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Abstract

A right-censored data set is most common in reliability and survival analyses.

It occurs when a particular event of interest is not fully observed in an experiment

and when there is no information provided about a random quantity except that it

exceeds a certain value. Nonparametric Predictive Inference (NPI) is a frequentist

statistical method based on only few assumptions. It focuses explicitly on future

observations and uses imprecise probabilities, based on Hill’s assumption A(n), to

quantify uncertainty. NPI has been developed for several types of data, including

right-censored data. However, NPI with right-censored data has only taken into

consideration a single future observation.

This thesis presents three contributions to NPI with right-censored data. First,

some statistical methods on extreme values assume that the endpoint of the support

is equal to the largest observed value in a data set. However, a question that may

be of interest is whether, for some right-censored observations in a data set, their

actual value might exceed the largest observed value.

Secondly, the actuarial estimator provides information on the number of events

and censorings at any given discrete point in time. The nature of this estimator

is such that, at every time point (except if all people in the data set have died)

there is right-censoring, the data themselves are not necessarily right-censored. A

similar approach is followed here, but we aim to develop an alternative method to the

actuarial estimator, based on NPI with right-censored data. The proposed method

will be used to derive NPI lower and upper probabilities for a variety of events of
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interest. As an example application, we apply the newly developed method to obtain

NPI lower and upper survival probabilities for reliability of systems.

Thirdly, NPI has been developed for real-valued data that contain right-censored

observations but only a single future observation was considered. There may be rea-

sons to be interested in multiple future observations, and it is important that in the

NPI approach such multiple future observations are not conditionally independent

given the data. We extend NPI for right-censored data by considering two future

observations. Particularly, we present NPI lower and upper probabilities for the

event that both future observations are greater than time t. We apply the proposed

method to system reliability.

The results in this thesis widen the applicability of NPI for several real-world

scenarios, while also suggesting new related topics for research.
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Chapter 1

Introduction

1.1 Motivation

In survival analysis, one of the primary characteristics is that some data may not be

fully observable, but are instead censored. In many cases, event times are subject to

right-censoring, which simply means that for a specific individual it is known that the

event has not yet occurred at a particular time [46]. In other words, an observation

for an individual is right-censored at c if its lifetime is known only to be greater than

c. While there are several other common types of censoring, including left-censoring

and interval-censoring, right-censoring occurs most frequently in applied statistics.

This thesis considers data sets including right-censored observations.

Nonparametric Predictive Inference (NPI) is a frequentist statistical method that

is based on Hill’s assumption A(n) [39, 40], as introduced in Chapter 2, which uses

imprecise probabilities [13, 45, 55, 61, 63] to quantify uncertainty. NPI gives lower

and upper probabilities for a future, observable, random quantity, conditioned on

observed values of related random quantities, based on the assumption A(n) [12].

NPI has been developed for a variety of data types, such as Bernoulli data [20,

27], real-valued data [29, 30, 52], data with right-censored observations [31, 32],

bivariate data [34], multinomial data [14, 22], and circular data [21]. Moreover, NPI

has been developed for a wide variety of statistical applications, such as reliability

analysis [2], operational research [26] and medical survival data [43]. This thesis is

mostly theoretical in nature, and uses data from the literature to illustrate how the

1
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developed methods are used. In this thesis, we present three new contributions to

NPI for data with right-censored observations.

In Chapter 3, it is commonly assumed in the literature on extreme values that

the endpoint of the support is equal to the largest observed value. Alves et al. [8], for

example, assumed a fixed endpoint and may have set it to the highest observation.

In this case, it further leads to a question that, if some of the values in a data set

that have been right-censored exceed the largest observed value? We use the A(n)

assumption and assume exchangeability for all random quantities known to be in

the risk set just prior to a certain censoring time and for random quantities that are

right-censored at that certain censoring time, to answer the question of interest. To

illustrate the utility of the proposed method, it is applied to a real data set termed

”Supercentenarian data” [8].

In Chapter 4, we assume that the time is discrete, as it was in respect of the

actuarial model, with regard to the number of events and censorings that take

place at each discrete time. In such a situation, Bernoulli data, that is, the data

on how many future individuals, who were alive at a certain time, would survive

the next time, is of interest. The actuarial estimator is used when there is right-

censored data in order to determine the probability of survival. Considering discrete-

time data, we present the NPI approach as a predictive alternative to the actuarial

estimator with right-censored data. By using the NPI method for Bernoulli data [20],

we construct the NPI alternative to the actuarial estimator. The NPI alternative

to the actuarial estimation method will be used to derive NPI lower and upper

probabilities with respect to the multiple future observations for some events of

interest. This approach will be applied together with the survival signature method

to some reliability systems.

Coolen and Yan [32] have developed NPI for right-censored data based on a

generalization of A(n), called the right-censoring A(n) assumption, or rc-A(n), but it

was only developed for a single future observation. In practice, however, there may

be reasons to be interested in multiple future observations; it is important that in the

NPI approach, such multiple future observations are not conditionally independent

given the data. In Chapter 5, we develop NPI for two future observations based
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on the assumption rc-A(n) without further assumptions [49] and as an example

application we consider reliability of series systems.

1.2 Censoring

When collecting data in an experiment or observational study, censoring occurs

when the event of interest is not fully observed. A common form of censoring is

when the only information about a random quantity is that is exceeds a particular

value. This is called right-censoring, and typically occurs in reliability and survival

analyses.

While this thesis considers right-censored data, we first give a brief general in-

troduction to censoring. Lawless [47] identified three types of censoring: (i) right-

censoring, (ii) left-censoring, and (iii) interval-censoring. As a first type of censoring,

right-censored data set, is the most common in reliability and survival analyses [53].

A dataset is referred to as right-censored if an individual has been removed from

the study or the study has been terminated and an individual still has not yet ex-

perienced the event of interest. We can use the example of light bulbs to illustrate

right-censoring data. In such a study, if a light bulb had not failed before the study

ends, while we know that this light bulb is still functional, we do not know when

it will fail beyond the end of the study; therefore, its lifetime is considered right-

censored. Two main types of right-censoring exist. Type I censoring occurs when we

conduct an experiment, and a decision is made to stop the study at a fixed time. As

a result, any individuals remaining functional beyond the termination of the study

are said to be right-censored. In addition, Type II censoring arises when a study

with a particular number of observations is conducted, however, a decision has been

made to stop the study when a specific number of failure times has been reached.

Then, any individuals remaining functional or surviving after termination are said

to be right-censored. Moreover, right-censoring may also occur due to different rea-

sons, not only Types I or II, e.g. if an individual leaves the study for a different

reason.

The second type is called left-censored data. Here, failure appears before a
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specific time. For example, suppose a study was conducted to estimate light bulb

performance and a decision was made to terminate the study at a particular time,

for example, in five years. Regular monthly checks were assigned during the lifetime

of the study. In such a study, if one light bulb had failed before the first monthly

check, then the only information we know is that the light bulb’s failure time is less

than one month, but we do not know exactly by how much. Therefore, this situation

illustrates left-censored data.

The third type of censoring is called interval-censored data. In the case where

we do not know exactly the time of failure for an individual unit within a study’s

duration, but we know that the failure occurs within a particular finite interval, then

this case is said to represent interval-censored data. Using the light bulb example,

if one light bulb is found to have failed between the first- and second-month checks,

then the only information that we have about this bulb is that it was found to have

survived the first month while it failed in the second month. Therefore, this is known

as an interval-censored item since its failure occurs between two failures times.

Some assumptions are assumed with regard to the mechanisms of censoring as

well as their relationship to the event time. We assume that a censoring time can

be either predetermined or random [36, 53]. One can do statistical inference in

case of non-informative censoring, that the censoring arises due to reasons which

are independent of the random quantity of interest for a unit. Other one can also

do statistical inference in case of informative censoring, but then things change

and one needs to model the relation between the censoring mechanism and the

random quantities of interest. So we only need to assume that for a right-censored

observation, the remaining time till the event of interest, at the moment of censoring,

is exchangeable with such remaining times for all other units which are still in the

study. This is the key assumption underlying rc-A(n) [32], which will be explained

in Section 2.4. And right centering of Type I and II, all of those types can fit

perfectly with the other assumption and for our interest, it is irrelevant as long as

it is non-informative right-censoring.

There are many nonparametric statistical methods can easily deal with all kinds

of censoring, such as the Kaplan-Meier estimator (KM) [44], which is the most
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commonly method used for dealing with right-censored data. In the following, the

KM estimator is briefly presented. Then, we will briefly discuss the link between

NPI for right-censored data and KM estimator [32] in Section 2.4.

The KM estimator (also known as the Product-Limit (PL) estimator) is a clas-

sical nonparametric method for estimating the survival function using lifetime data

that contains right-censored data. The KM estimator, presented by Kaplan-Meier

[44], has become one of the most used methods in applications where event times

are considered, e.g. in medical statistics and in reliability.

Suppose that there are observations on n individuals, and there are h(h ≤ n)

distinct event times t1 < t2 < ... < th. Let dti be the number of events occurred

simultaneously at time ti. For n −
∑h

i=1 dti individuals, no event time is observed,

but assume that these individuals are right-censored. Let cti be the number of

individuals censored at time ti. Suppose that there are l different right-censoring

times, c1 < c2 < · · · < cl. The survival function at time t is defined as S(t) =

P (X ≥ t). The KM estimator of the survival function S(t) is given by

Ŝ(t) =
∏
i:ti≤t

ñti − dti
ñti

=
∏
i:ti≤t

(
1− dti

ñti

)
,

where ñti is the number of individuals in the risk set (still functioning or alive and

uncensored) just prior to ti, then we have the relation ñti = ñti−1
− dti−1

− cti−1
.

For i = 0, 1, 2, ..., h− 1, with t0 = 0, the KM estimator is a step function which

decreases at event time ti by a factor (ñti − dti)/ñti . We notice that Ŝ(t) = 0 when

the largest observation is at the event time th. The KM estimator will be a positive

constant on [th, ck), k = 1, 2, . . . , l, if the largest observation is a right-censoring

time at cl, but it is often left undefined for interval [cl,∞). In addition, Ŝ(t) = 1

over the interval [0, t1). In general, the censoring times do not directly affect the

KM estimator [44]. They have a direct effect only on the size of the later steps;

i.e., every change in value happens at an event time, there is no change at censoring

times. In case there is no censoring, then the KM estimator of the survival function

is equal to the empirical estimate of the survival function [44].
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1.3 Outline of the thesis

This thesis is structured as follows. Chapter 2 introduces the basic concepts needed

in this thesis. We start by providing brief introductions of Hill’s assumption A(n) [39]

as well as the imprecise probability [12, 13]. Next, a brief introduction to NPI [12, 21]

is provided. Furthermore, we briefly review NPI for Bernoulli data [20], which will

be used in Chapter 4. NPI for right-censored data for a future observation based on

the rc-A(n) assumption [32] is also presented, which will be used in Chapter 5.

Chapters 3 to 5 contain the main contributions of this thesis. In some statistical

methods on extreme values, the endpoint of the support is considered to be equal

to the largest observed value in a data set. There is, however, a question that may

be of interest, namely whether the actual value of some right-censored observations

in a data set would be larger than the largest observed value. In Chapter 3, we

will present new results regarding our investigation of the question of interest. We

illustrate our new results using a real data set about supercentenarian people.

In Chapter 4, we consider discrete time and an NPI-based alternative to the

actuarial estimator with right-censored data is introduced, using NPI for Bernoulli

data [20]. Based on this method, NPI lower and upper probabilities for several events

of interest are derived. This method will then be compared to a nonparametric

statistical method, called ’NPI for grouped data’ [65], which is discussed in this

chapter. Further insights are presented in terms of deriving the NPI lower and upper

probabilities for the event that there are at least one trial succeeds in multiple future

Bernoulli trials, which will be applied to reliability of systems using the concept of

the survival signature [4, 21, 23, 25] and the NPI for Bernoulli data [20].

In Chapter 5, NPI for two future observations with right-censored data [49] is

introduced. We generalise the methodology of NPI for right-censored data that has

been presented for a single future observation [32] to two future observations, by

considering the NPI lower and upper probabilities for the event that both future

observations are greater than time t. The results presented in this chapter are

applied to system reliability by considering a small series system [49].

It is worth mentioning that part of Chapter 4 was presented at the 12th In-

ternational Conference of the ERCIM WG on Computational and Methodological
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Statistics and at the 13th International Conference on Computational and Financial

Econometrics in London on 14–16 December 2019. Part of Chapter 5 has been pre-

sented at the 29th European Safety and Reliability Conference (ESREL) conducted

in Hannover on 22–26 September 2019 and a related short paper was published in

the conference proceedings [49]. Also, the results of this chapter have been presented

at the 1st UK Reliability Meeting at Durham University on 1–3 April 2019 as well

as at the 12th Workshop on Principles and Methods of Statistical Inference with

Interval Probabilities 2019 (WPMSIIP) at Durham University on 9–12 September

2019.



Chapter 2

Nonparametric Predictive

Inference (NPI)

Over the last two decades, Nonparametric Predictive Inference (NPI) has been de-

veloped for a range of data types, and for a variety of applications and problems in

statistics and related areas such as risk, reliability, operations research and finance.

NPI is a statistical method that requires only a few assumptions, based on Hill’s as-

sumption A(n) [39], and uses imprecise probabilities to quantify uncertainty [12, 21].

The purpose of this chapter is to provide a brief overview of the background con-

cepts from the literature that are explicitly relevant to the new statistical inferences

proposed in this thesis.

This chapter is organized as follows. Section 2.1 presents a brief overview of

the Hill’s assumption A(n) and the imprecise probability. Section 2.2 provides an

overview of NPI for real-valued data. NPI for Bernoulli quantities is provided in

Section 2.3. Section 2.4 presents an overview of NPI for right-censored data, based

on the assumption rc-A(n), for a single future observation.

2.1 A(n) assumption and imprecise probability

Due to the fact that the NPI method is a frequentist method based on Hill’s as-

sumption A(n) and utilizes the imprecise probability theory to quantify uncertainty,

in this section, we will discuss the nature and properties of A(n) as well as some

8
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basic aspects of imprecise probability theory. Assume that X1, X2, . . . , Xn, Xn+1 are

real-valued absolutely continuous and exchangeable random quantities. Let the or-

dered observed values of X1, . . . , Xn be denoted as x1 < x2 < · · · < xn. To simplify

notation, let x0 = −∞ and xn+1 =∞, or we assume x0 = 0 in case of nonnegative

random quantities [42]. It is assumed that there are no ties between the observations

of the data. In the case of ties, we assume that the tied observations differ by a

small amount, which is a common strategy in statistics to break ties [40]. These

n observations divide up the real-line into n + 1 intervals Ij = (xj, xj+1), where

j = 0, 1, . . . , n. Based on n observations, the assumption A(n) [41] is that the prob-

ability that the next future observation Xn+1 is equally likely to fall in each open

interval (xj, xj+1), for all j = 0, 1, . . . , n, so

PXn+1(xj, xj+1) =
1

n+ 1
for all j = 0, 1, . . . , n (2.1)

The data carry information about the location but no information about the

rank of the future observations, corresponding to the absence of prior knowledge, so

A(n) is considered as a post-data assumption related to finite exchangeability, and

assumes nothing else [35]. For a detailed presentation and discussion of A(n), see

Hill [41].

The assumption A(n) alone is insufficient for constructing precise probabilities

for many events of interest, but it is still useful to derive bounds for probability,

effectively by applying De Finetti’s Fundamental Theorem of Probability [35], or

Walley’s concept of natural extension [61], which provide lower and upper proba-

bilities in interval probability theory. Weichselberger [64] also developed a formal

foundation for interval probability, via lower and upper probabilities, by applying

the principles of Kolmogorov’s axioms. These lower and upper probabilities are also

known as imprecise probabilities in accordance with the imprecise probability theory

[12, 13].

Imprecise probabilities have been proposed and studied since at least the middle

of the nineteenth century [18]. Recently, the topic of imprecise probabilities has

become increasingly prominent, resulting in a series of conferences and a project
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website∗. There are several interpretations of the lower and upper probabilities for

event A, which are denoted by P (A) and P (A), respectively [21]. According to

Walley [61], for instance, the lower and upper probabilities for event A can be inter-

preted as supremum buying price and infimum selling price, respectively, of a gamble

on the event A, in which 1 is paid when the event occurs and 0 if the event does

not occur. From a classical perspective, lower and upper probabilities can be inter-

preted as bounds on precise probabilities, because of the lack of information or the

desire not to make further assumptions. The theory of imprecise probability clearly

demonstrates that bounds provide valuable information regarding the uncertainty

of events caused by a lack of information [12, 61, 62, 63, 64]. The precise classical

probability of an event A is simply a special case of the imprecise probability, when

P (A) = P (A), whereas the total absence of information about the event A can be

reflected by P (A) = 0 and P (A) = 1. Next, we outline several important aspects

of imprecise probability theory relevant to A(n)-based inference [12]. As a general

rule, in imprecise probability theory, the lower and upper probabilities for the event

A are P (A) = 1− P (Ac), which is the conjugacy property, where Ac represents the

complementary event of A. In many cases, this conjugacy property can be utilised

in order to simplify the calculation of imprecise probabilities for events of interest

and their complementary events. For events A and B, such that A ∩ B = ∅, the

lower probability is superadditive and the upper probability is subadditive, so

P (A ∪B) ≥ P (A) + P (B)

P (A ∪B) ≤ P (A) + P (B)

In the following section, we will introduce the statistical method NPI which

assigns lower and upper probabilities to events involving a future random observation

Xn+1.

∗www.sipta.org
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2.2 NPI for real-valued data

Nonparametric Predictive Inference (NPI) is a statistical technique derived from

Hill’s assumption A(n) [39] to give direct probabilities for a future observable ran-

dom quantity based on observed values of corresponding random quantities [12, 21].

In NPI, uncertainty about events of interest is quantified by lower and upper proba-

bilities. On the basis of A(n), Augustin and Coolen [12] introduced predictive lower

and upper probabilities as follows.

The NPI lower and upper probabilities for the event Xn+1 ∈ B, where B ⊂ R,

given the intervals Ij = (xj, xj+1), j = 0, 1, . . . , n, resulting from n real-valued

non-tied observations and based on the assumption A(n), are

P (Xn+1 ∈ B) =
1

n+ 1
|{j : Ij ⊆ B}| (2.2)

P (Xn+1 ∈ B) =
1

n+ 1
|{j : Ij ∩B 6= ∅}| (2.3)

According to Equation (2.2), the NPI lower probability can be calculated by

summing only the A(n)-based probabilities assigned to intervals Ij which are fully

contained in B. The NPI upper probability, Equation (2.3), can be calculated by

summing all the A(n)-based probabilities assigned to intervals Ij which have non-

empty intersection with B. Augustin and Coolen [12] proved strong properties of

NPI lower and upper probabilities which fit well in the theory of interval probability

[61, 63, 64]. When assuming only A(n) corresponding logically to exchangeability

over all the n+ 1 random quantities, the NPI lower and upper probabilities are the

sharpest bounds on the probability for a given event of interest [12].

The nature of A(n) results in NPI being a frequentist statistical methodology

[12, 39, 40], which can be interpreted in a way similar to that of Bayesian statistics

[20, 42]. As in Bayesian statistics, NPI draws its inferences only from the actual

data observed, but it is worth pointing out that one must accept the exchange-

ability assumption for the data and future observations, which may not always be

straightforward, depending on experimental setup.

Furthermore, NPI has been adapted to suit different types of data and a multi-

tude of applications. For instance, NPI has been applied to Bernoulli data [20, 27],
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which will be introduced in detail in Section 2.3, data with right-censored observa-

tions [31, 32], as stated in more detail in Section 2.4, bivariate data [34], multinomial

data [14, 22] and circular data [21]. The NPI approach, in the way of dealing with

right-censoring times, has also been applied to real medical survival data including

right-censored observations by Janurová and Brǐs [43].

In NPI approach, when dealing with tied observations, it is quite straightforward

to assume that the tied observations differ by small amounts [40, 51]. If there is a

tie between the event time and the right-censoring time, then we assume that the

right-censoring time is just beyond the event time, a common approach to deal with

a such situation in statistics [44]. Throughout this thesis, we assume that there

are no ties between data observations; however, if ties do exist, we use the same

approach that is used in literature to deal with tied observations (see [32, 40, 44, 51]

for more details).

2.3 NPI for Bernoulli quantities

This section summarizes NPI for Bernoulli random quantities, based on the A(n)

assumption, as introduced by Coolen [20]. The special cases given in this section

are all used in Chapter 4.

Assume that there are n + m exchangeable Bernoulli trials with ’failure’ and

’success’ as possible outcomes for each trial, and data containing s successes in n

trials. Let Xn
1 denote the random number of successes in trials 1 to n, and Xn+m

n+1

denote the random number of successes in trials n+1 to n+m. Let Rt = {r1, . . . , rt},

with 0 ≤ r1 < r2 < . . . < rt ≤ m and 1 ≤ t ≤ m+1, and to simplify the notation, we

define
(
s+r0
s

)
= 0. Coolen [20] gives the general formulas of NPI for Bernoulli data

for the event of interest that Xn+m
n+1 ∈ Rt, given Xn

1 = s, where s ∈ {0, 1, . . . , n}.

The NPI upper probability for the event Xn+m
n+1 ∈ Rt | Xn

1 = s, is

P (Xn+m
n+1 ∈ Rt | Xn

1 = s) =(
n+m

n

)−1

×
t∑

j=1

[(
s+ rj
s

)
−
(
s+ rj−1

s

)](
n− s+m− rj

n− s

)
(2.4)

The corresponding NPI lower probability for the event Xn+m
n+1 ∈ Rt | Xn

1 = s can be
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derived via the conjugacy property,

P (Xn+m
n+1 ∈ Rt | Xn

1 = s) = 1− P (Xn+m
n+1 ∈ Rc

t | Xn
1 = s) (2.5)

with Rc
t the complement of Rt, that is Rc

t = {0, 1, . . . ,m}\Rt.

The above NPI lower and upper probabilities were derived by Coolen [20] using

direct counting arguments. This method is developed based on the A(n) assumption

for m future observations given n observed values, and on the A(n+m−1) assumption

for a latent variable representation of Bernoulli quantities represented by values

on the real line, with a threshold such that values on one side are successes and

values on the other side are failures. Assuming A(n), . . . , A(n+m−1) sequentially and

all observations being exchangeable, that this leads to all orderings
(
n+m
n

)
being

equally likely.

For any specific ordering of the m future observations among the n data obser-

vations, we can find all possible combinations of s successes in the data observations

and r successes in the future data, so if s can have n+1 values and r can have m+1

values, there are (n+ 1)× (m+ 1) possible combinations (s, r).

With some counting arguments, Coolen [20] gives the formulas of NPI for Bernoulli

data for the event of interest that Xn+m
n+1 = r|Xn

1 = s, where s ∈ {0, 1, . . . , n}. The

NPI lower probability for the event (Xn+m
n+1 = r|Xn

1 = s) is

P (Xn+m
n+1 = r | Xn

1 = s) =

(
n+m

n

)−1 [(
s− 1 + r

s− 1

)(
n− s− 1 +m− r

m− r

)]
(2.6)

and in case m future Bernoulli trials are all successes, so r = m, Equation (2.6) can

be reduced to the following

P (Xn+m
n+1 = m | Xn

1 = s) =

(
n+m

n

)−1(
s− 1 + r

s− 1

)
(2.7)

which can be simplified even further to a simple product as

P (Xn+m
n+1 = m | Xn

1 = s) =
m∏
i=1

s+ i− 1

n+ i
(2.8)

The associated NPI upper probability for the event Xn+m
n+1 = r|Xn

1 = s is

P (Xn+m
n+1 = r | Xn

1 = s) =

(
n+m

n

)−1 [(
s+ r

s

)(
n− s+m− r

n− s

)]
(2.9)
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and for r = m, Equation (2.9) can be reduced to the follows

P (Xn+m
n+1 = m | Xn

1 = s) =

(
n+m

n

)−1(
s+ r

s

)
(2.10)

which can be simplified even further to a simple product as

P (Xn+m
n+1 = m | Xn

1 = s) =
m∏
i=1

s+ i

n+ i
(2.11)

where Equations (2.8) and (2.11) are all used in Chapter 4.

Given data (n, s), with further counting arguments, Aboalkhair [1] also derives

the formulas of NPI for Bernoulli data for r successes out of m future Bernoulli

trials, where r ∈ {0, 1, . . . ,m} and s ∈ {0, 1, . . . , n}. The NPI lower and upper

probabilities for the event of interest that Xn+m
n+1 ≥ r | Xn

1 = s, are

P (Xn+m
n+1 ≥ r | Xn

1 = s) =

(
n+m

n

)−1

×
[(
s+ r

s

)(
n− s+m− r

n− s

)
+

m∑
`=r+1

(
s+ `− 1

s− 1

)(
n− s+m− `

n− s

)]
(2.12)

P (Xn+m
n+1 ≥ r | Xn

1 = s) = 1− P (Xn+m
n+1 ≤ r | Xn

1 = s) =

1−
(
n+m

n

)−1

×

[
r−1∑
`=0

(
s+ `− 1

s− 1

)(
n− s+m− `

n− s

)]
(2.13)

As a special cases, for example, in case m = 1 future observation, the NPI lower

and upper probabilities for the conditional event that Xn+1
n+1 = 1 given data Xn

1 = s,

for s ∈ {0, ..., n} and m = r = 1, are as follows [19]

P (Xn+1
n+1 = 1 | Xn

1 = s) =
s

n+ 1
(2.14)

P (Xn+1
n+1 = 1 | Xn

1 = s) =
s+ 1

n+ 1
(2.15)

In case the observed data are all successes, so s = n, then the NPI lower and

upper probabilities for all r ∈ {0, 1, . . . ,m}, are as follows

P (Xn+m
n+1 ≥ r | Xn

1 = n) = 1−
(
n+m

n

)−1(
n+ r − 1

n

)
(2.16)

P (Xn+m
n+1 ≥ r | Xn

1 = n) = 1 (2.17)
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In case the observed data are all failures, so s = 0, then the NPI lower and upper

probabilities for all r ∈ {0, 1, . . . ,m}, are as follows

P (Xn+m
n+1 ≥ r | Xn

1 = 0) = 0 (2.18)

P (Xn+m
n+1 ≥ r | Xn

1 = 0) =

(
n+m

n

)−1(
n+m− r

n

)
(2.19)

Using the counting arguments presented by Aboalkhair [1], we determine the

probability relationships between the events Xn+m
n+1 ≥ r and Xn+m

n+1 ≥ r + 1 for

r = 0, 1, . . . ,m− 1, as follows.

P (Xn+m
n+1 ≥ r)− P (Xn+m

n+1 ≥ r + 1)

=

(
n+m

n

)−1(
s+ r − 1

s− 1

)(
n− s+m− r

n− s

)
(2.20)

P (Xn+m
n+1 ≥ r)− P (Xn+m

n+1 ≥ r + 1)

=

(
n+m

n

)−1(
s+ r

s

)(
n− s+m− r − 1

n− s

)
(2.21)

In Chapter 4, the development of NPI for Bernoulli quantities, presented in

this section, will be utilised to present new statistical inferences related to NPI for

discrete-time data with right-censoring.

2.4 NPI for right-censored data

The Hill’s assumption A(n) [16], presented in Section 2.1, by itself is not suitable for

right-censored data, so Coolen and Yan [32] presented a generalization of A(n), called

the right-censoring A(n) assumption, abbreviated as rc-A(n), for right-censored data.

They added a new assumption to A(n) to makes it more suitable for dealing with

right-censored data. It is assumed that, at the moment of censoring, the residual

lifetime of a right-censored observation is exchangeable with the residual lifetimes

of all other observations that are not yet failed or censored [32].

According to the A(n) assumption [16], the probability distribution for a real-

valued random quantity Xn+1 is partially specified by probability mass assigned to

open intervals, without any further restriction on the spread of the probability mass
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within each interval [32, 33]. A probability mass assigned in such a way to an interval

(a, b) is denoted by MX(a, b), and referred to as a M -function value for X ∈ (a, b).

The M -function value should satisfy 0 ≤ MX(a, b) ≤ 1 and the M -function values

specified on all intervals should sum up to one [32]. These M -functions are in the

theory presented by Shafer [59].

In this section, we follow the notation and definitions presented by Maturi [51].

Consider the following data when determining the predictive probabilities for a fu-

ture observation. Assume X1, . . . , Xn, Xn+1 are non-negative, exchangeable and

continuous random quantities representing lifetimes. Suppose that there are in total

n observations containing u failure times observations, x1 < x2 < · · · < xu, and

ν = n − u right-censoring times, c1 < c2 < · · · < cν . For ease of notation, x0 = 0

and xu+1 =∞. Suppose further that there are si right-censored observations in the

interval I i = (xi, xi+1), denoted by c1
1 < ci2 < · · · < cisi , so

∑u
i= si = ν, such that

cii∗ ∈ (xi, xi+1), where i = 0, 1, . . . , u and i∗ = 1, 2, . . . , si. Again we assume that no

ties occur between the data observations as discussed in Section 2.2.

On the basis of n given event times, the assumption A(n) offers a partially spec-

ified probability distribution for Xn+1 in terms of M -function values. To deal with

right-censored observations being present in the data, a generalization of A(n) was

considered, that is the assumption Ã(n) [32].

Definition 2.4.1 (Ã(n) assumption)

On the basis of data including u event times and ν = n−u right-censoring times, the

assumption Ã(n) partially specifies the probability distribution for the next observa-

tion Xn+1 assigning probability masses to two types of open intervals, one formed

by consecutive event times, (xi, xi+1), and the other is formed by a censoring time

and infinity, (cii∗ ,∞), expressed via the following M -function values:

M̃Xn+1(xi, xi+1) =
1

n+ 1
(2.22)

M̃Xn+1(c
i
i∗ ,∞) =

1

n+ 1
(2.23)

where i = 0, 1, . . . , u and i∗ = 1, 2, . . . , si.
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Note that the notation M̃ used in Equations (2.22) and (2.23) indicates that these

M -function values are based on the assumption Ã(n). According to Equation (2.22),

the probability masses for the intervals (xi, xi+1) created by the u event times are

equal to 1
n+1

. Furthermore, probability mass 1
n+1

is assigned to the interval (cii∗ ,∞),

without making any other assumptions, so the lifetime of this observation will occur

at any point beyond cii∗ , as in Equation (2.23). Next, they [32] split the probability

mass assigned to the interval (cii∗ ,∞) into masses on sub-intervals.

Let Xci
i∗

denote the random quantity corresponding to the right-censoring at

time cii∗ . According to [32], the probability masses assigned to intervals (cii∗ ,∞)

may have caused wide bounds on probabilities, so it would be helpful if these prob-

ability masses can be split into probability masses on sub-intervals. For this reason,

Coolen and Yan [32, 65] proposed the assumption Shifted-Ã(n) for Xci
i∗

, for which

all we know is that the random quantity Xci
i∗

exceeds cii∗ .

Definition 2.4.2 (Shifted-Ã(n) assumption)

The assumption shifted-Ã(n) partially specifies the probability distribution for Xci
i∗

,

given that Xci
i∗
> cii∗ , expressed via the following M -function values:

MX
ci
i∗

(xk, xk+1) =
1

ñci
i∗

+ 1
for k = i+ 1, . . . , u, (2.24)

MX
ci
i∗

(cii∗ , xk+1) =
1

ñci
i∗

+ 1
, (2.25)

MX
ci
i∗

(cil,∞) =
1

ñci
i∗

+ 1
for l = i∗ + 1, . . . , ν. (2.26)

where ñci
i∗

represents the number of observations in the risk set at time cii∗ , for

cii∗ ∈ (xi, xi+1), i∗ = 1, 2, . . . , si.

This assumption is related to the fact that if the random quantitiesX1, X2, . . . , Xr

are exchangeable, then the random quantities in any subset of X1, X2, . . . , Xr are

also exchangeable [32, 65]. It also follows that as long as the random quantities

X1, X2, . . . , Xr are exchangeable, then all are also exchangeable when they exceed a

given value c [32, 65]. In this sense, the exchangeability assumption of all random
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quantities known to be in the risk set just prior to ci is an appropriate assumption

to handle random quantities that are right-censored at time cii∗ , and in fact implies

the assumption of non-informative censoring [32, 65].

Based on the assumption of non-informative censoring, reviewed in Section 1.2,

the assumption shifted-Ã(n) allows us to apply A(n) but with the starting point

shifted from the value 0 to the observed right-censoring time cii∗ [32, 65]. Clearly,

the sum of the M -function values for Xci
i∗

over these sub-intervals, as in Equations

(2.24), (2.25) and (2.26), is equal to one [32, 65].

Taking into account the two previously proposed assumptions ’Ã(n)’ for Xn+1

and ’shifted-Ã(n)’ for Xci
i∗

, Coolen and Yan [32, 65] proposed the right-censoring

Ã(n) assumption, denoted by rc-Ã(n), which allows splitting the total M -function

values for Xn+1 assigned to interval (cii∗ ,∞) into separate M -function values for

Xn+1 assigned to sub-intervals of (cii∗ ,∞).

