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Exploring the properties of hot haloes

around simulated galaxies

Ashley James Kelly

Abstract: The existence of hot, accreted gaseous coronae around massive galaxies is a

central prediction of galaxy formation models in the ΛCDM cosmology. While observations

now confirm that extraplanar hot gas is present around late-type galaxies, the origin of the

gas is uncertain. We investigate the origin and properties of the hot gas that surrounds

galaxies in the cosmological hydrodynamical EAGLE simulations. In summary, we find that

haloes of mass ≥ 1012 M⊙ host hot, accreted atmospheres as predicted by White & Frenk

(1991). However, supernovae heated gas (feedback) in the innermost region of the halo

typically dominates the X-ray emission.

Modern hydrodynamical simulations model various physical processes in the real Universe;

however, many are included using ‘subgrid models’. Although subgrid models have suc-

cessfully modelled feedback effects, it remains unclear if, and by how much, the differing

implementations affect other halo properties. This thesis uses ‘zoom-in’ simulations of a Lo-

cal Group-like region evolved with both the Auriga and Apostle galaxy formation models.

We find that feedback processes can be classified into two broad categories: ‘ejective’ and

‘preventative’, and future observations may constrain these two regimes.

The large dynamic mass range makes it computationally expensive to run simulations of

galaxy formation. Therefore, we explore the basis function expansion technique (BSE),

which can efficiently approximate the potential of a simulated galactic halo. We demonstrate

that the Herquinst-Ostriker BSE can successfully reproduce the orbits of particles taken from

n-body simulations. We also describe two further developments, including the addition of a

thin, time-dependent disc and a method to model massive satellite galaxies within the halo

efficiently.
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Chapter 1

Introduction

In the early twentieth century it was widely thought that all visible objects in the

night sky belonged to the same single system, the Milky Way. This idea was favoured

until the time of the Great Debate, where Harlow Shapley and Heber Curtis disputed

the nature of the so-called ‘spiral nebulae’ (Shapley & Curtis, 1921). Shapley believed

that distant spiral nebulae were much smaller, and lay within the outskirts of the

Milky Way. While Curtis argued that these were large, separate systems, similar to

that of the Milky Way but separated by almost a million parsecs. Later in the same

decade, Edwin Hubble was able to convince most of the astronomical community

that not only are there many other external galaxies in the Universe, but that the

Universe is also, in fact, expanding (Hubble, 1926, 1929). This decade saw the birth

of extragalactic astronomy and modern cosmology.

In most areas of science new ideas and models are developed and then must be tested

through experimentation. However, we cannot set up and study various ensembles of

the Universe in a laboratory, each with a different set of parameters. Instead, we must

find alternative techniques to help test and develop models of the Universe. Recent

increases in computing power have helped computer simulations to become one of

the most commonly used tools. Computer simulations can model dynamic systems

ranging from an individual atom up to a large volume of the Universe containing

thousands of galaxies. Simulations take the initial state of a system and evolve it

following the inputted model’s rules. At various stages of evolution, the system’s

1



1.1. ΛCDM 2

properties can be outputted and compared with observations and measurements

taken from a real system. The success of a model is generally measured by its ability

to reproduce the statistical properties of the observed system. The last few decades

have seen the emergence of an entire field that uses computer simulations to model

the formation and evolution of a large number of galaxies over approximately 14

billion years of cosmic time (see Vogelsberger et al., 2020, and references therein).

This thesis will explore some of the most successful cosmological simulations devel-

oped. These simulations will be used to explore the gaseous environments surround-

ing galaxies, comparing results between different simulations and those inferred from

the real Universe. This thesis will also examine a new simulation technique to study

galactic haloes and discuss how it could be further developed to facilitate the most

detailed simulations of galactic haloes.

This chapter will first introduce the standard model of Cosmology, ΛCDM, which

describes the Universe’s large-scale structure in Section 1.1. Section 1.2 will describe

galaxy formation within the framework outlined by ΛCDM. Finally, Section 1.3 will

outline some of the challenges with current models and state the research questions

that the thesis will attempt to answer.

1.1 ΛCDM

Over the past century, there have been considerable advances in our understanding

of the Universe. We now have a successful model of the Universe’s evolution referred

to as the ΛCDM model (Davis et al., 1985; Maddox et al., 1990; Efstathiou et al.,

1990). This model describes the evolution of the Universe from an initial hot, dense,

(almost) homogeneous state, often referred to as a ‘cosmic soup’, to the present day.

The ΛCDM model is made up of three main components baryonic matter, dark

matter and dark energy. At the present day it is widely accepted that the energy

density of the Universe is distributed as follows: baryonic matter contributes about

∼ 4%. Approximately, ∼ 26% is in the form of a collision-less matter commonly
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referred to as ‘cold dark matter’ (CDM), and the remaining ∼ 70% is in the form of

dark energy, Λ. There are also small contributions from neutrinos and radiation.

Zwicky (1933) showed that the galaxy velocity distribution in the Coma cluster

required a total mass significantly exceeding that inferred from the baryonic mass

alone. Smith (1936) also came to the same conclusion while performing a similar

analysis of a larger sample of galaxies in the Virgo cluster. A modern analysis of the

Coma cluster would account for the baryonic mass of both stars and X-ray emitting

hot gas, the latter of which Zwicky neglected; however, this analysis would still

conclude that the total cluster mass exceeds the baryonic mass. The evidence for a

non-luminous matter, now referred to as dark matter, continued to grow throughout

the following century.

Kahn & Woltjer (1959) analysed the kinematics of the Milky Way and Andromeda

pair, referred to as the Local Group (LG). Kahn & Woltjer (1959) found that the

approach velocity of Andromeda required a total LG mass of order ∼ 1012 M⊙. This

inferred LG mass is again much larger than can be accounted for by observable bary-

onic mass. This conclusion was further supported by measurements of the rotation

curves of galaxies, which were found to be (approximately) flat out to large radii,

rather than Keplerian (van de Hulst et al., 1957; Rubin & Ford, 1970; Roberts &

Rots, 1973; Bosma, 1978; Rubin et al., 1980).

Arguably some of the most convincing evidence for dark matter came from con-

straints on the baryon energy density obtained from the abundance of light elements

produced in Big Bang Nucleosynthesis (Alpher et al., 1948). Comparing the baryonic

energy density to the total energy density of matter, which can be inferred from the

observations of clusters, demonstrates that baryons make up only a small fraction of

total matter in the Universe, thus confirming the presence of a non-baryonic matter

component: dark matter.

The evidence for the dark energy comes from a (rare) type of supernova, Type

Ia. These supernovae are rare as they involve white dwarf stars which are a late

evolutionary stage of some stars, and therefore take a long time to form. The exact

mechanism for Type Ia is uncertain; however, it is thought they occur in binary
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systems where a small star (white dwarf) explodes after accreting material from

a companion. While Type Ia supernovae are rare, the Universe is so large that

there are of order ∼ 104 detected and catalogued events in the open supernovae

catalogue (Guillochon et al., 2017). Type Ia SNe are particularly interesting as

they appear to act as standardisable candles. This means observations of their

luminosity profile can be used to measure their distance from the Milky Way. Type

Ia supernovae in external galaxies are consistently found to be much fainter than

expected in a matter-dominated universe. Thus, requiring that the expansion of the

Universe is accelerating, and supporting the existence of dark energy (Riess et al.,

1998; Perlmutter et al., 1999).

It is challenging to account for all of the baryons in the Universe. Stars are the most

luminous, and therefore most readily detectible, baryonic component. However, stars

only contribute of ∼ 7% of the total matter density (Fukugita & Peebles, 2004).

The lack of stars leads to two questions: firstly, where are the remaining baryons?

Secondly, what prevents the Universe from producing more stars from baryons?

These questions motivate the exploration of the theory of galaxy formation.

1.2 Galaxy formation

In the framework of ΛCDM galaxies, groups and clusters are seeded in the early

Universe in the form of quantum fluctuations in at early times. As the Universe

undergoes a period of rapid inflation, these fluctuations expand into larger over (and

under) densities.

The over and under densities continue to grow as the Universe expands. As the

Universe expands, it also cools, allowing baryons to decouple from radiation and

collapse into the overdensities of dark matter. Once regions of overdensity have

grown sufficiently, reaching a critical density, they can turn around from the expan-

sion of the Universe and collapse to form matter haloes. These haloes continue to

grow by accreting material from their local environment and continuously merging,

hierarchically, with other haloes.
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In the early galaxy formation models of White & Rees (1978) and White & Frenk

(1991), gas is accreted from the intergalactic medium (IGM) and falls into dark

matter potentials. The behaviour of the gas during infall depends on the depth of

the potential well, which determines the so-called ‘cooling radius’ of the halo. The

‘cooling radius’ is the radius at which the cooling time of the gas is equal to either

the dynamical time of the halo or the Hubble time.

In high mass haloes, the cooling radius is smaller than the virial radius and lies deep

inside the halo. In these haloes, it is predicted that infalling gas will shock-heat to

the virial temperature of the halo and form a hot, quasi-hydrostatic atmosphere of

gas (Larson 1974; the idea of an extended, hot gas corona around the Milky Way

was first suggested by Spitzer 1956). This hot halo of gas is pressure-supported and

will contract towards the centre; as this contraction occurs, the density in the centre

of the halo will increase, allowing the cooling time to decrease.

In low mass dark matter haloes, where the cooling radius is much larger than the

virial radius, it is thought that all of the accreting gas is cold and does not shock

heat. In the event the gas does shock heat, it will likely cool rapidly due to efficient

radiative cooling at temperatures ∼ 104 − 105 K. The cold gas can then be rapidly

accreted onto the central galaxy on timescales comparable to the free-fall time of the

halo.

Rees & Ostriker (1977) predict that the transition mass between haloes cooling so

efficiently that they collapse at the free-fall rate, and haloes forming quasi-static hot

atmospheres of gas is approximately ∼ 1012 M⊙, similar to that of the Milky Way.

This is a prediction that can be tested, as haloes of mass ≥ 1012 M⊙, should be

enveloped in X-ray emission, as they have virial temperatures exceeding a million

Kelvin.

In both low and high mass haloes, gas towards the centre of the halo will cool. As the

gas cools, it loses pressure support and flows towards the centre of the potential well.

The galactic haloes are seeded with a small amount of angular momentum as a result

of tidal torques from inhomogeneities in the surrounding matter distribution (Hoyle,

1949; Barnes & Efstathiou, 1987). As the haloes collapse, this angular momentum
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is conserved, thus increasing the rotation velocity in the centre of the halo. This

collapse continues until a gaseous disc forms with a sufficiently high rotation velocity

to prevent further collapse.

In the parts of the galactic disc, the cooling gas will become self-gravitating and

collapse under its own gravity. The collapsing gas is able to cool, and collapse

further, eventually forming giant molecular clouds (GMCs), which are the sites of

star formation in galaxies.

In the picture of galaxy formation presented above, which describes the condensation

of baryons into dark matter haloes, was first explored by White & Rees (1978)

and White & Frenk (1991). However, in these initial models, gas cooling and star

formation are too efficient in low mass galaxies. Consequently, these models produced

too many faint galaxies; this is sometimes referred to as the ‘overcooling problem’.

The ‘overcooling problem’ in low mass haloes can be addressed by including an effi-

cient injection of energy from stellar winds and supernova (SN) explosions, a process

now commonly referred to as ‘feedback’. Stellar feedback can efficiently suppress

star formation (SF) by ejecting dense, star-forming gas, generating turbulence that

disrupts star-forming regions and driving outflows that eject gas from the interstellar

medium (ISM) in the form of a ‘hot galactic wind’ (Mathews & Baker, 1971; Larson,

1974). Efficient feedback can prevent the excessive gas cooling at high redshift and

thus reduce the number of faint galaxies predicted by the model (White & Rees,

1978; White & Frenk, 1991; Pearce et al., 1999; Sommer-Larsen et al., 1999; Thacker

& Couchman, 2001).

While the introduction of SNe was able to reduce the number of faint galaxies, the

models still produced too many massive galaxies. To correctly produce the correct

number of a large galaxies a mechanism by which cooling could be suppressed in

the most massive haloes is also required. This is because, in massive haloes, the gas

ejected by SNe feedback can cool and re-accrete onto the galaxy, fueling further star

formation, on short timescales. Massive haloes, therefore, require a much stronger

feedback mechanism.

In the early twentieth century, an unusual class of objects was discovered and termed
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‘quasars’ Fath (1909); Seyfert (1943). Optical observations of these objects showed

unusual spectra with broad emission lines at unfamiliar wavelengths. It was later

discovered that one of these quasars resides at a redshift of 0.158 (Schmidt, 1963).

This discovery established that quasars must be extremely powerful apparent lumi-

nosity and distant from the MW. Salpeter (1964) and Lynden-Bell (1969) suggested

that the accretion of gas onto extremely massive objects of small sizes, such as super-

massive blackholes (SMBHs), could power quasars. Kormendy & Richstone (1995)

later found evidence of SMBHs in the centres of many nearby galaxies (Salpeter,

1964; Zel’dovich, 1964; Lynden-Bell, 1969, 1978; Lynden-Bell & Rees, 1971; Rees,

1984). It is now widely accepted that SMBHs power quasars and are referred to as

active galactic nuclei (AGN).

Further work by Magorrian et al. (1998) found a tight empirical relationship between

the stellar bulge mass of a galaxy and the mass of the SMBH. This relation implies

co-evolution between the galaxy and the SMBH, in which the AGN feedback can

affect the galactic growth and evolution (Silk & Rees, 1998; King, 2003). Efficient

feedback from supernovae SNe and AGN is now a key ingredient of modern galaxy

formation models.

It is unclear how the feedback processes from AGN and SNe impact the hot atmo-

spheres, which White & Rees (1978) and White & Frenk (1991) predicted to reside

around high mass haloes. It is largely accepted that most haloes of mass ≥ 1013 M⊙,

do host quasi-hydrostatic haloes of accreted gas from the IGM. However, the evi-

dence for these atmospheres is less convincing for haloes closer to the transition mass

between hot and cold accretion, such as the one around our Milky Way.

1.3 This thesis

In this thesis, we will explore the gaseous atmospheres that surround galaxies. There

are two main reasons that gaining a deeper understanding of the gaseous atmospheres

is crucial to the future of astronomy. The first is that hot atmospheres are of great

cosmological interest. In a ΛCDM universe, hot atmospheres are a fundamental
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prediction, and in the absence of feedback processes (such as AGN and SNe), it is

simple to infer the total mass of a halo from the measured X-ray luminosity of the

hot gas that surrounds it. While the Universe does contain feedback processes, which

complicate the picture, it may still be possible to ‘weigh’ haloes using their coronal

X-ray luminosity. The second reason is that hot atmospheres surrounding spiral

galaxies provide the primary fuel for ongoing star formation. These hot haloes are

also the stage where hot feedback-driven winds mix with the accreting pristine gas

from the IGM. Therefore gaining a better understanding of the properties of the hot

atmospheres will also provide insight into star formation, cosmological gas accretion

and the properties of the galactic winds and processes that drive them.

In Chapter 3 we investigate the origin and X-ray properties of these hot haloes that

surround galaxies of halo mass, 1011 − 1014 M⊙, in the highly-successful cosmolog-

ical hydrodynamical EAGLE simulations (Schaye et al., 2015). We aim to identify

whether the X-ray emission surrounding these galaxies is due to accreted and shock

heated quasi-hydrostatic atmospheres predicted by White & Rees (1978) and White

& Frenk (1991), or due to hot super-heated winds produced by feedback processes

within the galaxy as claimed by Li & Wang (2013b). We will also explore the so-

called ‘missing feedback’ problem introduced by Wang (2010) which is the apparent

low X-ray luminosities observed from low-mass galaxies with high star-formation

rates.

In Chapter 4 we will explore the robustness of our conclusions in Chapter 3 by

comparing the similarities and differences between the properties and origins of hot

atmospheres around MW-mass galaxies in two different simulations, Apostle and

Auriga. These are both ‘zoom-in’ hydrodynamic simulations with the same initial

conditions that produce realistic MW-like galaxies at present-day using different

subgrid models.

Chapters 3 and 4 demonstrate that hot haloes are ubiquitous around haloes of MW-

mass and above. The hot haloes contain a rich interplay of infalling accreting ma-

terial and hot, feedback-driven outflows. We are interested in how infalling satellite

galaxies fit into this picture and how they interact with the gaseous atmosphere.
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While self-consistent simulations of all aspects of the galaxy formation picture in full

generality are desirable, the calculations are costly. In the case of modern hydrody-

namical galaxy simulations of an individual halo, the evolution of the central galaxy

dominates the calculation cost. Thus, attempting to study the infall of satellites into

a massive halo would result in only a tiny fraction of the compute resources being

spent on the objects of interest.

In Chapter 5 we recapitulate a method of approximating the potential of a simulated

galactic halo using a basis function expansion technique (Lowing et al., 2011). The

basis function expansion of the potential can be used to evolve the infall of satellite

galaxies into more massive haloes. We then discuss a range of developments to the

method, including adding a thin, time-dependent galactic disc and several correc-

tions. We then perform some experiments using an isolated MW-mass halo, selected

from the original Auriga sample, as a test case. Finally, we discuss possible future

applications of the method, such as combining the basis function expansion of the

potential with a hydrodynamical approximation of the primary halo to investigate

the complete hydrodynamical evolution of the infalling satellites into massive haloes.

In this thesis we aim to answer the three broad questions:

I) Do large volume, state-of-the-art cosmological simulations produce hot, accreted

haloes around MW-mass haloes and above, as predicted by White & Rees (1978)?

II) Do different galaxy formation simulations, using different subgrid models, produce

the same baryon cycle around galaxies?

III) Are there viable computational methods to study the infall of high-resolution

low-mass galaxies into higher mass haloes?

We address these three questions in Chapters 3, 4 and 5, respectively.



Chapter 2

Cosmological Hydrodynamical

Simulations: Eagle, Apostle and

Auriga

Galaxy formation is an incredibly challenging problem to understand as it is an in-

trinsically interdisciplinary problem involving many processes, spanning a large range

of physical scales. Some of the earliest cosmological simulations only included dark

matter acting under the influence of gravity (Frenk et al., 1988; Springel, 2005), using

methods still readily used today. These dark matter only simulations do not track

the evolution and formation of galaxies; they only study the formation and growth

of dark matter haloes. Therefore, semi-analytic models were introduced to populate

dark matter simulations with galaxies. These models use a range of simplifying as-

sumptions and are added retroactively to the dark matter simulations. Semi-analytic

models have successfully reproduced a range of observational constraints from the

local Universe (Cole, 1991; White & Frenk, 1991; Lacey & Silk, 1991; Somerville &

Primack, 1999; Cole et al., 2000; Lacey et al., 2016).

Over the last few decades, the increase in computing power and resources facilitated

the further development of galaxy formation simulations utilising advanced hydrody-

namical techniques (Hernquist & Katz, 1989; Springel & Hernquist, 2002; Springel,

10
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2005; Kravtsov et al., 1998; Teyssier, 2002; Springel, 2005, 2010; Bryan et al., 2014;

Hopkins, 2015). Modern cosmological galaxy formation simulations combine hydro-

dynamical fluid solvers alongside ‘subgrid’ baryonic models to include the effects of

complex physics such as cooling, star formation and evolution, feedback and black

hole evolution. Subgrid models are required to model processes that occur on scales

around, or below, the mass resolution of the simulations, which is typically between

≈ 103 M⊙ − 107 M⊙.

In this thesis we start by studying the large volume cosmological simulation suite

Eagle (Schaye et al., 2015; Crain et al., 2015) in Chapter 3. In Chapter 4 we focus

our attention to pairs of MW-mass galaxies which are simulated with two different

simulation models. We use both the Auriga galaxy formation model (Grand et al.,

2017) (with the Arepo code) and a modified version of the Eagle galaxy formation

model (with the Gadget-3 code) to study the same set of initial conditions. These

initial conditions are zoom regions identified in the DOVE volume (Sawala et al.,

2016; Fattahi et al., 2016) as they reproduce a pair of MW-mass halos analagous to

the Local Group. In this thesis we refer to these simulations of the LG analogues as

Auriga and Apostle. These two suites of simulations are run with the exact same

initial conditions, but use different subgrid models and hydrodynamical solvers. The

Auriga simulations in this thesis should not be confused with those in (Grand et al.,

2017) which use the same simulation code, and galaxy formation model, to simulate

a sample of isolated MW-mass galaxies.

This chapter will discuss a few of the main components of cosmological hydrodynam-

ical simulations used in this work: Auriga (Grand et al., 2017), Apostle (Sawala

et al., 2016; Fattahi et al., 2016) and Eagle (Schaye et al., 2015). In this chapter the

Apostle and Eagle simulations’ implementation can be considered the same. The

implementation of Apostle and Eagle only differs by one parameter in the sub-

grid model and the resolution of the mass elements. These differences are, however,

important when considering the conclusions of Chapter 4 where their implications

are discussed.

In Section 2.1 we will briefly introduce the two types of cosmological initial conditions
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Table 2.1: The cosmological parameters used in this thesis: Ωm, Ωb, and ΩΛ are the
average densities of matter, baryonic matter and dark energy in units of the critical
density at redshift zero; σ8 is the square root of the linear variance of the matter
distribution when smoothed with a top-hat filter of radius 8 Mpc/h, ns is the scalar
power-law index of the power spectrum of primordial adiabatic perturbations, and
h is the Hubble parameter in units of 100 kms−1Mpc−1.

Simulation name Ωm Ωb ΩΛ σ8 ns h
Eagle 0.307 0.04825 0.693 0.8288 0.9611 0.6777

Auriga & Apostle 0.272 0.0455 0.728 0.81 0.967 0.704

used in this work, both large volume and ‘zoom in’ regions. The following sections,

Section 2.2 and Section 2.3, will introduce the gravitational problems which must be

solved in these simulations and the two main types of hydrodynamical techniques

used in this thesis. Section 2.4 will describe subgrid models which are employed to

model the baryon physics required for galaxy formation, motivated in Section 1.2.

2.1 Initial Conditions

The first element of the initial conditions is the background cosmology, which de-

fines the composition and primordial power spectrum of the modelled Universe. The

primordial power spectrum, at the end of inflation, is generally taken to be a sim-

ple power-law defined by the scalar spectral index, ns. At early times, the density

fluctuations, and power spectrum, can be evolved using either linear theory (LT),

second-order (2LPT) (Peebles, 1980) or third-order (3LPT) (Michaux et al., 2021)

Lagrangian perturbation theory. However, once the amplitude of the fluctuations

becomes comparable to the mean matter density, their evolution becomes strongly

non-linear and perturbation theory is no longer accurate. When the fluctuations

become non-linear, they can no longer be accurately evolved with either of these

methods. At which point, it is common to generate a particle distribution with the

power spectrum before the non-linear regime, which can evolve to the present us-

ing n-body techniques. In general, the initial conditions usually evolve to redshift,

z = 127, using LT, 2LPT or 3LPT, at which time a particle distribution is cre-

ated. The ΛCDM model is used for the Auriga, Apostle and Eagle simulations;
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however, the choice of model parameters can differ slightly. They are tabulated in

Table 2.1. The cosmological parameters of the original Auriga simulations (Grand

et al., 2017), such as the one used in Chapter 5, are the same as those used in the

Eagle simulations shown in Table 2.1.

There are two types of initial conditions used in this thesis, large volume and zoom

initial conditions. The large volume initial conditions are uniformly sampled with

typical sizes of these ranging from 5 − 300 Mpc. Zoom in initial conditions combine

a low-resolution background volume with a much higher resolution of interest. The

high-resolution region of interest is usually centred around a galaxy at the present

day, but it is possible to study more extended regions which contain many galaxies.

The Eagle simulations used in this thesis simulate various large volume, periodic,

cubic boxes of side-length 25 Mpc, 50 Mpc and 100 Mpc. The Auriga, and Apos-

tle, simulations in this work use constrained ‘zoom in’ initial conditions which

match some of the mass and kinematic constraints of the Local Group, the Milky

Way and Andromeda (see Sawala et al., 2016). The zoom technique allows much

more detailed analyses to be performed; however, the results must be interpreted

cautiously as they are not necessarily representative of the Universe as a whole.

2.2 Gravity

The gravitational force at a point in a mass distribution can be calculated by solving

Poisson’s equation. The most direct method for this is to perform an n-body calcula-

tion, summing the interactions of every mass element with every other mass element.

This is a method which dates back to some early work of Holmberg (1941), which

used light bulbs, where the candle power is proportional to mass, to represent mass

elements. Lights can effectively be used to represent mass, as the intensity of light

reduces with distance squared like the force of gravity. Holmberg modelled some

early nebulae each made up of 37 lightbulbs and used a photocell (light sensitive

resistor) to estimate the gravitational force on each bulb and integrate them through
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time. The work of Holmberg (1941) is probably the earliest example of an n-body

gravity simulation of astronomical phenomena.

In modern n-body simulations of gravity direct summation of all mass elements is

usually avoided as it has an O(n2) computational complexity, making it too expen-

sive for large n (where n is the number of mass elements). Modern-day simulations

use approximate numerical methods to reduce the computational complexity of the

n-body problem. Two of most common algorithms are the octree method (Barnes

& Hut, 1986; Barnes & Efstathiou, 1987) and the particle-mesh method (Hockney

& Eastwood, 1981). The octree method splits the simulation volume into smaller

cells, recursively, to a specified resolution level. The top level cell includes the entire

mass of the simulation, this has eight child cells of equal size and so on. The gravity

calculation walks the tree starting with the top node and continuously refines the

mass distribution until the force calculation is considered accurate enough. This

allows the gravitational forces on a particle of distance regions to be computed in

much fewer calculations. The computational complexity of this method is O(n log n).

In the particle-mesh method, mass elements are scattered onto a mesh in 3D space

using the cloud-in-cell (CIC) method (Hockney & Eastwood, 1981) to generate a

density field. The gravitational potential can then be calculated by transforming the

density field into Fourier Space and performing some linear operations. The gravi-

tational potential can then be transformed back into real space, and differentiated

to calculate the gravitational force on at the mesh points. The forces can then be

interpolated, using the same interpolated technique, at the positions of each of the

mass elements in the simulation.

All of the simulations considered in this thesis are based on the Gadget-3 code (last

described in Springel et al., 2008) which uses a hybrid of the octree and particle-

mesh methods. For shorter-range interactions the octree is used, and conversely the

particle-mesh method is used for longer-range interactions.
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2.3 Hydrodynamical Solvers

There are two main types of numerical methods for following the evolution of fluid

flow, these are Eulerian and Lagrangian. Eulerian methods discretise a fixed volume

of fluid and model the fluid properties at points on the regular mesh. The locations

of the mesh cell are fixed in the Eulierian scheme. Conversely in Lagrangian schemes

the fluid is divided into mass elements, typically referred to as particles, which store

the fluid properties. In a Lagrangian scheme, the movement of the mass elements

is explicitly tied to the fluid flow. There are many advantages and disadvantages

to both methods. In the context of cosmological simulations the main advantages

of the Langrangian scheme are that the local resolution of the simulation follows

the mass flow, meaning that higher density regions are naturally resolved by more

mass elements. It also advantageous to treat the fluid as particles, as this allows

the fluid to easily be gravitationally coupled to the dark matter component, which

is also generally modelled with particles. Conversely, the Eulerian technique is im-

plicitly better at capturing shocks and instabilities, a common occurrence in galaxy

formation.

The Eagle simulations used in this thesis use the Gadget-3 solver which uses a La-

grangian technique, namely smoothed particle hydrodynamics (SPH). In SPH, fluid

elements are represented by particles about which their mass is distributed according

to a kernel function. The Eagle simulations use the Hopkins (2013) formulation of

pressure-entropy SPH, which defines the thermodynamic state of particles in terms

of pressure and entropy and ensures that pressure varies smoothly across disconti-

nuities. SPH is non-diffusive, therefore to model the mixing of different phases of

gas and the transfer of heat between particles it implements the thermal conduc-

tion switch of Price (2008) and it also includes artificial viscosity following Cullen &

Dehnen (2010) in order to capture shocks. This combination of numerical methods

are generally known as ANARCHY (Schaye et al., 2015).

The Auriga simulations use Arepo which employs a semi-Lagrangian scheme. In

the Arepo hydrodynamic solver the fluid is followed in an unstructured mesh con-
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structed from a Voronoi tessellation of a set of mesh-generating points which then

allow a finite-volume discretisation of the magneto-hydrodynamic equations. The

mesh generating points can move with the fluid flow. Mesh simulations typically use

a Riemann solver method to calculate the cell fluxes of all of the conserved quan-

tities of the fluid. This moving mesh property reduces the flux between cells, thus

reducing the advection errors that afflict fixed mesh codes. The use of the mesh

eliminates the need for artificial viscosity to capture shocks, as is used in most SPH

codes (including Eagle).

2.4 Subgrid models

Hydrodynamical simulations of galaxy formation must model of processes such as gas

cooling, star formation, supernovae and AGN feedback as discussed in Section 1.2.

However, many of these processes occur on length and mass scales that are much

lower can be resolved by modern simulations. For example, in the Eagle simulations

the mass of a baryonic element is of order ∼ 106 M⊙, thus it is not possible to

include a complete, resolved model of stars (like the Sun) with masses that are a

million times smaller than this. Therefore, these physics processes are included in the

simulations via the inclusion of a sub-resolution model, which attempts to faithfully

model the effects of these processes on much larger scales. Subgrid models are often

based on analytical predictions, physical arguments or empirical laws obtained from

observations. The subgrid models used in this thesis have a variety of free parameters

which can be tuned to reproduce some properties of the real Universe.

Both the Auriga and Eagle galaxy formation models include a variety of sub-

resolution baryonic physics relevant to galaxy formation such as radiative gas cool-

ing (Wiersma et al., 2009), star formation (Schaye & Dalla Vecchia, 2008), metal

enrichment (Wiersma et al., 2009), black-hole seeding, active galactic nuclei (AGN)

feedback (Springel, 2005; Rosas-Guevara et al., 2015) and feedback from stellar evo-

lution (Dalla Vecchia & Schaye, 2012). The subgrid physics model has several pa-

rameters which can be tuned to reproduce a subset of present-day observational
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properties such as the stellar mass function, the size distribution of disc galaxies

and the relationship between galaxy stellar mass and central black hole mass. It

is important to note that, in general, the gas properties of the simulations are not

tuned to match any observations and, as a result they are genuine predictions of

the galaxy formation models. This section will describe three of the most important

sub-resolution baryonic physics: gas cooling in Section 2.4.1, star formation and SNe

feedback in Section 2.4.2 and finally, blackhole seeding, growth and AGN feedback

in Section 2.4.3.

2.4.1 Cooling

Gas cooling is arguably the most important process in the formation of galaxies. As

outlined in Section 1.2, gas which falls into massive dark matter halos must cool

to form galaxies in the centre. Gas cooling is where gas dissipates its energy via

radiative cooling.

The radiaitve cooling in most hydrodynamical gas simulations uses look up tables

to go from gas with particular temperature and metallicity to a cooling rate. This

use of look up tables significantly reduces the computational expense of performing

these calculations on the fly. The radiative cooling in both Eagle and Auriga

uses the publicly available CLOUDY model (Ferland et al., 2013), which includes

both primordial and metal line cooling in the temperature range 104 − 108 K. The

contributions to cooling of 11 elements (H, He, C, N, O, Ne, Mg, Si, S, Ca and Fe)

are tabulated as a function of hydrogen number density, temperature and redshift

(Wiersma et al., 2009). The abundance of the 11 elements important to cooling are

self-consistently evolved through the simulations, and are injected into the gas via

metal enrichment from stellar evolution and supernovae. While Auriga also tracks

the abundance of each element most important in cooling, the implementation of

cooling is not undertaken on an element-by-element basis. This is because there is

little difference in relative abundances from solar abundances, thus the computational

overhead is not worthwhile. Instead, the metal-line cooling rates are based on the
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rates of gas with solar composition and scaled linear with the metallicity of the gas.

See Vogelsberger et al. (2013) for more detail on the cooling in Auriga.

In both simulations the cooling tables assume the gas is an optically thin plasma

in collisional ionisation equilibrium. The cooling rates also assume the gas is pho-

toionised and include a simple time-varying UV/X-ray background from galaxies and

quasars. Eagle and Auriga use different UV/X-ray background models, but for

the MW-mass galaxies studied in Chapter 4 the differences are not important.

2.4.2 Stellar formation and feedback

The prescription for energy injection from SNe feedback is critically important as SNe

can deposit large amounts of thermal and kinetic energy into the gas immediately

surrounding the galaxy. Observations show that the energy feedback from SNe can

heat the gas to temperatures, T ≥ 107 K, which is hot enough to contribute to the X-

ray luminosity within the galactic halo (Strickland & Heckman, 2007). Observations

suggest that this hot gas is also able to drive winds via conversion of thermal to

kinetic energy, which can propagate to large radii enriching and heating material

(Rupke, 2018). As it is not currently possible to resolve individual stars or SNe

within large volume cosmological simulations; instead, a single stellar particle of

mass, ≈ 106 M⊙, represents a population of stars. The simulations then require a

prescription for energy deposition and metal enrichment from each star particle onto

the surrounding gas which is tuned in order to reproduce a variety of observed galaxy

properties.

Traditionally, hydrodynamical simulation codes have injected the energy from SNe

events within a single stellar population (SSP), represented by a star particle, over a

large mass of gas (Schaye & Dalla Vecchia, 2008; Creasey et al., 2011; Keller et al.,

2014). For a standard stellar initial mass function (IMF) there is ≈ 1 supernova per

100 M⊙ of initial stellar mass. Assuming the energy from SNe within this SSP is

injected into a mass of gas equal to the initial stellar mass formed leads to high initial

temperatures for the gas, T ≥ 107 K. In the case where the same amount of energy
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is distributed over a much larger mass of gas, the temperature increase experienced

by the gas will be much lower, which reduces the cooling time. If the cooling time is

significantly shorter than the sound-crossing time of the gas, the energy injection is

no longer able to drive winds efficiently. Schaye & Dalla Vecchia (2008) showed that

in this case, simulations are unable to reproduce observed star-formation rates and

stellar masses of galaxies. There are several different SNe energy injection techniques

that have been used to address this ‘over-cooling’ problem, including injecting energy

in kinetic form, depositing the energy thermally while disabling radiative cooling for

a short period and dumping the energy both thermally and kinetically (e.g. Navarro

& White, 1993; Hernquist & Springel, 2003; Schaye & Dalla Vecchia, 2008).

In the Apostle simulations all the SNe energy from an SSP is injected in the form

of thermal energy (Schaye et al., 2015). Rather than distributing the energy evenly

over all of the neighbouring gas particles, the energy is injected into a small number

of neighbours stochastically (Dalla Vecchia & Schaye, 2012). This method allows the

energy per unit mass, which corresponds to the temperature change of a gas particle,

to be defined. In these simulations each gas particle heated by SN feedback is always

subject to the same temperature increase, ∆TSN = 107.5 K.

The SNe feedback scheme in the Auriga simulations consists of an initially decou-

pled wind whose main free parameters are the energy available per unit mass of

SNII and the wind velocity. The wind velocity scales with the 1-dimensional velocity

dispersion of local dark matter particles. Qualitatively, SNe winds are modelled by

‘wind particles’ which are launched in an isotropic random direction carrying mass,

energy, momentum and metals. Upon launch, the wind particles are decoupled from

hydrodynamic forces and experience only gravity. The wind particles can recouple

either when they reach a region of low-density gas (5% of the star-formation density

threshold) or when they exceed a maximum travel time (0.025 of the Hubble time at

launch). When the wind recouples, it deposits energy, momentum and metals into

the gas cells it intersects.
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2.4.3 Black holes and AGN feedback

The formation and growth of black holes is still very uncertain. Furthermore, the

detailed evolution of their accretion discs occurs on mass and length scales well below

the resolution of cosmological simulations. Therefore, these processes must also be

treated with subgrid prescriptions. In both the Eagle and Auriga simulations

black hole (BH) seeds are placed at the centre of Friends of Friends (FoF) groups

with a mass greater than a critical value that do not already contain a BH. The rate

of gas accretion by BHs is modelled using the local gas density, velocity and angular

momentum, along with the mass of the BH. Both simulations apply techniques to

ensure the BH remains at the centre of the halo as the resolution of the simulations

are not sufficient to accurately resolve the dynamical friction. As the black holes

accrete mass they are able to build up a reservoir of energy which can then be

injected into the surrounding gas in form of AGN feedback.

In Eagle as the BH accretes gas, it accumulates a reservoir of energy equal to

the energy of the gas mass accreted multiplied by the radiative efficiency, which is

taken to be 10%. When the BH has stored sufficient energy, it can stochastically

increase the temperature of some of the neighbouring gas particles by a temperature

of ∆TAGN. In the standard Eagle simulations, the surrounding gas particles are

subject to a temperature change of ∆TAGN = 108.5 K; however this can be varied.

A lower temperature change means particles are heated more often, a (higher) tem-

perature change, less often. As the change in temperature is fixed, the black holes

must build up a sufficient amount of energy before they can inject energy.

The black holes in Auriga model the feedback from the AGN to the surrounding gas

with two modes, a quasar- and a radio-mode. As in Eagle the energy injection rate

from AGN feedback is proportional to the mass of gas accreted, but the feedback

is injected in two modes. Feedback associated with the quasar mode is injected

via a thermal energy increase, heating gas cells neighbouring the BH. In the radio

mode, feedback stochastically heats bubbles of gas at randomly placed locations,

with probability following an inverse square distance profile in the range of (0.15−1)

of the virial radius, around the black hole. The bubbles are a fixed size relative to
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the virial radius of the halo. The AGN model used in the Apostle simulations in

this work differs slightly from the reference model in Schaye et al. (2015). Namely,

in this work the AGN model uses a viscosity which is hundred times lower than the

reference model this reduces the accretion rate and growth of the black holes. This

model is referred to as ‘ViscLo‘ in Crain et al. (2015). In Section 4.9 we discuss the

impacts of the different AGN models on our results.

