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Abstract



Soil has generally been treated as a continuum from as early as the eighteenth century. Since

then the analysis of soil behaviour in practical engineering analyses and development of con-

stitutive models has depended on a continuum assumption. However, in order to gain a

deeper understanding of the behaviour of soils and their particulate nature, there is a need

to move from continuum mechanics to discrete models. Such modelling is possible using the

Discrete Element Method (DEM). In this thesis an open source DEM particle simulation

software, LIGGGHTS is used to study the relationships between grain scale parameters and

energy dissipation in granular media in one-dimensional compression. In order to measure

the dissipated energy, changes in energy terms are traced at every time step and the principle

of energy conservation applied. The influence of particle size distribution, initial void ratio,

and inter-particle friction coefficient on energy dissipation are studied and discussed. It is

shown that increasing the coefficient of uniformity decreases the energy dissipated; lowering

the initial voids ratio results in steeper energy dissipation curves; and a higher inter-particle

coefficient of friction yields more energy dissipation. It is hoped that the knowledge gained

of the relationship between grain scale parameters and energy dissipation can be built upon

to formulate constitutive relationships within the hyperplasticity framework. It is envisioned

that relating grain scale parameters to constitutive models will allow the formulation of models

that are purely based on the micro-mechanics of granular media.
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Chapter 1

Introduction

Soil analysis is an important step in geotechnical engineering to determine the quality of soil. This

knowledge can be used to determine the suitability of soil for a construction. Samples of soil can be taken

to soil laboratories where tests are carried out such as compression tests, compaction tests, moisture

content tests, Atterberg limit tests. The properties from such tests can be used in engineering design.

Soil has generally been treated as a continuum from as early as the eighteenth century [5]. This

assumption has since been used in engineering design for practical purposes. Indeed many constitutive

models are built on this assumption. However, using a method of modelling soils as discrete particles can

facilitate understanding soil better. Such a method is the Discrete Element Method (DEM) originally

introduced by Cundall and Strack [6].

The DEM is a particle scale modelling technique that involves procedures for simulating the complete

behaviour of systems of discrete, interacting bodies [7]. The origin of DEM can be traced back to the

work of Cundall and Strack [6]. The development of the DEM was to accurately capture the internal

behaviour of granular media. Some of the grain scale behaviour of materials like localised stresses, or the

interactions at grain scale levels are hard to observe using laboratory experiments. Recently, however,

CT and X-Ray scans have been used to observe grain scale properties and behaviour (for example, [8]).

The scope of DEM used in this thesis was at the time of its development envisioned to provide a simple

way to analyse granular matter.

Cundall and Strack [9] stated that a similar model at the time to DEM was from the works of

Rodriguez-Ortiz [10] where the finite element method was used to model assemblies of discs. A stiffness

matrix was constructed by taking into account the geometry of the particles and the current stiffness of

each contact. An inversion of this matrix would then gave the incremental displacements given the last

known forces. An iterative approach was taken to deal with the slip at contacts. The stiffness matrix

is updated whenever a new contact is formed or broken. All particles communicate with each other at

every solution step.

In contrast to the above described method, the DEM is an explicit approach by considering the

individual particles and their interactions without employing the finite element method to update particle

positions as detailed in [6]. The time step should be chosen to be small enough so that disturbances of

each particle cannot propagate beyond its neighbouring particles in each time step. The resultant forces

for each particle are then calculated by only considering the particles in contact.

The validity of the DEM was shown by making comparisons of its predicted results with experiments.

Cundall and Strack [6] conducted a numerical reproduction of a test on photostatic discs reported in 1969

by de Josselin de Jong and Verruijt [11]. There was good agreement between the contact forces predicted
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by the DEM and those observed in the experiment.

To demonstrate the application of the DEM, further stress-controlled boundary simulations of 100 and

1000 discs were conducted and both the internal and boundary behaviour were observed by Cundall and

Strack [9]. It was found that the predictions from these simulations provided understanding of granular

media. These observations together with the validations above led Cundall and Strack to say that “the

distinct element method is a valid method for modelling assemblies of discrete particles” and “it can be

used with confidence even in situations when it is not possible to do a corresponding physical test” [9].

Unlike continuum-based materials modelling, DEM does not require a material constitutive model.

On the contrary, Cundall and Strack [9] hoped that the method will provide a framework from which

constitutive models can emerge from the results of simulations using the method. Many DEM related

papers have indeed shown that the constitutive models can be derived from DEM results [12].

The DEM method in this thesis is used to investigate grain scale parameters in relation to energy

dissipation, a core component of the hyperplasticity approach to constitutive modelling [13]. The hy-

perplasticity approach allows the constitutive behaviour of a material to be derived from a free-energy

function and a dissipation rate function [13]. This approach stems from the works of Ziegler [14] and

Houlsby [15]. Once these scalar functions have been specified, the yield function, flow rule and the stress

and strain relationships can be derived without need of any additional assumptions. The first scalar

function is derived from the First law of Thermodynamics and the dissipation function is a consequence

of the Second law of Thermodynamics.

By understanding the fundamental causes of energy dissipation in a DEM simulation, a dissipation

function could potentially be formulated leading to a constitutive relationship formulation directly in-

formed by physical measurements at a particle level. In this thesis, one-dimension normal compression

simulations are used to understand granular mater. One-dimensional normal compression tests have

been used in the past to investigate granular behaviour such as compressibility and the evolution of the

particle size distribution using both physical tests and Discrete Element Method (DEM) simulations (see

for example [16–19]). The present study used the DEM to conduct one-dimensional normal compression

tests to study energy dissipation in granular media without particle breakage. The grain scale parame-

ters explored are: the inter-particle friction coefficient, particle size distribution and the initial void ratio.

The relationship between these parameters and energy dissipation are discussed. It is envisioned that the

findings can help inform the formation of continuum functions linking energy dissipation to grain scale

parameters.

There are a number of commercial and open source DEM software currently in use for the study of

particulates (e.g EDEM, Newton, ESyS, PFC, LIGGGHTS, etc [20–24]). The simulations presented in

this thesis were conducted using the open source LIGGGHTS software developed by Kloss et al. [25]. This

software offers extensive development for granular media studies. It also provides the user an opportunity

to extend the code to their personal interests that may not yet be available in the open source code. It

was therefore seen as an attractive tool for the simulations in this thesis.

The remainder of this thesis is divided into the following chapters:

� Chapter 2 is concerned with providing DEM details including: the DEM model description and a

literature review of how the DEM has been used.

� Chapter 3 discusses the one-dimensional normal compression test simulations that were carried

out by the author. The relationship between the inter-particle friction coefficient, particle size

distribution and the initial void ratio and energy dissipation are discussed.

� Chapter 4 draws conclusions from the thesis and suggests some future work options.

– 2 –



Chapter 2

Discrete element modelling

The purpose of this chapter is to explore the use of the DEM and its relevance to energy dissipation stud-

ies. Section 2.1 will describe the DEM. Section 2.2 will provide applications of the method in general, and

specific to energy dissipation. The process followed in the LIGGHTS software used for the simulations

in this thesis will be described in Section 2.3 before the chapter is concluded in Section 2.4.

2.1 The DEM model

The calculations involved in a DEM simulation follow the sequence outlined in Figure 2.1. At the start

of the simulation, the user inputs the system geometry and the contact model information that will be

used. At each time step of the simulation, contacting particles are identified and contact forces calculated

based on particle overlaps and stiffnesses at contacts. The resultant force acting on each particle including

the body and external forces is then calculated. From this resultant force, the particle acceleration is

calculated and then integrated to get the velocities. With these velocities, particle displacement and

rotation are then calculated and the particle positions updated. The simulation time is then increased

by one time step while updating boundary positions as required. Depending on the purpose of the

simulation, data can be output at any stage of the simulation cycle.

At each stage of the DEM simulation, each particle will have two types of motion: translational

and rotational. These motions are influenced by the interactions the particle has with other particles,

fluid surrounding it, and any bounding walls. Such interactions make this problem complex to solve

analytically. In DEM, as mentioned in Chapter 1, a time step is chosen such that the resultant forces

on each particle can be calculated exclusively from the interactions with both contacting forces and

surrounding fluid (see Section 2.1.3). If the simulation involves powders like clay particles, other non

contacting forces such as van der Waals can be included. From Newton’s second law of motion the

governing equations for particle i with mass mi and moment of inertia Ii describing the translational and

rotational motion can be written as

mi
dvi

dt
=
∑
j

Fc
ij +

∑
k

Fnc
ij + Ff

i + Fg
i , (2.1)

Ii
dωi

dt
=
∑
j

Mij , (2.2)

where vi and ωi are the particle translational and rotational velocities respectively, Fc
ij and Mij are

the contact force and torque acting on the particle i by particle or wall j, Fnc
ij is the non contacting
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Figure 2.1: Schematic diagram of DEM simulation calculations (adapted from [1])

force like an attraction force in powders from source k acting on particle i, Fg
i is the gravitational force,

and if a fluid interaction is considered, then, Ff
i is the particle-fluid interaction force on particle i. The

translational acceleration, dvi

dt and rotational accelerations, dωi

dt are derived from 2.1 and 2.2 respectively.

The translational and rotational velocities are then derived by integrating these accelerations respectively.

The particle displacement and rotation are then obtained by integrating these velocities.

A crucial part of the DEM simulation is identifying particle contacts and calculating contact forces.

Sutmann [26] observed that these calculations can take up 90% of the simulation. Section 2.1.2 discusses

various contact force models that are typically considered.

The first stage in a DEM simulation is sample preparation. In this stage, the geometry of interest

is defined and particles are generated. Governing contact models are also selected at this stage of the

simulation. As will be discussed in Section 2.1.1, particle generation can take a significant amount of

time if not carefully executed. Some of the methods used for this stage are discussed next in Section 2.1.1.

2.1.1 Initial geometry and specimen generation

The first step in a DEM simulation, as shown in Figure 2.1, is to define the system geometry and

populate it with particles. This step is analogous to the mesh generation stage involved in a conventional
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continuum analysis. In DEM simulations, particle generation can easily take as long as the remainder of

the simulation, and in some cases can be longer depending on the method used.

Just like in laboratory experiments, specimen preparation is very crucial to the DEM simulation. It

defines the initial conditions that will influence the simulation behaviour. This stage is not necessarily

entirely done within the dedicated DEM software of choice. The researcher can simply import the initial

particle configuration into the DEM software and initiate the simulation with it. If the researcher wishes,

this process can be carried out in the DEM software used for the rest of the analysis. There is no clear

agreement as to the best method to use for sample preparation and as such, the variety of methods

typically used will be discussed.

O’Sullivan [1] provides a detailed discussion of the various methods used in sample preparation in-

cluding boundary conditions adopted. For a deeper understanding of boundary conditions and sample

preparation methods explained below the interested reader is referred to [1]. The next Section will discuss

boundary conditions.

Boundary conditions

Boundary conditions are equally important in DEM simulations as they are in continuum simulation.

These are specified by introducing boundaries that enclose the simulation space. There are four com-

monly used boundaries in DEM simulations; rigid walls, periodic, membrane, and axisymmetrical. Rigid,

periodic, and membrane boundary examples are shown in Figure 2.2. The simulations presented in the

present thesis used rigid walls.

