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Abstract:

Giant impacts between proto-planets were a common event in our solar system 4.5
billion years ago. However, understanding their details and consequences is still an
open problem. In this thesis I use smoothed particle hydrodynamics to study how
pre-impact spin of the proto-planets could affect the hypothesised giant impact that
formed the Earth–Moon system, as well as developing tools to improve the numerical
methods applied to these studies. To this end I developed an open-source python
library to handle automatically the creation of the initial conditions necessary for
these simulations.

The first chapter is an introduction to the topics of giant impacts, the Moon-forming
problem, and a brief overview of smoothed particle hydrodynamics.

In the second chapter a suite of simulations of giant impacts between the early
proto-Earth and the impactor Theia reveals the importance of pre-impact spin in
Theia, which yields different types of impacts for different spinning rates. For some
simulations we discovered the immediate creation of a proto-Moon after impact.
This proto-Moon has similar mass and iron content to the present-day Moon, as well
as a stable orbit around the Earth.

In the third chapter I focus on the smoothed particle hydrodynamics (SPH) method.
This method is built on the idea of how to reconstruct a density field from a discrete
set of particles. By definition, this sets the density as a smooth quantity over the
simulation box. In planetary giant impact simulations, density discontinuities are a
desirable feature. They are present for instance in the core–mantle boundary of the
planets, due to the different equations of state for each material, to ensure pressure
continuity. I developed a method to solve this issue, which also shows improvements
with respect to traditional SPH in standard tests.

In the fourth chapter I use giant impacts and pre-impact spin of the proto-Earth
to explore an explanation for the primordial misalignment problem of the Moon’s
orbit evolution. Long-term evolution models for the orbit of the Moon suggest a
primordial angle between the Earth’s spin and the normal of the lunar orbital plane.
I show how this problem could be solved relying solely on the Moon-forming giant
impact itself.
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Chapter 1

Introduction

The birth of a planet is a long and complex process involving many steps. But if
there is one spectacular moment in particular that would be the giant impact phase
between proto-planets. In this phase, Mars–sized objects collided dozens of times in
our solar system, determining many characteristics of the planets we see today.

Despite being crucial for explaining many features of our solar system, the specific
details of giant impacts are still poorly understood and debated. In this thesis I aim
to improve a bit of our understanding in this topic by looking at pre-impact spin of
proto-planets, the methods generally used to study these events, and in particular,
the giant impact hypothesis for the formation of the Moon, which I will use as
sandbox in this thesis. However, before getting into the details of a particular giant
impact, a planetary system must go through many steps before smashing planets
into each other.

Planetary systems like our solar system begin their history when a giant cloud of
gas and dust is perturbed. This cloud then starts collapsing, and a circumstellar
disk forms almost immediately after, surrounding the young star (Williams & Cieza,
2011). Circumstellar disks are highly unstable at early times and accrete in bursts
onto the central protostar. By the time the young star becomes optically visible,
the mass of the now protoplanetary disk averages 1% that of the central star. This
protoplanetary disk becomes stable and rotates with a Keplerian velocity profile. It
is within this protoplanetary disk, with a very young star in its centre, where planets
are born.

There are several theories explaining the formation of planetesimals. The classical
“planetesimal hypothesis” states that planets form in the protoplanetary disk via
accretion of small solid bodies called planetesimals (Safronov & Zvjagina, 1969;
Hayashi et al., 1977). Pebble accretion suggests that pebbles drifting through the
protoplanetary disk are accreted rapidly by the growing protoplanets (Ormel &
Klahr, 2010; Lambrechts & Johansen, 2012). Nevertheless, this is one of the main
differences with stellar formation, which starts from collapsing material. When the
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collapsing of material into the young star ceases, the disk is able to cool down and
various compounds condense into microscopic grains, adding to the preexisting ones
from the interstellar medium.

The growth of planetesimals is from now on dominated by collisions. The mech-
anical and chemical processes related to grain agglomeration are still debated, but
chondrules (small glassy inclusions of ∼ mm size) do provide some clues, since they
appear to be heated and cooled rapidly before being accreted into larger bodies
(Grossman et al., 1988). Grains and dust motion are strongly coupled (Adachi et al.,
1976), and the vertical component of the star’s gravity causes dust to sediment in
the midplane of the disk. This sedimentation occurs for timescales of thousands
of years for centimetre-sized grains, when considering collisional growth of grains
(Nakagawa et al., 1981).

At this point gas is still abundant in the disk, which is partially supported by a
pressure gradient, hence gas circles the star less rapidly (0.5% slower) than grains
that orbit at a Keplerian rate (Adachi et al., 1976). Therefore, grains moving at
Keplerian speed encountered a headwind that removes angular momentum and
causes them to spiral inwards (Weidenschilling, 1977). The rate at which metre-
sized bodies drift inwards is ∼ 106 km/year (Lissauer, 1993), hence the transition
to kilometre-size bodies must have been quick (Safronov, 1960; Goldreich & Ward,
1973). This growth phase to kilometre-size bodies is dominated by coagulation of
grain aggregates that collided due to differential settling, turbulence, drag-induced
orbital decay, and aided by concentration of larger bodies towards the central plane
of the disk (Weidenschilling & Cuzzi, 1993).

Growth continues via two-body collisions. The distributions of planetesimal masses
and velocities evolve thanks to collisions and gravitational scattering (Greenberg
et al., 1978). Collisions can be modelled analytically using hard spheres and inelastic
collisions (Hornung et al., 1985), and gravitational scattering can be modelled in the
same way as in stellar dynamics (Binney & Tremaine, 1987). Using this approach,
one finds that larger planetesimals grow faster than smaller ones, resulting in the
runaway growth of the largest planetesimal (Greenberg et al., 1978; Wetherill &
Stewart, 1989). The main inconvenience of this analytical/statistical approach is
the assumption of a uniform spatial distribution, therefore the later stages of this
phase are difficult to investigate. More recently this phase of planet formation has
been modelled numerically via N-body simulation codes (Kokubo et al., 2000; Ida &
Makino, 1993; Kokubo & Ida, 1998). Results from numerical simulations agree with
analytical ones.

The larger a planetesimal becomes, the larger its growth rate becomes by gravit-
ational focusing (which is the probability of two bodies colliding) and dynamical
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Figure 1.1: Protoplanetary disk surrounding the young star HL
Tauri, at 450 light years away from Earth. Luminosity
and effective temperature suggest its age is less than
100,000 years (Boss et al., 1989). Substructures within
the disk show the possible positions of planets forming
in the dark patches within the system. This star ap-
pears to be surrounded by forming planets despite its
young age, which has prompted new proposals for faster
mechanisms of planet formation (Stephens et al., 2014).
Credit: ALMA (ESO/NAOJ/NRAO).

friction from smaller planetesimals. Then, at different radii, the largest planetesimal
becomes isolated from the continuous mass distribution. These planetesimals, which
have undergone a runaway growth and are now isolated, are called proto-planets, and
this event has been observed for the first time very recently as shown in Figure 1.1
(ALMA Partnership et al., 2015). At the end of this phase, the mass distribution
is divided into a small number of large proto-planets and a large number of small
planetesimals (Kokubo et al., 2000). Once proto-planets are formed, the age of giant
impacts begins.

The frequency of giant impacts, as well as their resulting angular momentum and
other statistics can be studied using N-body simulations (Agnor et al., 1999; Cham-
bers, 2001; Kokubo & Genda, 2010; Miguel & Brunini, 2010). We expect dozens of
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giant impacts events took place in our solar system, half of them being accretion
events and the other half hit-and-runs on average (Kokubo & Genda, 2010), where
the typical impact velocity was between 1 and 2, in units of the mutual escape
velocity of the bodies.

The number of resulting planets expected from simulations in the inner region of
the solar system is between 2 and 5, with the more massive ones being similar to
Earth’s mass (Kokubo & Genda, 2010). The spin rates of the resulting planets
depend mainly on the last one or two giant impacts, and its value is on average 30%
smaller than the critical angular velocity of the planet for realistic (where hit-and-run
impact are considered) models (Kokubo & Genda, 2010), or as high as the critical
angular velocity for perfect accretion models (Agnor et al., 1999; Kokubo & Ida,
2007). Obliquity ranges from 0◦ to 180◦ following an isotropic distribution (Miguel &
Brunini, 2010). This is a natural consequence of giant impacts being 3-dimensional
and adding equally random contributions to each spin angular momentum component
(Kokubo & Ida, 2007).

But most importantly, giant impacts played a crucial role in planet formation, since
they shaped how planets look today (Chambers, 2001). Many examples can be
found in our solar system: the tilted axis of Uranus (Slattery et al., 1992; Kegerreis
et al., 2018; Reinhardt et al., 2020), the formation of Mars’ moons (Craddock, 2011;
Citron et al., 2015), Mars’ hemisphere dichotomy (Andrews-Hanna et al., 2008), or
Mercury’s thin mantle (Benz et al., 1988) are some of the features of our solar system
that have been explained through giant impacts.

The holy grail of giant impacts, the main focus of this thesis, is the formation of the
Moon. There’s strong evidence that the Earth and Moon share a common origin
through a giant impact (Cameron & Ward, 1976; Hartmann et al., 1975). However
the details are still unclear and many different impact configurations have been
proposed (Benz et al., 1986; Melosh, 1989; Cameron, 1997; Ćuk & Stewart, 2012;
Lock et al., 2018; Canup & Asphaug, 2001). The fact that the Moon is the closest
celestial object to Earth makes this one a particularly interesting problem, as well
as challenging, due to all the observational constraints available.

1.1 The Formation of the Moon

The Earth–Moon system is quite exceptional and many reviews about its formation
are available to expand on this section (Asphaug, 2014; Barr, 2016; Lock et al., 2020;
Canup et al., 2021). The Moon’s mass is large compared with its host as well as
its orbital angular momentum, implying a rapidly spinning Earth when the Moon
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was formed. In addition, its core is small (∼ 1% of its mass, Wieczorek (2006)) and
the early Moon’s surface was covered by a deep magma ocean (Warren, 1985). A
successful theory for the formation of the Moon should be able to explain all these
features and more that we will mention later in §1.1.1.

Original theories for the formation of the Moon include capture, fission, co–accretion,
and collisional ejection (Wood, 1986; Hartmann et al., 1975; Cameron & Ward, 1976).
However, once the Apollo missions allowed the direct study of samples from the Moon,
the similar oxygen isotopic compositions (17O and 18O) of the Earth and Moon was
discovered, and the giant impact hypothesis seemed to be a good candidate to
explain all features mentioned above as well as the isotopic similarity between Earth
and Moon (Wood, 1986). A giant impact could produce an iron–poor debris disk
surrounding the Earth with the right angular momentum and physical properties
(Benz et al., 1986, 1987; Canup & Asphaug, 2001). This so–called “canonical impact”
predicts a Moon made primarily from impactor material, but the isotopic similarities
between the Earth and Moon (Wiechert et al., 2001; Zhang et al., 2012) could
be explained only if the Moon formed mainly from the Earth’s material, or if the
impactor’s original isotopic composition was similar to the Earth’s. This problem
has been characterized as the “isotopic crisis” (Melosh, 2014). This hypothesized
impactor that collided with the Earth to later form the Moon is usually called Theia.

1.1.1 The importance of the Moon’s composition

The bulk silicate Earth (BSE) refers to the chemical composition of the Earth’s
primitive mantle. This is usually computed by imposing cosmochemical constraints
on compositional trends exhibited by upper-mantle rocks (Lyubetskaya & Korenaga,
2007). Measurements of the Moon’s composition and its comparison with the BSE
provides constraints on the thermodynamic history of the Moon, and therefore
constraints for the giant impact hypothesis.

Lunar glasses and other minerals can be used to estimate the composition of the
lunar mantle and bulk silicate Moon (BSM), that is the Moon’s silicate composition
after accretion and before its differentiation into mantle and crust. Data show that
the BSM was depleted compared with the BSE in volatile elements by different
amounts (McCubbin et al., 2015; Hauri et al., 2015; Chen et al., 2015). H2O is
depleted by a factor of 5, although some portions of the Moon had H2O abundances
comparable with the BSE (Greenwood et al., 2011; Hauri et al., 2011). Volatile
alkali elements K, Na, Rb and Cs are depleted by a factor of 5–6; S is depleted by a
factor of 2–3; and C and other highly volatile siderophile elements are depleted by
factors of 5–200 in the BSM relative to the BSE.
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The mechanism responsible for the Moon’s volatile depletion is still debated (Day &
Moynier, 2014). An initially volatile-poor composition for the protolunar material
due to a volatile-depleted impactor could account for a factor of 5–6 depletion
(Newsom & Taylor, 1989), but it would not explain higher values like the one for Zn
and other elements. Another idea is depletion associated with escape from the hot
protolunar disk material (Genda & Abe, 2003; Desch & Taylor, 2011). A disk made
of melt and vapour material would preferentially incorporate the melt into the Moon
(Canup et al., 2015; Pahlevan et al., 2016; Lock et al., 2018), and/or later degassing
and loss from the lunar magma ocean (Elkins-Tanton & Grove, 2011; Barnes et al.,
2016; Dhaliwal et al., 2018). If so, the amount of volatile loss in a planet could be
associated with basic parameters like the mass of the planet, surface gravity and
escape velocity. Variations in the amount of depletion may help distinguish between
different volatile depletion hypotheses.

Planetary processes like the ones mentioned above can alter the absolute concen-
tration of an element but they cannot affect their relative isotopic concentrations.
Observed isotopic variations are then ideal to trace the origin of the material of
the Moon. These variations with respect to the values at Earth are called isotopic
anomalies and they provide the strongest constraints on the fraction of Moon that
originated from Earth.

We will use oxygen as an example of how isotopic anomalies are reported. Oxygen
has three stable isotopes, 16O, 17O, and 18O, so two isotope ratios can be defined:
17O/16O and 18O/16O. Using a reference value, e.g. SMOW (Standard Mean Ocean
Water for oxygen), we can express the ratios defined above as

δ17,18O(‰) ≡
[(

17,18O/16O
)

sample
/
(

17,18O/16O
)

SMOW
− 1

]
× 1000. (1.1.1)

Since the difference in mass between 17O and 16O is half of the difference between 18O
and 16O, most terrestrial samples fall on a line with slope 1/2 that passes though the
origin in a δ17O v δ18O diagram, whose origin corresponds to values identical to the
SMOW. Isotopic anomalies are defined as the vertical offset from this line, expressed
in parts per thousand or parts per million as ∆17O values. When discussing isotopic
anomalies, context from observed variations on meteorites or other planets must be
provided. If all meteorites have the same isotopic composition as Earth, no isotopic
differences between Earth and the Moon are expected to be found, and no constraint
on the formation of the Moon is obtained.

A value of ∆17O = +0.321± 0.013 ‰ was obtained for Mars (Franchi et al., 1999),
suggesting isotopic variation amongst planetary bodies in our solar system. Therefore,
if the Moon-forming impactor had different isotopic composition than the proto-
Earth, one would expect to see it reflected in the Earth–Moon differences today.
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However, the first measurement for the oxygen isotopic anomaly of the Moon was
done by Clayton &Mayeda (1975), with a value of ∆17O = −0.075±0.049 ‰, making
them statistically indistinguishable. Ever since that first measurement, multiple and
more precise studies have been performed motivated by the idea to determine if a
difference exists. Many authors found ∆17O values within a few parts per million
(ppm) with error bars large enough to make the measurement indistinguishable from
Earth’s (Wiechert et al., 2001; Spicuzza et al., 2007; Hallis et al., 2010; Young et al.,
2016). Others found very small significant differences of a few ppm (Herwartz et al.,
2014; Greenwood et al., 2018), and Cano et al. (2020) proposed that oxygen isotopic
composition varies with lithology, and found differences on VLT (very low-Ti) green
glasses of 20 ppm or more, which are representative of the deeper interior of the
Moon. In contrast, common meteorites have ∆17O values within −4.7 ‰(−4700
ppm) and 2.6 ‰(−2600 ppm) (Dauphas & Schauble, 2016).

The similarity in oxygen isotopes could be a consequence of a process of equilib-
ration between the terrestrial magma ocean and protolunar disk via the vapour
phase (Pahlevan & Stevenson, 2007). This process may affect primarily elements in
the vapour phase and be less effective for highly refractory elements like titanium.
However, measurements of the Ti isotopic anomaly, once the effects of exposure to
cosmic rays were deducted, show that there was no 50Ti anomaly present in lunar
rocks (Zhang et al., 2012). Apart from oxygen, other non–volatile elements like Ca
and Cr have been measured in lunar rocks showing that they are indistinguishable
from Earth (Dauphas et al., 2015; Schiller et al., 2018; Mougel et al., 2018).

1.1.2 Giant Impact Models

Many authors have developed models to attempt to identify a collisional scenario
that can explain all properties of the Earth–Moon system. These models typically
use the smoothed particle hydrodynamics method that we will discuss in Section 1.2.
First we will briefly summarize the constraints available, then we will proceed to
explain the most popular ideas.

Obtaining the right total angular momentum is the first constraint (LEM = 3.5 ×
1041 g cm2 s−1). A new Moon orbiting at the Roche radius implies a terrestrial day
of 5 hours if the primordial system angular momentum is equal to LEM. There are
dynamical mechanisms that could reduce the angular momentum of the system by a
factor of 2–3, hence the primordial angular momentum could have been much larger
than the value at present day (Ćuk & Stewart, 2012; Wisdom & Tian, 2015; Rufu
& Canup, 2020).
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The mass of the protolunar disk must be sufficiently large to later accrete a lunar–
mass Moon. An initial disk with mass between 1.3 and 3 lunar masses is sufficient
for that purpose (Salmon & Canup, 2012; Kokubo et al., 2000). Moreover, the disk
should be iron–poor to account for the small lunar core.

