating the MAPE and
RMSE. Two evaluations functions are required to better dimension the accuracy of

the methods, as the data contains values close to zero [75, 137, 138]:

100% |pi
MAPE =
Ne Z’ Di

Vi e N, (4.28)

>i(pi — mi)?

RMSE =
| Nel

Vi€ N, (4.29)

where p; is the hour real price and 7; is the hour price from (4.4), and N, the set

containing the period with available price estimations.

For the wind speed case study, the wind speed forecast models presented in this
chapter are used to predict the half-hour wind speed data in 2019 for Auchencorth
Moss, UK. The same models are used to generate the forecast with all the data
from 2016, 2017 and 2018 to verify the statistical significant difference among the
forecast models with the use of the DM-test described previously. The results are
shown in RMSE and in terms of the p-values from the DM-test, using the wind

speed historical data as mentioned before in the training subsection.

4.6 Results and discussion

4.6.1 Electricity Price Forecast Results

For the first case study, the predicted and the real prices are shown in Figure 4.6.
The blue region this figure shows the 95% Confidence Interval (CI), corresponding

to m £ 1.9609, shows the estimation limits in terms of variations from the mean.
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Figure 4.6: Comparison of the price estimation for one week.

Table 4.2: Summary of accuracy for the simple AR model for price forecast.

Price ‘ Model H MAPE ‘ RMSE
m 0.646% 0.299

Average | 1.725 % 0.824
I 20.335% 7.914

Week . 15.953 % | 5.765

Table 4.2 summarises the accuracy of the method using the error functions, a

comparison is shown between the price signal g and ; for the average prices and

for the prices of the week 27/09/2019 to 03/10/2019.

For the second case study, the price forecast accuracy results for the WA, based on

QN, and NARNET methods are presented as follows:

After running each case 10 times for each set of parameters, the total MAPE and

RMSE is calculated. The results obtained are plotted in Figure 4.7. The results

of each set of parameters show that the NARNET can outperform the WA when

the outliers are not included. When the entire dataset is taken into account, the

MAPE increases in two orders of magnitude.

To focus on the best solutions of this case study, a zoom is done to Figure 4.7,

April 2022



4.6.1.  Electricity Price Forecast Results 105

Price Estimation Error
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Figure 4.7: Individual Results of each method and set of parameters for the price
forecast in the second test case. The red rectangle is shown as a zoom in Figure 4.8
to better visualise the best forecast models in terms of total error.

marked as a red rectangle in this figure, and the solvers re coloured as seen in
Figure 4.8. It can be seen that in terms of individual runs, the best solution is
provided by the single layer with 5 neurons with a week of delay for the NARNET,
and the QN solver for the WA method. The best WA solutions have weights
W =10.49 0.32 0.18 0 0] and W = [0.48 0.34 0.96 0.03 — 0.82] for the constraint

and unconstrained case.

The errors over the price dataset for each of these two best cases without the outliers
and weekends for each method are shown in the Figure 4.9 and Figure 4.10. The

individual errors are shown as blue circles deviating from the actual price in orange.

While they show a similar level of correlation between the target and output, the
WA deviates more at the higher prices, increasing the final RMSE and MAPE
scores. In both cases the error increases for the lower values, however, this may be

caused by the prices in the data set that tend to zero.

The summary of error distributions is shown in Figure 4.11, which compares the
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Price Estimation Error (zoom in)
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Figure 4.8: Zoom of the Figure 4.7 for the errors in for the price forecast models of
the second test case.

QN solver for the WA and the NARNET using all the data and without the outliers.
It can be seen that for both methods and data sets the errors have a normal
distribution, and the difference in score depends on the number and deviation of

large errors shown as blue circles.

Table 4.3 shows the average MAPE and RMSE of the combined results of the
different parameters of each method and the best individual score. It can be seen
that in general, the WA method is better as it has less variations in each run
compared to the NARNET, but the latter has the best individual score, with the
neural network with a single layer of 5 neurons and one week of delay achieving a

MAPE of 8.67 % and a RMSE of 5.88 GBP/KW h.

It can be concluded that for the case of the UK price data from 29/12/2017 to
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Figure 4.9: Error distribution of WA regression Model solved with QN.
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Figure 4.10: Error distribution of the NARNET.
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Table 4.3: Error results of each method.

Method Average Score Best Score
MAPE RMSE MAPE RMSE

WA Regression model  28.20904 7.11 10.41 6.47

Single Layer NARNET 189.44 8.00 8.67 5.37
Series NARNET 187.93.96 7.75 8.67 5.88
Parallel NARNET 223.98 9.41 9.25 6.00

Quasi-Newton and Neural Network error comparison
T T T

100 t o .

80 8 .

1
!

Price Error (GBP/MWh)
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I | I l_|_| |—|—| ,

8 g
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QN all data QN no outliers NN all data NN no outliers

Figure 4.11: Error boxplot of best settings for each method.

27/02/2020, the NARNETSs with one hidden layer and with 2 hidden layers in
series with one week of delay achieved the best MAPE score at 8.67 %, with 5.37
GBP/kWh and 5.88 GBP/KWh RMSE respectively.

The WA solution shows that the previous day has the highest weight if each weight

must be positive, the season is the most significant term without this constraint.

4.6.2 Wind Speed Forecast Results

For the wind speed forecast case, the following results are presented:

The RMSE of all the realisations varies between 0.74485m/s and 1.1267m/s. Most

of the models performed better than the persistence model at 0.9437m/s RMSE
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Table 4.4: DM-test p-values between the best realisation of each forecast model.
Si refers to Single, Se to Serial, Pa to parallel NARNET, AR to Auto regression,
ARMA to Auto regression with moving average, and base to persistence model.
The models are sorted by RMSE, shown in the second row.

Model ‘ Pa ‘ Si ‘ Se ‘ AR ‘ ARMA ‘ Base
RMSE \ 0.7448 \ 0.7730 \ 0.8289 \ 0.8721 \ 0.888 \ 0.9437
Pa 1 0.277 8.9E-10 1.7E-17 2.57TE-17 0
Si 0.277 1 1.06E-7 8.16E-19 8.73E-20 7.32E-43
Se 8.9E-10 1.06E-7 1 2.53E-7 4.56E-8 3.41E-134
AR 1.7E-17 | 8.16E-19 2.53E-7 1 1.69E-5 2.17E-118
ARMA | 2.57E-17 | 8.73E-20 4.56E-8 1.69E-5 1 7.91E-113
Base 0 7.32E-43 | 3.41E-134 | 2.17E-118 | 7.91E-113 1

as expected, except for 7 realisations , all of which correspond to the combination
of single layer with the Tansig activation function which is the best architecture
found in [7], although, with a different dataset. However, other runs of the same
NARNET with variations in the size of delay and number of neurons performed

much better.

Figure 4.12 illustrate the error histograms for the best realisation of the NARNET,

AR and ARMA models for all the data set to illustrate their error distributions.

In Figure 4.13, the forecast models are used only on the 2019 data to illustrate the

suitability of the models over the test data.

The results in terms of RMSE are shown as an histogram to illustrate the variations
between the same forecast model are shown in Figures 4.14 and 4.15. The results

of the DM-test are shown in Figures 4.17 and 4.18. The RMSE results of the best

individual realisation and corresponding p-values are shown in Tables 4.4 and 4.5.

The best realisations of each NARNET architecture, AR model, ARMA model and
the persistence model, are shown in Table 4.4 with their respective p-values from
the DM-test. While the null hypothesis is not rejected for the comparison between
the parallel and series NARNET model of this table, the size of the w matrices
of the parallel NARNET are in total 8 times smaller than the series model W,

matrix as described in Figure 4.18.

In Figure 4.14 the realisations are grouped by NARNET architecture and compared
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Figure 4.12: Error histogram to validate the forecast methods.
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NARNET error histogram for testing subset

800 T

700

600

500

Frequency (-)
ey
8

300

200

100

Forecast errors (m/s)
AR error histogram for testing subset

800

700

600

500

Frequency (-)
Ny
8

300

200

100

-5 0 5
Forecast errors (m/s)
ARMA error histogram for the testing subset

900 T

800

700

600

a
(=}
]

Frequency (-)
iy
8

w
(=}
=]

200

100

-10 -5 0 5
Forecast error (m/s)

Figure 4.13: Error histogram to validate the forecast methods.
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Error Histogram by model
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Figure 4.14: histogram of the total RMSE by forecast model. The persistence
model, and ARMA model are omitted as they only have one iteration each.

with the AR model. It is notable that all the AR model realisations are grouped
within 2 bins of the histogram, even when the delays range up to 240 samples,

equivalent to 5 days of data.

For the case of the NARNET models, it is notable that the distribution that account
for the lowest RMSE is the parallel architecture and that the series architecture

has the largest variation.

In Figure 4.15 the same results of Figure 4.14 for the NARNET realisations are
shown, grouped in an histogram by activation function. It can be seen that the ReLU
function seems to have the best performance in terms of distribution. However,
looking at the top 12 best forecast model realisation in Figure 4.18, it can be noted

that the best activation function in terms of RMSE is the Logsig, while the Tansig
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Error Histogram by Activation Function
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Figure 4.15: The persistence model and AR model are omitted as they do not have
activation functions. Tansig refers to the Hyperbolic Tangent Sigmoid function.
Logsig refers to the Logistic Sigmoid function.

Table 4.5: DM-test p-values between the best realisation of each activation function
of the NARNET by colour.

RMSE | DM || Logsig | ReLU | Tansig |
0.7448 | Logsig 1 ]0.0875 | 0.0012

0.7519 | ReLU || 0.0875 1 0.006
0.7694 | Tansig || 0.0012 | 0.006 1

has the highest variation in performance, being present in all bins.

Table 4.5 is built in the same way as Table 4.4 for the best realisations of each
NARNET activation functions. In this case it can be seen that the p-values show
that the models are statistically significantly different for every test except between
the ReLU and the Logsig comparison, with a weak statistical difference. In all cases

the null hypothesis is rejected.
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P-value from DM-test for forecast models
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Figure 4.16: Illustrative table for the presentation of DM-test results.

DM-Test of the Forecast Models
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Figure 4.17: Entire DM-test p-value results for every combination of the forecast
models by colour. p indicate the probability that the null hypothesis is true, p < 0.05
indicate statistical significant difference, 0.05 < p < 0.1 indicate weak statistical
difference and p > 0.1 indicate no statistical difference, shown in yellow. The
realisations are ranked from lowest RMSE to highest. The NARNET region is at a
lower RMSE and in general shows an statistical significance difference with the AR
models indicated by the blue colour.
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To present all the p-values for all the possible DM-tests, Figures 4.17 and 4.18
are presented. However, Figure 4.16 is presented first to illustrate the information
that is included in those figures. The following observations apply for the DM-test
figures: a) The performance ranking goes from lowest to highest RMSE, following
natural numbers. b)Each square in the figure encodes the p-value from the DM-test
between the row and column pair of models. ¢) The diagonal is always 1 because
a forecast model is compared with itself (100% probability of no difference). d)
The colour of each square goes from 0 to 0.1, above 0.1 the colour remains yellow,
which means no statistical difference. €) Any square that is not yellow indicates a
statistical difference between the pair of models. f) Any square in blue of any shade,
has p-value below 0.05, and therefore a statistical significant difference between the
models. g) In general, the NARNET models outperform the AR models, separating

them in two regions in the DM-test figures.

In Figure 4.17 the p-value results of every combination of two forecast realisation
for the DM-test is shown. The model realisations are ranked from lowest RMSE to
highest in both axes while the colour indicates the p-values, where yellow represents
a p-value equal or higher than 0.1, or in other words, no statistically significant
difference, the blue colour indicates that the difference in performance in RMSE is
statistically significant, therefore, the difference in performance is due to difference
in accuracy of the models and not randomness in the data. It can be verified that

the NARNET outperforms the AR in terms of RMSE as indicated by the arrows.

Secondly this figure illustrates that the NARNET models in general are either
statistically significantly different or not at all from the high contrast in colour
among them compared with the smother transition in p-values in the AR region.
Figure 4.17 also illustrates that in most cases the NARNET models are statistically
significantly different from the AR models except for those with close performance
in RMSE. A yellow diagonal is shown across the figure as it shows the comparison

of a realisation with itself, and therefore there is no difference calculated.