Rigid walls boundaries involve enclosing the simulation space with a rigid line (in 2D) or surface

(in 3D). The surface can either be a mesh inserted into the DEM code or fixed defined planes. In some

cases, a set of particles could be used to define the wall such that these particles form a rough surface

for the particle-wall contacts. The movement of the wall can be displacement controlled by applying a

velocity to it such that a desired effect on the particles is achieved (such as a target void ratio, a target

internal stress state, a target axial strain, among others). An indirect application of a wall velocity is

effected when servo-controlled rigid walls are used. Here the pressure exerted on the wall surface or an

internal stress is monitored and compared to the target wall stress desired. If this is greater or less than

the target stress within a specified tolerance, the wall velocity is adjusted to bring the wall stress to the

desired target. The wall velocity is set to zero if the monitored stress state is within tolerance.

Rigid boundaries can sometimes be used to add inclusions in the sample. Kinloch and O’Sullivan

[27], for example, modelled pile installation and cone penetration testing using rigid boundaries. These

boundaries are only used to update particle coordinates since they have no inertia. They are, therefore,

similar to displacement boundary conditions in continuum analyses.

Some of the effects of using rigid boundaries such as the underestimation of small-strain stiffness

and the effect on the force network are discussed by Marketos and Bolton [28]. Other research presents

limitations on the use of rigid boundaries such inconsistent void ratio values between particles around

boundaries and those further away (e.g. [29, 30]), which should be taken into account when this boundary

method is used.

Periodic boundaries can be used in DEM simulations to eliminated rigid boundary effects [31]. A

representative cell block is repeated infinitely in all directions. Only the representative cell is specified

in the simulation and, therefore, its size should be carefully considered. When a particle approaches

boundaries, it begins to re-enter at the opposite boundary, which means that each particle is not restricted

to only contact adjacent particles. Strains can be applied to the periodic boundaries to model increase

or decrease in internal stresses. In this case, the entire representative cell stress would be monitored to
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adjust the strain rate.

Flexible boundaries can be used to represent the flexible latex membrane used in triaxial tests and

other similar boundaries. There are two common approaches used. Both approaches model the outermost

particles as membrane particles. One approach inserts flexible contact springs with a high tensile capacity

to link the outermost particles and then a force is applied to these particles to reach the desired confining

pressure on the membrane (e.g. [32, 33]). Another approach involves applying this force to the membrane

particles without any special links between these membrane particles (e.g. [34]).

An interesting study by Cheung and O’Sullivan [35] showed a comparison between rigid and flexible

membrane boundaries. By comparing the boundary stresses of both methods, they observed that the

macro-scale response was not sensitive to the boundary condition used during the simulation. Differ-

ences, however, were observed in the internal material deformation response by looking at the specimen

particle rotations. The observations seen in a typical laboratory triaxial test were captured by the flexible

membrane.

To save on computational cost, a combination of the above boundary conditions can be used to

simulate different parts of the system under study. If a system is axisymmetrical, only a part of the

domain is sufficient to define the system. This is regularly done in finite element modelling of continuum

problems. This concept has also been employed in the DEM. Cui et al. [36], for example proposed

circumferential periodic boundaries symmetrical about the z axis that only model a slice of the problem

whose pattern repeats in the x and y axis.

Once a boundary condition has been defined, the particles can then be inserted into the system. There

are a number of methods that can be employed to this effect and some of these methods will be discussed

in the following section.

Random particle generation

One of the most commonly employed methods of sample preparation is the random particle generation

method. To achieve this, programming languages or mathematical software like Matlab, C, C++, python,

Fortran, are typically used. This can, for example, be achieved by generating seeds through repeated

calls to specific random number generation functions. Each particle would then receive unique numbers

attached to it defining it’s coordinates. Sometimes some sets of numbers may not be unique and, therefore,

care must be taken when generating these numbers. Each particle would then be associated to a set of

random numbers, for example, a spherical particle would have an x, y and z coordinates plus an extra

number for the radius. These random numbers are usually between 0 and 1. Scaling and translation can

be done to the coordinates as desired. Based on the extent of the particle, some overlaps can be generated

on subsequent function calls. These can be resolved by translating the particle to an open space.

If a specific particle size distribution is desired, large particles can be generated first and then smaller

particles next as illustrated in Figure 2.3. For example, Ferrez [37] placed large spherical particles in a

cylinder and added smaller particles to achieve a dense sample on subsequent iterations each iteration

adding smaller ones than the previous.

When matching particle size distributions to the physical observations, very small particles are usually

ignored in Geomechanics DEM simulations. One of the reasons for ignoring this is because the time step

size is proprtional to the ratio
√
m/K where m is the particle mass and K the effective contact stiffness

[1]. The smaller the particle mass, therefore, the smaller the time step required for a stable simulation.

Another reason why very small particles are typically ignored in the DEM simulations is because they

tend not contribute to the strong force network, that is, they tend to be unnecessary in supporting the

structure. Potyondy and Cundall [38] for example, described a process that eliminated non contacting
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Figure 2.2: DEM Boundaries. (b) is adapted from [1] while the rest are either drawn by the author or
are snapshots from the author’s simulations.
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Step 1: Large particles 
generation

Step 2: Intermediate 
particles generation

Step 3: Smallest 
particles generation

Figure 2.3: Illustration of psd matching random particle generation process. Particles can take on different
shapes depending on the study. Adapted from [1].

particles which they called floaters. However, when a significant percentage of small particles is present in

the sample, it will contribute to the strong force network and would therefore be included in the sample.

Minh et al. [39] found that a 30% silt particle contribution was required for small particles to feature in

the strong force network formation.

The density of randomly placed particles can be increased by compressing the bounding walls or

applying a compressive strain to the boundary particles if periodic boundaries are used. This can be

done over several time steps until a target stress state is reached or a specified void ratio is achieved.

However, the author’s experience has shown that increasing the sample density using this method can be

time-consuming. This is because the wall or boundary movements have to be small enough to prevent large

particle accelerations that would result in an unstable system. To reduce the simulation time, the method

could use a wall velocity or strain rate that is initially high and keep reducing it at subsequent steps

until the target initial conditions are achieved. An even better approach would be using an alternative

method that involves particle size growth.

In the particle size growth method, used for example in LIGGGTS [24], randomly generated particles

are grown over several time steps. For spherical or circular particles, this is achieved by growing the

radius of each particle. Typically, the growth mechanism is done for every particle at each growth step.

A constant rate can be chosen to achieve the desired goal. A better alternative to the constant rate is a

variable growth rate such that the rate of particle growth reduces at subsequent growth steps. A constant

rate of growth would need to be very small in order to maintain system stability when contacts start to

form. The rate of particle growth in a system of spherical or circular particles can be set by multiplying

the radii by a growth factor.

When growing the particles in size, contacts will be formed. At this stage, particle overlaps may be

introduced. The growth would be paused for particles over several time steps for the particles to regain

a system of equilibrium where there are no particle overlaps as illustrated in Figure 2.4. During these

non-growth steps, a series of calculations to bring the system to equilibrium are made to ensure that

subsequent growth steps do not generate excessive accelerations by generating large particle overlaps,

which would result in very large accelerations.

At the completion of the particle size growth process, the system should again be brought to a state of

equilibrium. The criteria for equilibrium can be based on the resultant force or on the stress state of the

sample. The maximum ratio of the resultant force to the particle mass can be monitored and equilibrium
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Figure 2.4: Illustration of particle radii growth (adapted from [1])

is reached when the maximum ratio is smaller than a pre-set value. The stress state can alternatively

or additionally be used to judge equilibrium by monitoring it until it reaches a constant value within a

specified tolerance. An alternative or addition to these methods would be monitoring the total number

of contacts until they reach a constant value.

There are other approaches similar to the particle expansion approach described above. One such

approach is a lily pond method described by Bagi [40] where randomly created points are each grown in

size as disks or spheres until another particle is touched at which point the expansion ceases.

An interesting method of particle generation that uses random points is an under-compaction method

by Jiang et al.[2] illustrated in Figure 2.5. This method involves generating particles randomly in layers.

The first layer is generated and then compacted to a void ratio e1. The bounding box is then extended

and another layer of particles is randomly generated in free space. This layer is then also compacted to

now a void ratio e2. The process is repeated until the target height is achieved. The void ratios are such

that e1 > e2 > ... > ej > .... > etarget.

Step 1: Random 
generation of particles 
in bottom layer

Step 2: Compress 
particles to a 
target void ratio

Step 3: Extend 
bounding box

Step 4: Randomly 
generate particles in 
free space

Step 5: Compress 
particles to a 
target void ratio

Figure 2.5: Illustration of an under-compression method by Jiang et al. [2]
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Other particle generation methods

In nature, gravitation has a big part in the movement of particles. This can be modelled in the sample

preparation stage in the DEM by using a gravitation or sedimentation method such that particles are

allowed to settle under gravity. For example, Abbiready and Clayton [41] generated non-overlapping

particles at specific vertical levels but random horizontal positions, and then applied a gravitation force

to particles to allow them to settle.

Ciantia et.al [42] developed a simple and very efficient periodic cell-replication method (PCRM) for

generating particles. In the PCRM, a periodic cell is first generated where the particles in the cell match

the desired particle-size distribution and are sufficient for the cell to be a representative element volume.

The cell is then equilibrated at the desired porosity, stress state and coordination number. It is then

replicated to fill the problem domain, which is then equilibrated to form a homogeneous sample with

the desired initial state. Ciantia et.al [42] compared the PCRM to sedimentation method and found the

PCRM to be significantly more efficient.

Once a particle specimen is generated (or even during particle generation), contact laws to govern

particle contacts are specified. These are the subject of the next section.

2.1.2 Contact Laws

A particle contact does not generally happen at a single point, but rather over a finite area as a result

of particle deformation. This area in DEM is modelled as an overlap between the contacting particles.

A contact plane can be visualised in this area on which a normal force, and a tangential force act. For

spherical or disc particles, the contact will look like the illustration in Figure 2.6. This is an idealised

view of the particle contact that is often employed in DEM simulations to help reduce computational

costs.

As illustrated in Figure 2.6(b), rheological models are used to describe the normal and tangential

contact forces. In the figure, linear springs, dashpots and joints model contacts in normal and tangential

directions and frictional slider in tangential direction [3]. These models can either be linear or non-linear

and are the basis on which the contact constitutive relationships have been developed to calculate the

normal and tangential contact forces.

Normal contact force models

Linear contact models are generally the most simple models. For a simple linear elastic springs model,

normal force is calculated as:

Fn = Knδn, (2.3)

where Kn is the contact stiffness in the normal direction with the units of N/mm, and δn is the overlap

at the contact point normal to the contact. This type of contact model would only be used to minimise

the overlap distance at the contact.

The most commonly used linear model was proposed in the 1979 work of Cundall and Strack [6]

in which a spring-dashpot model was used such that the spring modelled elastic deformation and the

dashpot accounted for the viscous dissipation. The force-displacement relationship is given by

Fn = Knδn + Cnδ̇n (2.4)

where Cn is the non-linear dissipative term. Delaney et al. [43] proposed that contact energy dissipation
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no-tension joint

slidernormal tangential

Figure 2.6: Illustration of DEM particle contact using spheres or discs: (a) normal displacement; (b)
rheological models examples from [3]

was related to velocity and argued that at high impact velocities there is less energy dissipated. Their

dashpot term was therefore dependant on the impact velocity.