As mentioned in Subsection 1.1.1, the Earth and Moon share almost identical isotopic
compositions across many elements, while meteorites from Mars differ substantially.
The compositional difference in a protolunar disk can be quantified as

δfT ≡
FD,pE

FP,pE
− 1, (1.1.2)

where FD,pE and FP,pE are the mass fractions of the silicate portions of the disk and
the post–impact Earth derived from the proto-Earth’s mantle. A value of |δfT | < 5%
is required for an impactor that was Mars–like in composition (Canup, 2012). Note
that it is unknown what was Theia’s composition. However, the less similar to the
proto-Earth, the more restricted and close to zero |δfT | needs to be, and vice-versa.

Now we will introduce the main hypotheses describing the giant impact that formed
the Earth–Moon system.

1.1.2.1 Canonical Impact

A Mars–sized impactor that collides with the proto-Earth at a low velocity (compar-
able with the common escape velocity) can produce a sufficiently massive protolunar
disk with poor iron content and the appropriate total angular momentum (Benz
et al., 1986; Canup & Asphaug, 2001). The masses of the proto-planets are common
in models of planet accretion (Kokubo & Genda, 2010), and the angle of impact
is between the 40–50◦ range, where 0◦ is a head-on collision. The main problem
with this scenario is the isotopic crisis. Most of the material of the protolunar disk
comes from the impactor instead of the proto-Earth (δfT ∼ −80%) contradicting
observational data (unless Theia was very Earth-like).

As we mentioned before, the process of equilibration could solve this issue (Pahlevan
& Stevenson, 2007; Nakajima & Stevenson, 2015), as well as having an impactor
whose isotopic composition is very similar to that of the Earth. However this later
solution seems unlikely (Pahlevan & Stevenson, 2007; Dauphas, 2017; Mastrobuono-
Battisti & Perets, 2017; Schiller et al., 2018). Hosono et al. (2019) found a canonical
impact could form a proto-Earth-rich protolunar disk if the Earth had a surface
magma ocean at the time the impactor collided and a modified version of smoothed
particle hydrodynamics was used. Wissing & Hobbs (2020) performed a similar
study and found no significant differences between having or not a proto-Earth
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with a surface magma ocean. Similarly, Stewart et al. (private communication)
performed a study with improved equations of state for a primitive magma ocean
on the proto-Earth and found contrary results to Hosono et al. (2019).

1.1.2.2 Hit–and–run Impact

Low angle (30–40◦), high–speed (v ∼ 1.3vesc) impacts can create disks richer in
proto-Earth material than canonical impacts (δfT ∼ −40%) (Reufer et al., 2012).
In addition, high velocities favour loss of material and angular momentum from the
system allowing for larger impactors and higher angular momentum before impact.
Successful impacts produce disks massive enough to form a Moon from them but
also a final angular momentum higher (∼ 1.3LEM) than the present value (Reufer
et al., 2012). Hence, a mechanism to remove angular momentum after the impact is
needed.

1.1.2.3 Fast–spinning Earth Impact

The isotopic similarities between Earth and Moon have prompted the study of much
higher angular momentum impacts, which could more naturally explain the data.
Several authors (Canup, 2008; Ćuk & Stewart, 2012; Lock et al., 2018) proposed a
fast–spinning proto-Earth, whose angular momentum is higher than LEM (≥ 2) and
parallel to the orbital angular momentum of the impactor (prograde and retrograde
motions). As a result they found a protolunar disk made mainly from the proto-
Earth (|δfT | ∼ 1%), consistent with observational data. The protolunar disks
produced from these simulations are pure vapour, as opposed to canonical–like disk
that are dominated by melt. Similar to the previous case (but with greater angular
momentum that needs to be removed), these models require a mechanism to reduce
the total angular momentum of the Earth–Moon system to the present-day value.

1.1.2.4 Half–Earth Impact

Forming a protolunar disk from similar composition of the main planet is achieved if
the disk is made of proto-Earth material given that the impactor’s mass is small com-
pared with the proto-Earth. Another alternative would be a completely symmetric
collision between two proto-planets, each having half the mass of the Earth. In this
situation the post–impact Earth would be made of 50% target and 50% impactor,
as well as the protolunar disk.

Canup (2012) showed that slightly asymmetric collisions, where the mass of the
impactor is > 40% can produce a protolunar disk with |δfT | ∼ 1–10%. This scenario
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produces high mass disks (up to 5 lunar masses), which could help forming the Moon
if accretion is inefficient (Lock et al., 2018). Similar to the previous cases, the total
angular momentum of the system after impact exceeds the present day value, and
mechanisms to remove the excess are required.

1.1.2.5 Synestia

Lock & Stewart (2017) proposed a high–energy, high–angular momentum impact
could produce a synestia. Synestias are characterized by having an angular velocity
at the equator equal to the Keplerian orbital velocity. At this point the planet has
reached its corotation limit, and a single corotating body is not possible. Hence, a
synestia is a hot planetary body structure, with a corotating inner region connected
to a disk-like outer region.

Satellite formation from a synestia can produce the main features of the Moon and
equilibration within a synestia may be achieved by turbulent mixing in high–entropy
regions (Lock et al., 2018). Cooling drives mixing of the structure, and condensation
generates moonlets that orbit within the synestia, surrounded by high–pressure bulk
silicate Earth vapour. Moonlets equilibrate with bulk silicate Earth vapour at the
temperature of silicate vapourization and the pressure of the structure, establishing
the lunar isotopic composition and pattern of moderately volatile elements. Eventu-
ally, the cooling synestia recedes within the lunar orbit, terminating the main stage
of lunar accretion.

High angular momentum impacts (> 1.7 LEM) are likely to form synestias. Most
Earth-like planets may have experienced a synestia–like structure after an impact
during their late accretion process (Lock & Stewart, 2017). Removal of angular
momentum from the system is also a requirement for this model of the formation of
the Moon.

1.1.2.6 Multiple impacts

Giant impacts were common, and a planet like Earth is expected to experience
multiple impacts in its late accretion stage (Kokubo & Genda, 2010; Agnor et al.,
1999). The idea of the Earth experiencing multiple impacts that lead to the formation
of the Moon is not new (Ringwood, 1989), however it has been explored recently
with modern tools (Rufu et al., 2017). The Moon could have formed from a sequence
of small impactors (< 1% M⊕), where each impact generates a small satellite that
migrates outwards due to tidal interactions. Subsequent impacts produce similar
moons, which end up merging with the previous one. Impacts can occur with random
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orientations, making it difficult to reach the desired high angular momentum of
the Earth–Moon system today. However, multiple small impacts could explain an
unmixed Earth mantle reservoir (Touboul et al., 2012; Mukhopadhyay, 2012). Rufu
et al. (2017) concluded that N ∼ 20 small impacts can produce a lunar–sized satellite
and that the standard deviation of the ∆17O difference between the growing moon
and target decreases with

√
N .

1.1.3 Post–Impact Evolution

Solving the isotopic crisis has prompted new models that rely on high angular
momentum giant impacts as seen in Subsection 1.1.2. These models obtain better
values consistent with the isotopic similarities between Earth and Moon, however
they require mechanisms to remove the excess of angular momentum from the system
by a factor of 2–3 to match the present-day value.

The main driver in the Earth–Moon system dynamical evolution are tides raised on
the Earth by the Moon. Tidal bulges raised when the Earth’s spin is faster than
the Moon’s orbital velocity, cause a torque between the Moon and the tides, which
transfers angular momentum from the Earth’s spin to the orbit of the Moon. This
process does not change the total angular momentum of the system, but others
might. Late accretion onto the Earth after the formation of the Moon may have
altered, either increasing or decreasing, the total angular momentum of the system.
This change is only of the order of a few percent via direct impacts (Bottke et al.,
2010), and a few tens of percent via collisionless encounters (Pahlevan & Morbidelli,
2015). Still not sufficient to explain a decrease by a factor of 2.

When the Moon’s semimajor axis was around 4.6 R⊕, it would have encountered a
resonance when the lunar perigee precession period was equal to one year. This is
called the evection resonance (Kaula & Yoder, 1976). If the Moon was captured into
evection, the outwards tidal migration is accompanied by an increase in eccentricity.
When high eccentricities are reached, tidal dissipation in the Moon becomes relevant,
stopping the eccentricity growth and locking the Moon at a constant distance from
Earth. This equilibrium will be broken since tidal forces are still transferring angular
momentum from the spin of the Earth to the Moon’s orbit. During this exit from
the evection resonance, solar perturbations on the Moon remove angular momentum
from the Moon’s orbit into the Earth’s heliocentric orbit.

Touma & Wisdom (1998) considered an initial Earth–Moon system with angular
momentum similar to the present-day value, and found that exit from evection
resonance removes ∼ 10% of the angular momentum (Touma & Wisdom, 1998).
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Later, Ćuk & Stewart (2012) considered an initial high angular momentum Earth–
Moon system (∼ 2–3 LEM), and found that capture in the resonance occurred for
longer times, allowing a decrease in angular momentum by a factor of 2 or more.
Other studies suggest that removing such large quantities of angular momentum
required low–eccentricity evolution and a dissipative Moon (Wisdom & Tian, 2015;
Tian et al., 2017). A wider range of final angular momenta could be possible,
depending when escape from evection happens (Rufu & Canup, 2020).

1.2 SPH Simulations

As briefly mentioned in Subsection 1.1.2, the most common tool to study giant
impacts is smoothed particle hydrodynamics (SPH). In this section we will discuss
the fundamental idea behind this method and how to apply it to our particular field
of interest, giant impacts.

SPH was originally formulated by Lucy (1977) and Gingold & Monaghan (1977) to
simulate asymmetric phenomena in astrophysics. The original authors found that
SPH gave sensible answers in difficult situations, and the method could incorporate
new physics in a fairly easy way. Today SPH is still widely used in astrophysics,
as well as geophysics, engineering and in the film and computer games industry.
Traditional reviews of SPH (Monaghan, 1992; Price, 2005) introduce the method
with a formal discussion of kernel interpolation theory, however in the following
section we will briefly review SPH derived from the discrete Lagrangian, as done by
Price (2012).

1.2.1 The Basics

It all starts with the following question: how can you compute a density field from
an arbitrary distribution of point mass particles?

The most straightforward answer is perhaps to construct a mesh in the simulation
box you are working on, compute the total mass in each cell, and divide by its volume.
This approach is used in hybrid particle mesh methods like Marker-In-Cell (Harlow
& Welch, 1965) or Particle-In-Cell (Hockney & Eastwood, 1981). A fixed mesh will
have many cells in empty regions and very few where all the mass is concentrated,
i.e. it oversamples low density regions and undersamples high density regions given
that the mass distribution in the simulation box is highly clustered. For that and
other reasons, it is more convenient to remove the mesh completely and compute
the density based on the local distribution of particles, for instance using a sphere
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centered on the location of the desired point where we want to compute the density.
We could compute the total mass inside this sphere and divide by its volume. This
estimate is noisy because a particle sitting close to the edge of the sphere could slip
in and out making significant changes in the density (δρ ∝ 1/Nngb for equal mass
particles). This leads to the idea of down-weighting contributions from particles as
the relative distance increases.

Density is therefore computed using neighbouring particles and some sort of weighting
function W ,

ρ(~r) =
Nngb∑
i=0

miW (~r − ~ri, h), (1.2.1)

where Nngb is the number of neighbours, mi is the mass of particle i, and h is
a length-scale that determines the rate of fall-off of W . W is referred to as the
smoothing kernel, and h is the smoothing length. A good candidate for the smoothing
kernel function should have certain properties. It should be positive, monotonically
decreasing with the relative distance and have smooth derivatives; it should be
symmetric under rotations, that is dependent only on the relative distances of
particles (i.e. W (~x−~y, h) ≡ W (|~x− ~y| , h)); and it should have a flat central portion
so the density is not strongly affected by small changes in the position of near
neighbours (Price, 2012). Finally, note that conservation of mass,

∫
ρdV = ∑Ntot

i=1 mi,
will imply a normalisation factor. With all these constraints a Gaussian function
seems a good candidate, however it has the computational disadvantage of having an
infinite support, meaning that all particles have a contribution to the density at any
point no matter how far away they are. Hence, the best solution is to use a kernel
that is Gaussian-like but truncated at a finite radius. The most used options are
the B-spline functions (Shoenberg & Wilson, 1946; Monaghan & Lattanzio, 1985),
followed by others like the Wendland (1995) kernels (Dehnen & Aly, 2012).

Early SPH simulations used constant smoothing length, h, however it is desirable
to adapt it such that it resolves equally sparse and high density regions. A natural
choice is to make the cube of the smoothing length of a particle proportional to
its volume, Vi = mi/ρi, where mi and ρi ≡ ρ(~ri) are the mass of the particle, and
the density field evaluated at the position of particle i, ~ri. Overall we have to solve
simultaneously for every particle the equations for the density and smoothing length,

ρi ≡ ρ(~ri) =
Nngb∑
j=1

mjW (~ri − ~rj, hi), hi ≡ h(~ri) = η

(
mi

ρi

)1/d

, (1.2.2)

where d is the number of dimensions, and η is a dimensionless parameter. Note
that η carries the same value for any number of dimensions whereas the number of
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neighbours, Nngb, which could be used to define hi does not. This becomes useful
when comparing results from different test problems in different dimensions. The
definition above is approximately equivalent to keeping the mass inside the kernel
constant, since for example in three dimensions

Mi =
∫
Vi

ρdV ≈ 4
3πR

3
kernelρi, (1.2.3)

where Rkernel = ζh is the kernel radius (ζ = 2 for the cubic spline kernel), so a
constant Mi implies constant h3ρ. On the other hand, Mi = Nngbm assuming all
particles have the same mass. Solving for Nngb we obtain

Nngb ≈
4
3π(ζη)3 (1.2.4)

for the 3D case, and similarly can be done for one and two dimensions.

We have answered our initial question with a solution that is independent of time
and now we proceed to briefly describe the equations that govern the evolution of
particle positions and velocities. This part of the method is completely derived from
the definition of the density estimate. The Lagrangian of our system can be written
as

L ≡ T − V =
∑
i

mi

[1
2v

2
i − ui(ρi, si)

]
, (1.2.5)

where T and V are the total kinetic and potential energy respectively; vi, ui, ρi, and
si are the velocity, specific internal energy, density, and specific entropy of particle i
respectively. Using the least action principle we get the Euler-Lagrange equations:

d

dt

(
∂L

∂vki

)
− ∂L

∂rki
= 0, (1.2.6)

where i goes from 1 to N , the total number of particles, and k goes from 1 to d,
the number of dimensions. Assuming a constant smoothing length, these equations
simplify to the standard SPH formula (Monaghan, 1992):

~ai = −
∑
j

mj

(
Pi
ρ2
i

+ Pj
ρ2
j

)
∇iWij, (1.2.7)

where Wij = W (~ri − ~rj, hi), Pi is the pressure of particle i, and Pj is the pressure of
neighbouring particle j. The evolution of the internal energy of every particle, ui is
governed by the equation

dui
dt

= ∂ui
∂ρi

∣∣∣∣∣
s

dρi
dt
, (1.2.8)

assuming an adiabatic evolution (i.e. dsi
dt

= 0). From the first law of thermodynamics



1.2. SPH Simulations 15

du = Tds− PdV , and V = m/ρ, hence dV = −m/ρ2dρ. Finally we can derive

dui
dt

= Pi
ρ2
i

∑
j

mj(~vi − ~vj) · ∇iWij. (1.2.9)

These previous formulae imply exact conservation of total linear momentum, total
angular momentum, and total energy (Price, 2012). The above derivation assumes
constant smoothing length h. A similar reasoning can be done for an adaptive
smoothing length, which is what is implemented in SWIFT (Schaller et al., 2016).

SPH simulations use an artificial viscosity term (Monaghan, 1992; Cullen & Dehnen,
2010) to create shock waves, which are crucial for modelling giant impacts. This vis-
cosity converts kinetic energy to internal energy only when (~vi − ~vj) · (~xi − ~xj) < 0.
A particular refinement of interest is the Balsara (1995) formulation, which is imple-
mented in SWIFT, because it additionally turns off the artificial viscosity in pure
shear flows. The artificial viscosity conserves energy and provides linear and quad-
ratic terms in both the acceleration equation (Equation 1.2.7) and the time-evolution
of the internal energy equation (Equation 1.2.9).

The hydrodynamic equations described above, together with the gravitational forces,
are integrated forward in time using a kick-drift-kick algorithm (Verlet, 1967; Swope
et al., 1982). “Kick” means updating the velocity from the acceleration and “drift”
means updating the positions from the velocities. In its basic form, without variable
time-steps, the equations are:

vi+1/2 = vi + ai
∆t
2 ,

xi+1 = xi + vi+1/2∆t,

vi+1 = vi+1/2 + ai+1
∆t
2 .

(1.2.10)

There are multiple criteria for the choice of an appropriate time-step. One criterion
is the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1967):

∆ti = C
hi

maxj (ci + cj + max{0,−3~rij · ~vij/rij})
, (1.2.11)

where C is the CFL constant, usually set to ∼ 0.2 (Borrow et al., 2018), ci and cj
are the sound speeds of particles i and j respectively, ~rij ≡ ~ri − ~rj, ~vij ≡ ~vi − ~vj,
and rij ≡ |~rij|. In practice the sound speeds are replaced with a signal velocity
that depends on the artificial viscosity parameters. The CFL condition ensures the
stability of the integration scheme, which is a necessary (but not sufficient) condition
for accurate results with numerical schemes. Another important time-step criterion
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related to the gravitational forces between particles is adopted:

∆ti =
(

2ηε
|~ai|

)1/2

, (1.2.12)

where η is an accuracy parameter set to 0.025 (J. Kegerreis, private communication),
ε is the gravitational softening parameter (which will depend on the total number
of particles in the simulation), and ~ai is the acceleration of particle i. This criterion
is not only implemented in SWIFT, but in other popular SPH codes like Gadget-
2 (Springel, 2005). There is one last time-step criterion related to the change of
smoothing length over time, which is relevant for giant impact simulations:

∆ti =
∣∣∣∣∣∣log(V 1/d

c )hi
(
dhi
dt

)−1
∣∣∣∣∣∣ , (1.2.13)

where Vc is a volume change parameter set to 1.4 (J. Kegerreis, private communic-
ation), and d is the number of dimensions in the problem. In practice in SWIFT,
all particle time-steps are related by factors of two. For an individual particle, the
actual value chosen within this hierarchy is the largest available time-step that lies
below the three different time-step criteria just described (Borrow et al., 2018).

