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Abstract: The propagation of light through atomic vapours gives rise to a variety

of interesting effects including self-induced transparency (SIT), optical simultons and

the formation of transient trains of light pulses. In this thesis, we investigate such

effects using numerical simulations and theoretical techniques. We first study the

dynamics of SIT solitons, comparing our numerical results with analytical predictions

and previous numerical studies. We then explore the propagation of continuous wave

(CW) fields, focusing on the transient dynamics that occur during and shortly after

the fields are turned on. We show that a CW field breaks up into a train of pulses

as it propagates into a medium, but that these oscillations are dampened in the

presence of homogeneous broadening. In the absence of homogeneous broadening,

we observe that the pulses become increasingly separated as the field moves deeper

into the medium, in contrast to what was concluded in previous studies. We also

present original results in which transient pulse trains are seen to form from two CW

fields propagating through a medium of three-level V-type resonators and discuss

the mechanisms behind their formation.
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Chapter 1

Introduction

The interaction of light with matter is a rich and fascinating area of research. It

underpins a wide range of physical phenomena and is central to many applications

including lasers [1], sensors [2], metrology [3] and quantum technologies [4]. In

this work, we will use theoretical techniques and computer simulations to study

the interaction between light and the atomic gas contained in thermal vapour cells.

However, as will be explained, much of the physics that we will uncover applies to

a wide range of light-matter systems, not only the specific case of thermal vapour

experiments. In this chapter, we will introduce some important concepts and then

explain the key motivation and objectives of the research.

1.1 Important Concepts

1.1.1 Light Propagation in Thermal Vapours

Thermal vapour cells are a popular test bed for exploring light-matter interactions.

They consist of a glass cell containing an atomic vapour (typically an alkali metal)

at a warm temperature (typically between room temperature and 250◦C) and can

be used to confine atoms and light to a range of length scales ranging from the

macroscale to the nanoscale [5]. In experiments, lasers are directed at these cells to
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probe light-matter physics. Such experiments are considerably less expensive than

those involving cold (i.e. close to absolute zero) atoms yet a wide range of optical

and quantum mechanical effects can be realised with them. Such effects include

electromagnetically induced transparency (EIT) [6, 7], light storage [8] and Rydberg

physics [9–11]. They can also be used to explore nonlinear phenomena, such as self

induced transparency (SIT) [12, 13]. This requires pulsed input fields typically with

peak Rabi frequencies on the order of GHz and widths on the order of ns which

are now achievable in vapour cell experiments [14, 15]. In order to model such

nonlinear effects, one must consider the propagation of light fields (where at least

one is sufficiently strong) through the vapour cells (i.e. investigate how the state

of the fields and atoms change with distance into the cell). Typically, propagation

effects are not considered when modelling vapour cell experiments because the fields

used are often applied for too long a time or have intensities too low for nonlinear

propagation effects to become significant. In these cases, the only propagation effects

are those of Beer-Lambert absorption and diffraction.

1.1.2 SIT

SIT was first discovered by McHall and Hahn in the late 1960s [12]. It is the effect by

which a light field propagating through a medium and resonant with a transition in a

two-level system (e.g. an atomic transition) is found to propagate much further into

the medium than it usually would due to it having a special temporal and spatial

profile. This happens when the field has a sech-squared intensity profile of time and

distance and a pulse-area of 2π (the pulse area is determined by the width and peak

intensity of the pulse and will be defined in Chapter 2). Such a pulse is called an SIT

soliton. However, it is not necessary that the initial field incident upon the medium

has this exact profile. In fact, other forms of pulsed input fields (e.g. Gaussian pulses)

are found to get reshaped as the light propagates further into the medium until the

sech-squared intensity profile is obtained. If the input pulses are sufficiently large,

then multiple pulses each with (approximately) sech-squared intensity profiles are
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created. In the absence of atomic decay, the transparency is total. However, in the

presence of decay, the pulses will lose energy as they propagate and consequently

will only travel a finite distance. The transparency is created when the pulses have

this special shape since it is such that the first half of the pulse transfers the atomic

population entirely from the ground state to the excited state but this energy is

then released symmetrically back into the light field due to stimulated emission,

forming the second half of the pulse [16]. This process takes a finite amount of time

and results in the slow-light effect by which the group velocity of the SIT soliton

(i.e. the velocity at which the pulse envelope propagates through the medium) can

be significantly lower than the speed of light [17].

1.1.3 EIT

The term electromagnetically induced transparency (EIT) was first coined by Harris

et al. in 1990 [18], although related effects such as coherent population trapping

(CPT) had been known about for some time previously [19]. It is the effect by which

the absorption of a weak probe field can be significantly reduced (even to zero in

some cases) due to the application of a strong coupling field [20]. The effect occurs in

three-level systems of which there are three types: lambda, ladder and V (these will

be defined in the background theory section). In a three-level lambda system, the

transparency arises due to the quantum mechanical interference that occurs between

different excitation pathways (known as Fano interference) [21]. In ladder systems

the transparency is dominated by an effect called Autler-Townes (AT) splitting

and the Fano interference plays a much smaller role. AT splitting was discovered

by Autler and Townes in 1955 and is an AC Stark effect, by which the oscillating

electric field of the light causes a shift in the energy levels of the system [22]. In

V-systems, the EIT is almost entirely due to AT splitting [23]. It should be noted

that there is not a complete consensus on the definition of EIT. Some researchers

attribute only transparency effects that arise as a result of quantum mechanical

interference to be EIT [24], whereas others use it to refer generally to transparency
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effects that are created on one field due to the application of another field [23]. In

this thesis, we assume this latter meaning but will explain the mechanisms behind

the EIT effects when they are mentioned.

1.1.4 Simultons and Related Effects

In addition to the well known phenomena of SIT and EIT, there are many closely

related effects that can occur with different classes of input fields in two and three

level media. Such effects include optical simultons and the formation of transient

trains of soliton-like pulses.

Simultons are a phenomenon closely related to SIT. They were first studied theor-

etically by Konopnicki and Eberly in 1981 [25]. They refer to the effect by which

two solitons each resonant on separate transitions of a three-level V-system, are

found to co-propagate (i.e. follow the same trajectory) as they move through the

medium. Recently, a combined theoretical and experimental study was conducted

at Durham university which investigated the formation and propagation of optical

quasi-simultons in an atomic vapour [26]. These quasi-simultons are distinct from

the simultons of Konopnicki and Eberly in that they can form in the case when the

two transitions do not have the same oscillator strength, a condition imposed by

Konopnicki and Eberly in order to obtain analytic solutions. Quasi-simultons offer

potential applications for optical quantum information processing, due to the strong

optical nonlinearities that they may be able to produce [27].