Hertz-Mindlin and Deresiewicz contact model (often abbreviated as Hertz-Mindlin) is another com-

monly used model in the DEM. [44, 45] are often cited as the original papers on which this model is based

with the work of Hertz’s (1882) describing the normal contact behaviour while the work of Mindlin and

Deresiewicz (1953) describes the tangential contact. Tangential contact models are described below. The

work of Johnson [46] can help understand Hertz’s (1882) work since the original paper was published in

German. For small and elastic deformations, the normal contact force is given as

Fn =

(
2G∗

√
2R∗

3(1− ν∗)

√
δn

)
︸ ︷︷ ︸

Kn

δn, (2.5)

where (.)∗ denotes the equivalent quantity of two particles (A and B) are in contact such that the

shear modulus G∗ = 0.5(GA + GB), the particle radius R∗ = (2RARB)/(RA + RB) and Poisson’s ratio

ν∗ = 0.5(νA + νB). The particle-wall contact equivalent values are equal to those of the particle.

To account for energy dissipation on in the Hertz-Mindlin, extra terms are included in the calculation

of the normal contact force. In the LIGGGHTS software DEM code [25], for example, the contact normal

for the Hertz-Mindlin model is calculated as

Fn = Knδn − γnvAB (2.6)

where the normal stiffness Kn is calculated as in Equation (2.5), vAB is the relative velocity of particles

A and B in contact, and γn ≥ 0 is the viscoelastic damping constant.

Walton and Braun [47] introduced a latching-spring model that describes the normal force. Their
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linear contact model behaves differently if loading or unloading such that

Fn = K1,nδn (if loading)

Fn = K2,n(δn − δ0n) (if unloading)
(2.7)

where K1,n and K2,n are the spring stiffness terms in the normal direction, and δ0n = Fmax
n /K2,n, where

Fmax
n is the maximum normal contact force reached before unloading. The spring stiffness values are

user-specified such that K2,n > K1,n. Alternatively, K2,n can be set as a function of the maximum normal

force and K1,n, i.e. K2,n = K1,n + SFmax
n where S is a constant.

The Walton-Braun model dissipates energy through the loss of kinetic energy in every collision. This

energy loss is quantified by the coefficient of restitution, e, which is equal to 1 if there is no energy loss

in a perfect collision, but less than 1 in typical collisions. Given two particles A and B with velocities in

the normal direction vAn and vBn before collision, and v
′A
n and v

′B
n after collision respectively, it follows

that the coefficient of restitution is

e =
v

′B
n − v

′A
n

vBn − vAn
. (2.8)

During loading, the kinetic energy is converted to strain energy and on unloading, the strain energy is

transferred to kinetic energy.

There are many other normal contact forces not mentioned here. There is however, some interesting

reviews that can be very useful to the reader. Ye and Zeng [48] provided a useful review of many normal

contact force models. Thornton et al. (2017) [49] carried out a review of the normal contact force models

used for adhesive and non-adhesive contacts, where adhesive here refers to the presence of bonds such as

cohesion, van der Waals forces, electrostatic forces. Their work is useful in understanding the limitations

of different normal contact force models with adhesion as the focus.

Tangential contact force models

The contact force component that acts on the surface of the particle in contact is often referred to as

either the tangential force or shear force. This force acts during and before sliding for contacting particles.

Initiation of sliding can be modelled by considering the Coulomb frictional model which includes the

coefficient of friction µ at contact in the calculations. Given the normal contact force Fn, the tangential

force Ft is truncated as |Ft| ≤ µFn. Once |Ft| = µFn then sliding is initiated. If cohesion is included in

the DEM simulation, then a cohesion term c is added to the truncation such that |Ft| ≤ µFn+c. As with

the normal contact force, there are many tangential contact fore models that can be used to calculate Ft.

Cundall and Strack [6] had a simple calculation of the tangential force given by

Ft = Ktδt − Ctδ̇t and |Ft| ≤ µFn + c, (2.9)

where Kt is a user-specified tangential stiffness, δt the tangential displacement, Ct is a user-specified

damping term in the tangential direction, and δ̇t the rate of change of the tangential displacement.

Cohesion c is also a user-specified where attraction between particles exists.

One of the earliest developed tangential contact force models is from the experimental work of Mindlin

and Deresiewicz (1953) [45]. Their work proposed that the tangential force-displacement relationship is

dependant on the current normal force, the complete load history, and the instantaneous change in the

normal and tangential contact forces. A description of this model can be found in [50, 51].

Thornton and Yin (1991) [52] was developed a tangential contact non-adhesive model based on the
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experimental work of Mindlin and Deresiewicz (1953). The tangential stiffness in this model is given as

Kt = 8G∗θδn ± µ(1− θ)
∆Fn

∆δt
(2.10)

where the negative sign is used during unloading and ∆ indicates a change over the load step. Expressions

for parameter θ were given depending on whether the equation is used during loading, unloading or

reloading (refer to [1, 52]).

Walton and Braun [47] also proposed a tangential contact model that was a simplification of the

experimental work of Mindlin and Deresiewicz (1953). In their model, the tangential stiffness matrix was

given by

Kt = K0

(
1− Ft − F ∗

t

µFn − F ∗
t

)Γ

for slip when loading or reloading as Ft increases

Kt = K0

(
1− F ∗

t − Ft
Γ

µFn + F ∗
t

)
for slip when unloading as Ft decreases

(2.11)

where K0 is the initial tangential stiffness, and Γ is a constant parameter that usually has the value 1/3

to agree with Mindlin’s theory. F ∗
t is initially set to zero and updated to equal the tangential force, Ft,

whenever the slip direction is reversed. It is also dependant on the loading history. Subsequently, the

new tangential force Ft
′ for the next time step is updated as

Ft
′ = Ft +Ktδt. (2.12)

Contact detection

The focus above has been on contact resolution. But the first step required before these forces are

calculated is contact detection, which will now be discussed. There is a variety of approaches that have

been developed in achieving efficient algorithms to search for contacts. As can be imagined, simulations

that deal with millions of particles would suffer most if an inefficient contact detection algorithm is used.

An example of an expensive algorithm would be to simply search for contacts by comparing each particle

position against all particle positions in the simulation and then storing this contact information. Even

for a small simulation of say, n = 9 particles, this would be n(n − 1) = 72 particle-particle distance

calculations. If a simulation has rapidly moving particles, it would require frequent contact list updates,

which would increase on the time consumed by contact detection alone. Storage of information would

also increase significantly as the number of particles grows making contact detection computationally

expensive. There would also be a duplication of information in this type of search method.

Munjiza and Andrews (1998) [53] provide three requirements that should consist a contact detection

method as follows:

1. Minimization of CPU requirements, i.e. total detection time T as total CPU time needed to detect

all couples close to each other.

2. Minimization of total memory (RAM) requirements M expressed in terms of total memory size as

a function of total number of bodies and packing density.

3. Flexibility in terms of rate of M and T change with change in packing density.

Before the contact search is initiated in any contact search algorithm, there needs to be some way to

represent particles or objects. This can be done by simply drawing out the particle extents as the exact

size and shape of the particle. This approach might be fine for a system containing few particles that
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have regular shapes. As the number of particles increases, however, contact detection with this kind of

representation would become slow. An alternative approach typically used is to construct a bounding box

around each particle such that the entire particle is enclosed in this box as in Figure 2.7(a). For irregular

shaped particles like those in [54], this would simplify the particle geometry during contact detection.

Searches for contacts are initially done based on these boxes. A fine search is then done once bounding

boxes are declared to be in contact. To ensure that contacts are detected early enough, a buffer zone can

be added such that the box goes beyond the particle extent as in Figure 2.7(b) (see for example, [55]).

(a) (b)

Figure 2.7: Body representation: (a) bounding box around particle with no buffer; (b) bounding box
around particle with buffer.

Generally, contact search algorithms can be grouped into either binning-based schemes (also known as

grid-based or cell-based approaches), or tree-based schemes. O’Sullivan [1] observed that binning-based

schemes are relatively easy to implement and are most commonly used in DEM simulations. A binning-

based approach was used in the simulations in this thesis that are described in Chapters 3. Binning-based

schemes are, therefore, further explained below. Tree-based algorithms place the bounding boxes of each

particle into a tree structure such that particles are divided into a parent and child relationships to

define the tree connections. There are different criteria for specifying these relationships based on the

method used. Han et al. [56] provide a good description of the approaches used in tree-based algorithms.

[57–59] provide some examples of tree-based algorithms, that might be of interest to the reader. Han et

al. [56] did a performance comparison between binning-based and tree-based schemes for regular shaped

domains. They found that the binning-based schemes were more efficient for large particle systems with

millions of particles with simulation speeds 40 times faster.

In the binning-based approach, a regular grid system is used to describe the problem domain such that

each grid cell is typically large enough to contain the largest particle in the system. Each particle position

coordinate would then be mapped on to a particular cell. Particle neighbours can then be established by

inspecting the adjacent cells. Each particle would have a particle identification number (id) that would

help track it during the simulation. Within the grid, each particle id would be associated to a row,

column, layer, and cell numbers. When a particle(s) move(s) from outside of the current grid system, the

grid system is redrawn and all the particles are remapped. To avoid constantly re-mapping, it is possible

to specify a very large domain size to accommodate all the particle movements throughout the simulation

time. This approach was adopted in version 5 implementation of the DEM Particle Flow Code (PFC )

[55].

Contact searching happens in two stages: a course search and a fine search. In the course search,

contact search compares each grid/cell against adjacent grids. Once contacting grids have been identified,

particles within these grids are then checked for contact by comparing the distances between the bound-

ing boxes surrounding each box. This provides the potential contacts. A fine search will then be done
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on these potentially contacting particles to identify contacts. Care must be taken to avoid duplicating

contact information. Examples of binning-based algorithms can be found in [55, 56].

2.1.3 Choosing a suitable time step

One of the challenges in contact detection is fast moving particles. To ensure that contacts are detected,

a suitable time step needs to be used. Another reason, as has already been mentioned, is that particle

accelerations need to be accurately calculated to avoid large movements at each time step. Guidance

on how best to choose a time step for DEM studies like those presented in the next section has been

provided by, for example, O’Sullivan and Bray [60]. In this thesis, the DEM critical time step proposed

by O’Sullivan and Bray [60] for different particle arrangements, where the critical time step is given as

0.221
√
m/K, where m is the mass of the smallest particle and K is the contact stiffness taken to be

the greater of either the normal (Kn) or tangential (Kt) contact stiffness values: Kn = 4G/(3(1 − ν)),

Kt = 4G/(2− ν), and G = E/(2(1 + ν)).

2.2 Applications of the DEM

Particulate systems in nature and industry have been studies using the DEM since the original work of

Cundall and Strack [6]. There is an exponential growth in the number of papers associated with DEM

[61, 62]. DEM simulations are done in both 2D and 3D. Since 2007 the number of studies that use

3D DEM has exceeded those done using 2D DEM simulations [62], which has been facilitated by HPC

facilities in recent years. This section aims to provide a review of the application of this tool with a later

focus on energy dissipation.

Before some of the studies on energy dissipation are reviewed, it is important to briefly discuss the

use of the DEM generally. It is also important to acknowledge that there is a growing body of literature

that has focussed on the development of DEM as a method. Some of these studies have been mentioned

in the previous sections.