2.5 Calculating mock observables

Cosmological hydrodynamical galaxy simulations generate an abundance of data

which can be explicitly extracted and analysed. However, it is very difficult to com-

pare some of these properties with the real Universe as they not directly observable.

Instead, a powerful method is to generate mock observables directly from the sim-

ulations. We describe the calculation of X-ray emission Section 2.5.1, ion column

densities in Section 2.5.2 and finally the dispersion measure (DM) in Section 2.5.3.

2.5.1 Computing the X-ray emission

The X-ray emission of galactic gas coronae is calculated in post-processing. The X-

ray luminosity of each gas particle is calculated independently using the precomputed

lookup tables from the Astrophysical Plasma Emission Code APEC 3.0.1 data

(Smith et al., 2001; Foster et al., 2012). The data assumes that the gas is an optically

thin plasma in collisional ionisation equilibrium. The total cooling rate is computed

for individual elements as a function of photon energy. The total cooling rate per

element is computed by integrating over a given range of photon energies, 0.5 −

2.0 keV. We then calculate the total cooling rate by summing the overall contribution

of each element,

ΛX =
∑

i

XiΛX,i , (2.5.1)
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where Xi is the ratio of the element abundance in the gas relative to the solar

abundance, ΛX,i is the cooling rate of the gas in the X-ray band, 0.5 − 2.0 keV

(hereafter, soft X-ray), assuming solar abundances, and ΛX is the total soft X-ray

luminosity. We use the solar abundances of Anders & Grevesse (1989) to normalise

the abundances in our simulations.

The summation in Eq. 2.5.1 is performed over nine elements: hydrogen, helium, car-

bon, nitrogen, oxygen, neon, magnesium, silicon and iron, which are independently

tracked within the simulation. The total X-ray luminosity from the hot halo is the

sum of the X-ray emission of all the particles within a given spatial region. This X-

ray calculation does not include contributions from non-gaseous X-ray sources within

galaxies, e.g. X-ray binaries. The effect of these sources is discussed when comparing

to suitable datasets.

We calculate the projected coronal soft X-ray luminosity around a galaxy in the

following way. We select all gas particles within a sphere of radius, R200, centred

on the centre-of-mass of the halo. The total X-ray emission is then calculated by

summing the X-ray emission from all the gas particles within a 2D annulus through

the sphere.

The APEC software, used to generate the X-ray luminosity emission tables, was not

used to generate the emission tables used for calculating cooling rates within the

simulations; instead, the simulations used tables generated by CLOUDY. This use

of two different emission tables can lead to an error in the computations of X-ray lu-

minosities. For example, if the APEC emission tables predict higher emissivity than

CLOUDY, then the X-ray luminosity will be overpredicted since a self-consistent

simulation using the APEC cooling tables would have less gas at the same density

and temperature due to the faster cooling. This effect is not important for gas with

long cooling times, but it may be significant for gas with shorter cooling times. We

expect this to be a small effect in this work as the X-ray emission is dominated by

hotter, slower cooling gas ≈ 106 K.

In Fig. 2.1 we plot the cooling function from all ions assuming primordial abundance

as well as metallicities Z⊙, 0.1Z⊙ (Anders & Grevesse, 1989), as a function of tem-
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Figure 2.1: The black-solid, grey-dashed and grey-dotted lines show the cooling func-
tion in the (0.5−2.0) keV (left) and (0.1−50) keV (right) band from all ions, assuming
a metallicity of 0.1Z⊙, Z⊙ and the primordial value (Anders & Grevesse, 1989), as a
function of temperature using the AtomDB v3.0.1 code. The approximation, Λ ∝ T ,
to the soft X-ray cooling function is shown by the dashed-blue line for Z = 0.1Z⊙.

perature using the AtomDB (v3.0.1) in the two energy bands (0.1 − 50) keV and

(0.5 − 2.0) keV. We also show an approximation to the total soft X-ray cooling func-

tion for Z = 0.1Z⊙. In general, we find that the behaviour of the cooling function in

the (0.5−2.0) keV energy band can be well described by a simple power law relation

Λ ∝ T for T ≈ (106 − 107) K and Λ = const for T ≈ (107 − 108) K.

These approximations do not adequately capture the rapid increase in the cooling

function at a temperature of T ≈ 106 K. They also do not appropriately model

the flattening of the soft X-ray cooling function at temperatures above 107 K, which

is due to a significant fraction of the photons having energies outside the selected

range. In general, these inadequacies have little impact in the halo mass range,

1012 −1013.5 M⊙, in which we apply these approximations. The right panel of Fig. 2.1

shows that a power law can describe well the cooling function in the (0.1 − 50) keV

band over an even broader range of halo mass; however, there is limited observational

data in that energy band.

A variety of observational estimates of the metallicity of gaseous coronae have yielded

values of Z ≈ 0.1Z⊙. This is consistent with the hot halo gas metallicity we find

in the Eagle simulations and in previous hydrodynamic simulations (e.g. Crain

et al., 2010). It may be seen in Fig. 2.1 that the slope of the cooling function is

largely independent of the metallicity which, however, has a larger effect on the
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normalisation. Therefore the metallicity of the gaseous corona is unimportant, as

long as it does not vary significantly with halo mass.

2.5.2 Ion number densities

We calculate column densities of several ionised species following Wijers et al. (2019).

The total number of ions, NXi
, of each species in a given mass of gas is given by,

NXi
= mXfXi

mZ

, (2.5.2)

where mX is the total mass of element X, fXi
is the ionization fraction of the ith ion,

mZ is the mass of an atom of element X and Z is the atomic number of the ionized

element.

We calculate the ionisation fraction of each species using the lookup tables of Hum-

mels et al. (2017). These are computed under the assumption of collisional ionisation

equilibrium (CIE). They only consider radiation from the metagalactic UV back-

ground according to the model of Haardt & Madau (2012) in which the radiation

field is only a function of redshift. The lookup tables are generated from a series of

single-zone simulations with the photoionisation code, cloudy (Ferland et al., 2013)

and the method used for the “grackle” chemistry and cooling library (Smith et al.,

2016). The ion fractions are tabulated as a function of log temperature, log atomic

hydrogen number density and redshift.

In both Apostle and Auriga the masses of some elements are tracked within the

code; these are hydrogen, helium, carbon, nitrogen, oxygen, neon, magnesium, silicon

and iron. We calculate the number of species of each element from Eq. 2.5.2 with the

total mass of each element as tracked by the code, and the calculated mass fraction

of each species state. We can then make 2-dimensional column density maps of each

species by smoothing the contribution from each gas particle onto a 2D grid with

a two-dimensional SPH smoothing kernel. We make these 2D maps by projecting

through each of the x, y and z axis. We then separate the 2D maps, which cover a

region of (8 × 8) R200, into 100 annuli with linearly spaced radii. In each annulus,
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we have many lines-of-sight through the halo. We then take the column density

at radius, r, to be the median column density calculated within the annulus that

encloses the radius, r, for all three projected maps. We choose to use the median

as it is more representative of a single random line-of-sight through a halo in the

real universe. However, the mean value, which is often significantly higher, is also of

interest as observed values can be biased by the detection thresholds of instruments.

Apostle and Auriga use different yield tables when calculating the fraction of

different elements returned from SNIa to the ISM. These yield tables typically differ

by < 20% for the species considered in this work. However, these difference are

negligible in the results presented in Section 4.8.1, which span many orders of mag-

nitude. It is possible to normalise these yield fractions in post-processing, but we

choose to use the simulation tracked quantities are they are self-consistent with the

gas cooling.

2.5.3 The dispersion measure

Fast radio bursts (FRBs) are bright pulses of radio emission with periods of order

milliseconds, typically originating from extragalactic sources (see review by Cordes

& Chatterjee, 2019). The first FRB, which was reported by Lorimer et al. (2007),

was found in archival data from the 64 m Parkes radio telescope. By 2019, there were

over 80 distinct FRB sources reported in the literature (see review by Petroff, 2017).

In the next few years, these FRB catalogues will grow by orders of magnitude with

current and future surveys detecting thousands of events per year (Connor et al.,

2016).

As radiation from an FRB propagates through the intervening gas, the free electrons

in the gas retard the radiation. As the retardation of the radiation is frequency

dependent, this process disperses the FRB pulse, thus producing a measurable time

delay between the highest and lowest radio frequencies of the pulse. The dispersion

measure quantifies this time delay. The dispersion measure, from observations of the
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photon arrival time as a function of frequency, is given by,
∫

(1 + z) ne dr , (2.5.3)

which provides an integral constraint on the free electron density, ne, along the line-

of-sight from the observer to the source, where dr is the path length in comoving

coordinates. The free electron density and the radiation path in Eq. 2.5.3 are also in

comoving units. The dispersion measure will include contributions from free electrons

in the IGM (Zheng et al., 2014; Shull & Danforth, 2018), our galaxy, the Local

Group, the galaxy hosting the FRB and baryons residing in other galactic haloes

which intersect the sightline (McQuinn, 2014). As such, FRBs provide a possible

way to investigate the presence of baryons that are difficult to observe with other

methods.

In hydrodynamical simulations, we can calculate contributions to the dispersion mea-

sure from both the ISM and the hot halo of MW-like galaxies, and investigate the

model dependence. The electron column density can be calculated for sightlines in a

similar way to that described in Section 4.8.1 below. We calculate the number of free

electrons for each gaseous particle or cell in the simulations by computing the num-

ber density of H ii, He ii and He iii, which dominate the total electron density; these

calculations again utilise the ion fraction lookup tables of Hummels et al. (2017).



Chapter 3

Origin of simulated X-ray coronae

3.1 Introduction

Several methods can be used to probe the hot gas surrounding galaxies, such as

observations of the thermal Sunyaev-Zel’dovich (SZ) effect (Sunyaev & Zeldovich,

1970; Vanderlinde et al., 2010; Planck Collaboration et al., 2013; Anderson et al.,

2015) and X-ray emission, on which we focus in this work. In the analytic model

of White & Frenk (1991) the typical temperature of the gaseous atmosphere is T >

106 K in a halo of mass, 1012 M⊙. Therefore, the atmosphere radiates as it cools

through line-emission and continuum, with significant emission in the soft X-ray

energy band, 0.5 − 2.0 keV (see Putman et al., 2012, for a recent review).

The first attempts to detect soft X-ray emission from hot, gaseous, coronae around

nearby, late-type galaxies were made with the ROSAT X-ray satellite, but no con-

vincing evidence for it was found (Benson et al., 2000). These observations instead

provided upper limits for the X-ray luminosity of the coronae, which were almost

two orders of magnitude lower than the analytical predictions of White & Frenk

(1991). The origin of the overestimate can be traced back to the assumption in that

paper that the gas has an isothermal density profile whereas, as found by Crain et al.

(2010) in the GIMIC cosmological hydrodynamics simulations, the gas is more dif-

fuse due to the removal of low entropy gas by star formation and, most importantly

27
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on galactic scales, energy injection from supernovae

Advances in X-ray detector sensitivity in the XMM-Newton and Chandra telescopes

led to the first detections of diffuse X-ray emission around nearby, late-type galaxies

(Strickland et al., 2004; Wang et al., 2005; Tüllmann et al., 2006; Li et al., 2007;

Owen & Warwick, 2009; Sun et al., 2009). While detections of diffuse, X-ray coronae

are now commonplace, a variety of studies have found that they appear as thick discs

(Strickland et al., 2004), trace galactic outflows of Hα (Tüllmann et al., 2006), and

have total luminosities that correlate strongly, and positively, with the recent star-

formation rate (Li & Wang, 2013b). Highly star-forming galaxies, such as M82, also

exhibit filamentary X-ray structures above, and below, the galactic plane (Strickland

et al., 2004; Li & Wang, 2013a). These observations and inferred correlations suggest

that the dominant source of the X-ray emission around local disc galaxies is gas

heated by supernovae (SNe) feedback1, rather than gas cooling from an accreted

quasi-hydrostatic atmosphere. This interpretation, however, is in conflict with more

recent deep XMM-Newton observations of NGC 6753 (Bogdán et al., 2017), NGC

1961 (Anderson et al., 2016) and NGC 891 (Hodges-Kluck et al., 2018). These data

provide compelling evidence for the existence of hot, low-metallicity atmospheres of

gas that are consistent with accretion from the IGM and subsequent shock-heating to

the virial temperature of the halo. Nevertheless, the source of X-ray emission around

late-type galaxies, like the Milky Way (MW) and M31, remains controversial.

A further important unknown is the mass fraction in hot atmospheres. In galaxy

clusters, the halos are almost ‘baryonically closed’ (White et al., 1993; Vikhlinin

et al., 2006; Pratt et al., 2009; Lin et al., 2012), such that their baryon-to-dark-

matter mass ratios within the virial radius are approximately equal to the mean

cosmic ratio, fb = ρb/ρm, where ρb and ρm are the baryonic and total matter density

of the universe, respectively. This ratio is taken to be 0.157 (Planck Collaboration

et al., 2013). However, the baryon fractions of halos around L∗ galaxies, appear to

be much lower than this and thus a significant fraction of the baryons appear to be

1We follow the incorrect, but now common usage of the word “feedback” to refer to the energy
emitted by supernovae or by AGN.
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‘missing’ from the haloes (Bregman et al., 2018). In this chapter we also study the

gas fraction of halos, fgas, which we define as the ratio of the mass of hot gas to halo

mass, normalised by the mean cosmic baryon fraction, fb. Galaxy halos also contain

cold and warm, which is detectable in absorption studies of galaxies (Tumlinson

et al., 2017), however in the halo mass range we focus on, hot gas dominates the

total baryonic mass.

In this chapter, we use the large volume, cosmological hydrodynamical simulation

suite EAGLE (Schaye et al., 2015; Crain et al., 2015; McAlpine et al., 2016) to probe

the origin, mass and X-ray properties of the hot gaseous atmospheres surrounding

present-day disc galaxies. We use the simulations to investigate the relative con-

tributions of the accreted shocked-heated gas and winds heated by feedback to the

X-ray luminosity, LX, of hot gas atmospheres. We then compare the soft X-ray scal-

ing relations LX − Mvir and LX − Mstar for a large sample of simulated disc galaxies

with observational data over a wide range of halo masses, (1011 − 1015) M⊙. We

further examine the effect of the varying gas fraction of halos on the slope and the

normalisation of the LX − Mvir relation.

The EAGLE simulations have previously been shown to reproduce a wide range of

observations of real galaxies, such as low-redshift hydrogen abundances (Lagos et al.,

2015; Bahé et al., 2016), evolution of galaxy stellar masses (Furlong et al., 2015) and

sizes (Furlong et al., 2017), star-formation rates and colours (Trayford et al., 2015,

2017) along with black hole masses and AGN luminosities (Rosas-Guevara et al.,

2016).

The chapter is structured as follows. In Section 3.2 we discuss the simulations, the

selection of our simulated disc galaxy sample, and present analytic predictions for the

LX−Mvir relation. In Section 3.3 we perform a baryon census of the EAGLE reference

simulation. We then investigate the origin of the X-ray emission in Section 3.4.1 and

attempt to understand how this depends on both the spatial region around the galaxy

and the halo mass. In Section 3.4.4 we compare the results of the simulations to a

range of observational data. We further investigate the effects of AGN feedback

on the X-ray and gas properties of halos by comparing simulations with differing
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AGN models. In Section 3.4.2 we investigate the LX − Mvir scaling relations in the

EAGLE simulations and compare them to our analytical predictions. In Section 3.5

we discuss how to infer the gas fractions of halos from the measured LX − Mvir

relation. Section 3.6 we introduce the “missing feedback” problem and use high

cadence simulation outputs to identify the physical origin in the simulations, before

concluding in Section 3.7.

3.2 Methods and background

3.2.1 Numerical simulations

We make use of the large volume cosmological hydrodynamical simulations, EAGLE

(Evolution and Assembly of GaLaxies and their Environments, Schaye et al., 2015;

Crain et al., 2015; McAlpine et al., 2016), to follow the evolution of galaxies and

their gaseous atmospheres. The EAGLE simulations adopt a ΛCDM cosmology

with the parameters of Planck Collaboration et al. (2013) listed in Table 1 of Schaye

et al. (2015). The EAGLE simulations used in this thesis are briefly described in

Chapter 2, and a more detailed description can be found in Schaye et al. (2015).

In this work, we use several of the EAGLE simulations, described in Table 3.1. We

focus on the largest volume simulation, Ref-L100N1504, which uses the EAGLE

reference subgrid physics model. This simulation is of a periodic cube of side length

100 cMpc, populated with N = 15043 collisionless dark matter particles and an

equal number of baryonic particles. The impact of AGN feedback is investigated

by using two variants of the reference simulation. In the NoAGN simulation the

AGN feedback has been disabled, whereas, in the AGNdT9 simulation, the AGN

feedback has been modified such that each feedback event leads to a temperature

change of ∆TAGN = 109 K. The remainder of the physical parameters, including mass

resolution, remain the same. Further details of these different EAGLE simulations

may be found in Crain et al. (2015).
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Name N Mass Box Size ∆ TAGN
units M⊙ cMpc K
Ref-L100N1504 15043 1.81 × 106 100 108.5

NoAGN-L050N0752 7523 1.81 × 106 50 -
AGNdT9-L050N0752 7523 1.81 × 106 50 109.0

Table 3.1: Parameters of the EAGLE simulations analysed in this work. The columns
are the name of the simulation, the number of dark matter particles (which is initially
equal to the number of gas particles), initial gas particle mass, the length of the side
of the box, and the temperature change induced by AGN feedback, if AGN feedback
is enabled. The runs are named such that the prefix, e.g., ‘Ref‘ refers to the subgrid
physics parameters followed by LXXXNYYYY where XXX is the side-length of the
cube in Mpc and YYYY 3 is the number of dark matter particles.

3.2.2 Halo and galaxy identification

In this section we describe the procedure to identify galaxies in the EAGLE simula-

tions at redshift, z = 0. We also describe the morphological criteria that we employ

to select only galaxies with significant disc components.

Dark matter halos are identified using a Friends-of-Friends (FoF) algorithm with

a linking length of 0.2 times the mean dark matter interparticle separation (Davis

et al., 1985). The gas, stars and BHs are associated with the FoF group of their

nearest dark matter particle if it belongs to a FoF group. The constituent self-bound

substructures (subhalos) within a FoF group are identified using the SUBFIND

algorithm applied to both dark matter and baryonic particles (Springel et al., 2001;

Dolag et al., 2009).

In this work we focus on centrals, which are the central galaxies in a dark matter

halo. These are identified as the most massive individual subhalos with a centre of

mass lying within a 20 proper kpc (pkpc) radius of the centre-of-mass of the host

FoF group. If no such subhalo exists within the FoF group, we discard the halo.

We further require that galaxies be subhalos containing at least 500 star particles,

in order to ensure we have a large sample of star particles to use for morphological

classification.

We compute the spherical overdensity mass (Lacey & Cole, 1994) of each FoF halo



3.2. Methods and background 32

about the deepest particle within the potential of the halo. We define the halo radius

to be the spherical radius within which the mean enclosed density is ∆ times the

critical density of the universe, ρc. We generally adopt ∆ = 200 to define virial

quantities but we also use ∆ = 500 in some analyses to allow a more appropriate

comparison to the observational data of Anderson et al. (2016).

3.2.3 Morphological and isolation selection

We characterise the morphology of galaxies by means of the κrot parameter intro-

duced by Sales et al. (2012). The parameter is defined as,

κrot = 1
K

∑ 1
2m

ji,z

Ri

2

, (3.2.1)

where K is the total kinetic energy of the stellar particles, m is the mass of each

stellar particle, ji,z is the z-component of the specific angular momentum, Ri is the

2D projected radius from the z-axis and the sum is performed over all stellar particles

within the galaxy. The galaxy is oriented such that the total angular momentum of

all stellar particles within the galaxy lies along the z-axis. We consider all stellar

particles within a spherical radius of 30 pkpc around the most bound stellar particle

to be associated with the galaxy. In general κrot ≈ 1 for discs with perfect circular

motions, whereas κrot ≈ 1/3 for non-rotating systems. A visual inspection of the

stellar projections, both edge- and face-on, of galaxies in Sales et al. (2012) suggests

that κrot ≥ 0.50 corresponds to galaxies that exhibit clear disc morphology.

We also apply an isolation criterion to the sample of disc galaxies analysed. We only

select galaxies in halos which do not intersect a sphere of radius, 3R200, spanned

by any of their neighbouring halos. These galaxies are undesirable as their X-ray

emission is often dominated by the hot gas associated with their (more) massive

neighbours.

We can increase the stringency of the disc criterion by increasing the required thresh-

old value of κrot, but in this work, we define disc galaxies to be those with κrot ≥ 0.50;

this results in a sample of ≈ 5000 disc galaxies in the fiducial simulation, Ref-
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L100N1504. Increasing κrot further reduces the size of our sample significantly, but

does not change our main results; decreasing the value leads to the selection of a

large number of galaxies that have no observable disc component in projection, e.g.

elliptical and irregular galaxies which would not be appropriate for comparison with

most of the observational samples considered here.

Galaxies with halo mass, ≥ 1012.5 M⊙, are not subject to any morphological crite-

rion. This is because very few halos of this mass host disc galaxies in EAGLE and

the primary observational data to which we compare in this mass range makes no

selection for disc galaxies.

3.2.4 LX − Mvir relation

For gas in hydrostatic equilibrium in a dark matter halo, LX ∝ Mα
vir. If the bolometric

X-ray emission is dominated by thermal bremsstrahlung radiation, halos have a

constant gas fraction, and the gas density profiles are self-similar, then the slope of

the scaling relation has the classical value, α = 4/3 (Kaiser, 1986; Sarazin, 1986).

However, in the halo mass and energy range considered in this work, the first two of

these assumptions are not valid.

We can derive the scaling relation in the halo mass range, 1012.0 − 1013.5 M⊙, and

energy band, 0.5 − 2.0 keV, following the work of Böhringer et al. (2012):

LX ∝ f 2
gasΛ(Tvir)Mvir , (3.2.2)

where fgas is the gas fraction of the halo normalised by the cosmic baryon to total

mass ratio; Λ(Tvir) is the cooling function of the gas as a function of the virial

temperature, Tvir; and Mvir is the virial mass 2 In the halo mass range, 1011.5 −

1013.5 M⊙, the cooling rate, ΛX, is approximately proportional to the temperature

of the gas, as demonstrated in Section 2.5.1. As the virial temperature scales as

Tvir ∝ M
2/3
vir , then Λ ∝ M

2/3
vir . In the case when the baryon fraction can be expressed

2We use the term “virial mass” to refer to both M200 and M500 but the distinction should be
clear in the appropriate context. These quantities scale proportionally and agree to within 10%.
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as a power law, fgas ∝ Mβ
vir, Eq. 3.2.2 simplifies to,

LX ∝ Mα
vir

∝ f 2
gasM

5/3
vir

∝ M2β
virM

5/3
vir ∝ M

5/3+2β
vir .

(3.2.3)

This derivation assumes that the halo gas is at the virial temperature of the halo and

that the gas density profiles are self-similar as a function of halo mass. We explore

the validity of these assumptions in Section 3.4.3. It is often common to consider

the X-ray luminosity as a function of stellar mass, e.g. LX ∝ Mα∗
star.

When the gas fraction is constant as a function of halo mass, the slope of the LX−Mvir

relation is α = 5/3. The increased steepness, compared to the classical self-similar

prediction, α = 4/3, is due to the scaling of the cooling function in this halo mass

range and energy band considered. It is also clear from Eq. 3.2.3 that an increase in

the halo gas fraction, fgas, with increasing halo mass, will result in a steeper slope

for the LX − Mvir relation.

3.3 Baryon census

The baryon fraction of our sample of disc galaxies is shown in Fig. 3.1 as a function

of halo mass. Here, we plot the baryon fraction of stars, cold gas (T ≤ 5 × 105 K),

hot gas (T > 5 × 105 K) and total baryons. The distinction between hot and cold

gas is motivated in Section 2.5.1, where we show the X-ray cooling function as a

function of gas temperature. In general, gas below a temperature of 5 × 105 K has

negligible X-ray emission in the energy band range, 0.5 − 2.0 keV, on which we focus

in this work.

Fig. 3.1 demonstrates that the baryon content of low-mass halos, M200 < 1012 M⊙,

is dominated by stars and cold gas. The total baryon fraction within these halos

is much lower than the mean cosmic baryon-to-dark matter ratio. This low baryon

fraction is the consequence of the efficient feedback which heats gas and can eject it

to distances well beyond the virial radius of the halo (Schaller et al., 2015b; Mitchell
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Figure 3.1: The baryon fraction of a sample of disc galaxies, selected from the
EAGLE (100 Mpc)3 reference model, Ref-L100N1504, as a function of the halo mass
at redshift z = 0. The values are normalised to the mean baryon fraction of the
universe, fb. The lines show the median, in mass bins of 0.20 dex, of the baryon
fraction of stars, cold gas (T < 5 × 105 K), hot gas (T > 5 × 105 K) and all baryonic
particles in green, blue, red and black respectively. In bins with less than five objects,
we show the results as individual crosses. The shaded bands enclose the 15th and
85th percentiles.

et al., 2019). In low mass halos we see a negligible contribution of mass from hot

gas. This is not surprising since even if these halos hosted gaseous halos of accreted

gas, their typical temperature would be ≤ 5 × 105 K, which we classify as cold gas.

Since our sample of galaxies was selected to be isolated, dynamical interactions, such

as stripping, should not affect the baryon content of the halos.

As the halo mass increases above a critical mass, M200 ≈ 1012 M⊙, we find a rapid

increase in the contribution of hot gas and in the total baryon fraction. The increase

in the amount of hot gas is due to the virial temperature of the halos increasing to a

value that exceeds the threshold for our definition of hot gas, 5×105 K. The increase

in total baryon fraction is likely due to the deepening of the gravitational potential

well of the halo, which increases its ability to retain gas heated by feedback. As

the halo mass increases further, to ≈ 3 × 1012 M⊙ and above, the hot gas becomes

the predominant mass component within the halo. The cooling time of the accreted

gas is now so long that, after shock-heating, the gas forms a hot, quasi-hydrostatic
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atmosphere at (approximately) the virial temperature of the halo (Larson, 1974;

White & Rees, 1978; White & Frenk, 1991).

In the EAGLE simulations, the feedback efficiencies of SN and AGN, which regulate

the stellar mass and halo baryon fractions, cannot be predicted from first principles.

As discussed in Section 3.2, adjustable parameters are calibrated to match observed

present-day galaxy properties, such as the galaxy stellar mass function. The sim-

ulations also broadly reproduce the stellar-to-halo mass relationship inferred from

abundance matching (Behroozi et al., 2013; Moster et al., 2013). However, EAGLE

slightly underpredicts the stellar mass at low halo mass and slightly overpredicts it at

high stellar mass (see Fig. 8 of Schaye et al., 2015). In contrast to the galaxy stellar

mass function, the baryon fraction of halos are direct, non-calibrated predictions of

the subgrid physics model.

Unfortunately, the gas fractions in real halos, at a given halo or stellar mass, are

uncertain. Previous studies of hot gas in the Milky Way have suggested that the

mass of hot gas within the virial radius ranges between (2 − 13) × 1010 M⊙ (Nicastro

et al., 2016), with various other estimates falling within this large range (Gupta et al.,

2012; Faerman et al., 2017; Bregman et al., 2018). These constraints suggest that hot

gas can account for a fraction between (10−100)% of the baryon budget of the MW.

In higher mass objects, e.g. clusters, the baryon fractions are better constrained and

the hot gas makes up between (70 − 100)% of the total baryon budget (Vikhlinin

et al., 2006; Pratt et al., 2009; Lin et al., 2012). The results of Fig. 3.1 are consistent

with current observational constraints.

3.4 The X-ray luminosity

Fig. 3.1 shows that galaxies in halos of mass ≥ 1012 M⊙ in the EAGLE simulations

are surrounded by hot gaseous coronae. While these gaseous atmospheres make up

the majority of the hot gas mass in the halo, it is not clear whether they are the

primary source of X-ray emission in these halos. Winds driven by feedback may

dominate the X-ray emission as they are typically very hot, dense and metal-rich.
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Figure 3.2: The soft X-ray luminosity, 0.5-2.0 keV, within different annuli around the
galactic centre at z = 0 for a sample simulated disc galaxies in the EAGLE simula-
tion, Ref-L100N1504, as a function of the halo mass. The top left, top right, bottom
left and bottom right show the X-ray luminosity in the annuli 0.05 < r/R200 < 0.15,
0.15 < r/R200 < 0.30, 0.01 < r/R200 < 0.10 and 0.15 < r/R500 < 1.00, respectively.
In all panels the simulated median X-ray luminosity is calculated for both accreted
gas (green) and wind (blue) in halo mass bins of 0.20 dex and shown with the solid
line. The luminosities of halos in bins sampled by fewer than five galaxies are shown
individually. The shaded bands enclose the 15th and 85th percentiles within the
same mass bins. The halo mass in each panel is taken to be M500, except for the
lower-left panel where we use M200, to provide the best comparison to the respective
observations in Section 3.4.
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Therefore, we must first identify the origin of the dominant X-ray emitting gas before

meaningful comparisons can be made between simulated and observed X-ray halo

luminosities.

3.4.1 The origin of the X-ray emission

We analyse the contribution of wind and accreted gas to the total X-ray emission

by considering the history of every gas particle within the virial radius of the halos.

This gas can be classified into two categories: interstellar medium (ISM) and cir-

cumgalactic medium (CGM). The ISM is typically the high-density star-forming gas

within the galaxy, whereas the CGM is the surrounding halo gas. In the EAGLE

simulations, the ISM is usually defined as gas with a physical atomic number density,

nH > 0.1 cm−3, while all other gas within the halo is considered to be part of the

CGM.

The typical definition of “wind” is gas that has been ejected from the ISM into the

CGM or beyond. We, therefore, distinguish “wind” from “accreted” gas particles

according to their ISM and halo accretion histories. Specifically, we compare the

time since the particle was last classified as ISM, tISM, to the time since the particle

was most recently accreted into any FoF halo, taccretion. We calculate taccretion using

high-cadence (240 equally-spaced outputs from when the age of the universe is 1 Gyr

to 13.85 Gyr) simulation outputs to calculate the time when each gas particle was

most recently not associated with a FoF group, taccretion. The tISM is tracked by the

simulation code which stores the most recent time, if ever, when a gas particle was

at an atomic number density higher than the threshold for star formation, nH ≈

0.1 cm−3.

The case tISM > taccretion indicates that a gas particle was accreted by the present-day

halo after it was last in the ISM of a galaxy. This suggests the gas particle was within

the ISM of a galaxy at an earlier time and was then ejected from that halo before

joining the CGM of a progenitor of the present-day halo. This gas, in the context of

the present-day host halo, represents accretion. By contrast, tISM < taccretion indicates
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the gas particle has been in the ISM of the galaxy since it was last accreted into a

progenitor of the present-day halo. This gas was accreted, cooled and joined the ISM

before being ejected, probably as a result of feedback, into the CGM. We, therefore,

classify these particles as wind.

In Fig. 3.2 we plot the coronal soft X-ray luminosity within several 2D annuli for a

sample of disc galaxies selected from the Ref-L100N1504 simulation, as a function

of the halo mass. These annuli are chosen as they allow a direct comparison with

observations which we present in Section 3.4.4. We show the X-ray luminosity con-

tribution from gas particles classified as accretion and wind separately, in green and

blue, respectively.

The largest contribution from wind is seen in the bottom-left panel of Fig. 3.2 which

shows the central region of the halo. In this annulus, the X-ray emission from wind

can be up to two orders of magnitude more luminous than emission from accreted

gas, with the median X-ray emission from wind about an order of magnitude more

luminous than from accreted gas for halos of mass ≤ 1013 M⊙. However, above

this mass, the median X-ray emission from accreted gas is typically more luminous,

but there is still significant scatter likely reflecting different recent star-formation

rates. The wind contributes disproportionately to the X-ray luminosity compared

to its contribution to the gas mass, which is not shown. This is because the gas

defined as wind is consistently hotter, more metal-rich and denser than accreted

gas (Crain et al., 2010). The upper percentile of the X-ray emission from wind in

the bottom-left panel of Fig. 3.2 shows that the LX − Mhalo relationship flattens at

low halo masses, reflecting that the X-ray emission is less dependent on halo mass

and more dependent on the recent star formation rate. This reflects the increase in

X-ray luminosity in these halos, Mvir ≤ 1013 M⊙, whereas there is no increase in

the median, total X-ray luminosity of higher mass halos, Mvir ≥ 1013 M⊙, due to

wind in any of the annuli considered. In the lowest mass halos, M200 ≤ 1012 M⊙,

the LX − Mhalo relation steepens again as below this halo mass there is very little

accreted gas sufficiently hot to produce soft X-rays. Therefore, the X-ray emission

drops rapidly with decreasing halo mass for low mass halos. In these same halos the
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recent star formation rates are not converged in the reference simulation, increasing

(decreasing) the resolution of the simulation increases (decreases) the star formation

rate. As the X-ray luminosity in these halos is dominated by wind (see Fig.3.2), this

means the X-ray luminosity may not be converged in these halos. Therefore, the

X-ray luminosity predictions for these low mass halos should be used with caution.

In more massive halos, M200 ≥ 1012 M⊙ both the recent star formation rate, and

X-ray luminosity, are well converged with varied resolution.

In radial regions further out, we see a reduction in the contribution of X-ray lumi-

nosity from wind at a given halo mass. This reduction happens because feedback

processes, which generate winds, are concentrated in the central regions of the halo.

In the upper- and lower-right panels of Fig. 3.2, where the inner region is excised, we

see that the X-ray emission from wind in lower mass halos, Mvir ≤ 1012 M⊙, is of the

same order as the total X-ray emission within the halo. However, for higher mass ha-

los, the median X-ray emission from accreted material is significantly more luminous

than wind. As the halo mass increases further, the fraction of the X-ray emission

produced by accreted gas converges to ≈ 100% at a halo mass of ≈ 1013 M⊙. These

outer annuli are therefore ideal for probing quasi-hydrostatic, accreted halos without

pollution from the X-ray luminous, metal-rich wind. It should be noted, however,

that the X-ray surface brightness is much lower in the outer regions, and thus diffi-

cult to observe around individual galaxies. Nevertheless, Oppenheimer et al. (2020b)

argue that 4-year eROSITA observations should be able to detect X-ray emission out

to ≈ 200 kpc for stacked data around halos of mass, ≥ 1012 M⊙.

We note that the X-ray emission from diffuse gas which we classify as wind in the

EAGLE simulations may not be representative of the X-ray emission around real

highly star-forming galaxies. This X-ray emission is the result of a subgrid feedback

model which injects thermal energy directly into gas particles. The direct heating of

gas particles within the ISM of a galaxy, by both AGN and SNe feedback, leads to

star particles of mass, M ≈ 106 M⊙, with high-metallicities, Z ≈ Z⊙, high densities

nH ≥ 0.1 cm−3 and temperatures exceeding 107 K. The feedback model is, of course,

just an approximation and its realism can only be established by comparison with
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observations, such as those in Section 3.4.4 below.

Interactions between wind and accreted gas complicate the identification of the origin

of X-ray emission. In halos of mass ∼ 1012 M⊙ we expect that the accreted gas is

shock-heated to the virial temperature White & Frenk (1991). However, in some

cases, there could be additional shocks caused by wind-halo interaction, whereby

hot outflows heat the gas in the CGM. As a result energy injected by supernovae

may be emitted by particles which we have classified as accreted. This can lead to

an overestimation of the energy emitted by accreted gas. This effect will be largest

in lower mass halos for two reasons. The first is that the velocity at which the

ejected gas encounters the infalling gas is larger in small mass haloes. Secondly,

in small halos, the X-ray emission produced by wind and accreted gas appear to

be comparable, whereas in massive halos, accreted gas dominates the total X-ray

emission.

In summary, we find that a large fraction of the X-ray emission in the central region,

R < 0.10Rvir, of halos of Mvir ≤ 1013 M⊙ is produced by wind, which is the direct re-

sult of feedback processes associated with stellar evolution and AGN. However, when

the central region is excised, the gas classified as accretion becomes the predominant

source of X-ray emission in halos of mass ≥ 1012 M⊙. This shows that accreted X-ray

emitting coronae do exist around halos of mass Mvir ≥ 1012, as predicted by White

& Frenk (1991), at least within the EAGLE hydrodynamical simulations.

3.4.2 The X-ray scaling relations

The coronal soft X-ray luminosity in 2D annuli for our sample of disc galaxies selected

from the reference EAGLE simulation is shown in Figs. 3.3 and 3.4 as a function of

halo and stellar mass respectively. These annuli are the same as those considered

in Fig. 3.2. In Figs. 3.3 and 3.4 we also plot observational data from Bogdán et al.

(2015), Li et al. (2017) (bottom-left panel) and Anderson et al. (2015) (bottom-right

panel).

The general trend in Figs. 3.3 and 3.4 is that the X-ray luminosity increases with
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Figure 3.3: The soft X-ray luminosity, 0.5-2.0 keV, within different annuli around
the galactic centre at z = 0 for a sample of simulated disc galaxies in the EA-
GLE simulation, Ref-L100N1504, as a function of halo mass. The top-left, top-
right, bottom-left and bottom-right panels show the X-ray luminosity in the an-
nuli 0.05 < r/R200 < 0.15, 0.15 < r/R200 < 0.30, 0.01 < r/R200 < 0.10 and
0.15 < r/R500 < 1.00, respectively. These regions are chosen to allow appropriate
comparisons with the observational results of Bogdán et al. (2015) (top panels), Li
et al. (2017) (bottom left) and Anderson et al. (2015) (bottom right) which are shown
as the black data points with errorbars. In all panels the simulated median X-ray
luminosity is calculated in halo mass bins of 0.20 dex. The luminosities of halos in
bins sampled by fewer than five galaxies are shown individually. The shaded bands
enclose the 15th and 85th percentiles within the same mass bins. The dashed (dot-
ted) lines show the best-fit to median (mean) X-ray luminosity in the mass range
1011.5 < Mvir/ M⊙ < 1013.5. The teal region in the lower-left panel shows the same
sample with all galaxies of X-ray luminosity below 1037 ergs−1 excluded. The halo
mass in each panel is taken to be M200, except for the lower-right panel where we
use M500, to provide the best comparison to the respective observations.