Trains of soliton-like pulses may form when a continuous-wave (CW) field is resonant

with a two-level medium, instead of the pulsed input required for SIT. This situation

was first studied theoretically by Crisp in 1976 [28] and expanded upon by various

later studies [29–32]. These pulse trains are generally only transient phenomena,

thwarted by spontaneous decay, and occur in the time period before a CW laser

field reaches a steady state equilibrium with the medium. Similar effects can also

occur in three-level media, and we will show in Chapter 5 that simulton-like pulse
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trains can be created when CW input fields are resonant with a three-level V-system

instead of pulsed inputs.

1.2 Motivation and Objectives

There are many similarities between the atom-light effects outlined in the previous

section. However, there is much that is unclear about the underlying physics that

links them. There are also many details that have not been fully explained in

the literature and which therefore require further investigation and clarification.

SIT and related nonlinear effects once gathered considerable interest (particularly

during the 1970s) but have since declined in popularity and there have been fewer

investigations exploring them. EIT is currently more widely studied, though it is

rarely connected to the associated nonlinear phenomena. Recently, the prospect

of realising quantum information processing with atom-light systems (such as with

vapour cell technologies [27]) has made the issue of properly understanding SIT, EIT

and their related processes a particularly relevant and important topic to address.

The primary motivation for this theoretical study is to explore the connection between

these effects, aiming to elucidate and contribute to a body of work that began with

the discovery of SIT in the 1960s. We will explore these effects from the perspective

of modelling vapour cell experiments since this follows naturally from the previous

research conducted here in Durham on optical simultons in atomic vapours [26] and

may provide a theoretical framework for future experimental investigations with

vapour cells. However, the effects are applicable to a wide range of atom-light

systems. For example, SIT has been in observed in Ruby crystals [12] and optical

fibers [33] as well as in atomic vapours.

1.3 Thesis Structure

The structure of this thesis is as follows.
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• Chapter 2: We derive the Maxwell-Bloch equations which form the theor-

etical framework commonly used to study the propagation of light through

atomic media. We also review some important previous work on self-induced

transparency, optical simultons and pulse trains.

• Chapter 3: We explore the propagation of SIT solitons through a medium of

two-level resonators in the presence or absence of different broadening mechan-

isms. We compare our results to analytical predictions and previous numerical

studies.

• Chapter 4: We study the propagation of CW fields through a medium of two-

level resonators. We compare our findings with analytical models as well as

numerical studies and present some key results that appear to contradict to

those of a previous study.

• Chapter 5: We consider the propagation of two CW fields through a medium

of homogeneously broadened three-level resonators. We present some original

results and examine the mechanisms underpinning the effects.

• Chapter 6: We discuss our conclusions and suggest possible future work.



Chapter 2

Background Theory

2.1 Introduction

In order to simulate the propagation of light through atomic vapour cells, we need

theoretical models for both the light fields and the ensemble of atoms. In general,

both obey the laws of quantum mechanics and should be treated quantum mechan-

ically. However, in this thesis we will only consider light fields that are sufficiently

intense such that they contain a very large number of photons and can be described

with classical electromagnetism theory. The atomic medium, however, must be de-

scribed in a quantum mechanical framework. Together, these two models comprise

a semi-classical approximation of light-matter interaction [34].

2.2 Light-Matter Interactions

2.2.1 The Atomic System

In this thesis, we will consider the propagation of light through a medium of isotop-

ically pure 85Rb atoms. This system was chosen since it was the one used for the

previous research on optical quasisimultons that formed the starting point for this

work [26]. However, as was explained in Chapter 1, the physics that will be explored
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is not limited to this particular system. We consider transitions between the 5S and

Figure 2.1: 3-state model of 85Rb in which we entirely neglect the hyperfine
structure. The probe beam is resonant with |1⟩ and |2⟩ and has angular frequency
ωp. The coupling beam is resonant with |1⟩ and |3⟩ and has angular frequency ωc.
Γ2 and Γ3 are the spontaneous decay rates from |2⟩ and |3⟩ respectively. Decay from
|3⟩ to |2⟩ is forbidden and there are no decays out of the system.

5P states. 85Rb is an alkali metal and therefore contains only one outer electron.

The total electron angular momentum operator is given by

J = L + S, (2.2.1)

where L is the electron’s orbital angular momentum operator and S is the electron’s

spin angular momentum operator. The quantum numbers j, l and s are defined in

terms of the eigenvalues of the operators J2, L2 and S2 which represent the magnitude

of the angular momentum. For simultaneous eigenstates of J2, L2 and S2, it can be

shown that these quantum numbers must satisfy |l − s| ≤ j ≤ l + s where j must

be either an integer or half-integer, l is a positive integer or zero and s = 1/2 for a

single electron. For the ground state (5S), l = 0 and so the only allowed value of

j is j = 1/2. For the excited state (5P), l = 1 and so there are two allowed values

of j: j = 1/2 or j = 3/2. Hence there are three states and we have the system of

states shown in Figure 2.1. For each state, there are 2j + 1 magnetic substates. In
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the absence of external magnetic fields, these substates are all degenerate. These

magnetic substates, denoted by the quantum number mj, are eigenvalues of the

operator Jz and have eigenvalues mjℏ. The mj quantum numbers must vary in

integer steps and satisfy −j ≤ mj ≤ j. Hence we have

j = 1/2 : mj = −1/2, 1/2,

j = 3/2 : mj = −3/2, −1/2, 1/2, 3/2.

This is known as the fine-structure model [34]. We neglect the hyperfine structure,

which takes account of the coupling of J with the nuclear angular momentum I. We

do this to reduce the complexity of the computations to be performed. We will dis-

cuss the validity of this assumption later on. As shown in Figure 2.1, states |2⟩ and

|3⟩ decay spontaneously to the ground state |1⟩. These decays result in a homogen-

eous (i.e. the same for all atoms) broadening of the atomic absorption/transmission

line [34]. Decay from state |3⟩ to state |2⟩ is forbidden.