The fact that SWIFT uses a hierarchy of time-steps with individual particle time-
steps allowed to change with time means that, even though a leapfrog integrator is
used, the method is not time-reversible. Hence total energy is not conserved. For
the runs in this thesis, total energy is typically conserved to 1%.

In this thesis in particular, we are interested in iron and granite-like material, which
we will use to model the core and mantle of rocky planets. The most widely used
option for giant impacts is the Tillotson (1962) analytical equation of state (EoS).
In brief, it is based on a compressed or cold state, an expanded or hot state, and a
transition region between those two. It is described by 10 parameters and it does
not include an expression for the sound speed, c, however it can be derived from the
following:

c2 = ∂P

∂ρ

∣∣∣∣∣
S

. (1.2.14)

The Tillotson EoS does not capture phase transitions, which could be important in
giant impact simulations where vapourization plays a role (Stewart et al., 2020). A
more modern approach is to use the ANEOS EoS (Thompson, 1970; Melosh, 2007;
Stewart et al., 2020), which is capable of covering a large range of densities and
temperatures, as well as being able to capture multiple phase transitions.

While SPH is most popular, some other methods have been used to simulate impacts,
such as Eulerian codes (Melosh, 1989). In SPH, particles represent a mesh which
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moves with the material, but no mass flows between cells. In Eulerian codes, the mesh
is fixed (or adaptive) and the material flows between the different cells (McGlaun,
1991). One benefit of SPH that is of particular relevance for giant impacts is that
the provenance of material is naturally tracked by the SPH particles, whereas mesh
codes need to have tracer particles added for this purpose.

1.2.2 Giant Impacts in SPH and SWIFT

The first giant impact SPH simulations were performed by Benz et al. (1986) focus-
ing on the formation of the Moon, using roughly 2000 particles. Technology and
improvements in the method has allowed a significant increase in number of particles
over the last decades. As of today, it is common to see 105 or 106 particle simulations
labeled as ‘high resolution’ (Genda et al., 2015; Gabriel et al., 2020), but SWIFT is
changing this expectation (Kegerreis et al., 2019).

SWIFT (SPH With Inter-dependent Fine-grained Tasking) is a hydrodynamics and
gravity code for astrophysics and cosmology in open development (swift.dur.ac.uk),
designed with the idea to run fast and scale well on shared/distributed-memory
architectures (Schaller et al., 2016). Physical limitations have kept the speed of
individual processor cores constrained for the last decade, hence supercomputers are
getting more parallel. It is crucial in this computing paradigm to share the work
evenly between every part of the computer so that no processors are sitting idle and
wasting time.

SWIFT can work as a replacement for the Gadget-2 code, which has been widely
used for cosmological and planetary impact simulations (e.g. Springel, 2005; Ćuk
& Stewart, 2012), with a >30× faster runtime on one representative cosmological
problem (Borrow et al., 2018). Although its scaling is not ideal, as shown in Figure 1.2
(V. R. Eke, private communication), SWIFT has a considerably faster time-to-
solution than Gadget-2 due to three strategies: an adaptative mesh used to ensure
that only the relevant particles are interacted in a given time-step; the task-based
parallelism used to ensure efficient load-balancing within a single node; and a domain
composition strategy that splits the work that must be performed by the simulation
between nodes using MPI (Borrow et al., 2018).

SWIFT has a modular structure that allows clean modifications to, for example, the
hydrodynamics scheme without affecting the parallelisation or any other component.
Every module can be switched in or out with configuration flags, meaning that
SWIFT can run cosmological, planetary, or any other simulation. In particular,
giant impact simulations are a challenge for balancing the tasks between different
nodes or cores. SWIFT was initially designed for cosmological simulations, where

http://swift.dur.ac.uk/
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Figure 1.2: Wall clock time per step as a function of the number of
threads for the SWIFT code in the COSMA 7 and 8 su-
percomputers (dashed and solid lines respectively) com-
pared to ideal scaling (dotted line) (V. Eke, private com-
munication). Different colors represent different number
of particles, from bottom to top: 106, 107, 107.5, 108,
and 108.5.

the average density is roughly constant across the simulation box. However for a
giant impact, almost all the mass is in the planet at the centre.

When we use a large simulation box in order to follow the ejected debris, the vast
majority of particles can easily occupy less than 0.01% of the volume. This makes
it harder to divide up particles between computing nodes, and requires much more
frequent communication. Overall it is much less efficient to use a large number of
cores, and difficult to fully utilise a large supercomputer to run a single planetary
simulation very quickly. Fortunately, giant impact studies do not usually rely on
a single high-resolution simulation, but instead on several simulations representing
different scenarios, where parameters such as the velocity of impact and speed are
changed. For this reason perfect scaling over multiple nodes is not essential, since
many impacts can be simultaneously run at the same time over one or a few nodes.
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1.3 Thesis Motivation and Outline

Giant impact simulations studies have barely considered spin in either the target or
impactor, with a few exceptions of a proto-Earth spinning in a direction parallel to the
orbital angular momentum, and recent attempts to model the outcome of simulations
using machine learning (Timpe et al., 2020). However, it is very common to obtain
from giant impacts a rapidly spinning planet, which could affect the outcome of a
subsequent giant impact millions of years later. It was my goal, not only to study
the effects of pre–impact spin in the case of the Moon forming impact, but also
provide the community with a tool to set up giant impact simulations with spinning
proto-planets.

With that tool in hand I was able to test if spin really had a minor role in giant
impacts, as it was previously thought. A good test would be a spinning impactor,
which effectively changes the total angular momentum of a canonical-like impact by
only ∼ 5%. No significant differences should be found if it had no major importance.
All these ideas are explained in Chapter 2.

After this first study and consequently understanding a bit better the tools I was
using, I found SPH had a major problem when dealing with planetary simulations.
The basic definition of the density field is smooth, but planets have density discon-
tinuities. This problem translates to artificial forces in the core–mantle boundary,
effectively repelling one material from another in these particular regions. The extent
of this problem was poorly understood since only one method has been previously
developed to tackle it. In Chapter 3 we propose a novel solution to this problem to
finally get rid of this systematic uncertainty.

Finally I went back to the canonical scenario, this time to perform for the very first
time simulations with a spinning proto-Earth whose angular momentum is misaligned
with the orbital angular momentum of the impactor. The goal of Chapter 4 is to
explore a mechanism to explain the Moon’s orbit inclination today, which, according
to some studies, should have been ∼ 10◦ or higher at the moment of the formation
of the Moon.
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Chapter 2

Pre-impact spin in Moon-forming collisions

We simulate the hypothesised collision between the proto-Earth and a Mars-sized
impactor that created the Moon. Amongst the resulting debris disk in some impacts,
we find a self-gravitating clump of material. It is roughly the mass of the Moon,
contains ∼ 1% iron like the Moon, and has its internal composition resolved for the
first time. The satellite contains mainly impactor material near its core but becomes
increasingly enriched in proto-Earth material near its surface. The formation of this
Moon-sized clump depends sensitively on the spin of the impactor. To explore this,
we develop a fast method to construct models of multi-layered, rotating bodies and
their conversion into initial conditions for smoothed particle hydrodynamical (SPH)
simulations. We use our publicly available code to calculate density and pressure
profiles in hydrostatic equilibrium, then generate configurations of over a billion
particles with SPH densities within 1% of the desired values. This algorithm runs
in a few minutes on a desktop computer, for 107 particles, and allows direct control
over the properties of the spinning body. In comparison, alternative relaxation or
spin-up techniques take hours on a supercomputer and the structure of the rotating
body cannot be known beforehand. Collisions that differ only in the impactor’s
initial spin reveal a wide variety of outcomes: a merger, a grazing hit-and-run, or
the creation of an orbiting proto-Moon.

2.1 Introduction

From planets and stars to dark matter haloes, self-gravitating spinning objects are
common in astronomy. Their spin reflects the particular history of gravitational
torques experienced by the material that they contain. By studying the angular
momenta of astronomical systems, we can learn about the processes through which
these objects formed.

As self-gravitating objects can only spin so fast without breaking apart, the orbital
angular momentum of accreting material typically dominates over that present due to
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spin. For instance, the final stage of planet formation involves giant impacts between
planet-sized bodies (Chambers & Wetherill, 1998; Clement et al., 2019), and the
pre-impact spins are usually ignored despite the fact that rapidly rotating bodies
are a common outcome of such collisions (Kokubo & Genda, 2010; Li et al., 2020).
Examples of this include attempts to explain Uranus’ rotation axis using orbital
angular momentum brought by a 2–3M⊕ object (Slattery et al., 1992; Kegerreis
et al., 2018), and models in which the angular momentum of the Earth–Moon system
results from the impact of a non-rotating Mars-sized body, Theia, and a non-rotating
proto-Earth (Canup & Asphaug, 2001).

The Moon-forming impact is one planetary example for which pre-impact spin has
received consideration. Canup (2008) showed how pre-impact rotation changed the
collision outcome relative to the canonical impact studied by Canup & Asphaug
(2001). The isotopic similarity of the Earth’s mantle and lunar samples (Wiechert
et al., 2001) provoked attempts to place a higher fraction of proto-Earth material
into the protolunar disk by starting with a spinning target (Ćuk & Stewart, 2012;
Lock & Stewart, 2017; Wyatt et al., 2018). Initial conditions for these numerical
simulation studies were created by first making a spherical planet, providing it with
a small angular velocity, letting it relax in a smoothed particle hydrodynamical
(SPH) simulation, then repeating this process until the desired angular velocity was
reached (Ćuk & Stewart, 2012, supplementary materials). This method is slow and
leads to pre-impact planets with structures that cannot be known until the end of
this process.

Interest in the canonical impact model has been revived by the recent detection
of oxygen isotope heterogeneity in returned lunar samples, where the signature of
Theia becomes increasingly apparent in samples derived from deeper in the lunar
mantle (Cano et al., 2020). Of particular relevance for our study are the frequently
sighted clumps of SPH particles amongst the post-impact debris (e.g. Benz et al.,
1987). These clumps form in the tidal arm of debris coming from the part of Theia
that does not directly strike the proto-Earth (Canup, 2004). However, concerns over
artificial clumping of SPH particles in shear flows (Imaeda & Inutsuka, 2002) and
numerical convergence of results during the chaotic post-impact evolution (Canup
et al., 2013; Asphaug, 2014) have left uncertain whether or not this clump could be
the proto-Moon. Even when clumps were present in high resolution SPH simulations,
they were most notable for their effect on the material in the smoother debris disk
because their orbits led them to collide with the Earth in a matter of hours (Hosono
et al., 2017).

Investigating the effect of spin on planetary collisions requires many simulations in
which both the initial spin and internal composition are reliably generated. The
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challenge of finding an elegant and efficient way to construct initial conditions
has significant overlap with attempts to model the internal structures of gas giant
planets using their measured gravitational moments. Much of this work has made
use of the concentric Maclaurin spheroid (CMS) method introduced by Hubbard
(2013), where a uniformly spinning planet is described as a superposition of constant-
density spheroids – for which closed analytical solutions exist for the moments of
the gravitational potential (Hubbard, 2012). This method has been developed to
improve precision at high spin rates (Kong et al., 2013; Lock & Stewart, 2017),
include differential rotation on cylinders (Wisdom & Hubbard, 2016) and increase
the number of spheroids that can be included for a given computing time (Militzer
et al., 2019). For example, measurements of the gravitational moments from the
Juno mission (Iess et al., 2018) have been used in conjunction with CMS models to
infer the extent of the differential rotation of Jupiter’s atmosphere (Guillot et al.,
2018). The situation for Saturn is complicated by the presence of extensive rings,
but the CMS method has also been used to analyse recent Cassini measurements
and study the planet’s more extensive differential rotation (Iess et al., 2019).

In this chapter, we present a fast algorithm that calculates the internal density profile
of a rotating object composed of any prescribed materials in hydrostatic equilibrium,
and places particles into the body such that very little, if any, relaxation is required
for numerical simulations. The method is based on the CMS technique without
differential rotation, but it allows arbitrary equations of state to be used for multiple
material layers and exploits an analytical expression for the gravitational potential
rather than using a slower and less accurate truncated expansion of Legendre polyno-
mials. Our open-source code is a flexible tool that has been written in python under
the project name WoMa (World Maker). It is described in §2.2, tested in §2.3 and
publicly available at https://github.com/srbonilla/WoMa. In §2.4 we use WoMa
to construct initial conditions for a set of giant impacts between the proto-Earth
and Mars-sized impactors with a variety of rotation rates. Conclusions are presented
in §2.5.

2.2 Initial conditions generation

In this section, we describe our method for creating particulate realisations of uni-
formly spinning spheroids. It entails: (1) iteratively solving the equation of hydro-
static equilibrium to create an interior model of the spinning object, and (2) sampling
the three-dimensional solution with particles, arranged such that their SPH densities
match the desired values.

https://github.com/srbonilla/WoMa
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2.2.1 Interior model

Within the reference frame of a body spinning about its z-axis with constant angular
velocity Ω, the equation of hydrostatic equilibrium can be written using cylindrical
coordinates, ~r = (rxy, α, z), as

1
ρ
∇P = −∇φ− Ω2rxy r̂xy , (2.2.1)

where P (rxy, z), ρ(rxy, z), and φ(rxy, z) represent the azimuthally symmetric pressure,
density, and gravitational potential solution to the Poisson’s equation ∇2φ = 4πGρ
(where G is the universal gravitational constant). The third term represents the
centrifugal force and is directed away from the rotation axis. The right hand side
of equation Equation 2.2.1 can be viewed as the negative gradient of an effective
potential, Ψ, that includes the gravity and angular momentum barrier terms:

Ψ = φ+ 1
2Ω2r2

xy . (2.2.2)

To solve equation Equation 2.2.1 we also need a sufficient selection of the following
quantities to make the problem well-defined: an equation of state (EoS), P (ρ, T ),
and a temperature–density relation, T (ρ), for each material; the pressure, Ps, density,
ρs, and temperature, Ts, at the surface of the object; the total mass, M , radius of
the non-rotating solution, RΩ=0, and locations of any boundaries between distinct
material layers in the non-rotating body, RB,Ω=0. Note that not all of these variables
need to be specified as inputs for WoMa. The EoS, the temperature-density relation,
and two of the three boundary conditions (Ps, ρs, and Ts) must always be specified.
However, various combinations of the other quantities can be used as inputs; For
a one-layer planet, WoMa can determine the total mass given the radius and vice
versa. For a two-layer planet, there are three quantities of interest: total mass,
radius, and boundary between materials. WoMa can determine one given the other
two as inputs. In addition it can determine boundary and radius given the masses of
the two layers. For a three-layer planet, the quantities of interest are boundary core-
mantle, boundary mantle-atmosphere, total mass, and radius. WoMa can determine
one given the other three as inputs. It can also determine the two boundaries given
the total mass, radius and moment of inertia of the planet. All options are described
and documented at https://github.com/srbonilla/WoMa.

The solution to equation Equation 2.2.1 for a constant density object is the Maclaurin
(oblate) spheroid (Tassoul, 1978), and more general solutions can be described as
systems of overlapping concentric Maclaurin spheroids (Hubbard, 2013). Then,
the density at any point inside the planet is the sum of the densities of all of the

https://github.com/srbonilla/WoMa
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spheroids containing that point. As the isodensity surfaces are all spheroids, we can
describe the full three-dimensional solution to equation Equation 2.2.1 using just
the equatorial and polar density profiles.

Our approach to solving equation Equation 2.2.1 begins by finding the density profile
for the spherically symmetric, non-rotating (Ω = 0) case. This solution, ρΩ=0(r),
is evaluated in two one-dimensional arrays, one in each of the equatorial and polar
directions. These arrays both contain Ng elements and span out to rxy = 1.5RΩ=0

and z = 1.2RΩ=0. These maxima can be increased, if needed, for very rapidly rotating
objects. ρi=0(rxy, z) is used to compute the first value of the effective potential, Ψ1,
via

Ψi(rxy, z) = G
y ρi−1(rxy, z)

|~r − ~r′|
d3r′ + 1

2Ω2r2
xy . (2.2.3)

The iteration loop is closed by updating the density, ρi(rxy, z), as the solution to

1
ρi(rxy, z)

∇Pi(rxy, z) = −∇Ψi(rxy, z) , (2.2.4)

where Pi(rxy, z) = P (ρi, Ti) is determined by the EoS. These iterations do not
conserve the total mass of the object. However, WoMa will loop over different MΩ=0

values, or whichever variable is relevant, until a solution is found with the desired
mass.

The iterative process is continued until the mean fractional difference between the
two last equatorial density profiles falls below a specified threshold. This corresponds
to c < 10−3, where the convergence statistic is defined as

c ≡ 1
Ng

Ng∑
j=1

|ρi(rxy,j)− ρi−1(rxy,j)|
ρi−1(rxy,j)

, (2.2.5)

and the average is determined using only elements j for which ρi(rxy,j) and ρi−1(rxy,j)
are both non-zero.

For uniform-density oblate spheroids, the three-dimensional integral to find the
gravitational potential in equation Equation 2.2.3 can be recast as a one-dimensional
integration. Defining the semi-major and semi-minor axes as R and Z respectively,
the gravitational potential due to an oblate spheroid of constant density ρ, can be
written as (Kellogg, 1929)

φ(rxy, z) = −GρπR2Z
∫ ∞
λ

(
1−

r2
xy

R2 + s
− z2

Z2 + s

)
ds√
ϕ(s)

, (2.2.6)

where ϕ(s) ≡ (R2 + s)2(Z2 + s), and λ = 0 if (rxy, z) lies within the spheroid, or the
biggest root of the equation f(s) = 0 otherwise, where
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f(s) ≡
r2
xy

R2 + s
+ z2

Z2 + s
− 1 . (2.2.7)

Equation Equation 2.2.6 can be solved analytically along the axis rxy = 0 and in the
plane z = 0, both inside and outside the spheroid, to give

φ(z)
A

=
[

2z2

(R2 − Z2)
√
Z2 + t

+ 2
(
R2 + z2 − Z2

(R2 − Z2)3/2

)
tan−1 γ

]t→∞
t=λ

(2.2.8)

for rxy = 0, and

φ(rxy)
A

=
 −r2

xy

√
t+ Z2

(R2 + t) (R2 − Z2) +
2R2 + 2Z2 − r2

xy

(R2 − Z2)3/2 tan−1 γ

t→∞
t=λ

(2.2.9)

for z = 0, where A ≡ −GρπR2Z and γ2 ≡ (t+Z2)(R2−Z2). We use this analytical
solution to calculate the gravitational potential rapidly at any point in space, rather
than the usual truncated expansion in Legendre polynomials.