3.4. The X-ray luminosity 43

109 1010 1011 10121035

1037

1039

1041

1043
L X

,0
.5

2.
0k

eV
 / 

er
g 

s
1

Bogdan+15

109 1010 1011 10121035

1037

1039

1041

1043

L X
,0

.5
2.

0k
eV

 / 
er

g 
s

1

Bogdan+15

109 1010 1011 1012

Mstar / M
1035

1037

1039

1041

1043

L X
,0

.5
2.

0k
eV

 / 
er

g 
s

1

LX > 1037 erg s 1

CGM-MASS
MW
Li+13

109 1010 1011 1012

Mstar / M
1035

1037

1039

1041

1043

L X
,0

.5
2.

0k
eV

 / 
er

g 
s

1

Anderson+15

Figure 3.4: The same as Fig. 3.3, but with the X-ray luminosity plotted as a function
of the stellar mass of the central galaxy. The stellar mass is defined to be the total
mass of stars within a 3D sphere of radius 30 pkpc. The dashed (dotted) lines
show the best-fit to median (mean) X-ray luminosity in the mass range 109.5 <
Mstar/ M⊙ < 1011.5. The teal region in the lower-left panel shows the sample with
all galaxies of X-ray luminosities below 1037 ergs−1 excluded.

both halo and stellar mass. We can also see that the scatter in X-ray luminosity,

at either a fixed halo or stellar mass, increases with decreasing mass. The larger

scatter at low mass may be interpreted as the result of the greater importance of

non-gravitationally heated gas, which is concentrated around the central regions and

not directly related to the halo mass. As the halo mass increases, the scatter in

the X-ray luminosity decreases, reflecting the increasing importance of gravitational

heating on the X-ray luminosity.

As we can see in Fig. 3.3 the LX −Mvir relationship is fairly well described by a single
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power law over approximately three orders of magnitude in halo mass. We plot the

best-fit line to the relation in all panels of the figure using linear regression on the

logarithm of the median of the X-ray luminosity as a function of the logarithm of

the median halo mass. We find the exponent of the scaling relation, LX ∝ Mα
vir, for

the median X-ray luminosity to be α = 2.2 ± 0.1, 2.6 ± 0.1, 2.1 ± 0.1, 2.8 ± 0.1 in the

halo mass range, (1011.5 − 1013.5) M⊙, for the upper-left, upper-right, lower-left and

lower-right panels, respectively. Repeating this process with a best fit to the mean

X-ray luminosity gives α = 1.8 ± 0.1, 2.4 ± 0.1, 1.3 ± 0.1, 2.5 ± 0.1 in the same mass

range for the upper-left, upper-right, lower-left and lower-right panels, respectively.

We apply the same methodology to the LX − Mstar relation, shown in Fig. 3.4, in

the stellar-mass range (109 − 1011) M⊙ and find the exponent of the relation to be,

α∗ = 3.4 ± 0.1, 3.5 ± 0.2, 3.2 ± 0.1, 3.5 ± 0.2 for the median X-ray luminosity in the

upper-left, upper-right, lower-left and lower-right panels, respectively. These slopes

reduce to α∗ = 2.7 ± 0.2, 3.2 ± 0.2, 2.2 ± 0.2, 3.2 ± 0.2 in the same mass range for the

mean X-ray luminosity, respectively.

The LX − Mvir and LX − Mstar scaling relations are systemically flatter in the two

left panels of Figs. 3.3 and 3.4 which probe the inner region of the halo. We also see

that the difference in the slope of the scaling relations, LX − Mvir and LX − Mstar

between the best fit to the median and the best fit to the mean X-ray luminosity is

much larger in these two panels.

The origin of the flatter slope, and the discrepancy between the mean and median

X-ray luminosity over a small range of halo mass, is due to the enhanced X-ray

emission in low mass halos, ∼ (1011 − 1013) M⊙ in the inner region compared to the

outer region. The increased X-ray luminosity within the central regions is caused by

feedback, as shown in Fig. 3.2. However, not all low-mass galaxies have recent star

formation. Thus, we see a scatter of up to four orders of magnitude in the X-ray

luminosity in these halos. Therefore, a small sample of highly star-forming, X-ray

luminous galaxies are able significantly to increase the mean X-ray luminosity, while

having a smaller impact on the median X-ray luminosity, at a fixed halo mass. As the

median X-ray luminosity is less affected by feedback from recent star formation, we
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Figure 3.5: The stellar-to-halo mass ratio, normalised by the mean universal baryon
fraction, fb, as a function of both M500 (left panel) and M200 (central and right
panels). Results from three different EAGLE simulations, Ref-L100N1504 (blue),
NoAGN-L050N0752 (red) and AGNdT9-L050N0752 (green), are shown as medians
in halo mass bins of 0.20 dex. When there are fewer than five objects in a bin, we
plot the results of individual galaxies. We also show the 20th to 80th percentiles
of the distribution as shaded regions. The observational results of Anderson et al.
(2015) (left), Bogdán et al. (2015) (center) and Li et al. (2017) (right) are plotted.

focus on the median X-ray luminosity in the remainder of this chapter. In the outer

regions, displayed in the two right panels of Fig. 3.3, we find that the slope of the

scaling relation, LX − Mvir, is steeper than the analytical prediction for self-similar

gaseous halos, α = 4/3, presented by Kaiser (1986) and Sarazin (1986) and the 1.8

value inferred from the observations of Anderson et al. (2015). We investigate the

origin of the steeper slope of the LX − Mvir scaling relation in Section 3.4.5.

Stellar-halo mass relationship

In Fig. 3.5 we plot the stellar-to-halo mass ratio normalised by the mean univer-

sal baryon fraction, fb, as a function of M500 (left panel) and M200 (central and

right panels). The results from three different EAGLE simulations, Ref-L100N1504,

NoAGN-L050N0752 and AGNdT9-L050N0752, are shown. We also plot the observa-

tional data of Anderson et al. (2015) (left), Bogdán et al. (2015) (center) and Li et al.

(2017) (right). We define the stellar mass as the total mass of stars within a fixed

spherical aperture of radius 30 pkpc. This aperture is chosen as Schaye et al. (2015)

found that it yields stellar masses similar to those inferred from the Petrosian-r band

aperture often used in observational studies.
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The two EAGLE simulations, Ref-L100N1504 and AGNdT9-L050N0752, have a

consistent stellar-to-halo mass relation which, moreover, agrees with the results

of Moster et al. (2013) from abundance matching (Schaye et al., 2015). How-

ever, the NoAGN-L050N0752 simulation overpredicts the stellar-mass in galaxies

of ≥ 1012 M⊙. The stellar-halo mass relation of the two main simulations, Ref-

L100N1504 and AGNdT9-L050N0752, broadly agree with the observations of An-

derson et al. (2015) and Bogdán et al. (2015). However, the sample of Li et al.

(2017) contains a population of low mass halos with very high stellar masses which

are not found in the EAGLE simulations.

The stellar-dominated galaxies at low halo masses of Li et al. (2017) are inconsistent

with the abundance matching predictions of Moster et al. (2013). The cause of

this could be an incorrect inference of the halo mass from the measured rotation

velocities. The uncertainty in the halo masses complicates the interpretation of the

observational LX − Mvir relation.

3.4.3 Hot gas self-similarity

The radial profiles of the gas density estimated from all of the galaxies in the EAGLE

Ref-L100N1504 simulated in the halo mass range, 1012 − 1013.5 M⊙, are shown in

Fig. 3.6. The profiles are normalised by the individual baryon-to-dark-matter ratio

within each halo. We see that the normalised gas density profiles in the central

region vary significantly as a function of halo mass. However, in the outer regions,

the gas density profiles exhibit self-similarity across two orders of magnitude of halo

mass. This self-similarity also appears to be present in the GIMIC simulations

(Crain et al., 2009) as may be seen in the top-left panel of fig 8 of Crain et al. (2010).

While the slopes of the gas density profiles are clearly self-similar in Crain et al.

(2010), the normalisation increases with halo mass due to the increasing gas fraction

in high-mass halos.

In the central regions, the normalised gas density, at a fixed radius, is much higher

in lower mass halos. This likely reflects the differing impact of feedback in these
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halos. In lower mass halos AGN feedback and, in some cases, SNe feedback, is able

to eject gas to the virial radius and beyond. This will lower the total gas fraction

of the halo, but if the process takes place over a long timescale, the density profile

should remain unaffected. In more massive halos, winds driven by AGN are unlikely

to leave the halo, and thus the net result is that gas is transported outwards. This

process acts to increase the density at large radii while decreasing it at small radii.

The self-similarity of the hot gas profiles in the outer regions of the halo validates a

key assumption in the derivation of Eq. 3.2.2. The observed self-similarity reflects

the fact that the gravitational forces are dominated by the dark matter distribu-

tion, which has previously been shown to be well converged for different subgrid

physics models (Schaye et al., 2015). As such, when appropriately normalised by

their individual gas fractions, the gas radial density profiles in the radial range,

(0.15 − 1.00) R500, agree in both trend and normalisation. This is also expected

from Fig. 3.2 in which we showed that the X-ray emission in this radial range (and

the mass fraction which is not shown) are dominated by accreted gas. Although the

gas density profiles in the EAGLE simulations display self-similarity, it is not clear

whether this behaviour will be also be present in other cosmological hydrodynamical

simulations or, indeed, in the real universe. Interesting future work might assess

how well these results hold across other simulations with different subgrid models

and parameters.

3.4.4 Comparison to observations

We now calculate the coronal X-ray luminosity from the simulated galaxies in a

way that allows a fair comparison to observations, that is, within the same annulus

and energy range. However, there are still limitations in the direct comparison of

simulated and observed X-ray luminosities. For example, when calculating the X-

ray emission in an annulus, we only include gas within a sphere of the virial radius.

However, in real observations, the line-of-sight X-ray emission may be contaminated

by non-gaseous X-ray sources such as X-ray binaries in the galaxy, or unrelated

background and foreground objects. A fraction of the coronal X-ray emission in
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Figure 3.6: Three-dimensional, spherically averaged radial density profiles of the gas
within halos of disc galaxies in the EAGLE Ref-L100N1504 simulation. We show
the median gas density profile in halos in mass bins of: 1012 − 1012.5 M⊙ (red),
1012.5 − 1013.0 M⊙ (blue) and 1013 − 1013.5 M⊙ (black). The density profiles are
normalised by 200 times the critical mass density of the universe, the cosmic baryon-
to-dark matter ratio and the gas fraction of each halo. The bands enclose the 30th
and 70th percentiles.

the real universe may be absorbed, particularly at lower energies. These effects are

not considered when calculating the X-ray emission from simulated galaxies. As

our analysis of the simulations is not instrument-limited, we include galaxies with

X-ray luminosities well below the current detection threshold. The simulations thus

contain more low luminosity objects than observational samples, but we account for

that in the comparison with the data.

In the top two panels of Fig. 3.3 and Fig. 3.4 we compare the simulations to the

data presented by Bogdán et al. (2015), who used Chandra to search for soft X-ray

emission around eight normal spiral galaxies. No statistically significant diffuse soft

X-ray emission was detected around any of these galaxies. We therefore use the

inferred 3σ upper limits for our comparison. As these observations excise the central

regions, any contamination unresolved X-ray point sources should be small.

The upper limits derived from the observations of Bogdán et al. (2015) generally

overlap with the 15th to 85th percentiles predicted by EAGLE. However, these upper

limits Bogdán et al. (2015) are consistently lower than the mean and median X-

ray luminosity found in the simulations. Therefore, there does appear to be some
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Figure 3.7: The same as Fig. 3.3, but showing the X-ray luminosity for three different
samples of discs galaxies taken from the EAGLE simulations Ref-L100N1034 (blue),
NoAGN-L050N0752 (red), AGNdT9-L050N0752 (green). This comparison shows the
impact of varying the AGN feedback model on the X-ray luminosity to halo mass
relationship.

evidence that the simulations are slightly, but significantly overpredicting the X-ray

emission at large luminosities. However, the X-ray luminosities as a function of

stellar mass in the simulations are significantly higher than the observational limits,

as may be seen in Fig. 3.4. The reason for the discrepancy between the results at

fixed halo and at fixed stellar mass could be due to two reasons. The first is that

the stellar-to-halo mass relationship in the EAGLE simulations could be incorrect.

However, abundance matching suggests that the EAGLE relation agrees well with

the data (Schaye et al., 2015). Secondly, it could be that the halo or stellar masses

inferred for the real galaxies is incorrect. The stellar masses in Bogdán et al. (2015)
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are estimated from K-band luminosities in the 2MASS survey, while the halo masses

are estimated from the circular velocity of gas in the disc, which is then converted to

a halo mass following Navarro et al. (1997). In Section 3.4.2, we compare the stellar-

to-halo mass relation of these observations with results from the EAGLE simulation.

In particular, the central panel of Fig. 3.5 compares the stellar baryon fraction as

a function of halo mass in three different EAGLE simulations to the observational

estimates of Bogdán et al. (2015). These observations imply that the stellar mass

accounts for between 15% and 50% of the baryon budget of the halos. However,

constraints from abundance matching suggest that this value should be closer to

10% (Moster et al., 2013). This is indicative of an overestimated stellar mass, or

an underestimated halo mass. As the stellar mass is more directly inferred than the

halo mass, we assume that it is the halo masses that are underestimated.

As the X-ray emission is calculated in a halo mass dependent aperture, (0.05 −

0.15) R500, this can lead to an incorrect value for the X-ray luminosity. Since the X-

ray emission is typically centrally peaked; an underestimated halo mass implies that

the central region excised would be too small, leading to higher X-ray luminosities.

Thus, if the assumed halo masses are indeed too small, the data points on the upper-

left panel of Fig. 3.3 should be moved down (as more central emission should be

excised) and to the right (towards higher halo masses), increasing the discrepancy

with the EAGLE simulations. The same data points would remain at the same

stellar mass, but may also decrease in X-ray luminosity in Fig. 3.4.

Fig. 3.2 shows that, at least within the simulations, the observations of Bogdán

et al. (2015) probe the transition between wind and accretion dominated X-ray

emission. If the Bogdán et al. (2015) halo masses are underestimated, their data will

shift towards the accretion-dominated regime. The overestimated X-ray emission in

the simulations could then reflect excessive hot gas baryon fractions, or incorrect

thermodynamic properties for the gas.

In the bottom left panel of Figs. 3.3 and 3.4 we compare the predictions from the EA-

GLE simulations to observations of massive, isolated spiral galaxies homogeneously

reanalysed by Li et al. (2017). This sample includes the detections of NGC 1961
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(Bogdán et al., 2013; Anderson et al., 2016) and NGC 6753 (Bogdán et al., 2013),

which are referred to as “massive spirals”. The CGM-MASS sample of Li et al. (2017)

and a measurement of the Milky Way X-ray luminosity from Snowden et al. (1997)

are also included alongside the original sample of inclined disc galaxies presented

by Li & Wang (2013a) and Li et al. (2014). These observations use Chandra and

XMM-Newton to probe the inner regions of nearby halos.

We first consider the X-ray luminosity as a function of halo mass from the innermost

region. In this regime the observations are consistent, in both the overall trend and

scatter, with the simulated galaxies within the halo mass range (1011 − 1013) M⊙.

The agreement is particularly good when we exclude all simulated galaxies with

X-ray luminosities below 1037 ergs−1, as shown by the teal region in Figs. 3.3 and

3.4. This luminosity cut is consistent with the observational limits of the data. For

the highest mass halos the simulations appear to overestimate the X-ray luminosity;

however, this is a tentative result given the small size of the observational sample.

The simulations also reproduce the trend of the observed LX − Mstar relation in this

innermost annulus. In the lower-left panel of Fig. 3.4 we see that below a stellar

mass of ≈ 1011 M⊙ the simulations are consistent with the observations, particularly

once we exclude halos of luminosity below 1037 ergs−1.

Fig. 3.2 shows that the dominant source of X-ray emission in the innermost region

in the EAGLE simulations is hot winds produced by feedback. We therefore suggest

that the observations of Li et al. (2017) are probing SNe-heated hot gas, rather than

the innermost region of a hot accreted halo.

Finally, the bottom right panel of Fig. 3.3 compares our simulations to the stacked

X-ray observations of Anderson et al. (2015), which consist of a sample of approxi-

mately 250000 “locally brightest galaxies” from the Sloan Digital Sky Survey. A more

detailed description of the selection criteria is given in Planck Collaboration et al.

(2013) but, in summary, galaxies are selected if they are brighter than a threshold

in extinction-corrected Petrosian r-magnitude band while also being the brightest

object within a 1 Mpc projected radius. These selection criteria were chosen in an

attempt to select a population of ‘central’ galaxies. Our sample of simulated galaxies
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is subject to a conceptually similar selection process, in that we also choose isolated

galaxies. The X-ray emission from the real galaxies is stacked in bins of stellar mass,

and these stellar masses are converted into halo masses. It should be noted that for

this sample an overdensity of ∆ = 500 is used to define the halo mass; to facilitate

a fair comparison we also compute this mass for our simulated halos.

In the regime of MW-mass halos we find that the X-ray luminosities in the EAGLE

simulations are in good agreement with the observations at both fixed halo and

stellar mass. However, above this mass, the slopes of the LX − Mvir and LX − Mstar

relations in the simulations are steeper than for the real galaxies. The overprediction

of the X-ray luminosity in the simulation peaks at a halo mass of ∼ 3 × 1013 M⊙ and

then decreases to around a factor of three for the most massive halos, ∼ 1014 M⊙.

Wang et al. (2016) recalibrated the estimated halo masses of the Anderson et al.

(2015) sample using weak lensing data. Wang et al. (2016) suggest that the halo

masses from Anderson et al. (2015) are slightly too large, with an almost constant

overestimation of between 0.05 − 0.10 dex (see Fig. 10, right panel of Wang et al.

(2016)). Thus, using the LX − Mvir slope of 1.9 for the Anderson et al. (2015) data

we predict that correcting the halo masses would increase the X-ray luminosity, at a

given halo mass, by a factor of approximately ∼ 1.2 − 1.5. Furthermore, a decrease

in the inferred halo mass would decrease the virial radius, and therefore decrease

the size of the excised central region. This would increase the X-ray emission, as

emission is centrally peaked. We expect that these effects may change the results by

up to a factor of two when combined. Given the large dynamic range of the data, this

correction does not significantly reduce the tension between the EAGLE simulations

and observations.

3.4.5 Effects of AGN

In this section we use the three EAGLE simulations, Ref-L100N1034, NoAGN-

L050N0752 and AGNdT9-L050N0752, to investigate the effects of varying the im-

plementation of AGN feedback on the LX − Mvir relationship. The three simulations

were introduced in Section 3.2. We repeat the sample selection process outlined in
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Section 3.2.3 independently in each simulation. The X-ray luminosity as a function

of halo mass in the three simulations is displayed in Fig. 3.7 for the same spatial

regions, and compared to the same observational data as in Fig. 3.3.

In all four regions we see that the X-ray luminosity in lower mass halos, ≤ 1012 M⊙,

is unchanged by the variation of the AGN feedback implementation. In the EAGLE

galaxy formation model AGN have little effect on galactic properties below this

critical mass (Schaye et al., 2015; Rosas-Guevara et al., 2016; Bower et al., 2017a;

Davies et al., 2019). Observationally, it is also known that galaxies of stellar mass

below ∼ 1010 M⊙, which corresponds to a halo mass of ∼ 1012 M⊙, seldom host

powerful AGN (Kauffmann et al., 2003). Above this halo mass we see a general

trend across all the spatial annuli: halos with no-AGN feedback have higher X-ray

luminosities. The differences in the X-ray luminosity in simulations with and without

AGN peak in the (1012 − 1013) M⊙ mass range. At higher masses, ∼ 1014 M⊙, the

results from all the simulations appear to converge. However, this is a tentative

result as the two (50 Mpc)3 simulations have a small number of haloes in this mass

range.

The AGNdT9-L050N0752 simulation has a modified AGN feedback model in which

the change in temperature, ∆TAGN, due to AGN feedback is increased to 109 K. In

this simulation we see that the X-ray luminosity at fixed halo mass in the range,

(1012 − 1013) M⊙, is lower than in both the reference and no-AGN models. The

decrease in luminosity, which is typically about 0.5 dex, improves the agreement with

the observations in all spatial regions. This indicates that the AGN feedback in the

reference model is under efficient. Schaye et al. (2015) also found that the modified

AGN feedback in AGNdT9-L050N0752 improves the agreement between simulated

and observed X-ray emission for some of the most massive objects, M500 ≥ 1013 M⊙.

Further to this, Correa et al. (2018) found an upturn in the ratio of the cooling radius

to the virial radius of high mass halos, ≥ 1013 M⊙, within the EAGLE reference

simulation. This upturn has also been attributed to under efficient AGN feedback in

high-mass halos. The increase in the cooling radius can account for the significant

overprediction of the X-ray luminosity in the inner regions of high-mass halos (as
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seen in the two left panels of Fig. 3.3).

In the EAGLE model, the main effect of AGN feedback is to eject gas beyond the

virial radius of the halo, as we show in Section 3.5. This decreases the total hot

gas mass and thus gas density in the halo, thus decreasing the X-ray luminosity

at fixed halo mass. AGN feedback can also decrease the SFR in the galaxy, which

would reduce the X-ray emission from wind in the innermost regions. These results

are consistent with those of Bogdán et al. (2015) who analysed a sample of spiral

galaxies in the Illustris simulations. Their “textbook” Illustris spiral galaxies

undershoot the observed X-ray emission, a fact that Bogdán et al. (2015) attributed

to over-efficient radio-mode AGN feedback which acts to reduce the baryon fraction.

However, the Bogdán et al. (2015) X-ray calculation follows Navarro et al. (1995)

which assumes primordial gas fractions and a power-law fit to the cooling function. A

more exact calculation of the X-ray luminosities in the Illustris simulations would

likely yield higher X-ray luminosities.

It is also interesting to note that the FIRE simulations analysed in van de Voort

et al. (2016) do not include AGN feedback and recover the observed X-ray emission

in (1012 −1013) M⊙ more convincingly than the EAGLE reference model. The reason

for the improved agreement in this case may the implementation of stellar feedback

which, in the FIRE simulations, can drive efficient winds, even in high mass halos.

It is clear from Fig. 2 in van de Voort et al. (2016) that the hot gas baryon fraction

within their halos is ∼ 0.25fb at a halo mass of ∼ 1013 M⊙, which is lower than that

found in any of the EAGLE simulations we are considering.

3.5 Estimating the gas fractions from the LX −

Mvir relation

In Section 3.2.4 we showed that the dependence of the baryon fraction on halo mass

is encoded in the LX − Mvir relation. An increase in baryon fraction with halo mass

increases the slope of the relation and vice versa. If a power law can describe the
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Name LX − M500 Predicted fgas − M500 Empirical fgas − M500
α β β

Ref-L100N1504 2.68 ± 0.10 0.51 ± 0.05 0.58 ± 0.02
NoAGN-L050N0752 1.98 ± 0.16 0.16 ± 0.08 0.18 ± 0.05
AGNdT9-L050N0752 2.64 ± 0.05 0.48 ± 0.03 0.44 ± 0.10

Table 3.2: Best-fit exponents of the LX − Mvir and fgas − Mvir relationships in the
EAGLE simulations. The exponents are calculated in the halo mass range 1012.5 −
1013.5 M⊙. The columns give the name of the simulation, the exponent of the LX −
Mvir relation, the predicted exponent of the fgas − Mvir relation and the exponent of
the fgas − Mvir relation. The relations are fit within the halo mass range, 1012.5 −
1013.5 M⊙.

gas fraction as a function of halo mass, then Eq. 3.2.3 can be used to calculate the

halo mass dependency of the gas fraction from the logarithmic slope of the LX −Mvir

relation. We evaluate this technique using the X-ray luminosity, halo masses and gas

fractions of our three EAGLE simulations, Ref-L100N1034, NoAGN-L050N0752 and

AGNdT9-L050N0752. The variations in AGN feedback lead to noticeable differences

in baryon fraction and its dependence on halo mass for halos of Mvir ≥ 1012 M⊙.

In the left-hand panel of Fig. 3.8 we plot the coronal soft X-ray luminosity, in mass

bins of 0.20 dex, within an annulus, 0.15 < R/R500 < 1.00. The X-ray luminosity

is plotted as a function of halo mass, as in Fig. 3.3, focusing on the mass range of

interest, M200 ≥ 1012 M⊙, where significant gaseous halos are present (see Fig. 3.1).

The right panel shows the median gas fraction within the same annulus as a function

of halo mass, M500. As in Section 3.4.2, we fit straight-lines to the logarithm of

both the median X-ray luminosity and the median gas fraction plotted against the

logarithm of the halo mass. We fit both of these properties in the halo mass range,

1012.5 − 1013.5 M⊙, and tabulate the best-fit parameters in Table 3.2. The mass

range we fit in is different from that in Section 3.4.2 and thus the slopes are slightly

different.

We now use the slope of the LX − Mvir relation to estimate the scaling of fgas with

Mvir. According to Eq. 3.2.3, fgas ∝ Mβ
vir with β = (αvir−5/3)/2 (where αvir is defined

through LX ∝ Mαvir
vir ). We can calculate this scaling directly in the simulations, as it

is the slope of the best-fit line shown in the right-hand panel of Fig. 3.8. We tabulate
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Figure 3.8: The coronal soft X-ray luminosity (left) and gas mass fraction (right)
as a function of halo mass, M500. In both panels we only consider gas within the
3D virial radius, R500, and within the annulus 0.15 < R/R500 < 1.00. The solid
curves and shaded bands show the median and 15th to 85th percentiles in mass
bins of 0.20 dex respectively. In bins that would enclose less than five objects we
plot individual galaxies. The Ref-L100N1034, NoAGN-L050N0752 and AGNdT9-
L050N752 are shown by the green, blue and red curves respectively. We also add best-
fit lines in both panels, which are shown with dashed lines. The model parameters
of the best fits are shown in Table 3.2. The black vertical lines show the range of
halo mass over which the best-fit is calculated. The thick solid line segments in the
right panel show the predicted slopes for the fgas − Mvir estimated from the slopes
of the LX − M500 relation in the left panel, following Eq. 3.2.3.

αvir, the predicted value of β and the empirical value of β from the simulations in

Table 3.2. The 1−σ errors of the best-fit parameters, calculated from the covariance

of the Jacobian, are also included.

As Table 3.2 shows, the measured values of the logarithmic slopes of the fgas − Mvir

relation in all three simulations agree well with our predictions from Section 3.4.2,

within 1.3σ. The steepening of the LX −Mvir above a slope of 5/3 is accounted for by

the variation of the gas fraction as a function of halo mass. This demonstrates that

the X-ray emission is adequately described by Eq. 3.2.3 and that the variation of

the gas fraction makes an important and measurable contribution to the logarithmic

slope of the LX −Mvir relation. In particular, we can distinguish between simulations

with different AGN implementations by the slope of the corresponding LX − Mvir

relation. In principle, this same methodology can be applied to the real universe to

understand how the gaseous baryon fraction varies, from MW-mass halos to galaxy
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clusters.

We show that the LX − Mvir relation is strongly dependent on the fgas − Mvir trend

within the EAGLE simulations in Fig. 3.8. Furthermore, we also see that the

normalisation and scatter of the gaseous baryon fractions are also observable in the

observed X-ray luminosity. At fixed halo mass, we see that the most luminous halos

are found in the NoAGN-L050N0752 simulation. This increased X-ray luminosity is

due to the lack of AGN feedback which leads to an increased gas fraction within the

virial radius.

The LX − Mvir relation flattens significantly at large halo mass, ≥ 1013.5 M⊙. This

is caused by both a flattening of the soft X-ray cooling function with temperature

(see Section 2.5.1) and by the near-constant gas fraction in high mass halos. These

effects should combine to produce an LX −Mvir relation where LX ∝ Mvir for halos of

mass ≫ 1013.5 M⊙ within the soft X-ray energy band. However, since the simulations

analysed here have no objects in this mass range, we cannot test the validity of this

prediction.

The data of Anderson et al. (2015) are consistent with a shallow LX − Mvir scaling

relation, with αvir ≈ 1.8, in the halo mass range M500 ≥ 1012 M⊙. Anderson et al.

(2015) attributed the increase from the logarithmic slope of 4/3 predicted by Kaiser

(1986) and Sarazin (1986) to the effects of non-gravitational heating from AGN. They

suggested that “self-regulated” AGN feedback should increase the X-ray luminosity

of higher mass halos. In their picture, thermal instabilities due to radiative cooling

in the hot halo result in high BH accretion rates, which cause energy build-up and

subsequent feedback that heats the gas in the central region. This process repeats

cyclically. However, in the EAGLE simulations, we find the opposite to be true.

Table 3.2 shows that the shallowest slope of the LX − Mvir relation occurs in the

NoAGN-L050N0752 simulation. AGN feedback in the other two simulations signif-

icantly increases the logarithmic slope of the LX − Mvir relation. We suggest that

the primary effect of AGN feedback is to decrease the X-ray emission, at fixed halo

mass, particularly in lower mass halos of M200 ≈ (1012 − 1013) M⊙. This is due to

the ejective nature of AGN feedback which reduces both the mass and the density
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Figure 3.9: The X-ray coupling efficiency, ηX , as a function of halo mass in the EA-
GLE reference simulation for a sample of isolated disc galaxies. The X-ray coupling
efficiency is defined as the ratio of the observed X-ray luminosity to the rate of en-
ergy input due to SNe, LX/ĖSN. The power injected by SNe, ĖSN, can be calculated
in the simulations from the mean star formation rate in the last 250 Myr and the
mean energy injected per unit of initial stellar mass formed. The black line shows
the median X-ray coupling efficiency, in halo mass bins of 0.20 dex, where the X-ray
luminosity has been calculated from all the gas within the virial radius. The shaded
bands enclose the 15th and 85th percentiles.

of the X-ray emitting gas.

A reinterpretation of the data of Anderson et al. (2015), shown in the left panel of

Fig. 3.8, in the context of Eq. 3.2.3 suggests that the halo gas fraction is approxi-

mately independent of halo mass, β ≈ 0.1. When comparing the simulation results

with measurements derived from stacked observational data, it is more appropriate

to compare to the mean of the simulated data rather than the median. We showed

in Section 3.4.2 that the slope of the LX − Mvir relation decreases by approximately

0.3 when fit to the mean, rather than the median, X-ray luminosity in the annulus

0.15 < R/R500 < 1.00. This suggests that the low value of β, which we inferred from

the Anderson et al. (2015) results could be higher, β ≈ 0.25. This result is more

consistent with the gas fraction variation in the NoAGN EAGLE simulation which

predicts the MW hot halo hosts approximately (30 − 40)% of the total halo baryon

budget.

In summary, in the EAGLE simulations, we find that the steepening of the LX −Mvir

relation above 5/3 is due to the variation of the halo gas fraction with halo mass.



3.6. Missing feedback problem 59

Table 3.2 demonstrates that the slope of the fgas − Mvir relation can be robustly

and precisely extracted from observations of the LX − Mvir relation in the halo mass

range 1012 − 1013.5 M⊙. This same methodology can be applied to the real universe

to constrain the gas fraction of halos. As the fgas − Mvir relation is strongly affected

by AGN feedback, these constraints will provide insight on the scale and extent of

AGN driven winds.

3.6 Missing feedback problem

The inner region of the hot X-ray-emitting coronae around disc galaxies is the site

of a complex interplay between the accreted, quasi-hydrostatic halo and the hot,

metal-enriched winds driven by SNe feedback within the ISM (Putman et al., 2012).

However, X-ray observations of the inner regions of star-forming disc galaxies typi-

cally find relatively low X-ray luminosities (Li & Wang, 2013a). The observed X-ray

luminosities can be compared with the rate of energy input into galaxies from SNe

feedback. The coupling efficiency, ηX , is defined as the ratio of the observed X-ray

luminosity to the rate of energy input from SNe which can be calculated from the in-

ferred recent star formation rate, ηX = LX/ĖSN. In real observations, the mean value

of this coupling efficiency has been found to be very small, approximately ηX ≈ 0.004

(Li & Wang, 2013b), and thus the energy input by SNe is said to be “missing”. The

apparent low X-ray luminosity is sometimes referred to as the “missing feedback”

problem (e.g. Wang, 2010).

The fate of SNe-heated gas falls into one of three categories:

1. halo ejection: hot gas is rapidly blown out of the galactic halo and joins the

intergalactic medium;

2. galaxy ejection: hot gas is ejected from the galaxy but remains within the

virial radius of the halo;

3. galactic fountain: outflowing gas cools rapidly and infalls back into the ISM

of the galaxy.
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Figure 3.10: The properties of gas particles within the halo virial radius of disc
galaxies in the EAGLE reference simulation, which have been subject to direct SNe
energy feedback within the last 25 Myr of z = 0.1. The particles are separated into
categories based on the z = 0 virial mass, M200, of the host halo. We show the median
property, at each time output, for all particles in halo mass ranges: M200 < 1011 M⊙,
1011 < M200/ M⊙ < 1012, 1012 < M200/ M⊙ < 1013 and M200 > 1013 M⊙, shown by
the blue, red, green and purple lines respectively. The median atomic number density,
temperature, radius and X-ray luminosity, of each particle are show in the upper-left,
upper-right, bottom-left and bottom-right panels respectively. The shaded regions
enclose the 20th and 80th percentiles.
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The low X-ray luminosity observed within the central regions of star-forming galaxies

can be used to distinguish amongst these three possibilities. For example, in the case

of an efficient galactic fountain, it is expected that there will be significant X-ray

emission concentrated around the central regions of the halo. These X-rays will be

emitted by hot, dense gas as it cools and falls back into the galaxy. The other two

scenarios will lead to hot gas moving outwards through the galactic halo and thus

reducing in density. These halos will have much less X-ray emission, for the same

SFR, as less energy is radiated due to the lower density.

The value of the X-ray coupling efficiency in the EAGLE reference simulation is

shown in Fig. 3.9 for a sample of isolated disc galaxies. We calculate the X-ray

luminosity for all gas particles within a sphere of radius, R200, centred on the centre

of mass of the halo. The rate of energy injection by SNe, ĖSN, is known in the

EAGLE simulations: the subgrid model assumes that, on average, 8.73×1015 erg g−1

of energy is injected per unit of initial stellar mass formed. This can be combined

with the mean star formation within the last 250 Myr to calculate the mean energy

injection rate.

Fig. 3.9 shows that, typically, the X-ray coupling efficiency increases with halo mass.

This is consistent with the work of Li & Wang (2013b) who suggest that halos with

more gas in their central regions are able to retain more of the gas heated by feedback

and thus be more X-ray luminous at a given SFR. The correlation between halo mass

and X-ray coupling efficiency is consistent with the results of Fig. 3.3 which shows

that in very low mass halos there is a very rapid increase in the X-ray luminosity

with halo mass. As we can see in Fig. 3.2, low mass halos of M200 ≤ 1011.5 M⊙,

are wind-dominated and therefore the X-ray emission from them is powered by SNe.

In these halos, there is a positive correlation between SFR and halo mass. As the

X-ray coupling efficiency is also proportional to the halo mass, this results in a steep

relationship between X-ray luminosity and halo mass for low mass halos.

We now attempt to understand the origin of the varying X-ray coupling efficiency

in the EAGLE simulations. We start by selecting all gas particles within the virial

radius of disc galaxies in the EAGLE reference simulation that have been subject
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to direct SNe heating within the last 25 Myr at z = 0.1. We then use a series of

high-cadence outputs from the simulations to track several properties of the selected

particles as a function of time, starting approximately 300 Myr before the feedback

event, until ≈ 800 Myr after. The particles are then separated into four z = 0 host

halo mass bins: M200 < 1011 M⊙, 1011 < M200/ M⊙ < 1012, 1012 < M200/ M⊙ < 1013

and M200 > 1013 M⊙. We plot the median atomic number density, temperature,

radius and X-ray luminosity of each particle in each halo mass bin at every output.

These are shown in the upper-left, upper-right, bottom-left and bottom-right panels

of Fig. 3.10 respectively. The shaded regions show the bands that enclose the 20th

and 80th percentiles.

In Fig. 3.10 we see that prior to the feedback event, the majority of the gas is dense

(≈ 0.1 cm−3), cold (≈ 104 K) and near the centre of the halo. This is consistent with

being the ISM of the central galaxy. In the output immediately after the feedback

event, the gas undergoes an almost instantaneous temperature increase to approx-

imately 107 K, which is lower than the peak temperature of 107.5 K imposed by

SNe feedback. This suggests that the initial cooling rate must be very high and,

as a result, the maximum temperature is poorly sampled. In the 25 Myr after the

feedback event, the median temperature of the SNe-heated gas, in all but the most

massive halos, declines to ≈ (1 − 3) × 106 K. As the gas evolves further, the median

temperature stabilises; this is likely because the density has decreased and thus, the

radiative cooling efficiency has also decreased. As the density and temperature sta-

bilise, the X-ray luminosity reaches an approximately constant value that correlates

with halo mass. In the most massive halos, ≥ 1013 M⊙, the post-SNe temperature of

the gas is approximately a constant value of 107 K. This high temperature is likely

the result of the feedback-heated gas approaching thermal equilibrium as it mixes

with the surrounding hot halo gas.

