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Abstract: Environmental and political directions indicate transition to a decar-

bonised transportation system is necessary as it is one of the most pollutant sectors

regarding greenhouse gas emissions. Research in Demand Side Management suggests

that its tools are the most cost-effective option for improving the performance of the

grid without incurring into high infrastructure investments, hence reducing the pay-

back for start-ups in the sector. This Thesis proposes solutions to tackle 5 objectives

around this area of research: 1-2 are related to developing a demand response pricing

and EV smart charging strategies, 3-4 are related to developing a multi-objective

charging scheme in order to ensure fairness and reduction of CO2eq emissions, and 5

is related to testing parameters of EV charging to understand future improvements

and limitations in the proposed models. Chapter 3, that tackles objectives 1-2, pro-

poses a data-driven optimisation algorithm with pricing and control modules that

communicate with each other to achieve a successful integration with the grid by

charging at the right price and expected time. The results show customers can be

positively engaged with pricing signals while providing support to the grid. Chapter

4, which tackles objectives 3-4, proposes a multi-objective EV charging formulation

that include perspectives of EV users, a carbon regulator and a charging station

operator. The multi-objective formulation is solved with a genetic algorithm in order



to find the fairest and the greenest solution. Results which are evaluated using

different scenarios show different weights to each objective function can differ based

on the charging location and EV charging availability. Finally, Chapter 5 which

tackles objective 5, shows a sensitivity analysis where improvements in revenues,

reduction of carbon emissions and bidding capacity depend on the evaluation of EV

users’ parameters, and the charging station control and sizing.
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Chapter 1

Introduction

1.1 Research Relevance

Nowadays, there are concerns about environmental issues and energy sustainability,

as recent temperature trends show that temperature has been rising every decade by

0.18° C since 1981 [1]. Therefore, it is critical that countries around the globe develop

strategies to tackle climate change and with detailed approaches in different sectors,

for instance in the transport sector, which is the end-use sector with highest influence

on CO2 emissions with a total of 37% impact [2]. During COP26 Conference in

Glasgow in 2021, countries declared their compromise towards having "all sales of

new cars and bans being zero emission by 2040, and by 2035 in leading markets"

[3]. For this reason, the UK has set a target of reducing Green House Gas emissions

by 78% by 2035, relative to 1990 levels [4]. One countermeasure of this goal is to

promote the adoption of ultra-low emission vehicles, such as Electric Vehicles (EVs),

to help cut down emissions and air pollution. In fact, Point 4 of the ten point plan

for a green industrial revolution in the UK states that to support the transition to

zero emissions vehicles sales of new diesel and petrol vehicles will end by 2030 [5].

Mexico is also looking forward to take action into making a sustainable world for

everyone. The Energy Reform, which started in 2013, establishes these general goals

on its vision; to increase share of power generation by clean energy from 21% to
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25% by 2015, 30% by 2021 and 35% by 2024, to reduce Green House Gas (GHG)

emissions by 22% by 2030. Also to reduce black carbon emissions by 51% by the

same year [6]. Mexico expects to have 20% of hybrid vehicle stock by 2040, in

comparison to the situation today where 95% of passenger vehicles have combustion

engines as described in the Mexico Energy Outlook. The transition to this future

scenario offers challenges to the strategic and reliable distribution of electricity to

automobiles and production of hybrid and electric vehicles. We can see here that

similar general concerns regarding usage of EV’s in the UK are also applicable to

Mexico. AMIA, Mexican Association of the Mexican Automobile Industry, and CFE,

Federal Commission of Electricity, are currently working together to promote hybrid

and electrical vehicles as well the usage of charging stations [7]. In fact, BMW has

started a program for creation of charging stations in collaboration with General

Electric and Schneider Electric in order to prepare the required infrastructure for

the deployment of EVs in Mexico [8]. However, there exist two major challenging

issues around EVs that need solving:

1. Are EVs Really Green? EVs are charged using UK electricity, but about 35%

(on average) of energy in the UK based on historical generation from January

1 - March 27, 2022 was generated from fossil fuels [9]. In addition, several

stakeholders are concerned about emerging problems caused by EVs, such as

carbon emission and their charging burden to power grids particularly at peak

time.

2. EVs’ Range Anxiety: EV users (or potential customers) fear that the EVs won’t

have enough stored energy to handle their daily driving needs, e.g., when they

have to pick up children from school, the battery might not have enough stored

energy to ensure the range.

The mission of this EVzero project developed at the Engineering Department in

Durham University is: ‘not only to empower future EVs with zero lifecycle emissions

by integrating renewable energy, but also to reduce overblown range anxiety by
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developing EV charging system’. Thus, the aim of this Thesis is to develop and

demonstrate how EV charging systems can be integrated with demand responsive

mechanisms while reducing CO2 accounted from EV charging. This research is part

of one work package of the EVzero project, which requires a study of Demand Side

Management (DSM) strategies. The principal objective of this study is to analyse

supply of the grid and demand of end users (EVs) so that optimal systems operations

are considered and ensured. Some benefits DSM studies are minimisation of costs,

grid efficiency and stability, usage of renewable energy sources and participation of

customers in pricing schemes [10; 11].

The research work in this Thesis will contribute to the area of smart charging

using Demand Side Management strategies to integrate with renewable generation.

This will provide solutions to the demand of knowledge required so that Mexico

and the private industry can work together to achieve a significant impact in the

goals indicated in the Energy Reform. The collaboration with leading Research

with applications of Demand Side Management strategies in the EVzero project at

Durham University, translates into solutions of future needs from the world leaders

of this technology and research, that are key for Mexico’s and UK’s future progress.

1.2 Thesis Objectives

To support the decarbonisation in the commercial transportation sector. This thesis

will focus on providing Demand Side Management solutions in EV charging schemes

to enhance integration of renewable energy. Thus, specific goals to address are

defined as follows,

• Objective 1: to design a pricing scheme that can influence EV drivers to

participate in balancing services with the following basic aspects: economical

operation of the charging station, effective measurement of charging behaviour

relationship with price, auction based mechanism compliant with UK balancing

services market and dynamic pricing with expected real time outputs.
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• Objective 2: to design an EV charging control planning scheme to account

for bidding and EV charging with the following aspects: variable integration

of charging technology (both unidirectional and bidirectional), economical

charging limits to ensure financial feasibility of charging transactions and

stochastic driver behaviour (arrivals, departures and trips)

• Objective 3: to design a control scheme for EV charging to reduce carbon

emissions with the following considerations: EV user charging station selection

to ensure bill savings, regulator carbon factor penalty to limit charging during

carbon intensive periods, carbon tax based pricing and transaction scheme

that ensures benefits for EV users and the charging operator.

• Objective 4: to design a multi-objective optimisation approach to ensure

fairness between all objectives and evaluate the trade-offs between all stake-

holders involved as well as the potentials of EV technology to minimise carbon

emissions in smart EV charging schemes.

• Objective 5: to analyze what parameters can improve the performance of

a charging station operator in terms of CO2eq emissions, bidding capacity to

be used in market auctions, revenues and costs for both EV users and the

charging operator.

1.3 Thesis Outline

This Thesis starts with the overview of basic concepts and relevant research in

the area of Demand Side Management and EV charging techniques in Chapter 2.

Then, Chapter 3 presents contributions using demand response pricing schemes and

EV charging bidding optimisation that together address objectives 1-2. Chapter 4,

presents a multi-objective optimisation approach with an innovative solving method

that ensures fairness and reduction of carbon emissions which address objectives 3-4.

Objective 5 is addressed in Chapter 5, where a sensitivity analysis is studied to show
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impacts when improving control or when designing the size of a charging station

operator. To sum up all contributions, results and future research of work, Chapter

6 presents conclusions of the overall Thesis.

1.4 Thesis Publications

The following titles of publications are potential publishable manuscripts to be

developed. Two manuscripts have already been published. The list of publications

is as follows,

• Chapter 3:

1. Integration of Electric Vehicles with Low Carbon Smart Grids: a Survey.

To be submitted to Renewable and Sustainable Energy Reviews. Monica

Hernandez Cedillo and Hongjian Sun.

• Chapter 4:

1. Data-driven Pricing and Control for Low Carbon V2G Charging Station

with Balancing Services. Published in IEEE International Conference on

Communications, Control, and Computing Technologies for Smart Grids,

11-13 November 2020. Monica Hernandez Cedillo and Hongjian Sun.

2. Dynamic Pricing and Control for EV Charging Station with Solar Gener-

ation. Published in Journal: Joint Special Issue on "Pathway to achieve

carbon peak and carbon neutrality in transportation sector" (Applied

Energy, Elsevier). Monica Hernandez Cedillo, Hongjian Sun and Jing

Jiang.

• Chapter 5:

1. Multi-objective V2G Charging Optimisation to Ensure Fairness and Re-

duction of Carbon Emissions. Definition of journal submission is pending.
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Monica Hernandez Cedillo, Pedro Alberto Martinez Castro and Hongjian

Sun.



Chapter 2

Literature review

2.1 Introduction

The Paris Agreement has put out one of the calls for efforts of many nations towards

the climate change objective of maintaining a global temperature increment below

2◦C above pre-industrial levels for the current century, and even limit to 1.5◦C

if possible [12]. As a consequence, countries such as the UK and Mexico have

established several targets for reducing greenhouse gas (GHG) emissions. The UK

aims to reduce GHG emissions by at least 80% by 2050, compared to 1990 levels

[13]. Mexico looks for the goal of reducing these emissions by 50% by 2050, relative

to 2000 levels [14]. However, these ambitious targets require precise and efficient

actions that can produce the desired results.

In order to accomplish the goals described before, improvement on specific sectors

is needed, one critical focus for development is in the transportation sector which

represents about a quarter of total CO2 emissions (included in GHG emissions) [15].

Recent studies have focused on developing efforts to enhance the deployment of

electric vehicles (EVs) which are a promising and greener alternative in this sector

compared to vehicles with internal combustion engines. In fact, the electric motor

was initially invented before the internal combustion engine [16], the question is:
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Figure 2.1: Supply chain of energy required for EV charging.

why EVs have not been successfully introduced in the market even though they may

seem a better option.

Electric vehicles are more environmentally friendly than combustion engine vehicles.

Nevertheless, they mat not be as green as we think. For example, taking into account

that EVs are powered by the electricity and thus energy generation can come from

different sources, the EV transportation as a whole is not necessarily emissions free.

In addition, as the transition to renewable sources moves forward, uncertainty in

energy increases and so increases the complexity of power systems [17]. Consequently,

smart charging of electric vehicles is becoming increasingly important as it has the

potential to adjust charging timings depending on different parameters of the grid.

Challenges embedded in the transition from combustion engine vehicles to electric

vehicles are explored in this Thesis from smart EV charging perspectives. These

perspective of research can be tackled in different research directions, one direction

to this problem is related to the usage of Demand Side Management techniques

which in fact are one of the most profitable ways to improve efficiency and utilities

[18]. However, Demand Side Management approaches are widely used in different
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smart grid applications and it is important to define the elements in the Grid that

are relevant to the EV system.

Several authors have studied the elements in the EV system. For instance, Shuai

et al. [19] made an overview of different transactions of EVs and electric vehicle

aggregators with a focus on economic goals of each agent and potential ancillary

services. Similarly, Wang et al. [20] also explored these services and added more

considerations regarding modeling uncertainties. An important consideration of the

content of these two works is that they considered transactions between EVs and

electric vehicle aggregators only. Other components of the network such as the grid

and charging stations were not covered.

Moving on with other surveys, Rigas et al. [21] analyzes different EV charging

strategies for grid to vehicle (unidirectional power flow) and vehicle to grid algorithms

(bidirectional power flow). Richardson [22] on the other side, compiled several papers

that assess impacts and feasibility of integration of wind and solar with the Grid

to meet EV demand. We can see from both works that despite the importance of

renewable sources of energy, the transactions of managing wind and solar generation

in a charging station or a virtual power plant have not been deeply analyzed. The

overview of Demand Side Management strategies in this Chapter, covers a new

perspective of how to use demand response pricing schemes with different electric

vehicle charging technology and EV user behavior. In addition, an overview of EVs

integration with virtual power plants and energy hubs. These topics have not been

fully covered in previous surveys.

More specifically, this Chapter presents the literature review of Demand Side Man-

agement fundamentals and applications in EV charging which introduces the big

picture of the topics of research covered in Chapters 3-5. Section 2.2 introduces

an overview of EV charging techniques as a background area to proceed to the

analysis of Demand Side Management algorithms of charging stations in Section 2.3.

Then, Section 2.4 provides an analysis how EVs can be integrated in operational

transactions of a virtual power plant and be aggregated strategically in energy hubs.
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Finally, Section 2.5 presents conclusions and future research challenges.

2.2 EV Charging Techniques

EV charging techniques can be classified in terms of the EV technology which can

also be classified depending on charging speed, power flow, and electromagnetic fun-

damentals. For the purposes of studying flexibility of electric vehicles in this Chapter,

EV charging techniques could also depend on the location of EV charging as EV

driver behavior varies depending on where users charge. As this Thesis aims to study

Demand Side Management tools for EV charging, charging techniques are analyzed

from a flexibility perspective in this Chapter under the following classifications:

1. Static charging: this charging technique is used when a vehicle parked in a

specific place [23]. It usually includes charging at home, work, car parks, etc.

Thus, the flexibility for charging depends on EV users activities to do during

a day while they shop, work and stay at home. EV charging duration last for

minutes or hours depending on EV availability. The power transfer can be

performed by conductive or wireless technologies at different charging speed,

and with V2G (vehicle to grid) or G2V (grid to vehicle) capability.

2. Dynamic charging: it implies charging on the road or when a vehicle is moving.

EV charging stations normally are located in specific areas on the road. EV

charging duration happens in seconds, thus EV charging flexibility is limited.

For this type of charging, there are too many challenges around maintenance

and safety when using conductive charging technologies. Therefore, wireless

power transfer charging technologies are popular in dynamic charging [24].

However, applications where conductive alternatives are widely used include

railway applications [16].

We can see from the previous definitions that the two techniques also rely on the

technology used. Cable charging topology consists of an ac/dc rectifier and a dc/dc
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Figure 2.2: Example of EV charging techniques for charging at dif-
ferent locations and with different charging technology.

converter, another possibility is a low ac frequency source to a high frequency ac

converter, both with a power factor correction [25]. Also, chargers can be on-board

and off board, the difference is the location of the rectifier and current battery

regulator which are inside the vehicle in the on-board option and are in the charging

infrastructure for the off-board option [26; 27].

On the other hand, wireless transmission of electricity is cable free. Therefore,

potential hazards like an electric shock due to their usage under weather conditions

such as snow and wind, are diminished [23]. This infrastructure consists of a primary

and a secondary coil, with coupling and pick up functions respectively, that transfer

power through magnetic fields over an air gap [28]. An analysis in Great Britain

suggests the range anxiety issue would be eliminated as EVs would charge while
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driving [29]. The main distinctive relative to the conductive option is that instead

of having a transformer, the couple coils are used for the energy transfer [30]. As

an illustrative support, Fig. 2.2 presents wireless and cable technologies inspired by

EV charging stations in Norway [31] and an EV wireless charging assessment in the

UK [29] .

The literature mainly discusses three categories of wireless charging: inductive power

transfer, magnetic resonance and permanent coupling based [25; 32]. The first and

second categories possess similar fundamentals of magnetic field induction, however

the magnetic resonance is more efficient since the two electromagnetic components

of the system share the same resonance frequency [33]. The last category uses a

permanent magnet as one of the coils for electricity transmission [32].

The mentioned technologies in previous paragraphs can work for both the static and

the dynamic case. However, the conductive power transfer may be reaching its limits

for efficiency improvements compared to wireless power transfer technology. Wireless

architectures on the road, could also help to reduce the battery size of vehicles [34]

and to improve its life cycle [35], also they are considered a complimentary option

to static charging [29]. Other potential benefits provided by this infrastructure

are support for deployment of smart motorways (with automated charging and

measurements of traffic flow data) and vehicle automation (with positioning in lanes

no matter the weather conditions) [24].

Nevertheless, from EV Users perspective it is more common to describe EV charging

techniques based on the charging speed as: slow charging (up to 3.6 kW) which

is commonly used at residential areas and in lamp posts, fast charging (7-22 kW)

commonly used in public charging locations and rapid charging (50 kW+), which is

at the moment used in motorways and shopping centres [36; 37]. Users also need to

check for the right plug connector as not all charging stations include all charging

types and connectors. Consequently, as charging speed and plug connectors vary,

the flexibility of EVs can vary depending on several factors such as charging location

(depending on the charging speed infrastructure), EV arrival at the charging station
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and charging duration [38].

In addition, power flow for EV charging can happen unidirectional power transfer,

when EVs can only be charged, and bidirectional power transfer where EVs can be

charge and discharge energy to and from the grid. These two concepts are commonly

known in the research community as G2V and V2G charging [39; 40]. V2G charging

technology requires additional bidirectional converter compared to G2V technology

[41]. Also, degradation and efficiency of charging is a concern in V2G technology [42].

However, bidirectional power flow could offer more flexibility support to the grid as

EVs batteries could be used for a variety of balancing services and, as technology

develops, degradation and efficiency may be soon become negligible.

To sum up, EV charging techniques were introduced in terms of static and dynamic

charging, where EVs can be charged while EVs are parked or while EVs users

are driving on the road. Then wireless and charging technology was presented,

followed by charging speed ratings, and V2G and G2V technology. As this Thesis

focuses on Demand Side Management tools applications in flexibility of EV batteries,

case scenarios in the following Chapters are explored in static charging only at

different charging locations (to consider driver behavior) and comparing V2G and

G2V technology.

2.3 Demand Side Management

Demand Side Management is a promising tool for enabling the integration of re-

newable sources of energy [43] as it proposes the usage of different objectives for

optimization of resources with application in the smart grids [44]. This becomes a

critical consideration when modelling of environment dependable energy sources. For

instance, research that use this tool proposes shifting energy loads from peak to off

peak times, so that stakeholders and customers can cooperate to guarantee blackouts

do not occur, where operational costs as well as electricity prices are minimized and

CO2 emissions are reduced [45]. Ideally, all parties or stakeholders involved would
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benefit from optimization of energy resources through the grid, the question is; what

are the transactions and formulations that will ensure advantages for everyone and

optimum use of charging resources?.

This section defines a classification of Demand Side Management models under

different classifications. These are presented based on goals that include, costs,

carbon emissions, customer satisfaction, etc. A further analysis is presented in terms

of the control mechanism of the algorithm and differences between algorithms used

in the static and dynamic framework. Then a deeper analysis of pricing or demand

response mechanisms are explored. Finally, an overview of market structures for

aggregation of EVs is presented.

2.3.1 Minimization of Costs and Other Objectives

Authors have modelled different algorithms for many intents and essentially, this

defines the assets to obtain from the concept of Demand Side Management. Table

2.1 shows the classification of different papers based on the goals found, they can be

clustered as follows:

• Cost Minimisation

• Revenue Maximisation

• EV Satisfaction Maximisation

• Peak Minimisation

• CO2eq emissions Minimisation

• Fairness Maximisation

Let’s start by looking at the straightforward goals. It is reasonable to think that

models should include costs from customers, when buying electricity from either

customers or the grid. In the same way, companies may look for a maximization of
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Table 2.1: Summary of Literature Review of Demand Side Manage-
ment Goals.

Table Demand Side Management Goals
Ref. Cost

Min.
Revenue

Max.
EV Satis-
faction
Max.

Peak
Min.

CO2
Min.

Fairness
Max.

[46] ✓ ✓ ✓

[47] ✓ ✓ ✓

[48] ✓ ✓

[49] ✓ ✓

[50] ✓ ✓

[51] ✓ ✓

[52] ✓

[53] ✓

[54] ✓ ✓

[55] ✓

[56] ✓

[57] ✓ ✓

[58] ✓ ✓

[59] ✓ ✓

[60] ✓ ✓

[61] ✓

[62] ✓

[63] ✓

[64] ✓

[65] ✓

[66] ✓
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profits, that is a percentage gain minus the offered price of electricity in the market.

Yoon et al. [47] contemplates maximisation of profits and customer satisfaction

for allocating energy for appliances and EVs at home charging location. On top of

that, if there is a control of what sources of generation are utilized for electricity

consumption, then a greener charging system could also help to reduce the CO2eq

emissions. Harry et al. [46] presents a regulator agent that can control a carbon

factor to command the electricity charging rate for EVs depending on limiting factor

values. A similar concept is proposed in [51] where the minimization of costs considers

a combination of generation and carbon tax costs.

Recent work in smart charging strategies has opened the possibility to incorporate

different goals in the area of demand side management with renewable energy in-

tegration. Heron et al. [57] proposed a curtailment charging strategy of EVs in a

residential IEEE bus system with wind energy connection, where power and voltage

signals were used as triggers to control EVs as flexible loads to maintain voltage levels

and maximum power constraints. The observed benefits of this control schemes were

peak shaving effects and CO2eq savings. Mou et al. [58] modelled a demand response

pricing scheme that considers both energy utilization from wind energy in wireless

power transfer charging infrastructure, and users’ willingness to pay for charging.

Zhang et al. [59] proposed an economic dispatch to minimise CO2eq emissions costs

and operational costs of wind energy, thermal generators and battery storage system.

Vasirani et al. [60], formulated a coalition of a wind farm with EVs to bid into a day

ahead market using EVs as storage, then penalties were estimated when taking into

account deviations in a real time basis.

The minimization of energy peaks is an interesting topic as there are many ways

to approach this goal. After analyzing the location scenarios where the algorithms

are developed for, we can see that investigators look for establishing transactions to

be used for charging at home, charging at parking lots and charging on the move

while passing on a lane road. In other words, energy balance is performed in one

local case in the electricity network. If we assume an energy balance is achieved



2.3. Demand Side Management 17

by matching supply with demand, then the approach from [49] presents a solution.

Here, the intention is that customers do not deviate from the forecast of demand

(obtained by a company) by taking advantage of at home production of renewables,

charging of discharging of both energy storage systems and EVs. Another method

is including a factor of energy balance in the equation, this factor can be used to

moderate average load peaks as in [48].

A system wise approach is presented in [53] where different charging locations are

recognized. Even though these algorithms are used for finding the EV routing path

in the first place, they can be effective when one charging station is congested, as a

consequence this minimizes energy peaks in an infrastructure system environment.

In [54], Rigas et al. uses price congestion signals as promoters for allocating different

energy time slots in charging stations, this balance is created as it is inferred that

EVs look for cheaper prices. In this research work, prices are the main motivators

for orchestrating an equilibrium. This leads us to our next subject in our literature

review, the use of price schemes under the area of Demand Response.The reason to

describe this topic in a separate manner is because unlike automated mechanisms,

price balancing is customer dependant and therefore it is worth a deeper analysis.

Thus, pricing is introduced in the next Subsection but before going to the next topic,

let’s finish this Chapter with another goal in Demand Side Management optimisation

strategies.

The last objective in the list is related with the inclusion of different objectives and

fairness in a problem formulation of EV smart charging schemes. Fairness can be

addressed in different ways, for instance by modelling fairness driven heuristics or

by selecting an optimal solution in multi-objective formulations. Carvalho et al.

[61] proposed a fairness allocation and max-flow optimisation for charging of EVs

at the distribution level. Wei et al. [62] proposed a nash equilibrum formulation

considering user preferences of charging with renewable energy and cost savings.