2.2.2 Particle placement for SPH simulations

In order to simulate a spinning body using a particle-based method like SPH, the
solution for the density, ρ(rxy, z), found in §2.2.1 must be converted into an appro-
priate set of particles. Desirable features of such a partitioning of the volume are
that the particles should have very similar masses, no large-scale symmetries should
be introduced that are not present in the body itself, and the particle distribution
should be locally homogeneous to avoid introducing scatter in the densities of the
particles. For spherically symmetric objects, these aims have led to approaches that
place particles in nested spherical shells (Saff & Kuijlaars, 1997; Raskin & Owen,
2016; Reinhardt & Stadel, 2017; Kegerreis et al., 2019). In this subsection we build
on the work of Kegerreis et al. (2019), generalising their stretched equal-area (SEA)
algorithm to the case where particles are placed into spheroidal isodensity shells.

We start by using SEAGen (Kegerreis et al., 2019) to create a spherical object with
a radial density profile matching the equatorial profile of our desired spheroid and
containing the desired number of particles, N . SEAGen arranges I spherical shells
of particles such that the final one lines up with the edge of the body and any
interior boundaries between different material layers are similarly accommodated.
The midpoints of these shells have radii Ri representing the semi-major axes of the
shells of particles in our desired spheroidal object. The semi-major and semi-minor
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z

θ

Figure 2.1: Illustration of the fractional volume enclosed within a
polar angle θ, V (< θ), for a spheroidal shell, which dic-
tates the latitudinal arrangement of particles required
to represent a constant-density spheroidal shell.

axis boundaries of the spheroidal shells are given by

Ri,out = Ri +Ri+1

2 , Zi,out = Zi + Zi+1

2 ,

Ri,in = Ri +Ri−1

2 , Zi,in = Zi + Zi−1

2 ,

(2.2.10)

where, by definition, Ri,out = Ri+1,in and Zi,out = Zi+1,in. Using the solution to
equation Equation 2.2.1 calculated in §2.2.1, the total mass in each spheroidal shell,
Mi can be computed. The number of particles in each spheroidal shell, Ni, is then
set as the nearest integer to (Mi/M)N , to ensure that the total number of particles
in the spheroid is as close as possible to the desired value N .

The SEAGen algorithm is employed again to create I spherical shells that are
randomly rotated with respect to one another, placing Ni particles with mass Mi/Ni

into the ith shell. To transform from spherical to spheroidal shells, each particle
is: (1) shifted in polar angle, θ, to reproduce the cumulative mass (or equivalently,
volume or particle number) fraction distribution of the spheroidal shell, fi(< θ),
then (2) mapped at fixed polar and azimuthal angle to place it onto the required
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spheroidal shell.

SEAGen provides us with spherical isodensity shells of particles, which have a
cumulative fractional number that satisfies

fsphere(< θ) = (1− cos θ) /2. (2.2.11)

The corresponding function for the ith isodensity spheroidal shell, fi(< θ), is more
complicated because the shell has a θ-dependent radius and thickness. For the ith

spheroidal shell, bounded by the spheroids with semi-major and semi-minor axis
pairs (Ri,in, Zi,in) and (Ri,out, Zi,out), the cumulative enclosed volume, as illustrated
in Figure 2.1, can be written as

Vi(< θ) =
∫ 2π

0
dφ′

∫ θ

0
sin θ′

∫ ri,out(θ′)

ri,in(θ′)
r′

2
dr′dθ′

= 2π
3

∫ θ

0

(
ri,out(θ′)3 − ri,in(θ′)3

)
sin θ′dθ′ ,

(2.2.12)

where ri,j(θ′) =
(

sin2(θ′)
R2
i,j

+ cos2(θ′)
Z2
i,j

)−1/2

, with j = {in , out}, is the distance from

the centre of the coordinate system to the inner or outer spheroid surface, at a given
polar angle. The solution of Equation 2.2.12 is

Vi(< θ) = 2π
3

[√
2
(
−

R2
i,out

Fi,out(θ)
+

R2
i,in

Fi,in(θ)

)
cos θ

+ R2
i,outZi,out −R2

i,inZi,in
]
,

(2.2.13)

where
Fi,j(θ) =

√
R−2
i,j + Z−2

i,j +
(
−R−2

i,j + Z−2
i,j

)
cos 2θ .

As the shell is assumed to have a uniform density, we can infer that the cumulative
fractional number of particles in the spheroidal shell should satisfy fi(< θ) = Vi(< θ)/Vi(< π).

Having determined fi(< θ) for each shell and fsphere(< θ), we can now define the
polar angle mapping of the particles on a SEAGen-generated spherical shell to the
corresponding spheroidal shell via

θ → f−1
i (fsphere(< θ)) = f−1

i

(
1− cos θ

2

)
. (2.2.14)

With the particles now distributed in a uniform and unbiased way with respect to
the polar angle, the final step is to map their radial positions from the spherical shell
that SEAGen placed them on to the desired spheroidal one, using

r →
(

sin2(θ)
R2
i

+ cos2(θ)
Z2
i

)−1/2

r. (2.2.15)
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Table 2.1: Properties of the planets used as input to WoMa’s iterat-
ive solution of Equation 2.2.1 for the one- and two-layer
test cases.

Property One-layer Two-layer
Mass M [M⊕] 0.640 1
Radius RΩ=0 [R⊕] 1 1
Boundary RB,Ω=0 [R⊕] - 0.481
Period TΩ [hours] 3.25 2.60
Surface density ρs [kg m−3] 2450.1 2511.8
Surface pressure Ps [Pa] 105 105

Surface temperature Ts [K] 3000 300

2.3 Tests of the initial conditions generation

In this section we test the WoMa algorithm described in §2.2, in particular the
iterative method to solve the equation of hydrostatic equilibrium for a uniformly
rotating spheroid, and the technique to distribute particles to produce a low-noise
representation of the solution. To demonstrate the capabilities of WoMa, we con-
struct one- and two-layer planets using from 105 particles – as are commonly used
in SPH simulations of planetary giant impacts – up to 109 particles, an order of
magnitude more than the highest numbers to date (Hosono et al., 2017; Kegerreis
et al., 2019, 2020), and evolve them to check how relaxed these initial conditions
actually are.

2.3.1 Finding the dynamical equilibrium configuration

WoMa has been written in a modular way such that different EoS and temperature-
density relations can be readily included. For our test planets we use publicly
available EoS: SESAME basalt (Lyon & Johnson, 1992) to describe the material
comprising the one-layer planet, and Tillotson iron and granite (Tillotson, 1962;
Melosh, 1989) for the two-layer planet core and mantle respectively. The one-layer
planet is assumed to be isothermal, whereas T = kρ2.5 is chosen for illustrative
purposes for both materials of the two-layer test case. The other parameters and
boundary conditions describing the non-spinning objects, from which WoMa iterates
to find the rotating bodies, are given in Table 2.1. Figure 2.2 shows, with solid
lines, the radial density profiles for the resulting spherically symmetric solutions.

We define the maximally-spinning body to be the most rapidly uniformly rotating
one for which the centrifugal force does not overcome gravity at any point within the
object. If this requirement is violated within our uniformly rotating body, then the



2.3. Tests of the initial conditions generation 29

0.00 0.25 0.50 0.75 1.00 1.25
Distance from the centre [R⊕]

0

2000

4000

6000

8000

10000

12000

14000

D
en

si
ty

,
ρ

[k
g

m
−

3
]

Test case
1 layer

2 layer

Profile
Spherical

Spinning

Profile
Spherical

Spinning

Figure 2.2: Analytically–solved density profiles for the spherical and
spinning planets. Solid lines represent the initial spher-
ical models, and dashed lines represent the polar and
equatorial density profiles, left and right respectively, of
the corresponding uniformly rotating fluid planets that
solve equation Equation 2.2.1. Note that the kinks in
the profile of the one-layer planet reflect phase changes
in the SESAME basalt EoS.

force resulting from the pressure gradient would need to act inwards, leading to an
unphysical situation. For our solid body rotating one- and two-layer planets, these
maximum spins correspond to periods of TΩ,min = 3.03 and 2.27 hours respectively.
We choose very short periods of TΩ = 3.25 hours for the one-layer test, and TΩ = 2.60
hours for the two-layer case, in order to yield significantly flattened objects. Using
grids with Ng = 105 elements, the iterative procedure within WoMa finds the
equilibrium configurations for our test planets with their respective rotation periods.
The polar and equatorial density profiles are shown, for both cases, using dashed
lines in Figure 2.2.

It is important to demonstrate the convergence of this iterative scheme. To this
end, we use the convergence statistic defined in equation Equation 2.2.5, applied to
the Ng-sized equatorial density array. This is simply computing the mean fractional
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Figure 2.3: Convergence of the equatorial density profile, measured
by the statistic c defined in equation Equation 2.2.5, as
a function of iteration number. For the one-layer test we
use two versions of the basalt EoS with either bilinear
or bicubic interpolation of the SESAME tables. Bicubic
interpolation ensures that the derivatives of P (ρ, T ) are
continuous at every given ρ and T and produces better
convergence. c < 10−3, beneath the dotted line, is more
than sufficient for making SPH initial conditions such
as those we use here, and is rapidly achieved by WoMa.

change in the equatorial density profile over the previous iteration. The evolution
with iteration number of the convergence statistic is shown in Figure 2.3. For the
purposes of typical numerical simulations, the precision necessary is reached in only a
few iterations, with both the one-and two-layer cases able to converge to much higher
precision provided that a differentiable EoS is employed. For a bilinear interpolation
of the SESAME basalt EoS table, Figure 2.3 shows that the convergence reaches a
floor, albeit one in this instance that is still sufficiently low for our purposes. The
height of this floor depends somewhat on the coarseness of the computational grid,
and can be reduced significantly using a smoother interpolation, such as the bicubic
one shown in Figure 2.3 or the often-used rational function interpolation. For the
results shown here, Ng = 105, and 15 iterations take under 5 minutes to compute
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on a common desktop computer. This resolution will suffice for the mass of the
innermost spheroid to be smaller than the mass of one particle when placing up to
∼ 1011 particles.

2.3.2 Particle placement for SPH simulations

To test that the particle placement algorithm leads to low-noise representations of the
test planets we use WoMa to create particle representations of both cases using 105,
107, and 109 particles. We test the accuracy of these representations by computing
the particles’ smoothed densities using the SPH code SWIFT (www.swiftsim.com,
Schaller et al., 2016) and 45 nearest neighbours. The distributions of fractional
density errors are shown in Figure 2.4. These distributions are all sharply peaked
around zero, with full-widths at half-maximum of the peaks of 0.015, 0.012, and
0.005 for the 105, 107, and 109 particle realisations respectively. Better numerical
resolution means decreased SPH smoothing lengths that sample a smaller range of
densities, and lower stochastic errors in the sampled densities.

In addition to the bulk of the particles that lie in the central peak of the density
error distribution, Figure 2.4 shows some particles whose densities differ by up to
40%. These outliers arise at the density discontinuities of the outer surface and
inner boundary between materials, and are an unavoidable consequence of how the
standard SPH formulation computes densities by averaging over a number of nearby
neighbours – a well-known issue when performing SPH computations of a density
profile with discontinuities (Woolfson, 2007; Reinhardt & Stadel, 2017). Our choice
of SPH formulation with smoothed densities is entirely responsible for this part of the
error distribution, not the particle placement being performed by WoMa. Figure 2.4
shows that using more particles decreases the fraction of density outliers, because
in these cases a smaller fraction of the particles lie near to boundaries.

We now test how close to equilibrium our test planets are by using the SWIFT code
to evolve them both, for the three resolution levels, in a non-rotating reference frame.
Each isolated rotating body is evolved to a simulation time of 20,000 s, i.e. just over
5.5 hours. This is close to 2 full rotations for both planets, and is several times the
time taken for a sound wave to traverse the planet, so will be long enough to detect
signs of disequilibrium. We measure a rotation period and a residual velocity for
each particle, i. These are calculated as

TΩ,i = 2π
Ωi

, where Ωi = vα,i√
x2
i + y2

i

, and

~vres,i = ~vi − ~Ω× ~ri ,
(2.3.1)

http://www.swiftsim.com
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i.e. the SPH velocity minus the velocity each particle should have according to
its position and the chosen angular velocity. The evolution of the median of the
particle rotation periods, normalised by the desired period, and the median residual
speed relative to the escape speed are shown in Figure 2.5, along with the 1st and
99th percentiles. The distribution of particle periods has a median that matches
the desired value to within 1% at all times, and very low scatter by the end of the
simulations in all cases. Median residual speeds never reach 2% of the escape speed,
and barely exceed the 1% level for the two higher resolutions. We define a set of
initial conditions as “relaxed" when the median particle speed is below 1% of the
escape speed. In both the one- and two-layer cases, higher resolutions lead to shorter
relaxation times.

We also compute the fractional density error distribution at the end of the simulation.
Full-widths at half-maximum of the peaks are at 0.007, 0.004, and 0.006 for the one-
layer test case, and 0.016, 0.008, and 0.019 for the two-layer test case, for the 105,
107, and 109 particle realisations respectively. The final density profiles, excluding
the boundaries, are within 2% of the desired, analytically–computed density for
the one- and two-layer tests with 105 particles, and within 1% for the two higher
resolutions.

2.4 The effects of a spinning Theia

In this section, we present a set of five canonical Moon-forming giant impacts where
the impactor Theia is given a different spin in each simulation. The full parameter
space for such a study includes the spin angular velocity vectors of both proto-Earth
and Theia, but in this initial study we restrict ourselves to situations with the
spin and orbital angular momenta either parallel or anti-parallel and the target not
initially rotating. Collisions between rotating protoplanets have been considered
previously, both for the Moon-forming collision (Canup, 2008; Ćuk & Stewart, 2012;
Nakajima & Stevenson, 2015; Wyatt et al., 2018) and terrestrial planets more gener-
ally (Timpe et al., 2020), but not at particularly high numerical resolution. Recent
studies (Hosono et al., 2017; Kegerreis et al., 2019) have shown that at least 107

particles can be required to converge on even large-scale quantities, like the rotation
rate of the planet or the mass of the resulting debris disk. The combination of
WoMa and SWIFT enable us to produce better resolved simulations to investigate
how Theia’s spin can alter the outcome of the canonical Moon-forming collision.

We consider an impact between a target proto-Earth of mass 0.887 M⊕ and an
impactor, Theia, of mass 0.133 M⊕. Both are differentiated into an iron core and
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Figure 2.7: Snapshots at 100 hours of simulation time for simula-
tions with lTh = −1

2 , −
1
4 , 0, 1

4 , and 40 hours for the
lTh = 1

2 simulation. Blue lines represent the traject-
ories of the resulting clumps, and the particle colours
are the same as in Figure 2.4. The inset boxes show
regions of side length 3 R⊕ centred on the target and
1.2 R⊕ for the clump in each panel. An animation
of the early evolution of these impacts is available at
icc.dur.ac.uk/giant_impacts.

http://icc.dur.ac.uk/giant_impacts/woma_impacts_anim.mp4
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rocky mantle, constituting 30% and 70% of the total mass respectively modelled
using the Tillotson (1962) iron and granite equations of state. The Tillotson EoS
is widely used for SPH impact simulations due to its computationally convenient
analytical form (Stewart et al., 2020). However it does not treat phase boundaries
or mixed phases correctly. Since the focus of this chapter is the overall range of
outcomes due to the spin of an impactor, the details of the EoS are not expected to
have a significant effect on the main results. The velocity at impact is chosen to be
the mutual escape speed, the angle of impact is set as 45◦, and the simulation begins
1 hour prior to the time of contact between the two bodies in order to model the
tidal distortion of the bodies just before impact. We give the iron and granite layers
a temperature–density relation of T ∝ ρ2. With a 500 K surface temperature on
both bodies, this yields a core temperature for the proto-Earth of ∼ 5000 K, similar
to the Earth today. All five simulations are evolved to 100 hours, and have a mass
resolution of 107 particles per Earth mass.

The only difference between our simulations is the rotation rate of Theia. The
minimum period available is 2.6 hours, which translates to a maximum spin angular
momentum of LTh,max = 0.15 LEM, where LEM = 3.5× 1034 kg m2 s−1 is the current
angular momentum of the Earth–Moon system. We set the spin angular momentum
of Theia, LTh, to be lTh ≡ LTh/LTh,max = −1

2 , −
1
4 , 0, 1

4 , and
1
2 for our five simulations.

These correspond to rotation periods for the more and less rapidly spinning Theias
of 3.2 and 5.1 hours. The orbital angular momentum of the colliding systems is
1.25LEM, which is only ∼ 0.05LEM larger than the values of the successful canonical
impacts found by (Canup & Asphaug, 2001).