2.2.2 The Transitions

We will consider the interaction of two laser fields with the atomic system shown in

Figure 2.1. There will be a probe field resonant with the transition between states

|1⟩ and |2⟩ (known as the D1 transition) and a coupling field resonant with the

transition between states |1⟩ and |3⟩ (known as the D2 transition). We will assume

that both fields are polarised along the z-axis and so will only induce π-transitions

(where mJ → m′
J = mJ) [34]. In reality, decays would occur between any of the

upper substates to any of the lower substates (e.g. from m′
J = 1/2 → mJ = −1/2).

However, this would lead to an equal population between the ground state substates

and so the system can be modelled with no loss of generality by considering that

all population is in the mJ = 1/2 substate and that transitions occur only between

the mJ = 1/2 and the m′
J = 1/2 substates (with all decays back to the mJ = 1/2

substate). It should be stressed that this constitutes a closed system. The electric
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dipole operator d is given by

d = −er, (2.2.2)

where e is the absolute value of the electric charge and we assume that the mass of

the nucleus is infinite so that r represents the position of the electron relative to its

centre. The dipole matrix elements of the transitions are of the form

DJJ
′ = ⟨5SJ , mJ | d |5PJ

′ , m′
J⟩ = − ⟨5SJ , mJ | er |5PJ

′ , m′
J⟩ . (2.2.3)

where J is the total angular momentum quantum number of the ground state and

J ′ is the total angular momentum quantum number of the excited state. For the D1

and D2 transitions considered here, J = 1/2, J ′ = 1/2 or 3/2 and mJ = m′
J = 1/2

and so (2.2.3) becomes

D1/2J
′ = − ⟨5S1/2, mJ = 1/2| er |5PJ

′ , m′
J = 1/2⟩ . (2.2.4)

Because the light is z-polarised, we need only consider the z-component of D1/2J
′

since only this component will contribute to the dot product in (2.2.27). We denote

this component by D1/2J
′ which is given by

D1/2J
′ = − ⟨5S1/2, mJ = 1/2| ez |5PJ

′ , m′
J = 1/2⟩ . (2.2.5)

We can express r in standard components (the spherical basis) as [35]

r = û+1r1,+1 + û0r1,0 + û−1r1,−1, (2.2.6)

where the unit vectors in the spherical basis are related to the Cartesian unit vectors

by

û+1 = −
√

1
2(x̂ + iŷ), (2.2.7)

û−1 = +
√

1
2(x̂ − iŷ), (2.2.8)

û0 = ẑ, (2.2.9)
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and we also have that

r1,0 = z, (2.2.10)

r1,±1 = ∓
√

1
2(x ± iy). (2.2.11)

This means that (2.2.5) also represents the component of D1/2J
′ in the û0 direction

in the spherical basis. This means that we can make use of the Wigner-Eckart

theorem [36]

⟨JM | Tk,p |J ′, M ′⟩ = ⟨J ′M ′kp|JM⟩ ⟨J | |T (k)| |J ′⟩ , (2.2.12)

where Tk,p is the p-th component of the spherical tensor operator T (k) with rank

k and J , M , J ′ and M ′ are quantum numbers. The term ⟨J ′M ′kp|JM⟩ is known

as the Clebsch-Gordan coefficient and the term ⟨J | |T (k)| |J ′⟩ is the reduced matrix

element [35]. Hence we can write

D1/2J
′ = − ⟨J ′ 1/2 1 0 |1/2 1/2⟩ ⟨5S1/2| |er| |5P1/2⟩ . (2.2.13)

The Clebsch-Gordan coefficent for each transition can be calculated or located in

tables. Changing the notation from DJJ
′ to Dij where i is the index of the initial state

and j is the index of the final state (i.e. D12 = DJ=1/2,J
′=1/2 and D13 = DJ=1/2,J

′=3/2)

we find that

D12 = − 1√
3

⟨5S1/2| |er| |5P1/2⟩ , (2.2.14)

D13 = 1√
3

⟨5S1/2| |er| |5P3/2⟩ . (2.2.15)

The reduced matrix elements have been determined to be ⟨5S1/2| |er| |5P1/2⟩ =

2.5377 × 10−29 C m and ⟨5S1/2| |er| |5P3/2⟩ = 3.58425 × 10−29 C m [37].

2.2.3 Other types of Three-level System

The atomic system that we have just described is only one of three types of three-

level system. The three types are: lambda, ladder and V. These are shown in
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Figure 2.2: The three kinds of three-level system: (a) Lambda system, (b) Ladder
system and (c) V-system. The red and blue arrows each represent light fields
that interact with the energy levels they are situated between. The wiggly arrows
represent spontaneous decays.

Figure 2.2. In a lambda system (Figure 2.2(a)), there is one upper state and two

lower states. Light fields couple the lower states to the upper state. Population

cannot decay directly between the two lower states (i.e. from |2⟩ to |1⟩). In a ladder

system (Figure 2.2(b)), there is a ground state, an intermediate state and an upper

state. One field couples the ground state to the intermediate state and a second field

couples the intermediate state to the upper state. Population cannot decay directly

from the upper state to the ground state (i.e. from |3⟩ to |1⟩). In a V-system, there

is one ground state and two upper states. Light fields couple the ground state to

each of the upper states. Population cannot decay directly between the two upper

states (i.e. from |3⟩ to |2⟩).

2.2.4 The Thermal Vapour

The state of the medium is represented by a density matrix, ρ(x, t). The density

matrix contains all of the physically important information about the state of the

atomic vapour and is a generalisation of the standard wavefunction of quantum

mechanics [38]. Its diagonal terms are called populations and represent the probab-

ility that a given state is occupied [39]. Its off-diagonal terms are called coherences

and represent the coherence between basis states [39]. The atoms in the vapour
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will have a distribution of velocities given by the Maxwell-Boltzmann distribution

function [40]

f(ux) = 1
urms

√
π

exp
{
−u2

x/u2
rms

}
, (2.2.16)

where

urms =
√

2kBT/M, (2.2.17)

and ux is the velocity of an atom along the propagation axis x, urms is the average

atomic speed, kB is Boltzmann’s constant, T is the vapour temperature and M the

atomic mass. The density matrix ρ(x, t) is an average over all velocities given by

ρ(x, t) =
∫ ∞

−∞
f(ux)ρ(x, t, ux)dux, (2.2.18)

where ρ(x, t, ux) is the density matrix for the atoms moving with velocity ux [40].

