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Enrichment of Wind Turbine Health History for Condition-Based Maintenance

Roger Cox

This research develops a methodology for and shows the benefit of linking records of wind turbine
maintenance. It analyses commercially sensitive real-world maintenance records with the aim of

improving the productivity of offshore wind farms.

The novel achievements of this research are that it applies multi-feature record linkage techniques to
maintenance data, that it applies statistical techniques for the interval estimation of a binomial
proportion to record linkage techniques and that it estimates the distribution of the coverage error of
statistical techniques for the interval estimation of a binomial proportion. The main contribution of this
research is a process for the enrichment of offshore wind turbine health history.

The economic productivity of a wind farm depends on the price of electricity and on the suitability of
the weather, both of which are beyond the control of a maintenance team, but also on the cost of
operating the wind farm, on the cost of maintaining the wind turbines and on how much of the wind
farm’s potential production of electricity is lost to outages. Improvements in maintenance scheduling,
in condition-based maintenance, in troubleshooting and in the measurement of maintenance
effectiveness all require knowledge of the health history of the plant. To this end, this thesis presents

new techniques for linking together existing records of offshore wind turbine health history.

Multi-feature record linkage techniques are used to link records of maintenance data together. Both
the quality of record linkage and the uncertainty of that quality are assessed. The quality of record
linkage was measured by comparing the generated set of linked records to a gold standard set of
linked records identified in collaboration with offshore wind turbine maintenance experts. The process
for the enrichment of offshore wind turbine health history developed in this research requires a vector
of weights and thresholds. The agreement and disagreement weights for each feature indicate the
importance of the feature to the quality of record linkage. This research uses differential evolution to

globally optimise this vector of weights and thresholds.

There is inevitably some uncertainty associated with the measurement of the quality of record linkage,
and consequently with the optimum values for the weights and thresholds; this research not only
measures the quality of record linkage but also identifies robust techniques for the estimation of its

uncertainty.
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1 Introduction

Section 1.1 will present a brief introduction to the offshore wind energy sector of the energy industry. It
presents overall trends in the sector: trends in the rating of Offshore Wind Turbines (OWT) and in the
distance to shore of wind farms. It is included to provide context for section 1.2, which will go into more
detail about maintenance, and about maintenance record keeping, in this sector and will describe the
history of attempts to improve the maintenance of wind turbines. It will explore the state of the art of
the maintenance of OWTs, demonstrating a need to enrich the health history of the OWTs. These
sections together will show that the challenges of maintaining OWTs, together with their growing
importance in the energy industry, have brought innovations in OWT maintenance to the forefront of
maintenance technology and that success in this sector relies on good information. Section 1.3
specifies this thesis area of research, section 1.4 describes the research process, section 1.5
identifies some key constraints, section 1.6 describes the thesis structure and section 1.7 details its

original contributions.
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1.1 Introduction to the Wind Energy Industry

This section will locate wind energy in a global context. Renewable energy can refer to a range of
forms of energy commodities such as electricity, fuel or heating where the energy source is naturally
replenished on a human timescale. Figure 1-1 shows global consumption of the most important
sources of electrical energy: the major fossil fuels: oil, gas and coal, nuclear fission and the major
renewables: hydroelectricity, solar and wind. Data in the BP Statistical Review of World Energy, 2021,
shows that the total consumption of all these commodities together increased 3.53 times over the 50

years from 1970.

Data in the BP Statistical Review of World Energy, 2021, shows that wind energy made up only 2.58%
of world energy consumption in 2020 but that it was only 0.43% in 2008 so its relative importance is
increasing. Consumption of wind energy was 1.86 times higher than that of solar in 2020 but it was still
well behind nuclear and fossil fuels, despite world consumption of oil and gas generated electricity
dropping by 6% due to Covid 19.

— — = Hydro
— - — Muclear

— — Wind

World Annual Consumption (EJ)

— . =Solar

1 .
1570 1580 1550 2000 2010 2020

Figure 1-1, World Annual Consumption by Energy Type
from data in BP Statistical Review of World Energy, 2021.
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1.1.1  Offshore Wind Energy

This section presents an overview of the OWT sector of the energy industry. It presents overall trends
in the sector: trends in the rating of OWTs and in the distance to shore of wind farms. It is included to
provide context for section 1.2, which will explore the state of the art of the maintenance of OWTs. It
will describe the main advantages of offshore wind energy over onshore wind energy and the different
costs of these two distinct technologies.

The main advantage of offshore is that the wind tends to be stronger and less turbulent offshore
(Davis et al., 2019). Higher speed increases the power available proportionally to speed cubed, while
the thrust increases proportionally to speed squared. A structure that can react against higher forces is
more expensive to manufacture and to install but that is more than offset by the increased generation
of electricity. Lower turbulence causes less fatigue damage to the structure such that it lasts longer or

is cheaper to manufacture.

21



Wind farm developers are companies that develop, own and operate wind farms. Figure 1-2 shows
mean water depth against mean distance to shore of bottom-fixed offshore wind farms in Europe,
organised by development status. The size of the bubble indicates the overall capacity of the site. It
shows that some new OWT farms, shown in yellow, are further offshore than those that are already
generating electricity, shown in blue. Section 1.2 will discuss the consequences for the maintenance of
offshore wind farms of them being developed further offshore.
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Figure 1-2, Mean Water Depth against Mean Distance to Shore of Bottom-Fixed, Offshore Wind
Farms in Europe, by development status. The size of the bubble indicates the overall capacity of the

site. Reproduced from WindEurope, 2018, who do not report a scale for the bubble size.
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The main disadvantage of offshore compared to onshore wind power is that installation, maintenance
and decommissioning tend to be more expensive offshore. Figure 1-3 illustrates that the rated power
(rating) of new OWTs in Europe is tending to increase rapidly. The same trend is true in other world
regions. Increasing the rating allows operators to take advantage of economies of scale, reducing

operational expenditures per unit production of energy (Prassler and Schaechtele, 2012).

8
6 /
s /
oo
o©
C
i)
s

0

2000 2005 2010 2015

Figure 1-3, Mean Rating of Newly Installed OWTs in Europe. Based on Data from WindEurope
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This research had access to wind turbine maintenance data of particularly good quality. In the early
development period of wind farm development, the economic drivers for keeping excellent
maintenance records were not felt strongly. Records were kept on paper and not computerised (Leahy
et al., 2019). In contrast to this overview of the sector however, Qrsted recognise the importance of
excellent maintenance record keeping. In the corrective maintenance of wind turbines, a work order is
an instruction to carry out a maintenance activity. Figure 1-4 shows an example work order, number
80135873.

@ .| Display WP Corrective Maintenance 80135873: Central Header
7 BB

Order ZR02 80135873 Yaw hydraulic oil level low [ |°—
Sys.Status CLSD PCNF GMPS MACM MOBI PRC [i]|comp

HeaderData = Operations Components Costs Partner Objects Additional Data Location Planning Control Enhancement

Person responsible

PlannerGrp Notifctn 1171848 g
Mn.wh.ctr Costs 0,00 1
Person respons. PMActType R50 Corrective

SystCond.

Address | ]|
Dates
Bsc start 23.10.2017 Priority - [
Basic fin. Revision o

Reference object

i

Func. Loc. 204MDX Hydraulic Systems

'}
o

Equipment

)| s

Malfnctn data = Damage | Notif. dates

Figure 1-4, Example Work Order

After a work order has been issued, that work is added to the maintenance schedule. This prompts a
maintenance team to visit the wind turbine. They asses what maintenance is actually required and, if
they have brought the spare parts required to do the job, they do it. They often record any problems
that they encounter on the work order.
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1.2 The Maintenance of Offshore Wind Turbines

This section explores the state of the art of the maintenance of OWTs. It also samples applicable
research on maintenance in other sectors and other industries. It explains the economics that drive
OWT maintenance practices and it identifies gaps in the literature that, when filled, represent
opportunities to aid in their improvement. This research has benefitted from access to maintenance
records; existing records of OWT health history, and links those records together to determine an
Enriched Health History (EHH). This section will identify gaps in the published literature that an EHH

enables further work to fill.

Technicians are transported to OWTs by Crew Transfer Vessels (CTV), by Service Operation Vessels
(SOV) or by helicopter. CTVs are typically 20m catamarans with 4 berths and a cargo capacity of 2 to
3 tonnes (Boote et al., 2015). SOVs are typically 90m monohulls with 60 cabins and a cargo capacity

of 4000 tonnes. (Marine Traffic website). Vessel manufacturers have proposed new vessel concepts

to service wind farms that are further from port. For example, Boote et al., 2015 propose a mothership
for CTVs.

OWT maintenance activities are classified by operators as either preventive activities (such as the
OWTs annual service), retrofit, inspections and surveys, condition-based or corrective. This chapter
will show that health history information is already used to improve condition-based and corrective
maintenance practices but that literature searches up to 2021 did not find health history, enriched by
record linkage, described. As such, its use to further improve these maintenance practices is not

described either.

OWTs are owned by energy companies that exist in a competitive business environment. The
protection of their commercially sensitive data is important to them because they are indicative of
commercial performance and consequently, they can affect deals between wind farm manufacturers,
developers and owners. These data are also valuable because they embody learning that
organisations can use to their commercial advantage and because their collection has required
investment. Commercially sensitive records include failure rates, downtime, maintenance costs and

maintenance working time.
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Offshore wind farm operators list how much lost production each failure mode is causing and use this
data to prioritise their maintenance activities. They typically keep this information confidential but
despite this, researchers have been able to publish anonymised data on the failure rates of onshore
and offshore WTs (Hahn et. al., 2007, Ribrant et. al., 2007, Tavner et. al., 2007, Spinato et. al.,2009,
Feng et. al., 2010, Wilkinson et. al., 2011, Pinar Pérez et. al., 2013, Sheng et. al., 2013, Carroll et. al.,
2015). Spinato et. al., 2009, published failure rate data for onshore WTs in a report that is of particular
interest because it breaks the data down by component. This thesis presents further analysis of the
data in Spinato et. al., 2009, shown in Figure 1-5, showing that the mean downtime per turbine per
year was highest for the electrical system but that the gearbox caused the highest mean downtime per

failure.
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Figure 1-5, Downtime against Mean Downtime per Failure by Subassembly.

Calculated from data in Spinato et. al., 2009.
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This thesis presents further analysis of OWT maintenance data published by Carroll et. al., 2015, in
Figure 1-6. The figure identifies that the gearbox was the component whose failures cost the most in

terms of material and labour but this does not include the cost of lost production.
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Figure 1-6, Total Work Hours against Material Cost of WOs by Subassembly.
Calculated from data in Carroll et. al., 2015

Section 2.1.2 introduces outages and section 2.1.3 introduces Work Orders (WO). Of the two figures
above, Spinato et. al., 2009, present power outage data whereas Carroll et. al., 2015, present data
from WOs. The first publication in any sector that integrates these two sources of maintenance data
was Papatzimos et al., 2017. Section 2.2 reviews Papatzimos et al., 2017 and this thesis builds on

that state of the art research.

OWTs are fitted with hundreds of sensors (Qiu et al., 2012). Each OWT contains a Condition
Monitoring Unit (CMU); the sensors send data to the CMU where it is recorded. The CMU is
programmed with hundreds of condition models designed to identify faults, environmental conditions
or operational conditions such as that the OWT is in local operation. When one of these models is
triggered by one or more of the sensor signals, the CMU asserts an alarm and logs it in a database,

known to operators as the alarm log (Kusiak and Li, 2011).
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1.2.1 The Economics of OWT Maintenance

This section will present performance indicators used in OWT maintenance. Earnings Before Interest,
Taxes, Depreciation, and Amortisation (EBITDA) is a financial metric used to assess productivity
(Espinoza and Morris, 2013). It is defined by equation 1.1 where OPerational EXpenditures (OPEX)

are the costs of maintenance and of operating the wind farm.
EBITDA = Revenue — OPEX (1.1)

OWT operators use EBITDA to track the effect of maintenance strategies (Gonzalez et al., 2017,
Pfaffel et al., 2019). In this research, the optimum OWT maintenance strategy is defined as that

strategy that generates the maximum EBI/TDA for the operator.

OPEX summarises operators’ decisions such as how many vessels to hire and how many technicians
to employ. These decisions depend on the price of electricity and the cost of labour as shown below.
The optimisation of OWT maintenance is outside of the scope of this research but this research does
present methodologies that when they are applied will enable the more productive operation of
OWTs.!

Equation 1.2 defines revenue over a given interval, where price denotes the price at which the
electrical energy is sold to the operator’s customer and production denotes the electrical energy
generated in that interval. It disregards income from ancillary services such as the stabilisation of the

frequency of the electricity grid and other external sources.

Revenue = Price X Production (1.2)

Operators refer to intervals when the OWT is not generating electricity as outages. An outage is
associated with lost production if, during the interval of the outage, there was a wind resource that
would, had the OWT been in operation, have been exploited. Outages that occur during intervals
when the wind speed is too high or too low for the OWT to operate are not associated with lost
production. To minimise lost production, there is a preference for maintenance activities to be carried

out on days with low wind speed.

The capacity factor is defined as the ratio of production to theoretical rated production of the OWT

where duration is the length of the time interval.

Production = Capacity Factor X Rated Power X Duration (1.3)

" Applications of this research will be identified in sections 1.2.2 to 1.2.5.
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Outages occur during intervals when the wind speed is too high or too low for the OWT to operate,
while an OWT is being maintained and when the OWT is experiencing a fault that has caused it to
stop. Operators plan maintenance activities with the intention of avoiding or reducing lost production

from outages to increase the capacity factor. Substituting equation 1.2 and 1.3 into equation 1.1:
EBITDA = Price X Rating X Capacity Factor — OPEX (1.4)
EBITDA does not track changes in working capital, capital expenditure, taxes, or the interest rate.

To maximise EBITDA, maintenance planners try to understand the relationship between capacity
factor and OPEX. Alternative approaches to OWT maintenance optimisation, other than maximising
EBITDA, include the strategy that generates the lowest cost of energy, the strategy that generates the
highest capacity factor, the strategy that generates the highest time-based availability (the proportion
of time that an OWT is available to generate) and the strategy that generates the highest production-
based availability (the ratio of actual Production to the Production that would be expected of a fully
available OWT) (DNV GL, 2017).

As OPEX increases, capacity factor increases but the detail of this relationship for each farm is

confidential. This relationship, when combined with equation 1.4, has the following implications:

e If, rather than maximising EBITDA, operators were instead minimising the cost of energy, less
OPEX would be required which would mean committing less resources to maintenance.

e If, rather than maximising EBITDA, operators were instead maximising the capacity factor,
more OPEX would be required which would mean committing more resources to
maintenance.

o If, rather than maximising EBITDA, operators were instead minimising OPEX, they could set
OPEX to zero, committing no resources to maintenance. This would lead to the failure of all of
their turbines, resulting in capacity factor of zero and consequently no production of electricity.

e If, rather than maximising EBITDA, operators were instead minimising OPEX for a specified
minimum time-based availability or capacity factor, then the resources that they committed to
maintenance would depend on what their contract specified. Such an arrangement has been
used in the offshore wind sector but is not assumed in this thesis.

e Another option is to maximise time-based availability. Capacity factor has the advantage over
time-based availability that it depends on production; and production takes account of the
weather: there is no value in an OWT being available during intervals of either too low or too
high wind speed and there is less value in it being available during intervals of wind speed
lower than rated speed, where the power output is less than the rated power, than above rated

speed, where the power output is the rated power.
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e Another option is to maximise production-based availability. This is a useful and popular
indicator, but it is not used in this thesis because Qrsted’s Advanced Analytics Lab use
EBITDA.

Nielsen et al., 2011, approach maintenance optimisation by minimising the expected total costs
including the cost of lost production, equivalent to maximising EBITDA. As well as maximising
EBITDA, operators also protect the future value of their assets by sufficient maintenance to avoid wear

out. For readability, this thesis will refer to EBITDA as “productivity”.

1.2.2 Maintenance Scheduling

This section will present the state of the art in the scheduling of wind turbine maintenance.

In contrast to corrective maintenance, preventative maintenance is performed regularly while the
equipment is still operational to lessen the likelihood of it breaking down (Dao et al., 2018). OWT
preventative maintenance is planned using scheduling tools developed from health history records

that will be described in section 2.1.

Maintenance optimisation aims to determine maintenance plans that balance maintenance costs such
as parts and labour against the consequences of not maintaining the plant such as loss of power
production. It requires models of the uncertainties associated with wind farm inspection and
maintenance such as dependencies among components, weather-dependent access to the wind
turbines, stochastic demand for spare parts and availability of labour. (Shafiee and Sgrensen, 2019,
Seyr and Muskulus, 2019). Stock-Williams and Swamy, 2019, demonstrate that automated

maintenance planning can significantly improve productivity.

Yurlsen et al., 2020, present a decision support system for the maintenance of onshore wind turbines.
They consider a generator replacement operation that requires a crane. Safe working rules limit the
wind speed and the wind gust speed at which work is allowed at different locations on the turbine. To
find weather windows when the tasks could be performed, they use records of wind speed and wind
gust speed with maintenance records that show how long each task takes. They identify all the
possible scheduling combinations; an optimisation technique known as a brute force search. In order
to calculate lost production, they combine this model with electricity price records and use the wind
speed which enables them to identify the best times to carry out maintenance. These researchers
simply use historical records of the duration of tasks and of the weather whereas a real-world planner

must deal with the uncertainties in these forecasts.

There are opportunities to use data more intelligently to further improve maintenance scheduling.
Work Orders (WO) will be discussed in section 2.1.3; they contain information on what work was done

and they can be used to identify the cost of repairs. Outages will be discussed in section 2.1.2; when
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labelled with a failure mode, they indicate the failure rate for that failure mode and can be used to
estimate the lost production from each outage. Linking WOs to outages would help because the
integrated information could provide valuable insights into historical costs of maintenance and of lost
production. These insights could be used to further optimise maintenance scheduling from a logistical
perspective by providing more robust information to the models. There is therefore the potential to
develop better maintenance scheduling tools by linking WOs to outages. Literature searches up to
2021 did not find such techniques described and this thesis will not fill that gap, but it will present novel
techniques that enable such further work by joining WOs to outages. An enriched health history of the
machinery under study could be used by engineers and data scientists to develop better maintenance

scheduling tools.

1.2.3 Condition-Based Maintenance

Condition-Based Maintenance (CBM) is a maintenance strategy that monitors the actual condition of
an asset, such as a specific component in a wind turbine, to identify a requirement to carry out a
maintenance intervention that is in addition to scheduled maintenance. CBM can reduce the
requirement for scheduled maintenance while still avoiding delays and consequent production loss in

repairing a failed turbine.

Machinery operators are attempting to move from planned and reactive maintenance to proactive
CBM. CBM can help operators to avoid lost production by forecasting faults and making repairs prior

to failure but, to predict the future, we need a detailed knowledge of the past.

This section reviews the state of the art for CBM. It concentrates on wind energy but it also samples
other sectors and other industries. These samples indicate that wind energy is at the forefront of the
development of CBM, but that it is also developing in solar energy (Mellit and Kalogirou (2011),
Dagnely et al., (2015), Dong et al., (2017)), fossil fuels (Doostparast and Doostparast, 2018),
electricity transmission (Sheng et al., 2018), naval engines (Cipollini et al., 2018), transport (Wang et
al., 2018), capital goods (Arts et al, 2019) and aviation (Liu et al., (2018), Luo et al., (2018)).

Operators are introducing CBM both within the offshore wind energy sector and in other sectors. CBM
uses wear out models to predict failures. It requires prognostic models and these require the
determination of the health history of the machinery. Health history data such as breakdowns and
other maintenance activities are required for the development of models that forecast breakdowns,
facilitating preventative maintenance. Researchers have published wear out models that are based on
vibration analysis (Crabtree et al., 2010, Bach-Andersen et al., 2015, Koukoura et al., 2017, Artigao et
al., 2018, Carroll et al., 2019), on acoustic analysis (Wang et al., 2018), on oil particle analysis
(Crabtree et al., 2010, Feng et al., 2013) and on data from temperature sensors (Garcia et al., 2006,
Zaher et al., 2009, Feng et al., 2013, Kusiak et al., 2012, Godwin et al., 2014, Qiu et al., 2016, Bach-
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Andersen et al., 2017). These models each predict failure with different confidence and over a
different prognostic horizon, from a day to several months. These models are typically based on an
understanding of a failure mode and that understanding is based on failure data. Applications of the
health history for CBM include probabilistic models (Sheng et al., 2018, Wang et al., 2018), physics
models (Qiu et al., 2016, Gray and Watson, 2010) and models developed using supervised machine
learning methods (Godwin and Matthews, 2014, Hu et al., 2016).

A fault in a mechanical component tends to reduce its efficiency and consequently to cause its
temperature to be higher, all else being equal, than it would be in a fault free component. Garcia et al.,
2006 use wind turbine gearbox temperature data with data on whether the 2 cooling fans are on or off
from a single gearbox fault. They predict that the fault was in the main bearing and also that the main

shaft was misaligned, but they do not test this hypothesis.

Zaher et al., 2009, use temperature, power and fan data from 26 wind turbines over 2 years but do not
have fault data to label what is happening to the wind turbines. They identify some abnormal

behaviour that could be indicative of a fault, but they have no way of testing whether or not it is.

Crabtree et al., 2010, use wind turbine gearbox vibration and oil debris ferrous particle count data
covering a 5-month interval. During this interval a gearbox bearing became damaged and was
replaced and they plot the data against cumulative energy generation rather than against time to show
the fault retrospectively. They show that such comparison of these signals indicates that the
component was developing a fault 2 months ahead of its replacement. They present results that
indicate that a prognostic model could be developed but because they only use a single instance of a

fault, they cannot address whether such a model would work across multiple instances.

Gray and Watson, 2010 use wind turbine power and rotational speed data from 160 wind turbines, 6 of
which experienced serious gearbox failure in quick succession, to present a physics of failure
approach to wind turbine CBM that uses design data such as the dynamic load capacity of the
gearbox bearings to estimate the fatigue damage for each failure mode. They calculate the high cycle
fatigue Damage (D) for a specific failure mode. They refer to reliability as the probability that a turbine
will survive at a damage exceeding D and they estimate the relationship between the reliability for the
failure mode and D. They then use the failure rate to identify correction factors to their wear out model.
Similarly, operators use failure, inspection and sensor data to update their wear out model for each

failure mode for each model of wind turbine.

Feng et al., 2011 use wind turbine gearbox vibration, oil pressure and filter status, temperature, power
and generator speed data. They report that an operator “achieved success in detecting a number of

bearing faults in both gearboxes and generators” and that faults can be detected by using multiple
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signals, which they plot against cumulative energy generation rather than against time to

retrospectively show the faults.

Kusiak et al., 2012 use wind turbine temperature, voltage, current and generator speed data covering
two instances of an over temperature fault on a generator bearing. They use data from 10 turbines
that do not record this fault to develop a normal behaviour model that predicts the bearing
temperature. They use these models to predict the over temperature events on average 1.5 hours
ahead of the fault occurring. They train their model on turbines that they assume to be healthy and
then test it on turbines that have experienced a fault. This does not constitute testing their model to

see whether it correctly identifies faults on unlabelled data.

Godwin et al., 2014 use wind turbine temperature, power, wind speed and generator speed data
covering one instance of a gearbox failure. They train a model on three turbines that do not suffer the
fault and test it on another two turbines that also do not suffer the fault and on the single turbine that
does. Because they only use a single instance of a fault, they cannot address whether such a model

would work across multiple instances.

Bach-Andersen et al., 2015, use vibration data from 80 main bearing? failures on different turbines to
compare two prognostic models. For each failure, they use the preceding 6 months of vibration data
and an equal quantity of vibration data that they label as “non-fault”. They divide the 80 turbines into
40 for training, 15 for validation and 25 to test their models. Their models are a logistic regression and

a convolutional network.

Bach-Andersen et al., 2015, use a robust statistical method for measuring the quality of prognostic
models for wind turbine CBM. To present their method, this section defines the measures of the
quality of classification that they use. These measures use the number of True Positives (TP), False

Positives (FP), True Negatives (TN) and False Negatives (FN) as follows.

True Positive Rate (TPR), (otherwise known as recall, sensitivity or hit rate), defined by equation 1.5,

measures the proportion of true matches that have been classified correctly.

TP (1.5)

TPR = ————
TP +FN

2 The main bearing of an OWT is an important component and is typically fitted with vibration sensors.
It mounts the turbines rotor on to its nacelle; that is the housing that holds all of the generating

components.
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False Positive Rate (FPR), (otherwise known as fallout or false alarm ratio), defined by equation 1.6,
measures the proportion of false positives in the total number of negatives.

FpR= P (1.6)

TN + FP

A Receiver Operating Characteristics (ROC) curve plots TPR against FPR and is robust against
imbalanced classes (Christen, 2012). The Area Under a ROC Curve (AUC) predicts the probability
that a classifier will rank a positive sample higher than a negative sample (Fawcett, 2006). Bach-
Andersen et al., 2015, show that their convolutional network outperforms their logistic regression by
plotting AUC against time to failure. Bach-Andersen et al., 2015, have access to vibration data that is
labelled with rich information about a specific fault, a wind turbine main bearing failure. This enables
them to train, validate and test a prognostic model for this fault. Bach-Andersen et al., 2015, is an

example of health history data being used to develop a model that predicts main bearing failures.

Standard solar energy Supervisory Control and Data Acquisition (SCADA) systems only collect current
and voltage data (Dong et al., 2017) and, unlike on OWTs, temperature sensors are not routinely
fitted. Dong et al., 2017, combine SCADA data with weather data to determine a normal behaviour

model that identifies the least healthy strings of solar panels.

Koukoura et al., 2017, use wind turbine gearbox vibration, power and generator speed data from one
instance of a gearbox tooth issue on the pinion of the intermediate stage of the gearbox. To diagnose
the state of the gearbox they calculate reference torque using the produced electrical power and
generator speed and they also calculate health indicators on the second harmonic of the gear mesh
frequencies of the vibration signals. They train a decision tree classifier, a supervised learning method,
both on the health indicators and on the reference torque to distinguish signal variations due to loads
from signal variations due to faults. The loads on a wind turbine fluctuate so this is an appropriate

approach. They present results indicating that prognostic models could be developed.

Bach-Andersen et al., 2017, use wind turbine temperature data from 22 main bearing failures on
different turbines to compare four prognostic models. They plot the area under the ROC curve against
time to failure. They have access to temperature data which is labelled with information about a
specific fault, a main bearing failure. This enables them to train, validate and test a prognostic model

for this fault. They recognize that this model could be used together with vibration analysis.

Wang et al., 2018 use data from 4 acoustic sensors on a single set of railway points. By comparing
new observations to a predicted baseline, they detect by a probabilistic approach that one of the rails
has no damage but that the other has a crack in it. This result is verified by an urgent site visit and
repair. Such acoustic sensors are not appropriate for fitting to the whole railway as they require a

power source. They might alternatively be fitted to a train.
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Doostparast and Doostparast, 2018, present a methodology for forecasting corrosion in oil pipelines.
They forecast points of corrosion, approximating the rate of corrosion using a non-homogeneous

Poisson process.

Artigao et al., 2018, use high frequency (1.5 kHz) current data from both the stator and the rotor of a
wind turbine generator with vibration, power and generator speed data from a single instance of a fault
caused by an imbalance in the shaft between the gearbox and the generator that the operator had
misdiagnosed as a generator bearing fault. They use their vibration data to validate their result from
the current data but they do not combine the current data with the vibration data. They present results

indicating that prognostic models could be developed.

Carroll et al., 2019, use wind turbine gearbox vibration, temperature, power, wind speed and generator
speed data. They use operational logs and failure logs to identify two gearbox failure modes that occur
on different models of wind turbine: 200 instances of a gearbox bearing issue on the low speed
planetary stage of the gearbox and 28 instances of a gearbox tooth issue on the pinion of the
intermediate stage of the gearbox. For both failure modes, they use 70% of their data to train a multi-
class Artificial Neural Network (ANN) and 30% to test it. They use the ANN with the vibration data to
predict whether the time to failure is 1, 2 or 3 months or whether it is more than 3 months. They also
use the ANN with the vibration data to predict whether the time to failure is 1 to 2 or 5 to 6 months or
whether it is more than 6 months. They show that accuracy is higher with the vibration data than with
the other data but this is not a direct comparison because they have different classes for the two data

sets. They do not combine the vibration data with the other data.

Bach-Andersen et al., 2018, use wind turbine vibration and generator speed data from gearbox faults
that they break down into 85 rotor bearing faults, 63 planetary stage bearing faults and 103 helical
stage bearing faults across two models of wind turbine to compare five prognostic models. They do
not report which faults are on which of their two models of wind turbine. For each model of wind
turbine, they use 65% of these faults for training, 10% for validation and 25% for testing. Their
prognostic models are a logistic regression, an ANN and a deep ANN, meaning an ANN with multiple
layers to extract abstract features. For both the deep and shallow ANN, they compare the results of
solving tasks separately and of applying multi-task learning (in which multiple learning tasks are
solved at the same time to exploit commonalities and differences across tasks). They plot the area
under the ROC curve against time after retrospective detection by a human expert, showing that their
deep ANNSs recognised features in the vibration data at the same time as retrospectively identified by
their human expert. Bach-Andersen et al., 2018, have access to vibration data that is labelled with rich
information about these three faults. This enables them to train, validate and test a prognostic model

for this fault.
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Lei et al., 2019, use vibration data from a model wind turbine in a wind tunnel. They simulate eleven
mechanical faults in the drive train. They compare a variety of methods for the classification of their
simulated faults from the sensor data. These are: support vector machines; supervised learning
models that construct a set of hyperplanes in a high-dimensional space, multilayer perceptrons; a
class of feedforward neural network, 2 layer recurrent neural networks; a class of neural networks
where connections between nodes form a directed graph along a temporal sequence and
convolutional neural networks; a class of deep neural networks, used for analysing visual imagery.
They present the best results using long short term memory networks; a recurrent neural network
architecture with feedback connections used in handwriting and speech recognition. Their method of

fault classification could be of interest to implement on real wind turbines.

Wang et al., 2020, use vibration data from a single wind turbine gearbox bearing failure. They combine
physical knowledge of the bearing’s characteristic frequencies of typical defects relative to shaft speed
with Bayesian inference to quantify uncertainty. Bayesian inference is a statistical technique that
updates the probability for a hypothesis as more information becomes available. They present an
approach that estimates the remaining useful life of such bearings as a probability distribution.
Operators can plan preventative maintenance more effectively when they better understand the

uncertainty that exists about the condition of their plant.

The literature shows a high level of focus on wind turbine gearboxes and main bearings, identified as
important components for reliability in Figure 1-5 and Figure 1-6 but not as the only important
components. Operators use outage data (which will be discussed in section 2.1.2) to identify which

other components are also worthy of study.

This section has shown that even existing health history data, such as that available to this research,
described in section 2.2, was not available to many other researchers and that this lack of labels has
held back research into CBM. There are opportunities to use data more intelligently to further improve
CBM. When outages are labelled with a failure mode, they indicate the failure rate for that failure
mode. Work Orders (WO) contain information on what work was done and will be discussed in section
2.1.3. There is therefore the potential to develop new CBM models and improve existing ones by
linking WOs to outages. Literature searches up to 2021 did not find such techniques described and
this thesis will not fill that gap, but it will present novel techniques that enable such further work by
joining WOs to outages. An enriched health history of the machinery under study could be used by
engineers and data scientists to develop both more accurate prognostic models and a better

understanding of the confidence of these forecasts.

This section has reviewed the literature on CBM; the prognosis of faults. Troubleshooting requires the
diagnosis of faults. Both CBM and troubleshooting involve the classification of the failure mode and,

consequently, the literature on CBM also pertains to troubleshooting.
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1.2.4 Troubleshooting

Troubleshooting is the activity of repairing a faulty OWT by the replacement of components (Walford,
2006, Tang et al., 2019). This section will present the state of the art in OWT troubleshooting.

Data scientists analyse failure histories and derive troubleshooting guides from them. These guides
are key to the technicians’ diagnosis of faults, alongside their expert knowledge. Technicians refer to a
trouble shooting guide for advice on how to diagnose the failure mode and the repair activity that is

most likely to be effective.

There are opportunities to use data more intelligently to further improve troubleshooting. Work Orders
(WO) will be discussed in section 2.1.3; they contain information on what work was done including
what materials were consumed. Outages will be discussed in section 2.1.2 but, when labelled with a

failure mode, they indicate the failure rate for that failure mode.

Each troubleshooting guide applies to a single alarm code, rating and manufacturer. It contains a fault
tree, representing the possible failure modes, their predicted probability, and the recommended repair
activities. Operators derive the information that they use to generate the fault tree from WO records.
WOs are sometimes labelled with an alarm code indicative of the failure mode and it is only these

WOs that are currently used to generate the fault tree.

This research identified two gaps in the literature on troubleshooting. Firstly, literature searches up to
2021 did not find Enriched Health History (EHH) information described and as such its use to further
improve troubleshooting fault trees is not described either. The health history enrichment process
presented in this thesis uses alarm data to identify the failure mode of each WO and this increases the
amount of information available to the authors of the troubleshooting guides. The use of an EHH
(specific to the WT'’s rating and manufacturer) provides data that can increase the accuracy of the
probability assigned to each branch of the fault tree. Increasing the accuracy of the fault tree
probabilities for a failure mode can avoid unsuccessful repairs, reducing maintenance work and

avoiding lost production.

Troubleshooting guides also contain a list of spare parts that might be required to repair the specific
failure modes indicated by the alarm code. The second gap identified in the literature is that
techniques to increase the length of these parts lists to improve the probability that the repair team has
brought the correct part to repair the fault are not described. Extending the troubleshooting guide parts
list can avoid the lost production caused by the right part not being available. Bringing the correct parts
to the OWT will be of increasing importance as the distance to shore increases and it could help to
avoid the cost of an offshore spare parts store. Health history enrichment would fill this gap in the

literature.
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To repair a fault, technicians must identify which components to replace and, while it is not strictly
necessary to identify the failure mode, this is desirable because the root cause can lie in a component
other than those that are not working. For example, on one occasion, a fault on one wind turbine
damaged an adjacent turbine so that the service team was sent to the wrong turbine (personal
conversation with an @rsted technician, 2019). Troubleshooting is not straightforward and finding the

root cause requires experience.

Improving either the parts list or the fault tree reduces the duration of outages, reducing lost
production and increasing productivity. There is therefore the potential to improve troubleshooting by
linking WOs to outages. Literature searches up to 2021 did not find such techniques described and
this thesis will not fill that gap, but it will present novel techniques that enable such further work by
joining WOs to outages. An enriched health history of the machinery under study could be used by
engineers and data scientists to develop improved troubleshooting guides. This research elicited the

opinion from OWT experts that troubleshooting would be the most valuable application of an EHH.

1.2.5 Maintenance Effectiveness

The purpose of maintenance is to increase the reliability of plant. Each maintenance activity should
increase the mean time to failure of the subsystem that was maintained relative to the subsystem’s
mean time to failure without that maintenance activity. This thesis will refer to the effect of reducing the
mean time to failure of the subsystem that was maintained as the effectiveness. Garcia et. al., 2006,
predict that operators could use effectiveness to optimise their planning and troubleshooting,
increasing productivity. This section will present the state of the art in the measurement of

maintenance effectiveness.

Lin et al., 2019, present a model that combines performance deterioration together with maintenance
effectiveness and that would be applicable to a wide variety of assets including wind turbines. Sewers
are flushed (a maintenance activity) to remove blockages (a failure mode). Lin et al., 2019, use dated
sewer pipe flushing records, dated sewer pipe condition data (camera inspection reports that rate the
condition of the pipe at five discrete grades and record the type of defects), sewer pipe attribute data

(material, diameter, length, slope) and sewershed area data (the land area that drains into the pipe).

A Markov chain model is a statistical technique that describes a sequence of possible events in which
the probability of each event depends only on the state attained in the previous event. Lin et al., 2019,
model the deterioration process using a continuous-time Markov chain model with a deterioration
intensity matrix that estimates the probability that, during a time step, a pipe will transition from each of
the condition grades to each of the other condition grades. They model the maintenance process

using a discrete-time Markov chain model with a maintenance effectiveness matrix that estimates the
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probability that, during a flush, a pipe will transition from each of the condition grades to each of the

other condition grades.

Bayesian inference is a statistical technique that updates the probability for a hypothesis as more
information becomes available. A Markov chain Monte Carlo simulation is a statistical technique that
takes samples from a probability distribution. Lin et al., 2019, estimate the parameters for their
performance deterioration and maintenance effectiveness models using Bayesian inference with

Markov chain Monte Carlo simulations.

Lin et al., 2019, compare two methods that predict the probability of reaching a given grade at a given
time. The first method uses the mean of the estimate of each parameter value while the second
method uses the full distribution of the estimate of each parameter value. They show that using the full
distribution of the estimate of each parameter, rather than using the mean, predicts far lower
probabilities that, under a given maintenance regime, a given pipe will get blocked. Using the full
distribution is a more robust approach than using the mean. They recognise that this huge difference
could result in totally different strategies for flushing programs. Wind turbine operators both plan
maintenance and measure maintenance effectiveness using the same type of deterioration and

maintenance effectiveness models as those presented by Lin et al., 2019.

There are opportunities to use data more intelligently to further improve the measurement of
maintenance effectiveness. Work Orders (WO) will be discussed in section 2.1.3; they contain
information on what work was done. Outages will be discussed in section 2.1.2 but, when labelled with
a failure mode, they indicate the failure rate for that failure mode. If a repair was successful, then the
time to failure for the modes effected by the repair would tend to increase. There is therefore the
potential to measure maintenance effectiveness by linking WOs to outages. Literature searches up to
2021 did not find such techniques described. This thesis presents techniques that link WOs to outages
and this will enable further work measuring maintenance effectiveness. An enriched health history of
the machinery under study could be used by engineers and data scientists to develop more accurate
measures of maintenance effectiveness and a better understanding of the confidence of these

measures.

1.2.6 Conclusion to the Maintenance of Offshore Wind Turbines

The literature search found more literature on CBM than on maintenance scheduling, troubleshooting
or on maintenance effectiveness. This does not imply that CBM is more important to operators than
the other aspects of maintenance listed; operators have tended to collaborate with academic
researchers and to publish their own papers on CBM, while they have tended to keep their work on

the other aspects of maintenance more in-house. Improvements in troubleshooting are seen as
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tending to avoid more lost production than improvements in CBM (personal conversation with an

Drsted wind turbine data analyst, February 2019).