Ucer et al. [63] proposed a fair algorithm using a compliant additive increase

multiplicative decrease TCP protocol to allocate power to EVs considering voltage
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limits and appropriate current changes at different feeders depending on distance

to the transformer. Cui et al. [64] proposed a fair game between EVs and EV

aggregator using nash equilibrium prices and taking into account uncertainty in

regulation signals. In terms of multi-objective formulations in smart grids, fairness

has been ensured using a pareto frontier with genetic algorithms as in [65; 66] and

sorting heuristics as in [67]. However, research opportunities for ensuring fairness

in EV charging along with reduction of carbon emissions are still present, and they

represent a great chance to support decarbonisation in transportation and power

systems.

2.3.2 Pricing for EV charging

Demand Side Management concept proposed that customers and charging operators

can both have benefits from pricing programs [55]. Users can can take advantage of

the pricing schemes offered while charging operators can use flexibility of users to

change patterns in consumption as required by the grid [68].These programs can be

traditionally classified as incentive and price based, where either energy savings or

high/low prices respectively are offered based on different criteria [69].

Recent innovation projects have proposed to use the flexibility of EV charging for

participating in energy markets to provide value from EV batteries to the grid.

Vehicle to grid (V2G) technology allows EVs to discharge electricity back to the

power grid given the bidirectional power flow capability. The report in [70] ex-

plored projects with V2G technology and noted that only one project is currently

at commercialisation stage. This project of V2G fleet management was achieved

by collaborative work of charging station producer Enel X, V2G vehicle companies

Nissan, Mitsubishi and PSA Groupe, and an anergy aggregator company Nuvve [71].

Other projects are still in demonstration phase and aim to test for the feasibility of

V2G support to the network, such as the new Electric Nation V2G trial in Wales,

UK [72]. Thus, the integration of EVs with the power grid still presents research
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gaps where improvements can be done. One example of improvements is in the

research area of the demand response of EVs, where smart charging strategies could

be used to support financially sustainable operations of charging stations.

Electric vehicle aggregator publications of EV charging have concentrated efforts in

the price based option where prices are announced in a day ahead and/or real time

basis. Tushar et al. [49] proposes a model for the static charging scenario where

EVs are integrated in the grid by using at home facilities. He states a two-phase

communication model where users send a demand profile to the operator in the first

phase (a day ahead), this helps accommodate electricity purchase for the next day.

Then the operator updates electricity price in real time based on demand deviations

or penalties. As a result, clients are price based encouraged to update their energy

requirements.

In order to influence customers according to grid requirements, demand response

programs have been used as promising tools to enhance penetration of more renewable

energy sources in the grid, while encouraging certain patterns in customer energy

demand [73]. Following forecasting of market clearing price and ancillary service

prices, Chandra Mouli et al. [74] proposed aggregation of EVs parked in buildings

integrated with solar panels to maximise the charging operator revenues. Lui et al.

[75] proposed a dynamic pricing model for an EV aggregator using a reinforcement

learning algorithm that considers updates from a spot market, price elasticity from

users to compute energy prices and EV load changes. Tawfiq Masad et al. [76]

proposed a real time pricing scheme using inverse demand curve to account for price

changes when microgrids are congested. Chen et al. [77] proposed pricing schemes

using cooperative and non-cooperative game formulations in order to achieve market

equilibria. These works adequately considered how EV schedules can be adapted to

pricing signals set by the charging station operator, however they assumed balancing

prices are established by a grid operator. Thus, prices for auction markets has not

been explored and pricing to influence driver behavior charging response to price

changes was not carefully considered.
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As described before, there are critical research gaps in pricing schemes for balancing

services offered by EV charging. In addition, financial modelling represents one of

the biggest barriers to commercialisation [70] and specially in the the case of V2G

charging technology, where research to improve the utilities of charging stations is a

critical topic that needs solving. Therefore, one of they key research directions for EV

charging pricing schemes is about how to ensure customer responsive pricing scheme

for the specific case of a commercial charging station with onsite solar generation

participating in auction bidding markets.

2.3.3 Electric Vehicle Aggregator

The increasing number of EVs is widely seen as an opportunity to aggregate energy

loads and support grid operations [78]. The energy vehicle aggregator could play

an important role when establishing key communication packages between EV users

and the distribution system operator, based on market opportunities and different

goals from the agents involved. Table 2.2 shows a summary of market structures and

energy balance strategies of energy aggregators or charging operators. Sortomme

and El-Sharkawi [79] for instance, modeled EV bidirectional energy flow (charging

and discharging) while providing frequency regulation and spinning reserves services

to the Grid. Here, the frequency regulation is based on a preferred operation point.

Another example of these ancillary services is proposed by de Weerdt et al. [80].

Their bidding strategy, however, only works when the price is lower than the market

capacity clearing price, therefore it creates restriction to get revenues.

Many authors do not specify any particular ancillary service and refer to bidding

strategies for the day ahead and real time market instead. Vardanyan et al. [85]

precisely showed this type of strategy and their contribution focuses on stochastic

methods to predict day ahead and real time energy prices as well as driving patterns.

These methods are performed with Markov based on Holt Winter (seasonal nature)

and Monte Carlo simulations respectively. Vagropoulos et al. [89] proposed a



2.3. Demand Side Management 21

Table 2.2: Summary of Energy Aggregators (EAs) Activities and
Market Transactions.

EV Aggregator

Market structure
Day ahead and/or real time
transactions [79; 80; 81; 82;
83; 84; 85]

Hierarchical transactions
[86; 87; 88]

Energy balance agents

G2V/G2G services [79; 80;
81; 82; 83; 84; 85; 87; 88]

Energy balance among EAs
[82; 86]

Renewable units [83; 84]

similar approach where the electric vehicle aggregator announces the energy bids

to the market, then customers send their response information. After this, the

electric vehicle aggregator updates in real time the new energy bids based on the

actual energy consumption of users and offers new bids if necessary. In consequence,

customers are penalized of any bid deviations. A further analysis is performed

in [88] that integrates real time charging management transactions based on a

preferred operation point. Then, the complete electric vehicle aggregator model is

then integrated in a theoretical platform which can be consulted in [90].

In comparison to the day ahead, real time transactions and reservation programs

mentioned previously, Lu et al. [86] proposed a hierarchical method to model

interactions between distribution system operator with multiple energy aggregators.

Here the model is formulated in two levels where the distribution system operator is

the main leader of the game and the energy aggregators adjust accordingly. Junhao

Lin et al. [87] proposes a similar hierarchical approach where EVs react to regulation

signals under the aggregator-EV protocol.

Selected research in the area show advances in energy bidding and pricing depending

on market designs and the business models of the charging station operator. Sor-

tomme et al. [91] designed a bidding mechanism to model all possible V2G capability



22 Chapter 2. Literature review

for frequency regulation and spinning reserves to maximise charging operator rev-

enues. Nakano et al. [92] proposed aggregation of EVs and plug-in hybrid vehicles

using a home energy management system for residential households to participate

in a regulation market with different time scale control mechanisms. In addition to

research works of EV energy management support at the transmission level, such

as the ones previously described, Mizuta et al. [93] proposed a model for balan-

cing services at the distribution level to mitigate voltage imbalance using ordinary

differential equations to represent distribution voltage. Data uncertainties when

aggregating EVs for balancing services have also been considered using bias meas-

urements of regulation signals as proposed by Cui et al. [64], and pricing regulation

predictions using seasonal auto regressive integral moving average model as proposed

by Cai and Matsuhashi Cui [94]. These research works have provided contributions

in terms of control for energy bidding of EVs parked in residential locations and

uncertainties in the system, however pricing mechanisms to engage customers to

participate in balancing services were not considered, and stochastic behavior and

demand response nature of EVs were not explored.

Regarding exchange of packets of information to support communication between

electric vehicle aggregators operations, Gupta et al.[82] used an entirely reservation

scheme to model day ahead and real time transactions. The day ahead transactions

are focused on charging reservations of EV drivers for the next day. Then based

on real time EV driving updates, reservations can be cancelled or traded with

different energy aggregators that own and communicate to their owned charging

stations. Drivers are penalized in case of cancellations and energy aggregators have

transaction charges between them. Cao et al. [88] made a deeper study of a real time

reservation program for EV mobility. EVs can send en-route updates of reservations

to increase accuracy of the electric vehicle aggregator in terms of waiting time at

stations.

In addition to buy electricity from distribution system operators, electric vehicle

aggregators could also collaborate with other agents to get profits. Lu et al. [86]
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showed the possibility to consider an alternative balancing energy measures by

trading with different energy aggregators. A remarkable point is that the aggregators

are able to rent storage space (in case of excess of energy) or buy energy bid from

each other. This system works under the assumption that the distribution system

operator manages these transactions and coordinates energy bids. The distribution

system operator’s goal is to minimize costs while maintaining network constraints.

The aggregators then have the authority to prioritize bid offers and look for the

cheapest option until power demand is covered. Then each energy aggregator offers

energy bids to the higher price taker. In contrast with this method, Wu et al. [83]

presented a nash equilibrium bidding strategy to balance bidding strategies of electric

vehicle aggregators.

Another energy trading method is proposed by Gonzalez and Andersson [84]. The

proposed method integrated wind generation and G2V/V2G (vehicle to grid and

grid to vehicle) services. For this, the authors used a chance constraint based

on different scenarios to address the uncertainty of driving patterns and energy

deviations. Another model is also proposed by Wu et al. [83] as a unit commitment

strategy to control operations of wind and emergency turbines. Regarding some other

important aims and restrictions of electric vehicle aggregator models, de Weerdt et

al. [80] penalized the cost of EV battery degradation in the main objective function.

Electric vehicle aggregation restrictions are charging and discharging limits as well as

their respective rates per battery constraints. Charging and discharging is performed

while ensuring that the state of charge at departure reaches a minimum stage with

a risk to fulfill customers’ final state of charge specifications. This is different to

the final state of charge restriction in [87] where the authors propose EVs to have

enough energy until the next energy provision.
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2.4 EV Charging System Integration

After exploring EV charging techniques from perspectives of flexibility related to EV

behavior, and charging technology; aggregation techniques in energy markets were

introduced in research that considered a third entity that managed EV charging

schedules known as an electric vehicle charging aggregator that mediates flexibility

services with the grid operators. This section continues with overview of EVs in

combination with energy storage, renewable sources of energy, in other words, EVs

are integrated as a virtual power plant. To finish with the literature of Thesis, energy

hub research is explored to provide an introduction of the importance of aggregating

EVs in specific locations with certain sizing of charging stations.

2.4.1 EVs and Virtual Power Plants

The increasing uncertainties in renewable generation and demand (EVs) of electricity

have also been modeled in combination with Virtual Power Plant environments. The

concept of a virtual power plant lies on the supply side element of the electricity

grid. It acts as an entity to aggregate different sources of generation which can be

renewables and non renewables, to maintain reliability of energy generation Energy

Storage Systems (ESS) such as battery energy storage, hydraulic energy storage, etc.

are used to meet energy loads [103; 104]. It is generally classified in the Commercial

Virtual Power Plant (CVPP) and the Technical Virtual Power Plant (TVPP) [105].

However both concepts complement each other. For instance, Danish EDISON

Project contemplates a two operational layered environment, the first is made out

of the electrical infrastructure and the second is the commodity that interacts with

the market [106]. Both classifications as well as the models and elements of different

virtual power plants will be discussed below in order to analyze strategies to include

EVs in smart grids.

Load aggregation is a key element in a virtual power plant (aggregation in different

layers) that could help trigger demand response programs when required. Digitalisa-
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Table 2.3: Summary of Virtual Power Plant Formulations

Ref. Goal Constraints

[95] MAX= Utilities (energy bids,
spinning reserve and reactive
markets) - Costs (generation,
storage, curtailable load, capa-
citor bank, power factor penalty)

Ramp up and ramp down, start up and
shutdown and capacity limits. Actions of
active and reactive load curtailment. En-
ergy Storage Systems (ESS) limits and
charge/discharge actions. Capacity Bank
(CB) steps (start up and shutdown)

[60] MAX= Revenues (aquired from
energy supplied to the grid from
both the wind farm and EV bat-
teries) - Energy imbalance costs

Energy balance, EV storage capacity lim-
its, EV battery SOC restrictions and op-
erations.

[96] MAX= Profits from sold energy-
operational costs of TVPP (dis-
tributed generation, market en-
ergy purchase, energy supplied
to EV’s, customer incentive pen-
alty)

Active and reactive power balance and
power flow through the lines, operational
limits at each bus, EV battery charge and
discharge, restrictions of SOC (EV bat-
tery)

[97] MAX= Utilities from energy
trade - Costs (energy gen-
eration, carbon trading and
charge/discharge of EVs)

Carbon emission mechanism, uncertainties
in demand, dynamics of SOC of EVs, gas
turbine’s restrictions (power output and
ramp-up/down limits, power balance of
the overall network

[98] MIN= Generation costs + carbon
emissions (policy maker) + bill
payment from customers

Power limits of distributed generation and
EVs, power balance, power output and
ramp-up/down constraint.

[99] MIN= Costs (total
current*voltage*power
factor*energy price per hour)

Algorithm conditions can be: weather,
storage, price, signal and grid status con-
ditions.

[100] MIN= Costs (from power ex-
change and power imbalance pen-
alties)

Wind power limit (predefined), supply and
generation balance.

[101] MAX= Supply Reliability, MIN=
Number of interactive entities .

Energy price, expected and real en-
ergy production (which is determined by
weather).

[102] Specific active and reactive power
requirements from distributed
generation units and the grid.

Voltage regulation parameters, power at
substations.

tion of accurate information systems and control through all decentralized systems

are also key factors to consider in order to have an efficient virtual power plant [107].

To begin with the overview of virtual power plants, let’s start by looking at the com-
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mercial side of a virtual power plant. Nezamabadi et al. [95] proposed a spinning

reserve service to the grid (frequency control) and a reactive power service. Having

this in mind, they model an arbitrage strategy to take advantage of change of prices

and operational functions of the virtual power plant such as recharging batteries

when prices are low and sell energy to consumers when required. Another example

is load curtailment, as it happens when demand of energy (supply) is more needed.

Their work show a significant increase of profits when establishing virtual power

plant operations following arbitrage opportunities. However, the authors do not

model a dynamic operational model of the virtual power plant and do not consider

other costs such as project investment.

Another study that explores the commercial side of a power plant was proposed by

Zhao et al.[100]. In this paper, a search method is used to find the optimal solution

that could reduce costs, which are modeled as a expected function of power limit

of a wind turbine (used for curtailment of energy), the bidding strategy and price

uncertainty. The algorithm finds the optimum wind upper power limit that has the

most profitable bidding strategy. However the foundation of the model assumes that

the load (demand) follows a normal distribution, in other words, this model may not

be accurate for a demand which is for example non parametric.

Aggregation of entities in the virtual power plant therefore requires a careful analysis

about how to integrate all agents in a fair and profitable way. Chalkiadakis et al.

[101] shows a good example of a coalition of different wind units who are aggregated

by an agent. This paper proposed prices to control payments to the wind units which

are mainly based on supply reliability. Then, there is a scoring process to eliminate

or maintain the different wind units. These units are either expelled or rewarded

for their supply. This research however fails to include other specific functions of a

virtual power plant such as energy management and demand response programs.

Other advantages of a virtual power plant rely on its flexibility nature which can

provide environmental and economic benefits. Liu et al. [97] proposes a model that

considers carbon trading mechanisms in a market where it is assumed that carbon
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penalties are charged to virtual power plant operators. Here, carbon credits, which

are assigned to each virtual power plant and are controlled by a monitoring system,

can be traded between different virtual power plant to maintain an overall carbon

limit. In contrast, Hua et al. [98] uses a carbon weight factor (policy maker goal)

in the objective function of the virtual power plant’s modus operandi to control

carbon emissions. Moving on to a more technical functional part of a virtual power

plant, Abdolrasol et al. [99] proposed the design of a controller which can swtich

on/off each microgrid in the virtual power plant to control and optimize power

flows. Similarly, Dall’Anese et al. [102] proposed a control model where different

power output controllers are monitored to minimized specific operational goals of

the distributed generation units and an agent (transmission system operator).

Most of the virtual power plant designs considered that the infrastructure to flexible

loads can be integrated with elements such as renewable energy, distributed energy,

energy storage systems and IL switches. Another consideration of other elements

of the virtual power plant is the type of energy storage systems contemplated, for

instance, EV batteries are modeled as an extension of a windfarm to provide energy

services to the grid. The EV users could be rewarded with payments in terms of

energy for letting charge and discharge their batteries through time. Recent studies

have included customers satisfaction and specially when modeling a demand response

program. This is because customers may not be satisfied with prices or curtailment

of electricity. An example of customer satisfaction modelling was proposed by Hua et

al. [98] where customers dissatisfaction increases quadraticaly with the power used

in a demand response program. This dissatisfaction level is also directly proportional

to an inelastic customer parameter.

2.4.2 EV Charging Hub

Key aspects of EVs have been introduced in order to provide an overview of demand

side management tools that can be used in EV charging, and the flexibility potential
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they can offer in different energy markets. EVs integration with smart grids in the

form of a virtual power plant as also been introduced, where it was important to

consider optimised usage of energy resources for different goals. Having mentioned

the potentials of smart charging schemes for EVs, charging operators and grid oper-

ators, this subsections finalises the literature review of this thesis with an overview

of formulations used for the design of EV charging hubs that include sizing and/or

location.

Xie et al. [116] proposed a simple model to determine the minimum number of

charging stations in highways based on the recharging places required for EVs. The

charging places are estimated with a monte carlo simulation of both stochastic

battery capacity and stochastic state of charge. The authors assume that that EVs

maintain a constant speed and that there are no losses/gains in energy while driving

in a highway (for example during regenerative breaking). Some of the drawbacks of

this model is that there are no constraints regarding costs, also recharging points

could be too close to each other.

Dominguez-Navarro et al. [117] proposed an optimization model to determine the

ideal design components of a fast charging station such as: number and rated power

of the chargers, power of renewable generators, power and energy of the batteries,

contracted power in the grid connection point needed to feed the charging station.

This is very interesting as the models consider not only the technical operations

of the grid but also the revenues to obtained depending on the initial investment

and operational costs according to the previously mentioned design variables. The

results (based on electricity prices of Spain) showed that the usage of renewable

sources of energy and battery storage options in the charging station significantly

reduce the impact of power required from the grid. Besides, it is more profitable to

install storage systems and renewables than just buy electricity from the Grid.

A discrete markov chain model was proposed by Ugirumurera et al. [115] to determine

the number of solar panels and the size of an energy storage system considering the

following factors in a steady state probability: departure/arrival of EVs, radiation
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Table 2.4: EV Energy Hub design

Ref. Goal Constraints

[108] MIN = Costs (investment,
customer’s power outage, power

losses and voltage deviations,
pollutant emissions).

Limits of line flow, bus voltage, capacity
of station and energy generation, power

flow operation.

[109] MAX = Discharging and
charging services, grid services,

power losses, reliability,
-investments.

Power flow, voltage limits, thermal limits
of feeders or substation, charging station

capacity, demand response program
limits.

[110] MIN = Costs (investment, land
rental, connection, energy losses,

demand response program).

Power capacity of connector and charging
station, voltage profile, transmission line

flow.
[111] MIN = Costs (Investment and

Operational).
EV demand (drive range requirements),
quality of service (quantity of required

stations), PV operation and limits, power
network operation (power flow, voltage
limit, buying and selling of electricity).

[112] First stage (Deterministic): MIN
= Costs (Investment and

Operational), Second Stage
(Stochastic): MAX MIN = Slack

variables of voltage rise and
drop, worst case power flow.

First stage: active power flow, reactive
power flow,voltage based in supply and

demand. Second stage: feasibility electric
vehicle aggregator based on uncertainties

of the system.

[113] MAX = Revenues. Power balance, power fluctuation limits,
ESS and battery converter operations.

[114] MIN = Power losses, MAX =
number of generation units,
charging station and ESS.

Power flow and power balance, voltage
limits, uncertainties of solar and wind

energy generation, charge and discharge
limits of ESS.

[115] MIN = Costs (investment and
operational).

Limits of waiting time of EVs at a
charging station, time dynamics.

[116] MIN = Number of charging
stations and investment costs.

Demand requirements (SOC and travel
range), charge and discharge of ESS,
limits of ESS and the correspondent

power losses, uncertainty of generation
and supply, failure of power supply.

[117] MAX = Revenues. Cost functions, energy balance, power
limits (energy generation,charge and
discharge of ESS, connection point,
energy supplied to EV and charging

supplier) , maximum customer waiting
time.
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levels, storage systems’s state of charge. Therefore, it is assumed that certain

information is known such as EV arrival rates, energy demand requirements, number

of charging stations in the system and power capacity, technology used etc. The aim

of the design is to minimize investment and operational costs taking into account a

maximum waiting time for each EV. Interestingly, the authors design the charging

station with a supply priority policy, where solar energy is used as a first resource

followed by the usage of energy in energy storage systems.

Arias et al. [118] proposed a model of electric vehicle aggregator in a distribution

system operator network expansion project that considers the minimization of the

overall net present value in different cases and construction stages. Hence, the goal is

to minimize all associated costs; circuits, substations, capacitor banks and distributed

generation units while satisfying system limitations associated to Kirchhoff’s laws. A

chance capacity constraint is implemented to estimate uncertainties in load and EV

demand. In similar way, Pazouki et al. [119] proposed a model to place a charging

station as a grid expansion. The Grid considerations in the problem formulation are:

line flow thermal limits, bus voltage limits, capacitor and CS limit and line power

flow.

Xiong et al. [120] presents a different approach where the allocation model minimizes

the overall charging costs in terms of travel and queuing time in a region. Y.S. Lam

et al. [121] explores a graph theory formulation where the aim is to minimize the

construction cost in different locations based on traffic conditions in different areas.

This model however assumes a previous distribution system operator analysis is

made with potential location points, these are therefore inputs of the final step

selection process. Zhao et al. [122] studied a two-stage optimisation technique to

electric vehicle aggregator to evaluate financial and grid related concerns. The model

first evaluated the minimization of investment of costs including installation and

lifetime of solar panels and wind units. All of this is subject to grid constraints as

well as average forecast for renewable generation and monte carlo simulations used

to estimate EV traffic demand. Then a second stage is used to analyse the feasibility



2.5. Chapter Remarks 31

of the charging points to meet specific security network in a worst-case power flow

scenario which is relaxed by some slack variables of voltage rise/drop and network

line capacity.

2.5 Chapter Remarks

2.5.1 Research Challenges

The literature review in the previous sections highlighted research opportunities

in the topics of Demand Side Management where pricing, EV aggregation and

optimisation of EV charging with different goals play an important role in smart

EV integration with the grid. In addition, the integration of EVs modelled as

virtual power plants and as EV charging hubs was also introduced. There are

five main research gaps that were found in the literature, these are addressed as

objectives of this thesis as described in Table 2.5. The first research gap is related

to more pricing strategies that could influence in EV charging behavior changes to

use EVs as flexible loads. The second research gap is related to limited research that

considers EV integration including stochastic nature of EV charging behavior and

EV user engagement when participating in balancing services. The third research

gap is related to limited modelling of EV charging scheduling that considers not

only revenue and cost maximisation but also reduction of carbon emissions while

ensuring fairness of all goals. The fourth research gap is related to limited research

that considers evaluation of EV flexibility in varied locations with different charging

ratings. In addition to these four research gaps, it was found that there is very limited

assessments on performance of a charging station operation, thus this is added as a

research gap also inherent to assessing the EV charging modelling proposed in this

thesis. These research gaps are discussed in the following five paragraphs with more

detailed explanations.

Real time and day ahead programs are widely used as price programs in models
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Table 2.5: Summary of research gaps, thesis objectives and contri-
butions.