The 3D physical distance from the centre of the galaxy, normalised by the virial

radius of the host halo, is plotted in the bottom-left panel of Fig. 3.10 as a function

of time since the feedback event. In the lowest mass halos, M200 < 1011 M⊙, the

median gas particle subject to feedback leaves the virial radius of the halo in less than
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200 Myr. On the other hand, in the more massive halos, 1012 < M200/ M⊙ < 1013,

the median particle is still within the inner half of the virial radius after 500 Myr. In

lower mass halos, the density drops more rapidly. These effects combine to compound

the “missing feedback” problem in low mass halos, as seen in Fig. 3.9. It is also likely

that these effects are not independent, e.g. leaving the halo more rapidly will result

in faster decreasing densities.

Fundamentally, the EAGLE simulations predict that the so-called “missing feedback”

is associated with outflowing material. Therefore we predict that halos with galactic

fountains should have much higher X-ray coupling efficiencies. Future observations

might be able to distinguish between efficient galactic fountains, as in the Auriga

simulations (Grand et al., 2019), and the more outflowing, baryon-deficient halos

produced in the EAGLE simulations.

3.7 Discussion and Conclusions

The presence of hot accreted X-ray luminous gaseous atmospheres in quasi-hydrostatic

equilibrium around late-type galaxies in halos of mass ≥ 1012 M⊙ is a fundamental

prediction of galaxy formation models within ΛCDM (White & Frenk, 1991). Af-

ter numerous failed searches for diffuse X-ray emission from these galaxies over the

years, detections were finally forthcoming in the early 2000s, as discussed in the In-

troduction. However, these detections have often been attributed to hot, outflowing

winds driven by feedback in the ISM of the galaxy rather than by accreted coronae.

We have used the large-volume, cosmological hydrodynamics EAGLE simulations

to investigate the origin and properties of the hot, X-ray emitting gas around disc

galaxies. Although our focus has been on emission from individual ∼ L⋆ galaxies,

we have also briefly considered more and less massive galaxies, particularly when

discussing scaling relations. Our main results are as follows:

• The EAGLE simulations predict that MW-mass halos are baryon deficient

relative to the mean baryon faction (see Fig. 3.1). Specifically, they contain
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only ≈ 40% of the mean cosmic baryon fraction within their halo virial radius.

About half of the baryons are present as a hot (T > 105.5 K) gaseous halo. This

baryon deficiency is attributed to feedback which can drive halo-wide winds.

In more massive haloes, Mvir ≥ 5 × 1013 M⊙, the baryon fraction approaches

the cosmic mean.

• The central halo X-ray emission in the EAGLE simulations is dominated by

winds triggered by SNe feedback. The X-ray emission in the outer regions

is generally produced by an accreted, quasi-hydrostatic hot gaseous halo (see

Fig. 3.2). Excising the inner 0.10Rvir of the halo is sufficient to remove the

majority of the hot gas heated by SNe feedback in halos of mass ≥ 1012 M⊙, thus

allowing us to probe the emission from hot, accreted atmospheres predicted in

the analytic galaxy formation framework proposed by White & Rees (1978)

and, for ΛCDM, by White & Frenk (1991).

• The EAGLE simulations reproduce the observed general trend of X-ray lu-

minosity with halo mass; however, the simulations typically overpredict the

X-ray luminosity in the outer regions of haloes of mass Mvir ≥ 2 × 1012 M⊙

(see Fig. 3.3). The origin of the excess emission appears to be too high a gas

fraction. Varying the parameters of AGN feedback to make it more expulsive,

as in the AGNdT9-L050N0752 simulation, can improve the agreement with

the observed X-ray luminosities. In the inner regions, where winds dominate

the X-ray luminosity, the EAGLE simulations reproduce both the trend and

scatter of the observed LX − Mvir relation.

• We predict that any steepening of the logarithmic slope of the LX − Mvir

relation, above the self-similar value, α = 5/3, is due to a varying hot gas

fraction with halo mass. We show that the logarithmic slope of the power-law

relationship between gas baryon fraction and halo mass can be inferred from

the LX − Mvir relation using an analytical relation we derived, Eq. 3.2.3. This

relation holds across several EAGLE simulations which employ different AGN

feedback prescriptions. The same methodology can be applied to future X-ray
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observations to constrain the slope, normalisation and scatter of the halo gas

fraction as a function of halo mass.

• We identify the physical origin of the so-called “missing feedback” around low-

mass, star-forming galaxies. The EAGLE simulations suggest that much of

the energy injected by SNe feedback is lost as hot gas is ejected from the

halo into the low-density IGM (see Fig. 3.10). Hot winds, driven by SNe

feedback, can leave low mass halos of mass, ≈ 1011 M⊙, in a timescale of

≈ 100 Myr. By contrast, in higher-mass halos, which have a more gas-rich

central region, the outflowing gas is trapped at a higher density where it can

radiate a larger fraction of the injected energy. This leads to a sharp increase

in X-ray luminosity as a function of halo mass within the central regions.



Chapter 4

Apostle-Auriga: a comparison

4.1 Introduction

As described in Chapter 2 the inclusion of sub-resolution models is critical to repro-

duce realistic galaxy populations in modern hydrodynamical simulations. While the

inclusion of subgrid models in simulations is universal, there is no standard implemen-

tation, particularly for feedback from both SNe and AGN. The complexity of baryon

physics, together with limited resolution, makes it impossible to include feedback

ab initio from individual massive stars, SNe or AGN in representative cosmological

simulations. Instead, simulations rely on ‘subgrid’ prescriptions of feedback, that

is, physically motivated models whose parameters may be calibrated by reference to

observational data. Thus, even though the physical processes responsible for stellar

winds, SNe and AGN feedback are not resolved, it is hoped that their effects on large

scales can be faithfully reproduced.

Fundamentally, the SNe subgrid model describes how SNe energy from a single star

particle, which typically represents a simple stellar population (SSP), is distributed to

neighbouring gas elements. Energy can be injected into either a single gas resolution

element, or into many, as kinetic (Navarro & White, 1993; Dalla Vecchia & Schaye,

2012) or thermal (Dalla Vecchia & Schaye, 2012; Schaye et al., 2015) energy, or

both (Springel & Hernquist, 2003; Vogelsberger et al., 2014). There are subtleties

66
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within these different models such as the amount of energy available per mass of

stars formed, thermal losses, the ratio of thermal to kinetic energy injection, the

decoupling of hydrodynamics to disable cooling and more. Similar considerations

apply to AGN feedback (see Smith et al. 2018 for an in-depth review).

In modern simulations the free parameters of the SNe and AGN subgrid models

are tuned to reproduce a selection of properties of real galaxies. Gas properties are

rarely included in this calibration and are often taken as model predictions that

can be compared with observational data. Large-scale gas properties such as cosmic

accretion into haloes and onto galaxies have been studied extensively (e.g. Kereš

et al., 2005; Brooks et al., 2009; Oppenheimer et al., 2010; Hafen et al., 2019; Hou

et al., 2019). These analyses illustrate how the injection of gas and metals by feedback

complicates the baryon cycle within the circumgalactic medium (CGM) of galaxies,

affecting gas inflow rates onto galaxies by both reducing the rate of first-time gaseous

infall (van de Voort et al., 2011a; Nelson et al., 2015) and by recycling previously

ejected winds (Oppenheimer et al., 2010). However, the sensitivity of these processes

to the details of the subgrid model or the spatial scale at which they are significant

is uncertain (van de Voort et al., 2011b).

Differences in hydrodynamical solvers introduce further uncertainty in the cosmo-

logical baryon cycle (Sijacki et al., 2012; Kereš et al., 2012; Vogelsberger et al., 2012;

Torrey et al., 2012; Bird et al., 2013; Nelson et al., 2013). In general, it appears that

hot gas in moving-mesh simulations cools more efficiently than in particle-based

simulations; therefore, two simulations with the same subgrid model but different

hydrodynamical solvers can have different gas properties. We do not investigate the

effects of different hydrodynamical solvers in this thesis, although we consider the

implications in light of our results. As we suspect, these differences turn out to be

secondary to those introduced by the subgrid models (Hayward et al., 2014; Schaller

et al., 2015a; Hopkins et al., 2018).

In this chapter, we focus on the effects of different implementations of SNe feedback

on the Local Group baryon cycle. We compare the (untuned) emergent baryon cycle

in the Apostle and Auriga simulations of two Local Group-like volumes (Sawala
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et al., 2016; Fattahi et al., 2016). The two simulations use the same gravity solver and

initial conditions but have different subgrid galaxy formation models, with, in partic-

ular, very different approaches to SNe and AGN feedback. The Auriga simulations

use hydrodynamically decoupled wind particles that are launched isotropically and,

upon recoupling, inject both thermal and kinetic energy into the surrounding gas. In

Apostle, SNe energy is injected as a ‘thermal dump’ which heats a small number

of neighbouring gas elements to a predefined temperature.

Despite the large differences in the subgrid model, which extends beyond the imple-

mentation of SNe feedback, both of these galaxy formation models produce galaxies

at the present day that match many observed properties. Furthermore, both models

have been demonstrated to be give a good match to properties of the galaxy popula-

tion as a whole. The Apostle model is a modified version of the EAGLE reference

model (Schaye et al., 2015; Crain et al., 2015). However, it has ‘weaker’ AGN (due to

slower black hole accretion and growth) and is used at an order of magnitude higher

mass resolution than in the calibration runs (Crain et al., 2015). This difference

in resolution is significant, as the EAGLE model is very resolution-dependent. The

Auriga model has not been explicitly used in large cosmological simulations; how-

ever, it is based on the model used in the Illustris simulations (Vogelsberger et al.,

2013, 2014; Torrey et al., 2014), and is similar to that in IllustrisTNG (Nelson et al.,

2018) and FABLE (Henden et al., 2018).

The baryon cycle around galaxies, focussing on the CGM, has previously been studied

in hydrodynamic simulations using particle tracking techniques similar to those in

this thesis using both ‘zoom’ simulations (Nelson et al., 2013; Ford et al., 2014;

Christensen et al., 2018; Suresh et al., 2019; Sokołowska et al., 2018; Tollet et al.,

2019; Hafen et al., 2019, 2020) and large volume cosmological simulations (Nelson

et al., 2019; Wright et al., 2020; Borrow et al., 2020; Mitchell et al., 2020b,a; Mitchell

& Schaye, 2021a,b). In general, the different simulations agree that the CGM of the

MW is dominated by cosmological gas accretion on first infall; however, the FIRE

simulations (Hafen et al., 2019) predict much higher baryon fractions than EAGLE

(Wright et al., 2020; Mitchell et al., 2020b) due to AGN feedback in EAGLE. This
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Table 4.1: Simulation parameters at z = 0. The columns are: 1) halo name in the
form, AP-XX-Y Y -Apostle/Auriga, where XX and Y Y identify the volume and the
halo, respectively; 2) halo virial mass; 3) halo radius; 4) baryon fraction within R200;
5) stellar mass within 30 kpc; 6) the κrot rotation parameter; 7) radial scale-length;
8) bulge effective radius; 9) Sersic index of the bulge; 10) Black hole mass

Dark matter Baryons
Halo name M200

[1012M⊙]
R200
[kpc] fb

M∗
[1010M⊙] κrot

Rd
[kpc]

Reff
[kpc] n MBH

[M⊙]

AP-S5-N1-Apostle 0.91 199 0.53 2.03 0.58 3.31 1.00 1.02 106.37

AP-S5-N1-Auriga 0.99 205 0.89 5.89 0.66 1.87 0.55 1.04 108.11

AP-S5-N2-Apostle 0.79 190 0.64 1.60 0.54 3.21 0.91 1.06 106.27

AP-S5-N2-Auriga 0.80 191 0.88 3.95 0.64 2.15 0.49 1.07 107.59

AP-V1-N1-Apostle 1.64 242 0.82 4.49 0.58 3.93 1.05 0.99 106.81

AP-V1-N1-Auriga 1.64 242 0.86 10.51 0.59 7.62 0.68 0.73 107.96

AP-V1-N2-Apostle 1.02 207 0.59 1.62 0.26 3.51 1.21 1.06 106.38

AP-V1-N2-Auriga 1.12 213 0.99 3.77 0.68 3.74 0.89 0.92 107.36

chapter builds on this foundation and compares the results between two different

simulations, thus attempting to understand the results’ model dependence.

This chapter is structured as follows. In Section 4.2 we introduce our sample of

simulated haloes and describe the stellar properties of the central galaxies, including

morphology, surface density and stellar-mass to halo-mass (SMHM) relation. In

Section 4.3 we describe how the particles are tracked and matched between the

two simulations using the same initial conditions. We then present our results,

starting with a baryon census around our Local Group analogues in Section 4.5,

and a particle-by-particle analysis of the ‘missing baryons’ at z = 0 in Section 4.6.

In Section 4.7, we attempt to understand how differences in the subgrid models

lead to very different baryon cycles on scales up to ∼ 1Mpc. We present predicted

observables in Section 4.8, and discuss the prospects of constraining the subgrid

implementation of SNe feedback from current and future observational datasets.

Finally, in Section 4.9 we discuss the implications of our results, including several

caveats, and summarize our conclusions.
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AP-S5-N1

AP-S5-N2

400kpc
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Figure 4.1: Present-day mass-weighted density projection of the dark matter for the
AP-S5 volume in both Apostle (left) and Auriga (right). The projected rectangle
has dimensions of (3 × 2 × 3) Mpc in the x, y and z directions, respectively, centered
on the centre of the mass of the two primary haloes. The white circles illustrate R200
for these two haloes. The two main haloes do not overlap in 3D space but they do
in this particular x-y 2D projection.

4.2 The sample

We focus on ΛCDM hydrodynamical simulations of two Local Group-like volumes.

Each is a zoom simulation of a region of radius 2 − 3 Mpc that contains a pair of

large haloes with virial masses in the range 5 × 1011 M⊙ to 2.5 × 1012 M⊙
1. We refer

to the four haloes, split across two volumes, as AP-XX-NY , where XX =S5, V1

specifies which of the two volumes the halo is in, and Y = 1, 2 identifies the two

primary haloes. AP-V1 and AP-S5 correspond to AP-1 and AP-11 in the original

APOSTLE simulations described in Sawala et al. (2016) and Fattahi et al. (2016).

The volumes were selected to match some of the dynamical constraints of the Local

Group. The two primary haloes are required to have present-day physical separations

of ≈ 800 kpc and radial velocities in the range (0 − 250) km s−1. The volumes are

also required to have no additional haloes of mass equal to, or greater than, the least

massive of the pair within a radius 2.5 Mpc of the pair midpoint. More details about

the selection criteria may be found in Fattahi et al. (2016).

1We define the virial quantities, R200 and M200, according to the spherical overdensity mass
(Lacey & Cole, 1994) of each halo centred around the most bound particle within the halo. R200
is the radius within which the mean enclosed density, ∆ = 200 times the critical density of the
universe.
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The ‘zoom-in’ initial conditions (ICs) were created using second-order Lagrangian

perturbation theory implemented within ic_gen (Jenkins, 2010). These ICs have

initial gas (dark matter) particle masses of 1.2(5.9)×105 M⊙, and maximum softening

lengths of 307 pc. This resolution level corresponds exactly to the L2 resolution in

Sawala et al. (2016) and Fattahi et al. (2016), and is similar to the level 4 resolution

in Grand et al. (2017).

AP-XX-Y Y -Apostle are the Apostle simulations which were run using a highly

modified version of the gadget-3 code (Springel, 2005). The fluid properties are cal-

culated with the particle-based smoothed particle hydrodynamics (SPH) technique

(Lucy, 1977; Gingold & Monaghan, 1977). The Apostle simulations adopted a

pressure-entropy formulation of SPH (Hopkins, 2013), with artificial viscosity and

conduction switches (Price, 2008; Cullen & Dehnen, 2010) which, when combined,

are known as ANARCHY (Schaye et al., 2015). This set up is the same as that in

the EAGLE simulations.

The Auriga simulations, AP-XX-Y Y -Auriga, were performed with the magneto-

hydrodynamics code arepo (Springel, 2010). The gas is followed in an unstructured

mesh constructed from a Voronoi tessellation of a set of mesh-generating points

which then allow a finite-volume discretisation of the magneto-hydrodynamic equa-

tions. The mesh generating points can move with the fluid flow. This moving mesh

property reduces the flux between cells, thus reducing the advection errors that afflict

fixed mesh codes. For a detailed description we refer the reader to Springel (2010)

and Grand et al. (2017).

The Auriga simulations follow the amplification of cosmic magnetic fields from

a minute primordial seed field. The magnetic fields are dynamically coupled to

the gas through magnetic pressure. Pillepich et al. (2017) demonstrates that the

stellar mass to halo mass (SMHM) relation is sensitive to the inclusion of magnetic

fields, particularly for haloes of M200 ≥ 1012 M⊙. However, this is not important in

this thesis as both galaxy formation models are calibrated to reproduce realistic L⋆

galaxies.

While the general method of calculating the physical fluid properties in the two
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simulations is different, there are some similarities. Both numerical schemes have the

property that resolution follows mass, namely, high-density regions are resolved with

more cells or particles. Also, both Apostle and Auriga have the same method

for calculating gravitational forces: a standard TreePM method (Springel, 2005).

This is a hybrid technique that uses a Fast Fourier Transform method for long-range

forces, and a hierarchical octree algorithm for short-range forces, both with adaptive

timestepping.

The initial conditions are chosen to produce present-day Milky Way (MW) and

M31 analogues. As both the Auriga and Apostle simulations share exactly the

same initial conditions, we expect several properties of the simulations to be similar.

Specifically, the dark matter properties should be consistent in both simulations.

Furthermore, as both simulations tune the subgrid models to recover real galaxy

properties, we expect some stellar properties to be similar, but less so than the dark

matter properties.

Dark matter haloes are identified using a Friends-of-Friends (FoF) algorithm (Davis

et al., 1985). The constituent self-bound substructures (subhaloes) within a FoF

group are identified using the SUBFIND algorithm applied to both dark matter

and baryonic particles (Springel et al., 2001; Dolag et al., 2009).

Table 4.1 lists properties of the two primary haloes in both volumes. We see that the

baryonic properties of the four haloes in the two simulations differ somewhat, with up

to a factor of two difference in the stellar mass. We also tabulate the baryon fraction,

fb, in each halo, which we define as the ratio of baryonic to total mass normalised

by the mean cosmic baryon fraction, Ωb/Ωm ∼ 0.167, within R200. We find that

the baryon fraction in the Apostle simulations is systematically lower than in their

Auriga counterparts. The virial properties of the haloes are all consistent, however,

with small differences in virial mass and radius which are due to the different halo

baryon fractions.

Fig. 4.1 shows a dark matter projection of the AP-S5 volume in both Apostle

and Auriga. A visual inspection shows that the dark matter distribution of the

two haloes, and their local environment, are almost identical in the two simulations.
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There is some variation in the location of satellite galaxies and nearby dwarf galaxies;

this is likely due to the different baryonic properties and the stochastic nature of n-

body simulations.

In Fig. 4.2 we plot the SMHM relation for the four primary haloes in the two simula-

tion volumes, Apostle and Auriga, alongside the inferred relation from abundance

matching (Behroozi et al., 2013). We also include several resolved lower mass field

‘central’2 haloes from both Apostle and Auriga to give an indication of the SMHM

over a broader mass range. We define the stellar masses as the total stellar mass

within an aperture of 30 kpc. The stellar masses of the Auriga galaxies are con-

sistently larger than those of the Apostle galaxies, at a given halo mass, over the

entire range of halo masses. As both Apostle and Auriga model the same volume,

the differences are not due to sample variance. However, these are only single realisa-

tions of the model, and most galaxy formation models incorporate highly stochastic

processes; thus re-running these simulations may produce somewhat different results

(Genel et al., 2019; Keller et al., 2019; Davies et al., 2021).

Despite using a modified and higher resolution version of the EAGLE galaxy for-

mation model, the four Apostle haloes in this thesis are similar to their EAGLE

counterparts. The four Apostle haloes, which have a halo mass ∼ 1012 M⊙, have a

stellar mass range, M∗ ∼ (1 − 5) × 1010 M⊙. This is in agreement with the EAGLE

reference simulations which predict a range of (0.5 − 5) × 1010 M⊙ (see Figure 7 of

Matthee et al. 2017). The black hole mass of the four Apostle haloes is approx-

imately a few ∼ 106 M⊙, which is very similar to those of the EAGLE reference

simulation with the same stellar/halo mass (see Figure 10 of Schaye et al. 2015).

However, the Apostle haloes in this study are considerably more baryon rich than

those found in the EAGLE reference simulation. This predicts 15th and 85th per-

centiles for the halo baryon fraction of fb ∼ 0.3 − 0.45, for halo masses of ∼ 1012 M⊙

(see Figure 1 of Kelly et al. 2021). The lowest baryon fraction of the Apostle

haloes presented in Table 1 is fb = 0.53. The reason for the larger baryon fraction in

Apostle is likely two-fold. First, the Apostle simulations use the ‘ViscLo’ subgrid

2‘Central’ refers to the most massive subhalo with a FoF (Davis et al., 1985) group.
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physics parameters, which are identical to the EAGLE reference parameters except

for a lower viscosity for the BH’s subgrid accretion. Thus, the Apostle black holes

will accrete at a lower rate than EAGLE black holes. Secondly, the EAGLE simula-

tions were calibrated at a lower resolution. Using a similar model with higher mass

resolution can make the stellar feedback more efficient which can reduce gas accre-

tion onto the BH, stalling its growth and reducing AGN feedback. Oppenheimer

et al. (2020b) demonstrated that sudden black hole growth, and AGN feedback, can

reduce the baryon fraction around MW-mass haloes.

We also briefly analyse the stellar surface density profiles of the four primary haloes

at the present day. We fit the surface density profiles with a combination of an

exponential profile of scale radius, RD, and a Sersic profile of the form exp(R/Reff)n

(Sérsic, 1963). The values of the best-fit parameters, RD, Reff and n, are given in

Table 4.1. The fit parameters of the models are consistent with the isolated MW-mass

galaxies, the original Auriga haloes, presented in Grand et al. (2017). Furthermore,

the stellar surface density at the solar radius is a few times ∼ 10 M⊙ pc−2 in all of

the haloes which is consistent with estimates for the Milky Way (Flynn et al., 2006).

The surface density profiles, and best fit models, can be seen in Fig. 4.4. The galaxy

stellar surface density profiles are similar in most cases in the two simulations, albeit

with a systematically higher surface density in the case of Auriga.

We also calculate the κrot rotation parameter for each galaxy, a measure of the frac-

tion of kinetic energy in organized rotation, which correlates with morphology (Sales

et al., 2012). The quantity κrot is defined such that κrot ≈ 1 for discs with perfect

circular motions and κrot ≈ 1/3 for systems with an isotropic velocity dispersion.

Thus, a large κrot indicates a disc galaxy, whereas a lower value indicates an ellipti-

cal galaxy. κrot requires a definition of the z-axis which we take to be the direction

of the total angular momentum of all stars within 30 kpc of the centre of the galaxy.

The large values of κrot in Table 4.1 are consistent with a visual inspection of Fig. 4.3,

which shows face-on and edge-on stellar projections of the four primary haloes. In

Fig. 4.3 we see that most of the galaxies appear to be ‘disky’ in projection, with the

exception of AP-V1-N2-Apostle, which has a low κrot.
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Figure 4.2: The stellar-mass-to-halo-mass relation in the Apostle (red) and Au-
riga (blue) simulations. The four different symbols (cross, circle, square and tri-
angle) differentiate the four different primary haloes. The smaller blue and red
pentagons show the SMHM relation for ‘central’ field galaxies in the Apostle and
Auriga simulations respectively. The black solid line and grey shaded region are
the results of Behroozi et al. (2013) with an estimated scatter of ±0.2 dex. We also
show as a black hexagon with errorbars the estimate for the Milky Way halo mass
by Callingham et al. (2019) and of the stellar mass by Licquia & Newman (2015)

In general, the Auriga simulations exhibit more recognisable morphological fea-

tures, spiral arms and distinct bar components (AP-S5-N2, AP-V1-N1 and AP-V1-

N2). The Apostle simulations produce smoother looking discs, with little morpho-

logical evidence of either a bar or spiral arms. It is unclear what causes these mor-

phological differences, but they could be due to different effective spatial resolutions

in the two simulations. In SPH simulations, the smoothing length determines the

spatial resolution, and the ratio of the smoothing length to the mean inter-particle

separation is usually a free parameter taken to be ∼ 1.3 (Price, 2012). Whereas in

moving mesh simulations, the cells have a spatial radius of approximately ∼ 0.5 the

mean cell separation. Thus moving mesh simulations typically have a ∼ 1.3/0.5 ∼ 2.4

times better spatial resolution at the same mass resolution3.

Fig. 4.4 shows stellar surface density profiles, for stellar mass within ±5 kpc of the

mid plane in the vertical direction, for all simulations at z = 0. The profiles are

3By the same mass resolution, we mean that the cell mass in a moving mesh simulation is equal
to the particle mass in an SPH simulation, as in this thesis.
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Figure 4.3: Mass-weighted face-on (top) and edge-on (bottom) projections of the
stars in the four haloes in the Apostle and Auriga simulations at z = 0
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are simultaneously fit with a Sersic (dashed) and exponential (dashed-dotted) profile
using a non-linear least-squares method. Results for the Apostle and Auriga
simulations are shown in red and blue respectively. The best-fit parameters may be
found in Table 4.1.
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moving). We repeat the process at six redshifts, z = 0, 1, 2, 5, 8 and 10, which
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The left panel shows the results in Apostle and the right panel in Auriga. The
baryon fraction is normalised by the mean baryonic-to-dark matter ratio, fb, in the
universe. The dashed black line indicates a baryonically closed system.

simultaneously fit with a linear sum of an exponential profile of scale radius, RD,

and a Sersic profile of the form exp(R/Reff)n (Sérsic, 1963). The best fit values are

calculated using the least squares method to logarithm density profile.

4.3 Methods

4.4 Tracer particles and particle matching

The quasi-Lagrangian technique of arepo allows mass to advect between gas cells

so each cell may not represent the same material over the course of the simulation.

The Auriga simulations, however, include Lagrangian Monte Carlo tracer particles

(Genel et al., 2013; DeFelippis et al., 2017) which enable us to track the evolutionary

history of individual gas mass elements in a way that allows direct comparison to

SPH gas particles in Apostle. The Monte Carlo tracer particles have been shown

to reproduce the density field in various tests, including cosmological simulations,

accurately (Genel et al., 2013).
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Figure 4.6: The present-day fate of the baryonic counterparts of the dark matter
particles within R200 of the primary halo AP-S5-N1 in Apostle and Auriga. The
halo stars, halo gas, ejected gas and impeded gas are shown by blue, green, red and
grey bars, respectively. See the text for a detailed description of these categories.

In Auriga, a single tracer particle is attached to each gas cell at the beginning of

the simulation. As the simulation proceeds, tracer particles can transfer across cell

boundaries with a probability given by the ratio of the outward-moving mass flux

across a face and the mass of the cell. This allows the tracer particles to emulate

the evolution of a Lagrangian gas element. The tracer particles do not carry any

physical properties. Instead, they inherit the properties of the baryonic element to

which they are attached at any given time. The tracer particles introduce a Poisson

noise due to their probabilistic evolution. However, as we use several million tracer

particles, this noise is insignificant.

A combination of identical initial conditions and the tracer particles in Auriga

allows us to perform a detailed comparison between the two simulations on the

scales of individual baryonic mass-elements. In the Apostle simulations, each dark

matter particle in the initial conditions is assigned a gas particle at the start of

the simulation. This represents the baryonic mass from the same Lagrangian region

as the associated dark matter particle. Likewise, the dark matter particles within

Auriga are assigned tracer particles. Both the tracer particles in Auriga, and

the gas particles in Apostle, are assigned permanent, unique ID’s dependent on

their parent dark matter particle. The unique ID assigned to each particle facilitates
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direct comparison of the same baryonic mass elements between the two simulations.

4.5 Baryon evolution

As we have shown in Section 4.2, Apostle and Auriga produce galaxies in MW-

mass haloes that have roughly similar morphologies, stellar masses and stellar mass

distributions. However, as the simulations are calibrated to reproduce a number of

stellar properties of the observed galaxy population, these similarities are not too

surprising. In this section we explore the effects of the two different hydrodynam-

ical schemes and feedback implementations on the untuned baryon properties. In

particular, we investigate the baryon fraction around the two pairs of MW and M31

analogues and how this evolves with both radius and time.

In Fig. 4.5 we investigate the baryon fraction within a sphere centred on the main

progenitors of the AP-S5-N1 simulations, as a function of radius at six different

redshifts. Even though both simulations follow the assembly of the same dark matter

halo, the baryon fraction within a sphere of radius ≈ 500 kpc (comoving) begins to

differ significantly between z = 8 and z = 5. By z = 2 the Apostle model has

developed a baryon deficiency of ≥ 10% within a radius of ≥ 1 Mpc (comoving),

extending to ≈ 2 Mpc at the present day. We refer to this is the Local Group

baryon deficiency. By contrast, in the Auriga simulations the baryon fraction is

within 10% of unity for radii ≥ 0.5 Mpc (comoving) at all redshifts. Furthermore,

the minimum baryon fraction within a sphere around the primary Auriga galaxy

is ≈ 80%, approximately twice that of its Apostle counterpart.

In Table 4.1 the baryon fraction of AP-V1-N1-Apostle is similar (∼ 0.85Ωb/Ωm) to

that of the Auriga counterpart. However, the baryon fraction of this galaxy at

z = 1 was ∼ 0.5Ωb/Ωm, almost a factor of two lower than in Auriga. Furthermore,

the baryon fraction within a radius of ∼ 1 Mpc is ∼ 30% lower than in Auriga.

Thus, even the most baryon rich halo in Apostle is still baryon poor compared to

the same halo in Auriga. The differences in the baryon fraction of the haloes in

the local region, out to ∼ 1 Mpc, around AP-S5-N1 are representative of the sample.
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Thus, while we focus on the individual halo AP-S5-N1 for illustration, the general

results are valid for all haloes in our sample.

In both Apostle and Auriga the halo baryon deficiency peaks at around z = 1−2,

which is consistent with the observed peak in the star formation rate in the real

universe (Madau & Dickinson, 2014). However, the amplitude, spatial extent and

scale of the baryon deficiency in Apostle, compared to Auriga, is striking. This

difference is particularly remarkable given that the primary galaxies are relatively

similar.

AGN feedback is often thought to be the cause of low baryon fractions in MW-mass,

and more massive haloes in cosmological hydrodynamical simulations (Bower et al.,

2017a; Nelson et al., 2018; Davies et al., 2019). Nevertheless, we see from Fig. 4.5 that

the decrease in baryon fraction in Apostle sets in at high redshift when the halo

masses, and thus the black hole masses, are much lower. These results thus imply a

different driver for the low baryon fractions at early times. While these haloes are

already baryon deficient early in their evolution, the addition of AGN feedback can

further decrease the baryon fraction. As described, the AGN feedback in Apostle

is weaker than that found in EAGLE, which can explain why the Apostle haloes

are almost twice as baryon rich as those in the EAGLE reference model.

Although the two simulations predict very different local baryon fractions, both

within the halo and beyond, it is difficult to ascertain which of these models is the

more realistic. In practice, it is very difficult to infer the baryon fractions of real

galaxies. For external galaxies these are typically derived from X-ray emission using

surface brightness maps to infer a gas density profile. These inferences also require

information about the temperature and metallicity profiles, which are difficult to

measure accurately with current instruments (Bregman et al., 2018).

In the Milky Way, the baryonic mass in stars, cold and mildly photoionised gas and

dust is estimated to be 0.65 × 1011 M⊙ (McMillan, 2011). The total mass of the

halo, which is dominated by dark matter, is estimated to be (1.17 ± 0.15) × 1012 M⊙

(Callingham et al., 2019). Assuming a universal baryon fraction of Ωb/Ωm ≈ 0.157

(Planck Collaboration et al., 2013) implies that 0.8×1011 M⊙ of the MW’s baryons are
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unaccounted for. There is strong evidence that some fraction of these unaccounted

baryons resides in a hot gaseous corona surrounding massive haloes; however, the

total mass remains uncertain. An accurate estimate of the mass of the MW hot

halo requires knowledge of the gas density profile as a function of radius. While the

column density distribution of electrons is constrained in the direction towards the

LMC (Anderson & Bregman, 2010), there is a degeneracy between the normalisation

and the slope of the electron density profile (Bregman et al., 2018). Assuming a flat

density profile (e.g. Gupta et al., 2012, 2014; Faerman et al., 2017), the MW appears

to be ‘baryonically closed’. However, for faster declining density profiles (see Miller

& Bregman, 2015; Li & Bregman, 2017), the gaseous halo out to R200 contains only

half of the unaccounted baryons. Therefore, the predictions of Fig. 4.5 for both

Apostle and Auriga are consistent with observations given the uncertainties.

4.6 The missing halo baryons

In this section we carry out a detailed analysis, on a particle-by-particle basis, of

the differences in the present-day baryon contents of the Apostle and Auriga

Local Group analogues. As we described in Section 4.4, each dark matter particle

is assigned a gas particle, or a tracer particle, which shares the same Lagrangian

region in the initial conditions. In the absence of baryonic physics, these particles

would evolve purely under gravity and would thus end up in the same halo as their

dark matter counterparts. We refer to these as ’predestined’ particles. However,

hydrodynamics and feedback will significantly alter their fate.

We start our analysis by identifying all the dark matter particles present in each of

the primary haloes at z = 0. We then identify the baryonic companions of these

dark matter halo particles and categorise their z = 0 state, as illustrated in Fig. 4.6,

classifying them into the following four categories:

• Halo gas: gas particles within R200 of the primary halo

• Halo stars: star particles within R200 of the primary halo
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(b) Auriga

Figure 4.7: The evolution of 10 randomly selected halo baryonic tracer particles
classified as ‘ejected’ from an (a) Apostle and (b) Auriga halo. For both (a) and
(b), the top-left, top-right, bottom-left, and bottom-right panels show the radius
from halo centre, mean temperature, density and metallicity as a function of time.
The particle properties are sampled at 60 snapshots linearly spaced as a function
of the age of the universe. The radius is given in units of R200(z). The top-left
panel also includes the radial position of the dark matter counterpart of each baryon
particle; these are illustrated with a dashed line of the same colour. In the bottom-
right panel, which shows the metallicity, there are several lines which lie on top of
one another and thus are not visible. The same random particle is identified in each
panel by the same coloured line.
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• Ejected gas: gas particles which are outside R200 at z = 0 but had closest

approach radii smaller than R200 at a previous redshift

• Impeded gas: gas particles which are outside R200 at z = 0 and had closest

approach radii larger than R200 at all previous redshifts.

It is important to note that Fig. 4.6 does not include baryons in the present-day halo

if the dark matter counterpart is not in the halo. These baryons make a negligible

contribution to the halo baryon mass.

There are several important differences in Fig. 4.6 between Apostle and Auriga.

About 35% of the baryonic pairs of the z = 0 dark matter halo particles lie inside

the primary halo of the Apostle simulation, whereas in the Auriga simulations

approximately 70% of the baryon counterparts are within R200. The baryons that

lie within the halo are split between stars and gas in a roughly 1 : 1 ratio in both

simulations.

While the fate of the retained baryon counterparts is similar in the two simulations,

the evolution of the absent baryons is considerably different. In Apostle we find

that almost half of the baryon counterparts which are missing never entered the halo,

whereas in Auriga almost ≈ 90% of the absent baryons entered the halo before being

ejected, presumably by SNe or AGN feedback.

4.6.1 Ejected gas

In Fig. 4.7 (a) and (b) we show the evolution of 10 randomly selected ‘predestined’

halo baryons which have been classified as ‘ejected’. The particles are sampled at 60

snapshots linearly spaced as a function of the age of the universe, corresponding to

a temporal resolution of ≈ 200 Myr.

In both simulations we see that the radial trajectories of both the gas and paired

dark matter particles are generally very similar at early times. As the dark matter

and baryon counterparts get closer to the main halo, their paths deviate and there

is a tendency for gas accretion to be delayed relative to dark matter.
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Following accretion into the halo, the trajectory of the gas begins to differ signifi-

cantly from that of the dark matter. This deviation is caused by hydrodynamical

forces which determine the subsequent evolution of the baryons. Most of the bary-

onic particles sampled in Fig. 4.7 (a) and (b) reach a high density upon accretion

and increase their metallicity. This behaviour is consistent with halo gas that has

cooled, been accreted onto the central galaxy and later ejected.

Focusing first on Apostle, Fig. 4.7 (a), we see that most of the randomly selected

‘ejected’ particles were ejected over 6 Gyr ago. In general, these particles reach a

maximum radius, and near-constant, separation of ≈ (3 − 8)R200 very quickly. At

the present day, this corresponds to a physical distance of ≈ (500 − 1500) kpc and is

consistent with the conclusions of Section 4.5 which reveals a baryon deficient Local

Group on scales of up to 2 Mpc. There also appears to be a general trend in that the

earlier the gas ejection, the greater its radial separation from the primary galaxy.

Fig. 4.7 (a) shows that prior to being ejected, most of the Apostle gas was cold

but then underwent a sudden temperature increase, with maximum temperatures

regularly exceeding 107 K. The ejection of the gas from the halo rapidly follows the

temperature increase. This process most likely proceeds as follows: the cold gas is

part of the galaxy’s ISM; some of it is heated to a temperature T ≥ 107 K either

directly by SNe feedback or indirectly by interaction with a SNe-heated particle. The

hot gas then gains energy and is accelerated to a velocity that exceeds the escape

velocity of the halo. This gas can then escape beyond R200 and join the low-density

IGM where it remains until the present day. It is interesting that much of the ejected

gas does not have a maximum temperature, T = 107.5 K. This indicates that this

gas was not directly heated by SNe but rather by interactions with SNe-heated gas.