Figure 4.18 shows in more detail the top 16 forecast model realisation p-values from
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DM-test of best Forecast Model realisations
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Figure 4.18: Entire DM-test results by colour for the best 16 forecast models
realisations ranked from lowest RMSE to highest. p indicate the probability that
the null hypothesis is true, p < 0.05 indicate statistical significant difference,
0.05 < p < 0.1 indicate weak statistical difference and p > 0.1 indicate no statistical
difference, shown in yellow. In the left axis, the configuration indicates architecture,
activation function, size of D and number of neurons per hidden layer.

the DM-test by colour, all of which are NARNET models, describing the specific
configuration of the model in the left axis and the RMSE performance in the right
axis. The same ranking from top to bottom of the left axis is in the horizontal axis
from left to right. Given that the top 3 models are parallel NARNET models with
the Logsig activation function with identical RMSE performance for the first two
decimal places it is expected that those have no statistically significant difference

among them.

The configuration for wind speed forecast with lowest RMSE at 0.74485 has a delay
size of 48, or one day of memory, with each hidden layer having 35 neurons, which
implies 3360 weights in total for both of the hidden layers. It is also notable that the

Single layer with Tansig activation function model, that was found to be best model
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Ideal Wind Power Output of Auchenchort Moss per Turbine
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Figure 4.19: Ideal power generation per turbine from the historical data.

in [7], that in this case has a delay of 384, equivalent to 8 days of memory, and 70
neurons in the hidden layer which implies an internal matrix of 26880 weights has

0.773 RMSE.

This study illustrates the importance of not only determine the best forecast model
in terms of minimal errors but also the importance of verifying that the difference in
performance between two forecast models is actually due to an actual superior model.
To finalise, the wind power calculation expected from the case study is presented
next, to contextualise the wind speed forecast model for microgrid distributed

control.

4.6.2.1 Wind Power Calculation

To help putting in the context of microgrids, this subsection will briefly cover how
the forecast results shown previously compare in terms of the expected wind power
generation that could be extracted from the site given ideal conditions. First, in
Figure 4.19 the total wind power that could be generated using the wind speed

data set available is shown.
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For the case of wind turbines, the electrical power output P,; is defined in general

as:
07 sz < szn \ sz > ‘/cut
Put(Vis) = 4 Cp(Vius)®,  Viatea < Vios < Veut (4.30)
Pmaa:a else

where Vs is the wind speed,V,,,;, is the minimum wind speed for generation or
cut-in speed, V,.qteq is the rated wind speed of the wind turbine, V,,; is the maximum
wind speed for generation or cut-out speed, P4, is maximum wind turbine power

output, and C), is the coefficient of performance of the wind turbine.

The expected power generation E(P,,;) over a period 7 = [1. .. Tyee] with duration

Tmaz, given that the wind speed is random, is defined in this case by [135]:

E(Pout) — Zz Pwt(sz = Uwi)pws,ia Vier (431)

where pys; is the probability that Vs equals the i-th realisation v,,,. The expected
power generation is then an estimation of electrical power output taking into account

the randomness in the wind speed over a finite time period.

For the case of the expected power output E, following equations (4.30) and (4.31),
and considering Vi = 3.5m/s, Viatea = 15m/s, Ve = 35m/s, Ppax = 30 kW
and C, = 0.0089 kW (m/s)™3, E; = 21.9053 kW per turbine using the historical
data of the 23/10/2018 as input, Eo = 20.8627 kW per turbine using the model
with the lowest RMSE, and E3 = 21.0047 kW for the case of the model ranked 12
in Figure 4.18, which has not statistical significant difference with the rank 1 model,
but at a higher computational cost, given that it requires more weights to achieve
this. The calculation of E can be simplified to the mean power output calculated

with the wind speed from each case.
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4.7 Summary

This chapter presented suitable forecast methods to be applied in microgrid real-time
distributed control. In particular the forecast models for electricity grid price in

the UK and the wind speed in Auchencorth, UK.

A price forecast method was tested for the UK market using MAS. While there is
opportunity to improve the accuracy of the estimation, the system works in a more
distributed environment, which makes it less dependant on a central controller. In
the same way, in combination with the restoration service as presented in the previous
chapter, prevents the loss of the entire agent platform from the disconnection of
the main container. Finally, with a good convergence algorithm, its possible to
distribute the control with independent price estimations, which leads to minimal

cost, which will be shown in the next chapter.

For the case of price forecasting, two main methodologies were tested for price
forecast of the UK’s electricity market. It was found that the NARNET achieves the
highest accuracy if the outliers are removed from the data, while the WA method is

better otherwise.

For the case of the Auchencorth Moss wind speed forecast it was found that the
optimal forecast model for distributed control is the parallel NARNET with the
Logsig function, one day of memory and 35 neurons in each hidden layer. The
results show that increasing the complexity of the NARNET does not necessarily

imply a better performance with statistically significant difference.

The wind speed forecast study also presents the proposition of a forecast model
evaluation method that allows the selection of the best short-term wind speed
forecast model, suitable for distributed microgrid control, in terms of accuracy and
complexity by comparing the accuracy and number of weights required by the best
model found and the second best model, taking into account the randomness in the

data.
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This study illustrates the importance of not only determining the best forecast
model in terms of minimal errors but also the importance of verifying that the
difference in performance between two forecast models is actually due to an actual

superior model either by accuracy or by efficient use of computational resources.

The NARNET is considered a suitable forecast model for distributed control in
microgrids given at it relies in historical data that can be stored locally, which
means that the rest of the control system is not subjected to dependence of other
external signals, which could represent single points of failure in terms of control
reliability. It is also shown that the parallel architecture and Logsig activation

function can outperform the other models used for comparison in this study.

This model can also be used to avoid the additional computational cost of running
a more complex model without an statistically significant difference in performance.
As shown in the wind speed case study, the parallel hidden layers with the Logsig
function NARNET model can statistically perform as good as the single hidden
layer with the Tansig function NARNET model with 87.50% reduction in required

number of weights for the first configuration compared to the second.

This evaluation method can be applied to optimise computational resources in
the microgrid control environment in any of the forecast requirements emerging
from similar applications, such as price, irradiance or load forecasting, which can
minimise the computational cost of the control system and can improve its response
speed, while at the same time helps to determine the best model in terms of forecast
errors, which in turn contributes to the fulfilment of microgrid control objectives,

such as cost minimisation.
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CHAPTER 5

Integrated Full Control for Power

Management of Multi-Microgrids

5.1 introduction

Promoting the development of the future energy systems is necessary to contribute to
the electricity decarbonisation. Microgrids offer an excellent opportunity to organise
and integrate DERs to the electrical grid and contribute to this end. However, given
the autonomy of microgrids to pursue their own objectives, increasing the number
of microgrids in the distribution network requires an additional control layer for
the coordination of multiple microgrids and their interaction with the main grid.
Microgrid cluster are circuits that combine multiple microgrids, used to increase

the penetration of DERs in the distribution network [22].

In the context of hierarchical control schemes for microgrids, the tertiary control
layer is added to regulate the microgrid clusters and coordinate the objectives of
each microgrid in the cluster. In the hierarchical control scheme of this thesis,
this layer is formed by a MAS platform, with the objective of maximising the
use of distributed generation, while maintaining resilient operation properties at
the communication level. However, this layer is designed such that some level of

independence is maintained by the secondary control layer to allow the individual
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microgrid to achieve their power management objectives.

This chapter presents the characteristics and interactions of the agents that realise
the proposed secondary control layer for the power management of microgrids. In
other words, how the MAS platform interact with the physical layer, through the
primary control layer, as a distributed control scheme. The MAS platform is used
to generate the appropriate power references to achieve individual microgrid’s power
management objectives, namely, supply cost minimisation and renewable generation

maximisation.

Moreover, the formulation of the agents for the tertiary control layer, its general
objective and testing are also presented in this chapter. At the tertiary control
layer, the control system of the cluster microgrid is used to maximise the power
generation contribution from internal generation, which in turn, minimises the use
of main grid energy by the cluster, which leads to minimisation of transmission
losses and power line congestion. The individual microgrids can be induced to
switch from grid supply to internal supply by increasing the grid’s electricity price.
However, the cluster management system must balance these incentives between

the wholesale electricity market and the retail electricity market.

By integrating all of the methods presented in the previous chapters in a hierarchical
control scheme, this chapter is intended to demonstrate stability, resilient and
optimal operation properties under distributed real-time control of the proposed
control scheme for the automatic coordination of interactions within a cluster of
microgrids [139]. All of these properties are intended to facilitate the integration of

distributed generation in the electricity grid.

As each part of the distributed control scheme is following different objectives at each
control layer, and even different objectives for the case of each microgrid, namely
supply cost minimisation and renewable generation maximisation, the optimal
performance of the entire control scheme will be evaluated using a combination of

test cases.
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To verify the effectiveness of the cost minimisation agents, regardless of the price
forecast accuracy, a cost minimisation case with known prices in advance is presented
first, comparing the proposed MAS approach with other optimisation solvers. Next,
a test case with a single forecast agent to demonstrate the cost minimisation
capabilities with unknown prices is presented, followed by a test case for cost
minimisation with multiple forecast agents within a single microgrid, in line with

distributed control.

Following this, the performance of the proposed control scheme under real-time
operation with uncertainties is evaluated. This is done by implementing the control
system presented in chapter 3 with the forecast methods explored in chapter 4 in
real-time simulation test cases. For the case of grid price forecast, the evaluation is
presented in terms of stability and cost minimisation. For the case of the wind speed
forecast, the performance will be evaluated in terms of the difference between power

schedule and actual power delivered by a microgrid with renewable generation.

Finally, the results from the subsequent application of each of the control layers
are presented to showcase the effect of each layer in the simulated system. The
simulation results validate the proposed control scheme as a suitable distributed real-
time power management control for cost minimisation while maintaining stability

for a cluster of microgrids.

5.2 MAS Design for Secondary Control Layer

The main advantage of the MAS approach comes from the possibility of separating
the different control tasks into as many agents as necessary. Some of the agents have
specific behaviours that contribute to the general objective of the MAS platform.
This section first overviews the properties of standard agents for a MAS application

and then the properties of the agents utilised for the microgrid’s power management.

As presented in chapter 2, in every MAS application there are three standard agents

for the operation of a distributed control: The Agent Management System (AMS),
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the Directory Facilitator (DF) agent and the Remote Monitoring Agent (RMA). The
AMS is in charge of creating and terminating agents. It follows that the container
with the AMS is known as the main-container. The DF serves as the yellow pages,
receiving requests and offers for agent services, informing the relevant agents when
there is a match for service and demand. The operation of the DF agent allows the
formation of the communication networks among the rest of the agents. The RMA
serves as a communication channel between containers in different computers as
the human interface. This means that requests to the AMS can be done in separate

locations, which aids with the distribution of the control system.

In addition to these standard agents, five types of agents were programmed in this
thesis in Java using the Java Agent Development framework (JADE) environment
for single microgrid distributed control optimisation namely, the generator agents
that control dispatchable DERs, the ESS agent to regulate batteries, the grid price
forecast agent, the Wind speed Forecast Agent (WSFA), and the Renewable Energy
Source Regulator Agent (RESRA).

The first three types of agents are used for the supply cost minimisation objective.
The global supply cost minimisation is realised by the agents designed for the
dispatchable DER. operation by solving the total cost minimisation locally of each
DER of the microgrid. Then, by cooperating with each other, the agents generate
the power schedule to be sent to each of the primary controllers as shown in Figure
3.1 in chapter 3. In a similar manner, the renewable generation optimisation is
realised by the corresponding RES agents, however, in this case, the objective is

minimising the error between the power schedule and actual generation.

The optimisation problem solved by the entire MAS platform can be formulated as:
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ngn Z,chj((Pj(z')),w cJANVieT (5.1a)

,j (2

st. Pj. <P <Pj.., (5.1b)
SOCin < SOC < SOCyaz, (5.1c)
SOC(i+1) = SOC(i) — nP(i), (5.1d)
Pp(i) =Y P;(i)=0,Vj € J,Vi €L, (5.1¢)

J

[P Q] € [P(X)Q(X)], VX € Dx (5.1f)

where ¢; is the cost function of each source j of DERs and ESS, [J is the set
containing the generation sources. P; and (); are the active and reactive power sent
by source j at each hour ¢ and Z is the set containing the time steps. Each power

and maximum P;

Jmaz*

P; is bounded by a minimum P; The State of Charge

(SOCQ) is also bounded by a minimum SOC,,;, and a maximum SOC),4,, the SOC
depends on its previous value, the power P(i) and n, which models the capacity and
round trip efficiency of the ESS. The Load Pr, and generation in the microgrid must
be equal. The last constraint is used to guarantee Lyapunov stability and limits
the references of the primary control, expressed in terms of the state variable X in
the domain D,, which delimits the stable operation of the bus. This optimisation
problem is distributed in simpler problems between the corresponding agent, such

that the collective operation of the agents solve the global supply cost minimisation

problem.