2.2.1 General applications of the DEM

Zhu et al. (2008) [63] did a review of the major applications of the DEM and provided the findings from

these studies. They categorised the studies into three subject areas: particle packing, particle flow, and

particle-fluid flow. These areas will be maintained for the purpose of the below general discussion of the

applications of this method.

Particle packing can refer to either a settled state of a particle system or to the process by which

this state is achieved. The process by which particles are packed will influence the material properties and

characteristics. Understanding these processes can, therefore, be useful in industrial process that involve

packing of granular material. This knowledge can also help in understanding more about collections of

particles in nature such as soils.

In order to understand the structure of a packing, properties such as coordination number (CN), radial

distribution function (RDF), and packing density or porosity are typically used. Both CN and RDF are

micro (grain-scale) properties while packing density or porosity is a macroscopic property. The contact

force network of a packing can also be used to describe a packing.

Packing density or porosity can be influenced by the method of packing used. Some of the particle

generation methods in Section 2.1.1 can be viewed as packing methods. Zhang et al. (2001) [4] made

some observations on the effect of dynamic variables on the packing of spheres. When a large amount

of initial energy is used during packing by increasing the drop height, a dense pack is achieved (Figure
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Figure 2.8: Results by Zhang et al. (2001) [4] using mono-sized spheres: plotting packing density as a
function of (a) Dropping Height, (b) Friction coefficient, (c) deposition intensity, (d) damping coefficient,
and (e) resititution coefficient. Results in (f) plot mean CN as a function of friction coefficient.

2.8(a)). This can be explained by noting that the high force required to push the particles together is

achieved with increasing drop height. They also observed that an increase in the inter-particle coefficient

of friction would lead to a looser sample packing (Figure 2.8(b)). A high deposition intensity was also

associated with loose samples (Figure 2.8(c)). These observations were also seen in the work of Tangri

et al. (2017) [64] who studied the packings of cylindrical particles with varying particle diameters.

Zhang et al.’s (2001) [4] mono-sized spheres when the damping coefficient is varied during particle
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packing (Figure 2.8(d)) show a decrease in damping coefficient led results in a lower particle density. Also

a decrease in the coefficient of restitution results in an a looser sample as observed in Figure 2.8(e).

Particle density has the potential to change the number of contacts per particle. This information

can be captured by the CN, which is the number of contacts that each particle has. Often the average

CN is taken for an entire particle system under study at given time points in the simulation. It can be

expected that as the density increases, the average CN will also increase. This was observed in DEM

studies Figure 2.8(f) for mono-sized spheres.

There are differences in the dominant forces of a particle packing depending on particle mass. Typ-

ically, systems with large particles of diameters greater than ≈100 µm will have particle inertia more

dominant than the cohesive forces such that these surface attraction forces can be ignored. Sands for

example are modelled in the DEM without the inclusion of any surface forces. Such particle material

would be considered as non-cohesive or cohesionless. The simulations done in this thesis are on particle

systems of this nature.

Cohesive forces are the kind that would cause a tendency of particles lumping together. Examples

of such forces are van der Waals and electrostatic forces. These can be associated with fine particles

such as clay particles. These forces will affect the nature of a packing significantly in particle systems

that are described as cohesive. There are not so many DEM simulations done on such particle systems

in comparison to the cohesionless systems partly due to the need for a large number of particles to

realistically model fine particles, and the complexity involved in modelling cohesive forces. Examples of

studies that include cohesion can be found in Zhu et al.’s review [63].

Compaction of particles is another interesting subject of study in particle packing as can be seen from

the compaction studies by Martin and his colleagues [65–68]. Different mechanisms are involved during

compaction such as particle rearrangement, plastic deformation, and particle breakage. In low pressure

compaction, densification is achieved mainly through particle rearrangement, while plastic deformation

is dominant in high pressure compaction. If particle breakage is considered, densification will involve the

rearrangement of particle fragments. Studies have been done on particle crushing, for examples, [69, 70]

Particle shapes, roughness, and sizes will determine how easily particles can be rearranged. The size of

each plastic deformation, on the other hand, is influenced by the material properties.

Particle flow studies are concerned with understanding the behaviour of particle systems in motion.

Most of the studies done in geomechanics fall within this area. O’Sullivan [62] presented a review of

geomechanics studies using DEM and provided some of the distinguishing response characteristics of

granular materials that have been successfully captured in DEM simulations. Some of the characteristics

studied are: peak shear stress [71, 72]; hysteresis [73, 74]; the significance of the intermediate principal

stress [75, 76]; strain softening [34, 77]; anisotropy of strength and stiffness [78, 79]; creep behaviour of

soils and pore characteristics [80].

There have been several studies that have aimed at simulating laboratory experiments. This is because

laboratory experiments can be more expensive than computational simulations. Another reason for this

move is because microscopic characteristics of a material are more easily understood in a computational

framework. Studies relating to one-dimensional compression and different shearing tests have aided

in understanding particle flows. One-dimension tests would generally fall under particle packing while

shearing tests are in the present category. Some of the shearing tests include:

� direct shear test, which is commonly used to measure the bulk strength of materials (example

references; [81–86])

� biaxial compression, which has two directional stresses applied to a sample (example references;
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[87–91])

� triaxial compression, which involves an application of a constant hydrostatic pressure to a specimen

while imposing an axial stress from the top and/or bottom of the sample (example references

[35, 36, 69, 92–96])

� annular (or torsion) shear, which involves twisting of the sample and is used for measuring the shear

strength of soil (example references; [97, 98]).

Another kind of flow type is slow vertical flow. It is commonly encountered in industrial processes

such as silos and hoppers. Studies in this area can help in understanding of quasi-static granular flows

and have the potential of influencing industrial designs. Examples of DEM studies for this kind of flow

can be founds in references [3, 99, 100].

The above mentioned particle flow studies would be classed are confined. Some examples of uncon-

fined flow DEM studies include: landslides (e.g. [101]); excavations (e.g. [102]); earthquake damage (e.g.

[103]). More examples of DEM particle flow studies refer to [63].

Particle-fluid flow studies include fluid interactions with particles. This type of coupling can be

observed in almost all particle systems. To model this interaction, researchers typically couple DEM with

Computational Fluid Dynamics (CFD). Zhao and Shan [104] provided some good examples of geome-

chanics applications of CFD-DEM. More general particle-fluid flow DEM studies can be found in ref. [63].

Before transitioning to energy dissipation, it is worth touching on DEM result validations. These are

currently done by comparing with existing experimental data where available. For example Cundall and

Strack [6] validated the DEM model by replicating the experiments on steel spheres described by Rowe

[105]. O’Donovan [106] used this same process. Comparing of standard laboratory tests and simulation

results is another way of validating results. For example, O’Sullivan and Bray [60] used biaxial compres-

sion test results. Other validation methods are provided in a dedicated paper by O’Sullivan et al. [72].

2.2.2 Energy dissipation in geomechanics

Energy monitoring is important to the study of dissipation in granular media. Little exists in the literature

explaining how this is done despite its increasing interest in DEM simulations. To account for the

dissipated energy, energy conservation is applied. Houlsby et al. [107] for example, in the study of

landslides took the dissipated energy to be the remainder of the total potential energy at the start of the

simulation minus the sum of the potential energy and the kinetic energy at each stage of the simulation.

Asmar et al. [108] explicitly worked out the dissipated energy from damping and friction, the main

contributors to energy dissipation as discussed below. Other forms of energy: the elastic energy stored

in the contacts, potential energy, kinetic energy, and the input energy were also monitored. Wang and

Yan [109] were explicit in their energy calculations and included bond energy for their simulations since

they considered particle crushing. Another example of explicit energy calculations is the work of Hanley

et al. [96], however, this study did not include particle crushing since it has been shown to account for

very little energy in comparison to other energy terms (see for example [109–111]).

Wang and Yan [109] showed that at every stage of shearing (in the direct shear test of agglomerates),

the conservation of energy equation is given by

∆W +∆Wg = ∆Es +∆Eb +∆Ef +∆Ek +∆Ed, (2.13)

– 18 –



where the energy terms are: boundary work ∆W , potential energy ∆Wg, strain energy ∆Es, bond energy

∆Eb, frictional dissipation ∆Ef , kinetic energy ∆Ek, and damping dissipation ∆Ed. This equation

provides a general energy balance form, which is consistent with other literature (for example, [108, 112])

with the effects of particle bonding ignored if negligible or if not considered. The energy loss due to

dumping can either arise as a result of accounting dissipating excess kinetic energy in the system.

There have been a number of papers in recent years that have discussed energy dissipation. Zhang

et al. [113] investigated the relationship between energy dissipation and shear band formation under

rolling resistance. The effect of grain roughness on energy dissipation was investigated during a quasi-

static homogeneous triaxial compression test on cohesionless sand under constant lateral pressure [114].

A dissipation consistent fabric tensor definition was provided by Li and Dafalias [115] from their DEM

simulations. Shamy and Denissen [116] studied energy dissipation response due to seismic loading by

monitoring the energy on a microscopic level. Daudon et al. [117] showed that particle shape and slope

geometry where the major factors leading to energy dissipation in a rock avalanche.Energy balance and

dissipation were studied in a DEM based study of the standard penetration test by Zhang et al. [112].

These are some of the examples of the many studies done on energy dissipation in geomechanics.

DEM has been instrumental in the study of incremental response of soils. It is possible to use

laboratory experiments but there are difficulties involved hence the use of DEM [118]. Calvetti et al.

[119], for example, studied the incremental behaviour of soils by carrying out a series of stress probes of

varying directions and found that a classical plasticity with a single plastic mechanism is able to describe

the behaviour. Understanding of these responses can help in the studies of energy dissipation.

Energy monitoring is important in the development of continuum constitutive models. O’Sullivan [1],

for example, by referencing [120] reports that the Cam Clay yield locus, which is determined by integra-

tion of the flow rule, is determined from the work of plastic deformation. Comparisons between DEM

energy dissipation results to constitutive models have sometimes been done. Bolton et al. [121] compared

their energy dissipation results of crushable particles to both Cam Clay and modified Cam Clay dissipa-

tion function. Hanley et al. [96] also compared their results from non-crushable particles with modified

Cam Clay functions and recommend improvements to the modified Cam Clay model, which they believe

ensure more accurate modelling based on their observations. These studies highlight the importance of

understanding energy dissipation in granular media so that continuum constitutive models can be devel-

oped more accurately. The current thesis adds to this body of work by studying the influence of particle

size distribution, void ratio, and inter-particle friction coefficient on energy dissipation in one-dimension

compression tests.

Parameters and characteristic that influence dissipation

In studies of energy dissipation, there is a growing interest to understand those key parameters that

influence energy dissipation in granular media. This knowledge can facilitate a more accurate development

of constitutive models. Grain roughness, confining pressure, particle size distribution, displacement rate,

damping factors, cohesion, and viscosity are some of the parameters shown to influence energy dissipation.

Wang and Arson [111] did a study of energy distribution in a quasi-static confined particle system on

crushable particles by running uniaxial compression tests. From their study, they observed that at least

60% of energy was lost through friction as a result of particle rearrangement. The rest of the energy

was either lost through particle breakage (less than 5%) or stored within contacts. This study did show

that friction is indeed the biggest contributor to energy dissipation. Other authors have also noted that

friction is the main cause of energy dissipation in soils (e.g. [107, 109, 122]).