There is also little evidence of the effect of AGN feedback, which heats gas particles

to even higher temperatures. However, these results are likely sensitive to the exact

subgrid parameters chosen.

In Fig. 4.7 (b) we see that the evolution of both baryons and dark matter is similar

in Auriga and Apostle before ejection. However, in Auriga, the ejected gas

typically reaches a maximum radial distance of ∼ 3R200 before turning back and
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falling into the halo by the present day. Thus, the ‘ejected’ gas in Auriga likely

has a shorter recycling timescale than the gas in Apostle, much of which never

reenters the halo. However, gas that was ejected at early times and re-accreted is

not, by definition, included in Fig. 4.7 (b). Short recycling times in Auriga were first

reported by Grand et al. (2019) who show the model gives rise to efficient galactic

fountains within the inner ∼ 30 kpc, with median recycling times of ∼ 500 Myr in

MW-mass haloes.

4.6.2 Impeded gas

We now analyse the evolution of ten randomly selected ‘predestined’, baryonic parti-

cles which have never entered the primary halo. These are plotted in Fig. 4.8 (a) and

(b) for Apostle and Auriga, respectively. In Fig. 4.8(a) we see that about half

the randomly-selected particles in Apostle make their initial approach at redshift,

z ∼ 2 − 3. As the dark matter particles are accreted into the halo, their baryon

counterparts start being impeded at a radius ∼ 4R200. The subsequent fate of these

particles can differ substantially. About half of them remain at a distance ≥ 3R200

until the present day, whereas the other half continue to approach the primary halo

and are almost accreted by z = 0.

The (maximum) temperature of the ‘predestined’ impeded particles in Apostle is

shown in the top-right panel of Fig. 4.8 (a). The overall temperature evolution of all

impeded particles is quantitatively similar. Initially, the gas is at low temperature,

≈ 104 K, but as it approaches the halo, it is subject to an almost instantaneous tem-

perature rise to ≈ 106 K. Since the maximum temperature of the gas is always well

below 107.5 K, this rise is not the result of direct SNe or AGN heating. Furthermore,

before closest approach, these gas particles also have low density and metallicity,

with one or two exceptions. These properties are consistent with pristine gas within

the IGM, thus confirming that direct feedback did not heat these particles.

In Fig. 4.8 (b) we see that the accretion time of the dark matter counterparts of

the ten randomly selected impeded baryons in Auriga is recent, within the last
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(b) Auriga

Figure 4.8: The evolution of 10 randomly selected halo baryonic tracer particles
classified as ‘impeded’ from an (a) Apostle and (b) Auriga halo. For both (a)
and (b), the top-left, top-right, bottom-left, and bottom-right panels show the radius
from halo centre, temperature, density and metallicity as a function of time. The
particle properties are sampled at 60 snapshots linearly spaced as a function of the
age of the universe. The radius is normalised to the (time-dependent) R200. The
top-left panel also includes the radial position of the dark matter counterpart of
each baryon particle; these are illustrated with a dashed line of the same colour. In
the bottom-right panel, which shows the metallicity, there are several lines which lie
on top of one another and thus are not visible. As with Fig. 4.7 the same random
particle is identified in each panel by the same coloured line.
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Figure 4.9: Mass-weighted histogram of the age of the universe at the time of accre-
tion of the dark matter particles associated with ‘predestined’ baryon particles that
have been impeded. The top panel shows results for the AP-S5-N1 halo in Apostle
and the bottom panel for Auriga. This shows that cosmic gas accretion is signifi-
cantly impeded at all times in Apostle, whereas Auriga only impedes cosmic gas
accretion, relative to dark matter accretion, at late times.

≈ 4 Gyr, for most particles. In Apostle we saw that before closest approach, the

baryon particles were relatively unenriched, cold and at low density showing no sign

of interaction with nearby galaxies. However, as seen in the bottom right panel of

Fig. 4.8 (b), much of the impeded gas in Auriga is enriched; this suggests the cause

of the impediment could be interactions with other nearby galaxies at earlier times.

The impeded gas could have been accreted by these galaxies or have interacted with

their winds.

In Fig. 4.9 we show the mass-weighted distribution of first accretion times of all dark

matter particles associated with ‘predestined’ baryon particles classified as ‘impeded’.

The Apostle simulations have a weakly bimodal distribution: the dark matter

associated with impeded gas was accreted either at early or at late times. In the

Auriga simulations the late accreted population dominates.

The presence of hot quasi-hydrostatic haloes can impede gas accretion at late times.

Haloes of mass ⪆ 1012 M⊙ have massive hot gaseous coronae. These gaseous haloes,

which often extend beyond R200, can exert pressure on the accreting gas and thus
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delay its accretion. The accretion of the collisionless dark matter is, of course,

not impeded. The process impeding gas accretion at early times and late time in

Apostle is likely to be similar. However, the progenitors of the present-day primary

haloes are not massive enough at high redshift to support massive atmospheres of

primordial gas to explain the observed scale of suppressed accretion so most of the

gaseous atmosphere must be gas that was reheated and ejected.

The explanation is provided in Fig. 4.14 which shows temperature projections of the

AP-S5-N1 halo at four times between z = 3.5 and z = 2 in both Apostle and

Auriga. We overlay the positions of sixteen randomly selected baryon/dark matter

pairs chosen so that they were ‘impeded’ at early times in Apostle. The same

pairs, originating from the same Lagrangian region in Auriga, are also overlaid.

The blue circles show the x, y positions of the dark matter and the white circles

those of the baryons. The white dotted line connects the baryon/dark matter pairs

to help visualise the differences in the evolution of the two species.

We see that in Apostle the MW progenitors are encased in a hot, ≈ 106 K, corona

of gas that occupies a volume of radius twice as large as that of the Auriga coun-

terparts. This gas halo consists of a mixture of accreting primordial gas and hot

outflowing winds fuelled by feedback from the central galaxy. As shown in Fig. 4.7,

gas particles in the ISM can be heated by SNe feedback, generating a hot, outflowing

wind that can reach distances of up to 4R200 in less than 1 Gyr. This outflowing

gas interacts with the accreting gas, applying an outward force sufficient to delay or

prevent accretion. This leads to large amounts of ‘predestined’ gas ‘impeded’ from

accreting at early times in Apostle (as seen in Fig. 4.6). The overlaid particles in

Fig. 4.14 succinctly demonstrate this process.

In contrast, the Auriga haloes have hot gaseous components that barely extend

beyond R200 and do not evolve in time significantly. As the hot component in Auriga

is less massive and cooler than in Apostle, the dark matter/baryon pairs evolve

similarly until they reach ∼ 1.5R200. At radii ≤ 1.5R200 gas accretion is delayed

relative to the dark matter by hydrodynamical forces. However, it appears less than

5% of gas is completely prevented from accretion.
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Figure 4.10: A normalized histogram of the logarithmic maximum historical tem-
perature of all the ejected (red) and impeded (blue) gas particles identified in the
AP-S5-N1 halo of the Apostle simulation. The maximum temperature is the high-
est temperature recorded throughout the entire simulation. We do not show the
maximum temperature for the tracer particles in Auriga as the tracer particles do
not store this information.

4.6.3 Quantitative sample properties

This section quantifies various statistics of the entire ejected and impeded gas popu-

lations in the Apostle and Auriga simulations of AP-S5-N1. It is worth reminding

the reader that ejected and impeded gas populations are much smaller in Auriga

than Apostle. In Fig. 4.10 we show the maximum temperature ever achieved by

both ejected and impeded gas particles in the Apostle simulations. We start by

analysing the ejected particles where we find that ≈ 35% of the gas has a maximum

temperature above 107.5 K indicating direct heating by feedback. This shows that

most of the ejected gas was not directly heated but rather entrained by a wind.

We also note that ≈ 0.03% of the ejected gas was heated to temperatures 108.5 K,

again suggesting AGN feedback only has a negligible effect in this halo. The median

maximum temperature of the impeded gas is ≈ 105.6 K which is consistent with the

findings of Fig 4.8 in which we suggest most of the impeded gas, in Apostle, is cold

before being heated almost instantaneously to ≈ 106 K as it approaches the halo.

Unfortunately, this analysis can not be repeated for the Auriga simulations as the

simulations do not track the maximum temperature.
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Figure 4.11: A normalized histogram of the minimum recorded galactocentric radius
of all the ejected gas particles identified in the AP-S5-N1 volume of both Apostle
(red) and Auriga (blue).

In Fig. 4.11 we show the minimum radius of ejected gas particles in both Apostle

and Auriga prior to ejection. In Auriga, we find that over 85% of the ejected gas

particles resided at a minimum radius ≤ 0.15R200, suggesting that these particles

were ejected from ISM of the galaxy. In Apostle, we find only 65% of the ejected

gas particles came from within ≤ 0.15R200. This again suggests that most of the

ejected gas from Apostle comes from the ISM. Combining this with the result that

SNe directly heated ≈ 35% of the ejected gas suggests that half of the entrained gas

comes from the ISM, and half comes from the CGM in Apostle.

Fig. 4.12 shows the radius of both ejected and impeded gas particles, at the present-

day, in both Apostle and Auriga. We see that almost 70% of the ejected gas in

Auriga resides within a radius of ≤ 2R200 at the present day. In contrast, only

30% of the Apostle ejected gas resides within this radius. This is in agreement

with the results of the randomly selected particles in Fig. 4.7 and demonstrates the

significant difference in the fate of the ejected gas between the two simulations. The

results of the impeded gas are similar. In the Auriga, which has a lot less impeded

gas, we see that 75% of the impeded gas is within 3R200, and a considerable portion

of this has been nearby galaxy. Again, the Apostle shows a much more extended

distribution of impeded gas with only 35% of the impeded gas within 3R200 at the

present day. This supports the results of Fig. 4.8 which shows the same results for a
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Figure 4.12: A normalized histogram of the present-day, z = 0, galactocentric radius
of all the ejected (left) and impeded (right) gas particles identified in the AP-S5-N1
volume of both Apostle (red) and Auriga (blue).

small random sample of particles.

Finally, we look at the present-day metallicity of all the ejected and impeded gas

particles, in both Apostle and Auriga, in Fig. 4.13. We first describe the metal-

licity of the ejected gas. In Auriga ≈ 80% of the ejected particles have a metallicity

of ≥ 0.1 Z⊙. In Apostle, only ≈ 60% of the ejected particles have a metallicity of

≥ 0.1 Z⊙. Both of these results are consistent with the fraction of ejected particles

with a minimum radius ≤ 0.15R200. These results suggest that the mass loading

factor in Apostle is likely higher than in Auriga. The impeded gas in Apostle

is almost entirely pristine with over 70% of the gas having a metallicity ≤ 10−5 Z⊙.

Conversely, 30% of the impeded gas in Auriga has a metallicity above ≥ 0.1 Z⊙.

It appears that much of the impeded gas in Auriga has directly interacted with a

nearby galaxy, or the wind of a nearby galaxy, causing metal enrichment. The results

of Fig. 4.8 suggest that a significant fraction of the impeded gas in Auriga may have

been stripped from progenitors of the main halo, explaining their enrichment.

To conclude, the results of Figs. 4.10-4.13 demonstrate that the randomly selected

particles presented in Sections 4.6.1 and 4.6.2 are in fact representative of the whole

sample of ejected and impeded particles.
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Figure 4.13: A normalized histogram of the present-day, z = 0, logarithmic metal-
licity of all the ejected (left) and impeded (right) gas particles identified in the
AP-S5-N1 volume of both Apostle (red) and Auriga (blue). We set the minimum
metallicity to be 10−6 Z⊙ to ensure inclusion in the histogram.

4.6.4 The fate of impeded and ejected baryons

Fig. 4.15 shows the projected dark matter and gas density of both ‘ejected’ and ‘im-

peded’ baryons that were ‘predestined’ to end up in the primary halo but are missing.

In the Apostle simulations, the present-day distribution of these missing baryons

is different for the ‘impeded’ and ‘ejected’ components. The impeded gas appears to

be elongated roughly along the x-axis which, as can be seen in the projected dark

matter distribution, traces a local filament. By contrast, the ejected gas tends to be

elongated along the y-axis, that is, perpendicular to the filament.

The reason for this apparent difference in the different distributions of impeded and

ejected gas may be because the impeded gas flows towards the halo along the filament

and would have been accreted by the halo had the pressure of the hot halo not

impeded it. Thus, it remains in the filament, centred around the halo. The ejected

material, on the other hand, finds the path of least resistance, which is perpendicular

to the filament: along the filament direction the wind encounters relatively high

density gas while in the perpendicular direction, the density and pressure of the

surrounding medium drop rapidly. As a result, gas ejected perpendicular to the

filament can reach larger radii, giving rise to the apparent elongated distribution

seen in Fig. 4.15. However, Fig. 4.15 is not sufficient to prove this process happens,



4.6. The missing halo baryons 93

AP-S5-N1

AP-S5-N2

Apostle
z=4.1

Apostle
z=3.4

Apostle
z=3.0

Apostle
z=2.6

AP-S5-N1

AP-S5-N2

Auriga
z=4.2

Auriga
z=3.5

Auriga
z=3.1

Auriga
z=2.6

104.5 105.5 106.5
Temperature / [K]

Figure 4.14: Mass-weighted temperature projections through a region of size (16 ×
16×24) R200 centred on the location of the progenitor of the primary galaxy in AP-S5-
N1 at four redshifts, z ∼ 4, 3.5, 3, 2.5. Results are shown for both Apostle (top row)
and Auriga (bottom row). The white and blue circles show the positions of sixteen
randomly selected baryon-dark matter counterparts which are ‘impeded’ at early
times in Apostle. The same counterparts, originating from the same Lagrangian
region, are shown in Auriga. The white dotted lines connect the baryon/dark
matter counterparts. The white dashed circles identifies the R200 of the two main
haloes.

analysis of the surface density profiles along and perpendicular to the filament could

quantitatively demonstrate this effect.

An interesting detail in Fig. 4.15 is the transfer of baryons between the M31 and MW

analogues. This is due primarily to the effect of gas ejection from both galaxies which

can cause cross-contamination. This process is an example of halo gas transfer, (see

Borrow et al., 2020) and indicates that the proximity of M31 may have influenced

the evolution of the MW, although the amounts of gas transferred are very small.

While the two simulations predict very different morphologies for the ejected baryons,

these differences are likely undetectable in the real universe because of the low density

of ejected material.
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Figure 4.15: The z = 0 projected density of dark matter (left), ejected baryons
(center) and impeded baryons (right) for the AP-S5-N1 halo in both Apostle (top)
and Auriga (bottom). The projected cuboid has dimensions of 20 × 20 × 8 R200 in
the x, y and z directions, respectively. The solid white/black circles indicate R200 of
the halo AP-S5-N1 and the dashed-dotted circles that of AP-S5-N2.

4.7 Understanding the differences

In Fig. 4.16 we show histograms of the gas density and temperature weighted by mass,

metal mass and radial velocity for both Apostle and Auriga at four redshifts. All

gas particles/cells within a sphere of radius 3 R200 around the centre of the primary

halo of AP-S5-N1 are included. As in Section 4.5, we focus on this particular example

but our general results are valid for all haloes in our sample.

We can see in the figure the gas responsible for impeding accretion in Apostle at

z = 2 − 3: it is hot, ≥ 106 K, low density, ∼ 10−4 cm−3, slightly metal-enriched and

outflowing with a mean radial velocity exceeding 100 km s−1 relative to the centre of

mass of the halo. This gas component is visible from z = 3 until z = 1. In Auriga

gas with similar temperature and density is less enriched and is not outflowing. There

is some hot enriched gas with large outflow velocities at all redshifts, but this gas
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appears to cool and mix with inflowing material as there is no evidence of less dense

and slightly cooler outflows.

At higher redshift, the majority of the metals in Fig. 4.16(b) reside in hot, diffuse

gas. As shown by Fig. 4.16 (c) this material is outflowing. Interestingly, we do

not see any evidence of a significant cooler metal component developing until about

z = 1 − 2. When this cooler metal component appears, it is radially inflowing,

suggesting the recycling of earlier outflows.

In Auriga we first see a population of metal-enriched gas that is both hot and dense

at approximately z = 3. By z = 2, this enriched gas appears to have cooled and

increased in density. This is inferred from distribution of metals. These features

suggest the presence of galactic fountains even at high-redshift. The Auriga haloes

also contain a component of very dense gas, nH ≥ 10−2 cm−3, with temperature

ranging between T ≈ 104 − 107 K. This is a further indication of efficient galactic

fountains: the high densities lead to short cooling times, of order ∼ 200 Myr, and,

for this substantial amount of gas to be present, it must be continuously replenished

by the heating of dense gas by feedback.

The differences in the nature of outflows in Apostle and Auriga could be due to

differences in the SNe subgrid models. The Apostle SNe feedback model specifies

the temperature increase of gas particles. In this model, SNe energy is effectively

saved up and released in concentrated form stochastically. This technique means

that gas is heated to higher temperatures less frequently, thus preventing the over-

cooling problem (Dalla Vecchia & Schaye, 2012). Whereas in Auriga, the energy

injected per unit mass of SNII is fixed. This difference in the model causes gas in

Apostle to reach higher temperatures post-SNe feedback.

The total cooling efficiency of moderately enriched gas has a local minimum around a

temperature of 107 K and increases quite steeply both with increasing and decreasing

temperature (see e.g. Fig. 9 of Baugh, 2006). Thus, a post-feedback temperature

lower than 107 K leads to both a higher cooling rate and lower thermal energy.

When these effects are combined, the cooling time can be reduced by an order of

magnitude or more. The lower post-feedback temperature in Auriga could allow
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SNe-heated gas to radiate a significant fraction of the injected energy on a timescale

of order several hundred million years. This reduced cooling time would facilitate

short recycling times for gas in Auriga and prevent the build up of a hot, SNe-fueled

atmosphere at high redshift.

In Apostle, by contrast, feedback heats the gas to 107.5 K, and thus radiative

cooling is relatively inefficient. Fig. 3.10 shows the density and temperature of gas

particles 500 Myr before and after SNe heating in the EAGLE reference simulation.

That figure shows that gas particles that experience SNe feedback decrease their

density by over two orders of magnitude within ≤ 20 Myr of being heated. This

expansion prevents efficient radiative cooling and also makes the gas buoyant so that

it is accelerated out through the halo (Bower et al., 2017b).

Fig. 4.17 shows a mass-weighted projection of the radial velocity of the gas in AP-

S5-N1 for both Apostle (top row) and Auriga (bottom row) at five redshifts,

z ∼ 0, 1, 2, 3, 4. It is clear from these projections that rapid outflowing material

extends well beyond the halo, reaching distances of ∼ 4R200 at z = 4 in Apostle.

These strong, halo-wide outflows are readily visible until z = 1. By contrast, in

Auriga the mass-weighted radial velocity of the outflows is much slower, and their

spatial extent is smaller. These radial velocity projections indicate that Apostle

haloes experience strong outflows with high covering fractions. A high outflow veloc-

ity, combined with a large covering fraction, can impede cosmological gas accretion

on the scale of the entire halo. By contrast, in Auriga we see less extended out-

flows because a significant fraction of the SNe-heated material cools and is efficiently

recycled near the centre of the halo. van de Voort et al. (2021) shows that the mag-

netic fields, included in the Auriga simulations, can reduce the outflow velocities of

gas around the central galaxies. This extra pressure from magnetic fields in Auriga

could be contributing to the reduced gas ejection from the halo compared to that

found in Apostle.

Another factor that can vary the velocity and spatial extent of outflows is the po-

tential depth. In Fig. 4.18 we show the approximate circular velocity profiles as

a function of radius in the four primary haloes in both Apostle and Auriga at
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z = 0. These approximate circular velocity profiles are calculated from the total

enclosed mass assuming spherical symmetry. We see that in the inner 50 kpc the cir-

cular velocity is systematically higher in Auriga, by up to as much as ∼ 100 kms−1.

This difference is because the Apostle model is much more efficient at driving

winds from the central galaxy, propagating out to scales exceeding the virial radius

(Mitchell et al., 2020b). This process reduces the density in the inner region, thus

reducing the escape velocity and making future gas ejection more efficient. Whereas

in Auriga the opposite happens, as wind is inefficient at removing gas from the

central region, the central density increases, thus deepening the potential well.

As described in Section 4.2, the gas dynamics in Auriga are followed with a moving-

mesh technique. Several studies have investigated the differences between moving-

mesh and particle-based hydrodynamics techniques in the context of galaxy forma-

tion simulations (Sijacki et al., 2012; Kereš et al., 2012; Vogelsberger et al., 2012;

Torrey et al., 2012; Bird et al., 2013; Nelson et al., 2013). A general result from

these studies is that gas in moving-mesh simulations cools more efficiently than in

their particle-based counterparts. The cooling efficiency of hot gas is artificially

suppressed in particle-based simulations by spurious viscous heating and the viscous

damping of SPH noise on small scales. Furthermore, moving-mesh simulations model

energy dissipation more realistically by allowing cascading to smaller spatial scales

and higher densities (Nelson et al., 2013). As we mentioned earlier, we expect these

difference to be subdominant to the large differences in the subgrid models between

Apostle and Auriga.

4.8 Observational tests

We have shown in Sections 4.5 and 4.6 that the Apostle and Auriga simula-

tions predict very different baryon cycles around our MW and M31 analogues. We

now turn to the observable signatures of strong outflows in Apostle and galactic

fountains in Auriga. We present mock observations of absorber column densities

and dispersion measure around our MW and M31 analogues. We aim to construct
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Figure 4.16: Gas density-temperature diagrams for a primary halo, AP-S5-N1, in
both Apostle (top row) and Auriga (bottom row). The histograms are coloured
according to (a) mass, (b) metal mass and (c) mass-weighted radial velocity. They
include all gas with temperature T > 104 K that is within radius, r < 3R200, of
the primary halo. The four columns show the gas distributions at four redshifts,
z ∼ 0, 1, 2, 3, from left to right, respectively. The histograms are generated with
300 logarithmically spaced bins in the density range, 10−8 −1 cm−3, and temperature
range, 103.5 − 107.5 K.
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mappings between the physical state of the baryons and real observables and, in

particular, to identify observables that may be sensitive to the differences in the gas

properties seen in the Apostle and Auriga simulations.

4.8.1 Column densities

We show, in Fig. 4.19, the regions of the density-temperature plane where different

species are relatively abundant. The contours enclose regions where each species

contributes 10 per cent of the maximum ion fraction of the respective element in

collisional ionisation equilibrium at z = 1. We show these contours as they highlight

regions of the density-temperature phase space where each species is likely to be

detected. This analysis is similar to Wijers et al. (2020) which analysed lower res-

olution, large volume cosmological simulations using the EAGLE galaxy formation

model.

The species that probe the hottest gas, at T ≥ 106 K, are typically O vii O viii

and Mg x. However, there is a degeneracy as these ionisation states are also plentiful

in lower temperature, lower density gas. In the absence of other observables, it is

difficult to distinguish whether detection of these ions is from a low density or a high

density region. However, given that, in practice, the detection of these lines requires a

moderately high column density, it is likely that any detection will be from gas at high

density and, thus, high temperature. We also see in the figure that Ne vi, Ne viii

and O vi probe a cooler component, at T ≤ 106 K. This transition temperature,

T = 106 K, is a significant threshold as it has the potential to distinguish hydrostatic

gas at the virial temperature of MW-mass haloes from hotter gas heated by feedback

energy.

The species O vii and O viii are well suited for identifying very hot outflows. Un-

fortunately, these ions are challenging to observe in the real universe because the

wavelengths of their lines are so short, ∼ 20 Å. These highly ionized stages of

oxygen, the most abundant metal, have transitions that are detectable in X-rays.

However, even modern X-ray instruments do not have the required resolution or
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Figure 4.19: Temperatures and densities at which different metal species occur at
z = 1. The ion fractions are calculated from the lookup tables of Hummels et al.
(2017), assuming only radiation from the metagalactic UV background according to
the model of Haardt & Madau (2012). These lookup tables are computed under
the assumption of collisional ionisation equilibrium (CIE). The contours for each of
the indicated species are at 10 per cent of the maximum ion fraction. The top panel
shows Ne vi (green), O vii (red) and O viii (blue) and the bottom panel H i (orange),
O vi (green), Ne viii (red) and Mg x (blue).
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Figure 4.20: Atomic column number densities of several species as a function of
impact parameter from the centre of the primary halo in both the Apostle (red)
and Auriga (blue) simulations, out to 3R200 at four redshifts z ∼ 0, 1, 2, 3 from
left to right, respectively. From top to bottom, the rows show results for H i, Ne vi,
Ne viii, O vi, O vii, O viii and Mg x, respectively. The column density at a fixed
radius, r, for each halo is calculated by taking the median column density of many
sightlines through a small annulus. We also compute the lower and upper quartiles
of the column density in each annulus. The solid lines are the mean of the median
column density, at each radius, for all four haloes. The shaded regions illustrate the
range between the mean of the lower and upper quartiles for all of the haloes. We
choose to use the median and quartiles as these are more comparable to a single
random line-of-sight through a halo in the real universe. The results are binned
by impact parameter, and the mean virial radius is used to show the approximate
impact parameter as a function of R200 for all four haloes on the same plot.
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sensitivity. Ne vi, Ne viii Mg x and O vi probe a similar, but typically cooler com-

ponent of gas, but have much longer transition wavelengths, e.g. 558 Å, 770 Å,

610 Å and 1032 Å, respectively. These are readily detectable with UV instruments

and represent good probes of hot, collisionally ionized gas, easier to detect than than

their X-ray counterparts, O vii and O viii.

We now consider each of the ions considered in Fig. 4.20, one at a time. We begin

with the column density profile of H i shown in the top row of Fig. 4.20. In general,

the H i column density profile is similar at all redshifts in both simulations. The

profile is centrally peaked and falls off rapidly, typically decreasing by about 4 orders

of magnitude within the first 100 kpc, where it flattens to a near constant number

density of 1015 cm−2.

Between z = 3 and z = 1, the mean and scatter of the H i column density at fixed

impact parameter agree well in both Apostle and Auriga. However, at z = 0,

there is a slight systematic offset in Apostle where the H i column densities are

about a factor of five higher than in Auriga. The offset diminishes in both the

centre, < 30 kpc, and beyond R200. The similarity of the H i distributions in both

simulations is not surprising. In particular, we see in Fig. 4.16 that the distribution

of gas at high densities and low temperatures, where H i typically occurs, is very

similar in the two (see Fig. 4.19).

The second, third and fourth rows from the top of Fig. 4.20 show the column density

profiles of O vi, Ne vi and Ne viii, respectively. We discuss the distributions of these

ions collectively, as they have similar general trends and typically probe gas at the

same density and temperature, as demonstrated in Fig. 4.19. O vi, Ne vi and Ne viii

probe progressively hotter populations of dense gas, increasing from 105.5 K up to

106 K. Ne vi typically probes a broader range of temperatures, ∼ 0.4 dex, compared

to ∼ 0.2 dex for O vi and Ne viii.

At z = 0, the column densities of O vi, Ne vi and Ne viii in Auriga are higher than

in Apostle at all radii, but the difference is maximal at the centre of the halo.

Outside the central region, beyond ∼ 30 kpc, the differences in column density are

fairly small, typically a factor of two or less. Although the mean column density
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differs at a given impact parameter, the range of column densities for the whole

sample typically overlaps. The differences, however, can be substantial at higher

redshift, z ≥ 1. In Fig. 4.20 we see a general behaviour in the O vi, Ne vi and

Ne viii profiles in both Apostle and Auriga. In Apostle, the column density

distributions are relatively flat, typically decreasing by only an order of magnitude

over a radial range 3R200. In contrast, in Auriga, the central column densities are

typically higher and decrease much faster, dropping by over four orders of magnitude

over the same radial range.

The differences in the column density profiles of O vi, Ne vi and Ne viii at z ≥ 1

in Apostle and Auriga are most notable in both the innermost and outermost

regions. In Auriga, the column densities of these ions are higher in the centre

(r < 50 kpc), where they can be up to a hundred times higher than in Apostle.

However, as the column densities in Auriga decrease so rapidly with increasing

radius, the column densities in Apostle end up being much higher in the outermost

regions, ∼ 150 kpc. In particular, the column densities of these ions in the outer

regions of Apostle are up to three orders of magnitude higher than in Auriga.

We also note that the column density variance at fixed impact parameter is much

larger in Auriga than in Apostle, particularly in the outer regions.

The ions O vii, O viii and Mg x probe some of the hottest gas surrounding our

galaxies. O vii and O viii probe a broad range of hot gas, T ∼ 105.5 − 106.5 K, and

T ∼ 106 − 106.5 K, respectively. Mg x probes gas in a narrower temperature range,

T ∼ 106 − 106.25 K. These three ions, O vii, O viii and Mg x, are shown in the fifth,

sixth and seventh rows from the top of Fig. 4.20. As with the other ions, we find

fairly good agreement between Apostle and Auriga at z = 0, with a considerable

systematic offset for Mg x. Remarkably, the column densities of O vii and O viii

agree to within 10% beyond the inner 10 kpc. Both Apostle and Auriga predict

relatively flat column densities as a function of impact parameter for both O vii

and O viii. The predictions for Mg x differ slightly. The column density of Mg x

drops rapidly beyond radius ∼ 200 kpc and flattens to a near-constant value of

∼ 1012 cm−2 in both simulations. While the general shape of the profiles are similar
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in both simulations, the column density in Apostle is typically a factor of 2 − 5

higher than in Auriga.

At z ≥ 1, O vii, O viii and Mg x follow a similar trend as O vi, Ne vi and Ne viii.

In the central regions, the column densities in Auriga are either higher (O vii) or

approximately equal to those in Apostle. Further out, the column densities are

much higher in Apostle. This difference is due to the steeply declining column

densities in Auriga and the much flatter profiles in Apostle. The differences in

O vii, O viii and Mg x between Apostle and Auriga are most prominent at z = 3.

Mg x is the most extreme case. In Auriga it is only present within 40 kpc of the

halo centre, whereas in Apostle there are still very high Mg x column densities out

to 150 kpc and even beyond.

At the present day, the column densities of all the ions considered in Fig. 4.20

are broadly consistent in the two simulations within the halo-to-halo scatter. The

main exception occurs in the central regions (≤ 30 kpc), where the Auriga haloes

typically have a peak in column density that can be up to a factor of ten higher than

in Apostle. These larger column densities at the centres of Auriga haloes could

be a signature of galactic fountains, which is where enriched, hot outflows recycle

within a small central region. The other notable exception is the larger Mg x column

density in Apostle, at all radii, but particularly in the outermost regions. This

enhancement likely reflects the presence of more hot, T ≥ 106 K, enriched gas at

large radii in Apostle arising from the larger spatial extent of the hot outflowing

material in this case.

We find a consistent trend among all the ions considered in Fig. 4.20 for z ≥ 1, with

the exception of H i. This trend consists of higher column densities in the innermost

regions of the Auriga simulations, which then decline with impact parameter more

rapidly than in Apostle. The important offshoot is that the Apostle haloes have

significantly higher column densities at large radii, ≥ 100 kpc, with the differences

increasing with redshift.

The large column densities of Ne vi, Ne viii, O vii, O viii and Mg x in the outer

regions of the Apostle simulations at z ∼ 1 − 3 are a strong signature of hot,
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Figure 4.21: The dispersion measure of all four haloes in Apostle and Auriga at
three redshifts, z ∼ 0, 1, 2 from left to right, respectively. The dispersion measure, at
fixed radius, r, for each halo is calculated by taking the median dispersion measure
of many sightlines through a small annulus of depth R200. We also compute the
lower and upper quartiles of the dispersion measure in each annulus. The solid line
shows the mean of the median dispersion measure, at each radius, for all four haloes.
The shaded region illustrates the range between the mean of the lower and upper
quartiles for all the haloes. The dispersion measure at higher redshift is calculated
in the frame of the halo at that redshift, not from an observer at the present day.

accretion-impeding outflows. A visual inspection of the evolving temperature pro-

jections in Fig. 4.14 demonstrates that hot gas, T ∼ 106 K, in Apostle extends to

radii of order ≥ 4R200 by z = 3. By contrast, the Auriga galaxies develop a much

cooler, T ≤ 105.5, halo of gas which does not extend beyond 2R200. This hot gas dis-

tribution in Auriga produces column densities that drop rapidly at R200 ∼ 50 kpc

at z = 3 and then drop even further beyond 3R200 ≈ 150 kpc.

The peak in the column densities of Ne vi, Ne viii, O vi, O vii and O viii at the

centre of the Auriga haloes can be readily understood by reference to the density-

temperature histograms in Fig. 4.16. Panels (a) and (b) show that there is a pop-

ulation of very dense gas, nH ≥ 10−2 cm−3, with temperatures ranging between

T ≈ 104 − 107 K. As described in Section 4.7, this gas component appears to be

a product of a galactic fountain. The high density of the gas leads to very short

cooling times, ∼ 200 Myr, so for such a massive gas component to be present it

must be continuously replenished by the heating of dense gas. This gas is heated to

T ≥ 106 K where it cools at almost constant density before rejoining the ISM of the

central galaxy. Therefore, the centrally-concentrated peak in ion column densities in

Auriga appears to be a strong signature of galactic fountains.
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In summary, we find that the Apostle simulations produce almost flat column

density profiles for ions which probe hot gas, out to radii of ∼ 3R200 between z = 0−3.

These flat density profiles are produced by hot, outflowing gas driven by SNe within

the central galaxy. In contrast, the Auriga simulations predict rapidly declining

column densities with radius as the SNe driven outflows are unable to eject large

amounts of hot gas to such large radii. Instead, the Auriga simulations generate

galactic fountains where dense gas is heated to high temperatures, T ≈ 107 K, and

then cools at a high, almost constant, density. This fountain produces an observable

central peak in the column densities of Ne vi, Ne viii, O vi, O vii and O viii which

is not present in Apostle.

4.8.2 Dispersion measure

The dispersion measure is a measure of the free electron column density along a

sightline and, potentially, one of the most useful metrics of the baryon content of the

Local Group. As discussed in Section 2.5.3, CHIME is predicted to detect between

2 and 40 FRBs day−1 over the whole sky (Connor et al., 2016). The hot halo

of M31 makes a significant contribution to the dispersion measure of FRBs when

their emission passes through the halo with an impact parameter of ≤ 150 kpc;

this corresponds to an angle of approximately 11° on the sky, assuming that M31 is

∼ 770 kpc away from the MW. Therefore, M31 covers approximately ∼ 400 deg2,

or ∼ 1% of the sky. This implies that the CHIME survey should expect to detect

roughly between 10 and 150 FRB’s per year behind the M31 halo. These can be

compared with sightlines adjacent to M31. If the foreground contribution from the

MW is uniform, or at least smooth over a narrow range of viewing angles, and the

FRB population has the same redshift distribution over this range, the differences in

these dispersion measures will be a direct reflection of the properties of the plasma

in M31. The contribution of M31 to the dispersion measure can then be used to infer

the amount of hot gas present in M31 and, thus, to constrain its baryon fraction.

In this section we compute the dispersion measure from several thousand random

sightlines through the four primary MW-like haloes at three redshifts, z = 0, 1, 2.
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The electron column density is calculated for parallel sightlines as described in Sec-

tion 4.8.1. These are projected directly through 2 × R200 of the primary halo at

varying impact parameters. The dispersion measure at a given radius of each halo is

calculated by taking the median of many sightlines in a small annulus. We project

through the x, y and z axes and combine the results. Additionally we compute the

lower and upper quartiles in each annulus.

The dispersion measure profiles in Fig. 4.21 represent idealized observations of M31

from Earth, with contributions from the MW and material beyond M31 removed

(i.e. the IGM and other distant haloes). In practice, we expect the contribution

from halo gas in M31 to be large, and thus to be readily detectable when compared

with sightlines that do not pass through M31. Although they are not realistic mocks

of observations from Earth, the results in Fig. 4.21 provide some insight into how

the dispersion measure of a halo varies with impact parameter and redshift, and thus

may help interpret observational data. Later in this section, we discuss how future

work could improve the realism of the simulated profiles and how they could be used

to exploit the constraining power of future observations.

With current data it is only possible to make direct measurements of today’s disper-

sion measure around M31 and other Local Group galaxies. We do, however, include

results from higher redshifts in Fig. 4.21 to understand how the dispersion measure

evolves and to give insight on the possible background contributions to observations.

(The dispersion measure at higher redshift is calculated in the frame of the halo at

that redshift, not from an observer at the present day.)

At the present day, both simulations predict a similar trend, with the dispersion

measure being highest in the central regions and declining with increasing impact

parameter. At z = 0, the dispersion measure typically drops from a peak value of

≥ 102 pc cm−3 in the centre of the halo to ∼ 1 pc cm−3 at R200, and continues to fall

beyond this radius (not shown in the figure). Beyond the inner 50 kpc, Apostle

and Auriga predict similar profiles. The main difference occurs in the centre of

the halo. In Apostle the dispersion measure decreases with impact parameter at

an almost constant rate. In Auriga there is a peak at the very centre which drops
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rapidly out to 50 kpc. Beyond that, both the slope and amplitude of the profiles in

the two simulations are approximately equal.

The peak in the dispersion measure in the inner regions of Auriga is also present

at higher redshifts. At z ≥ 1 a similar peak, but of lower amplitude, also appears

in the Apostle simulations. The peak at the centre of the Auriga haloes at all

redshifts coincides with the peak in the column densities of the ions that trace the

warm-hot gas within the CGM (see Fig. 4.20) Thus, the origin of this large dispersion

measure is plausibly the same as that of the ions. Feedback produces hot, metal-

enriched, centrally-concentrated gas which is dense. This gas then cools, at an almost

constant density, before rejoining the ISM. The electron mass will trace the gas mass

in Fig. 4.16 (a). It is the hot gas of atomic density ≥ 0.001 cm−3 in Auriga that

produces the centrally concentrated dispersion measure peak. This gas is not present

in Apostle at z = 0 and, as a result, the profile is much flatter near the centre.