Atoms moving at different velocities are subjected to different frequencies of light

due to the Doppler effect and so this averaging is often called Doppler averaging.

This effect results in a broadening of the atomic absorption/transmission line and

is an inhomogeneous process as the amount of broadening for different atoms is

different since they are all moving at different speeds [34].

2.2.5 Deriving the Hamiltonian

The energy levels of the unperturbed system can be defined in terms of angular

frequencies as E1 = ℏω1, E2 = ℏω2 and E3 = ℏω3. Therefore the Hamiltonian of the

unperturbed system can be written as

H0 = ℏω1 |1⟩ ⟨1| + ℏω2 |2⟩ ⟨2| + ℏω3 |3⟩ ⟨3| . (2.2.19)

When the fields are switched on, there will be a shift in the energy levels of the system

due to the interaction between the fields and the atoms. The change this induces to

the system Hamiltonian is described by the interaction Hamiltonian, HI [38]. Each
85Rb atom has one outer electron and so the interaction Hamiltonian is given by [34]
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H′ = er · E, (2.2.20)

where e is the absolute value of the electron charge, r is the position vector of the

electron relative to the centre of the nucleus (its mass assumed to be infinite) and

E is the electric field vector. The total Hamiltonian is given by

H = H0 + HI . (2.2.21)

In general, E = E(r, t), however we will be concerned with fields with wavelengths

of ∼ 800 nm which is much larger than size of the Rb atoms which have radii of

∼ 3Å [41]. Therefore we can assume that the fields are constant over the size of the

atoms so that E = E(t). This is known as the electric dipole approximation [42].

With this approximation, we can write the electric field as

E(t) = 1
2Epe−iωptϵ̂p + 1

2Ece
−iωctϵ̂c + c.c., (2.2.22)

where Ep/c are the constant amplitudes, ϵ̂p/c are the polarisation vectors and c.c.

represents the complex conjugate of the first two terms. Hence the interaction

Hamiltonian is

HI = 1
2er · ϵ̂pEpe−iωpt + 1

2er · ϵ̂cEce
−iωct + c.c. . (2.2.23)

In the basis of the state vectors |1⟩, |2⟩, |3⟩, (2.2.23) becomes

HI = ℏΩ12
p

2 e−iωpt |1⟩ ⟨2| + ℏΩ21
p

2 e−iωpt |2⟩ ⟨1|

+ ℏΩ13
c

2 e−iωct |1⟩ ⟨3| + ℏΩ31
c

2 e−iωct |3⟩ ⟨1| + h.c., (2.2.24)

where

Ωmn
p = eEp

ℏ
⟨m| r · ϵ̂ |n⟩ , (2.2.25)

Ωmn
c = eEc

ℏ
⟨m| r · ϵ̂ |n⟩ , (2.2.26)
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and h.c. represents the hermitian conjugate of the preceding terms. From (2.2.25),

(2.2.26) and (2.2.2) it can be seen that Ωp/c can be written in terms of the electric

dipole operator

Ωp/c =
d · Ep/c

ℏ
. (2.2.27)

We note that (2.2.24) does not contain any diagonal terms since all matrix elements

of the form ⟨n| r · ϵ̂ |n⟩ are zero by parity. This must be true since the dipole operator

has odd parity and the initial and final states must have the same parity (since they

are the same state) and so the total integrand must have odd parity and its integral

over all space is zero [43]. The matrix elements ⟨2| r · ϵ̂ |3⟩ and ⟨3| r · ϵ̂ |2⟩ are also

zero since states |2⟩ and |3⟩ must have the same parity given that they must each

have the opposite parity to state |1⟩. We now apply the unitary operator U to the

Hamiltonian (known as a rotating frame transformation [44])

U = eiω1t |1⟩ ⟨1| + ei(ω1+ωp)t |2⟩ ⟨2| + ei(ω1+ωc)t |3⟩ ⟨3| . (2.2.28)

The density matrix and Hamiltonian become [45]

ρ′ = UρU †, (2.2.29)

H′ = UHU † − iℏU∂tU †, (2.2.30)

where H is the total Hamiltonian, H = H0 + HI , the dagger symbol † represents

the Hermitian conjugate, ∂t is a time derivative and the prime symbol ′ signifies

quantities in the rotating frame. We find that

H′ = ℏ
2(Ω21∗

p + Ω12
p e−2iωpt) |1⟩ ⟨2| + ℏ

2(Ω31∗
c + Ω13

c e−2iωct) |1⟩ ⟨3| + h.c.

+
[
2ω2 − 2(ω1 + ωp)

]
|2⟩ ⟨2| +

[
2ω3 − 2(ω1 + ωc)

]
|3⟩ ⟨3| , (2.2.31)

where h.c. denotes the Hermitian conjugate of the first line. We now make the

rotating wave approximation [44]. This approximation neglects the fast-oscillation

terms, which in this case are those with frequencies 2ωp and 2ωc. This approximation

is valid so long as the fields are close to the resonance frequency [44]. With this
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approximation, (2.2.31) becomes

H′ = −ℏ∆p |2⟩ ⟨2| − ℏ∆c |3⟩ ⟨3| +
[ℏ

2Ω21∗
p |1⟩ ⟨2| + ℏ

2Ω31∗
c |1⟩ ⟨3| + h.c.

]
, (2.2.32)

where h.c. denotes the Hermitian conjugate of the terms within the square brackets.