Research gap Objective Contribution

-Pricing strategies
that could influence in
EV charging behavior
changes to use EVs as
flexible loads.
-Stochastic nature of EV
charging behavior and
EV user engagement
when participating in
balancing services.
-Evaluation of EV flexib-
ility with different char-
ging ratings.

-Objective 1: to
design a pricing
scheme that can in-
fluence EV drivers
to participate in
balancing services.
-Objective 2: to
design an EV char-
ging control plan-
ning scheme to ac-
count for bidding
and EV charging.

-New dynamic time of use
pricing scheme based on in-
verse demand curve that en-
sures users engaging beha-
vior, demand responsive pri-
cing scheme solves pricing di-
lemma of charging operator
prices.
-Bi-level optimisation with pri-
cing and EV charging optim-
isations capable of modelling
stochastic EV charging beha-
viour and different charging
technologies for balancing ser-
vices integration.

-EV charging scheduling
that considers not only
revenue and cost maxim-
isation but also reduction
of carbon emissions while
ensuring fairness of all
goals.
-Evaluation of EV flexib-
ility in varied locations
with different charging
ratings.

-Objective 3: to
design a control
scheme for EV
charging to reduce
carbon emissions.
-Objective 4: to
design a multi-
objective optim-
isation approach
to ensure fairness
between all object-
ives and evaluate
the trade-offs.

-New formulation of smart EV
charging to reduce carbon emis-
sions that includes goal of EV
users, charging operator and
carbon regulator.
-New modelling integration
with genetic algorithm to en-
sure fairness and reduction of
carbon emissions. Two non-
dominated criteria is proposed:
best ranked solution and min-
imisation of carbon emissions.

Assessment on perform-
ance of a charging station
operation.

-Objective 5: to
analyze what para-
meters can improve
the performance of
a charging station.

-Strategic assessment, made
with sensitivity analysis using
one factor at a time method, to
evaluate selected parameter in-
puts measured by performance
indicators.
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used for EV charging as shown in the previous section. The real time price based

program by itself however, has many challenges such as volatility in prices [123]

and active requirements for participation of customers [43] which may not be very

attractive for the users [124]. These price schemes can serve as the main motivators

for influencing change in demand and a deep analysis is encouraged to maintain a

fair resolution of interests between companies and customers [125]. Note that these

are not the only demand response programs available and there is opportunity to

incorporate different schemes like ancillary services, for more information [44] and

[69] can work as a guide for programs used in smart grids.

The rapid transition from combustion engine vehicles for EVs translates in different

challenges but also opportunities as EVs can be used as mobile virtual plant energy

storage untis for supporting the grid when necessary. EVs could also benefit from

selling back energy to the grid and other programs related to integrated parking and

charging facilities. Transportation services that own EV fleets could also liaise with

energy aggregators and distribution system operators to have a mutual advantage

on charging services, grid reliability and revenues. Some key consideration from the

best practices modeling techniques in the research analyzed include consideration

of stochastic nature modeling for nonrenewable sources of energy, market trading

mechanisms in order to incorporate demand programs that could balance the grid,

reduce carbon emissions and integrate renewable sources of energy. Diversification

of balancing or ancillary services and EV users engagement could be critical for the

maximisation of flexibility services with EV batteries.

Most of the Demand Side Management models analyzed, concentrated their efforts

in achieving revenue and costs benefits. Some authors also considered inputs from

consumers in terms of their satisfaction that can impact for example price or charging

rates. Currently, there is limited research that considers reduction of CO2 emissions

based on price or a carbon factor. An interesting observation here is that so far,

not many models have managed to include all goals in a same case, therefore there

is opportunity to integrate for instance the costs or revenues, customer satisfaction
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and a variable of CO2eq emissions. It would be interesting also to fairly control

EV charging and create new business models to promote public engagement and

transparency of information of energy renewable generation.

Renewable sources of energy are still a challenge in terms of power certainty provi-

sion. A successful implementation could consider the limitations of power for new

distributed micro-grids and its corresponding inter-operability factors such as the

use of energy storage systems all forms of charging scenarios (work, home, street,

parking lot), control and energy management strategies when there are any voltage

or frequency violations. Future study cases could also include interaction with other

electricity consumption loads like heat pumps and any home appliances. Other

potential scenarios to electric vehicle aggregator can be: wireless charging in renew-

able charging stations, semi isolated micro-grid models with wind and solar power

provision where regulations allow this (home or street parking), models that include

maximisation of use of local and zero carbon energy provision.

Additional points to consider when integrating EVs with the grid of this thesis are

related to expansion of operations of the charging station operator and the hardware

and software necessity to implement smart EV charging transactions. These points

are our of scope of this thesis but are important aspects for the operation of the

charging station operator. The first point is related to expanding operations world-

wide is compliance adaptations to different electricity markets. The placement of EV

charging stations should ensure an economical operation considering all investments,

operations and maintenance requirements from different points of view: expanding

current networks or placing different charging points in the current network. These

methods should also consider any violations of network operations (transformers,

capacitor banks, etc). Business operations can evaluate different cases where an

external entity can operate a charging station or it is operated by the owner of the

distribution network. In addition, when evaluating placement of new EV charging

stations, evaluation of convenient locations such as current petrol charging stations

can be a feasible option as they may be already placed in practical locations for EV
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users. Open research opportunities could include more interdisciplinary approaches

that integrate knowledge and application of electricity markets, control mechanisms,

software interfaces for grid monitoring and trading (energy markets and network

operation control).

Finally, the second point is related to enablers of smart grid operations, the di-

gitalisation and monitoring of the network that could play a critical role when

establishing the transactions between the distribution system operators, energy ag-

gregators and EVs to cope with reliability of the grid (voltage limits, frequency limits,

etc.), customer satisfaction (EV driving requirements and fair pricing). Flexibility

management strategies should make sense in a centralized and decentralized point

of view of energy management strategies. Thus, new models can contemplate the

integration of power electronics, software optimization systems and transactions with

energy trading mechanisms. An existing innovation of these smart grid enablers can

be found in [126].

2.5.2 Conclusions

The integration of EVs in the grid is a topic that has gotten research attention in

recent years as different countries are aiming for a reduction of CO2eq emissions in

the transportation system. For this reason, there are research potentials for creating

business models around EV charging programs using different charging technology.

First, EV charging techniques were introduced to provide an insight into EV driver

behavior at different locations, also capability of charging technology and its relation

to flexibility of EV batteries. Then, a summary of Demand Side Management

tools in optimisation of EV charging was presented to show the different goals in

selected literature in the area. A deeper analysis of pricing and demand response

programs was integrated also to provide an overview of the benefits and potentials of

pricing to influence EV user behavior. Then, strategic integration of EVs with other

energy resources was covered in an overview of virtual power plants. Finally, a quick
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introduction to the design of energy hubs to aggregate EV batteries was presented to

also to highlight the importance of aggregation of EV charging in different locations

with varying charging station sizing.

The management of energy in the grid draws many challenges to address. As a

system network, the grid can interact with EVs by using different infrastructures

and with variable smart charging transactions. To conclude, EVs represent a future

extra energy load to the grid but also a virtual power plant of EV batteries that can

be aggregated to provide support in grid services. To achieve an optimum integration

with the complex electricity network, different approaches are required to control

electricity transactions in different charging environments and driving routes of users.

Important modelling considerations with research gaps in smart charging schemes

include customer engagement (fair charging and pricing) and minimisation of CO2eq

emissions while participating in ancillary or balancing services. CO2eq emissions

could be reduced by considering a carbon factor while fair charging mechanisms could

cover multi-objective optimisation approaches and dynamic real time pricing where

users could shift charging and take advantage of cheap tariffs. An integral and smart

charging system with these considerations is required in order to guarantee CO2eq

emissions are reduced and EV users are engaged with charging schemes. Research

on charging schemes with these considerations could support the transition to a

decarbonised transportation sector so that world political and environmental goals

are achieved.



Chapter 3

Dynamic Pricing and Control for

EV Charging

3.1 Introduction

As the transportation sector moves towards the replacement of the combustion engine

with an electric one, the power sector also moves from high-carbon emission energy

generation sources to low-carbon emission ones, such as wind, solar and biomass

energy. However, this transition brings significant challenges to power systems reli-

ability and resilience due to the increasing complexity of balancing energy demand

and supply [127]. This increasing complexity could come from both intermittent

renewable energy sources and increasing power demand, for instance as a result

of more electric vehicles (EVs) [128]. Consequently, more frequent control require-

ments and reformed ancillary services provision is required to improve and maintain

power networks [129; 130]. The development of EV charging technology and de-

mand response programs bring an opportunity to aggregate EVs’ power demand

to participate in current and emerging energy markets, thus it could facilitate the

transition to decarbonisation of the transportation sector [131; 132; 133]. Thus, the

aim of this chapter is to propose a demand response model that considers planning

mechanisms for the operation of a charging station operator that determines pricing
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and EV bidding estimation in order to participate in balancing services.

In specific, the model proposed in this chapter aims to tackle Objective 1 and

Objective 2 which were stated in the Introduction section of this thesis. Objective

1 is to design a pricing scheme that can influence EV drivers to participate in

balancing services. The contributions related to this objective are: new dynamic

time of use pricing scheme based on inverse demand curve that ensures economical

and EV user engaging behavior, demand responsive pricing scheme solves pricing

dilemma of prices for EV users and prices for participation in balancing services.

Objective 2 is to design an EV charging control planning scheme to account for

bidding and EV charging. The contributions related to this objective are: bi-level

optimisation with pricing that feeds into EV charging control optimisation that

produces bidding and charging schedules, this EV charging control optimisation

used for computing EV charging schedules is capable of modelling stochastic EV

charging behavior and both V2G, bidirectional or vehicle to grid power flow, and

G2V, unidirectional or grid to vehicle power flow technologies.

Recent innovation projects have proposed to use the flexibility of EV charging for

participating in energy markets to provide value from EV batteries to the grid.

Vehicle to grid (V2G) technology allows EVs to discharge electricity back to the

power grid given the bidirectional power flow capability. The report in [70] ex-

plored projects with V2G technology and noted that only one project is currently

at commercialisation stage. This project of V2G fleet management was achieved

by collaborative work of charging station producer Enel X, V2G vehicle companies

Nissan, Mitsubishi and PSA Groupe, and an anergy aggregator company Nuvve [71].

Other projects are still in demonstration phase and aim to test for the feasibility of

V2G support to the network, such as the new Electric Nation V2G trial in Wales,

UK [72]. Thus, the integration of EVs with the power grid still presents research

gaps where improvements can be done. One example of improvements is in the

research area of the demand response of EVs, where smart charging strategies could

be used to support financially sustainable operations of charging stations.
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Selected research in the area show advances in energy bidding and pricing depend-

ing on market designs and the business models of the charging station operator.

Sortomme et al. [91] designed a bidding mechanism to model all possible V2G cap-

ability for frequency regulation and spinning reserves to maximise charging operator

revenues. Nakano et al. [92] proposed aggregation of EVs and plug-in hibrid vehicles

using a home energy management system for residential households to participate in

a regulation market with different time scale control mechanisms. In addition to re-

search works of EV energy management support at the transmission level such as the

ones previously described, Mizuta et al. [93] proposed a model for balancing services

at the distribution level to mitigate voltage imbalance using ordinary differential

equations to represent distribution voltage. Data uncertainties when aggregating

EVs for balancing services have also been considered using bias measurements of

regulation signals as proposed by Cui et al. [64] and pricing regulation predictions

using seasonal auto regressive integral moving average model as proposed by Cai and

Matsuhashi Cui [94]. These research works have provided contributions in terms of

control for energy bidding of EVs parked in residential locations and uncertainties

in the system, however pricing mechanisms to engage customers to participate in

balancing services was not considered and stochastic behavior and demand response

nature of EVs was not explored.

In order to influence customers according to grid requirements, demand response

programs have been used as promising tools to enhance penetration of more renewable

energy sources in the grid, while encouraging certain patterns in customer energy

demand [69; 73]. Following forecasting of market clearing price and ancillary service

prices, Chandra Mouli et al. [74] proposed aggregation of EVs parked in buildings

integrated with solar panels to maximise the charging operator revenues. Lui et al.

[75] proposed a dynamic pricing model for an EV aggregator using a reinforcement

learning algorithm that considers updates from a spot market, price elasticity from

users to compute energy prices and EV load changes. Tawfiq Masad et al. [76]

proposed a real time pricing scheme using inverse demand curve to account for price
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changes when microgrids are congested. Chen et al. [77] proposed pricing schemes

using cooperative and non-cooperative game formulations in order to achieve market

equilibria. These works adequately considered how EV schedules can be adapted to

pricing signals set by the charging station operator, however they assumed balancing

prices are established by a grid operator. Thus, prices for auction markets has not

been explored and pricing to influence driver behavior charging response to price

changes was not carefully considered.

As described before, there are critical research gaps in pricing schemes for balancing

services offered by EV charging. In addition, financial modelling represents one of

the biggest barriers to commercialisation [70] and specially in the the case of V2G

charging technology, where research to improve the utilities of charging stations

is a critical topic that needs solving. Therefore, this chapter proposes a dynamic,

customer responsive pricing scheme for the specific case of a commercial charging

station with onsite solar generation participating in auction bidding markets. Specific

contributions of this chapter are outlined below:

1. Novel dynamic pricing scheme creates a tariff that changes using grid analytics

(historical charging behavior) from customers responses to price and maximisa-

tion of revenues from the charging station, considering onsite solar generation

and profitable financial relationships of an inverse demand curve which are

prices and EV charging rate. This type of tariff provides an economical and

customer engaging solution that solves the pricing dilemma of energy and price

setting when estimating pricing for EV charging, and profitable incentives to

increase or decrease charging rate, and auction bidding prices for participating

in balancing services. To the best knowledge of the author of this thesis, this

type of pricing scheme which can be used in auction based markets, where

charging operators send price and energy bidding information to grid operators,

has not been explored in previous research.

2. A bi-level optimisation approach is proposed where the pricing is the first
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optimisation module that is used for setting pricing from the perspective of

a charging station operator that aims to have additional revenue streams to

EV charging when participating in balancing services. Then the EV charging

module is the second optimisation that estimates an optimal charging rate

from EV users perspective, following pricing signals from the charging oper-

ator while meeting customer and charging technology restrictions. These two

optimisations simulate an economic and demand responsive behavior of both

the charging operator and EV users respectively.

3. The bi-level optimisation is modelled using a new stochastic EV charging plan-

ning bidding optimisation that manages unidirectional grid to vehicle (G2V)

and and bidirectional vehicle to grid (V2G) charging technologies to provide a

perspective of potential revenue streams as well as energy bidding capability

to support with balancing services. This EV charging aggregation bidding

control is able to handle probabilistic arrivals, departures, trip requirements,

EV user availability, battery size restrictions and varying charging rates.

The remaining parts of this chapter are organised as follows. The proposed model

is introduced in section 3.2, where the time of use dynamic pricing optimisation

and EV charging control optimisation are presented. Simulation settings and the

merits of the proposed model are evaluated in section 3.3. Finally, discussions and

conclusions are presented in section 3.4.

3.2 Problem Formulation

The model presented in this chapter consists of an EV aggregator or charging oper-

ator of a group of EVs with connection to the transmission or distribution system

operator. Figure 3.1 summarizes the activities and exchange of messages for the

operation of the charging station participating in balancing services when using EVs

as flexible loads. The EV aggregator could be the owner of the charging station
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that is capable of buying electricity from the grid, of producing onsite solar gen-

eration, of selling/buying electricity to EV users and of selling energy to the grid

for balancing services provision. With the use of Information and Communication

Technologies (ICT), the EV aggregator can know in advance important information

for the charging station operation such as EV drivers response to price, arrivals,

departures, trip requirements and solar power forecast. This information is used

as a data driven approach for estimation of price strategies that maximise reven-

ues based on historical customer response to price during a day. The data driven

approach consists of regression of historical price and hourly EV charging behavior

from EV users and estimates of cost of energy including onsite solar generation, that

is used for creation of optimisation of demand responsive pricing strategies. Then,

historical arrival, departures, and trip requirements are used for optimisation of EV

charging scheduling. Given the price optimisation, energy bidding coming from EVs

is estimated using a control optimisation that evaluates demand response of EV

drivers. Finally, the potential revenues from V2G and G2V charging technology

are presented to comprehend EV driver response to prices given a predetermined

dynamic pricing strategy.

The business model of the charging station operator proposed in this thesis is ap-

plicable for big parking lots such as the ones in office buildings or supermarkets.

The revenues of the charging station operator come from charging of EVs and from

participating in balancing grid services. The three stakeholders involved are charging

station operator, grid operator and EV customers. Figure 3.1 illustrates the main

activities of each stakeholder and key variable inputs needed for the charging sta-

tion operation, in this example the grid operator is presented as National Grid, the

transmission system operator in the UK. The charging station operator computes a

bi-level optimisation where the charging station first estimates economical pricing

schemes that are then followed by EV charging strategies. Both computations are

important for the charging station and EV drivers, the pricing schemes ensure a

financially sustainable operation of the charging station operator, and the EV char-
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Figure 3.1: Proposed model with activities and communication
between stakeholders involved and variable inputs for
the pricing and EV charging optimisations.

ging module ensures customers save money as much as possible while complying

with charging technology and customer restrictions. Consequently, the charging

station operator is the price maker (monopoly case is assumed) that considers solar

generation capacity, number of EVs in the charging station, energy price to buy

from the grid when necessary and demand response of EVs to charging prices when

setting pricing schemes. The EV charging module processes the charging strategies

assuming customers will respond to price signals by charging when energy is cheaper

and as long as restrictions like charging availability, driving requirements, charging

and battery limits are ensured. The two modules in the bi-level optimisation are

explained in more detail in the following subsections.

3.2.1 Time Of Use Dynamic Pricing

Dynamic Pricing

The pricing module is the first part of the model where prices are created when

learning from historical price information used in advance. This price methodology
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uses the fundamentals of microeconomics of a monopoly where the EV aggregator

is able to set prices and EV users are price takers. The model uses the information

of price and demand curves, energy costs from the grid and stochastic onsite solar

generation to use for EV charging, for every hour in a day. When looking closely

at the stochastic variables of the model, the number of EVs in the charging station

and variation of solar generation, the pricing model is able to compute a dynamic

behavior of the tariff results for both pricing to announce to EV users and to a grid

operator. The dynamic time of use tariff is called like this to refer to a combination

of dynamic pricing and time of use pricing. Dynamic tariffs are commonly used for

real time tariff applications, and time of use tariffs are popular in retail pricing as

price based strategies in the area of demand response, these tariffs are made out of

pricing for peak, off peak and middle peak periods (this last period is denominated

optimum price in this Thesis). To compute dynamic pricing estimates, costs from

energy used for charging EVs are estimated considering grid energy cost, and onsite

generation at the charging station available for charging EVs. This dynamic pricing

is then combined with a time of use tariff, which includes a highest, lowest and

optimum pricing parts. Time of use pricing is estimated from revenue boundaries

and charging station utilisation. Thus, a final dynamic time of use tariff is proposed

to influence EV users to charge and to discharge accordingly. These pricing strategies

are computed to make the operation of charging station economically feasible and

to optimise revenues. The formulation of the pricing module considers the study of

an average EV user i and changes in the dynamics of the charging station in time

t. The main goal of the EV aggregator in 3.2.1 is to find the optimum values of

quantity Q∗
t that will maximise utilities ut when evaluating revenues rt and costs ct

for every hour in a day as follows,

Max
Qt

ut(Qt) = rt(Qt) − ct(Qt) (3.2.1)
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The utilities are subject to the revenues at hour t estimated by,

rt(Qt) = pt(Qt) · Qt. (3.2.2)

The inputs for revenues are historical price pt and energy demand Qt. To optimise

for an optimum quantity, price is computed as a function of quantity from historical

EV customer response to price represented as a linear regression by,

pt(Qt) = β0t + β1t · Qt, (3.2.3)

where β0t and β1t are the corresponding coefficients from predicted price and charging

demand estimations. The principles of this linear regression relationship are based

on microeconomic theory [134; 135] that are key in the pricing scheme proposed to

estimate better demand response pricing strategies, by computing a function of price

and demand quantity (inverse demand curve). Microeconomic fundamentals are

used in this chapter to measure predicted customer response to price from variations

of historical charging demand and costs in a day. The values for β0t and β1t are

obtained from real EV users charging rating quantities and time of use pricing used

for "Electric Nation" project [136], more detailed information about these estimates

are in simulation parameters subsection, in Evaluation of Case Studies section. The

costs in 3.2.1 are computed from the cost of the charging station per energy unit to

buy from the grid cgt and also taking into account the available onsite solar power

generation Pst per solar panel n, that can be used for charging available EVs at the

charging station as below,

ct(Qt) = cgt · (Qt − n · Pst). (3.2.4)

Thus, EV availability is studied as the available time avt an EV can be charged from

arrival ar to departure de at the charging station according to EV driver behaviour
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in time t. Thus the availability of each EV is defined by,

avt =


1, if ar ≤ t ≤ de

0, otherwise.

(3.2.5)

To find an optimal charging demand Q∗
t from 3.2.1, following price and charging

demand optimisation principles of microeconomic theory, it is required to equal

marginal revenue r′
t and marginal cost c′

t as follows,

Q∗
t = arg(r′

t − c′
t = 0),

from the derivative of revenues and costs we obtain,

p′
t(Qt) · (Qt) + pt(Qt) · (Q′

t) − cgt = 0,

as we need to solve for Qt, price terms are substituted as below,

β1t · Qt + β0t + β1t · Qt − cgt = 0,

after rearranging terms of Qt we obtain,

β0t + 2 · β1t · Q∗
t − cgt = 0,

lastly when solving for Qt we get the optimal charging demand quantity below,

Q∗
t = (cgt − β0t)/2 · β1t.

Given the optimal charging demand, we obtain the optimal price from the linear

regression function estimated from historical demand as below,

p∗
t = β0t + β1t · Q∗

t . (3.2.6)

Time Of Use Pricing

As the charging operator aims to have an additional revenue stream to charging

EVs which is obtained from bidding energy for balancing services, definition of both



3.2. Problem Formulation 47

-1 0 1 2 3 4 5 6

Quantity per hour period (kWh) 

-80

-60

-40

-20

0

20

40

60

R
e

v
e

n
u

e
, 

c
o

s
t,

 u
ti
lit

y
, 

p
ri
c
e

 p
e

r 
u

n
it
 (

p
/k

W
h

)

   Q*   min(x
t
)    max(x

t
)

Inverse demand curve

Cost

Utilities

Revenues

Figure 3.2: Mathematical relationship of variables in pricing optim-
isation.

profitable prices and charging ratings limits is key. Thus, if we define charging ratings

as charging demand turn down as Qdt, and demand turn up as Qut, the required

charging ratings to have positive utilities must be within the following boundaries,

Qdt ≤ Q∗
t − min(xt), (3.2.7)

Qut ≤ max(xt) − Q∗
t , (3.2.8)

where min(xt) and max(xt) state the minimum and maximum energy limits so

that utility function ut(Qt) is positive. Thus, these two quantity boundaries can be

estimated from solving ut(Qt) = 0. To illustrate these boundaries, Figure 3.2 shows

an example of the positions of min(xt), max(xt) as the utilities curve of the charging

operator reaches zero, see equation 3.2.1. Note that point min(xt) has a negative

charging rating quantity as onsite solar generation is included in costs, this explains

the negative prices and negative chaging rating value in this point min(xt). It can

also be observed in this graph the linear relationship between price and EV charging
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quantity denominated as inverse demand curve, equation 3.2.3, this is the basic

reference for calculation of revenues and utilities. In addition to inverse demand

curve, costs from equation 3.2.4, are also illustrated as a function of charging rating

quantity. Revenues, equation 3.2.2, and utilities are also illustrated as functions

of charging rating quantity when using equations to estimating price relationship

to charging rating quantity and costs, as described before. When utilities reach a

maximum point in relation to charging rating quantity, that is the point where the

charging operator can optimise utilities, this optimum point is presented as Q∗
t in the

graph. The pricing optimisation use this optimum point to derive pricing strategies

during a day.