Definition 2.4.3 (rc-Ã(n) assumption)

Let Pci
i∗

= MXn+1(c
i
i∗ ,∞) be the M -function value for Xn+1 on the interval (cii∗ ,∞),

taking into account the effects of all previous right-censorings and A(n). The as-

sumption rc-Ã(n) splits the probability mass of MXn+1(c
i
i∗ ,∞) as

M
ci
i∗
Xn+1

(xk, xk+1) =
Pci

i∗

ñci
i∗

+ 1
for k = i+ 1, . . . , u, (2.27)

M
ci
i∗
Xn+1

(cii∗ , xk+1) =
Pci

i∗

ñci
i∗

+ 1
, (2.28)

M
ci
i∗
Xn+1

(cil,∞) =
Pci

i∗

ñci
i∗

+ 1
for l = i∗ + 1, . . . , ν. (2.29)

where ñci
i∗

represents the number of observations in the risk set at time cii∗ , for

cii∗ ∈ (xi, xi+1), where i = 0, 1, . . . , u and i∗ = 1, 2, . . . , si.

With the combined assumptions Ã(n) and rc-Ã(n) for r = 1, 2, . . . , i∗ − 1, i∗ =

1, 2, . . . , si, and for any right-censoring time cii∗ , the Pci
i∗

can be computed by

Pci
i∗

= MXn+1(c
i
i∗ ,∞) =

1

n+ 1

∏
{r:r<i∗}

ñcr + 1

ñcr
. (2.30)
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where ñcr is the number of individuals in the risk set just prior to time cr [32, 65].

Note that throughout this thesis, a product over an empty set is defined to be equal

to 1.

Consequently, based on the assumptions Ã(n), given by Definition 2.4.1, and rc-

Ã(n), given by the Definition 2.4.3, the M -function values for Xn+1 are finally all

assigned to intervals (xi, xi+1) or (cii∗ , xi+1) for i = 0, 1, . . . , u and i∗ = 1, 2, . . . , si,

via considering an assumption called right-censoring A(n), which is also denoted as

rc-A(n) [32, 65].

Definition 2.4.4 (rc-A(n) assumption)

The assumption rc-A(n) partially specifies the NPI-based probability distribution

for the observable and non-negative random quantity Xn+1, via the following M -

function values [33],

MXn+1(xi, xi+1) =
1

n+ 1

∏
{r:cr<xi}

ñcr + 1

ñcr
(2.31)

MXn+1(c
i
i∗ , xi+1) =

1

(n+ 1)ñci
i∗

∏
{r:cr<cii∗}

ñcr + 1

ñcr
(2.32)

where i = 0, 1, . . . , u, i∗ = 1, 2, . . . , si and ñcr represents the number of observations

in the risk set just before time cr.

Following Maturi [51] and based on the assumption rc-A(n), all M -function val-

ues that are assigned for Xn+1 to be in one interval created by two consecutive

observed event times, (xi, xi+1), lead to the following probability for the event

Xn+1 ∈ (xi, xi+1),

PXn+1(xi, xi+1) = MXn+1(xi, xi+1) +

si∑
i∗=1

MXn+1(c
i
i∗ , xi+1)

=
1

n+ 1

∏
r:cr<xi+1

ñcr + 1

ñcr
(2.33)

Based on the rc-A(n) assumption, Maturi [51] derived simple closed-form expres-

sions for the NPI lower and upper survival functions, SXn+1
(t) and SXn+1(t). For
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t ∈ [tia, xi+1) with i = 1, 2, ..., u and a = 0, 1, ..., si, the NPI lower survival function

is [51]

SXn+1
(t) =

1

n+ 1
ñtia

∏
r:cr≤tia

ñcr + 1

ñcr
(2.34)

and, for t ∈ [xi, xi+1) with i = 1, 2, ..., u, the NPI upper survival function is [51]

SXn+1(t) =
1

n+ 1
ñxi

∏
r:cr≤xi

ñcr + 1

ñcr
(2.35)

where ñti
i∗

and ñxi represent the number of observations in the risk set just prior to

times tii∗ and xi, respectively, and ñcr represents the number of observations in the

risk set just before time cr. In Chapter 5, the rc-A(n) method for Xn+1, as presented

in this section, will be extended to two future observations.

Coolen and Yan [32] compared the NPI lower and upper survival functions based

on the rc-A(n) assumption with the Kaplan–Meier estimator (KM), which was re-

viewed in Section 1.3. They showed that the lower survival function for Xn+1, based

on the assumption rc-A(n), becomes zero after the largest observation, also the KM

estimator will behave this way if that observation is an event time. The upper

survival function always remains positive, unless the range of possible values for

Xn+1 is restricted by choosing a finite upper bound [32, 65]. The KM estimate is

always equal to one for the first interval (0, x1). This is also the case for the NPI

upper survival function for the event t ∈ (0, x1). Remember that the KM estimate

only decreases at observed event times. The NPI lower survival function decreases

at every observation but the NPI upper survival function decreases only at event

times, like the KM. Coolen and Yan [32] claimed that the rc-A(n)-based lower and

upper survival functions for Xn+1 are more suitable for graphical presentation rather

than the KM-based lower and upper survival functions, as they show the data in

full, including right-censored observations, and can be interpreted in a predictive

manner [32, 65].

The following example briefly illustrates the NPI lower and upper survival func-

tions and the KM estimator.

Example 2.4.1 (Cervical cancer survival data)
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Treatment A data

90 291 > 890 1153

142 > 468 1037 1297

150 680 > 1090 1429

269 837 > 1113 > 1577

Table 2.1: Cervical cancer survival data (Treatment A) (> t represents right-

censoring at time t).

ti ∈ (., .) ñti di ci (1− di
ñti

) SXn+1
(t) SXn+1(t) Ŝ(t)

(0,90) 16 0 0 1.000 0.941 1 1

(90,142) 16 1 0 0.938 0.882 0.941 0.938

(142,150) 15 1 0 0.933 0.824 0.882 0.875

(150,269) 14 1 0 0.929 0.765 0.824 0.813

(269,291) 13 1 0 0.923 0.706 0.765 0.750

(291,680) 12 1 1 0.917 0.642 0.706 0.688

(680,837) 10 1 0 0.900 0.578 0.642 0.619

(837,1037) 9 1 1 0.889 0.505 0.578 0.551

(1037,1153) 7 1 2 0.857 0.404 0.505 0.472

(1153,1297) 4 1 0 0.750 0.303 0.404 0.354

(1297,1429) 3 1 0 0.667 0.202 0.303 0.236

(1429,∞) 2 1 1 0.500 0 0.202 0.118

Table 2.2: NPI lower and upper survival functions SXn+1
(t) and SXn+1(t), respec-

tively, and KM estimator Ŝ(t), for data in Table 2.1.
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In this example, we use a subset of data obtained from 183 patients entered into

a randomised Phase III trial conducted by the Medical Research Council Working

Party on Advanced Carcinoma of the Cervix [48]. Parmar and Machin [48] used

30 observations to illustrate nonparametric methods for survival data, and 14 of

these patients received a new therapy known as a radiosensitiser, which was added

to their radiotherapy treatment for their cancer and is referred to as Treatment B.

The remaining 16 patients received only radiotherapy as a control, referred to as

Treatment A. The death of patients due to cancer is the event of interest and the

data observations are in days. We only use the 16 patients with Treatment A to

illustrate the NPI lower and upper survival functions and compare them to the KM

estimator.

The data are presented in Table 2.1, there are eleven event times and five right-

censoring times. Table 2.2 presents the NPI lower and upper survival function on

the intervals created by the data, together with the KM estimator. These are also

plotted in Figure 2.1. The R package ’Survival’ is used to derive the KM estimator,

see [56].

As shown in Figure 2.1, the NPI lower survival function for X17 based on the rc-

A(n) method is zero beyond the largest observation, 1577, which is a right-censored

observation, while the KM estimate is 0.202 beyond 1577. Also, it is clear from

Figure 2.1 that the KM estimator for the first interval (0, 90) is equal to 1. The

upper survival function is equal to 1 for interval (0, 90). Figure 2.1 shows that

the NPI lower survival function decreases at each observation while the NPI upper

survival function and the KM estimate only decrease at observed event times. The

results also indicate that KM estimator lies between the NPI lower and upper.
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Figure 2.1: NPI lower and upper survival functions and the KM estimate for the

data in Table 2.1.



Chapter 3

On Exceedance of the Largest

Observed Value

The first contribution to Nonparametric Predictive Inference (NPI) with right-

censored data in this thesis has been inspired by the literature on extreme value

theory, where in some papers (see e.g. Alves et al [7] and [8]) it is assumed that the

support of the random quantities of interest has a finite maximum which is set equal

to the largest observation in the available data. This is a somewhat questionable

assumption, in particular if the data set contains some right-censored observations,

and the question we asked is how likely it is that one or more of the right-censored

observations would actually have resulted in a data observation exceeding the largest

data value.

This chapter is presented with specific focus on the Supercentenarian data set,

which was also used by Alves et al [8]. This data set contains ages at death of people

who lived beyond the age of 110, where right-censoring of their death time occurs

for those who were still alive at the time the data were collected.

We start this chapter by a brief introduction of Extreme value theory from litera-

ture in Section 3.1. In Section 3.2, we consider the exceedance of the largest observed

value from NPI perspective. New additions to the study have been presented in Sec-

tion 3.3 taking into account future observations. The proposed methods, presented

in Sections 3.2 and 3.3, are applied to the Supercentenarian data set in Section 3.4.

In Section 3.5, we consider the exceedance of the jth largest observations and the

24
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results will be applied to the Supercentenarian data set. Finally, this chapter ends

up with concluding remarks in Section 3.6.

3.1 Extreme value theory

Extreme value theory (EV) is a statistical method which can be used to draw in-

ferences about rare events from large (or small) samples [7]. Fischer and Tippet

[37] obtained three asymptotic limits that describe the distributions of extremes

when independent and identically distributed random variables are assumed. We

consider the order statistics Xn,n ≥ Xn−1,n ≥ · · · ≥ X1,n of i.i.d. random variables

X1, . . . , Xn with distribution function F . We assume that distribution function F

has a finite right endpoint, denoted as xF , such that xF := sup{x : F (x) < 1} ∈ R.

For an > 0 and bn ∈ R such that limn→∞ Fn(an x + bn) = G(x), there are three

classes of distributions that can occur for the right endpoint, xF , denoted by Φα,

Ψα and Λ [38], thus

Φα(x) = exp{−x−α}, x > 0, α > 0,

Ψα(x) = exp{−(−x)α}, x < 0, α > 0,

Λ(x) = exp{− exp(−x)}, x ∈ R.

These distributions can be nested within the Generalized Extreme Value (GEV)

distribution with distribution function [7].

Gγ(x) := exp{−(1 + γx)−1/γ}, 1 + γx > 0, γ ∈ R. (3.1)

To estimate the right endpoint xF of a distribution function, we tend to use

a semi-parametric approach, i.e., the Gumbel extremal domain of attraction [7],

rather than using the limiting GEV distribution in Equation (3.1), thus

x̂F := Xn,n +
k−1∑
i=0

ai,k (Xn−k,n −Xn−k−i,n)

where ai,k := − (log 2)−1 (log(k + i)− log(k + i+ 1)) > 0, with
∑k−1

i=0 ai,k = 1, and

then the x̂F is defined as a functional of the top observations of the original sample

based on an intermediate sequence k = kn, with kn → ∞, kn = O(n), as n → ∞.

For more information about the Extreme value theory (EV), see [7, 8, 37, 38].
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3.2 Exceedance of the largest observed value

Based on the A(n) assumption and non-informative right censoring, described in

Chapter 2, this section presents a new method on the exceedance of the largest

observed value in a data set containing some right-censored observations that aims to

answer the question of whether one or more lifetimes of right-censored observations

would exceed the largest observed value.

Let X1, X2, . . . , Xn be non-negative, exchangeable and continuous random quan-

tities. We have observations for these random quantities, such that for u we observed

the actual value, these are denoted by x1 < x2 < · · · < xu, while for v = n−u we only

observed a right-censoring time, these are denoted by c1 < c2 < · · · < cv. For ease

of notation we define x0 = 0 and xu+1 =∞. Further, let Xc1 , Xc2 , . . . , Xcv−1 , Xcv be

the random quantities corresponding to the individuals whose lifetimes have been

right-censored at censoring time cr, where r = 1, 2, . . . , v. Let ñcr represent the

number of observations in the risk set just before time cr. Let R = xu, so R denotes

the largest observed event time in the data set. We assume that no ties occur among

all observations as reviewed in Section 2.2.

In addition to the assumed exchangeability of all X1, X2, . . . , Xn, we assume

that, at any right-censoring time, the remaining time to observing the event for a

right-censored observation is exchangeable with the remaining times until the event

for all other random quantities in the risk set at that time [32, 65]. Based on the

assumption of non-informative right censoring [32, 65], discussed in Section 1.2, the

assumption shifted-Ã(n), stated in Definition 2.4.2, is used. The assumption shifted-

Ã(n) allows us to apply A(n) but with the starting point shifted from the value 0

to the observed right-censoring time cr [32, 65]. Thus, the assumption shifted-Ã(n)

partially specifies the probability distribution for Xcr via the following M -function

values:

MXcr
(xi, xi+1) =

1

ñcr + 1
for i = 0, . . . , u (3.2)

where cr is between (xi, xi+1) and ñcr is the number of observations in the risk set

just prior to time cr, with r = 1, 2, . . . , v.

Now, consider the event of interest that for at least one of the individuals whose
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lifetimes have been right-censored, the actual value of the lifetime would be larger

than the largest observed value R. For ease of notation, let GR(0) denote this event

of interest. Note that, here we refer to the notation GR(0) since we do not take any

future observations into account, that is m = 0, so only the data set that contains

n observations is taken into account.

Theorem 3.2.1 The probability for the event of interestGR(0), denoted by P (GR(0)),

is

P (GR(0)) = 1−
v∏
r=1

ñcr
ñcr + 1

(3.3)

where ñcr represents the number of observations in the risk set (still functioning or

alive and uncensored) just before time cr.

Proof: We first consider the individual Xcv , who is the last one who was censored

at censoring time cv, such that there are no further censorings beyond it. Then

for Xcv , we can just apply the shifted-Ã(n), in Equation (3.2), which allows us to

apply A(n) but with the starting point shifted from the value 0 to the highest right-

censoring time cv. Then the lifetime of this individual Xcv will either survive the

value R or not. If the lifetime of Xcv would actually be beyond R, then on the basis

of the shifted-Ã(n) as in Equation (3.2), the probability for Xcv > R is

P (Xcv > R) =
1

ñcv + 1
(3.4)

If the lifetime of Xcv is not going to be beyond R, then the probability for the

event of interest Xcv < R with knowing the value of ñcv , is

P (Xcv < R) = 1− 1

ñcv + 1
=

ñcv
ñcv + 1

(3.5)

where ñcv is the number of observations in the risk set just prior to time cv.

We now consider the previous individual with the second censoring time cv−1,

namely Xcv−1 , conditional on Xcv < R. It is critical to recognize that for Xcv−1 , it

does not matter where exactly the final individual’s fail time or lifetime, Xcv , is, as
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long as it is earlier than R. To be precise, we do not need to take censoring into

account for Xcv , because it is conditioning on what is happening before the value R

and thus it must be involved in between Xcv and R, but it does not matter what the

exact value of Xcv is within the interval (Xcv−1 ,R). Therefore, the probability for

the event that Xcv−1 exceeds R given that Xcv < R, on the basis of the shifted-Ã(n)

as in Equation (3.2), is

P (Xcv−1 > R|Xcv < R) =
1

ñcv−1 + 1
(3.6)

and then the probability for the event of interest that Xcv−1 < R given Xcv < R,

with knowing the value of ñcv−1 , is

P (Xcv−1 < R|Xcv < R) = 1− 1

ñcv−1 + 1
=

ñcv−1

ñcv−1 + 1
(3.7)

where ñcv−1 is the number of observations in the risk set just prior to time cv−1.

The same procedures are repeated for all other individuals whose lifetimes have

been right-censored at censoring time cr, where r = 1, 2, . . . , v − 3, v − 2. If the

lifetime of an individual, Xcr , is not going to be beyond R, then we are going to

check the previous individuals at those censoring times cr. The important thing to

note is that for these individuals, it does not matter precisely where their failure of

lifetimes occur as long as they have already died beforeR. Generally, for the lifetime

of those later individuals, censoring does not need to be taken into consideration

since it is based on what is happening before R. Accordingly, for an individual Xcr

at time cr, we only know the number of individuals in between Xcr and R and we

also know that all of them failed before R. Therefore, the probability for an event

that Xcr > R, with r = 1, 2, . . . , v − 3, v − 2, given that all of the individuals failed

before R, on the basis of the shifted-Ã(n) as in Equation (3.2), are

P (Xcr > R|Xcr+1 < R, . . . , Xcv−1 < R, Xcv < R) =
1

ñcr + 1
(3.8)

and then the probabilities for the event of interest that nobody survives the value

R, with knowing the values of ñcr , r = 1, 2, . . . , v − 3, v − 2, are

P (Xcr < R|Xcr+1 < R, . . . , Xcv−1 < R, Xcv < R) = 1− 1

ñcr + 1
=

ñcr
ñcr + 1

(3.9)
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It is critical to emphasize that for the event of interest above we do not need

to apply A(n) with censoring, since it is written as a conditional event that all

individuals are less than the value R. Of course, if an individual’s lifetime is greater

than R, then we know that the event that they are all less than R is not true.

Consequently, the probability for the event of interestGR(0), denoted by P (GR(0)),

is derived in terms of a product of Equation (3.9), the probability for that all events

are less than R, thus

P (GR(0)) = 1−
v∏
r=1

ñcr
ñcr + 1

Thus, the proof is complete.

2

The following example illustrates the probabilities presented in this section.

Example 3.2.1 Suppose we have a data set consisting of n = 10 observations. Of

these ten individuals, seven died at ages 111, 113, 115, 116, 119, 120 and 122, while

three observations were still alive at the time the data were collected, their lifetimes

were right-censored at ages 112, 114 and 117. Note that the largest observation that

was recorded is 122, so R = 122. Let Xc1 , Xc2 and Xc3 denote the random quantities

corresponding to the right-censorings at times 112, 114 and 117, respectively.

We first consider the individual Xc3 , who is the last one who was censored at

age 117, such that there are no further censorings beyond it. Then the lifetime of

Xc3 will either survive the value R or not. If Xc3 > 122, then on the basis of the

shifted-Ã(3), using Equation (3.4), with ñc3 = 3 observations in the risk set just prior

to time c3, the probability for Xc3 > R is

P (Xc3 > 122) =
1

4

If Xc3 < 122, then by using Equation (3.5) with ñc3 = 3, the probability for the

event Xc3 < 122 is 1− 1
4

= 3
4
.

We now consider Xc2 , who was censored at age 114, conditional on Xc3 < 122.

For Xc2 , we do not need to take censoring into account for Xc3 , since Xc3 < 122,
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so it does not matter what the exact value of Xc3 is within the interval (117, 122),

and we only know that there are 3 times of death between 116 and 122. Thus, the

probability for the event that Xc2 > 122 given that Xc3 < 122, on the basis of the

shifted-Ã(6) using Equation (3.6), with ñc2 = 6, is

P (Xc2 > 122|Xc3 < 122) =
1

7

and then the probability for the event of interest that Xc2 < 122 given Xc3 < 122,

using Equation (3.7) with ñc2 = 6, is 1− 1
7

= 6
7
.

Next, we consider Xc1 , who was censored at age 112, conditional on that Xc2 <

122 and Xc3 < 122. So, for Xc1 , we again do not need to take censoring into account

for Xc2 and Xc3 , since both died before 122, so it does not matter what the exact

values of Xc2 and Xc3 are within the interval (114, 122), and we only know that

there are 6 times of death between 113 and 122. Thus, the probability for the event

that Xc1 > 122 given that Xc2 < 122 and Xc3 < 122, on the basis of the shifted-Ã(8)

using Equation (3.8), with ñc1 = 8, is

P (Xc1 > 122|Xc2 < 122, Xc3 < 122) =
1

9

and then the probability for the event of interest that Xc1 < 122 given Xc2 < 122

and Xc3 < 122, using Equation (3.9) with ñc1 = 8, is 1− 1
9

= 8
9
.

Consequently, to calculate the probability for the event that at least one of the

three individuals, Xc1 , Xc2 and Xc3 , with lifetimes right-censored at ages 112, 114,

and 117, would be larger than the value R = 122, we use Equation (3.3) of Theorem

3.2.1, thus

P (G122(0)) = 1−
3∏
r=1

ñcr
ñcr + 1

= 1−
[

3

4
× 6

7
× 8

9

]
= 1− 4

7
= 0.4286

With this illustrative example of deriving the probability for the event of interest

G122(0), we do not have to deal with any censoring in the A(n) setting because we

are conditioning on that individuals are all less than the value R = 122.
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3.3 New additions to the study by including fu-

ture items

In this section, we present new additions to the study when taking future items

into account. In Section 3.2, we ask what is the probability that anyone, who was

censored in the data set, would actually have a real random quantity would exceed

the largest value and then in this section, we will include new future individuals. It

is important because the main interest in these inferences is not only on the people in

the data set, but also on the future individuals, and even when there is no censoring,

future ones are still interesting.

In addition to the notation provided in Section 3.2, let Xn+1, Xn+2, . . . , Xn+m

be non-negative, exchangeable and continuous random quantities for the future life-

times who are including to the given n = u + v data set. Considering x0 = 0, let

ñx0 = n represent the number of all observations in the risk set at time x0. Remem-

ber that R denotes the largest observed event time in the data set and we assume

that no ties occur among all observations.

Now, consider the event of interest that for at least either one of the individuals

whose lifetimes have been right-censored, or one of the m ≥ 1 future individuals,

added to the study, the actual value of the lifetime would be larger than the largest

observed value R. For ease of notation, let GR(m) denote this event of interest. It

is important to note that we use the notation GR(m) for the event of interest that

takes into account both future observations as well as the data set consisting of n

observations while using the notation GR(0) for the event of interest, introduced in

Section 3.2, which only considers the data set that contains n observations without

considering any future observations.

Theorem 3.3.1 Consequently, the probability for the event of interest GR(m),

denoted by PR(G(m)), is

P (GR(m)) = 1−

[
m∏
i=1

n+ i− 1

n+ i

v∏
r=1

ñcr
ñcr + 1

]
= 1−

[
n

n+m

v∏
r=1

ñcr
ñcr + 1

]
(3.10)
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where ñcr represents the number of observations in the risk set (still functioning or

alive and uncensored) just before time cr.

Proof: For m = 1, we consider the lifetime of the first future individual Xn+1, con-

ditional on that all individuals whose lifetimes have been right-censored at censoring

time cr, where r = 1, 2, . . . , v have been failed before the value R. It is crucial that

for all right-censored individuals, it does not matter where exactly their lifetimes

are, as long as they are earlier than R. So the only thing that we need to know

is the number of individuals in the risk set at time x0, that is ñx0 = n. Then the

probability for the event that Xn+1 > R given that all Xcr < R, r = 1, 2, . . . , v, on

the basis of the shifted-Ã(n) as in Equation (3.2), with ñx0 = n, is

P (Xn+1 > R|Xc1 < R, Xc2 < R, . . . , Xcv < R) =
1

ñx0 + 1
=

1

n+ 1
(3.11)

and then the probability for the event of interest that Xn+1 < R given all Xcr < R,

r = 1, 2, . . . , v, with ñx0 = n, is

P (Xn+1 < R|Xc1 < R, Xc2 < R, . . . , Xcv < R) = 1− 1

n+ 1
=

n

n+ 1
(3.12)

In case, m = 2, we consider the lifetime of the second future individual Xn+2,

conditional on that the lifetime of the first future individual Xn+1 and all individuals

whose lifetimes have been right-censored at censoring time cr, where r = 1, 2, . . . , v,

have been failed before the value R. Then again the probability for the event that

Xn+2 > R given that Xn+1 < R and all Xcr < R, r = 1, 2, . . . , v, on the basis of the

shifted-Ã(n) as in Equation (3.2), with ñx0 + 1, as Xn+1 is added, so ñx0 + 1 = n+ 1,

thus

P (Xn+2 > R|Xn+1 < R, Xc1 < R, . . . , Xcv < R) =
1

(ñx0 + 1) + 1
=

1

n+ 2

and then the probability for the event of interest that Xn+2 < R given Xn+1 < R

and all Xcr < R, r = 1, 2, . . . , v, with ñx0 + 1 = n+ 1, is

P (Xn+2 < R|Xn+1 < R, Xc1 < R, . . . , Xcv < R) = 1− 1

n+ 2
=
n+ 1

n+ 2

In general, we derive the probability for an event Xn+i > R, when i = 2, 3, . . . ,m,

conditional on that the previous future individuals and all individuals whose lifetimes
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have been right-censored at censoring time cr, where r = 1, 2, . . . , v, have been failed

before the value R, on the basis of the shifted-Ã(n) as in Equation (3.2), as follows.

P (Xn+i > R|Xn+1 < R, . . . , Xn+i−1 < R, Xc1 < R, . . . , Xcv < R) =
1

(ñx0 + i− 1) + 1

=
1

n+ i
(3.13)

and then the probability for an event Xn+i < R given Xn+1 < R, . . . , Xn+i−1 < R,

when i = 1, 2, . . . ,m, and all Xcr < R, r = 1, 2, . . . , v, with ñx0 + i = n+ i, is

P (Xn+i < R|Xn+1 < R, . . . , Xn+i−1 < R, Xc1 < R, . . . , Xcv < R) = 1− 1

n+ i

=
n+ i− 1

n+ i

(3.14)

Since the event of interest GR(m) takes into account both future observations

and the data set that contains the n observations, Equation (3.9) that is related to

the data set that contains only the n observations without considering any future

observations and Equation (3.14) that is related to future observations, are required

to compute the probability that all right-censored times exceed R, stated for the

event of interest GR(m). Consequently, the probability for the event of interest

GR(m), denoted by PR(G(m)), in terms of products of Equations (3.9) of Theorem

3.2.1 and (3.14), will be

P (GR(m)) = 1−

[
m∏
i=1

n+ i− 1

n+ i

v∏
r=1

ñcr
ñcr + 1

]
= 1−

[
n

n+m

v∏
r=1

ñcr
ñcr + 1

]

Thus, the proof is complete.

2

With respect to Equation (3.10) of Theorem 3.3.1, P (GR(m)) value increases as

m increases. In addition, if m tends to infinity, the second term in Equation (3.10)

tends to zero, so that the value of P (GR(m)) tends to 1.

The following example illustrates the probabilities presented in this section.
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Example 3.3.1 We again use the same data on n = 10 observations (as in Example

3.2.1). We consider that Xn+1 and Xn+2 are lifetimes of the first and second future

ones to be included to the study and then we ask that what is the probability for

the event that for at least either one of the three individuals, Xc1 , Xc2 and Xc3 , with

lifetimes right-censored at ages 112, 114, and 117, or one of the future individuals,

Xn+1 and Xn+2, the actual value of the lifetime would be larger than the largest

observed value R.

We first consider the lifetime of Xn+1, conditional on that Xc1 , Xc2 and Xc3 ,

with lifetimes right-censored at ages 112, 114, and 117, have been failed before the

value R = 122. Then the probability for the event that Xn+1 > 122 given that

Xc1 < 122, Xc2 < 122 and Xc3 < 122, on the basis of the shifted-Ã(10), with the

ñx0 = 10 individuals in the risk set at time x0, is calculated by using Equation

(3.11) as

P (Xn+1 > 122|Xc1 < 122, Xc2 < 122, Xc3 < 122) =
1

11

and then the probability for the event Xn+1 < 122 given that Xc1 < 122, Xc2 < 122

and Xc3 < 122, with ñx0 = 10, is calculated by using Equation (3.12) as

P (Xn+1 < 122|Xc1 < 122, Xc2 < 122, Xc3 < 122) = 1− 1

11
=

10

11

We now consider the lifetime of Xn+2, conditional on that the lifetime of Xn+1

and Xc1 , Xc2 and Xc3 , with lifetimes right-censored at ages 112, 114, and 117, have

been failed before the valueR = 122. Then the probability for the event Xn+2 > 122

given that Xn+1 < 122, Xc1 < 122, Xc2 < 122 and Xc3 < 122, on the basis of the

shifted-Ã(11), with the ñx0 + 1 = 11, is calculated by using Equation (3.11) as

P (Xn+2 > 122|Xn+1 < 122, Xc1 < 122, Xc2 < 122, Xc3 < 122) =
1

12

with respect to that for Xn+1 < 122, Xc1 < 122, Xc2 < 122 and Xc3 < 122, it does

not matter where exactly their lifetimes are, as long as they died before 122. Then

the probability for the event Xn+2 < 122 given Xn+1 < 122, Xc1 < 122, Xc2 < 122

and Xc3 < 122, with ñx0 + 1 = 11, is

P (Xn+2 < 122|Xn+1 < 122, Xc1 < 122, Xc2 < 122, Xc3 < 122) = 1− 1

12
=

11

12
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Consequently, by using Theorem 3.3.1, the probability for the event G122(2),

denoted by P (G122(2)), in terms of products of Equations (3.9) and (3.14), is derived

as

P (G122(2)) = 1−

[
2∏
i=1

n+ i− 1

n+ i

3∏
r=1

ñcr − 1

ñcr

]

= 1−
[
(
10

11
× 11

12
)× (

3

4
× 6

7
× 8

9
)

]
= 1− 40

84
= 0.5238

In the following section, the proposed method presented in Sections 3.2 and 3.3

will be applied to the full supercentenarian data set, but separately for the women

and the men.

3.4 Application to the Supercentenarian data

The data set considered in this chapter was used by Alves et al. [8], it contains

the ages at death of 1740 people who had lived past the age of 110, together with

the ages of such people who were still alive when the data were collected. These

data were taken from Tables B and C of the dataset that had been collected by the

Gerontology Research Group (GRG), on 22 April 2018.∗ The lifespan of individuals

indicated in this data set contains the number of years a person may be able to

live. One interesting thing is an inference on the maximum number of years that

is possible for a person to live. For the sake of computation, the ages in the data

set are in days but in here, the number of years as well as days are needed and we

assume that there are no ties occur between these ages. It should be noted that all

years were interpreted as 365 days, and that leap years were not taken into account.

According to the GRG, Jeanne Calment, a supercentenarian woman from France,

has the oldest recorded age of a person, which is 122.5 years old, whereas Jiroemon

Kimura from Japan has the oldest recorded age of a supercentenarian man, which

is 116.2 years old.

The data set consists of 1580 lifetimes of supercentenarian females and 160 life-

times of supercentenarian males, who exceeded the age of 110. These numbers also

∗The data set is available at http://www.grg.org/Adams/Tables.htm, see also [8].
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reflect that supercentenarian women tend to live longer than supercentenarian men.

Of these 1580 supercentenarian women, 72 were still alive on 22 April 2018, the

date of collecting the data, so their lifetimes are considered to be right-censored. In

contrast, there were only two supercentenarian males still alive on the date of col-

lecting the data, out of the 160 supercentenarian males in the study. In this study,

the objective is to determine the probability for the event that at least one of the

right-censored supercentenarians women would live beyond Jeanne Calment’s age at

death, and the event that at least one of the right-censored supercentenarian men

would live beyond Jiroemon Kimura’s age at death. In the following examples, the

methods presented in Sections 3.2 and 3.3 will be applied to the supercentenarian

men and women separately.

Example 3.4.1 (Supercentenarian women data) In this example, we consider the

supercentenarian data for women. There are n = 1580 supercentenarian women in

the data set, 72 were still alive at the time of the study and hence their lifetimes

are right-censored. As Jeanne Calment’s age was the largest age recorded in the

data set with the age of 122.5, let R = 122.5. Then the interest will be on the

question of what is the probability for the event, GR(0), that at least one of the 72

supercentenarian women whose lifetimes have been right-censored, the actual value

of the lifetime would be larger than the largest observed value R = 122.5. This

probability is obtained by using Equation (3.3) of Theorem 3.2.1, as follows

P (G122.5(0)) = 1−
72∏
r=1

ñcr
ñcr + 1

= 1− 0.6567 = 0.3433

As a result of what we have assumed in our model, which is based on the A(n)

assumption and non-informative right censoring, described in Section 3.2, the prob-

ability that at least a lifetime of one of the 72 supercentenarian women, who were still

alive at the time of data set, would live beyond Jeanne Calment’s age (R = 122.5),

is 0.3433.

Now, let us consider m = 1 future supercentenarian women, Xn+1, added to

the study, given the n = 1580 supercentenarian women. The lifetime of Xn+1 is

considered, conditional on that all the 72 supercentenarian women, whose lifetimes
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have been right-censored, have been failed before the value R = 122.5. Then the

probability for the event, G122.5(1), that at least one of the 72 right-censored super-

centenarian women or the lifetime of Xn+1, would live longer than R = 122.5, using

Equation (3.10) of Theorem 3.3.1, is

P (G122.5(1)) = 1−

[
1580

1580 + 1

72∏
r=1

ñcr
ñcr + 1

]
= 1− 0.6563 = 0.3437

Consider m = 2 future supercentenarian women, Xn+2, added to the study,

given the n = 1580 supercentenarian women and the first future supercentenarian

women, Xn+1. The lifetime of Xn+2 is considered, conditional on that all the 72

supercentenarian women, whose lifetimes have been right-censored, and the lifetime

of Xn+1, all have been failed before the value R = 122.5. Then the probability

for the event, G122.5(2), that at least one of the 72 right-censored supercentenarian

women or one of the lifetimes of Xn+1 and Xn+2, would live longer than R = 122.5,

using Equation (3.10) of Theorem 3.3.1, is

P (G122.5(2)) = 1−

[
1580

1580 + 2

72∏
r=1

ñcr
ñcr + 1

]
= 1− 0.6559 = 0.3441

Consideringm ≥ 2 future supercentenarian women to be added to the study, then

the probability for the event, G122.5(m), that at least one of the 72 right-censored

supercentenarian women or one of the lifetimes of m ≥ 2 future supercentenarian

women, would live longer than R = 122.5, is calculated by using Equation (3.10) of

Theorem 3.3.1, and shown in Figure 3.1, thus

P (G122.5(m)) = 1−

[
1580

1580 +m

72∏
r=1

ñcr
ñcr + 1

]
= 1−

[
1580

1580 +m
× 0.6567

]
Remark: As m→∞, the probability P (G122.5(m))→ 1.