Figure 1-7 shows an OWT CBM architecture. The figure is based on the approach of Garcia et. al.,
2006, but this approach is typical of how operators plan OWT maintenance today. Sensor data from
each turbine is interpreted by comparing it to sensor data from nearby turbines, to meteorological data
and to models trained on data from the past. This comparison identifies anomalies that could be
indicative of faults and these are interpreted by OWT experts to diagnose whether a repair activity
should be planned. The health condition of each turbine is assessed to predict faults and if a fault is
considered likely then the component can be replaced prior to failure. The effectiveness of
maintenance activities is appraised by statistical techniques that address whether down time was

avoided by the maintenance activity.
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Figure 1-7, Typical OWT CBM Architecture. Adapted from Garcia et. al., 2006

This section has identified the gap in the literature that multi feature record linkage techniques have
not previously been used to improve wind turbine maintenance strategies; or to improve maintenance
strategies for any other type of machinery either. Section 2.2 will present the state of the art for record

linkage techniques.
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1.3 Research Questions

This research benefitted from access to @rsted’s valuable and confidential records of wind turbine
health history. It applies record linkage techniques to these records to improve maintenance. The

Research Questions (RQ) that this thesis will address are:

RQ1 To enable improvements in WT CBM & troubleshooting, how can WT health history be
enriched?

RQ2 How can the quality of the Enriched Health History (EHH) be validated?

RQ3 How can the richness of historical data on wind turbine health be measured?

This thesis will present new techniques that link together existing records of the health of OWTs to
determine and validate an EHH. In this thesis, the statement that the health history has been
‘enriched’ means that the records have been made mode useful for specific maintenance applications
such as maintenance scheduling, troubleshooting, condition-based maintenance or for the

measurement of the effectiveness of maintenance activities.
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Figure 1-8 describes how, by linking WOs to outages, the EHH will facilitate improvements to the
diagnosis of WT faults, helping with repairs?, and to their prognosis, helping to avoid faults*. The
dotted circle indicates the scope of this thesis. Methods developed in this project will be applicable to
other record linkage applications as well. The EHH will also facilitate improvements to the scheduling

of maintenance activities and to the measurement of the effectiveness of maintenance activities.
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Figure 1-8, Enrichment of Health History for CBM & Troubleshooting

3 Troubleshooting for repairs was described in section 1.2.4

4 Avoiding faults by condition based maintenance was described in section 1.2.3
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1.4 Research Process

This research project involved presentations to conferences and research placements as detailed in

Table 1-1.

Discussions with Jrsted data scientists during placement 1 in their office in Gentofte, Denmark,

identified that a process for the enrichment of offshore wind turbine health history would be a useful

contribution. Some of the record linkage techniques that will be presented in chapter 4 were

developed by these discussions.

By presenting at conferences, this research benefitted from questions from the audience that

facilitated improvements in how this thesis is presented. Attendance was also a method, alongside

monitoring the published scientific literature, of identifying other researchers working in related areas.

The most important of these was Eric Salo, whose research into data mining wind turbine work orders

(Salo et al., 2019) is of interest to developers but covers a different area to this research.

Seminar

Event Subject Location Date Duration
Research visit Gentofte May 2017 1 week
Placement 1 Gentofte August 2017 18 weeks
Research visit Wind Farm January 2018 1 day
Placement 2 Gentofte January 2019 1 week
Wind Energy Science Wind Turbine Enriched University
Conference Health History College Cork June 2019 3 days
European Academy of N .

. Validation of Wind Centrale
Wind Energy PhD Turbine Health History Nantes October 2019 | 2 days
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1.5 Constraints

This research benefitted from access to Qrsted’s valuable and confidential records of wind turbine
health history. @rsted’s policy is that their confidential data may not be copied on to non-Qrsted
machines and, to comply with this policy, this research was done entirely using a laptop computer

supplied by Drsted.

The process for writing this thesis involved the identification of confidential material and the contents

of this thesis are as approved for publication by Jrsted.
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1.6 Thesis Structure

The structure of this thesis is as follows. The introduction chapter (1) presents a brief introduction to
the offshore wind energy sector. The main literature review is chapter 2, Background, which presents
the state of the art for OWT maintenance including the motivation for the enrichment of OWT health
history and a description of the existing records of OWT health history that this project has benefitted
from access to. It also presents the state of the art for record linkage. The next chapter (3) presents
techniques for evaluating health history enrichment and poses, in detail, the research questions that

this thesis will address.

The first technical chapter (4) presents an overview of the Process for the Enrichment of OWT Health
History (PEOHH) developed in this research and of how the PEOHH will be validated. It presents
twelve record linkage techniques organised into four sub sections; four timestamp based techniques, a
technique that uses the records of visits to the wind turbine, a technique that considers the recorded
type of maintenance and lastly six failure mode based techniques. For each record linkage technique,
the chapter presents its method and the hypothesis that it might be effective as part of an ensemble of

techniques; it does not test these hypotheses.

The second technical chapter (5) offers two example work orders and uses them to illustrate the

PEOHH by linking them to records of OWT power outages.

Chapter 6 reviews statistical techniques that quantify the uncertainty of measures that will be used in

chapters 7 and 8:

e Section 6.1 will review techniques for estimating the uncertainty of the extent to which a
binomial proportion from of a sample is representative of a population.

e Section 6.2 will consider the estimation of the uncertainty of a difference between two such
uncertain estimates.

e Section 6.3 will investigate the probability that one such an uncertain estimate is greater than

another.

Applying these techniques offers, for the first time, an understanding of the uncertainty of the quality of
record linkage. Understanding uncertainty informs maintenance decision making which can improve

productivity.

The primary results from this research are presented in chapters 7 and 8. Chapter 7 reviews
techniques for global optimisation and presents the optimisation of the weights and thresholds used by
the PEOHH. It tests the hypotheses that were presented in chapter 4. Chapter 8 demonstrates that the

PEOHH has indeed succeeded in enriching the health history. Chapter 9 is a critical review of this
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research and the final chapter (10) presents the conclusions and indicates some useful directions for

further work.
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1.7 Contribution of this Thesis

Outages can be due to routine maintenance, to environmental conditions, to problems with the grid or
to faults. This thesis will show that the major gap in knowledge impeding progress in this field is
matching the information available from maintenance logs to an existing database of outages. The
research contribution made by this project will be to address this gap in knowledge with the advantage

of academic access to commercially sensitive real-world fault data.
The original contributions of this research are:
e The application of multi-feature record linkage techniques to maintenance data

o The application of statistical techniques for the interval estimation of a binomial proportion to

record linkage techniques

e The estimation of the distribution of the coverage error of statistical techniques for the interval

estimation of a binomial proportion

The main contribution of this research is a process for the enrichment of offshore wind turbine health

history.
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2 Background

This background chapter is divided into 5 sections. This research has benefitted from access to
existing records of OWT health history and they are described in section 2.1. This research links those
records together to determine an Enriched Health History (EHH) and the state of the art for record

linkage is presented in section 2.2.

Classification techniques predict the class of a binary dependent variable by analysing a dataset.
Section 2.3 reviews standard classification techniques in preparation for section 4.4.4.3.2, which

experiments with the application of a classification technique for record linkage.

Global optimisation is a branch of applied mathematics that attempts to find the global minima or
maxima of a function by choosing the system parameters. Section 2.4 will review two appropriate
techniques for global optimisation in preparation for section 7.6, which will use the most appropriate of

these techniques for the optimisation of the weights and thresholds used in the PEOHH.

Section 2.5 is the conclusion to the background.
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2.1 Existing Records of Wind Turbine Health History

This research shows that an Enriched Health History (EHH) can be determined by combining four
existing OWT health history databases. These are databases of alarms, outages, Work Orders (WO)
and material consumption. This section describes each of these four databases, their salient features
(also known as tags) and how each database is generated. It reviews literature on similar databases

and this comparison shows that wind turbine records are at the forefront of maintenance technology.

This section describes Jrsted’s records (insofar as confidentiality agreements allow). This project has
not had direct access to other operators’ records which, like @rsted’s records, are also confidential. To
apply the Process for the Enrichment of OWT Health History (PEOHH) developed in this research,
other wind turbine operators, as well as operators in other sectors, would need to adapt it to their

records.

2.1.1 Database of Alarms

Many of the components of an Offshore Wind Turbine (OWT) are fitted with sensors that monitor their
physical parameters such as temperature, vibration or contamination of the oil. Each OWT contains a
Condition Monitoring Unit (CMU) which collects data from the sensors. The CMU is programmed with
a set of models that interpret the sensor data with reference to thresholds to identify environmental,
operational and fault conditions on the basis of which they assert alarms. Each such model is uniquely
identified by an alarm code. A free text description, such as “cabinet too hot”, is linked to each alarm

code.

The CMU maintains a database known as the alarm log; for each alarm event it records the alarm
code, start time and end time. These two timestamp features define the duration over which the alarm
was asserted (Qiu et al., 2012).

When technicians visit an OWT to carry out corrective maintenance, they first check the database of
alarms which offers a rich record of the recent health history of the OWT and informs the technicians
of what seems to be the problem. This information helps the technicians to decide which tests or

repair activities to use to find the fault and to repair it.

Dagnely et al., 2015, present a problem faced by data scientists attempting the analysis of alarm data
from photovoltaic plants in which the inverters and the monitoring systems originate from different
manufacturers, models and versions: in this situation the alarm labels can differ. They present a
methodology for the integration of heterogeneous, machine generated alarm data. The OWT health
history records that this thesis has had access to do not suffer from this problem of heterogeneous
data.

Alarm data is used to automatically diagnose the failure mode (Qiu et al., 2012, Gonzalez et al., 2016).
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Kusiak and Li, 2011, use alarm data to identify the health history of four wind turbines, enabling them
to develop CBM models. Their approach is like that used, on a larger scale, by Qrsted. They observe
that better prediction performance can be achieved with higher quality data. The techniques presented

in this thesis will enable operators to make better use of their data to enable such improvements.

Leahy et al., 2018, showed that alarm data can be used to automatically identify intervals of faulty

operation.

Papatzimos et al., 2019, showed that the frequency of alarms for each OWT subassembly can be

predicted from the wind speed and the turbulence intensity.

2.1.2 Database of Outages

Operators refer to intervals when the OWT is not generating electricity as outages. Outages occur
during intervals when the wind speed is too high or too low for the OWT to operate, when the OWT is

being maintained and when the OWT is experiencing a fault that has caused it to stop.

Jrsted’s database of outages is automatically generated from the alarm log. It contains two
timestamps: the outage start time and the outage finish time. These define the duration of the outage.
drsted have validated their database of outages’ timestamps against the active power signal. These
timestamps are very important to operators because they are indicative of the availability of the wind
turbine, a key performance indicator, and so operators see them as very accurate; checking their

accuracy is outside of the scope of this thesis.

Jrsted label each outage with an alarm code indicative of the failure mode using a combination of
automatic and manual methods. Their automatic system selects an alarm code from the database of
outages using a confidential algorithm. Jrsted’s data scientists sometimes later manually adjust these
labels to better reflect the failure mode by discussing what happened with the technical team involved
in the repair. Literature searches up to 2021 did not find techniques to further automate and to further

validate this diagnosis by joining work orders to alarms and to outages described.

The ‘type’ feature classifies each outage as either corrective, predetermined, ‘Balance of Plant /
OFfshore Transmission Owner’ (BoP/OFTO), condition-based, environmental or unknown. BoP/OFTO
refers to those outages caused by faults that are outside of the wind turbine. ‘Environmental’ refers to
those outages caused by the weather: either too low or too high wind speed. This classification is
useful because breaking the records of power outages down into these categories enables operators
to identify the performance of different parts of their operation. If some outages were classified
incorrectly then commercial decision makers would not have reliable data to work on, and so the

accuracy of this classification is important. Literature searches up to 2021 did not find techniques to
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investigate the accuracy of this classification by joining work orders to alarms and to outages

described.

It is a safety requirement that when an OWT is visited to carry out maintenance, it is brought under
local operation; a setting in which it cannot produce electricity. The ‘reset’ feature classifies each
outage that has been classified as corrective as either a visit, a remote reset or an automatic reset.
The ‘number visits’ feature is either zero or a positive integer. It is Drsted’s estimate of how many
times the OWT was visited during the outage. It is calculated using the ‘wind turbine in local operation’

alarm.

The database of outages records the duration of each outage and estimates its lost production as the

average of energy generated by the farm’s working wind turbines.
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2.1.3 Database of Work Orders

This section describes the database of Work Orders (WQO). Each WO has an order number: a unique
identifier for the WO. Figure 2-1 shows an example WO, number 80135873. Each WO is also labelled
with a notification number: a unique identifier for the notification. There is one notification per WO and
the notification is the example is number 1171848. The notification is the instruction to the wind farm
planner to create the WO. Each WO is an instruction to a technical team to undertake a maintenance
activity; in the example the hydraulic oil needs topping up. WOs often contain free text entries that
describe maintenance activities in detail. Examples include when routine maintenance is provided,
such as oil changes, as well as when more significant maintenance is performed, such as replacing

key components. This data is often entered by the technical team undertaking the maintenance.
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Figure 2-1, Example Work Order

WOs contain structured information about the turbine acted upon, semi-structured information about
the subsystem acted upon and unstructured information about the activities performed. The
unstructured information is in the form of free text. The free text fields can document alarm codes
and / or specific actions undertaken by the technical team. The semi-structured and the unstructured

data can both contain typographical or other errors (inevitable with a field entry system) and these
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errors present a challenge when linking them together and for other valuable data mining applications

that were discussed in section 1.2.

This research involved placements with Jrsted’s data scientists who explained the key features of the
WO data. It also included visits to wind farms, where conversations with the managers, planners and
technicians who generate the data validated these descriptions and put them in a more detailed

context.

2.1.3.1 Timestamps

The WO records contain various timestamps including the start date, the finish date, the notification
date, the created on date and the malfunction start date. The start date refers to when the fault
started. The finish date refers to when the fault ended. The notification date refers to when the
notification was created. The created on date refers to when the WO was created. The malfunction
start date refers to when the malfunction started. This feature was too difficult to extract from the
database because, while it is accessible when extracting data on an individual WO, it is not accessible
when extracting data on a list of WOs. Further work should find a way to extract it and investigate its
usefulness. The advice elicited from technicians and from data scientists was that malfunction start
date would be very useful. That is because the timestamps are all human generated and can be
approximate or erroneous. The malfunction start date, on the other hand, is automatically generated
from the alarm log. All the experts agreed that there would be no relationship between when a WO
was created and when its matching outage occurred. These experts included a Planner Scheduler

who creates WOs.

2.1.3.2 Functional Location

The ‘Functional Location’ (FL) feature is a standard taxonomy; a human generated feature entered by
the planner; a string specified by the Reference Designation System for Power Plants standard for
wind turbines (V.G.B. PowerTech, 2014). It contains a unique identifier for the wind farm. It identifies
which OWT the WO relates to by giving the number of the row within the wind farm in which the OWT
is located and the OWTs position along that row. It can include detailed information about which
subsystem the WO relates to and even which component. The FL will always be accurate about which
OWT the WO refers to because if an incorrect OWT ID had been entered by the planner then the
technical team would visit the wrong OWT. Literature searches up to 2021 did not find descriptions of
techniques to enrich the FL by joining work orders to alarms and to outages. This thesis will not fill that
gap, but it will present novel techniques that enable such further work by joining WOs to outages. An
enriched health history of the machinery under study could be used by engineers and data scientists
to enrich the FL.
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2.1.3.3 WO Type

The ‘type’ feature classifies each WO as either preventive (such as annual servicing), retrofit,
inspections and surveys, condition-based or corrective. The feature is human generated by the

planner who selects a type from a list of options.

The WO free text fields are the ‘description’ and the ‘long text’. These fields can be written in any
natural language but farms where they are not in English are outside of the scope of this thesis.

Further work could apply automatic translation techniques to WO data.

2.1.3.4 Description

The ‘description’ feature, otherwise known as ‘short text’, is a short, free text description of the WO.
For corrective maintenance it often refers to an alarm code. It may contain the alarm code but it more

often contains an abbreviated reference to the standard text description of the alarm code.

Salo et al., 2019, show that this feature can be exploited to cluster WOs by their failure mode using
manual or automatic, text mining methods. This application might benefit from the addition of other

features of the health history data.

2.1.3.5 Long Text

The ‘long text' feature is a free text description of the notification and of the WO of unlimited length.
For corrective maintenance it often contains semi structured recent entries from the alarm log that
include alarm codes. These alarm log entries are automatically copied in when the notification is
created and are typically error free. It can also contain unstructured notes made by the maintenance

team relating to faults or to maintenance activities, particularly if these are considered unusual.

2.1.3.6 Alarm Code

Some WOs are labelled with an alarm code®. This label is used to identify the failure mode. @rsted
decide which alarm code to use by a combination of automatic and manual methods, where wind

turbine experts’ identification of the most important alarm code supplements automatic methods.

2.1.4 Database of Material Consumption

The material consumption database lists what parts were used in the maintenance of the OWTs. Each
Material consumption Line Iltem (MLI) refers to a single part number and is assigned to an order
number. Some WOs have no material consumption line items assigned to them while others have

many. Materials include replacement parts as well as consumables such as oil, grease or paint. The

Alarm codes were described in section 2.1.1.
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‘material’ feature is the part number: the identifier of the design of the part. The ‘description’ feature
describes the part. The material consumption records contain various timestamps: the ‘posting date’
and the ‘reserved date’ which are both typically input by the planner. The ‘reserved date’ refers to

when the part was reserved for use and the ‘posting date’ refers to when the part was used.

2.1.5 Conclusion to Existing Records of Wind Turbine Health History

This section has described four offshore wind turbine databases that this research has had the benefit
of access to. Each of these four databases relates to the same maintenance activities on the same
wind turbines and was generated as part of the maintenance of Jrsted’s wind farms. The database of
WOs and the database of material consumption are linked together by order numbers. The database
of outages is generated from the database of alarms and so linking these two together will be fairly
trivial. The gap in knowledge is how to link these two sets of maintenance data together. This thesis
will address this gap by presenting techniques that join WOs to outages to identify an enriched health
history. It will do this using features of all four of the databases that have been presented in this

section.
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2.2 Existing Record Linkage Techniques

Record linkage techniques aim to determine whether pairs of data records describe the same entity.
This thesis presents new record linkage techniques and applies these as well as existing record
linkage techniques in the field of Offshore Wind Turbine (OWT) maintenance. This section explores
the state of the art of record linkage techniques. Record linkage becomes non-trivial when the records
do not share a unique key. OWT outages are not currently labelled with an order number, making it
uncertain which records relate to the same event. Methodologies for linking records under uncertainty

are known as Probabilistic Record Linkage (PRL) techniques.

This review included Durham University Library searches of the literature of for terms including “wind
turbine”, “maintenance”, “record linkage”, “work order” and “condition-based maintenance”. It found
that there is very little literature on linking wind turbine maintenance records to records of alarms or of
outages. The one published reference to it is in Papatzimos et al., 2017, in which OWT WOs are
linked to alarms using a single feature; a timestamp. Papatzimos et al., 2017, do not publish any
measures of the quality of the classification of this technique, however the literature reviewed in this
section and the results presented in this thesis show that the quality of record linkage can be
increased by using more features. Record linkage techniques have been used to link medical records
(Sayers et al., 2015, Nasseh and Stausberg, 2016, Oliveira et al., 2016), address data (Churches et
al., 2002, Comber et al., 2019, Lin et al., 2019), census data (Jaro, 1989, Smith et al., 2016) and
genealogical records (Wilson, 2011) and they have been used to detect duplicate internet search
results (Hajishirzi et al., 2010). This thesis will present new record linkage techniques and will apply

these as well as existing record linkage techniques in the field of offshore wind turbine maintenance.

PRL techniques join two databases together to create a new database in which each row represents
one Pair Of Linked Records (POLR). They compare ensembles of partially-identifying, non-unique
data items between pairs of records (Dunn, 1946, Churches et al., 2002). They could compare each
record in one database with each of the records in the other database but this would be
computationally expensive and can lead to inaccuracy (Sadinle & Fienberg, 2013) so they instead split
the data into smaller blocks to disregard very unlikely POLRs. They compare features in the data sets
being linked together to generate a comparison vector containing comparison features. For example,
in address matching, comparison features typically include “house number matches” and “post code
matches”. PRL techniques combine an ensemble of comparison features by weighting each
dimension of the comparison vector to give an overall score indicative of the probability that each
POLR is a true match. To compute a score for a given POLR, a weight is added for each feature. If the
two records agree on the feature, a so called ‘agreement weight’ is added. If they disagree, a
‘disagreement weight’ is added. If one or both records have no data for the feature, then neither
weight is added. PRL techniques require a sample “Gold Standard” Set of Linked Records (GSSLR) to
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determine the optimum weighting. Such a sub-sample can be determined by clerical review (Dunn,
1946).

2.2.1 Measures of the Quality of Classification

This section will define selected measures of the quality of classification, some of which are used in
the record linkage literature and others that are not but are included to illustrate why they are not used.
Christen, 2012, is a key reference book that reviews record linkage techniques. It explains measures
of the quality of classification. These measures use the number of True Positives (TP), of False
Positives (FP), of True Negatives (TN) and of False Negatives (FN). Many record linkage applications
have a large and unimportant number of TNs and so the record linkage literature uses those

measures that do not use true negatives (Christen, 2012).

TPR and FPR were defined by equation 1.5 and 1.6 respectively.

PR — TP (1.5)
"~ TP+FN

FPR = (1.6)
" TN + FP

True Negative Rate (TNR), (otherwise known as specificity or selectivity), defined by equation 2.1,
measures the proportion of actual negatives, that is true negatives and false positives, that are

correctly identified as such and it obviously takes account of true negatives.

TN (2.1)

TNR = o+ Fp

Positive Predictive Value (PPV), defined by equation 2.2, measures the proportion of classified
matches that are correctly identified as such. In the record linkage and classification literature it is
referred to as precision, however it is not analogous to the closeness of a set of measurements to
each other and so to avoid confusion this thesis will refer to it as PPV.

ppy = & (2.2)
TP + FP
True negatives are important in medical research and in CBM because it is significant if a patient does
not have a condition or if a device does not have a fault. In such cases TPR, FPR and TNR are
appropriate measures of the quality of classification. On the other hand, true negatives are numerous
but unimportant in record linkage, in pattern recognition and in information retrieval and so they should
not be considered in these disciplines. PPV and TPR are appropriate measures of the quality of

classification in these disciplines because they do not use true negatives. (Christen, 2012).
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2.2.2 Probabilistic Record Linkage

This section will review PRL techniques. Techniques described by Fellegi and Sunter, 1969, for
Probabilistic Record Linkage (FSPRL) are commonly used in record linkage to determine what weight
to put on each feature (Christen, 2012). They make the simplifying assumption that each feature is
independent of the other features, but despite this they achieve useful results in practice. Wilson,

2011, showed that performance can be improved by not making this assumption.

Wilson, 2011, used neural networks to adjust the agreement and disagreement weights to overcome
errors caused by Fellegi and Sunters independence assumption. By observing the effect of weights on
TPR and PPV and adjusting weights accordingly, neural networks avoid assigning too much weight to
those features that correlate with other features. If some of the inputs are correlated, the neural
networks training algorithm will tend to adjust weights to account for this whereas the FSPRL

approach will not.

Wilson, 2011, also use what they refer to as ‘full features’, where each feature, such as ‘given name
agrees’ or ‘given name disagrees’, is replaced by a range of features such as ‘given name agrees
well’, ‘given name agrees weakly’ and so on. They show that neural networks and full features yield

dramatic improvements in the quality of record linkage.

2.2.3 Natural Language Processing

This section will present Natural Language Processing (NLP) techniques, (otherwise known as
linguistic analysis techniques) used in record linkage (Rubenstein and Goodenough, 1965, Mikolov et
al., 2013, Sayers et al., 2015, Comber et al., 2019, Lin et. al., 2019).

The Levenshtein distance between two text strings is the minimum number of single-character edits
required to change one string into the other. Sayers et al., 2015, use the Levenshtein distance to
compare text strings for the linkage of medical records. This thesis uses the Levenshtein distance and

further work could use the more complex techniques described in the remainder of this section.

Rubenstein and Goodenough, 1965, present what linguists refer to as the distributional hypothesis:
That the more semantically similar two words are, the more distributionally similar they will be, and
thus the more they will tend to occur in similar linguistic contexts. One application of the distributional
hypothesis is word vectorization; a methodology in natural language processing that maps words or
phrases from vocabulary to a corresponding vector of real numbers. The vectors are often compared
by their cosine similarity (for example, Comber et al., 2019). Unlike scalar string comparison
techniques such as the Levenshtein distance, vector techniques have been shown to find semantic

and syntactic relationships between words without training.
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In the information retrieval literature (Mikolov et al., 2013), accuracy, defined by equation 2.3,
measures the proportion of correctly classified instances. It is not analogous to the closeness of a set

of measurements to a specific value.

TP + TN (2.3)
TP+ FP + TN + FN

Accuracy =

Mikolov et al., 2013, published Word2vec, a word vectorization algorithm intended to maximise
accuracy and to minimise computational complexity. Low computational complexity made it possible to
compute high dimensional word vectors from a large data set®. They presented two neural probabilistic
language model architectures: The continuous bag of words architecture predicts the current word
based on the context, and the Skip-gram predicts surrounding words given the current word. These
were trained using stochastic gradient descent and backpropagation. They used the Google News
corpus for training the word vectors. This is a very large corpus, containing about 6 billion words, but

they restricted the vocabulary size to the 1 million most frequent words.

Figure 2-2 shows accuracy (defined in equation 2.3) on a subset of their semantic-syntactic word
relationship test set using word vectors from the continuous bag of words architecture with limited
vocabulary. Semantics is the study of meaning in language and syntax is the set of rules, principles,
and processes that govern the structure of sentences. Their models do not have any input information
about word morphology: the analysis of the structure of words and of parts of words. This limits the
accuracy as a question is assumed to be correctly answered only if the closest word to the vector
computed is the same as the correct word in the question; synonyms are counted as mistakes.
Mikolov et al., 2013, said that their data showed that adding more dimensions or adding more training
data provides diminishing improvements. This thesis presents their results on a logarithmic scale in
Figure 2-2. It shows that with high dimensionality there are improvements in accuracy from using more
training data. This did not show up on the linear scale in their paper. This additional observation does

not contradict those of the authors.

6 Figure 2.6 shows the size of the data set used by Mikolov et al., 2013.
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Figure 2-2, Accuracy on a Subset of the Semantic-Syntactic Word Relationship Test Set, using Word
Vectors from the Continuous Bag of Words Architecture with Limited Vocabulary.
Based on data from Mikolov et al., 2013

Comber et al., 2019, parse address sequences into features to convert their raw data into a structured
format for comparison. They train word2vec on 29.6 million parsed postal addresses. Their algorithm
maps words sharing the same context closer together in the vector space by feeding successive
address features into the model.

The technique used by Comber et al., 2019, for measuring the quality of record linkage does not use a
GSSLR. They instead measure the quality of record linkage using a questionable technique: They test
their results against an automatically generated ‘ground truth’ dataset consisting of a hundred
thousand pairs of ‘correctly linked’ address records that they generate by copying a list of addresses.
They simulate incorrectly linked records by introducing error characteristics to the correct records. The
match status of these synthetic non-matches is always set to false, meaning that their machine
learning techniques learn the representations of non-matched addresses for what they call “highly
nuanced cases”. However, typographic errors are not proof of an incorrect POLR. Incorrectly linked
records could alternatively have been simulated by randomly linking the records. Comber explained

this in a personal note:

“We found the problem with simulating random links between addresses is that the
trained classifier loses discriminative power. i.e. its performance actually diminished in
cases where we were comparing two highly similar addresses that were only
differentiated between, for example, "2A, West street, SW14 8RF" and "2B, West
street, SW14 8RF"

Lin et. al., 2019, train a word2vec model with dimensionality of 256 words to transform address

records into vector representations. They then apply an enhanced sequential inference model; they
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achieve local inference between two compared address records using a modified decomposable
attention model: a neural architecture and they achieve global inference between two compared
address records using a bidirectional long short-term memory: a recurrent neural network architecture.

They simulate incorrectly linked records using the same method as Comber et al., 2019.

Neither Comber et al., 2019 nor Lin et. al., 2019, have access to a GSSLR to compare their results

against and so the measurements of the quality of classification that they present are compromised.

2.2.4 Conclusion to Existing Record Linkage Techniques

This section reviewed the literature on record linkage. All the publications cited (except for Papatzimos
et al., 2017) measure the quality of record linkage, but none of them assesses the confidence that can
be placed in those measures. This means that the uncertainty caused by the size of the gold standard
is not quantified. Chapter 6 will address this gap with a review of the mathematical literature on

interval estimation for a binomial proportion.
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2.3 Classification Techniques

This research required a statistical technique that can model the probability that a dependent variable
that can take only certain discrete values (otherwise known as a label or as the outcome) belongs to a
specific class (otherwise known as a category). Classification algorithms categorise data into a given
number of classes, predicting the class of a discrete dependent variable by analysing a dataset
(otherwise known as covariates, predictors, or explanatory variables). Most of the publications that this
research found on such problems address the automatic detection of spam emails (unsolicited

messages sent in bulk).”

This section presents a variety of methods for probabilistic classification; classification methods that
use statistical inference to find the best class for a given instance. Probabilistic classification
techniques model the probability that an observation belongs to a specific class, select the class with

the greatest probability and assign the observation to that class.

2.3.1 Linear Regression

Linear regression models the relationship between variables by fitting a linear equation to continuous
data. It is the linear form of regression analysis, the statistical processes that estimate the
relationships between a dependent variable and one or more independent variables (otherwise known
as predictors, covariates, explanatory variables or features). While it is not used for classification,
because continuous data do not reflect the probability that a binary or multiclass dependent variable
belongs to a specific class, it is a very popular statistical technique. It is used to assess the degree of
correlation between two properties of a sample or to compare such a correlation to relationships
predicted by theory. It has been used, for example, in medicine, to forecast life expectancy (Aalen,
1989), in astronomy, to study the structure of the universe by determining the distance to celestial
objects (Isobe et al., 1990) and for facial recognition, technologies that measure and match people’s

facial characteristics for their identification or surveillance (Naseem et al., 2010).

7 Section 4.4.4.3.2 will present a technique that uses BNB classification to link WOs to outages by the
exploitation of material consumption records. It will present results showing that BNB classification is
not an appropriate technique for this application; testing the hypothesis that an the relationship
between an OWT failure mode and whether each class of spare part was used for the repair is
analogous to the relationship between whether or not an email is spam and what words are in the
email and finding that this analogy didn’t work. It will then present a simplified technique, developed as

part of this research, that has some of the characteristics of BNB classification.
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Linear regression algorithms fit a trendline to a data set with 2 dimensions, a plane to a data set with 3
dimensions or a hyperplane to a data set with more dimensions. They use an estimator, a measure of
the ‘goodness of fit’ of a statistical model, to assess how closely the trendline fits the data and they
maximise this estimator by optimising the intercept and gradient of a straight line. A popular estimator
used by regression algorithms is the ordinary least squares estimator (Gross and Grof3, 2003),
denoted rZ, which measures the distance, in the direction of the dependent variable, between the
trendline and each data point. r2 is one minus the ratio of the sum of the squares of these distances to
the variance of the dependent variable; it results in a value between zero and one and a higher value
implies a tighter correlation. A linear regression algorithm fits a trendline to data by maximising the
estimator. Linear regression is not a classification technique but is included here to differentiate it from

logistic regression.

2.3.2 Logistic Regression

The logistic function is defined by equation 2.4. It results in a value between zero and one. Logistic
regression uses the logistic function to model the probability that a dependent variable belongs to a

specific class, given continuous data. The dependant variable can either be binary or multiclass.

1 (2.4)

lOgiStiC(X) = HTP(—X)

The likelihood function is the probability that the logistic function would produce the training data.
Maximum likelihood estimation maximises the likelihood function. Logistic regression fits a logistic

function to training data by maximum likelihood estimation.

Logistic regression is widely used; for example, in medicine, it has been used to test the significance
of the null hypothesis that two alternative treatments are equally liable to induce an unwanted side
effect (Cox, 1958, Hosmer et al., 1991) and to identify risk factors for diseases (Tierney et al., 1985,
Festa et al., 2005) and it has been used in behavioural ecology to analyse the behaviour of animals
(Koster and McElreath, 2017).

This technique can model the probability that a dependent variable belongs to a specific class, as
required for the application of predicting the probability that a WO matches a particular outage using

material consumption data.

2.3.3 Support Vector Machines

Hyperplanes are decision boundaries used to classify data points. They have n dimensions where n+1
is the number of dimensions of the data. Data points falling on either side of the hyperplane are
modelled as belonging to different classes. Support Vector Machines use those data points that fall

close to the hyperplane to determine its position and orientation (Cortes and Vapnik, 1995). They are
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used for text classification (Joachims, 1999, Rezaeian and Novikova, 2020), image classification (Lin

et al., 2011) and handwriting recognition (Bahimann et al., 2002).

This technique can model the probability that a dependent variable belongs to a specific class, as
required for the application of predicting the probability that a WO matches a particular outage using

material consumption data.

2.3.4 K-Nearest Neighbours

K-nearest neighbours classification identifies the distances between a query and all the examples in
the data, it selects the specified number of examples (K) closest to the query, and then votes for the
most frequent label. (Fix and Hodges, 1989, Altman, 1992). Similarly to Support Vector Machines, it is
also used for text classification (Dharmadhikari et al., 2011), image classification (Imani, 2021) and

handwriting recognition (Lee, 1991).

This technique can model the probability that a dependent variable belongs to a specific class, as
required for the application of predicting the probability that a WO matches a particular outage using

material consumption data.

2.3.5 Decision Trees

A decision tree is a branching model of decisions. Classification by decision trees fits a model to a
dataset using a cost function (Doyle, 1973). Similarly to Support Vector Machines and K-nearest
neighbours, they are also used for text classification (Sakakibara et al., 1993), image classification (Xu

et al., 2021) and handwriting recognition (Takagi, 2006).

This technique can model the probability that a dependent variable belongs to a specific class, as
required for the application of predicting the probability that a WO matches a particular outage using

material consumption data.

2.3.6 Bernoulli Naive Bayes Classification

A multi-variate Bernoulli model is a probabilistic model trained using binary data. Naive Bayes
methods are commonly used for text classification, typically spam filtering, where binary data are
generated by checking whether or not a word is used in the email, rather than counting how many
times the word is used (Kim et al., 2006, Almeida et al., 2011, Jiang et al., 2012, Zhang et al., 2016,
Xu, 2018, Rezaeian and Novikova, 2020). Bernoulli Naive Bayes Classification has also been used in
authorship attribution (Altheneyan and Menai, 2014), sentiment analysis (Abbas et al., 2019), medical
diagnosis (Al Aidaroos et al., 2012), veterinary diagnosis (Kuncheva 2006) and software defect
prediction (Arar and Ayan, 2017).
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The naive Bayes classifier makes the so called naive Bayes assumption: this is that all of the
attributes of the examples are independent of each other given the context of the class; for example,
that the probability of each word occurring in an email is independent of the occurrence of other

words, given that it is, or is not, a spam email.

The multi-variate Bernoulli model considers both the probability of occurrence for attributes that do
occur in the event (such as the probability of occurrence for words that do occur in the email), and,

importantly, also the probability of non-occurrence for attributes that do not occur in the event.

Bayes' theorem is stated in equation 2.5. It identifies the posterior probability of A given B (P(AIB)),

the conditional probability of event A occurring given that B is true, using:

e The likelihood of A given a fixed B (P(B|4)), that is the conditional probability of event B
occurring given that A is true

e The prior probability (P(A)), that is the unconditional probability of observing A

e The marginal probability (P(B)), that is the unconditional probability of observing B.

P(B|A).P(A) (2.5)

P(A|B) = P(B)

A Bayesian learning framework can be used for supervised learning with labelled training examples. It
uses training data (such as emails labelled either as spam or as not spam) to estimate model
parameters (such as the probability of a word being used (or not being used) in an email, given that
the email either is or is not spam). It next classifies new events using Bayes' theorem to calculate the
posterior probability that a class would have generated the test event in question (such as the
probability that a spam email would contain certain words and would not contain certain other words).
Finally, it performs classification by selecting the class with the highest probability (such as predicting

that an email is or is not spam).

This technique can model the probability that a dependent variable belongs to a specific class, as
required for the application of predicting the probability that a WO matches a particular outage using

material consumption data.
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2.3.7 Conclusion to the Classification Techniques

This section reviewed standard classification techniques. Any of the techniques reviewed in sections
2.3.2 to 2.3.6 can be used for classification. Section 4.4.4.3.2 will present two techniques: a technique
using a Bernoulli Naive Bayes (BNB) classifier and a frequency-based technique. It will show that BNB
classification does not support useful interpretation with the unbalanced health history data but that
the frequency-based technique does. This research selected BNB classification because it is designed
to work with binary input data, and assumed that the use of a particular part would indicate the failure
more rather than how many of that part were used. Further work could test the frequency-based
technique and the various standard classification techniques against each other in a side by side

comparison.
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2.4 Techniques for Global Optimisation

Global optimisation is a branch of applied mathematics that attempts to find the global minima or
maxima of a function by choosing the system parameters. Most techniques for optimisation can find a
minimum but not all can find the global minimum of systems where the variable space contains
multiple distinct minima (Olson 2012). The following sections will review two appropriate techniques
for global optimisation. Section 7.6 will use the most appropriate of these techniques for the

optimisation of the weights and thresholds used in the PEOHH.

2.4.1.1 Brute Force

The “brute force” method computes a function’s value at each point of a multidimensional grid of
points. The process for global optimisation by brute force defines this multidimensional grid of points
as a list of values for each of the system parameters, for example a minimum, maximum and step.
This method has the advantage that it makes no assumptions about the structure of the system that it
is investigating and so if the optimum value of each parameter is listed, then the optimum value will be
found. The optimal parameter value can be missed if it lies outside of the range or if it lies between the
steps. If the Number of Parameters is NP and the Number of listed Values of each parameter is NV
then the number of grid points to evaluate is NVVP. For example, to try 11 values for each of the 28
parameters would require 1128 evaluations. This issue, referred to as the ‘curse of dimensionality’,

means that the brute force method is unfortunately too computationally expensive for this application.