2.2.6 Deriving the OBEs

We will now derive the optical Bloch equations (OBEs) that describe the time-

dependent dynamics of the atomic system being driven by the fields. We start from

the Lindblad master equation [46]

∂ρ′

∂t
= − i

ℏ
[
H′, ρ′

]
+
∑

i

L(ρ′, σi), (2.2.33)

where the prime symbols (′) represent quantities in the rotating reference frame and

L(ρ′, σi) is the Lindblad superoperator given by

L(ρ′, σi) = 1
2
∑

i

σiρ
′σ†

i − (σ†
i σiρ

′ + σ†
i σiρ

′), (2.2.34)

where the summation is over the number of decay pathways and the σi are collapse

operators. For the system shown in Figure 2.1 there are two decay pathways and

hence two collapse operators given by

σ2 =
√

Γ2 |1⟩ ⟨2| , (2.2.35)

σ3 =
√

Γ3 |1⟩ ⟨3| , (2.2.36)

where the Γ’s are the spontaneous decay rates of the respective levels. Plugging the

Hamiltonian (2.2.32) and the Lindblad superoperator with the two collapse operators

into the master equation (2.2.33) (and setting Ωp ≡ Ωp
21, Ωc ≡ Ωc

31) we can derive

the OBEs for the system

∂tρ
′
11 = Γ2ρ

′
22 + Γ3ρ

′
33 + i

2
[
Ωpρ′

12 − Ω∗
pρ′

21 + Ωcρ
′
13 − Ω∗

cρ
′
31

]
, (2.2.37)

∂tρ
′
22 = −Γ2ρ

′
22 − i

2
[
Ωpρ′

12 − Ω∗
pρ′

21

]
, (2.2.38)
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∂tρ
′
33 = −Γ3ρ

′
33 − i

2
[
Ωcρ

′
13 − Ω∗

cρ
′
31

]
, (2.2.39)

∂tρ
′
12 = −Γ2

2 ρ′
12 − i∆pρ′

12 + i
2
[
Ω∗

p(ρ′
11 − ρ′

22) − Ω∗
cρ

′
32

]
, (2.2.40)

∂tρ
′
13 = −Γ3

2 ρ′
13 − i∆cρ

′
13 + i

2
[
Ω∗

c(ρ′
11 − ρ′

33) − Ω∗
pρ′

23

]
, (2.2.41)

∂tρ
′
23 = −Γ2

2 ρ′
23 − Γ3

2 ρ′
23 + i(∆p − ∆c)ρ′

23 − i
2
[
Ωpρ′

13 − Ω∗
cρ

′
21

]
, (2.2.42)

where ∆p and ∆c are the detunings of the probe and coupling lasers, respectively, and

the other symbols are defined as previously stated. The density matrix is Hermitian

so the off-diagonal elements are related by ρ′
ij = ρ′

ji
∗ and we do not need separate

equations for ρ′
21, ρ′

31 and ρ′
32. The populations are also subject to the constraint

ρ′
11 + ρ′

22 + ρ′
33 = 1 and hence the six OBEs can in fact be reduced to a system of

five equations.

2.2.7 Deriving the Propagation Equation

In addition to the optical Bloch equations that describe the state of the atoms,

we also need an equation to describe the propagation of light through the atomic

vapour. This is called the propagation equation and we will now derive it from first

principles.

We first consider the set of Maxwell equations for a medium

∇ × H = j + ∂D
∂t

, (2.2.43)

∇ × E = −∂B
∂t

, (2.2.44)

∇ · D = ρ, (2.2.45)

∇ · B = 0, (2.2.46)

where E is the electric field, H is the magnetic field, D is the electric displacement,

B is the magnetic flux, j is the free current density and ρ is the free charge density.

We also have the relations

D = ε0E + P, (2.2.47)
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B = µ0H + M, (2.2.48)

where ε0 is the permittivity of free space, P is the polarisation density, µ0 is the

permeability of free space and M is the magnetisation. In this work, we will be

considering the propagation of light through vapours of alkali metals. Such a medium

is non-magnetic and we will assume that there are no ionised atoms or other free

charges or currents. Hence we can set ρ, j and M to zero and the set of Maxwell’s

equations simplifies to

∇ × B = µ0
∂D
∂t

, (2.2.49)

∇ × E = −∂B
∂t

, (2.2.50)

∇ · D = 0, (2.2.51)

∇ · B = 0. (2.2.52)

Taking the curl of (2.2.50) and making use of (2.2.49) we find

∇ × (∇ × E) = ∇ ×
(

−∂B
∂t

)
= −µ0

∂2D
∂t2 . (2.2.53)

Using the vector identity

∇ × (∇ × E) = ∇(∇ · E) − ∇2E, (2.2.54)

we obtain

∇(∇ · E) − ∇2E = −µ0
∂2D
∂t2 . (2.2.55)

From (2.2.47) it can be seen that ∇ · E = 0 if ∇ · P = 0. We will assume that

the variation of the polarisation density in the plane transverse to propagation is

negligible such that ∇ · P ≈ 0. Hence we have

∇2E = µ0
∂2D
∂t2 . (2.2.56)

Substituting in (2.2.47) we obtain

∇2E − 1
c2

∂2E
∂t2 = µ0

∂2P
∂t2 . (2.2.57)
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In the simulations in this thesis, there will be at most two fields (probe and coupling).

We will assume that all fields are polarised along the z-axis and propagate in the

x-direction. Therefore we are interested in solutions to (2.2.57) of the form

E = 1
2 ẑEpe−iωp(t−x/c) + 1

2 ẑEce
−iωc(t−x/c) + c.c., (2.2.58)

P = 1
2 ẑPpe−iωp(t−x/c) + 1

2 ẑPce
−iωc(t−x/c) + c.c., (2.2.59)

where Ep/c and Pp/c are the electric and polarisation amplitudes of the probe/coupling

fields (which are in general complex quantities), ωp/c are the carrier wave angular

frequencies of the probe/coupling fields and c.c. represents the complex conjugate of

the preceding terms of the equation. Substituting (2.2.58) and (2.2.59) into (2.2.57)

we obtain

[
(∂xx + 2ikα∂x − k2

α) + ∂yy + ∂zz − 1
c2 (∂tt − 2iωα∂t − ω2

α)
]

Eα =

= µ0(∂tt − 2iωα∂t − ω2
α)Pα, (2.2.60)

where kα = ωα

c
is a wavenumber and α = p/c indicates the probe/coupling field.