To compute the demand response prices for the time of use dynamic tariff, the same

linear regression for the optimum price is used. For practicality, energy balancing

services when influencing EVs to charge more energy are referred as energy turn

up, and energy turn down when influencing EVs to charge less energy or discharge

energy with V2G technology. Calculations are made to find a profitable maximum

and a minimum demand relation to price to provide incentives to EV customers.

Prices for either energy turn down (pdt) or energy turn up (put) are estimated as

follows,

pdt = β0t + β1t · (Q∗
t − Qdt) (3.2.9)

put = β0t + β1t · (Q∗
t + Qut). (3.2.10)

The pricing matrix for the time of use dynamic tariff is computed from a combination

of the optimum price and demand response prices, whenever is more convenient for

the charging station to provide balancing services in a day, according to a charging

station utilisation parameter ρt. The final price matrix (pf) is given by,

pf =

[
p∗

1 ... p∗
ti−1 pdti ... pdtf

... putj ... pute p∗
te+1 ... p∗

24

]
,

(3.2.11)

which is integrated from the optimum price (p∗
t ) since the start of the day, where

p∗
1 indicates the optimum price from hour 1, and before the time where energy turn
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down starts at ti − 1, then pdt and put prices are integrated accordingly to then go

back to the optimal tariff from the end of the energy turn up period at tf + 1, and

until the end of the day, where p∗
24 means optimum price until hour 24.

Utilisation parameter from the hourly capacity (ρt) of the charging station is con-

sidered in order to decide which timings are better for either providing energy turn

down or energy turn up. The utilisation is classified in high (ht), medium (mt) and

low (lt) based on the charging availability between arrival and departure of EVs

regardless of their charging status. Balancing services are provided only when capa-

city at the charging station is at high levels because the availability of EVs at the

charging station is key to provide the corresponding flexibility services. The number

of hourly periods at high level is divided by two periods with priority of providing

cheaper tariffs to customer. For instance if there are 7 periods of time where there

are parking spaces occupied with capacity greater than 2/3, then there are 3 time

periods for energy turn down (higher prices) and 4 time periods for energy turn up

(lower prices). Thus utilisation at the charging station is estimated by,

2/3 · ρt ≤ ht ≤ ρt (3.2.12)

1/3 · ρt ≤ mt ≤ ρt · 2/3 (3.2.13)

0.1 · ρt ≤ lt ≤ ρt · 1/3. (3.2.14)

The next stage for pricing calculation is the computation of prices for participation

in balancing services in auction mechanisms, for instance the ones to announce to

National Grid in the UK. Flexibility service companies are expected to provide price,

capacity and timings for energy turn down or energy turn up provision [137]. Given

the structure of the market, the EV aggregator is able to provide prices and bidding

quantities. The expectation is that balancing services are used as additional revenue

streams. Consequently, the utilities obtained from National Grid should balance the

loss of revenues of EV charging when using the demand response prices pdt and put, in

other words when deviating from the optimum price and quantity. Therefore, prices

to announce to National Grid are computed based on equivalent revenue deviations
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from the optimal revenue from EV charging. The price estimation is computed from

making equal optimum utilities (u∗
t ) and expected utilities to obtained from National

Grid for energy turn down (u1t) and energy turn up (u2t) as below,

u∗
t = u1t (3.2.15)

u∗
t = u2t, (3.2.16)

where utility functions for energy demand turn down and turn up can be given by,

u1t =


pgdt · |Qdt| − pdt · |Qdt|, if Qdt ≤ 0

pgdt · Qdt − cgt · (Qdt − n · Pst), otherwise
(3.2.17)

u2t = pgut · Qut − cgt · (Qut − n · Pst). (3.2.18)

The costs for energy turn down in 3.2.17 vary when it is economically possible to

discharge an EV, in this case the corresponding costs are energy paid to EV users.

In the case when the charging rate is positive, costs are estimated according to grid

energy costs and available solar power at the charging station.

Thus, the prices for bidding energy for balancing services of energy turn down pgdt

and energy turn up pgut are computed as follows,

pgdt =



ut(Q∗
t )+pdt·|Qdt|

|Qdt| (1 + δ), if Qdt ≤ 0

ut(Q∗
t )+cgt·(Qdt−n·P st)

Qdt
(1 + δ), otherwise

(3.2.19)

pgut = ut(Q∗
t ) + cgt · (Qut − n · Pst)

Qut

(1 + δ). (3.2.20)

The calculations of these prices are obtained when solving for pgdt and pgut from

the substitution of 3.2.17 and 3.2.18, in 3.2.15 and 3.2.16. To allow a profit from

participating in balancing services, a margin of utility δ is added to National Grid

prices pgdt and pgut to cover for additional complexities of management control.

This is a reasonable addition to pricing because the charging station sets prices for

bidding in an auction market considering a cost based strategy.
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3.2.2 EV Charging Control

The control model which is used for planning of energy bids to submit to the grid

operator (National Grid), is constructed to follow pricing signals received from the

charging station operator in a day ahead timeline, by minimising costs from charging

an EV. The control model, which was initially inspired by the work of Sortomme

et al. [79], has been adapted to be able to work with different charging rates

limits, battery state of charge (SOC) restrictions and stochastic variables for EV

requirements. These additions allow accurate simulations of driver behavior during

a day with different charging capabilities. The objective function of the charging

control is the minimization of costs (ci) for the complete charging period the ith EV

parked at the charging station given by,

Min
q∗

i,t

ci =
T∑

t=1
pf · qi,t, (3.2.21)

where the charging rate q∗
t is the decision variable in the formulation that determines

the charging schedule of each EV every hour. This decision variable can become

negative and discharge the EV battery when the charging station aims to provide

balancing services to the grid and when the EV is conveniently available for dischar-

ging. It is expected that EVs will get not only positive values from the costs in the

objective function but also negative values (EV revenues) when getting paid for V2G

provision if allowed.

To meet technology constraints of the charging station and the EV, we define the

charging rate limits for the charging schedule with at, as the maximum charging rate

and bt, as the minimum charging rate of qt when evaluating the charging rate of an

EV (yt) and charging rate of the charging station pole (zt) as below,

ai,t = min(yi,t, zi,t) (3.2.22)

and

bi,t = max(−yi,t, −zi,t). (3.2.23)
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The state of charge of the EV is also considered, where soci,t is i-th EV’s battery

state of charge at time t that considers charging efficiency ef when charging rate is

positive q+
i,t or negative q−

i,t as follows,

soci,t = soci,t−1 + q+
i,t · ef + q−

i,t · (2 − ef) (3.2.24)

Note that efficiency is modelled from the charging operator perspective, where it

has to charge more energy, and discharge less energy to avoid taking advantage

of EV users over payment charges, and to balance power losses. For instance, for

7.2 kW charge with 0.9 of charging efficiency, the charging operator should provide

charging of 10% more of 7.2 kW, and for discharging, the charging rate should be

10% less charge than the optimum charging rate metered in the charging station

pole. Consequently, charging optimisation limits qi,t are subject to,
qi,t ≥ bi,t · avi,t, if qi,t ≤ 0

qi,t ≤ ai,t · avi,t, if qi,t > 0
(3.2.25)

where avi,t = {0 or 1} is a binary matrix per EV that states its availability (arrival to

departure) at the charging station as described in the pricing optimisation. The usage

of the charging rate limits in 3.2.25 allow the modeling of charging and discharging

constraints for specific periods of time and thus, allow the modelling of V2G and

G2V technology. Battery size limits wi are ensured by taking into account the state

of charge of an EV by,

0.01 · wi ≤ soci,t ≤ wi. (3.2.26)

EV trip requirements are formulated when calculating state of charge (energy levels)

by,

tripi = socfi − socii, (3.2.27)

where soci is the initial state of charge and socf is the final state of charge of an

EV.
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3.2.3 Vehicle to Grid and Grid to Vehicle Analysis

Benefits for the charging station operator come from two revenue streams: when

selling energy to EV customers, and when participating in balancing services markets

after aggregating EVs’ scheduling, while benefits for EV customers come from savings

when charging their EVs, following cheaper pricing periods, and from selling energy

to the charging operator, following high pricing periods. To evaluate potential

charging operator utilities from the price strategy proposed in the time of use

dynamic pricing subsection, the responses to prices from EV drivers described in

the EV charging control subsection are evaluated against V2G (bidirectional) and

G2V (unidirectional) technology. As described before, the EV charging control

optimisation can evaluate charging rate restrictions for both unidirectional and

bidirectional charging. Thus, given the different charging rate of the EVs, revenues

and costs vary as well as the interactions with the available solar power generation

at the charging station. The time of use dynamic tariff can be used for testing EV

driver response according to current technology available in the market. The utilities

of the charging station operator with V2G technology (uvg) and G2V technology

(ugv) are computed in equations 3.2.28 and 3.2.29. These include revenues associated

to each technology.

uvg = rvg − cvg (3.2.28)

ugv = rgv − cgv (3.2.29)

Revenues with V2G technology capability (rvg) are integrated from sales coming

from aggregated bidding for energy turn up (first term), energy turn down (second

term) and EV charging (third term) when the charging rate is positive (q+
t ) by,

rvg =
I∑

i=1

{
te∑

t=tj

pgut · qi,t +
tf∑

t=ti

pgdt · qi,t +
24∑

t=1
pf · q+

i,t

}
, (3.2.30)

where I is the set of EVs to be charged by the charging station operator. Balancing

service timings are defined by an initial hour tj and ti, and final hour te and tf for
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energy turn up and turn down periods respectively. Costs for providing balancing

services with V2G technology capability come from energy paid to EV users when

the charging rate is negative (q−
i,t), and when energy must be bought from the grid

(q+
i,t) when referencing to available solar power generation at the charging station, as

below,

cvg =
I∑

i=1

{ 24∑
t=1

pf · |q−
i,t| +

24∑
t=1

cgt · (q+
i,t − Pi,t)

}
, (3.2.31)

where Pi,t is the average available solar energy that can be used to charge an EV

which can be estimated by,

Pi,t = n · Pst/
I∑

i=1
avi,t. (3.2.32)

In contrast, revenues from provision of balancing services with G2V technology

capability come from sales from energy turn up and sales from EV charging by,

rgv =
I∑

i=1

{
te∑

t=tj

pgut · qi,t +
24∑

t=1
pf · qi,t

}
. (3.2.33)

Compared to V2G technology costs, G2V costs come only from buying energy from

the grid when needed as below,

cgv =
I∑

i=1

24∑
t=1

cgt · (qi,t − Pi,t). (3.2.34)

To illustrate the complete transactions of a charging operator during a day, Figure

3.3 presents an algorithm flow chart with the processes involved, starting with data

acquisition and forecasting to produce inputs of the pricing and EV charging optim-

isation. Then the charging operator uses the pricing and EV charging optimisation

to compute the bidding prices and quantities for balancing services, as well as the

prices for EV charging users. Finally, the charging station operator can compare

utilities obtained based on the technology used for EV charging.
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Figure 3.3: Algorithm flow chart of charging operator operations in
a day.

3.3 Evaluation of Case Studies

3.3.1 Simulation Parameters

Table 3.1 summarizes the simulation parameters which are described in the follow-

ing paragraphs. To test the TOU dynamic pricing and the EV charging control

optimisation algorithms, different cases are proposed to show applicability of the

model to real case scenarios and to compare EV charging business models with bal-

ancing services. As the charging speed rating increases with EV charging types, the

price for providing energy may also increase. In addition, customers may respond

to prices differently, for example when there is competition in an area or when EV

drivers change charging behavior. To take into account these possibilities, the pricing

strategies are evaluated with different different elasticities of three inverse demand

curves; an original demand from real data, a theoretical more elastic and a more

inelastic demand. The original demand curve is also used to create demand curves

when testing for increasing charging rates. The EV charging control algorithm is



56 Chapter 3. Dynamic Pricing and Control for EV Charging

Table 3.1: Simulation parameters

Parameter Value
Charging station size 35 EVs
Time periods in a day 24, for every hour
EV arrivals ar ∼ N (µ = 8, σ2 = 1) [138]
EV sojourn time ts ∼ Logistic(µ = 0.27, s =

0.06), mn = 5, mx = 18.52 [138]
Solar panel rating 4 kW [139]
Number of solar panels 70
Initial state of charge Empirical cdf [140]
Trip requirements Empirical cdf [140]
Fast charging 1, 2 and rapid ratings 7, 22 and 50 kW [141]
Mitsubishi Outlander charging rat-
ings/battery size

3.7 and 22 kW/ 12kWh[142]

Nissan Leaf charging rating/battery size 6.6 and 50 kW/40 kWh[143]
BMW 330e charging ratings/battery
size

3.7 kW/12 kWh[144]

Tesla 3 charging ratings/battery size 11 and 100 kW/60kWh [145]
Electricity price 10 p/kWh [146]
Utility from balancing services 10%

used to test EV responses to prices and energy bidding capacity, the results are

evaluated comparing the capability of V2G and G2V technology.

EV driver behavior was generated from real world projects to provide accurate

simulations. Fig. 3.4 shows stochastic number of EVs available for charging from

an aggregated availability matrix of all EVs for the specific case of charging at work.

This figure was generated considering a total of 35 EVs. For simulation purposes,

EV profiles are created with 30, 35 and 25 EVs that arrive at the charging station in

a 24 hour period assuming demand changes from an original, more elastic and more

inelastic demand curves respectively. The EV profiles were created from EV arrivals

(ar) and sojourn timings (ts), defined as departure minus arrival time, from the work

analyzed by Develder et al. [138]. The available onsite power generation forecast

with an hourly average of all seasons, illustrated in Fig. 3.5, and size of the solar

system were obtained from [139]. Definitions for initial state of charge of EVs and

trips were estimated with empirical distribution functions using EV charging data

of the workplace cluster information from "My Electric Avenue" project [140], kindly
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Figure 3.4: Stochastic number of EVs at the charging station for
workplace location.

provided by EA technology. Charging rate limits for both the charging station and

EVs use two selected charging rates of fast charging and one from rapid charging as

explored in [141]. The percentage mix of EVs in the simulation used parameters of

charging rates and battery size of Mitsubishi Outlander PHEV (40%), Nissan leaf

(30%), BMW 330e (20%) and Tesla 3 (20%).

The demand and price curves that form the inverse demand curve of the case study

were estimated with 40 observations with results showing significant coefficients with

a p value close to zero of the linear regression model and an adjusted R-squared value

of 0.815. Raw data for these calculations were estimated using real data from trial

3 of "Electric Nation" project [136], also provided by EA Technology. To estimate

elasticity variations to price from EV drivers, the coefficients in the demand curve

were decreased and increased by a third in order to create a more elastic and more

inelastic demand curves. Prices and demand data sets for different charging rates

were multiplied by 1/2 (fast charging 2), 2/3 (rapid charging) for price, and by 4

(fast charging 2), 10 (rapid charging) for demand in order to match prices close to

real data in the current market available in [147]. The cost for energy from the grid
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Figure 3.5: Stochastic available PV generation at the charging sta-
tion during different seasons.

was assumed to be fixed at a rate of 10 p/kWh (pence per kilowatt hour) as proposed

in [146]. Once the profiles for driver behavior, PV forecast and demand curves are

created, the pricing and EV charging optimisations are used to compute results for

the cases where demand curve elasticity changes as well as charging speed varies with

V2G and G2V technology. The pricing and EV charging optimisations are solved

in MATLAB, the linear programming of the EV charging control is formulated

using Yalmip toolbox [148] and solved with Gurobi [149]. The model is solved in a

computer with processor Intel 3.40GHz core i7 and 32 GB of RAM memory. Analysis

and discussion of results are presented in the next two sections.

In summary, inputs required for both pricing and EV charging optimisation as well

as solver methods were described in the previous paragraphs. To compute the pricing

optimisation, inputs required with detailed explanation of stochastic EV profiles,

inverse demand curve with 3 different price and demand (elasticity variation), onsite

power generation forecast and expected utility percentage were described. Similarly,

inputs for EV charging with detailed estimates of stochastic EV charging profiles, EV

charging ratings, EV battery size and charging rating mix were described. Results
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of: the pricing optimisation with stochastic variables, the EV optimisation based

on EVs response to price and expected utilities, revenues and costs is presented in

Sections 3.3.2 to 3.3.4.

3.3.2 Pricing with Stochastic Variables

The merits of the pricing and EV charging algorithm are evaluated in this section

to show their potential usage in different EV driver demand response behavior

with three different elasticity levels of inverse demand curves and different charging

technology with three charging speeds and V2G/G2V capabilities. Processing time

for the computation of each pricing strategy is 14 s, and for EV charging optimisation

schedules with V2G is 58.4 s and with G2V is 49.1 s. This is a reasonable processing

time as pricing and energy bidding capacity is estimated as a day-ahead planning

horizon. Figures 3.6 and 3.7 illustrate the pricing fundamentals and the dynamic

TOU pricing strategies for EV charging. Figures 3.8 - 3.13 illustrate the EV charging

profiles and potential for bidding during energy balancing timings. Figure 3.14

shows a comparison of EV profiles with a fixed tariff. Figures 3.15 and 3.16 are

a representation of sources of revenues and costs. Finally, figure 3.17 compares

expected utilities from all case scenarios. A comprehensive analysis of each graph is

described in the following paragraphs.

Figure 3.6 is a representation of the basic functions used for calculation of the

different pricing strategies that include an inverse demand curve, revenues, costs and

utilities. The three examples of inverse demand curves presented in Figure 3.6 are

the base (original curve) used to derive evaluation of cases when creating pricing

schemes for fast charging 1, fast charging 2 and rapid charging. The original inverse

demand curves for the fast charging 1, fast charging 2 and rapid charging scenarios

present the different responses to prices from an average EV at any time. The three

inverse demand curves show that as prices increase per kWh, EVs would respond

with charging less energy and as price decreases EVs would aim to charge more
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Figure 3.6: Inverse demand response, utilities, revenues and costs
of EV charging for three different charging ratings.

energy. The figure also shows more average revenues and utilities are obtained from

rapid charging compared to fast charging 2, and more with fast charging 2 compared

to fast charging 1. An explanation of this trend is a result of using higher prices

and quantities with faster services of EV charging. The costs for the three charging

ratings remain the same as the three cases assume the same fixed energy cost per

energy unit and the same available free energy from onsite solar generation power

to charge EVs.

The proposed time of use dynamic tariff in this paper includes tariffs for periods

of peak, off peak and normal hours. Peak and off peak periods during a day are

intended to be synchronized with timings for balancing services for energy turn down

and energy turn up requirements, other timings are irrelevant for balancing services

purposes. Figure 3.7 shows that in the cases of the original demand curve, from

9:00 to 11:00 hours energy is more expensive and from 12:00 to 14:00 hours energy

is cheaper. Timings with the more elastic curve are increased by one hour when

energy is cheaper compared to timings with the original curve. Timings with the

more inelastic curve are reduced by one hour in both expensive and cheap timings

compared to timings with the original curve. The reason for these changes are

related to availability of demand with different EV numbers determined by price
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Figure 3.7: Dynamic time of use tariffs used to incentivise EVs
based on demand inverse curves and charging type cases.

elasticity where balancing timings are set when there is sufficient capacity at the

charging station as established by the pricing algorithm. The three cases where

energy is obtained with an original curve, a more elastic and more inelastic curve

aim to represent changes from demand. This is an essential consideration for demand

response mechanisms, because knowing how customers will respond to pricing and

by which quantity is critical to determine an appropriate use of tariffs for balancing

services. The different elasticity cases for each different inverse demand curve could

represent when EVs may be subject to substitution effects, for instance when EVs

have other options in the area for charging (elastic demand), or when EVs prefer

charging from one specific day of the week for personal preference regardless of

price (inelastic demand). The results of the dynamic time of use pricing strategy

illustrated in 3.7 adapt accordingly with varying requirements of demand elasticity,
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Table 3.2: Dynamic Time of Use Pricing Summary

Charging rating Elasticity level Normal
price
(p/kWh)

Off-peak price
(p/kWh)

Peak-price
(p/kWh)

Original 32.1 3.8, 4.4, 5 59.1, 59.8 ,60.3
Fast charging 1 More elastic 23.1 4.3, 4.5, 5.3, 5.9 40.9, 41.5, 41.7

More inelastic 41.1 2.6, 3.3 79, 79.4
Original 41.1 8.4, 8.5, 8.7 73.5, 73.7, 73.9

Fast charging 2 More elastic 29.1 8.5, 8.6, 8.7 49.5, 49.6, 49.7
More inelastic 53.2 8.1, 8.2 98.1, 98.2
Original 50.2 9.4, 9.4, 9.5 90.8, 90.9, 91

Rapid charging More elastic 35.1 9.4, 9.4, 9.5, 9.6 60.7, 60.8, 60.8,
More inelastic 65.2 9.2, 9.3 121.2, 121.2

timings for balancing services and charging rating.

The prices during balancing services change slightly with cost variation due to

available onsite generation of energy per each EV. Table 3.2 presents more granular

price units in p/kWh and more detailed structure of the dynamic time of use tariffs

of fast charging 1, fast charging 2 and rapid charging ratings when using an original,

a more elastic, and more inelastic inverse demand curves. This detailed structure

is made of a normal price with a constant price with off-peak and peak-prices

during different timings throughout the day. Note that the normal price covers the

majority of price timings, the peak and off-peak prices cover from 2 to 4 periods

each depending on the charging rating and inverse demand curve used. The normal

price is constant as it is the optimal price derived from utility optimisation, and the

off-peak and peak-prices mark the limits for maximum and minimum the charging

station operator is willing to offer in exchange of demand response expected from EV

users. In comparison with the normal price, off-peak and peak-prices have variation

as they consider availability of onsite solar power every hour. A combination of the

normal price, off-peak price and peak-price is the tariff that is used for announcing

pricing tariffs for EV users which is used used as a symmetric price used for selling

energy to EV users and for buying energy from EV users.
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Figure 3.8: EV charging profiles as a response to prices with original
demand curve using different charging type cases and
bidirectional capability.

3.3.3 EV Response to Price

Figure 3.8 shows the response from EVs with V2G capability at different charging

rates. Fast charging 1 limitations for EV charging shows EVs discharge energy when

energy is expensive, this allows EVs to get paid for energy provision to the grid at

a high price, a reasonable consideration for battery compensating for degradation

when using V2G technology. The charging rate during energy turn down period

with fast charging rate 1 is negative and therefore balancing services can be provided

from 9:00 hrs to 11:00 hrs. However, this changes with fast charging rate 2 because

EVs can take more advantage of savings when buying energy at 10:00 hrs to then

discharge power at 11:00 hrs. Similarly, rapid charging allows EVs to charge at

10:00 hrs to then discharge at 11 hrs with a greater energy bid at 9:00 hrs and

11:00 hrs compared to fast charging 1 and 2. During energy turn up periods, EVs
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Figure 3.9: EV charging profiles as a response to prices with original
demand curve using different charging type cases and
unidirectional capability.

charge energy taking advantage of the cheap prices. As the charging rate increases

EVs charge with the required trip requirements faster. Charging outside balancing

services occur in case driver requirements were not met by the end of the turn up

period which is the case of fast charging 1 rating. Rapid charging has the biggest

bid per hour followed by fast charging 2 and fast charging 1. It is important to point

that a smaller charging rate could maintain more average capacity for longer periods

of time as it is observed in fast charging 1 and 2 charging rate cases. However,

bidding potential occurs for fewer periods of time with higher charging ratings as

trip requirements are met at a higher speed.