Cohesion has also been shown to be directly related to energy dissipation (e.g. [123]). A number of
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authors have studied cohesive soils but not focussed so much on the energy dissipation (e.g. [124, 125]).

Moreno-Atanasio [126] showed that the breaking of particle cohesive forces when particles hit a rigid

target was energy dissipative. The study highlighted, however, that this was less than 10% of the total

energy dissipated.

The confining stress level was also shown as an indirect, nonetheless important, contributor to energy

dissipation in soils, particularly for crushable materials ([127]). There is a strong dependence of particle

crushing on the confining stress level. High confining stress levels however lead to significant peak shear

stress ratio reductions and considerable volumetric compression due to increased particle crushing.

Zhang et al. [113] did a comprehensive study on the energy dissipation due to inter-particle rolling

resistance. The simulation results indicated that inter-particle sliding and rolling are particle mechanisms

that work together to dissipate a minimum amount of energy and advance the material fabric evolution.

Since rolling resistance (or rolling friction) is as a result of particle roughness and shape irregularity, it

can be incorporated in DEM as a shape parameter to account for these surface irregularities (e.g. [128]).

Damping is another cause of dissipation in DEM simulations [129]. This has been discussed in various

forms by some authors (e.g [121, 130]). A higher damping ratio leads to more energy dissipation as

expected.

Another not so well studied parameter in relation to energy dissipation that needs further investigation

is the particle size distribution (PSD). Though not studying soils or using DEM, Lin and Hwang [131]

showed that samples with narrower PSDs had more heat dissipation than those with wide distributions.

Their focus was heat dissipation of heat-pipes with sintered porous wicks, which used gas-atomized

cupper powders of different PSDs. Clearly linked to PSD is the voids ratio. The lower the voids ratio,

the more energy dissipated. This was observed from the result of Kozicki et al. [132] when they did DEM

simulations of a triaxial compression test for sand.

Soil water content is another parameter worth investigating in relation to energy dissipation. A CFD-

DEM coupling would potentially help investigate this further. Though not using DEM, McNamara [133]

did a study on energy dissipation in relation to soil-moisture hysteresis and found that energy is dissipated

through heat during a water content change.

There is certainly more parameters that need to be discovered that influence energy dissipation. But

it appears to be the case that any parameter that would influence friction or damping would contribute

to most energy dissipation in granular media.

2.2.3 Conclusions on applications

Although the DEM started as a geomechanics tool, it has gained so much popularity in many fields of

research. This has mainly been facilitated by the significant improvements in computing power in the

past decades.

The ability of DEMs to capture physically hard to measure parameters has aided the study of those

parameters that influence energy dissipation in Chapter 3. The simulations in Chapter 3 were carried

out using a 3D code described in the next section. There are several DEM codes used in research, some

of which are mentioned in the next section.

2.3 LIGGGHTS

As mentioned in Chapter 1, LIGGGHTS [24] was used for the other simulations that will be presented

in this thesis.
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2.3.1 LIGGGHTS scripting

In LIGGGHTS, the user drives a simulation using a text-based input script containing a series of com-

mands to conduct the simulation. This input script is read sequentially rendering the ordering of the

statements important. A typical script will consist of four parts:

1. Initialization: The parameters that need to be defined before the particles are created are set. Such

parameters can include the type of boundary to be used, the type of units to work with (typically

SI units), the domain to run the simulation in, type of particles, among others.

2. Setup: Here the material properties are defined as well as the geometry. The particle generation

procedure is also detailed.

3. Detailed settings: Define settings that correspond to speed and memory utilisation. Include output

options and any other necessary settings for the problem.

4. Execution: This is the actual run command that executes the simulation.

Almost all problems will have multiple execution steps within one simulation. In such cases, the

problem is split into smaller problems within the script using different statements. There are two basic

types of statements in a LIGGGHTS input deck - individual commands and fixes. The commands

establish the settings of the simulations (e.g. the time step) while the fixes are used to set particular

aspects of the simulation (e.g. material properties and boundary conditions).

Some boundary geometries can be defined within the input script using a fix statement. These,

however, will not be visible at the end of the simulation during post processing. If the user wants to

visualise a geometry, they would need to create a separate mesh, for example in a CAD software, and

input it as a STereoLithography (STL) file via a fix statement in the input script.

Once the simulation is complete, the output files can be run through the LIGGGHTS Post-Processing

(LPP) software in which the Visualisation Toolkit (VTK) files will be generated. These can then be

visualised in any software that can open VTK files (e.g. ParaView [134]). Post processing of the results

can then be readily done. If required during post processing, a log file updated throughout the simulation

can also be referred to.

The simulations done in Chapter 3 are one-dimensional compression tests. Examples of how the

scripts for these simulations look like will be provided as will be discussed in those chapters. Some of the

challenges that were encountered while using LIGGGHTS are discussed next

2.3.2 Challenges using LIGGGHTS

Neighbour list problems. It was found that the ratio between the largest particle and the smallest

particle should not be significantly large in the version of LIGGGHTS used (version 3.6). When this was

done, the particle simulations either took very long to run or failed due to neighbour list error messages.

Particle size distribution set ups. It was found that the particle size distributions desired were

not always obtained. To overcome this, particles were inserted at lower sizes and then grew to the full

size. Another method to overcome this challenge would be inserting particles at zero friction coefficient

and then change the friction coefficient later in the simulation.

Running simulations in parallel. At first glance it might seem obvious that the more processors

used to run a simulation would result in a shorter runtime. But this is not necessarily the case. The time

spent on communication between processors could potentially slow down the simulation significantly.

LIGGGHTS users recommend that each processor should have a few hundreds of particles on it. The
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simulation grid size is distributed in the x y and z directions. If the simulation sample is of cubic shape,

then an equal number of processors would be required in all directions. To work this out, one would need

to divide the total number of particles by a minimum of 100 then do the cube root to get the number of

processors required in each direction. The speed up is also dependant on how many particles from one

processor interact with those in other processors, and on the various sizes of particles.

Limitations on outputs. In earlier versions of LIGGGHTS, some of the contact information needed

for energy dissipation calculations was not provided as an output option. This was overcome by calculating

the desired outputs in during post processing in Matlab. Another option that could have been employed

is extending the LIGGGHTS code to include these outputs. This was, at the time, seen as a more time

consuming process that was not necessary for the required simulations.

2.4 Observations

“The use of DEM to study soil micromechanics may inform development of more sophisticated and reliable

continuum models, and thus have an indirect impact on engineering practice.” O’Sullivan [1]

Those words sum up the motivation behind using DEM in this thesis. This chapter has shown that the

DEM is a reliable tool for studying granular media. It is able to capture physically difficult to measure

granular behaviour making it an attractive tool to study energy dissipation in granular media. The next

chapter will explore energy dissipation in one-dimensional compression tests through a parametric study.
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Chapter 3

One-dimensional compression

3.1 Introduction

Chapter 2 showed that DEM is a reliable tool for studying granular media. In this present chapter, the

DEM will be used to study energy dissipation in one-dimensional compression tests.

Energy dissipation in granular media has been a subject of study in recent years using the DEM. Wang

and Huang [135], for example, presented a DEM analysis of energy dissipation in crushable soils where

it was observed that crushability affects energy dissipation by creating more contacts as particle break

leading to more energy dissipation through friction. Zhang et al. [113] investigated the relationship

between energy dissipation and shear band formation under the rolling resistance caused by irregular

particle shapes and surface roughness. The effect of grain roughness on energy dissipation was investigated

during a quasi-static homogeneous triaxial compression test on cohesionless sand under constant lateral

pressure in [114, 116].

However, the focus of this chapter is on obtaining a link between energy dissipation and the grain scale

parameters of granular media under one-dimensional compression. Even though computational power

has improved significantly over the years, it is still not possible to do large-scale analysis using DEM.

It is, therefore, envisioned that the findings in this chapter can help inform the formation of continuum

function linking energy dissipation to grain scale parameters.

The rest of this chapter is organised as follows: Section 3.2 will provide the simulation procedure

followed, Section 3.3 will discuss the parameters studied, Section 3.4 will explain the process followed

in evaluating the energy dissipated post the simulations, Section 3.5 will discuss the results from the

simulations, and conclusions will be drawn in Section 3.6.

3.2 Simulations procedure

An open source DEM particle simulation software, LIGGGHTS, developed by Kloss et al. [25] was

used to model one-dimensional compression of samples of spherical particles. Each sample was 18mm

in diameter and 10mm high bound by a STereoLithography (STL) mesh with zero friction between the

particle to mesh interface. Each simulation had a densification stage to reach the target void ratio before

the loading and unloading cycles. The script of each simulation followed a similar format, the lines of

which are discussed next.

A set of thirteen variables were set at the beginning of each of the simulation scripts as shown in

Algorithm 3.1. The syntax of variable is variable name style args, where the name is case sensitive and

is used to initiate the variable during calls in the script, style includes several options that assign values

to the variable (for example, equal), and args are the quantities assigned to the variable, which can be
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characters, numbers, or even formulas to be evaluated. The thirteen variables in Algorithm 3.1 that were

specified have each an explanation provided as # comments where # comments are not executed during

Algorithm 3.1 Initial simulation variables

1 va r i ab l e dt equal 0 .0000001 #Time s t ep
2 va r i ab l e i n s s t e p s equal 500000 #Time s t ep s f o r i n s e r t i on
3 va r i ab l e s e t s t e p s equal 1000000 #Time s t ep s f o r s e t t l i n g
4 va r i ab l e t l im equal 5000000 #Maximum time s t e p s per c y c l e
5 va r i ab l e every equal 25000 #Time s t ep i n t e r v a l f o r output s
6 va r i ab l e R equal 0 .009 #Radius o f s imu la t ion ex t en t
7 va r i ab l e H equal 0 .01 #Height o f s imu la t ion ex t en t
8 va r i ab l e rho equal 2650 #Density o f each p a r t i c l e
9 va r i ab l e const equal PI *( ${R}) ˆ2 #Constant f o r l a t e r volume c a l c u l a t i o n s

10 va r i ab l e v dens equal 0 .000000025 #Speed to den s i f y at in m/s
11 va r i ab l e v comp equal 0 .000003 #Speed to compress at in m/s
12 va r i ab l e vra dens equal 0 . 7 #Target vo id r a t i o during d e n s i f i c a t i o n
13 va r i ab l e vra comp equal 0 . 2 #Target vo id r a t i o during compression .

the simulation. To ensure a stable simulation, a time step, ∆t of 1×10−7s was used (which is dt in line 1

in Algorithm 3.1 above). This value was arrived at based on the method for calculating the DEM critical

time step proposed by O’Sullivan and Bray [60] for different particle arrangements, where the critical

time step is given as 0.221
√
m/K, where m is the mass of the smallest particle and K is the contact

stiffness taken to be the greater of either the normal (Kn) or tangential (Kt) contact stiffness values:

Kn = 4G/(3(1−ν)), Kt = 4G/(2−ν), and G = E/(2(1+ν)). For a stable simulation, a value equal to or

less than the critical value needs to be used. To ensure that the simulation did take several days to run,

the number of time steps was set to certain limits. In Algorithm 3.1: the time steps to insert particles

was set in line 2; the settling time steps to allow particles to settle was set in line 3 by taking guidance

from example LIGGGHTS simulations in the documentation [24]; each simulation cycle was limited to

the time steps in line 4; and the interval time steps to limit how often files were output was set in line

5. Lines 6 through to 13 are as explained above. The value in line 8 will be explained below together

with the properties of each particle. Line 12 had initial void ratios, eini values in the range [0.7 0.43] for

different simulations.