2.4.1.2 Differential Evolution

An evolutionary method is an optimisation method that uses mechanisms inspired by some features of
evolution; mutation, recombination and selection (Schwefel, 1995). This section will present
Differential Evolution (DE); an evolutionary method that optimises a function by maintaining a
population of candidate solutions and creating new candidate solutions by combining existing ones
(Storn and Price, 1997). It is a popular technique, used for example in electronic circuit design (Storn
and Price, 1997), in web services (Rodriguez-Mier et al., 2010), in building energy management
(Rodriguez-Mier et al., 2019), in wind turbine power curve modelling (Lydia et al., 2013), and in

interplanetary trajectory design (Labroquere et al., 2014).

The steps in a DE algorithm are the initialisation of the population, mutation, recombination,
replacement and evaluation. Unlike most techniques for global optimisation, it does not use derivatives
and so it is appropriate for discontinuous step functions; for example, in the application of this thesis,

the optimisation of the Positive Predictive Value (PPV).

DE methods have control variables that adjust the population size, the mutation rate, the variation in

the mutation rate (or ‘dithering’) and the recombination rate. This section will present a basic DE
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strategy. Section 6.2.4 will use this DE strategy to optimise a statistical technique and section 7.6 will

use it to optimise the thresholds and the agreement and disagreement weights of the PEOHH.

The literature on DE (Storn and Price, 1997, Abbasa et al., 2017) describes an array of parameters;
for example, in the application of this thesis, the thresholds and the agreement and disagreement
weights of the PEOHH expressed as a vector. The number of dimensions of the vector is the Number

of Parameters to be varied (NP).

DE generates a set of vectors referred to as population vectors. In each generation, DE operates on
each vector, referred to as the current vector or target vector (x}). It identifies each vector of each
generation by a running index (i), (otherwise known as the vector index), it identifies each parameter
by a parameter index (j) and it identifies each generation of the evolutionary process by a generation
number (g). The Population Size (PSi) is the number of population vectors produced in each
generation. DEs mutation operation creates PSi mutant vectors (vé), (otherwise known as donor

vectors). This section will present the most popular DE mutation scheme, called ‘best/T’ because it
selects the ‘best’ vector and because it uses one mutation term. Storn and Price, 1997 and Abbasa et

al., 2017 define various DE strategies but for brevity this thesis will only present one of them.

Equation 2.6 defines the ‘best/1’ strategy using the Mutation Probability (MP) (Storn and Price, 1997,
Abbasa et al., 2017). The best vector in a population is the vector that yields the best fitness, that is

the lowest cost function and in the case of the PEOHH, it is the parameter values that yield the highest
p. The best/1 strategy selects the best vector (xé’e“) from the set of population vectors and it
randomly selects two of the population vectors by their index (13, 73). 15,73 € {1,2,3 ... PS} and

15,73 # 1. It adds the weighted difference between the two random population vectors to the best

population vector using equation 7.9.

v‘é — xél;est + MP(x;Z _ x;3 (2.6)

Dithering is the randomisation of the Mutation Probability (MP). It can increase the speed of
convergence (Price et al., 2005, Dawar and Ludwig, 2014). Dithering is defined by equation 2.7 using
the mean Mutation rate (Mu), the Dithering rate (Di) and a uniformly distributed real number in the

range (—0.5,0.5) generated anew for every generation (randg(—0.5,0.5)).
MP = Mu + Di X randg(—0.5,0.5) (2.7)

This section will present the most popular DE crossover or recombination scheme; called binomial. A

trial vector (ug) is a vector that is created in the crossover operation in which DE mixes the mutant

vector (vé) with the current vector (x},). Equation 2.8 presents the binomial crossover scheme (‘bin’)
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using the Crossover Rate (CR), (otherwise known as the crossover probability or recombination
constant), the vector index (i), the parameter index (j), the generation number (g), a uniformly

distributed real number in the range (0, 1) generated anew for every parameter of every vector
(rand} [0,1]) and a random integer between 1 and NP (j,q.nq) generated anew for every parameter of

every vector. (Storn and Price, 1997, Dawar and Ludwig, 2014, Abbasa et al., 2017). A larger CR
increases the mixing of the parameters to perturb the population more and can help the search to get

out of multi-dimensional ‘dips’ to find whether there is a lower minimum elsewhere.

7,9

P {vji'g, (rand}[0,1] < CR o7 j = jyqna) (2.8)
else

14
Xj.g’

In each generation and for each vector of the population, DE selects the fittest option between the trial
vector (ué) and the current vector (xéi]). Equation 2.9 presents DEs selection operation where the
fitness function calculates the value of the objective function, for example, in the application of this
thesis, it calculates the PPV from a vector of thresholds and the agreement and disagreement weights

of the PEOHH (ug or x;).

g i

o1 (ug,  fitness(u)) < fitness(x}) (2.9)
xHt =1
Xg, else

Convergence criteria are the criteria at which the solving stops because DE has converged
sufficiently. DE uses the convergence criteria defined in equation 2.10. The Population Energies (PE)
are a table of the function evaluation for each population vector (Sandell, 2020). The Absolute
Tolerance (AT) is set to the default value of 0. The Relative Tolerance (RT) is set to the default value

of 0.01. These are the default settings for the convergence criteria of DE.
o(PE) < AT + RT.|PE| (2.10)

DE solving stops either when the convergence criteria have been met or when the maximum number

of iterations, set at the default value of 1000, is reached.

2.4.1.3 Conclusion to the Techniques for Global Optimisation

This section reviewed the “brute force” method of global optimisation and DE and it showed that to
yield a computable result in the multi-dimensional application of this research it will be necessary to

use DE. Chapter 7 will present its application.

69



2.5 Conclusion to the Background

This background chapter has presented a description of the existing records of OWT health history
that this project has benefitted from access to, the state of the art for record linkage (used in chapters
3 and 4), a classification technique (used in section 4.4.4.3.2) and a global optimisation technique
(used in section 7.6).

This chapter has identified a gap in the literature that techniques joining wind turbine WOs to alarms
and to outages are only described in one publication. This publication, Papatzimos et al., 2017, links
offshore wind turbine WOs to records of control system alarms. It uses a single feature; a timestamp,
but this literature review has shown that multi-feature record linkage techniques outperform single-
feature record linkage techniques.

This thesis will address that gap in the literature by presenting new techniques that link together
existing records of WOs and outages to determine and validate an Enriched Health History (EHH).
Section 1.2 predicted that this will enable improvements in the maintenance of OWTs in the areas of
maintenance scheduling, troubleshooting, CBM and in the measurement of the effectiveness of

maintenance activities.

The literature on record linkage does include measures of the quality of record linkage but Papatzimos
et al., 2017, do not measure the quality of their record linkage. The literature does recognise that a
small GSSLR can only yield an uncertain estimate of the quality of record linkage but it does not
quantify this uncertainty. The literature also measures the quality of record linkage but it does not
assess the confidence that can be placed in those measures. When applied to maintenance,
understanding this uncertainty informs maintenance decision making; which, as section 1.2 showed,
can improve productivity. Chapter 6 will review statistical techniques that will be used in chapters 7

and 8 to assess that confidence.
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3 Evaluating Health History Enrichment

This chapter discusses the aims behind the methodology used in the Process for the Enrichment of
OWT Health History (PEOHH) developed in this research and the assessment of the success of the
PEOHH. It discusses which of the measures of the quality of classification presented in section 2.2.1

are appropriate for this research and it develops a new measure based on these.

Chapter 2 identified a gap in the literature that multi feature record linkage techniques have not been
used to improve maintenance strategies. This thesis presents new record linkage techniques and
applies these as well as existing record linkage techniques in the field of OWT maintenance, as
described in the following Research Question (RQ):

RQ1 To enable improvements in WT CBM & troubleshooting, how can WT health history be

enriched?

Chapter 4 will present a process for linking together existing records of OWT health history to identify

an Enriched Health History (EHH). These records, all described in section 2.1, are the:

e database of alarms
e database of outages
e database of Work Orders (WO)

e database of material consumption

Qrsted generated the database of outages from the database of alarms and so linking these together
is trivial since the records timestamps can be used as an index. The database of material usage is
labelled with WO numbers and so linking these together is also trivial, since the order number can be
used as an index. For reasons that were discussed in chapter 1, it is important to link WOs to records
of outages and literature searches up to 2021 did not find such techniques described. In this thesis, a
Pair of Linked Records (POLR) is generated when a single WO s linked to a single outage record.

Record linkage is not a new area of research but applying it to maintenance records is.

Each POLR is either correct (the WO does refer to the same event as the outage) or it is incorrect (the

WO refers to a different event to the outage).
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The probability that any given POLR in the EHH is correct (P) is the probability that the WO does refer
to the same event as the outage. If P can be predicted, then the EHH could be filtered by P. This
would identify a filtered EHH in which each record was of at least a minimum value of P. If the quality
of record linkage is not always perfect, then filtering would be beneficial for the applications detailed in
section 1.2. For example, in the application of troubleshooting, a developer might filter the EHH to only
include higher scoring POLRs to increase the quality of the EHH. With a high quality EHH its quantity
is lower. The optimum depends on the application, where some applications benefit from a higher
quality EHH and other applications benefit from a larger quantity of EHH data. For example, it is
important to operators that maintenance technicians have confidence in the analytic tools that are
made available to them. An analytic tool that recommended that technicians take parts that they would
be unlikely to need might not win the confidence of technicians. In that case, a higher quality EHH
would help to win the confidence of the technicians. On the other hand, if the tool were well
understood by the technicians then they might choose a larger quantity EHH, so as to bring parts that,
while unlikely, might turn out to be required for repairing their OWTs. As new wind farms are

constructed at increasing distance from shore, the optimum set of spare parts will tend to get larger.
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3.1 Validation

If the EHH were to contain incorrect information then this would be detrimental to any application of it.
Verification, Validation and Testing (VVT) are techniques that together assess whether a product,
service, or system meets requirements and specifications and fulfils its intended purpose. This section
will introduce the processes that later chapters use for the VVT of the PEOHH. This thesis uses VVT
terminology from Balci, 1994, Robinson, 1999, Sargent, 2013 and Hicks et al., 2015. VVT will measure
the quality of the EHH and this measurement will enable the maximisation of that quality and is

addressed in the following RQ:
RQ2 How can the quality of the EHH be validated?

Figure 3-1 and Figure 3-2 illustrate the techniques that this thesis will use for the VVT of the PEOHH.

This thesis breaks this process down into four sub processes:

e Data validation: validation of the existing records of health history against the EHH, best
carried out after the validation of the EHH. It results in measures of the quality of the existing
records of health history down to a level of detail that can for example predict the confidence
that a WO start date is accurate.

e Conceptual model validation: validation of the conceptual record linkage models against the
existing records of health history, testing the assumptions behind each model.

e Computational model verification: verification of the computational models against conceptual
models. This involved the checking of each line of code to identify errors and to check logic as
well as running a manual test on each algorithm, checking that it works correctly and that it
does not contain coding errors.

e Operational validation: Operational validation is the comparison of the model (or in this case
the EHH) to reality. Reality is represented in this case by a gold standard sub-sample. Section
2.2 presented existing record linkage techniques. It was described in that section that “PRL
techniques require a sample “Gold Standard” Set of Linked Records (GSSLR) to determine
the optimum weighting. Such a sub-sample can be determined by clerical review (Dunn,
1946).” A clerical review by a wind turbine expert at @rsted and this author?® identified the
GSSLR.

8 The clerical review will be described in section 4.3, as will a semi random method that will be used to
identify a set of WOs that is representative of the more important WOs, as only these will be included
in the GSSLR.
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Figure 3-1, Conceptual Model Validation and Computational Model Verification
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Figure 3-2, Data Validation and Operational Validation

All four of these forms of validation are essential but operational validation is the most important.®

The PEOHH uses an ensemble of record linkage techniques to compare features of the WOs to
features of the outages. Section 2.2 showed that, in the fields of medicine, census data, genealogy

and in the detection of duplicate internet search results, using an ensemble of record linkage

9 The operational validation of the EHH will be discussed in section 4.3 and its results presented in
chapters 7 and 8.
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techniques gives a better quality result than using a single record linkage technique. This research will
test the hypothesis that this also applies in the field of offshore wind turbine maintenance and chapters
7 and 8 will present the result that it does.

Section 4.3 will present the techniques that were used by this research for the validation of the EHH.
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3.2 Measures of the Quality of Record Linkage

Each of the record linkage techniques that will be presented in chapter 4 is based on a set of
assumptions; this thesis, however, does not rely on these assumptions but instead it tests them as
hypotheses. These hypotheses are tested by the validation of a sample from the Enriched Health
History (EHH) against the Gold Standard Set of Linked Records (GSSLR). Consider a set of WOs,
each one linked correctly to its corresponding outage. This will be referred to as the ‘true EHH’. All of
these hypothesis tests rely on the assumption that the GSSLR is representative of the true EHH. The
GSSLR was randomly selected from the important WOs'0 so it will be reasonably representative but a
larger GSSLR would tend to be more representative'. Later chapters will present measures of the
uncertainty of how representative the GSSLR is and will compare techniques that use this

understanding to identify the confidence of the correctness of the EHH.

3.2.1 True Positive Rate and True Negative Rate

Measures of the quality of classification were discussed in in section 2.2.1 but as a recap, True
Positive Rate (TPR), defined by equation 1.5, measures the proportion of true matches that have been

classified correctly.

TP (1.5)

TPR = b ¥ FN

Similarly, True Negative Rate (TNR), defined by equation 2.1, measures the proportion of actual

negatives that are correctly identified as such.

TN (2.1)

TNR = o+ Fp

In other record linkage applications, each record might not link to any other records or it might link to
multiple other records. The PEOHH assumes that each WO links to one outage. This means that
unlike other record linkage applications, the PEOHH does not generate negative links which means
that TPR and TNR are unknown. That the PEOHH does not generate negative links does not mean
that it does not generate false links. This is neither an assumption nor an advantage of the PEOHH; it

is one of its features.

10 The selection of the GSSLR will be described in section 4.3.

1 Section 4.3.2 will present the method used in this thesis for the validation of the techniques for
health history enrichment and will explain that the size of GSSLR, 29 WOs, was constrained by the
amount of expert time that was available.
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3.2.2 Positive Predictive Value

As discussed in section 2.2.1, the Positive Predictive Value (PPV), defined by equation 2.2, measures
the proportion of classified matches that are correctly identified as such. It indicates the quality of
record linkage.

PPV = (2.2)
~ TP +FP
This thesis will compare a sample from the EHH to the GSSLR. It will calculate the PPV, referred to as
the PPV of the GSSLR or just as the PPV. A point estimate is a single value estimate of an unknown
population parameter. The PPV of the GSSLR is a point estimate of the PPV of the EHH.

The binomial distribution describes the behaviour of a count variable for a fixed number of
observations where each observation is independent, where each observation has one of two possible
outcomes and where the probability of each outcome is the same for each observation. The binomial
proportion is the number of successes divided by the number of trials. The PPV of the GSSLR will be
modelled as a binomial proportion and chapter 6 will present methods for the estimation of the
uncertainty of a binomial proportion. To identify the confidence of the correctness of the EHH, section

7.6.2 will construct confidence intervals (defined in chapter 6) for the PPV of the EHH.

3.2.3 Negational Positive Predictive Value

Section 2.2 presented the existing Probabilistic Record Linkage (PRL) techniques:

PRL techniques combine an ensemble of comparison features by weighting each
dimension of the comparison vector to give an overall score indicative of the probability
that each POLR is a true match.

Where the weight assigned to a dimension of the comparison vector is set to zero, the corresponding
feature is disregarded for record linkage comparison. This thesis will refer to setting the weight to zero
as ‘disregard’. Consider disregarding one of the features: the effect of not using a feature is a useful
measure of the effectiveness of that feature. This thesis presents the Negational Positive Predictive
Value (NPPV); the Positive Predictive Value (PPV) calculated using all the features except one feature
or set of features that is disregarded. This measure of the quality of classification is useful because if a
feature has a low NPPV then the PEOHH can avoid unnecessary computation by excluding it from the

ensemble of features in the PEOHH.
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3.3 Measures of the Richness of Health History

The claim that the health history has been enriched must be tested. This thesis is interested in
whether the health history has been made more useful for the applications detailed in section 1.2. This
thesis defines the richness of a health history data set as how much useful information it contains on
each fault including the time that it occurred, the failure mode and the severity. The severity of a fault
is determined by how much production was lost and the cost of repair. This section introduces the

following RQ:
RQ3 How can the richness of historical data on wind turbine health be measured?

By joining work orders to outages, the PEOHH develops a new, integrated database, the EHH, that
contains both information from the WOs such as material consumption and work hours and
information from the database of outages such as lost production. It enriches the health history by
joining these records together, enabling applications of the health history that improve maintenance

such as the applications detailed in section 1.2.

For the applications detailed in section 1.2, the EHH that is required only describes corrective work,
excluding preventive, retrofit, inspections and surveys and condition-based work. The PEOHH filters

the WO data by type to include only corrective work.

Chapter 4 will frame RQ1 and chapter 7 will answer it. Sections 2.2 and 3.1 addressed RQ2. This
section has presented RQ3 which will be addressed in Chapter 8, which will also discuss what is

meant by enrichment and will quantify the uncertainty of the measures of enrichment.

3.4 Conclusion to Evaluating Health History Enrichment

This chapter has presented the theory that underlies the validation of the PEOHH. It has presented
measures of the quality of record linkage that will be used in the following chapters to optimise and to
validate the PEOHH. It has identified the research questions that will be addressed by this thesis.
Chapter 8 will present measures of the richness of health history and will use them to validate the

claim that the health history has been enriched.
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4 Techniques for Health History Enrichment

Chapter 3 presented the techniques that will be used to evaluate the Process for the Enrichment of
OWT Health History (PEOHH) developed in this research and identified the following research
question (RQ):

RQ1 To enable improvements in WT CBM and troubleshooting, how can WT health history be

enriched?

This chapter introduces the PEOHH. This process joins together four existing records; a database of
alarms, a database of outages, a database of Work Orders (WQO) and a database of material
consumption'2. Section 4.1 will present the PEOHH but will not detail the techniques that the PEOHH
uses. Section 4.2 will discuss how this research developed the process. The techniques used for the
validation of the PEOHH will be presented in section 4.3. The techniques that the PEOHH uses,
structured by the type of feature that the technique uses, will be presented in section 4.4. This
research selected a single wind farm for the development of the techniques that this thesis presents.
The identity of the farm is commercially privileged information and to protect its anonymity the reasons
for selecting it are not discussed in this thesis, but it is a relatively mature farm and therefore has a
useful amount of maintenance history available, which would not be the case with a more recent wind
farm. Table 4-1 presents the size of these existing records of OWT health history. The number of
material consumption line items in Table 4-1 includes parts used for all types of maintenance. This
should not be confused with the number of parts used as each material consumption line item details

a quantity of material, for example a number of parts or a volume of paint or oil.

12 The existing records of wind turbine health history were described in section 2.1.
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Table 4-1 gives the number of corrective’® WOs rather than the total number of all types of WO

because, for reasons that will be presented in Section 4.4.2, the PEOHH filters the WO data by order
type to include only corrective work orders. The population size of 9.82x103 WOs and a larger number

of alarms, outages and Material Consumption Line ltems (MLI) is smaller than that required by some
Natural Language Processing (NLP) techniques'* but chapter 8 will show that this dataset is large

enough for this research to derive statistically robust results.

Count
Alarms 6.70x10°
Outages 5.32x104

Corrective WOs 9.82x103

MLlIs 1.35x10*

Table 4-1, Size of the Existing Records of OWT Health History

13 Section 2.1.3.3 presented the WO ‘type’ feature which classifies each WO as either preventive,

retrofit, inspections and surveys, condition-based or corrective.

14 NLP techniques were described in section 2.2.3.
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4.1 Process for the Enrichment of OWT Health History

Section 2.2 presented existing record linkage techniques and introduced blocking:

“Probabilistic Record Linkage (PRL) techniques join two databases together to create a
new database in which each row represents one Pair Of Linked Records (POLR). PRL
techniques could compare each record in one database with each of the records in the
other database but this would be computationally expensive and can lead to inaccuracy
(Sadinle and Fienberg, 2013) so they instead split the data into smaller blocks to
disregard very unlikely pairs. They compare features in the data sets being linked

together to generate a comparison vector containing comparison features”
Any record linkage approach that did not include blocking would be computationally intractable.

The first step of the PEOHH is to join WOs to outages to create POLRSs. It uses the WO start date for
blocking after this research elicited the opinion from wind turbine experts that the technique that uses
this feature would be the most effective. The PEOHH could have only used WOs that have their start
date on the same day as or during the outage. This would mean that, if there was an error in the
record of the start date, no POLR would be created and so the other features would not be compared.
The PEOHH instead adds a 40-day margin to the outage start and finish times to create an extended
duration. It joins each WO to each of the outages of which the WOs start date lies within the outages
extended duration.'® the PEOHH creates POLRs using a Python algorithm posted by Stack Overflow

internet forum user “Josh Friedlander” (Friedlander, 2019).

The blocking process creates a Set of Pairs Of Linked Records (SPOLR). Some of the POLRs in the
SPOLR link a WO to the outage that it refers to (true links) but others link a WO to a different outage
(false links). The aim of this research is that the PEOHH should identify the true links in the SPOLR.

In record linkage, an agreement pattern is a matrix in which each row represents one POLR, each
column represents one feature and each value registers agreement, disagreement or neither
agreement nor disagreement for the corresponding feature and POLR. The PEOHH identifies the

agreement pattern using techniques that will be detailed in section 4.3.16

The PEOHH calculates a Weight for each Feature for each POLR (W, ) Using the Agreement
Weight for that Feature (AWp,), the Disagreement Weight for that Feature (DW¢,) and equation 4.1.

15 This research investigated the effect of varying the 40-day blocking threshold and the results are
presented in section 7.1.

16 Chapter 5 will illustrate the agreement pattern by linking two example WOs to outages.
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The following pages will present the process used in this research for estimating optimal values of
AWrp, and DWFp,, for each feature. For any feature for which AWy, and DWg,, for a feature can be set
to zero without reducing, this research cannot conclude that there is a benefit of calculating that
feature and so operators might consider disregarding that feature so as to avoid computation with no

proven drop in the quality of record linkage.!”

AWg,, Feature registers agreement (4.1)

POLR
Wreporr = DWree, Feature registers disagreement , -
0, Feature registers neither,,, »

The PEOHH calculates a Score for each POLR (Spo.r), the sum across all the features of the

Wrepo,r UsiNg equation 4.2.

SpoLr = Z WeepoLr (4.2)
Fe

Each POLR in the SPOLR is assigned a unique identifier, ‘match ID’, in order of when the outage
started. The PEOHH sorts the POLRs by match ID, by Atg.18 and then by Spo;r and then it filters the
POLRs to retain only the first POLR for each WO. This process identifies a version of the EHH with
the highest Spy g for each WO. Where the highest Spp; g scores for a WO are equal, it selects the
POLR with the smallest Atg,; that is the POLR in which the WO start time is recorded closest to or
during the outage. Where the smallest Atg; scores for a WO are equal, for example where they are
both zero (that is that the WOs is recorded as occurring during both of the outages) it selects the
POLR with the smallest match ID; that is the POLR with the outage that started first. Selecting the
POLR with the smallest match ID is an arbitrary decision taken to keep the results consistent. Two
power outages cannot happen at the same time on the same OWT and so a WO cannot in reality start
during more than one outage; however selecting the POLR with the smallest match ID makes the EHH

consistent even when the PEOHH is working with unrealistic dummy data.

17 Section 7.6.4 will consider the pros and cons of using features where their benefit is uncertain

18 Section 4.4.1 will define Atg;.
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The PEOHH uses a set of thresholds'® and a set of weightings.2® Each of these will be optimised to

maximise the Positive Predictive Value (PPV)?!. 22,

For any feature for which AWr, and DWW, can be set to zero without reducing PPV, this research
cannot conclude that there is a benefit of calculating that feature and so operators might consider
disregarding that feature so as to avoid computation with no proven drop in the quality of record

linkage.

This section introduced the PEOHH. It described how the PEOHH was implemented and how it was
validated. Section 4.4 will present the hypotheses that different features of the health history data can
be used for record linkage comparison. Chapter 7 will present the use of the GSSLR to optimize the
weights and thresholds used by the PEOHH and chapter 8 will use it to validate the EHH. If the
optimized agreement and disagreement weights for a feature are zero, then the hypothesis that this
feature makes a useful contribution to the process of record linkage will have been disproved. If
whether they are zero or not is uncertain then the hypothesis will have been neither proved nor
disproved. If they are not zero, then the hypothesis will have been proved. With a larger GSSLR, the

confidence of such a conclusion would be higher.

9 For example, the Threshold for the Time difference between Outages and Alarms (TTOA) that will
be defined in section 4.4 .4.

20 For example, the Agreement Weight for the Start time feature (AWs,). Agreement weight was
defined in this section and the start time feature will be defined in section 4.4.1.

21 PPV was described in section 3.2.2.

22 This optimisation process will be described in chapter 7, after all the features have been presented.
A larger Gold Standard Set of Linked Records (GSSLR) would improve the quality of this optimisation.

23 Section 7.6.4 will consider the pros and cons of using features where their benefit is uncertain
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4.2 Development of the Process

This section will describe how this research decided which record linkage features to investigate.

This researcher was trained within @rsted’s Advanced Analytics Lab in how they manually link work
orders to outages. This training inspired the techniques using timestamps, particularly the Basic start

Date. It also inspired the technique that uses the WO ‘description’ feature.

The WO ‘description’ feature is indicative of the failure mode and this inspired the investigation of

other features indicative of the failure more.

The feature that uses material usage data is currently implemented as an algorithm that takes some
time to run but the optimisation of these algorithms was outside of the scope of this thesis.
Experiments to optimise the PEOHH required these algorithms to be run repeatedly and these made

up time-consuming tests.?*

Further discussions with data scientists at Orsted inspired the feature using the order type and the

feature visits to the wind turbine.

It was an important breakthrough in this research when it identified that linking records together, such
as linking WOs to outages, is referred to in scientific literature as record linkage. This realisation
occurred during the second year of research. This research had already developed some of the

features of the PEOHH but this literature showed how to combine multiple features.2?

A colleague at Durham University suggested that maintenance vessel tracking logs could be used to
validate the outage timestamps. These logs show when the vessel visited each turbine and are
independent of the maintenance records. This research did not investigate this feature because it
judged that validating the outage timestamps would probably not contribute towards linking WOs to
outages. Outage timestamps are more accurate than WO timestamps and it was expected that the

vessel visits would coincide with the outage timestamps but not with the WO timestamps.

24 Section 4.5 details and discusses the computation times.

25 Section 2.2 reviews the literature on record linkage.
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4.3 Validation

4.3.1 Aim

Chapter 3 identified the following research question (RQ) and described various validation processes
that will be used in this thesis.

RQ2 How can the quality of the EHH be validated?

This section will focus on the operational validation of the Enriched Health History (EHH) and will
present the Process for the Validation of the EHH (PVEHH). This includes the process used for
selecting a sample from the database of WOs and for matching each WOs in this sample to its
corresponding outage to identify a sample “Gold Standard” Set of Linked Records (GSSLR) and the
process for comparing the GSSLR to the EHH.

4.3.2 Method

This research selected WOs for the sample using a process that was semi random and semi

structured.

This thesis considers significant faults to be those that represent a significant cost to the operator due
to any combination of lost production, worker time or material cost. It is these faults that analysts
applying the EHH are interested in identifying in the historical record. The record also includes
insignificant faults and the repair of these insignificant faults can also be associated with a WO
recorded as ‘corrective’. The PEOHH filters the WO records to only include those WOs that are
recorded as ‘corrective’ but to identify the sample the PVEHH filters the corrective WOs again to

include only those that are significant.

It is an essential requirement that the validation processes are as independent as possible from the
process that they validate. It is therefore necessary that the PVEHH is independent of the PEOHH.
That means that the process for selecting which records are significant could use either the WO
records or the outage records. The PVEHH should not use the EHH which is those records joined

together.

Lost production information is contained in the database of outages whereas worker time, material
cost and order type information is contained in the database of WOs so to ensure that the PVEHH is
independent of the PEOHH, the PVEHH could either use lost production information or worker time,
material cost and order type information to decide which records are significant. This research elicited
the opinion of Prsted’s wind energy experts about which features would be required to identify
important health history events. They all agreed that worker time, the number of person hours

recorded against the WO, is the most appropriate measure of the importance of faults. This is because
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faults with significant lost production tend to require significant work to resolve and because work time

tends to be accurately recorded as it is closely tied to the worker’s remuneration.

This research identified more important WOs by including only those WOs with worker time booked
against them. This research could alternatively have selected WOs at random from the full population
of WOs but this would have resulted in a sample that included unimportant WOs. To identify the
GSSLR, this research randomly selected a set of WOs from the set of important corrective WOs.

Random selection was used with the intention of getting a sample representative of the population.

The researcher and a wind turbine expert with experience of the wind farm in question attended the
validation meeting. The meeting was designed to elicit the correct outage for each WO in the sample,
to identify the GSSLR. The researcher read out the WO features that are referred to as wind turbine
ID, start date and description. At this point, if the wind turbine expert identified a single candidate
outage to match to the WO then the researcher recorded the outage ID. Alternatively, if there were
multiple candidate outages then the researcher read out the material consumption and long text for
the WO. The researcher recorded the outages identified by the wind turbine expert in a table; the
GSSLR. The GSSLR represents expert experience and this thesis will assume that it is a set of true

matches although of course it could contain errors.

As discussed in section 2.2.1, the Positive Predictive Value (PPV), defined by equation 2.2, measures
the proportion of classified matches that are correctly identified as such and indicates the quality of
record linkage.

(2.2)

PPV = ———
V= Tp1Fp

This research will identify the PPV of the GSSLR and will use this sample to estimate the PPV of the
EHH.

The first operational validation meeting checked 9 WOs in 2 hours. The second meeting checked 5
WOs in 1.5 hours. These were compared to the automatically generated results. Feedback from this

validation exercise informed improvements to the PEOHH.

To derive a more accurate estimate of p, this research needed a larger GSSLR, however the wind
turbine experts’ time was constrained and so it needed a faster method of extracting the health history
data used for validation. The third operational validation meeting checked 29 WOs in 2 hours. This
meeting used data from a different farm from which, for reasons that are commercially privileged, data

was quicker to extract.

Differences between farms and any consequent differences in the practice of record linkage are

outside of the scope of this research. This thesis only uses the results from the third validation meeting
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because it relates to a different farm from the results from the other meetings. The PEOHH only works
with one farm at a time because the differences between different farms would be difficult to account
for but further work might overcome this constraint. Consequently, this research did not combine the
results of the validation meetings for the two farms. The PEOHH was tested using data from the same

farm from which the GSSLR was derived.

To summarise, the size of the GSSLR, 29 WOs, was constrained by the amount of expert time that

was available.

4.3.3 Result

For one of the WOs in the validation set, the wind turbine expert could not tell which outage matched
it. The WO description field reads “Lightning card bracket missing in blade” and its long text reads
“The Lightning card bracket is missing from blade A The Lightning card holder is missing from blade
B”. This fault does not require immediate remedy and its repair would have been bundled with other
jobs. It would not cause the turbine to stop working and so there is no outage associated with this
fault. This research kept this WO in the GSSLR because it is a feature of the EHH that it contains
WOs like this one that are not associated with an identifiable power outage. This limits the maximum
value of the PPV of the GSSLR to (n-1) / n=(29-1) / 29 = 96.6%.
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4.4 Features

This section presents the hypothesis that an ensemble of features from the WO data, from the outage
data, from the alarm data and from the material consumption data can be used for record linkage
comparison. It presents each record linkage feature as a technique for Health History Enrichment
(HHE).

The techniques that will be presented in this section were developed by a process that started with
conversations with @rsted’s wind turbine experts and with researchers from Durham University’s
Department of Engineering and Department of Mathematical Sciences. The starting point was
observation of how @rsted’s wind turbine experts manually link WOs to outages. This research
automated each of these techniques and further developed them by experiment. Chapter 7 will

discuss which of these techniques should be applied in practice and how they can be optimised.

For each technique, this research developed code in the Python programming language. For some of
these techniques, this research benefitted from support from volunteer contributors to the online forum
Stack Overflow (StackExchange, accessed 2021).26

This section presents twelve record linkage techniques organised into four sub sections:

e Four timestamp-based techniques
e Atechnique that considers the recorded type of maintenance
e Atechnique that uses the records of visits to the wind turbine

e Six failure mode-based techniques

For each record linkage technique, the chapter only presents its method and the hypothesis that it

might be effective as part of an ensemble of techniques.

Section 4.4.1 will present the hypothesis that that timestamps from the WO data and from the outage
data can be used for record linkage comparison as part of an ensemble of features. Section 4.4.2 will
present the hypothesis that the ‘type’ feature from the WO data and from the outage data can be used
for record linkage comparison as part of an ensemble of features. Section 2.1.3 will present the
hypothesis that the ‘number visits’ and ‘duration’ features from the outage data can be used for record
linkage comparison as part of an ensemble of features. Section 4.4.4 will present two hypotheses: (1)
that features indicative of the failure mode from the WO data, from the outage data, from the alarm
data and from the material consumption data can be used as part of an ensemble of features for

record linkage comparison and (2) that a selection of these techniques could be used to the same

26 These contributions are individually referenced in this thesis.
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effect. All these hypotheses will be tested in chapter 7. Techniques that will be reviewed in chapter 6
will identify uncertainty that will render the results of these hypothesis tests indeterminate. Chapter 9
will recommend an innovation in maintenance record keeping that would drastically reduce this

uncertainty.

4.4.1 HHE Techniques Using Timestamps

This section will test the hypothesis that that timestamps from the WO data and from the outage data
can be used for record linkage comparison as part of an ensemble of features. It will present a novel

technique for this purpose.

Section 2.1.2 described the outage start time and the outage finish time. Section 2.1.3.1 described the
WO start date, the WO finish date and the WO notification date. Section 2.1.4 described the material
‘posting date’. While the timestamps in the outage records are generated automatically from the alarm

log?’, the timestamps in the WO records are human generated?s.

Papatzimos et al., 2017, linked OWT WOs to alarms using a single feature; a timestamp. To achieve a

better quality of record linkage, this research builds on the state of the art with three innovations:

(1) Rather than using a single timestamp, it uses up to four timestamp features together as part of
an ensemble of features.

(2) Rather than using only timestamps, it uses other features as well as part of an ensemble of
features.

(3) Rather than considering the outage as a single point in time, it instead considers the full
outage duration, such that a WO timestamp occurring during a long outage is recognised as

agreeing even if it is not close in time to the outage start time.
This section presents techniques using four timestamps:

e WO start date
e WO finish date
¢ WO notification date

e Part posting date

27 The database of outages was described in section 2.1.2.

28 The database of WOs was described in section 2.1.3.
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This chapter will compare the effectiveness of four techniques that each use one of these four

features. The PEOHH compares the POLRs that it generated using the blocking process?°.

This section presents two techniques that both use any one of the four timestamps for record linkage
comparison as part of an ensemble of features. Technique A returns the difference between the WO
or part timestamp to the outage start or finish time. Technique B assesses whether the timestamp is
during the outage, if so then it returns zero and if not then it returns how far outside. It returns a
positive time difference whether the timestamp is before or after the outage. Technique B has the
benefit of registering positive agreement for timestamps that occur during long outages, where they

may not be close to the start or finish times and so the PEOHH uses technique B.

The PEOHH compares each WO timestamp to the outage start and finish times to give a positive time
difference (Atg,). If the timestamp is during the outage then it records a Atg, of zero. This section

presents time differences for each of four Features:

e The time difference between the WO Start date and the outage (Ats;)
e The time difference between the WO Finish date and the outage (Atg;)
e The time difference between the WO Notification date and the outage (Aty,)

e The time difference between the Part posting date and the outage (Atp,)

These time differences will be referred to as time features. This research presents the agreement
Threshold for each time Feature (Thg,). If Atp, < Thg, then the PEOHH records positive agreement.
Where the timestamp is missing, the PEOHH records neither positive nor negative agreement. The
PEOHH otherwise records negative agreement. This research uses a nominal Th, value of 2 days for

each feature.3°

The PEOHH could alternatively compare the WO start date or notification date to the outage start
date, or it could compare the WO finish date to the outage finish date. These alternative methods are
less attractive than the method used by the PEOHH because it would count WOs that occur in the

middle of long outages as non-matches.

The PEOHH calculates the Atp,, for each part associated with the WO. It compares the minimum Atp,

in the WO to Thp,. If Atp, < Thp, then the PEOHH records positive agreement. Where the part

29 The blocking process was described in section 4.1.

30 7.6 will present the optimisation of Thy, for each of the time features alongside other interrelated
weights and thresholds.
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posting date timestamp is missing or if no parts are associated with the WO then the PEOHH records

neither positive nor negative agreement. The PEOHH otherwise records negative agreement.

Rather than comparing the minimum Atp,, in the WO to Thp,, the PEOHH could alternatively use the
mean or the median Atp, in the WO, or it could use a combination of these averages with the
minimum. Such techniques could be worthy of further work. They are not considered in this thesis
because comparing too many techniques makes the optimisation of weights and thresholds3'
intractable.

Table 4-2 presents the outage timestamps and the WO timestamps for two POLRs. Both POLRs
relate to the same WO. Table 4-2 is included in this section as an example of the existing records of
wind turbine health history. The notification date is a month prior to the start date which implies that

the issue in this example did not require urgent resolution.

Work Order Outage
POLR
ID Finish Notification | Date Time Date Time
Start Date Date Date On Off
2018-06-02 2018-06-02
1 06/06/2018 | 10/06/2018 | 29/04/2018 06:48:41 10:49:16
2018-06-06 2018-06-06
2 06/06/2018 | 10/06/2018 | 29/04/2018 07-32:56 13:02:09

Table 4-2, Outage and WO Timestamps for Two POLRs

31 Chapter seven will present the optimisation of the weights and thresholds.
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Table 4-3 presents the comparison of the outage timestamps to the material timestamps for the two
POLRs detailed in Table 4-3. This WO has four material line items recorded against it, meaning that

four types of spare part were used to do this work. One of the MLIs (Part 2) has its part posting date
missing. The PEOHH calculates Atp, for each part. As illustrated in Table 4-3, it identifies the

minimum Atp, for each POLR.

Material Atp, Atp, (days)
:\|ng Posting Date POLR P
1 2

1 29/05/2018 4.28 8.31
2

3 07/06/2018 4.55 0.46
4 06/06/2018 3.55 0.31
minimum 3.55 0.31

Table 4-3, Comparison of Outage Timestamps to Material Timestamps for Two POLRs

Table 4-4 presents the comparison of the outage timestamps to the WO and material timestamps of
the two POLRs detailed in Table 4-2. If Atg, < Thg, then the PEOHH records positive agreement.
Where the timestamp is missing, the PEOHH records neither positive nor negative agreement. The

PEOHH otherwise records negative agreement.