For the case of multi-microgrid control, a secondary DF agent is required in
the secondary control layer to maintain fault-tolerance communication between
the secondary and tertiary control layers in the separate MAS platforms. The
interactions between the secondary and tertiary control layer are illustrated in
figure 5.1. The behaviour of each of these five agents is explained in the following

subsections.

April 2022



5.2.1. Distributed Energy Resource Agent 126
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Figure 5.1: Communication between secondary and tertiary control layers. The
black arrows and blue labels show the ACL messages sent between the agents. The
MTP allows communication across platforms. The blue arrows indicate the general
interactions with the rest of the layers.

5.2.1 Distributed Energy Resource Agent

The DER agent’s behaviour consists in an internal loop of 10 milliseconds that
manages the communication with the DF agent, AMS and a corresponding Grid
Agent (GrA), that provides the price forecast 7 to be used as the actual price p by
the DER agent. Once the price forecast messages are received, the agent uses the
price forecast m and the DER cost function ¢; to generate the corresponding power

references for its corresponding primary control using TCP/IP communication.

The DER agent generates a power schedule for a single DER that minimises the
total supply cost or maximises energy profits from trading with the grid by solving

the following optimisation problem:
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min Y w(i) (P, — Pi(0) + 3 ci((Pi(i), Vi€l (5.2a)

)

s.t. Pj < Pj < Pj (52b)

min max?

{PH(Pi(X)), Q7 (Qi(X)} € Day  VjET (5.2¢)

The local problem solved by the DER agent is limited to minimising the cost of a
specific source j with respect to the price forecast, from the set of sources [J. P; is
the power output of source j, 7(i) is the electricity price for the microgrid at time
i, in the set Z, for the total optimisation time. This means that the DER agent
minimises the accumulated total supply cost over time, instead of selecting the
cheaper power option at each time step. Each source is constraint to a minimum
Additionally, the second

power output P; . and a maximum power output P;

constraint refers to the power output boundary of each source must be within the
domain of the state variables X (related to the bus voltage and phase angle) to

guarantee Lyapunov stability.

The following model is considered for the local cost function solved by the DER

agent.

cPj(i) +cc+cs Pj(i) #0
0 P;(i)=0 (5.3)

¢ (Pj(i)) =

VieIAVjeJ
where cp and c¢ are generator specific cost parameters and s; is the start-up cost

of a DER source j [4]. The start-up cost function ¢, is defined as:

s - =0AP0) >0 vP1) >0

0 otherwise (5.4)

VieINVjeJ

April 2022



5.2.2. Energy Storage System Agent 128

The DER programmed behaviour considers if the start-up cost is worth to be paid
based on the future prices and the current state of the DER, especially when the
price forecast varies closely to cgP;,,,. + cc-

) is

Essentially, the jth DER starts supplying power at any time where 7 x (P;

max

higher than ¢; x (P} , and continues generation as long as the following is true:

maz)

> ()P = €j(Pjan)) > 0 (5:5)

(2

which represents that the accumulated supply cost using internal generation is
smaller than the total cost using external generation. The DER agent evaluates the
points in time when this condition is not true and compares the accumulated cost
of using either external or internal generation to select an optimal power schedule

for total supply cost minimisation.

5.2.2 Energy Storage System Agent

Depending on the size of the microgrid, the microgrid on its own can operate as
an intermediary between the wholesale electricity market and the retail market.
This means that the microgrid control system can minimise the cost of supply
by considering the price changes in the main grid by performing hourly energy

arbitrage. The ESS agent’s behaviour is modelled with these considerations [51].

As mentioned previously, this agent regulates the charge and discharge of the
battery by sending the power reference signals to its primary controller. This is

done according to the following local cost minimisation problem:
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min Ziw(z')(ij (i) — Pj(i)), VieZ (5.6a)
st. Py, <Pj<Pj,.., (5.6b)
SOCyin < SOC < SOCrnas, (5.6¢)
SOC(i + 1) = SOC(i) — nP(i), (5.6d)
{P7H(F(X)), Q7 (Q;(X)} €Dy, VjET (5.Ge)

where the first constraints indicates that output power is bounded by a minimum

and P; The second constraint states that the SOC of the

min Jmaz*

and maximum, P;
battery must be within the minimum charge SOC),;, and the maximum charge
SOC 4:- The second constraint states that the SoC at time i depends on its
immediate preceding timestep and the power P(i) sent or received by the ESS at
each time 7, multiplied by a constant 7, which models the round trip efficiency of

the ESS and its capacity.

To solve the local cost minimisation problem of the ESS, considering the dynamic
behaviour of the SOC, the ESS agent selects its actions based on a ranking of the

forecast prices with respect to the current price and SOC.

The power references are generated by modelling the state of battery in advance
to steer the SOC such that is has an optimal value in the future applying offline
MPC, presented in chapter 2. MPC is used such that the agent aims to steer the
SOC to have some specific value in the future by selecting the appropriate power
references based on the internal model of the battery that is stored in the ESS
agent. For example, steer the charge to be at maximum at the moment of peak
price or to be at minimum at the moment of lowest grid price, to maximise profits
from energy arbitrage. For this local objective, this agent requests a price forecast
sufficiently long from its local GrA, such that the ESS agent always has enough

time to completely charge or discharge the battery to maintain optimal operation.

To maintain a feasible solution for the dynamic behaviour of the SOC, an initial
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SOC, which is measured from the physical layer at the start of the optimisation, is
defined as SOCy. Equation (5.7) is evaluated element-wise for each hour and offers
an equivalent constraint to the limits of the SOC.

SOChax + SOCmin B
2
SOCmax - SOszn
2 =0

SOC —

(5.7)

To realise its objective, the ESS agent looks at the trends of the current grid price
and prices in the future, rating the prices to identify its trends and adjust the power
reference accordingly. This means that the ESS drives the battery based on the
changes in the main grid’s price from one hour to the other, rather than the price

itself.

5.2.3 Grid Agent

As part of the distributed control nature of the control system designed in this
thesis, it is necessary to provide the control system with the ability to generate
the main grid’s electricity price, such that the control system does not rely on a
centralised control signal for its optimal real-time operation. Because of this, the
GrA at each MAS container, generates a price forecast signal based on the historical

price data stored locally to be sent to the corresponding DER and ESS agents.

This agent is created in each container, as requested by other DER or ESS agent,
such that each container is independent of external control signals in terms of
microgrid control, in line with the distributed nature of the control scheme. In Fig
3.1 of chapter 3, the containers in yellow show the agent organisation while the
arrows represent the type of ACL messages between them, as mentioned in the

communication protocols in chapter 2.

Two price forecast method families were studied in this thesis and implemented into
the GrA, as presented in chapter 4 and in [7], the NARNET and the WA model,

based on MCMC, which are covered in the previous chapter.
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Figure 5.2: Block diagram of the distributed microgrid control system.

Regardless of the price forecast method, its transfer function, that is, the fore-
cast price model based on the previous prices, is obtained and applied to be run
continuously by the GrA’s behaviours within 10 milliseconds as shown in Figure

5.2

5.2.4 Wind Speed Forecast Agent

The WSFA is designed essentially as the GrA, with the difference that this agent is
used for wind speed forecasting using AR models instead of electricity prices. The

wind speed forecast models are covered in the previous chapter. Similarly to its
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price forecast counterpart, this agent is also created by a request from the RESRA.
The properties of the RESRA will be presented in the next section. The objective
of this pair of agents is controlling the optimal regulation of renewable generation
of a single distributed source. The RES agent generates the appropriate wind speed
forecast, while the RESRA maintains the difference between the power schedule

and actual power delivered as minimum as possible, which is described next.

5.2.5 RES Regulator Agent

The RESRA uses the wind speed forecast signals from the WSFA to calculate the
expected wind power generation using the wind generation model in equation (4.30),

presented in chapter 4.

For the case of microgrid control, the accuracy of the power estimation is proportional

to the accuracy of the wind speed forecasting method applied.

With the wind power generation values, the RESRA generates the optimal power
references for its associated battery to minimise the error between actual renewable

generation and power schedule.

The optimisation problem solved by this agent is formulated as:

min Y (Pen(i) — Pue(i))?, Vi€l (5.8a)
st. SOC(i+1)=S0OC(i) —nP(i) Vil (5.8b)
SOCin < SOC < SOCas (5.8¢)

where Pj, is the power schedule and P, is the wind generation power from (4.30).
While Py, is unbounded, P, is not known in advance, and can only be estimated
by the wind speed forecast model. However, the minimisation in real time can be
achieved by compensation with a battery. The consequence of this is that if the

battery does not have enough capacity to either send or receive power the difference
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between P, and P,; will increase. It is therefore necessary to continuously add
corrections to the P, to account for regulation of the SOC of the battery. This
has the added benefit that the power from the wind resource is smoothed out over

time.

The Py, is then defined as:
Psch = me + Padj (59)

where Py, is the calculated power from the forecast model and Fy4; is the power

adjustment to account for SOC net charge or discharge from power regulation.

Given that the power compensation could randomly accumulate a net charge or
discharge of the battery over time, this agent also adjusts the power schedule to
accommodate for this condition and maintain the state of charge as close to the
middle point between SOC,,q: and SOC,,;, as possible. This behaviour of the
RESRA maximises the ability of the battery to equally likely absorb or deliver

power to compensate for the errors in the wind speed forecast.

The combined behaviours of the agents described previously allow the independent
operation of the distributed control realised by the secondary control layer. The
next section describes the MAS application to realise the tertiary control layer for

the integrated microgrid cluster operation.

5.3 MAS Design for Tertiary Control Layer

This layer has the objective of maintaining stability of the cluster and generating
incentives to the individual microgrids inside to use distributed generation. The
design presented in this thesis is such that it doesn’t override the behaviour of the
secondary control layer in the pursue of cost minimisation, avoiding centralisation
of the control system. The tertiary control layer implements a price correction

mechanism for the internal microgrids.
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This allows the entire control hierarchy to cooperate towards the general objective
of maintaining the cluster’s voltage regulation and provide the incentives to the
secondary control to increase distributed generation, even when from the point of
view of each of the MAS platforms in the secondary control layer, they are operating
to maximise the economic benefit within their microgrids, independently of the rest

of the system.

Analogous to the achievement of general objectives of the microgrid by the com-
bination of the behaviours of the individual agents, this interaction is intended to
represent the policies that could be implemented in a microgrid cluster to achieve

objectives beyond the general objectives of the individual microgrids.

To guarantee that the tertiary control layer does not interfere with the autonomy of
the distributed secondary control and the stabilisation mechanisms of the primary

control layer, this control layer has a slower response than the first two layers.

The Tertiary control layer in this thesis is mainly directed by the cluster agent
at the cluster’s main bus, and the DF federation agent, with its corresponding
secondary DF agents in the secondary control layers which are presented in the

next subsections. The full control hierarchy is shown in Figure 5.3.

5.3.1 Cluster Agent

This agent has the objective of promoting the use of internal generation in a cluster
of microgrids connected at a PCC to the main grid by sending correction values to

the grid price to each of the DER and ESS agents.

The objective of the cluster agent can be expressed as:

min |Vref (t) - chluster (t)‘v Vt (5.10&)

where V¢ (t) is the reference voltage of the cluster and Vi,ster(t) is the voltage of

the main cluster bus at time ¢.
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To solve this problem, the cluster agent generates a price correction factor . to
the registered secondary DFs in the cluster DF, which in turn, is communicated to
the DER and ESS agents. The price correction factor can be any non-increasing
function with respect to active power consumed by the cluster. In this thesis this

function is defined as:

e = —k1 Pejuster — ko (511)
where k1 and ko are positive constants, and Pyyster i the power flow of the cluster.

For this agent, a positive P.ster indicates that net power is sent to the grid and
negative indicates that net power is being consumed by the entire cluster. Because
of this, 7. indicate a grid price increase with more power consumed by the cluster
and vice versa. The price correction 7, is a function of power to increase the ability
of the system to monitor the voltage conditions of the cluster due to power flow,
while the primary controllers verify that the cluster remains stable using the voltage

directly.