At higher redshift, Auriga predicts a higher dispersion measure throughout the

halo. This behaviour is similar to that of the column densities of Ne vi, Ne viii,

O vi and O vii in the central regions seen in Fig. 4.20, which typically probe gas at

temperature ∼ 105.5 K. The difference in baryon mass in the haloes of Apostle and

Auriga drives the difference in the amplitude of the dispersion measure profiles.

At lower redshift, the baryon fraction of the Auriga haloes is still a factor of two

higher than the Apostle counterparts. However, the dispersion measure in two

simulations tends to agree reasonably well outside of the central region, ≥ 50 kpc.

Inside the central region, the Auriga haloes boast a significantly higher dispersion

measure, thus indicating that the extra baryonic mass in Auriga, at present-day,

is centrally concentrated. Efficient galactic fountains in Auriga can continuously

produce centrally concentrated hot gas.

In summary, the dispersion measure is a measure of the amount of ionised gas along

the line-of-sight and is strongly sensitive to the distribution of hot gas around MW-

mass haloes, which is mostly ionised. The similar dispersion measure profiles in

the outer regions of Apostle and Auriga at z = 0 imply that the haloes in

the two simulations have similar amounts of hot gas in this region, despite having
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large differences in baryon fraction. This is possible as the extra baryons present in

Auriga are centrally concentrated due to the galactic fountains, which leads to a

large central peak in the dispersion measure profile in Auriga.

We predict that future surveys of dispersion measure inferred from FRBs should be

able to identify or exclude the existence of a galactic fountain in either the MW or

M31, through analysis of dispersion measure variation with impact parameter within

the central regions. We also expect that the background, e.g. the contributions from

the IGM and other intervening haloes at higher redshift, should be larger if there are

hot, spatially extended outflows at high redshift, such as those found in Apostle.

It may also be possible to identify the presence of a hot galactic fountain by direct

observation of X-ray emission (Oppenheimer et al., 2020a).

In this analysis, we did not include material which is part of the ISM. When calculat-

ing the free electron density we discarded gaseous material with an atomic number

density ≥ 0.1 cm−1 or a temperature ≤ 104 K. Gas in this regime is not modelled

explicitly in the simulations, however the distribution and morphology of the cold

gas is in reasonable agreement with observations (Marinacci et al., 2017). The dis-

persion measure profiles in the innermost regions may well be higher than predicted

in this thesis due to dispersion by ISM gas. However, predictions for the ISM suggest

that it contributes only ≤ 50 pc cm−3 (Lorimer et al., 2007); thus the central regions

should be dominated by contributions from halo gas.

Finally, we stress that realistic mock catalogues will be needed to interpret future

data. Constructing these will require combining high-resolution Local Group simu-

lations such as those presented here with large-volume cosmological simulations to

determine the expected background.

4.8.3 Comparing to current observations

In this section we compare our preliminary mock observations of the column densities

of Ne viii for our sample of four MW-mass haloes with current observations. The

COS-Halos survey (Tumlinson et al., 2013) and CASBaH survey (Burchett et al.,
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2019) are absorption line studies of galaxies in the UV. They typically cover the

redshift range 0.05 < z < 1.5 and provide information on column densities and

covering fractions of H i, Ne viii and O vi. Burchett et al. (2019) collated a statistical

sample of Ne viii CGM absorbers. This sample includes 29 CGM systems in the

redshift range z = 0.5 − 1.5, with a median redshift, z = 0.68, stellar masses in the

range 109.5 − 1011.5 M⊙ and impact parameters within 450 kpc of the central galaxy.

In Fig. 4.22 we compare the column density of Ne viii, as in Fig. 4.20, at z = 0.5 for

both Apostle and Auriga, with observational data, including both the detections

(solid black circles) and non-detections (empty triangles) of Burchett et al. (2019).

The highest inferred column density of Ne viii is 14.98 ± 0.09 cm−2 at an impact

parameter of 69 kpc and redshift, z = 0.93. The central galaxy of this system has

an estimated stellar mass of 1011.2 M⊙, slightly larger than our simulated galaxies.

This high observed column density is larger than found in any of the predictions of

Apostle and Auriga, as seen in the figure. However, column densities this high

are not uncommon at lower impact parameters in Auriga.

The column densities at slightly larger radii, 100 − 200 kpc, are consistent with the

predictions of both simulations, with almost all of the observational detections in

this range overlapping the results from our simulations within the uncertainties. In

the outer regions, the observations are dominated by upper limits which are higher

than, and thus consistent with the inferred column densities in the simulations.

The observations follow the general trend that the inner regions are dominated by

detections of ≈ 1014 cm−2, whereas the outer regions are mostly upper limits between

≈ 1013.5 − 1014 cm−2. This is suggestive of a Ne viii column density profile which

typically declines by ≥ 0.5 dex between an impact parameter of 150 kpc and 300 kpc.

This is also seen in both Apostle and Auriga. Apostle better recovers the (ap-

proximately) flat distribution of Ne viii detections; however, Auriga agrees better

with the higher central column densities. In any case, the model preferences are

driven by two data points, the ones with the lowest and highest impact parameters.

Therefore the model choice is subjective, and there is no clear preference towards

either Apostle or Auriga.
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Figure 4.22: The atomic column number density of Ne viii as a function of impact
parameter from the centre of the primary halo in both the Apostle (red) and
Auriga (blue) simulations out to 500 kpc at z = 0.5. The column density at a
fixed radius, r, for a single halo is calculated by taking the median column density
of many sightlines through a small annulus. We also compute the lower and upper
quartiles of the column density in each annulus. The solid line shows the mean of
the median column density, at each radius, for all four haloes. The shaded region
illustrates the range between the mean of the lower, and upper quartiles, for all of
the haloes sampled. We also include the observational detections (solid black circles)
and non-detections (empty triangles) of Burchett et al. (2019).

4.9 Discussion and Conclusions

The two simulations that we have analysed in this work have been shown to reproduce

many galaxy observables even though they involve different galaxy formation models

and hydrodynamical schemes. In particular the large-volume EAGLE simulations,

which are similar Apostle simulations, reproduce the galaxy stellar mass function

(Schaye et al., 2015), the evolution of galaxy masses (Furlong et al., 2015), sizes

(Furlong et al., 2017) and colours (Trayford et al., 2015). Similarly, large volume

simulations with a similar model to Auriga have successfully reproduced the scaling

relations and evolution of galaxy sizes (Genel et al., 2018), the formation of realistic

disc galaxies (Pillepich et al., 2018), the gas-phase mass-metallicity relation (Torrey

et al., 2019) and the diversity of kinematic properties observed in the MW-type

galaxies (Lovell et al., 2018).

In this work, we have analysed the emergent baryon cycle around two Local Group-
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like volumes centred around a pair of haloes similar to those of the MW and M31. We

investigated how the baryon cycle differed when using the different subgrid models

of the Apostle and Auriga simulations. While these models are similar, they

have significantly different implementations of SNe and AGN feedback. Apostle

injects all the energy from SNe in the form of a thermal energy ‘dump’, whereas

Auriga uses hydrodynamically decoupled ‘wind’ particles that carry mass, energy,

momentum and metals away from the ISM to lower density regions of the galactic

halo.

In Section 4.5, we explored the effects of the different feedback implementations on

baryonic evolution, particularly the baryon fraction, in and around the two primary

haloes as a function of time. We found the minimum baryon fraction within a

sphere around a primary Apostle galaxy to be ≈ 40% of the cosmic baryon budget,

which is approximately half the value found in Auriga. Furthermore, the Apostle

simulations exhibit a baryon deficiency of ≥ 10% within a radius ≥ 1 Mpc (comoving)

of the halo, extending to ≈ 2 Mpc at the present day. Thus, in Apostle, the Local

Group is a baryon deficient environment. Conversely, in the Auriga simulations

the baryon fraction is within 5% of unity at all radii ≥ 0.5 Mpc (comoving), and at

all redshifts. This difference in the baryon evolution is remarkable given that both

simulations use the exact same initial conditions and produce central galaxies with

relatively similar stellar properties. This is consistent with the findings of Mitchell

& Schaye (2021b) which show the gas mass, and thus density, of the CGM are more

sensitive to the baryon cycle than is the case for the properties of the central galaxy.

In Section 4.6 we conducted a census of all the baryons expected to lie within R200 at

the present day due to gravitational forces alone (which we called ‘predestined’). In

Apostle we found that ∼ 35% of the baryonic counterparts of the z = 0 dark matter

halo particles inhabit the primary halo, whereas in Auriga approximately 70% do.

Furthermore, in Apostle we found that almost half of the baryon counterparts of

dark matter particles that are missing never entered the halo: they are ‘impeded’.

By contrast, in Auriga almost 90% of the absent baryons entered the halo before

being ejected.
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We also found that the physical extent of ejected and impeded baryons, in both

Apostle and Auriga is such that there is baryonic mixing between the two primary

haloes. This baryonic mass transfer, shown in Fig. 4.15, indicates that the presence

of M31 may influence the evolution of the MW and vice versa (see Borrow et al.,

2020).

The large ‘impeded’ gas component in Apostle is produced by halo-scale fast out-

flows with high covering fractions. The Auriga simulations do not produce suffi-

ciently large outflows to impede accretion significantly. However, SNe feedback in

both, Apostle and Auriga inject a similar amount of energy per unit mass into

the surrounding gas. Thus, the different fates of the energetic gas must result from

the method of injecting the energy, or the subsequent evolution of the gas (followed

with two different hydrodynamical scheme.). We strongly suspect that it is the for-

mer that is responsible for the different outcomes, however, at later times, it is likely

that there are effects from AGN feedback too.

This differences in the SNe subgrid prescriptions in Apostle and Auriga result in

the post-SNe temperature of the gas in Apostle being much higher that in Auriga

and, crucially, greater than 107 K. Thus, in Apostle radiative cooling is inefficient

and the gas expands adiabatically. This expansion produces hot, low-density parcels

of gas which are buoyant and accelerate outwards through the halo (Bower et al.,

2017b). Conversely, in Auriga the lower post-SNe temperature makes radiatively

cooling more efficient and the gas cools rapidly, at almost constant density, and

recycles on a short timescale.

To summarise, we have found that the processes that regulate the rate of star for-

mation in a MW-mass galaxy can be classified into two broad categories: ejective

and preventative. The Auriga simulations are dominated by ejective feedback with

relatively short recycling times, regulating star formation without significantly re-

ducing the halo baryon fraction. However, in Apostle feedback at high redshift

ejects a large mass of gas beyond R200. This gas has such a large covering fraction

and outward pressure that it can suppress the cosmological accretion of gas. These

findings are consistent with the results from the large volume EAGLE simulations
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(Mitchell et al., 2019, 2020a) and the NIHAO simulations (Tollet et al., 2019) which

all identify reduced cosmic gas accretion rates due to feedback processes. Wright

et al. (2020) also show that outflows from AGN feedback are able to decrease the

solid angle available for cosmological gas accretion, thus also suppressing further ac-

cretion. The FIRE simulations (Muratov et al., 2015) present some evidence that

bursts of star formation at high redshift can suppress gas accretion into the inner

halo; however, it is not clear if this suppression extends to R200 or low redshift. The

FIRE simulations also produce (almost) baryonically closed MW-mass haloes (Hafen

et al., 2019), thus more closely resembling those in Auriga, than Apostle. These

results highlight a fundamental difference in the outcome of the feedback processes

in various subgrid implementations.

A caveat is that the stellar mass of the central galaxies in Apostle is typically

a factor of two lower than in Auriga. In principle, we could ‘tune’ the feedback

parameters in Apostle to produce more massive galaxies in 1012 M⊙ haloes and

still end up with baryon-deficient haloes due to preventative feedback. Schaller et al.

(2015a) demonstrates that the ‘weak SNe’ EAGLE variant can produce MW-mass

haloes with stellar masses consistent with the Auriga galaxies, albeit with weaker

feedback than used in Auriga. Furthermore, Wright et al. (2020) show that the rate

of gas accretion at R200 for the same ‘weak SNe’ simulation differs from the EAGLE

reference model used in this work by less than 20%. Thus, the EAGLE ‘weak SNe’

simulation produces Auriga-mass galaxies, while still suppressing cosmological gas

accretion as shown in this work.

While we suspect SNe feedback as the leading cause of differences in the baryon cycle

around our simulated galaxies, there are other differences in the two simulations that

could contribute. Namely, both simulations use different hydrodynamical solvers;

however Schaller et al. (2015a) and Hopkins et al. (2018) have demonstrated that the

treatment of feedback is more significant in determining the outcome of simulations

of this kind than the details of the hydrodynamics solver. Apostle and Auriga

also use different implementations of AGN feedback. We find that the effect of AGN

on the baryon cycles analysed in this work is subdominant; however, previous studies
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show they can still have a significant effect on the CGM and even the central galaxy.

While van de Voort et al. (2021) show the total gas mass within the virial radius of

a MW-mass halo simulated with the Auriga model both with and without AGN

feedback differs by only a few percent, the inclusion of AGN feedback decreases the

z = 0 stellar mass by ∼ 30%. More recently, Irodotou et al. (2021) explicitly showed

that the quasar and radio modes of the Auriga AGN feedback model suppress star

formation in the inner and outer parts of the galaxy through ejective and preventative

feedback, respectively (see also Figure 17 of Grand et al. 2017). Davies et al. (2020)

show that AGN feedback can significantly reduce the baryon fractions of haloes of

mass ∼ 1012 M⊙. They show that the baryon fraction, at fixed halo mass, shows

a strong anti-correlation with the black hole mass. Oppenheimer et al. (2020b)

also demonstrate that AGN feedback can significantly reduce the baryon fraction

of MW-mass haloes to very low values, particularly those with black holes of mass

≥ 107 M⊙.

As previously described, the Apostle simulations use a modified version of the

EAGLE reference model in which the AGN feedback is effectively weaker. At the

same time the higher gas mass resolution in Apostle can make the stellar feedback

more efficient. As a result, the present-day black hole masses in the Apostle haloes

are all ≤ 106.8 M⊙. This means the baryon cycle in these haloes is dominated by

stellar feedback.

In Section 4.8 we investigated the observable signatures of strong, accretion-impeding

outflows in Apostle and efficient galactic fountains in Auriga. We concluded that

the Apostle simulations produce almost flat column density profiles of ions which

probe hot gas –Ne vi, Ne viii, O vi, O vii, O viii and Mg x– out to radii ∼ 3R200

between z = 0−3. These flat profiles are a signature of hot, outflowing gas driven by

SNe within the central galaxy. In contrast, the Auriga simulations predict rapidly

declining column densities with radius, as the SNe driven outflows are unable to

eject large amounts of hot gas to such large radii. We attempted to constrain the

two subgrid models by comparing to the data on Ne viii presented by Burchett et al.

(2019). Unfortunately, these data are not constraining due to the small number of
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detections at very small and very large impact parameters.

We also investigated the dispersion measure, which probes the integrated free elec-

tron density along the line-of-sight. We found that the main difference between the

dispersion measure profiles in Auriga and Apostle is also at the very centre. In

Auriga, there is a peak at impact parameter ≤ 50 kpc, not found in Apostle.

The dispersion measure is a promising observational diagnostic of the evolution of

baryons around galaxies. A combination of high-resolution Local Group analogues,

like those presented in this work, and large-volume cosmological simulations would

facilitate the production of more realistic mock catalogues of FRBs. Large cosmo-

logical volumes allow modelling random sightlines out to the typical FRB redshifts,

z ∼ 2. These background contributions can be added to predictions from Local

Group analogues to make realistic mocks of what would be seen from the Earth

when looking, for example, in the direction of M31. These can be compared with

real sightlines in the direction of M31 and just adjacent to it. As future surveys

should detect hundreds of FRBs per year behind M31, these observations should be

able to constrain models and shed light on the dominant processes involved in the

galactic baryon cycle.

To conclude, we find that ejective and preventative feedback work in tandem to

reduce the amount of gas within haloes in the Apostle galaxy formation model.

In Auriga, MW-mass galactic haloes are almost ‘baryonically closed’, as ejective

feedback beyond R200 typically re-accretes and does not significantly impede further

cosmic gas accretion. These results are consistent with the analysis of Wright et al.

(2020) which found that baryonic feedback plays two roles in regulating the evolution

of haloes by both directly removing gas from haloes, and suppressing gas inflow

to haloes. Future observations of FRBs and CGM ion absorption should provide

valuable data to compare and constrain different galaxy formation models. Dwarf

galaxies may also provide a suitable laboratory for studying the baryon cycle. In

particular, Fig. 4.2 shows there are significant differences in the stellar-mass/halo-

mass relation of lower mass galaxies in the two models; these differences carry over

into the baryon fraction of these objects. It is also likely that the size of the heated
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gas coronae around haloes within the Local Group will affect the number of star-free

dark matter haloes, which are even less massive than dwarf galaxies, in the local

environment (Benítez-Llambay et al., 2017; Sykes et al., 2019).



Chapter 5

The Halo Basis Expansion

Technique

5.1 Introduction

The large dynamic mass range of cosmological structure formation makes it difficult

to run simulations of galaxy formation. The mass of haloes in the Universe ranges

from approximately 10−5 M⊙ to 1015 M⊙ (Wang et al., 2020). Thus, to perform a

single cosmological simulation, with a fixed mass resolution, that can well resolve

all of these structures would require at least ∼ 1020 mass elements. Assuming a

modest amount of memory per mass element of order ≫ 40 bytes (Springel, 2005)

would require at least a zettabyte of memory. Therefore studying the interaction

of low mass haloes in the immediate environment of massive haloes requires novel

techniques.

Galactic haloes have been extensively approximated using analytic, spherically sym-

metric density profiles. These density profiles usually come in the form of a double-

power law and can include the time evolution of the halo in their free parameters.

These models were first suggested by Dubinski & Carlberg (1991) and, more fa-

mously, by Navarro et al. (1997). While these spherically symmetric, power-law

models are widely successful in reproducing the observed averaged density profiles of

119
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dark matter haloes, they should be considered zeroth-order approximations. Cosmo-

logical simulations of structure formation in the Universe have thoroughly demon-

strated that dark matter haloes can have a complex structure and cannot be wholly

described by a spherically symmetric density function. There is also observational

evidence of this structure; for example, the recent modelling of stellar streams in

the Milky Way halo has demonstrated the non-spherical gravitational effects of the

Large Magellanic Cloud (Erkal et al., 2019).

Lowing et al. (2011) demonstrated that the self-consistent field (SCF) method could

be used to study the time-evolution of galaxy haloes. The SCF is compelling to study

dark matter haloes as it can couple the zeroth-order spherically symmetric power-law

models with non-spherical deviations, thus faithfully including deviations from spher-

ical symmetry. The method was originally introduced by Ostriker & Mark (1968) for

studying the equilibrium structure of rapidly rotating stars. It has also been used to

study problems in galactic stability (Clutton-Brock, 1972; Fridman et al., 1984), and

to evolve collisionless stellar systems (Hernquist & Ostriker, 1992). The basic idea of

the SCF method is that the density and potential of a system can be expressed using

a complete biorthogonal basis series expansion (BSE). This series expansion can be

used with a finite number of terms to approximate the real density and potential.

The work of Lowing et al. (2011) advanced the SCF technique and applied it in a

novel way to provide computationally efficient descriptions of the structure of haloes

in dark matter simulations followed through time. Lowing et al. (2011) demonstrated

that this technique could be used to approximate very expensive n-body halo sim-

ulations and then replay them at will, at a much lower computational cost. This

allows the study of the evolving environment of the haloes, with the possibility of

inserting new objects into the replayed simulations and evolving them as if present

in the original simulation. For example, we can insert subhaloes that are below the

resolution of the original simulation and evolve them with the full complexity of the

evolving potential in a cosmological environment. The inserted objects are generally

considered mass-less because they have no impact on the approximated background

potential, but they can be self-gravitating if required.



5.1. Introduction 121

In recent years the SCF method has undergone even further development, focusing

on increasing the accuracy of the technique for modelling dark matter haloes in a

cosmological setting. Sanders et al. (2020) addressed the issue that cosmological

haloes participate in the large-scale Hubble flow and therefore must include forces

on the haloes from external forces. These external forces are caused by larger-

scale structures and the buffeting of accretion events (they can also be artificially

introduced, as we will see later). Sanders et al. (2020) also investigated the choice of

basis expansion set and compared the Hernquist-Ostriker biorthogonal basis set with

other families of biorthogonal basis expansions, which contain free parameters that

can be tuned to match the zeroth-order profile of the distribution being approximated

(Vasiliev, 2013; Lilley et al., 2018a,b).

There is a wide range of future potential applications for the SCF method in the

context of halo evolution. The SCF method allows us to analytically approximate

the gravitational potential of haloes, taken from n-body simulations. We can then

use these approximations to investigate the evolution of new objects within the halo

of interest as if they had been present in the original simulation. For example, this

method enables the study of tidal stripping of low-mass satellite galaxies within the

context of massive haloes, without the cost of re-simulating the parent halo at the

mass resolution of the satellite. We do this by inserting a high-resolution particle

model of a satellite galaxy into an analytic approximation of the parent halo and

evolving through time. We can calculate the forces on the satellite galaxy at any point

in space and time from the BSE approximation without re-simulating the parent

halo’s evolution. The BSE method also allows us to control the parameters of the

approximated halo. For example, by modifying the BSE approximation’s coefficients,

we can investigate the effects of tidal stripping as a function of the infall parameters,

the disc properties, or even the parent halo concentration. This technique allows us

to focus our computational resources on objects of interest while also including the

environmental effects of the halo. In Section 5.6 we describe further developments

to the BSE, including modelling hydrodynamical effects.

As this thesis focuses on the properties of the halo surrounding MW-like galaxies, we
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explore how the SCF method can be used to study the infall, and tidal evolution, of

satellite galaxies into more massive haloes, including the effects from galactic discs

and hydrodynamical pressures on the halo. This chapter is structured as follows.

In Section 5.2 we start by introducing the SCF method and describe how it can be

used to model galactic haloes extracted from n-body simulations. We also include

a discussion on the computational complexity of the method. In Section 5.3 we

then validate the method, and implementation, using some idealised tests generated

from known analytic density profiles. In Section 5.4 we demonstrate the accuracy

of the method in a similar way to that of Sanders et al. (2020) and identify some

of the limitations of the method. In Section 5.5 we describe a novel method to

include a thin, time-dependent galactic disc in the BSE method. We also suggest a

method to include massive subhaloes in the expansion more accurately. Finally, in

Section 5.6 we summarise our main findings and explore possible future works which

could introduce a hydrodynamically modelled hot halo.

5.2 Theory and implementation

This section recapitulates the method of using a basis set expansion to approximate

the density profiles of dark matter haloes extracted from n-body cosmological sim-

ulations. The method can be very efficient when the lowest order terms are able to

match the spherically-averaged density profile of a cosmological dark-matter halo.

The deviations from this spherical model can then be described by the addition of

higher-order terms in the basis set. The following derivation follows Hernquist &

Ostriker (1992) and more recently, Lowing (2011). The derivation presented in this

work is motivated for two reasons. Firstly we provide an expanded derivation with

more explicit steps than previously presented, and secondly, we correct some mistakes

present in Lowing (2011). This section first describes the BSE method introduced

by Lowing et al. (2011) before introducing further developments from Sanders et al.

(2020) in Sections 5.2.4 and Sections 5.2.5. Finally, in Section 5.2.6 we present a

computational complexity analysis of the technique.
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We start by considering the density and potential in the form of series expansion.

The basis expansion of both the density and potential is performed in spherical polar

coordinates in the frame of the halo. We describe the definition of the frame of the

halo in greater detail in Section 5.4.1. The spherical polar coordinates are r the

radial distance from the centre of the halo, θ the polar angle and ϕ the azimuthal

angle. In these coordinates the basis expansion is as follows,

ρ(r) = ρ(r, θ, ϕ) =
∑
nlm

Anlmρnlm(r, θ, ϕ) (5.2.1)

Φ(r) = Φ(r, θ, ϕ) =
∑
nlm

AnlmΦnlm(r, θ, ϕ) (5.2.2)

where ρnlm(r, θ, ϕ) and Φnlm(r, θ, ϕ) are the basis functions and Anlm are the coeffi-

cients. The basis functions, and coefficients, are labelled by the indices n, l and m.

A biorthogonal series satisfies the biorthogonality property,

∫
ρ(r)nlmΦn′l′m′(r) dV = δnn′δll′δmm′ . (5.2.3)

The biorthogonality property ensures that each coefficient only depends on a single

potential basis function and that there are no contributions from other basis func-

tions. The density, ρnlm, and potential, Φnlm, must also satisfy the Poisson equation,

∇2Φnlm(r) = 4πGρnlm(r) . (5.2.4)

In Section 5.2.1 we will describe the biorthogonal basis set used in this thesis and

describe how the coefficients can be calculated from particles in an n-body simulation.

5.2.1 Hernquist-Ostriker Basis Set Expansion

There are many choices of basis sets which satisfy the constraints of both Eq. 5.2.3

and Eq. 5.2.4. Some of the first basis expansions were found by Clutton-Brock (1972)

and Hernquist & Ostriker (1992) who identified biorthogonal expansions where the

lowest order terms are that of the Plummer sphere (Plummer, 1911) and Hernquist
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sphere (Hernquist & Ostriker, 1992), respectively. More recently Lilley et al. (2018b)

identified a novel set of analytic biorthogonal expansions based with a lowest order

model, ρ ∝ r1/α−2 and ρ ∝ r−3−1/(2α), for small and large radii, respectively. The

basis set family of Lilley et al. (2018b) is extremely powerful as for α ≈ 1 the

lowest order density profile behaves very similarly to that of the Navarro-Frenk-

White (NFW) profile (Navarro et al., 1997). Cosmological n-body simulations have

demonstrated that dark matter haloes have a density profile with a universal shape,

which the NFW profile can well describe for haloes ranging over twenty orders of

magnitude in mass (Wang et al., 2020).

This thesis uses the halo expansion basis set described by Hernquist & Ostriker

(1992) due to its simplicity and ease of implementation. Sanders et al. (2020) also

demonstrated that despite the greater flexibility of the basis set family introduced

by Lilley et al. (2018b), there are no significant improvements over the Hernquist &

Ostriker (1992) expansion for dark matter haloes when using more than a few terms

in the expansion.

We split the radial and spherical dependence of the series expansion in Eqs. 5.2.1

and 5.2.2,

ρ(r) = ρ(r, θ, ϕ) =
∞∑

n=0

∞∑
l=0

l∑
m=−l

Anlmρnl(r)Ylm(θ, ϕ) (5.2.5)

Φ(r) = Φ(r, θ, ϕ) =
∞∑

n=0

∞∑
l=0

l∑
m=−l

AnlmΦnl(r)Ylm(θ, ϕ) (5.2.6)

where Ylm(θ, ϕ) are the spherical harmonics, and ρnl(r) and Φnl(r) are purely radial

terms. In this thesis we use the following definition of the spherical harmonics, Ylm,

Ylm(θ, ϕ) =

√√√√2l + 1
4π

(l − m)!
(l + m)!P

m
l (cos θ)eimϕ . (5.2.7)

The real part of the spherical harmonics, Re(Ylm), can be written as,
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Re(Ylm) =


√

2l+1
4π

(l−|m|)!
(l+|m|)!P

|m|
l (cos θ) sin(|m|ϕ), m < 0√

2l+1
4π

(l−m)!
(l+m)!P

m
l (cos θ) cos(mϕ), m ≥ 0

(5.2.8)

where P m
l (θ) are the associated Legendre polynomials.

Using the Hernquist & Ostriker (1992) basis set, the zeroth order term radial terms

are,

ρ000 = 1
2π

1
r

1
(1 + r)3 (5.2.9)

Φ000 = −1
1 + r

(5.2.10)

for the density and potential, respectively, where Newton’s constant, G = 1. The

radial dependence, r, is usually expressed as r = r′/Rs where r′ is the the physical

radius, and Rs is a ‘scale radius’. The scale radius sets the physical scale where the

density profile transitions from behaving as ρ ∝ r−1 (small r) and ρ ∝ r−4 (large r).

The behaviour of the zeroth order radial term is similar to that of the NFW profile,

however the NFW profile is slightly shallower for large radii. At large radii the NFW

profile bevaves as ρ ∝ r−3. The general terms in the Hernquist & Ostriker (1992)

expansion are,

ρnl(r) = Knl

2π

rl

r(1 + r)(2l+3) C(2l+3/2)
n

√
4π (5.2.11)

Φnl(r) = − rl

(1 + r)2l+1 C(2l+3/2)
n

√
4π (5.2.12)

where ζ = (r − 1)/(r + 1) and transforms the radial dependency from r ∈ [0, ∞)

to ζ ∈ [−1, 1), and C(2l+3/2)
n (ζ) are the ultra-spherical polynomials. The terms, Knl

are,

Knl = 1
2n(n + 4l + 3) + (l + 1)(2l + 1) . (5.2.13)

these can be used to express the density and potential basis expansions as purely

real quantities,
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Φ(r) =
∞∑

n=0

∞∑
l=0

l∑
m=0

Nlm(cos θ)Φnl(r)[Snlm cos(mϕ) + Tnlm sin(mϕ)] (5.2.14)

ρ(r) =
∞∑

n=0

∞∑
l=0

l∑
m=0

Nlm(cos θ)ρnl(r)[Snlm cos(mϕ) + Tnlm sin(mϕ)] (5.2.15)

where Snlm and Tnlm are the BSE coefficients, and we have combined the contri-

butions of positive and negative m into a single summation Nlm(cos θ) are the nor-

malised associated Legendre polynomials,

Nlm(cos θ) =

√√√√2l + 1
4π

(l − m)!
(l + m)!P

m
l (cos θ) , (5.2.16)

where the ϕ dependence has been explicitly included in Eqs. 5.2.14 and 5.2.15. Fol-

lowing the derivation from Hernquist & Ostriker (1992), the final full set of potential

and density basis functions are found to be

ρ(r, θ)nlm = ρnl(r)Nlm(cos θ) , (5.2.17)

Φ(r, θ)nlm = Φnl(r)Nlm(cos θ) . (5.2.18)

In order to express a density field using the basis expansion set we must calculate

the value of the coefficients, Snlm and Tnlm in Eqs. 5.2.14 and 5.2.15. By calculating

the potential coefficients from the underlying particle distribution, we can construct

the BSE approximation of the potential. These coefficients can then be used to

replay the evolution of the (approximate) potential of the original simulation but

at a much lower cost. We will describe how to calculate the coefficients of the BSE

from a particle distribution, like those in Lagrangian n-body cosmological simulations

described in Chapter 2. In a particle distribution, the particle density is described

as,

ρ(r) = ρ(r, θ, ϕ) =
∑

k

mk

r2
ksinθk

δ(r − rk)δ(θ − θk)δ(ϕ − ϕk) , (5.2.19)

where mk is the particle mass, and rk, θk, ϕk are the polar coordinates of the k-

th particle. The density is evaluated by summing over all of the particles in the
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distribution. Lowing et al. (2011) and Sanders et al. (2020) typically consider the

halo particles as those within a spherical region with a radius a few times the virial

radius of the halo.

The coefficients Tnlm (Snlm) can be calculated by multiplying both sides of Eq. 5.2.15

by [Nlm(cos θ)Φnl(r) cos(mϕ)] (or [Nlm(cos θ)Φnl(r) sin(mϕ)] for Snlm) and integrat-

ing over all space. These coefficients can be calculated at any time, by using the

particle masses and distribution in Eq. 5.2.19 at that time. We start with the LHS

of Eq. 5.2.15,

∫
ρ(r, θ, ϕ, t) × [Nlm(cos θ)Φnl(r) cos(mϕ)] dV

=
∫ ∑

k

(
mk

r2
ksinθk

δ(r − rk)δ(θ − θk)δ(ϕ − ϕk)
)

Nlm(cos θ)Φnl(r) cos(mϕ) dV

=
∑

k

mkNlm(cos θk)Φnl(rk) cos(mϕk) .

(5.2.20)

The volume integral, dV, is equal to dV = r2 sin θdrdθdϕ. Now, moving onto the

RHS of Eq. 5.2.15,

∫
RHS × [Nlm(cos θ)Φnl(r) cos(mϕ)] dV

=
∫ ∞∑

l′=0

l′∑
m′=0

∞∑
n′=0

Nl′m′(cos θ)ρn′l′(r)[Sn′l′m′ cos(m′ϕ) + Tn′l′m′ sin(m′ϕ)]

Nlm(cos θ)Φnl(r) cos(mϕ) dV

=
∫ ∫ ∫ ∞∑

l′=0

l′∑
m′=0

∞∑
n′=0

Nl′m′(cos θ)ρn′l′(r)[Sn′l′m′ cos(m′ϕ) + Tn′l′m′ sin(m′ϕ)]

Nlm(cos θ)Φnl(r) cos(mϕ) r2drd(cos θ)dϕ.

(5.2.21)

We can separate the terms of Eq. 5.2.21 into those which only depend on r, θ and

ϕ. We can then simplify each of the components, independently. We start with the

θ component of Eq. 5.2.21,
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∞∑
l′=0

l′∑
m′=0

∫
Nl′m′(cos θ)Nlm(cos θ) d(cos θ) =

∞∑
l′=0

l′∑
m′=0

δl′lδm′m

2π
= 1

2π
. (5.2.22)

This allows the reduction of Eq. 5.2.21 to,

∫
RHS × [Nlm(cos θ)Φnl(r) cos(mϕ)] dV

= 1
2π

∫ ∫ ∞∑
n′=0

ρn′l(r)[Sn′lm cos(mϕ) + Tn′lm sin(mϕ)]Φnl(r) cos(mϕ) r2drdϕ.

(5.2.23)

Then the radial component of Eq. 5.2.21,

∞∑
n′=0

∫
ρn′l(r)Φnl(r) r2dr =

∞∑
n′=0

δn′nInl = Inl (5.2.24)

where Inl is,

Inl = −Knl
4π

28l+6
Γ(n + 4l + 3)

n!(n + 2l + 3/2)[Γ(2l + 3/2)]2 (5.2.25)

This allows further reduction of Eq. 5.2.21 to,

∫
RHS × [Nlm(cos θ)Φnl(r) cos(mϕ)] dV

= 1
2π

∫
Inl[Snlm cos(mϕ) + Tnlm sin(mϕ)] cos(mϕ) dϕ.

(5.2.26)

We can then use
∫

cos(mϕ) sin(mϕ) dϕ = 0 and
∫

cos(mϕ) cos(mϕ) dϕ = (1 + δm0)π,

where m is an integer. Simplifying the RHS of Eq. 5.2.15 leads to,

∑
k

mkNlm(cos θk)Φnl(rk) cos(mϕk) = 1
2π

InlSnlm(1 + δm0)π , (5.2.27)

which can be re-arranged to yield Snlm,

Snlm = (2 − δm0)Anl

∑
k

mkNlm(cos θk)Φnl(rk) cos(mϕk) , (5.2.28)
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where Anl = 1/Inl. The same process can be repeated to calculate the coefficients

Tnlm by multiplying by [Nlm(cos θ)Φnl(r) sin(mϕ)], yielding,

Tnlm = (2 − δm0)Anl

∑
k

mkNlm(cos θk)Φnl(rk) sin(mϕk) . (5.2.29)

Eqs. 5.2.28 and 5.2.29 can then be used to calculate the coefficients, with a single

sum over all of the particles in the region of interest.

5.2.2 Calculating the density, potential and acceleration

Both the radial and spherical harmonic basis sets are complete, so when summed

from zero to infinity (over both n, l and m) the expansion converges to the exact

distribution, although the convergence can be non-uniform. In practice, a good

approximation to the original distribution can be achieved by truncating the series

to a finite number of terms,

Φ(r, t) =
nmax∑
n=0

llmax∑
l=0

l∑
m=0

Nlm(cos θ)Φnl(r)[Snlm cos(mϕ) + Tnlm sin(mϕ)] (5.2.30)

ρ(r, t) =
nmax∑
n=0

llmax∑
l=0

l∑
m=0

Nlm(cos θ)ρnl(r)[Snlm cos(mϕ) + Tnlm sin(mϕ)] , (5.2.31)

where nmax and lmax are typically of order ∼ 10. The accelerations can be calculated

by taking the gradient of the potential, Eq. 5.2.30,

ar(r, θ, ϕ) = −
nmax∑
n=0

llmax∑
l=0

l∑
m=0

Nlm(cos θ) d

dr
Φnl(r)

[Snlm cos(mϕ) + Tnlm sin(mϕ)] ,

(5.2.32)

aθ(r, θ, ϕ) = −1
r

nmax∑
n=0

llmax∑
l=0

l∑
m=0

dNlm(cos θ)
dθ

Φnl(r)

[Snlm cos(mϕ) + Tnlm sin(mϕ)] ,

(5.2.33)
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aϕ(r, θ, ϕ) = −1
r

nmax∑
n=0

llmax∑
l=0

l∑
m=0

mNlm(cos θ)
sin θ

Φnl(r)

[Tnlm cos(mϕ) − Snlm sin(mϕ)] ,

(5.2.34)

The computed coefficients can then be used to evaluate Eq. 5.2.31, Eq. 5.2.30 or

Eqs. 5.2.32-5.2.34, thus calculating the density, potential or acceleration, respectively,

at any point in space.