At (days) Agreement
POLR Start | Finish | Notification Part . Start Finish | Notification Part .
ID Posting Posting
1 3.55 7.55 34.28 3.55 False | False | False False
2 0.31 3.46 38.31 0.31 True False | False True

Table 4-4, Comparison of Outage Timestamps to WO and Material Timestamps for Two POLRs

Each of the four timestamp features will be evaluated as part of an ensemble of features for record
linkage comparison. Chapter 7 will present the optimisation of the weights and thresholds used in the
PEOHH, that were defined in section 4.1, including the agreement and disagreement weights. If the
optimised agreement and disagreement weights for some or all of the four timestamp features are not
zero then this research will have found that the hypothesis that timestamps from the WO data and

from the outage data can be used for record linkage comparison as part of an ensemble of features is
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true. This section has presented the hypothesis that timestamps from the WO data and from the

outage data can be used for record linkage comparison as part of an ensemble of features.

4.4.2 HHE Techniques Using the Order Type

This section will present the hypothesis that the ‘type’ feature from the WO data and from the outage
data can be used for record linkage comparison as part of an ensemble of features. It will present a
very simple technique for this purpose. The use of a simple technique for the purpose of record
linkage is analogous to the gender feature in the linkage of records of people. For example, if two
records are recorded as both being male then a process for linking records of people would record
positive agreement for the gender feature. Features such as the gender feature of people or the type
feature of maintenance records are not used by themselves for the purpose of record linkage because
they are too general but can be used as part of an ensemble of features. The use of simple features
such as these is typical in record linkage (Dunn, 1946, Churches et al., 2002).

Section 2.1.2 described the outage types:

“The ‘type’ feature classifies each outage as either corrective, predetermined, ‘Balance
of Plant / OFfshore Transmission Owner’ (BoP/OFTO), condition-based, environmental

or unknown.”
Section 2.1.3.3 described the WO types:

“The ‘type’ feature classifies each WO as either preventive, retrofit, inspections and
surveys, condition-based or corrective. The feature is human generated by the planner

who selects a type from a list of options.”

This section presents two techniques that use the WO and Outage ‘type’ features for record linkage
comparison as part of an ensemble of features. Technique A is to filter the outage data by type to
include only corrective work. Technique B is that when the outage is recorded as corrective then
positive agreement is recorded and that when the outage is recorded as other than corrective then
negative agreement is recorded. Technique A assumes that all outages that match corrective WOs
are classified as corrective in the outage data. Preliminary validation meetings elicited the expert

advice that such an assumption would not be valid and so the PEOHH uses Technique B.

Backing up this expert opinion, this section can report that the type matches in only seven of the
twenty-nine records in the GSSLR. This does not imply that the records are incorrect; different record
systems may use different terminology to define the same features. This result means that the PPV of
the GSSLR would be limited to a maximum value of 25% under technique A, which disproves the
hypothesis that technique A would be useful for record linkage. Technique B, on the other hand, does

not exclude those outages not classified as corrective from the EHH; it merely investigates the
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possibility that there could be a statistical likelihood that if the type matches then it is more likely that
the WO and the outage are a true match. For equivalent data, technique B can yield a maximum PPV
of 100%.

The PEOHH compares the POLR that it generated using the blocking process32. Table 4-5 presents
the comparison of the outage type to the WO type for two POLRs. The WO type is corrective for all
POLRs because only corrective WOs are required for the applications detailed in section 1.2 and so
the WO data has been filtered to only include corrective WOs. The outage type for POLR 1 is
predetermined, that is that the database of outages has identified this outage as for scheduled
maintenance rather than for a corrective repair. The PEOHH registers disagreement for POLR 1 and
agreement for POLR 2. Each WO and each outage has a type so there are no instances of POLRs

that register neither agreement nor disagreement for this feature.

POLR ID WO Type Outage Type Agreement
1 Corrective Predetermined False
2 Corrective Corrective True

Table 4-5, Comparison of the Outage Type to the WO Type for two POLRs

If the feature agrees then the PEOHH records positive agreement. If the feature disagrees then it
records negative agreement. If the feature were not recorded then it would record neither negative nor
positive agreement, but the data does not include missing values for this feature and so this does not

occur in practice.

The ‘type’ feature will be evaluated as part of an ensemble of features. This section has presented the
hypothesis that this feature from the WO data and from the outage data can be used for record linkage

comparison as part of an ensemble of features.

32 The blocking process was described in section 4.1.
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4.4.3 HHE Techniques Using Visits

This section will present the hypothesis that the ‘number visits’ and ‘duration’ features from the outage

data can be used for record linkage comparison as part of an ensemble of features.
Section 2.1.2 described the outage ‘number visits’ and ‘duration’ features:

It is a safety requirement that when an OWT is visited to carry out maintenance, it is
brought under local operation; a setting in which it cannot produce electricity. Whether
or not there is a visit to the OWT, operators refer to intervals of non-production as
outages. The ‘reset’ feature classifies each outage that has been classified as
corrective as either a visit, a remote reset or an automatic reset. The ‘number visits’
feature is either zero or a positive integer. It is Drsted’s estimate of how many times the
OWT was visited during the outage. It is calculated using the ‘wind turbine in local

operation’ alarm (Papatzimos et al., 2019).

The database of outages records the duration of each outage. This section presents two techniques
that use the ‘number visits’ and ‘duration’ features from the outage data for record linkage comparison
as part of an ensemble of features. Technique A filters the outage data by the ‘reset’ feature so that
only records of outages labelled as a visit are included. Three experts agreed that, in practice, the
correct match for one of the WOs tested in the validation exercise is not correctly identified as a visit in
the outage data set. This outage was not identified as of the ‘corrective’ ‘type’ in the outage data set
and so was not labelled as a visit. This identified that technique A is not an appropriate technique for
the PEOHH.

Technique B filters the outage data by duration. 20 minutes is the minimum duration of those outages
associated with a visit to the WT so all outages under 20 minutes duration, even if they are not
recorded as involving a visit, are excluded. The PEOHH records agreement if the number of visits is
not null. This is a probabilistic approach that will test the hypothesis that outages associated with a

visit are more likely to be true matches to WOs.
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It was described in section 4.1 that the PEOHH uses the POLRs that it generated using the blocking
process. Table 4-6 gives three examples of the three features of the outage data called ‘Reseft,
‘Duration’ and ‘Number Visits’ and of their use by the PEOHH:

e POLR 1 is shorter than 20 minutes and so, prior to blocking, the PEOHH filters out the outage
that would generate this POLR.

e POLR 2 records the ‘reset’ feature as ‘visit’ but the PEOHH does not use this feature. POLR 2
records the ‘number visits’ feature as ‘1’ so the PEOHH records positive agreement for this
feature on this POLR.

e POLR 3 does not record a positive integer in the ‘number visits’ feature so the PEOHH

records negative agreement for this feature on this POLR.

POLRID | Reset (anif‘s“)o” \N/i‘;?sber Agreement
1 Remote 19

2 Visit 213 1 True

3 Remote | 27 False

Table 4-6, Examples of the Technique Using Visits

The ‘number visits’ and ‘duration’ features will be evaluated as part of an ensemble of features. This
section has presented the hypothesis that this feature from the outage data can be used for record

linkage comparison as part of an ensemble of features.

4.4.4 HHE Techniques Using Features Indicative of the Failure Mode

Records of wind turbine health history contain records of the identification and repair of faults and
these records contain features indicative of the failure mode. This section will present the hypotheses
(1) that features indicative of the failure mode from the WO data, from the outage data, from the alarm
data and from the material consumption data can be used as part of an ensemble of features for
record linkage comparison. Following on from that, another hypothesis (2) is that a selection of these

techniques could be used to the same effect.

The practice of manually linking WOs to outages starts by identifying the wind turbine and matching
the WO basic start date to a time interval around the outage start time. This yields a list of candidate
outages to match to each WO. Wind turbine experts then use their experience of possible failure
modes to compare the outage alarm code ‘description’ to the WO ‘description’ field. The usefulness of
features indicative of the failure mode in manual record linkage suggests that they may also be

applicable to automatic record linkage, as in hypothesis (1).
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Most of the detailed data within maintenance records are indicative of the failure mode. These are
important features that differentiate one outage from another. Section 2.2 presented existing record
linkage techniques. It was described in that section that record linkage techniques using various
features of the data have proven effective in the fields of linking medical records (Sayers et al., 2015,
Nasseh and Stausberg, 2016, Oliveira et al., 2016), address data (Churches et al., 2002, Comber et
al., 2019, Lin et al., 2019), census data (Jaro, 1989, Smith et al., 2016) and genealogical records
(Wilson, 2011) and that they have been used to detect duplicate internet search results (Hajishirzi et
al., 2010).

The PEOHH uses three features of the data that are each indicative of the failure mode: the
description, the alarm code and the list of parts used. The first three sub-sections of this section
present record linkage techniques that each use one of these three features; section 4.4.4.4 is the

conclusion to the HHE techniques using the failure mode.

For each of these three features this section compares two methods for linking WOs to outages. The
first of these two methods, like the methods presented in sections 4.4.1 to 0, for each POLR in the

SPOLR, compares the specific feature of the WO to the equivalent feature of the outage.
Section 2.1.2 presented the database of outages:

“@rsted label each outage with an alarm code indicative of the failure mode using a
combination of automatic and manual methods. Their automatic system selects an
alarm code from the database of outages using a confidential algorithm. Qrsted’s data
scientists sometimes later manually adjust these labels to better reflect the failure mode

by discussing what happened with the technical team involved in the repair.”

The second method recognises the possibility that an outage may be labelled with an alternative
failure mode label to that in the database of outages. For each POLR, the second method first links
the outage to a set of alarms. It then compares the specific feature of the WO to the equivalent feature
of each alarm. If any of the alarms agrees then the method records agreement for the POLR. There
may be alarms indicative of the failure mode recorded before an outage occurs. An OWT is typically
not rotating during an outage and so it is these alarms that occur prior to an outage that are of
particular interest when identifying the failure mode. Therefore, the PEOHH adds a time difference to
the outage start and finish times to yield a time interval longer than that of the outage. The PEOHH
identifies all the alarms that occur during this extended interval. The Threshold for the Time difference
between Outages and Alarms (TTOA) denotes the extra time added. The PEOHH extracts all the
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alarms from the alarm log from +/- TTOA of the outage start and finish times. This research used an

initial value of TTOA of 10 minutes, the value initially recommended by a wind turbine expert33.

This section will consider three features indicative of the failure mode: description, alarm code and

parts. In applying these two methods to these three features, this section will present six techniques.

4.4.4.1 HHE Techniques Using the Description

This section will present two hypotheses. The first is that that the ‘description’ feature from the WO
data and the description of the alarm code from the outage data can be used as part of an ensemble
of features for record linkage comparison. The second is similar to the first except that it uses the
database of alarms from which the database of outages was derived. It is that the ‘description’ feature
from the WO data and the description of the alarm code from a set of alarms associated with the

outage can be used as part of an ensemble of features for record linkage comparison.

The WT control unit generates alarms and some of these are indicative of a failure mode. (Qiu et al.,
2012). These are logged by the condition monitoring unit. The outage data is labelled with one alarm
code per outage and each alarm code corresponds to a text field called Description such as “cabinet

too hot”.
Section 2.1.3.4 described the WO description field:

“The ‘description’ feature is a short, free text description of the WO. For corrective
maintenance it often refers to an alarm code. It may contain the alarm code but it more
often contains an abbreviated reference to the standard text description of the alarm

code.”

The methods presented in this section use the comparison of text strings involving some simple

Natural Language Processing (NLP) techniques.

In NLP, text pre-processing is the practice of cleaning and preparing text data; transforming it into a
more digestible form to improve the effectiveness of the analytic techniques that follow it. One of the
simplest problems in NLP is to compare two text strings to determine how similar they are to each
other. This section presents techniques which compare text strings that are indicative of the failure
mode to identify whether they are similar to each other; if they are similar then they are more likely to
refer to the same failure mode than if they are different. If they do refer to the same failure mode then

they are more likely to refer to the same maintenance activity.

33 Section 7.2 will use the GSSLR to investigate the effect of varying TTOA but will recommend
keeping it at 10 minutes.
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Prior to comparison, both strings are pre-processed to remove everything but the words. This section
presents a simple, scalar technique for comparing what letters these text strings contain. An
alternative would be to use a vector technique such as word2vec to apply semantic record linkage
techniques such as those described in section Error! Reference source not found. that might find d
escriptions that refer to the same activity using different words. Word2vec or other relatively
complicated NLP techniques are not proportionate for this project which uses a simpler approach

instead.
The PEOHH compares the POLRs that it generated using the blocking process.3*

The PEOHH uses text pre-processing techniques that are standard in natural language processing.

This section will describe these processes using for example the original text string:
‘404 Pitch A tracking during stops’:

e The PEOHH converts each string to upper case letters:
‘404 PITCH A TRACKING DURING STOPS’

o Tokenisation is to separate each string into tokens, that is shorter strings without spaces.

Tokens can be words, numbers or alpha-numeric strings.
‘404, PITCH, A, TRACKING, DURING, STOPS’
e Lemmatisation is the removal of inflectional endings from each token (Porter, 1980):
‘404, PITCH, A, TRACKING, DURING, STOP’

e The PEOHH removes any numbers. (These numbers are typically alarm codes and these are
used in a separate technique?®). It does this using a Python algorithm posted by Stack

Overflow internet forum user “Silenced Temporarily”, (Silenced Temporarily, 2019).
‘PITCH, A, TRACKING, DURING, STOP’
e The PEOHH joins the tokens together to generate a hyphenated string:

‘PITCH-A-TRACKING-DURING-STOP’

34 The blocking process was described in section 4.1.

35 A technique using alarm codes will be described in section 4.4.4.2.
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By pre-processing each text string, the PEOHH avoids some errors that would otherwise be caused by

differences between strings that have similar contents but different formatting.

Table 4-7 demonstrates the techniques used by the PEOHH for the pre-processing and for the

comparison of text strings. It uses the example of two pairs of text strings (POLR 1 and POLR 2).

The Levenshtein distance between two text strings is the minimum number of single-character edits
required to change one string into the other (Levenshtein, 1966). This research chose to use it
because it provides a simple comparison of text strings. While it does not replicate the use of expert

knowledge in manual record linkage that different words may refer to the same repair activity, it does

identify different spellings that may refer to the same word.

The PEOHH calculates Levenshtein distance using a Python algorithm posted by Stack Overflow
internet forum user “Adam Smith” (Smith, 2017).

The Similarity Ratio (SR) is defined by equation 4.3 (Sayers et al., 2015).

SR=1

Levenshtein distance

~ Min string length

(4.3)

The PEOHH registers agreement when SR is above the Description Threshold (Thp,). Thp, is

nominally set to 0.75 but section 7.3 will investigate the effect of varying it.

- c
POLR WO Outage or Alarm Levenshtein g/ltlrri\;]rgum R %
ID Description Alarm Text distance Length %
<
Raw Inv. Cool. W. Inv. cool. w. temp
temp high high
1
Pre- LNV-COOL- INV-COOL-TEMP- o
processed | TEMP-HIQH HIGH 2 18 89% | Yes
404 Pitch A
Raw UPS battery tracking during
failure
stops
2
PITCH-A-
Prrsc-:essed EAPISL-LIJBI'?A\I-EFTERY- TRACKING- 24 19 21% No
P DURING-STOP

Table 4-7, Pre-processing and Comparison of Text Strings from two POLRs

Some of the outages in the database of outages are labelled with an alarm code that is not indicative

of the failure mode, such as ‘manual stop’. In these cases, the PEOHH sets SR to zero and
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consequently registers negative agreement. This is done to avoid the risk that descriptions not

indicative of the failure mode might falsely register agreement.

The ‘description’ feature will be evaluated as part of an ensemble of features. This section has

presented the hypotheses that:

1) The ‘description’ feature from the WO data and the description of the alarm code from the outage
data can be used as part of an ensemble of features for record linkage comparison.

2) The ‘description’ feature from the WO data and the descriptions of the alarm codes from a set of
alarms associated with the outage can be used as part of an ensemble of features for record

linkage comparison.

4.4.4.2 HHE Techniques Using Alarm Codes

This section will present two hypotheses. The first is that that the ‘long text’ feature from the WO data
and the alarm code from the outage data can be used as part of an ensemble of features for record
linkage comparison. The second is similar to the first except that it uses the database of alarms from
which the database of outages was derived. It is that the ‘long text’ feature from the WO data and the
alarm code from a set of alarms associated with the outage can be used as part of an ensemble of

features for record linkage comparison.
Section 2.1.3.5 described the WO ‘long text’ field:

“The ‘long text' feature is a free text description of the notification and of the WO of
unlimited length. For corrective maintenance it often contains semi structured recent
entries from the alarm log that include alarm codes. These alarm log entries are
automatically copied in when the notification is created and are typically error free. It
can also contain unstructured notes made by the maintenance team relating to faults or

to maintenance activities, particularly if these are considered unusual.”



The methods presented in this section identify alarm codes in the WO ‘long text’ field. If the WOs ‘long
text’ feature contains the alarm code then the PEOHH records agreement. If it does not, including if

the long text field is empty, then it registers disagreement. Table 4-8 presents two examples.

Outage or g
POLR | WO Alarrr? GE)
ID 3
Long Text Alarm Code %
<
1 11.01.2017 09:32:25 CET name (email) transformer room 1001 No
temperature sensor error, fault code 12114,
———————— 36.01.03.2017 14:06:53 CET name (email) We found the pt100
2 sensor had detached from the cable in the transformer = room. So 12114 Yes
we replaced the the pt100. All ok after power up.

Table 4-8, Examples of the Technique Using Alarm Codes

An additional technique could identify alarm codes in the WO ‘description’ field. That additional
technique was not developed in this research because this research identified by familiarisation with
the data that the WO ‘long text’ field is a richer data set than the WO ‘description’ field. The WO ‘long
text’ field for corrective maintenance includes the text of the notification of a fault that initiated the
generation of a WO. While there often is an alarm code in the WO ‘description’ field, this alarm code is
always copied from the WO ‘long text’ field. In the 3 years that this research spent investigating the
WO data, it found no examples of an alarm code in the WO ‘description’ field that was not also in the
WO ‘long text’ field. Wind turbine experts agreed that, where WO ‘long text’ data is available, there is

no value in also looking for alarm codes in the WO ‘description’ field.

The use of the WO ‘long text’ field, rather than its ‘description’ field, for alarm code identification
contrasts with the techniques presented in section 4.4.4.1 that use the WO ‘description’ field for the
comparison of text strings. The WO ‘description’ field, after pre-processing, is of a comparable length
to the alarm code description, allowing for a straightforward comparison that would be less
computationally expensive than searching for text strings in the WO ‘long text’ field would be. The
decision to use the WO ‘description’ field in the techniques presented in section 4.4.4.1 but the WO

‘long text’ field in this section is therefore appropriate.

The PEOHH calculates the ‘alarm code’ feature using a Python algorithm posted by Stack Overflow
internet forum user “BENY” (BENY, 2019).

36 ——-- Confidential information redacted
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The ‘alarm code’ feature will be evaluated as part of an ensemble of features. This section has

presented the hypotheses that:

1) The ‘long text’ feature from the WO data and the alarm code from the outage data can be used as
part of an ensemble of features for record linkage comparison.
2) The ‘long text’ feature from the WO data and the alarm codes from a set of alarms associated with

the outage can be used as part of an ensemble of features for record linkage comparison.

4.4.4.3 HHE Techniques Using the Parts

This section will present two hypotheses. The first is that the material consumption data and the alarm
code from the outage data can be used as part of an ensemble of features for record linkage
comparison. The second is similar to the first except that it uses the database of alarms from which
the database of outages was derived. It is that the material consumption data and the alarm code from
a set of alarms associated with the outage can be used as part of an ensemble of features for record

linkage comparison.
Section 2.1.4 described the database of material consumption:

“The material consumption database lists what parts were used in the maintenance of
the OWTs. Each Material consumption Line Item (MLI) refers to a single part number
and is assigned to an order number. Some WOs have no material consumption line
items assigned to them while others have many. Materials include replacement parts as
well as consumables such as oil, grease or paint. The ‘material’ feature is the part
number: the identifier of the design of the part. The ‘description’ feature describes the

part number.”

The methods presented in this section use statistical techniques that seek to identify whether the parts
assigned to a WO are typical of the failure mode of the outage. When the maintenance team decide
which parts to use to repair a fault they provide an expert validation of the fault diagnosis. The
methods presented in this section study patterns in the material consumption data that embody this

expert diagnosis.

This section presents two techniques: BNB Classification and a frequency-based technique. It shows
that BNB classification does not support useful interpretation with the unbalanced health history data
but that the frequency-based method does. Both techniques require training data that they use with

the intention of recognising which parts are typical of each failure mode.
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4.4.4.3.1  Training Data

This section will present the Process for the Identification of the Training data (PIT). The PIT provides

the training data to the PEOHH, which uses it to identify which parts are indicative of each alarm code.

Both the BNB classification technique presented in section 4.4.4.3.2 and the frequency-based
technique presented in section 4.4.4.3.3 use the same training data selected for their relatively good
quality. This quality is predicted using the overall score from the other features as a metric for the
confidence of the correctness of the failure mode. The use of other features than the parts to identify
the training data means that the parts-based techniques are not independent of the other techniques.
The parts-based techniques are consequently also not independent of the database of alarms. While
the material consumption data embody an expert validation of the fault diagnosis, these dependencies
on the other features hinder the technique’s ability to capture that independence from the other
features. Unfortunately, such dependencies are logically necessary because any model would need to

be trained to identify which parts are typical of each failure mode.

Section 4.3 presented the technique that the PEOHH uses to select POLRs for the EHH. It was

described in that section that:

“The PEOHH sorts the POLRs by match ID, by Atg; and then by Spp; g and then it
filters the POLRs to retain only the first POLR for each WO. This process identifies a
version of the EHH with the highest Sp; s for each WO.”

The PEOHH selects POLRSs for inclusion in the training data using the same criteria that it uses to
select POLRs for the EHH. It then filters the training data to retain those POLRs that have Spo.r
above a threshold (Thgp) of 1.7. Section 7.4 will present the effect of varying this threshold. A higher
Thgp would mean that the training data were of higher quality, tending to contain fewer misleading
POLRs where the WO is matched to an outage that does not relate to it, but of lower quantity,
containing fewer POLRs. At the optimum value of Thgp there will be enough data to train on but it will

be of high enough quality that it is not too misleading.

Chapter 7 will recommend the optimum weights and thresholds for the PEOHH. This section uses

these the optimised weights and thresholds detailed in table 7.10 to identify the training data.

Both techniques presented in this chapter consider which MLIs are assigned to the WO; whether a

given part was used rather than how many of the part were used.

The PEOHH identifies the training data as a two-dimensional binary dataset of which parts are
assigned to each WO. Where a part is assigned to a WO, the PEOHH ascribes the value TRUE to the

data element for that part number and that order number. Where a given part number is not assigned
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to a given WO, the PEOHH ascribes the value FALSE to the data element for that part number and

that order number.

Unbalanced data are data in classification problems where there are unequal instances for different
classes. The training data is unbalanced. For the farm used, the training data contains 560 parts of
which only 192 are used more than once. It contains 156 alarm codes of which only 21 occur more
than 5 times. Unbalanced data tends to bias machine learning models to predict the more common

class.

Sections 4.4.4.3.2 and 4.4.4.3.3 present two techniques that use the material usage data for record
linkage comparison. Section 4.4.4.3.3 presents a simpler technique that works more robustly despite

the unbalanced data.

4.4.4.3.2 HHE Techniques Using Bernoulli Naive Bayes Classification

This research investigated a technique in which the PEOHH used a Bernoulli Naive Bayes (BNB)
classifierd” to predict the probability for each POLR that the parts used in the WO correspond to the
alarm code of the outage. This section shows that the parts data can’t be used to calculate a useful

metric using BNB Classification and investigates why it doesn’t work.
Methodology

A BNB classifier was used to predict the probability that the parts used in the WO correspond to the
alarm code of the outage. Each feature of a multi-variate Bernoulli model is a binary variable. A
probabilistic model is trained using binary data; in this case which parts were used. Each row; in this

case a Pair of Linked Records; is assigned a class, in this case the outage alarm code.

BNB identifies the Log Odds that each POLR belongs to a given class (LO¢jqss)- LOc1qss is defined
by equation 4.4:

M) (44)

LOciqss = log (1 — P
ass

Where P, is the probability predicted by the BNB algorithm that each POLR belongs to a given
class.

This section presents the results of testing the BNB method on a known failure mode. A specific set of

fans are replaced when one of them fails and this failure mode is indicated by a specific “cabinet too

37 Section 2.3 reviewed classification techniques including BNB.
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hot” alarm. The classifier should predict a higher probability of this alarm when this part is used than

when it is not used.

This report presents a measure called ‘classification score’ that measures whether clear classification
has been achieved. It is defined by equation 4.5 where A, B, C, D are integrals of the number of linked
records with respect to predicted probability of the “cabinet too hot” alarm. A, B, C, D are defined
below but equation 4.5 only uses C and D. This section will use this measure to identify whether
successful classification has been achieved. Successful classification has been achieved if the range

of LO scores for one class does not overlap with the range of LO scores for the other class.

D-¢C (4.5)
C+D

Classification Score =

Consider for example the LO ;455 Of the “cabinet too hot” alarm (LO4;4rm)- In this example:

e Ais the number of POLRs where both the fan was replaced and the LOg4;4,m is less than the
minimum LO4;4,m for all the POLRs where the fan was not replaced.

e Bis the number of POLRs where both the fan was replaced and the LO4;4ym is more than the
minimum LO4;4,m for all the POLRs where the fan was not replaced.

e Cis the number of POLRs where the fan was not replaced and the LO4;4,-m, is less than the
maximum LO 4;4-m for all the POLRs where the fan was replaced.

e Dis the number of POLRs where the fan was not replaced and the LO4;4,-m is more than the

maximum LO 4,4, for all the POLRs where the fan was replaced.

A and D are the number of POLRs in the regions where the classes do not overlap. B and C are the

overlap between the two classes.
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A, B, C and D are illustrated in Figure 4-1, a frequency diagram of the Count of POLRs (CO) against
LO1qrm- The figure shows those POLR where the fan was replaced (A and B) and where it was not

replaced (C and D).

Figure 4-1(a) presents an example where perfect classification has not been achieved. The classes do
overlap so B and C are not zero. Imperfect classification means that the distributions A and B have an
overlap with distributions C and D and is indicated by a classification score less than 1. Negative
classification scores mean that C > D; more than half of the POLRs are not clearly classified. The

figure features vertical lines that illustrate aspects of the definitions of A, B, C and D (listed above).
The line between A and B is the minimum LOy;4,-m for all the POLRs where the fan was not replaced
and the line between C and D is the maximum LOy;4;-m, for all the POLRs where the fan was

replaced.

Figure 4-1(b) presents an example where perfect classification has been achieved. The classes do not
overlap so B and C are zero. Perfect classification means that the distributions A and B have no

overlap with the distributions C and D and is indicated by a classification score of 1.

o
O A B
) il ' Classification score
a
A D = -30%
» LOAlarm
o
@] A /,—\_
Classification score
b) y \\ )
/’ A \ . D =1
. | ! .
v LOAlarm
Fan was replaced Fan was not replaced

Figure 4-1 Demonstration of the Classification Score: Count (POLRs) (CO)
against Log Odds (LO414rm)

When the only part considered is the fan, clear classification is achieved, which confirms the
hypothesis that a part can be used to identify the failure mode. A useful record linkage technique could
be developed if parts could be used to identify the failure mode when the relationship between the part

and the failure mode was not already known.

This research implemented the model using Python library Scikit-learn (Pedregosa et al., 2011).
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Results

This research investigated the effect of considering additional parts as well as the fan. Sets of
additional parts of various number of parts were considered as well as the fan. The parts to include in
these sets were selected at random. The result of using each set of parts is shown in Figure 4-2. It
shows that clear classification is achieved when fewer than around 20 to 30 parts are included but that
it is not achieved when 60 or more are. For this application, all the 156 failure modes and all the 560
parts would need to be included, which exceeds the number of parts from this unbalanced dataset for

which BNB classification would be an appropriate method.

classification score
o

10° 10! 102
number of parts

Figure 4-2, BNB Classification Score against Number of Parts

The following section will present an alternative technique that cannot suffer from the problem with

unbalanced data because it only looks at the relevant event code.

4.4.4.3.3 HHE Techniques Using the Parts Frequency

This section will present a simpler technique to that presented in the previous section that also uses
the records of material consumption for record linkage comparison, the Parts Frequency Technique
(PFT).

The PFT can be used with any test data. It identifies an individualised set of filtered training data for
each Pair of Linked Records in the test data (test POLR). The failure mode labels from the training
data are used to train the PFT. For each test POLR, the training data3® are filtered to only include
those POLRs with the same outage alarm code as the test POLR. To avoid testing and training on the

same data, the test POLRs WO is excluded from the filtered training data. The test POLR is given a

38 The training data were described in section 4.4.4.3.1.
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“Parts Score” (PS) with an initial value of 0. If the WO contains a part that is in the filtered training
data, then PS is increased by 1. If the WO contains a part that is not in the filtered training data then
PS is reduced by 1. The PFT repeats this process of identifying an individualised set of filtered training
data and calculating PS for each POLR in the test data. Figure 4-3 presents the algorithm that
calculates PS.

As an example of the technique, consider a WO with 4 parts. 2 of these parts are, according to the
training data, typical of the alarm code but 2 of the parts are atypical of it. PS = 2 - 2 = 0. Further work
could look at applying unequal weightings to the typical and to the atypical parts.

1. C_F_H = |dentify the set of the best POLRs for training

2. Tr D = Join C_F_H to the parts data

3: DiQB = Create a dictionary of the alarm code for each POLR in Tr_D

4:  Loop: for each POLR in the test data:

5: WO = |dentify the order number of the POLR

6: Te C = |dentify the parts for the WO

7 Tr C = Filter the training data to remove the WO

8: Tr E = Filter Tr_C to only include the alarm code of the POLR,
identified using Di_Q_B

9: Q_Tr = Create a table of whether each part is in each WO in Tr_E

10: Z Tr = Create a table of whether any WOs in Q_Tr contain each part

11: train = Create list of which parts are in Z_Tr

12: Te_C['T'] = Identify whether the parts in Te_C are in train

13: typical =sumof Te_C['T]

14: atypical = (length of Te_C) - typical

15: PS = typical - atypical

Figure 4-3, Pseudo Code for the PFT

Line 9 of the code in Figure 4-3 considers all the parts in the database of material consumption. This is
a longer list of parts than that in the training data. The PEOHH uses this longer list of parts because
there are cases where a POLR to be tested contains a part that is not in the training data. In these
cases, the part is considered to be atypical of the alarm code. The PEOHH does this using a Python

algorithm posted by Stack Overflow internet forum user “piRSquared” (piRSquared, 2018).
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While this technique considers whether the parts assigned to a WO are typical of the POLR alarm
code, further work could consider whether they are also typical of another alarm code. If they are then
this might imply that the POLR is less likely to be a true match than if the parts are exclusively

associated with the alarm code.

4.4.4.3.4  Conclusion to the HHE Techniques Using the Parts

This section used a database of material consumption in which each material line item is labelled with
an order number. It developed two techniques that use these data as part of an ensemble of features

for record linkage comparison.

The first technique used a BNB classifier to predict the probability for each POLR that the parts
assigned to the WO correspond to the alarm code of the outage. Historical data on machinery failures
tends to be unbalanced such that some failure modes feature more than others. It showed that,

because of the unbalanced data, BNB classification is not an appropriate method.

The second technique is simpler, checking whether or not records for the outage failure mode contain
each part assigned to the WO. It does not suffer from the problem with unbalanced data because it

only looks at the relevant event code.

The ‘parts’ feature will be evaluated as part of an ensemble of features. This section has presented

the hypotheses that:

1) The material consumption data and the alarm code from the outage data can be used as part of
an ensemble of features for record linkage comparison.
2) The material consumption data and the alarm codes from a set of alarms associated with the

outage can be used as part of an ensemble of features for record linkage comparison.

4.4.4.4 Conclusion to the HHE Techniques Using the Failure Mode

The hypothesis presented in section 4.4.4 is that that features indicative of the failure mode from the
WO data and from the outage data can be used for record linkage comparison as part of an ensemble
of features. It considered three of these; description, alarm code and parts. For each of these three
features this section compares two methods for linking WOs to outages. The first of these two
methods uses the alarm labels in the outage data while the second uses the alarm codes of a set of
alarms that occurred around the start and end of the outage. In applying these two methods to these

three features, this section presented six techniques.

Chapter 7 will show that this thesis cannot offer conclusive advice as to whether or not to use any of
the features indicative of the failure mode for record linkage comparison as part of an ensemble of

features. This research predicts that this uncertainty will be drastically reduced by an upcoming
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innovation in maintenance record keeping that will be discussed in chapter 9; the automatic linking of
new WOs to outages will result in a larger GSSLR and consequently in more certainty for this

estimate.



4.5 Computation Times

Table 4-9 presents the computation time for each technique. The technique using the description and
the technique using the parts are both relatively time consuming. These computations were performed
on a standard laptop?®®. These computation times do not represent a problem for running them once
per day which would be sufficient for everyday record linkage implementation. Such algorithms are
routinely run automatically and are the responsibility of @rsted’s IT department, they are not run by the
technicians themselves. These run times did represent a problem for the optimisation of the weights

and thresholds in this research, where they needed to be repeated hundreds of times*°.

Duration | Technique
Process Described
seconds | in Section
Import the data 19.71 | 4.1
Link WOs to outages to create the POLRs 3.34 | 41
Type 427|442
Visits 0.06 | O
Link alarms to outages 109.39 | 444
Pre-processing 428.11 | 4.4.4.1
Description 520.61 | 4.4.41
Alarms 12.67 | 4.44.2
Identify the training data 0.30 | 4.4.4.3.1
Parts 1200.94 | 4.4.4.3.3
Calculate the weights using all features 0.32 | 41

Table 4-9, Computation Time for Each Technique

Further work optimising these computationally expensive algorithms or running them on a faster

computer (such as a parallel cluster) would improve these computation times but is outside of the

% Intel Core i7-8665U CPU @ 1.90GHz 2.11GHz

40 Computational run time was an issue for calculations of the coverage of techniques that estimate
the uncertainty of a difference between two binomial proportions (section 6.2.6) and for optimising the
weights and thresholds (chapter 7).
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scope of this thesis. @rsted’s confidential data may not be copied onto Durham University parallel

clusters, but Jrsted might consider using their own in-house parallel clusters for this purpose.*'

4.6 Conclusions to the Techniques for Health History Enrichment

This chapter presented the PEOHH and how this thesis will validate it. The PEOHH can use an
ensemble of up to twelve record linkage features for joining WOs to outages. That ensemble of

features was broken down into four sub sections:

e Four timestamp-based features
e A feature that considers the recorded type of maintenance
e A feature that uses the records of visits to the wind turbine

e Six failure mode-based features

The following results chapters will test that ensemble of features.

41 Chapter 9 discusses the effect on this research of not using more computing power for the
optimisation described in chapter 7.
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5 Results: Examples of Health History Enrichment

Chapter four introduced the Process for the Enrichment of OWT Health History (PEOHH). This
chapter offers two example Work Orders (WO) and uses them to illustrate the PEOHH by linking them
to outages. Agreement Weights (AW) and the agreement Threshold for each time Feature (Thg,)
were defined in chapter four and chapter seven will illustrate the effect that varying them has on the
Enriched Health History (EHH). This chapter will illustrate the effect that varying them has on the
individual Pairs of Linked Records (POLR) that make up the EHH.

5.1 Example 1

Table 5-1 presents the first example WO, the replacement of a detached temperature sensor, PT100,

a resistance thermometer.

Some information about the WO is not published here for reasons of commercial sensitivity. The first
five characters of the functional location that identify the wind farm are redacted, as are the following
three characters that identify the row and the specific wind turbine. In the example in Table 5-1, the
WO does not record any further details of the functional location. The name (name) and email address

(email) of the two technicians who recorded their work in the WO long text field are also redacted.

The order ID is a unique identifier for the WO#2. The table shows that the start date is recorded as two
months later than the notification date. The long text corroborates that the notification was generated
on the recorded notification date and that the corrective work was done on the recorded basic start
date. The long text also details the times that these notes were generated at, in Central European
Time (CET). There is no finish date recorded for this WO.

Order D | NOtfication | gyt Date | Finish Date | Maintenance | Functional | 5o tion
Date Activity Type | Location
transformer
80116285 | 11/01/2017 | 01/03/2017 Corrective i room temp
sensor error
11.01.2017 09:32:25 CET name (email) transformer room temperature sensor error,
Long Text fault code 12114, 43.01.03.2017 14:06:53 CET name
9 (email) We found the pt100 sensor had detached from the cable in the transformer =
room. So we replaced the the pt100. All ok after power up.

Table 5-1, First Example WO

42 The database of WOs was described in section 2.1.3.

43 -——- Confidential information redacted
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Table 5-2 presents the material consumption data for the first example WO. The ‘posting date’, which
refers to when the material line item was used, corroborates the date on which the temperature sensor
was replaced. The ‘reserved’ field details the number of pieces (PC) that were reserved to be available
so that this maintenance activity could be actioned: one sensor. The material description field details

that the sensor is fitted with a 6m long cable that is shielded against electromagnetic noise.

Material Material Description Reserved | Unit Posting
Date
SENSOR PT100 /6M
AIB00017802 | siE| DED WIRE 1 PC | 01/03/2017

Table 5-2, Material Consumption Data for Order 80116285

The PEOHH links the WO to all the outages that start or finish within forty days of the start date*.
Table 5-3 presents two of the outages linked by the PEOHH to the first example WO, referred to here
as outage A and outage B. QOrsted label each outage with an alarm code indicative of the failure mode
using a combination of automatic and manual methods“5. The table details the description of each

alarm code.

The database of outages classifies outage A as ‘predetermined’ and outage B as ‘corrective’. Section

2.1.2 explained that the ‘reset’ feature classifies each outage that has been classified as corrective as
either a visit, a remote reset or an automatic reset and that “the ‘number visits’ feature is either zero or
a positive integer. It is Orsted’s estimate of how many times the OWT was visited during the outage. It

is calculated using the ‘wind turbine in local operation’ alarm.”