The price forecast sent to the DER and ESS agents is then modified as:

m™=F+mn. (5.12)

where F' is the price forecast generated by the individual GrAs. In the case that the
communication between the tertiary and secondary control layers is lost due to any
unforeseen failures, the secondary control layer operates with the last 7. received.
The communication restoration between the secondary and tertiary control layer is

managed by the DF federation agent described next.

5.3.2 DF Federation Agent

This agent allows the restoration of the communication network for the price

correction mechanism. The design of this agent follows the same principles as the
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restoration service presented in chapter 3, except that this agent is capable to form
a DF federation across multiple MAS platforms for the control cluster to allow
fault-tolerance of the communication network between the tertiary and secondary

control layers.

For the formation of the DF federation, the secondary DF agents of the secondary
control layer are registered in the DF federation agent in the tertiary control layer.
In a similar way, the DER and ESS agents subscribe to the standard DF agent
and the secondary agent in their local container. This allows the communication
between the cluster agent and the cost optimisation agents to be fault-tolerant
against failure of any single agent container or agent main container in any of the

MAS platforms in the secondary control layer.

All of the agents used for the operation of the secondary and tertiary control layers

are summarised in table 5.1.

5.4 Test cases and Simulation

As different stakeholders in microgrid operation have different objectives, multiple
test cases and scenarios are included in this section to analyse the optimal operation
of different components of the control scheme presented previously in this chapter.
In general, each test case is a real-time simulation model composed of an appropriate
physical layer and primary control layer, controlled by hardware in the loop that
contains the MAS application of the upper control layers. The test case models
presented next validate each of the features implemented for the control scheme
presented in this chapter. The test cases are presented such that they subsequently

increase the complexity of the problem analysed.
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"UOIYRISUDS POIN(LIISIP
9STL 07 SPIISOIDTW 9} SSIATJUIIUT

"UOIYR[NSDI I9)SN[D I0] 95RI[OA I9)SN]D 1) 9)e[NTY

surojye[d sj0uwaI 09
Son[eA UOIIDDII0D DI J

A 1SN
WOIJ SOFeSSOUW ULIOFUT
‘03®v)[0A ST PLIS UTRIN

Joje[nIal I99sny)

"901AIOS soged MO[[eA wIojje[d-1)NW 9y} UWLIOq

Jojewr purwop
pue 901AIeS AJ1j0U
09 $6FrSSOUWI WLIOFU]

S ATepuodes pue
I09091I00 I9YSN[O WO
sysonbox uorydrrosqng

A @9sn1)

"S)Ne] IOUIRIUOD-UTRW JSUTRSR 9OUSIISOT
SMO[[® SIYJ, ‘SIOUIRIU0D [BDO[ 91} Ul UOIPRUIPIOOD
Io3sn[o 10y soged mof[eA urrojye(d-Inur oy} WLIOg

A I03sno
09 soFessoul I93SI130Y

SY 1Y) woij
SOFRSSOTN 1938180y
gelejuienle))
pue owreu (I I0Sn[))
§4972UD4DA UOLIDILD

A Arepuoodeg

‘[PAS] 2IBMPIRY 9} Je JUSWIeURU JUdde
JO UOIJeSI[RIJUIIP SMO[[® SIYT, "SINV
09 sysonbor wrojrod pue s1INdWOd JUSIOPIP
wo1j wiojye[d oY) $s000% 0} [NX) Y} 9381

SNV 0% sogessowt
Jsenbol pue wiojuy

SINV wo.gy

S9FeSSOU WLIOJU]

(VINY) yuesy
JOJTUOTA] 930WY

"SHUOGR U0OMID( YIOMIOU UOIJRITUNTIUIOD
oYY JO UOIJRULIOJ 9} SMO[[®
SI} :S9OIAISS IQPO pur 1senbalx
03 (I 9Y3 03 dQLIOSNS SJUSFY 9IIAIIS
soged mof[oA wrojjerd [eo0[ oY) WLIO]

‘urtogyerd
oures oY} UI}IM sjyuage
09 $6FrSSOUI WLIOFU]

sjuage [ WOy
sysonbar uorpdrrosqns
pue I99S189Y

(1)
J0jeloey
A103001(J R0

"SHUOSR JURAS[OI 0} S9FeSSoul G1eSe urrojyerd o3} ur juoge Hmm@zmmv
pue wojjerd jo snjels wroju] “wrojerd ! AToAd WIOI] soFessouw S48
07 SoFeSSoW WLIOFU TTOWAFCURIN
9} Ul Sjuade [[I3y pur 9)eaI) gsenber pue uriojuy
a8y
SUOI}OY UIRJA] sindinQ syndufy sy

April 2022



139

5.4. Test cases and Simulation

"T0I3U0D DATPOTPaId SUIJO
SuImor[oy ‘SSH oYY Jo AIqerear
9} 19935 03 DS JUSIIND PUR
91500105 2011d oY) Yjoq
JOPISU0D soouaIdjol Iomod oy T, -odrijiqie
A310U0 sosI[eal yudge SIY [,

oderjiqre
A810U0 10J §SH [€20]
07 SOOUDISJOI TOMOJ

NOS eI
‘)5eD9.I0] 90LIJ

P08 D [820T
‘Kousrorge diry punoy

Xew HOS pue u HOS
184292 DLDd UO0YDIL)

(Ssa)
wo)sAg
98e10)g ASI0Uy

"98©0010] 9011d o1} d1eIdU3
07 [OPOW }SBIDIOJ ® S9S[) A(] I9ISND
pue (I [€90] 9} 09 SISYSISAI I]

“R)RP [BOLIOISIY SS90 0] JO[[0IFU0D [ROO]
9} UI SO[IJ SAD SS900R ] “IOUIRIUO0D JUaSR IR
Ul 1SRD910J JO douapusdopul Mo[[e SIY) ‘I
® JO UOIRAID dY) sysenbar gqH 10 YA V

A Lrepuooss pue (]
[eo0] 0} uorydrrosqng
1SRIDI0J 9OLIJ

Ad 8201
WO} S98eSSoUW ULIOJU]

‘ouIry uoljRINUIS
(ssa/gaq) yose
Isysenbalr Jo sureN

:84999WD4Dd UOLIDIL)

(VD)
JuOBY PLI)

"3580010] 0o11d pue snjess
YA FUOLIND SULIDPISUOD
‘OLIRUOOS PeIyR Aep € Ul 1500 9SIWIUIW 0%
seoouaIajel Jemod [ewrydo oY) ajemOrR)

VA [B20] 0} puas
S90UBI8JeI ToMOJ ‘SINV 02

Jue8e pLIsd jsenboy

1SR910] 9OLIJ
QUIl} uolyenuurs

OR0S DL [B20T
‘xewd pue urwg

‘uorjouny 1800 YAJ
154272UDADA U0L)DI.L)

(u=a)
90JN0SaI AZI9UH

paqLISI(q

April 2022



140

5.4. Test cases and Simulation

"SISO} ST} UI pasn sjuade o1} Jo [[e Jo Arewrung :1°G o[qr],

"1580910] poads purm o1}

9)RISUSS 0] [OPOUW JSBIDIOJ B SOS()

“R)RP [ROLIOISTY SS800R 0] da 18997 (vasm)

18e0010] poads purpy WOIJ S9FeSSOU WLIOJU] JUOBY JSBIAIO]
IS[[OIYUOD [ROO] ) UL SO SAD SS900R 9] .
9UIl) UOTJR[NUIIG poads purpy

"JUeFe JSBISI0J PUIM © JO

uoI)RaID 9} sisenbar Juase GHY Y
NOS eI,
“AT[Iqe[IRAR GGG 9juRIENS ‘9seda10] peads purpy (VYSHY)

01 DS IDLIND SIOPISUOD OS[R JUIde SI T,
"UOIRIOUIS Y 9Y)
OSIWIXBUW 0} S9OULIRJAI Iomod o1} 9)eIOUIY)

uorjesuaduwod

SHY 10} SSH [820]
0} SOOUAIDOI I9MOJ

P08 DL 18907
‘Kousrorge diry punoy

Xew )OS pue ur HOS
:54272UDUDA U0LIDIL)

Uy I0jR[NIoYy
90IN0G ASI0U7
o[qeMmaudy

April 2022



5.4.1. Microgrid Cost Optimisation 141

5.4.1 Microgrid Cost Optimisation

To establish the feasibility of the MAS approach to secondary control layer, its
ability to generate the power schedule is first tested against centralised heuristic
optimisation for cost minimisation, independently from forecast models. Secondly,
uncertainty in grid prices is introduced to demonstrate that the cost minimisation

is feasible in this conditions as well.

5.4.1.1 Optimisation Solver Comparison

The following test cases are intended to demonstrate the ability of the MAS to
minimise total supply cost, compared to other solvers. Additionally, the calculation
time required is also evaluated to demonstrate that the MAS application is suitable
for real-time power management when combined with the primary control layer.
The evaluation focuses on the cost minimisation, and therefore these cases do not

consider price uncertainty.

The test microgrid model and its scenarios are based on the optimisation problem
from [55], which is composed of a MT, a FC, a battery, and a load connected to a

single bus and to the main grid.

As in the benchmark optimisation problem, three scenarios for cost minimisation are
presented: The low load, where the demand is lower than the distributed generation,
the high load case, with load higher than internal DER capacity, and a stand alone
case where there is no exchange of power between the grid and the microgrid. In
the grid connected scenarios it is assumed that energy trading between the main

grid and microgrid is possible at the same price.

The components are modelled with the repository from [140]. The line and control

parameters used are found in Table 5.2.

The physical layer of the microgrid and the primary control layer of this test case

are modelled in RT-LAB and using the OPAL-RT OP5700 real-time simulator. The
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5.4.1.1. Optimisation Solver Comparison 142

Table 5.2: Microgrid simulation parameters.

DER Lines LCL filter Inner Outer
loop gains loop gains
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Figure 5.4: Microgrid simulation model and MAS platform used for the first test
case in this chapter. In this model, the grid price agent provides the actual prices
and the load agent depicted is used for the load variation scenarios.

secondary control layer is a JADE based MAS platform for a distributed secondary
control layer [73], interfaced as shown in Figure 5.4. The circuit model operates in
3-phase at 400 Volts RMS from line to line at 50 Hz. The DERs are modelled as a

1500 V DC source connected to a 2-level inverter with an LCL filter.

The circuit model is tested with a simulation time step of 5 x 10~° seconds, for
one day with every hour being represented by 4 seconds of simulation, that is,
the price and load that would change after one hour in the test case in the real
scenario, change every 4 seconds instead. This is done to focus on the transient
state stabilisation, given that after 4 seconds the electrical model is already in
steady state. The rest of the variables of the simulated model, such as the electrical

variables, vary in real time (no compression is used).
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Table 5.3: Test case grid prices.

Euro Euro Euro
Hour ¢/kWh || Hour ¢/kWh || Hour ¢/kWh
1 2.5 9 15 17 6.2
2 2 10 40 18 4.4
3 1.5 11 40 19 3.7
4 1.3 12 40 20 )
5 1.2 13 15 21 11.9
6 2.1 14 40 22 5.3
7 2.3 15 21 23 3
8 3.9 16 19.7 24 2.7

Table 5.4: DER cost function parameters.
DER paramter Micro turbine Fuel Cell ESS

Prin (kW) 6 6 730
Praz (kW) 30 50 30
cp (Euro ¢/kWh) 4.37 2.84 0
cc (Euro ¢) 85.06 255.18 0

As a point of comparison for the MAS approach, the power management of the
secondary control layer is also developed for offline optimisation in MATLAB
applying heuristics to approach the global minimum cost for three solvers, Genetic
Algorithm (GA), Particle Swarm Optimisation (PSO) and Pattern Search (PS),
along with the results from [55].* The optimisation problem is solved with an

i7-6700 CPU at 3.40 GHz with 16 GB of RAM.

In Tables 5.3 and 5.4 the parameters for this test case are provided [55].

5.4.1.2 Cost Minimisation with Price Uncertainty Test case

Next, are included the test cases where the ability to maintain minimum cost is
analysed when the electricity price is unknown to the microgrid’s secondary control,
in line with distributed control. To do this, the GrA implements a grid price forecast
model, as opposed to simply inform the actual prices in advance as in the previous

case in this section.

*Refer to the MathWorks Global Optimisation Tool box for more information about these
solvers.
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Figure 5.5: Microgrid physical layer and load distribution for the cost minimisation
with price forecast test case.