We will now make an assumption known as the slowly-varying envelope approx-

imation [47]. The slowly-varying envelope approximation assumes that the carrier

wave part of E and P varies much more rapidly with time and distance than the

amplitudes E and P . We will be considering fields with wavelengths of ∼ 800 nm and

optical periods of ∼ 3 fs. We will consider propagation distances of the order of mil-

limetres and temporal variations of the order of nanoseconds so this approximation

is well justified. Specifically, we assume that

|∂xxE| ≪ k|∂xE|, (2.2.61)

|∂ttE| ≪ ω|∂tE|, (2.2.62)

|∂ttP| ≪ ω|∂tP|, (2.2.63)

|∂tP| ≪ ω|P|. (2.2.64)

We also make use of the vacuum dispersion relation, ω = ck. This relation is valid
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since, although the medium is not a vacuum, it is a gas and so has a refractive index

very close to 1. With these assumptions, (2.2.60) simplifies to[
(2ikα∂x) + ∂yy + ∂zz + 2ikα

c
∂t

]
Eα = −µ0ω

2
αPα. (2.2.65)

This is the propagation equation. It can be solved to find the electric field amplitude,

Eα, given a polarisation amplitude Pα and the relevant boundary conditions. By

making a coordinate transformation using the relations

x′ = x, (2.2.66)

t′ = t − x

c
, (2.2.67)

(2.2.65) becomes

2ikα

∂Eα

∂x′ + ∂2Eα

∂y2 + ∂2Eα

∂z2 = −µ0ω
2
αPα. (2.2.68)

This transformation is useful since it reduces the dependence of the differential

equation to three variables instead of four. For the simulations in this thesis, we

will make the assumption that the fields are plane waves which means that (2.2.68)

contains only a derivative with respect to x′. This makes the numerical computations

much simpler but is still an accurate model for many experiments in which the

Rayleigh lengths are much larger than the propagation distances.

2.2.8 Maxwell-Bloch Model

We now have two models. The optical Bloch equations which describe the state

of the atoms exposed to a given set of fields and the propagation equation which

describes the state of the fields in a given medium polarisation. However, the two

models are connected: the fields change the state of the atomic medium as they

travel through it which changes the medium polarisation and the fields themselves

are then changed in response to the new polarisation. Therefore, the optical Bloch

equations and the propagation equation must be solved self-consistently. Together,

they comprise a model called the Maxwell-Bloch model. The connection is through
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the medium polarisation, P. The polarisation of a medium is the total electric dipole

moment per unit volume [48]. It can be expressed as the expectation value of the

dipole operator d = −er multiplied by the number density N [38]

P(r, t) = N ⟨d⟩. (2.2.69)

The expectation value of the dipole operator can be written in the form [49]

⟨d⟩ = Tr [ρd] , (2.2.70)

where ρ is the density matrix. Since the light is polarised along the z-axis, all the

matrix elements of the dipole operator must be directed along the z-axis and the

diagonal elements are all zero as discussed earlier. Hence we must have that

⟨d⟩ = (D12ρ21 + D21ρ12 + D13ρ31 + D31ρ13)ẑ. (2.2.71)

where D12 and D13 are the dipole matrix elements defined by (2.2.14) and (2.2.15).

The polarisation can also be represented in the form of (2.2.59) and so

P(r, t) = N (D12ρ21 + D13ρ31)ẑ + c.c.

= 1
2Ppe−iωp(t−x/c)ẑ + 1

2Pce
−iωc(t−x/c)ẑ + c.c..

(2.2.72)

The density matrix elements in the lab frame are related to those in the rotating

frame by ρ′
21 = ρ21e

−iωpt and ρ′
31 = ρ31e

−iωct and hence

Pp(z, t) = 2N D12ρ
′
21, (2.2.73)

Pc(z, t) = 2N D13ρ
′
31. (2.2.74)

We can then substitute these expressions into (2.2.68). The propagation of the

light through the atomic vapour can be determined by solving the propagation

equation (2.2.68) and the optical Bloch equations (2.2.37 - 2.2.42) numerically. For

1D propagation propagation of the probe field, we have an equation of the form

∂Ep

∂x′ = i
1

cϵ0
ωpN D12ρ

′
21. (2.2.75)
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We can also write the propagation equation in terms of the Rabi frequency rather

than the electric field amplitude and using 2.2.25 we obtain

∂Ωp

∂x′ = iµpρ′
21, (2.2.76)

where µp is propagation coefficient given by

µp = ωpN
ℏϵ0c

D2
12. (2.2.77)

Of course, an analogous equation can be derived for the coupling field.

2.3 SIT Solitons and Simultons

2.3.1 SIT Solitons

Self-Induced Transparency (SIT) is a phenomena first described by McHall and

Hahn in the late 1960s [12]. They studied the equations governing the propagation

of light pulses through inhomogeneously broadened two-level systems with no decay

(homogeneous broadening). They found that the propagation of the pulses had a

large dependence on a property called the pulse area, θ. This is defined as [12]

θ(x) =
∫ ∞

−∞
Ω(x, t) dt, (2.3.1)

where Ω(x, t) is the Rabi frequency given by

Ω(x, t) = D12E(x, t)
ℏ

, (2.3.2)

and D12 is the transition dipole moment for the transition between the two levels.

They found that θ obeyed an equation called the area theorem given by [12]

∂θ

∂x
= −α

2 sin θ, (2.3.3)

where α is the linear absorption coefficient equal to the reciprocal of the Beer’s

absorption length for the medium. For the case of an atomic vapour in the absence
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of inhomogeneous broadening this is given by

α = 8π2ϵ0µ, (2.3.4)

where ϵ0 is the permittivity of free space and µ is the propagation coefficient defined

by (2.2.77). The solution of this equation which satisfies θ = θ0 at x = 0 is [12]

tan(θ/2) = tan(θ0/2) exp[−(α/2)x]. (2.3.5)

It can be seen from equation (2.3.5) that as x → ∞, tan(θ/2) → 0 and so θ tends to

the multiple of 2π closest to θ0. For example, if θ0 = 1.2π then the pulse area will

tend to 2π. This scenario is shown in Figure 2.3. This means that input pulses with

a sufficient width and peak intensity such that they have an initial area larger than

π will tend towards a stable shape with constant area as they travel further into

the medium. In contrast, pulses with an initial area of less than π will disappear

since their area will tend to zero as they travel further into the medium. This case

is shown in Figure 2.4. Pulses with an initial area in the range 0.5π to 1.5π are

reshaped into a single pulse with an area of 2π and a sech Rabi frequency profile of

the form

Ω2π(x, t) = 2
τs

sech
(

t − x/vg

τs

)
, (2.3.6)

where τs is the sech-width of the pulse and vg is its group velocity. τs is related to

the full-width half-max (τw) of the pulse by τs = 0.379663τw. The group velocity

(i.e. the velocity at which the pulse envelope propagates through the medium), is

given by [50]

vg = 2c

2 + µcτ 2 , (2.3.7)

where c is the speed of light, µ is the propagation coefficient as given by (2.2.77) and

τ = 2/Ω0 where Ω0 is the peak Rabi frequency of the pulse.