Outage | Date Time | Date Time | Alarm - Number

D On Off Code Description | Outage Type Reset Visits
01/03/2017 | 01/03/2017

A 1001 Manual Predetermined 1
08:36:33 11:20:41 stop
30/03/2017 | 01/04/2017 i

B 63025 | SMokein | oo ective Visit | 1
13:08:12 10:39:12 the A3 box

Table 5-3, Two Outages Linked to Order 80116285

44 This blocking threshold will be optimised in section 7.1.

45 The database of outages was described in section 2.1.2.
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It will be clear to the reader, by comparison of the WO ‘long text’ field with the outage timestamps, that
outage A is the correct match for the WO. Outage B happened a month later and in this case, correct
record linkage could be achieved using one feature, the WO start date. This section will use this

example to illustrate the PEOHH.

Table 5-4 shows the duration of outage A and outage B. Both outages have more than the minimum
duration of 20 minutes required by section 4.4.3. It also shows the time difference (Atr,) for each of

the four time features?*s.

The POLR made up of the WO and outage A has Atg; and Atp, of 0.36 days (8.6 hours), which is
less than the 2-day agreement threshold (T hg,) that was proposed in section 4.4.1 and that will be
optimised in section 7.6. These time differences are shown in green. The other time differences are
above this threshold and are shown in pink. There is no time difference for the finish time feature

because this item is missing from the WO and these missing time differences are shown in orange.

Atp, (days)

Outage | Duration
ID (days)

Notification
Part Posting

Start
Finish

w

6

o
w
(o))

A 0.11 0.

w

6 49.

B 1.9 29.55 78.55 | 29.55

Table 5-4, Duration and Time Difference (Atg,) for Two Outages Linked to Order 80116285
Section 4.1 presented the PEOHH:

“The PEOHH calculates a Weight for each Feature for each POLR (W, ) using the
Agreement Weight for that Feature (AWp,), the Disagreement Weight for that Feature
(DWpg,) and equation 4.1. The following pages of this section will present the process
used in this research for estimating optimal values of AWy, and DWg, for each feature.
Where AWg, and DWg,, for a feature can be set to zero, this research has not identified

evidence of a benefit of calculating that feature and so operators might consider

46 The time features were described in section 2.1.3.1.
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disregarding that feature so as to avoid computation with no proven drop in the quality

of record linkage.

AWre, Feature registers agreement pgrr (4.1)
Wrepor = {DWFQ, Feature registers disagreement porp
0, Feature registers neitherpgrr

The PEOHH calculates a score for each POLR (Spo.r), the sum across all the features

of the Weight for that Feature and for that POLR (Wg,,,,, .) Using equation 4.2.”

4.2
SpoLr = ZFQWFePOLR 42)



Table 5-5 shows the calculation of Sp; for the POLRs made up of the WO and the two outages. In

this example, for each feature, AWy, is set to one (shown in green) and DWr, is set to negative one
(shown in red). These weights will be optimised in section 7.6. Because the finish time is missing from
the WO, this feature registers neither agreement nor disagreement and is set to zero (shown in
orange). The table shows each of the ensemble of twelve features presented in chapter 4. For both

POLRs in this case, most of the features register disagreement.

For the six features indicative of the failure mode that were presented in section 4.4.4, all register
disagreement between the WO and the outage. The alarm code for outage A, 1001, “manual stop”, is
not indicative of any specific failure mode and the alarm code for outage B, 63025, ‘smoke in the A3
box’, does not match either the WO description or long text. The disagreement for the parts feature+”
indicates that this alarm code is not linked to this temperature sensor in the parts feature training data.

The alarm code feature registers agreement between the WO and an alarm that the PEOHH has

linked to outage B“S.

SpoLr is the sum of the row and in this case both POLRs yield the same value, negative five.

Failure Mode
Timestamp
Outage Alarm
Outage
(@) () [}
P AN g8
T D%j o | & O| &
= £ G 7 € 3] %) o 2] o]
5| 2|55/ &8|¢|5|&8|¢8|5|8|2]| ¢
nh ||l Zz|la|l<|ola || ajla|~F|>5]w
A 1 0| 1 1 S s s P O I 1| -5
B -1 o1 (-1]-1]-1]41 1 -1 -1 1 1 1|-5

Table 5-5, Calculation of Spor for Two Outages Linked to Order 80116285

As both POLRs yield the same value of Spo,r, the PEOHH selects the POLR with the smallest Atg;, in
this case outage A. For this WO, the PEOHH has selected the correct outage without optimisation. For
other WOs, optimisation of the weights and thresholds used in the PEOHH improves the quality of

record linkage, as will be demonstrated in Chapter 7.

47 The parts feature was presented in section 4.4.4.3.3.

48 The linkage of outages to alarms was presented in section 4.4.4.
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Table 5-6 investigates the effect of changing the Agreement Weight for the Start time feature (AWs;)
from positive one to negative one (underlined). The POLR with the highest value of Spy; g is now the
POLR made up of the WO and outage B and has an Spy; g of negative five while the POLR made up
of the WO and outage A now has an Spy; g of negative seven. Due to the change to AWs;, the
PEOHH has selected a different outage. This change would reduce the quality of record linkage and it

would reduce its measure, Positive Predictive Value (PPV).

Failure Mode
Timestamp
Outage Alarm
Outage
=2 [0} [0}
° BRI g5
*g § O | & O| 3
S = E B [} g 8 ] ) i) &
§ | €| 5| 5|&8|8|5|58|8|%5|g|%| 3
) L Z2|la|l<<|aoa|la| < |o|lac|FF|>]wv
A -1 0 -1 1 1|11 -1]-1]-10-1]-1 1 -7
-1 0 A0 -1 1] -1 -1 1 -1 -1 1 1 -5

Table 5-6, Calculation of Spyr for Two Outages Linked to Order 80116285 after changing the
Agreement Weight for the Start time feature (AWs;)
This section has illustrated the effect that varying AWs; has on an individual POLR. Chapter seven will

illustrate the effect that varying it has on the Enriched Health History (EHH).
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5.2 Example 2

Table 5-7 presents the second example WO, this time triggered by an alarm in the wind turbine’s drive
train subsystem which is referred to in the Reference Designation System for Power Plants standard
for wind turbines (V.G.B. PowerTech, 2014) as ‘MDK’. The Low speed Monitoring Unit (LMU) is
located on the low speed side of the power train; between the rotor and the gearbox. It is an
emergency system that triggers a hydraulic brake in the event of an ‘overspeed’; an otherwise
dangerous event where the rotary speed of the wind turbine exceeds a set limit. (European Patent
Application EP 2 339 174 A1, 2011). This time, there is no entry in the ‘long text’ field.

Notification . Maintenance | Functional L
Order ID Date Start Date | Finish Date Activity Type | Location Description
80166733 | 22/11/2018 | 24/11/2018 | 25/11/2018 | Corrective LMU alarm
MDK overspeed

Long Text

Table 5-7, Second Example WO

The material consumption data in Table 5-8 show that as well as the LMU, the maintenance team also
replaced an inductive sensor, a cable, an optical isolator (optocoupler) and a converter for linearising
electronic measurement (PR module 4222). The replacement of such auxiliary components is
standard operating practice because re-using a component, even one that is not faulty, is typically

associated with a shorter time to failure than replacement.

Material Material Description Reserved | Unit Posting
Date
Sensor cable M12
A9B00030596 8POL 5M 1 PC
A9B00030713 Sensor Inductiv M12 1 PC
S5Mtr.
OPTO COUPLER 24-
A9B00300151 60VDC 1 PC
A9B10124433 | LMU UNIT 3.6MW 1 PC | 24/11/2018
PR modul 4222 V/F 0-
A9B10162244 5V/0-10.7Hx 1 PC

Table 5-8, Material Consumption Data for Order 80166733
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Table 5-9 presents three of the outages linked by the PEOHH to the second example WO, referred to

here as outage C, D and E. Outage C involved a visit to the wind turbine but not the resolution of the

fault as it recurs three hours later and is remotely reset. Work to replace the LMU was carried out on a

second visit, two and a half hours after the remote reset, outage E.

Outage | Date Time | Date Time | Alarm Descrintion Outage Reset Number
ID | On Off Code P Type Visits
22/11/2018 | 23/11/2018
C 6101 LMU alarm | o o ctive | Visit 1
21:30:51 10:14:34 overspeed
23/11/2018 | 23/11/2018
D 6101 LMU alarm Corrective | Remote
13:29:29 17:06:27 overspeed
23/11/2018 | 24/11/2018
E 6101 LMU alarm | o ctive | Visit | 1
19:24:22 11:38:14 overspeed

Table 5-9, Two Outages Linked to Order 80166733

Table 5-10 shows the duration of outage C, D and E. All three outages have more than the minimum

duration of 20 minutes required by section 4.4.3. It also shows Atg,. For each POLR in the table, the

PEOHH registers agreement for each of the four time features.

Atp, (days)
Outage | Duration S 2
ID (days) = @
| 5| £ &
s | €| 3B IS
n i pd o
C 0.53 0.57 | 1.57| 090 | 0.57
D 0.15 029 | 1.29| 1.56| 0.29
E 0.68 0.00 | 0.52 | 1.81| 0.00

Table 5-10, Duration and Time Difference (Atg,) for Three Outages Linked to Order 80166733



Table 5-11 shows the calculation of Spp; r for the POLRs made up of the WO and the three outages.
Outage D registers disagreement for the ‘visits’ feature because this outage was resolved by a remote
reset and so did not involve a visit to the wind turbine. Apart from this feature, all the other features

register the same agreement pattern for each outage.

Failure Mode
Timestamp
Outage Alarm
Outage
=2 [0} [0}
° §l£/8|8 g5
*g § O | & O| 3
= = e 3} %) e o »n ) 2] &
5| 2|5 |5 |5|8|5|8|8|5|/8|3| 3
) L | Z2|la|l<<|aoa|la|<|o|lac|FF|>]wv
C 1 1 1 1 0 1 -1 0 1 -1 1 1 6
D 1 1 1 1 0 1 -1 0 1 -1 1 -1 4
E 1 1 1 1 0 1 -1 0 1 -1 1 1 6

Table 5-11, Calculation of Spy g for Three Outages Linked to Order 80166733

As both outage C and outage E yield the same value of Spo.r, the PEOHH selects the POLR from

these with the smallest Atg,;; outage C.
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Table 5-12 investigates the effect of changing the agreement Threshold for each time Feature (Thp, )*°
from two days to zero (underlined). Setting these four thresholds to zero has the effect of only
registering agreement when the WO timestamp occurs during the outage. The POLR with the highest
value of Spg; g is now the POLR made up of the WO and outage E. Changing the thresholds has

caused the PEOHH to link the WO to the outage where the work was carried out.

Failure Mode
Timestamp
Outage Alarm
Outage
2 ) )
P S|<| 8|68 g5
g § o | B O &
S & S G 0 £ 3] » o | © &
5| 2|85/ 5|8|5|&5/8|5|¢|3] 3
O ||l Z2jla|l<|ala|l<|o|la|F~F|5|n
C 1111110 1 /-1]0 1 |-1] 1 1| -2
D 1111110 1 /-1]0 1 |-1] 1 1| -4
E 1 -1 ] -1 1 0 1 -1 0 1 -1 1 1 2

Table 5-12, Calculation of Spg1 g for Three Outages Linked to Order 80166733 after changing the

agreement Threshold for each time Feature (Thg,)

This section has illustrated the effect that varying Thg, has on an individual POLR and the necessity

of optimising these four thresholds®°.

5.3 Conclusions to the Examples of Health History Enrichment

This chapter has illustrated the PEOHH by linking two WOs to outages creating POLRs and has
shown the effect on individual POLRs of varying weights and thresholds. Chapter seven will illustrate
the effect that varying the weights and thresholds has on the EHH.

4% The agreement Threshold for a time Feature (Thg,) was presented in section 4.4.1.
%0 Thp, will be optimised in section 7.6.
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6 Quantifying Uncertainty

Any statistic is only meaningful if its uncertainty is understood. The small size of the sample “Gold
Standard” Set of Linked Records (GSSLR)%' creates uncertainty. Understanding this uncertainty
informs maintenance decision making which can improve productivity. Investigating uncertainty has

enabled this research to present the uncertainty of its conclusions.

As was described in section 4.3, the GSSLR was created by manually matching a random sample
from the corrective Work Order (WO) data to outages, to avoid systematic sampling errors. Random
variations in a population can introduce differences between its statistical characteristics and those of

a small sample from it. This chapter will review techniques for quantifying such uncertainty.

Section 6.1 will review techniques for estimating the uncertainty of the extent to which a binomial
proportion®2 should be representative of the population from which it has been sampled. These
techniques will be used in chapters seven and eight for estimating the uncertainty of the extent to
which the PPV of the GSSLR should be representative of the PPV of the EHH and in chapter eight for
estimating the uncertainty of the extent to which a specific measure of the richness of the EHH should

be representative of the that property of the GSSLR.

Section 6.2 will consider the estimation of the uncertainty of a difference between two such uncertain
estimates. These techniques will be used in chapter seven to estimate the uncertainty of a difference
between two estimates of the PPV of the EHH and in chapter eight to estimate the uncertainty of a
difference between two estimates of a measure of the richness of the EHH; of how much the health

history has been enriched by.

Section 6.3 will investigate the probability that one such an uncertain estimate is greater than another.
These techniques will be used in chapter seven to estimate the probability that a change to a
parameter would increase the PPV of the EHH and in chapter eight to estimate the probability that the
Process for the Enrichment of wind turbine Health History (PEOHH) developed in this research does

enrich the health history. Section 6.4 will summarise this chapter.

51 Section 4.3.2 presented the method for the validation of the techniques for health history enrichment
used in this thesis. The size of the GSSLR, 29 WOs, was constrained by the amount of expert time
that was available.

52 The binomial proportion was defined in section 3.2.2. To recap, the binomial distribution describes
the behaviour of a count variable for a fixed number of observations where each observation is
independent, where each observation has one of two possible outcomes and where the probability of
each outcome is the same for each observation. The binomial proportion is the number of successes
divided by the number of trials.

124



6.1 Interval Estimation for a Binomial Proportion

Section 3.2.2 discussed the Positive Predictive Value (PPV):

PPV = (2.8)
~ TP +FP

“This thesis will compare a sample from the EHH to the GSSLR. It will calculate the
PPV, referred to as the PPV of the GSSLR or just as the PPV. A point estimate is a
single value estimate of an unknown population parameter. The PPV of the GSSLR is a
point estimate of the PPV of the EHH.

The binomial distribution describes the behaviour of a count variable for a fixed number
of observations where each observation is independent, where each observation has
one of two possible outcomes and where the probability of each outcome is the same
for each observation. The binomial proportion is the number of successes divided by
the number of trials. The PPV of the GSSLR will be modelled as a binomial proportion.”

This section will compare five techniques for estimation of the uncertainty of a binomial proportion,

referred to as intervals.

Section 4.3.2 presented the method for the validation of the techniques for health history enrichment
used in this thesis. Please recall from the chapter that the size of the GSSLR, 29 WOs, was

constrained by the amount of expert time that was available.

A standard technique to get a point estimate of any measure (p) of a property of a population is to
apply the same measure (p) to a representative sample from that population. p corresponds to the

PPV of the GSSLR and p corresponds to the PPV of the EHH.

A Confidence Interval (Cl) is a range of values for an unknown parameter with a specified, nominal
probability that it contains the feature of interest. This probability is known as the Confidence Level
(CL). For example, a 95% CI for p predicts with 95% CL that p lies within the CI. This section will

construct Cls for p.53

The coverage of a Cl is a measure of the quality of a technique for constructing Cls. It will be defined
in section 6.1.2, after the standard technique for constructing Cls for a binomial proportion has been

presented. That sequence for the introduction of concepts in this section enables it to illustrate

53 To identify the confidence of the correctness of the EHH, section 8.2 will use a method that will be
selected in this section to construct Cls for the PPV of the EHH.
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coverage with examples from a Cl. The standard technique for a binomial proportion is referred to in
this thesis as the Wald interval (Wald, 1943). It has surprisingly poor coverage and so sections 6.1.3
to 6.1.6 will go on to present a variety of alternative techniques: Wilson (1927), Clopper and Pearson
(1934), Jeffreys (1973) and Agresti and Coull (1998). All these techniques are also presented in
Brown et al., 2001, who recommend that either the Wilson interval or the Jeffreys interval should be
used for sample size (n) < 40. This will be followed by a review of the literature on the comparison of
these techniques and the presentation, for the first time, of a novel and useful method of comparison
to identify the technique with the best coverage in the region of interest. The technique that this

section selects will be used thereafter throughout this thesis.

Section 6.1.8 will review the “bootstrapping” technique and explain that the statistical package that this
research used does not include a bootstrapping method. While python libraries do include
bootstrapping methods, they do not include a tool for calculating the coverage of confidence intervals
calculated using bootstrapping. The coverage of the Wilson interval is acceptable, so this research did
not find it necessary to investigate the coverage of a bootstrapping interval for constructing confidence
intervals of a binomial proportion.

Section 6.1.9 is the conclusion to this section.

This research performed the statistical tests that generated Figure 6-3 to Figure 6-11 using the R
software suite (R Core Team, 2021) with the binom package (Dorai-Raj, 2014) through the rpy2
Python module (Cock, 2005). It benefitted from support in how to implement these techniques posted
by Stack Overflow internet forum users “SergioR” (SergioR, 2020) and “horseoftheyear”
(horseoftheyear, 2020).

6.1.1 Wald Interval

Laplace, 1812 and Wald, 1943, both present what is referred to in this thesis as the Wald interval but
is alternatively known as the normal approximation interval. It relies on the assumption that the

binomial distribution can be approximated by the Gaussian without any modifications or corrections.
The Gaussian (¢(z)), otherwise known as the probability density function of the standard normal

distribution, is defined by equation 6.1, where z is a normalised random variable.

i (6.1)
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Significance (S) is 1 — CL, for example for a 95% ClI, S = 0.05. The probit function (¢~1) is the
inverse® of the cumulative Gaussian distribution. Equation 6.2 gives the 1 — 5/2 quantile of the probit

function (k).

k=071 (1-5/,) (6.2)
That is:
o (CL+1 (6.3)
=¢ ( 2 )

The Wald interval is defined by equation 6.4 and is a function of the sample size (n) and the sample

proportion (p)%®.

(6.4)
Clyaa(p) = Ptk

Brown et al., 2001, report that the Wald interval was at the time of writing the standard technique
found in textbooks and that its properties, described in the following pages, are ‘erratically poor’.
Consider for example the extreme case where a sample of one from a population is successful so that
n=1 and the number of True Positives in the sample (TP)=1. Figure 6-1(a) presents upper and lower
limits of the ClI for this case predicted using the Wald interval against p. In this case the Wald interval
predicts the 95% Cl as (1, 1). The figure appears to be blank because all the estimates of both the
upper and lower bounds of the Cl are one which means that the interval predicts with all values of
confidence that the proportion of classified matches that are correctly identified as such in the whole
population lies between one and one. This is incorrect as one positive match does not prove that each

item in the population would also be a positive match. It is not performing appropriately in this range.

As a less extreme example, consider the case where, of a sample of 20 from a population, 11 are

successful so that n=20 and TP=11. Figure 6-1(b) presents upper and lower limits of the CI for this

54 The inverse cumulative distribution function transform, also known as the quantile function or
percent point function, specifies the value of the random variable such that the probability of the

variable being less than or equal to that value equals the probability u, where (0 < u<1).

%5 The sample proportion (p) was discussed in the introduction to section 6.1.
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case predicted using the Wald interval against p. In this case the interval predicts the 95% CI as
(0.332, 0.768) and zero confidence that p is exactly 11/20. p could be 11/20 but with a large
population it is unlikely to be exactly that and this assumption is not problematic in practice.
Problematically, the interval predicts the 100% ClI as (-inf, inf), whereas p must, by definition, be

between zero and 1.

100% 100% \ f
75%

o 75% L]
0 © \ /
3 50% 5 50%
a) £ b) 15 \/
o o
S 25% S 25% V
0, 0,
%0 0.5 1.0 %o 0.5 1.0
P P

Figure 6-1, Confidence Level against Upper and Lower Limits of Cl(p),
Predicted using the Wald Interval, for (a) n=1, TP=1 and (b) n=20, TP=11

Figure 6-2 presents upper and lower limits of the 95% CI (p) predicted using the Wald interval against
the number of samples (n) for cases where (a) half of the samples are correct (p = 1/2) and (b) all but
one of the samples are correct (p = (n-1) / n). It also shows p, the point estimate of p. Both examples

show the Cl narrowing down on a smaller range of p as n increases, which is intuitively credible.
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Figure 6-2, p and 95% CI of p, Predicted using the Wald Interval, against n
for (a) p=1/2and (b) p=(n-1)/n
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6.1.2 Length and Coverage

The length of an interval (Length;,:ervai) IS defined by equation 6.5 and is the difference between the

Upper limit of the interval (Uj,tervq;) @and its Lower limit (L;eervar)-
Lengthlnterval (TP; Tl) = Ulnterval - LInterval (6'5)

For example, in the case where, of a sample of 20 from a population, 11 are a positive match; n=20,
TP=11. The Wald interval predicts the 95% CI as (0.332, 0.768) and has a length of 0.436. Where
other considerations are equivalent, a shorter interval is considered more informative or useful

because it expresses more certainty about p.

To recap, a Confidence Interval (Cl) is a region that contains a feature of interest with a specified,
nominal probability, the Confidence Level (CL). The probability that the Cl contains this feature of
interest is called the Coverage Probability (CP). CP would ideally equal CL, so the difference between

them will be used as a measure of the quality of techniques used for the construction of Cls.

Figure 6-3 to Figure 6-12 show features of the binomial distribution that are not features of any data
and that are not intuitive. Brown et al., 2001, describe such features: “An interesting phenomenon for
the standard interval is that the actual coverage probability of the confidence interval contains

nonnegligible oscillation as both p and n vary.”

Some examples of this phenomenon will now be presented. Figure 6-3 shows CP against CL
predicted using the Wald interval for p=0.5, (a) n=100 and (b) n=10. The coverage would ideally equal
the confidence level but both examples show errors where the result deviates from the x=y line in a
step pattern. This error is caused by the underlying structure of the binomial distribution (Brown et al.,
2001). The figures show that increasing n or CL tends to reduce the size of the steps. Other Cls,

presented in the following pages, have better coverage properties.
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Figure 6-3, Coverage against Confidence Level, Predicted using the Wald Interval,
for p=0.5, (a) n=100, and (b) n=10
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Figure 6-4 shows coverage of the 95% CI predicted using the Wald interval (a) against p for n = 25, (b)
against n for p = 0.99. While coverage would ideally equal the CL, 95%, it instead shows oscillation in
coverage both with p and with n and extremely bad coverage for low n or small or large p. Figure 6-4

is a reproduction of a figure in Brown et al., 2001.
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Figure 6-4, Coverage of the 95% CI, Predicted using the Wald Interval,
(a) against p for n = 25, (b) against n for p = 0.99

The following subsections will use the same example cases as in Figure 6-4 to illustrate that other
techniques for constructing Cls for a binomial proportion have better coverage properties. Section
6.1.7 will compare the coverage and length of the intervals in the region that is of interest to this

thesis.

6.1.3 Wilson Interval

The Wilson Interval (Wilson, 1927) is a modification of the Wald interval, adjusted to improve
coverage. It is a function of the sample size (n), the sample proportion (p) and of %. The derivation of

the interval is not included in this thesis, which is only concerned with its coverage and length.

(6.6)

Clyiison (P) =

2 1
TP+ 'z (p(1—p) + K2\ /2
n+k?2 T n+k? 4n

Figure 6-5 shows coverage of the 95% CI predicted using the Wilson interval (a) against p for n = 25,
(b) against n for p = 0.99. While coverage would ideally equal the CL, 95%, it instead shows oscillation
in coverage both with p and with n. The ordinate is expanded to show the oscillation. In comparison
with Figure 6-4 it shows better coverage. Section 6.1.7 will compare the coverage and length of the

intervals in the region that is of interest to this thesis.

56 i was defined by equation 6.2.
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Figure 6-5, Coverage of the 95% CI, Predicted using the Wilson Interval,
a) against p for n = 25, (b) against n for p = 0.99

6.1.4 Clopper-Pearson Interval

The Clopper-Pearson interval (Clopper and Pearson, 1934) is alternatively known as the exact
interval. For all values of probability and sample size, it has coverage at a minimum of CL, that is it
never under covers, but this causes it to over cover. It is based on the exact binomial distribution

whereas the Wald and Wilson intervals are based on the Gaussian.

Equation 6.7 defines the Beta distribution (B(x; a, 8)) where @ and 8 are positive shape parameters,

c is a normalisation constant to ensure that the total probability is 1 and 0 < x < 1.
B(x;a,B) = c.x® (1 —x)F1 (6.7)

The Clopper-Pearson interval is a function of the sample size (n), the number of True Positives in the
sample (TP) and Significance (S), which is 1 — CL. For a 95% CI, S = 0.05. The derivation of the

interval is not included in this thesis, which is only concerned with its coverage and length.

Clewopper—pearson(P) = [Leiopper—pearsons Uctopper—pearson) (6.8)
Equation 6.9 defines its Lower limit (L¢ciopper—pearson)-
Letopper-pearson = B(3/5; TP, —TP + 1) (6.9)
Equation 6.10 defines its Upper limit (Uciopper—pearson)-
Uctopper—pearson = B(1 = 5/2; TP +1,n—TP) (6.10)

Figure 6-6 shows coverage of the 95% CI predicted using the Clopper-Pearson interval (a) against p

for n = 25, (b) against n for p = 0.99. The ordinate is expanded to show the oscillation. While coverage
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would ideally equal the CL, 95%, it instead shows oscillation in coverage both with p and with n. In
comparison with Figure 6-4 it shows better coverage. Section 6.1.7 will compare the coverage and

length of the intervals in the region that is of interest to this thesis.
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Figure 6-6, Coverage of the 95% CI, Predicted using the Clopper-Pearson Interval,
a) against p for n = 25, (b) against n for p = 0.99

6.1.5 Jeffreys Interval

The Jeffreys interval (Jeffreys, 1973) is alternatively known as the Bayesian highest posterior density
credible interval. It is based on Bayesian statistical inference which assumes a prior distribution of

expected outcomes (Bayes, 1763). The Jeffreys interval uses a Beta® prior with shape parameters «
= [ = 0.5. The derivation of the interval is not included in this thesis, which is only concerned with its

coverage and length.

CI]effreys(p) = [L]effreys' U]effreys] (6'1 1)

Equation 6.12 defines its Lower limit (L¢frreys)- Itis a function of the sample size (n) and the sample

proportion (p). It makes an exception for the case where p= zero where the lower limit of p is known to

be zero as at least one item in the population is incorrect.

0,

(6.12)
L = 5 5
Jeffreys {B(S/Z; np+ 1.1 -p +1/),

=
H o

57 The Beta distribution was defined in equation 6.7.
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Equation 6.13 defines its Upper limit (Uj¢ffreys)- It makes an exception for the case where p= 1 where

the upper limit of p is known to be 1 as at least one item in the population is correct.

1, p=1 (6.13)
Ujeffreys = {3(1 _ 5/2; np+1lm@-p) +14), p=1

Brown et al., 2001, include a table of 95% limits of the Jeffreys interval. The research presented in this

thesis validated its implementation of this interval against their table.

Figure 6-7 shows coverage of the 95% CI predicted using the Jeffreys interval (a) against p for n = 25,
(b) against n for p = 0.99. The ordinate is expanded to show the oscillation. While coverage would
ideally equal the CL, 95%, it instead shows oscillation in coverage both with p and with n. In
comparison with Figure 6-4 it shows better coverage. Section 6.1.7 will compare the coverage and

length of the intervals in the region that is of interest to this thesis.
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Figure 6-7, Coverage of the 95% ClI, Predicted using the Jeffreys Interval,
a) against p for n = 25, (b) against n for p = 0.99

6.1.6 Agresti-Coull Interval

The Agresti-Coull interval (Agresti and Coull, 1998) is a simple modification to the Wald interval. It
adds two to the number of True Positives in the sample (TP) and four to the sample size (n). Adding
these artificial observations has the effect of pulling the distribution of p towards 0.5, where the

coverage of the Wald interval is closer to CL.
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Figure 6-8 shows coverage of the 95% CI predicted using the Agresti-Coull interval (a) against p for n
= 25, (b) against n for p = 0.99. The ordinate is expanded to show the oscillation. While coverage
would ideally equal the CL, 95%, it instead shows oscillation in coverage both with p and with n. In
comparison with Figure 6-4 it shows better coverage. Section 6.1.7 will compare the coverage and

length of the intervals in the region that is of interest to this thesis.
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Figure 6-8, Coverage of the 95% ClI, Predicted using the Agresti-Coull Interval,
a) against p for n = 25, (b) against n for p = 0.99

6.1.7 Interval Selection Process

This section will compare a set of standard methods for Cl estimation. It will use results from chapter
7, the sample size (n) and the number of true positives (TP), to select a technique for constructing Cls
for a binomial proportion to be used throughout this thesis. Table 6-1 shows that the length of the
confidence interval for n=29, TP=24 for each of the techniques presented in the preceding chapters

are similar.

Upper Lower
Technique Limit Limit Length

Wald 0.690 0.965 0.275

Clopper-Pearson | 0.642 0.942 0.299

Agresti-Coull 0.650 0.929 0.279
Wilson 0.655 0.924 0.270
Jeffreys 0.663 0.931 0.268

Table 6-1, Estimates of the 95% CI for n=29, TP=24

Several researchers have compared techniques for estimating Cls on binomial population proportions.
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Cameron, 2011, reviews three techniques for estimating Cls on binomial population proportions. He
finds that the Clopper-Pearson interval consistently provides a mean level of coverage close to the
nominal level, even for small sample sizes. Dean and Pagano, 2015, compare techniques by
calculating the mean coverage in three ranges of p. The mean coverage is not an appropriate
indicator of the quality of coverage, as over-coverage in one part of the range would offset under-

coverage in another part.

This thesis presents Coverage Error (CE), defined by equation 6.14. It is the difference between the
nominal coverage of a Cl or Confidence Level (CL), typically 95%, and the interval’s true coverage.

The CE will be used to assess the risk of poor coverage.
CE = coverage — CL (6.14)

This section presents a Process for predicting the Distribution of the CE (PDCE) given the size of the
sample (n) and number of True Positives in the sample (TP). While previous approaches have used
the average coverage, the PDCE uses the distribution of coverage to compare techniques for
constructing Cls for a binomial proportion in the relevant region. This is an improved approach

because it reduces the risk of poor coverage. The PDCE comprises the steps listed in Figure 6-9.

PDCE step 1 uses the Jeffreys’ interval. It could equally well use any interval that has acceptable

coverage.

PDCE step 2 makes the simplifying assumption that p is equally likely to lie anywhere within the 95%
Cl of p. Further work could adjust the PDCE to put more weight on more likely values of p. This
research tried increasing the number of values and found that it had no discernible effect on the result

and so concluded that 30 is an appropriate number of values.

1: Use the Jeffreys’ interval to calculate the 95%CI of p

2: Calculate an equally spaced range of 30 values of p that lie within this CI

3: Calculate the coverage for the given value of n and each of these 30 values of p
4: Use equation 6.14 to calculate the CE for each of these 30 values of p

5: Present the distribution of this list of CE values

Figure 6-9, Process for Predicting the Distribution of the CE (PDCE)
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Consider for example the case where the sample size is 10 and that they are all a positive match;
n=10, TP=10. In this case, the PDCE uses the Jeffreys’ interval to predict the 95% CI for p of [0.783,
1]. Figure 6-10(a) presents the coverage for this case where n=10 against p. PDCE step 4 uses
equation 6.14 to calculate the CE for each value of p that is within the 95% CI (Figure 6-10(b).
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Figure 6-10 (a) Coverage Probability (CP) against p, (b) Coverage Error (CE) against p,
of the 95% CI for n=10, TP=10

Finally, the PDCE compares the distribution of this list of CE values. This thesis uses the PDCE to
compare techniques for constructing Cls for a binomial proportion in the relevant region. A kernel
density plot is a smooth curve estimating the probability density function of a continuous variable.
Figure 6-11 presents kernel density against Coverage Error (CE) for n=29, TP=24 of a selection of

techniques for constructing Cls for a binomial proportion of the (a) 95% CI (b) 99% CI.
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Figure 6-11 shows the results for the PDCE. Please recall that figures 6.3 to 6.12 show features of the
binomial distribution that are not features of any data and that are not intuitive. If a technique has a low
risk of poor coverage (that is that the technique is relatively appropriate) then in figure 6.11 CE will be
clustered around zero. Figure 6-11 shows that the Wald interval has very bad coverage in this region,
the Clopper-Pearson interval has too high coverage in this region and the other intervals have
acceptable coverage in this region. Figure 6-11(b) shows that the Wilson interval has CE clustered the
most closely around zero, giving it the best coverage on the 99% CI. This indicates that it has even
tails on the 95% ClI; that is that the (small) probability of over-coverage is close to the (small)
probability of under-coverage for this interval in this region. Figure 6-11 shows that the Wald and
Clopper-Pearson intervals are both less appropriate than the Agresti-Coull, Wilson or Jeffreys
intervals. Figure 6-11(a) and (b) show that the Wilson interval has CE clustered the most closely about
zero which means that it has the least risk of poor coverage in the region of interest and so this thesis

will use that technique for constructing confidence intervals.
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Figure 6-11, Kernel Density against Coverage Error (CE) for n=29, TP=24 of a Selection of
Techniques for Constructing Confidence Intervals (Cl) of a Binomial Proportion for (a) Confidence
Level (CL) = 95%, (b) CL=99%
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6.1.8 Bootstrapping

Bootstrapping (Efron, 1979) is a statistical procedure that identifies subsamples from the original
sample from a population. Each element of the sample can be included repeatedly in the same
subsample. To average out random sampling errors, a large set of subsamples is used. This is known
as random sampling with replacement. Bootstrap methods can be used for constructing confidence

intervals of a binomial proportion (Mantalos and Zografos, 2008).

This research performed the statistical tests that generated Figure 6-3 to Figure 6-11 using the R
software suite (R Core Team, 2021) with the binom package (Dorai-Raj, 2014) through the rpy2
Python module (Cock, 2005). Binom does not include a bootstrapping method, and, while python
libraries including scikit-learn, scipy-stats and pandas do include bootstrapping methods, they do not
include a tool for calculating the coverage of confidence intervals calculated using bootstrapping.®
Consequently, this thesis does not investigate the use of bootstrapping for the estimation of the
uncertainty of a binomial proportion, for which it considers that the coverage from the Wilson interval is
acceptable. It will use bootstrapping for other applications which will be presented in sections 6.2 and
6.3; the comparison binomial proportions by estimating the uncertainty of, firstly, the ratio between

them and, secondly, the probability that one proportion is greater than another.%°

58 Section 6.2.6 will compare the computational expense of assesing the coverage of an application
that uses bootstrapping against using other, less computationally expensive, techniques.

59 The start of this chapter explained why this research required these methods.
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6.1.9 Conclusion to Interval Estimation for a Binomial Proportion

This section has reviewed techniques for constructing confidence intervals for a binomial proportion.
Brown et al., 2001, demonstrated that there is difficulty understanding a class of uncertainties that are
caused by the underlying structure of the binomial distribution and this chapter has reproduced their
result. It has demonstrated how to assess the risk of poor coverage and shown that this risk can be
high when using some popular techniques. It has investigated how to minimise this risk by selecting

an appropriate technique.

This chapter has presented a new and useful approach for deciding which technique to select for
constructing confidence intervals for a binomial proportion. Previous approaches selected a technique
by its mean coverage, but this new approach instead selects a technique by the distribution of its
coverage. This research reviewed the literature and did not find this approach, so it can be concluded
that the approach is novel. This approach is useful in that it minimises the risk of poor coverage more

effectively than using the mean coverage.

To minimises the risk of poor coverage, chapters 8 and 9 will use the Wilson interval for constructing
confidence intervals for binomial proportions. This will enable those chapters to quantify their
uncertainty as to the extent to which measures of a random sample from a population can be used to

draw inferences about that population.
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6.2 Interval Estimation for the Ratio of Two Proportions

The previous section reviewed techniques for estimating the uncertainty as to the extent to which a
binomial proportion is representative of the population from which it has been sampled. This section
will compare two such uncertain estimates. They will be considered as two cases, referred to in this

chapter as case A and case B, applied to the same sample.

This section will consider the comparison of the enriched health history to the unenriched health
history using the GSSLR. This statistical situation occurs repeatedly in this thesis and one of its
occurrences will be used as an example, presented in section 6.2.1. Sections 6.2.2 to 6.2.5 present
three techniques for interval estimation for a change in a proportion. These techniques make different
assumptions about how these proportions are related to each other. Section 6.2.6 compares them and
section 6.2.7 concludes this section.

6.2.1 Example of Comparing Proportions

This section uses the following example to illustrate techniques for estimating the uncertainty of a
change in a proportion and to select a technique. This thesis will use the selected technique in its
analysis of other results as well.

To investigate whether the Process for the Enrichment of wind turbine Health History (PEOHH)
developed in this research does meet its object, that is to enrich health history, chapter 8 will address
RQ3:

RQ3 How can the richness of historical data on wind turbine health be measured?

To quantify how much enrichment is achieved by the PEOHH, chapter 8 will compare the Enriched
Health History (EHH) to the unenriched health history. It will define richness and then quantify richness

using a variety of measures.

Section 1.2.4 reviewed the literature on troubleshooting as an aspect of the maintenance of offshore
wind turbines. Please recall from that section that troubleshooting is the activity of repairing a faulty
OWT by the replacement of components. Section 8.5 will consider the application of wind turbine
health history to troubleshooting. This chapter considers the statistical theory that will be required to
understand uncertainty in section 8.5 and in other applications as well, such as to understand the
uncertainty of a change in the quality of record linkage. As a measure of the richness of historical data
on wind turbine health, it will present the concept of the Proportion of POLRs in a set where the health
history would recommend all the Material needed, (PM), a measure of the quality of simulated
troubleshooting guides. PM is defined by equation 6.15 using the number of POLRs in the EHH where
the health history Would Recommend all the required parts (WRy) and the number of POLRs in the
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EHH where the Health History would Not Recommend all the required parts (NRgy), making various

assumptions that will be detailed in section 8.5.

B WRgun (6.15)
WRgyy + NRgpy

PM

PM is estimated using the PM of the GSSLR (PM) and is consequently expressed as a binomial

proportion. The small size of the GSSLR®0 creates uncertainty about the true value of PM prior to and
after enrichment. Rather than considering the uncertainty of these two values of PM separately, as in

section 6.1, this section considers the uncertainty of the increase.