Figure 2.6 shows cross sections of the moment of contact and a snapshot 4 hours
later for each of the simulations. The most striking feature at the moment of impact
is the difference in Theia’s tidal distortion, which would have been absent had we
started the simulation at the point of contact, as is often done in planetary giant
impact studies (Canup, 2004). The tidal bulge of the more rapidly counter-rotating
impactor (lTh = −1

2) has spun significantly ahead of the line joining the centres of
the proto-Earth and Theia, stretching Theia along its direction of motion. For the
rapidly co-rotating case (lTh = 1

2), Theia’s spin shifts the tidal distortion to point
along the line connecting the centres of the bodies. Four hours after first contact,
the counter-rotating impacts are near to completing their mergers, whereas the non-
spinning and co-rotating largest remaining objects have drifted away from the origin
of the coordinate system, chosen as the centre of mass of the simulation, reflecting
the presence of significant unaccreted mass. The impactor core and mantle material
that has already been deposited into the target is found towards the edges of the
corresponding layers of the target, with more mixing between the two mantles.
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Figure 2.8: Radial variation of the mass fraction of target mantle
present in the orbiting clumps after 100 hours, for the
l = 0 (blue) and l = 1

4 (orange) simulations.

Later snapshots of the five simulations are shown in Figure 2.7. Snapshots are shown
at 100 hours of simulation time except for the lTh = 1

2 case, which is at 40 hours to
capture the highlighted clump before it flies out of frame. All lTh <

1
2 simulations

place the majority of the mass of Theia either into the Earth or within the Roche
radius (∼ 3 R⊕), with much of Theia’s core blanketing that of the proto-Earth. The
Roche radius is the distance from a celestial object, in our case the post-impact
Earth, at which a second self-gravitating body with negligible bulk tensile strength
in a circular orbit would break apart due to tidal forces. This quantity is computing
by balancing the self-gravitational force of the second body at its point closest to
the main body with the tidal force at that same point due to the first body:

RRoche = 2.44RM

(
ρM
ρm

)1/3

, (2.4.1)

where RM , ρM are the radius and density of the primary celestial body, and ρm is
the density of the secondary celestial body (Roche, 1849).

The lTh = 0 and 1
4 impacts lead to a large, self-gravitating clump within the debris

disk that extends beyond the Roche radius. The formation of this clump is sensitive
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Figure 2.9: Total bound mass, excluding clumps, outside a cylinder
with the Roche radius centred on the post-impact Earth,
as a function of Theia’s initial spin angular momentum.
The different colours represent the different material
components as described in the legend. All results are
at a simulation time of 100 hours.

to the initial spin of Theia, because both counter-rotating impactor scenarios end in
mergers and the rapidly corotating Theia produces a hit-and-run collision. In order of
increasing lTh, the final gravitationally bound mass is 0.988, 0.987, 0.987, 0.985, and
0.955 M⊕ out of the total of 1.020M⊕. The corresponding total angular momenta, in
units of LEM, evolve as follows: 1.17→ 1.17, 1.21→ 1.19, 1.25→ 1.21, 1.28→ 1.23
and 1.32→ 0.78. In the lTh = 1

2 case, the largest of the many escaping clumps has
a mass of 0.0076 M⊕, is taking away 0.047 LEM of the angular momentum and is
53.5 R⊕ away from Earth at 40 hours, beyond the edge of the region shown in the
lower right-hand panel of Figure 2.7.

The clumps left orbiting the Earth after impact in the simulations with lTh = 0 and 1
4

have masses of 0.010 and 0.020 M⊕ respectively – 0.813 and 1.626 times the mass of
the present-day Moon. Their orbits have periods of 40 and 120 hours, eccentricities
of 0.6 and 0.8, periapses of ∼ 4.6 R⊕ and 2.8 R⊕, and spin periods of 10 and 40
hours respectively. The periapse of the lTh = 0 clump is well outside the Roche
radius, so this proto-Moon, while enduring tidal distortion as shown in Figure 2.7,
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should survive. For the lTh = 1
4 clump, the periapse lies just within the Roche

radius of 3 R⊕, but if the orbit circularises in the same way as can be seen for the
lTh = 0 proto-Moon, then this may enable a portion of it also to survive as a coherent
proto-Moon.

The orbiting clump is resolved with over 105 particles in the lTh = 0 and 1
4 simulations,

allowing us to study in detail its composition. Both clumps have ∼ 29% of their
mass coming from the proto-Earth’s mantle, ∼ 1% from Theia’s iron core, and the
remaining ∼ 70% from Theia’s mantle. No iron was present in the long-lived clumps
found in the study of Canup (2004). This may be the result of small differences in the
impact scenarios or simulation details, but the similarity between our two different
clump iron core mass fractions is striking, particularly given that the iron core of the
Moon itself has been inferred to be 1–2% of the Moon’s total mass (Viswanathan
et al., 2019).

Figure 2.8 shows how the mass fraction of proto-Earth increases linearly towards the
surface of the clump. The fractional distance from centre to surface is computed using
an ellipsoidal surface defined by the inertia tensor to account for the tidal distortion
of the lTh = 0 proto-Moon. Roughly equal amounts of Theia and proto-Earth are
found at the surface of the clump; quite different from the overall 70/30 split. The
results for the clumps in the lTh = 0 and 1

4 simulations continue to be very similar.
This distribution of material is primarily a result of the geometry of the impact and
how the central part of the proto-Moon originates from a reasonably coherent chunk
of Theia that remains self-bound throughout the impact. Any long-term evolution
of this distribution over time, due to convection and other mixing mechanisms, is
not considered here. However, if subsequent mixing between proto-Earth and Theia
material were incomplete, then this radial variation could establish a relation between
the isotopic difference between these two bodies, and that measured between the
Earth and Moon. The challenge of interpreting oxygen isotope data means that
there is an ongoing debate as to whether the isotopic compositions of lunar samples
and the Earth are indistinguishable (Young et al., 2016) or not (Herwartz et al.,
2014; Greenwood et al., 2018; Cano et al., 2020).

Outside the Roche radius, in addition to any large clumps there is a diffuse debris
disk produced in each of our five simulations. The composition of these disks is
shown in Figure 2.9, split by material and provenance. There is more mass in the
debris disk than in resolved orbiting clumps in the two counter-rotating scenarios,
with a more massive disk being formed by the impact with the less rapidly counter-
rotating Theia. For the disks formed in the lTh = 0 and 1

4 simulations, the overall
bound mass exterior to the Roche radius grows with increasing lTh. However, the
balance shifts from having a more massive disk to a more massive clump such that
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the disk mass decreases with increasing lTh in this regime. As the clump, or at least
its centre, is rich in Theia, the debris disk becomes less dominated by Theia, with
almost equal amounts of target and impactor mantle when lTh = 1

4 . Thus, the disk
material that may subsequently be accreted by the orbiting clump has a composition
that is very similar to that already present at the surface of the clump.

When performing the same simulations with 106 particles we find the outcomes to
be significantly different to those presented here for the simulations containing 107

particles. For instance, the simulation with lTh = 0 does not yield an orbiting clump;
instead it creates a merger similar to the lTh = −1

4 and lTh = −1
2 simulations. Also,

while the composition of the mass in bound orbits exterior to the Roche radius is
robust to this change in numerical resolution, the amount of this material is ∼ 45%
larger in the higher resolution case. A summary of the properties of the debris disks
and the resulting orbiting satellites is shown in Table 2.2.

2.5 Conclusions

We have presented a method to compute the hydrostatic equilibrium state of a
uniformly rotating compressible fluid object, described as a set of concentric oblate
spheroids, each with constant density (§2.2.1). We then described an adaptation
of the SEAGen algorithm of Kegerreis et al. (2019) that places particles to match
precisely this equilibrium configuration (§2.2.2). The combination of these two
tasks is performed by our new, open-source code WoMa, implemented in python and
publicly available at https://github.com/srbonilla/WoMa and the python module
woma can be installed directly with pip. We tested its capabilities using simulations
containing up to just over 109 SPH particles that were evolved with the SWIFT code.
Relative to previous studies that make particle-based models of rotating planets by
incrementally adding rotation between repeated relaxation simulations, our method
has the advantages of being fast and of allowing precise control over the structure
of the rotating planet to be simulated.

We used this new technique to study the effect of different rotation rates of Theia
in 107-particle simulations of a canonical Moon-forming impact. Counter-rotating
Theia’s produced quick mergers, whereas a rapidly corotating Theia led to a hit-
and-run collision with numerous unbound clumps escaping from the Earth. In the
zero spin and slowly corotating Theia cases, a large clump was left orbiting the
Earth after 100 hours. The mass and composition of the resulting debris disk also
varies systematically with the initial spin of Theia. Our findings confirm previous
results, using lower resolution studies, that the outcomes of planetary giant impacts

https://github.com/srbonilla/WoMa
https://pypi.org/project/woma/
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can depend strongly on the initial spins of the colliding bodies. Therefore, N-body
simulations that aim to trace the formation of terrestrial planetary systems using
models for the aftermath of giant impacts should track the spin of the forming
planets.

The simulation with Theia not spinning initially yields an orbiting proto-Moon with
a periapse at 4.5 R⊕, well outside the Roche radius of ∼ 3 R⊕. It has a mass of
0.01 M⊕ ' 0.81 M$, of which ∼1% is an iron core, and while its overall fraction
of proto-Earth material is only 30%, a radial gradient in material provenance means
that ∼50% of the surface material originates in the proto-Earth. This fraction is
similar to that in the Roche-exterior debris disk surrounding the Earth. Compared
with previous studies of the canonical impact, which typically found a proto-Earth
fraction of only ∼30% in the potential Moon-forming material, our value is higher
because some of Theia is already hidden deep within the proto-Moon. These shared
characteristics suggest that this proto-Moon might be a plausible route for forming
the Moon.

We also find that the results from our Moon-forming giant impact simulations can
be sensitive to numerical resolution, with the collision outcome changing in one out
of the five scenarios when increasing the particle number from 106 to 107. However,
while the results presented here have not demonstrated numerical convergence, they
do use more particles than has been typical in studies of the Moon-forming impact.
Higher resolution simulations show clearer numerical convergence for the formation
of similar clumps (Kegerreis et al., 2022, submitted).

There are also untested uncertainties associated with: the formulation of SPH being
used, where small-scale artificial clumping could arise as a consequence of discon-
tinuities in the density field and the level of material mixing will also be affected
(which we will study in the next chapter); and the choice of EoS, which will influ-
ence the detailed structure of the debris disk and the depletion of volatile elements
accreting onto the proto-Moon. (Kegerreis et al., 2022, submitted) investigated a
larger volume of parameter space for the impact scenario to determine how common
these orbiting proto-Moons are.
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Chapter 3

Density discontinuities in planetary SPH

Density discontinuities cannot be precisely modelled in standard formulations of
SPH because the density field is defined smoothly as a kernel-weighted sum of
neighbouring particle masses. This is a problem when performing simulations of
giant impacts between proto-planets, for example, because planets typically do
have density discontinuities both at their surfaces and at any internal boundaries
between different materials. The inappropriate densities in these regions create
artificial forces that effectively suppress mixing between particles of different material
and, as a consequence, this problem introduces a key unknown systematic error
into studies that rely on SPH simulations. In this chapter we present a novel,
computationally cheap method that deals simultaneously with both of these types
of density discontinuity in SPH simulations. We perform standard hydrodynamical
tests and several example giant impact simulations, and compare the results with
standard SPH. In a simulated Moon-forming impact using 107 particles, the improved
treatment at boundaries affects at least 30% of the particles at some point during
the simulation.

3.1 Introduction

A key chapter in the solar system’s history involves impacts between planet-sized
objects. This giant impact phase of planet formation is responsible for many of the
features we see today in our solar system. To name a few: the formation of our
Moon (e.g. Hartmann et al., 1975; Cameron & Ward, 1976; Benz et al., 1987), the
tilted spin axis of Uranus (e.g. Slattery et al., 1992; Kegerreis et al., 2018; Reinhardt
et al., 2020), the formation of the Pluto-Charon system (e.g. McKinnon, 1984, 1989;
Canup, 2005), the Mars hemispheric dichotomy (e.g. Wilhelms & Squyres, 1984), or
the origin of Mercury’s high core:mantle ratio (e.g. Benz et al., 1988; Chau et al.,
2018).
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An ideal tool for studying giant impacts is smoothed particle hydrodynamics (SPH).
SPH is a particle-based method used in a wide range of astrophysical and engineering
topics (Springel, 2010; Monaghan, 2012). It is the most commonly used option for
studying giant impacts because of the complexity and anisotropy of these highly
non-linear interactions. Compared with grid-based hydrodynamical codes, SPH has
the advantages of naturally following the provenance of material and being readily
combined with efficient gravity solvers.

Despite its many positive points, the hydrodynamical part of SPH can still have
difficulties treating the mixing of particles that represent different materials. In the
standard density-energy formulation of SPH, density discontinuities cannot be accur-
ately represented because of the smoothing inherent in the definition of the density
field. However, density profiles of differentiated planets do have discontinuities, typ-
ically both between different material layers (e.g. core to mantle boundary) and the
outer surface. The standard SPH formulation creates artificial forces that act like
an effective surface tension at these discontinuities, repelling one material from the
other and suppressing mixing between different materials. While the cause of this
numerical artefact is clear, the consequences for the mixing of materials during giant
impact simulations are rarely considered (e.g. Deng et al., 2019a,b, who compared
SPH with another Lagrangian method). As such, this represents a significant and
unquantified systematic uncertainty for standard simulations. This numerical issue
could be crucial in the modelling of many giant impact problems, with examples
being how much mixing would have been provoked in the core of Jupiter by a giant
impact (Liu et al., 2019), and what the distribution of iron is in the debris of the
hypothesised Moon-forming impact (Canup & Asphaug, 2001; Ruiz-Bonilla et al.,
2021).

Previous studies that have addressed the smoothing of density discontinuities in a
planetary context by modifying the SPH formulation have dealt either with those
arising from contact between two different materials at the same pressure (Woolfson,
2007; Reinhardt et al., 2020) or with that found at the surface of a planet (Reinhardt
& Stadel, 2017). In this chapter we propose a novel, computationally cheap method
to suppress the spurious numerical effects associated with density discontinuities,
regardless of their context.

In §3.2, we describe the basics of SPH (§3.2.1), the details of the density discon-
tinuity problem we aim to solve and previous attempts (§3.2.2), and finally our own
method (§3.2.3). In §3.3, we perform some standard hydrodynamical tests (§3.3.1,
§3.3.2), as well as testing a settling simulation of a planet (§3.3.3), and a variety of gi-
ant impacts between a proto-Earth and Theia with and without our method (§3.3.4)
to search for differences. Finally, conclusions are presented in §3.4.



3.2. Methods 46

3.2 Methods

3.2.1 Background theory

The fundamental idea of SPH is to reconstruct a density field from a set of discrete
particles with masses mi. As mentioned in §1.2.1, the density ρ at any point in
space ~r is computed as a weighted sum of the masses of the neighbouring particles
(Monaghan, 1992) via

ρ(~r) =
Nngb∑
j=1

mjW (~r − ~rj, h), (3.2.1)

whereW is the kernel function, which is a function of position, and h is the smoothing
length. We will be referring to the density of particle i as ρi ≡ ρ(~ri), where ~ri is the
position of particle i.
Once the densities are computed, we can use the intrinsic specific internal energy
ui of a particle (or any other thermodynamic variable), and the equation of state
assigned to it (EoS, i) to compute the pressure at the location of each particle via
Pi ≡ PEoS,i(ρi, ui).
At this point we can compute the hydrodynamical forces using

F = ∇P
ρ

= ∇
(
P

ρ

)
+ P

ρ2∇ρ. (3.2.2)

Then, we can discretize the acceleration of each particle

~ai = −
Nngb∑
j=1

mj

(
Pj
ρ2
j

+ Pi
ρ2
i

)
∇iWij, (3.2.3)

where Wij ≡ W (~ri − ~rj, hi). This formula was first derived using a discrete form of
the action principle for an adiabatic fluid. The rate of change in internal energy for
particle i can be expressed as

dui
dt

= 1
2

Nngb∑
j=1

mj

(
Pj
ρ2
j

+ Pi
ρ2
i

)
~vij · ∇iWij, (3.2.4)

where ~vij = ~vi−~vj. We will be referring to these two formulae above as the standard
SPH equations of motion.
This is not the only choice of discretization that can be used. We will now briefly
summarize the geometric density average force (GDF) method (Wadsley et al., 2017),
ignoring artificial viscosity terms:

~ai = −
Nngb∑
j=1

mj

(
Pi + Pj
ρiρj

)
¯∇iWij, (3.2.5)
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dui
dt

=
Nngb∑
j=1

mj

(
Pi
ρiρj

)
~vij · ¯∇iWij. (3.2.6)

It is worth noting that these equations come from a general form of Equation 3.2.2
presented already by Monaghan (1992),

∇P
ρ

= P

ρσ
∇
(

1
ρ1−σ

)
+ 1
ρ2−σ∇

(
P

ρσ−1

)
, (3.2.7)

with σ = 1. This choice was made in order to minimize errors in the vicinity of
strong density gradients. In addition to this choice, the GDF method also requires a
symmetric gradient of the kernel, in order to have symmetrized force terms, namely

¯∇iWij = 1
2fi∇iW (~rij, hj) + 1

2fj∇jW (~rij, hj),
(3.2.8)

where

fi =
Nngb∑
j=1

mj

ρi
r2
ijW

′
(
rij
hi

)/Nngb∑
j=1

mj

ρj
r2
ijW

′
(
rij
hi

)
, (3.2.9)

and rij = |~ri − ~rj|, W (~ri − ~rj, hi) = 1
h3

i
W
(
rij

hi

)
, W ′(q) = 1

q
dW
dq

.
This formulation of SPH minimizes surface tension effects in multiphase flows, which
can be a desirable feature for planetary SPH simulations where the mixing between
materials is key to some problems.

Wadsley et al. (2017) chose to use Wendland (1995) kernels over the traditional
cubic spline kernel (Monaghan, 1992) because they do not suffer from the pairing
instability (Dehnen & Aly, 2012), which can lead to particles forming close pairs
reducing the effective neighbour number. However the GDF method itself does not
require a specific kernel. Hence we will use the traditional cubic spline kernel in this
work when comparing different flavours of SPH, for simplicity.