To continue with the responses results of EV drivers, Figure 3.9 illustrates the EV

aggregated charging schedule when EVs have unidirectional charging and using an

original demand curve for pricing. EV profiles show the majority of EV charging
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Figure 3.10: EV charging profiles as a response to prices with more
elastic demand curve using different charging type
cases and bidirectional capability.

happens when energy is cheaper, which is also when energy turn up provision is

needed. However, aggregated biding for every hour is not greater than the V2G

option as charging is employed to meet energy requirements without the need to

discharge EVs. The charging scheduling is concentrated at 12:00 hrs as availability

at the charging station indicates EVs need to be charged before expected departures.

Similar to the V2G case, a greater energy bid is performed with rapid charging,

followed by fast charging 2 and 1 respectively. It can also be observed in 3.9 that

the charging schedule of fast charging 1 and 2 indicate some charging needs to

happen outside turn up periods. Thus a greater charging rate is needed to fully

take advantage of getting revenue from charging and for participating in balancing

services at the same time. When comparing the overall charging schedules from

figures 3.8 and 3.9 we can see that V2G offers greater hourly bidding capacity for
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Figure 3.11: EV charging profiles as a response to prices with more
elastic demand curve using different charging type
cases and unidirectional capability.

both energy turn down and energy turn up. This can be attributed to the possibility

to discharge an EV and charge it again when needed at later times as opposed to

just charge it to meet trip requirements with unidirectional charging. Thus energy

bid capacity is more limited with unidirectional technology but it is still feasible to

have some bidding capacity during turn up period.

Figures 3.10 and 3.11 were created with new stochastic EV profiles from an average

user type with a more elastic demand curve, the aim of the pricing scheme is to

attract more EV users to the charging station, for instance when there is competition

or when the charging station aims to influence EV users to charge at a specific day

of the week. Figure 3.10 shows that overall energy bidding capacity for energy

turn up is greater compared to the original demand curve EV profiles as there are

more cars which are influenced to arrive at the charging station. However, most
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Figure 3.12: EV charging profiles as a response to prices with more
inelastic demand curve using different charging type
cases and bidirectional capability.

periods for energy turn down of Figure 3.10 are smaller compared to 3.8, this means

EVs optimise revenues by taking advantage of the extended turn up periods (cheap

energy). Greater bidding capacity is achieved with rapid charging, however for less

periods of time compared to fast charging 1 and 2. The energy bids for fast charging

1 and 2 overall have less capacity than the ones with rapid charging but they are

still able to provide energy to turn up balancing services from 12:00 hrs to 15:00

hrs. The extension of cheap prices during energy turn up periods compared with

the original curve results could mean that with the more elastic curve results, EVs

have more cost savings, however EV revenues obtained from energy to sell to the

charging station should also be considered.

Figure 3.11 shows the unidirectional charging strategies with a more elastic EV

demand curve. It can be observed that most charging would happen during energy
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Figure 3.13: EV charging profiles as a response to prices with more
inelastic demand curve using different charging type
cases and unidirectional capability.

turn up periods. In the results obtained with fast charging 1 rating some EVs should

be charged after 15:00 hrs as the charging rate is too slow to allow to charge all

EVs during the cheaper periods. It is important to note that some charging must

happen during turn down period in order to meet driver requirements, thus this

energy would not be used for balancing services and the charging station would

only receive money from charging EVs during this balancing service period. These

results can be explained by the limitations of unidirectional charging to meet EV

trip requirements and availability of EVs at the charging station for being used as

flexibility loads. Similar to the EV profiles obtained in Figure 3.10, there is greater

bidding for energy turn up period in Figure 3.11 (with a more elastic demand curve)

compared to Figure 3.9 (with the original demand curve) as there are greater number

of EVs charging and more incentives for charging during cheaper periods.
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Figures 3.12 and 3.13 show the charging profiles resulted from using a more inelastic

EV demand curve with less demand compared to the previous charging figures due

to the influence of higher prices on charging station selection. Lower demand at the

charging station indicates the timings for energy turn up and energy turn down are

shorter. Therefore, Figure 3.12 shows more charging happens outside the peak and

off peak timings compared to figures 3.8 - 3.11 where there are longer periods for

balancing services. EVs aim to charge before the energy turn down period if possible

to discharge power at high prices when the charging station provides energy turn

down services. Compared to previous graphs where EV profiles during energy turn

down period were positive with fast charging 2 and rapid charging ratings during

one hour, EV profiles in Figure 3.12 show negative bidding is feasible for the whole

energy turn down period (two consecutive hours). However more positive charging

occurs outside energy turn up period as the timings of this period are not sufficient

for charging most EVs to meet EV trip requirements. Capacity bidding with the

more inelastic demand curve case is less than the capacity bidding in the cases where

there are more EVs arriving at the charging station with an original and more elastic

EV user type demand curve. The reason for this is fewer EV arrivals and fewer

hours for making energy exchange for energy turn up and turn down periods in the

more inelastic demand curve case in Figure 3.12.

Figure 3.13 shows the charging profile of the last case of evaluation, unidirectional

charging with a more inelastic EV demand. Similar to the V2G case, more charging

happens outside energy balancing services timings and specially for the case of fast

charging 1 rating. Compared with unidirectional charging with the more elastic

curve, it can be observed in the results in Figure 3.13 that trip requirements are met

without the need to charge during turn down period which is when prices are more

expensive. The results of total bidding capacity is most limited in the more inelastic

demand curve case in Figure 3.13 where there are less EVs available for charging and

less energy turn up periods compared to other cases with different demand curves.

An appreciation of the final revenues, costs and utilities could provide more insights
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about the trade-offs between timing of balancing periods and flexibility capabilities

of EVs considering limits for charging to meet trip requirements.

Figure 3.14: EV charging profiles as a response to fixed prices with
original demand curve using different charging type
cases and bidirectional capability.

In order to compare the bi-level optimisation model proposed in this thesis, a simple

fixed tariff of 30 p/kWh is used to compare bidding capacity in figure 3.14. This is the

closest comparison to existing research work where a fixed tariff is used to influence

driver behaviour to participate in balancing services. It is important to mention

that flexibility has been used to maximise revenues of the charging station and not

EVs necessarily, which is not convenient for EV users and the charging station ends

up taking advantage of charging and pricing as in the work of Sortomme et al. [79].

The profiles were created using the data inputs from the original demand curve with

V2G technology. The results show almost lack of influence over EV charging profiles

for energy turn up periods, where charging happens only to meet trip requirements
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subject to departures. Overall capacity bidding is smaller compared to Figure 3.8

as a result of EV users not influenced to discharge and then charge as much energy

as possible with a tariff difference. To conclude, it can be observed in Figure 3.14

that EV charging has been modelled given a fixed tariff, which does not provide a

significant influence over charging of EV users in order to both charge EVs and bid

energy into auction balancing service markets.

3.3.4 Revenues, Costs and Utilities

Moving on with the results of this section, let’s continue with the analysis of utilities,

revenues and costs obtained from pricing and EV charging profiles. Figure 3.15

shows percentages of costs and revenues with V2G (bidirectional) technology at

different charging ratings (fast charging 1, fast charging 2 and rapid charging from

top to bottom), and three inverse demand curves. Revenues come from energy turn

down, energy turn up and EV charging, while costs come from energy paid to EVs

(energy turn down periods only) and energy purchase from the grid. The biggest

revenue from all cases comes from energy turn down followed by EV charging and

energy turn up, except for the fast charging 1 with the original demand case where

revenue sources from energy turn up are greater than EV charging. The biggest

costs for all cases comes from energy paid of EV drivers for V2G provision. Overall

cost percentages increase when demand is more elastic and decrease with a more

inelastic demand. In contrast, percentage of overall revenues are greatest with the

more inelastic demand curve of EVs followed by the original demand curve and then

the more elastic curve, except for the rapid charging case where overall revenues are

slightly higher in percentage with the more elastic curve than with the more inelastic

curve. This difference in percentages of costs and revenues from Figure 3.15 can be

attributed to pricing strategies at varied demand elasticity and expected demand at

the charging station.

Revenues and costs from G2V (unidirectional) technology at different charging rat-
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Figure 3.15: Potential revenues and costs from different charging
type cases with pricing strategies using different inverse
demand curves and bidirectional capability.

ings (fast charging 1, fast charging 2 and rapid charging from top to bottom) and

demand elasticity are illustrated in Figure 3.16. In comparison with V2G revenues,

G2V biggest revenue source is energy turn up for all the cases. Costs come only

from energy grid costs and it is the smallest percentage in all pie charts. Similar

to costs and revenues of V2G technology, the percentage of revenues increases with

a more inelastic demand and decrease with a more elastic demand. Percentage of

costs increase with a more elastic demand and decrease with a more inelastic de-

mand. These different changes in revenues and costs can be attributed to the pricing

strategies established with each variation of inverse demand curves. That is, when

there is more elasticity of demand, prices are lowered so that more EV customers

could be influenced to arrive at the charging station and thus cost total percentage

increases as there are less utilities associated to the operation of the charging station.

Likewise, when demand is more inelastic there could be fewer customers arriving

at the charging station but they are willing to pay a high price for charging, thus
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Figure 3.16: Potential revenues and costs from different charging
type cases with pricing strategies using different inverse
demand curves and unidirectional capability.

there are less total percentage costs and there are more utilities associated to the

operation of the charging station.

Having described costs and revenues in previous paragraphs, total utilities or net

profits in Figure 3.17 provide values in pounds (£) for a better comparison between

all cases. The V2G or bidirectional cases with the more inelastic curve are the most

profitable cases, and specifically the case of rapid charging is more profitable than

the other charging ratings, this could be a result of the use of increasing prices

and overall greater bidding capacity to offer for balancing services compared to the

other charging ratings. The V2G case with the original demand curve represents

the second place in terms utilities and the case with the more elastic curve is third

place. Similar to the V2G cases, G2V or unidirectional cases with greater net profits

come from the more inelastic curve for the charging ratings of fast charging 1 and

2, however for the case of rapid charging rating the most profitable case is the

original curve. The differences between revenues is more notorious in the V2G cases
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Figure 3.17: Net profits with pricing using the three inverse demand
curves and charging cases.

than in the G2V cases, such differences suggest higher prices of energy turn down

provide greater revenues. Also, the symmetric pricing structure used for both selling

energy for EV charging and buying energy from EVs, suggests that to balance the

high prices paid to EV users when discharging energy back to the grid, in the V2G

technology cases, additional revenue streams when bidding energy into balancing

services should also be high. It is assumed however that energy markets for instance

balancing services of National Grid accept the proposed bidding at the capacity, price

and time specified from the EV charging station operator. The pricing strategies for

demand response show the potential for V2G and G2V technologies, nevertheless

diverse route to market strategies such as a mix of bidding options into balancing

services market, wholesale market, distribution markets is out of scope of the work

in this Thesis. To provide additional clarity on the numbers presented in the Figures

in this Section, a detailed graph with breakdown of utilities that include stacked
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numbers of revenues and costs is included in Figure 7 as an Appendix.

3.4 Chapter Remarks

3.4.1 Discussion

The dynamic time of use dynamic pricing strategies proposed demonstrated that

EVs can be influenced to provide balancing service provision. These tariffs are

a contribution to the current pricing strategies which can be used for congestion

minimization or as peak shaving mechanisms in the area of EV pricing. The usage

of an inverse demand curve (demand and price) demonstrated how prices can be

optimised to maximise revenues as a learning approach to improve previous settings

of prices during a day. Net profits for the charging station operator have the highest

potential in the case of V2G technology with fast charging where net profits can be up

to £29810 in a day. Then, the EV charging control determined the bidding capacity

during balancing service timings accurately. It quantified stochastic driver behavior

and modeled the charging schedules appropriately with different charging speed

ratings, unidirectional (G2V) and bidirectional (V2G) technology. The constructed

bi-level optimisation approach, firstly for pricing and secondly for EV charging

bidding and control, showed these two considerations are great complements for

the operation of a low carbon charging station. An evaluation of the model with

stochastic variables and different technology provided design insights about the

potential of each case participating in balancing services.

Positive revenues are obtained from all cases evaluated in the results section, this

means the pricing strategies can adequately manage to create economically feasible

operations of a low carbon (solar) charging station station with participation in

balancing or ancillary services using different charging technology. V2G technology

was the best strategy in terms of hourly bidding capacity with a maximum of 776

kW for regulation down and 680 776 kW for regulation up. However, the proposed
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model assumes a charging station can establish prices from a monopoly perspective

and responses to competitive pricing with another charging station around the area

is not considered. Competition from the auction market side of National Grid, for

example where other bidders can offer lower prices, is also not considered. These

two barriers can be tackled with addition of competitive variables when setting

prices to provide a more dynamic setting before going into the market successfully.

Competition for EV charging is a relatively unexplored area. Future additions to the

bi-level optimisation proposed in this paper that could provide more competitive and

realistic pricing strategies operating in the market also include research in improved

timings to maximise EV flexibility.

3.4.2 Conclusion

In this chapter, a bi-level optimisation was proposed for pricing and for aggregating

energy bidding of a low carbon charging station participating in balancing services.

First, pricing strategies were developed for energy bidding to enter in National Grid

auctions and for generating a desirable charging response from EV drivers. EV

charging prices were created to promote charging during energy turn up timings

and to promote discharging during energy turn down timings. Second, an EV char-

ging optimisation control determined the charging schedules with bidding quantities

during balancing services periods. Both algorithms worked together to announce

bids and prices in a day ahead strategy given historical information to the operation

of the charging station such as: quantity responses to price, PV power forecasting,

stochastic variables of EVs (arrivals, departures, trip requirements, state of charge)

and charging rate limits from both the charging station and EVs.

Directions for future research using the model proposed in this Chapter include

improvements for the pricing and EV charging algorithms. The model proposed can

be further developed to include more goals in the objective function and to be used in

another markets such as carbon markets. These two considerations are addressed in
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the following Chapter of this thesis. Other improvements out of scope of this thesis)

could be related to Updates to the pricing algorithm can consider competition impact

on revenues for example when EVs know price comparison for charging station before

arriving to a specific charging station. Competitive additions can also add variation

in price strategies as responses to changes in prices from other charging station. The

fundamentals of the pricing algorithm can also be used to create new tariffs that

are specific to a balancing service type. Also, differences in demand curves could

be explored further to create tariffs for differentiated customers with more elastic or

more inelastic demand responses. In terms of extensions to the EV charging control,

additional considerations can include aggregated charging restrictions to meet grid

requirements, voltage, reactive power and frequency standards set by the network

operator.





Chapter 4

Multi-objective EV Charging

Optimisation

4.1 Introduction

A smart charging optimisation was proposed in Chapter 3 to model EV charging

schedules where EV drivers benefit from real time pricing schemes controlled by a

charging station operator that uses EV battery capacity to support the grid with

balancing services. However, this bi-level EV charging optimisation, did not consider

applicability of the model to be used in other energy markets. Also, the EV charging

optimisation was formulated with a single objective function to minimise EV bills,

however, other considerations for the model could include stakeholders involved

whose interests could be conflicting. To continue with research about smart charging

schemes for EVs, a multi-objective genetic algorithm is proposed in this Chapter to

analize the potential of EV charging to reduce carbon emissions. Fairness between

all the objectives involved is evaluated, and different technology for EV charging is

compared. To evaluate trade-offs, different weights to the goals in the multi-objective

function are presented and discussed.

The research in this Chapter offers solutions and analysis to tackle Objective

3 and Objective 4 which were stated in the Introduction section of this thesis.
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Objective 3 is to design a control scheme for EV charging to reduce carbon emissions.

The contributions presented in this Chapter related to this objective are: new

formulation of smart EV charging to reduce carbon emissions that includes goal

of EV users, charging operator and carbon regulator, weights are assigned to each

goal as design optimisation variables. Objective 4 is to design a multi-objective

optimisation approach to ensure fairness between all objectives and evaluate the

trade-offs between all stakeholders. To address this goal, this Chapter presents the

following contributions: linear programming formulation integration with genetic

algorithm to ensure fairness and reduction of carbon emissions. For this integration,

two non-dominated criteria is proposed: best ranked solution and minimisation of

carbon emissions.

This Chapter proposes a multi-objective genetic algorithm for a charging station

operator to ensure fairness and reduction of carbon emissions. Specific contributions

of are defined as follows:

1. New multi-objective optimisation for EV charging with inclusive goals focuses

on reduction of CO2eq emissions that include conflicting interests of EV users,

charging station operator and a carbon regulator. The formulation includes

time dependent weights of each objective and complex restrictions. The for-

mulation also includes new measurement of CO2eq emissions stored in EV

batteries to keep a carbon allowance limit as a restriction of EV charging

scheduling. In addition, pricing in real time considers carbon tax depending

on intensity of electricity carbon factor in the UK that provides insights about

efficiency of such taxes to reduce CO2 emissions when charging EVs.

2. An integrated multi-objective optimisation with a genetic sorting algorithm is

proposed, where weights of each objective function are used as design variables

to adequately search non-dominated solutions. This new method combines

NSGA-II search algorithm to ensure fairness of the proposed multi-objective

formulation of EV charging to reduce CO2eq emissions. Two new selection
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criteria for ensuring fairness and reductions of CO2eq emissions are proposed

as strategies to select optimal solutions from a pareto frontier.

3. Flexibility charging of EV users at different parking locations and using differ-

ent EV charging technology is explored in order to examine the best results

for reduction of CO2eq emissions. Overall trade-offs are studied using key per-

formance indicators such as CO2eq emissions and revenues/costs coming from

EV charging schedules. Limitation of the search model and recommendations

are stated to support transition to a decarbonised commercial vehicle sector.

Details of the proposed multi-objective formulation are presented in section 4.2

followed by the methodology to ensure fairness and carbon reductions in section

4.3. Then section 4.4 evaluates the system model based on trade-off comparison

of the different goals, fairness and carbon savings potentials for different cases,

which include EV charging at residential and work location and different charging

technology restrictions. Finally, section 4.5 provides discussions about the obtained

results and conclusions.

4.2 Problem Formulation

The multi-objective optimisation model proposed in this Chapter is based on the

model proposed in Chapter 3 and it can also be used for various applications where

a commercial aggregator could operate EV charging stations, for instance in parking

lots where EV users go to work or in off-street parking spaces in residential areas

near the homes of EV users. Figure 4.1 illustrates the multi-objective formulation

proposed in this Chapter, it presents the stakeholders involved, their main activities,

inputs and outputs required for the model. The charging station operator represents

the EV aggregator or charging station operator that is able to sell/buy energy to

EV users and bid energy into carbon trading markets. First, the charging station

operator resolves the economic dilemma of establishing energy prices (that EV users
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Figure 4.1: Multi-objective optimisation with conflicting objectives,
activities and information flow of inputs and outputs.

will pay) and carbon trading prices (to be paid to the charging station operator).

Then, EV charging scheduling is obtained from a multi-objective optimisation. The

multi-objective goals consider a charging station operator, a carbon regulator and

electric vehicles. The charging station operator aims to obtain an additional revenue

stream to EV charging with provision of energy to carbon markets during high

intensive carbon grid periods. The virtual carbon regulator aims to encourage EV

charging during low intensive carbon periods with a reference to a projected nominal

value to support transition to renewable generation. EVs’ aim is to minimise the

energy costs they will have to pay for charging, and to sell energy to the charging

station operator with V2G technology if revenues are an option after EVs participate

in energy arbitrage. To evaluate the applicability and limits of the multi-objective

optimisation, V2G and G2V technology are compared in two charging locations to

analyze the potential of EV charging schemes to minimise CO2eq emissions as much

as possible.

EV availability and carbon intensity levels are studied in order to match EV charging

strategies following electricity grid carbon factor signals for two charging locations.
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Figure 4.2: Electricity grid carbon factor and EV availability at
work and residential locations during a day.

Figure 4.2 shows the variation of independent EV availability during a day for

both charging at work and near home locations with stochastic driver behavior of

35 EVs, which is obtained with the sum of stochastic individual availability from

equation 3.2.5. This Figure also shows carbon intensity levels in the grid depending

on an average sample from UK energy mix every hour in a day. EV charging at

low intensive periods can happen during late hours of night and early hours in

the morning. Higher carbon intensive periods happen in mid morning and in the

evening. These timings of high carbon intensity can be used for trading energy from

EVs into carbon markets when discharging EV energy back to the grid. Charging

recovery from discharging periods can happen when intensity levels of carbon are

low based on EV availability restrictions to meet driver requirements. Thus, the

capacity for reduction of carbon emissions with EV charging is formulated using
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electricity grid carbon signals with 3 objective functions. The computation of EV

scheduling depends on the weights of each goal of the multi-objective formulation,

and on EV charging requirements such as availability at each location, trip, initial

state of charge and also depends on EV charging technology such as V2G, G2V.

Specific details about the problem formulation and selection of optimal solutions are

presented in the following two Chapters.

4.2.1 The Role of the Regulator

Measurements for CO2eq emissions are used as inputs for the carbon regulator’s

goal. These measurements have been estimated by taking into account type of

generation by fuel type (m ∈ M) and their equivalent CO2eq emissions per unit of

energy generation mix [150]. Thus, the hourly electricity grid carbon factor (egcft)

is obtained from the equivalent CO2eq emissions in the generation mix with the sum

of carbon factor per fuel type (crm,t) per energy generation by fuel type (em,t) over

the total generation for every hour during a day as follows,

egcft =
M∑

m=1
crm,t · em,t/

M∑
m=1

em,t, (4.2.1)

where carbon factor per fuel type estimates for renewable and non renewable sources

of energy are can be computed from the values in Table 4.1 obtained from [151].

The carbon regulator goal is to encourage charging when it is more convenient for

the environment in terms or carbon emissions. Therefore, similar to the work in

[46] the regulator aims to limit charging during carbon intensive periods, which can

be achieved by coordinating EV charging with the electricity grid carbon factor

described in the previous paragraph. This factor is used to measure carbon changes

based on a carbon factor target in the grid (egcfa), where values above the carbon

factor target receive zero encouragement in order to limit EV charging in the objective

function. Thus, to estimate any values that do not meet the recommended carbon



4.2. Problem Formulation 85

Table 4.1: Median carbon factor in CO2eq/kWh

Fuel type Carbon factor
Coal 820
Gas 490
Biomass 230
Solar PV (Utilty Scale) 48
Solar PV (Rooftop) 41
Hydropower 24
Wind (Onshore) 12
Wind (Offshore) 12
Imports (France) 12
Imports (Netherlands) 483
Imports (Ireland) 431
Imports (Belgium) 230
Imports (Norway) 12
Storage 24

target, ft estimates the variations accordingly by,

ft = egcft/egcfa. (4.2.2)

The proposed goal of the carbon regulator (Ret) receives a negative value when

the electricity carbon factor is above the carbon target when computing 1 − ft

times the optimised EV charging rate qi,t, and receives the value of 0 when the

electricity carbon factor is under the limits of the carbon target. Therefore, the

objective function of the carbon regulator is to maximise EV charging during carbon

factor timings below the carbon target and to not encourage charging at any other

timings above the carbon target for the whole set of EVs (I), from EV arrival (ar) to

departure (de) times at the charging station. The objective of the carbon regulator

is defined by,

Max
qi,t

Re(qi,t, ft) =


I∑

i=1

{
de∑

t=ar

qi,t · (1 − ft)
}

, if ft > 1

0, otherwise.