Example 3.4.2 (Supercentenarian men data) In this example, we consider the su-

percentenarian data for men. The data set consists of 160 supercentenarian men,

two of them were still alive at the time of the study and hence their lifetimes are

right-censored. As Jiroemon Kimura’s age was the largest age recorded in the data

set with the age of 116.2, let R = 116.2. Then the interest will be on the question

of what is the probability for the event, G116.2(0), that at least one of the two super-

centenarian men whose lifetimes have been right-censored, the actual value of the
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Figure 3.1: P (G122.5(m)) for the supercentenarian women data, according to Exam-

ple 3.4.1.

lifetime would be larger than the largest observed value R = 116.2. This probability

is obtained by using Equation (3.3) of Theorem 3.2.1, as follows

P (G116.2(0)) = 1−
2∏
r=1

ñcr
ñcr + 1

= 1− 0.9444 = 0.0556

so with probability of 0.0556, there is at least one lifetime of the two supercentenar-

ian men, who were still alive at the time of data set, would live beyond Jiroemon

Kimura’s age (R = 116.2).

Take m = 1 future supercentenarian men, Xn+1, added to the study, into consid-

ration, given the n = 160 supercentenarian men. The lifetime of Xn+1 is considered,

conditional on that all the two supercentenarian men, whose lifetimes have been

right-censored, have been failed before the value R = 116.2. Then the probability

for the event, G116.2(1), that at least one of the two right-censored supercentenarian

men or the lifetime of Xn+1, would live longer than R = 116.2, using Equation
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(3.10) of Theorem 3.3.1, is

P (G116.2(1)) = 1−

[
160

160 + 1

2∏
r=1

ñcr
ñcr + 1

]
= 1− 0.9385 = 0.0615

Then we consider m = 2 future supercentenarian men, Xn+2, added to the

study, given the n = 160 supercentenarian men and the first future supercentenarian

men, Xn+1. The lifetime of Xn+2 is considered, conditional on that all the two

supercentenarian men, whose lifetimes have been right-censored, and the lifetime of

Xn+1, all have been failed before the value R = 116.2. Then the probability for the

event, G116.2(2), that at least one of the two right-censored supercentenarian men

or one of the lifetimes of Xn+1 and Xn+2, would live longer than R = 116.2, using

Equation (3.10) of Theorem 3.3.1, is

P (G116.2(2)) = 1−

[
160

160 + 2

2∏
r=1

ñcr
ñcr + 1

]
= 1− 0.9327 = 0.0673

Considering m ≥ 2 future supercentenarian men to be added to the study, then

the probability for the event, G116.2(m), that at least one of the two right-censored

supercentenarian men or one of the lifetimes of m ≥ 2 future supercentenarian men,

would live longer than R = 116.2, is calculated by using Equation (3.10) of Theorem

3.3.1, and shown in Figure 3.2, thus

P (G116.2(m)) = 1−

[
160

160 +m

2∏
r=1

ñcr
ñcr + 1

]
= 1−

[
160

160 +m
× 0.9444

]

One interesting argument is that one would get the smallest m for which value

of the probability P (GR(m)) in Example 3.4.1 or in Example 3.4.2, is greater than

a specific P value, where P ∈ [0, 1], i.e. P = 0.95. For example, from Figure 3.1, for

the supercentenarian women data, according to Example 3.4.1, such that

P (G122.5(m)) = 1−
[

1580

1580 +m
× 0.6567

]
> P

where the P (G122.5(m)) is greater than P = 0.95 for m ≥ 19200 future supercente-

narian women.

While from Figure 3.2, for the supercentenarian men data, according to Example

3.4.2, such that

P (G116.2(m)) = 1−
[

160

160 +m
× 0.9444

]
> P
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Figure 3.2: P (G116.2(m)) for the supercentenarian men data, according to Example

3.4.2.

where the P (G116.2(m)) is greater than P = 0.95 for m ≥ 2900 future supercente-

narian men.

Note that for the supercentenarian men data in Example 3.4.2, the standard of

study centered on whether they survived or not the age of the oldest male 116.2,

while for the supercentenarian women data in Example 3.4.1, it is on whether they

survived or not the age of the oldest female 122.5, because there was no supercente-

narian man has lived to be older than 116.2.

3.5 Exceedance of the jth largest observations

In Sections 3.2 and 3.3, we took into account the exceedance of the largest obser-

vation, R, with right-censored data and in this section we take into account the

exceedance of the second, third, fourth, . . . jth largest observations, as long as they

are greater than the largest censored observation, Xcv . Then, we look at time t in
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between any two of those largest observations and we find lower and upper proba-

bilities for the exceedance of this time t.

We use the same notation as in Sections 3.2 and 3.3, in addition to a few addi-

tional notation. In order to simplify notation, the notation R, provided in Sections

3.2 and 3.3, which isR = xu, should now be written asR1 = xu to represent the first

largest event time in the data set. Also, let R2 = xu−1, so R2 denotes the second

largest observed event time in the data set, and let R3 = xu−2, so R3 denotes the

third largest observed event time in the data set, up to the largest observed event

time just beyond the time cv, such that R1 > R2 > R3 > . . . > Rj corresponding

to xu > xu−1 > xu−2 > . . . > xu−i, as long as xu−i > cv, where i = 0, 1, . . . , u, and

j = 1, . . . , u. Remember that ñcr , r = 1, 2, . . . , v, represent the number of observa-

tions in the risk set just before time cr. We assume that no ties occur among all

observations as stated in Section 2.2. In addition, the method introduced in this

section will be based on the shifted-Ã(n) as in Equation (3.2), under the exchange-

ability assumption discussed in Section 3.2, and the assumption of non-informative

right censoring discussed in Section 1.2 [32, 65].

Now, we take into account the second largest observed value in the data set,

R2 = xu−1, as long as there are no censorings past it, so that xu−1 > cv. We

consider the event of interest that for at least one of the individuals whose lifetimes

have been right-censored, the actual value of the lifetime would be larger than the

second largest observed value R2. For ease of notation, let GR2(0) denote this event

of interest. Then we find the probability for the event GR2(0) as we did for the event

GR(0) for exceeding the first largest observation, in Section 3.2.

For those individuals whose lifetimes have been right-censored at censoring time

cr, where r = 1, 2, . . . , v, censoring does not need to be taken into consideration as

long as they all failed before R2, and we only know the number of individuals in

between Xcr and R2. On the basis of the shifted-Ã(n) as in Equation (3.2), then

PXcr
(R2,R) = PXcr

(R,∞) = 1
ñcr+1

, where ñcr is the number of observations in the

risk set just prior to time cr, with r = 1, 2, . . . , v. Therefore, the probability for the

event Xcr > R2, with r = 1, 2, . . . , v, given that all of the individuals failed before
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R2, are

P (Xcr > R2|Xcr+1 < R2, . . . , Xcv−1 < R2, Xcv < R2) =
2

ñcr + 1
(3.15)

and then the probability for the event of interest that nobody survives the value R2,

with knowing the values of ñcr , r = 1, 2, . . . , v, are

P (Xcr < R2|Xcr+1 < R2, . . . , Xcv−1 < R2, Xcv < R2) = 1− 2

ñcr + 1
=
ñcr − 1

ñcr + 1

(3.16)

Consequently, the probability for the event of interestGR2(0), denoted by P (GR2(0)),

in terms of a product of Equation (3.16), is derived as

P (GR2(0)) = 1−
v∏
r=1

ñcr − 1

ñcr + 1
(3.17)

Using the same logic as above, we obtain the probability for the event of interest

GR3(0), that is for at least one of the individuals whose lifetimes have been right-

censored, the actual value of the lifetime would be larger than the third largest

observed value R3 = xu−2, where xu−2 > cv, thus

P (GR3(0)) = 1−
v∏
r=1

ñcr − 2

ñcr + 1
(3.18)

Similar to the above explanation, one could straightforwardly obtain any prob-

ability for the event that at least one of the individuals, whose lifetimes have been

right-censored, the actual value of the lifetime would be larger than any other largest

observed value, as long as it is greater than the largest censored observation at cv.

We are now considering including future items to the study, as we did for Section

3.3. Then we consider the event of interest that for at least either one of the

individuals whose lifetimes have been right-censored, or one of the m ≥ 1 future

individuals, added to the study, the actual value of the lifetime would be larger than

the second largest observed value R2 = xu−1, where xu−1 > cv. For ease of notation,

let GR2(m) denote this event of interest.

The probability for the event Xn+i > R2, when i = 1, 2, . . . ,m, conditional on

that the previous future individuals and all individuals whose lifetimes have been

right-censored at censoring time cr, where r = 1, 2, . . . , v, have been failed before the
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value R2 = xu−1, xu−1 > cv, is derived on the basis of the shifted-Ã(n) in Equation

(3.2), as follows.

P (Xn+i > R2|Xn+1 < R2, . . . , Xn+i−1 < R2, Xc1 < R2, . . . , Xcv < R2)

=
1

n+ i
+

1

n+ i
=

2

n+ i
(3.19)

Then the probability for an event Xn+i < R2 given Xn+1 < R2, . . . , Xn+i−1 < R2,

when i = 1, 2, . . . ,m, and all Xcr < R2, r = 1, 2, . . . , v, with n+ i, is

P (Xn+i < R2|Xn+1 < R2, . . . , Xn+i−1 < R2, Xc1 < R2, . . . , Xcv < R2)

= 1− 2

n+ i
=
n+ i− 2

n+ i
(3.20)

Consequently, the probability for the event of interest GR2(m), denoted by

P (GR2(m)), in terms of products of Equations (3.16) and (3.20), is derived as

P (GR2(m)) = 1−

[
m∏
i=1

n+ i− 2

n+ i

v∏
r=1

ñcr − 1

ñcr + 1

]

= 1−

[
n(n− 1)

(n+m)(n+m− 1)

v∏
r=1

ñcr − 1

ñcr + 1

]
(3.21)

Using the same logic as above, we obtain the probability for the event of interest

GR3(m), that is for at least either one of the individuals whose lifetimes have been

right-censored, or one of the m ≥ 1 future individuals, added to the study, the

actual value of the lifetime would be larger than the third largest observed value

R3 = xu−2, where xu−2 > cv, as follows

P (GR3(m)) = 1−

[
m∏
i=1

n+ i− 3

n+ i

v∏
r=1

ñcr − 2

ñcr + 1

]

= 1−

[
n(n− 1)(n− 2)

(n+m)(n+m− 1)(n+m− 2)

v∏
r=1

ñcr − 2

ñcr + 1

]
(3.22)

Similar to the above explanation, one could straightforwardly obtain any proba-

bility for the event that for at least either one of the individuals whose lifetimes have

been right-censored, or one of the m ≥ 1 future individuals, added to the study, the

actual value of the lifetime would be larger than any other largest observed value,

as long as it is greater than the largest censored observation at cv. Consequently,

the probability that somebody would survive any largest observed value recorded
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in a data set, when it exceeds the largest censored observation, increases when it

is calculated backwards from the largest recorded value to the jth largest observed

value as long as it past the largest censored observation.

Now, consider the event of interest that for at least either one of the individuals

whose lifetimes have been right-censored, or one of the m ≥ 1 future individuals,

added to the study, the actual value of the lifetime would be larger than time t,

where t is in between any two consecutive largest observed values, i.e. xi and xi+1,

were i = 0, 1, . . . , u, as long as the xi is greater than the largest censored observation

cv. For ease of notation, let Gt∈(xi,xi+1)(m) denote this event of interest. Then for

t ∈ (xi, xi+1), the upper survival of such a t is the survival of the previous one

xi and the lower survival of such a t is the survival of the next one xi+1. So,

the lower probability for the event Gt∈(xi,xi+1)(m) is the probability for the event

Gxi+1
(m), that is P (Gt∈(xi,xi+1)(m)) = P (Gxi+1

(m)), where xi+1 is the next largest

observation. And the corresponding upper probability for the event Gt∈(xi,xi+1)(m) is

the probability for the event Gxi(m), that is P (Gt∈(xi,xi+1)(m)) = P (Gxi(m)), where

xi is the previous largest observation. For example, if t ∈ (xu−1, xu), where R1 = xu

andR2 = xu−1 representing to the first and second largest event value in the data set

and xu−1 > cv, then the lower survival of t is that P (Gt∈(R2,R1)(m)) = P (GR1(m)),

which is obtained by applying to Equation (3.10). And the corresponding upper

survival of t is that P (Gt∈(R2,R1)(m)) = P (GR2(m)), which is obtained by applying

to Equation (3.21).

The following examples illustrate the proposed method presented in this section,

which will be applied to the full supercentenarian data set, but separately for the

women and the men.

Example 3.5.1 (Supercentenarian women data) In this example, we again use the

same data on n = 1580 supercentenarian women (as in Example 3.4.1). There

were 72 supercentenarian women still alive at the time of the study and hence their

lifetimes are right-censored. Also, there are eight supercentenarian women whose

ages exceed the largest censored supercentenarian women at age 117.1. Previously,

in Example 3.4.1, the first largest age recorded, R1 = 122.5, were considered, and
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now we are considering the second and the third largest ages recorded, R2 = 119.3

and R3 = 117.8, respectively.

The interest now will be on the question of what is the probability for the event,

GR2(0), that at least one of the 72 supercentenarian women whose lifetimes have

been right-censored, the actual value of the lifetime would be larger than the second

largest observed value R2 = 119.3. This probability is obtained by using Equation

(3.17), as follows

P (G119.3(0)) = 1−
72∏
r=1

ñcr−1

ñcr + 1
= 1− 0.4228 = 0.5772

The probability for the event, GR3(0), that at least one of the 72 supercentenarian

women whose lifetimes have been right-censored, the actual value of the lifetime

would be larger than the third largest observed value R3 = 117.8. This probability

is obtained by using Equation (3.18), as follows

P (G117.8(0)) = 1−
72∏
r=1

ñcr−1

ñcr + 1
= 1− 0.2655 = 0.7345

As a result of what we have assumed in our model, which is based on the A(n)

assumption and non-informative right censoring, described in this section, the prob-

ability that at least a lifetime of one of the 72 supercentenarian women, who were

still alive at the time of data set, would live beyond the second largest observed age

(R2 = 119.3), is 0.5772, and this probability increased to reach 0.7345 in case of

surviving the third largest observed age (R3 = 117.8). Moreover, it is more likely

that somebody would survive any one of the eighth supercentenarian women, as

long as it is calculated backwardly from the first largest age to the eighth largest

age that exceeds the largest censored supercentenarian women at age 117.1.

Now, let consider m = 2 future supercentenarian women, Xn+2, added to the

study, given the n = 1580 supercentenarian women and the first future supercente-

narian women, Xn+1. The lifetime of Xn+2 is considered, conditional on that all the

72 supercentenarian women, whose lifetimes have been right-censored, and the life-

time of Xn+1, all have been failed before the value R2 = 119.3. Then the probability

for the event, GR2(2), that at least one of the 72 right-censored supercentenarian

women or one of the lifetimes of Xn+1 and Xn+2, would live longer than the age
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R2 = 119.3, using Equation (3.21), is

P (G119.3(2)) = 1−

[
1580(1579)

(1580 + 2)(1580 + 1)

72∏
r=1

ñcr − 1

ñcr + 1

]
= 1− 0.4217 = 0.5783

Taking into account the survival of the third largest age R3 = 117.8, with con-

sidering m = 2 future supercentenarian women, then the lifetime of Xn+2 is consid-

ered, conditional on that all the 72 supercentenarian women, whose lifetimes have

been right-censored, and the lifetime of Xn+1, all have been failed before the value

R3 = 117.8. Then the probability for the event, GR3(2), that at least one of the 72

right-censored supercentenarian women or one of the lifetimes of Xn+1 and Xn+2,

would live longer than the age R3 = 117.8, using Equation (3.22), is

P (G117.8(2)) = 1−

[
1580(1579)(1578)

(1580 + 2)(1580 + 1)(1580)

72∏
r=1

ñcr − 2

ñcr + 1

]
= 1− 0.2645 = 0.7355

If we look at t to be in between R2 = 119.3 and R3 = 117.8, in case of m = 2,

then the upper survival of t is the survival of R3 = 117.8, that is 0.7355, and the

lower survival of t is the survival of R2 = 119.3, that is 0.5783.

Consideringm ≥ 2 future supercentenarian women to be added to the study, then

the probabilities for the events, GR1(m), GR2(m) and GR3(m), respectively, that at

least one of the 72 right-censored supercentenarian women or one of the lifetimes

of m ≥ 2 future supercentenarian women, would live longer than R1 = 122.5,

R2 = 119.3 and R3 = 117.8, respectively, are shown in Figure 3.3.

From Figure 3.3, if we consider a specific P value, say P = 0.95, and then we

look at the smallest m for which value of the probabilities G122.5(m), G119.3(m)

and G117.8(m), respectively, are greater than P = 0.95. We can conclude that the

smallest value of m future supercentenarian women at P = 0.95 will decrease, as

long as the probability for each event that somebody would survive the largest

recorded age, ordered backwardly, increases. So, it can be seen from Figure 3.3 that

the P (G122.5(m)) is greater than P = 0.95 for m ≥ 19200 future supercentenarian

women, the probability P (G119.3(m)) is greater than P = 0.95 for m ≥ 3050 future

supercentenarian women, and the probability P (G117.8(m)) is greater than P = 0.95

for m ≥ 1180 future supercentenarian women.
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Figure 3.3: P (GR1(m)), P (GR2(m)) and P (GR3(m)), for the supercentenarian

women data, according to Example 3.5.1.

Example 3.5.2 (Supercentenarian men data) In this example, we again use the

same data on n = 160 supercentenarian men (as in Example 3.4.2). There were two

supercentenarian men still alive at the time of the study and hence their lifetimes

are right-censored. Also, there are 33 supercentenarian men whose ages exceed

the largest censored supercentenarian men at age 111.9. Previously, in Example

3.4.2, the first largest age recorded, R1 = 116.2, were considered, and now we

are considering the second and the third largest ages recorded, R2 = 115.7 and

R3 = 115.5, respectively.

The interest now will be on the question of what is the probability for the event,

GR2(0), that at least one of the two supercentenarian men whose lifetimes have

been right-censored, the actual value of the lifetime would be larger than the second

largest observed value R2 = 115.7. This probability is obtained by using Equation



3.5. Exceedance of the jth largest observations 48

(3.17), as follows

P (G115.7(0)) = 1−
2∏
r=1

ñcr−1

ñcr + 1
= 1− 0.8903 = 0.1097

The probability for the event, GR3(0), that at least one of the two supercente-

narian men whose lifetimes have been right-censored, the actual value of the lifetime

would be larger than the third largest observed value R3 = 115.5. This probability

is obtained by using Equation (3.18), as follows

P (G115.5(0)) = 1−
2∏
r=1

ñcr−1

ñcr + 1
= 1− 0.8378 = 0.1622

As a result of what we have assumed in our model, which is based on the A(n)

assumption and non-informative right censoring, described in this section, the prob-

ability that at least a lifetime of one of the two supercentenarian men, who were

still alive at the time of data set, would live beyond the second largest observed age

(R2 = 115.7), is 0.1097, and this probability increased to reach 0.1622 in case of

surviving the third largest observed age (R3 = 115.5). Moreover, it is more likely

that somebody would survive any one of the 33 supercentenarian men, as long as

it is calculated backwardly from the first largest age to the third largest age that

exceeds the largest censored supercentenarian men at age 111.9.

Now, let consider m = 2 future supercentenarian men, Xn+2, added to the

study, given the n = 160 supercentenarian men and the first future supercentenarian

men, Xn+1. The lifetime of Xn+2 is considered, conditional on that all the two

supercentenarian men, whose lifetimes have been right-censored, and the lifetime of

Xn+1, all have been failed before the value R2 = 115.7. Then the probability for the

event, GR2(2), that at least one of the two right-censored supercentenarian men or

one of the lifetimes of Xn+1 and Xn+2, would live longer than the age R2 = 115.7,

using Equation (3.21), is

P (G115.7(2)) = 1−

[
160(159)

(160 + 2)(160 + 1)

2∏
r=1

ñcr − 1

ñcr + 1

]
= 1− 0.8684 = 0.1316

(3.23)

Taking into account the survival of the third largest age R3 = 115.5, with con-

sidering m = 2 future supercentenarian men, then the lifetime of Xn+2 is consid-

ered, conditional on that all the two supercentenarian men, whose lifetimes have
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been right-censored, and the lifetime of Xn+1, all have been failed before the value

R3 = 115.5. Then the probability for the event, GR3(2), that at least one of the

two right-censored supercentenarian men or one of the lifetimes of Xn+1 and Xn+2,

would live longer than the age R3 = 115.5, using Equation (3.22), is

P (G115.5(2)) = 1−

[
160(159)(158)

(160 + 2)(160 + 1)(160)

2∏
r=1

ñcr − 2

ñcr + 1

]
= 1− 0.8070 = 0.1930

(3.24)

Now, let consider the event Gt∈(R3,R2)(2), where t is in between R2 = 115.7 and

R3 = 115.5, in case of m = 2 future supercentenarian men. Then the lower proba-

bility for the event Gt∈(115.5,115.7)(2) is obtained by deriving the probability for the

event P (G115.7(2)), using Equation (3.21), so P (Gt∈(115.5,115.7)(2)) = P (G115.7(2)) =

0.1316 (see Equation (3.23)). The corresponding upper probability for the event

Gt∈(115.5,115.7)(2) is obtained by deriving the probability for the event P (G115.5(2)),

using Equation (3.22), so P (Gt∈(115.5,115.7)(2)) = P (G115.5(2)) = 0.1930 (see Equation

(3.24)).

Considering m ≥ 2 future supercentenarian men to be added to the study, then

the probabilities for the events, GR1(m), GR2(m) and GR3(m), respectively, that at

least one of the two right-censored supercentenarian men or one of the lifetimes of

m ≥ 2 future supercentenarian men, would live longer than R1 = 116.2, R2 = 115.7

and R3 = 115.5, respectively, are shown in Figure 3.4.

From Figure 3.4, if we consider a specific P value, say P = 0.95, and then we

look at the smallest m for which value of the probabilities G116.2(m), G115.7(m)

and G115.5(m), respectively, are greater than P = 0.95. We can conclude that

the smallest value of m future supercentenarian men at P = 0.95 will decrease,

as long as the probability for each event that somebody would survive the largest

recorded age, ordered backwardly, increases. So, it can be seen from Figure 3.4 that

the P (G116.2(m)) is greater than P = 0.95 for m ≥ 2900 future supercentenarian

men, the probability P (G115.7(m)) is greater than P = 0.95 for m ≥ 515 future

supercentenarian men, and the probability P (G115.5(m)) is greater than P = 0.95

for m ≥ 250 future supercentenarian men.
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Figure 3.4: P (GR1(m)), P (GR2(m)) and P (GR3(m)), for the supercentenarian men

data, according to Example 3.5.2.

3.6 Concluding remarks

This chapter presented a method on which taking the largest observation in a data

set, including right-censored observations, as end point of support. The new method

finds the probability for the event of interest that the actual lifetime corresponding

to a right-censored observation would exceed the largest observed value. Taking

into account new future items added to the study, we find the probability for the

event of interest that for at least either one of the observations whose lifetimes have

been right-censored, or one of multiple future items, added to the study, the actual

value of the lifetime would be larger than the largest observed value. In order to

derive these results, we assumed that the remaining times to the event of interest

for all individuals reaching a certain age, are exchangeable. So, these new results

are presented based on the exchangeability assumption, using A(n) assumption [39]
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and non-informative right censoring [32]. In particular, the assumption of exchange-

ability seems reasonable in the absence of additional information about the people,

for instance, we have no details on their health or other factors that would influence

their remaining lifetime.

The proposed method is extended to derive the probability for the event of in-

terest that the actual lifetime corresponding to a right-censored observation would

exceed a largest observed value, as long as it past the largest censored observa-

tion in the data set. Also, it is extended to derive the probability for the event of

interest that for at least either one of the observations whose lifetimes have been

right-censored, or one of the multiple future items, added to the study, the actual

value of the lifetime would be exceed the largest observed value. These new meth-

ods, presented in this chapter, applied to the full Supercentenarian data set, but

separately for the women and the men. [8].

On the basis of our investigation of the Supercentenarian data, where the prob-

abilities that somebody woud survive the largest observed age were quite high, we

think that it is not appropriate for analysis of extreme values to assume that the

largest value is the end-point of support. Due to the weak assumptions underly-

ing NPI, it cannot be used for more detailed prediction of observations beyond the

largest observation, this would require additional distributional assumptions.



Chapter 4

NPI Alternative to the Actuarial

Estimator

4.1 Introduction

In the real world, time or time till occurence of an event is usually considered to

be a continuous variable. One can, however, argue that recorded observations have

a discrete character, because all recordings could be interpreted as discrete values.

But if very many different values are possible, any difference between the continuous

or discrete nature of a variable tends to be neglectable. However, in some application

areas time tends to be modelled as a discrete variable, with relatively few possible

values, this has particularly been the case for actuarial models, e.g. the actuarial

estimator of the survival function.

For such models, typically a cohort of people, either real or just as a concept, is

followed through time and events are recorded per a year. The main event of interest

is typically death of a person, but right-censoring tends to occur if the person exits

the cohort for another reason. In such cases, time is usually recorded as the age of

the person at the time of the event, hence time is considered as a discrete variable.

At any given point in time, we consider how many people are alive; that is, how

many people have survived that time, so this is effectively Bernoulli data; then we

look ahead and assess how many people will be alive in the future. The actuarial esti-

mator, i.e. a nonparametric method used to estimate the survival function, explicitly

52
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restricts attention to discrete time, when using right-censored data [6, 50, 60]. In

this chapter we take a similar approach, but we do it from the perspective of NPI. In

particular, we propose to use the NPI method as an alternative predictive approach

to the actuarial estimator with right-censored data.

Since NPI for Bernoulli data [20], as discussed in Section 2.3, was introduced for

multiple future observations, it can be used to develop the NPI alternative to the

actuarial estimator. The proposed method is developed based on the assumption of

non-informative right censoring [32, 65], as discussed in Section 1.2.

The discrete time approach, considered in this chapter, can simply visualize as a

table with tj discrete-time points such that t1 < t2 < . . . < tk, where j = 1, 2, . . . , k.

We only have the number of events and the number of right-censored individuals

at each given discrete time point, with respect to that no events or right-censoring

have occurred at time t0. Consequently, the proposed method, i.e. NPI alternative

to the actuarial estimator, is appropriate to use when data consists of numbers of

event times and right-censoring times at specific discrete-time points tj.

This chapter is organised as follows. A brief introduction to the actuarial estima-

tor of the survival function is presented in Section 4.2. Section 4.3 presents NPI as

an alternative to the actuarial estimator with right-censored data, which allows us

to derive the lower and upper probabilities for the event that all future observations

are greater than a specific discrete time tj. In the proposed method there are no

intervals, time is discrete. But NPI for grouped data [65] is somewhat similar as we

only know the number of events and the number of right-censorings in each interval,

hence it is of interest to compare it with our proposed method. This comparison

is presented in Section 4.4. In Section 4.5, the proposed method will be applied to

system reliability using survival signatures [4, 25] combined with NPI for Bernoulli

data [20]. This chapter ends with some concluding remarks in Section 4.6.

4.2 Actuarial estimator of the survival function

In the discrete-time approach, one common nonparametric method for estimating

the survival function is the actuarial estimator. To introduce the actuarial estimator,



4.2. Actuarial estimator of the survival function 54

we first consider n individuals alive at time t0. Let X1, X2, . . . , Xn be positive,

exchangeable and discrete random variables, of which their discrete lifetimes are

assumed to be independent and identically distributed, that takes values at discrete-

time points tj, where j = 1, . . . , k, with t1 < t2 < · · · < tk. Consider the event of

interest as ‘death’. The discrete time hazard function at a specific time tj is defined

as the conditional probability that a randomly selected individual, Xi, i = 0, 1, . . . , n,

will experience the event of interest at time tj, given that this individual did not

experience the event prior to tj, so that

htj = P (Xi = tj|Xi ≥ tj) (4.1)

We introduce the following notation. Let dtj denotes the number of deaths (n

individuals who died) at time tj and let ctj denotes the number of individuals whose

lifetimes are right-censored at time tj. Let ǹtj denotes the number of individuals

known to be at risk (still functioning or alive and uncensored) at time tj, that is

ǹtj = ǹtj−1
− dtj−1

− ctj−1
. Let nt0 = 0, so ǹt0 = n (all individuals are at risk). Then

the discrete time hazard function, htj , at a discrete time tj, can be estimated by the

actuarial estimator [6, 50, 60], as

ĥtj =
dtj
ǹtj

(4.2)

The survival function at time tj is defined as Stj = P (X ≥ tj), note that St0 =

P (X ≥ 0) = 1. The survival function Stj can be expressed in terms of the hazard

htj at all earlier times t1, t2, . . . , tj−1 as

Ŝtj =

j−1∏
l=1

(
ǹtl − dtl
ǹtl

)
=

j−1∏
l=1

(1− ĥtl) (4.3)

The following example illustrates how to estimate the survival function using the

actuarial estimate approach.

Example 4.2.1 (Actuarial estimator for the survival function) To illustrate the

actuarial estimator for the survival function, we consider a simple example involving

n = 9 observations, available at discrete times tj, for j = 1, 2, 3, 4, (the data are

displayed in Table 4.1).
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tj dtj ctj ǹtj 1− ĥtj Ŝtj

t1 1 0 9 0.8889 0.8889

t2 2 1 8 0.7500 0.6667

t3 2 1 5 0.6000 0.4000

t4 0 1 2 1.0000 0.4000

Table 4.1: Actuarial estimator for the survival function (Example 4.2.1).

The probability of hazard function, htj , at a discrete time tj can be estimated

by the actuarial estimator using Equation (4.2) and then the corresponding survival

probability at tj is obtained by ǹtj − (dtj/ǹtj). Then, cumulatively, the estimated

probability of surviving tj, for j = 1, 2, 3, 4, is derived by using Equation (4.3).

These results are presented in the Table 4.1.

Next, a similar approach to the actuarial estimator will be considered under NPI

methodology as an alternative to the actuarial estimator, using NPI for Bernoulli

data [20], as was reviewed in Section 2.3.

4.3 NPI alternative to the actuarial estimator

In this section, we introduce an NPI based alternative to the actuarial estimator. We

use the same notation as introduced in Section 4.2. Let X1, X2, . . . , Xn be positive,

exchangeable and discrete random variables, with i = 0, 1, . . . , n. Assume that the

population only has n individuals, consists of event and censoring times given k

distinct discrete-time points, with t1 < t2 < · · · < tk, defining ǹt0 = n for the start

of the study where all individuals survived and tk+1 = ∞. Let dtj represent the

number of observed events at time tj. Let ctj represent the number of censored at

times tj.

As considered in this approach that the censored observations are assumed to

occur at discrete times tj, for j = 1, 2, . . . , k, so the number of individuals at risk

at time tj, denoted by n̂tj , is computed by n̂tj = ntj−1
− ctj . Thus, the number of

individuals at risk at time tj, n̂tj , will be decreasing at next discrete times. Further,
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let X
tj
l > tj, for l = 1, . . . , n̂tj be the event times for the individuals in the risk set

at time tj.

Even though NPI is predictive inference, not estimation, it is still interesting

to compare it with the actuarial estimator, as NPI is well suited for dealing with

right-censored data based on the rc-A(n) assumption as was reviewed in Section 2.4,

and it is developed for multiple future observations via the NPI for Bernoulli data

as was reviewed in Section 2.3.

Now, let us consider Xn+i for the time of event of the ith future individual, for i =

1, 2, . . . ,m. We consider the event of interest that all m multiple future observations

Xn+i survive a specific discrete time tj given that they survived the earlier discrete

time tj−1, so
⋂m
i=1{Xn+i > tj|Xn+i > tj−1}. For convenience, we indicate this event

as Ej(m). Then, we aim to derive NPI lower and upper probabilities for the event

Ej(m), based on NPI for Bernoulli data [20], which has been presented in Section

2.3.

4.3.1 Lower and upper probabilities for the event Ej(m)

In this section, we derive the NPI alternative to the actuarial estimator in terms

of lower and upper probabilities for the event Ej(m), by utilising NPI for Bernoulli

data [20], presented in Section 2.3. We denote the conditional lower and upper prob-

abilities for the event
⋂m
i=1{Xn+i > tj|Xn+i > tj−1} by P (Ej(m)) and P (Ej(m)),

respectively.

We consider the survival of all m future observations at time tj as exchangeable

with the survival of the individuals in the risk set n̂tj . So, we assume that the random

quantities Xn+1, Xn+2, . . . , Xn+i, with respect to the event Xn+i > tj, i = 1, . . . ,m,

are exchangeable with X
tj
1 , X

tj
2 , . . . , X

tj
l , with respect to the event X

tj
l > tj, for

l = 1, . . . , n̂tj , where X
tj
l are the event times for the individuals in the risk set at

time tj.