Section 8.5 will define those WOs already labelled with an alarm code as the unenriched health
history. These are the existing records of health history prior to enrichment. This section refers to the
case prior to enrichment as ‘A’ and to that post enrichment as 'B’. Since knowledge of both cases is
based on the GSSLR they are not independent of each other. Most statistical literature describes
inferences from independent datasets and so this section will address the unusual situation where

independence cannot be assumed.

This example considers the Increase in PM between cases A and B (I45). 45 is important to this
research because, in this example, it estimates the extent to which the health history has been
enriched.8" Equation 6.16 defines 1,5 using the Proportion of POLRs where the health history would
recommend all the Material needed for case A (PM,) and the same Proportion for case B (PMp).
Ly = % 3 (6.16)
PMy

PM, and PMg are unknown and so this chapter will use estimates of them.

This chapter will consider the uncertainty of the estimate of I45 caused by the small number of
samples. Equation 6.17 identifies a point estimate of 1,5, (I, ) using the number of POLRs in the
GSSLR where the health history Would Recommend all the required parts for case A (WRg,5,) @nd

the same quantity for case B (WRss.z,), @gain making various assumptions that will be detailed in

60 Section 4.3.2 presented the method for the validation of the techniques for health history enrichment
used in this thesis. The size of the GSSLR, 29 WOs, was constrained by the amount of expert time
that was available.

61 Chapter 8 will further discuss and interpret I4.



section 8.5. In this example, case A has a WR s, » of 11 but case B has a WR s,z of 18. PM has
increased by 64%.
. WRgssiry 18 (6.17)

[p= —5M 1= 1= 64%
WRgssir, 11

This example will also use the following experimental results from Chapter 8:

e For 11 Pairs Of Linked Records (POLR) in the GSSLR, for both case A and case B, the health
history would recommend all the required parts.

e Forno POLRs in the GSSLR, for case A the health history would recommend all the required
parts but for case B it would not.

e For 7 POLRs in the GSSLR, for case A the health history would not recommend all the
required parts but for case B it would.

e For 10 POLRs in the GSSLR, for neither case A nor case B, the health history would

recommend all the required parts.

Table 6-2 presents this example as a table.

Case B
Would Would Not
Recommend | Recommend
Would
11 0
Case Recommend
A Would Not
7 10
Recommend

Table 6-2, Example of a Change in a Proportion

The following sections will present techniques for constructing Confidence Intervals (Cl) for I5.

6.2.2 Assuming Independence

A statistical theory based on independent samples is not applicable to a case where the samples are
far from independent. The vast majority of statistical research has been on systems that can usefully
be modelled as independent, such as gambling and medicine. In medical research for example,
comparative trials are not carried out on the same patients. If method A is tested on sample A and
method B is tested on sample B, sample A is made up of different individuals from sample B and the

results can often be assumed to be independent.
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Section 6.2.6 will demonstrate that the assumption of independence presented in this section is

inappropriate for this application of comparing record linkage techniques on the same GSSLR.

Newcombe, 1998 compares methods for the estimation of Cls for the difference between independent
proportions, using examples from medicine. In appendix |, Newcombe uses the Wilson interval to
construct Cls for the ratio of two independent binomial proportions. If PM, were independent of PMp

then it would be appropriate to use the approach described by Newcombe, 1998, to construct a Cl for

IAB.

This section presents the Technique Assuming Independence between PM, and PMg (TAI). It

hypothesises that PM, is not independent of PMy and that therefore TAl will have poor coverage.

Equation 6.18 is derived from Newcombe, 1998, appendix I. For a specific Confidence Level (CL), Ly,

is the Lower limit of the Wilson CI%2 and Uy, is its Upper limit.

(mh)=[1fﬁw'1gﬁw] o

Substituting equation 6.18 into equation 6.16, equation 6.19 estimates the uncertainty of the Increase
(Lag):

2Ly, —1 20Uy, — 1 (6.19)
CITAI(IAB) = v v ]

1—Ly  1-Uy

For the case in the example described in section 6.2.1, the TAI estimates the 95% Cl of 1,5 as (-21%,
241%). Section 6.2.6 will show that this Cl grossly over-covers, indicating that TAl is not an
appropriate technique for this application because the results of tests conducted on the same sample

are not independent of each other.

Unlike TAI, the techniques described in the following sections will both require significant

computation.

62 The Wilson interval was defined in section 6.1.3.
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6.2.3 Assuming Equally Representative Samples

The previous section presented the Technique Assuming Independence between PM, and PMg
(TAI). The opposite assumption is that the sample is just as representative of the population for case A
as it is for case B. This section presents the Technique Assuming Equally representative samples

(TAE). TAE approximates 1,5 by evaluating probability distribution functions PM, and PMp.
Equation 6.20 defines a vector of Probabilities (Prob) where:

e P;, is the Probability that a randomly sampled POLR would recommend all the required parts
for both case A and case B

e Py, is the Probability that it would not recommend all the required parts for case A but would
recommend all the required parts for case B

e Py, is the Probability that it would recommend all the required parts for case A but would not
recommend all the required parts for case B

e Py is the Probability that it would not recommend all the required parts for both case A and

case B

Prob = [Py4, Py1, P1o, Pool (6.20)
Where:

o (6.21)
AR

TAE estimates P, and Pg for a full range of points in probability space that reflect how representative
the sample is of the population. This embeds the assumption that the sample is just as representative

of the population for case A as it is for case B in TAEs estimation of I,p.

A categorical distribution is a discrete probability distribution that describes the possible results of a
random variable that can take on one of a set of possible categories, with the probability of each
category separately specified. The multinomial distribution models the outcome of a set of tests where
the outcome of each test is modelled by a categorical distribution. The binomial distribution is the case
of the multinomial distribution where the number of categories is 2. Section 6.1 reviewed the
application of the Wilson interval to binomial proportions, but it can also be used to estimate Cls for

multinomial proportions (Wilson, 1927). This section will model Prob as a multinomial distribution.

TAE finds a Cl for each of the four elements of Prob for any CL where (0 < CL £ 1). It assumes a
multinomial distribution and estimates this using the Wilson interval. The natural multidimensional

extension of the Wilson interval is the same as that interval for a binomial proportion.

144



The Wilson interval is defined for the multinomial case by equation 6.22 and is a function of the

sample size (n), the sample proportion (p) and 63,
2 1 _ _ 1 6.22
_xij+K/2+Kn/2 pl}(l_plj)+K2 /2 ( )
CIWilson(Pij) - n+x2 —n+x? An
Where:
n= z Z Xy (6.23)
i
And:

X 6.24

by = — ( )
This research investigated the effect on each element of Prob of varying CL for the case in the
example described in section 6.2.1. The results, taking Py as an example element, are shown in
Figure 6-12. The median of Py, is where CL is zero and the figure shows that in this example it is at

approximately 0.35.
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Figure 6-12, Confidence Level (CL) against the Probability that a Random Sample would Not

Recommend all the Required Parts for either Case A or Case B (Py,) for the Example in Section 6.2.1

TAE approximates 45 by evaluating probability distributions P4, and Pg. It uses the inverse Cumulative
Distribution Function (CDF) transform, (also known as the quantile function or percent point function),
which specifies the value of the random variable such that the probability of the variable being less

than or equal to that value equals the probability u, where (0 < u < 1). The median is at u = 0.5. For the

63 K was described in section 6.1.1.
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case in the example described in section 6.2.1, for u = 0.5, the inverse CDF transform returns a

median of Py, = 0.35.

To approximate the inverse CDF transform of the Wilson interval, this section assumes that the Wilson
interval is symmetric about the median such that for any CL, where (0 < CL < 1), the median minus the
lower bound of the Cl approximates the upper bound of the Cl minus the median. This assumption is
conceivable because Figure 6-12 does appear to be approximately symmetric about the median. This
section will sensitivity test the assumption of symmetry by replacing it with an alternative assumption.
This sensitivity test will show that the assumption is appropriate because replacing it does not make a

significant difference. The assumption of symmetry implies equation 6.25.
CL =~ |2u—1| (6.25)

TAE takes a set of equally distributed samples from u with Step Size (SS), as defined by equation
6.26.

u = (SS,255,355..1-S5S) (6.26)

For each value of u, (u;), TAE uses equation 6.25 to identify the corresponding value of CL. TAE uses
the Wilson interval to find the multinomial Cls for Prob, yielding a Cl for each of (P;1|u;), (Py1lu;),

(Pyolu;) and (Pyolu;). Equations 6.27 and 6.28 are implied by the definitions of PM, and PMj.
PMA == Pll + Plo (627)
PMB == Pll + POl (628)

Substituting equations 6.27 and 6.28 into the definition of a Cl yields equations 6.29 and 6.30. TAE
uses equations 6.31 and 6.32 to construct Cls (Cl4g) for (PMy|u;) and for (PMg|u;).

Clrag(PMaluy) = [((Ly1lug) + (Lyolu)), ((Hyglu) + (Hyoluy))] (6.29)
Clrap(PMglu;) = [((L11|ui) + (L01|ui)); ((H11|ui) + (H01|ui))] (6.30)

Substituting (PM,|u;) and (PMg|u;) into equation 6.16 yields equation 6.31, which TAE uses to
construct Cly g for (I4p|u;).

(PMpg|u;) (6.31)

Clrag(yplu;) = M)
L

For each item in the list of values of probability (u), TAE now has an estimate of 1,5. TAE estimates

the 95% ClI of 15 as the 2.5" percentile and the 97.5™ percentile of this list of estimates of I,5.
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This research investigated the effect of varying SS and he results are shown in Figure 6-13. It shows

that the estimate of I, levels out below an SS of 10 which indicates that 10 is an appropriate value

for SS.
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Figure 6-13, Increase (I45) and 95% Confidence Interval (Cl) against Step Size (SS)

For the example described in section 6.2.1, the TAE estimates the 95% Cl of Iz as (45%, 64%).
Section 6.2.6 will show that this CI grossly under-covers, indicating that TAE is not an appropriate
technique for this application because the results of tests conducted on the same sample are not just

as representative of the population for case A as they are for case B.

6.2.4 Alternative Assuming Equally Representative Samples

The previous section presented the Technique Assuming Equally representative samples (TAE). It
explained that the TAE assumes that the Cl of each element of Prob is symmetric. To sensitivity test
this assumption, this section will replace it with an alternative assumption. This section presents the

Alternative Technique Assuming Equally representative samples (ATAE).

Just as does TAE, ATAE also approximates I45 by evaluating probability distributions PM, and PM3.
To estimate 1,5 for each of a list of values of probability (u), ATAE models PM, and PMg using the
skew normal distribution which is a skewed version of the normal distribution. ATAE fits this

distribution to P, and Py using Differential Evolution (DE), which was reviewed in section 2.4.1.2.

The Cumulative Distribution Function (CDF) of a random variable X, evaluated at x, is the probability

that X will take a value less than or equal to x. ATAE uses the inverse CDF transform of the skew

64 The Step Size (SS) was defined by equation 6.26.
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normal distribution to yield an estimate of A and of B for each of the list of values of probability (u).

Figure 6-14(a) shows the results for the example in section 6.2.1.

A Probability Density Function (PDF) is a function whose value at any given sample can be interpreted
as providing a relative likelihood that the value of the random variable would equal that sample. It is
the differential of the CDF with respect to x. To visualise the distributions, this research used ATAE to
construct the PDF for case A and for case B. Figure 6-14(b) shows the results for the example in

section 6.2.1.

Figure 6-14 shows that most estimates of PMp, the probability that a truly matching POLR for case B,
the health history after enrichment, would be yielded from a record selected at random from the
general population, are higher than most estimates of PM,, the probability that a truly matching POLR
for case A, the health history prior to enrichment, would be yielded from a record selected at random

from the general population.
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Figure 6-14, (a) Inverse CDF Transform, (b) PDF, for Case A and for Case B

ATAE identifies a list of estimates of 145 using equation 6.16 to calculate 145 for each pair of estimates
of A and B. It estimates the 95% Cl of 145 as the 2.5" percentile and the 97.5" percentile of this list of

estimates.
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Running ATAE repeatedly yielded various estimates of the 95% CI of I45. The results are shown in
Figure 6-15. This inconsistency in ATAE estimates is caused by the difficulty of fitting skew normal
distributions to P, and to Pg. The estimate from TAE is in the same region as the estimates from

ATAE which indicates that the assumption of symmetry made by TAE is appropriate.
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Figure 6-15, Upper and Lower Bounds of the 95% CI of 14,
Estimated by the Technique Assuming Equally Representative Samples (TAE) and
by the Alternative Technique Assuming Equally Representative Samples (ATAE)

The previous section explained that the TAE assumes that the CI of each element of Prob is
symmetric. To sensitivity test this assumption, this section replaced it with an alternative assumption
and showed that this yields a similar estimate of the 95% CI of I45. This showed that the assumption

of symmetry made by TAE is appropriate.

6.2.5 Using Bootstrapping

Bootstrapping®® (Efron, 1979) is a statistical procedure that identifies subsamples from the original
sample from a population. Each element of the sample can be included repeatedly in the same
subsample. To average out random sampling errors, a large set of subsamples is used. This is known
as random sampling with replacement. The size of the subsample is known as the Bootstrap Size

(BS). It is recommended that BS should be equal to the size of the original sample (n).

65 Section 6.1.8 introduced bootstrapping and explained why this research thesis does not use it for
constructing confidence intervals of a binomial proportion. This section does use bootstrapping to
estimate the uncertainty of a difference between two binomial proportions and section 6.3 will use it to

estimate the probability that one binomial proportion is greater than another.
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Bootstrap methods can be used for constructing Confidence Intervals (CI) of a binomial proportion
(Mantalos and Zografos, 2008). This section investigates the use of bootstrapping for constructing a

Cl for Increase (I45), defined in section 6.2.1, and presents it as the Technique Using Bootstrapping

(TUB).

TUB generates a list of estimates of Ip. It estimates the 95% Cl of 1,5 as the 2.5" percentile and the

97.5™ percentile of this list of estimates of I5.

This research investigated the effect of varying BS between 1 and 100 for the case in the example
described in section 6.2.1 which has sample size n = 28. (This is the number of WOs in the GSSLR
that have materials assigned to them). Figure 6-16(a) presents 145 against BS. It shows that TUB
would estimate a wider Cl if BS were less than 28 and a narrower Cl if BS were more than 28. This

research will use BS = n, as recommended by Efron, 1979.

This research investigated the effect of varying the number of subsamples. The results are shown in
Figure 6-16(b), which shows that in this case 1000 subsamples are sufficient to average out random

sampling errors.
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Figure 6-16, Increase (l45), (a) against Bootstrap Size (BS) for Number of Subsamples = 100,
(b) against Number of Subsamples for BS = n = 28

For the case in the example described in section 6.2.1, TUB estimates the 95% ClI of Iz as (20%,
167%). Section 6.2.6 will show that this Cl slightly under-covers, indicating that TUB is an appropriate
technique for this application because the its underlying assumptions are more appropriate than those

of TAl or TAE.

Bootstrapping assumes that each element of the sample is independent of the other elements. The
next section will show that it has much better coverage than the techniques presented in the previous

sections.
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6.2.6 Coverage

Section 6.1.2 reviewed the coverage of a Cl. Please recall from the section that:

The probability that the Cl contains this feature of interest is called the Coverage
Probability (CP). CP would ideally equal CL and the CP will be used as a measure of

the quality of methods used for the construction of Cls.
Sections 6.2.2 to 6.2.4 presented three techniques for interval estimation for a change in a proportion:

e The Technique Assuming Independence (TAl)
e The Technique Assuming Equally representative samples (TAE)

e The Technique Using Bootstrapping (TUB)

This section presents a Process for Comparing Techniques for interval estimation for a change in a
proportion (PCT) and uses it to compare the CP of these three techniques. The CP of a Cl can be
estimated by simulation; however, CP varies with n and with the probability of each outcome (Brown et
al., 2001).

The PCT calculates CP using a Python algorithm that repeats an experiment and stores the results,

posted by Stack Overflow internet forum user “anky” (anky, 2019).

TAE and TUB are both computationally expensive, as detailed in Table 6-3, which makes it intractable
to estimate the CP for many values of the probability of each outcome. As an alternative, and using a
similar approach to that was used in the interval selection process that was presented in section 6.1.7,

PCT concentrates on the region of interest.

Just as in the TAE, the PCT also uses the Wilson interval to find the multinomial Cls for P4, Py1, P10,

and P,q. For the case in the example described in section 6.2.1, these are detailed in Table 6-3.

Estimate | Low High
Py 0.393 0.236 0.576
Py, 0.000 0.000 0.121
Py 0.250 0.127 0.434
Pyo 0.357 0.207 0.542

Table 6-3, Estimate and 95% CI of the Probability of Each Outcome



Section 6.2.3 presented the TAE. Please recall equations 6.22 and 6.23 from that section:

PTOb = [Plli P01, PlO' Poo] (622)
Where:

ZProb =1 (6.23)

The PCT estimates CP by simulating sets of values of Prob that are in the region of interest (as
detailed in Table 6-3 for the case in the example described in section 6.2.1). It identifies the range of
likely values of Py, (the Probability that a random sample from the population NR for case A but WR
for case B) and selects four values across this range, ranging from zero to 0.12. Keeping P;; and Py,
constant, it varies P;o to maintain equation 6.23. For the case in the example described in section

6.2.1, this process yields four sets of values of Prob:

e Prob=[0.3,0.0, 0.3, 0.4]
e Prob=10.3,0.04,0.26, 0.4]
e Prob=10.3,0.08,0.22, 0.4]
e Prob=1[0.3,0.12,0.18, 0.4]

These four Prob vectors will be used to identify the coverage of each of the three techniques for
constructing Cls. Such a sensitivity study of the effect of variation in Py, in the region of interest would
ideally be combined with similar studies varying P, 1, P1o, and Pyq but this would be intractable as TAE
and TUB are both computationally expensive when repeated 10,000 times to yield a useful estimate of
coverage for each set of values of Prob, as detailed in Table 6-4. The table shows that TAl is
computationally inexpensive and so could be repeated 100,000 times for each set of values of Prob,

yielding a more accurate estimate of the coverage.
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The computational expense of TAE and of TUB is only a concern when repeating them to estimate
coverage, not when using them a single time. The computation times detailed in Table 6-4 are for a
standard laptop PC processor®®, It is important that the computation times detailed are for 10,000 runs,
100,000 in the case of TAI, and this is the reason for the lengthy computation time. Computation time
is a difficulty for the problem of measuring the coverage of a statistical technique, not for the real world
application the health history enrichment techniques presented in this thesis®”. Further work optimising

the bootstrapping algorithm or running it on a faster computer would improve its computation time.

TAI TAE Bootstrap
BS 28
Subsamples 1,000
Reps 100,000 10,000 10,000
run time 41 seconds | 32 hours 41 hours

Table 6-4, Comparing the Computation Time of Techniques for Interval Estimation

Substituting equations 6.27 and 6.28 into equation 6.16 yields equation 6.24. For each of the sets of
values of Prob, the PCT uses equation 6.34 to identify the ‘true’ value of I that would be yielded

from an infinite sample from a population with the given set of values of Prob.

_ Pyt Py (6.24)
b= 55— —1
Py + Py

To generate sample data, the PCT takes random samples from a multinomial distribution generated
from the given set of values of Prob with sample size n. It then applies the technique on test to
estimate the 95% ClI of I4p. If the estimate of the 95% CI of I includes the ‘true’ value of 145 then it
records a positive outcome and it otherwise records a negative outcome. It repeats this many times

(Reps). The PCT estimates CP as the proportion of positive outcomes.

Brown et al., 2001, demonstrated that “For larger n, the Wilson, the Jeffreys and the Agresti-Coull
intervals are all comparable”, so, when n=40, any of these three intervals can be used with acceptable
coverage. The PCT estimates the 95% CI for the coverage of the 95% ClI, again using the Wilson

interval.

66 Section 4.5 detailed the processor.

67 Section 4.5 detailed the computation times for the PEOHH.
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Figure 6-17 shows CP against P, for each of the three techniques. The coverage of TAl is around
99.88%, grossly over the target 95%. (4.88% may appear to be a small error but it is in fact a large
error at this end of the probability range. The odds is the probability that an event will occur divided by
the probability that the event will not occur and is an alternative format for describing probability. 95%
has the equivalent odds of 19 while 99.88% has the much greater equivalent odds of 832.) The
coverage of TAE is around 32%, grossly under the target 95%. The coverage of TUB is around 93%,
slightly under the target 95%. It is clear that, of the techniques presented, only TUB gives acceptable

performance and consequently this thesis will use TUB for interval estimation for a change in a

proportion.
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Figure 6-17, Coverage Probability (CP) against the Probability that a Random Sample from the
Population WR for case A but NR case B (P,) for the:
(a) Technique Assuming Independence (TAl)
(b) Technique Assuming Equally Representative Samples (TAE)
(c) Technique Using Bootstrapping (TUB)
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6.2.7 Conclusion to Interval Estimation for a Change in a Proportion

This section presented three techniques for interval estimation for a change in a proportion:

e The Technique Assuming Independence (TAl)
e The Technique Assuming Equally representative samples (TAE)

e The Technique Using Bootstrapping (TUB)

It showed that TAl and TAE yield very poor coverage. This is an important result because one might
intuitively make the assumptions from TAI when assessing the uncertainty of a difference in an

uncertain estimate.

Chapters 7 and 8 will use TUB for constructing Cls for changes in proportions. This will enable the
chapters to quantify their uncertainty as to the extent to which changes in measures of a random

sample from a population can be used to draw inferences about that population.
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6.3 The Comparison of Proportions

Section 6.2.5 presented the Technique Using Bootstrapping (TUB) for interval estimation for

comparing proportions. This section will use TUB to investigate the probability that one proportion is
greater than another.

Table 6-5 presents two examples of changes in a proportion. Making various assumptions that will be

detailed in section 8.5, these are example results of the number of POLRs in the GSSLR where a

simulated troubleshooting guide would recommend all the required parts and the number of POLRs in

the EHH where that same guide would not recommend all the required parts. As in the previous

section, this section also refers to the case prior to enrichment as ‘A’ and to that post enrichment as

‘B’

Example | is taken from the results that will be presented in section 8.5 while example Il is included to

illustrate the inferences that would be drawn from different results.

Example | Example Il
Case B Case B
Would Would Not Would Would Not
Recommend | Recommend Recommend | Recommend
2 2
- 2 s ©
3 c = E
3 E 11 0 3 E 8 1
= § = §
< o < 0
(0] (0]
® ®
O — O (@) - O
°5 o G
< c =
2 € 7 10 o £ 8 11
> o = (@]
23 =5
x x

Table 6-5, Two Examples of Changes in a Proportion

Please recall equation 6.16 which defines the Increase (I45) using the Proportion of POLRs where the

health history would recommend all the Material needed for case A (PM,) and the same Proportion for

case B (PMp).
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To estimate the confidence that the PEOHH enriches the health history, this section will illustrate
techniques to estimate the probability that PMg > PM,, in other words that I, is positive. This
section uses as an example the question of whether the health history has been enriched but this

research will also use these techniques for other applications, such as to estimate the probability that
the quality of record linkage has increased.

Please recall that TUB generates a list of estimates of I45. This research investigated the distribution

of this list for both examples. The results are shown in Figure 6-18.

Bootstrapping is conditional on the original sample. It is limited by the sample data and this limitation
of the technique is illustrated by Figure 6-18(a) which shows that the estimates of 1,5 for example |
are restricted to a narrow range of values that are all non-negative. This occurs because of the zero

count of records in the sample where Case A would recommend all the required parts but Case B
would not. In example I, TUB can never yield a negative estimate of I,z but the probability that PMp <
PM, cannot really be zero because it is possible that the sample is not fully representative of the
population. The proportion of bootstrap samples in example | for which PMg < PM, is however zero

and this strongly indicates that, in the parent population, PMg = PM,.

These results indicate that in both examples the probability that the health history had not been

enriched would be low.

Count (estimates)
Count (estimates)

Figure 6-18, Frequency of Estimates of I4g, with Subsamples = 4000, for (a) Example I, (b) Example Il

The risk that the health history has not been enriched is the probability that PMp < PM, and is
estimated by the proportion of bootstrap subsamples for which PMg < PM,. The list of estimates is
filtered to only include negative and zero values. The proportion of bootstrap subsamples for which

PMg < PM, is then simply the length of this filtered list divided by the number of subsamples.

The risk that the health history has been made less rich is the probability that PMg < PM, and is
estimated by the proportion of bootstrap samples for which PMy < PM,. This time, the list of
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estimates is filtered to only include negative values. The proportion of bootstrap samples for which

PMg < PM, is then simply the length of this filtered list divided by the number of subsamples.

This research investigated the effect of varying the number of subsamples. The results are shown in
Figure 6-19. Figure 6-19(a) uses data from example I. It shows no change in P(PMg < PM,) with the
number of subsamples because, in example |, as explained above, however many times TUB

resamples, it can never yield a negative estimate of Ip.

Figure 6-19(b) uses data from example Il. It shows that in this example, P(PMy < PM,) does change
with the number of subsamples. The figure shows that the number of subsamples that are sufficient to
adequately average out TUBs random sampling errors varies. For example |, P(PMg < PM,) has just
about stabilised after 50,000 subsamples. For example Il, P(Pg < P,) has stabilised after 4000
subsamples but P(PMg < PM,) has just about stabilised after 20,000 subsamples. For each

application, this thesis will plot the proportions of interest against the number of subsamples to check

that sufficient subsamples have been used to adequately average out TUBs random sampling errors.

The estimate of P(PMg < PM,) having the value zero for example I, which represents real data,
indicates that it is in fact unlikely that the health history has been made less rich and the estimate of
P(PMg < PM,) of 0.03% for the same example indicates that it is unlikely that it has not been
enriched. The estimate of P(PMg < PM,) of 0.2% for example Il indicates that even with these
alternative results it would still be unlikely that the health history had been made less rich and the
estimate of P(PMg < PM,) of 0.7% for the same example indicates that it would still be unlikely that

the health history had not been enriched.

0.0005 0.010
0.0004
0.0003
2) b) 0.005 —  P(PMy < PM,)
0.0002
-= P(PMgy < PM,)
0.0001 BN e
D'DOOOD 25000 50000 O'DOOO 10000 20000
Subsamples Subsamples

Figure 6-19, Proportion of Bootstrap Samples for which Py < P, and that for which Pg < P4
against Number of Subsamples for (a) Example |, (b) Example Il
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This section has shown that TUB can be used to identify the proportion of bootstrap samples for which

PMgp < PM, and that for which PMp < PM,. This technique will be used to assess:

e The probability that the health history has been enriched
e The probability that the health history has been made less rich
e The probability that the quality of record linkage has increased

e The probability that the quality of record linkage has decreased
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6.4 Conclusion to Quantifying Uncertainty

Section 6.1 proposed the use of statistical techniques for the interval estimation of a binomial
proportion to understand the uncertainty of measures of the quality of record linkage. It reviewed
literature (Wilson, 1927, Clopper and Pearson, 1934, Jeffreys, 1973, Agresti and Coull, 1998, Brown
et al., 2001) demonstrates that, due to the underlying structure of the binomial distribution, there is no
perfect technique for estimating the uncertainty as to the extent to which a binomial proportion should
be representative of the population from which it has been sampled. It also demonstrates that some
techniques such as that of Wilson, 1927, yield much better coverage than the standard technique of

Wald, 1943. The section presented a novel and useful technique for comparing these methods.

Section 6.2 considered how to estimate the uncertainty of a difference in an uncertain estimate. It
considered the case of comparing the enriched health history to the unenriched health history using
the GSSLR. That case is analogous to comparing two medical techniques by testing them on the
same patients at the same time. Such a medical experiment would of course not be feasible and
statistical techniques for assessing this situation are consequently obscure. This chapter used a
similar approach to that taken by Brown et al., 2001; estimating the Coverage Probability (CP) of the
Confidence Interval (Cl) at a specific Confidence Level (CL). It found that bootstrapping gave relatively

good coverage and is an appropriate technique for this application.

Section 6.3 presented a test that will be applied to questions such as whether the PEOHH actually

enriches the health history by finding the proportion of bootstrap samples for which it does.

Chapter 7 will use techniques from section 6.1 to understand the uncertainty of the Positive Predictive
Value (PPV)%8, from section 6.2 to understand the uncertainty of how much changing a record linkage
parameter changes the PPV and from section 6.3 to understand the uncertainty of whether changing a

record linkage parameter increases the PPV. Section 7.6.2 will use bootstrapping to estimate the PPV.

Sections 8.3 to 8.5 will use techniques from section 6.1 to understand the uncertainty of various
measures of the enrichment of the health history, from section 6.2 to understand the uncertainty of
how much changing a health history filtering parameter changes these measures and from section 6.3
to understand the uncertainty of whether changing a health history filtering parameter increases these

measures.

68 The PPV, a measure of the quality of record linkage, was defined in section 2.2.1
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7 Results: Optimisation of the Weights and Thresholds

This chapter will present the results from the validation of the Process for the Enrichment of OWT
Health History (PEOHH) developed in this research. The PEOHH uses agreement and disagreement
weights (defined in section 4.1) for each feature (defined in section 4.4) as well as various thresholds
(each defined in chapter 4). It will present their optimisation. The literature on global optimisation will

be reviewed and a global optimisation process applied.

Five of the thresholds that the PEOHH uses will be optimised outside of the global optimisation
process and will instead be optimised individually. Optimising these five thresholds individually means
that each of them is optimised only for a single value of each of the other weights and thresholds in
the PEOHH. This has the disadvantage that it might not find the vector of values of the weights and
thresholds that would yield the best quality of record linkage.

The five thresholds feature at the early stages of the PEOHH. This chapter optimises them by running
the PEOHH for a range of values of the threshold. The optimisation of thresholds that feature early in
the PEOHH is more computationally expensive than that of those weights and thresholds that feature
later in the PEOHH because repeatedly running the last part of the PEOHH, the application of the
weights, is less computationally expensive than repeatedly running more of the PEOHH. The inclusion
of the five thresholds in the global optimisation process would make that process far too

computationally expensive to be tractable.?®

The review of global optimisation in section 2.4 described the so called ‘curse of dimensionality’ which,
alongside the early stages of the PEOHH that the five thresholds feature at, is another reason why
including these five thresholds in the global optimisation process would be so computationally

expensive as to be unfeasible.

The computation times detailed in Section 4.5 are for a standard laptop PC processor. This research
did not try a faster computer because it is @rsted’s policy that their confidential data may not be copied
on to non-@rsted machines such as a Durham University parallel cluster. Further work could optimise
the weights and thresholds using faster computers within Jrsted or another data owner’s permitted

hardware.

This chapter will optimise the PEOHH by maximising the Positive Predictive Value (PPV), the
proportion of classified matches that are correctly identified as such. Before this chapter presents the

69 Section 4.5 details the computation times for the PEOHH.
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optimisation of the five thresholds it will first explain how changes in the weights and thresholds affect
changes in the PPV.

Figure 7-1 considers the effect of changing two of the weights that will be optimised in the global
optimisation process. It shows the PPV against: (a) Agreement Weight for the Start time feature (AW;)
by Disagreement Weight for the Start time feature (DWs;) and (b) Disagreement Weight for the Start
time feature (AW, ) by Agreement Weight for the Start time feature (DW;,) with all the other agreement

weights set to 1 and all the other disagreement weights set to -1.

The figure shows that PPV changes with AW;, and with DWs,. The next figure will present an

explanation of this phenomenon.

There are no missing work order start times and so, in the case of the start time feature, those POLRs

in the GSSLR that do not agree all disagree. This causes symmetry between Figure 7-1(a) and (b).
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Figure 7-1, Positive Predictive Value (PPV) against:
(a) Agreement Weight for the Start time feature (AWs,)
by Disagreement Weight for the Start time feature (DWs,)
(b) Disagreement Weight for the Start time feature (DWs,)
by Agreement Weight for the Start time feature (AWs;)

To explain what causes the change in the PPV of the GSSLR, this chapter will now present in greater
detail the effect of varying a weight. Figure 7-2 shows the effect of varying AWs,; with all other weights
and thresholds constant. Each row in Figure 7-2 represents one WO. As AW, is varied, different
versions of the EHH are created. Where the outage linked to the given WO in the version of the EHH
generated at the specified value of AW, is the same as that in the GSSLR, figure 7.2 shows blue.
Where they are different, Figure 7-2 shows white. Values of AW, with a higher proportion of blue in
the figure yield a higher PPV. As AW, changes, which WOs it is that are matched to their correct

outage changes and so PPV fluctuates.
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Consider a set of WOs, each one linked correctly to its corresponding outage. This will be referred to
as the ‘true EHH’. At a hypothetical weighting that yielded the true EHH, the column would be blue and
the PPV of the GSSLR would be 1.

As shown in Figure 7-2, the start time feature registers either agreement or disagreement. All the
features of the PEOHH register either agreement, disagreement or neither for each WO at a given
value of the relevant thresholds. This three-state approach is what causes the stepped behaviour in

the fluctuations of the PEOHH that were shown in Figure 7-1.

In Figure 7-2, some WOs in the GSSLR register agreement for all values of AWs, while others register

disagreement for all values.

- Agreement

O
= [r— 5 Disagreement
-10 0 10

AWs:

Figure 7-2, Effect of varying the Agreement Weight for the Start Time Feature (AWs;) on the
Agreement or Disagreement of the EHH with GSSLR for each Work Order (WQ) in the GSSLR

Using AW, as an example, we have seen that changing the weights and thresholds changes the PPV.
Each element of the vector of values of weights and thresholds can be conceived of as a dimension

that the PPV can be plotted against.

The PPV of the GSSLR is an uncertain estimate of the PPV of the EHH. The previous chapter found
an appropriate technique for quantifying that uncertainty. If we conceive of the plot of the PPV of the
EHH against all the elements of the vector of values of weights and thresholds as a stepped, multi-
dimensional surface then we should understand that we cannot measure the exact level of that
surface but that we can only estimate it from the PPV of the GSSLR.
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7.1 Optimisation of the Blocking Threshold

Section 4.1 presented the blocking threshold. It was described in that section that the first step of the
PEOHH is to join WOs to outages to create POLR. The PEOHH adds a 40-day margin, known in this
thesis as the blocking threshold, to the outage start and finish times to create an extended duration. It

joins each WO to each of the outages of which the extended duration includes the WOs start date.

Section 4.3.2 presented the method for the validation of the techniques for health history enrichment
used in this thesis. Please recall from that section that the size of the sample “Gold Standard” Set of

Linked Records (GSSLR), 29 WOs, was constrained by the amount of expert time that was available.

Section 4.4.1 introduced the time difference between the WO start date and the outage (Ats;). To
optimise the blocking threshold, this research investigated the distribution of At in the GSSLR and
the results are shown in Figure 7-3. Of the 29 POLRs in the GSSLR only 2 have a Atg;, defined in
chapter 4, of zero. This result shows that the blocking threshold is required. The figure shows that one
POLR in the GSSLR is an outlier in terms of Atg,, at 39.5 days. On the assumption that this extreme
point is genuine, and therefore representative of the real-life situation, it should be within the blocking
threshold and so this should be at least 40 days. It is not possible that the real date when work started
was not during the correctly matched outage. A WO start date could be outside of an outage for two
reasons: that the WO refers to a different outage or that there is an error in the start date record. The
start date is a human generated data point and all the wind turbine experts that this research elicited
the opinions of expressed the opinion that such errors are expected. In the design of the process for
developing the PEOHH, this research assumed that 40 days was a conservatively high starting value
and that results would show that it could be reduced. The result in Figure 7-3, however, shows that the

full 40-day threshold is required and that further work might consider an even larger threshold.

15
)
=10
e}
e
5 5
o
; \A.A_M

/
00 20 40

Atst

Figure 7-3, Count (POLRs) against Time Difference between the WO Start Time and the Outage (Atg;)
for the GSSRL
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7.2 Optimisation of the Time Difference Between the Outage and the Alarm

Section 4.4.4 presented the Threshold for the Time difference between the Outage interval and Alarm
interval (TTOA). It was described in that section that the PEOHH extracts all the alarms from the alarm

log from +/- TTOA of the outage start and finish times.

This research investigated the effect of varying TTOA to maximise the PPV. The results are shown in
Figure 7-4which shows PPV against TTOA. Other weights and thresholds are kept constant. The
Agreement Weight for the Description and the Alarm Code features using Alarms and Outages
(AWpey,r AWacy, AWpe ., AWyc,,) are set to 1 and their Disagreement Weights (DWp,,,, ,

DWir,,,, DWpe,,, DWyr,,) are set to -1 while all other agreement and disagreement weights are set to

0.

The maximum PPV in Figure 7-4 (0.517) occurs at TTOA = 0; at this value, the effect of the features
using alarms is null and so the failure mode features have the least effect, increasing the relative
effect of the start date time difference which results in a higher PPV. The second highest PPV (0.483)
occurs when TTOA is at values between 4 and 21 minutes. The initial value of TTOA was 10 minutes
and this is shown to be within the range that achieves the highest value of PPV (disregarding zero as
this value effectively turns the feature off). This result implies that further iteration is not required, and
that this thesis can recommend a TTOA of 10 minutes, the value initially recommended by a wind

turbine expert. This section will consider the uncertainty of this recommendation.
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Figure 7-4, Positive Predictive Value (PPV) and 95% CI against Time Difference Threshold Between

the Outage Interval and the Alarm Interval (TTOA), (a) Linear scale, (b) Log scale for the x axis
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Figure 7-4 shows the 95% CI for the PPV of the EHH identified using the Wilson interval which was
discussed in section 6.1.3. The small size of the GSSLR, only 29 POLRs, means that, for a PPV of the
GSSLR of 0.483, the 95% CI of the PPV of the EHH is (0.314, 0.656).

Section 6.2 considered techniques for interval estimation for a change in a proportion. It showed that
the Technique Assuming Independence (TAl) yielded very poor coverage and that the Technique
Using Bootstrapping (TUB) yielded acceptable coverage. In Figure 7-4, the width of the Cl is greater
than the difference between the maximum and minimum values of the PPV of the GSSLR. Intuitively,
one might infer from this that there is a significant risk that the optimum value has not been identified.
Such an inference would however be based on the invalid assumption that the measurements of the
PPV of the GSSLR are independent of each other. This section will instead use TUB for constructing a
Cl for the change in the PPV of the EHH.