Essential settings for each simulation before the particle insertion stage were set as in Algorithm 3.2.

In line 15 the particles were set to granular style, which meant that the effects of particle forces did not

Algorithm 3.2 Essential simulation settings

14 echo both #Each command i s echoed on the screen and l o g f i l e
15 atom sty l e granu lar #Par t i c l e s would be a s soc i a t ed with granu lar models
16 atom modify map array #Par t i c l e s IDs are s to red in array lookup
17 communicate s i n g l e v e l yes #Sing l e d i s t ance communication and s t o r e v e l o c i t i e s
18 boundary f f m #Fix boundaries excep t in the z=d i r e c t i on
19 newton o f f #Set bonded i n t e r a c t i o n s o f f
20 un i t s s i #Assume in t e r na t i ona l system of un i t s
21 reg i on reg cy l i nd e r z ${R} ${R} ${R} 0 .0 ${H} un i t s box #Define reg ion ’ reg ’
22 c r ea te box 1 reg #Create s imu la t ion conta iner de f ined by reg ion ’ reg ’
23 neighbor 0 .001 bin #Typica l neighbour cut o f f d i s t ance when using SI un i t s
24 ne igh modi fy de lay 0 #No time de lay when c a l c u l a t i n g p a r t i c l e ne ighbours
25 s h e l l rm =r f post #Remove pos t f o l d e r i f i t e x i s t s
26 s h e l l mkdir post #Create pos t f o r l d e r to s t o r e f i l e s during the s imu la t ion

go beyond the immediate neighbours. Atom information was set to be mapped in arrays according to line

16, which meant the particle ID lookup was done from an array store. Line 17 enabled each processor

to obtain information of particle information within a single distance from its sub-domain. In line 18

boundaries were set to be fixed in the x and y axes, but moving in z-axis, which meant that the boundary
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dimensions could only change in the z direction. Line 19 ensured that no bonding effects are calculated.

The simulation region was described line 21 as a cylinder with radius set to the value in variable R from

line 6 about the z axis with x and y coordinates also set using variable R. The height was set from

a low of zero to H. Both R and H were provided in Algorithm 3.1. The simulation region was then

created in line 22 where the value 1 meant that there was only one particle type in the simulation. In

line 23 particle neighbours were set to be detected using the bin scheme as described in Chapter 2 with

a buffer distance around each particle set to 0.001m. The buffer value here is the typically used value in

LIGGGHTS simulations [24] when SI units are used. The current author also found it to work best for

all simulations conducted since lower values resulted in particles escaping the bounding region. Particle

contacts were set to be detected at every time step according to line 24. Lines 25 and 26 were used to

create a folder to which files were to be written for post processing.

The material properties of each particle were set as shown in Algorithm 3.3. As shown in lines 28

Algorithm 3.3 Material properties

28 f i x m1 a l l property/global youngsModulus peratomtype 7 . e10
29 f i x m2 a l l property/global po i s sonsRat io peratomtype 0 .25
30 f i x m3 a l l property/global c o e f f i c i e n tR e s t i t u t i o n peratomtypepair 1 0 .3
31 f i x m4 a l l property/global c o e f f i c i e n t F r i c t i o n peratomtypepair 1 0 .5
32 p a i r s t y l e gran model he r t z t ang en t i a l h i s t o r y #Hertz ian wi thout cohes ion
33 p a i r c o e f f * *

and 29, the simulated particles were spheres each of Young’s modulus, E of 70GPa and Poisson’s ratio,

ν of 0.25 for all particle groups, which are typical values used in the literature (e.g. [19, 136, 137]).

The coefficient of restitution value for particle type 1 was set to 0.3 in line 30, a value that was seen

in the example simulations presented in LIGGGHTS documentation. The coefficient of friction between

particles of type 1 was set in line 31 with values for different simulations ∈ [0.25, 0.5]. The particle

contact model was set to Hertz-Mindlin in line 32.

In Algorithm 3.4 the time step and gravitation force were set where dt is defined in Algorithm 3.1 and

Algorithm 3.4 Time step and gravity specification

34 t imestep ${dt} #Set the time s t ep t ha t va lue
35 f i x g rav i a l l g rav i ty 9 .81 vec to r 0 . 0 0 .0 =1.0 #Gravity act in nega t i v e z=d i r e c t i on

the gravity acts in the negative z-direction.

Wall boundaries were inserted as meshes in lines 36-38 in Algorithm 3.5. where the walls were set to

Algorithm 3.5 Wall boundaries

36 f i x s t re s smesh a l l mesh/ su r f a c e / s t r e s s f i l e meshes/SmallSample3 . s t l type 1 s t r e s s on
37 f i x s t r e s s l i dme sh a l l mesh/ su r f a c e / s t r e s s f i l e meshes/ Smal lSample l id3 . s t l type 1

s t r e s s on
38 f i x granwa l l s a l l wal l / gran model he r t z t ang en t i a l h i s t o r y mesh n meshes 2 meshes

s t re s smesh s t r e s s l i dme sh

be of particle type 1 so that they act as particles in order for other particles to “see” the walls, and stress

calculations on each mesh were allowed according to lines 36 and 37 for later storage. Line 38 then set

formed the bounding walls from the mesh identifications tags, stressmesh and stresslidmesh. Line 38 also

set the contact model for the wall as that for the particle-particle contacts.

Particle size distribution (PSD) to be used during the particle insertion stage was then stated, for

example, as in Algorithm 3.6 where different simulations had different PSDs. Lines 39-45 describe different
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Algorithm 3.6 Particle size distribution specification

39 f i x pts1 a l l pa r t i c l e t emp l a t e / sphere 1 atom type 1 dens i ty constant 2650 rad iu s
constant 0 .0009

40 f i x pts2 a l l pa r t i c l e t emp l a t e / sphere 1 atom type 1 dens i ty constant 2650 rad iu s
constant 0 .0008

41 f i x pts3 a l l pa r t i c l e t emp l a t e / sphere 1 atom type 1 dens i ty constant 2650 rad iu s
constant 0 .0006

42 f i x pts4 a l l pa r t i c l e t emp l a t e / sphere 1 atom type 1 dens i ty constant 2650 rad iu s
constant 0 .0004

43 f i x pts5 a l l pa r t i c l e t emp l a t e / sphere 1 atom type 1 dens i ty constant 2650 rad iu s
constant 0 .0003

44 f i x pts6 a l l pa r t i c l e t emp l a t e / sphere 1 atom type 1 dens i ty constant 2650 rad iu s
constant 0 .0002

45 f i x pts7 a l l pa r t i c l e t emp l a t e / sphere 1 atom type 1 dens i ty constant 2650 rad iu s
constant 0 .0001

46 f i x pdd1 a l l p a r t i c l e d i s t r i b u t i o n / d i s c r e t e 123457 7 pts1 0 .053 pts2 0 .12 pts3 0 .28
pts4 0 .21 pts5 0 .24 pts6 0 .085 pts7 0 .012

47 group nve group reg i on reg
48 f i x i n s nve group i n s e r t /pack seed 1000003 d i s t r i bu t i on t emp l a t e pdd1 i n s e r t e v e r y

10000 over lapcheck yes a l l i n yes ve l constant 0 .0 0 .0 =15 reg i on reg
p a r t i c l e s i n r e g i o n 16000

spherical particles that were used. Each particle had a density of 2650kg/m3, which is a typical value

used in slice sand (e.g. [19, 137]). Line 46 describes how the particle sizes were to be distributed during

the random particle generation and insertion stage of the simulation in such a way that the sum of all

weight contributions from each particle template from lines 39-45 is equal to 1. In line 46 the number

123457 is a seed number unique to this command used by LIGGGHTS to track it, and 7 is the number of

particle templates used corresponding to lines 39-45. Line 47 was a necessary group created to be used

for particle insertion in line 48. The particle generation and insertion method was done based on the

description in line 48 such that random particles were generated every 10,000 time steps with a velocity

of 15m/s downwards. This high velocity was set to allow particles to settle quickly and free up more

space required to randomly generate other particles. LIGGGHTS does not always yield the desired PSD

during the particle generation stage. This is dependant on the particle insertion method used and the

number of time steps run at the particle generation stage. The author generated samples with PSDs of

coefficient of uniformity, Cu values of ∈ [1, 2]. The coefficient of uniformity is a shape parameter that

can be used to measure PSDs. It is calculated as

Cu =
d60
d10

. (3.1)

d60 and d10 respectively are particle diameters for which 60% and 10% of the material by mass is finer.

Particle information at every time step was updated based on the command in Algorithm 3.7 so that

Algorithm 3.7 Particle information update

49 f i x i n t e g r a l l nve/ sphere

the particle positions, velocities, and angular velocities were updated at every time step by treating the

particles as finite size spheres rather than points.

Outputs on the screen were enabled using thermo commands where a customised output list of the

current time step, the number of atoms, the kinetic energy, and the simulation volume were output

according to line 50. Line 51 ensured that this information was output every 1000 time steps. Screen

outputs help the user to have a quick look at the simulation progress. They, however, slow down the

simulation when too frequent. Since the current number of particles in the simulation region were
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Algorithm 3.8 Data output settings

50 the rmo sty l e custom step atoms ke vo l
51 thermo 1000
52 thermo modify l o s t i gno re norm no
53 va r i ab l e kner equal ke

to be output according to line 50, calculations for any particles that would go beyond the simulation

region were prohibited in line 52. However, no particles were lost during the simulations reported in the

present chapter since less calculations would have been done in such case. This was simply added for the

simulations to terminate quicker if a such a problem arose. The variable kner in line 53 was set to store

the kinetic energy to be output to a file as will be described below.

To make contact information accessible, compute commands for particle-particle and particle-wall

contacts were included as in Algorithm 3.9. Line 54 was for particle-particle contacts: normal and

Algorithm 3.9 Contact information to be output

54 compute pairsP a l l pa i r /gran/ l o c a l pos ve l id f o r c e norma l f o r c e t a n g e n t i a l
contactArea de l t a

55 compute pairsW a l l wal l / gran/ l o c a l pos ve l id f o r c e norma l f o r c e t a n g e n t i a l
contactArea de l t a

tangential contact forces, contact area, and particle overlap. Line 55 was for particle-wall contacts:

normal and tangential contact forces, contact area, and particle-wall overlap.

To execute the commands in the input script, a run command is called. Run commands are executed

by running all the commands before it. Any command that needs to be removed can be removed by

using delete equivalents of that particular command type (for example, a fix command can be removed

by using the unfix command). Run commands were, therefore, stated and executed first for particle

generation as shown in Algorithm 3.10. Line 56 ensured that DEM calculations were done for up to

Algorithm 3.10 Particle generation

56 run ${ i n s s t e p s } upto
57 un f ix i n s
58 run ${ s e t s t e p s } #run to l e t p a r t i c l e s e t t l e .

ins steps time steps. During this run period, all the settings described in the above lines were executed

and particle generation was done. Line 57 ensured that the particle insertion stage would end at the

next run command. Samples had different particle numbers at the end of the particle insertion stage

here grouped based on the coefficient of uniformity, Cu value. A sample of Cu = 1 had 977 particles, for

Cu = 1.3, 1154, and for Cu = 2, 1734. Line 58 allowed particles to settle. A top view of the these samples

is given in Figure 3.1 where in each sample, different colours corresponded to a different particle size.