5.2.3 Time dependence

The time dependence of the BSE can be introduced by considering a time dependent

version of the particle density profile given by Eq. 5.2.19,

ρ(r, t) = ρ(r, θ, ϕ, t) =
∑

k

mk,t

r2
k,tsinθk,t

δ(r − rk,t)δ(θ − θk,t)δ(ϕ − ϕk,t) , (5.2.35)

where mass and polar coordinates are defined for each particle, k, at time t. In

general, the particle mass in dark matter only simulations is constant and time-

independent. However, most baryonic cosmological simulations allow the stellar-

and gas-particle masses to vary with time. Propagating this time-dependent density

profile through the derivations in Section 5.2.1 leads to the time-dependent BSE

coefficients,

Snlm(t) = (2 − δm0)Anl

∑
k

mk,tNlm(cos θk,t)Φnl(rk,t) cos(mϕk,t) , (5.2.36)

Tnlm(t) = (2 − δm0)Anl

∑
k

mk,tNlm(cos θk,t)Φnl(rk,t) sin(mϕk,t) . (5.2.37)

Cosmological simulations generally output the particle properties at pre-defined

times; these are usually referred to as snapshots. The particle properties in each

snapshot can be used to calculate the BSE coefficients at the time of each of the

snapshots. The coefficients can then be interpolated at any time within the range

spanned by these snapshots. In this thesis, we use a simple linear interpolation

scheme.
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Sanders et al. (2020) demonstrated that the sampling period of the snapshots needs

to be relatively small to ensure that haloes can be accurately reproduced at any

point in time. In particular, they show the accuracy of the reproduction of test

particle orbits begin to deteriorate significantly when the snapshot interval exceeds

∼ 0.1 Gyr. However, this threshold is likely to be sensitive to the scale at which the

coefficients of the BSE vary and thus depends on the evolution of the halo and the

choice of basis set.

5.2.4 Inertial correction

In this section, and Section 5.2.5 we now introduce more recent developments to

the BSE technique for following halo evolution presented by Sanders et al. (2020).

The inertial correction accounts for the forces on the system due to the fact that

the centre of the halo is a non-inertial frame of reference. The inclusion of this

inertial correction is crucial in ensuring that the basis expansion technique, solved

in the frame of the halo, accurately reproduces the forces found in cosmological

simulations.

The comoving coordinate of the center of the halo frame can be expressed as x = r/a,

where a is the cosmological scale factor and r is the physical position of the halo

centre. We aim to calculate the peculiar velocity, which is the velocity of the halo

without the Hubble flow, u = ṙ − Hr = ẋa, where H = ȧ/a and is the time-

dependent Hubble parameter. Following this, the acceleration of the halo reference

frame can then be calculated from u̇. Therefore, we find the total force on a test

particle, within the reference frame of the halo, is given by

F(r, t) = −∇ϕ(r, t) − u̇ , (5.2.38)

where ϕ(r, t) is the potential, which can be calculated from Eq. 5.2.30. This inertial

force was not included in the work of Lowing et al. (2011), however Sanders et al.

(2020) has since highlighted the importance of including this term. Sanders et al.

(2020) demonstrate that without the second term in Eq. 5.2.38, u̇, the method fails to
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accurately reproduce the orbits of test particles when compared with cosmological

n-body simulations. The inclusion of inertial correction is most important in the

outer region of the halo, where the gravitational forces from the halo are weaker.

5.2.5 Truncation correction

We have extracted the density distribution from cosmological simulations by sam-

pling the particles from an n-body simulation. However, due to computational re-

sources it is not advisable to include every particle within the entire cosmological

volume. As previously described, we typically only sample particles that are within a

spherical region of radius, rp. This technique produces the following density profile,

ρ(r, θ, ϕ) =


∑

k
mk

r2
k

sinθk
δ(r − rk)δ(θ − θk)δ(ϕ − ϕk) r < rp

0 r > rp

(5.2.39)

where the truncation radius has inadvertently introduced a discontinuity in the den-

sity profile r = rp, beyond which the density is zero. An alternative approximation

to the density profile is,

ρ(r, θ, ϕ) =


∑

k
mk

r2
k

sinθk
δ(r − rk)δ(θ − θk)δ(ϕ − ϕk) r < rp

Cρ000(r, θ) r > rp

(5.2.40)

which includes the lowest order radial term, Eq. 5.2.17, beyond the truncation ra-

dius. The parameter C is a normalisation constant, which can be calculated in

various ways. One possibility is to choose C such that density at rp + ϵ matches the

spherically averaged density of the particle distribution at radius, r = rp − ϵ, where

ϵ is a small perturbation. This reduces the discontinuity at the truncation radius.

However, there can still be smaller discontinuities present around the truncation

radius. Alternatively, C can be chosen to ensure that the total mass within some

radius, r ≫ rp, is the same as that found in the original cosmological simulation.

When using the density distribution in Eq. 5.2.40 the RHS of Eq. 5.2.20 gains an

extra term,



5.2. Theory and implementation 133

∫
ρ(r, t) × [Nlm(cos θ)Φnl(r) cos(mϕ)] dV

=
∑

k

mkNlm(cos θk)Φnl(rk) cos(mϕk) + Icorr
nlm

(5.2.41)

where the extra term is Icorr
nlm = C

∫ ∞
rp

ρ000(r, θ)Nlm(cos θ)Φnl(r) cos(mϕ) dV. Propa-

gating this extra term through the derivation presented in Section 5.2 leads to the

corrected coefficients, Scorr
nlm,

Scorr
nlm = (2 − δm0)Anl

( ∑
k

mkNlm(cos θk)Φnl(rk) cos(mϕk) + Icorr
nlm

)
. (5.2.42)

Using the definition of ρ000(r, θ, ϕ) in the Hernquist-Ostriker BSE, we can compute

the value of the extra term in the truncation corrected coefficients, Scorr
nlm. Substituting

in Eq. 5.2.9 into the integral for Icorr
nlm yields,

Icorr
nlm = C

∫ ∞

rp

( 1
2π

1
r(1 + r)3 C

3/2
0 (ζ)

√
4πN00(cos θ)

)
Nlm(cos θ)Φnl(r) cos(mϕ) dV .

(5.2.43)

We can again seperate the integral of Eq. 5.2.43 into separate components depending

on only r, θ and ϕ. Starting with θ-component of Eq. 5.2.43

∫
Nlm(cos θ)N00(cos θ) d(cos θ) = 1

2π
δl0δm0 , (5.2.44)

and then the ϕ-component,
∫

cos(mϕ)dϕ = 2π when m = 0, which reduces Eq. 5.2.43

to,
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Icorr
nlm = δl0δm0C

√
4π

2π

∫ ∞

rp

1
r(1 + r)3 C3/2

m (ζ)Φnl(r)r2 dr

Icorr
nlm = C

√
4π

2π

∫ ∞

rp

1
r(1 + r)3 C

3/2
0 (ζ)Φn0(r)r2 dr

Icorr
nlm = C

√
4π

2π

∫ ∞

rp

1
r(1 + r)3 C

3/2
0 (ζ)

 −
√

4π

(1 + r)C3/2
n (ζ)

r2 dr

= −C
4π

2π

∫ ∞

rp

1
r(1 + r)4 C

3/2
0 (ζ)C3/2

n (ζ)r2 dr

= −2C
∫ ∞

rp

r

(1 + r)4 C3/2
n (ζ) dr

(5.2.45)

The correction in Eq. 5.2.45 only needs to be applied to the Snlm coefficients. When

repeating the process above for the Tnlm coefficients, we initially multiply through

by [Nlm(cos θ)Φnl(r) sin(mϕ)]. When solving the for the ϕ component we find that∫
sin(mϕ)dϕ = 0 and thus, there are no contributions to Tnlm coefficients. In fact,

the correction only needs to be applied to Sn00 coefficients, as both l and m must

be zero due to the delta functions in Eq. 5.2.44. Therefore, the truncated corrected

BSE coefficient, Scorr
n00 , can be written as combination of the uncorrected coefficient,

Sn00, with an additional term,

Scorr
n00 = Sn00 − 2CAn0

∫ ∞

rp

r

(1 + r)4 C3/2
n (ζ) dr . (5.2.46)

The inclusion of the truncation correction, which extends the particle density from

a finite region onto an infinite region, can be particularly important in the outer

regions, r ≥ rp. The standard use of the BSE on the density profile, which has a

discontinuity at r = rp, can result in large spikes of negative density at large radii.

These spikes are produced by higher-order expansion terms in the BSE. They are

analogous to the Gibbs phenomenon, which occurs when a finite number of terms in

a Fourier series is used to resolve a jump discontinuity.

Alternatively, the effects of the artificial spikes in negative density due to the discon-

tinuity in the density function can be reduced by increasing the truncation radius



5.2. Theory and implementation 135

such that it is a lot larger than the region of interest. This ensures that spurious den-

sity artefacts occur beyond the region of interest, thus substantially limiting their

effect. However, as this technique includes a larger volume, it also includes more

particles when calculating the coefficients. This increases the computational cost of

calculating the coefficients, as the calculation of the coefficients scales linearly with

the number of particles.

5.2.6 Performance considerations

There are two cases where the performance of the basis expansion technique must

be considered. The first is during the initial calculation of the coefficients, which in

this thesis are extracted from n-body cosmological simulations. The second is when

using the coefficients to calculate the forces at many locations and times to evolve

the orbits of point masses through the approximated potential.

We start by exploring the computational complexity of calculating the coefficients

using big-O notation (Bachman, 1894). The coefficients of the BSE are calculated

using Eq. 5.2.27, which, for a single coefficient, requires a sum over all of the particles

in the region of interest. This process must then be repeated for all of the coefficients.

The leading order number of coefficients is equal to nmax × lmax × lmax. Therefore,

we find that the computational complexity of calculating the coefficients from the n-

body simulation is O(nparticlesnmaxl2
max) where nparticles is the total number of particles

in the region of interest. Previous works often using a fixed relation to relate nmax

and lmax with Sanders et al. (2020) suggesting the a relation of nmax ∼ 2lmax + 2.

One of the choices when calculating the coefficients for the BSE is to decide the

ordering of the sums. Namely, is it more efficient to calculate the contribution of a

single particle to every coefficient or the contribution from every particle to a single

coefficient? This question is challenging to answer as it can depend on various cir-

cumstances, including, but not limited to, the choice of basis expansion series and

hardware available. In the Herquinst-Ostriker basis expansion, we use the spherical

harmonics, which contain the associated Legendre polynomials, Plm(cos θk). These
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associated Legendre polynomials are typically calculated using a recursion relation

where the polynomial at one point can be expressed by neighbouring Legendre Poly-

nomials at the same point. Thus, for this component of the expansion, it is much

more efficient to calculate the contribution of an individual particle to all of the

coefficients up to nmax and lmax before moving onto the next particle. Furthermore,

this approach also lends itself to an efficient parallelisation strategy. This ordering

of the calculation allows the particles to be split into independent groups of roughly

equal size. The contribution to the coefficients can be calculated independently for

each of the particle groups, and the final coefficients can be calculated by sum-

ming the partial coefficients produced by each of the groups. This is an example of

an embarrassingly parallel problem with no dependency (and therefore no need for

communication) between the parallel particle groups except at the very end of the

calculation, where the results must be summed to produce the total coefficients.

We now consider the computational complexity of calculating the force from the

previously calculated coefficients as described in Eqs. 5.2.32-5.2.34. The complexity is

the same as for calculating the coefficients, O(nevaluationsnmaxl2
max) where the number

of particles is replaced by the number of times the force must be evaluated, nevaluations.

For high-resolution satellites, the number of nevaluations will be equal to the number

of particles in the subhalo. However, it is likely that this will not be the dominant

calculation. For a massive infalling satellite, we must also calculate the self-gravity

between the particles within the satellite. At worst, the self-gravity will scale with

O(n2
particles) where nparticles is the number of particles in the satellite. As discussed in

Chapter 2 the self-gravity scaling can be reduced. However, these approximations are

not always accurate when applied within an individual subhalo. The complexity of

the BSE force could be reduced for a simulation with a large number of particles by

calculating the force at fixed points on a grid. These forces can then be interpolated

from the grid to the positions of the particles. However, this interpolation will

decrease the accuracy of the forces and potentially have a significant impact on the

accuracy of the tidal forces.
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5.3 Idealised tests

This section describes some basic, idealised tests using the SCF technique to model

static, analytic density profiles. In Section 5.3.1 we will attempt to model a system

of particles sampled from a Hernquist profile, using the Herquinst-Ostriker BSE and

compare the computed coefficients with the analytic predictions. In Section 5.3.2 we

will extend the idealised tests to model a random realisation of an NFW halo and

investigate the choice of the scale length. The BSE methods are implemented by the

in-house python library, pyHEX, which is based on a C++ library produced in the

preparation of Lowing et al. (2011). The examples in this section are also included

in the python library in the form of integration tests to continuously validate the

software’s accuracy throughout development.

5.3.1 Hernquist Model

We start by demonstrating the success of the method to re-produce some artificial,

random realisations of isolated density profiles which are generated from a specified

analytic model. We start with a Hernquist profile, which is of the form,

ρ(r) = M

2π

1
r

1
(r + 1)3 (5.3.1)

where r is scaled by the characteristic scale length of the system, a, and M is the

system’s total mass. We start by generating a particle realisation of this system,

using 500, 000 particles of the same mass. The modelled system has a total mass,

1012 M⊙ and a scale length of 30 kpc. In the left panel of Fig. 5.1 we attempt to model

this realisation with a BSE with a single radial term. This toy model allows us to

validate that the BSE can accurately reproduce the analytic model when the correct

scale length is used. In this example, the scalelength of the zeroth-order term is not

measured from the underlying particle distribution. Instead, we trial fixed values

shown in Fig. 5.1. We try the true scale length of the particle distribution, alongside

two values which are ten times smaller and ten times larger. The coefficients of
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Figure 5.1: Left: The thick blue line shows the analytic density of a Hernquist profile
with total mass, 1012 M⊙, and a scale length of 30 kpc. The red, green and black
lines show a single term approximation to the analytic Hernquist profile using a single
term of the Herquinst-Ostriker BSE with scale lengths 3, 30, 300 kpc, respectively.
The right panel shows the same results. However, the BSE fits shown now use 7
radial terms, but still, no azimuthal terms, as we are approximating a spherically
symmetric system.

the BSE are calculated from the particle distribution assuming these three fixed

scale lengths. In the left panel of Fig. 5.1 it is clear that when an incorrect scale

length is used, with a single term, the expansion does a poor job of reproducing the

analytic model. However, the BSE reproduces the analytic model (almost) perfectly

with the correct scale length. This is expected, as the zeroth-order radial term of

the Hernquist-Ostriker BSE is the Hernquist sphere (see Eq. 5.2.9). Furthermore,

comparison of Eq. 5.2.9 and Eq. 5.3.1 shows that the coefficient of the first radial

term should be equal to M/
√

4π. The calculated coefficient differs from the analytic

prediction by less than 0.03%, which is a remarkably accurate reproduction given

that we are not fitting to the analytic density but rather a particle distribution

realisation of the profile.

In the right panel of Fig. 5.1 we show the BSE fit to the same analytic Hernquist

model, however it now uses seven radial terms (in this thesis, an nmax = 6 includes

7 terms, n = 0, ..., 6). In this case, we see that both the expansion that uses the
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Figure 5.2: Similar Fig. 5.1, however the analytic profile being approximated is an
NFW profile with parameters M200 = 1012 M⊙, R200 = 250 kpc and a concentration
parameter, c = 10. The red, green and black lines shows a single term approxima-
tion to the analytic Hernquist profile using a the Herquinst-Ostriker BSE with scale
lengths 3, 30, 300 kpc, respectively.

correct scale length, 30 kpc, and the expansion that uses a much larger scale length,

300 kpc, can describe the modelled density distribution well. However, the expansion

that uses a scale length an order of magnitude smaller than the true value produces

a significantly worse fit to the density profile. These results are consistent with those

of Lowing et al. (2011) who found that with a moderate amount of radial terms,

the fit of the density profile is largely insensitive to the scale length, as long as it

exceeds a threshold value. They found the threshold value to be ≈ 30 kpc for their

MW-mass haloes extracted from cosmological n-body simulations.

5.3.2 NFW Model

The NFW halo has been shown to universally well describe the density profiles of

galactic haloes, taken from n-body simulations, spanning ≈ 20 orders of magnitude

in mass (Navarro et al., 1997; Wang et al., 2020). Thus, for the BSE to be useful

in a cosmological setting, it must efficiently (i.e. with a small number of terms)

accurately reproduce the NFW profile.
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In this section we start with an idealised NFW halo of virial mass, M200 = 1012 M⊙,

R200 = 250 kpc and a concentration parameter, c = 10. This NFW halo is then

realised with a distribution of particles of equal mass, extending out to a radius of

R200. We show the BSE fits to the test NFW halo in Fig 5.2. The results are very

similar to those of the Hernquist test in Section 5.3.1. The left panel of Fig 5.2

shows the BSE fit to the NFW density, using a single radial term and three different

scale lengths. The best fit occurs when the scale length of the BSE is approximately

equal to the R200/c. However, as with the Hernquist profile, when more radial terms

are considered, the fit using a larger scale length can also accurately reproduce the

observed density profile. BSE’s using a scale length that is a lot smaller than the

true scale length leads to a poor fit, particularly in the innermost region, r < 10 kpc.

These results are consistent with those of Lowing et al. (2011).

As seen in the right panel of both Figs. 5.1 and 5.2 artefacts can appear in the density

profile in the outer region, e.g. beyond the cut off radius of the particles. This is

due to the problem described in Section 5.2.5, where a discontinuity in the density

profile leads to large spikes of negative and positive density. However, for both

the Hernquist and NFW tests, these erroneous densities generally occur beyond the

truncation radius. As such, we follow Lowing et al. (2011) and ignore the truncation

correction and instead, we ensure that the truncation radius is larger than the radius

of interest to minimise the discontinuity effects.

5.4 Cosmological tests

In this section, we apply the BSE expansion to a time-evolving MW-mass halo which

has been extracted from a ‘zoom in’ cosmological simulation. We quantify the ac-

curacy of the BSE by comparing the orbits of a sample of particles from the real

cosmological simulation with predictions from orbits integrated using the BSE of the

potential. We use the error measure introduced by Sanders et al. (2020) to quantify

the difference between the predicted and original particle trajectories.

The halo used in this thesis is taken from the original sample of Auriga haloes
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introduced by Grand et al. (2017). This is a sample of thirty ‘zoom in’ simulations of

MW-mass, 0.5−2×1012 M⊙ haloes with the Auriga galaxy formation model and the

AREPO magnetohydrodynamics code. This suite of simulations is very similar to the

Auriga simulations described in Chapter 2. However, they follow relative ‘isolated

haloes’ (rather than LG-like regions), are performed at a higher mass resolution and

use slightly different cosmological parameters.

In this thesis we study Auriga halo 16, Au16, from the original Auriga sample

(Grand et al., 2017). This isolated halo is evolved from high-redshift to the present

day, with a dark matter particle mass of ∼ 3 × 105 M⊙ and a mean gas cell mass of

∼ 5 × 104 M⊙. The adopted cosmological parameters are Ωm = 0.307, Ωb = 0.04825,

ΩΛ = 0.693 and a Hubble parameter of h = 0.6777 taken from Planck Collaboration

et al. (2014). The initial conditions for the halo were identified in large volume

simulations and the halo was selected as it is both MW-mass and relatively ‘isolated’

at the present day.

In this thesis, we study both the dark matter only and full magnetohydrodynamic

simulation of the Au16 halo. At present day the halo has a virial mass of M200 =

1.50×1012 M⊙, and in the full baryonic simulation produces a large disc galaxy with

a total stellar-mass ∼ 5 × 1010 M⊙. The central galaxy of the Au16 halo is shown in

Fig. 5.3. It has several well defined spiral arms, which are very blue, indicating the

presence of young stars and, therefore, ongoing star formation. For a more in-depth

description of the halo and simulation suite, we refer the reader to Grand et al.

(2017).

In this section, we will use the Au16 halo as a test case to explore the BSE in a

full cosmological environment. In Section 5.4.1 we discuss the definition of the halo

frame of reference and explain why the choice of reference frame can impact the

quality of the reproduced halo. In Sections 5.4.2 and 5.4.3 we show the results of the

BSE approximation to Au16 halo, for both the dark matter only and full baryonic

simulation. We then explore the accuracy of the method by attempting to reproduce

the orbits of individual particles and comparing the results with those presented by

Lowing et al. (2011) and Sanders et al. (2020).
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Figure 5.3: The face-on and edge-on projected stellar density at z = 0 for full
baryonic simulations Au16. The images are synthesised from a projection of the K-,
B- and U -band luminosity of stars, which are shown by the red, green and blue
colour channels, in logarithmic intervals, respectively. Younger (older) star particles
are therefore represented by bluer (redder) colours.

5.4.1 Halo property definitions

Accurate identification of the centre of the modelled halo is essential when using the

Herquinst-Ostriker spherical BSE as the method is most efficient when represent-

ing a spherically symmetric distribution with some non-spherical deviations. Thus,

choosing a reference frame that differs from the potential minimum can lead to poor

reproductions of the halo. However, choosing the exact potential minimum of the

halo can lead to a very noisy trajectory. This noise is amplified in the acceleration,

the double derivative of the position, which is required as we use a non-inertial frame.

Previous implementations of the BSE method used to study cosmological haloes

have used two different methods to identify the halo reference frame and subsequent
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Figure 5.4: The centre of the primary halo of the Auriga Au16 (DMO) simulation,
in the simulation box frame, as a function of time. The coordinates in the x-, y-,
and z-axes are shown in the three panels from left to the right, respectively. The
centre of the halo is taken to be the centre of the potential as reported by SUBFIND.
We also include a smoothed spline approximation to the halo centre.

trajectory. A natural choice for the centre of the halo would be to take the potential

minimum of either the main subhalo of interest or the group taken from a halo finder

such as SUBFIND (Springel et al., 2001; Dolag et al., 2009), or ROCKSTAR (Behroozi

et al., 2012). These definitions typically calculate the virial radius and then calculate

the potential minimum within the virial radius. However, this method is susceptible

to sudden variation as large subhaloes are accreted and enter the virial radius of

the halo. Therefore Lowing et al. (2011) proposed an alternative method of defining

the halo centre by calculating the centre of mass of the particles in the inner 5% of

the virial radius (again centred around the most bound particle). This definition is

directly motivated to reduce the effects of accretion events and produce a smoother

trajectory. However, this definition of the halo centre can still be easily displaced

by interactions with subhaloes that have a pericentre that passes within the central

region. Sanders et al. (2020) proposed a different method to achieve a smoothed

trajectory. They still make use of a halo finder, in this case, Rockstar, which reports

the halo centre through time. To reduce the noise on the halo trajectory, they

construct a smooth approximate trajectory that follows the halo through time.

In this thesis, we smooth the trajectory of the halo centre as suggested by Sanders

et al. (2020). We start with an initial halo trajectory by using the potential minimum

as reported by the halo finder, SUBFIND. This trajectory is then approximated with
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Figure 5.5: Similar to Fig. 5.4 but for the peculiar velocity of the primary halo in the
Auriga Au16 (DMO) simulation as reported by SUBFIND. We also show a smooth
approximation (red line) to the peculiar velocity calculated from the derivative of
the smoothed halo trajectory shown in Fig 5.4.

Figure 5.6: Similar to Fig. 5.4 but for the peculiar acceleration of the primary halo
in the Auriga Au16 (DMO). The SUBFIND value is calculated by taking the first
derivative of the peculiar velocities reported by the halo finder. We also show a
smooth approximation (red line) to the peculiar acceleration calculated from the
second derivative of the smoothed halo trajectory shown in Fig 5.4.
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Figure 5.7: The distance between the centre of the primary halo of the Auriga
Au16 (DMO) simulation, as reported by the potential minimum in SUBFIND, and
the smooth approximation shown in Fig. 5.4. The distance for each the x, y and z
components are shown in the three panels from left to right, respectively.

a smooth spline as shown in Fig. 5.4. This smoothed trajectory leads to much

smoother peculiar velocities and accelerations than are calculated directly from the

halo finder. The difference between the original halo and smoothed halo trajectory

can be seen in Fig. 5.7. In general, the smoothed trajectory lies within ∼ 4 kpc

of the potential minimum calculated by SUBFIND which, as previously described, is

important to ensure the BSE can accurately reproduce the original halo with a small

number of terms in the expansion.

The use of the smoothed trajectory ensures that the peculiar velocity and accelera-

tion of the halo are also smooth, as shown in Figs. 5.5 and 5.6. A smooth peculiar

velocity, and more importantly, a smoothed peculiar acceleration, ensures that the

linear interpolation of the peculiar acceleration is also accurate. Furthermore, this

smoothed trajectory generally results in a smaller peculiar acceleration, thus reduc-

ing the impact of the inertial forces. The peculiar velocity, and acceleration, are

calculated from the original trajectory using numerical differentiation between suc-

cessive snapshots. The smoothed peculiar velocity, and acceleration, are calculated

by analytical differentiating the smoothed trajectory.

The results of the Figs. 5.4-5.7 show the results for the Au16 dark matter only

(DMO) halo. However, the results are generally the same for the MHD simulation.

The introduction of baryons does not appear to affect the overall trajectory of the

halo. Throughout this chapter, we use the smoothed trajectory to reconstruct the
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evolution of the halo with the BSE method.

5.4.2 Modelled halo

This section introduces the BSE approximation to both the DMO and MHD simu-

lations of the Au16 halo. We compare the spherically averaged density profile from

the simulations with the reconstruction from the BSE. In the BSE approximation of

Au16 halo, in both the DMO and full MHD simulation, we select all of the parti-

cles within a region of radius, 3R200. We calculate the basis expansion in physical

coordinates, with a scale length of 30 kpc and using the Herquinst-Ostriker basis set.

In Fig. 5.8 we show the radially-averaged density profiles of the Au16 DMO halo at

z = 0 along with reconstructions using the BSE. We show several BSE reconstruc-

tions with an increasing number of terms in the expansion. The first construction

uses a single, spherically symmetric radial term representing the Hernquist profile.

This zeroth-order approximation provides a reasonably good fit but underestimates

the density in both the inner and outer regions. This is expected with the Herquinst-

Ostriker basis set as the zeroth-order term differs from the NFW-profile, and we the

chosen scale length may differ from the true scale length of the halo. Increasing the

number of terms improves the fit significantly within the truncation radius. Beyond

the truncation radius of the particle distribution, the addition of higher-order terms

leads to the previously described Gibbs effect, which causes density artefacts (which

are visible in the right panel of Fig. 5.8). However, these artefacts occur beyond the

region of interest and are thus not significant. As such, we do not use the truncation

correction derived in Section 5.2.5.

We also attempt to fit the radial density profile of the Au16 MHD simulation in

Fig. 5.8 using the BSE technique. In general, we find that the fit is poorer than that

found for the DMO simulation. The zeroth-order term of the BSE cannot capture the

slope in the inner region, which differs from the DMO simulation due to an increased

central density—increasing the number of terms in the expansion to nmax = 14 and

lmax = 6 increases the quality of the fit and is able to capture the increased density
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Figure 5.8: Radially-averaged density profiles of the halo at z = 0 along with re-
constructions using the BSE. The reconstructions are shown with the red solid line.
The three panels, from left to right, panels show successively more detailed recon-
structions, using nmax = lmax = 0 (a single term), nmax = 6 and lmax = 2 and, finally,
nmax = 14 and lmax = 6. The black dashed line shows the density as sampled from
the particle distribution. The vertical grey dashed line shows the spherical trunca-
tion radius beyond which the density is assumed to be zero. Some of the small spikes
in the density profile are due to substructure in the halo.

in the innermost region. In the MHD simulation, shown in Fig. 5.9, there is also

a more noticeable spike in the spherically-averaged density profile at a radius of

approximately ∼ 150 kpc due to the presence of a massive subhalo. The BSE does

not reproduce this spike, and it is unclear whether the BSE accurately captures the

density of subhalo from analysis of the radial density profile alone.

In Fig. 5.10 we show the projected density through the DMO Au16 halo at the

present day, for both the particle distribution and the BSE reconstruction. The

density projection for the particles is calculated using the typical smoothed particle

scattering technique as described in Price (2007) and Borrow & Kelly (2021). The

density projection of the BSE is calculated by numerical integration of Eq. 5.2.31

over the z-axis of the simulation.

The left column of the density projections in Fig. 5.10 shows density projections

through the particle distribution. The middle column shows the density projection

through BSE approximated density field with a different number of terms in the

expansion on each row. The right column shows the difference between the projected

and actual density, normalized by the actual density. The top two rows, which show
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Figure 5.9: The same as Fig. 5.8 but for the MHD simulation. We show the total
density sampled from the particles with the dashed black line. We also include the
density of the baryons (stars and gas), as shown by the dashed-dotted green line.

the basis expansion using only a handful of terms, cannot accurately capture the

nearby satellite. They also cannot capture some of the asymmetries in the innermost

regions of the halo and systematically mispredict the density beyond the virial radius.

As the number of terms in the expansion increases to nmax = 14 and lmax = 6, the

BSE begins to capture the bulk behaviour of the density quite well, with less visible

systematic errors. The reconstructions on the bottom two rows also begin to include

an overdensity that is associated with the nearby massive satellite. However, the BSE

reconstruction also includes several repeating over and under densities at the same

radius of the subhalo. The pattern of these under and overdensities match those

of the highest order spherical harmonic terms included in the expansion. These

artefacts are likely the result of truncating the expansion abruptly.

In Fig. 5.11 we show the same density projection as Fig. 5.10; however, all of the

particles associated with the massive subhalo have been removed. We then re-fit

the basis expansion to the remaining particle distribution. We see that the spherical

harmonic artefacts are no longer present in this case. Furthermore, the difference

between the true and the reconstructed projected density profiles is also reduced.

There are, however, very small isolated regions where the BSE under-estimates the

projected density. The small spots of underdense regions are caused by small sub-

haloes in the original distribution, which are not captured by the BSE with the finite
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Figure 5.10: The projected mass density of the Au16 dark matter only halo, at the
present day, through a region of 300 × 300 × 300 kpc/h. The left column shows the
projected particle density, the central column shows the projected BSE density with
an increasing number of terms on each row, and the right column shows the difference
between the particle density and the BSE density. The rows show the increasing
number of terms in the BSE from nmax = lmax = 0 (a single term), (nmax, lmax) = 6, 2,
(nmax, lmax) = 14, 6, and (nmax, lmax) = 22, 10, from top to bottom, respectively. A
saturated red (blue) colour in the error column indicates a projected density error of
50% (−50%), paler colours indicate a lower percentage error. The graduated colour
bar quantifies the fractional difference in the density profiles. The white dashed circle
highlights the virial radius of the halo.
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Figure 5.11: The same as Fig. 5.10 but with the particles associated with the most
massive subhalo removed from the particle distribution and BSE approximation.
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Figure 5.12: The same as Fig. 5.10 but for the MHD simulation of the Au16 halo.
The density projection includes contributions from stars and gas alongside the dark
matter.



5.4. Cosmological tests 152

Figure 5.13: The same as Fig. 5.12 but now showing a zoomed in region, 100×100×
100 kpc/h and like Fig. 5.11 the particles associated with the most massive subhalo
have been removed from the particle distribution and BSE approximation.
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number of terms used in this thesis.

The spherical harmonic artefacts in the DMO Au16 projected density profile could

be reduced by either including more angular terms or decreasing the weighting of

the higher-order terms. However, even with these changes, the Herquinst-Ostriker

BSE will still struggle to reproduce the density distribution of a displaced subhalo

as the lower order radial terms are most efficient at modelling density profiles which

decrease with increasing radius from the centre of the expansion.

In Fig. 5.12 we show the same density projection, but for the MHD simulation of

the Au16 halo, which also contains stars and gas. This simulation has a massive

disc component at the present day. In this zoom out projection, we see that the

fit using a small number of terms completely neglects the disc component, thus

underestimating the density. The BSE also over-estimates the density directly above

and below the disc; this could be because these regions have a lower density than

predicted by the zeroth-order symmetric profile. As the number of terms increases,

the BSE reproduces the disc-like component. In the bottom row of Fig. 5.12, it is

clear the BSE has been able to produce a disc-like structure, which appears to match

that in the simulations fairly well. There are, however, still density artefacts due to

the presence of the massive, displaced subhalo. Alongside these, there are also more

visible radial bands of over and under densities, which are likely due to truncating

the radial terms without a decreasing weighting for higher-order terms. These radial

bands are likely more present in the MHD simulation as the higher-order radial terms

have a larger contribution due to the disc.

We also show a zoomed-in projection of the reconstructed density profile of the MHD

Au16 halo in Fig. 5.13. As with Fig. 5.12, we see that the BSE is able to capture the

presence of the disc surprisingly well. The BSE can accurately imitate the radial and

vertical extent of the disc. The disc in the MHD simulation has a very high density

in the centre, which drops off rapidly above and below the plane. Most disc models

use an exponential function to model the density profile above and below the disc

plane. The BSE cannot fully capture this rapid decrease in density over such a small

spatial scale. The BSE, therefore, underestimates the density of the disc towards the
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centre and overestimates the density further out.

As the BSE appears to reconstruct the disc relatively well in Fig. 5.13, it can likely

capture the gravitational effects of the disc reasonably well, particularly for points

at large radii. However, given that the BSE reproduces a smeared version of the

actual disc, it is unlikely that the BSE can accurately reproduce the correct tidal

forces; thus, any models of satellite infall in the reconstructed potential will likely

underestimate the effects of tidal stripping and disruption.

In summary, we find that the Herquinst-Ostriker BSE is able to accurately reproduce

the density profile of a MW-mass halo extracted from a high-resolution cosmological

simulation. Moreover, the full MHD simulation of the halo, which includes baryonic

material and processes, is still well reproduced by the BSE with a small number of

terms, nmax ≈ 14 and lmax = 6. However, we identify two significant challenges to the

BSE technique. First, the BSE method fails to accurately model a massive satellite

near but displaced from the centre of the halo. Secondly, the BSE method fails to

capture the thin disc found in the MHD simulation accurately. In general, the BSE

method reproduces a smeared version of the true disc. In Section 5.5 we propose

further developments to the BSE method, which would overcome these limitations

without incurring a significant computational expense.

5.4.3 Particle orbits

We have shown that the spherically averaged density profile of both the DMO and

baryonic haloes of an MW-mass halo can be well reproduced with Herquinst-Ostriker

BSE. However, we have also found that the BSE technique fails to accurately recon-

struct the true density field in the presence of massive, displaced satellites. We now

investigate the accuracy of reproduced orbits of particles integrated over a few billion

years.

A random sample of test particles is selected from the original n-body simulation.

Particles within the simulation that are within the virial radius of the Au16 halo at

both z = 0 and z = 1 are identified. We repeat this process for both the DMO and
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MHD Au16 haloes; however, we start by describing the DMO halo first. These par-

ticles are then shuffled, and one hundred thousand of them are randomly selected to

be used to test the orbit reconstruction using the BSE. We then take the initial posi-

tions and velocities of this sample of particles and transform them into the reference

frame of the halo. The particles can then be evolved using forces calculated from

the BSE and the inertial correction forces following Eq. 5.2.38. We then compare

the orbits of these test particles using the BSE with the original particle trajectories

from the n-body simulation. We use the BSE and halo reference frame for the Au16

halo described in sections 5.4.1 and 5.4.2.

In Figs. 5.14 and 5.15 we show orbits of six random particles which have a maximum

galactocentric radius of less than 80 kpc. These particles are selected from the

previously described random sample and evolved through the density field of the

Herquinst-Ostriker BSE, with nmax = 30 and lmax = 14, for the DMO Au16 halo. We

also include the trajectories of these particles in the cosmological n-body simulation.

Figs. 5.14 and 5.15 show the orbits of the same six particles, however starting the

orbital integration at an age of the universe of t ∼ 9 Gyr and ∼ 6 Gyr, respectively.

For Fig. 5.14, where the orbits are integrated from t ∼ 9 Gyr we find that galacto-

centric radius as a function of time is very well reproduced in the BSE expansion.

Furthermore, the projections of the trajectories in the cartesian axes also accurately

trace those in the n-body simulation. Fig. 5.15, where the particle orbits are evolved

from t ∼ 6 Gyr, shows similar results to Fig. 5.14, however at late times the error on

the galactocentric radius can be much larger. These errors tend to be most apparent

at late times. Therefore, they could be because the orbits are integrated for a longer

time and thus accumulate more error. However, some of the orbits, notably rows 2

and 3, appear to diverge from the true orbits quite early into their integration. This

could be because the BSE approximation is less accurate at earlier times.

Figs. 5.16 and 5.17 show another sample of six randomly selected particles which are

taken from the initial sample but are now constrained to have a maximum galacto-

centric radius which is greater than 150 kpc. This allows investigation of the orbit

reconstruction of particles with longer orbital periods and apocenters close to the
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Figure 5.14: Examples of reconstructed orbits (orange) compared to the original
trajectories of particles in the simulation (black lines), for the Herquinst-Ostriker
BSE with nmax = 30 and lmax = 14. Each shows a single particle, with the first
three columns showing its projections on three Cartesian axes, and the last column
shows the time evolution of the galactocentric radius. These particles are evolved
from ∼ 9 Gyr to ∼ 13.8 Gyr and are randomly selected from a sample of particles
with a maximum galactocentric radius less than 80 kpc.
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Figure 5.15: The same as Fig. 5.14, however the same particles are evolved from
∼ 6 Gyr to ∼ 13.8 Gyr.
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Figure 5.16: The same as Fig. 5.14; however, these particles were randomly selected
from a sample of particles with a maximum galactocentric radius larger than 150 kpc.
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Figure 5.17: The same as Fig. 5.16, however these particles are evolved from ∼ 6 Gyr
to ∼ 13.8 Gyr.
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Figure 5.18: Median and ±1σ envelope of the relative position error after 2 Gyr as
a function of the orbital period for a sample of 100000 particles in the DMO Au16
halo. These particles are evolved starting from t ∼ 9 Gyr and evolved for 2 Gyr
of evolution before we calculate the relative positional error. We show three sets of
results corresponding to BSE with different nmax and lmax. The results are shown for
nmax = lmax = 0 (blue), nmax = 6 and lmax = 2 (green) and, finally, nmax = 30 and
lmax = 14 (red).

virial radius. In Fig. 5.16 we show reconstructed orbits starting at the age of the

universe of ∼ 9 Gyr. The radii of these orbits are generally well produced at all

times. The deviation from the n-body simulation appears after the particles have

passed through the first pericentre.