The NPI alternative to the actuarial estimator, consists of conditional lower and

upper probabilities, P (Ej(m)) and P (Ej(m)), respectively, at a specific discrete

time tj. These conditional lower and upper probabilities can be derived by utilising

the NPI for Bernoulli data [20] via applying the Equations (2.8) and (2.11), respec-
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tively, regarding the number of individuals that known to be alive at time tj out of

the number of individuals at risk at time tj, n̂tj . Thus, the NPI conditional lower

probability for the event Ej(m) is

P (Ej(m)) = P

(
m⋂
i=1

{Xn+i > tj|Xn+i > tj−1}

)
=

m∏
i=1

ntj + i− 1

n̂tj + i
(4.4)

The coreresponding NPI conditional upper probability for the event Ej(m) is

P (Ej(m)) = P

(
m⋂
i=1

{Xn+i > tj|Xn+i > tj−1}

)
=

m∏
i=1

ntj + i

n̂tj + i
(4.5)

4.3.2 NPI probabilities for the event
⋂m
i=1{Xn+i > tj}

We now consider the event that the m future observations will all exceed tj, that

is
⋂m
i=1{Xn+i > tj}. The NPI lower and upper probabilities for this event, denoted

by P (
⋂m
i=1{Xn+i > tj}) and P (

⋂m
i=1{Xn+i > tj}), can be expressed in terms of the

NPI conditional lower and upper probabilities, P (Ej(m)) and P (Ej(m)), provided

in Equations (4.4) and (4.5), respectively, at all earlier times t1, t2, . . . , tj, thus

P

(
m⋂
i=1

{Xn+i > tj}

)
=

j∏
`=1

P (E`(m)) =

j∏
`=1

(
m∏
i=1

nt` + i− 1

n̂t` + i

)
(4.6)

P

(
m⋂
i=1

{Xn+i > tj}

)
=

j∏
`=1

P (E`(m)) =

j∏
`=1

(
m∏
i=1

nt` + i

n̂t` + i

)
(4.7)

We consider the case m = 1, considering the first future observation, Xn+1,

for comparisons later on. So, the NPI lower and upper probabilities for the event

Xn+1 > tj are directly resulting from Equations (4.6) and (4.7), respectively, thus

P (Xn+1 > tj) =

j∏
l=1

ntl
n̂tl + 1

(4.8)

P (Xn+1 > tj) =

j∏
l=1

ntl + 1

n̂tl + 1
(4.9)

NPI lower and upper probabilities for the event
⋂m
i=1{Xn+i > tj}, as presented in

Equations (4.6) and (4.7), takes into account the dependence among all these future

observations when there is limited information in the form of n observations in the

data set. It is of interest to see the effect of taking this dependence carefully into
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account. For this reason, we will compare our method with the results one would

get if one, mistakenly, when interested in m future observations, would use the NPI

lower and upper probabilities for the event Xn+1 > tj, presented in Equations (4.8)

and (4.9), raised to the power of m, i.e.
[
P , P

]m
(Xn+1 > tj). This will be illustrated

in Example 4.3.2.

The following examples illustrate the method presented above and compare the

method with with the results when ignoring the dependency between the multiple

future observations as well as with the actuarial estimator reviewed in Section 4.2.

4.3.3 Examples

In this subsection, two examples are presented to illustrate the NPI alternative to

the actuarial estimator.

Example 4.3.1 We consider the data set used in Example 4.2.1, with n = 9 obser-

vations, (the data are presented in Table 4.1).

The first step in applying the proposed method is to draw a table that will

assist in the calculation of the NPI lower and upper probabilities for the event⋂m
i=1{X9+i > tj} for m ∈ {1, 2, 3, 10, 15} future observations. As shown in Table 4.2,

there are four discrete-time points at t1, t2, t3 and t4. At each discrete time point,

this table provides the number of observed events, dtj , the number of censored

individuals, ctj , the number of individuals known to be alive at time tj, ntj , the

number of individuals at risk at time tj, n̂tj , where n̂tj is computed differently than

that in Example 4.2.1, ǹtj , i.e. n̂t2 = 7 but ǹt2 = 8, (see Sections 4.2 and 4.3), and

the NPI lower and upper probabilities of surviving time tj.

It is noteworthy that, at the start of the study at time t0, no events or censorings

have been recorded, so P (
⋂m
i=1{X9+i > t0}) = P (

⋂m
i=1{X9+i > t0}) = 1. Then we

apply the NPI alternative to the actuarial estimator e.g. leading to the conditional

lower and upper probabilities, as given by Equations (4.4) and (4.5), respectively,

for the discrete-time points t1, t2, t3 and t4.

Following the results in Table 4.2, the difference between the NPI upper probabil-
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m = 1 m = 2 m = 3 m = 10 m = 15

tj dtj ctj n̂tj ntj P P P P P P P P P P

t1 1 0 9 8 0.8000 0.9000 0.7273 0.9091 0.6667 0.9167 0.4211 0.9474 0.3333 0.9583

t2 2 1 7 5 0.5000 0.6750 0.4040 0.7071 0.3333 0.7333 0.1238 0.8359 0.0758 0.8712

t3 2 1 4 2 0.2000 0.4050 0.1347 0.4714 0.0952 0.5238 0.0177 0.7165 0.0080 0.7795

t4 0 1 1 1 0.1000 0.4050 0.0449 0.4714 0.0238 0.5238 0.0016 0.7165 0.0005 0.7795

Table 4.2: NPI lower and upper probabilities for
⋂m
i=1{X9+i > tj}, m ∈

{1, 2, 3, 10, 15} (Example 4.3.1).

ity and the NPI lower probability is quite small at time t1 for all considered numbers

of future observations, and becomes larger later on. So, there are two effects that

cause the difference to increase, due to fewer individuals in the risk set, n̂tj , later

on, at times t2, t3 and t4, and due to taking products of lower probabilities and of

upper probabilities, so each term (so each time point) adds to the imprecision.

Comparison of the results based on our proposed method for m = 1 future obser-

vation, given in Table 4.2, with those resulting from estimating the survival function

based on the actuarial estimator, given in Table 4.1, which has been considered for

m = 1, shows that the Ŝtj values, based on using the actuarial estimator, fall be-

tween our NPI lower and upper probabilities for X10 > tj, but more closer to the

upper probability values.

Example 4.3.2 The data set used in this example has been used by Berkson and

Gage [15] to interpret the survival experience of a set of patients who had operations

for a certain type of cancer; the dataset has also been used by Lawless [47] and

Yan [65]. The data consists of 374 observations, 95 of which are right-censored

observations and the remaining observations are event times considered at 10 discrete

times, measured in years. The dataset is summarized in the first three columns of

Table 4.3.

By applying the proposed method given by Equations (4.6) and (4.7), respec-

tively, we derive the NPI lower and upper probabilities for the event
⋂m
i=1{Xn+i > tj}

for m ∈ {1, 2, 3, 10} future observations at discrete-time points t1, t2, t3, t4. The re-

sults are presented in Table 4.3.
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m = 1 m = 2 m = 5 m = 10 [P , P ]5(X375 > tj)

tj dtj ctj n̂tj ntj P P P P P P P P [P ]5 [P ]5

t1 90 0 374 284 0.757 0.760 0.574 0.578 0.2513 0.2557 0.0644540 0.0667235 0.2486 0.2536

t2 76 0 284 208 0.553 0.557 0.306 0.311 0.0527 0.0549 0.0029253 0.0031739 0.0517 0.0536

t3 51 0 208 157 0.415 0.421 0.173 0.178 0.0128 0.0138 0.0001793 0.0002070 0.0123 0.0132

t4 25 12 145 120 0.341 0.349 0.117 0.123 0.0049 0.0055 0.0000269 0.0000336 0.0046 0.0051

t5 20 5 115 95 0.280 0.289 0.079 0.084 0.0018 0.0022 0.0000040 0.0000055 0.0017 0.0020

t6 7 9 86 79 0.254 0.266 0.065 0.071 0.0011 0.0014 0.0000016 0.0000025 0.0011 0.0013

t7 4 9 70 66 0.236 0.251 0.056 0.063 0.0008 0.0011 0.0000008 0.0000014 0.0007 0.0010

t8 1 3 63 62 0.229 0.247 0.053 0.061 0.0007 0.0010 0.0000006 0.0000012 0.0006 0.0009

t9 3 5 57 54 0.213 0.234 0.046 0.055 0.0005 0.0008 0.0000003 0.0000008 0.0004 0.0007

t10 2 5 49 47 0.200 0.225 0.040 0.051 0.0004 0.0006 0.0000002 0.0000005 0.0003 0.0006

Table 4.3: NPI lower and upper probabilities for
⋂m
i=1{X374+i > tj}, m ∈ {1, 2, 5, 10}

and [P , P ]5(X375 > tj) (Example 4.3.2).

Now, in order to see the effect of taking the dependence of all future observa-

tions carefully into account, we compare our results [P , P ](
⋂5
i=1{X374+i > tj}), for

m = 5, with those if we mistakenly take the NPI lower and upper for only the first

future observation (X375 > tj) raised to the power of m = 5, i.e. [P , P ]5(X375 > tj).

Due to the positive dependence among X375, X376, X377, X378 and X379, our correct

NPI lower and upper probabilities for the event
⋂5
i=1{X374+i > tj}, are greater than

the values resulting from mistakenly taking the lower and upper probabilities for

X375 > tj raised to the power of 5. Even though the differences (NPI upper prob-

ability - NPI lower probability) are quite small, they will become larger for m > 5

future observations due to the positive dependence of all future observations.

In the following section, we compare our results, which are given in Section 4.2,

with an alternative nonparametric predictive approach, which could also be applied

in cases of discrete time.

4.4 Comparison with NPI for grouped data

From a reliability and survival analysis perspective, lifetime data can be recorded in

groups, represented by a finite number of intervals, by recording or using only the
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numbers of event times and the numbers of censoring times in these intervals, rather

than the exact observed times. In this case, time is continuous but there either is

no further information about the exact observations within the intervals, or such

information is neglected.

Using grouped data, if we can ignore its baseline continuous time characteristics

and this method keeps time continuous but only uses the information per interval

that the numbers of event times and the numbers of censoring times can only occur

at specific discrete recorded time points that occur at the beginning of each given

grouped-timed period, we compare this approach with our proposed methodology,

presented in Section 4.3. So, the proposed method, presented in Section 4.3, will be

compared with an alternative methodology developed for grouped data with right-

censored observations, called ”NPI for grouped data” [65].

Coolen and Yan [65] presented NPI for grouped data, which has been applied to

grouped data to derive NPI lower and upper survival functions for the event that

the first future observation Xn+1 is greater than time t.

In Subsection 4.4.1, we provide a brief overview of NPI for grouped data [65] and

this will be compared, via an example, to our proposed method in Subsection 4.4.2.

4.4.1 NPI for grouped data

Coolen and Yan [65] have developed NPI for grouped data, with real-valued obser-

vations including right-censored data, based on the rc-A(n) assumption as presented

in Section 2.1. Suppose that the time-axis is partitioned into k + 1 intervals. Let

Ij = [tj, tj+1) represent the intervals in which the time-axis is separated into tj

points, where j = 0, 1, 2, . . . , k, such that t1 < t2 < · · · < tk, with defining t0 = 0,

and tk+1 =∞. For each interval Ij, the number of events and the number of right-

censorings in the interval are known, but not the exact times. Let dtj be the number

of event times in Ij and the ctj be the number of right-censorings in Ij. Because

of this, the order of events and censoring times for each interval must be taken into

account, to deal with such grouped data. Coolen and Yan [65] used ’optimal con-

figurations’, to derive NPI for grouped data [65], which has been developed for only

m = 1 future observation. The optimal configurations indicate that orderings of
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event and censoring times within the intervals are required to derive the M -function

values for Xn+1 to be within a particular interval, which ones lead to the lower

and upper probabilities for the event Xn+1 > t, for t ∈ Ij (see [65] for the discus-

sion of the optimal configurations). Then, the NPI upper probability, denoted by

P
I
(Xn+1 > t), for t ∈ Ij = [tj, tj+1), with j = 0, 1, 2, . . . , k, is derived as follows

[65].

P
I
(Xn+1 > t) = P

Ij−1
(Xn+1 > t)− dtj−1

pj−1, for j ≥ 1 (4.10)

where,

pj−1 = p0 =
1

n+ 1
, for j = 1, and

pj−1 = pj−2 ×
n−

∑j−3
i=0 nti − dtj−2

+ 1

n−
∑j−2

i=0 nti + 1
, for j ≥ 2

Note that P
Ij−1

(Xn+1 > t) in Equation (4.10) refers to the NPI upper probability

for the event Xn+1 > t where t ∈ Ij−1 = [tj−1, tj), with j = 0, 1, 2, . . . , k.

The corresponding NPI lower probability, denoted by P I(Xn+1 > t), for t ∈ Ij =

(tj, tj+1], with j = 0, 1, 2, . . . , k, is derived as follows [65].

P I(Xn+1 > t) = P Ij−1(Xn+1 > t) + qj−1 − (dtj + 1)qj, for j ≥ 1 (4.11)

where,

q0 =
1

n− ct0 + 1
, for j = 1, and

qj = qj−1 × n−
∑j−1

i=0 nti + 1

n−
∑j−1

i=0 nti − ctj + 1
, for j ≥ 2

Based on grouped data analysis approach, as in [65], we only know the numbers

of event times and right-censoring times in Ij = [tj, tj+1); these values could be

anywhere in this interval without any additional assumptions. Using the assumption

rc-A(n) [32] given in Section 2.4, the optimal configurations via M -function values

are used to derive the maximum probability mass to the right of tj taking into

account that all observations in the interval Ij are assumed to be greater than t,

which produced the NPI upper probability for the grouped data P
I
(Xn+1 > tj) [65],

so P
I
(Xn+1 > t) in Equation (4.10) is equal P

I
(Xn+1 > tj) for t ∈ Ij = [tj, tj+1),



4.4. Comparison with NPI for grouped data 63

with j = 0, 1, 2, . . . , k. Also, by placing minimum probability mass to the right of

tj taking into account that all observations in the interval Ij are assumed to be less

than t, we produced the NPI lower probability for grouped data P I(Xn+1 > t), so

P I(Xn+1 > t) in Equation (4.11) is equal to P I(Xn+1 > tj+1) for t ∈ Ij = (tj, tj+1],

with j = 0, 1, 2, . . . , k.

As it is assumed that no censorings or events occurred at time t0, P
I
(Xn+1 >

t0) = 1, but P I(Xn+1 > t0) =
n−nt0

n−ct0+1
, where dt0 and ct0 are the the number of events

and the number of right-censorings, respectively, in the first interval I0 = (0, t1].

In the following subsection, the theory of NPI for grouped data [65], presented in

Subsection 4.4.1, is compared to our method, presented in Section 4.3. In addition,

an example is given to show these comparisons.

4.4.2 Comparing our method with NPI for grouped data

In this section, we compare our approach presented in Section 4.3, for the discrete-

time case, with NPI for grouped data as presented in Subsection 4.4.1 [65]. The

theory of NPI for grouped data has been developed for predicting only a single

future observation for the event Xn+1 > tj, while our method, NPI alternative to

the actuarial estimator as presented in Section 4.3, allows the NPI methodology

using right-censored data to predict multiple future observations for the event that

all these future observations survived discrete times tj. In this section, we present

only the comparison of NPI lower and upper probabilities for one future observation

to be greater than the time tj from both perspectives.

Considering the event Xn+1 > tj, where j = 0, 1, 2, . . . , k, we compare the NPI

lower and upper probabilities for grouped data, which we denoted by P I(Xn+1 > tj)

and P
I
(Xn+1 > tj), given by Equations (4.10) and (4.11), respectively, with the NPI

lower and upper probabilities following our method stated in Section 4.3, which we

denoted by P (Xn+1 > tj) and P (Xn+1 > tj), given by Equations (4.8) and (4.9),

respectively.

As discussed in the Subsection 4.4.1 that, P I(Xn+1 > t) = P I(Xn+1 > tj+1) for

t ∈ Ĩj = (tj, tj+1], and P
I
(Xn+1 > t) = P

I
(Xn+1 > tj) for t ∈ Ij = [tj, tj+1), with

j = 0, 1, 2, . . . , k. So, the upper probability based on NPI for grouped data at t0 is
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tj dtj ctj P (X375 > tj) P (X375 > tj) P I(X375 > tj) P
I
(X375 > tj) P − P P

I − P I

t0 90 0 1 1 0.757 1 0 0.243

t1 76 0 0.757 0.760 0.555 0.760 0.003 0.205

t2 76 0 0.553 0.557 0.419 0.557 0.004 0.138

t3 51 0 0.415 0.421 0.346 0.421 0.006 0.075

t4 25 12 0.341 0.349 0.286 0.355 0.008 0.069

t5 20 5 0.280 0.289 0.262 0.296 0.009 0.034

t6 7 9 0.254 0.266 0.247 0.275 0.012 0.028

t7 4 9 0.236 0.251 0.243 0.261 0.015 0.018

t8 1 3 0.229 0.247 0.230 0.257 0.018 0.027

t9 3 5 0.213 0.234 0.220 0.245 0.021 0.025

t10 2 5 0.200 0.225 0 0.236 0.025 0.236

Table 4.4: NPI lower and upper probabilities for discrete time and grouped data.

identical to the lower and upper probabilities based on our proposed method at t0,

as all of them are equal to 1.

Next, a data set from the literature will be used to compare these methods.

Example 4.4.1 Using the same dataset as in Example 4.3.2, we compare the pro-

posed method presented in Section 4.3 for discrete time with NPI for grouped data

[65].

Table 4.4 presents the NPI lower and upper probabilities for X375 > tj for discrete

time, together with the NPI lower and upper probabilities for the grouped data for

X375 > tj.

As discussed above, at time t0, the NPI lower and upper probabilities, based on

our proposed method, and the NPI upper probability, based on NPI for grouped

data, are equal to 1, whereas the NPI lower probability, based on NPI for grouped

data, is equal to 0.757. At time t10, the NPI lower probability, based on NPI for

grouped data, is equal to 0, whereas the NPI upper probability, based on NPI for

grouped data, and the NPI lower and upper probabilities, based on our proposed

method, all remain positive without any further assumptions added.

In this example, we see that, P
I
(Xn+1 > tj) and P (Xn+1 > tj) are equal when

there are no censorings in Ij = [tj, tj+1). Also, we see that P (Xn+1 > tj) >
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P I(Xn+1 > tj) and P (Xn+1 > tj) ≤ P
I
(Xn+1 > tj). The proof of these inequalities

is difficult, as the calculations of these two methods are actually very different when

applied.

From Table 4.4, we see that the difference of the upper and lower probabilities

resulting from our proposed method is quite small at time t1 for the first future

observation, and becomes larger later on, due to fewer individuals in the risk set

later on. In contrast, the difference of the upper and lower probabilities resulting

from NPI for grouped data method is high at time t1 and becomes smaller later on

(with the obvious exception when the lower probability beyond t10 is equal to 0).

Next, we use NPI for Bernoulli data [20], presented in Section 2.3, to derive NPI

lower and upper probabilities for the event that at least one future observation out

of multiple future observations will survive for all tj. Then, these results will be

applied to systems reliability using the concept of survival signatures [23, 25].

4.5 Application to system reliability using sur-

vival signatures

On the basis of the NPI for Bernoulli data [20], presented in Section 2.3, we derive

NPI lower and upper probabilities for the event that at least x out of m future obser-

vations will survive a discrete time tj, for all future observations and for all tj. For

a specific tj, we apply these lower and upper probabilities to system reliability, with

one or more than one types of components, using survival signatures. Throughout

this section, the values of the survival signatures are given.

In Subsection 4.5.1, we derive NPI lower and upper probabilities for the event

that at least x out of m future observations will survive a discrete time tj, using NPI

for Bernoulli data. A brief introduction to the survival signatures is provided in Sub-

section 4.5.2. In Subsection 4.5.3, the results presented in Subsection 4.5.1 will be

used to derive NPI lower and upper probabilities for discrete time system reliability,

using the survival signature combined with NPI for Bernoulli data. Finally, in Sub-
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section 4.5.4, the proposed methods will be applied to some discrete time systems

reliability with a single type of components and multiple types of components.

4.5.1 NPI lower and upper for the event Ntj ≥ x

This section follows the same notation used in Section 4.3, with additional notation

needed. It should be noted that the results presented in this section will be derived

on the basis of utilising the results of NPI lower and upper probabilities for Bernoulli

data, presented in Section 2.3, explicitly by using Equations (2.12) and (2.13), re-

spectively. Let Ntj denote the number out of m future observations that survive

a discrete time tj. Consider the event Ntj ≥ x that is at least x out of m future

observations will survive a discrete time tj, x ∈ {0, 1, . . . ,m}. Given n̂tj Bernoulli

trials, and out of these we have n̂tj − dtj survived at time tj, we aim to derive the

NPI lower and upper probabilities for the event Ntj ≥ x for all x ∈ {0, 1, . . . ,m}

and for all tj. These lower and upper probabilities are denoted by P (Ntj ≥ x) and

P (Ntj ≥ x), respectively.

The NPI upper probability for the event Ntj ≥ x, for x ∈ {0, 1, . . . ,m} and for

all tj, is derived by utilising Equation (2.12), as

P (Ntj ≥ x) =
m∑
y=x

P (Ntj ≥ x|Ntj−1
= y)

[
P (Ntj−1

≥ y)− P (Ntj−1
≥ y + 1)

]
(4.12)

The first term of Equation (4.12) is derived by applying to the Equation (2.12)

presented in Section 2.3. The second term of Equation (4.12) refers to the maximum

value of the probability that Ntj−1
is y; there are some orderings for which Ntj−1

can be y and also can be y + 1. The argument
[
P (Ntj−1

≥ y)− P (Ntj−1
≥ y + 1)

]
is achieved by applying to Equation (2.12) first for the event Ntj−1

≥ y and then

for the event Ntj−1
≥ y + 1, for y ∈ {0, 1, . . . ,m} future observations, and we cal-

culate the difference between them. The second term of Equation (4.12) is also

obtained by deriving the difference of the NPI upper probibility for the event

Ntj−1
≥ y|

(
n̂tj , n̂tj − dtj

)
and the NPI upper probibility for the event Ntj−1

≥
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y + 1|
(
n̂tj , n̂tj − dtj

)
, using the Expression (2.21), so

[
P (Ntj−1

≥ y|
(
n̂tj , n̂tj − dtj

)
)− P (Ntj−1

≥ y + 1)|
(
n̂tj , n̂tj − dtj

)]
=(

n̂tj−1
+m

n̂tj−1

)−1(
(n̂tj−1

− dtj−1
) + y

(n̂tj−1
− dtj−1

)

)(
n̂tj−1

− (n̂tj−1
− dtj−1

) +m− y − 1

n̂tj−1
− (n̂tj−1

− dtj−1
)

) (4.13)

where y ∈ {0, 1, . . . ,m} future observations. It is important to point out that for the

case m+ 1, the NPI upper probability for the event (Ntj−1
≥ y + 1|

(
n̂tj , n̂tj − dtj

)
)

is equal to 0.

The NPI lower probability for the event Ntj ≥ x, for x ∈ {0, 1, . . . ,m} and for

all tj, is derived by utilising Equation (2.13), as

P (Ntj ≥ x) =
m∑
y=x

P (Ntj ≥ x|Ntj−1
= y)

[
P (Ntj−1

≤ y)− P (Ntj−1
≤ y − 1)

]
(4.14)

The first term of Equation (4.14) is derived by applying to the Equation (2.13)

presented in Section 2.3. The second term of Equation (4.14) refers to the least

possible value for the large values of y. This term is achieved by giving maximum

value to smaller y, so for y = 0, we can get the maximum value to y = 0 by deriving

the upper probability for y = 0, P (y = 0). For example, we achieve the maximum

value to smaller y = 1 by subtracting the upper probability for y = 0 from the upper

probability for y ≤ 1, thus P (y ≤ 1)−P (y = 0) leads to maximum value to smaller

y = 1. The argument
[
P (Ntj−1

≤ y)− P (Ntj−1
≤ y − 1)

]
is computed as follows.

[
P (Ntj−1

≤ y)− P (Ntj−1
≤ y − 1)

]
= 1− P (Ntj−1

≥ y + 1)−
[
1− P (Ntj−1

≥ y + 1)
]

= P (Ntj−1
≥ y)− P (Ntj−1

≥ y + 1)

(4.15)

So, the NPI lower probability P (Ntj ≥ x) stated in Equation (4.14), becomes

P (Ntj ≥ x) =
m∑
y=x

P (Ntj ≥ x|Ntj−1
= y)

[
P (Ntj−1

≥ y)− P (Ntj−1
≥ y + 1)

]
(4.16)

The argument
[
P (Ntj−1

≥ y)− P (Ntj−1
≥ y + 1)

]
stated in Equation (4.16) is

achieved by applying to Equation (2.13) first for the event Ntj−1
≥ y and then for

the event Ntj−1
≥ y + 1, for y ∈ {0, 1, . . . ,m} future observations. The argument[

P (Ntj−1
≥ y)− P (Ntj−1

≥ y + 1)
]

is also achieved by using the Expression (2.20),
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tj dtj ctj ntj n̂tj n̂tj − dtj x = 0 x = 1 x = 2 x = 3

P P P P P P P P

t1 1 0 8 9 8 y = 0 1 1

y = 1 1 1 0.8000 0.9000

y = 2 1 1 0.9455 0.9818 0.6545 0.8182

y = 3 1 1 0.9818 0.9955 0.8727 0.9545 0.5455 0.7500

t2 2 1 5 7 5 y = 0 1 1

y = 1 1 1 0.6250 0.7500

y = 2 1 1 0.8333 0.9167 0.4167 0.5833

y = 3 1 1 0.9167 0.9667 0.6667 0.8167 0.2917 0.4667

t3 2 1 2 4 2 y = 0 1 1

y = 1 1 1 0.4000 0.6000

y = 2 1 1 0.6000 0.8000 0.2000 0.4000

y = 3 1 1 0.7143 0.8857 0.3714 0.6286 0.1143 0.2857

t4 1 1 0 1 0 y = 0 1 1

y = 1 1 1 0 0.5000

y = 2 1 1 0 0.6667 0 0.3333

y = 3 1 1 0 0.7500 0 0.5000 0 0.2500

Table 4.5: NPI lower and upper for the event Ntj ≥ x|Ntj−1
= y, (n̂tj , n̂tj − dtj)) for

x ∈ {0, 1, 2, 3} and y ∈ {0, 1, 2, 3}, with x ≤ y.

so[
P (Ntj−1

≥ y|
(
n̂tj , n̂tj − dtj

)
)− P (Ntj−1

≥ y + 1|
(
n̂tj , n̂tj − dtj

)
)
]

=(
n̂tj−1

+m

n̂tj−1

)−1(
(n̂tj−1

− dtj−1
) + y − 1

(n̂tj−1
− dtj−1

)− 1

)(
n̂tj−1

− (n̂tj−1
− dtj−1

) +m− y
n̂tj−1

− (n̂tj−1
− dtj−1

)

) (4.17)

where y ∈ {0, 1, . . . ,m} future observations. It should be remarked that the NPI

lower probability for the event (Ntj−1
≥ y + 1|

(
n̂tj , n̂tj − dtj

)
) for the case m+ 1 is

equal to 0.

Next, we present an example to illustrate the results presented in this section.

Example 4.5.1 To illustrate the NPI lower and upper for the event Ntj ≥ x for

x ∈ {0, 1, 2, 3}, presented above, we consider a simple example involving n = 9 ob-

servations, available at discrete times tj, for j = 1, 2, 3, 4, (the data are summarised

in Table 4.5).
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x = 0 x = 1 x = 2 x = 3

tj dtj ctj ntj n̂tj n̂tj − dtj P P P P P P P P

t1 1 0 8 9 8 1 1 0.9625 0.9955 0.7883 0.8832 0.4091 0.7500

t2 2 1 5 7 5 1 1 0.8409 0.9432 0.5000 0.7318 0.1591 0.3500

t3 2 1 2 4 2 1 1 0.5334 0.7834 0.1833 0.4334 0.0333 0.1333

t4 1 1 0 1 0 1 1 0 0.5714 0 0.2571 0 0.0714

Table 4.6: NPI lower and upper for the event Ntj ≥ x, for x ∈ {0, 1, 2, 3}.

Table 4.5 shows the NPI lower and upper probabilities for the event Ntj ≥

x|Ntj−1
= y where x ∈ {0, 1, 2, 3} and y ∈ {0, 1, 2, 3}, with y ≥ x. Table 4.6

presents the NPI lower and upper for the event (Ntj ≥ x), for x ∈ {0, 1, 2, 3}

future observations. Note that some of the cells in Table 4.5 are empty due to the

calculation of probabilities for the event that is at least x out of y future observations

will survive a discrete time tj, where x ∈ {0, 1, 2, 3} and y ∈ {0, 1, 2, 3}.

From Table 4.5, we see that, at a specific discrete time tj, the NPI lower and

upper probabilities are decreasing in x when keeping y, n̂tj and n̂tj − dtj constant

and increasing in y when keeping x, n̂tj and n̂tj − dtj constant, where x and y are

varying from 0 to 3 with respect to that y ≥ x. For x = 0, the NPI lower and upper

probabilities for the event Ntj ≥ x|Ntj−1
= y, are equal 1, for y ∈ {0, 1, 2, 3} and

for all tj, due to the fact that no future observation out of y, y ∈ {0, 1, 2, 3}, future

observations will survive a discrete time tj.

Based on the results provided in Table 4.5, the NPI lower and upper probabilities

for the event Ntj ≥ x are derived using to Equations (4.16) and (4.12), and shown

in Table 4.6. From Table 4.6, we see that, the difference of the NPI lower and upper

probabilities are decreasing in x when keeping m, n̂tj and n̂tj − dtj , at each discrete

time tj, constant. Without any further assumptions added, the values of the NPI

lower probability at t4 are 0 for x ∈ {1, 2, 3}, whereas the NPI upper probabilities

are positive.

The results presented in this subsection will be used in Subsection 4.5.3 to derive

NPI lower and upper probabilities for discrete time system reliability for the event

TS > t, where TS represents the random failure time of the system, using the concept
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of the survival signature [23, 25] combined with NPI for Bernoulli data [21]. As

such, we will first provide a brief overview of the survival signatures in the following

section.

4.5.2 The survival signature

The signature has been introduced to evaluate the reliability for systems consisting

of only one type of components and is used to model the structure of a system, sepa-

rating this from the random failure times of the components [4]. The NPI method is

used in order to learn about the components within the system, based on data con-

sisting of failure times for components that are exchangeable with those within the

system. We therefore assume that such data are available, such as those obtained

from testing or previous use of the components [4, 25]. Following the literature,

the assumption of exchangeability is often replaced by the stronger assumption of

independent and identically distributed (iid) component failure times [58]. Taking

into account a system consisting of m components with exchangeable failure times,

Samaniego [54, 57] introduced the system signature as a tool for reliability assess-

ment for systems consisting of components of a single type. However, the use of

signatures becomes very complicated in the case of quantifying reliability of systems

with multiple types of components. Coolen and Coolen-Maturi [23] have introduced

an alternative concept called the ’survival signature’. The idea of the survival sig-

nature is to generalise the signature to systems with multiple types of components.

When quantifying the reliability of systems with only one type of components, the

survival signature is closely related to the signature [23, 25]. The NPI methodology

has been introduced for system reliability using the survival signature via lower and

upper survival functions for the failure time TS of a system consisting of multiple

types of components [25], combined with NPI for Bernoulli data [20]. Aslett [11]

created a package in the statistical software R to compute the survival signature,

given a graphical representation of the system structure.

For a system with m exchangeable components, we need to consider the state

vector x = (x1, x2, . . . , xm) ∈ {0, 1}m taking into account that for each i, if the ith

component functions, then xi = 1, otherwise xi = 0 when the ith component does not
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function. For all possible state vectors x, the following structure function is defined

as φ : {0, 1}m → {0, 1}, so that φ(x) = 1 if the system functions and φ(x) = 0 if

the system does not function. Throughout this section, the system is assumed to

be coherent, which means that the structure function φ(x) must not be decreasing

in any of the components of x, and this leads to the fact that the functioning of the

system cannot be improved by worse performance of one or more of its components.

Furthermore, we assume that the system functions if all its components function, so

φ(1) = 1, and the system fails if all its components fail, so φ(0) = 0.

For a system consisting only of m exchangeable components, the survival sig-

nature, denoted by Φ(l), for l = 1, . . . ,m, is defined as the probability that the

system functions given that precisely l of its components function [23]. For coher-

ent systems, Φ(l) is an increasing function of l, and assume that Φ(0) = 0 and

Φ(m) = 1. There are
(
m
l

)
state vectors x with precisely l components xi = 1, so

with
∑m

i=1 xi = l; the set of these state vectors is denoted by Sl. Inspired by the iid

assumption which has been considered for the failure times of the m components,

all these state vectors are equally likely to occur [23]. Thus, the survival signature

Φ(l) can be achieved as follows [23]

Φ(l) =

(
m

l

)−1 ∑
x∈Sl

φ(x) (4.18)

Let C(t) ∈ {0, 1, . . . ,m} represent the number of components in the system

with a single type that function at time t > 0. The following equation holds for

l ∈ {0, 1, . . . ,m}, in case the probability distribution of the iid component failure

times is known and has CDF F (t).

P (C(t) = l) =

(
m

l

)
[F (t)]m−l[1− F (t)]l (4.19)

Also, we can derive the probability for the event TS > t as follows.