Before the loading cycle, the particles were densified to different initial void ratio values in the range

∈ [0.43, 0.7] by moving the top platen downwards at constant velocity, following which the particles

were allowed to settle. A range of initial void ratios used to study their influence on energy dissipation.

The samples were densified and the particles allowed to rest as in Algorithm 3.11. Lines 59-68 describe a

series of calculations that were done to derive the top mesh velocity, v dens and the number of time steps,

tdense that were used to increase the sample density. The mass of the particles was calculated in line

59 and used to calculate the volume of particles in line 60. Line 61 calculated the total volume allowing

for the current void ratio to be calculated in line 62. The target sample height was then calculated in
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Figure 3.1: Top view of particles according to their Cu values. The different colours are aids to visualise
different particle sizes.

Algorithm 3.11 Sample compression to reach target density

59 va r i ab l e mass equal mass ( a l l )
60 va r i ab l e v o l p c l s equal ${mass}/${ rho}
61 va r i ab l e vo l box equal ${H}*${ const }
62 va r i ab l e v o i d r a t i o equal ( ${ vo l box}=${ v o l p c l s }) /${ v o l p c l s }
63 va r i ab l e H den equal ((1+${ vra dens }) *${ v o l p c l s }) /${ const }
64 va r i ab l e d i f fH den equal ${H}=${H den}
65 i f ”${ d i f fH den }>0.0” then ” va r i ab l e tdense equal round ( ( ${ d i f fH den }/${ v dens }) /${dt

}) ”
66 i f ”${ d i f fH den }<=0.0” then ” va r i ab l e tdense equal 1”
67 i f ”${ tdense}>${ t l im }” then ” va r i ab l e v dens equal ${ d i f fH den }/( ${ t l im }*${dt }) ”
68 i f ”${ tdense}>${ t l im }” then ” va r i ab l e tdense equal ${ t l im }”
69 f i x movecad a l l move/mesh mesh s t r e s s l i dme sh l i n e a r 0 . 0 0 .0 =${ v dens }
70 run ${ tdense }
71 un f ix movecad
72 run ${ s e t s t e p s } #run to l e t p a r t i c l e s e t t l e

line 63 and the difference between the current sample height and the target height determined in line

64. The information obtained thus far then allowed for the calculation of the required number of time

steps, tdense and the top mesh velocity, v dens in lines 65-68. A limit was set for tdense in line 68

to tlim obtained from Algorithm 3.1 because otherwise the simulation exceeded the 3 day time limit

for simulations on the super computers the author used. The use of super computers allowed for many

simulations to be run simultaneously as opposed to using the author’s computer. It also allowed for the

perfecting of the particle generation process by trying many samples. In line 69, the top mesh was set to

move downwards at a downward velocity v dens. This stage of the simulations was run for tdense time

steps according to Line 70. In Line 71, the top mesh was stopped before the particles were allowed to

settle by running for set steps time steps in line 72.

Outputs to files for later post processing for the loading and unloading cycles were then set as in

Algorithm 3.12. Line 73 output particle information and the simulation region coordinates to ASCII

files. Line 74 output wall stress values to ASCII files. Line 75 and line 76 output particle-particle and

particle-wall contact information respectively to ASCII files. Lastly, line 77 printed the kinetic energy

values to a csv file. The values output in these files were later used in the energy dissipation evaluation

stage described in Section 3.4 and to produce the results in Section 3.5.

After being densified, the particles were then compressed to a target void ratio, etar 0.2 on the loading

cycle then unloaded for the same number of time steps used on the loading cycle. The top platen velocity
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Algorithm 3.12 File output settings

73 dump dmp a l l custom ${ every } post /dump.1 DCompression id type x y z ix iy i z vx vy
vz fx fy f z omegax omegay omegaz rad iu s

74 dump dumpstress a l l mesh/gran/VTK ${ every } post /dump* . vtk s t r e s s s t re s smesh
s t r e s s l i dme sh

75 dump dmpPairP a l l l o c a l ${ every } post /dump.1 DPairsP c pa i r sP [ 1 ] c pa i r sP [ 2 ]
c pa i r sP [ 3 ] c pa i r sP [ 4 ] c pa i r sP [ 5 ] c pa i r sP [ 6 ] c pa i r sP [ 7 ] c pa i r sP [ 8 ] c pa i r sP
[ 9 ] c pa i r sP [ 1 0 ] c pa i r sP [ 1 1 ] c pa i r sP [ 1 2 ] c pa i r sP [ 1 3 ] c pa i r sP [ 1 4 ] c pa i r sP [ 1 5 ]
c pa i r sP [ 1 6 ] c pa i r sP [ 1 7 ] c pa i r sP [ 1 8 ] c pa i r sP [ 1 9 ] c pa i r sP [ 2 0 ] c pa i r sP [ 2 1 ]

c pa i r sP [ 2 2 ] c pa i r sP [ 2 3 ]
76 dump dmpPairW a l l l o c a l ${ every } post /dump.1DPairsW c pairsW [ 1 ] c pairsW [ 2 ]

c pairsW [ 3 ] c pairsW [ 4 ] c pairsW [ 5 ] c pairsW [ 6 ] c pairsW [ 7 ] c pairsW [ 8 ] c pairsW
[ 9 ] c pairsW [ 1 0 ] c pairsW [ 1 1 ] c pairsW [ 1 2 ] c pairsW [ 1 3 ] c pairsW [ 1 4 ] c pairsW [ 1 5 ]
c pairsW [ 1 6 ] c pairsW [ 1 7 ] c pairsW [ 1 8 ] c pairsW [ 1 9 ] c pairsW [ 2 0 ] c pairsW [ 2 1 ]

c pairsW [ 2 2 ] c pairsW [ 2 3 ]
77 f i x e n e r g e t i c s t r y a l l print 2500 ”${kner}” f i l e e n e r g e t i c s . csv s c r e en no t i t l e ” kin ”

and the time steps required for these cycles were calculated according to Algorithm 3.13. The target

Algorithm 3.13 Mesh velocity calculation for compression testing

78 va r i ab l e H comp equal ((1+${vra comp }) *${ v o l p c l s }) /${ const }
79 va r i ab l e dif fH comp equal ${H}=(${ v dens }*${ tdense }*${dt })=${H comp}
80 i f ”${dif fH comp }>0.0” then ” va r i ab l e tcomp equal round ( ( ${dif fH comp }/${v comp }) /${

dt }) ”
81 i f ”${dif fH comp}<=0.0” then ” va r i ab l e tcomp equal 1”
82 i f ”${tcomp}>${ t l im }” then ” va r i ab l e v comp equal ${dif fH comp }/( ${ t l im }*${dt }) ”
83 i f ”${tcomp}>${ t l im }” then ” va r i ab l e tcomp equal ${ t l im }”

sample height was calculated in line 78 and the difference between this height and the current height

calculated in line 79. The top platen velocity, v comp and the required time steps, tcomp were then

determined in lines 80-83. As in the desification simulation stage, tcomp was limited to tlim obtained in

Algorithm 3.1. The loading and unloading cycles were then executed according to Algorithm 3.14 where

Algorithm 3.14 Compression testing steps

84 f i x movecad1 a l l move/mesh mesh s t r e s s l i dme sh l i n e a r 0 . 0 0 .0 =${v comp}
85 run ${tcomp}
86 f i x movecad1 a l l move/mesh mesh s t r e s s l i dme sh l i n e a r 0 . 0 0 .0 ${v comp}
87 run ${tcomp}

line 84 sets the top mesh to move downwards with velocity v comp for time steps tcomp shown in line 85

before reversing the top mesh movement in line 86 for the same time steps in line 87.

Figure 3.2 shows an example of simulation before (a) and at the end of loading (b), and at the end of

unloading (c). The next section will discuss the parameters varied for the simulations that were carried

out within this chapter.

3.3 Simulation parameters

This study is focussed on the influence of two grain scale parameters coefficient of uniformity and inter-

particle coefficient of friction, and the response to initial void ratio on the energy dissipation under 1D

compression.

The coefficient of uniformity, Cu calculated using Equation (3.1), is a measure of soil gradation

commonly used in civil engineering laboratories. Values greater then 4 show that the soil is well graded

because it has a wide range of particle sizes. Values less than 2 show that the soil is poorly graded, for

example beach sands. Grading can affect the critical states as studied by Muir Wood and Maeda [138].
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18mm

Figure 3.2: Loading and unloading: (a) before loading samples; (b) end of loading; (c) end of unloading.

Although their DEM simulations were on two-dimensional assemblies, they found that changes to grading

lead granular material to seek new critical state conditions.

Friction between particles, µ is a major contributor to energy dissipation in granular media. The

friction coefficient between particles was therefore varied along with the PSD and the initial void ratio,

eini. Table 3.1 shows the values of the varied parameters for each simulation. The range of values

were chosen to supply a good range of values except for the Cu values, which were a consequence of

the simulation particle generation procedure as explained in Section 3.2. Results from these simulations

are discussed in Section 3.5. But first, the post processing of the DEM results for energy dissipation is

presented.

Table 3.1: 1D Compression Simulation test parameters

Cu eini µ

∈ [1, 2] 0.7 0.5

2 0.7 ∈ [0.2, 0.5]

2 ∈ [0.43, 0.7] 0.5

3.4 Energy dissipation evaluation

Energy monitoring was achieved by post processing the files output during the simulations. These files

contained wall stress values and positions, and particle contact forces, velocities and positions, which were

used to calculate the various energy terms. Equation (2.13) was used to determine the energy changes.

From Equation (2.13), the total change in dissipated energy, ∆Eη can be derived as the sum of the

changes in frictional dissipation, damping dissipation, and bonding energy. For simulations in the present

chapter, bonding energy was zero. Since the simulations had particles at low velocity values, it was found

that the potential and kinetic energies were each ≈ 106 times smaller than either of the boundary work

or the stored elastic energy. The total change in dissipated energy, ∆Eη was therefore approximated for

all simulations to be the difference between change in boundary work and change in strain energy based

on equation (2.13) as

∆Eη ≊ ∆W −∆Es (3.2)

where the boundary work is given by

∆W = σzASδz, (3.3)

and δz is the constant distance change of the top mesh, which for this study was calculated from the
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output files in the post-procession stage for every 0.0025 simulation seconds to reduce the computational

cost. AS is the surface area for the bottom platen mesh, and σz is the average normal stress on that

mesh.

Changes in the stored energy are due to the evolution of both the magnitude of the forces through

contacts. The summation of strain energy for all the contacts is equal to the stored energy and was

obtained using

∆Es = ∆En
s +∆Et

s,

∆En
s =|

Kn︷ ︸︸ ︷
4

3
E∗
√
R∗δn δnn︸ ︷︷ ︸
Fn

| dn and

∆Et
s =|

Kt︷ ︸︸ ︷
8G∗

√
R∗δn ξt︸ ︷︷ ︸
F t

| dξt,

(3.4)

where ∆En
s and ∆Et

s are the contributions from normal and tangential contact forces respectively. Fn

and F t are in turn the normal and tangential contact forces and Kn and Kt are the corresponding

stiffness parameters using the Hertzian contact model, which governs how spherical particles interact at

contacts. dn is the normal displacement. Two particles A and B in contact will have an effective radius,

R∗ = RARB/(RA + RB), which is the geometric mean of radii RA and RB . δn = RA + RB − dAB

is the overlap at contact between the two particles in the normal direction where dAB is the distance

between their centres. The effective Young’s modulus, E∗ = 0.5E/(1− ν2) since the particles are of the

same material, and is derived from the particles’ material Young’s modulus, E and Poisson’s ratio, ν.