An important characteristic of planetary SPH simulations is the choice of materials,
or in other words, equations of state (EoS). Each particle is labeled as being a
particular material and, whenever needed, its equation of state is applied to compute
its pressure. One well known and widely used option is the Tillotson (1962) EoS.
This analytical EoS was originally developed to model hypervelocity impacts, partly
motivated by nuclear weapons research. Each material (e.g. iron, granite, etc.) is
described by ten parameters and three common analytical expressions describing a
compressed or cold state, a hot and expanded state, and a hybrid state. As mentioned,
this option is widely used for its simplicity but it has significant limitations. Materials
described by the Tillotson EoS lack phase transitions, as well as not being suitable
for giant impact simulations where vaporization plays an important role (Stewart
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Figure 3.1: Pressure as a function of density at a fixed temperature,
T = 2000 K, for different materials commonly used in
planetary SPH simulations. Horizontal segments repres-
ent the phase transitions between liquid and gas that are
present only for more sophisticated equations of state
like ANEOS.

et al., 2020). One example of a more modern approach is to use the ANEOS EoS
(Thompson, 1970; Melosh, 2007; Stewart et al., 2020). This EoS model is described
by the Helmholtz free energies for solid, liquid, vapor, plasma and mixed phases. It
is capable of covering a large range of pressures, densities, and temperatures, which
is important for simulating giant impacts between proto-planets. ANEOS EoS have
over 40 input parameters, and multiple phase transitions are present for any material.
The presence or absence of phase transitions in the EoS used for the simulations,
as shown in Figure 3.1, will have a key role when designing a method to solve our
density discontinuity problem, as described in §3.2.2.1.

In this work we will use the open-source hydrodynamics and gravity code SWIFT
(SPH With Inter-dependent Fine-grained Tasking; www.swiftsim.com, Schaller et al.,
2016; Kegerreis et al., 2019). SWIFT has been designed from scratch to run large
simulations and scale well on shared/distributed-memory architectures. SWIFT runs
over 30 times faster than Gadget-2 on representative cosmological problems (Borrow
et al., 2018), and has enabled planetary impact simulations with 100-1000 times
more particles than was previously typical. This speed is partly a result of SWIFT’s
task-based approach to parallelism and domain decomposition for the gravity and
SPH calculations (Gonnet, 2015).

http://www.swiftsim.com
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3.2.2 Problems in Planetary SPH

Given the definition of the density field in SPH (eq. (1.2.1)), a direct consequence
is that the density varies smoothly in space, which makes density discontinuities
difficult to represent. However, differentiated planets in hydrostatic equilibrium can
and should contain density discontinuities both where there is a change of material
(e.g. the core to mantle boundary) and at the surface of the planet.

When trying to represent a planet in SPH simulations, the smoothing of SPH particle
densities across these discontinuities gives rise to well known problems (Woolfson,
2007), with poorly quantified consequences. The incorrect pressures induced by the
smoothed densities in these regions effectively create an artificial force that repels
different material layers from each other. In the case of the free surface, particles in
the outermost regions of the planet will have their densities underestimated. This will
subsequently lead to underestimated pressures that will accelerate the system away
from the desired equilibrium configuration. We illustrate the initial problems using a
Theia-like body, with mass M = 0.133 M⊕, in Figure 3.2. The analytical profile and
particle placement for this, and all examples in this chapter, have been produced
by the open-source code WoMa (Ruiz-Bonilla et al., 2021), which uses the SEAGen
method (Kegerreis et al., 2019) to make particle realisations of planets. Note that
the artificial effective surface tension is equally present for both the standard and
GDF flavours of SPH, because it arises from the definition of the density field, which
is common to both methods.

3.2.2.1 Density discontinuities between different material layers

Previous studies have attempted to address the issue of density discontinuities
between different materials by changing the formulation of SPH (Price, 2008; Hosono
et al., 2016). Woolfson (2007) and later Reinhardt et al. (2020) proposed solutions
based on computing correction factors, fij, for the SPH density, which was corrected
via

ρi =
Nngb∑
j=1

fijmjWij,

fij = ρEoS,i(P, T )
ρEoS,j(P, T ) .

(3.2.10)

The density of particle i is calculated with the inclusion of the correction factor,
which varies for each neighbouring particle j. The correction factors represent the
ratio of densities that particle i would have at pressure P and temperature T if
it were made from material i versus material j. Thus, if neighbour j is the same
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Figure 3.2: Initial density (upper panel) and pressure (lower panel)
profiles of a spherical Theia-like planet, M = 0.133
M⊕, using standard SPH density calculations. The
core:mantle mass ratio is 30:70, and the temperature at
the surface of the planet is 2000 K with an adiabatic
entropy profile. A total of 105 particles are used to
represent the planetary body. The smoothing in the
density field introduces spurious pressures at the ma-
terial boundary and, to a lesser extent, the edge of the
planet.
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material as particle i, then fij = fji = 1. Woolfson (2007) applied this modification
to equilibrium models of planets, where the temperature and pressure vary smoothly
with radius. Reinhardt et al. (2020) suggested using the kernel-averaged temperature
and pressure as better estimates to account for dynamical evolution of the system
during a giant impact simulation.

This approach can reduce the problem, especially for stationary planets, but has a
couple of inconvenient drawbacks. The first is that, computationally, it requires three
loops over all particles to compute the density, compared with the single loop used in
the standard density definition: the first loop is used to compute the standard SPH
density, the second one to compute the kernel averages of temperature and pressure,
and the third one to recompute the density using Equation 3.2.10. In addition
to these, there is a final fourth loop to compute the hydrodynamical forces using
Equation 3.2.3, Equation 3.2.4 for standard SPH or Equation 3.2.5, Equation 3.2.6 for
GDF. The second and more serious downside appears when using more sophisticated
equations of state like ANEOS. As shown in Figure 3.1, for the same temperature and
pressure, two materials could have different densities by many orders of magnitude.
For example, at 10 Pa and 2000 K, the density ratio between Tillotson iron and
granite is 0.2, but between ANEOS Fe85Si15 and forsterite is 9.5× 107. This occurs
because one material (in this case Fe85Si15) has undergone vaporization whereas the
other (forsterite) has not. When computing the final density using Equation 3.2.10,
the fij factors could produce hugely unrealistic densities if particle i has a significant
number of neighbours j of a different material. This issue would not only affect the
density estimation of a few particles and hence the evolution of the system, but the
high densities will also yield high pressures and hence forces that will dramatically
decrease the value of the time step needed to continue evolving the simulation.
Reinhardt et al. (2020) do not perform any correction if a particle has a density
below an empirically determined threshold, in order to avoid this problem (private
communication).

3.2.2.2 The free surface problem

Reinhardt & Stadel (2017) also proposed a solution, distinct from those described
above, to the problem of the density discontinuity present at the surface of any
planet. Their approach consisted of defining a statistic

fi =

∣∣∣∣∣Nngb∑
j=1

(~rj − ~ri)mjWij

∣∣∣∣∣
2hi

Nngb∑
j=1

mjWij

(3.2.11)
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that is computed for every particle. The density of each particle is corrected by a
factor that depends upon the value of this statistic, fi, with the correction factor de-
rived by assuming that the particle configuration involves a plane boundary between
mass and vacuum in the kernel. This assumption may be appropriate to explain
non-zero fi values during a simulation of a planet in hydrostatic equilibrium. How-
ever, there could be different scenarios where this is not the case during a planetary
impact SPH simulation, for instance a satellite being tidally disrupted into some
distorted geometry. Thus a more general approach to correcting densities near the
boundary with a vacuum is desirable.

3.2.3 Density corrections

Here we present our method to address both the material boundary and free surface
problems at once. In addition, this method is relatively computationally cheap since
it only uses one extra loop over all particles compared with the standard SPH density
computation. We define a statistic that measures how afflicted a particle is by being
close to a density discontinuity. The densities of these particles are then corrected
in a smooth way using that same statistic.

The method can be summarized as two steps: first we identify problematic particles,
then we fix their densities. Our first goal is to identify particles close to a material
boundary or free surface. Our proposal, which is similar to that of Reinhardt &
Stadel (2017), is

Ii = α

∣∣∣∣∣Nngb∑
j=1

κij (~rj − ~ri)mjWij

∣∣∣∣∣
hi

Nngb∑
j=1

mjWij

,

κij =

1 if i and j are the same material,

−1 if i and j are different material.

(3.2.12)

where α is a dimensionless parameter whose value we discuss later. We will refer to
Ii as the ‘imbalance statistic’ for particle i.

Particles sitting in the middle of a perfectly regular grid of the same material particles
will have an imbalance statistic equal to zero, and this will be approximately the case
for most of the particles in our initial planet in hydrostatic equilibrium. Particles
sitting at the surface of a planet will have about half of their kernel filled with
particles of the same material and the other half empty. Their imbalance statistics
should be somewhat greater than zero and, for the choice of α we describe in due
course, they will be of order unity. Similarly, for particles placed at the boundaries
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between two materials, one half of their kernel is full of particles of the same material
whereas the other hemisphere is full of particles of a different material; hence the
inclusion of the minus sign in κij to account for the contributions from particles of
the other material and produce a comparable unity-order value for Ii.

Now that we have defined the imbalance statistic that locates the problematic
particles, we need to correct their densities. First, we compute the standard SPH
density using Equation 3.2.1, and the pressure, Pi, and temperature, Ti, for every
particle using their corresponding equation of state with their density, ρi, and specific
internal energy, ui, which is used in the hydrodynamical simulation rather than the
temperature. Then, assuming that pressure and temperature vary smoothly on the
scale of the smoothing length everywhere within the simulation, we compute, for
every particle, estimated values for their temperature and pressure via

T̄i =

Nngb∑
j=1

Tje−I
2
jWij

Nngb∑
j=1

e−I2
jWij

, P̄i =

Nngb∑
j=1

Pje−I
2
jWij

Nngb∑
j=1

e−I2
jWij

. (3.2.13)

These estimates represent pressures and temperatures averaged over neighbouring
particles, weighted to favour nearby neighbours with low imbalance statistics. Recall
that low imbalance statistic particles typically have neighbours sitting in regular
grids, so those particles should be away from sharp density discontinuities and thus in
regions where pressures and temperatures are computed accurately. In addition, we
would like to have a smooth transition between the standard SPH computation and
our modified one, such that the modification is only used when needed and without
any sudden transitions. Hence we can define a pressure, P̃i, and temperature, T̃i, for
every particle as

P̃i = e−I2
i Pi + (1− e−I2

i )P̄i,
T̃i = e−I2

i Ti + (1− e−I2
i )T̄i,

(3.2.14)

such that the more problematic a particle is (the higher the imbalance statistic) the
greater the contribution from the modified estimate. Now that we have estimated
a corrected pressure and temperature for every particle, we use the corresponding
equation of state to infer a corrected density for every particle via

ρ̃i = ρEoS,i(T̃i, P̃i). (3.2.15)

Finally, we compute a particle pressure based upon this corrected density and the
unaffected specific internal energy, using Pi = PEoS,i(ρ̃i, ui). ρ̃i and Pi are the values
that are used in the equations of motion.
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We determine the value of α with the following condition: a particle with a kernel
that is half full of particles of the same material organized in a regular grid, and
with the other half empty must have imbalance statistic equal to 1.5. We have
chosen this value empirically, since an imbalance statistic of 1 has very little effect
on the densities of particles one shell away from a different material, and a value
of 2 significantly affects particles two shells away from a different material. This
ensures particles at the surface of the planet and the material boundaries will have
big enough imbalance statistics for the method to have a significant impact, without
overcorrecting. This parameter may need to be adjusted if the kernel and/or the
resolution parameter η (i.e. the number of neighbours within the kernel) is changed.
Figure 3.3 shows the reduced imbalance statistic, I/α, for different kernels and
numbers of neighbours. The minimum number of particles used to compute I/α is
6 ((0, 0, 0), (±1, 0, 0), (0,±1, 0), and (0, 0,−1)). By making that grid finer we can
compute it with 23, 76, 153, 298, and 519 particles. Finally we interpolate linearly
to obtain the value of α that yields I = 3/2, depending on the desired number of
neighbours.

This method only uses two loops over the neighbours of all particles. The first loop
is used to compute the standard SPH density, pressure, and temperature, as well
as the imbalance statistic for every particle; the second loop is used to evaluate
Equation 3.2.13, which leads to the corrected density, ρ̃i, and final pressure. To
illustrate how our method works, Figure 3.4 shows the imbalance statistic, the
intermediate estimate of the pressure, and the final corrected density, for the same
Theia-like planet that was shown in Figure 3.2. The imbalance statistic targets the
right particles and the weighted and smoothed pressure estimate erases the pressure
jump that is present for standard SPH. Finally, using the equation of state, we
compute corrected densities that have values close to the analytical solution.

Figure 3.5 demonstrates the different calculations of density produced for one
(identical) snapshot of a simulation by the three methods: standard SPH (Equa-
tion 3.2.1), the Reinhardt & Stadel (2017) method described in §3.2.2.1, and our
method described above. The exact same particle configuration is used in all cases,
a mid-collision snapshot of a giant impact between a proto-Earth and Theia, using
ANEOS materials. The different densities produced by the three methods would lead
to different subsequent evolution of these cases, if they were evolved forward from
this common starting point using the different methods. The distinction between
core and mantle material in the proto-Earth is quite diffuse in the standard SPH
computation compared with the other two methods. The Reinhardt & Stadel (2017)
method yields particles with densities over 105 kg m−3, highlighted in red on the
figure. This is due to the problem described in §3.2.2 when using equations of state



3.2. Methods 55

0 100 200 300 400 500 600
Nngb

0.00

0.05

0.10

0.15

0.20

0.25

0.30

I/

cubic spline
quartic spline
quintic spline
Wendland C2
Wendland C4
Wendland C6

Figure 3.3: The scaled imbalance statistic, I/α (Equation 3.2.12),
calculated at the centre of a sphere, only half of which
is filled by particles in a regular cubic grid, as a function
of the numbers of neighbours. This value is computed
to normalize the value of the imbalance statistic so that
it effects the first shell of particles at a density discon-
tinuity, but not the rest. Different colours represent a
variety of kernels, as detailed in the legend.

with phase boundaries like ANEOS. Finally, the iron particles scattered within the
mantle of the proto-Earth are assigned significantly higher densities using the Re-
inhardt & Stadel (2017) method or our method than for standard SPH, and thus
are more clearly visible in the figure. This is because their method acts whenever
a particle has a neighbour of a different material, whereas in our method having
a regular grid of particles of random materials will yield a density identical to the
standard SPH one, up to the noise in the particle distribution for each material.
Hence our method produces high densities for iron particles in the mantle when they
have other iron particles as neighbours, but not when they are just surrounded by
granite particles.
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Figure 3.2.
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3.3 Tests and examples

Up to this point we have been using static distributions of particles to compare
different ways to compute the density field in SPH simulations. Now we will perform
some dynamic tests and example simulations combining these density estimators
with the two different equations of motion that were presented in §3.2.1, standard
SPH and GDF SPH (Wadsley et al., 2017).

3.3.1 2D Square Test

One of the most common tests of contact discontinuities is the square test (Saitoh
& Makino, 2013; Deng et al., 2019a; Reinhardt et al., 2020). A 2D box of a certain
material and density is surrounded by a medium of the same or different material
at a different density in pressure equilibrium. If the code does not capture the
density discontinuity correctly, then the pressure at the material interface becomes
discontinuous. This creates an artificial tension, similar to that shown in Figure 3.2,
which effectively acts to round the corners of the box.

For this test we use Tillotson (1962) materials, which are often used in planetary
SPH simulations. The choice of EoS for this test should not be a sensitive one
since all particles will have almost constant density throughout the whole test. The
central square contains iron whereas the surroundings are composed of granite. The
side length of the simulation box is lx = ly = 0.5 R⊕, and the depth of the box is
lz = 0.001 R⊕. This small thickness, together with periodic boundary conditions,
allows densities to be computed in 3D despite particles being confined to 2D. The
setup is designed such that the pressure everywhere is 1010 Pa and the temperature is
1000 K. These constraints dictate the mass (i.e. density) and internal energy of each
particle, and result in a density jump from ρgranite = 3251 kg m−3 to ρiron = 7980
kg m−3. Iron particles, located in the inner square of side length lx/2, are given a
larger mass than granite ones such that the 214 total particles in our simulations can
be placed onto a regular square grid. Each simulation is evolved until 100 ks, which
corresponds to roughly 300 sound crossing times of the central iron square.

We tested four different flavours of SPH: standard SPH; standard SPH with our
method for improving densities; GDF (geometric density average force) SPH (Wad-
sley et al., 2017); and GDF SPH with our method. Adding our method on top of
the standard SPH equations of motion has little effect on the overall evolution, so
we will not discuss this combination for any of the tests in this chapter. Figure 3.6
shows the initial conditions and the result for the remaining three flavours of SPH
following 100 ks of evolution. Relative to standard SPH, GDF SPH better maintains
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GDF SPH GDF SPH with our method

Figure 3.6: 2D Square test for 3 different flavours of SPH: standard
SPH, GDF SPH, and GDF SPH with our method. Blue
and orange represent higher and lower density values
respectively. All panels, except for the initial conditions,
show the result of the test after 100 ks, which corres-
ponds to ∼300 sound crossing times of the central iron
square.

the shape of the central square, and our method further improves the sharpness of
the corners.

3.3.2 2D Kelvin-Helmholtz Test

The Kelvin-Helmholtz test is a common way to determine how well methods capture
the instability that arises between adjacent fluids moving with different velocities.
This is particularly relevant for giant impact simulations where velocity shear between
different materials is common. This test does not have a known analytical solution,
so we compare with different hydrodynamic codes, how our method handles the
Kelvin–Helmholtz instability.

For this experiment we used the same box dimensions and materials as in the square
test (§3.3.1). The pressure and temperature throughout the box were set to 1010 Pa



3.3. Tests and examples 60

and 1000 K, and the number of particles on the x-axis for the low density material was
N = 256. We chose all particles to have the same mass, so the denser layer contained
∼2.5 times more particles. The central strip of iron particles were given an initial
x velocity of vx = 1000 m s−1, whereas the granite particles had vx = −1000 m s−1.
An initial perturbation in the y velocity, vy = 20 sin(4πx/R⊕) m s−1, was introduced
in order to seed the instability.