P (TS > t) =
m∑
l=0

Φ(l)P (C(t) = l) (4.20)

Then, the survival signature Φ(l) combined with NPI for Bernoulli data [4, 5] is

used to present NPI lower and upper survival functions for TS; the random failure

time of a system, which consists of a single type of components. For a sinle type,
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we consider n to represent the number of components for which test failure data are

available. These are not the components that are in the system but their failure

times are assumed to be exchangeable with those in the system. Considering m to

represent the number of components for which test failure data are available, as well

as considering s(t) to represent the number of components that are still functioning

at time t, the NPI lower survival function for TS is obtained as follows [4, 5].

P (TS > t) ≥
m∑
l=0

Φ(l)D(C(t) = l) (4.21)

where D(C(t) = l) can be computed by the following expression, in relationship to

Expression (4.17),

D(C(t) = l) = P (C(t) ≤ l)− P (C(t) ≤ l − 1)

=

(
n+m

n

)−1(
s(t) + l − 1

s(t)− 1

)
×
(
n− s(t) +m− l

n− s(t)

)
The notation P in this expression, indicates the NPI upper probability for Bernoulli

data [20], given by Equation (2.12). The strict function D gives maximum possible

probability mass to the small values through the event C(t) = 0, thus D(C(t) =

0) = P (C(t) = 0) and then gives the maximum possible remaining probability

mass, denoted by D(C(t) = 1), from the total probability mass available for the

event C(t) ≤ 1, to the event C(t) = 1. Thus, D(C(t) = 1) can be computed as

follows, D(C(t) = 1) = P (C(t) ≤ l)− P (C(t) = 0).

It is clear that the right-hand side of the inequality (4.21) is considered as a

maximum possible lower bound due to the assumption that the survival signature

Φ(l), is an increasing function of l for coherent systems, as well as the function, D,

is a probability distribution. As a result, the NPI lower probability for the event

TS > t, giving the NPI lower survival function for the system failure time for the

event t > 0, can be achieved by the following equation [4, 25].

STS(t) = P (TS > t) =
m∑
l=0

Φ(l)D(C(t) = l) (4.22)

Similarly, the corresponding NPI upper survival function for TS can be obtained

as follows [4].

P (TS > t) ≤
m∑
l=0

Φ(l)D(C(t) = l) (4.23)
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where D(C(t) = l) can be computed by following expression.

D(C(t) = l) = P (C(t) ≤ l)− P (C(t) ≤ l − 1)

=

(
n+m

n

)−1(
s(t) + l

s(t)

)
×
(
n− s(t) +m− l − 1

n− s(t)

)
The notation P , appeared in this expression, indicates the NPI lower probability

for Bernoulli data [20], given by Equation (2.13). The function D gives minimum

possible weight to the small values of C(t). Thus, the NPI upper probability for the

event TS > t, giving the NPI upper survival function for the system failure time for

the event t > 0, can be achieved by the following equation.

STS(t) = P (TS > t) =
m∑
l=0

Φ(l)D(C(t) = l) (4.24)

For a system consisting of K ≥ 2 types of components, the survival signature,

denoted by Φ(l1, . . . , lK), for lk = 0, . . . ,mk, is defined as the probability that a

system functions given that precisely lk of its components of type k function, for

each k ∈ {1, 2, . . . , K} [23]. There are
(
mk

lk

)
state vectors xk with precisely lk of

its mk components xki = 1, so with
∑mk

i=1 x
k
i = lk; we denote the set of these state

vectors for components of type k by Skl . In addition, let Sl1,...,lk denote the set of

these state vectors for the whole system for which
∑mk

i=1 x
k
i = lk, k ∈ {1, 2, . . . , K}.

Inspired by the iid assumption which has been considered for the failure times of

the mk components of type k, all these state vectors xk ∈ are equally likely to occur

[23]. Thus, the survival signature Φ(l1, . . . , lK) can be achieved as follows [23].

Φ(l1, . . . , lK) =

[
K∏
k=1

(
mk

lk

)−1
]
×

∑
x∈Sl1,...,lK

φ(x) (4.25)

Let Ck(t) ∈ {0, 1, . . . ,mk} represents the number of components of type k in the

system which function at time t > 0. So, the probability that the system functions

at time t > 0 is

P (TS > t) =

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1, . . . , lK)P

(
K⋂
k=1

{Ck(t) = lk}

)
(4.26)

For each different type k, we consider nk to represent the number of components

of type k for which test failure data are available, as well as considering sk(t) to
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represent the number of components of type k still functioning at time t [4, 25].

Assuming that the failure times of components of different types are independent,

while the exchangeability is assumed for the failure times of components of the same

type [25]. Then the NPI lower survival function for TS can be obtained as follows

[25].

STS(t) = P (TS > t) =

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1 . . . lK)
K∏
k=1

D(Ck(t) = lk) (4.27)

where Ck(t) ∈ {0, 1, . . . ,mk} represents the number of components of type k in the

system functioning at time t, k = 1, 2, . . . , K, while we can compute the D(Ck(t) =

lk) by using the following expression [25].

D(Ck(t) = lk) = P (Ck(t) ≤ lk)− P (Ck(t) ≤ lk − 1)

=

(
nk +mk

nk

)−1(
sk(t) + l − 1

sk(t)− 1

)
×
(
nk − sk(t) +mk − lk

nk − sk(t)

)
where the notation P appearing in this expression refers to the NPI upper probability

for Bernoulli data [20]. The function D gives maximum possible probability mass

to the small values through the event Ck(t) = 0, thus D(Ck(t) = 0) = P (Ck(t) =

0) and then gives the maximum possible remaining probability mass, denoted by

D(Ck(t) = 1), from the total probability mass available for the event Ck(t) ≤ 1, to

the event Ck(t) = 1. Thus, D(Ck(t) = 1) can be computed as follows, D(CK(t) =

1) = P (Ck(t) ≤ l)− P (Ck(t) = 0) [25].

Similarly, the corresponding NPI upper survival function for TS is obtained as

follows [25].

STS(t) = P (TS > t) =

m1∑
l1=0

· · ·
mK∑
lK=0

Φ(l1 . . . lK)
K∏
k=1

D(Ck(t) = lk) (4.28)

where D(Ck(t) = l) can be computed by following expression

D(Ck(t) = l) = P (Ck(t) ≤ lk)− P (Ck(t) ≤ lk − 1)

=

(
nk +mk

nk

)−1(
sk(t) + l

sk(t)

)
×
(
nk − sk(t) +mk − lk − 1

nk − sk(t)

)
where the notation P appearing in this expression refers to the NPI lower probability

for Bernoulli data [20]. The strict function D gives minimum possible value to the

small values of Ck(t) [25].
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4.5.3 Discrete time system reliability

In the case of discrete time, we use the survival signature Φ(l) combined with NPI for

Bernoulli data [25], presented in Subsection 4.5.2, to present NPI lower and upper

survival functions for the event TS > tj of a system reliability consisting of a single

type and multiple types of components, by implementing our proposed method as

presented in Subsection 4.5.1. These survival functions are expressed as functions

at the assumed discrete-time points tj.

For a specific discrete time tj, we apply the method presented in Subsection 4.5.1,

stated explicitly in Equations (4.12) and (4.16) to system reliability using survival

signatures combined with NPI for Bernoulli data. We begin by considering a system

consisting of only one type of component, so k = 1.

Consider the reliability data, which consist of the numbers of components that

failed at time tj and the number of components that were right-censored at time

tj. It is assumed that these right-censored components are data from earlier tests,

so not from the actual system. We consider the notation presented in Subsection

4.5.1 along with the notation presented in Subsection 4.5.2. Let Ntj ∈ {0, 1, . . . ,m}

denote the number of components in the system, out of m, that are still functioning

at a discrete time tj.

We obtain the NPI lower and upper probabilities for the event that TS > tj for a

system consisting of a single type of components, using the survival signature Φ(l)

combined with NPI for Bernoulli data [25], as follows

P (TS > tj) =
m∑
`1=0

Φ(`1)D(Ntj = `1) (4.29)

and

P (TS > tj) =
m∑
`1=0

Φ(`1)D(Ntj = `1) (4.30)

where D(Ntj = `1) and D(Ntj = `1) are derived from our results presented in
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Equations (4.13) and (4.17), respectively, so

D(Ntj = `1) = P (Ntj ≤ `1)− P (Ntj ≤ `1 − 1)

= 1− P (Ntj ≥ `1 + 1)−
[
1− P (Ntj ≥ `1)

]
= P (Ntj ≥ `1)− P (Ntj ≥ `1 + 1)

=

(
n̂tj +m

n̂tj

)−1(
(n̂tj − dtj) + `1 − 1

(n̂tj − dtj)− 1

)
×
(
n̂tj − (n̂tj − dtj) +m− `1

n̂tj − (n̂tj − dtj)

)
(4.31)

and

D(Ntj = `1) = P (Ntj ≥ `1)− P (Ntj ≥ `1 − 1)

=

(
n̂tj +m

n̂tj

)−1(
(n̂tj − dtj) + `1

(n̂tj − dtj)

)
×
(
n̂tj − (n̂tj − dtj) +m− `1 − 1

n̂tj − (n̂tj − dtj)− 1

)
(4.32)

We now consider a system consisting of K ≥ 2 types of components with mk

components of k ∈ {1, 2, . . . , K}, with
∑K

k=1mk = m. For a specific time tj, let n̂ktj

denote the number of components of type k for which test failure data are available,

and dktj denote the numbers of components that failed at time tj, and therefore,

n̂ktj − d
k
tj

is the number of components of type k that are still functioning at time

tj [4, 25]. As assumed that the failure times of components of different types are

assumed to be independent, while failure times of components of the same type are

assumed to be exchangeable [25]. Let Nk
tj
∈ {0, 1, . . . ,mk} denote the number of

components of type k in the system, out of mk, that are still functioning at a discrete

time tj, k = 1, 2, . . . , K.

The NPI lower and upper probabilities for the event TS > tj of a system con-

sisting of multiple types of components, using the survival signature Φ(l1, . . . , lk)

combining with NPI for Bernoulli data [25], are obtained as follows

P (TS > tj) =

m1∑
`1=0

· · ·
mK∑
`K=0

Φ(`1 . . . `K)
K∏
k=1

D(Nk
tj

= `k) (4.33)

and

P (TS > tj) =

m1∑
`1=0

· · ·
mK∑
`K=0

Φ(`1 . . . `K)
K∏
k=1

D(Nk
tj

= `k) (4.34)
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Figure 4.1: System with a single type of m = 5 components for Example 4.5.2.

where the values of D(Nk
tj

= `k) and D(Nk
tj

= `k), for `k ∈ {0, 1, . . . ,mk}, re-

spectively, are derived from our results presented in Equations (4.13) and (4.17),

respectively, thus

D(Nk
tj

= `k) = P (Nk
tj
≤ `k)− P (Nk

tj
≤ `k − 1)

= 1− P (Nk
tj
≥ `k + 1)−

[
1− P (Nk

tj
≥ `k)

]
= P (Nk

tj
≥ `k)− P (Nk

tj
≥ `k + 1)

=

(
n̂ktj +mk

n̂ktj

)−1(
(n̂ktj − d

k
tj

) + `k − 1

(n̂ktj − dktj)− 1

)
×
(
n̂ktj − (n̂ktj − d

k
tj

) +mk − `k
n̂ktj − (n̂ktj − dktj)

)
(4.35)

and

D(Nk
tj

= `k) = P (Nk
tj
≥ `k)− P (Nk

tj
≥ `k − 1)

=

(
n̂ktj +mk

n̂ktj

)−1(
(n̂ktj − d

k
tj

) + `k

(n̂ktj − dktj)

)
×
(
n̂ktj − (n̂ktj − d

k
tj

) +mk − `k − 1

n̂ktj − (n̂ktj − dktj)− 1

)
(4.36)

Next, we apply our results, presented in this subsection, to some discrete time

systems reliability consisting of a single type of components and multiple types of

components.

4.5.4 Examples

This section presents two examples to illustrate the methodology presented in Sub-

section 4.5.3.
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tj dtj ctj n̂tj n̂tj − dtj P (TS > tj) P (TS > tj)

t1 2 0 10 8 0.8811 0.9426

t2 2 1 7 5 0.7765 0.8909

t3 2 0 5 3 0.6190 0.8095

t4 1 1 2 1 0.3857 0.7810

t5 1 0 1 0 0 0.5833

Table 4.7: NPI lower and upper probabilities for TS > tj, for system in Figure 4.1,

with n = 10 (Example 4.5.2).

tj dtj ctj n̂tj n̂tj − dtj P (TS > tj) P (TS > tj)

t1 4 0 20 16 0.9177 0.9465

t2 4 2 14 10 0.8344 0.8921

t3 3 1 9 6 0.7552 0.8559

t4 2 2 4 2 0.4810 0.7333

t5 2 0 2 0 0 0.3857

Table 4.8: NPI lower and upper probabilities for TS > tj, for system in Figure 4.1,

with n = 20 (Example 4.5.2).

Example 4.5.2 The system in Figure 4.1 is used in this example was also used by

Coolen and Coolen-Maturi [24]. We consider a discrete time system reliability with

m = 5 exchangeable components, which has a survival signature with the following

values: Φ(0) = 0, Φ(1) = 0, Φ(2) = 0.6, Φ(3) = 0.9, Φ(4) = 1, and Φ(5) = 1.

Suppose that we have data consisting of n = 10 observations, including failure

events and right-censored observations, for discrete times t1, . . . , t5. We consider the

data given in Table 4.7 for this example, which contains the numbers of components

that failed at times t1, . . . , t5, with dt1 = 2, dt2 = 2, dt3 = 2, dt4 = 1, and dt5 = 1,

along with the number of right-censored observations at times t2 and t4 with ct2 = 1

and ct4 = 1, respectively. Table 4.7 presents NPI lower and upper probabilities

for TS > tj at discrete times t1, . . . , t5, with n = 10, based on using the survival

signature values as given previously and the NPI for Bernoulli data.

We now increase the size of the data set for the same system in Figure 4.1, such
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Figure 4.2: System with 2 types of components for Example 4.5.3.

Type 1 Type 2

tj d1
tj

c1
tj

n̂1
tj

(n̂1
tj
− d1

tj
) d2

tj
c2
tj

n̂2
tj

(n̂2
tj
− d2

tj
)

t1 2 1 9 7 3 0 10 7

t2 3 2 5 2 3 1 6 3

t3 2 0 2 0 2 1 2 0

Table 4.9: Data of a system with 2 types of components with m1 = m2 = 3, in

Figure 4.2 (Example 4.5.3).

that the data set consists of n = 20 observations, including failure events and right-

censored observations, for discrete times t1, . . . , t5. Table 4.8 presents NPI lower

and upper probabilities for TS > tj at discrete times t1, . . . , t5, with n = 20, based

on using the survival signature values as given previously and the NPI for Bernoulli

data.

In comparing the results in Tables 4.7 and 4.8, we observe that the imprecision

in both tables is quite small at time t1 and becomes larger later on, due to fewer

observations in the risk set later on. Further, the differences between the lower and

upper probabilities for TS > tj for all tj, with n = 20, according to Table 4.8, are

quite smaller than those in Table 4.7 with n = 10 observations. So, the difference

between the lower and upper probabilities for TS > tj for all tj decreases as the data

set size increases.

Example 4.5.3 In this example, we consider the system with K = 2 types of

components, types 1 and 2, as presented in Figure 4.2. This system was used

by Coolen et al [23] to illustrate NPI for the system survival time. The survival
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(`1, `2) Φ(`1, `2) (`1, `2) Φ(`1, `2)

(0, 0) 0 (2, 0) 0

(0, 1) 0 (2, 1) 0

(0, 2) 0 (2, 2) 4/9

(0, 3) 0 (2, 3) 6/9

(1, 0) 0 (3, 0) 1

(1, 1) 0 (3, 1) 1

(1, 2) 1/9 (3, 2) 1

(1, 3) 3/9 (3, 3) 1

Table 4.10: Survival signature of the system in Figure 4.2 (Example 4.5.3).

signature for this system is presented in Table 4.10. We consider the data given

in Table 4.9 for the two types with m1 = m2 = 3 components, and each type

has 10 observations, i.e. n1 = n2 = 10, including failure events and right-censored

observations, for discrete times t1, t2 and t3. Table 4.11 presents the NPI lower and

upper probabilities for TS > tj at discrete times t1, t2 and t5, based on using the

given survival signature values and the NPI for Bernoulli data.

According to the NPI approach for real-valued data, it is natural for the lower

probability value for Xn+1 > t when t is in a specific interval, to be less than or equal

the upper probability value for Xn+1 > t when t is in the next interval, e.g. see the

results in Table 5.7. In contrast, the NPI for discrete-time approach indicates that

this does not always hold true, e.g. see the results of Table 4.11 as P (TS > t1) >

P (TS > t2) and see also the results of Table 4.8 as P (TS > t3) > P (TS > t4). Most of

the results presented in this chapter suggest that for discrete time cases, this issue

may occur due to multiple failures that could occur in between the discrete-time

points.
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tj P (TS > tj) P (TS > tj)

t1 0.5500 0.7118

t2 0.1412 0.3189

t3 0 0.1478

Table 4.11: NPI lower and upper probabilities for TS > tj, for the system, with two

types of components, in Figure 4.2 (Example 4.5.3).

4.6 Concluding remarks

Considering discrete-time data in this chapter, NPI method in terms of utilising

NPI for Bernoulli data [20] are developed as an alternative predictive approach to

the actuarial estimator dealing with right-censored data. This development allows

us to present the NPI lower and upper probabilities for the event that all future

observations survive a discrete time tj. Further, one of the primary objectives that

have been discussed in this chapter is the comparison between the proposed method

and the NPI method for grouped data with right-censored data [65].

Taking into account that n Bernoulli trials are exchangeable with m future

Bernoulli trials, the proposed method in this chapter, based on NPI for Bernoulli

data [65], has been developed for deriving the NPI lower and upper probabilities

for the event that there are x out of m future Bernoulli trials. Together with the

survival signature method, this development has been applied to systems reliability

for the event TS > tj with single and multiple types of components at discrete times

tj.



Chapter 5

NPI for Two Future Observations

with Right-Censored Data

5.1 Introduction

Coolen and Yan [32] presented NPI for right-censored data for a single future ob-

servation. There is a challenge to generalize the approach of NPI for right-censored

data to multiple future observations. NPI has been developed to multiple future

observations for uncensored real-valued data [9, 10] and for Bernoulli data [20],

however, this is complicated for right-censored data. In this thesis, further theory is

developed on NPI for two future observations with attention to right-censored data.

This will be achieved by applying the rc-A(n) assumption [32], without further as-

sumptions, for Xn+1 and, conditionally on Xn+1, applying the rc-A(n+1) assumption

for Xn+2. The focus is on NPI lower and upper probabilities for the event that both

future observations Xn+1 and Xn+2 are greater than time t. We also illustrate how

the proposed method can be applied to system reliability.

To achieve the aim of the chapter, which is to derive the joint lower and upper

probabilities for the event Xn+1 > t and Xn+2 > t, more notation needs to be

introduced in addition to those introduced in Section 2.4.

In this chapter, the notation introduced in Section 2.4 is followed, together with

new notations required. Let X1, X2, . . . , Xn, Xn+1 be positive, continuous and ex-

changeable random quantities representing lifetimes. Suppose that there are n obser-

82
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vations, including u event times, x1 < x2 < · · · < xu, and ν = n− u right-censored

observations, c1 < c2 < . . . < cν . Let x0 = 0 and xu+1 = ∞ for ease of nota-

tion. Suppose further that there are si right-censored observations in the interval

I i = (xi, xi+1), i = 0, 1, . . . , u, denoted by ci1 < ci2 < . . . < cisi , so
∑u

i=0 si = ν. With

regard to Xn+1, there are n+1 intervals created by the data set n including the right-

censored observations. In order to simplify our presentation, we assume that no ties

are present in our data, so no two observations (events or right-censoring) happen at

the same time. The assumption rc-A(n) [32] partially specifies the NPI-based prob-

ability distribution for Xn+1 by the M -function values, as given in Equations (2.31)

and (2.32). The probability for the event that Xn+1 ∈ (xi, xi+1), i = 0, 1, . . . , u,

where xi and xi+1 are two consecutive failure times, is obtained by summing up

all M -function values assigned to the interval (xi, xi+1), as given by the Equation

(2.33).

This chapter is organised as follows. Using a new approach, we reformulate the

NPI lower and upper probabilities for the event Xn+1 > t in Section 5.2. In Section

5.3, we present NPI for the event Xn+2 > t given Xn+1 > t. NPI for the joint event

Xn+1 > t and Xn+2 > t is presented in Section 5.4. Section 5.5 illustrates how these

inferences can be applied to quantify the reliability of a small series system. Finally,

this chapter ends with concluding remarks in Section 5.6.

5.2 Reformulating NPI for the first future obser-

vation

The overall goal of this chapter is to develop NPI for two future observations, Xn+1

and Xn+2, with data including right-censored observations. Particularly, we present

NPI lower and upper probabilities for the event Xn+1 > t and Xn+2 > t. According

to the rc-A(n) [32] assumption, the probability distribution for Xn+1 is partially spec-

ified by probability mass assigned to open nested intervals via M -function values,

without further restrictions on where it is in each interval. We consider Xn+1 and

Xn+2 such that Xn+2 is conditioned on Xn+1 and the data set that contains n obser-

vations with right-censored observations. Without making any further assumptions,
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we aim to apply the rc-A(n) [32] assumption for Xn+1, and then, conditionally on

Xn+1, we will apply the rc-A(n+1) assumption for Xn+2. However, where to put the

probability masses for specific events of interest in order to get the NPI lower and

upper probabilities is challenging. So, we must consider where the probability mass

is for Xn+1 within an interval (xi, xi+1), in order to apply rc-A(n+1) for Xn+2. In

this case, this interval (xi, xi+1), which contains right-censored observations, must

be specified into sub-intervals (cii∗ , xi+1), i∗ = 1, 2, . . . , si, with respect to that the

probability mass for Xn+1 according to its M -function value assigned to the inter-

val (xi, xi+1), will be distributed over these sub-intervals (cii∗ , xi+1). To do this, we

introduce probabilities denoted by αi and αc
i
i∗ , i = 0, 1, . . . , u and i∗ = 1, 2, . . . , si,

to enable us to determine where to put the probability mass per interval over its

sub-intervals. In this way, we can minimise or maximise the probability for any

event of interest involving the one or two future observations with regard to the αi

and αc
i
i∗ values. Overall, this allows deriving the NPI lower and upper probabilities

for the event Xn+1 > t.

To achieve the overall goal, we start with deriving the lower and upper proba-

bilities for the event Xn+1 > t, which has been done by Coolen and Yan [32], in

different way. For an interval I i = (xi, xi+1), i = 0, 1, 2, . . . , u, there are si right-

censored observations in this interval, and

αi = (αi1, α
i
2, . . . , α

i
si+1),where 0 ≤ αii∗ ≤ 1 and

si+1∑
i∗=1

αii∗ = 1

If there are no censored observations in the interval (xi, xi+1), that is si = 0, then

αi = αi1 = 1. Also, for each censored observation cii∗ , i∗ = 1, 2, . . . , si, in the interval

(xi, xi+1),

αc
i
i∗ = (α

ci
i∗

1 , α
ci
i∗

2 , . . . , α
ci
i∗
si−i∗+1),where 0 ≤ α

ci
i∗
l ≤ 1 and

si−i∗+1∑
l=1

α
ci
i∗
l = 1.

If there is only one censored observation in the interval (xi, xi+1) then αc
i
i∗ = α

ci
i∗

1 =

1.

The notation αi and αc
i
i∗ are the proportion of (a specific) probability mass

assigned to the intervals (xi, xi+1) and (cil, xi+1), respectively, that are distributed

over sub-intervals. It is just a way to write how the probability mass is divided over
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sub-intervals, so that we can then find the NPI lower and upper probabilities for

any event of interest involving Xn+1. The αii∗ are introduced to determine where to

place the probability mass per interval (xi, xi+1) over its sub-intervals, whereas the

α
ci
i∗
l are introduced to determine where to place the probability mass per interval

(cil, xi+1) over its sub-intervals.

Consequently, we reformulate the original M -function masses shown in Definition

2.4.4, having the notation αi introduced to them, to specify how much of each M -

function value is in sub-intervals.

Definition 5.2.1 (rc-A(n)- revisited)

Let I ii∗ = (tii∗ , t
i
i∗+1) represent an interval created by the n data observations,

where i = 0, 1, 2, . . . , u, and i∗ = 0 if ti0 = xi (failure time or time 0)

i∗ = 1, 2, . . . si, if tii∗ = cii∗ (right-censoring time)

and for simplicity of notation let tisi+1 = ti+1
0 = xi+1. Using α approach, the as-

sumption rc-A(n) partially specifies the NPI-based probability distribution for the

observable, nonnegative and real-valued random quantity Xn+1, via the following

M -function values.

MXn+1(t
i
i∗ , t

i
i∗+1) = αii∗+1MXn+1(xi, xi+1) +

i∗∑
l=1

α
cil
i∗−l+1MXn+1(c

i
l, xi+1) (5.1)

In Equation (5.1), the M -function values MXn+1(xi, xi+1) and MXn+1(c
i
i∗ , xi+1)

are derived from Equations (2.31) and (2.32), respectively. The MXn+1(t
i
i∗ , t

i
i∗+1),

stated in Equation (5.1), could be also written as MXn+1∈Iii∗
. We do this for conve-

nience in order to be used later in Section 5.4.

With respect to that for all αii∗ ∈ [0, 1], α
ci
i∗
l ∈ [0, 1],

∑si+1
i∗=1 α

i
i∗ = 1 and∑si−i∗+1

l=1 α
ci
i∗
l = 1, the M -function values as specified by rc-A(n) in Definition 5.2.1

lead to the probability for the event that Xn+1 ∈ (xi, xi+1), i = 0, 1, . . . , u, denoted

by PXn+1(xi, xi+1), which can be calculated by summing up all M -function values

assigned to the interval I i = (xi, xi+1) along with all M -function values assigned to
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them sub-intervals (cii∗ , xi+1) for Xn+1, so that

PXn+1(xi, xi+1) =

si∑
i∗=0

MXn+1(t
i
i∗ , t

i
i∗+1)

=

si∑
i∗=0

αii∗+1MXn+1(xi, xi+1) +

si∑
i∗=1

i∗∑
l=1

α
cil
i∗−l+1MXn+1(c

i
l, xi+1)

= MXn+1(xi, xi+1) +

si∑
l=1

si−l+1∑
i∗=1

α
cil
i∗MXn+1(c

i
l, xi+1)

= MXn+1(xi, xi+1) +

si∑
l=1

MXn+1(c
i
l, xi+1) (5.2)

for i = 0, 1, . . . , u. The result in Equation (5.2) is the same result stated in Equa-

tion (2.33). For convenience, PXn+1(xi, xi+1), stated in Equation (5.2), will be also

denoted by PXn+1∈Ii We do this for convenience in order to be used later in Section

5.4. The first term after the second equality in Equation (5.2) is the sum of all M -

function values assigned to the interval (xi, xi+1), and as
∑si+1

i∗=1 α
i
i∗ = 1, this first

term is equal to MXn+1(xi, xi+1). The second term after the second equality in Equa-

tion (5.2) is the sum of all M -function values assigned to the sub-intervals (cil, xi+1)

of (xi, xi+1), and as
∑si−i∗+1

l=1 α
ci
i∗
l = 1, for i = 0, 1, . . . , u and i∗ = 1, 2, . . . , si, this

second term is equal to
∑si

l=1MXn+1(c
i
l, xi+1). Let us define the following equation

QXn+1(t
i
a, xi+1) =

si∑
i∗=a

αii∗+1MXn+1(xi, xi+1) +

si∑
i∗=a

i∗∑
l=1

α
cil
i∗−l+1MXn+1(c

i
l, xi+1) (5.3)

where for a = 0, Equation (5.2) and (5.3) are equivalent. This Equation (5.3) can

be minimised or maximised in order to derive the NPI lower and upper probabilities

for the event Xn+1 > t. We sometimes denote the probability in Equation (5.3)

by QXn+1∈Iia for convenience in order to be used later in Section 5.4. Now, let us

consider the second term of Equation (5.3), and by rearranging the summations, we

have

si∑
i∗=a

i∗∑
l=1

α
cil
i∗−l+1MXn+1(c

i
l, xi+1) =

a−1∑
l=1

si−l+1∑
i∗=a

α
cil
i∗MXn+1(c

i
l, xi+1) +

si∑
l=a

si−l+1∑
i∗=1

α
cil
i∗MXn+1(c

i
l, xi+1) (5.4)

The first term on the right-hand side of Equation (5.4) is related to the prob-

ability masses to the right of tia, corresponding to all cil < tia. The second term in
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Equation (5.4) is related to the probability masses corresponding to all cil ≥ tia, and

as
∑si−l+1

i∗=1 α
cil
i∗ = 1, this second term is equal to

∑si
l=aMXn+1(c

i
l, xi+1). So Equation

(5.3) can be rewritten as

QXn+1(t
i
a, xi+1) =

si∑
i∗=a

αii∗+1MXn+1(xi, xi+1) +
a−1∑
l=1

si−l+1∑
i∗=a

α
cil
i∗MXn+1(c

i
l, xi+1)

+

si∑
l=a

MXn+1(c
i
l, xi+1) (5.5)

If we want to find the values of αi’s and αc
i
l ’s that minimize QXn+1(t

i
a, xi+1),

stated in Equation (5.5), then this can be achieved by assigning all probability

masses in (xi, xi+1) which can be assigned to the left of the tia, that is

si∑
i∗=a

αii∗+1 = 0 ,
a−1∑
i∗=0

αii∗+1 = 1

and
a−1∑
i∗=1

α
cil
i∗ = 1 ,

si−l+1∑
i∗=a

α
cil
i∗ = 0

thus, the minimum value of QXn+1(t
i
a, xi+1) in Equation (5.5) is

Qmin
Xn+1

(tia, xi+1) =

si∑
l=a

MXn+1(c
i
l, xi+1) (5.6)

If we want to find the values of αi’s and αc
i
l ’s that maximise QXn+1(t

i
a, xi+1), given

in Equation (5.5), then this can be achieved by assigning all probability masses in

the interval (xi, xi+1) to the right of tia, that is

si∑
i∗=a

αii∗+1 = 1 ,
a−1∑
i∗=0

αii∗+1 = 0

and
a−1∑
i∗=1

α
cil
i∗ = 0 ,

si−l+1∑
i∗=a

α
cil
i∗ = 1

thus, the maximum value of QXn+1(t
i
a, xi+1) in Equation (5.5) is

Qmax
Xn+1

(tia, xi+1) = MXn+1(xi, xi+1) +
a−1∑
l=1

MXn+1(c
i
l, xi+1) +

si∑
l=a

MXn+1(c
i
l, xi+1)

= MXn+1(xi, xi+1) +

si∑
l=1

MXn+1(c
i
l, xi+1)

= PXn+1(xi, xi+1) (5.7)
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Figure 5.1: The original M -functions based on rc-A(n) assumption for X5.

The probabilities, Qmin
Xn+1

(tia, xi+1) and Qmax
Xn+1

(tia, xi+1), given in Equations (5.6)

and (5.7), are denoted by Qmin
Xn+1∈Iia

and Qmax
Xn+1∈Iia

, respectively, for convenience in

order to be used later in Section 5.4.

Consequently, the NPI lower probability for the event Xn+1 > t, for t ∈ [tia, t
i
a+1)

with i = 0, 1, . . . , u and a = 0, 1, . . . , si, given in Equation (2.34), can be written as

follows.

P (Xn+1 > t) = Qmin
Xn+1

(tia+1, xi+1) +
u∑

j=i+1

PXn+1(xj, xj+1)

=

si∑
l=a+1

MXn+1(c
i
l, xi+1) +

u∑
j=i+1

PXn+1(xj, xj+1) (5.8)

The corresponding NPI upper probability for the eventXn+1 > t, for t ∈ [xi, xi+1)

with i = 1, 2, . . . , u and a = 0, 1, . . . , si, given in Equation (2.35), can be written as

follows.

P (Xn+1 > t) = Qmax
Xn+1

(tia, xi+1) +
u∑

j=i+1

PXn+1(xj, xj+1)

=
u∑
j=i

PXn+1(xj, xj+1) (5.9)

The following example illustrates the above method.

Example 5.2.1 Suppose that a data set consists of three failure observations at

times x1, x2, x3 and one right-censored observation at time c1
1, as shown in Figure

5.1. Let Xc11
denote the random quantity corresponding to the right-censoring at

time c1
1, where c1

1 ∈ (x1, x2).
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Figure 5.2: Reformulating the original M -functions for X5.

Let us begin by briefly illustrating the assumption rc-A(n) [32]. According to

the Ã(4) assumption, given by Definition 2.4.1, the M -function values for X5 are

M̃X5(0, x1) = M̃X5(x1, x2) = M̃X5(x2, x3) = M̃X5(x3,∞) = 1
5
, and a further proba-

bility mass 1/5 is distributed over the interval (c1
1,∞), i.e. M̃X5(c

1
1,∞) = 1

5
, since

it is known without making any further assumptions that X5 will be at any point

beyond c1
1.