Table 5.5: DER cost function parameters.
DER parameter Micro turbine Fuel Cell ESS

Prin (kW) 6 6 30
Prae (KW) 30 50 30
Cp (pence/kWh) 4.37 2.84 0
cc (pence) 85.06 255.18 0
S 9 16 0

Centralised and distributed forecast comparison

The physical model of this test case implements further non-linear parameters in the
cost minimisation problem, in the form of the start-up cost, which makes necessary
the use of price forecast methods for the DER agents. In the previous case only the
ESS state is affected by the changes in price as it cannot change its SOC within

one hour. The microgrid model for this case is shown in Figure 5.5.

The generators parameters are described in Table 5.5 and the total electricity

demand is found in Table 5.6. Table 5.7 describes the admittance of the power lines.

For the first scenario applying price forecast, the GrA applies the MCMC method
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Table 5.6: Microgrid total demand.
Hour kW H Hour kW H Hour kW H Hour kW

1 16.32 7 18.36 13 33.66 19 52.02
2 15.30 8 24.48 14 36.72 20 61.20
3 13.26 9 26.52 15 36.72 21 55.08
4 11.22 10 27.54 16 30.60 22 46.92
5 12.24 11 30.60 17 30.60 23 33.66
6 14.28 12 33.66 18 40.80 24 18.36
Table 5.7: Line admittance of the test microgrid.
Line H Siemens ‘ Line H Siemens

y1,2 || 46.3435 - 13.54401 | ya7 46.3435 - 13.54401
Y2,3 9.0275 - 0.2299i yrs || 205.7613 - 205.7613i
y2,4 || 92.6870 - 27.0881i | yr9 3.3505 - 0.09791
Ya,5 2.4153 - 0.01431 | yo10 || 205.7613 - 208.7613i
Ya,6 17.5886 - 3.6600i | w9 11 19.2675 - 2.0134i

based on the data of UK hour prices from 16/05/19 to 26/09/19 in GBP/MWh,
obtained from Nord Pool, as described in chapter 4, where the accuracy of this

method is validated.

To test the cost minimisation performance with grid price forecast, four cases for
different price scenarios are used: case la is double the average Friday’s price for the
prices between 16/05/19 to 26/09/19, case 1b is double the price from 27/09/2019,
case 2a is triple the Average Friday price and in case 2b the price is triple the price

from 27/09/2019.

This test cases compare the cost minimisation between three forecast conditions:
Sharing a single price forecast used by all the agents in a centralised manner; using
multiple GrAs, labelled as independent forecast for increased autonomy of each
DER within the microgrid, and sending the actual prices in advance to the agents,

such that no forecast error exist, labelled as ideal case.
NARNET and WA Method Cost Comparison

This case is used to analyse the differences between the NARNET and WA price
forecast models in terms of cost minimisation as part of the MAS application,

complementing the analysis presented in chapter 4 in terms of error.
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This test case uses the same microgrid model as the previous case, with an ESS and
2 dispatchable generators, a MT and a FC and a varying total demand between
11.22kW and 61.2 kW during the day which is distributed in the circuit as shown in
Figure 5.5. The physical layer and the primary control layer are modelled within an
OPAL-RT real-time simulator. The MAS platform is deployed using two Raspberry

Pi3 model B+ and a PC over a local area network for the secondary control layer.

In the following cases, the total supply cost of the microgrid is calculated for the
best iteration of each of the price forecast models implemented in the GrA, as
illustrated in chapter 4, with the real price considered the ideal case as reference.
This is done for each of the following price data scenarios: no weekends and no

outliers, no weekends, no outliers and all data.

Following the cost analysis done in [7], all the prices are adjusted to double and
triple the values of the original historical UK price data set, as the original data set
is intended for wholesale market, which does not accurately reflect the electricity
price to the consumers at the retail market, this also contributes to examine the
effect of the accuracy of the forecast model in terms of supply cost minimisation
with respect to local cost functions of distributed sources. Similarly to previous test
cases, it is assumed that the microgrid can trade with the grid at the UK price to
buy and sell energy, in all cases the reactive power reference of the primary control

layer is set to zero.

5.4.2 Microgrid Renewable Optimisation

Similarly to the case of uncertain prices, randomness in the power management is
also introduced with the use of renewable distributed resources. In this thesis, an
AR model approach is used to generate a short term wind speed forecast. As the
wind speed forecast cannot directly be analysed in terms of cost as in the price case,

the validation of these forecast methods is presented in chapter 4 of this thesis.

In this case study, the ability of the RES agent to maximise the use of wind power
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Line ‘ Siemens H Line ‘ Siemens

y16,17 | 100.6035 — 0.0935¢ || 16,1 | 100.6035 — 0.0935:
Y168 | 90.3017 — 0.04677 y1,18 | 100.6035 — 0.0935¢
y18,3 | 100.6035 — 0.0935¢ || 182 9.0334 — 0.00077
y3.19 | 50.3017 — 0.0467: y3.4 | 18.3503 — 0.012151
Y1920 | 33.5345 — 0.0311¢ Y195 | 411.5184 — 1.30901¢
Yoo | 411.5184 —1.3090i || yoo7 | 19.4779 — 0.0064i
Y8,9 83.9626 — 0.18751 Yo,10 | 958.0718 — 0.0947¢
Y1022 | 41.9813 —0.0939¢ || y10,11 | 58.0718 — 0.0947¢
Y2112 | 27.3672 —0.02270 || yo114 | 27.9875 — 0.0626:
Y12,13 2.7367 — 0.0002 Y14,15 83.9626 — 0.18757

Table 5.8: Line admittance for the microgrid cluster.

generation based on the forecast with the highest error is tested. This will be used
to validate the wind speed forecast and power compensation methods in the worst
case scenario available in the dataset. The scenario uses the data from the 3rd of
October of 2017. On this date, the largest sudden increase of wind speed during
the period covered by the data set is found. This data is chosen given that the
NARNET model, as any AR model, may have an accuracy decrease with sudden

changes in the time-series, which forces the use of the compensation mechanism.

The simulation for this test case and the cluster test case is described in Figure 5.6.
The values of admittance of each power line is found in Table 5.8. For the renewable

optimisation test case, the microgrid 2 is modelled in the real-time simulator.

As in the previous test cases, the physical layer and the primary control layer are
modelled using an OPAL-RT real-time simulator and the secondary control is built

externally using Raspberry-Pis.

5.4.3 Microgrid Cluster Optimisation

The final case study is the integration of all the control and forecast methods
interacting simultaneously in a single circuit. This includes the three control layers
in a single physical layer, where microgrid 1 has the objective of cost minimisation
and microgrid 2 has the objective of renewable generation maximisation at the

secondary control layer.
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5.5. Stmulation Results and Discussion 149

To verify the functionality of the proposed model, the price correction parameters
of the cluster agent at the tertiary control layer are k1 = 0.177 and ko = 22.222.
This values, in combination with the cost functions used in previous chapters and
the net power flow will influence the secondary control layer of microgrid enough to

see the effect of increased internal generation.

However, some room has been left for microgrid 1 to take advantage of grid prices
such that it can be verified that the secondary control maintains its capacity of
solving its own cost minimisation problem, omitting a trivial solution, such as

setting the internal generation to be activated at all times.

As mentioned in the previous test case, the physical layer of this case is illustrated in
Figure 5.6, the power lines are described in Table 5.8. In this case, the entire circuit
is modelled in the OPAL-RT real-time simulator, along with the corresponding

primary controllers in each of the DERs.

5.5 Simulation Results and Discussion

This sections presents the simulation results of the test cases described previously
in terms of performance of the entire simulation model with the control system.
The accuracy analysis for the price and wind speed forecast methods are covered in

the previous chapter.

5.5.1 Microgrid Cost Optimisation Results

5.5.1.1 Solver Comparison Results

The supply cost results are plotted against computing time for 10 runs for each
solver and each scenario as shown in Figure 5.7. The time axis is presented in all

cases in logarithmic scale for this test case.
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Figure 5.7: Optimisation results for cost minimisation. Top, low load case. Middle,
high load case. Bottom, stand-alone case.
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Table 5.9: Supply cost minimisation per solver Summary.

Average CPU

Average . Relative
Solver Cost calalﬂatlon Type of Difference to
(euro) time Solver benchmark (%)
(seconds)
Low Load Case
PS 1.71 1.11 Heuristic -95.91
PSO 25.78 308 Heuristic -38.57
GA -5.81 2323 Heuristic -113.84
GA (no buy) 42.06 325 Heuristic 0.21
GA2 -10.14 42.3 Combined -124.16
GA2 (no buy) 34.82 39.6 Combined -17.03
MAS -10.49 0.08 Numerical -124.99
MAS (no buy) 36.33 0.04 Numerical -13.43
High Load Case
PS 479.78 1.03 Heuristic -1.25
PSO 540.47 132.6 Heuristic 11.23
GA 481.9 263 Heuristic -0.82
GA2 468.97 16.2 Combined -3.47
MAS 467.82 0.39 Numerical -3.71
Stand Alone Case
PS 125.4 1.01 Heuristic -1.88
PSO 127.42 134.7 Heuristic -0.30
GA 129.16 172 Heuristic 1.05
GA2 118.52 20.5 Combined -7.27
MAS 114.49 0.39 Numerical -10.42

The vertical left axis measures the cost found in euros, while the vertical right
axis measures the relative difference to the benchmark total cost in [55], where
Multi-Stage Decision Programming (MSDP) was used for the cost minimisation.
The relative difference is calculated as the difference of the cost found and the
MSDP cost divided by the MSDP cost, shown with a red line. GA refers to the
fully heuristic approach and GA2 to the combination of the heuristic and numerical

approach.

For the Low load case, an additional no buy policy is tested for GA, GA2 and
MAS, as the DERs capacity is higher than the load, no energy is supplied from the
grid. For the High load and Stand-alone case, all solvers reach a relatively similar

solution. A summary of the average costs and calculation time for each solver is
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found in Table 5.9, the optimisation solvers stop when the total cost variation with

respect to the previous iteration is below 1 x 1076 euro cents.

In all of these cases it can be seen that the MAS approach is significantly faster,
taking milliseconds to obtain the power schedule, while the other methods take
minutes and the result varies even with the same initial conditions. The MAS
approach consistently reaches the global minimum in the 3 scenarios except in the
no buy scenario of the low load case where the GA2 is able to find a slightly better
solution, however the average calculation time required is 39.6 seconds compared to

40 milliseconds for the MAS approach.

The energy management capacity of the MAS control can produce consistent, fast
and optimal results compared to the heuristic methods, the small calculation time
allows real-time optimisation as the power schedule is generated while the simulation

is running.

In Figure 5.9 the response of the DER to the set points sent by the ESS agent are
presented. Smooth operation can be seen for reference changes from -30kW to 30kW.
Figure 5.8 illustrates compliance with the GB National Electricity Transmission
System Grid Code. This validates the primary controller as well as a suitable control
system for the microgrid in terms of stability and response time. A more detailed

response for the physical layer will be presented in the last test case of this thesis.

5.5.1.2 Cost Minimisation with Price Uncertainty Results

Centralised and distributed forecast comparison

Three scenarios are evaluated for supply cost with price uncertainty to verify the
ability of the distributed control system to achieve optimal power management. For
these simulation results, the first case consist in providing each of the DER and
ESS agents the real price values in advance, such that the forecast has error equal
to zero. This case is labelled as ideal. In the second case, a single price forecast

is realised and transmitted to the rest of the agents, which is labelled as shared
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Figure 5.9: Control response for the active power of the ESS.
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Table 5.10: Average extra cost per day in GBP for the MCMC price forecast method.

Price ‘ Date H Shared ‘ Independent
Average Friday 0.373 0.377
Double =57 109 /2019 1.347 1.426
Triole Average Friday 0.222 0.329
p 27/09/2019 3.223 3.287

forecast. In the third case, each of the DER and ESS agents request an independent

GrA to realise a local price forecast, which is labelled as independent.

The price 7y estimated by the MCMC was doubled and tripled as the price data is
intended for large scale suppliers and does not reflect the actual end consumer price,
which for the UK was in average 13 pence per kWh in 2019. This is done to better
study the effect of the estimation compared to the actual price at the distribution

level.

The Table 5.10 shows the extra cost from the MCMC price forecast compared to
the ideal case, it can also be observed that sharing a single price estimation or using
the same data to generate price signals independently does not have a significant
effect on the total cost for the test microgrid, but allows further distribution of the

control.