We observe that all three flavours of SPH create roll-like structures after 2500 s, as
shown in Figure 3.7. At that time a particle travelling at the original x velocity will
have traversed just over three quarters of the box length. We can see clear qualitative
differences between all three flavours of simulation and, relative to the other two
cases, GDF SPH with our method shows enhanced mixing between different material
particles at the end of the swirls.

We tested the numerical convergence for a range of resolutions up to N = 2048 and
calculated the time evolution of the maximum y-direction kinetic energy density
and the amplitude of the y-velocity mode of the instability. All three flavours of
simulation produced very similar shapes to the SPH code results shown by McNally
et al. (2012). Using the smoothed y velocity field values, rather than the individual
SPH particle values, made the maximum y-direction kinetic energy density grow
slightly slower, but in neither case was the evolution in this statistic comparable
with that found for grid codes (McNally et al., 2012). We conclude that our method
does not converge significantly faster or slower than previous formulations of SPH
for this particular test.

3.3.3 Planetary profiles after settling simulations

Prior to running a planetary giant impact simulation, a settling simulation is typically
undertaken for every proto-planet. This is done in order to reduce any noise from the
initial positions of the particles, as well as to obtain an object that is in hydrostatic
equilibrium. Ideally the SPH densities, which are computed using the positions and
masses of the particles, should match those obtained from solving the hydrostatic
equilibrium equation. However, particle placement algorithms always introduce some
perturbations and, as is the focus of this study, density discontinuities are not well
captured with the traditional SPH density computation.

We consider a proto-Earth like planet, M = 0.887 M⊕, made of an ANEOS Fe85Si15

core and forsterite mantle (Stewart et al., 2020) with a surface temperature of
T = 2000 K and adiabatic temperature profile. The core:mantle mass ratio is 30:70.
We use approximately 106 particles and let the simulation run for 20 ks, which is
many times the sound crossing time of the planet.
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Initial conditions Standard SPH

GDF SPH GDF SPH with our method

Figure 3.7: 2D Kelvin-Helmholtz test for 3 different flavours of SPH:
standard SPH, GDF SPH, and GDF SPH with our
method. Blue and orange represent Tillotson iron and
granite respectively. All panels except that for the ini-
tial conditions show the result of the test after 2500 s.

Figure 3.8 shows the results for standard SPH, GDF SPH, and GDF SPH with
our method. For standard SPH we see the evolved versions of the same issues that
were highlighted for the initial particle arrangement in Figure 3.2. The density
discontinuity in the material boundary is smoothed over, leading to a spurious
jump in pressure across the boundary. Also, the underestimated density, and hence
pressure, in the outermost shell of particles of the planet has decreased the radially
outwards hydrodynamical force (see Equation 3.2.3). Consequently, the planet has
contracted to find its numerical equilibrium, leaving it slightly smaller than desired.

For GDF SPH with the standard density computation, the situation is even worse
because it does not even reach an equilibrium state. The density discontinuity is
somewhat smoothed, although not quite as badly as in the standard SPH case.
However, there is an additional problem whereby particles at the edge of the planet
continually leak away; note the expanded horizontal scale for these panels. The
reason for this is the factor fi described in Equation 3.2.9. Consider the particles
sitting at the edge of the main planet. Their neighbours are predominantly interior
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with higher densities. These outermost particles will have underestimated densities
because of the exterior vacuum increasing their smoothing lengths. However, this
problem will not affect the interior particles, which will have densities that more
accurately reflect the input profile. As a consequence, fi will be inappropriately large
for the outermost particles, producing an outward hydrodynamical acceleration
(Equation 3.2.5) that exceeds the inward pull of gravity. Within two hours of
simulation time, particles are already flying outwards. fi can reach values of the
order of 100, where the typical value should be around 1, and this effect gradually
peels off more layers from the outer edge of the planet.

GDF SPH with our method solves the problems mentioned above, as illustrated in
Figure 3.8. Not only is the density discontinuity well represented, which means that
there is no jump in the pressure profile between the core and mantle, but the outer
boundary also closely matches the analytical profile, meaning that the planet has
the intended radius.

3.3.4 Giant impacts

In this section we compare features that occur during giant impacts between planets
for different flavours of SPH. In §3.3.3 we saw that GDF SPH needs to be accom-
panied by our method in order to have stable planets, therefore we will just consider
standard SPH, and GDF SPH with our method.

We use the proto-Earth and Theia described in §3.3.3 and §3.2.2, respectively,
increase the number of particles by a factor of 10, and collide them with a range
of impact angles and velocities. The total number of particles in our simulations is
approximately 107, with all particles having the same mass.

We run three different impact scenarios, varying the angle of impact β and the
impact velocity at contact vc: a ‘canonical’ impact (β = 45◦, vc = 1 vesc), a faster
low-angle impact (β = 15◦, vc = 2 vesc), and a hit-and-run grazing impact (β = 65◦,
vc = 1.5 vesc). The mutual escape velocity of the system, assuming the two bodies
are in contact and undeformed, is vesc = 9026 m s−1. Each impact is run four times
using different random reorientations of the particle realizations of the planets. This
provides an estimate of the stochastic noise and allows us more confidently to ascribe
any observed differences to the different flavour of SPH being used. Depending
upon just how chaotic the impact and its aftermath are, this can be an important
consideration (Kegerreis et al., 2022, submitted).

We have now resolved the density discontinuity issues we previously had, and can
thus be confident that these are not causing big unknown errors. Beyond the broad
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similarities, we observe some key differences between both flavours of SPH. These
are common to all of the randomly reoriented resimulations and so appear to be
robust differences between the standard SPH case and that with GDF SPH plus our
method.

Changing between the two SPH flavours leads to significant differences in the distri-
bution of post-impact iron in our low-angle collisions. The mass-fraction of iron in
the debris beyond 3R⊕ is ∼ 8% using our flavour of SPH. This is about three times
higher than the corresponding value for standard SPH. Within the final planet, the
transition region between core and mantle, defined as the region where the relative
iron content as a function of distance drops from 99% to 10%, is 0.12 R⊕ for standard
SPH and 0.41 R⊕ for GDF SPH with our method. This demonstrates how mixing
of materials can increase if the spurious boundary pressure gradients associated
with standard SPH are suppressed using GDF SPH and our method. For both the
canonical-like and hit-and-run impacts, the core of the target is barely disrupted by
the impactor and the distribution of post-impact iron is insensitive to the flavour of
SPH used.

In the initial conditions for our iron and rock bodies, the fraction of particles that have
their densities badly mis-estimated by standard SPH as a result of their proximity
either to a material boundary or the edge of the planet is ∼ 14% for a 105-particle
realisation. This drops to a still large ∼ 7% with 106 particles, and ∼ 3% for 107

particles. The fraction of particles that at some point during an impact simulation
have I > 1.5, the value at the surface of a planet, is much larger. For 107-particle
simulations, this fraction is 10%, 30%, and 70% for hit-and-run, ‘canonical’, and
low-angle impacts respectively. The spurious density is often sufficiently wrong
that the particle will be translated across a phase boundary in its EoS. In addition
to producing spurious pressure, this will complicate efforts to track the thermal
evolution of the material, both during the impact simulation and when providing
inputs for subsequent long-timescale thermal evolution codes. This is relevant for
material in the target and the resulting debris, be it a diffuse disk or in coherent
clumps (Ruiz-Bonilla et al., 2021). The combination of GDF SPH with the method
we have described here practically eliminates these problems that are present in
standard SPH approaches, opening up the opportunity to use SPH planetary giant
impact simulations for such studies reliably.

3.4 Conclusions

We have presented a novel method to compute the density field in smoothed particle
hydrodynamics (SPH) simulations with particular reference to scenarios of planetary
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giant impacts. It solves problems that arise in SPH for systems with sharp density
discontinuities between different materials and between any material and a vacuum,
with low computational cost. We combine this method with the geometric density
average force (GDF) SPH (Wadsley et al., 2017) equations of motion because of their
treatment that minimizes spurious numerical surface tension effects in multiphase
flows. An implementation of our method is publicly available as an option in the
open-source code SWIFT (Schaller et al., 2016).

This new method produces improved performance in the 2D square test with a better
maintained square shape, and enhanced mixing between different material particles
in the 2D Kelvin-Helmholtz test. Simulations of impacts between a proto-Earth
and Theia, where the core of the Earth has been highly disrupted by the impactor,
reveal a partially diffused iron core and a higher mass of iron in the debris disk. This
method also prevents smoothed densities from placing particles into inappropriate
places in their material phase diagram. As a consequence, the thermodynamic
evolution of material can be tracked more realistically throughout an impact and its
aftermath.
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Chapter 4

Primordial misalignment of the
proto-lunar disk

Long-term evolution models for the orbit of the Moon suggest the angle between
the Earth’s spin and the normal of the lunar orbital plane was ∼ 10◦ at the time
the Moon was formed (Goldreich, 1966; Touma & Wisdom, 1994). This prediction
is inconsistent with models for the formation of the Moon that suggest a giant
impact produced a debris disk in the equatorial plane of the Earth, and later the
Moon was accreted at the Roche radius. Hence a different mechanism is needed
in order to explain that primordial misalignment. In this chapter we show that
giant impact simulations of the canonical Moon-forming impact with a sufficiently
rapidly spinning proto-Earth can produce an inclined debris disk with respect to the
post-impact Earth’s spin. Furthermore, this angle is constant through timescales of
days and, depending on the long-term tidal evolution, potentially could accrete a
Moon with the desired primordial misalignment angle.

4.1 Introduction

In our solar system most planets orbit the Sun with close to circular orbits, and
satellites orbit their host planets with various eccentricities and inclinations. This
system can be considered low mass and the motion of these objects can be described
using Newton’s gravitational law, which depends on the mass distribution and
position of the different bodies. This seemingly simple problem can turn quite
difficult to solve accurately very rapidly. A planet is usually spinning, meaning its
shape is not spherical and its gravitational potential will not be the simple formula for
the spherical case. Moreover, its spinning rate can vary over time and consequently
so can its shape and gravitational potential. If a planet has an ocean (water, magma,
or anything that behaves like it) tides will also play a highly important role in its
orbital evolution, generating gravitational resonances and interesting behaviours
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(Touma & Wisdom, 1994), and even for solid bodies, gravitational tidal forces can
be high enough that planets are not rigid. In addition, integrating such models for
long timescales such as millions of years is a computational challenge. With all this
complexity, it is not a surprise that orbital evolution is still an active field of research
today.

The Earth–Moon system is quite unique in the Solar System. Earth is the only
planet to have just one satellite, and the relative mass and angular momentum of
the Moon are quite large when comparing with other planets and their satellites.
In addition, the Earth and Moon seem to have a common origin when considering
the low eccentricity of the Moon or by looking at the isotopic composition for some
elements like oxygen (Wiechert et al., 2001; Young et al., 2016) in their respective
mantles. That common origin is thought to be a giant impact between the proto-
Earth and Theia 4.5 billion years ago (Cameron & Ward, 1976; Hartmann et al.,
1975), and it would be the starting point of the orbital evolution of the Earth–Moon
system. At that point in time we would expect to have a rapidly spinning Earth, a
post-impact debris disk, and maybe a stable orbiting clump as shown in chapter 2.

In the canonical scenario for the formation of the Moon, the proto-Earth and Theia
collide at around the mutual contact escape velocity with an impact angle of ∼ 45◦

(e.g. Cameron & Ward, 1976; Benz et al., 1987). The Moon subsequently accretes
at the Roche radius, on a timescale of months (Kokubo et al., 2000) to hundreds
of years (Salmon & Canup, 2012), from the debris disk that is formed surrounding
the Earth following this impact. Some models for how the lunar inclination evolves
with time trace it backwards from its present-day inclination to yield an inclination
with respect to Earth’s equator of ∼ 10◦ when the Moon accreted from the debris
disk (Goldreich, 1966; Touma & Wisdom, 1994). When considering a Moon formed
from a high angular momentum impact, this angle goes up to ∼ 50◦ (Ćuk et al.,
2016) or even higher (Tian & Wisdom, 2020). However, traditional giant impact
models suggest that the resulting debris disk should be near the equatorial plane of
the Earth (Canup & Esposito, 1996; Ida et al., 1997; Ćuk & Stewart, 2012; Canup
& Asphaug, 2001; Canup, 2012).

This has prompted attempts to explain the mutual inclination with mechanisms
involving a gravitational resonance between the Moon and accretion-disk material
(Ward & Canup, 2000). In this scenario, moonlets could not form within the Roche
radius and it is the interaction between this inner disk and the proto-Moon accreted
outside the Roche limit that could increase the inclination of the Moon up to 15◦.
This process would take place over timescales of 102 years. A second explanation for
the origin of the inclination of the Moon’s orbit is a pair of gravitational resonances
between the Earth, the Moon, and the Sun called evection and eviction (Touma



4.2. Methods 68

& Wisdom, 1998; Rufu & Canup, 2020). At a semi-major axis of a = 4.6R⊕, the
evection resonance increases the eccentricity of the orbit up to 0.5. This is a resonance
between the rate of precession of the pericenter of the Moon and the mean motion
of the Sun. After leaving the evection resonance the system encounters the eviction
resonance at a ' 6R⊕. This is a resonance between the argument of the evection and
the motion of the ascending node of the lunar orbit (the point where the lunar orbit
intersects the ecliptic and the Moon moves into the northern ecliptic hemisphere)
on the equator of the Earth. As a result, the mutual inclination is excited by 3◦.
Another explanation for the origin of the inclination of the Moon is the gravitational
interactions of the Earth–Moon system with Earth-crossing planetesimals that were
not yet accreted at the time of the Moon-forming event (Pahlevan & Morbidelli,
2015). A small quantity of mass between 0.0075 and 0.015 M⊕ carried by a few
bodies, that later would be accreted to the Earth, could explain the current lunar
orbit.

In this chapter we investigate whether a canonical-like giant impact scenario with a
spinning proto-Earth can directly produce a misaligned debris disk with respect to
the post-impact Earth’s spin. We also briefly speculate whether that misalignment
angle might persist long enough for a Moon to be accreted from the protolunar disk.

4.2 Methods

For this work we run high-resolution simulations with 106, 106.5, and 107 particles
using the smoothed particle hydrodynamics (SPH) code SWIFT with the improve-
ments described in chapter 3 (www.swiftsim.com, Schaller et al., 2016) for a total
simulation time of 100 ks (27.8 hours). For each simulation we fix: the mass of the
proto-Earth, MpE = 0.887 M⊕; the mass of Theia, MTh = 0.133 M⊕; the velocity
of impact, vimp = vesc; the angle of impact, β = 45◦; the materials used, ANEOS
Fe85Si15 for the cores and ANEOS forsterite (Stewart et al., 2020) for the mantles
of both proto-planets; and finally the mass fraction of core:mantle, 30 : 70 again
for both proto-planets. The surface temperature of both bodies is 2000 K following
an adiabatic profile. All profiles and initial conditions have been done using the
methods of chapter 2.

The orbital angular momentum of Theia is oriented in the +ẑ direction, and we set
the proto-Earth’s spin rate to 5 different values in units of the angular momentum
of the Earth–Moon system today: 0, 0.25, 0.50, 0.75, and 1.00 LEM. The non-zero
values translate to periods of 14.2, 7.2, 5.1, and 4.0 hours respectively. We also
choose the direction of the spin angular momentum to be orthogonal to the orbital

http://www.swiftsim.com
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angular momentum of Theia in order to maximize any post-impact misalignment
angle: LpE ∝ x̂ and LpE ∝ ŷ, making a total of 9 simulations. Note that, for instance,
LpE ∝ −x̂ has a mirror symmetry with respect to LpE ∝ x̂, for that reason we do
not consider the −x̂ and −ŷ directions for the spin of the proto-Earth.

All simulations use cubic spline kernels and the resolution parameter η is set to
1.2348, which corresponds to approximately 48 neighbour particles for this kernel.
The maximum smoothing length is chosen to balance computational speed of the
code and a minimum-density cutoff used for tracking low density particles. A value
of 0.1 R⊕ for our problem ensures only a small number of particles end up hitting
the maximum smoothing length. The Courant number is 0.2, which translates
to a timestep of order of 1 s for all resolutions considered in this study, and the
gravitational softening length depends on the number of particles and is set to the
minimum distance between particles in the initial conditions, which is the distance
between particles at the centre of the proto-Earth where the density is the highest.
These values are 0.01, 0.008, and 0.005 R⊕ for the 106, 106.5, and 107 particles
simulations respectively.

Once the simulations are finished and no major impacts are still in progress we
need to determine the mass and angular momentum direction of both the main
post-impact planet and the protolunar disk. The angle between these two vectors is
what we define as the misalignment.

4.2.1 Determination of the main planet

In order to determine the mass of the main planet we follow a similar approach to
Asphaug et al. (2021). We define a reference density, ρ = 3053.2 kg m−3, corres-
ponding to the density of ANEOS forsterite at a temperature of T = 2000 K and
zero pressure, and determine all particles in the centre of the simulation box with
a higher density. These particles determine the main planet and the sum of their
masses is the total mass of the object.

We also modified the reference density to 3/4 of its previous value to determine
how sensitive our results are to this definition (Asphaug et al., 2021). We found
no significant differences in the results between the two reference densities, as we
later describe in §4.3. In this study we limit ourselves to examining the direction of
the angular momentum vectors. For that reason we consider every particle as a free
particle rotating around the centre of mass of the planet and compute the angular
momentum vector of the planet as the sum of all particles angular momenta.
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4.2.2 Determination of the protolunar disk

The particles not in the post-impact planet can be classified in three groups: particles
that escape the system, particles that will fall into the Earth, and particles that
will orbit the Earth. This last group of particles forms the protolunar disk that will
eventually create the Moon through accretion, and potentially also includes material
on wider orbits far outside the disk that will not be relevant for satellite formation.