Table 7-1 shows the effect on the quality of record linkage of varying TTOA. ‘True’is the number of
records from the GSSLR in which the version of the health history linked the WO to the same outage
as that in the GSSLR and ‘False’ is the number in which it linked the WO to a different outage. TUB

uses these results to estimate the uncertainty of the difference that it makes.

TTOA = 10 mins
True False
TTOA = True 12 0
100
mins False 2 15

Table 7-1, Effect on the Quality of Record Linkage of Varying the Time Difference Threshold between
the Outage Interval and the Alarm Interval (TTOA)

Equation 7.1 defines the Increase in the PPV of the EHH that would by yielded by a TTOA of 10
minutes over that yielded by a TTOA of 100 minutes (;55Y% 1 19°). It uses the Probability distribution of
estimates of the PPV of the EHH that would be yielded by a TTOA of 10 minutes

(P(PPV | TTOA = 10)) and the same distribution that would be yielded by a TTOA of 100 minutes

(P(PPV | TTOA = 100))

pev 10 _ P(PPV |TTOA = 10) (7.1)
TT0AZ 100 ™ p(ppY | TTOA = 100)
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Equation 7.2 evaluates TITJEZI 180, a point estimate of 7-5% 119, using the data from table 7.1.

— 12+ 2 (7.2)
PPV [10 _ —1=179
rroal 100 = 75170 Yo

This research used TUB to estimate the uncertainty of 7-5% I 13, which yielded a 95% CI of (0, 56%).
This research predicts that this uncertainty will be drastically reduced by an upcoming innovation in
maintenance record keeping that will be discussed in chapter 9; the automatic linking of new WOs to

outages will result in a larger GSSLR and consequently in more certainty for this estimate.

To better understand this uncertainty, this research investigated the distribution of TUBs list of
estimates of ;75Y% 119, using techniques discussed in section 6.3. The results are shown in Figure 7-5
(a). The most important features of this distribution are the proportion of negative estimates and the
proportion of zero estimates because these indicate respectively that the quality of record linkage has
reduced and that it has not increased, as detailed in Figure 7-5. The probability that a TTOA of 10
minutes would yield a lower PPV of the EHH than a TTOA of 100 minutes is estimated by the
proportion of bootstrap samples for which 254 113 < 0, which this research found to be 12%. This

indicates that there is a significant risk that optimising TTOA using a GSSLR of the size available does

not improve the quality of record linkage.

Figure 7-5 (b) also shows that the proportion of bootstrap samples for which ;76% 113, < 0 is 0. As
explained in section 6.3, bootstrapping is conditional on the original sample, but this indicates that
there is little risk that optimising TTOA using a GSSLR of the size available reduces the quality of
record linkage.
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Figure 7-5, (a) Frequency of =64 I 13, for 20,000 Subsamples, (b) Proportion of Bootstrap Samples

for which £EY 119, < 0 and for which 254 I 13, < 0 against Number of Subsamples
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This research kept TTOA as a single variable for all three of the failure mode features. It could instead
have used a separate variable for each of these features. The decision to use a single variable was a
simplifying assumption taken because the relationship between outages and alarms can be assumed

to be independent of which feature indicative of the failure mode is used.

This research did not investigate the effect of varying TTOA on the feature that uses parts data to
identify the failure mode (described in section 4.4.4.3.3) because this feature takes a long time to run
and so running it multiple times would take far too long. The results from varying TTOA on the other
two features that use the failure mode (described in section 4.4.4.1 and in section 4.4.4.2) are
sufficient to optimise TTOA because all these techniques refer to the same WOs and to the same

outages.

This section presented the effect of varying TTOA and recommended keeping it at 10 minutes.
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7.3 Optimisation of the Description Threshold

This section will present the effect of varying the Description Threshold (Th,,) that was introduced in
section 4.4.4.1. Please recall from that section that the PEOHH records agreement for the description
feature when the Similarity Ratio (SR) is above a Thp, nominally set to 0.75. Section 7.6.3 will present
results that indicate that the effect of this feature and of all of the set of features that use the failure
mode as part of an ensemble of features for record linkage comparison are too small to measure with

a GSSLR of the size available. For that reason, this section will consider this feature used alone.

This research investigated the effect of varying Thp, to maximise the PPV. The results are shown in
Figure 7-6 which shows PPV against Thp,. Other weights and thresholds are kept constant. The
Agreement Weight for the Description feature using Alarms and Outages (AWp,,,,, AWp,,,) are set to
1 and their Disagreement Weights (DWp,,, , DWp,,,) are set to -1 while all other agreement and

disagreement weights are set to 0.

Figure 7-6 shows that a wide range of values of Thp, (0.5 to 1) all yield the same value of PPV of
0.552. This thesis recommends that Thy, continues to be set to 0.75. This section will consider the

uncertainty of this recommendation.
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Figure 7-6, Positive Predictive Value (PPV) and 95% CI against Description Threshold between the
Outage Alarm Description and the WO Description (Thp,)

Figure 7-6 shows the 95% CI for the PPV of the EHH identified using the Wilson interval which was
discussed in section 6.1.3. The small size of the GSSLR, only 29 POLRs, means that, for a PPV of the
GSSLR of 0.552, the 95% CI of the PPV of the EHH is (0.375, 0.716).
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Again, this section will use TUB, presented in section 6.2, for constructing a Cl for the change in the
PPV of the EHH. Table 7-2 shows the effect of varying Thp,. ‘True’is the number of records from the
GSSLR in which the version of the health history linked the WO to the same outage as that in the
GSSLR and ‘False’ is the number in which it linked the WO to a different outage. TUB uses these

results to estimate the uncertainty of the difference that it makes.

Thpe =0.75
True False
True 8 1
Thoe =0 False 8 12

Table 7-2, Effect on the Quality of Record Linkage of Varying the Description Threshold (Thp,)

Equation 7.3 defines the Increase in the PPV of the EHH that would by yielded by a Thp, of 0.75 over
that yielded by a Thp, of zero (£27 13 ;5). It uses the Probability distribution of estimates of the PPV
of the EHH that would be yielded by a Thp, of 0.75 (P(PPV | Thp, = 0.75)) and the same
distribution that would be yielded by a Thy,, of zero (P(PPV | Thp, = 0)).

ppv 075 _ P(PPV|Thy, =075) (7.3)
Thpe © 0 P(PPV | Thp, = 0)
Equation 7.4 evaluates ;- I ”°, a point estimate of PhV 1073, using the data from Table 7-2.
. 8+8 (7.4)
o 107° = gr1 L= 78%

This research used TUB to estimate the uncertainty of 77V I { 5, which yielded a 95% Cl of (13%,

225%). Again, this research predicts that this uncertainty will be drastically reduced by an upcoming

innovation in maintenance record keeping that will be discussed in chapter 9.

To better understand this uncertainty, this research investigated the distribution of TUBs list of

PPV I 0.75
0

estimates of 7, using techniques discussed in section 6.3. The results are shown in Figure 7-7

(a). The most important features of this distribution are the proportion of negative estimates and the
proportion of zero estimates because these indicate respectively that the quality of record linkage has
reduced and that it has not increased, as detailed in Figure 7-7 (b). The probability that a Th,, of 0.75

would yield a lower PPV of the EHH than a Th;,, of zero is estimated by the proportion of bootstrap

170



samples for which 77V 1 37 < 0, which this research found to be 0.6%. This indicates that there is

little risk that optimising Th;, using a GSSLR of the size available does not improve the quality of
record linkage.

Figure 7-7 (b) also shows that the proportion of bootstrap samples for which 77V 1375 < 0 is 0.2%.
This indicates that there is little risk that optimising Thy, using a GSSLR of the size available reduces
the quality of record linkage.
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Figure 7-7, (a) Frequency of 7tV 1 8:7> for 20,000 Subsamples, (b) Proportion of Bootstrap Samples

for which £V 1 87> < 0 and for which §£" 137° < 0 against Number of Subsamples

The conclusion of this section is to recommend keeping Thy,, at 0.75.



7.4 Optimisation of the Parts Training Data Score Threshold

Section 4.4.4.3.1 showed how the training data to be used by the HHE techniques using the parts are
selected. Please recall from the section that:

“The PEOHH selects POLRs for inclusion in the training data using the same criteria
that it uses to select POLRs for the EHH. It then filters the training data to retain those
POLRs that have Spp;z above a Threshold (Thgp).”

This section will present the Process for the Optimisation of Thgp (POTS) and its result. It will show
that a value of 1.7, as is used throughout the other sections of this thesis, is appropriate. This value

was originally identified by inspection of the distribution of Spo; .

The parts frequency technique presented in section 4.4.4.3.3 is trained for each WO separately
against all the other WOs in the dataset. POTS simulates this process using a computationally less

expensive process.

POTS trains its model using a version of the EHH generated using the optimised weights and
thresholds that will be presented in section 7.6.3. These weights will disregard the parts data. If the
optimised PEOHH did use the parts data then it would be necessary to generate an alternative version
of the EHH disregarding the parts data in order to ensure that the inputs to the PEOHH are
independent of its output. This would ensure that POTS was measuring features of the real material

consumption data and that it was not distorted by circular logic.

POTS identifies an Edited version of the EHH (EEHH) by removing those WOs that feature in the
GSSLR from the EHH. POTS is trained against the EEHH. Generating a single set of training data that
can be used for each WO in the GSSLR is less computationally expensive than training for each WO

against all the other WOs in the dataset.

POTS trains the parts frequency technique on health history datasets generated using a full range of

values of Thgp.

Table 7-8 will present the optimised weights and thresholds. The sum of the column of agreement
weights will be 3.127 and the sum of the column of disagreement weights will be -2.643. These values

are the limits of possible values of Score for each POLR (Spg.r)- Varying Thgp from -4 to 4 exceeds

the range of possible values of Spp; g and so it is a full range of values.

This research investigated the effect of varying Thgp to maximise the PPV. The results are shown in

Figure 7-8. It shows that Thgp values from 1.1 to 1.9 yield the maximum PPV of 0.552. This section
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consequently recommends that Thgp should remain at its initial value of 1.7. This section will consider

the uncertainty of this recommendation.
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Figure 7-8, Positive Predictive Value (PPV) and 95% CI
Against Parts Training Data Score Threshold (Thgp)

Figure 7-8 shows the 95% CI for the PPV of the EHH identified using the Wilson interval which was
discussed in section 6.1.3. The small size of the GSSLR, only 29 POLRs, means that, for a PPV of the
GSSLR of 0.552, the 95% ClI of the PPV of the EHH is (0.375, 0.716).

Again, this section will use TUB, TUB, presented in section 6.2, for constructing a Cl for the change in
the PPV of the EHH. Table 7-3 shows the effect of varying Thgp. ‘True’is the number of records from
the GSSLR in which the version of the health history linked the WO to the same outage as that in the
GSSLR and ‘False’ is the number in which it linked the WO to a different outage. TUB uses these

results to estimate the uncertainty of the difference that it makes.

True False
True 14 0
False 2 13

Table 7-3, Effect on the Quality of Record Linkage of Varying the Parts Training Data Score Threshold
(Thsp)
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Equation 7.5 defines the Increase in the PPV of the EHH that would by yielded by a Thgp of 1.7 over

that yielded by a Thyp of zero (r., I 9 7). It uses the Probability distribution of estimates of the PPV of

the EHH that would be yielded by a Thgp of 1.7 (P(PPV | Thgp = 1.7)) and the same distribution that
would be yielded by a Thgp of zero (P(PPV | Thsp = 0))

P(PPV | Thgp = 1.7) (7.5)
P(PPV | Thgp = 0)

PPV I 1.7 _
Thsp' 0 —

PPV PV I 1.7

Equation 7.6 evaluates 7y, [ (1)-7, a point estimate of T’;lsp , using the data from Table 7-3.

14 42 (7.6)

This research used TUB to estimate the uncertainty of /7 I 57, which yielded a 95% CI of (0, 45%).

Again, this research predicts that this uncertainty will be drastically reduced by an upcoming

innovation in maintenance record keeping that will be discussed in chapter 9.

To better understand this uncertainty, this research investigated the distribution of TUBs list of

estimates of 7", I 7 using techniques presented in section 6.3. The results are shown in Figure

7-9(a). The most important features of this distribution are the proportion of negative estimates and the
proportion of zero estimates because these indicate respectively that the quality of record linkage has
reduced and that it has not increased, as detailed in Figure 7-9(b). The probability that a Thgp of 1.7
would yield a lower PPV of the EHH than a Thgp zero is estimated by the proportion of bootstrap

samples for which 7, I 57 < 0, which this research found to be 13%. This indicates that there is a

significant risk that optimising Thgp using a GSSLR of the size available does not improve the quality

of record linkage.
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Figure 7.9 (b) also shows that the proportion of bootstrap samples for which T};{;‘; I 6'7 <0 is0.As

explained in section 6.3, bootstrapping is conditional on the original sample, but this indicates that

there is little risk that optimising TTOA using a GSSLR of the size available reduces the quality of
record linkage.

105 =—— 0.150
104 T T T T | F___

— L, T———

0 M I W ——

— P(TF,’{;‘;I §7<0)

S
Count (estimates)
'_I
<

= b)  0.075
LI - —
t | ik Y i | T P(ThSPIO <0)
100 ——f—yp 0.000
-1 0 1 2 3 Yo 10000 20000
T};?; 137 Subsamples

Figure 7-9, (a) Frequency of T’;f;‘; 1 %)'7 for 20,000 Subsamples, (b) Proportion of Bootstrap Samples

for which T’;f;‘; 1$7 < 0 and for which T};{;‘; 1§7 < 0 against Number of Subsamples

The conclusion of this section is to recommend keeping Thgp at 1.7.
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7.5 Optimisation of the Parts Score Threshold

This section will present the effect of varying the Parts score Threshold (Thp,) presented in section
4.4.4.3.3. It was described in that section that the PEOHH records agreement when PS > Th,, and

that Thp, was set to a nominal value of 0.

Section 7.6.3 will present results that indicate that the effect of this feature and of all of the set of
features that use the failure mode as part of an ensemble of features for record linkage comparison
are too small to measure with a GSSLR of the size available. For that reason, this section will consider

this feature used alone.

This research investigated the effect of varying Thp, to maximise the PPV. The results are shown in
Figure 7-10 which shows PPV against Thp,. Other weights and thresholds are kept constant. The
Agreement Weight for the Parts feature using Alarms and Outages (AWp,,,,, AWpg ;) are setto 1
and their Disagreement Weights (DWp,,, , DWp,,,) are set to -1 while all other agreement and
disagreement weights are set to 0. This has the effect of looking at the parts feature alone. It shows
that a range of values of Thp, (1 to 3 and also -3), all yield the same value of PPV of 0.517. This

thesis recommends that Thp, be set to 2. This section will consider the uncertainty of this

recommendation.
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Figure 7-10, Positive Predictive Value (PPV) and 95% ClI against Parts Score Threshold (Thp,)

Figure 7-10 shows the 95% CI for the PPV of the EHH identified using the Wilson interval which was
discussed in section 6.1.3. The small size of the GSSLR, only 29 POLRs, means that, for a PPV of the
GSSLR of 0.517, the 95% CI of the PPV of the EHH is (0.344, 0.686).
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Again, this section will use TUB, presented in section 6.2, for constructing a Cl for the change in the
PPV of the EHH. Table 7-4 shows the effect of varying Thp,. ‘True’is the number of records from the
GSSLR in which the version of the health history linked the WO to the same outage as that in the
GSSLR and ‘False’ is the number in which it linked the WO to a different outage. TUB uses these

results to estimate the uncertainty of the difference that it makes.

Thpa = '0.5

True False
True 11 0
False 4 14

Table 7-4, Effect on the Quality of Record Linkage of Varying the Parts Score Threshold (Thp,)

Equation 7.7 defines the Increase in the PPV of the EHH that would by yielded by a Thp, of 2 over that
yielded by a Thp, of -0.5 (T};f;‘; I 50'5). It uses the Probability distribution of estimates of the PPV of the

EHH that would be yielded by a Thp, of 2 (P(PPV | Thp, = 2)) and the same distribution that would
be yielded by a Thp, of -0.5 (P(PPV | Thp, = —0.5))

P(PPV | Thp, = 2) (7.7)

PPV 12 1

12,5 = B
Thpa ! =05 P(PPV | Thp, = —0.5)

PPVIZ

Equation 7.8 evaluates 74, [~ ., Tho,

a point estimate of 7, [ 2 .5, using the data from Table 7-4.

— 11+4 (7.8)
TI;lI:)aIEO.SZ 11+O_1=36%

This research used TUB to estimate the uncertainty of 77V I 2, 5, which yielded a 95% Cl of (7% ,

100%). Again, this research predicts that this uncertainty will be drastically reduced by an upcoming

innovation in maintenance record keeping that will be discussed in chapter 9.

To better understand this uncertainty, this research investigated the distribution of TUBs list of
estimates of %f}}: 1 2, 5 using techniques presented in section 6.3. The results are shown in Figure
7-11 (a). The most important features of this distribution are the proportion of negative estimates and
the proportion of zero estimates because these indicate respectively that the quality of record linkage

has reduced and that it has not increased, as detailed in figure 7.11 (b). The probability that a Thp, of
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2 would yield a lower PPV of the EHH than a Thy, of -0.5 is estimated by the proportion of bootstrap
samples for which 777 1 2, 5 < 0, which this research found to be 1.5%. This indicates that there is

little risk that optimising Thp, using a GSSLR of the size available does not improve the quality of
record linkage.

Figure 7-11(b) also shows that the proportion of bootstrap samples for which £V 12,5 < 0 is 0. As

explained in section 6.3, bootstrapping is conditional on the original sample, but this indicates that

there is little risk that optimising Thp, using a GSSLR of the size available reduces the quality of
record linkage.
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Figure 7-11, (a) Frequency of 1.’ I 2 5 for Subsamples = 20,000, (b) Proportion of Bootstrap

Samples for which £7” 125 < 0 and for which 71 1%, 5 < 0 against Number of Subsamples

The conclusion of this section is to recommend setting Thp, at 2.
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7.6 Optimisation of the Weights and of the Remaining Thresholds

This section presents the optimisation of the 28 remaining weights and thresholds used in the PEOHH

that have not already been addressed. These are:

e The Agreement and Disagreement Weight for each of the 12 Features (AWg,, DWk,)
presented in section 4.1.

e The Threshold for each of four time Features (Thg,) presented in section 4.4.1.

This optimisation will search for the maximum value of PPV. If the optimised AW, or DWg,, for a
feature is not zero then this research will have found that the hypothesis that the feature can be used
for record linkage comparison is true. It will use Differential Evolution (DE), which was reviewed in

section 2.4.1.2, for this purpose.

This section will again use techniques from chapter 6 to quantify the uncertainty of this optimisation

and will go on to consider how this uncertainty limits what conclusions can be drawn.

The optimisation process described in this section constrained all AWy, between zero and one and all
DWrp, between zero and negative one. These weights are relative to each other, so this is equivalent
to constraining all the agreement weights between zero and + infinity and the disagreement weights
between zero and - infinity. This means that any positive value of relative agreement weight and any

negative value of relative disagreement weight is within the bounds of the search.
Section 4.1 presented the PEOHH:

The PEOHH calculates a score for each POLR (Spo.r), the sum across all the features

of the Weight for that Feature and for that POLR (Wge,,, ) Using equation 4.2.

4.2
SpoLr = EFeWFePOLR 42)

7.6.1 Initial Optimisation

This section will use Differential Evolution (DE)?° to optimise a set of weights and thresholds in the
PEOHH. It will define a function (fun) that, for each POLR, uses the weights and thresholds to

calculate Spp; g and, for each WO, finds the highest scoring POLR. For any combination of weights

and thresholds, fun identifies an EHH that might be the same or that might be different to the EHH

70 Section 2.4.1.2 reviewed DE.
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identified using another combination of weights and thresholds. Fun uses the GSSLR to yield a value

of the PPV for the given combination of weights and thresholds.

This section will present results obtained by DE for the optimisation of the PEOHH. It will present the
effect on PPV of disregarding individual features and sets of features. The results from this section will
inform the conclusions that this chapter will draw about which of the new and existing methods for
record linkage presented in this chapter are beneficial for the application of wind turbine health history

enrichment.

The maximum number of iterations was not reached in this research as instead the convergence

criteria were reached.

For each weight and each threshold to be optimised together, the optimisation process defined a
range of values. The optimisation process ran the Python tool ‘differential_evolution’ from the library
‘scipy.optimize’ on the function fun. This process yielded an optimised combination of weights and
thresholds.

This research investigated the effect of adjusting the settings of the DE optimiser. DE with lower CR
and Mu and higher Di and PSi has the effect of widening the search radius; increasing the chance of
finding the optimum; but it also has the effect of slowing convergence (Piotrowski, 2017). This
research ran DE with such control parameter settings (CR = 0.1, Mu = 0.5, Di = 1, PSi = 100) but
stopped the solving after it had run without convergence for 5 days. That run found the optimum value

of PPV of 0.828. This research will use standard parameter values for DE, as defined by Table 7-5.

Parameter Abbreviation | Value
Mutation Mu 0.75
Dithering Di 0.5
Population Size PSi 15
Crossover Rate CR 0.7

Table 7-5, Control Parameter Values

10 runs optimising the agreement and disagreement weights for the PEOHH all yielded the same
value of PPV of 0.828. These results repeat the result from using wide search radius control
parameters, indicating that this value is genuinely the global maximum, as opposed to the solver being
stuck at a local maximum, such as an elevated crater in 28-dimensional space. Figure 7-12 shows that
the optimised results represent a wide range of agreement and disagreement weight values. This wide
range indicates uncertainty, caused again by the small size of the GSSLR, about what the optimum

values are. This research predicts that this uncertainty will be drastically reduced by an innovation in
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maintenance record keeping that will be discussed in chapter 9. The following sections will

recommend values for these weights to be used by the PEOHH.
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Figure 7-12, Vectors of Values of Agreement Weight and of the Negative of Disagreement Weight that
all Yield Optimum Results

7.6.2 Positive Predictive Value

Section 7.6.1 optimised the weights and thresholds to the extent achievable with a GSSLR of the size
available. It yielded the maximum value of PPV of 0.828. This value of PPV was calculated using a
small sample of the health history and will therefore be over fitted to the data. To measure a more

accurate value of PPV, this research split the GSSLR into training and testing data sets.

Overfitting is an error that occurs when a theoretical model is too closely fitted to a small set of data
points. Rather than optimising the weights and thresholds by training on the whole GSSLR, training on
a sample of the already small GSSLR increases the amount of overfitting to the data. This research
will then then calculate the PPV of the remainder of the GSSLR that was not used for training.

Overfitting to the training data means that this technique will under-estimate PPV against the test data.

This research investigated the effect of varying the Size of the Test data sample (TeS) between 0.1
and 0.5 of the GSSLR. It used for training all of the data in the GSSLR that will not be used for testing,
so the Size of the Training data sample (7rS) = 1 — TeS, that is that this research varied TrS between
0.9 and 0.5. This research repeated the optimisation of PPV 5 times for each value of TeS using DE.
This technique is an example of bootstrapping, which refers to a test that uses random sampling with

replacement.

Figure 7-13 presents PPV against TeS for (a) training and (b) testing as a violin plot which shows the
distribution and median value for PPV. Figure 7-13 (b) shows that the median PPV for testing does not
vary with TeS. It might be expected that overfitting would cause PPV to tend to increase for training
and reduce for testing with a smaller TrS, that is for larger TeS, but that did not happen, showing that

the amount of overfitting does not change significantly within this range of TeS.



The median value of PPV for training is 0.889, compared to 0.571 for testing. The higher value of PPV
for training is due to overfitting. It follows that the values of PPV for testing will be under fitted to the
data. Each value of PPV calculated here is a point estimate of the PPV of the EHH. 0.571 is therefore
a low point estimate of it. The next chapter will look at whether the health history has been enriched

and will include discussion of the PPV.
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Figure 7-13, Positive Predictive Value (PPV) against Test Size (TeS) for (a) Training and (b) Testing

This research will use the 95" percentile of the distribution of the PPV of the GSSLR to estimate the
95% ClI of the PPV of the EHH. It is (0.667, 1) for training and (0.416, 0.706) for testing and so this
research estimates the 95% ClI of the PPV of the EHH as (0.416, 0.706). This estimation did not
require the techniques for interval estimation of a binomial proportion described in section 6.1 because

it has instead used the distribution of results from repeated trials.
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7.6.3 Negational Positive Predictive Value

This section will now investigate the relative effectiveness of each of the techniques for the enrichment
of the health history that were presented in section 4.3. It will use all of the GSSLR to optimise the
weights and thresholds, investigating the effect of setting some of the agreement and disagreement
weights to zero. If, when the agreement and disagreement weights for a feature are set to zero, the
maximum value of p yielded is not lower than with them varied, then that feature is not contributing
anything and therefore health history enrichment can be done without it without any drop in quality.
The small size of the GSSLR means that the following results are uncertain but they are advice based
on the best evidence available. Further work could increase this work with a larger GSSLR to find
whether the techniques that seem from these results to not add quality do actually add quality to the
PEOHH.

Section 3.2.3 presented the Negational Positive Predictive Value (NPPV):

Where the weight assigned to a dimension of the comparison vector is set to zero, the
corresponding feature is disregarded for record linkage comparison. This thesis will
refer to setting the weight to zero as ‘disregard’. Consider disregarding one of the
features: the effect of not using a feature is a useful measure of the effectiveness of
that feature. This thesis presents the Negational Positive Predictive Value (NPPV); the
Positive Predictive Value (PPV) calculated using all the features except one feature or

set of features that is disregarded.
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Table 7-6 presents optimised values of NPPV. When the PEOHH used all the features, that is that
none of them were disregarded, DE yielded the maximum value of 0.828. DE also yielded this
maximum value when the start time feature, defined in section 4.4.1, the type feature, defined in
section 4.4.2, the visits feature, defined in section 4.4.3 or all but one of the failure mode features
defined in section 4.4.4 was disregarded. When the PEOHH did not use each of the other features,
DE yielded lower values of NPPV. This result indicates that those features where DE yielded a lower
value of py when they were disregarded, that is the finish, notification and part posting time features
defined in section 4.4.1, may tend to be the most important features for wind turbine maintenance

record linkage.

Set of Features Feature NPPV
All features present 0.828
w/o Start 0.828
w/o Finish 0.793
Time
w/o Notification | 0.724
w/o Part Posting | 0.759

w/o Type 0.828

w/o Visits 0.828

w/o Description | 0.828

Outage w/o Alarm Code | 0.828

Failure w/o Parts 0.793

Mode

w/o Description | 0.828

Alarms w/o Alarm Code | 0.828

w/o Parts 0.828

Table 7-6, Optimised Values of NPPV, Calculated Disregarding Selected Features

The next step, after disregarding individual features, is to disregard selected sets of features. It would
have been of interest to find the optimum PPV for each permutation of features. For 12 features, this

would be 212 = 4096 permutations which would unfortunately have taken too long.

Table 7.7 presents optimised values of NPPV calculated disregarding selected sets of features. When
the PEOHH used all the features, that is that none of them was disregarded, DE yielded the maximum
value of py of 0.828. DE also yielded this maximum value when the type feature defined in section

4.4.2 and the visits feature defined in section 4.4.3 were disregarded, when all the failure mode
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features defined in section 4.4.4 were disregarded or when all the failure mode features and the start
time feature defined in section 4.4.1 were disregarded. When the PEOHH disregarded each of the

other sets of features listed, DE yielded lower values of NPPV.

The failure mode features are relatively computationally expensive and so it might be inferred that, if
there is no evidence of them improving the quality of record linkage, unnecessary computation should

be avoided by not using them. The next section will consider the limits of that conclusion.

This result indicates that wind turbine maintenance record linkage should use an ensemble of features
made up of the finish, notification and part posting time features, defined in section 4.3.1, the type

feature, defined in section 4.4.2 and the visits feature, defined in section 4.4.3, and that it should avoid
unnecessary computation by not using the failure mode features, defined in section 4.4.4 and the start

time feature, defined in section 4.4.1.

Sets of Features NPPV
All features present 0.828
w/o Type and Visits 0.828
w/o Failure Mode 0.828
w/o Failure Mode and Start 0.828
w/o Failure Mode and Finish 0.793
w/o Failure Mode and Type 0.793
w/o Failure Mode, Type and Visit 0.793
w/o Failure Mode and Part Posting 0.759
w/o Failure Mode and Visits 0.759
w/o Failure Mode, Finish and Part Posting 0.759
w/o Failure Mode, Type and Finish 0.759
w/o Failure Mode and Notification 0.724
w/o Failure Mode, Type and Part Posting 0.724
w/o Time 0.517

Table 7-7, Optimised Values of NPPV, Calculated Disregarding Selected Sets of Features
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There are two sources of uncertainty in this result.

Firstly, the PPV of the GSSLR is a point estimate of the PPV of the EHH. A confidence interval (Cl) is
a region with a specified, nominal probability that it contains a feature of interest. The small size of the
GSSLR, only 29 POLRs, means that, for a PPV of the GSSLR of 0.828, the 95% CI of the PPV of the
EHH, identified using the Wilson interval which was discussed in chapter 6, is (0.655, 0.924). The
previous section recognised that this is an over estimate of PPV caused by over fitting and that a
better estimate of the PPV of the EHH is 0.571 with a 95% CI of (0.416, 0.706). The significance of the
Cl of the over fitted PPV is that it quantifies the uncertainty of the optimisation presented in this

section.

Secondly, DE does not always find the optimum vector. As the number of dimensions increases, the
optimisation problem becomes more difficult as the space required to compute solutions increases
exponentially with the number of dimensions. This is referred to in the literature as the ‘curse of
dimensionality’ (Bellman, 1956, Rust 1997). The more features the PEOHH disregards, the easier the
optimisation problem becomes. The following section will consider the uncertainty of the optimisation
presented here and will conclude from this and from further investigation that all of the features should

be used for record linkage.

Table 7.8 presents the optimised weights and thresholds. Table 7.8 does not record optimised values
for the time Threshold for the start time Feature (T hg;), the description similarity threshold (Thp,) or
the parts score threshold (Thp,) because, with the agreement and disagreement weights for these

features set to zero, these thresholds are meaningless.

Where the PEOHH uses the weights and thresholds set out in Table 7.8 the sums of the columns
equal the limits of possible values of Score for each POLR (Spp1g)- The sum of the column of

agreement weights is 3.127. The sum of the column of disagreement weights is -2.643.
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The PEOHH yields its best performance with the weights and thresholds set to the values in Table
7-8, however, the following section will present some alternative weights and thresholds at which, to
the measurement accuracy yielded with the size of the GSSLR that is available, the PEOHH yields an

equally good performance but that this thesis advises should be used instead.

Agree Disagree | Threshold

Set of Features Feature
(AW) (DW) (days)
Start 0 0
Finish 0.995 -0.602 2.534
Time

Notification 0.588 -0.088 1.312

Part Posting | 0.668 -0.846 2.260

Type 0.095 -0.280
Visit 0.781 -0.827
Description | 0 0
Outage | Alarm Code | O 0
Failure Parts 0 0
Mode Description 0 0
Alarms Alarm Code | O 0
Parts 0 0
Sum 3.127 -2.643

Table 7-8, Optimised Weights and Thresholds

7.6.4 Using all the Features

The previous section tested techniques using an ensemble of features and found that if any of the
failure mode based techniques has a useful effect then it is too subtle to be measured with a GSSLR
of the size available. This section will use a different validation approach to investigate whether it
might be advantageous to use all of the features, rather than disregarding the computationally

expensive failure mode based features.

This section investigates the effect of using all the features, dividing them into two sets; the minor
features; those that are indicative of the failure mode and the WO start time feature, and the major

features; the remainder of the features. It gives the major features their optimum values from the
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previous section. It gives all the Minor Features the agreement Weight Weyr and a disagreement

weight of negative Weyr.

Using all of the features is more computationally expensive than using only the major features,
however, because section 1.2 showed that an EHH is valuable to a wind farm developer, if it does
yield an even slightly better quality of record linkage then the more computationally expensive

approach might be justified.

This research investigated the effect of varying Wey,r between zero and 1. A Weyr of zero yields the
agreement and disagreement weights detailed in Figure 7-14 in which a selection of features have

their weights set to zero and so are effectively not used. Where Wey,r is not zero, all the features are
used by the PEOHH with the weights that in that figure are set to zero replaced by Weyr. The results

are shown in Figure 7-14.

The maximum PPV in figure Figure 7-14 (0.828) occurs throughout the range Wey,r = zero to 0.33.
With a GSSLR of the size available, the process for the validation of the EHH cannot distinguish
between these values of Wey, . That means that all the features can be used within this range with no
measurable drop in record linkage quality. This section will consider the uncertainty of this
recommendation and will report the results of a small additional test of what happens to the EHH when
the PEOHH uses a Wey,r of 0.1. It will find that using a Weyr of 0.1 would most likely improve the

quality of record linkage, which is consistent with the figure.

1.0

0.9 ™= —
} 0.8 L I W
Q‘ 0,
Q. 0.7 —= 95%Cl

0-6 l [ | . .

0'%.0 0.5 1.0

Wemr

Figure 7-14, Positive Predictive Value (PPV) and 95% CI against Minor Feature Weight (W eyr)
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Figure 7-14 shows the 95% CI for the PPV of the EHH identified using the Wilson interval which was
discussed in section 6.1.3. The small size of the GSSLR, only 29 POLRs, means that, for a PPV of the
GSSLR of 0.828, the 95% CI of the PPV of the EHH is (0.655, 0.924).

Again, this section will use TUB, presented in section 6.2, for constructing a ClI for the change in the
PPV of the EHH. Table 7.9 shows the effect of varying Wey,r. ‘True’ is the number of records from the
GSSLR in which the version of the health history linked the WO to the same outage as that in the
GSSLR and ‘False’ is the number in which it linked the WO to a different outage. TUB uses these

results to estimate the uncertainty of the difference that it makes.

Weyr =0
True False
Wepyr True 23 0
=1 False 1 5

Table 7-9, Effect on the Quality of Record Linkage of Varying the Minor Feature Weight (W e, r)

Equation 7.9 defines the Increase in the PPV of the EHH that would by yielded by a We,, of zero
over that yielded by a Weyr of 1 (,5FV 19). It uses the Probability distribution of estimates of the PPV

WeMp

of the EHH that would be yielded by a Wey,r of zero (P(PPV | Weyr = 0)) and the same distribution
that would be yielded by a Weyr of 1 (P(PPV | Weyr = 1)).

ppv o _ PCPPV | Weyp =0) (7.9)

Wemr "1™ p(ppy |Wepyp =1)

I

PPV

Equation 7.10 evaluates /... I 3, a point estimate of wenn I 9

M

, using the data from Table 7-9.

23+ 1 (7.10)

This research used TUB to estimate the uncertainty of 57" I 9, which yielded a 95% Cl of (0, 16%).

Again, this research predicts that this uncertainty will be drastically reduced by an upcoming

innovation in maintenance record keeping that will be discussed in chapter 9.
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To better understand this uncertainty, this research investigated the distribution of TUBs list of

PVI

estimates of 1,57

2 using techniques presented in section 6.3. The results are shown in Figure
7-15(a). The most important features of this distribution are the proportion of negative estimates and
the proportion of zero estimates because these indicate respectively that the quality of record linkage
has reduced and that it has not increased, as detailed in Figure 7-15(b). The probability that a Wey
of zero would yield a lower PPV of the EHH than a Wey of 1 is estimated by the proportion of

bootstrap samples for which 52 I < 0, which this research found to be 36%. This indicates that

there is a significant likelihood that reducing Weyr, from 1 to zero would not increase the quality of

record linkage. There is a 63% chance that such a reduction would increase the quality of record
linkage.

Figure 7-15(b) also shows that the proportion of bootstrap samples for which /527 19 < 0 is 0. As

explained in section 6.3, bootstrapping is conditional on the original sample, but this indicates that

there is little likelihood that reducing W ey, from 1 to zero would increase the quality of record linkage.

0.5
%]
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< 03 — (W19 <0)
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= 0.2
S PPV 1 0
§ 0.1 -= P(ubPV19 <0)
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Figure 7-15, (a) Frequency of ,/5F"

I ? for 20,000 Subsamples, (b) Proportion of Bootstrap Samples

for which yet¥ 19 < 0 and for which ygr" 19 < 0 against Number of Subsamples

This section presented the effect of varying We,,r and identified that this effect is too subtle to

measure accurately with a GSSLR of the size available.

This section will test what happens to the EHH when the PEOHH uses a Wey of 0.1. It will compare
that version of the EHH (EHH 1) to the version of the EHH that is yielded when the baseline Wey,

value from the previous section of zero is used (EHH 0). When compared to EHH 0, out of 9820 WOs,
EHH 1 has 74 different POLRs. This section will refer to this set of 74 WOs that link to Different
outages in EHH 1 to those that they link to in EHH zero as DiWO. Using the whole EHH rather than
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just the GSSLR gives much more detail about such relatively subtle differences in results because it is

the whole population of the health history data rather than being a sample from it.

If there is any benefit in using all the features then it is most likely to derive from those POLR that
yielded the highest quality of record linkage, where TPs are more common. This section therefore
selects for investigation the best WO from DiWO. It selects as a sample the WO from DiWO that yields
the highest Spp;r When Weyr = 0.1. This sampling method is systematic, not random, and of course
the sample is not representative of the population. In EHH 1 the example WO is linked to an outage
with the alarm code description of “Yaw hydraulic oil level low’ while in EHH 2 it is ‘Manual idle stop -
yawing‘. The WO description is identical to the outage alarm code description in EHH 1; ‘Yaw
hydraulic oil level low’. This authors experience of the data and of participation in the validation
meetings is that, in this case, EHH 1 has obviously yielded a higher quality record linkage result than
EHH 0.

In this one systematically selected case, EHH 1 has outperformed EHH 0, that is that We,,r = 0.7 has
outperformed Wey,r = 0. This thesis therefore recommends that the PEOHH most likely yields its best

performance with the weights and thresholds set to the values in Table 7.10.

Agree Disagree | Threshold
Set of Features Feature
(AW) (Dw) (days)
Start 0.100 0.100 2.000
Finish 0.995 -0.602 2.534
Time
Notification 0.588 -0.088 1.312
Part Posting | 0.668 -0.846 2.260
Type 0.095 -0.280
Visit 0.781 -0.827
Description 0.100 -0.100
Outage | Alarm Code 0.100 -0.100
Failure Parts 0.100 -0.100
Mode Description | 0.100 -0.100
Alarms Alarm Code 0.100 -0.100
Parts 0.100 -0.100

Table 7-10, Recommended Weights and Thresholds



7.6.5 Simplifying the Parts Frequency Techniques

The parts frequency techniques presented in this thesis are computationally expensive. For a single
farm, it took 1 day to calculate the Parts Score for Outages (PSo) for each POLR and 2 weeks to
calculate the Parts Score for Alarms (PSx) for each POLR. PSy takes longer to calculate than PSo

because there can be multiple alarms linked to an outage.