The results from these scenarios are summarised in Figure 5.10, for each price case,
the bar represents the average cost after 10 runs. The results are compared with

the Ideal case of having the actual prices of each case.
NARNET and WA method cost comparison

From the scenarios discussed in the test case section, the total supply cost is
obtained. Each of the scenarios is run with the WA method and the NARNET
method implemented in the GrA and compared with the ideal case, where the
forecast has no errors, in other words, the real price is known in advance. From the
Quasi-Newton optimisation of the WA, the weights of the best performance are:

Wam = [0.48 0.34 0.96 0.03 — 0.82]. The cost results are shown in table 5.11.

Using double and triple prices illustrates the effect that the price has in the cost
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Figure 5.10: Comparison of centralised and distributed price forecasting with the
MCMC method. Case la is double the average Friday prices. Case 1b is double the
price from 27/09/2019. Case 2a is triple the average Friday prices. Case 2b is triple
the price from 27,/09/2019.

Table 5.11: Total Cost comparison in GBP for the NARNET and WA forecast
method comparison. The Perfect information scenario refers to using the actual
prices in advance instead of forecasting them.

Price Scenario Perfect' NARNET | MCMC
Information
no weekends, no outliers 17285.19 18358.56 | 19317.81
Double no weekends 17250.52 19103.90 | 19384.47
no outliers 24243.42 26046.88 | 27929.09
all data 24259.32 27248.01 | 27983.01
no weekends, no outliers | -12470.42 -11733.26 | -11631.11
Triple no weekends -13908.33 -12348.67 | -12913.53
no outliers -17185.72 -15063.10 | -15868.16
all data -18513.67 | -16140.25 | -16712.16

minimisation combined with the accuracy of the forecast method and the particular
load of the microgrid. For the high price case, the negative values in Table 5.11
represent net profits of the microgrid from energy trading with the grid. This shows
that for the load in this case is sufficiently low for the microgrid to benefit from

higher grid prices.

It can be see that the NARNET method performs worse than the WA when the
outliers are included in the data, which is consistent with the previous publication

presented in [7]. However, for the scenario of triple price without outliers and
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weekends, the NARNET is below 1% difference compared to the perfect information
case over two years, which showcases the forecasting capacity of this method in

terms of total cost.

5.5.2 Renewable Optimisation results

The power response simulated for the renewable wind generation simulation is
presented in Figure 5.11. The top subplot shows the wind generation during the
simulation. The middle subplot shows the power and SOC of the compensation
battery. It is notable that full charge is reached between 20:00 and 21:00. At this
point, as shown in the bottom subplot, the compensation cannot occur between the
wind generation and the power schedule. However, after 21:00, the compensation is

restored and the error between actual generation and forecast is minimised.

As the test case presented represents the worst case scenario, it can be concluded that
for any other conditions, the secondary control system is capable of maintaining
its power schedule with minimal deviations with the use of the compensation

mechanisms.

To better understand the effects of the proposed control schemes for distributed
optimisation with uncertainties, the simultaneous operation of the control schemes
in a single microgrid cluster is presented next. This is done to demonstrate that
the performance of the combined control schemes is maintained as described by the

simulations results presented up to this point.

5.5.3 Microgrid Cluster Optimisation Results

To summarise the effects of the different control layers, the cluster model is run for
one day in three different cases. For first case of this subsection, only the primary
control layer is active. In the second case, the primary and secondary control layer
are activated as shown in the case studies of previous chapters. In the third case,

all control layers are activated, to validate the effect of the tertiary control layer
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Figure 5.11: Microgrid 2 response for the worst case scenario. The power schedule
refers to the combined power of the turbine and the battery of this microgrid.

as a cluster regulator, in conjunction with the other control layers. The voltage

response of the cluster for each case is explored next.

Simulation results of the first case are shown in Figure 5.12. Results from this
case demonstrate that the individual primary controllers can also maintain stability
in the cluster circuit. As mentioned previously, this case establishes a point of

reference for the effect of the secondary and third control layers.

Simulation results of the second case are shown in Figure 5.13. With the activation
of the secondary control layer in both microgrids, optimal power management
is achieved as described in the previous subsection. This case illustrates that

independent secondary control layers can operate in the same circuit simultaneously.
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Figure 5.12: Voltage response of the microgrid cluster with only the primary control
layer active. The bus are enumerated according to Figure 5.6.

Results also reassure that stability is maintained within range.

Simulation results of the third case are shown in Figure 5.14. Here it can be
seen that the internal generation is increased from the contributions of the fuel
cell. Given that the internal generation remains the same for the micro turbine,
it is shown that the autonomy of microgrid 1 is preserved in line with distributed
control. Another important result from this simulation is in microgrid 2. While the
secondary control of microgrid 2 is not affected by the change of the main grid’s
electricity price, the third layer control contributed to its voltage regulation. By
increasing the internal generation, the voltage of the entire cluster is increased. This
demonstrates that the cluster congestion is decreased, and therefore, the capacity

for renewable generation is increased.

April 2022



5.6. Summary 159
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Figure 5.13: Voltage response of the microgrid cluster with the primary and
secondary control active. The bus are enumerated according to Figure 5.6.

5.6 Summary

In this chapter the real-time distributed control is presented. This is an application
that demonstrates the ability of the designed control schemes to achieve optimal
operation. This chapter also validates the stability and reliability of the primary
controllers evaluated in chapter 3. In a similar manner, the generation of the power
schedule used in this chapter is a result of the implementation of the distributed

forecast methods explored in chapter 4.

This chapter serves as an integration of the previous concepts presented in this
thesis. The ability of the control system to achieve multi objective optimisation in
a reliable, real-time distributed scheme is demonstrated. It also shows improvement
on the benchmark case and therefore shows the potential for distributed generation

to facilitate an electricity service model that could lead to a cheaper and more
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Figure 5.14: Voltage response of the microgrid cluster with the full hierarchical
control active. The bus are enumerated according to Figure 5.6.

reliable smart grid.

It is also an important part on the design of this system to consider that the system
is continuously optimising its cost function based on forecast values, this means that,
as opposed to similar works in microgrid cost minimisation with a defined point
for the end of operation, the design implemented here does not contemplate such
condition, which means that even at the end of the scenario studied, the control

system behaves as it would continue operation.

While real systems cannot operate Ad infinitum, it is reasonable to expect that
they should be ready to continue operation as long as possible at least for several

days to minimise the management required by an operator or end user.

Finally, The cost analysis shows that the effectiveness of the secondary control layer
in terms of supply cost minimisation and renewable generation maximisation of the

microgrid cluster depends on the accuracy of the forecast methods. Another factor
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in supply cost minimisation is the relation between electricity price and electric
load, as the higher price case at the load tested actually achieved smaller cost than

the lower price.
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CHAPTER 6

Conclusion and Future Work

This thesis has contributed with the formulation, simulation and analysis of a
suitable control scheme to further increase the economic and technical viability of
distributed generation, which aims to promote their use, and in turn, contribute
to the realisation of the smart grid. This chapter summarises the main findings
from the test cases of the previous chapters. The thesis finalises with the layout of
the future work in which the control system designed can be further improved and

validated.

6.1 Conclusions and Main Contributions

In this thesis, a control system for microgrids is presented and analysed. As
presented in chapter 2, the control system studied is based on distributed control to
mimic the distributed generation nature of microgrids as part of the bidirectional
power flow paradigm. The control system is organised in a hierarchy of three
main layers: The primary control layer used for stabilisation and regulation of the
electrical parameters of each generation source in real-time; the secondary control
layer for the coordination of generation sources in individual microgrids; and the
tertiary control layer for the power management of microgrids in a microgrid cluster,

aiming at maximising the use of distributed generation assets.
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The design of the primary control presented in chapter 2 of this thesis allows the
operation following a voltage reference or the power references provided by the
secondary control layer. This allows the primary control to maintain regulation of

the system, independently from the state of the power management system.

As shown in chapter 3, the design of the control scheme implemented in this thesis
for the primary control layer is stable and reliable, even in the event of faults in
the underlying communication network in the secondary and tertiary control layers.
From the perspective of stability of the primary control, aimed with regulating the
electrical variables of the system, the design of the primary control layer, with the
line model used in this thesis (short line RL model), is guaranteed to be Lyapunov
stable, within the analysed constraints. Due to the nature of the power flow between
two buses, it is also verified in chapter 3 that any control system that regulates
power flow between two AC buses based phase angle and voltage, as in the outer
loop of the primary controller implemented, cannot be globally asymptotically

stable as infinitely many equilibrium points exist.

The evaluation of the forecast models designed for the distributed control paradigm
of the secondary control layer, explained in Chapter 4, shows that the models used
are suitable for this type of control either from cost reduction, when combined
with the appropriate cost minimisation agents, or with statistical hypothesis testing
for the case of wind speed forecast. The evaluation framework for the wind speed
forecast models also provides insight on the efficient use of computational resources
required to perform the wind speed forecast when compared to other models. In
this regard, the evaluation by the Diebold-Mariano test verifies the fact that a
forecast model has a statistical significant difference with another method with
similar performance in terms of errors. This is of great importance for distributed
control as one of the trade-offs with fully decentralised control methods is the
amount of computational resources dedicated to maintaining the communication

network of the control system.

It is verified in chapter 5 that the combined artificial intelligence methods, namely,
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multi-agent systems and non-linear auto-regression artificial neural networks allow
for an optimal operation of the microgrid, and microgrid clusters in economic
terms in a distributed control scheme. The artificial neural network allows the
system to forecast the grid price and wind speed, which is communicated with
the corresponding optimisation agents without the need of an external signal that
would otherwise centralise the system. This removes single points of failure, which

improves the reliability of the entire system.

Design and testing of the proposed control schemes for microgrids with the use
of a real-time simulator, given that the secondary and tertiary control layer has
realised by a network of Raspberry Pis, allows a better consideration of the time
response requirements of such system under more realistic conditions than offline
simulation. Time response requirements, combined with the distributed control
requirements directed the design of the control system, from the control loops to
the artificial intelligence models employed to realise the optimal power management
under electricity price and renewable generation uncertainties. In chapter 5 is
shown that real-time simulators allowed the verification of the capabilities of the
distributed control system to simultaneously achieve reliable and optimal operation

under real-time conditions.

6.2 Future Work

Future work will be focused in further validation of the proposed control scheme,
and implementing conditions not covered in this thesis. Further verification of
the proposed control scheme can be done by increasing the complexity, type of
generation and consumption of the tested cluster model. Additionally, the hardware,
software, datasets and parameters involved in the test cases can be modified to

reflect conditions that are more realistic.

It is become evident during the development of this thesis that many of the objectives

in a distributed control environment could be greatly improved with the addition
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of load forecasting methods applying the same methodologies used in this thesis
for equivalent problems in electricity price and wind speed forecast. It is therefore
part of the future work to establish a load forecasting model for the smart power
management system to realise other objectives such as peer-to-peer electricity
trading, such that the control system can automatically purchase energy for its
assigned microgrid or microgrid cluster, with the least amount of manual input

from the end users.

Secondly, to distribute the process of adding new stakeholders into the system,
it will become necessary to implement the ability of the system to discover the
circuit topology in a distributed environment. Once the distributed control system
is capable of doing this, it will also become more resilient to faults in the physical
network, as it could self-adjust its control layers depending on the available power

flow channels.

Finally, further control methods are required to remove assumptions made on the
simulated microgrid models, in particular the nature of loads, in other words, further
development of the control system can be channelled to address the system stability
in the presence of non-linear loads or unbalanced loads. Additionally to this, further
work can be done to develop the necessary primary controllers to accommodate
other types of electrical sources, for example, DC microgrids to the cluster, with

the focus on generalising the control schemes to any type of electrical circuits.
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APPENDIX A

Quasi-Newton Algorithm

This algorithm is based on gradient descent methods to minimise a cost function
fon with input xzgn. At the start of the QN algorithm, a starting point zgy, and
a Hy as a symmetric positive definite matrix are chosen to represent the estimated
Hessian Matrix, which will be updated along the estimated solution. With these,

an optimal direction for gradient descent gj is calculated:
gk = —H 1-Vfon(zgn,) (A1)
then, an «4, is selected such that:
fon(zon, + akgr) < fon(zony) (A.2)

with the resulting a; and g, the next iteration is calculated:

TQNyy, = TQN;, T Ak (A.3)

The difference from the Newton method is that the Hessian matrix update in its

algorithm is estimated from its previous values instead of calculated analytically:

T T 1T
qrq Hysysy H,

Hipp1 = Hp + — 0 — —= kK (A.4)
4, Sk sy, Hysp,

where:

Sk = TQNj11 — TQN, (A.5)
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ar = Vion(zgn.,) — Vion(zon,) (A.6)

The method finalises when the following is true for a given tolerance ¢, otherwise,

the algorithm repeats with the next iteration k + 1:

|V fan(zon,)| <€ (A7)
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APPENDIX B

Inner Loop Function Stability

This function models the dynamics of the LCL filter for voltage control. The
requirements are close loop stability with respect to the DER side voltage source
and open loop stability for the Grid side voltage source. The inner loop dynamics

are described by the following system of equations:

vy (t) = LIE +ve
1
’Uc(t) = 6 (il — lg)dt
di
vo(t) = Lzﬁ + Ria + vg

Applying the Laplace transform, assuming initial conditions at zero we have:

L) =2 [leil + VC’}

at
Lhe(t)] = & [é / (i1 — m)dt}
Lhet)] = & [LQCZIE + Rig + vg}

Vu(S) = L1STi(S) + Ve (S)
1
= og!