Having the velocity of the orbiting particles and the mass of the main object (§4.2.1),
we compute the total energy and find particles belonging to the first group. This
group should include a small subset of bound particles that will eventually leave the
Hill sphere, but we will not make this distinction. For the second and third groups
we use Reufer et al. (2012)’s approach. We compute the periapsis of each particle
via the vis-viva equation,

v2 = GM
(2
r
− 1
a

)
, (4.2.1)

and the orbital eccentricity,

e =
√

1 + 2εh2

µ2 , (4.2.2)

where ε is the specific orbital energy (total energy divided by the reduced mass), h is
the specific relative angular momentum (angular momentum divided by the reduced
mass), and µ ≈ GM is the standard gravitational parameter. Using the formulae
above we can compute the periapsis, rp = a(1− e), and determine whether a particle
will eventually intersect the surface of the Earth or not, using the 99th percentile of
all particles’ radii from the main planet from the definition in §4.2.1. Particles with
a sufficiently high periapsis will be labeled as protolunar disk particles and the total
mass and angular momentum is simply computed as the sum of those same values
for all particles.

4.3 Results

The rotational configuration of the main planet is complex. If we divide a planet
in spherical shells at different radii, we say it is in a coherently rotating state if
each shell is spinning around the same axis, which is the axis of the total angular
momentum of the planet. Changes in the rotational angle as a function of distance
are present as shown in Figure 4.1 for the two fast spinning simulations. In this
figure a coherently rotating state would look like a horizontal line at an angle equal
to zero, whereas a non-coherently rotating state would look like a curve that has
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some non-zero value at the center of the planet and typically slowly approaches zero
at the surface. This occurs since most of the mass of the planet is in the outer shells,
hence they mostly define the total angular momentum vector of the planet. We
can observe the main planets reach a coherently rotational state by the end of their
simulations, which use a resolution parameter of η = 1.2348 and cubic spline kernel
(equivalent to 48 neighbour particles). However this evolution is a numerical artifact.
For simulations with η = 2.2, and the Wendland (1995) C6 kernel (equivalent to 655
neighbour particles), the planet does not reach a coherently rotating state, as shown
in Figure 4.2. In this case, the planet’s rotation state stays very similar throughout
both simulations from 25 to 100 ks. We conclude that the timescale necessary for
obtaining a coherently rotating planet depends on numerical issues in the simulation
and cannot be determined analytically. We expect to reach a coherent rotation state
eventually, at least in the real world, due to viscosity.

The evolution of the total angular momentum of the planet is not affected by
these different interior behaviours. We observe similar values for the total angular
momentum of the planet for both types of simulations, and their value over time is
almost constant. A small increase of the order of a few percent is observed due to
the addition of surrounding material into the main planet as the simulation evolves
from 25 to 100 ks. This result suggests that the angle between the total angular
momentum of the main planet and the protolunar disk is a numerically reliable
quantity.

We find that it is possible to create a debris disk that is significantly misaligned
with the spin of the post-impact Earth, as shown in Figure 4.3 for the LpE ∝ x̂

simulations and in Figure 4.4 for the LpE ∝ ŷ simulations. Simulations with LpE ∝ ŷ

tend to be more chaotic than LpE ∝ x̂ simulations. We find non-aligned clumps
with respect to the protolunar disk in these simulations as shown in Figure 4.4, a
feature not present in LpE ∝ x̂ simulations. The misaligned angle of the protolunar
disk with respect to the spin of the post-impact Earth is slightly higher by an extra
∼ 5◦ if the spin angular momentum of the pre-impact Earth is proportional to ±ŷ,
rather than ±x̂. We speculate this is because if Theia ejects mainly low-velocity
material near the Earth’s pole (as in the ŷ case), the change in angular momentum
of the Earth would be smaller than the x̂ spin case, where Theia would eject a large
amount of high velocity material such that the Earth preserves less of its pre-impact
rotation.

The angular momenta found for the protolunar disks are roughly one order of
magnitude smaller than the angular momentum of the post-impact Earth. Moreover,
the protolunar disk’s angular momentum is roughly in the same direction as the
initial orbital angular momentum of Theia (i.e. ∝ ẑ). In addition, due to the small
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Figure 4.1: Angle between the total angular momentum of the
planet and particles grouped by spherical shells at differ-
ent simulation times for the high spinning proto-Earth
scenarios (LpE = LEM). Artificial viscosity turns the
irregularly rotating planet into an almost differential or
solid rotating object, where the rotational angle as a
function of distance is constant.

impact velocity considered, only a small number of particles escape the simulation
box. A simple model for the resulting misalignment can be made by assuming that
the angular momentum of the protolunar disk is very small compared with the spin
angular momentum of the planet, and its direction is equal to the direction of the
orbital angular momentum of Theia. This is shown graphically in Figure 4.5, where
these assumptions are seen to be generally quite good. The largest exception is
LpE = 0.5 LEM ŷ (second row, second column), where the protolunar disk has an
angular momentum that is almost half that of the final planet’s in magnitude.

Let ~Lorbit be the orbital angular momentum of Theia (1.25 LEM in magnitude in our
simulations) and ~LpE the spin angular momentum of the proto-Earth. Assuming
these two vectors are orthogonal and the angular momentum of the protolunar disk
is 0, the misalignment angle, α, would be similar to

α ∼ π

2 − arctan Lorbit

LpE
. (4.3.1)

This is of course a first order approximation because the angular momentum of the
protolunar disk is never equal to zero and is not necessarily in the same direction
as the orbital angular momentum of Theia, as shown in Figure 4.5. This analytical
prediction, compared with the simulation values, is shown in Figure 4.6.

The misalignment angles found are roughly independent (< 1◦ on average) of the



4.3. Results 73

0.0 0.5 1.0
Distance, r [R ]

10 2

10 1

100

101

An
gl

e b
etw

ee
n 

L s
he

ll a
nd

 L
pl

an
et

 [
]

LpE x

Time [ks]
25
50
75
100

0.0 0.5 1.0
Distance, r [R ]

LpE y

Figure 4.2: Angle between the total angular momentum of the
planet and particles grouped by spherical shells at differ-
ent simulation times for the high spinning proto-Earth
scenarios (LpE = LEM). This figure is equivalent to Fig-
ure 4.1 but for simulations using the Wendland (1995)
C6 kernel instead of cubic spline. In this case very little
evolution is present in the rotational configuration of
the main planet after the impact.

two definitions of reference density described in §4.2.1, as shown in Figure 4.6.
Moreover, we run the same simulations with 106, 106.5, and 107 particles to study
the convergence of these results. We found that simulations with LpE ∝ x̂ have
a slightly better convergence rate than LpE ∝ ŷ, as seen in Figure 4.7. The more
chaotic nature of the LpE ∝ ŷ simulations together with the misaligned clumps could
explain this result, as previously mentioned.

In addition to focusing on the inclination of the post-impact disk, we also investigate
the disk’s total mass as shown in Figure 4.8. We observe orbiting clumps in stable
orbits, as in chapter 2, for most of our simulations with a wide range of different
masses, the highest one being the case without pre-impact spin. The total mass of the
debris disk is overall higher for the non-spinning case and the LpE ∝ x̂ simulations,
with values between 2.25% and 2.75% M⊕. For the LpE ∝ ŷ simulations we get a
more dispersed range of values between 1.2% and 2.5% M⊕. Ida et al. (1997) and
Salmon & Canup (2012) showed that producing an object the size of the Moon
requires a protolunar disk containing at least 2 Moon masses (or 2%M⊕), however
the presence of clumps in the disk could lower this number significantly.

Large decreases in the mass of the protolunar disk, as seen in the left panel of
Figure 4.8, and some simulations in the right panel, are caused by a clump coming
inside the Roche radius and being tidally disrupted by the main planet. During
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Figure 4.6: Angle between the total angular momentum of the
planet and the protolunar disk, as a function of the ini-
tial spin angular momentum of the proto-Earth. These
are the results for the highest resolution considered, 107

particles. The colours represent reference densities used
to compute the different angular momenta of the planet
and protolunar disk, as described in §4.2.1. The second
value is 3/4 of the first one, as done by Asphaug et al.
(2021). The dashed line represents the analytical pre-
diction by Equation 4.3.1.

this event some particles initially labeled as protolunar particles are relabeled as
unbound particles due to their increase in velocity, diminishing the total mass of the
protolunar disk.

Ensuring the misalignment angle is somewhat preserved during a timescale of months
is crucial to form an inclined Moon through accretion, although having a clump as
a result of the giant impact could effectively hasten the process. We observed the
misalignment angle is almost constant throughout the later times in our simulations
(from 50 ks up to 100 ks, ∼ 1/2 day), as shown in Figure 4.9. This suggests that the
misalignment will persist over timescales of at least days.

4.4 Discussion

Our next step would be performing simulations of the protolunar disk to accrete a
Moon and determine elements of its early orbit that are actually observable, or at
least comparable with long-term evolution studies of the orbit of the Moon.

Tides on the Earth will have an important role determining if the misalignment
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Figure 4.7: Misalignment angle between the post-impact Earth’s
spin and the protolunar disk at the latest snapshot, for
different resolutions (i.e. number of particles). Values
are normalized to the 107 simulation results.

would survive or not during the accretion of the Moon, especially considering the
presence of clumps right at the start of the process and the short distance between
the Earth and the early Moon. Neither clumps, nor a misaligned protolunar disk
have been considered so far in models for the Moon’s accretion (Kokubo et al., 2000;
Salmon & Canup, 2012). Misaligned protolunar disks have been considered only
with equally tilted planets, however this project opens up the possibility of a tilted
Earth with respect to the ecliptic and an inclined Moon with respect to the spin of
the Earth. Moreover, tides within the early hot Moon could have a significant role
damping the lunar inclination (Ćuk et al., 2016).

Another issue is the total angular momentum. In this study we have restricted
ourselves to canonical-like impacts with a spinning proto-Earth, orthogonal to the
orbital angular momentum of Theia. The quadratic sum of those two values can
easily exceed the present-day value of the angular momentum of the Earth–Moon
system. To solve this we need either a mechanism to remove angular momentum,
or an impact with a lower initial angular momentum. Since the velocity of impact
in this case has been the mutual escape velocity, the natural solution would be
to decrease the angle of impact. However, a lower angle impact could potentially
yield a lower misalignment angle, since turbulent mixing between the proto-Earth
and Theia would be enhanced. On the bright side, low angle impacts yield more
proto-Earth material onto the protolunar disk, helping alleviate the isotopic crisis
(Reufer et al., 2012).
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Finally, the parameter space considered in this study is relatively small but com-
pletely new in the literature. We have limited ourselves to one type of giant impact
model, and two values of the direction of the proto-Earth’s spin angular momentum
with respect to the orbital angular momentum of Theia. The addition of spin in giant
impact simulations counts for 6 new parameters if both proto-planets are spinning,
or at least 3 like in this study.

4.5 Conclusions

We explore how a post-impact misalignment between the Earth’s spin and the
protolunar disk can be formed in giant impacts. We found having a misalignment
angle is possible even when the proto-Earth has a relatively slow initial spin, with
a period of 14 hours, that is orthogonal to Theia’s orbital angular momentum.
Moreover, the misalignment angle is proportional to the initial spinning rate and it
is slightly higher when Theia comes from the equatorial plane of the proto-Earth
and ejects mainly North/South pole material, rather than Theia coming from the
North/South pole direction and ejecting spinning material near the equator. The
highest value found, for a proto-Earth spinning with the angular momentum of the
Earth–Moon system today, is 41◦. We observe the misalignment being persistent
during the later times in our simulations (∼ 1/2 day), being a first step to accrete a
Moon from an inclined debris disk. The mass of the protolunar disk is sufficient to
accrete a Moon, and the results are converging for most of our simulations. Future
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Figure 4.9: Misalignment angle between the post-impact Earth’s
spin and the protolunar disk as a function of time for
the LpE ∝ x̂ simulations. Similar results are found for
LpE ∝ ŷ simulations.

studies of a wider parameter space could establish how the misalignment angle
depends on the impact velocity, angle of impact, and the magnitude and direction
of the initial spin of the proto-Earth.
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Chapter 5

Conclusions

The solar system used to be a much more violent place. Giant impacts between
proto-planets were a common feature during the latest stages of planet formation.
Their importance has been appreciated for several years since they dictate many of
the features we still see today in our neighbouring planets and in our own.

In this thesis, I have tackled both some questions about the formation of the Moon,
and improvements in the methodologies used for giant impact studies. The former
focused on the canonical model for the formation of the Moon and on the importance
of pre-impact spin in giant impact outcomes, a topic little explored in the literature.
The latter addressed a problem in smoothed particle hydrodynamics (SPH) simula-
tions for giant impacts: the absence or impossibility of having density discontinuities
in the simulation. Since planets should have density discontinuities, this creates a
systematic error in the simulations that has been barely tackled in the past.

After an introduction in Chapter 1, Chapter 2 first focused on developing a method
to solve the hydrostatic equilibrium equation for a spinning planet, given an arbitrary
equation of state, and later placing particles such that a spinning planet could be
represented in a SPH simulation. These methods have been implemented and made
open-source in python under the name WoMa (World Maker), publicly available at
https://github.com/srbonilla/WoMa. With this new tool under our belt, making
initial conditions for giant impact studies with pre-impact spinning planets was
effortless.

The second goal of Chapter 2 was to study the potential importance of pre-impact
spin in giant impact simulations. For that purpose, I set up canonical-like simulations
where the impactor, Theia, had different spin rates. These differences in the pre-
impact Theia’s spin represent changes (up or down) of only ∼ 10% in the total
angular momentum of the system. We found different kinds of impact outcomes
depending on these small changes: counter-rotating Theia produced quick mergers,
whereas a rapidly corotating Theia led to a hit-and-run collision with numerous

https://github.com/srbonilla/WoMa
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unbound clumps escaping from the Earth. In the zero spin and slowly corotating
Theia cases, a large clump was left orbiting the Earth after 100 hours.

These clumps have a mass similar to the Moon, with an iron content ∼ 1% in mass,
and periapsis higher than the Roche limit. To determine whether these clumps
have stable orbits, i.e. orbits whose periapsis is larger than the Roche radius, we
also need to consider the interaction with the Sun, with the debris disk, and tidal
evolution. While its overall fraction of proto-Earth material is 30%, similar to what
has been found in previous studies, a radial gradient in material provenance means
that ∼ 50% of the surface material originates in the proto-Earth.

The gradient in composition could slightly alleviate the isotopic crisis for the form-
ation of the Moon, assuming that there was only partial mixing of the Moon’s
mantle in later evolution. It also agrees with recent data hinting that the isotopic
composition of the Moon varies with depth, and more Theia-like material is present
deeper in the mantle. However, a provenance of ∼ 50% from the proto-Earth at the
surface is still not sufficient to solve the isotopic crisis if Theia had a similar isotopic
composition to Mars. Overall, we found new structure in the post-impact debris
disk of some giant impacts that should be considered in models for the accretion of
the Moon and its subsequent evolution.

In Chapter 3 I switched my attention to the method used for simulations of giant
impacts, smoothed particle hydrodynamics. The very fundamental idea behind this
widely used method is how to reconstruct a density field from a discrete set of
particles. This density is by definition smooth, which raises issues for giant impact
simulations.

When representing a planet using SPH it is desirable to have density discontinuities at
the interface between materials (e.g. core–mantle or mantle–atmosphere boundaries),
and at the surface of the planet. These density discontinuities achieve pressure
continuity between different material layers in the planets, and their absence provokes
a discontinuity in the pressure profile of the planet. This effectively creates an
artificial force that repels particles from different materials in the different layers,
suppresses mixing between particles, and introduces an unknown systematic error in
the simulations. Previous to this work, Woolfson (2007) and Reinhardt et al. (2020)
had proposed a fix to this problem, which failed for sophisticated equations of state
like ANEOS.

We addressed this problem by defining a simple statistic, which measures how far
or close a particle is from a density discontinuity, by looking at the distribution of
the neighbouring particles. Then, using this same statistic, and the kernel average
pressure, we compute the corrected density. This method improves performance in
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the 2D square test with a better maintained shape, and enhanced mixing between
different material particles in the 2D Kelvin–Helmholtz test. Giant impact simula-
tions, where the core of the target has been highly disrupted by the impactor, reveal
a partially diffused iron core and a higher mass of iron in the debris disk. These
two features are not present in standard SPH for this type of impact. Future studies
could explore whether there are other scenarios that may yield different results with
or without a solution to the density discontinuity problem.

Finally, in Chapter 4, I put my focus back on canonical-like impacts with pre-impact
spin. However, on this occasion for a different reason: to explore a mechanism to
explain the present-day value of the lunar inclination.

Long-term evolution models for the orbit of the Moon suggest the angle between
the Earth’s spin and the normal of the lunar orbital plane was ∼ 10◦ at the time
the Moon accreted. This value cannot be explained using traditional giant impact
models that produce a debris disk in the equatorial plane of the Earth without an
extra mechanism like a gravitational resonance between the post-impact Earth and
the debris disk.

In this chapter we explored how a misalignment between the Earth’s spin and the
protolunar disk can be formed in giant impacts. For that purpose we perform
canonical-like simulations with a spinning proto-Earth. We found having a misalign-
ment angle is possible even when the proto-Earth has a slow initial spin, with a
period of 14 hours, that is orthogonal to Theia’s orbital angular momentum. The
misalignment is proportional to the spinning angular momentum of the proto-Earth.
Moreover, this misalignment is persistent over timescales of days, and could be a
first step towards accreting a Moon from an inclined protolunar disk.

The origin of the lunar inclination is unclear and many authors have proposed
solutions, which all rely on a dynamical process after the accretion of the Moon from
an equatorial debris disk. In this work we found a new possibility, the presence of
pre-impact spin can yield an inclined protolunar disk from which the Moon could
be accreted. Subsequent models need to be performed to determine to what extent
the inclination could persist over the timescales necessary for the accretion of the
Moon. During this subsequent evolution, the role of tides within the hot Moon and
proto-Earth will probably have an important role in partially or totally damping the
inclination.

With all the tools developed in this thesis, exploring a wider and richer parameter
space of giant impacts or protolunar disks is now possible. These methods could help
answer many questions about the formation of the Moon and many others about
our solar system.
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