According to the non-informative censoring assumption, the residual lifetime

of the censored observation is independent of the censoring process, therefore, the

assumption shifted-Ã(2), given by Definition 2.4.2, allows us to apply A(2) with

the starting point shifted from 0 to the censoring time c1
1. Based on the assump-

tion shifted-Ã(2), the probability distribution for Xc11
, given Xc11

> c1
1, is partially

specified via M -function values for Xc11
assigned to sub-intervals as MX

c11

(c1
1, x2) =

MX
c11

(x2, x3) = MX
c11

(x3,∞) = 1
3
. Moreover, the assumption rc-Ã(4), given by Defi-

nition 2.4.3, splits the probability mass of M̃X5(c
1
1,∞) = 1

5
to M -function values for

X5 assigned to sub-intervals as M
c11
X5

(c1
1, x2) = M

c11
X5

(x2, x3) = M
c11
X5

(x3,∞) = 1
5
× 1

3
=

1
15

(see Figure 5.1).

The M -function values for X5 based on the assumption Ã(4), given by Definition

2.4.1, are then combined with the M -function values for X5 based on the assumption

rc-Ã(4), given by Definition 2.4.3, leading to the M -function values for X5 based on

the rc-A(4) assumption, as given by the Definition 2.4.4 [32, 65]. For example, the

M -function value for the event X5 ∈ (x2, x3) based on the assumption rc-A(4) is

derived as MX5(x2, x3) = M̃X5(x2, x3) +M
c11
X5

(x2, x3) = 1
5

+ 1
15

= 4
15

.

Therefore, the original M -function values for the first future observation X5,

based on the assumption rc-A(n) [32], according to the Definition 2.4.4, are derived
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as follows (see Figure 5.1)

MX5(0, x1) =
1

5
=

3

15

MX5(x1, x2) =
1

5
=

3

15

MX5(c
1
1, x2) =

1

5
× 1

3
=

1

15

MX5(x2, x3) =
1

5
+

1

15
=

4

15

MX5(x3,∞) =
1

5
+

1

15
=

4

15

With the new technique presented in Section 5.2 on the basis of Definition 5.2.1,

we have the opportunity to specify the original M -function values for X5, shown in

Figure 5.1, to probability mass values assigned to their sub-intervals (as shown in

Figure 5.2).

From Figure 5.2, as the data set presented in this example does not include any

censored observations in the intervals I0 = (0, x1), I2 = (x2, x3) and I3 = (x3,∞),

we have α0
1 = α2

1 = α3
1 = 1. The interval I1 = (x1, x2) contains a single censored

observation c1
1, so we split this interval into two sub-intervals; I1

0 = (x1, c
1
1) and

I1
1 = (c1

1, x2) and we introduce α1
1 and α1

2 for these intervals, respectively, such

that the sum of them is one. Using these α1
1 and α1

2 values, we can determine the

distribution of a probability per interval over its sub-intervals in order to minimise

or maximise the probability for the event X5 > t.

As for c1
1 ∈ (x1, x2), it is necessary to determine where to put the probability

mass for X5, that is, MX5(x1, x2) = 1
5
, in this interval. Since there is only one

right-censored observation in (x1, x2), the probability mass MX5(x1, x2) = 1
5
, given

by Equation (2.27), is now assigned into two sub-intervals, with regard to α1
1 and

α1
2 introduced respectively to the two sub-intervals, as

MX5(x1, c
1
1) =α1

1MX5(x1, x2) =
1

5
α1

1 (5.10)

MX5(c
1
1, x2) =α1

2MX5(x1, x2) =
1

5
α1

2 (5.11)

Taking into consideration the probability mass M
c11
X5

(c1
1, x2) = 1

15
, given by Def-

inition 2.4.3, we consider the following probability mass, using Definition 5.2.1, to
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be assigned to the sub-interval (c1
1, x2) for c1

1 ∈ (x1, x2)

MX5(c
1
1, x2) =α

c11
1 M

c11
X5

(c1
1, x2) =

1

15
α
c11
1 , where α

c11
1 = 1 (5.12)

Therefore, the original M -function values for X5 [32], given by the Definition

2.4.4 and shown in Figure 5.1, are now re-distributed based on the Definition 5.2.1,

as follow (see Figure 5.2),

MX5(0, x1) =
1

5

MX5(x1, c
1
1) =

1

5
α1

1

MX5(c
1
1, x2) =

1

5
α1

2 +
1

15
α
c11
1

MX5(x2, x3) =
1

5
+

1

15

MX5(x3,∞) =
1

5
+

1

15

Then, for the interval (x1, x2) which contains the only right-censored observation

c1
1, we considerQX5(c

1
1, x2) as representing a probability that can either be maximised

or minimised depending on how much the probability mass value is distributed

over the sub-intervals of the interval (x1, x2). Using Equation (5.3), the function

QX5(c
1
1, x2) is defined by combining Equations (5.11) and (5.12), as

QX5(c
1
1, x2) = α1

2MX5(x1, x2) + α
c11
1 M

c11
X5

(c1
1, x2)

=
1

5
α1

2 +
1

15
α
c11
1

but α
c11
1 = 1 since there is only one right-censored observation in the interval (x1, x2),

so QX5(c
1
1, x2) = 1

5
α1

2 + 1
15

.

The function QX5(c
1
1, x2) can be minimised and maximised in order to obtain the

NPI lower and upper probabilities for the event X5 ∈ (c1
1, x2), using Equations (5.6)

and (5.7). The minimum value of the function QX5(c
1
1, x2) is obtained by assigning

all probability masses within the interval (x1, x2) to the left of c1
1, that is α1

2 = 0,

so α1
1 = 1 and Qmin

X5
(c1

1, x2) = 1
15

. The maximum value of the function QX5(c
1
1, x2) is

obtained by assigning all probability masses within the interval (x1, x2) to the right

of c1
1, that is α1

2 = 1, so α1
1 = 0 and Qmax

X5
(c1

1, x2) = 1
5

+ 1
15

= 4
15

.

The NPI lower and upper probabilities for the event X5 > t, based on the

Definition 5.1, are derived using Equations (5.8) and (5.9) respectively. The lower
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t ∈ (.) P (X5 > t) P (X5 > t)

(0, x1) 4
5

1

(x1, c
1
1) 3

5
4
5

(c1
1, x2) 8

15
4
5

(x2, x3) 4
15

8
15

(x3,∞) 0 4
15

Table 5.1: P (X5 > t) and P (X5 > t) according to Example 5.2.1

probability P (X5 > t) is obtained by considering only the probability mass that

necessarily lies in (t,∞). The corresponding upper probability P (X5 > t) is obtained

by considering the probability mass that could possibly lie within (t,∞).

Taking the case t ∈ (x1, c
1
1) as an example, the lower probability for the event

X5 > t is obtained by considering only probability masses that necessarily lie

within (t,∞), using Equation (5.8), i.e., PX5
(x1, c

1
1) = Qmin

X5
(c1

1, x2) + PX5(x2, x3) +

PX5(x3,∞) = 1/15 + 4/15 + 4/15 = 3/5. For the case t ∈ (c1
1, x2),

the upper probability for the event X5 > t is obtained by summing up all prob-

ability masses that can be in (t,∞), using Equation (5.9), i.e., PX5(c
1
1, x2) =

Qmax
X5

(c1
1, x2) + PX5(x2, x3) + PX5(x3,∞) = 4/15 + 4/15 + 4/15 = 4/5. For t in

an interval which does not contain right-censored observations, the NPI lower and

upper probabilities for the event X5 > t can be derived directly from the Equations

(2.34) and (2.35), respectively. Consequently, the NPI lower and upper probabilities

for the event X5 > t, based on the data in this example, are given in Table 5.1.

Note that we can straightforwardly apply rc-A(4) for X5, using Definition 2.4.4,

where there are no assumptions on where the probability mass is within each inter-

val. But, as we aim to apply rc-A(5) for X6, based on rc-A(4) for X5, later on, we

had to consider where the probability mass is for X5 in this example using the new

techniques presented in this section. Also, this example will be used again later on

in this chapter.
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We next consider the second future observation, Xn+2, based on the first future

observation, Xn+1, as well as the data set that includes n observations with right-

censored observations. Section 5.3 derives the NPI lower and upper conditional

probabilities for Xn+2 > t given Xn+1 > t, which will enable us to derive the NPI

lower and upper probabilities for the event that both future observations are greater

than t, in Section 5.4.

5.3 Lower and upper probabilities for Xn+2 > t

given Xn+1 > t

This section presents the NPI conditional lower and upper probabilities for the

event Xn+2 > t given Xn+1 > t. We aim to apply the rc-A(n+1) assumption for

Xn+2, conditionally on Xn+1, for which we apply the rc-A(n) assumption, which was

presented in Section 5.2, without further assumptions.

Based on Definition 5.2.1, there are n+ 1 cases of which Xn+1 falls in the inter-

vals created by the data set that contains n observations including right-censored

observations, denoted as I ii∗ = (tii∗ , t
i
i∗+1), where i = 0, 1, . . . , u, i∗ = 1, 2, . . . , si, as

provided in Section 5.2. For Xn+1 ∈ (tii∗ , t
i
i∗+1), when considering Xn+2, there will

be n+1 observations of which we have u+1 event times, x1 < x2 < · · · < xu < xu+1,

and ν = (n + 1)− (u + 1) = n − u right-censored observations, c1 < c2 < . . . < cν .

Note that u+ 1 refer to the failure observations in the data set including Xn+1. So,

there are n + 2 intervals created by the data set that contains n + 1 observations,

included Xn+1, and the right-censored observations, denoted by Ijj∗ = (tjj∗ , t
j
j∗+1),

where j = 0, 1, . . . , u + 1, j∗ = 1, 2, . . . , sj. Let x0 = 0 and xu+2 = ∞ for ease of

notation. We assume, in order to simplify our presentation, that no ties exist in the

data set, so no two observations (events or right-censoring) are at the same time

value. In case there are ties, we refer to the discussion in Section 2.2.

In order to derive the NPI conditional lower and upper probabilities for the event

Xn+2 > t given Xn+1 > t, we are going to present the rc-A(n+1) assumption for Xn+2

given Xn+1 ∈ I ii∗ = (tii∗ , t
i
i∗+1), following what is presented in Section 5.2 regarding

the rc-A(n) assumption for Xn+1, as we have considered where the probability mass
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is for Xn+1 within an interval (xi, xi+1). Here, in case of the event Xn+2 > t given

Xn+1 > t, we use the same notation that used for the event Xn+1 > t in Section 5.2,

with replacing the notation αi and αc
i
i∗ by βi and βc

i
i∗ .

Given that Xn+1 ∈ I ii∗ = (tii∗ , t
i
i∗+1) and for an interval Ij = (xj, xj+1), j =

0, 1, 2, . . . , u+ 1, there are sj right-censored observations in this interval, and

βj = (βj1, β
j
2, . . . , β

j
sj+1),where 0 ≤ βjj∗ ≤ 1 and

sj+1∑
j∗=1

βjj∗ = 1

If there are no censored observations in the interval (xj, xj+1), that is sj = 0, then

βj = βj1 = 1. Also, for each censored observation cjj∗ , j∗ = 1, 2, . . . , sj, in the interval

(xj, xj+1),

βc
j
j∗ = (β

cj
j∗

1 , β
cj
j∗

2 , . . . , β
cj
j∗
sj−j∗+1),where 0 ≤ β

cj
j∗

l ≤ 1 and

sj−j∗+1∑
l=1

β
cj
j∗

l = 1.

if there is only one censored observation in the interval (xj, xj+1) then βc
j
j∗ = β

cj
j∗

1 =

1.

The notation βj and βc
j
j∗ are the proportion of (a specific) conditional probability

mass assigned to the interval (xj, xj+1) that is distributed over sub-intervals, given

Xn+1 ∈ (xj, xj+1). It is just a way to write how the probability mass is divided

over sub-intervals, so that we can then find the NPI conditional lower and upper

probabilities for any event of interest involving Xn+2 given Xn+1.

Given that Xn+1 ∈ I ii∗ = (tii∗ , t
i
i∗+1), the rc-A(n+1) assumption partially specifies

the probability distribution for the second future observation Xn+2 by the condi-

tional M -functions denoted as MXn+2|Xn+1 . We present the conditional M -functions

for Xn+2 to be in the interval Ijj∗ = (tjj∗ , t
j
j∗+1), j = 0, 1, . . . , u + 1, j∗ = 1, 2, . . . , sj,

given that Xn+1 is in the interval I ii∗ = (tii∗ , t
i
i∗+1), by the following definition.

Definition 5.3.1 (conditional M -functions)

The conditional M -function partially specifies the probability distribution for the

second future observation Xn+2 given Xn+1 ∈ I ii∗ , i.e., xn+1 ∈ (tii∗ , t
i
i∗+1), for i =
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0, 1, . . . , u, i∗ = 1, 2, . . . , si, as follows

MXn+2|Xn+1∈Iii∗
(tjj∗ , t

j
j∗+1) = βjj∗+1MXn+2|Xn+1∈Iii∗

(xj, xj+1)

+

j∗∑
k=1

β
cjk
j∗−k+1MXn+2|Xn+1∈Iii∗

(cjk, xj+1) (5.13)

where  j∗ = 0 if tj0 = xj (failure time or time 0)

j∗ = 1, 2, . . . sj if tjj∗ = cjj∗ (right-censoring time)

for j = 0, 1, . . . , u + 1 and j∗ = 1, 2, . . . , sj, and for simplicity of notation let

tjsj+1 = tj+1
0 = xj+1. For convenience, MXn+2|Xn+1∈Iii∗

(tjj∗ , t
j
j∗+1) can be denoted

by MXn+2∈Ijj∗ |Xn+1∈Iii∗
, in order to be used later in Section 5.4.

Using the same logic as in Definition 2.4.4 ”rc-A(n) assumption” for Xn+1, the

MXn+2|Xn+1∈Iii∗
(xj, xj+1) andMXn+2|Xn+1∈Iii∗

(cjj∗ , xj+1) values, given in Equation (5.13),

are derived by applying A(n+1) for Xn+2, given Xn+1 ∈ I ii∗ based on the assumption

rc-A(n+1), as

MXn+2|Xn+1∈Iii∗
(xj, xj+1) =

1

n+ 2

∏
{r:cr<xj}

ñcr + 1

ñcr
(5.14)

MXn+2|Xn+1∈Iii∗
(cjj∗ , xj+1) =

1

(n+ 2)ñcj
j∗

∏
{r:cr<cjj∗}

ñcr + 1

ñcr
(5.15)

where ñcr represents the number of observations in the risk set (still functioning or

alive and uncensored) just before time cr. The product terms in Equations (5.14)

and (5.15) are assumed to be equal to one if the product is taken over an empty set

[32].

Using M -functions for Xn+1, based on Definition 5.2.1, leads to PXn+1(xi, xi+1)

stated in Equation (5.2). In the same way, when using conditional M -functions for

Xn+2|Xn+1, based on Definition 5.3.1, this will lead to PXn+2|Xn+1∈Iii∗(xj, xj+1) in

Equation (5.16). With βjj∗ ∈ [0, 1], β
cj
j∗

l ∈ [0, 1],
∑sj+1

j∗=1 β
j
j∗ = 1 and

∑sj−j∗+1
l=1 β

cj
j∗

l =

1, the conditional M -function values as specified by rc-A(n+1) in Definition 5.13 lead

to the conditional probability for the event that Xn+2 ∈ Ijj∗ , where j = 0, 1, . . . , u+1,

given Xn+1 ∈ I ii∗ , where i = 0, 1, . . . , u, denoted by PXn+2|Xn+1∈Iii∗
(xj, xj+1). The
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PXn+2|Xn+1∈Iii∗
(xj, xj+1) is calculated by summing up all conditional M -function val-

ues assigned to the interval Ij = (xj, xj+1) given Xn+1 ∈ I ii∗ , along with all con-

ditional M -function values assigned to the sub-intervals (cjj∗ , xj+1) for Xn+1, given

Xn+1 ∈ I ii∗ so that

PXn+2|Xn+1∈Iii∗(xj, xj+1) =

sj∑
j∗=0

MXn+2|Xn+1∈Iii∗
(tjj∗ , t

j
j∗+1)

=

sj∑
j∗=0

βjj∗+1MXn+2|Xn+1∈Iii∗
(xj, xj+1) +

sj∑
j∗=1

j∗∑
l=1

β
cjl
j∗−l+1MXn+2|Xn+1∈Iii∗

(cjl , xj+1)

= MXn+2|Xn+1∈Iii∗
(xj, xj+1) +

sj∑
l=1

sj−l+1∑
j∗=1

β
cjl
j∗MXn+2|Xn+1∈Iii∗

(cjl , xj+1)

= MXn+2|Xn+1∈Iii∗
(xj, xj+1) +

sj∑
l=1

MXn+2|Xn+1∈Iii∗
(cjl , xj+1) (5.16)

for i = 0, 1, . . . , u and j = 0, 1, . . . , u + 1. For convenience, PXn+2|Xn+1∈Ii(xj, xj+1),

stated in Equation (5.16), would be denoted by PXn+2∈Ii|Xn+1∈Ii in order to be used

later in Section 5.4.

The first term after the second equality in Equation (5.16) is the sum of all

conditional M -function values assigned to the interval (xj, xj+1), given Xn+1 ∈ I ii∗ ,

and as
∑sj+1

j∗=1 β
j
j∗ = 1, this first term is equal toMXn+2|Xn+1∈Iii∗(xj, xj+1). The second

term after the third equality in Equation (5.16) is the sum of all conditional M -

function values assigned to the sub-intervals (cjl , xj+1) of (xj, xj+1), given Xn+1 ∈ I ii∗ ,

and as
∑sj−j∗+1

l=1 β
cj
j∗

l = 1, for j = 0, 1, . . . , u + 1 and j∗ = 1, 2, . . . , sj, this second

term is equal to
∑sj

l=1MXn+2|Xn+1∈Iii∗
(cjl , xj+1). And let us define the following

QXn+2|Xn+1∈Iii∗
(tja, xj+1) =

sj∑
j∗=a

βjj∗+1MXn+2|Xn+1∈Iii∗
(xj, xj+1)

+

sj∑
j∗=a

j∗∑
l=1

β
cjl
j∗−l+1MXn+2|Xn+1∈Iii∗

(cjl , xj+1) (5.17)

where for a = 0, Equation (5.16) and (5.17) are equivalent.

The QXn+2|Xn+1∈Iii∗
(tja, xj+1), given by Equation (5.17), can be minimised or max-

imised in order to derive the NPI conditional lower and upper probabilities for the

event Xn+2 > t given Xn+1 > t. We sometimes denote the conditional probability

in Equation (5.17) by QXn+2∈Ija|Xn+1∈Iii∗
for convenience. Now, let us consider the
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second term of Equation (5.17), and by rearranging the summations, we have

sj∑
j∗=a

j∗∑
l=1

β
cjl
j∗−l+1MXn+2|Xn+1∈Iii∗

(cjl , xj+1) =
a−1∑
l=1

sj−l+1∑
j∗=a

β
cjl
j∗MXn+2|Xn+1∈Iii∗

(cjl , xj+1)

+

sj∑
l=a

sj−j+1∑
j∗=1

β
cjl
j∗MXn+2|Xn+1∈Iii∗

(cjl , xj+1)

(5.18)

The first term on the right-hand side of Equation (5.18) is related to the con-

ditional probability masses to the right of tja, corresponding to all cjl < tja. The

second term in Equation (5.18) is related to the conditional probability masses cor-

responding to all cjl ≥ tja, and as
∑sj−j+1

j∗=1 β
cjl
j∗ = 1, this second term is equal to∑sj

l=aMXn+2|Xn+1∈I∗ii∗(cjl , xj+1). So Equation (5.17) can be rewritten as

QXn+2|Xn+1∈Iii∗
(tja, xj+1) =

sj∑
j∗=a

βjj∗+1MXn+2|Xn+1∈Iii∗
(xj, xj+1)

+
a−1∑
l=1

sj−l+1∑
j∗=a

β
cjl
j∗MXn+2|Xn+1∈Iii∗

(cjl , xj+1)

+

sj∑
l=a

MXn+2|Xn+1∈Iii∗
(cjl , xj+1) (5.19)

If we want to find the values of βj’s and βc
j
l ’s that minimizeQXn+2|Xn+1∈Iii∗

(tja, xj+1),

as given in Equation (5.19), then this can be achieved by assigning all conditional

probability masses in (xj, xj+1) to the left of the tja, that is

sj∑
j∗=a

βjj∗+1 = 0 ,
a−1∑
j∗=0

βjj∗+1 = 1

and
a−1∑
j∗=1

β
cjl
j∗ = 1 ,

sj−l+1∑
j∗=a

β
cjl
j∗ = 0

thus, the minimum value of QXn+2|Xn+1∈Iii∗
(tja, xj+1) in Equation (5.19) is

Qmin
Xn+2|Xn+1∈Iii∗

(tja, xj+1) =

sj∑
l=a

MXn+2|Xn+1∈Ii(c
j
l , xj+1) (5.20)

If we want to find the values of βj’s and βc
j
l ’s that maximiseQXn+2|Xn+1∈Iii∗

(tja, xj+1),

stated in Equation (5.19), then this can be achieved by assigning all conditional
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probability masses in the interval (xj, xj+1) to the right of tja, that is

sj∑
j∗=a

βjj∗+1 = 1 ,
a−1∑
j∗=0

βjj∗+1 = 0

and
a−1∑
j∗=1

β
cjl
j∗ = 0 ,

sj−l+1∑
j∗=a

β
cjl
j∗ = 1

thus, the maximum value of QXn+2|Xn+1∈Iii∗
(tja, xj+1) in Equation (5.19) is

Qmax
Xn+2|Xn+1∈Iii∗

(tja, xj+1) = MXn+2|Xn+1∈Iii∗
(xj, xj+1) +

a−1∑
l=1

MXn+2|Xn+1∈Iii∗
(cjl , xj+1)

+

sj∑
l=a

MXn+2|Xn+1∈Iii∗
(cjl , xj+1)

= MXn+2|Xn+1∈Iii∗
(xj, xj+1) +

si∑
l=1

MXn+2|Xn+1∈Iii∗
(cjl , xj+1)

= PXn+2|Xn+1∈Iii∗
(xj, xj+1) (5.21)

The probabilities, given by Equations (5.20) and (5.21), could be also denoted

by Qmin
Xn+2∈Ija|Xn+1∈Iii∗

and Qmax
Xn+2∈Ija|Xn+1∈Iii∗

, respectively, for convenience in order to

be used later in Section 5.4.

Consequently, the NPI lower probability for the event Xn+2 > t given Xn+1 > t,

for t ∈ [tja, t
j
a+1) with j = 0, 1, . . . , u+1 and a = 0, 1, . . . , sj, is given by the following

equation

P (Xn+2 > t|Xn+1 > t) = Qmin
Xn+2|Xn+1∈Iii∗

(tja+1, xj+1) +
u+1∑
z=j+1

PXn+2|Xn+1∈Iii∗
(xz, xz+1)

=

si∑
l=a+1

MXn+2|Xn+1∈Iii∗
(cjl , xj+1) +

u+1∑
z=j+1

PXn+2|Xn+1∈Iii∗
(xz, xz+1)

(5.22)

The corresponding NPI upper probability for the event Xn+2 > t given Xn+1 > t,

for t ∈ [xj, xj+1) with j = 1, 2, . . . , u+1 and a = 0, 1, . . . , sj, is given by the following

equation

P (Xn+2 > t|Xn+1 > t) = Qmax
Xn+2|Xn+1∈Iii∗

(tja, xj+1) +
u+1∑
z=j+1

PXn+2|Xn+1∈Iii∗
(xz, xz+1)

=
u+1∑
z=j

PXn+2|Xn+1∈Iii∗
(xz, xz+1) (5.23)
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Note that using the α approach through minimising and maximising Equation

(5.5) is only considered to derive NPI lower and upper probabilities for the event

Xn+1 > t. And, using the β approach through minimising and maximising Equation

(5.19) will only be considered to derive NPI conditional lower and upper probabilities

for the event Xn+2 > t given Xn+1 > t. However, both the α and β approaches

through minimising and maximising Equations (5.5) and (5.19), respectively, must

be used together in order to derive NPI lower and upper probabilities for the event

Xn+1 > t and Xn+2 > t, which will be presented in Section 5.4.

Next, the method presented in this section is illustrated with an example using

the data set provided in Example 5.2.1.

Example 5.3.1 This example is provided to illustrate the rc-A(n+1) assumption for

Xn+2, based on the rc-A(n) assumption for Xn+1 [32], presented in Section 5.3. In

particular, it shows how to derive the NPI conditional lower and upper probabilities

for the event Xn+2 > t given Xn+1 > t.

We consider the data set used in Example 5.2.1, for which we have n = 4

observations, including one right-censored observation, as shown in Figure 5.1. Let

X5 and X6 denote the two future observations. In Example 5.2.1, the probability

distribution for X5 was partially specified by five M -function values associated with

five intervals generated by the 4 observations, using Definition 5.2.1 (see Figure 5.2).

Note that in Example 5.2.1, we applied rc-A(4) for X5 with considering where the

probability mass is for X5, and based on this we apply rc-A(5) for X6 in this example.

Given that X5 falls in those five intervals created by the n = 4 data observa-

tions, i.e., I0 = (0, x1), I1
1 = (x1, c

1
1), I1

2 = (c1
1, x2), I2 = (x2, x3) and I3 = (x3,∞),

respectively, so there are five cases of which X5 falls into these intervals. Then, we

consider X6 depending on X5 being in a specific interval. This enables the proba-

bility distribution for X6 to be partially specified by conditional M -function values

assigned to six intervals formed by the 5 observations including X5, using Definition

5.3.1 separately for each case.

As a result of applying Definition 5.3.1 with the assumption rc-A(5) given by

Equations (5.14) and (5.15), these conditional M -function values for X6 given X5 ∈
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Figure 5.3: The conditional probabilities for X6|X5, Example 5.4.1
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{I0, I1
1 , I

1
2 , I

2, I3}, can be obtained as follows (see Figure 5.3).

Case 1: Given X5 ∈ I0 = (0, x1), the conditional M -function values for X6|X5 ∈

I0, using Definition 5.3.1 with the assumption rc-A(5) given by Equations (5.14) and

(5.15), are shown in the first box of Figure 5.3.

Since there is no censored observation in intervals (0, x5), (x5, x1), (x2, x3) and

(x3,∞), respectively, the corresponding values β0
1 , β1

1 , β3
1 and β4

1 introduced to these

intervals are equal to one, i.e. β0
1 = β1

1 = β3
1 = β4

1 = 1, as discussed in Section 5.3.

For c2
1 ∈ (x1, x2) given X5 ∈ (0, x1), the conditional M -function value 1

6
that is

assigned to interval (x1, x2) will be split up, based on Definition 5.3.1, and assigned

to two sub-intervals with the M -function value 1
6
β2

1 assigned to the sub-interval

(x1, c
2
1) and the M -function value 1

6
β2

2 assigned to the sub-interval (c2
1, x2), where

both β2
1 and β2

2 take values between 0 and 1, and β2
1 + β2

2 = 1. Also, based on

Definition 5.3.1 and Equation (5.15), the M -function value 1
18
β
c21
1 is assigned to the

sub-interval (c2
1, x2), where β

c21
1 = 1. Thus, the conditional M -function values for the

event X6|X5 ∈ I0 are

MX6|X5∈I0(0, x5) =
1

6
(5.24)

MX6|X5∈I0(x5, x1) =
1

6
(5.25)

MX6|X5∈I0(x1, c
2
1) =

1

6
β2
1

MX6|X5∈I0(c21, x2) =
1

6
β2
2 +

1

18
β
c21
1

MX6|X5∈I0(x2, x3) =
1

6
+

1

18

MX6|X5∈I0(x3,∞) =
1

6
+

1

18

where the total conditional probability mass for X6 ∈ (0, x1) given X5 ∈ (0, x1),

given in Equations (5.24) and (5.25), is 1/6+1/6=2/6, see Case 1 in the first box

of Figure 5.3.

Based on these conditional M -function values, we can derive the conditional

probability for the event X6 ∈ (x1, x2) given X5 ∈ (0, x1), by summing the probabil-

ity masses assigned to the sub-intervals (x1, c
2
1) and (c2

1, x2), so PX6|X5∈I0(x1, x2) =

1
6
β2

1 + 1
6
β2

2 + 1
18
β
c21
1 = 1

6
(β2

1 +β2
2) + 1

18
β
c21
1 , and as discussed in Section 5.3, β2

1 +β2
2 = 1

and β
c21
1 = 1, so PX6|X5∈I0(x1, x2) = 1

6
+ 1

18
= 4

18
. Moreover, the conditional

probabilities for X6 to be in intervals (x2, x3) or (x3,∞), given X5 ∈ (0, x1), are

PX6|X5∈I0(x2, x3) = PX6|X5∈I0(x3,∞) = 1
6

+ 1
18

= 4
18

.
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Then from Case 1 in which X5 ∈ (0, x1), we now consider the event X6 > t

given X5 > t, where t ∈ (0, x1) (see the first box of Figure 5.3). By assigning all

conditional probability masses that must be within (t,∞), Equation (5.22) is used to

determine the NPI lower conditional probability for the event X6 > t given X5 > t,

where t ∈ (0, x1). Thus

P (X6 > t|X5 > t) = Qmin
X6|X5∈I0(0, x1) +

4∑
z=2

PX6|X5∈I0(xz, xz+1)

= MX6|X5∈I0(x5, x1) + PX6|X5∈I0(x1, x2) + PX6|X5∈I0(x2, x3)

+ PX6|X5∈I0(x3,∞)

=
1

6
+

4

18
+

4

18
+

4

18
=

5

6

where the value of Qmin
X6|X5∈I0(0, x1) is obtained by using Equation (5.20).

The NPI upper conditional probability for the event X6 > t given X5 > t, where

t ∈ (0, x1), is derived by assigning all conditional probability masses that could be

within (t,∞) using Equation (5.23). Thus

P (X6 > t|X5 > t) = Qmax
X6|X5∈I0(0, x1) +

4∑
z=2

PX6|X5∈I0(xj, xj+1)

= PX6|X5∈I0(0, x1) + PX6|X5∈I0(x1, x2) + PX6|X5∈I0(x2, x3)

+ PX6|X5∈I0(x3,∞)

=
2

6
+

4

18
+

4

18
+

4

18
= 1

where the value of Qmax
X6|X5∈I0(0, x1) is obtained by using Equation (5.21).

Case 2: Given X5 ∈ I1
1 = (x1, c

1
1), the conditional M -function values for X6|X5 ∈

I1
0 , using Definition 5.3.1 with the assumption rc-A(5) given by Equations (5.14) and

(5.15), are shown in the second box of Figure 5.3.

Due to the fact that no censoring is involved in intervals (0, x1), (x1, x5), (x2, x3)

and (x3,∞), respectively, the values β0
1 , β1

1 , β3
1 and β4

1 corresponding to these inter-

vals are equal to 1, as stated in Section 5.3.

By using Equation (5.14), based on the assumption rc-A(5), the conditional M -

function value for X6 ∈ (x1, x5)|X5 ∈ I1
1 is 1

6
. For c2

1 ∈ (x5, x2) given X5 ∈ I1
1 , the

conditional M -function value 1
6

that is assigned to interval (x5, x2) will be split up
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and assigned to two sub-intervals with the M -function value 1
6
β2

1 assigned to the

sub-interval (x5, c
2
1) as well as the M -function value 1

6
β2

2 assigned to the sub-interval

(c2
1, x2), where both β2

1 and β2
2 take values between 0 and 1, and β2

1 + β2
2 = 1. Also,

based on Definition 5.3.1 and Equation (5.15), the M -function value 1
18
β
c21
1 is assigned

to the sub-interval (c2
1, x2), where β

c21
1 = 1. Thus, the conditional M -function values

for the event X6|X5 ∈ I1
1 are

MX6|X5∈I1
1
(0, x1) =

1

6

MX6|X5∈I1
1
(x1, x5) =

1

6
(5.26)

MX6|X5∈I1
1
(x5, c

2
1) =

1

6
β2
1 (5.27)

MX6|X5∈I1
1
(c21, x2) =

1

6
β2
2 +

1

18
β
c21
1

MX6|X5∈I1
1
(x2, x3) =

1

6
+

1

18

MX6|X5∈I1
1
(x3,∞) =

1

6
+

1

18

where the total conditional probability mass for X6 ∈ (x1, c
1
1) given X5 ∈ (x1, c

1
1),

given in Equations (5.26) and (5.27), is 1/6 (1+β2
1), where β2

1 ∈ [0, 1], see Case 2 in

the second box of Figure 5.3.

From Case 2, where X5 ∈ I1
1 = (x1, c

1
1), we use Equation (5.22) to derive the NPI

conditional lower probability for the event X6 > t given X5 > t, where t ∈ (x1, c
1
1),

as

P (X6 > t|X5 > t) = Qmin
X6|X5∈I11

(x1, x2) +
4∑
z=3

PX6|X5∈I11 (xz, xz+1)

= MX6|X5∈I11 (x5, x2) + PX6|X5∈I11 (x2, x3) + PX6|X5∈I11 (x3,∞)

=
4

18
+

4

18
+

4

18
=

2

3

where the value of Qmin
X6|X5∈I11

(x1, x2) is obtained by using Equation (5.20), i.e.,

Qmin
X6|X5∈I11

(x1, x2) = 1
6
β2

1 + 1
6
β2

2 + 1
18
β
c21
1 = 1

6
(β2

1 + β2
2) + 1

18
β
c21
1 . And for β2

1 + β2
2 = 1

and β
c21
1 = 1, Qmin

X6|X5∈I11
(x1, x2) = 1

6
+ 1

18
= 4

18
.

The NPI upper conditional probability for the event X6 > t given X5 > t, where

t ∈ (x1, c
1
1), is derived by using Equation (5.23) as follows.