Veo(S) = LaSIx(S) + RIx(S) + Vs(S)

Ve(5) L — 1)

Using the superposition principle, we analyse the response of Iy with respect to Vs

and Vg independently. For Vg = 0 we have:
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B. Inner Loop Function Stability 187

1
= [151 — ([ — I
Vu 151-1-05(1 2)
1
——(I1 — Is) = LyS1I I
C’S(l 2) 2SI + Rl

I = L2052[2 + RCSIs + Iy
Vi = L1S(L2CS%Iy + RCSIy + Iy) + LySIy + RI,
Vi = L1LyCS3Iy + LiRCS?*I5 + L1SIy + LsST, + Rl

Vi = (L1LyCS® + LiRCS? + [1S + LyS + R)I»
I 1

T = — =
YTV T LiLyCS3+ ILRCS?+ (L1 + Ly)S+ R

Similarly, for Vi = 0 we have:
0= 1,51 —|—L(I L)
= hioh + 7ol = £
1
——(I1 — Is) = LySI, + RIs + V.
Cs(l 2) = LaSIy + RI2 + Vs

I, = LyCS%I, + RCSI, + CSVg + I
0= L1S(LoCS?Iy + RCSIy + CSVs + Io) + LoSIo + RIo + Vs
0= L1LsCS%Iy + LiRCS?*I5 + L1CS*Vs + L1 S5 + LySIs + RI5 + Vg

~Vs(L1CS? + 1) = (L1 LyCS? + LiRCS* + (L1 + L9)S + R) Iy

I L,CS?2+1
T2:—2 1C5° +

Ve  L1LyCS3+ LiRCS? + (L1 + L2)S + R

It can be concluded that there are no poles in zero for 77 and T5 and all poles have
negative real part. This is because there is no change in sign in the denominator
and all the parameters of the circuit are positive, therefore they are open loop
stable. For the PI control, the parameters of the gains and the filter can be selected

to be close loop stable for T7.
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APPENDIX C

Lyapunov Stability of Outer Loop

The following formulation describes step by step the process to derive the Lyapunov’s
candidate function, used in the Lyapunov’s direct method of stability for the power

flow between two buses of the microgrid.

Starting from the power equation between two buses, Vg and Vg,in a short line

with impedance Z = R + iwL we have:

P+iQ =Vs(I)*

— VRZ6)*
PiQ=vs ST VRE) ;/R )
P+iQ = Vs—(VS _;/Rﬁ)*
— VrZd —iwl))*
P+iQ = VS((VS ‘g; +)L£§L2 L)) |
P4iQ = Vs (Vs — V};;COS(SR—2 :Viszvéé)(R —iwl))
P4iQ=Vs (RVs — RVRcosd — iRVRsin;Z—iwj;‘l/; + iwLVRcosé — wLVgsind)*
P1iQ=Vs (RVs — RVRcosd — iRVRsinip—iwj;‘zi + iwLVRcosd — wLVgsind)*
P+1iQ = RQJ_/LZ}QLQ(RVS — RVRcosd — iRVRsind — iwLVs+

iwLVgcosd — wLVgsind)*
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C. Lyapunov Stability of Outer Loop 189

P+iQ = ]%2_;/22[/2(]%‘/5 — RVicosd + iRVRisind + iwLVg—
iwLVRcosd — wLVgsind)
P+iQ = Rz—&‘—/iﬂLQ[(RVS — RVgcosé — wLVgsind)+

i(RVRrsind + wLVs — wLVRcosd)]

Separating the active power P and the reactive power () we have:

Vs .
— 5 __(RVs — RVgcoss — wLV;
P [EEETE (RVs — RVRcosd — wLVgsind)
Q=—"—"5735 fU2L2 (RVRsind + wLVs — wLVRcosd)

Selecting Vg as the grid bus and the Vi as the DER or ESS bus, and reversing the
sign of the power equations, such that power sent by the microgrid is positive and

power received is negative we have the power equations:

Vs .
P = m(RVRcosé + wLVgsind — RVy)
Q= RQ_XiJQLz(WLVRcosé — RVgsind — wLVs)

Selecting as variables Vi and §, and leaving the rest as constant we have the

functions and constant:

P(VR,0) = C1(RVRcosd + wLVgsind — RVyg)

Q(Vg,0) = C1(wLVRkcosé — RVgsind — wLVyg)
Vs

C1= RZ + w2l?2

With the definition of the state space variables X1 and X5 as follows:
Ve =X1+Vs
-6 =Xy
Which are substituted in the power equations, to have:

P(X1,X2) = C1(X1(Recos Xy —wLsinXs) + Vi(Rcos Xy — wlLsinXs) — RV)

Q(X1,X2) = C1(X1(wLcosXs + RsinXa) + Vi(wLcos X + RsinXg) — wLVy)
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C. Lyapunov Stability of Outer Loop 190

Which is a time invariant system with solution [P(0) Q(0)] = [0 0] with infinitely

many solutions of the form:

X1=0 X9 = 27k Vk € Ny

Applying integral control with the appropriate starting conditions in a negative

feedback loop, we can define:

X, =-C (X1(RcosXo — wLsinXs) + Vs(RcosXo — wLsinXy) — RVs)

Xy =—C} (X1(wLcosXs + RsinXs) + Vi(wLcosXs + RsinXa) — wLVs)

To demonstrate Lyapunov stability through the direct approach, a candidate function
V is selected such that it has the following properties:
V(0)=0
V(X)>0,X#0,X € Dx
V(X) — o0, | X| — o0
V(0) =0

V(X)<0,X#0,X €D

where Dy is some domain for X where X = 0 € Dx. The candidate function for

this system is:
Lo 1o
V(X) = §X1 + QXQ,X € Dx

V(X) = X1 X1 + X2X, X € Dx

Dx is any convex set where V < « that contains X = 0, for any constant c.
Finally, substituting the values of X in V:

V(X) = —C1(X1(X1(Rcos Xy — wLsinXs) + Vy(RcosXo — wLsinXs) — RV,)

—Xo(X(wLcosXy + RsinXs) + Vi(wLcosXs + RsinXs) — wLVs))
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C. Lyapunov Stability of Outer Loop 191

Which can always be found to have the desired properties for positive parameters in
the domain Dy, provided that the R/wL ratio is sufficiently large for the proposed
state variables and candidate function. These conditions are true in a distribution
circuit. The domain Dy is selected such that it delimits the origin around a value
of V, such that the domain is continuous for X. As the outer loop function is
asymptotic stable and the cascade or inner loop function is stable, the entire primary

control can always be tuned to be stable.
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APPENDIX D

Current Stability between buses

The previous outer loop is designed to operate under the assumption that the
voltages behave as phasors, which require matching frequency between buses and
the reactive components behave as close as possible to the steady state. The

duration of transient state in a short line model can be calculated as follows:

V2Vysin(wt) = Ri(t) + Ldil(tt) + V2Vgsin(wt + )
ZV2Vssin(wt) — V2Vgsin(wt + 0)] = £ [Ri(t) + Ldld(tt)}

V2Vw B V2VR(Ssind + wcosd) _ RI(S) + SLI(S)

52 4 w? 52 4 w?
V2Vaw  /2VR(Ssind + weosd)
— =17 L
52 1 2 52 1 2 (S)(R+ SL)

V2Viw — V2VR(Ssind + weosd) ()
(52 +w?)(R+ SL) N

 As n B N C

CS2+w? S24w? Bog

V2Vsw — V2VR(Ssind + wcosd)  (AS + B)(R+ LS) + C(S? + w?)

(82 +w?)(r + LS) N (S2 +w?)(R+ LS)

1(S)

V2Viw — V2VR(Ssind + wcosd) = ARS + RB + LAS? + BLS + CS? + Cuw?

Re arranging the terms by order, the following can be solved in matrix form:

—V2VgsindS + V2Vsw — V2Rwcosd = (LA +C)S? + (AR + BL)S + Cw? + RB
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L 0 1
R L 0
0 R w?

A 0
—V/2VRsind
V2Vsw — /2Vgcosd

1
1 0 7 0
0 L —% = X
0 R w? X3
1
1 0 I 0
R | _| X
1 —= | = | =
0 L2 L
0 R (/.)2 Xg
1
T 0
L
12 L
R? RX,
2 v Xa — ——=
0 w*+ 2 | I 3 I
1
7 0
R = il
L2 L
L2w? + R? LX5 — RX,
L2 i | L
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SIE

SIE

SIE

=

1 0
L
J I
L? L
' L2Xs — RLX,
i L2w? + R? |

_| % (L% - RW)R
L (1224 R)L
L2Xs — RLX,

L L2w? + R2

0

_| % (L% - RW)R
L (22 R)L
L2Xs — RLX,

L L2w? + R2

0

L2 X + R2Xy + LRX3 — R2X,

(L?w? + R?)L
L2X; — RLA,
L?w? + R?

0

_ | L%w2Xy + LRX;
(L?w? + R?)L
L?X3; — RLX;
i L L2w?2 + R2
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10 0 RXy — LX;
L20? + R2
01 0 — L2w22€2 + LRXg
(L2w? + R?)L
2y
00 1 L*X35 — RLAX,
L J L2w? + R? J

From which the time domain solution can be written as:

AS B ¢
I(S) = L
() 52 4 w? +52—|—w2 + %4-5
AS B ¢
L7HI(S)) = 27! L
17(S)] AR
i(t) = Acos(wt) + gsin(wt) + %e‘gt
Putting this together with:
A RXy — LX3
L2w? + R?
5| = L?w*Xy + LRX3
(L?w? + R?)L
c L?X3 — RLX,
L L2w? + R2 i
0 X
—/2Vgsind = | X
V2Vsw — V/2Vgcosd X3
Xy — LX: L2W? Xy + LRX:
i(t) = Mcos(wt) w Ay + LR Ssin(wt)—i-

(L?w? + R?)L
L2Xy— RLX, _x,
(L?w? + R)LC
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RXy — LX; Lw?X, + RX;
i(t) = 2.2 R cos(wt) 120 & 2 sin(wt)+
LX; — RX, _=r,
22t R2C
. —V2RVgsind — L(v/2Vsw — v/2VRcosd)
i(t) = 1207 1 12 cos(wt)+
—V2Lw?Visind + R(v2Vsw — v/2Vicoss) .
sin(wt)+
L2002 + R2
L(V2Vsw — /2Vgcosd) + ﬂRVRsinée_%t
L?w? + R?

V2
- L2w? + R2

(Lw*Vgsind + R(wVs — Vreoss))sin(wt))+

i(t) ((—=RVgsind — L(Vsw — Vgcosd))cos(wt)+

(L(wVg — Vicosd) + RVRsiné)e*%t

Where it can be observed that the transient state depends only on the last term,
lasting 5R/L seconds, after which the current stabilises. If the current and voltage
are stable, then the power will also be stable. This sets an upper limit on how fast
the outer loop can operate and a lower limit on how slow the inner loop must be to

not cause interference between the two.

As part of the inner loop, the control must also minimise the distortion caused by
the power converter, to make the system behave like a PQ bus from the point of
view of the outer loop and for the rest of the system. For this effect an LCL filter
is used along with DQO control the three-phase system using two constant values
assuming linear loads. The range of operation of the inner controller is also limited
to be within 0.85:1 of the reference signal such that the comparison with the carrier
results in the least amount of distortion after the filter. This range can be adjusted

from the gains of the inner loop and the DC voltage supplying the converter.
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APPENDIX E

Laplacian and L-polynomial

calculation

E.1 Main Container fault

This section illustrates the calculation of the L-polynomial before and after the

fault of the main-container to show that the network remains fully connected.