(4.2.3)
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4.2.2 The Role of the Charging Station

Emerging markets such as carbon markets provide opportunities to use demand side

management resources for flexibility and carbon reduction purposes. The manage-

ment of EV charging brings the possibility to handle EV batteries as an aggregated

virtual battery in different time slots. Here, the charging station acts as an EV

aggregator that can use flexibility capabilities to bid energy into carbon markets

with the use of V2G or bidirectional technology. However, EV batteries can still have

carbon impacts because they are ultimately charged with the carbon footprint from

the energy available in the grid. Consequently, the charging station aims to generate

an additional revenue stream with participation in carbon markets from managing

discharged power from EV batteries while meeting a carbon emission storage target

constraint imposed by a carbon regulator. This target is similar to the carbon target

imposed to the grid in the regulator objective function but applied to EV battery

charging carbon footprint.

To estimate the carbon factor stored in EV batteries in a time frame, a carbon factor

for each EV is estimated (evcfi,t). When the EV arrives at the charging station, it is

expected that there is already a metered carbon factor of previous charging sessions.

Thus, the EV carbon factor in hour 1 is estimated by,

evcfi,1 = soci,0 · cfi,0 + q+
i,1 · egcf1 + q−

i,1 · cfi,0, (4.2.4)

where cfi,0 is the carbon factor equivalence to the state of charge soci,0 when an EV

arrives at the charging station. At the end of the first hour period after arrival at

the charging station, carbon emissions from charging or discharging are computed.

When the charging rate is positive (q+
i,1) the corresponding charging emissions come

from the grid. When the charging rate is negative (q−
i,1), equivalent CO2 emissions

come from the carbon factor of the EV from previous charging sessions.

In the following hours of the charging schedule, the stored EV carbon factor is
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estimated by,

evcfi,t = evcfi,t−1 + q+
i,t · egcft + q−

i,t · evcft−1, (4.2.5)

where, CO2 emissions are carried out from the previous hour and remaining car-

bon emissions are estimated from the charging schedule and corresponding carbon

emissions from the grid.

As mentioned in this subsection, the charging station is restricted by a carbon target

requirement coming from the carbon emissions related to EV charging. Thus, to

be able to discharge energy back to the grid and participate in carbon markets, the

following carbon footprint restriction must be satisfied,

evcfi,t ≤ cai,t, (4.2.6)

where the evcfi,t must be less than or equal an estimated carbon allowance per EV

(cai,t). The charging station operator will be able to obtain revenues if EVs discharge

energy back to the grid and if EV batteries meet the carbon footprint limit. Thus,

the revenues from participating in carbon markets are defined by,

Min
qi,t

CS(pmt, qi,t) =


I∑

i=1

{ tf∑
t=ti

pmt · q−
i,t

}
, if qi,t < 0

0, otherwise,

(4.2.7)

where the charging station denotes a carbon price for selling energy from EV users

in carbon markets pmt, and it receives revenues if the EV can discharge energy back

to the grid. Note that the objective function is to minimize carbon price times a

negative charging rate which means the charging station receives revenues when the

value of the objective function CSi,t is negative during specific timings established

by the charging station operator from ti to tf .
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4.2.3 Pricing with Carbon Tax

The pricing dilemma for setting carbon prices (for carbon markets) and for setting

prices for selling energy for EV charging is estimated using the data driven pricing

algorithm developed in Chapter 3, section 3.2.1, the reader can go back to the details

of the algorithm for more information. For practical purposes, only additions to the

algorithm are explained. Thus, the pricing mechanism is defined by the charging

station operator which announces prices that are computed from maximising revenues

using historical EV user response to price and costs. The difference between the

pricing scheme in section 3.2.1 and the one in this Chapter, is that a carbon tax is

included in charging station operator’s costs. Thus, the cost to buy energy from the

grid (cgt) is estimated by adding a carbon tax every hour (ctaxt) based on electricity

grid carbon factor by,

cgt = cgt + egcft · ctaxt. (4.2.8)

Similar to the pricing algorithm for balancing services, pricing for regulation down

estimates are comparable to bidding energy into carbon markets. The estimation

for regulation up (increase charging rate of EV) is not considered as there isn’t a

carbon trading mechanism for just increasing charging rate. Thus, pricing for selling

and buying energy to/from EVs is estimated by,

pf =
[
p∗

1 ... p∗
ti−1 pcti ... pctf p∗

tf+1 ... p∗
24

]
(4.2.9)

where pf is the pricing matrix in a day, it includes the optimum pricing mechanism

for selling energy to EVs (p∗), and the pricing for buying energy from EVs (pct).

Timings for setting up either an optimum price or a price for buying energy from

EVs in carbon markets for equation 4.2.9, are estimated considering the electricity

grid carbon factor and number of EVs available to provide energy back to the grid.

Timings for allowing EVs to discharge energy are estimated when measuring carbon

grid intensity with classifications of high, medium and low levels (ht, mt, and lt) as
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follows,

(egcfu − egcfl) · 2
3 ≤ ht ≤ (egcfu − egcfl), (4.2.10)

(egcfu − egcfl) · 1
3 ≤ mt < (egcfu − egcfl) · 2

3 , (4.2.11)

(egcfu − egcfl) · 0.01 ≤ lt < (egcfu − egcfl) · 1
3 , (4.2.12)

where carbon intensity levels are defined by lower (egcfl) and upper limits (egcfu)

of the electricity grid carbon factor in a day by,

egcfl = min(egcft), (4.2.13)

egcfu = max(egcft). (4.2.14)

Only the periods where there is high carbon intensity and high capacity of EVs

at the charging station, as defined in section 3.2.1, are considered for estimating

the initial (ti) and final time (tf) to allow EV energy discharging and buying of

electricity. Carbon pricing pmt, which includes expected utility δ of the charging

station operator, for selling energy from EVs into carbon markets is estimated with

the equation to bid regulation down energy in balancing services as stated also in

section 3.2.1, defined by,

pmt =



((ut(Q∗
t ) + pdt · |Qdt|)/(|Qdt|))

·(1 + δ), if Qi,t ≤ 0

((ut(Q∗
t ) + cgt · (Qdt − (Pst · n)))

/(Qdt)) · (1 + δ), otherwise.

(4.2.15)

4.2.4 The Role of EV drivers

EV drivers have the potential to allow a charging station to discharge and charge

energy to meet trip requirements according to the restrictions of charging rate and

battery capacity. Therefore, the goal of EV drivers is to use their availability at the

charging station as a flexibility advantage to charge energy when it is cheap and sell
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energy if possible to minimise energy costs and even obtain revenues. The goal of

EV drivers is defined by,

Min
qi,t

EV (qi,t) =
I∑
i

{
de∑

t=ar

pf · qi,t

}
, (4.2.16)

where qi,t is the charging rate at each our to pay for with pricing scheme pf . Restric-

tions such as trip requirements, battery capacity and carbon allowance are considered

in the final optimisation formulation with the multi-objective perspectives of the

charging station, regulator and EV drivers.

4.3 Multi-objective Formulation

The roles described in subsections 4.2.1-3 are formulated in a multi-objective formula-

tion in this section. For this purpose, a weighted sum of all objectives is formulated as

a single objective formulation as part of multi-objective genetic algorithm. Weights

of individual objectives are explored and compared to establish fairness and to se-

lect optimal solutions based on two different criteria to ensure overall preference

maximisation and to reduce carbon emissions. The multi-objective formulation is a

combination of the goals of the regulator, charging station operator and EV users.

To integrate all goals in an objective function, they are adapted to work with a

minimisation function defined as follows,

Min
qi,t

α · EV (qi,t)
EVmax

− β · R(qi,t, ft)
Rmax

+ γ · CS(pmt, qi,t)
CSmax

, (4.3.1)

where CSmax, Rmax and EVmax are the maximum values of the charging station

operator, regulator and EV drivers respectively, considering maximum stochastic

dynamics of all variables affecting each goal combined with maximum charging rate

that could be used to charge an EV in a day. These maximum values are used to

normalise each objective function, a practical approach for dimensional purposes.

Then weights α, β, and γ are added to each normalised objective to obtain different

optimal solutions. In addition, individual weights are restricted to percentage values
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between 0 to 1 and the sum of weights α+β+γ is restricted to 1 to guarantee

exploration of inclusive solutions. The selection of weights to assign to each solution

are selected based on randomised generation of weights that meet the previously

mentioned requirements, then the selection of weights are evaluated based on specific

criteria, this proposed method is described in the following paragraphs.

The multi-objective formulation proposed has numerous set of solutions which can

be obtained based on weighting criteria. Finding the best weights for each objective

function can be made from fixed-based heuristic weight criteria, nash game adapted

formulations, genetic algorithms, etc. The first option could provide a simple solution

to fairness for specific design objectives, however may lack application under changing

dynamics of variables over time and the heuristic criteria could lack mathematical

fundamentals. The second option implies a complex mathematical analysis that

also could change with varying dynamics of variables over time and could loose

applicability. In contrast, a genetic algorithm has the potential to evaluate different

possibilities and compare the best potential combination of weights in time with any

changes in variables.

A genetic algorithm such as NSGA-II proposed in [152] has the potential to search for

non dominated solutions in order to find fair solutions. This algorithm has previously

used for finding design variables in multi-objective optimisation as in [153] for finding

the best balance between objective functions following design variables evaluated in

a computational fluid dynamics simulations. Similarly, NSGA-II algorithm is used to

search solutions from the multi-objective formulation proposed in this Chapter, where

the weights of the multi-objective optimisation are modelled as the design variables to

evaluate non-dominated solutions. In order to find the best possible combination of

weights and to establish fairness between all objective functions, pareto optimality is

obtained when comparing dominance between objective functions. Figure 4.3 shows

the space of objective functions fs,j(αj, βj,γj), s = 3 that includes the objectives or

goals of EV users, regulator and the charging station operator, as well and design

variables which are the weights of the objective functions (αj, βj,γj). Dominance
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of the multi-objective solutions is compared between chromosomes j ∈ J to search

for fairer solutions, chromosomes and individuals are treated as the same for the

research work in this thesis. A final set of non-dominated solutions forms the pareto

frontier set, then two selection criteria for selection of an optimal solution from the

pareto frontier is proposed.

Figure 4.3: Tracking for computation of objective functions based
on design variables.

The solving method of the multi-objective genetic algorithm formulation uses the

concept of pareto optimality and other definitions [154; 155] which are stated below.

Definition 1: Pareto optimality. A solution or objective function values with weights

αj, βj and γj of chromosome j, is a pareto optimal solution if there is no other

solution of chromosome k ∈ J evaluated with weights αk, βk and γk, whose objective

function values dominate solution in chromosome j for the entire space of solutions.

Definition 2: Dominance. In order to ensure obtain pareto optimality, dominance

between objective functions is compared. For simplicity, objective values with indi-

vidual goals and weights are defined by fs,j(αj, βj,γj). When objective functions are

minimised, a solution with weights αj, βj and γj dominates solution with weights
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αk, βk and γk when any of the following dominance conditions are satisfied. Weak

dominance is represented by,

fs,j(αj, βj, γj) ≤ fs,k(αk, βk, γk) (4.3.2)

and dominance is represented by,

fs,j(αj, βj, γj) < fs,k(αk, βk, γk). (4.3.3)

Definition 3: Pareto frontier. Once dominance has been established between object-

ive functions, the non dominated solutions, that is solutions where dominance count

between the objective function values is the same, are separated from the rest. Thus,

the set of non dominated solutions form the pareto frontier.

Definition 4: Pareto optimal selection. Once a pareto frontier set is computed, it

is important to select a solution to meet specific criteria. Two selection criteria is

proposed in this Chapter to look for a fairest and for a greenest solution.

4.3.1 Pareto Frontier Evaluation

Definitions 1-4 are used in the formulation of the multi-objective genetic algorithm

proposed to evaluate solutions and select the ones that meet criteria in terms of

fairness and environmental impact. The diagram in Figure 4.4 shows a visual

procedure of the algorithm which is also described in the points below.

1. As a day ahead strategy, a charging station operator computes the best pricing

option for EV drivers (pf) and for participating in carbon markets (pmt) based

on historical data with financial evaluation and demand response of EVs.

2. Randomised design variables are computed to evaluate the initial set of indi-

viduals in order to explore the design space so that αj+βj+γj = 1, and each

of these weights must be between 0 and 1.
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Figure 4.4: Procedure of multi-objective genetic algorithm.

3. The design variables or weights assigned to each objective function; αj, βj and

γj, for all individuals in set J is evaluated to obtain the value of each objective

function value.

4. Solutions are sorted based on dominance evaluation between the individual

objectives to each solution according to definition 2, and according to crowding

distance to ensure inclusiveness of variables in the design space as proposed

by Deb et al. [152].

5. The solutions that are better evaluated are selected for the next generation of
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individuals. Also, solutions that pass on to the next generation are created

form a crossover and from a mutation strategy as proposed in NSGA-II in

[152].

6. Following Definition 4, once the pareto frontier has been obtained after running

of generations, a fairest or a greenest solution is selected based on the proposed

selection criteria.

4.3.2 Selection of Optimal Solutions

Once non-dominated solutions are obtained in a generation, convergence has been

reached and the individuals in this generation form the pareto frontier. These

solutions represent the options for which no objective is better off without harming

each other interests. Thus, the next stage of the multi-objective optimisation is to

select an optimal solution from the pareto frontier. For this purpose, two selection

procedures are proposed, one ensures a preferred solution from all objectives and

the second is a green solution where carbon emissions are minimised.

Most preferred ranked solution. Once the pareto frontier has been obtained, a

preferred solution from the perspectives of EV drivers, regulator and charging station

operator is obtained from a best ranked solution. The ranking assignation is based

on an evaluation of a preferred distance for each individual with their respective

value of the objectives as follows,

ds,j = fs,j(αj, βj, γj) − fls,j

fus,j − fls,j

, (4.3.4)

fls,j = arg min(fs,j(αj, βj, γj)), (4.3.5)

fus,j = arg max(fs,j(αj, βj, γj)) (4.3.6)

where ds,j is the distance for each objective function s and individual j with relation to

the best possible solution available (fls,j) and the maximum value from all solutions

which would the worst solution (fus,j) within a generation. Preferred distances per

objective and individual are assigned a ranking value (rs,j) starting with 1 given to
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the solution with minimum distance, a value of 2 is given to the second minimum

distance and so on. The sum of rankings per individual indicates the preference

ranking among the three goals, therefore the overall preferred solution is the lowest

ranked solution per individual defined by,

rp = arg min
J∑

j=1
rs,j (4.3.7)

where rp is the solution with minimum ranking sum from the set of individuals

in the pareto frontier, and rs,j is the ranking assigned to each individual based on

preferred distance ds,j for each goal or objective value. This ranking can adequately

manage weights of preferences in such a way that the solutions with lowest ranking

can be selected. The solutions with higher ranking are penalised due to the fact that

one objective could be too far from the best possible option, this way a balanced

solution is obtained when the three goals have the lowest possible ranking.

Green solution. A green optimal solution is proposed in order to select the solution

that minimises CO2eq emissions from the pareto frontier. This will ensure the

selection of both a non dominated solution, where comparison of weights assigned to

each objective function is balanced, and a solution that is better for the environment.

Thus, the selection of the green solution can be estimated by,

g = arg min
J∑

j=1

{
I∑

i=1

{ T∑
t=1

egcft · qi,t(αj, βj, γj)
}}

, (4.3.8)

where g is the green solution with the lowest CO2eq emissions based on the EV

charging schedule qi,t(αj, βj, γj) of each optimal solution from the pareto frontier,

times the electricity carbon factor variation during the charging schedule for the

whole set of EVs I.

4.4 Model evaluation

A formulation for EV charging has been proposed and it includes three different

objectives; following the perspective of EV drivers, they aim to minimise costs for
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charging and also get revenues from selling back to the grid if allowed, a carbon

regulator aims to maximise charging when the grid carbon intensity is less than or

equal to a grid carbon intensity reference value, and the charging station operator

aims to get additional revenue from participating in carbon markets. However, these

three objectives vary through time, for instance EVs interests can be impacted by the

dynamic real time pricing from the charging station operator, the regulator follows

a carbon grid factor reference and the EV driver preferes to bid energy into carbon

markets when capacity of the charging station and carbon grid factor combined

are more convenient. Therefore, these objectives have conflicting interests that can

lead to different solutions. The results of the multi-objective optimisation proposed

in this Chapter are analyzed from the individual perspective of each objective and

from the multi-objective strategies where pareto optimal solutions are compared.

The results of smart charging strategies for reduction of carbon emissions are also

analysed comparing scenarios for bidirectional and unidirectional charging at work

and near home charging locations.

To obtain the required results for the research proposed in this Chapter, 35 stochastic

EV driver profiles for home charging location are created using arrivals, departures,

trip requirements and initial state of charge using with real data kindly provided

by EA technology as part of "Electric Nation Project"[156]. EV driver profiles for

work charging location were created in Chapter 3 with data provided also by EA

technology with data sets for "Electric Avenue Project" [140], and with EV arrival and

sojourn time distributions from [138], are also used in this Chapter. The empirical

CDF graphs of EVs availability, trip requirements and initial state of charge for

both home and work locations are presented in Figures 2-7 in the Appendix of this

thesis. Electricity grid carbon factor estimations are obtained using the carbon

tracker information from [151]. The reference for carbon factor of the grid (egcfa)

for the regulator is set as the mean value for the grid carbon factor in a day, however

this could be based on governmental carbon factor targets. Table 4.2 contains all

the parameters used for the simulations for this Chapter which contain some carried
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Table 4.2: Simulation parameters

Parameter Value
Total number of EVs 35 EVs
Carbon allowance (cai,t) 18000 gCO2eq emissions
Carbon tax (ctaxt) 18 £/tonCO2eq emissions
Time periods in a day 24, for every hour
EV arrivals (home) Empirical CDF [156]
EV departures (home) Empirical CDF [156]
Initial state of charge (home) Empirical CDF [156]
Trip requirements (home) Empirical CDF [156]
EV arrivals (work) ar ∼ N (µ = 8, σ2 = 1) [138]
EV sojourn time (work) ts ∼ Logistic(µ = 0.27, s =

0.06), mn = 5, mx = 18.52 [138]
Initial state of charge (work) Empirical CDF [140]
Trip requirements (work) Empirical CDF [140]
Charging station rating 3.7 kW [141]
Mitsubishi Outlander charging rat-
ings/battery size

3.7 and 22 kW/ 12kWh[142]

Nissan Leaf charging rating/battery size 6.6 and 50 kW/40 kWh[143]
BMW 330e charging ratings/battery
size

3.7 kW/12 kWh[144]

Energy cost 10 p/kWh [146]
Utility from carbon markets 10%

over values used in Chapter 3. The simulation for the multi-objective evaluation is

done in MATLAB with Yalmip toolbox [148] as the interface to link to optimisation

solver Gurobi [149]. Contrasting results of the simulations that use the parameters

described are analyzed in the following section.

4.4.1 Trade-offs between Individual Objectives

In this section, EV charging schedules from optimisations with the three goals

computed separately are obtained in order to compare EV charging schedules when

following different signals form the perspectives of EV drivers, charging station

operator and a carbon regulator. The main signals related to each goal are compared

in order to give the reader a better understanding of the impact on EV charging

rate dynamics in time. Additional graphs for comparison include the charging costs

or revenues for EV drivers and the potential revenues obtained by the charging
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Figure 4.5: EV charging goal alone optimisation with EV charging
schedules and revenues/costs with different charging
technology and location.

station operator. The scenarios used for comparing EV charging schedules are based

on technology; V2G (bidirectional) and G2V (unidirectional), and also based on

stochastic EV driver behavior which includes arrivals and departures in locations of

work and near home charging with varied trip requirements.

Figure 4.5 shows EV charging schedules obtained with EV drivers goal alone. The

graph at the lower left corner shows the energy price that EVs will have to pay

for energy and prices for selling energy to the charging station operator during

carbon market trading timings. Slight changes of costs associated with carbon grid

intensity levels in the form of a carbon tax is integrated in the price. Influenced
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by the slight price changes with carbon taxes imposed by a carbon regulator, EV

charging schedules show most EVs are charged during lower electricity carbon grid

factor in all charging case scenarios. This means that EVs behavior is adjusted

depending on the energy mixed available every hour following low carbon intensity

levels. However, in the G2V (unidirectional) case at work location, some charging

happens during high intensity carbon grid factor as trip requirements should be

satisfied. Another interesting pattern in the EV charging schedules is that with

V2G charging technology, EV batteries can be discharged during allowed periods

which are set up by the charging station operator from 9:00-11:00 hrs and from

20:00-22:00 hrs, note that these timings for regulation up and down were estimated

according to the pricing strategy with price changes that are indicated by the number

of EVs available for charging and the carbon intensity levels in the grid. Thus, V2G

technology allows EVs to discharge energy during high carbon intensity levels, which

is not the case of G2V charging where EV batteries cannot be discharged and need

to be charged to meet driver requirements even if carbon levels are high. It can

also be observed that work charging location offers less flexibility than charging near

home, consequently EVs’ availability for charging near home offers more potential

for EV charging rate adjustments compared to charging at work.

Regarding revenues and costs, it can be observed on the graph at the lower right

corner in Figure 4.5 that the scenario with more revenues for both EV drivers and

the charging station operator is the one with V2G technology at near home location.

EVs have the highest flexibility in this location, consequently EVs can take advantage

of selling energy to the charging station operator while the charging station operator

gets additional revenue from using EVs energy to sell to carbon markets. The second

best option regarding revenue is also the V2G technology case but for the charging

at work scenario, EVs and the charging station operator can both get revenues

even with less EV battery flexibility available. In contrast, EV drivers are not able

to receive any revenues with the two G2V cases due to the fact that they are only

paying for the energy they need for charging at the lowest possible cost. The charging
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Figure 4.6: Regulator goal alone optimisation with EV charging
schedules and revenues/costs with different charging
technology and location.

station operator receives revenues from charging but does not earn money with an

additional revenue stream as there isn’t energy to bid/trade into carbon markets.

Results of EV charging optimisation with the regulator goal in Figure 4.6 show

significant differences with EV charging schedules compared with the results obtained

with EV drivers goal alone, specially in the V2G technology cases. The carbon

regulator promotes charging based on a reference of carbon intensity levels whereas

the EV driver goal promotes not only charging but also discharging if it is financially

optimal. With the objective function of the carbon regulator, V2G charging is not

necessarily encouraged, however V2G charging for home location offers the sufficient
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charging flexibility that makes EVs charge more energy than needed at low carbon

intensity levels and then discharge energy at high intensity levels in order to meet trip

requirements. Limited availability for charging of EVs in the case of work location

with V2G technology makes it hard for EVs to discharge energy back to the grid.

It can be observed that EV charging schedules for work and near home cases with

V2G and G2V charging have less energy to bid to carbon markets compared to EV

schedules with the EV goal due to the lack of incentives in the objective function to

discharge energy back to the grid.

The lower right corner of Figure 4.6 shows the associated revenues and costs with

the EV charging schedules. From the user perspective, EV drivers are able to

get revenues only with the near home with V2G charging scenario thanks to the

discharging energy they provide to the charging station operator. Interestingly, the

V2G at work and G2V at work case scenarios are the EV charging schedules with

more costs, this can be explained by the limited charging flexibility of EVs and the

established high prices during carbon market timings. From the charging station

operator point of view, the scenario with more revenues is the charging near home

case with V2G technology. It can be concluded that, having the regulator goal as a

single objective in the computation for EV charging schedules does not consider the

benefits for discharging energy back to the grid in terms of potential extra revenues

for both EV users and the charging station operator. Consequently, costs of EV users

are less with the regulator optimisation than with the EV drivers optimisation. This

could be attributed to bigger signals coming from the carbon regulator to charge at

low cost energy related to low carbon intensity grid levels compared to the pricing

incentives to users to allow discharging during carbon market specified timings.