In Fig. 5.17 we show the same particle orbits as Fig. 5.16, but we start the orbit

reconstruction 3 Gyr earlier, at t ∼ 6 Gyr. We find that a lot more of the orbits

are out of phase and are further out of phase, both in the projected coordinates and

galactocentric radii. Again, most orbits appear to diverge from the n-body prediction

after their first pericentre. After the orbits first deviate from the true orbit, their

error continues to increase further.

We now want to analyse the accuracy of the orbit reproductions for a large sample

of particles rather than analysis of a few random realisations. Sanders et al. (2020)

introduced a measure of the error of the orbit reconstruction to quantify the accuracy

of the orbits reconstructed in the BSE. They propose an error measure, Ei(t), which

compares the relative position error of the reconstructed spatial path of the ith orbit,

ri,recon(t), from that in the n-body simulation, ri,orig(t), at time after an interval of t,
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Figure 5.19: The same as Fig. 5.18 but for orbits which start at t = 6 Gyr.

Figure 5.20: The same as Fig. 5.18 but for 25000 random dark matter particle orbits
taken from the MHD Au16 halo and evolved with the coefficients generated from the
baryonic halo.
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Ei(t) = |ri,orig(t) − ri,recon(t)|
ri,orig

(5.4.1)

where ri,orig is the time-averaged galactocentric radius. This can be calculated at any

time, t, during the reconstructed orbit. Sanders et al. (2020) calculate the error on

the orbit after both 2 Gyr and one orbital period. However, measuring the error after

a fixed number of orbital periods means that particles with longer periods naturally

accumulate more error as they are integrated over a longer period. This choice leads

to an almost linear relationship between the error and the orbital period. In this

thesis, we choose to measure the error after 2 Gyr of integration.

Fig. 5.18 shows the median error, surrounded by an envelope of 16th to 84th per-

centiles, for particles binned by their orbital period. We calculate the orbital periods

of each particle by taking a Fast Fourier Transform (FFT) of the particle’s original

galactocentric radius and identifying the frequency of the dominant period. If the

period is longer than the simulated interval, we remove it from our analysis. Fig. 5.18

shows the results for reconstructed orbits that use progressively more terms in the

BSE expansion starting at nmax = lmax = 0 ranging up to nmax = 30 and lmax = 14.

We find that for orbital periods between ≈ (2 − 5) Gyr, the error is approximately

constant. However, for orbits ≤ 2 Gyr the error tends to increase with decreasing

orbital period, particularly when using a fewer number of terms in the BSE. The re-

duced error on orbits with longer periods may be lower as the particles are typically

at larger radii, and thus, the orbits may be less sensitive to halo structure and more

conditional on the enclosed mass. It could also be because the error is normalised

using the mean orbital period, and thus, orbits with longer periods will have a much

larger mean radius. The increase in the detail of the BSE from nmax = 6 and lmax = 2

to nmax = 30 and lmax = 14 only decreases the error by a factor about a factor of

two across the whole range of orbital periods, despite a significant increase in the

number terms.

Fig. 5.19 shows the same sample of particles but with their orbit integration starting

∼ 3 Gyr earlier (at z = 1). The results of Fig. 5.19 are broadly similar to those

that start at a later time. However, starting to evolve the orbits earlier leads to a



5.4. Cosmological tests 163

systematically higher error on the particles orbit, even when calculated with the same

elapsed time. This indicates that the BSE reconstruction, or the inertial correction,

is less accurate at earlier times. In Section 5.4.1 we see that the peculiar acceleration

of the halo does appear to be higher at earlier times.

The MHD simulation of Au16 includes more non-spherically symmetric structure,

mainly due to the galactic disc, and differs further from the zeroth-order Herquinst

sphere due to the increased central density. These deviations from the spherically

symmetric Hernquist should mean that more basic terms are required to achieve the

same level of accuracy on the BSE reproduction of the density profile. This is sup-

ported by Fig. 5.20 which shows the error on a sample of dark matter particle orbits

as shown in Fig. 5.18. The positional error on the orbits after 2 Gyr of evolution is

systematically higher in the MHD simulation by about a factor of two. However, the

error is not significantly different from the DMO results using the same number of

terms in the expansion. This similarity in error suggests the Hernquist-Ostriker BSE

is able to approximate the halo in the MHD simulation well. However, the similarity

in error could also indicate that the limiting factor of the orbit integration accuracy

is not the density approximation. Other factors can introduce error on the orbital

reproductions, including the time interpolation between snapshots or the smoothed

halo frame of reference and subsequent estimation of the peculiar velocity. Further-

more, the limiting factor of the accuracy of the reproduced orbits may be due to the

massive subhalo, which appears to imprint the errors following the highest spherical

harmonic term in both the MHD and DMO simulation.

We can compare the accuracy of the reconstructed orbits to those of previous BSE

studies. Lowing et al. (2011) does not look at the error of a large sample of particles,

but they do analyse the reconstructions of individual particle orbits. In general,

our results appear to better reproduce the orbits taken from n-body cosmological

simulations, which is unsurprising as they do not include the inertial correction. Fur-

thermore, Lowing et al. (2011) does not smooth the trajectory of the halo; therefore,

the inertial correction required in their work is likely much higher than required in

this thesis. We can directly compare the results of Figs. 5.18-5.20 with those in
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Sanders et al. (2020). general we find our errors are approximately a factor of two

higher than found in Sanders et al. (2020). One of the reasons for their reduced error

could be because they use a different basis expansion family than presented in this

thesis. Using the basis set presented by Lilley et al. (2018b), can be tuned to yield

an almost NFW profile at zeroth order. Furthermore, they calculate the coefficients

with a much shorter sampling time than this thesis. Sanders et al. (2020) calculate

the coefficients every ≈ 10 Myr, whereas in this thesis we compute the coefficients

every ≈ 150 Myr. Therefore, it is likely they have a much smaller error introduced

due to their temporal interpolation of the coefficients.

5.5 Further developments

This section presents further developments to the BSE method to study the poten-

tial around massive haloes taken from (baryonic) cosmological simulations. In Sec-

tion 5.5.1 we introduce a novel method of accurately including a thin, time-dependent

disc alongside the BSE of the remaining halo. We then propose a technique to effi-

ciently model a population of massive satellite galaxies within the halo.

5.5.1 Modelling a thin disc

The Hernquist-Ostriker BSE is most efficient for modelling density distributions

which are approximately spherically symmetric and are well fit by the zeroth-order

Hernquist profile. This is a good approximation for haloes in dark matter only sim-

ulations. However, in cosmological hydrodynamical simulations, which also include

a galaxy formation model, the BSE must also contend with both stellar and gaseous

discs in the centre of galaxies. These discs can often be very thin and radially large.

A large number of terms in the Hernquist-Ostriker BSE are required to accurately

model these thin disc components.

Fig. 5.13 shows that the Herquinst-Ostriker BSE begins to reproduce the thin disc

found in the Au16 MHD simulation. However, reproduction is not perfect. Namely,
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the BSE is underdense in the centre and overdense above and below the plane of the

disc. In effect, the BSE produces a smeared version of the original disc. While this

does not appear to significantly hinder the ability of the BSE to reproduce orbits of

point masses (see Section 5.4.3), it likely produces erroneous tidal forces. Thus, to

study the tidal evolution of satellite galaxies falling into massive galactic haloes with

a realistic galactic disc, we must either increase the number of terms in the BSE or

find an alternative method to include the disc.

A possible approach to model the disc is to use a different family of basis expansion

which is better suited to modelling the thin, extended discs. Alternatively, we pro-

pose a simpler solution in this thesis. We suggest that the disc can be modelled using

a traditional analytic disc model and that this component can be removed from the

BSE. Therefore, in this approach, we are only using the Herquinst-Ostriker basis

expansion to model the halo and the small residual between the analytic disc and

true disc.

We start by choosing an analytic model which which will be used to represent the disc

component of our n-body simulations. There are a variety of analytic models which

have been used to model galactic discs within the literature. The most common

model in use today is the Miyamoto & Nagai (1975) model which is a modified

version of the infinitely thin discs described by Kuzmin (1956) and Toomre (1963).

The model is of the form,

Φdisc(R, z, M, a, b) = GM[
R2 + [a + (z2 + b2)1/2]2

]1/2 , (5.5.1)

ρdisc(R, z, M, a, b) = b2M

4π

aR2 + [a + 3(z2 + b2)]1/2[a + (z2 + b2)1/2]2[
R2 + [a + (z2 + b2)1/2]2]

]5/2
(z2 + b2)3/2

, (5.5.2)

where R is the cylindrical radius, z is the distance from the origin along the z-axis,

a is the disc scale radius, b is the disc scale height, and M is a measure of the

mass of the disc. The Miyamoto & Nagai (1975) disc model is preferred as it is free

from singularities everywhere in space, and it is better suited to capturing discs that

are not infinitely thin. The Miyamoto & Nagai (1975) model is also very flexible,
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when b/a ≫ 1 it produces an approximately spherical distribution with a density

profile similar to that of a Plummer sphere Plummer (1911), and when b/a ≪ 1 it

corresponds to a significantly flattened disc distribution, similar to that of Kuzmin

(1956) and Toomre (1963). The best-fit values of the parameters a, b and M can

be extracted from hydrodynamical simulations using various techniques, such as a

maximum likelihood estimation technique.

The complete density profile of the system can be constructed from a BSE represen-

tation of the halo, ρhalo,BSE, alongside an analytic model of the disc, ρanalytic disc,

ρ(r, θ, ϕ) = ρ(r, θ, ϕ)particles = ρhalo, BSE(r, θ, ϕ) + ρanalytic disc , (5.5.3)

where the ρhalo, BSE can be accurately represented using the Hernquist-Ostriker BSE

presented in Section 5.2.1. We can therefore calculate ρhalo, BSE using all of the

particles within a spherical region of interest, and subsequently removing the contri-

bution which is already accounted for by the analytic disc. This prevents the double

counting of disc contribution,

ρhalo, BSE = ρ(r, θ, ϕ)particles − ρanalytic disc(R, z, M, a, b)

=
∑

k

mk

r2
ksinθk

δ(r − rk)δ(θ − θk)δ(ϕ − ϕk) − ρanalytic disc(R, z, M, a, b)

=
∞∑

l=0

l∑
m=0

∞∑
n=0

Nlm(cos θ)ρnl(r)[Shalo,nlm cos(mϕ) + Thalo,nlm sin(mϕ)] .

(5.5.4)

We can then calculate the coefficients Thalo,nlm (Shalo,nlm) by multipying both sides of

Eq. 5.2.15 by [Nlm(cos θ)Φnl(r) cos(mϕ)] ([Nlm(cos θ)Φnl(r) sin(mϕ)]) and integrating

over all space. We start with the particles and analytic potential of Eq. 5.5.4,
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∫
LHS × [Nlm(cos θ)Φnl(r) cos(mϕ)] dV

=
∫

[ρparticles(r, θ, ϕ) − ρanalytic disc(R, z, M, a, b)]Nlm(cos θ)Φnl(r) cos(mϕ) dV

=
∑

k

mkNlm(cos θk)Φnl(rk) cos(mϕk)−∫
ρanalytic disc(R, z, M, a, b)Nlm(cos θ)Φnl(r) cos(mϕ) dV.

(5.5.5)

The RHS of Eq. 5.5.4 can be reduced, following the steps in Section 5.2.1, to

∫ ∞∑
l=0

l∑
m=0

∞∑
n=0

Nlm(cos θ)ρnl(r)[Shalo,nlm cos(mϕ) + Thalo,nlm sin(mϕ)]

× [Nlm(cos θ)Φnl(r) cos(mϕ)] dV = 1
2π

InlShalo,nlm(1 + δm0)π ,

(5.5.6)

Therefore the coefficient Shalo,nlm can be written as,

Shalo,nlm = (2 − δm0)Anl

 ∑
k

mkNlm(cos θk)Φnl(rk) cos(mϕk)−

∫
ρanalytic disc(R, z, M, a, b)Nlm(cos θ)Φnl(r) cos(mϕ) dV

 .

(5.5.7)

We can re-write integral term of Eq. 5.5.7 as

Fdisc,nlm(R, z, M, a, b) =
∫

ρanalytic disc(R, z, M, a, b)Nlm(cos θ)Φnl(r) cos(mϕ) dV ,

(5.5.8)

where Fdisc,nlm(R, z, M, a, b) can be computed via numerical integration. Therefore,

Eq. 5.5.7 simplifies to,

Shalo,nlm = (2−δm0)Anl

 ∑
k

mkNlm(cos θk)Φnl(rk) cos(mϕk)−Fdisc,nlm(R, z, M, a, b)
 ,

(5.5.9)
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which we see is,

Shalo,nlm = Snlm − Fdisc,nlm(R, z, M, a, b) , (5.5.10)

where Snlm is the coefficient calculated from the contribution of all of the particles

in the simulation within the region of interest. In qualitative terms, we calculate the

BSE from all of the particles within a spherical region. This can be a combination of

contributions from gas, dark matter and stars, thus including the contribution of the

disc. As the BSE includes contributions from the disc, naively adding an analytic

disc potential would cause the disc to be double-counted. Namely, some contribution

of the disc would be included by the coefficients of the BSE, as well as being included

by the analytic disc. Thus, we must remove the analytic disc contribution from the

BSE to ensure that we do not double-count the disc contribution.

The motivation for including the disc as an analytic model is that the BSE of Hern-

quist & Ostriker (1992) generally struggles to reproduce the thin, extended discs.

Therefore, the term Fdisc,nlm(R, z, M, a, b) is not necessarily removing the thin disc;

rather, it is removing a poorly modelled version of the thin disc from the BSE, such

that it can be re-introduced by a well fit analytic model.

An alternative technique is to separate the particles in the region of interest into

two categories: disc particles and non-disc particles. The BSE coefficients can then

be calculated from the non-disc particles, and an analytic disc model can be fit to

the disc particles. These can be summed to produce a total density function for the

region. The disadvantage of this method is that any change in the definition of the

disc particles requires the coefficients of the BSE to be recomputed. Whereas, in the

method described in this thesis, the coefficients are trivially calculated once for all of

the particles in the region of interest, and the analytic representation of the disc can

be applied in post-processing. Thus, different disc models could be trialled without

the need to recompute the coefficients. This makes it much cheaper to prototype

different disc models.

As described, the best fit values of the analytic disc model can be extracted from
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hydrodynamical simulations. The parameters can be extracted at each snapshot

of interest, as are the coefficients of the BSE. The disc’s properties can then be

approximated at any point in time by interpolating the best-fit model parameters

between two snapshots. This can be combined with the coefficients of the BSE

to allow a reconstruction of the BSE following Eq. 5.5.3. The forces at any point

in the halo can be calculated as a combination of the BSE and the analytic disc

forces. Therefore, the tidal forces from the disc are accurately included, thus allowing

accurate modelling of the tidal evolution of infalling satellite galaxies. Furthermore,

as the disc is being included via the analytic model, the BSE only needs to represent

the remaining mass distribution. As shown in both Sections 5.3 and 5.4.2, the

Hernquist-Ostriker BSE can accurately and cheaply reproduce MW-mass haloes in

the absence of the galactic disc (and nearby massive satellites).

5.5.2 Modelling massive subhaloes

Section 5.2.6 demonstrated that increasing the number of radial and angular terms to

resolve massive neighbours is prohibitive. This section describes an efficient method

to include the massive subhaloes in the BSE of a cosmological simulation.

In Section 5.4.2 we demonstrated that the Herquinst-Ostriker BSE fails to accurately

model a nearby, massive satellite within the halo of Au16 in both the MHD and

DMO simulation. Moreover, the abrupt truncation of the BSE leads to spherical

harmonic artefacts in the density profile corresponding to the highest order angular

terms. These artefacts cause the density profile to deviate significantly from the true

value. In Figs 5.8 and 5.11 we show that removing the subhaloes from the simulation

significantly increases the accuracy of the BSE reproduction. Namely, removing the

subhalo reduces the error on the projected density from values exceeding ±50% to

values of order ±5%. We could increase the accuracy of the BSE reproduction of

the massive satellite by increasing the number of radial and angular terms; however,

this becomes computationally prohibitive.

Following the method described in Section 5.4.2 the modelling of the halo can be

split into two sections, modelling the satellite free halo and modelling the satellites.
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A halo finder can be used to identify all particles associated with a massive satellite.

These particles are then ignored when calculating the coefficients of the BSE of the

main halo. Secondly, the particles associated with each massive satellite can be

used to calculate an approximate representation. This representation could be a

Herquinst-Ostriker BSE centred around the centre of the potential of the satellite or

a simple spherically-symmetric radial distribution such as the NFW profile. These

density profiles can then be combined to reproduce the total density profile of the

halo at a given time. In this technique, the whole density profile of the halo becomes,

ρ(r) = ρBSE(r) +
nsatellites∑

i=1
ρsatellite,i(r − xi) (5.5.11)

ρBSE(r) is the BSE approximation of the halo with the satellites removed, ρsatellite,i(r−

xi) is the density profile of the i-th satellite with a centre of xi in the reference frame

of the main halo and nsatellites is the total number of satellites modelled individually.

The calculation of the forces on a point in the main halo must combine the forces from

the main halo, and a sum over the forces from each of the independently modelled

massive satellites.

In this method, the coefficients of the BSE of the main halo are calculated from all of

the particles in the simulation, except those associated with a massive satellite. The

particles associated with each of the massive satellites can then be used to indepen-

dently calculate approximate profiles for each satellite. The profiles of the individual

satellites can either be analytic, spherically-symmetric models such as the NFW or

independent BSEs around their centre using an appropriate scale length. We suggest

that the massive satellites can be accurately modelled using spherically symmetric

profiles, such as the NFW profile, where the best-fit parameters are calculated at

each snapshot and interpolated at any point in time. Any deviations from spherical

symmetry with a massive satellite likely have no significant impact on the infall of

other independent satellite galaxies.

While we do demonstrate it in this work, the results of Section 5.4.2 suggest that

removing massive satellites from the BSE and re-introducing them with separate
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analytic models will significantly increase the accuracy of the BSE method. Further-

more, in Section 5.4.2 we demonstrated that only a few BSE terms are required to

accurately describe the DMO Au16 halo, with the nearby massive satellite removed.

Thus, this method will be much more computationally efficient than increasing the

number of terms in the main expansion to resolve the massive satellites.

5.6 Discussion and Conclusions

Self-consistent n-body and hydrodynamical simulations of the galaxy formation are

extremely computationally expensive. Studying the infall of satellites into more mas-

sive haloes is highly inefficient as the main halo and the central galaxy dominate the

compute resources. Therefore, we must find alternative methods to study the evo-

lution of satellite galaxies falling into more massive haloes at the highest resolution.

In this chapter, we described the basis function expansion technique (Hernquist &

Ostriker, 1992; Clutton-Brock, 1972) which can efficiently approximate the potential

of a simulated galactic halo. The basis function approximation of the potential can

be used to study the infall of satellite galaxies into more massive haloes. Our main

results are as follows:

• We have demonstrated that not only can the BSE technique be used to ac-

curately reproduce the orbits of individual dark matter particles in DMO cos-

mological simulations, but also in full MHD simulations of realistic MW-mass

galaxies at the present day. In general, we find that for a modest amount of

terms in the BSE, the orbits in the full MHD simulation are only about a factor

two less accurate than those in the DMO simulation.

• In Fig. 5.18 we show that the accuracy of the orbits increases quite significantly

when including more terms in the BSE, up to a limit. We find that increasing

the number of terms above nmax = 22 and lmax = 10 provides diminishing

returns. We suspect that this is because another factor limits the error, for

example, the limited temporal sampling of the coefficients or the inability of the
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Hernquist-Ostriker BSE to faithfully reproduce the density profile of displaced

massive satellites.

• The Herquinst-Ostriker basis set struggles to capture both a central NFW-like

halo with massive, displaced satellites within the immediate environment. This

is due to the form of the radial terms, which are most efficient when fitting

profiles that decrease with increasing radius, and the cost of including more

than a dozen angular terms. We suggest that satellites, those with masses

above ∼ 1% of the virial mass of the central halo, should be included via the

addition of extra analytic profiles, like the NFW, or their own BSE’s centred

around their potential minimum.

• We find that the Herquinst-Ostriker basis family is able to model the density

of a thin galactic disc surprisingly well. However, the BSE struggles to produce

a disc as thin as the one in the Au16 MHD simulation. The BSE approxima-

tion tends to produce a disc that is not dense enough in the centre and too

dense around the edges. We advise the use of a thin analytic disc component

alongside the BSE. This will reduce the computational cost, as fewer terms

will be required in the BSE, and increase the accuracy of the disc density and

therefore force calculations within the halo.

This thesis shows that the Herquinst-Ostriker BSE can successfully reproduce the

orbits of particles taken from n-body simulations of both dark matter only haloes

and those with full hydrodynamics. However, the BSE must also accurately repro-

duce the tidal force to follow infalling satellites’ evolution correctly. While the tidal

forces are unimportant for evolving point particles, they are crucial in following the

mass and size of extended structures like satellite galaxies. The recent work of van

den Bosch et al. (2018) claims that most modern cosmological n-body simulations

overestimate the number of satellite galaxies that are disrupted. They claim that

over-softening of the gravitational force is the most likely cause of artificial disrup-

tion. The methods that we have introduced in this thesis can counter the effects

of over-merging by allowing the force softening in the model satellite galaxies to be
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reduced significantly without making the calculations infeasible expensive. However,

further work is required to investigate the accuracy of the tidal forces predicted by

the BSE technique before it can be applied to investigate to study the issue of subhalo

disruption.

While the BSE technique appears to be an extremely powerful tool to study a whole

host of problems, several limitations hinder the method. The BSE technique does

not explicitly model the effects of dynamical friction. For some situations, dynamical

friction is not a dominant effect. In particular, Boylan-Kolchin et al. (2008) claim

that the effects of dynamical friction are unimportant for satellites that are less than

10% of the mass of the host halo. The BSE approximation can potentially include

the effects of dynamical friction when the satellite of interest is selected from the

original n-body simulation. In this case, the BSE approximation to the density may

be able to capture the gravitational wake along the orbit, assuming the orbit in the

BSE reconstruction does not differ significantly from that in the original simulation.

Alternatively, the effects of dynamical friction could also be included with a simplified

model.

Another limitation of the BSE method, as presented in this thesis, is that it does not

include the hydrodynamical effects on the orbits. In Chapters 3 and 4 we demon-

strated that hot haloes around MW-mass haloes are massive and contain a rich

interplay of inflowing and outflowing gas. Therefore, infalling satellites that pass

through this medium will interact with the hot ambient atmospheres and possibly

even with some of the driven outflows. While the methods presented in this chapter

do not include these hydrodynamical interactions, the hydrodynamical effects could

be included in future works using various different techniques.

The effects of hydrodynamical interactions could be included by placing the infalling

satellite into a ‘wind tunnel’. In this approach, we effectively put a rectangular

box around the satellite galaxy and allow gas to stream onto the galaxy with a

prescribed density, velocity and temperature, matched to what we expect from the

current position and velocity of the satellite in the frame of the halo. The satellite’s

orbit would still be evolved as described in this chapter; however, the hydrodynamical
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effects would be solved in the frame of the satellite. This technique means that only

a very small region of the halo would need to be hydrodynamically resolved and thus

drastically lowers the computational expense. Possibly even more importantly, the

simplification brought around by such a controlled setup allows the properties of the

galaxies halo to be controlled, thus allowing the separation of effects due to different

properties. The ‘wind tunnel’ technique has previously been applied to follow the

properties of satellite galaxies as they fall into more massive haloes (Heß & Springel,

2012) and have been shown to yield results in good qualitative agreement with full

hydrodynamical n-body results.

An alternative approach to include hydrodynamical effects without huge computa-

tional expense is to use a simulation with an adaptive resolution. We propose that

the BSE gravitational force approximation, used in this thesis, could be coupled

with an adaptive resolution hydrodynamical simulation, which is resolved at a much

higher resolution around the satellite galaxy of interest. The most efficient imple-

mentation would allow the high-resolution region to follow the orbit of the orbiting

satellite galaxy. This technique is best suited to grid simulation techniques, such

as AREPO. A similar adaptive resolution hydrodynamic technique has been applied

by van de Voort et al. (2019). They introduced an extra scalar field to the fluid to

identify the regions of the simulation, which should be resolved with high resolution.

The satellite galaxy would be seeded with the scalar field in this method. As the

satellite galaxy evolves through the halo, the scalar field will advect along with the

satellite, ensuring that the resolved region follows the orbit of the satellite.

More work is required to ensure that the BSE method used in this thesis accurately

recovers the tidal forces present in the halo and includes hydrodynamical effects.

However, the results of this thesis suggest the BSE method is a good starting point

on which to build a complete model of satellite galaxy orbits in the immediate en-

vironments of massive haloes. The techniques described and proposed in this thesis

allow the computational resources to be focused on the satellite galaxies of interest,

and the idealised configuration allows the exploration of the entire parameter space.



Chapter 6

Conclusions

6.1 Summary

The presence of hot accreted X-ray luminous gaseous atmospheres in quasi-hydrostatic

equilibrium around late-type galaxies in halos of mass ≥ 1012 M⊙ is a fundamental

prediction of galaxy formation models within ΛCDM (White & Frenk, 1991). While

it is generally accepted that hot atmospheres exist around clusters, M200 ≥ 1014 M⊙

the observational evidence around lower-mass haloes is less compelling. After nu-

merous failed searches for diffuse X-ray emission from these galaxies over the years,

detections were finally forthcoming in the early 2000s. Since then, various observa-

tional detections have indicated that the origin of this X-ray emitting gas is feedback

from recent SNe rather than hot accreted haloes.

In Chapter 3 we use the large-volume, cosmological hydrodynamics EAGLE simula-

tions to investigate the origin and properties of the hot, X-ray emitting gas around

disc galaxies. The EAGLE simulations predict that MW-mass halos are baryon de-

ficient relative to the mean baryon fraction. Specifically, they contain only ≈ 40%

of the mean cosmic baryon fraction within their halo virial radius, and about half

of the baryons are in the form of a hot, (T > 105.5 K), gaseous halo. This baryon

deficiency is attributed to feedback which can drive halo-wide winds. In EAGLE,

the central halo X-ray emission is dominated by winds triggered by SNe feedback

175
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for almost all halo masses. However, the X-ray emission in the outer regions is gen-

erally produced by an accreted, quasi-hydrostatic hot gaseous halo (see Fig. 3.2).

Excising the inner 0.10Rvir of the halo is sufficient to remove the majority of the hot

gas heated by SNe feedback in halos of mass ≥ 1012 M⊙, thus allowing us to probe

the emission from hot, accreted atmospheres predicted in a ΛCDM framework. The

EAGLE simulations reproduce the observed general trend of LX − Mvir relation. We

also predict that any steepening of the logarithmic slope of the LX − Mvir relation,

above the self-similar value, α = 5/3, is due to a varying hot gas fraction with halo

mass. We show that the logarithmic slope of the power-law relationship between gas

baryon fraction and halo mass can be inferred from the observed LX − Mvir relation

using an analytical relation we derived, Eq. 3.2.3. This relation holds across several

different EAGLE simulations, suggesting that this methodology can be applied to

future X-ray observations to constrain the slope, normalisation and scatter of the

halo gas fraction as a function of halo mass.

In summary, we find that in the EAGLE simulations, late-type galaxies of halo mass

≥ 1012 M⊙ do host hot, accreted atmospheres as predicted by White & Frenk (1991).

However, feedback in the innermost region of the halo can produce substantially

more X-ray emission in agreement with observations. Despite this, future X-ray

observations of the outer regions of the halo may be able to infer the baryonic, and

thus halo mass, from the X-ray emission.

The inclusion of feedback in cosmological hydrodynamical simulations is critical

to reproducing galaxies’ observed statistical properties. The complexity of baryon

physics, together with the limited resolution of cosmological simulations, makes it

impossible to include feedback ab initio from SNe or AGN. Therefore, these processes

are included with a subgrid model; however, there is no standard implementation

for modelling the effects of feedback. Generally, SNe feedback is dominant in lower

mass galaxies, and AGN feedback becomes more significant in higher mass galaxies.

The transition between these two regimes appears to coincide with the transition

between haloes which host hot, quasi-hydrostatic atmospheres and those which do

not, which is a halo mass M200 ≈ 1012 M⊙. This makes MW-mass haloes an ideal
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laboratory to investigate the differences arising from different subgrid models.

In Chapter 4 we analysed the emergent baryon cycle around two Local Group-like

volumes centred around a pair of MW-mass haloes. We investigated how the baryon

cycle varied when using the different subgrid models with the same initial conditions.

We used the Auriga and Apostle galaxy formation models, which, among other

differences, have significantly different implementations of SNe feedback. Apostle

injects all the energy from SNe in the form of a thermal energy ‘dump’, whereas

Auriga uses hydrodynamically decoupled ‘wind’ particles.

We found the minimum baryon fraction within a sphere around a primary Apostle

galaxy to be ≈ 40% of the cosmic baryon budget (the same as that found in the

EAGLE simulations in Chapter 3), which is approximately half the value found

in Auriga. Furthermore, the Apostle simulations exhibit a baryon deficiency

of ≥ 10% extending to ≈ 2 Mpc at the present day. The feedback processes can

be classified into two broad categories: ejective and preventative. The Auriga

simulations are dominated by ejective feedback with relatively short recycling times.

Thus, most of the ejected gas cannot leave the virial radius of the halo, and if it does,

it often re-accretes at later times. However, in Apostle feedback can eject a large

mass of gas beyond R200. This outflowing gas has such a large covering fraction and

outward velocity that it can prevent the cosmological accretion of gas from the local

environment.

These results in Chapter 4 highlight a fundamental difference in the outcome of the

feedback processes in various subgrid implementations. We also identified a range

of future observations of FRBs and CGM ion absorption lines that could constrain

different galaxy formation models by identifying the signatures of galactic fountains

and hot outflows capable of preventative feedback.

The large dynamic mass range of cosmological structure formation makes it compu-

tationally expensive to run simulations of galaxy formation. The mass of haloes in

the Universe ranges from approximately 10−5 M⊙ to 1015 M⊙ (Wang et al., 2020),

therefore studying the interaction of some of the lowest mass haloes in the immedi-

ate environment of massive haloes is prohibitive using traditional n-body techniques.
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Therefore, we must use alternative methods to study these problems accurately.

In Chapter 5 we described the basis function expansion technique (Hernquist & Os-

triker, 1992; Clutton-Brock, 1972) which can efficiently approximate the potential of

a simulated galactic halo. We re-derived the BSE for the Herquinst-Ostriker basis,

following Hernquist & Ostriker (1992) and Lowing (2011) including more detail, and

correcting previous mistakes. We also demonstrated that the BSE technique is used

to accurately reproduce modelled haloes of both DMO and full MHD cosmological

simulations of realistic MW-mass galaxies. We also demonstrated that the BSE tech-

nique could accurately reproduce the orbits of point masses using the approximate

potential BSE. Increasing the number of terms in the expansion above a specific

number provides diminishing returns.

We find that the Herquist-Ostriker basis set struggles to capture both a central

NFW-like halo with massive, displaced satellites within the immediate environment.

We also demonstrate that the Hernquist-Ostriker BSE fails to accurately reproduce

the thin galactic disc found in the Au16 MHD simulation. Namely, the BSE is un-

derdense in the centre and overdense above and below the plane of the disc. In effect,

the BSE produces a smeared version of the original disc. This will likely produce

erroneous tidal forces, thus preventing an accurate study of the tidal evolution of

satellite galaxies falling into massive galactic haloes with a realistic galactic disc.

In Section 5.5 we present two novel further developments to the BSE method to

study the potential around massive haloes taken from (baryonic) cosmological sim-

ulations. We outline a novel method of accurately including a thin, time-dependent

disc alongside individual models of massive satellite galaxies within the halo.

To summarise, we demonstrate Herquinst-Ostriker BSE can successfully reproduce

the orbits of particles taken from n-body simulations of both dark matter only haloes

and those with full hydrodynamics. However, further developments are required to

accurately study the tidal evolution of the infalling satellites correctly. We propose

and describe two further developments, including a thin, time-dependent disc and

a method to efficiently model a population of massive satellite galaxies within the

halo.
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In this thesis, we answered three main research aims, which we summarise below.

I) Do large volume, state-of-the-art cosmological simulations produce

hot, accreted haloes around MW-mass haloes and above, as predicted

by White & Rees (1978)?

The EAGLE simulations predict that late-type galaxies of halo mass ≥ 1012 M⊙ do

host hot, accreted atmospheres as predicted by White & Frenk (1991). However,

SNe feedback in the innermost region of the halo can produce substantially more

X-ray emission. However, we find that the X-ray emission in the outer regions of the

halo is dominated by the hot, accreted haloes, and thus the analysis of the X-ray

emission in the outer regions allows us to infer the mass of the hot halo.

II) Do different galaxy formation simulations, using different subgrid mod-

els, produce the same baryon cycle around galaxies?

We find that different galaxy formation simulations, which both produce realistic

MW-mass galaxies at present-day, can produce very different baryon cycles. We

show that the Apostle simulations produce large halo-wide outflows, which both

eject gas and prevent the cosmological accretion of pristine gas. In comparison, the

Auriga simulations produce much smaller outflows like a galactic fountain that

can suppress star formation without significantly reducing the baryon fraction. We

identify a range of future observations that could constrain these two degenerate

regimes.

III) Are there viable computational methods to study the infall of high-

resolution low-mass galaxies into higher mass haloes?

The self-consistent field technique provides a highly efficient way to accurately repre-

sent time-evolving haloes extracted from cosmological simulations. The Herquinst-

Ostriker BSE can successfully reproduce the orbits of point masses of n-body simula-

tions of both dark matter only haloes and those with full hydrodynamics. However,



6.2. Further Work 180

the technique struggles to accurately capture the thin discs found in MW-like galax-

ies and thus will fail to faithfully include the tidal forces exhibited by the disc.

Furthermore, the method fails to accurately model nearby massive satellite galaxies,

which will be more important when modelling higher mass haloes. We proposed and

described two further developments to overcome these problems, thus making the

SCF technique suitable to model the infall of high-resolution low-mass galaxies into

higher mass haloes.

6.2 Further Work

The conclusions in Chapter 3 show that the EAGLE simulations reproduce the theo-

retically predicted hot halo. In particular, the EAGLE simulations suggest the X-ray

emission in the halo’s outer regions is produced by hot, accreted haloes and could

therefore be used to infer the baryon fraction of the haloes. Possible future work

could answer the following questions:

• Do other large-volume cosmological simulations also predict that the accreted,

hot haloes should be detectable? The results of Chapter 4 show that different

galaxy formation models can produce vastly different baryon cycles and baryon

fractions.

• Could our method of using the excess logarithmic slope of the LX−Mvir relation,

above the self-similar value, α = 5/3, be used to infer the hot gas fraction in

a) other independent cosmological simulations, and b) observations of the real

Universe?

• Can future telescopes be able to detect the lower surface brightness X-ray

emission in the outer region of haloes? Mock observations could be produced,

including background X-ray sources and instrumentation limitations.

• Do our findings of the origin of the X-ray emission also extend to the thermal

Sunyaev-Zel’dovich (SZ) effect (Sunyaev & Zeldovich, 1970), which is also used

to probe hot gas around galaxies?
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• Would a more modern reproduction of the analysis of White & Rees (1978)

and White & Frenk (1991) predict the correct X-ray luminosities? Historically,

White & Frenk (1991) over-predicted the X-ray luminosity by two orders of

magnitude.

Chapter 4 highlights a fundamental difference in the baryon cycle around MW-

mass galaxies using two different galaxy formation simulations of the same initial

conditions. Further work could investigate the following:

• While our analysis focused on the difference in SNe feedback, there were other

differences in the simulations, namely hydrodynamical solver and AGN feed-

back. Further work could repeat this analysis by modifying the SNe feedback

and ensuring other aspects of the simulations are identical.

• Neither the Apostle nor Auriga simulations have been used to simulate

a large volume; therefore, it is not clear if they reproduce many observables

of the real Universe such as the stellar-mass halo-mass relation. A follow-up

project could apply these models to large volume simulations and thus allow

an analysis of a larger range of halo masses.

• In Section 4.8 we identify a range of observables that could be used to dis-

tinguish between ejective and preventative feedback. Follow up work could

produce mock observables and thus explore if current instruments can distin-

guish between the two models.

• Do the Auriga and Apostle galaxy formation models predict different baryon

cycles around haloes of either higher or lower mass? As demonstrated in this

thesis, MW-mass haloes are particularly complex as they are typically the tran-

sition mass between haloes with hot atmospheres and those without and the

transition between SNe dominated feedback and AGN dominated feedback.

Finally, we demonstrate that the SCF method can successfully reproduce the orbits

of point masses taken from n-body simulations of both dark matter only haloes and
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those with full hydrodynamics. A range of further developments could be applied to

this technique.

• A further natural work would be to include the further developments proposed

in this thesis, both the analytic disc and separate massive satellite models.

Do these developments improve the accuracy of point mass orbits? Can they

accurately reproduce the tidal forces experienced by an extended object found

in cosmological n-body simulations?

• We have shown in this work that an abrupt truncation can lead to visible

artefacts corresponding to the highest order terms included. Would reducing

the weighting of the higher-order terms improve the density profile’s accuracy?

• Can the SCF technique be coupled to either an idealised ‘wind tunnel’ setup

or an adaptive resolution hydrodynamical simulation to include the effects of

complex hot atmospheres surrounding galaxies?
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