In Equation (3.4), n is a normal vector for particles in contact. The term ξt in (3.4) is the tangential

displacement calculated by integrating the tangential relative velocity vt over the contact time; that is,

ξt =
∫
t0
vtdt [139].

3.5 Results and discussion

Minh and Cheng [140] observed that the compression of granular assemblies is due to the rearrangement

of particles and elastic compression. Figure 3.2 shows the state of a typical simulation sample at the

start of loading and at the end of the loading and unloading cycles. A horizontal reference line is drawn

over these states. A comparison of the top of the sample states with the horizontal line shows that the

unloading state has a lower top surface than the top. This is because samples experienced unrecoverable

rearrangement during the loading cycle. This leads to particles generating locked in stresses that are

not released in the unloading cycle. Furthermore, the unrecoverable rearrangement helps to explain the

different paths followed by the loading and unloading cycles as represented in the e-log(σv) graphs in

Figures 3.3-3.5, where the outermost curves for each set of data are the loading cycle and the innermost

are the unloading cycle.

Figure 3.3 shows the results based on the first row values in Table 3.1 in which the circled part

highlights an area where the pressure dropped during two of the simulations. This was caused by a

sudden rearrangement within the specimens with Cu = 1 and Cu = 1.3 due to pockets of voids being

filled rapidly.

Figure 3.4 shows the results of the second row in Table 3.1 at different µ values. The variations

between the loading and unloading cycles for different µ values are not significant. The main reason for

this is that changes in void ratio are largely due to the densifying of the particles, a process that is mainly
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Figure 3.3: e-logσv results for different Cu values

governed by the movement of the top platen.

Figure 3.5 shows the results for the loading and unloading cycles at ten different initial void ratios

(eini) from 0.7 − 0.43 (see Table 3.1). A similar compression path was followed towards the end of the

loading cycle as would be expected. The slight differences correspond to the oscillations of particles during

the simulations. The unloading path also follows a similar path for all the ten simulations. The loading

compression lines all converge to the same point with the same slope which agrees with experimental

observations (for example, [17, 141]).

The permanent rearrangement of the particles in the samples is also reflected in the energy dissipation

graphs in Figures 3.6-3.8. Here energy dissipation is presented normalised per unit solid volume. The

data is plotted against the axial strain. The loading cycle follows the bottom part of each curve from 0

to 30% strain except for results in Figure 3.8 where the initial void ratio is considered, since the lowest

void ratio reached was kept the same for all simulations. After the loading cycle, the unloading cycle

moves from right to left. The loading cycle contributed most to the cumulative energy dissipated.

It can be seen from these energy graphs that the magnitude of the change in energy dissipation during

loading is slightly higher than during unloading. This is further confirmation of the fact that there is

less particle rearrangement on the unloading cycle due to the unrecoverable locked in stress within the

sample gained on the loading cycle.

Permanent deformation of soils has been observed in experimental result like subgrade soils under

pavement due to repeated loading [142], and in sand due to cyclic loading [143].

The results in energy dissipation graphs indicate that a higher Cu results in less energy dissipation as

shown in Figure 3.6. This observation may be explained as follows. As smaller particles are introduced,

voids can easily be filled during the loading cycle and therefore less energy is dissipated since there is less

particle rearrangement. This result suggests that the cumulative energy dissipation for these simulations
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Figure 3.4: e-logσv results for different µ values

is negatively correlated to the coefficient of uniformity.

A higher inter-particle coefficient of friction results in more energy dissipation during loading and

unloading as observed in Figure 3.7 for Simulations 4-9 (Table 3.1). This observation is consistent with

the fact that energy is largely lost through friction. The cumulative energy dissipation is therefore

expected to be positively correlated with the inter-particle coefficient of friction.

Figure 3.8 shows that the energy dissipation loading curves become steeper with a decreasing initial

void ratios, eini. This is because more input energy is required to move particles through the same strain

increment due to higher stresses in the contacts most of which is dissipated. There is also a similar

gradient achieved at a higher strain levels for samples with a higher eini. More energy is dissipated on

unloading as the eini decreases. A physical explanation to this can be obtained by first observing that

a low initial void ratio corresponds to a denser sample. More energy is required to move particles in a

denser sample since they are more resistant to sliding. As particles slide to allow compression, energy

is dissipated. These observations suggest that the cumulative energy dissipation is negatively correlated

with the initial void ratio.

To assess the state of the fabric, the average coordination number was calculated as

Z =
Nc

Np
(3.5)

where Nc is the number of contacts and Np is the number of particles. The coordination number is

a simple particle scale parameter that measures the packing density or packing intensity [1]. Figures

3.9-3.11 show the variation of this number over time for different Cu, µ, and eini values. A lower Cu
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Figure 3.5: e-logσv results for different eini values

leads to a higher coordination number as loading progresses as seen in Figure 3.9. This is because larger

particles have larger surfaces and can, therefore, have multiple contacts. Smaller particles introduced

into the sample have less contacts, which in turn reduces the average coordination number. The increase

in Z with a decrease in Cu can further help to explain the results in Figure 3.6. More contacts mean that

particles can lose more energy through sliding due to increased surfaces of contact and higher forces in

these contacts.

Varying the inter particle coefficient of friction shows that lower µ values lead to a higher average

coordination numbers as the loading cycle progresses (Figure 3.10). The reason for this is the fact that a

lower friction coefficient leads to less resistance to sliding resulting in more particle contacts. Although

this means that there are more contacts, it does not result in more energy dissipation as shown in Figure

3.7. This is perhaps due to the fact that the differences in coordination number are small and therefore

the inter particle coefficient of friction has a more dominate effect over energy dissipation.

Figure 3.11 shows that the coordination number variation over time is less affected by the initial

void ratio since the same value is reached at the end of loading where the void ratio is the same for all

simulations.

Figure 3.12 shows an example of the resultant particle force vectors for simulation with eini = 0.7,

µ = 0.5, and Cu = 1. The arrows plot the direction vector while the colouring indicates magnitude. It

can be seen from the Figure that there is an overall increase in the internal force when comparing the

start of loading (a) and the end of loading (b). This helps explain the increase in energy dissipation as
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Figure 3.6: Dissipated energy against strain results for different Cu values
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Figure 3.7: Dissipated energy against strain results for different µ values
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Figure 3.8: Dissipated energy against strain results for different eini values

loading progresses. The force magnitude has a large concentration in the sample centre, which is because

the wall reactions tend to push the particles inwards. A preference of the particle force towards the right

side in Figure 3.12(b) for this particular simulation was as a result of the large localised movement of

particles at the early stages of loading stage that led to a concentration of particles to one side of the

sample. Figure 3.12 does show that there was no strong directional preference for the resultant force

vectors.

3.6 Observations

One-dimensional compression tests using the DEM have been conducted through loading and unloading

cycles using spherical particles whose elastic properties were set to those of sands. PSD, initial voids ratio,

and the coefficient of friction were the three parameters varied in the present new study of their influence

on energy dissipation in one-dimensional normal compression DEM tests. Increasing the coefficient of

uniformity was found to decrease the energy dissipated; lowering the initial voids ratio resulted in steeper

curves for energy dissipation; and a higher inter-particle coefficient of friction resulted in more energy

dissipation. The average coordination number during the loading and unloading cycles supports the ob-

servations from the coefficient of uniformity results. It was also observed that the inter particle coefficient

of friction had a more dominating effect on energy dissipation than the average coordination number for

the simulations presented in this chapter. It is important to note, however, that the simulations in this

chapter were carried out using small samples, which were not representative element volumes potentially

resulting in significant effect from bounding walls. A variation in the initial stress or initial void ratio

between samples, leading to differences in initial states, could limit some of the observations made.
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Figure 3.9: Average coordination number over time for different Cu values
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Figure 3.11: Average coordination number over time for different eini values
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Figure 3.12: Snapshot of the resultant force: (a) at the start of loading; and (b) at the end of loading
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Chapter 4

Conclusions

Chapter 1 introduced the thesis by highlighting how the DEM can facilitate a study of granular media

by modelling individual grains to derive a rich understanding of their behaviour. It was established that

using DEM to study energy dissipation can lead to the construction of constitutive models using the

hyperplasticity approach. It was pointed out that the thesis itself focussed only on understanding of

energy dissipation from a DEM perspective.

Chapter 2 discussed the DEM model and provided a literature review of the DEM application. It

showed how DEM can capture physically hard to measure parameters.

The novel research in the thesis is described in Chapter 3 where the influence of Particle size distri-

bution, initial void ratio, and the coefficient of friction on energy dissipation in one-dimensional normal

compression DEM test simulations were studied. It is envisioned that the findings can help inform the

formulation of continuum functions linking energy dissipation to grain scale parameters.

As discussed in Chapter 3, increasing the coefficient of uniformity was found to decrease the energy

dissipated due to the fact that smaller particles are introduced, which reduce the sliding of particles while

increasing the amount of stored energy. A lower initial void ratio resulted in steeper curves for energy

dissipation due to the fact that more input energy was required to move the particles through the same

displacement at lower initial void ratio values most of which was dissipated. A higher friction coefficient

between particles resulted in more energy dissipation during loading and unloading of the samples due

to the fact that energy is mainly lost through friction, which is directly proportional to its coefficient.

4.1 Recommendations and future work

The one-dimensional normal compression tests can be extended to three dimensional loading conditions

such as are found in triaxial tests. Energy dissipation studies can then be done and energy dissipation

rates established from the results. These rates can then be used to formulate constitutive models.

A repetition of the simulations presented under difference boundary conditions, with controlled con-

sistent initial states, and all samples having more particles such that they can be representative element

volumes would be recommended to observe whether similar results can be obtained.
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one-dimensional compression,” Géotechnique, vol. 63, pp. 44–53, 2013.

[141] G. McDowell, “On the yielding and plastic compression of sand,” Soils and foundations, vol. 42,

no. 1, pp. 139–145, 2002.

[142] A. J. Puppala, S. Saride, and S. Chomtid, “Experimental and modeling studies of permanent strains

of subgrade soils,” Journal of geotechnical and geoenvironmental engineering, vol. 135, no. 10,

pp. 1379–1389, 2009.

[143] C. S. Chang and R. V. Whitman, “Drained permanent deformation of sand due to cyclic loading,”

Journal of geotechnical engineering, vol. 114, no. 10, pp. 1164–1180, 1988.

– 48 –


	Abstract
	Declaration
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Discrete element modelling
	The DEM model
	Initial geometry and specimen generation
	Contact Laws
	Choosing a suitable time step

	Applications of the DEM
	General applications of the DEM
	Energy dissipation in geomechanics
	Conclusions on applications

	LIGGGHTS
	LIGGGHTS scripting
	Challenges using LIGGGHTS

	Observations

	One-dimensional compression
	Introduction
	Simulations procedure
	Parameters
	Energy dissipation evaluation
	Results and discussion
	Observations

	Conclusions
	Recommendations and future work

	References