To continue with the analysis of trade-offs coming from the EV charging schedules

with optimisation using individual goals, Figure 4.7 shows EV charging schedules

using the charging station operator goal alone. In this optimisation, the charging

station operator already receives revenue form EV charging, therefore the goal of

the charging station operator is to have an additional revenue stream with biding
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Figure 4.7: Charging Station goal alone optimisation with EV char-
ging schedules and revenues/costs with different char-
ging technology and location.

energy in carbon markets. Thus, the lower left graph at the corner shows the price

offered for energy bidding quantities to carbon markets per kWh of energy coming

from EVs. As it is expected, the scenarios with V2G technology offer more potentials

of energy capacity, whereas G2V technology is limited to charging in one direction

only and as a consequence, EV users are not able to support with energy trading in

carbon markets. The scenario with V2G at near home location offers greater bidding

capacity compared to V2G work location where EV flexibility is more limited. In

this last case EVs need to charge energy at 9:00 hrs again to then be able to discharge

energy in the next hour. Thus, greater bidding capacity and flexibility could come
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from using V2G technology with EV availability for near home charging.

The lower right graph at the corner of 4.7 shows the potential revenues obtained

from EV charging schedules following the charging station operator goal alone. Note

that the revenues for the charging station operator for all case scenarios are greater

with the charging station operator goal alone compared to the results obtained with

EV drivers goal. However, revenues for EV drivers are greater and costs are less

with the results obtained following the EV users goal except for the V2G near home

scenario. Differences between the charging schedules obtained with EV drivers goal

and previous results that used the other two optimisation goals are more significant

with V2G technology at work location. It can be observed in this case scenario that

EVs need to charge with high energy prices during carbon market allowed timings

to then be able to discharge with a higher bid for carbon trading in the last allowed

hour slot. Thus, EV drivers can be disadvantaged if the charging station goal alone

is used as they receive slightly less revenues relative to revenues with EVs goal case.

In conclusion, the best optimisation results in terms of revenues for the charging

station operator with V2G technology are the ones computed with the charging

station operator goal. Similarly, the best results with G2V technology cases are

computed with the charging station operator goal. For EV users, the best optim-

isation results in terms of costs and revenues with V2G technology are the ones

obtained with EVs goal, and also for the G2V technology cases, the best results are

the ones computed with EVs goal. The carbon regulator goal did not prove to be

the best option for either EV users or the charging station operator. However, it

is important to compare impact on carbon emissions in EV charging schedules and

fairness in relation to the weights assigned to each objective function for instance in

a multi-objective formulation. These two aspects of comparison are explored in the

following two subsections.
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4.4.2 Comparing Fairness

The previous section showed that expected revenues for EV drivers and the charging

station operator differ when the individual objectives are used for modelling EV

charging schedules. The aim of the analysis in this section is to study the results

obtained with the multi-objective genetic algorithm and analyze selection of optimal

solutions that can lead to a fairest solution and to a greenest solution. The three

goals which include interests of EV drivers, a carbon regulator and a charging

station operator are modelled as a multi-objective optimisation with V2G charging

technology only. The reason for this is that the charging station operator does not

have a significant influence over G2V technology with the current model proposed and

thus is more reasonable to model fairness between these 3 goals with V2G. Therefore,

contrasting multi-objective goals are presented for V2G charging near home and

for charging at work which have variations in stochastic EV driver availability for

charging (flexibility) and trip requirements.

Figures 4.8 and 4.9 show the values of the multi-objective genetic algorithm search

for optimal solutions in several generations. The graphs at the left show the values

of the three goals separately and the graphs at the right show the value of the

weights explored for each normalised objective function. To avoid confusion when

estimating the values in the objective functions, the values of the objective functions

presented in the graphs for the EV drivers and the charging station operator are

positive, and the values of the regulator are non dimensional and negative. For

practical purposes total number of generation runs was 5 with 48 individuals for

the two cases, however non-dominated solutions in a generation in pareto frontier 1

(best evaluation of non-dominance and crowding distance), could was reached since

generation 2, further changes of non-dominance are highly unlikely.

Figure 4.8 presents the results obtained for the multi-objective genetic algorithm

at work charging location with V2G technology. The design variables which were

the weights for each objective function αj, βj and γj observed in the graph at the
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Figure 4.8: Comparison of objective function values and weights ob-
tained with multi-objective genetic algorithm for char-
ging at work.

right, show that convergence of the design variables is more predominant towards

interaction goals of EV drivers and the charging station operator. Regarding the

graph with objective function values at the left, it can be observed that the range

between the maximum and minimun objective function in the pareto frontier is

greater with the charging station operator, then with EV drivers and then the

regulator. This indicates the charging station operator has the greatest cost of

opportunity in this model, however it is important to consider that total revenues

for the charging station operator are not integrated as current objective function

values in the graph only consider the revenues obtained from carbon market trading

participation. Therefore, there could a greater cost of opportunity from an EV user

perspective. It is also important to mention that the carbon regulator is modelled

as a non dimensional objective function to encourage charging during a reference to

low intensity levels, therefore it does not receive any revenues.

In terms of the selection of the fair solution from the pareto frontier in the left graph

in Figure 4.8, the fairest solution has weights of approximately 0.65 assigned for EV

drivers, 0 weight assigned to the carbon regulator (regulator would not have any value

in the objective function), and 0.35 weight for the charging station operator. This
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Figure 4.9: Comparison of objective function values and weights ob-
tained with multi-objective genetic algorithm for char-
ging near home.

result suggests that a fair strategy for estimating EV charging schedules may come

from giving EV users priority when estimating charging schedules as EV drivers are

affected by the carbon tax variations imposed in energy costs and have the interest to

provide energy back to the grid. This could help both the carbon regulator and the

charging station operation interests to reduce carbon emissions and to support the

grid in carbon market participation respectively. With regard to the green solution,

the selected optimal solution comes from weight of approximately 0.84 assigned

to the charging station operator, followed by a 0.13 weight assigned to EV users

and 0.03 weight assigned to the carbon regulator. The weight values of this green

solution may indicate that the charging station operator and EV users together have

more impact on C02eq emissions than the carbon regulator in this case scenario.

An explanation for this result could be that EV driver availability may be limited,

and therefore they may want to charge even at high intensity levels to meet driver

requirements, which is not convenient to the carbon regulator formulation.

Figure 4.9 presents the objective function values and weights explored for the multi-

objective optimisation case of V2G technology for charging near home. Compared

with the convergence of the design variables of the pareto frontier in the work charging
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case discussed in previous paragraph, the weights in the right graph of Figure 4.9

converge also towards goals of EV drivers and the charging station operator, but

some solutions also include weights assigned to the carbon regulator. Similar to

the work location charging case, the objective with greatest opportunity cost, that

is the objective with highest range between the minimum and maximum possible

value for the optimal solution, is the charging station operator goal followed by EV

drivers and the regulator. However, it is important to note that EVs could be more

disadvantaged because they do not set pricing for energy and customer satisfaction

is not considered in price set up established by the charging station operator.

The results of weights used for selection criteria for the fairest solution were of

approximately 0.73 for EV drivers, 0 for the regulator and 0.27 for the charging

station operator. It is possible that with greater flexibility of EV drivers, the

charging station operator could have less influence over a fair solution compared to

the fairest solutions of the work charging case where the charging station operator

had a bigger weight. The greenest solution has a approximate weight of 0.50 assigned

to the EV drivers, a weight of 0.11 assigned to the carbon regulator and a weight of

0.39 assigned to the charging station operator. This is a contrasting result compared

with the work charging case where the charging station operator had the highest

weight in the multi-objective solution. In general, EV drivers had the highest weight

assigned for both fair and green solutions at work and near home charging locations

except for the green solution at work where the charging station operator had the

highest weight.

4.4.3 Comparing EV Potential to Reduce CO2eq Emissions

The intention of the formulation proposed in this Chapter with a multi-objective

optimisation approach is to test how different objectives may influence EV charging

schedules to reduce CO2eq emissions as much as possible, either by following pricing

signals with added carbon taxes according to carbon intensity levels, by trading
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Figure 4.10: Comparison of EV charging schedules with independ-
ent objectives with nomenclature of: individual goal
(EV-electric vehicles/ R-regulator/ CS-charging sta-
tion operator) - EV Technology (V2G-bidirectional/
G2V-unidirectional) - charging location (W-work/ H-
near home).

energy with carbon markets or just by charging energy when it is more convenient

based on the carbon intensity of energy generation mix at the grid level. Figure 4.10

shows a box plot comparison of descriptive statistics related to the carbon emissions

from EV charging schedules depending on the optimisation with individual goals,

the technology used and the charging location scenario. Lowest CO2eq emissions

are possible with V2G technology at near home location starting with EVs goal,

followed by the charging station operator goal, and in third place is the regulator

goal. From these results we can see that the biggest opportunity to minimise CO2eq

emissions is in the near home scenario where EVs have more shiftable energy load

that follow signals related to carbon grid intensity levels. Another key insight about

these results is that V2G technology provides greater environmental benefits as EV

batteries can discharge energy back to the grid at high intensity levels and charge

at low intensity levels. Note that, the mean electric carbon factor for the lowest

scenario of CO2eq emissions is negative, this means that there is potential support
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Figure 4.11: Comparison of EV charging schedules with multi-
objective optimisation solutions for different scenarios
with nomenclature of: charging location (W-work/H-
near home) - solution(F-fairest/G-green).

with carbon offset mechanisms.

The transition to a carbon zero economy could come from real restrictions imposed

to comply with carbon regulations. Thus, the conflicting objectives in the multi-

objective formulation will need to be resolved in a real case scenario to find a

balance between weights assigned to each objective. The potential of the fairest and

green solutions, obtained with multi-objective genetic algorithm, to minimise CO2eq

emissions is compared in Figure 4.11. This box plot shows that the solution with

lowest environmental impact is both the greenest solution for the charging case at

near home location and the fairest solution also for the charging case near home.

Interestingly, solutions of the pareto frontier have similar CO2eq which means that

actually the minimisation of these emissions could be highly related to trip and

charging flexibility of EV users. Similar to the comparison of the individual goals in

Figure 4.10, the solutions with more potential to minimise CO2eq emissions are the

ones associated with near home charging case scenarios with V2G technology where

EVs can be charged at night during low intensity carbon levels and be discharged

during the day if possible, to participate in carbon markets when high carbon
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intensity levels occur.

4.5 Chapter Remarks

4.5.1 Discussion

In this Chapter, a multi-objective optimisation strategy for EV charging is proposed

to minimise carbon emissions. The optimisation included three conflicting objectives

represented by EV drivers, a carbon regulator and a charging station operator. The

three objectives showed differences in terms of the revenues/costs of EV drivers

and the charging station operator, and in terms of CO2eq emissions attributed to

EV charging schedules. Higher differences of revenue trade-offs were found with

conflicting interests between both the charging station operator and EV drivers,

against the results obtained with the carbon regulator. Results, also showed that the

biggest potential to reduce CO2eq emissions from EV charging could come with V2G

technology and flexibility of EV users from a near home case scenario. Nevertheless,

the model proposed in this Chapter has limitations, for instance it is assumed that

carbon markets are available at timings, energy price and quantity bidding specified

by the charging station operator, thus the carbon market operator is able to make

an energy contract with the charging station operator from a day ahead planned

schedule.

Improvements to the model proposed can come from the formulation of the multi-

objective optimisation model. For example, the carbon regulator encourages charging

at a reference point of low intensity levels but doesn’t consider capability of V2G,

which could also help minimise carbon emissions for the whole charging schedule

and support with balancing mechanisms that could be matched with intermittent

nature of renewable generation. In the multi-objective optimisation proposed in this

Chapter, theoretical interests were modelled, and thus practical enablers need to

be considered to support low carbon and fair strategies. Some barriers identified
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for the development of low carbon EV charging are related to regulatory framework

to introduce carbon taxes, support to carbon trading schemes at the regional level

where EV battery aggregation can be beneficial to the distribution system or even at

the transmission level if the capacity bid is sufficiently big. More emerging markets

are also needed to support the inclusion of flexibility potential of EVs. In addition,

customer engagement is necessary to use EV batteries as flexibility assets, thus it

is important to consider customer satisfaction and willingness to act as business

partners in potential value proposition models.

4.5.2 Conclusion

This Chapter presented a modelling approach for EV scheduling to reduce CO2eq

emissions used when charging EVs. A multi-objective optimisation was formulated

where potential conflicting interests came from the perspective of EV drivers, a car-

bon regulator and a charging station operator. The potential revenues/costs for EV

drivers and the charging station operator were compared when using the optimisa-

tion with individual objectives, the best options for both EV users and the charging

station operator were the solutions found with their respective goals computed separ-

ately when using V2G technology. A multi-objective genetic algorithm was proposed

to find a fair and a green solution considering the trade-offs of each goal. There

was a tendency towards higher weight factor assigned to the EV drivers goal in all

solutions except the green solution found for the work case scenario where more

weight was assigned to the charging station operator. Thus, a priority on the goal

proposed for EV drivers has potential for finding fair and green solutions specially

where V2G technology is present and where EVs have more charging flexibility.

Opportunities of research in future directions could include further additions where

EVs can be integrated to support the transition to decarbonisation with power sys-

tems modelling. For instance, at the micro-grid islanded level where EVs can support

with storage capacity at residential locations or at work/supermarket locations where
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EVs can be integrated with buildings. Degradation restrictions of batteries and more

uncertainties of EV driver behaviour such as unexpected departures, can also be

further studied to improve the accuracy of EVs capacity to be modelled as flexible

loads. Due to the model proposed has high computational time, it may have limited

application to cases where planning in advance for bidding into market auctions

is possible, thus a faster real time control for EV charging schemes could also be

integrated to consider real scenarios where latency response and grid restrictions are

important. Finally, another research direction for EV charging could include peer

trading mechanisms with carbon factor considerations.





Chapter 5

Sensitivity Analysis of EV

Charging Parameters

5.1 Introduction

The two previous chapters have proposed pricing and bidding mechanisms for par-

ticipation of EVs in different markets. Firstly, in balancing services and secondly

in carbon markets. The aim of this chapter is to provide key variables that can be

improved from the models proposed in Chapter 3 and 4. In specific, this Chapter

tackles Objective 5 described in the Introduction section of this thesis. Objective

5 is to analyze what parameters can improve the performance of a charging station

operator stakeholder. The contribution in this Chapter related to this objective is

the strategic assessment, made with sensitivity analysis using one at a time method,

to evaluate selected parameter inputs measured by performance indicators of CO2eq

emissions, bidding capacity to be used in market auctions, revenues and costs for

both EV users and the charging operator.

EV charging optimisation modelling has been extensively studied in the previous

two Chapters, it is important to determine improvement opportunities (for both

researchers and industry stakeholders) and limitations of the models proposed. For
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practicality, the parameters to study in the sensitivity analysis of this chapter are

divided into parameters that can by controlled by the charging station operator and

parameters that depend on EV driver behavior or technology. Parameters that could

be controlled by charging station operator include initial state of charge of an EV,

trip requirements (when the charging station may sacrifice customer satisfaction

for instance when there are grid restrictions) and the size of the charging station.

Parameters that are independent of the charging station are EV availability, EV

battery size and charging rating of EVs. Indicators for the changes in the parameters

to study consider revenues of the charging station operator, bills of EV users, CO2eq

emissions per the charging schedule and bidding capacity to bid when discharging

energy from EV users. It is important to note that charging with unidirectional

technology in the last indicator is not considered as discharging of energy can work

for both carbon and balancing markets.

5.2 Problem Formulation

The previous two Chapters have provided significant contributions to the areas

of demand side management and multi-objective formulations to reduce carbon

emissions. This Chapter focuses on investigating sensitivity of selected parameters

used in the models from Chapter 3 and Chapter 4. The aim of the sensitivity

analysis is to investigate which parameters can provide the best response considering

revenues for the charging station operator, bills savings from EV users, reduction of

CO2 emissions and bidding capacity. The sensitivity analysis previously described

provides potential improvements in the operation of a charging station that can be

key for further work in the topic of overall integration of EVs with the grid. In

addition, the sensitivity analysis provides insights for asset modeling potentials for

future work using the models proposed in previous Chapters.

Research works in sensitivity analysis of electric vehicles have provided insights to

future asset modeling capabilities. For instance, Stiasny et al. [157] investigated
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impact of EVs in the low distribution grid and found highest sensitivities are observed

with increasing number of EVs, increase of pole charging rating and movement of

EV patterns. Zhou et al. [158] proposed a sensitivity analysis for techno-economic

assessment of varied microgrid settings with EVs, results showed highest sensitivity

impact on revenue is observed when changing battery storage system cost. Zhu et

al. [159] assessed vehicle life-time costs with a sensitivity analysis for supercapacitor

energy storage systems, results concluded that highest costs are observed in battery

degradation, more specifically the sensitivity results indicated highest impact from

battery degradation are observed in vehicle driving range. The previously mentioned

authors have used in their sensitivity analysis one of the two methods: one factor

at a time, where one input changes while the others remain constant, and global

sensitivity analysis, where more than one input can vary simultaneously [160]. For

practicality, one factor at a time method is used in this Chapter for the simplicity

of identification of isolated changes that can improve performance of the model.

The EV charging model to optimise from EV users perspective in Chapter 3 demon-

strated how users can respond to pricing schemes created by the charting station

operator. Then in Chapter 4, EV charging schedules were created in a multi-objective

optimisation where pricing signals also consider carbon taxes imposed by a carbon

regulator. Thus, the pricing scheme in this Chapter considers the pricing strategy

extension from Chapter 4 (extension of Chapter 3) to take into account additional

costs associated to EV charging. Thus, pricing strategies are formulated using equa-

tions 3.2.1 through 3.2.20, with additional carbon tax costs stated 4.2.8. Timings

for influencing EVs to discharge energy back to the grid and for setting energy bids

are estimated with equations of high carbon grid intensity as stated in 4.2.10 and

high capacity of the charging station as in 3.2.12.

Regarding the EV charging optimisation model to use in this Chapter, one goal

from the multi-objective optimisation is selected in order to examine EV charging

schedule sensitivities when adjusting different parameters. For this purpose, the

goal selected is EV users’ as was the goal with overall highest weight with both
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Figure 5.1: Selected parameters to model in the sensitivity analysis.

the fairest and greenest solution based on the results obtained from the genetic

algorithm used in Chapter 4. Thus, EV charging schedules are analyzed using the

model formulated with equations 3.2.21 through 3.2.27. Restrictions from the EV

charging formulation from a carbon allowance per EV impose by a carbon regulator

in equation 4.2.6 is not considered in this Chapter this restriction may over restrict

the formulation and cause potential infeasibilities in the sensitivity analysis. All

parameters to be analyzed in this Chapter with the pricing and EV charging just

described, are summarised in Figure 5.1.

5.3 Evaluation of EV Charging Parameters

Simulation parameters to be used for the sensitivity analysis can vary depending on

which parameter is being studied. General parameters of all sensitivity cases can

be summarized in Table 5.1, however there are few exceptions to the calculations

as some parameters must remain fixed when changing others. Sensitivity analysis

for the initial state of charge of an EV was estimated when making variations of the
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Table 5.1: Simulation parameters

Parameter Value
Total number of EVs 35 EVs
Carbon tax (ctaxt) 18 £/tonCO2eq emissions
Solar panel rating 4 kW [139]
Time periods in a day 24, for every hour
EV arrivals (home) Empirical cdf [156]
EV departures (home) Empirical cdf [156]
Initial state of charge (home) Empirical cdf [156]
Trip requirements (home) Empirical cdf [156]
EV arrivals (work) ar ∼ N (µ = 8, σ2 = 1) [138]
EV sojourn time (work) ts ∼ Logistic(µ = 0.27, s =

0.06), mn = 5, mx = 18.52 [138]
Initial state of charge (work) Empirical cdf [140]
Trip requirements (work) Empirical cdf [140]
Charging station rating 3.7 kW [141]
Mitsubishi Outlander charging rat-
ings/battery size

3.7 and 22 kW/ 12kWh[142]

Nissan Leaf charging rating/battery size 6.6 and 50 kW/40 kWh[143]
BMW 330e charging ratings/battery
size

3.7 kW/12 kWh[144]

Energy cost 10 p/kWh [146]
Utility from carbon markets 10%

percentage of state of charge from nearly 0% to 100% of the battery size. As the EV

charging formulation uses stochastic trip requirements as a restriction, the value of

this parameter had to be adjusted to meet charging rate and battery size restrictions.

Sensitivity analysis of trip requirements used from original trips from stochastic

requirements in Table 5.1 was modelled with percentage increases from 0% to 100%.

However, restrictions of battery size and charging rate were also checked. Increase

in the infrastructure of the charging station in terms of solar panels available was

increased from 1 to 200.

In terms of parameters external to the control of the charging station operator,

increase of battery size of EVs was simulated from 12 kWh to 300 kWh. Similarly,

sensitivity analysis was simulated with charging rate of EVs increasing from 3.7 kW

to 193.7 kW. For these two sensitivity analysis, all other parameters in Table 5.1

were used except for the ones just described. Finally, as EV arrivals and departures

are simulated as availability of EVs at the charging station with a binary matrix,
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EVs availability hours for charging was decreased from arrivals and departures at

the same time starting from two hour reductions to maximum 20 hours, where zero

availability was set if there were no longer hours to reduce from EVs availability.

For this sensitivity analysis, trip requirements were checked and updated to reflect

potential restrictions of battery size and charging rate as less availability for charging

means the EV charging optimisation can become infeasible if trip requirements are

not satisfied.

5.3.1 Charging Station Control and Sizing Parameters

This Subsection shows the sensitivity analysis of the results obtained when charging

parameters of initial state of charge of EVs, trip requirements, number of solar panels

used for energy generation at the charging station and number of EVs at the charging

station. The first two parameters are analysed as it is assumed that if the charging

station operator is the only provider of EV users, for preference, convenience or

price, then it could be possible to control for instance the final state of charge of

a vehicle in a specific location and/or limit trip charging requirements which are

normally specified by EV users. The last two parameters are regarding the size

of a charging station, these two are analyzed to project what is the impact on the

number of charging poles available for charging and the size of a potential renewable

charging station that uses solar panels to charge EVs as much as possible.

Figure 5.2 shows the sensitivity analysis performed when the initial state of battery

for a mix of EVs with stochastic charging rating, battery size and trip requirements as

the ones used in Chapter 4 for home and residential locations. Initial state of charge

was obtained by increasing percentage of the total battery size of each EV. Revenues

for the charging station operator decrease in the two G2V cases as the initial state

of charge reaches 100%, however revenues increase with the V2G work case and

the V2G home case remains relatively stable with slight reduction in utilities. The

reason for this could be that V2G technology allows discharging regardless of the
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Figure 5.2: Sensitivity analysis of initial SOC of EVs with case
scenarios with nomenclature of: EV Technology (V2G-
bidirectional/ G2V-unidirectional) - charging location
(W-work/ H-near home) and Trip Requirements (Trip)
- charging location (W-work/ H-near home).

initial state of charge as long as the final state of charge meets driving requirements.

Moving on with the results in Figure 5.2, EV bills are positive (meaning EV users

get utilities) no matter the initial state of charge of an EV with the V2G home

case. Whereas, EVs have costs with the three other cases but EVs eventually start

having less costs as the initial state of charge increases, specially in the V2G work

case where EVs even get utilities between the 40% and 60% of initial state of charge.