P (X6 > t|X5 > t) = Qmax
X6|X5∈I11

(x1, x2) +
4∑
z=3

PX6|X5∈I11 (xz, xz+1)

= PX6|X5∈I11 (x1, x2) + PX6|X5∈I11 (x2, x3) + PX6|X5∈I11 (x3,∞)

=
7

18
+

4

18
+

4

18
=

5

6



5.3. Lower and upper probabilities for Xn+2 > t given Xn+1 > t 104

where the value of Qmax
X6|X5∈I11

(x1, x2) is obtained by using Equation (5.21), i.e.,

Qmax
X6|X5∈I11

(x1, x2) = PX6|X5∈I11 (x1, x5) + PX6|X5∈I11 (x5, x2) = 1
6

+ 4
18

= 7
18

.

Case 3: Given X5 ∈ I1
2 = (c1

1, x2), the conditional M -function values for X6|X5 ∈

I1
2 , using Definition 5.3.1 with the assumption rc-A(5) given by Equations (5.14) and

(5.15), are shown in the third box of Figure 5.3.

The β0
1 , β2

1 , β3
1 and β4

1 values corresponding to the intervals (0, x1), (x5, x2),

(x2, x3) and (x3,∞), respectively, are equal to 1, since there no censoring is involved

in these intervals. For c1
1 ∈ (x1, x5) given X5 ∈ I1

2 , the conditional M -function

value 1
6

that is assigned to interval (x1, x5) will be split up and assigned to two sub-

intervals with the M -function value 1
6
β1

1 assigned to the sub-interval (x1, c
1
1) as well

as the M -function value 1
6
β1

2 assigned to the sub-interval (c1
1, x5), where both β1

1 and

β1
2 take values between 0 and 1, and β1

1 +β1
2 = 1. Also, based on Definition 5.3.1 and

Equation (5.15), the M -function value 1
24
βc

1
1 is assigned to the sub-interval (c1

1, x5),

where βc
1
1 = 1. Thus, the conditional M -function values for the event X6|X5 ∈ I1

2

are

MX6|X5∈I1
2
(0, x1) =

1

6

MX6|X5∈I1
2
(x1, c

1
1) =

1

6
β1
1

MX6|X5∈I1
2
(c11, x5) =

1

6
β1
2 +

1

24
β
c11
1 (5.28)

MX6|X5∈I1
2
(x5, x2) =

1

6
+

1

24
(5.29)

MX6|X5∈I1
2
(x2, x3) =

1

6
+

1

24

MX6|X5∈I1
2
(x3,∞) =

1

6
+

1

24

where the total conditional probability mass for X6 ∈ (c1
1, x2) given X5 ∈ (c1

1, x2),

given in Equations (5.28) and (5.29), is 1/6 (β1
2 +1/4 β

c11
1 + 5/4), where β1

2 ∈ [0, 1]

and β
c11
1 = 1, see Case 3 in the third box of Figure 5.3.

From Case 3, where X5 ∈ I1
2 = (c1

1, x2), we use Equation (5.22) to derive the NPI

lower conditional probability for the event X6 > t given X5 > t, where t ∈ (c1
1, x2),

as

P (X6 > t|X5 > t) = Qmin
X6|X5∈I12

(x1, x2) +
4∑
z=3

PX6|X5∈I12 (xz, xz+1)

= MX6|X5∈I12 (x5, x2) + PX6|X5∈I12 (x2, x3) + PX6|X5∈I12 (x3,∞)

=
5

24
+

5

24
+

5

24
=

5

8
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where the value of Qmin
X6|X5∈I12

(x1, x2) is obtained by using Equation (5.20), i.e.,

Qmin
X6|X5∈I12

(x1, x2) = 1
6

+ 1
24

= 5
24

.

The NPI upper conditional probability for the event X6 > t given X5 > t, where

t ∈ (c1
1, x2), is derived by using Equation (5.23) as follows.

P (X6 > t|X5 > t) = Qmax
X6|X5∈I12

(x1, x2) +
4∑
z=3

PX6|X5∈I12 (xz, xz+1)

= PX6|X5∈I12 (x1, x2) + PX6|X5∈I12 (x2, x3) + PX6|X5∈I12 (x3,∞)

=
10

24
+

5

24
+

5

24
=

5

6

where the value of Qmax
X6|X5∈I12

(x1, x2) is obtained by using Equation (5.21), i.e.,

Qmax
X6|X5∈I12

(x1, x2) = PX6|X5∈I12 (x1, x5) + PX6|X5∈I12 (x5, x2) = 5
24

+ 5
24

= 10
24

.

Case 4: Given X5 ∈ I2 = (x2, x3), the conditional M -function values for X6|X5 ∈

I2, using Definition 5.3.1 with the assumption rc-A(5) given by Equations (5.14) and

(5.15), are shown in the fourth box of Figure 5.3.

The β0
1 , β2

1 , β3
1 and β4

1 values corresponding to the intervals (0, x1), (x2, x5),

(x5, x3) and (x3,∞), respectively, are equal to 1, since there no censoring is involved

in these intervals. For c1
1 ∈ (x1, x2) given X5 ∈ I2, the conditional M -function

value 1
6

that is assigned to interval (x1, x2) will be split up and assigned to two sub-

intervals with the M -function value 1
6
β1

1 assigned to the sub-interval (x1, c
1
1) as well

as the M -function value 1
6
β1

2 assigned to the sub-interval (c1
1, x2), where both β1

1 and

β1
2 take values between 0 and 1, and β1

1 +β1
2 = 1. Also, based on Definition 5.3.1 and

Equation (5.15), the M -function value 1
24
βc

1
1 is assigned to the sub-interval (c1

1, x2),

where βc
1
1 = 1. Thus, the conditional M -function values for the event X6|X5 ∈ I2

are

MX6|X5∈I2(0, x1) =
1

6

MX6|X5∈I2(x1, c
1
1) =

1

6
β1
1

MX6|X5∈I2(c11, x2) =
1

6
β1
2 +

1

24
β
c11
1

MX6|X5∈I2(x2, x5) =
1

6
+

1

24
(5.30)

MX6X5∈I2(x5, x3) =
1

6
+

1

24
(5.31)

MX6|X5∈I2(x3,∞) =
1

6
+

1

24

where the total conditional probability mass for X6 ∈ (x2, x3) given X5 ∈ (x2, x3),
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given in Equations (5.30) and (5.31), is 5/24+5/24=10/24, see Case 4 in the fourth

box of Figure 5.3.

From Case 4, where X5 ∈ I2 = (x2, x3), we use Equation (5.22) to derive the NPI

lower conditional probability for the event X6 > t given X5 > t, where t ∈ (x2, x3),

as

P (X6 > t|X5 > t) = Qmin
X6|X5∈I2(x2, x3) +

4∑
z=4

PX6|X5∈I2(xz, xz+1)

= MX6|X5∈I2(x5, x3) + PX6|X5∈I2(x3,∞)

=
5

24
+

5

24
=

5

12

where the value of Qmin
X6|X5∈I2(x2, x3) is obtained by using Equation (5.20), i.e.,

Qmin
X6|X5∈I2(x2, x3) = 1

6
+ 1

24
= 5

24
.

The NPI upper conditional probability for the event X6 > t given X5 > t, where

t ∈ (x2, x3), is derived by using Equation (5.23), as follows.

P (X6 > t|X5 > t) = Qmax
X6|X5∈I2(x2, x3) +

4∑
z=4

PX6|X5∈I2(xz, xz+1)

= PX6|X5∈I2(x2, x5) + PX6|X5∈I2(x5, x3) + PX6|X5∈I2(x3,∞)

=
5

24
+

5

24
+

5

24
=

5

8

where the value of Qmax
X6|X5∈I2(x2, x3) is obtained by using Equation (5.21), i.e.,

Qmax
X6|X5∈I2(x2, x3) = PX6|X5∈I2(x2, x5) + PX6|X5∈I2(x5, x3) = 5

24
+ 5

24
= 10

24
.

Case 5: Given X5 ∈ I3 = (x3,∞), the conditional M -function values for X6|X5 ∈

I3, using Definition 5.3.1 with the assumption rc-A(4+1) given by Equations (5.14)

and (5.15), are shown in the fifth box of Figure 5.3.

The β0
1 , β2

1 , β3
1 and β4

1 values corresponding to the intervals (0, x1), (x2, x3),

(x3, x5) and (x5,∞), respectively, are equal to 1, since there no censoring is involved

in these intervals. For c1
1 ∈ (x1, x2) given X5 ∈ I3, the conditional M -function

value 1
6

that is assigned to interval (x1, x2) will be split up and assigned to two

sub-intervals with the M -function value 1
6
β1

1 assigned to the sub-interval (x1, c
1
1) as

well as the M -function value 1
6
β1

2 assigned to the sub-interval (c1
1, x2), where both

β1
1 and β1

2 take values between 0 and 1, and β1
1 + β1

2 = 1. Also, based on Definition

5.3.1 and Equation (5.15), the M -function value for X6, 1
24
βc

1
1 , is assigned to the
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t ∈ (.) P (X6 > t|X5 > t) P (X6 > t|X5 > t)

(0, x1) 5
6

1

(x1, c
1
1) 2

3
5
6

(c1
1, x2) 5

8
5
6

(x2, x3) 5
12

5
8

(x3,∞) 5
24

5
12

Table 5.2: Lower and upper conditional probabilities for the event (X6 > t|X5 > t).

sub-interval (c1
1, x2), where βc

1
1 = 1. Thus, the conditional M -function values for the

event X6|X5 ∈ I3 are

MX6|X5∈I3(0, x1) =
1

6

MX6|X5∈I3(x1, c
1
1) =

1

6
β1
1

MX6|X5∈I3(c11, x2) =
1

6
β1
2 +

1

24
β
c11
1

MX6|X5∈I3(x2, x3) =
1

6
+

1

24

MX6|X5∈I3(x3, x5) =
1

6
+

1

24
(5.32)

MX6|X5∈I3(x5,∞) =
1

6
+

1

24
(5.33)

where the total conditional probability mass for X6 ∈ (x3,∞) given X5 ∈ (x3,∞),

given in Equations (5.32) and (5.33), is 5/24+5/24=10/24, see Case 5 in the fifth

box of Figure 5.3.

From Case 5, where X5 ∈ I3 = (x3,∞), we use Equation (5.22) to derive the NPI

lower conditional probability for the event X6 > t given X5 > t, where t ∈ (x3,∞),

as

P (X6 > t|X5 > t) = Qmin
X6|X5∈I3(x3,∞) = MX6|X5∈I3(x5,∞) =

5

24

where the value of Qmin
X6|X5∈I2(x2, x3) is obtained by using Equation (5.20).

The NPI upper conditional probability for the event X6 > t given X5 > t, where
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t ∈ (x3,∞), is derived by using Equation (5.23), as follows.

P (X6 > t|X5 > t) = Qmax
X6|X5∈I3(x3,∞) = PX6|X5∈I3(x3, x5) + PX6|X5∈I3(x5,∞)

=
5

24
+

5

24
=

5

12

where the value of Qmax
X6|X5∈I3(x2, x3) is obtained by using Equation (5.21). Therefore,

the NPI lower and upper conditional probabilities for the event that X6 > t given

X5 > t, are given in Table 5.2.

The values of the NPI lower and upper probabilities at observations are easily

derived from Table 5.2, using the fact that the lower probability is continuous from

the left at all observations, given by Equation (5.22), and the upper probability is

continuous from the right at event times, given by Equation (5.23). An effect of con-

ditioning on the second future observation X5 to be in the final interval (x3,∞), the

NPI lower probability for X6 ∈ (x3,∞) is positive which is given by the M -function

value 5
24

that assigned to the sub-interval (x5,∞).

In the next section, we present NPI lower and upper probabilities for the event

Xn+1 > t and Xn+2 > t, based on the results presented in Sections 5.2 and 5.3.

5.4 Lower and upper probabilities for Xn+1 > t,

Xn+2 > t

This section derives the NPI lower and upper probabilities for the event that both

future observations Xn+1 and Xn+2 are greater than time t > 0 [49]. The notation

used in this section follow those introduced in Sections 5.2 and 5.3. Let I ii∗ =

(tii∗ , t
i
i∗+1) be an interval created by the n data observations, i = 0, 1, 2, . . . , u and

i∗ = 1, 2, . . . , si, that is we have n + 1 intervals created by the data, and let I i =

(xi, xi+1) be the ith interval created by two consecutive failures and I ia = (tia, xi+1),

i = 0, 1, . . . , u and a = 0, 1, . . . , si. Furthermore, let MXn+1∈Ijj∗
be the M -function

values for Xn+1, based on the assumption rc-A(n) [32], as defined in Definition 5.2.1,

where j = 0, 1, . . . , u and j∗ = 1, 2, . . . , sj. Let PXn+1∈Ij be the probabilities for

Xn+1 to belong to the intervals Ij = (xj, xj+1) as given by Equation (5.2). Let
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MXn+2∈Ikk∗ |Xn+1∈Ijj∗
be the conditional M -function values for Xn+2 ∈ Ik = (xk, xk+1),

k = 0, 1, . . . , u, k∗ = 1, 2, . . . , sk, based on the assumption rc-A(n+1), as defined in

Definition 5.3.1. Let PXn+2∈Ik|Xn+1∈Ij be the conditional probabilities for the event

{Xn+2 ∈ Ik|Xn+1 ∈ Ij}, as given by Equation (5.16).

Using the results in Sections 5.2 and 5.3, the derivation of the NPI lower and

upper probabilities for the joint event Xn+1 > t and Xn+2 > t, for all t > 0, is

presented as follows.

First, we derive the NPI upper probability for the event that Xn+1 > t and

Xn+2 > t, for t ∈ [xi, xi+1), i = 0, 1, . . . , u.

Theorem 5.4.1 The NPI upper probability is derived by summing all probability

masses that can be to the right of t. This means all M -function values assigned to

intervals Ikk∗ , I
j
j∗ ∈ {I ia, . . . , I isi , I

i+1
0 , . . . , I i+1

si+1
, . . . , Iusu} will lead to the following NPI

upper probability

P (Xn+1 > t,Xn+2 > t) =
u∑
j=i

u∑
k=i

PXn+2∈Ik|Xn+1∈IjPXn+1∈Ij (5.34)

Proof: There are four terms of summations that, when added together, lead to

derive the NPI upper probability for the event Xn+1 > t and Xn+2 > t. We refer

to these terms as J1, J2, J3, and J4, stated in Equations (5.35), (5.36), (5.37), and

(5.38), respectively, which are illustrated in detail below.

First, we sum over Ikk∗ ∈ {I i+1
0 , . . . , I i+1

si+1
, . . . , Iusu} and Ijj∗ ∈ {I i+1

0 , . . . , I i+1
si+1

, . . . , Iusu},

which is equivalent to summing over the intervals Ik and Ij for k, j ∈ {i+ 1, . . . , u}.

This will lead to constant probabilities using Equations (5.2) and (5.16), respec-

tively, so these probabilities are not functions of the α’s or β’s, so no optimisation
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is required here. We can write these summations terms as

J1 =
u∑

j=i+1

u∑
k=i+1

sj∑
j∗=0

sk∑
k∗=0

MXn+2∈Ikk∗ |Xn+1∈Ijj∗
MXn+1∈Ijj∗

=
u∑

j=i+1

u∑
k=i+1

[
sj∑

j∗=0

MXn+1∈Ijj∗

][
sk∑

k∗=0

MXn+2∈Ikk∗ |Xn+1∈Ijj∗

]

=
u∑

j=i+1

u∑
k=i+1

PXn+2∈Ik|Xn+1∈IjPXn+1∈Ij (5.35)

where summing all M -function values for Xn+1 ∈ Ijj∗ as well as summing up all

conditional M -function values for Xn+2 ∈ Ikk∗|Xn+1 ∈ Ijj∗ , in the second equality,

lead to the probabilities for the event Xn+1 ∈ Ij, as well as to the conditional

probability masses for the event Xn+1 ∈ Ij|Xn+1 ∈ Ij, for j = i + 1, . . . , u and

k = i + 1, . . . , u, as in the third equality. Thus, we have advanced from the second

equality to the third equality by using Equations (5.2) and (5.16), respectively.

Secondly, we sum over Ikk∗ ∈ {I ia, . . . , I isi} and Ijj∗ ∈ {I i+1
0 , . . . , I i+1

si+1
, . . . , Iusu},

which will lead to a function of the β’s only, so we need to maximise this function.

This leads to

J2 =
u∑

j=i+1

sj∑
j∗=0

si∑
k∗=a

MXn+2∈Ikk∗ |Xn+1∈Ijj∗
MXn+1∈Ijj∗

=
u∑

j=i+1

sj∑
j∗=0

MXn+1∈Ijj∗

si∑
k∗=a

MXn+2∈Ikk∗ |Xn+1∈Ijj∗

=
u∑

j=i+1

Qmax
Xn+2∈Iia|Xn+1∈IjPXn+1∈Ij

=
u∑

j=i+1

PXn+2∈Ii|Xn+1∈IjPXn+1∈Ij (5.36)

where in the third equality, the function Qmax
Xn+2∈Iia|Xn+1∈Ijj∗

is considered to maximise

the conditional probability mass for Xn+2 ∈ I ia = (tia, xi+1) given Xn+1 ∈ Ijj∗ , where

j = i + 1, . . . , u, by assigning all conditional M -function values within the interval

I i = (xi, xi+1) to the right of tia. This leads to the conditional probability mass for

the event Xn+2 ∈ I i given Xn+1 ∈ Ij, where I i = (xi, xi+1) and j = i + 1, . . . , u.

Then, we are able to move from the third equality to the fourth equality via the

product of the conditional probability PXn+2∈Ii|Xn+1∈Ij and the probability mass for

the event that Xn+1 ∈ Ij, where I i = (xi, xi+1), Ij = (xj, xj+1) and j = i+ 1, . . . , u.
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The function Qmax
Xn+2∈Iia|Xn+1∈Ijj∗

, which is a function of the β’s only, is maximised by

using Equation (5.21).

Thirdly, we sum over Ikk∗ ∈ {I i+1
0 , . . . , I i+1

si+1
, . . . , Iusu} and Ijj∗ ∈ {I ia, . . . , I isi}, which

will lead to a function of the α’s only, so we need to maximise this function. This

leads to

J3 =
u∑

k=i+1

si∑
j∗=a

si∑
k∗=0

MXn+2∈Ikk∗ |Xn+1∈Iij∗
MXn+1∈Iij∗

=
u∑

k=i+1

si∑
j∗=a

PXn+2∈Ik|Xn+1∈Iij∗
MXn+1∈Iij∗

=
u∑

k=i+1

PXn+2∈Ik|Xn+1∈Iij∗
Qmax
Xn+1∈Iia

=
u∑

k=i+1

PXn+2∈Ik|Xn+1∈IiPXn+1∈Ii (5.37)

where in the third equality, the function Qmax
Xn+1∈Iia

is considered to maximise the

probability mass for Xn+1 ∈ Ija = (tja, xj+1), by assigning all M -function values

within the interval Ij = (xj, xj+1) to the right of tia, using Equation (5.7). This

leads to the probability mass for the event Xn+1 ∈ I i = (xi, xi+1). This has advanced

from the third equality to the fourth equality through the product of the conditional

probabilities for the event that Xn+2 ∈ Ik|Xn+1 ∈ I i, and the probability mass for

the event that Xn+1 ∈ I i, where k = i+ 1, . . . , u.

Finally, we sum over Ikk∗ ∈ {I ia, . . . , I isi} and Ijj∗ ∈ {I ia, . . . , I isi}, which will lead

to functions of the α’s and β’s, so we need to maximise both functions. This leads

to

J4 =

si∑
j∗=a

si∑
k∗=a

MXn+2∈Iik∗ |Xn+1∈Iij∗
M(Xn+1 ∈ I ij∗)

= Qmax
Xn+2∈Iia|Xn+1∈Iij∗

Qmax
Xn+1∈Iia

= PXn+2∈Ii|Xn+1∈IiPXn+1∈Ii (5.38)

where in the second equality, the function Qmax
Xn+1∈Iia

is considered to maximise the

probability mass for Xn+1 ∈ I ia = (tia, xi+1), by assigning all M -function values

within the interval Ij = (xj, xj+1) to the right of tia, using Equation (5.7), which leads

to the probability mass PXn+1∈Ii . Also, the function Qmax
Xn+2∈Iia|Xn+1∈Iij∗

is considered
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to maximise the conditional probability mass forXn+2 ∈ I ia = (tia, xi+1) givenXn+1 ∈

I ij∗ , where j∗ = 1, . . . , sj, by assigning all conditional M -function values within the

interval I i = (xi, xi+1) to the right of tia, using Equation (5.21), which leads to the

conditional probability mass PXn+2∈Ii|Xn+1∈Ii .

As a result, the NPI upper probability for the event that Xn+1 > t and Xn+2 > t,

for t ∈ [xi, xi+1), i = 0, 1, . . . , u, and for all t > 0, is obtained by summing the values

of J1, . . . , J4, i. e. P (Xn+1 > t,Xn+2 > t) = J1 + J2 + J3 + J4. Thus, the proof is

complete.

2

Next, we derive the NPI lower probability for the event that Xn+1 > t and

Xn+2 > t, for t ∈ [tia, t
i
a+1), i = 0, 1, . . . , u and a = 0, 1, . . . , si.

Theorem 5.4.2 This NPI lower probability is derived by summing all probability

masses that must be assigned to the right of tia+1. This means all M -function values

assigned to intervals Ikk∗ , I
j
j∗ ∈ {I ia+1, . . . , I

i
si
, I i+1

0 , . . . , I i+1
si+1

, . . . , Iusu}. This leads to

P (Xn+1 > t,Xn+2 > t) =
u∑
j=i

sj∑
j∗=a+1

u∑
k=i

sk∑
k∗=a+1

MXn+2∈Ikk∗ |Xn+1∈Ijj∗
MXn+1∈Ijj∗

(5.39)

where we must start from a + 1; that is, we start from the first right-censored

observation up to si within the interval I i.

Proof: There are four terms of summations that, when added together, lead to

derive the NPI lower probability for the event Xn+1 > t and Xn+2 > t. We refer to

these terms as K1, K2, K3, and K4, stated in Equations (5.40), (5.41), (5.42), and

(5.43), respectively, which are illustrated in detail below.

First, similar to the summations in the derivation of the NPI upper probability

for this event, given in Equation (5.35), we sum over Ikk∗ ∈ {I i+1
0 , . . . , I i+1

si+1
, . . . , Iusu}

and Ijj∗ ∈ {I i+1
0 , . . . , I i+1

si+1
, . . . , Iusu}, which will lead to constant probabilities using

Equations (5.2) and (5.16), respectively, so these probabilities are not functions of

the α’s or β’s, so no optimisation is required here. We can write these summations
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terms as

K1 = J1 =
u∑

j=i+1

u∑
k=i+1

PXn+2∈Ik|Xn+1∈IjPXn+1∈Ij (5.40)

Secondly, we sum over Ikk∗ ∈ {I ia+1, . . . , I
i
si
} and Ijj∗ ∈ {I i+1

0 , . . . , I i+1
si+1

, . . . , Iusu},

which will lead to a function of the β’s only, so we need to minimise this function.

This leads to

K2 =
u∑

j=i+1

sj∑
j∗=0

si∑
k∗=a+1

MXn+2∈Iik∗ |Xn+1∈Ijj∗
MXn+1∈Ijj∗

=
u∑

j=i+1

sj∑
j∗=0

MXn+1∈Ijj∗

si∑
k∗=a+1

MXn+2∈Iik∗ |Xn+1∈Ijj∗

=
u∑

j=i+1

sj∑
j∗=0

MXn+1∈Ijj∗
Qmin
Xn+2∈Iia|Xn+1∈Ijj∗

=
u∑

j=i+1

Qmin
Xn+2∈Iia|Xn+1∈IjPXn+1∈Ij (5.41)

where in the third equality, the function Qmin
Xn+2∈Iia|Xn+1∈Ijj∗

is considered to minimise

the conditional probability mass for Xn+2 ∈ I ia = (tia, xi+1) given Xn+1 ∈ Ijj∗ , where

j = i + 1, . . . , u, by assigning all conditional M -function values within the interval

I i = (xi, xi+1) to the left of tia. This leads to the conditional probability mass

Qmin
Xn+2∈Iia|Xn+1∈Ij ; that is we sum all the conditional probability mass for the event

Xn+2 ∈ (cii∗ , xi+1) given Xn+1 ∈ Ij, where i = 0, 1, 2, . . . , u, i∗ = 1, 2, . . . , si and

j = i + 1, . . . , u. Then, we are able to move from the third equality to the fourth

equality via the product of the conditional probability Qmin
Xn+2∈Iia|Xn+1∈Ij , and the

probability masses for the event that Xn+1 ∈ Ij. The function Qmin
Xn+2∈Iia|Xn+1∈Ijj∗

,

which is a function of the β’s only, is minimised by using Equation (5.20).

Thirdly, we sum over Ikk∗ ∈ {I i+1
0 , . . . , I i+1

si+1
, . . . , Iusu} and Ijj∗ ∈ {I ia+1, . . . , I

i
si
},

which will lead to a function of the α’s only, so we need to minimise this function.
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This leads to

K3 =
u∑

k=i+1

si∑
j∗=a+1

sk∑
k∗=0

MXn+2∈Ikk∗ |Xn+1∈Iij∗
MXn+1∈Iij∗

=
u∑

k=i+1

si∑
j∗=a+1

PXn+2∈Ik|Xn+1∈Iij∗
MXn+1∈Iij∗

=
u∑

k=i+1

PXn+2∈Ik|Xn+1∈IiaQ
min
Xn+1∈Iia (5.42)

where in the third equality, the function Qmin
Xn+1∈Iia

is considered to minimise the

probability mass for Xn+1 ∈ I ia = (tia, xi+1), by assigning all M -function values

within the interval Ij = (xj, xj+1) to the left of tia. This leads to the probability

mass for the event Xn+1 ∈ (cii∗ , xi+1), using Equation (5.6). This enables us to obtain

the product of the conditional probabilities for the event that Xn+2 ∈ Ik|Xn+1 ∈ I ia,

and the probability mass Qmin
Xn+1∈Iia

, where k = i+ 1, . . . , u and I ia = (tia, xi+1).

Finally, we sum over Ikk∗ ∈ {I ia+1, . . . , I
i
si
} and Ijj∗ ∈ {I ia+1, . . . , I

i
si
}, which will

lead to functions of the α’s and β’s, so we need to minimise both functions. This

leads to

K4 =

si∑
j∗=a+1

si∑
k∗=a+1

MXn+2∈Iik∗ |Xn+1∈Iij∗
MXn+1∈Iij∗

= Qmin
Xn+2∈Iia|Xn+1∈IiaQ

min
Xn+1∈Iia (5.43)

where in the second equality, the function Qmin
Xn+1∈Iia

is considered to minimise the

probability mass for Xn+1 ∈ I ia = (tia, xi+1), by assigning all M -function values

within the interval I i = (xi, xi+1) to the left of tia, using Equation (5.6). Also, the

function Qmin
Xn+2∈Iia|Xn+1∈Iia

is considered to minimise the conditional probability mass

for Xn+2 ∈ I ia = (tia, xi+1) given Xn+1 ∈ I ia, by assigning all conditional M -function

values within the interval I i = (xi, xi+1) to the left of tia, using Equation (5.20).

As a result, the NPI lower probability for the event that Xn+1 > t and Xn+2 > t,

for t ∈ [tia, t
i
a+1), i = 0, 1, . . . , u and a = 0, 1, . . . , si, and for all t > 0, is obtained by

summing the values ofK1, . . . , K4, i. e. P (Xn+1 > t,Xn+2 > t) = K1+K2+K3+K4.

Thus, the proof is complete.

2



5.4. Lower and upper probabilities for Xn+1 > t, Xn+2 > t 115

X6 ∈ I0 = (0, x1) X6 ∈ I1
1 = (x1, c

1
1) X6 ∈ I1

2 = (c1
1, x2) X6 ∈ I2 = (x2, x3) X6 ∈ I3 = (x3,∞) Total

X5 ∈ I0 = (0, x1) 2 · 1
30

1
30
β2

1
1
30

(β2
2 + 1

3
) 1

30
· 4

3
1
30
· 4

3
1
5

X5 ∈ I1
1 = (x1, c

1
1) 1

30
α1

1
1
30
α1

1(1 + β2
1) 1

30
α1

1(β2
2 + 1

3
) 1

30
· 4

3
α1

1
1
30
· 4

3
α1

1
1
5
α1

1

X5 ∈ I1
2 = (c1

1, x2) 1
30

(α1
2 + 1

3
) 1

30
β1

1(α1
2 + 1

3
) 1

30
(α1

2 + 1
3
)(β1

2 + 3
2
) 1

30
(α1

2 + 1
3
)(5

4
) 1

30
(α1

2 + 1
3
)(5

4
) 1

5
α1

2 + 1
15

X5 ∈ I2 = (x2, x3) 1
30
· 4

3
1
30
· 4

3
β1

1
1
30
· 4

3
(β1

2 + 1
4
) 1

30
· 10

3
1
30
· 5

3
4
15

X5 ∈ I3 = (x3,∞) 1
30
· 4

3
1
30
· 4

3
β1

1
1
30
· 4

3
(β1

2 + 1
4
) 1

30
· 5

3
1
30
· 10

3
4
15

Table 5.3: Joint probability of X5 and X6, according to Example 5.4.1

The following example illustrates the NPI lower and upper probabilities for the

events X5 > t and X6 > t, in particular it shows the steps leading to these lower

and upper probabilities in Theorems 5.4.1 and 5.4.2.

Example 5.4.1 Consider again the data set used in Examples 5.2.1 and 5.3.1,

for which we have n = 4 observations, including one right-censored observation.

Based on the probability masses for X5, presented in Figure 5.2, and the conditional

probability masses for X6|X5, in Figure 5.3, the joint probability masses for X5

and X6 are given in Table 5.3. Note that from Examples 5.2.1 and 5.3.1, α
c11
1 = 1,

β
c21
1 = 1, and β

c11
1 = 1.

From Table 5.3, the upper probability for the event that X5 > t and X6 > t

when t ∈ (c1
1, x2) can be calculated by summing all probabilities represented by

blue cells as well as maximising all probability masses represented by green, purple,

and red cells. We refer to these summations terms as J1, J2, J3, and J4, as given

by Equations (5.35), (5.36), (5.37) and (5.38), respectively. These summations are

illustrated in detail below.

Considering t ∈ (c1
1, x2), we first sum over I2 and I3, respectively, where X6

is in intervals I2, I3 given X5 is in these intervals I2, I3, respectively. This will

lead to constant probabilities which are represented by the blue cells in Table 5.3,

which is not a function of the α’s or β’s, so no optimisation is required here. These
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summations are derived by using Equation (5.35), as

J1 = PX6∈I2|X5∈I2PX5∈I2 + PX6∈I2|X5∈I3PX5∈I3 + PX6∈I3|X5∈I2PX5∈I2

+ PX6∈I3|X5∈I3PX5∈I3

=
1

9
+

1

18
+

1

18
+

1

9
=

1

3
.

By using Equation (5.36), we sum over the case where X6 is in interval I1
2 =

(c1
1, x2), given X5 is in intervals I2 and I3, respectively, represented by the red cells

in Table 5.3. This will lead to a function of the β’s only, so we need to maximise

this function. This leads to

J2 = Qmax
X6∈I12 |X5∈I2PX5∈I2 +Qmax

X6∈I12 |X5∈I3PX5∈I3

=
2

45
(β1

2 +
1

4
) +

2

45
(β1

2 +
1

4
) =

2

45
(2β1

2 +
1

2
)

Here, by using Equation (5.21), the function QX6∈I12 |X5∈Ii = 2β1
2 + 1

2
, for i = 2, 3,

which is a function of the β’s only, is maximised by assigning all conditional M -

function values within the interval I1 = (x1, x2) to the right of c1
1. This is achieved

when β1
2 = 1, so β1

1 = 0 and Qmax
X6∈I12 |X5∈Ii = 2+ 1

2
= 5

2
. Consequently, J2 = 5

2
× 2

45
= 1

9
.

Using Equation (5.37), we sum over the case where X6 is in intervals I2 and I3,

given X5 is in interval I1
2 = (c1

1, x2), respectively, represented by the purple cells in

Table 5.3. This will lead to a function of the α’s only, so we need to maximise this

function. This leads to

J3 = PX6∈I2|X5∈I12Q
max
X5∈I12

+ PX6∈I3|X5∈I12Q
max
X5∈I12

=
1

24
(α1

2 +
1

3
) +

1

24
(α1

2 +
1

3
) =

1

24
(2α1

2 +
2

3
)

Here, the functionQX5∈I12 = 2α1
2+ 2

3
, which is a function of the α’s only, is maximised,

using Equation (5.7), when α1
2 = 1, so α1

2 = 0 and Qmax
X5∈I12

= 2+ 2
3

= 8
3
. Consequently,

J3 = 1
24
× 8

3
= 1

9
.

Finally, by using Equation (5.38), we sum over the case where X6 given X5 are

both in the interval I1
2 = (c1

1, x2), represented by the green cells in Table 5.3. This

will lead to functions of the α’s and β’s, so we need to maximise both functions.
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This leads to

J4 = Qmax
X6∈I12 |X5∈I12

Qmax
X5∈I12

=
1

30
(β1

2 +
3

2
)(α1

2 +
1

3
)

By using Equation (5.7), the function QX5∈I12 = α1
2 + 1

3
is maximised when α1

2 = 1,

so α1
1 = 0 and Qmax

X5∈I12
= 1 + 1

3
= 4

3
. And the function QX6∈I12 |X5∈I12 = β1

2 + 3
2

is

maximised, using Equation (5.21), by assigning all conditional M -function values

within the interval I1 = (x1, x2) to the right of c1
1, i.e., when β1

2 = 1, so β1
1 = 0 and

Qmax
X6∈I12 |X5∈I12

= 1 + 3
2

= 5
2
. Consequently, J4 = 1

30
× 5

2
× 4

3
= 1

9
.