This technique is computationally expensive because it uses as training data all the records except for
the one being tested; each time a record is tested, the techniques generate a new set of training data

from all the other records and this requires additional computation.

A less computationally expensive alternative would be to split the data in two; set A and set B. Set A
could be tested on a model trained using set B and set B could be tested on a model trained using set
A. That simpler and quicker technique was developed as part of this research. The results are not
presented because the technique used by the PEOHH is more comprehensive and, despite it being

trained on more data, its effect could not be measured with a GSSLR of the size available.
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7.7 Conclusion to the Optimisation of the Weights and Thresholds

This chapter has presented the results from the validation of the PEOHH. It has presented the effect
on the quality of record linkage of varying the weights and thresholds that the PEOHH uses. It has
presented the optimisation of the agreement and disagreement weights (defined in section 4.1) for
each feature (defined in section 4.4).

Chapter 4 presented the PEOHH. It presented 12 novel record linkage techniques that can be used as
part of the PEOHH. This chapter presented the result that an ensemble of five of these techniques
yielded an optimal Enriched Health History (EHH). The identification of which outage to match to each
WO was achieved to the same quality whether using the full ensemble of twelve techniques or using
all of them except for the six techniques indicative of the failure mode. The six techniques using the
failure mode could be disregarded with the PEOHH still yielding an optimum quality of record linkage.
This result indicates that if any of the failure mode-based features has a useful effect then it is too
subtle to be measured with a GSSLR of the size available. This result is counter-intuitive because the
manual methods that are frequently and consistently used by practitioners for linking WOs to outages
do make use of the WO description field, one of the features indicative of the failure mode.
Practitioners do not tend to use the WO finish date, the notification date or the part posting date for
manual record linkage and this result indicates that these features can substitute for the features
indicative of the failure mode.

The size of the GSSLR, only 29 POLRs, was constrained by the amount of expert time that was
available. This chapter quantified the consequent uncertainty of its estimate of the PPV of the EHH. It
reported considerable uncertainty as to the optimum values of the weights and thresholds. This
research predicts that this uncertainty will be drastically reduced by an innovation in maintenance
record keeping that will be discussed in chapter 9; the automatic linking of new WOs to outages will
result in a larger GSSLR and consequently more certainty in this estimate. Given that uncertainty, this
research advises using all the features rather than disregarding those features that use the failure

mode.

Operators should initially use the weights and thresholds for the EHH detailed in Table 7-10 but should
re-assess this when a larger GSSLR becomes available.

Chapter 8 will assess the EHH’s usefulness.
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8 Results: Has the Health History been Enriched?

To investigate whether the Process for the Enrichment of wind turbine Health History (PEOHH)
developed in this research does what it is for, that is to enrich health history, this chapter will address
RQ3:

RQ3 How can the richness of historical data on wind turbine health be measured?

This chapter will present four measures of the richness of historical data on wind turbine health. They
will be defined later in this section but will be referred to as the number of WO records, the number of
MLI records, the number of MLIs per alarm code and the prevalence of POLRs in the EHH where the

health history would recommend all the required parts.

Section 8.1.2 will define those WOs already labelled with an alarm code as the unenriched health
history. This chapter will measure the richness of both the unenriched and the enriched health history
and compare them to quantify how much enrichment has been achieved. It will then measure the
effect of enrichment in a more practical way by assessing the EHHs usefulness for the application of
troubleshooting, described in section 1.2.4. If the EHH has become more useful for troubleshooting
then it can be claimed that the health history has been enriched. This research selected
troubleshooting as the application to consider because health history enrichment will have a very
direct impact on advising which parts might be required to repair each fault. This research expects that
a health history that has, by enrichment, become more useful for the application of troubleshooting will
also be more useful for the applications of maintenance scheduling, described in section 1.2.2,
Condition Based Maintenance (CBM), described in section 1.2.3 and for the measurement of
maintenance effectiveness, described in section 1.2.5. This expectation is based on extensive
discussions with wind turbine experts conducted as part of this research but could be tested by further

work, applying the EHH in practice.
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8.1 What is Enrichment?

By enrichment, this thesis means enhancing the utility of the EHH for maintenance, to maximise
productivity. The following sections will consider how operators might quantify the impact of the
application of the EHH by defining some richness metrics; increases in these metrics imply

enrichment.

Operators try to quantify the impact of any innovations to their maintenance practice and they use
such measures to assess the value added as a return on their investment in innovation. The
measurement of productivity, defined in section 1.2.1, before and after the implementation of an
innovation is not a useful measure because there are too many stochastic variables to account for,
such as wear out failures, human error and changing weather. The same would be true of measuring
the cost of energy, capacity factor, time-based availability or OPEX, which are all also defined in
section 1.2.1, or any other overall metric. All the applications of the EHH that this research has
identified are designed to help maximise productivity, but its impact on each application would be

measured by a different technique.

The following section will propose richness metrics that would be available after the implementation of
the PEOHH. Section 8.1.2 will review the data that are available to this thesis for the identification of

richness metrics.

8.1.1 Further Work on Richness Measurement

Section 1.2 identified 4 potential applications for the EHH and these could be used to identify richness

metrics:

e Section 1.2.2 reviewed maintenance scheduling. Operators could assess the value added by
implementing the application of the EHH to maintenance scheduling. They could record their
inputs to their decision support tools prior to and after enrichment and estimate the
consequent change in productivity.

e Section 1.2.3 reviewed CBM. Operators could assess the value added by implementing the
application of the EHH to using the notifications that prognostic models generate for each farm
on which they are implemented. These notifications are used to initiate Work Orders (WO) and
it is this remedial work that creates value by avoiding faults that can cause power outages.
The value of a natification is the product of the number of notifications that it will create and
the average productivity of those notifications. After a model has been implemented the
estimated productivity is compared to the productivity that it did create by looking at how many
of the notifications were used to create WOs.

e Section 1.2.4 reviewed troubleshooting. Operators could assess the value added by

implementing the application of the EHH to troubleshooting by identifying those maintenance
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operations where the required part was not brought. They could count each time that the
troubleshooting guide consulted did not list the correct part. It would be possible to use
information on lost production, linked to WOs by the PEOHH, to calculate the value added by
this work.

e Section 1.2.5 reviewed the measurement of maintenance effectiveness. Operators could
assess the value added by implementing the application of the EHH to the measurement of
maintenance effectiveness. An EHH of the machinery under study could be used by engineers
and data scientists to develop more accurate measures of maintenance effectiveness and a
better understanding of the confidence of these measures. They could then estimate the value

added by these innovations.

The applications of the EHH described above have not been implemented yet but this research
advises that such implementation is the most immediate further work that it has enabled. This chapter

will assess the richness of the health history before and after enrichment.

8.1.2 Richness Data Review

This section will review the data that are available to this thesis for the identification of richness

metrics.
Section 1.2.4 reviewed troubleshooting on offshore wind turbines:

“Data scientists analyse failure histories and derive troubleshooting guides from them.
These guides are key to the technicians’ diagnosis of faults, alongside their expert
knowledge. Technicians refer to a trouble shooting guide for advice on how to diagnose
the failure mode and the repair activity that is most likely to be effective... Each

troubleshooting guide applies to a single alarm code, rating and manufacturer.”
Section 2.1.3.6 presented the alarm code data in the database WOs:

“Some WOs are labelled with an alarm code. This label is used to identify the failure

mode.”
Section 2.1.2 presented Qrsted’s database of outages:
“@rsted label each outage with an alarm code indicative of the failure mode.”

When Qrsted produce their troubleshooting guides they use those WOs that are already labelled with
an alarm code to identify which parts might be required to repair each failure mode. This chapter will
use those WOs already labelled with an alarm code as the unenriched health history and will use them

to measure the richness of the unenriched health history. By joining each WO to an outage, the
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PEOHH links each WO with an alarm code. This chapter will use all the WOs in the farm’s history,
linked to outages by the PEOHH, to measure the richness of the EHH. This will inform a comparison

of the enriched health history with the unenriched health history.
Section 2.2 presented existing record linkage techniques:

“Probabilistic record linkage techniques join two databases together to create a new

database in which each row represents one Pair Of Linked Records (POLR).”
Section 4.1 presented the PEOHH:

“The PEOHH calculates a score for each POLR (Spgr), the sum across all the features
of the Weight for that Feature and for that POLR (Wg,,,,, .) using equation 4.2.”

4.2
SpoLr = ZFQWF‘?POLR 42)

Section 4.3 presented the method for the validation of the PEOHH:

“To identify the GSSLR, this research randomly selected a set of corrective WOs from
the database of WOs. Random selection was used with the intention of getting a

sample representative of the population.”

This research filtered the EHH and the GSSLR to only include POLRs with an Spo; r above a Score
Threshold (T hg) or that are already labelled with an alarm code. A Thg greater than the maximum
possible value of Spy;r excludes all the linked records from the filtered EHH, leaving only those WOs
already labelled with an alarm code, and yields the unenriched health history. A Thg less than the
minimum possible value of Spo;r excludes none of the linked records from the filtered EHH and yields
the full EHH. Varying Thg will enable this chapter to compare the unenriched health history with the
enriched health history and with the partially enriched health history.

Table 7-8 presented the optimised weights and thresholds that will be used in this chapter. It showed
that the sum of the column of agreement weights was 3.127 and that the sum of the column of
disagreement weights was -2.643. These values are the limits of possible values of Score for each
POLR (Sporr)- Figure 8-1 presents the distribution of Spo;r in the EHH and in the GSSLR. It shows

that the values of Spp; g are within this range. A Thg of 4 yields the unenriched health history and a

Thg of -4 yields the EHH.

The PEOHH calculates these values of Spp; g Using values of the weights and thresholds optimised

using the GSSLR. Please recall that overfitting is an error that occurs when a theoretical model is too
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closely fitted to a small set of data points. Overfitting would be expected to cause higher values of
SpoLr in the GSSLR than in the EHH. Figure 8-1 shows that the distributions are broadly similar, each
having a mode at 0.5, but that the GSSLR is more weighted towards higher values indicating that
there is some overfitting. Further work with a larger GSSLR would reduce the amount of over fitting
but, as the distributions are broadly similar, valid conclusions can be based on the data used in this

thesis.

10 ———xr—
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Count (linked records)
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Figure 8-1, Frequency of the Score for each POLR (Spo.r) in the EHH and in the GSSLR

A higher Thg means that the criterion for recommending parts is more stringent. A lower Thg means
that the criterion for recommending parts is less stringent. It would recommend parts that might be
needed but this would be less likely. A Thg between these extremes yields a partially enriched health
history. This technique models the effect of filtering the EHH to only include higher scoring POLRs to
increase the quality of the EHH. If the number of POLRs in the EHH is its quantity and the minimum
Sporr in the EHH is its quality then, with a high Thg, the quality of the EHH is higher but its quantity is
lower. This section will present the results of filtering the EHH to only include higher scoring POLRs to

increase the quality of the EHH.

The optimum value of Thg depends on the application of the EHH, where some applications benefit
from a higher quality EHH and other applications benefit from a larger quantity of EHH data. For
example, it is important to operators that maintenance technicians have confidence in the analytic
tools that are made available to them. An analytic tool that recommended that technicians take parts
that they would be unlikely to need might not win the confidence of technicians. In that case, a higher
value of Thg would help to win the confidence of the technicians. On the other hand, if the tool were
well understood by the technicians then they might choose to set a lower value of Thg so as to bring

parts that, while unlikely, might turn out to be required for repairing their OWTs. Section 1.2.1 defines
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the productivity of OWT maintenance. Variations in technicians’ confidence in the troubleshooting
guides would have the consequence that the value of Thg that can be expected to yield the most

productive troubleshooting varies from site to site.

This section has defined enrichment as enhancing the utility of the EHH for maintenance, so as to
maximise productivity. It has introduced a trade-off between quality and quantity any it has explained
how this trade-off has different effects on productivity at different sites. Section 8.2 will measure the
quality of record linkage and sections 8.3 to 8.5 will present four measures of the richness of the EHH.
These measures will illustrate a trade-off between quality and quantity. This chapter will demonstrate

that the wind turbine health history has been substantially enriched.
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8.2 Quality of Record Linkage

The quality of record linkage is the likelihood that each WO is linked to its corresponding outage.

Section 2.2 presented a record linkage quality metric:

Positive Predictive Value (PPV), defined by equation 2.2, measures the proportion of

classified matches that are correctly identified as such.

TP (2.2)

PPV = Tp 3 Fp

This research uses the Process for the Validation of the EHH (PVEHH)"" for assessing the quality of
record linkage. The PVEHH identifies the PPV of the EHH and of the unenriched health history by the
comparison of these linked records with the GSSLR. Any errors in the GSSLR would therefore lead to
errors in the estimation of the PPV of the linked records. This research considers the risk of systematic
errors to be insignificant because the GSSLR was identified by one wind turbine expert, was checked

by another wind turbine expert and was then re-checked as part of this research.

This research investigated the effect on record linkage quality of varying the Score Threshold (T hg).
The results are shown in Figure 8-2(a) which shows the PPV of the GSSLR (PPV) and the 95%

confidence interval (Cl) of the PPV of the EHH against Score Threshold (T hg). A higher value of Thg
yields a higher value of PPV; thatis a higher quality of health history. Increasing T hg increases PPV

from 0.828 to 1. A the PPV of 1 means that all the POLRs in the GSSLR are true matches, indicating
a high prevalence of true matches in the EHH, that is a high quality EHH.

Figure 8-2 shows the 95% confidence interval (Cl) of the PPV of the EHH, calculated using the Wilson
interval which was presented in section 6.1. A higher value of Thg yields a greater Cl, showing

reduced confidence caused by the smaller number of samples remaining in the filtered GSSLR.

In Figure 8-2, values of Thg above 3 yield no results as the number of samples remaining in the
filtered GSSLR is reduced to zero. Figure 8-2(a) presents PPV calculated using the same data, the
GSSLR, for training and for testing. These results are over fitted to the data, yielding an over-estimate
of the PPV of the EHH. Section 7.6.2 presented the result, based on training and testing on different
samples from the GSSLR, that 0.571 is a more realistic estimate of PPV. Figure 8-2(a) uses the
optimised values of the PEOHH’s weights and thresholds which yield the over fitted estimate of PPV.
Figure 8-2 (b) calculates values of PPV using the number of true matches adjusted by an OverFitting

71 Section 3.1 presented the PVEHH.
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Factor (OFF); OFF = 0.571/0.828 = 0.690. Figure 8-2(b) presents a more representative estimate of
PPV.

Figure 8-2 shows the effect of varying Thg on the quality of the EHH. A higher value of Thg yields a
higher point estimate of PPV but a lower estimate of the lower bound of the 95% CI of PPV, that is a
higher quality EHH but a lower confidence in that quality.
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Figure 8-2, Positive Predictive Value (PPV) and 95% CI against Score Threshold (Thg)
(a) Raw and (b) Adjusted by the OverFitting Factor (OFF)



8.3 Number of WO and of Material Line Item Records

This section will use the database of material consumption, described in section 2.1.4. It was

described in that section that:

“The material consumption database lists what parts were used in the maintenance of
the OWTs. Each Material consumption Line Item (MLI) refers to a single part number
and is assigned to an order number. Some WOs have no material consumption line
items assigned to them while others have many. Materials include replacement parts as

well as consumables such as oil, grease or paint.”

This research investigated the effect of varying Thg through a full range of values from -4 (enriched) to

4 (unenriched). The results are shown in Figure 8-3.

Figure 8.3 (a) shows the count of POLRs in the EHH against Score Threshold (T hg). It shows that
there are 606 POLRs in the unenriched health history compared to 8246 in the EHH. Each POLR
counted here represents one WO joined to an outage, that means, for the application for example of
troubleshooting, that any material consumption associated with the WO is made available for the

improvement of troubleshooting guides.

Figure 8-3 (b) shows the count of MLlIs in the EHH against Thg. It shows that there are 2642 MLlIs in
the unenriched health history compared to 13377 in the EHH. Each MLI counted here means, for the
application for example of troubleshooting, that there is one more instance of a part number being

associated with a specific failure mode. Figure 8.3 indicates that the health history has been enriched.

Figure 8-3(a) and (b) appear similar to each other because, as more POLRs are included in the

filtered EHH, these are associated with more MLlIs.
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Figure 8-3, (a) Count of POLRs, (b) Count of Material Line ltems (MLIs),
in the EHH against Score Threshold (T hg)

202



8.4 Number of Material Line Items per Alarm Code

Many maintenance activities require a specific set of replacement parts. Offshore wind farm operators
decide which parts to take to each job, for example how to stock a Crew Transfer Vessel (CTV) for a
day’s maintenance work. Section 1.2 identified the typical capacity of a CTV as 2 to 3 t and this places
an upper limit on the mass of spare parts that can be selected. They weigh such considerations

against the risk of an extended interval of downtime caused by a required part not being available.

This section presents, as a measure of richness, the use of the number of spare parts associated with
each alarm code. If more spare parts are associated with an alarm code then, when that alarm code is
associated with a fault that requires a visit to a wind turbine to repair it, the repair technicians can bring
that larger set of spare parts to the wind turbine to affect a repair. If that larger list of spare parts
includes some parts that could need replacing to repair the fault then the likelihood that the
technicians have brought the parts necessary to repair the wind turbine is improved. Health history

enrichment can help to avoid costly power outages by better informing the decision of what to load.

This section uses the median number of parts per alarm code as a measure of the richness of the
EHH. It uses the median rather than the mean so as to avoid placing undue weight on outliers. It also
identifies the effect of health history enrichment on outlying alarm codes using percentiles of the

number of parts per alarm code.
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This research investigated the effect of varying Thg through a full range of values from -4 (enriched) to
4 (unenriched). The results are shown in Figure 8-4 and Figure 8-5. Figure 8-4 shows percentiles of
the number of MLIs in each Alarm Code in the EHH against Thg while Figure 8-5 shows the
distribution of the number of MLIs for each alarm code in the EHH by Thg. This is another way of

looking at the results presented in Figure 8-4 and the findings from the two figures are consistent.

Both figures show that there are more MLIs at lower values of Thg. Each MLI counted here means, for
the application for example of troubleshooting, that there is one more instance of a part number being
associated with a specific failure mode and therefore that the health history has been enriched for that
failure mode. Figure 8-5shows that the distribution of the number of MLIs for each alarm code is
similar at different values of Thg which shows that the PEOHH enriches both those failure modes that

require a wide range of parts to repair them and those that require fewer.
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Figure 8-4, Percentiles of the number of Material Line Items (MLI) in each Alarm Code in the EHH
against Score Threshold (T hg)
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Figure 8-5, Frequency of the number of Material Line ltems (MLI) for each Alarm Code in the EHH
by Score Threshold (Thg)

204



8.5 Application to Troubleshooting

This chapter has explained that, to effect a repair, the correct parts are required. This section will use
the application of health history to OWT troubleshooting to assess whether the health history has been

enriched.

Consider the practice of troubleshooting prior to the identification of the EHH. When an OWT fails, its
maintenance team use the alarm log to make a preliminary diagnosis of the failure mode. At this point,
the alarm log may indicate more than one possible failure mode. The maintenance team consult their
troubleshooting guide for each of these failure modes. Each troubleshooting guide includes a list of
parts that it recommends be brought to the OWT in case one of them might be required to effect the
repair. If the maintenance team visit an OWT but have not brought a part required to make the repair
then they need to come back with the outstanding part. The OWT may be out of availability until the

required part is in place.

Now, consider the practice of troubleshooting after the identification of the EHH. Troubleshooting
guides will be used in the same way but, alongside other potential improvements not considered in
this section, they may now contain a more appropriate list of parts. This would reduce the risk that a
required part would not be available at the OWT and would consequently reduce the risk that the

outage would be extended unnecessarily.

This section will make the simplifying assumption that only one troubleshooting guide would be
consulted for each fault. This assumption is not realistic, but it does simplify the analysis. Applying it
consistently to both the unenriched health history and to the enriched health history is a valid
comparison and thus a valid approach to the assessment of whether the health history has been

enriched.

This section will analyse each WO in the GSSLR to identify whether all the parts that were used would
have been brought according to a simulated troubleshooting guide based on the health history. It will
use the GSSLR which should be representative of the corrective WOs from the selected wind farm
since it was randomly selected from them. The degree to which the GSSLR is representative is

subject to its constrained size which was discussed in section 4.3.2.

Consider a POLR in which the simulated troubleshooting guide for the outage alarm code lists all the
parts associated with the WO. In this case, this research assumes that the health history would
recommend all the required materials. Now consider a POLR in which the simulated troubleshooting
guide for the outage alarm code is missing one or more of the parts associated with the WO. In this

case, this research assumes that the health history would not recommend all the required materials.
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8.5.1 Example of the Application to Troubleshooting

Table 8-1 presents the MLIs used in WO 80109138, in which a processor (the M-System) and a signal
input module for a vibration sensor were replaced. The process based on the unenriched health
history does not predict that any parts would be required. The process based on the EHH, on the other
hand, predicts all but one of them. In this example, based on the assumptions stated above, neither
process would identify all the parts that it is assumed would be required to complete the work and

consequently it is assumed that the health history has not been usefully enriched in this case.

In practice, the part that was not predicted using the EHH is one of the three cables. The decision of
which parts to bring is not really based purely on this process; planners pack an ensemble of spare
parts based mostly on their experience. It is quite possible that the repair might have been achievable

without this spare part.

This repair required three visits to the wind turbine, in which the processor was reset before being
replaced. A repair strategy that utilises the EHH would inform the planner before the first visit that

these parts might be required, and this would mean that this type of repair could be carried out in one

visit.
Material Material Description Reserved Unit
A9B00030597 Sensor cable M12 8POL 15M 1 PC
A9B00030733 Sensor cable M12 3POL 10M 1 PC
A9B00030734 Sensor cable M12 3POL 15M 1 PC
A9B00552369 ADAPTER F VIBRATION SENSOR 1 PC
A9B10001484 VIBRATION SENSOR ICP-MODULE WR12000M8 | 1 PC
A9B10043236 M-System for ******** (8 channel) 1 PC
A9B10144676 Cables ******** ypgrade kit 8 ch 1 PC

Table 8-1, MLIs used in WO 80109138
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8.5.2 Results

This section presents the concept of the estimated Proportion of POLRs in a set where the health
history would recommend all the required Materials (PM), a measure of the quality of simulated
troubleshooting guides. PM is defined by equation 6.17 using the number of POLRs in the EHH where
the Health History Would Recommend all the required parts (WRy;) and the number of POLRs in the

EHH where the Health History would Not Recommend all the required parts (NRgy)-

WREgny (6.15)

PM =
WRgyn + NRgyy

Chapter 6 discussed the Bernoulli distribution. PM is a Bernoulli distribution; the PM of the GSSLR is
analogous to the PPV of the GSSLR; and the PM of the EHH is analogous to the PPV of the EHH.
The PM of the GSSLR is a point estimate of the PM of the EHH. This thesis will refer to the PM of the
EHH as PM and to the PM of the GSSLR as PM.
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This research investigated the effect of varying Thg through a full range of values from -4 (enriched) to

4 (unenriched). The results are shown in Figure 8-6.

There are 29 POLRs in the GSSLR and 28 of them have parts associated with them. 28 is therefore
the maximum number of POLRs in the GSSLR for which the Health History could recommend all the

required parts, which would indicate a prefect set of troubleshooting guides.

The maximum PM in Figure 8-6 (0.643) occurs at a range of values of Thg between -4 and -0.5. This

means that, with a GSSLR of the size available, changing Ths between these values does not change
PM.

Figure 8-6 shows that PM is higher at lower values of Thg, which indicates that health history
enrichment increases PM, improving the proportion of repairs made potentially successful by the
recommendation of the correct spare parts. This indicates that the PEOHH does enrich the health
history in a way that is potentially useful for troubleshooting. This section will consider the uncertainty

of this conclusion.
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Figure 8-6, Estimated Proportion of POLRs where the Health History Would Recommend all the
Required Materials (PM) and 95% CI against Score Threshold (T hg)

Section 4.3.2 presented the method for the validation of the techniques for health history enrichment
used in this thesis. Please recall from the chapter that the size of the sample “Gold Standard” Set of
Linked Records (GSSLR) was constrained by the amount of expert time that was available. A
Confidence Interval (Cl) is a region with a specified, nominal probability that it contains a feature of
interest. Figure 8-6 shows the 95% ClI for the PM of the EHH identified using the Wilson interval which

was discussed in section 6.1.3. The small size of the GSSLR, only 28 POLRs with materials assigned
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to them, means that, for a PM of the GSSLR of 0.643, the 95% CI of the PM of the EHH is (0.458,
0.793).

Section 6.2 considered techniques for interval estimation for a change in a proportion. It showed that
the Technique Assuming Independence (TAl) yielded very poor coverage and that the Technique
Using Bootstrapping (TUB) yielded acceptable coverage. In Figure 8-6, the width of the Cl is greater
than the difference between the maximum and minimum values of the PPV of the GSSLR. Intuitively,
one might infer from this that there is a significant risk that the optimum value has not been identified.
Such an inference would however be based on the invalid assumption that the measurements of the
PPV of the GSSLR are independent of each other. This section will instead use TUB for constructing a
Cl for the change in the PPV of the EHH.

Table 8-2 shows the effect of varying Ths. Please recall that WR is the number of POLRs in the
GSSLR where the simulated troubleshooting guide Would Recommend all the required parts and that
NR is the number of POLRs in the GSSLR where that same guide would Not Recommend all the
required parts, given the assumptions that have been described earlier in this section. TUB uses these

results to estimate the uncertainty of the difference that it makes.

Ths =-4
WR NR
WR 11 0
Ths =4
NR 7 10

Table 8-2, Effect on the Richness of the Health History of Varying the Score Threshold (T hg)

Equation 8.1 defines the Increase in the PM of the EHH that would by yielded by a Thg of -4 over that
yielded by a Thg of 4 (?hMS 1 24’). It uses the Probability distribution of estimates of the PM of the EHH
that would be yielded by a Thg of 4 (P(PM | Thy = —4)) and the same distribution that would be
yielded by a Thg of -4 (P(PM | Thg = 4))

_ P(PM |Ths = —4) (8.1)

PM 1

I -4 — —
Ths * 4 P(PM| Thg = 4)

Equation 8.2 evaluates 1 | 7", a point estimate of T 1 3%, using the data from Table 8-2.

1147 (8.2)
BTt = o= 1= 64%
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This research used TUB to estimate the uncertainty of #' I ;*, which yielded a 95% Cl of (20%,
167%). Again, this research predicts that this uncertainty will be drastically reduced by an upcoming
innovation in maintenance record keeping that will be discussed in chapter 9; the automatic linking of

new WOs to outages will result in a larger GSSLR and consequently in more certainty for this
estimate.

To better understand this uncertainty, this research investigated the distribution of TUBs list of
estimates of ’T’hMS I 14 using techniques presented in section 6.3. The results are shown in Figure 8-7
(a). The most important features of this distribution are the proportion of negative estimates and the
proportion of zero estimates because these indicate respectively that the quality of record linkage has
reduced and that it has not increased, as detailed in Figure 8-7 (b). The probability that a Ths of -4
would yield a lower PM of the EHH than a Thg of 4 is estimated by the proportion of bootstrap samples
for which 737 I 3* < 0, which this research found to be 0.03%. This indicates that there is little risk that

the PEOHH does not enrich the health history.

Figure 8-7 (b) also shows that the proportion of bootstrap samples for which ¥} 1%, < 0 is 0. As

explained in section 6.3, bootstrapping is conditional on the original sample, but this indicates that
there is little risk that the PEOHH reduces the richness the health history.
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Figure 8-7, (a) Frequency of ’;hMS I %, for 50,000 Subsamples, (b) Proportion of Bootstrap Samples

for which 731 1 7* < 0 and for which §21 1 3* < 0 against Number of Subsamples

This section showed that the PEOHH does enrich the health history. It estimated that the health
history has become more useful for troubleshooting by 64% with a 95% CI of (20%, 167%). This
result, based on the GSSLR, can be considered in combination with the results from sections 8.3 and
8.4 which are based on the entire health history of the farm. Those previous results do not suffer from
the same uncertainty caused by a small sample size and show without uncertainty that the health
history has been enriched.
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8.6 Conclusion to ‘Has the Health History been Enriched?’

To investigate whether the PEOHH does what it is for, that is to enrich health history, this chapter has
addressed RQ3:

RQ3 How can the richness of historical data on wind turbine health be measured?

This chapter has presented four measures of the richness of historical data on wind turbine health. It
has measured the richness of both the unenriched and the enriched health history. Each of the four
measures showed that enrichment has been achieved. For each measure, this chapter has quantified
how much enrichment has been achieved. Section 8.5 predicted the effect of enrichment by assessing
the EHHs usefulness for the application of troubleshooting. It estimated that the health history has
become more useful for troubleshooting by 64% with a 95% CI of (20%, 167%).



9 Critical Review of this Research

This short chapter will review and evaluate this research. Salient points are the chronological order of
work in this research and the size of the GSSLR. It will recommend a change of maintenance record

keeping procedure.

This research benefitted from privileged access to Qrsted’s records. It has not had direct access to
other operators records which, like @rsted’s records, are also confidential. To apply the Process for
the Enrichment of OWT Health History (PEOHH) developed in this research, other wind turbine

operators, as well as operators in other sectors, would need to adapt it to their record keeping system.

This research has shown the benefit of linking records in the wind turbine maintenance sector. Dunn,
1946, observed that probabilistic record linkage techniques require a sample “Gold Standard” Set of
Linked Records (GSSLR) to determine the optimum weighting for each feature. The identification of
the GSSLR for this research was carried out in a series of meetings around 3 years after the start of
the project. It was done so late with the intention that the validation of the PEOHH should be done
after the development of the PEOHH. Such a sequence would ensure that the process of validation
was independent of the process of development. In retrospect, it would have been advisable to identify
the GSSLR as early as possible. The techniques used in this research that split the GSSLR into
separate sets for testing and for training would have been sufficient to make testing independent of

training without a requirement to develop the PEOHH before identifying the GSSLR.

The GSSLR represents expert experience and this thesis assumed that it is a set of true matches,
although it could of course contain errors. This would mean that true and false linkages were
incorrectly identified as such which in turn would cause errors in the optimisation of the PEOHH and in
the measurement of its qualities. Such errors will be rectified by the following innovation in

maintenance record keeping.

The size of the GSSLR, only 29 POLRs, was constrained by the amount of expert time that was
available. The small size of the GSSLR meant that the results of the optimisation of the weights and
thresholds used in the PEOHH is so uncertain that it is not clear whether all of the record linkage
techniques presented in this thesis should be used or whether any of them can be disregarded without
risking a drop in the quality of record linkage. It also means that the optimised weights and thresholds

used by the PEOHH are approximate.

The uncertain work of linking WOs to outages could be made unnecessary for records generated in
the future by a change of maintenance record keeping procedure. A record linking these two

databases should be generated by the maintenance teams themselves. One way to do this would be
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to give each outage a unique identifier; the outage number. Then, when maintenance technicians

were back on the boat after completing a WO, they could note the outage number on the WO record.

Such labelling would negate the need for probabilistic methods to link future WOs to outages but it
would not negate the need for probabilistic methods to link the existing records of outages to WOs.
Older records are important to operators because improvements in Condition-Based Maintenance
(CBM) can reduce the failure rate, more so for those failure modes that have effective CBM models.
The study of how to more accurately link unlinked, historical maintenance records will therefore be of

continuing importance.

Ready-linked maintenance records may in the future be used to train and to test techniques for linking
unlinked, historical maintenance records. If and when new, very large GSSLRs become available, the
uncertainty in the estimation of the PPV of the EHH that this research worked with will vastly reduce,
improving confidence in the results. The record linkage techniques presented in this thesis should then
be re-assessed to identify what combination of techniques yields the highest quality of record linkage

and consequently the most useful EHH.

When searching for the global maximum of an irregular, multi-dimensional surface, it is problematic to
determine whether the maximum identified is a global maximum or a local maximum. A more powerful
computer can assess more combinations of features in the same time and so has a higher probability
of identifying the true global maximum. To comply with @rsted’s confidentiality requirements, this
research had to run the optimisation of weights and thresholds’2 on a standard laptop computer?’3. For
future studies, the uncertainty of finding the global maximum would be reduced if it were reproduced

using a more powerful processor.

72 Chapter 7 presented the optimisation of weights and thresholds.

73 Section 4.5 detailed the computer used for this research.
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10 Conclusions to the Thesis

This research has developed new techniques for linking existing records of offshore wind turbine
health history together. These techniques identify an Enriched Health History (EHH) with the aim of
enabling improvements in the maintenance of offshore wind turbines. The productivity of a wind
energy project depends on the price of electricity and on the suitability of the weather, both beyond the
control of a maintenance team, but also on how much of its potential production of electricity is lost to
outages and on the costs of maintenance and of operation. The EHH will enable improvements in
maintenance scheduling, CBM and troubleshooting, and in the measurement of maintenance
effectiveness. The wind farm maintenance sector can use the intelligence embodied in an EHH to
increase productivity. Maintenance record linkage will also be of interest for the maintenance of

equipment in other sectors.

This research developed new techniques for linking existing offshore wind turbine health history
records together by joining WOs to outages. Previous authors (Leahy et al., 2017) have studied how
to use wind turbine alarm logs to identify outages and generate a database of outages labelled with a
failure mode while Papatzimos et al., 2017 use offshore wind turbine Work Orders (WO) to build a
health history database. Multi-feature record linkage techniques are an established technology when
applied to linking medical records (Sayers et al., 2015, Nasseh and Stausberg, 2016, Oliveira et al.,
2016), address data (Churches et al., 2002, Comber et al., 2019, Lin et al., 2019), census data (Jaro,
1989, Smith et al., 2016) or genealogical records (Wilson, 2011) and have been used to detect
duplicate internet search results (Hajishirzi et al., 2010). However, this thesis is the first to link records

of maintenance data using multi-feature techniques.

In the only publication identified in the literature survey on the linkage of maintenance records,
Papatzimos et al., 2017, link offshore wind turbine WOs to records of control system alarms but using
a single feature (the timestamp). This thesis has shown that multi-feature record linkage techniques
outperform single-feature record linkage techniques and has taken a significant step forward from
Papatzimos by measuring the quality of the record linkage. The literature on record linkage does
recognise that a small gold standard set of linked records can only be used to yield an uncertain
estimate of the quality of record linkage but it does not quantify this uncertainty. This thesis has shown

how uncertainty can be quantified.

The quality of record linkage was measured using a well-established method (Dunn, 1946), which
compares the generated set of linked records to a gold standard set of linked records identified by
human expertise. The Process for the Enrichment of OWT Health History (PEOHH) developed in this
research requires a vector of weights and thresholds and the agreement and disagreement weights for
each feature indicate the importance of the feature to the quality of record linkage. If the PEOHH can

achieve the same quality of record linkage with the weights for a set of features set to zero then it can
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disregard those features, avoiding the need for their computation. This research used differential

evolution (Storn and Price, 1997) to globally optimise this vector of weights and thresholds.

To achieve a better quality of record linkage, this research developed and tested new record linkage
innovations specific to the application of linking WOs to outages. There is inevitably some uncertainty
associated with the measurement of the quality of record linkage, and consequently with the optimum
values for the weights and thresholds; this research has not only measured the quality of record

linkage but also estimated the uncertainty associated with that quality.

This research has identified an innovation in maintenance record keeping that would drastically reduce
this uncertainty. Whilst a consequence of this uncertainty is that this thesis cannot offer conclusive
advice as to which features to include in an ensemble of features for record linkage comparison, the
thesis can recommend the use of all of the features presented until new maintenance record linkage

practices can remedy the uncertainty.

This research has defined enrichment and has quantified the extent to which the process for the
enrichment of the health history actually enriches the health history. It estimated that the PEOHH will
improve offshore wind turbine fault troubleshooting by 64% with a 95% CI of (20%, 167%) and
anticipates similar improvements in maintenance scheduling, in condition-based maintenance, and in

the measurement of maintenance effectiveness.

This research used a database of material consumption in which each material line item is labelled
with an order number. It developed two techniques that use these data as part of an ensemble of
features for record linkage comparison. The first technique used a Bernoulli Naive Bayes (BNB)
classifier to predict the probability for each pair of Linked Records (POLR) that the parts used in the
WO correspond to the alarm code of the outage. Historical data on machinery failures tends to be
unbalanced; some failure modes feature more than others. As a result of this unbalance, this thesis
has shown that BNB classification is not an appropriate method for this application. The second
technique is simpler, checking whether the records for the outage failure mode contain each part
assigned to the WO. It does not suffer from the problem with unbalanced data because it only looks at
the relevant event code. This thesis has shown that the second technique is an appropriate method for

this application.

This research has shown the potential that linking offshore wind turbine maintenance records together
has in enabling improvements in maintenance practice. Further work linking together maintenance

records from other sectors will be informed by the record linkage techniques presented in this thesis.

Each wind energy operator holds their own set of health history data. This research will enable them to
use their data to identify an EHH and this will enable further innovations in maintenance scheduling,

CBM, troubleshooting and the measurement of maintenance effectiveness.
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The EHH will provide valuable insights into historical costs of maintenance and of lost production.
These insights could be used to further optimise maintenance scheduling from a logistical perspective

by providing more robust information to the models.

The EHH will provide more detailed labels than currently available for the training and for the testing of

CBM models. This will enable developers to develop new models and to improve existing ones.

The EHH will extend the troubleshooting guide parts list and this can avoid the lost production caused
by the right part not being available. Bringing the correct parts to the OWT will be of increasing
importance as the distance to shore increases and it could help to avoid the cost of an offshore spare
parts store.

The EHH integrates records of what work has been done on each turbine with failure mode specific
information on the failure rate. If a repair was successful, then the time to failure for the failure modes
effected by the repair would tend to increase. The EHH makes it possible to use this integrated data

for the first time to measure maintenance effectiveness.
To summarise the contributions made by this research:

e Applied multi-feature record linkage techniques to maintenance data for the first time.

e Applied statistical techniques for the interval estimation of a binomial proportion to record
linkage techniques for the first time.

o Estimated the distribution of the coverage error of statistical techniques for the interval

estimation of a binomial proportion for the first time.

The resulting main contribution of this research is a process for the enrichment of offshore wind

turbine health history.
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