This means that as EVs get higher battery charge, they get more utilities as they

are providing energy back to the grid when having vehicle to grid technology. As

unidirectional technology is limited to just charging, with higher battery charge EVs

can only reduce charging costs. In terms of carbon emissions from EV charging,



122 Chapter 5. Sensitivity Analysis of EV Charging Parameters

0 50 100 150 200

Percentage of Trip (%)

0

100

200

300

400

500

600

C
h
a
rg

in
g
 o

p
e
ra

to
r 

(£
) 

0

100

200

300

400

500

T
ri
p
 r

e
q
u
ir
e
m

e
n
ts

 (
k
W

)

Impact on revenues of charging operator

V2G-H

G2V-H

V2G-W

G2V-W

Trip-W

Trip-H

0 50 100 150 200

Percentage of Trip (%)

-400

-200

0

200

400

600

800

E
V

 b
ill

s
 (

£
)

0

100

200

300

400

500

T
ri
p
 r

e
q
u
ir
e
m

e
n
ts

 (
k
W

)

Impact on EV Bills

V2G-H

G2V-H

V2G-W

G2V-W

Trip-W

Trip-H

0 50 100 150 200

Percentage of Trip (%)

-1.5

-1

-0.5

0

0.5

1

C
O

2
 e

q
 e

m
is

s
io

n
s
 (

g
C

O
2
 e

q
)

105

0

100

200

300

400

500

T
ri
p
 r

e
q
u
ir
e
m

e
n
ts

 (
k
W

)

Impact on CO
2
 eq carbon emissions

V2G-H

G2V-H

V2G-W

G2V-W

Trip-W

Trip-H

0 50 100 150 200

Percentage of Trip (%)

-1200

-1000

-800

-600

-400

-200

0
B

id
 (

k
W

h
)

0

100

200

300

400

500

T
ri
p
 r

e
q
u
ir
e
m

e
n
ts

 (
k
W

)

Impact on bidding capacity

V2G-H

G2V-H

V2G-W

G2V-W

Trip-W

Trip-H

Sensitivity analysis of Trip requirements

Figure 5.3: Sensitivity analysis of Trip Requirements of EVs with
case scenarios with nomenclature of: EV Technology
(V2G-bidirectional/ G2V-unidirectional) - charging loc-
ation (W-work/ H-near home) and Trip Requirements
(Trip) - charging location (W-work/ H-near home).

most cases have a decrease in carbon emissions as the initial state of charge increases

except for the V2G home case where maximum CO2eq emissions are located between

the 40% and 60% percentage of the initial state of charge of the battery. Finally,

bidding capacity increases as the initial state of charge increases in the V2G work

case, whereas bidding capacity decreases with increase in initial state of charge in

the V2G home case. Thus, bidding capacity can be maximised as EVs arrive at

home with low battery charge and and as EVs arrive with high battery charge at

work locations. The control of state of charge could potentially be managed by a

single charging provider and an accurate estimate of trips and charging scheduling.

Figure 5.3 shows the results of the sensitivity analysis of variations of trip require-
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ments. Revenues of the two G2V cases and V2G home case increase as trip require-

ments increase, however there is no clear trend in the V2G work case. In terms of

EV charging costs for EV users, they start increasing as trip requirements increase,

however as trip requirements reach 100%, the slope of EV bills decrease at a lower

rating than before reaching the 100% trip requirements. This could mean they are

restricted either by the charging rating or battery size of EVs. Similarly, the impact

on increase of CO2eq emissions is more prominent before trip requirements reach

100%. Bidding capacity decreases for both the V2G home and work cases, higher

capacity is observed in the home case as EVs have more flexibility. If we compare

the biggest bid in the V2G home cases of the sensitivity analysis of trip and initial

state of charge control, initial state of charge offers slightly more bidding capacity,

however difficulties of control and customer satisfaction should be considered as well.

Figure 5.4 shows the sensitivity analysis when increasing the capacity of the charging

station for instance in a public parking hub or in a specific residential area where

EVs can be aggregated as flexible loads. Revenues for the charging station operator

increase in all case scenarios specially in the two V2G cases. Utilities for EV increase

in the two V2G cases with a higher increase proportion in the home case scenario.

In contrast, EV bills are negative in both the G2V cases as EV number increases

and selling energy back to the grid is not possible with unidirectional technology.

Moving on to the impact on CO2eq emissions, as the number of EVs to aggregate

increases, CO2eq emissions decrease only in the case of the V2G home case scenario.

Meanwhile, all other cases have an increase in CO2eq emissions as the number of EVs

increases. Regarding bidding capacity, the most significant change as the number

of EV increases is in the V2G home scenario where capacity reaches about 1.87

MW with 96 EVs. Capacity with the V2G work case scenario also increases up

to about 1.14 MW. When aggregating the total bidding capacity of both charging

technologies, both meet minimum bid requirements of National Grid (transmission

system operator in the UK) however it is important to consider that the same bidding

capacity must be sustained for the periods specified by the aggregator.
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Figure 5.4: Sensitivity analysis of Number of EVs with case scen-
arios with nomenclature of: EV Technology (V2G-
bidirectional/ G2V-unidirectional) - charging location
(W-work/ H-near home) and Trip Requirements (Trip)
- charging location (W-work/ H-near home).

Sensitivity analysis as the number of solar panels increases is presented in 5.5. For

this analysis it was not required to change trip requirements for work and home

location. It can be observed in the top left graph that an increase of solar panels has

the biggest impact in the case of V2G at work location followed by the V2H work

case. As solar power overlaps with EV driver behavior at work location, the work

cases show biggest impact on revenues of the charging station operator than the

results obtained with home location. However, as pricing per unit remains the same

as the pricing strategy depends mainly on user response to prices, that is price does

not decrease with increasing number of solar panels, then EV bills remain constant.

CO2eq emissions are reduced the most with the V2G work case scenario as a result
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Sensitivity analysis of Number of Solar Panels

Figure 5.5: Sensitivity analysis of Number of Solar Panels with case
scenarios with nomenclature of: EV Technology (V2G-
bidirectional/ G2V-unidirectional) - charging location
(W-work/ H-near home) and Trip Requirements (Trip)
- charging location (W-work/ H-near home).

of solar power generation overlap with EV charging availability for charging behavior

at work location. The V2G near home case offers the second best option in terms

of minimisation of CO2eq emissions followed by the G2V work and finally the G2V

near home case. Bidding capacity remains constant as flexibility is aquired only

form electric vehicle batteries.

5.3.2 EV User Parameters

To continue with the sensitivity analysis presented in this Chapter, this Subsection

contains the parameters that are depending on EV driver behavior and technology;

EV charging rate restrictions, battery size and EV availability (arrival to departure
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at the charging station). The results obtained assume the charging station rating

restrictions are not constrained and therefore the charging limitations are set by EV

owners. Similarly, battery sizing does not depend on infrastructure of the charging

station, and therefore it is included as an external factor of the charging operator. To

better represent the impacts in battery and charging rate increases, it is assumed that

all EVs have the same technology specifications. EV availability is considered in this

subsection as EV behavior does not necessarily depend on the charging station sizing

or charging control. However, prediction to arrival and departures is possible with

forecasting information which can be somewhat in control of the charging station

operator. Analysis of the results obtained when increasing the parameters described

are presented in the following paragraphs.

Figure 5.6 shows the results when increasing EV battery size. As requirements for

charging and charging rate restrictions remain constant, the impact on revenues of

the charging station operator only increase in the V2G cases where the battery size

of EVs could be charged and discharged to minimise EV bills. In a similar way,

EV bills (utilities) increase with charging rate only for the two cases of V2G, but

this is limited as well by trip and charging rate restrictions of EVs. In terms of EV

technology, a simple increase of battery size does not necessarily mean continuous

increase in flexibility from EVs, increase in revenues for the charging station operator

and EV bills savings. CO2eq emissions remain constant in the two G2V cases whereas

emissions decrease in the V2G near home case, and emissions slightly increase in

the V2G work case. Bidding capacity increases in the V2G cases, however biggest

changes in capacity are observed between 12 to 32 kWh battery size.

The sensitivity analysis of charging rate of EVs is presented in Figure 5.7. The

impact on the charging operator revenues observed at the top left graph indicate a

significant increase up to about 50 kW of charging rate for the two V2G cases. There

isn’t impact on the two G2V cases as it is not possible to use discharging of EVs as

charging rate increases, and therefore EV charging schedules remain the same. EV

bills (utilities) also increase with charging rating specially before 50 kW rating. In
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Sensitivity analysis of Battery Size

Figure 5.6: Sensitivity analysis of EV Battery Size with case scen-
arios with nomenclature of: EV Technology (V2G-
bidirectional/ G2V-unidirectional) - charging location
(W-work/ H-near home) and Trip Requirements (Trip)
- charging location (W-work/ H-near home).

contrast to the charging operator utilities and EV bills of the sensitivity analysis

of battery size, charging rating shows bigger impact on money as more flexibility is

obtained in the V2G cases. In terms of reduction of CO2eq emissions and increase

bidding capacity as charging rate increases, the V2G home shows the best results

followed also by the V2G case at work location.

To finish with the sensitivity analysis of EV parameters, Figure 5.8 shows the results

obtained when reducing EV availability, that is hours reduced from both stochastic

arrival and departures of EVs. As trip requirements are adjusted to match charging

rate limitations with time available for charging, trips for the work case scenario are

reduced to near zero after reducing 11 hours to EVs availability. On the other hand,
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Sensitivity analysis of Charging Rate

Figure 5.7: Sensitivity analysis of EV Charging Rate with case
scenarios with nomenclature of: EV Technology (V2G-
bidirectional/ G2V-unidirectional) - charging location
(W-work/ H-near home) and Trip Requirements (Trip)
- charging location (W-work/ H-near home).

trips for near home location decrease as EV hours of availability are reduced. This

reduction in trips and EV availability reflect that case scenarios for revenues for the

charging operator and EV bills get close to zero after reduction of 11 hours. This

same pattern is followed by the impact on CO2eq emissions and bidding capacity.

By contrast, the reduction in hours for the near home location allows EV users and

the charging station operator to have some utilities for both the V2G and G2V cases.

Meanwhile, EV bills are positive, meaning EVs receive utilities, only in the V2G

at near home case. In the G2V at near home case, EVs receive utilities and have

costs after a reduction in availability of 16 hours. The impact of CO2eq emissions

at near home location differs with V2G and G2V technology; with V2G technology
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Figure 5.8: Sensitivity analysis of EV Availability with case scen-
arios with nomenclature of: EV Technology (V2G-
bidirectional/ G2V-unidirectional) - charging location
(W-work/ H-near home) and Trip Requirements (Trip)
- charging location (W-work/ H-near home).

CO2eq emissions increase with reduction of availability whereas with G2V technology

emissions do not reduce significantly. Finally, bidding capacity reaches zero starting

with the V2G at work location and then followed by the V2G at near home location.

5.4 Chapter Remarks

5.4.1 Discussions

The sensitivity analysis presented in this Chapter uses the mathematical modeling

of charging station operator with solar panels available for charging EVs. Thus, the

limitations of the analysis are presented also in the formulation of the model. For
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instance, trip requirements were adjusted to comply with charging restrictions and

battery size limitations, thus the difference between the original trip requirements

and the adjusted requirements was not analyzed. A slack variable in the trip require-

ment could be implemented in the future to consider the differences for instance

on customer satisfaction for instance when reducing trip requirements. Another

limitation of the sensitivity analysis is that the parameters were analyzed separately

for practical purposes, however there are variables that together can improve the

performance of the results, for example a combination of increase in battery size and

charging rate.

The parameters proposed in the sensitivity analysis of this Chapter were selected as

potential improvement indicators in terms of utilities, CO2eq emissions and bidding

capacity. However, the implementation of further changes to the parameters should

be carefully considered. In the case of trip requirements and initial state of charge,

EV charging control could set the right values for both parameters depending on

the desired impact on the indicators discussed. Number of EVs and solar panels

of the charging station could give a guidance in terms of impact on day to day

operation depending on the size of a charging station, however other costs should

also be considered when making an economic analysis. Moving now to EV battery

size and charging rate, as these are parameters defined by the original equipment

manufacturers, this is hard to manipulate from the charging operator side, but EV

charging operators can take advantage and make predictions of biding capacity and

potential of EVs as technology improves. Finally, EV availability depends on users

behavior, however the charging station operator could incentivise users availability

and have better prediction of arrivals and departures for planning purposes.

5.4.2 Conclusions

This Chapter presented a sensitivity analysis for selected parameters that could be

controlled by the charging operator and define the size of a charging station, and
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that are EV related parameters depending on EV behavior and technology. Greater

impacts in terms of increasing revenues for the charging station operator, EV utilities

and reduction of CO2eq emissions and bidding capacity were obtained with increasing

charging rate of EVs and of the charging station pole, however it is important to

mention that grid reinforcement costs and other initial investment costs associated

with the charging station are not considered. Greatest reduction in revenues for the

charging station operator, EV utilities, reduction of CO2eq emissions and bidding

capacity was obtained with a reduction in EV charging availability at the charging

station, as a result of not being able to use EVs for either charging or for providing

flexibility services.

Future directions of research with the use of the model used for the sensitivity

analysis in this Chapter include sizing of a charging station that could consider

initial investment of a charging station and solar panels, operational costs and

potential connection costs for installing EV charging poles in a specific location.

This sizing model could also include a sensitivity analysis with varying charging

poles, solar panels depending on area restrictions and potential demand of EVs.

Another analysis that could be used with the model could also consider the best

location for a charging station that can ensure maximisation of utilisation of charging

stations and inclusivity of deployed charging infrastructure for EV users. The model

used for the sensitivity analysis can also be used to predict better EV arrivals and

departures as well as control improvement for trip requirements and EV state of

charge, specially in a case where an EV aggregator engages with EVs to provide

flexibility in exchange of management of EV charging.





Chapter 6

Conclusions

This final Chapter presents the general contributions of this Thesis in each Chapter

with its corresponding most relevant results to summarize content and analysis

discussed previously. Future research directions are also presented in order to provide

insights about the work that can be further developed or complement the work

already completed in this thesis.

6.1 Final conclusions

This Thesis provided significant contributions to knowledge to the area of demand

response pricing schemes and EV charging to reduce CO2eq carbon emissions. First,

Chapter 3 provided a data driven approach to estimate time of use pricing based

on historical EV charging response to price in a solar V2G/G2V charging station.

The proposed pricing scheme included a bi-level optimisation where pricing was

optimised considering maximisation of revenues for the charging station operator

and expected EV charging response to price from EV users. Then, an EV charging

bidding optimisation model was proposed considering stochastic behavior of EVs

such as: arrivals, departures, initial state of charge and trip requirements. The

pricing scheme proposed in Chapter 3 also demonstrated how pricing can influence

driving behavior during balancing services timings and it solved the pricing dilemma
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for setting profitable pricing for EV charging and for auctions in energy markets.

EV charging response to price and bidding schedules were estimated with the EV

charging optimisation model where users demonstrated engagement in participating

in flexibility services offered to the grid. After evaluating the model in different

scenarios of charging technology and EV driver behavior, for the V2G or bidirectional

scenarios, rapid charging with the more inelastic curve was the case with greater

revenues. For the G2V or unidirectional scenarios, the fast charging 2 with the more

inelastic curve was the case with greater revenues.

Having described the proposed model in Chapter 3, to reiterate the objectives and

contributions, in summary Chapter 3 addressed Objective 1 and Objective 2 of

this thesis which were stated in the Introduction section of this thesis. Objective

1 was to design a pricing scheme that can influence EV drivers to participate in

balancing services. The contributions related to this objective were: new dynamic

time of use pricing scheme based on inverse demand curve that ensures economical

and EV user engaging behavior, demand responsive pricing scheme solves pricing

dilemma of prices for EV users and prices for participation in balancing services.

Objective 2 was to design an EV charging control planning scheme to account for

bidding and EV charging. The contributions related to this objective were: bi-level

optimisation with pricing that feeds into EV charging control optimisation that

produces bidding and charging schedules, this EV charging control optimisation

used for computing EV charging schedules is capable of modelling stochastic EV

charging behavior and both V2G, bidirectional or vehicle to grid power flow, and

G2V, unidirectional or grid to vehicle power flow technologies.

Chapter 4 presented a contribution to the area of fairness in multi-objective optim-

isation for EV charging in order to reduce CO2eq emissions. The multi-objective

optimisation considered three stakeholders: EV users (who are impacted by car-

bon taxes in energy generation), a carbon regulator (that penalises charging during

timings whose grid carbon factor is above nominal carbon values), and a charging

operator (that intends to participate in carbon trading markets). A weight was
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assigned to each goal in order to evaluate the influence over each goal in EV char-

ging schedules. To evaluate fairness between all weights assigned to each objective

function, a genetic algorithm known by the research community as NSGA-II was

adapted to find non dominated solutions that formed a pareto frontier set. To select

solutions from the pareto frontier set, two methods were proposed to either obtain

a most preferred ranked solution (considering stakeholders perspective) and a green

solution (that minimised CO2eq emissions). After comparing EV charging locations

at residential areas (near home) and charging at work, the fairest solution for the

work and near home case assigned the highest weight factor to the objective function

of EV users, followed by the charging operator and the carbon regulator. In terms

of the greenest solutions, the near home case had same priority of weight assignation

to the objective functions when comparing to the fairest solution, whereas the work

case assigned a higher weight to the charging operator followed by EV users and the

carbon regulator.

Having described the proposed model in Chapter 4, to reiterate the objectives and

contributions, in summary Chapter 4 addressed Objective 3 and Objective 4

which were stated in the Introduction section of this thesis. Objective 3 was to

design a control scheme for EV charging to reduce carbon emissions. The contri-

butions presented in this Chapter related to this objective were: new formulation

of smart EV charging to reduce carbon emissions that includes goal of EV users,

charging operator and carbon regulator, weights are assigned to each goal as design

optimisation variables. Objective 4 was to design a multi-objective optimisation

approach to ensure fairness between all objectives and evaluate the trade-offs between

all stakeholders. To address this goal, this Chapter presented the following contribu-

tions: linear programming formulation integration with genetic algorithm to ensure

fairness and reduction of carbon emissions. For this integration, two non-dominated

criteria is proposed: best ranked solution and minimisation of carbon emissions.

Finally, Chapter 5 presented a numerical assessment with a sensitivity analysis of

EV charging parameters to find improvement research opportunities and limitations
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using the models proposed in Chapter 3 and Chapter 4. The sensitivity analysis

was divided into two main categories of selected charging station parameters: those

related to control and sizing of the charging station and those related to EV driving

behavior and electric vehicle technology. For practical purposes, the model used to

perform the sensitivity analysis was selected from the pricing scheme that included

carbon taxes from Chapter 4 and the EV charging optimisation used in Chapter

3. The best results in terms of performance indicators such as revenues for the

charging operator, utilities for EV users, minimisation of carbon emissions and

bidding capacity for carbon markets were obtained when increasing EV charging

ratings. In contrast, EV charging availability was the parameter with greater negative

impact (reduction of revenues) in overall performance indicators.

Having described the proposed model in Chapter 5, to reiterate the objectives and

contributions, in summary Chapter 5 addressed Objective 5 described in the In-

troduction section of this thesis. Objective 5 was to analyze what parameters can

improve the performance of a charging station operator stakeholder. The contribu-

tion in this Chapter related to this objective was the strategic assessment, made

with sensitivity analysis using one factor at a time method, to evaluate selected

parameter inputs measured by performance indicators of CO2eq emissions, bidding

capacity to be used in market auctions, revenues and costs for both EV users and

the charging operator.

6.2 Future Research Work

6.2.1 Pricing Competition

The pricing scheme proposed in Chapter 3 proposed a data driven price optimisation,

where formulation includes the maximisation of revenues and response of EVs to

price over time using historical charging demand. Competition is indirectly included

in the historical demand of EVs, for instance if users choose to charge in another
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charging stations nearby with a cheaper price, this change in demand can be reflected

after estimating new historical responses to price. However, a real time response to

competition is not considered. Future research in competition could include expected

pricing response from other charging stations for instance using expected Bertrand

competition where it is assumed that EV users with known information of charging

stations are more likely to choose the charging station with the cheapest charging

bill. Competition modelling could also be optimised in the case where the charging

operator owns several charging stations in the same area, Cournot competition

formulation could be used in order to optimise optimum bidding quantity from EV

to use for balancing services in order to predict price. Another consideration of

competition could include expected pricing from other bidding competitors based

on capacity, price and estimations of performance response to balancing services.

6.2.2 Pricing Differentiation

Chapter 3 proposed solving the pricing dilemma of how to set prices for EV charging

users and for energy auctions when using EVs as flexibility assets. Future research

work to improve revenues for EV charging operators could include other pricing

options where users can be classified based on willingness to pay for specific charging

services. Pricing diversification could include different pricing for premium or basic

users that are willing to pay more for specific charging station options. In order

to estimate pricing differentiation using historical responses to price in time using

inverse demand curve, different pricing can include levels of elasticity in time and

preferences for charging of users with regard to different parameters such as number

of charging times in a week and unlocking specific charging locations.

6.2.3 EV Charging Welfare

Pricing strategies were estimated to maximise revenues as profitability is one of

the main barriers to commercialise V2G charging technology for balancing services,
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however pricing fairness was not considered. A fairness equilibrium to reach a

balance between social welfare and maximisation of revenues for the charging station

operator, is an addition to the pricing scheme that could be further explored in the

future. A method that could be used for future research could contemplate non-

cooperative game theory formulations with Nash Equilibrium. In terms of further

additions to the EV charging optimisation model, further improvements could include

charging priority in order to manage charging ratings considering grid topology and

transformer constraints, where user satisfaction levels could be used to balance not

reaching to specific trip requirements in a charging location if necessary.

6.2.4 Markets to Integrate EVs

In this Thesis, EVs’ flexibility was studied to reflect EVs response to price in charging

schedules that could be used for incorporating EVs energy flexibility in balancing

services. The EV charging optimisation for estimating EV charging schedules con-

sidered granularity on hourly periods, however additional considerations to the

charging schedules could include reduced granularity of data to test with 30 min

periods for instance for the wholesale market in the UK. In addition, EV charging

control could also consider real time response to regulation signals coming from

the transmission system operator in the UK (National Grid) or distribution system

operators that could use either power or voltage deviation signals. Finally, another

addition to the control for EV charging could include inclusion of EVs in peer energy

trading using decentralised charging control algorithms.

6.2.5 Accuracy of Charging Data

In this Thesis, inputs for estimating EV charging optimisation used data from:

distribution fitting indicating EV driver behavior (EV arrivals and departures),

empirical distributions to estimate trip and initial state of charge parameters, linear

estimation for EVs driver response to price and average hourly solar power. These
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inputs are fixed and therefore, are practical for simulation purposes, but having

accurate information to be used real case scenarios can be critical to estimate precise

bidding capacity and expected profits. In order to estimate accurate prediction,

more advanced methods can be used such as ARIMA and artificial neural networks.

Non linear estimations of charging demand response to price could be also explored,

where estimations could include demand and price relationships in smart grids, for

instance sigmoid functions have been commonly modelled in models closer to real

time settings.
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Figure 1: Net profits/utilities breakdown with pricing using the
three inverse demand curves and charging cases.



142 Chapter 6. Conclusions

8 10 12 14 16 18 20 22 24

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

(x
)

Availability of EVs at home location

Empirical CDF

Figure 2: Empirical CDF for availability of EVs at home location
considering arrival and departures during a day.
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Figure 3: Empirical CDF for availability of EVs at work location
considering arrival and departures during a day.
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Figure 4: Empirical CDF for trip requirements of EVs at home
location.
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