The pulses described by (2.3.6) are known as SIT solitons. Solitons, or solitary

waves, are terms used across maths and physics to describe wave packets (pulses)

that maintain their shapes as they propagate [51]. The pulse profile given by (2.3.6)
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is unique because it is such that the first half of the pulse transfers the atomic

population entirely from the ground state to the excited state but the second half

of the pulse then causes stimulated emission that transfers the atomic population

entirely back to the ground state again [52]. By this mechanism, the soliton preserves

its shape as it propagates and it leaves the medium in an entirely unexcited state

at it each point it passes through. This process takes a finite amount of time and

results in the slow-light effect by which the group velocity of the SIT soliton is

significantly lower than the speed of light. For the simulation shown in Figure 2.3,

the soliton that forms has a group velocity of 3.2 × 104 m/s which is ∼ 0.01% of

the speed of light. However, it is possible to produce solitons with group velocities

much lower than this in SIT experiments and speeds as low as 300 m/s have been

recently achieved [17].

Input pulses with an area larger than 3π break up into multiple pulses. An example

of the propagation of a 4.5π pulse is shown in Figure 2.5. Each of the pulses that

form have an area of 2π in the sense that, when the pulses are well separated, an

integral of the Rabi frequency over each pulse will give a value of 2π. Once the pulses

are well separated, each pulse is well approximated by a sech Rabi frequency profile

of the form of (2.3.6). This break up occurs because, as the initial pulse propagates

through the medium, both absorption and stimulated emission occur which lead to

reshaping of the pulse and result in the formation of N solitons, where N is the

integer multiple of 2π closest to the input pulse area [52].

After the initial paper on SIT by McHall and Hahn, the theory was further studied

by various other authors. In particular, it was found that the Maxwell-Bloch equa-

tions for a 2-level resonator in the presence of inhomogeneous broadening can be

solved enitrely analytically by means of the inverse scattering transform [53]. This

is a mathematical technique for solving nonlinear partial differential equations first

developed by Gardner et al. in the context of solving the Korteweg-deVries equa-

tion [54]. The Kortweg-deVries equation describes the behaviour of small amplitude

shallow water waves [54]. Indeed the SIT solitons discovered by McHall and Hahn
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have been found to be closely related to the soliton solutions of the Kortweg-deVries

equation [52, 53, 55].
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Figure 2.3: (a) The propagation of a pulse with an initially Gaussian profile and
an input area of 1.2 π. The intensity is normalised to the peak input intensity, I0
= 0.39 kW cm−2. (b) The pulse area (as defined by (2.3.1)) divided by π. The
field is resonant with the D1 transition in 85Rb and the temperature is 220◦C. The
simulation does not include homogeneous or inhomogeneous broadening
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Figure 2.4: (a) The propagation of a pulse with an initially Gaussian profile and
an input area of 0.9 π. The intensity is normalised to the peak input intensity, I0
= 0.038 kW cm−2. (b) The pulse area (as defined by (2.3.1)) divided by π. The
field is resonant with the D1 transition in 85Rb and the temperature is 220◦C. The
simulation does not include homogeneous or inhomogeneous broadening
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Figure 2.5: (a) The propagation of a pulse with an initially Gaussian profile and
an input area of 4.5 π. The intensity is normalised to the peak input intensity, I0
= 0.47 kW cm−2. (b) The pulse area (as defined by (2.3.1)) divided by π. The
field is resonant with the D1 transition in 85Rb and the temperature is 220◦C. The
simulation does not include homogeneous or inhomogeneous broadening.
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2.3.2 Simultons

Related to the phenomenon of SIT is that of simultons. They are a two-field effect and

occur in 3-level V-systems. The term simulton was first coined by Konopnicki and

Eberly in 1981 to describe the effect by which two solitons, each resonant on separate

transitions of a 3-level V-system, are found to follow simultaneous trajectories (co-

propagate) as they move through a medium of resonators [25]. They were discvored

from the analytic solutions that Konopnicki and Eberly obtained for the 3-level

Maxwell-Bloch equations of a V-system with two resonant fields provided that both

transitions had the same oscillator strength. The oscilltor strength β is given by [25]

β = d2
bωb

d2
aωa

, (2.3.8)

where da/b is the transition dipole moment of transition a/b and ωa/b is the resonant

angular frequency of transition a/b. This requirement on the oscillator strength

was necessary in order to obtain the analytic solutions however it is a difficult

condition to fulfill in an experiment. Nevertheless, simultons have been observed

in experiments with nonlinear crystals [56]. More recently, a group at Durham

university found experimental results that appeared to show the onset of simulton

formation in a Rubidium atomic vapour even though (2.3.8) was not satisfied [26].

This was then followed up by a theoretical investigation which showed that in fact

simulton-like effects can occur in a three-level V system without the requirement that

the transitions have identical oscillator strengths and for situations in which there

are spontaneous decays and other broadening processes [26]. These were termed

optical quasi-simultons.

Figure 2.6 shows a simulation with identical parameters to one shown in reference [26].

It shows the propagation of two light fields through a medium of 85Rb atoms. Homo-

geneous broadening is included but inhomogeneous broadening is neglected (though

the effect is not restricted to this condition as is explained in reference [26] and we

do this only to reduce the computation time). The system is a three-level V-system
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identical to that shown in Figure 2.1. The probe field is resonant with the D1 trans-

ition and the coupling field is resonant with the D2 transition. The probe field is

continuous wave (CW) with a very weak intensity of 10 µW/cm2. At t = −2 ns, the

probe is in a steady state with the atomic medium (i.e. it is as though it has been

left on for a sufficient time such that the terms with time derivatives in the optical

Bloch equations (2.2.37-2.2.42) are all zero). The coupling field is a Gaussian pulse

with a peak intensity of 1 kW/cm2 and a full-width half-max (FWHM) of 0.8 ns,

which reaches a peak intensity at t = 0 ns. In the absence of the strong coupling

pulse, the weak probe field would be absorbed very rapidly in accordance with Beer’s

law [57]. However, in the presence of the coupling field, a different dynamics occurs.