As a result, the NPI upper probability for the events X5 > t and X6 > t, for

t ∈ (c1
1, x2), is obtained by summing J1 +J2 +J3 +J4, that is 1/3+1/9+1/9+1/9 =

2/3. Thus, the NPI upper probability for the events X5 > t and X6 > t, where

t ∈ (c1
1, x2), is P (X5 > t,X6 > t) = 2

3
(see Table 5.4). The NPI upper probabilities

for the events X5 > t and X6 > t, for t in other intervals are given in Table 5.4,

these have all been derived similarly using corresponding values of J1, . . . , J4.

The NPI lower probability for the event that X5 > t and X6 > t when t ∈ (x1, c
1
1)

can be calculated by summing all probabilities represented by blue cells as well as

minimising all probability masses represented by green, purple, and red cells of the

Table 5.3. We refer to these summations terms as K1, K2, K3 and K4, as given

by Equations (5.40), (5.41), (5.42) and (5.43), respectively. These summations are

illustrated in detail below.

First, and similar to the summation of the upper case which was represented

by Equation (5.35), we sum over I2 and I3, respectively, where X6 is in intervals

I2, I3 given X5 is in these intervals I2, I3, respectively. This will lead to constant

probabilities which are represented by the blue cells in Table 5.3, which is not a

function of the α’s or β’s, so no optimisation is required here. These summations

are derived by using Equation (5.40), that is K1 = J1 = 1/3.

By using Equation (5.41), we sum over the case where X6 is in interval I1
2 , given

X5 is in intervals I2 and I3, respectively, represented by the red cells in Table 5.3.

This will lead to a function of the β’s only, so we need to minimise this function.
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t ∈ (.) P (X5 > t,X6 > t) P (X5 > t,X6 > t)

(0, x1) 2
3

1

(x1, c
1
1) 2

5
2
3

(c1
1, x2) 1

3
2
3

(x2, x3) 1
9

1
3

(x3,∞) 0 1
9

Table 5.4: NPI lower and upper probabilities for the event (X5 > t,X6 > t), Example

5.4.1.

This leads to

K2 = Qmin
X6∈I12 |X5∈I2PX5∈I2 +Qmin

X6∈I12 |X5∈I3PX5∈I3

=
2

45
(2β1

2 +
1

2
)

Here, by using Equation (5.20), the function QX6∈I12 |X5∈I2 = 2β1
2 + 1

2
, for i = 2, 3,

which is a function of the β’s only, is minimised by assigning all conditional M -

function values within the interval I1 = (x1, x2) to the left of c1
1. This is achieved

when β1
2 = 0, so β1

1 = 1 and Qmin
X6∈I12 |X5∈I2 = 1

2
. Consequently, K2 = 2

45
× 1

2
= 1

45
.

Using Equation (5.42), we sum over the case where X6 is in intervals I2 and I2,

given X5 is in interval I1
2 , respectively, represented by the purple cells in Table 5.3.

This will lead to a function of the α’s only, so we need to minimise this function.

This leads to

K3 = PX6∈I2|X5∈I12Q
min
X5∈I12

+ PX6∈I3|X5∈I12Q
min
X5∈I12

=
1

24
(2α1

2 +
2

3
)

Here, the function QX5∈I12 = 2α1
2+ 2

3
, which is a function of the α’s only, is minimised,

using Equation (5.6), when α1
2 = 0, so α1

1 = 1 and Qmin
X5∈I12

= 2
3
. Consequently,

K3 = 1
24
× 2

3
= 1

36
.

Finaly, by using Equation (5.43), we sum over the case where X6 given X5 are

both in interval I1
2 = (c1

1, x2), represented by the green cells in Table 5.3. This will
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Figure 5.4: NPI lower and upper probabilities for event X5 > t and X6 > t, Example

5.4.1.

lead to functions of the α’s and β’s, so we need to minimise both functions. This

leads to

K4 = Qmin
X6∈I12 |X5∈I12

Qmin
X5∈I12

=
1

30
(β1

2 +
3

2
)(α1

2 +
1

3
)

By using Equation (5.6), the function QX5∈I12 = α1
2 + 1

3
is minimised when α1

2 = 0, so

α1
1 = 1 and Qmin

X5∈I12
= 1

3
. And the function QX6∈I12 |X5∈I12 = β1

2 + 3
2

is minimised, using

Equation (5.20), by assigning all conditional M -function values within the interval

I1 = (x1, x2) to the left of c1
1, i.e., when β1

2 = 0, so β1
1 = 1 and Qmin

X6∈I12 |X5∈I12
= 3

2
.

Consequently, K4 = 1
30
× 3

2
× 1

3
= 1

60
.

As a result, the NPI lower probability for the events X5 > t and X6 > t, for

t ∈ (x1, c
1
1), is obtained by summingK1+K2+K3+K4, that is 1/3+/45+/36+1/60 =

2/5. Thus, the NPI lower probability for the events X5 > t and X6 > t, where

t ∈ (x1, c
1
1), is P (X5 > t,X6 > t) = 2

5
(see Table 5.4). The NPI lower probabilities

for the events X5 > t and X6 > t, for t in other intervals are given in Table 5.4,
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t ∈ (.) P (X5 > t) P (X5 > t) P (X6 > t|X5 > t) P (X6 > t|X5 > t) P (X5 > t,X6 > t) P (X5 > t,X6 > t)

(0, x1) 4
5

1 5
6

1 2
3

1

(x1, c
1
1) 3

5
4
5

2
3

5
6

2
5

2
3

(c1
1, x2) 8

15
4
5

5
8

5
6

1
3

2
3

(x2, x3) 4
15

8
15

5
12

5
8

1
9

1
3

(x3,∞) 0 4
15

5
24

5
12

0 1
9

Table 5.5: NPI lower and upper probabilities for the events (X5 > t), (X6 > t|X5 >

t) and (X5 > t,X6 > t), Example 5.4.1.

and shown in Figure 5.4, these have all been derived similarly using corresponding

values of K1, . . . , K4.

Based on using the results in Sections 5.2 and 5.3, we also get the same results of

the derivation of the NPI lower and upper probabilities for the joint event Xn+1 > t

and Xn+2 > t, presented above, if we straightforwardly multiply the NPI lower and

upper probabilities for the event Xn+1 > t, given by Equations (5.8) and (5.9),

respectively, in Section 5.2, with the NPI lower and upper conditional probabilities

for the event that Xn+2 > t given Xn+1 > t, given by Equations (5.22) and (5.23),

respectively, in Section 5.3. So, for t ∈ [tia, t
i
a+1) with i = 0, 1, . . . , u and a =

0, 1, . . . , si, the NPI lower probability for the joint event Xn+1 > t and Xn+2 > t, is

P (Xn+1 > t,Xn+2 > t) = P (Xn+2 > t|Xn+1 > t)P (Xn+1 > t) (5.44)

and for t ∈ [xi, xi+1) with i = 0, 1, . . . , u, the corresponding NPI upper probability

for the joint event Xn+1 > t and Xn+2 > t, is

P (Xn+1 > t,Xn+2 > t) = P (Xn+2 > t|Xn+1 > t)P (Xn+1 > t) (5.45)

Again, we consider the data set used in Examples 5.2.1 and 5.3.1, for which we

have n = 4 observations, including one right-censored observation. If we multiply

the results of the NPI lower and upper probabilities for the event X5 > t, presented

in Table 5.1, with the corresponding results of the NPI lower and upper conditional

probabilities for the event X6 > t|X5 > t, presented in Table 5.2, then we get the
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same results of the NPI lower and upper probabilities for the joint event that X5 > t

and X6 > t, shown in Table 5.4 and Figure 5.4. The results presented in Table 5.5

illustrate this point clearly.

The following section illustrates how the proposed method, presented in this

chapter, can be applied to the reliability of a series system.

5.5 Reliability of a series system

This section introduces an application for the proposed method in this chapter. It

considers a system of three pairs of parallel components arranged in series, where

the components in each parallel pair are both of types A, B, or C, as presented

in Figure 5.5. For each type, 20 components were tested, leading to the observed

failure times and right-censoring times presented in Table 5.6. The failure times of

components of different types are assumed to be independent, while failure times of

components of the same type are assumed to be exchangeable. Right-censoring is

assumed to be non-informative with regard to the component’s remaining time to

failure.

Consider the following notation. Let mA, mB and mC represent the number of

components of Type A, B and C, respectively, so mA = mB = mC = 2, with 20

observations for each type, so nA = nB = nC = 20. In addition, let XA
i,1 and XA

i,2,

for i = 1, 2, . . . , nA, let XB
i,1 and XB

i,2, for i = 1, 2, . . . , nB, and let XC
i,1 and XC

i,2,

for i = 1, 2, . . . , nC , represent the two components of types A, B, C, respectively.

Let TAnA
, TBnB

and TCnC
are denote the minimum of the two components in Types

A, B and C, respectively, (e.g. TAnA
= min(XA

i,1, X
A
i,2), etc). Let P TA

nA+1,T
A
nA+2

(t) and

P TA
nA+1,T

A
nA+2

(t) denote the NPI lower and upper probabilities for the event that the

two future failure times of components of Type A are both greater than t, with

similar notation for Types B and C.

The data for the components failure and right-censoring times, presented in

Table 5.6, are derived via simulation. For each component of Type A, 20 failure

times are simulated from the Weibull distribution with shape parameter 1.5 and

scale parameter 1. Next, the minimum of these two components is obtained, that is
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Figure 5.5: A series system with three types of components A, B and C, with two

components of each type.

TA20 = min(XA
i,1, X

A
i,2), for i = 1, 2, . . . , 20. For each component of Type B, XB

i,1 and

XB
i,2, 17 failure times, and three right-censoring times are simulated from the Weibull

distribution with shape parameter 2 and scale parameter 1 and exponential distribu-

tions with a rate of 0.27, respectively. Now, the minimum of these two components

is obtained, that is TB20 = min(XB
i,1, X

B
i,2), for i = 1, 2, . . . , 20. Also, for each compo-

nent of Type C, that are XC
i,1 and XC

i,2, 13 failure times and seven right-censoring

times are simulated from the Weibull distribution with shape parameter 3 and scale

parameter 1 and exponential distribution with rate of 0.35, respectively. Next, the

minimum of these two components is obtained, that is TC20 = min(XC
i,1, X

C
i,2), for

i = 1, 2, . . . , 20. It should be noted that the presence of censoring events in each

Type is simulated using the statistical software R.

In order to compute the reliability of the system for the data set shown in Table

5.6, the results presented in Section 5.4 will be first applied separately for each type

of component TA20, TB20 and TC20. This leads to the results of the NPI lower and

upper probabilities for the event that the two future failure times of components

of each type, separately, are both greater than t, as given in Table 5.7 and shown

in Figure 5.6. For Type A, we derive the NPI lower and upper probabilities, that

are [P , P ](TA21 > tA, T
A
22 > tA), for tA ∈ (0, data(A),∞) and for Type B, we derive

the NPI lower and upper probabilities, that are [P , P ](TB21 > tB, T
B
22 > tB), for

tB ∈ (0, data(B),∞), and finally for Type C, we derive the NPI lower and upper

probabilities, that are [P , P ](TC21 > tC , T
C
22 > tC), for tC ∈ (0, data(C),∞).

Second, the reliability function of the whole system are derived by multiplying the

corresponding intersection NPI lower and upper probabilities for each type presented
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TA20 TB20 TC20

0.090 0.461 0.115 0.490 > 0.050 0.593

0.147 0.464 > 0.150 0.496 > 0.161 0.602

0.216 0.472 0.185 0.533 > 0.172 0.604

0.224 0.536 > 0.262 > 0.630 0.257 0.607

0.332 0.552 0.343 0.640 > 0.349 0.693

0.342 0.786 0.401 0.647 0.377 0.728

0.356 0.903 0.421 0.654 > 0.421 0.750

0.377 0.937 0.437 0.729 0.522 0.957

0.388 1.036 0.442 0.852 > 0.539 0.966

0.431 1.400 0.450 1.282 0.563 > 0.976

Table 5.6: Simulated data with the three types of components A, B and C (>

indicates a right-censored observation).

in Table 5.7, with the emphasis that the exact values of the t’s in this table differ for

the different systems. The NPI lower and upper probabilities for the whole reliability

system at time t, denoted as P TS
21

(t) and P TS
21

(t), respectively, are shown in Figure

5.7. So the reliability function of the whole system is calculated as [P , P ](T S21 >

t, TC22 > t) = [P , P ](TA21 > tA, T
A
22 > tA) × [P , P ](TB21 > tB, T

B
22 > tB) × [P , P ](TC21 >

tC , T
C
22 > tC), for t ∈ (0, data,∞).

It is worth mentioning that the NPI for the joint event Xn+1 > t and Xn+2 > t,

presented in this chapter, takes into account the dependence between these two

variables when there is limited information in the form of n observations in the data.

It is of interest to see the effect of taking this dependence carefully into account.

For this reason, we will compare the results followed the proposed method with

those resulting from ignoring, mistakenly, the dependency between these two future

observations, i.e., one would use the squared NPI lower and upper probabilities for

the event Xn+1 > t. Next, the results of the proposed method are compared with

those if the dependence between the two future observations would be ignored. And
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t ∈ P TA
21,T

A
22

(t) P TA
21,T

A
22

(t) P TB
21,T

B
22

(t) P TB
21,T

B
22

(t) P TC
21,T

C
22

(t) P TC
21,T

C
22

(t)

(0, t1) 0.909 1 0.909 1 0.909 1

(t1, t2) 0.823 0.909 0.823 0.909 0.905 1

(t2, t3) 0.740 0.823 0.818 0.909 0.900 1

(t3, t4) 0.662 0.740 0.732 0.818 0.895 1

(t4, t5) 0.589 0.662 0.727 0.818 0.795 0.895

(t5, t6) 0.520 0.589 0.642 0.727 0.789 0.895

(t6, t7) 0.455 0.520 0.561 0.642 0.691 0.789

(t7, t8) 0.394 0.455 0.487 0.561 0.684 0.789

(t8, t9) 0.338 0.394 0.417 0.487 0.586 0.684

(t9, t10) 0.286 0.338 0.353 0.417 0.579 0.684

(t10, t11) 0.238 0.286 0.294 0.353 0.482 0.579

(t11, t12) 0.195 0.238 0.241 0.294 0.395 0.482

(t12, t13) 0.156 0.195 0.193 0.241 0.316 0.395

(t13, t14) 0.121 0.156 0.150 0.193 0.246 0.316

(t14, t15) 0.091 0.121 0.144 0.193 0.184 0.246

(t15, t16) 0.065 0.091 0.103 0.144 0.132 0.184

(t16, t17) 0.043 0.065 0.069 0.103 0.088 0.132

(t17, t18) 0.026 0.043 0.041 0.069 0.053 0.088

(t18, t19) 0.013 0.026 0.021 0.041 0.026 0.053

(t19, t20) 0.004 0.013 0.007 0.021 0.009 0.026

(t20,∞) 0 0.004 0 0.007 0 0.026

Table 5.7: NPI lower and upper probabilities of Type A, Type B and Type C for

the data in Table 5.6.
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Figure 5.6: NPI lower and upper probabilities for Types A, B and C, respectively,

of the series system in Table 5.6.
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Figure 5.7: NPI lower and upper probabilities for the whole series system.

(P TS
21

(t))2 and (P TS
21

(t))2 represent the NPI lower and upper probabilities based on

the wrong assumption of independence of the two future observations per type of

component, as shown in Figure 5.7.

Figure 5.7 shows that the proposed method in this chapter provides lower and up-

per probabilities P TS
21

(t) and P TS
21

(t) of the system failure time, that are never smaller

than the incorrect ones via the squared lower and upper probabilities (P TS
21

(t))2 and

(P TS
21

(t))2. And they only are equal at the start (P TS
21

(t) = (P TS
21

(t))2 = 1) or end

(P TS
21

(t) = (P TS
21

(t))2 = 0 ). While the differences between the lower and upper

probabilities may only be small, it should be remarked that for more than two fu-

ture observations, the differences will be larger. Detailed investigation is left as a

topic for future research, as it requires the development of the NPI approach for

more than two future observations in case of right-censored data.
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5.6 Concluding remarks

This chapter has developed NPI for two future observations for data including right-

censored observations [49], in particular considering the event that these two future

observations are greater than time t. The rc-A(n) assumption [32], without any other

assumptions, is used for the first future observation. Then, the rc-A(n+1) assumption

provides a partially specified predictive probability distribution for the second future

observation conditioned on the first future observation.

The analytical approach with the α’s and β’s, presented in chapter, enabled

us to find the NPI lower and upper probabilities for any event involving the next

two future observations, by minimising and maximising over the α’s and β’s. The

NPI lower and upper probabilities were derived explicitly for the event that the two

future observations are both greater than time t but that the method can be used

for general events.

By extending the NPI to two future observations with right-censored data, we

have taken the dependency between these two variables into account when there is

a limited amount of information in the form of n observations in the data. We have

compared the results of the proposed method with those obtained when ignoring the

dependence between these two future observations. Our results have been applied to

system reliability of a small series system containing three types of components, each

of which contains multiple components of the same type, in order to demonstrate

the practical benefit of this work.

This work has shown that the analytical approach will be very complicated for

more than two future observations. One way forward can be linked to actually sam-

ple the first future observation, using the M -function values, given by Equations

(2.31) and (2.32), for Xn+1 and an assumption for the distribution of these proba-

bilities within the intervals. Then this samples future observation can be added to

the data set and the next one can similarly be sampled. Resulting inferences will of

course depend on the assumed distribution per interval, but computationally it will

be straightforward. This approach would be related to NPI Bootstrap [17, 28] and

smoothed bootstrap for right-censored data [3].



Chapter 6

Conclusions

In this thesis, we have introduced three contributions, which are described in Chap-

ters 3, 4, and 5 with respect to the NPI with right-censored data.

In Chapter 3, we introduced a new approach on which we used the largest ob-

served value within a data set, including right-censored observations, as the end

point of support. The new approach allowed us to derive the probability for the

event of interest that the actual lifetime corresponding to a right-censored obser-

vation would exceed the largest observed value. We extended the new approach

to derive the probability for the event that the actual lifetime corresponding to a

right-censored observation would exceed the jth largest observed value, as long as

it past the largest censored observation in the data set. We applied the proposed

methods to the full Supercentenarian data set, but separately for the women and

the men. [8]. Our investigation of the Supercentenarian data showed that since

the probabilities that somebody would survive the largest observed age were quite

high, we do not think that it is appropriate for analysis of extreme values to assume

that the largest value is the end-point of support. NPI cannot be used for predicting

observations beyond the largest observation due to its weak assumptions, this would

require additional distributional assumptions.

In Chapter 4, we assume that time is discrete and consists of the number of

events and the number right-censorings that take place at discrete time points.

Then, we introduced the NPI as an alternative to the actuarial estimator using

NPI for Bernoulli data [20], as discussed in Section 2.3 of Chapter 2. The NPI

128
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alternatives to the actuarial estimator is used to derive the NPI lower and upper

probabilities for the event that all future observations are greater than a particular

discrete time. This development is compared to the theory of NPI for grouped data,

established by Coolen and Yan [65]. NPI for Bernoulli data [20] was also used to

obtain the NPI lower and upper probabilities for such events of interest such as for

the event that at least a future observation out of multiple future observations will

survive for all tj. Then, the results are applied to discrete time system reliability

using survival signatures combined with NPI for Bernoulli data [25].

In Chapter 5, we developed NPI for two future observations for right-censored

data [49], based on the rc-A(n) assumption [32], without any other additional assump-

tions. We have proposed an analytical approach to partially specify the probability

distribution for the first future observation by the M -function values as well as for

the second future observation conditioned on where it can be the first future obser-

vation, by the conditional M -function values, respectively. This approach with the

α’s and β’s enabled us to find the NPI lower and upper probabilities for any event of

interest involving the next two future observations, by minimizing and maximising

over the these α’s and beta’s. Therefore, the NPI lower and upper probabilities are

derived for the event that the two future observations are greater than time t. Next,

in this chapter, we were interested in investigating the effect of neglecting the de-

pendence between the future observations, so we compared the results based on the

proposed method with those resulting from ignoring the dependency between these

two future observations. To conclude this chapter, we implemented our proposed

method using a reliability system.

A further topic of interest for further study is related to our method presented

in Chapter 5, such as extending the NPI for multiple future observations for right-

censored data for the event that all these multiple future observations are greater

than time t, and apply the results for some reliability systems. Also, NPI for two

future observations for right-censored data [49], presented in Chapter 5, will be

considered for at least one more event of interest.



Appendix A

R codes

A.1 On exceedance of the largest observed value

X.c <- function(X) {

ifelse(length(X[X[, 2] == 0, ]) > 2, x1 <- X[X[, 2] ==0, ][, 1],

x1 <- X[X[, 2] == 0, ][1])

return(x1)

}

##(Run) the following code to show all lifetime observations:

Xt0 <- function(X) {

Y <- c(0, X[, 1])

return(Y)

}

#reading the old women data set:

data <-read.csv(file.choose (),header=T)

##(Run) the following code to read the data

#which including right -censord obs.:

data=SupercentWomen_data1

data

n=nrow(data)

m=3 #(m >= 1) future observations

cens=X.c(data) #the censored observations

tot=Xt0(data) #all observations

130
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###################################

#First largest observation

#compute (Ncr -1/(Ncr)) term

#(Ncr is the # of individuals in the risk set

#just prior to the lifetime c(r))

cens [[1]][1]

tot [[2]][1]

product=NULL

for(i in 1:nrow(cens)){

product[i]=( sum(cens [[1]][i]<=tot [[2]]) -1)/(sum(cens [[1]][i]

<=tot [[2]]))

}

product

###################################

#Second largest observation

product10nd=NULL

for(i in 1:nrow(cens)){

product10nd[i]=( sum(tot >cens[i,1]) -1)/((sum(tot >cens[i,1]))+1)

}

product10nd

###################################

#Third largest observation

product10rd=NULL

for(i in 1:nrow(cens)){

product10rd[i]=( sum(tot >cens[i,1]) -2)/((sum(tot >cens[i,1]))+1)

}

product10rd

###################################

#compute the product of the previous products

#for the actual data

prod(product)

#compute the prob that at least one of

#the censored will live longer than 122:
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prob1=1-(prod(product))

prob1

#compute the probability that at least one of

#either the previous censored obs.

#or the multiple future obs. will live longer than 122 yrs old:

n=1580

m=2

prob=1-(prod(product)*(n/(n+m))) #(general form)

prob

m=seq(0 ,20000 ,by=1)

#pry=1 -(10/(10+m))

n=nrow(data)

plot(m,prob ,type="l",ylim=c(0,1))

abline(v=13009 , h=0.9288780)

A.2 NPI alternative to the actuarial estimator

#Create the Data set :

time=c(0,1,2,3,4,5,6,7,8,9,10,11)

n_tj=c(374 ,284 ,208 ,157 ,120 ,95 ,79 ,66 ,62 ,54 ,47 ,0)

c_tj=c(0,0,0,0,12,5,9,9,3,5,5,0)

r=c(374 ,374 ,284 ,208 ,145 ,115 ,86 ,70 ,63 ,57 ,49 ,47)

data.frame(time ,n_tj ,c_tj)

n=374

# To compute Upper NPI alternative to the actuarial estimator:

p_n <- function(n_tj, r, m) {

v1 <- n_tj + 1:m # - 1

v2 <- r + 1:m

v <- v1 / v2

upr <- prod(v)

return(upr)

}

p_n_vec <- function(n_tj_vec , r_vec , m) {

n_tj_len <- length(n_tj_vec)
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p_n_index <- function(i) {

n_tj <- n_tj_vec[i]

r <- r_vec[i]

upr <- p_n(n_tj = n_tj , r = r, m = m)

return(upr)

}

upr_vec <- sapply (1:n_tj_len , FUN = p_n_index ,

simplify = TRUE , USE.NAMES = TRUE)

return(upr_vec)

}

p_n(n_tj = n_tj[1], r = r[1], m = 5)

#p_n_vec(n_tj_vec = n_tj, r_vec = r, m = 1)

upr_m <- p_n_vec(n_tj_vec = n_tj , r_vec = r, m = 5)

upr_m

# For Upper survival based on upper NPI alternative:

U_prob_m=NULL

for(i in 1:( length(time))){

U_prob_m[i]=prod(upr_m[1:i])

}

U_prob_m

# To compute Lower NPI alternative to the actuarial estimator:

p_m <- function(n_tj, r, m) {

v1 <- n_tj + 1:m - 1

v2 <- r + 1:m

v <- v1 / v2

lwr <- prod(v)

return(lwr)

}

p_m_vec <- function(n_tj_vec , r_vec , m) {

n_tj_len <- length(n_tj_vec)

p_m_index <- function(i) {

n_tj <- n_tj_vec[i]

r <- r_vec[i]

lwr <- p_m(n_tj = n_tj , r = r, m = m)

return(lwr)
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}

lwr_vec <- sapply (1:n_tj_len , FUN = p_m_index ,

simplify = TRUE , USE.NAMES = TRUE)

return(lwr_vec)

}

p_m(n_tj = n_tj[1], r = r[1], m = 5)

#p_m_vec(n_tj_vec = n_tj, r_vec = r, m = 2)

lwr_m <- p_m_vec(n_tj_vec = n_tj , r_vec = r, m = 5)

lwr_m

# # For lower survival based on lower NPI alternative:

l_prob_m=NULL

for(i in 2:( length(time))){

l_prob_m[i]=prod(lwr_m[2:i])

}

l_prob_m

# To compute $x-out -of-y$:

#upper

m=3

n=c(9,7,4,1)

s=c(8,5,2,0)

y=2

#y=c(0,1,2,3)

upper=NULL

for(i in 1: length(n)){

upper[i]=(1/choose(n[i]+m,n[i]))*

(( choose(s[i]+y,s[i])*choose(n[i]-s[i]+m-y,n[i]-s[i])))}

upper

#lower

x=2

n=7

s=5

y=2

comp=rep(NA ,x)

d1=( choose(n+y,n))^(-1)
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for (i in 1:x) {

comp[i]= choose ((s+(i-1) -1),s-1)*choose ((n-s+y-(i-1)),n-s)

}

1-d1*sum(comp)

# Function

fun1= function(n,s,y,x) {

comp=rep(NA ,x)

d1=( choose(n+y,n))^(-1)

for (i in 1:x) {

comp[i]= choose ((s+(i-1) -1),s-1)*choose ((n-s+y-(i-1)),n-s)

}

return(1-d1*sum(comp))

}

fun1(n=9,s=8,y=1,x=1)

# full Column

for (i in 1:3) {

print(fun1(n=9,s=8,y=i,x=1) )

}

# full lower matrix with fixed n and s

y=c(1:10)

PL=matrix(NA ,nrow=length(y),ncol=length(y))

for (i in y) {

for (j in y) {

PL[i,j]=fun1(n=7,s=5,y=i,x=j)

}

}

PL

A.3 NPI for two future observations

The R codes for calculating M -function values and NPI survival for the first future observation were developed by

Maturi [51]. Here, we extend it for 2 future observations.
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rm(list=ls())

# calculate the lower and upper survival functions

X.c <- function(X) { # to get the censored data

ifelse(length(X[X[, 2] == 0, ]) > 2,

x1 <- X[X[, 2] ==0, ][, 1], x1 <- X[X[, 2] == 0, ][1])

return(x1)

}

X.u <- function(X) { # to get the failure data

ifelse(sum(X[, 2] == 1) == 1, x1 <- X[X[, 2] == 1, ][1],

x1 <- X[X[, 2] == 1, ][, 1])

return(x1)

}

Xu1 <- function(X) { # all censored , no failure occurs

ifelse(sum(X[, 2] == 1) == 0, Y <- Inf , Y <- c(X.u(X),

Inf))

return(Y)

}

Xt0 <- function(X) {

Y <- c(0, X[, 1])

return(Y)

}

# calculate the product terms to use later for Mfun and prob

cond <- function(X, y) {

P1 <- NULL

n <- nrow(X)

Xc <- X.c(X)

ncc <- function(X, cr)

{ # calculate the term in the product term

(sum(X[, 1] >= cr) + 1)/sum(X[, 1] >= cr)

}

cr.obs <- Xc[Xc < y]

n.cr.obs <- length(cr.obs)

# calculate the condition under the product term

if(n.cr.obs == 0 | sum(X[, 2] == 0) == 0){

P1 <- 1

} else{
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for (j in 1:n.cr.obs) { P1[j] <- ncc(X, cr.obs[j]) }

}

P3 <- prod(P1)/(n + 1)

return(P3)

}

# calculate Mfun and prob

Mfun <- function(X) {

Y <- rbind(c(0, 1), X)

ny <- nrow(Y)

Mu <- NULL

for (i in 1:ny) {

Mu[i] <- (sum(X[, 1] >= Y[, 1][i]))^(Y[, 2][i] -

1) * cond(X, Y[, 1][i])

}

return(Mu)

}

Prob <- function(X) {

Y <- Xu1(X)

ny <- length(Y)

P4 <- NULL

for (i in 1:ny) {

P4[i] <- cond(X, Y[i])

}

return(P4)

}

#Mfun(Xdata11)

# Towards 2 future observations: Examples in Chapter 5

LUsur <-function(X){

LS<-NULL; US<-NULL

t<-Xt0(X); t0<-c(Xt0(X),Inf)

ts<-c(0,X.u(X))

MM<-cbind(t,Mfun(X))

PP<-cbind(ts,Prob(X))

# Lower

for (j in 1: length(t0)){

if(length(MM[MM[,1]>=t0[j],])==0) LS[j]<-0
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ifelse( length(MM[MM[,1]>=t0[j],])==2,

LS[j]<-MM[MM[,1]>=t0[j],][2], LS[j]<- sum(MM[MM[,1]>=t0[j],][,2]))}

# Upper

for (j in 1: length(t0)){

tmax <-NULL

tmax <-max(ts[ts <=t0[j]])

ifelse(length(PP[ts >=tmax ,])==2,US[j]<-PP[ts >=tmax ,][[2]] ,US[j]

<-apply(PP[ts >=tmax ,],2,sum)[[2]])}

return(list(LS ,US))}

#create the data:

d<-c(1,0,1,1)

x<-1:4

Xdata <-cbind(x,d)

LUsur(Xdata)

x0<-1:5

d1<-c(1,1,0,1,1)

d2<-c(1,1,0,1,1)

d3<-c(1,0,1,1,1)

d4<-c(1,0,1,1,1)

d5<-c(1,0,1,1,1)

#lower

LUsur(cbind(x0,d1))[[1]][2]* LUsur(Xdata)[[1]][2]

LUsur(cbind(x0,d2))[[1]][3]* LUsur(Xdata)[[1]][3]

LUsur(cbind(x0,d3))[[1]][4]* LUsur(Xdata)[[1]][4]

LUsur(cbind(x0,d4))[[1]][5]* LUsur(Xdata)[[1]][5]

LUsur(cbind(x0,d5))[[1]][6]* LUsur(Xdata)[[1]][6]

#upper

LUsur(cbind(x0,d1))[[2]][1]* LUsur(Xdata)[[2]][1]

LUsur(cbind(x0,d2))[[2]][2]* LUsur(Xdata)[[2]][2]

LUsur(cbind(x0,d3))[[2]][3]* LUsur(Xdata)[[2]][3]

LUsur(cbind(x0,d4))[[2]][4]* LUsur(Xdata)[[2]][4]

LUsur(cbind(x0,d5))[[2]][5]* LUsur(Xdata)[[2]][5]

# ex2

d<-c(1,0,0,0,1)
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x<-1:5

Xdata <-cbind(x,d)

LUsur(Xdata)

x0<-1:6

d1<-c(1,1,0,0,0,1)

d2<-c(1,1,0,0,0,1)

d3<-c(1,0,1,0,0,1)

d4<-c(1,0,0,1,0,1)

d5<-c(1,0,0,0,1,1)

d6<-c(1,0,0,0,1,1)

#lower

LUsur(cbind(x0,d1))[[1]][2]* LUsur(Xdata)[[1]][2]

LUsur(cbind(x0,d2))[[1]][3]* LUsur(Xdata)[[1]][3]

LUsur(cbind(x0,d3))[[1]][4]* LUsur(Xdata)[[1]][4]

LUsur(cbind(x0,d4))[[1]][5]* LUsur(Xdata)[[1]][5]

LUsur(cbind(x0,d5))[[1]][6]* LUsur(Xdata)[[1]][6]

LUsur(cbind(x0,d6))[[1]][7]* LUsur(Xdata)[[1]][7]

#upper

LUsur(cbind(x0,d1))[[2]][1]* LUsur(Xdata)[[2]][1]

LUsur(cbind(x0,d2))[[2]][2]* LUsur(Xdata)[[2]][2]

LUsur(cbind(x0,d3))[[2]][3]* LUsur(Xdata)[[2]][3]

LUsur(cbind(x0,d4))[[2]][4]* LUsur(Xdata)[[2]][4]

LUsur(cbind(x0,d5))[[2]][5]* LUsur(Xdata)[[2]][5]

LUsur(cbind(x0,d6))[[2]][6]* LUsur(Xdata)[[2]][6]

## THE END ##
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