Before the fault, the Laplacian £, is:
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300 000 011 1 00
03 00060 1 01 0 1 0
003 00O 1 100 01

So: -
0001 0O 100 0 0O
000 01O 01 0 00O
000 0O01 001 00O
3 -1 -1 -1 0 0

-1 3 -1 0 -1 0

-1 -1 3 0 0 -1
20:

-1 0 0 1 0 0

0 -1 0 0 1 0
0 0O -1 0 0 1

From these Laplacian, the characteristic polynomial is:

3
—1
—1
€6 — M| =
-1
0
0
Lo — M| =

-1 -1

-1

0 0

-1 0

0 -1

0 0 R

1 0

0 1
-1 -1
-1 0

3—-A 0
0 1-A
0 0
-1 0

>~
> o

o o o o o
o o o O

o o o @ » o O
> o O O

> o o o o

> o o o o O

This will be refered as €y. To obtain the polynomial form, it is proceeded as a
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determinant calculation:

¢y =

<o

I
—_
|
—_
w
|
>
o
o
|
—_
+

1-=X)] -1 -1 3=-X 0 1
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-1 0 -1 0 -1 0 —1 0
3—A 0 0 —1 -1 0 0 -1
€ =B-2A) +1 _
0 1-X 0 0 -1 1-X 0 0
—1 0 0 1-—2X 0 0 0O 1-—-2X
-1 -1 -1 0 -1 -1 -1 0
-1 3—X 0 -1 3—\ -1 0 0
1 L (1-A) +
—1 0 0 0 -1 3—-X 0 -1
0 —1 0 1-—X\ 0 —1 0O 1-—-2MX
3—X2 -1 —1 0
-1 3-X -1 0
(1-A)?
—1 -1 3-X -1
0 0 —1 1-—A
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0 0 -1 3—-X 0 —1
CG=-B=-AN|1-x0 0 |[-B=XN] 0 1-x 0 |-
0 0 1—2X ~1 0 1-2A
0 0 -1 -1 0 —1
If1i-=x0 o |-l -1 1-Xx o0 |+
0 0 1-2\ 0 0 1-2x
-1 -1 0 -1 0 0

0 0 1-Xx 0 -1 1-x
3—-A -1 -1 0
13-\ -1 0

(1-A)

1 -1 3-x -1
0 0 -1 1-2x

G=-B=X)| 0 1-x 0 |-l -1 1=-Xx o0 |+

I{3—=x 0 -1 |[-(@T=X)] =1 3=-Xx -1 [+

-1 0 1-2) 0 -1 1-)
3-x -1 -1 0
o) -1 3-Xx -1 0
(1=2)
-1 -1 3-x -1
0 0 -1 1-)
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10 1-2A 0 -1 1-2X
3-A -1 0 3\ -1 -1

1-M2] -1 3-x 0 |[+@-N* -1 3-x -1
1 -1 -1 1 -1 3-2

Co=—B=NA=XN(B=-N1=-XN)—-1)+(1—-X>2*=

0 -1 3-X2 -1 3-x 1
1 +1 —(1=X3B-X) —
01—\ -1 1-2X -1 1-2X

-1 -1 ) 3-X 0
(1-2X) +(1—=X2)*3 -\ +
0 1-2)\ -1 -1
— 3-1 —1
(1—X)?2 +(1=2)33-N +
-1 -1 -1 3-A
-1 - -1 3-)
(1-=2)° —(1-A°
-1 3-) -1 -1

Co=—B-=N1-=N(B=N1-X)—1)+(1-X>+
B-=AN1-MN)=1-(1=XNB=N(B-A)(1-X—1)+
(1-X2—1=X2B-N2+(1 -1+
1=N°B =B -1 -1+

(1=2(=B=2)=1) = (1 =20+ B -N)
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Co=0B-N1=-N1-B=N1=N\)+(1-1*+
B=XN1=-N=1—-1-N2B=X2+B-N(1—- N+
(1-N2—(1-=N2B-22+0-)>*+
1=N’B=2)° =1 =A@ - -

(1=A2=B=N1=XN>=1=X>=3-N1-))?

Co=B-N1=-N=-B=X21-N2+1-\>+
B=AN1=-N—=1-1-N2B=X2+B-N(1 - N+
(1-2)2=(1-=N2B-XN2+(1-N2+
L=AB=2° =1 =2’B =X~

=22 =3B-NA=2>-1-2N3=B-N1-)?3

Co=3B-X)1-XN)—=3B8-N21-X2+3(1-))2*=

T+ (1 =XN3B=X2=33-1)1-X1)3-21-))>3

Co=3(3—4N+A?) = 3(9 —6A+A2)(1 =22+ 2%) +3(1 — 2A + A\?) — 1+

(T=3XA+322+XHB =12 =3B =AN)(1—=32+3\2 =A%) —2(1 =31+ 322 = \3)

Co=9— 12X +3X2 = 3(9 — 6A + A (1 — 2X + A3 +3 — 61 +3)\2 — 1+
(1—3A+3X2+2%)(27 = 27TA + 9AZ = X3 —3(3 — M) (1 — 3A +3X2 — \3)—

246X\ — 612 + 223

Co =9 — 12\ — 27 + 72X\ — 667% + 2473 — 34+
27 — 108\ + 17102 — 13673 + 57A% — 12)\° + \6—

9+ 30\ — 3677 + 18)\3 — 3\ + 223

Co = —18) — 6922 — 9203 + 510 — 120° + \6

April 2022



E.1. Main Container fault 204

It can be observed that €y has a minimum exponent of one, therefore there is only

one eigenvalue Ay = 0.

For the case after the fault, the L-polynomial &; is calculated as follows:

'30000] (o111 0]
02000 10001
Li=]100100|—|10000
000710 10000
(0000 1] [01000]
(3 1 1 -1 0 |
-1 2 0 0 -1

Li=]| -1 0 1 0 0
-1 0 0 1 0
0 -1 0 0 1 |
(3 1 -1 -1 0] [rx00 0 0]
-1 2 0 0 -1 00X 000
ILy=M[=]| -1 0 1 0 0 |—]00XO0O
-1 0 0 1 0 000 XO
0 -1 0 0 1| [000 0 A
3-A2 -1 -1 -1 0
-1 2—-X 0 0 -1
L1 = M|=| -1 0 1-X 0 0
~1 0 0 1-X 0
0 -1 0 0 1—2X
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-1 -1 -1 0
Q:_12—A o 0 -1 .
0 0 1-X 0
-1 0 0 1-2
3-X -1 -1 0
1% -1 2-x 0 -1
-1 0 1-Xx 0
0 -1 0 1-2x
0o 0 -1 2-x 0 -1
¢ =10 1-x o0 |—=1 0o 1-x o0 [+
0 0 1-2x ~1 0 1-2x
2-X1 0 -1 -1 -1 0
Ib 0o 0o o |[-@=XN|2-x 0 -1 [+
~1 0 1-2x ~1 0 1-A
3-A -1 0
=X -1 2-x -1
0 -1 1-2
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€= (- N2 N1 -N) - 1)+

-1 1-A

(12 -1 -1

0 1-2A

G=-1-MN(2-N1-X)-1)-
1=XN22=N+Q=N+1=X?*B=N(2=N1-)\)—-1)—

(1—=X°

C=—1=XN22=N+1-X—(1-=X*2-N+

L= A+(1=X2B=X2-N-10=-X2B-N-1-2))>3

€ =-21-X%2-))+2-2)+

(1=A2B=XN2=N)—1-=XN%B=X)—(1-)?

=21 =22+ 22— )\) +2 -2\ +

(1=X2B=N2=X)—-1=-22+X)B -\ —(1-1)?*

€= —2(1 =22+ A} (2= )) +2 -2\ +

(1=3A+3X2=2A)(6—5A+A2) — (1 =22+ A)(3 =N —1+3X —3X2 4+ X3
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€1 =—2(2-BA+4)7 = X3 +2 - 2)\+

6— 230+ 3402 — 24X +8A = AP — 34+ TA—BAZ £ N 1430 —3)2 4 N3

€1 = —HA+ 18)\% — 2003 +8)\* — \°

Again, it can be seen that the smallest exponent is one, which indicates that the
eigenvalue A\g = 0 is not repeated in €;, which in turn shows that the network is

fully connected.

E.2 Container fault

This section illustrates the calculation of the L-polynomial before and after the

fault of a container to show that the network remains fully connected.

Before the fault, the Laplacian Matrix and L-polynomial are equal to Lo and &;.

After the fault the Laplacian matrix becomes:

'30000] (o111 0]
02000 10100
Lo=100300(|—|1100 1
00010 1 0000
(0000 1| [00100

Lo

I
|
—
|
—_
w
o
|
—_
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(3 1 -1 -1 0] [rx0o00 0]
-1 2 -1 0 0 0A0O0 DO
|Lo—M|=|] -1 =1 3 0 —-1|—-]00 X 0O
-1 0 0 1 0 000 ADO
0 0 -1 0 1| [0000 A\
3-2 -1 -1 -1 0
-1 2-X -1 0 0
Lo =M[=] -1 -1 3-Xx 0 -1
-1 0 0 1-X 0
0 0 -1 0 1-=X
-1 -1 -1 0 3-A -1 -1 0
o1 2-X2 -1 0 0 - -1 2-X -1 0
-1 3-x 0 -1 -1 -1 3-x -1
0 -1 0 1-A 0 0 -1 1-2
-1 0 0 2-XA 0 0 2-X -1 0
&=-1/3-x0 -1 |[+1 -1 0 -1 |—-1] -1 3-Xx -1 |+
~1 0 1-2\ 0 0 1-2X 0 -1 1-2A
3—X -1 0 3-A -1 -1
Q=N -1 2-x 0 |+@=XN* -1 2-x -1
-1 -1 -1 -1 -1 3-2A
2-A -1 0 3-X -1 0
Ca=—-1| -1 3-X -1 |[+@=X| -1 2—-x 0 |+
0 -1 1-2 -1 -1 -1
3-2 -1 -1
1=X? -1 2-x -1
-1 -1 3-2)
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2-\ 0 2\ -1
¢y =—1 —(1=2X) —
-1 -1 -1 3=\
-1 3—\ 0 -\ -1
(1—X\) +(1—2X) — (1= +
2-X 0 -1 0 -1 2-)
- - -1 - ~1 2—-\
(1-X23-=N) + (1= N)? —(1—))?
-1 3-) 1 3-\ 1 -1
2-\ 0 - - -1
Ty = — —(1-)) —(1—=2X\) +
-1 -1 1 3=\ 1 22—
A -1 -1 - ~1 2—-\
(1-X2(3-N) + (1= N)? —(1-=))?
-1 3-A -1 3-\ -1 -1

C=2-A—(1-NE2-NE-AN -1 -1 -N(B-N2-\) 1)+
1=A2B=MN(E=-NB=XN -1+ 1=1)*(-B-N-1)-

(1=XN21+(2-XN)

CH=2-A—(1=-XN2=NB=-N+1-A—-1-N)B-N2-N+1-XI+
(1=X2B=X22=XN) =1 =XN2B=XN) =1 =XN2B =X —(1-X)3>*-

(1—=A)2=(2=XN)(1—-))?

Co=4—-32x-201-X)2-NB-N+(1-=X*B-N32-N-

201 —=A)2B =N —2(1 =X = (2= (1 - N)?

Co=4—-3A—22-3A+A)B =N+ (1 =22+ 213 - V32— \)—
21 =22+ A3 =) —2(1 — 22X + \H)—

(2= M) (1 —2X+2?)

Cr=4-3XA—22-3XA+A)B =N+ (1 =22+ A2)(9—6A+1?)(2 - \)—
21 =220+ AH(3=\) — 244X —2X\2—

2+ 5\ —4X2 + A3
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Cy = 06X —6X2+ X3 —2(6 — 11X + 6)2 — X3+

(1 =22+ A2)(9 = 6A+ A2)(2 = X\) — 6+ 14X — 10A2 +2)3

Co = 6N — 6X2 + X3 — 124+ 22X — 12)% + 223+
18 — 57A + 6822 — 38X\3 + 100* — A% — 6 + 14X — 1072 + 223
Co = —15X — 4022 — 3323 +100* — \°

As mentioned before, the exponents of the characteristic polynomial €5 indicate

that the network after the fault remains fully connected.
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