It can be seen in Figure 2.6(a) that the coupling field breaks up into three separate

pulses. This is because the Gaussian pulse inputted on the coupling transition has

an area of 6.5π and so it breaks up into three soliton-like pulses as it propagates

through the medium in accordance with the theory of SIT discussed in the previous

subsection. However, in this case homogeneous broadening is included which results

in the group velocity of the pulses decreasing with time once the sech-soliton-like

pulses have formed. We will investigate the effect of homogeneous broadening on SIT

pulses in Chapter 3. It can be seen in Figure 2.6(b) that three pulses also form on

the probe transition (though the middle one is very faint) which each co-propagate

with a pulse of the coupling field. These pairs of co-propagating pulses are quasi-

simultons. Figure 2.7 shows the pulse profiles of the quasi-simultons at a distance

of 25 µm into the medium. Each of the pulses have an approximately sech-squared

profile. The study in reference [26] also included calculations with the full-hyperfine

structure of the D1 and D2 transitions, and quasi-simulton formation was still found

to occur even in this more complicated model. In this thesis we restrict our study

to the closed three-level V-system shown in Figure 2.1 for simplicity and to allow

comparison with other theoretical studies. However it is likely that this model is

nevertheless sufficient to capture the essential physics of effects which will persist to

some degree in more complex systems, as was found in reference [26].
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Ogden et al. [26] attributed the mechanism that underpins the quasi-simulton phe-

nomenon to that of soliton-induced transparency (SOIT). This is a term first coined

by Kozlov and Kozlava [58, 59]. SOIT occurs when an SIT soliton on one transition

of a three-level V-system is able to induce a transparency to a weak field resonant

with the adjacent transition. Kozlov and Kozlova attributed the formation of a

sech pulse on the weak field to a kind of pulse-locking effect. This results from the

unique property of inhomogeneously broadened SIT pulses by which the strong field

coherence term (e.g. ρ13 if the SIT pulse is propagating on the 1-3 transition) associ-

ated with each of the different velocity classes oscillate in phase with one other [60].

This causes the other coherence’s (e.g. ρ23 and ρ12) across all velocity classes to also

oscillate in phase with the ρ13 terms (becoming locked) and hence an SIT pulse is

formed on the weak field. The effect is the same in the absence of inhomogeneous

broadening except there is only one velocity class in this case.
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Figure 2.6: The formation of quasi-simultons in a three-level V-model of 85Rb at a
temperature of 220◦C. The input coupling field is a Gaussian pulse with a full-width
half-max of 0.8 ns and a peak intensity I0

c = 1 kW/cm2 (the peak occurs at t = 0
ns). The input probe field is a CW field with an intensity of I0

p = 10 µW/cm2 that
has already reached a steady state with the medium at t = −2 ns. (a) The coupling
field intensity normalised to I0

c . (b) The probe field intensity normalised to I0
p.
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Figure 2.7: The pulse profiles of the quasi-simultons shown in Figure 2.6 at a
distance of 25 µm. (a) The coupling field intensity normalised to the peak intensity
of the Gaussian input pulse, I0

c = 1 kW/cm2. (b) The probe field intensity normalised
to the input CW field intensity of the probe field, I0

p = 10 µW/cm2.
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2.4 The Jacobian Elliptic Functions

We will later explore the physics of pulse train formation in two and three level media.

As we will show, such pulse trains can often be approximated by waves described in

terms of Jacobian elliptic functions. We will now explain how these functions are

defined, their properties and their relation to the sech-solitons considered previously.

The Jacobian elliptic functions are a set of three functions: sn (snoidal), dn (dnoidal)

and cn (cnoidal), that are defined as inverses of the incomplete elliptical integral of

the first kind, F . This is defined as [61]

u(y1, k) ≡
∫ y1

0

dt√
(1 − t2)(1 − k2t2)

=
∫ ϕ

0

dθ√
1 − k2sin2θ

= F (ϕ, k), (2.4.1)

where the parameter k is called the modulus and is defined in the range 0 ≤ k ≤ 1.

The elliptic functions are then defined by [61]

sn(u, k) = sin ϕ = y1, (2.4.2)

cn(u, k) =
√

1 − y2
1 = cos ϕ, (2.4.3)

dn(u, k) =
√

1 − k2y2
1 =

√
1 − k2sin2ϕ . (2.4.4)

These functions have both a real and an imaginary period and so are described as

being doubly-periodic [61]. However, the cases that we will consider involve only

real values of u. The functions describe stationary waves which are infinite in extent

(i.e. have no start or end). It has been shown that nonlinear optical waves described

in terms of these functions can exist, for example in a nonlinear reflection grating [62].

We will focus on the dn function since this will turn out to have the greatest relevance

to the physics of pulse train formation from CW input fields.

Figure 2.10 shows the dn function for real values of u in the range -50 to 50 and

values of k in the range 0.5 to 1. It can be seen that the period of the dn function

increases with k. The period diverges as k approaches unity and the dn function

tends toward the sech function. This can be seen clearly in Figure 2.9 which shows

the profile of the dn function for values of k very close to unity: the pulses become
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more separated and are shaped more like sech pulses as k increases. In the limit

k → 1, the dn function becomes a single sech function (or in a way a series of sech

functions that are infinitely separated) [63]. It can also be seen from Figure 2.10 that

as k increases, the contrast between the maxima and minima increases. We show

only values of k in the range 0.5 to 1 to make the figure easier to interpret, however

the same trends continue between k = 0 and k = 0.5. At k = 0, the contrast is zero

and the function is a constant value of 1.

Figure 2.8: The Jacobi dn function for real values of u in the range -50 to 50 and
values of k in the range 0.5 to 1.

Figure 2.10 shows the cn function for real values of η in the range -50 to 50 and

values of k in the range 0 to 1. In contrast to the dn function, the cn function

oscillates between -1 and 1 for all values of k. As k increases, the period increases.

In the limit that k → 1, the cn function becomes the sech function as was the case

for the dn function [63]. In the limit that k → 0, the cn function becomes the cosine

function [63].
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Figure 2.9: The dn function for k values approaching 1.

It was shown by Crisp in 1969 that solutions of the Maxwell-Bloch equations exist

that can be defined in terms of these elliptic functions [50]. These solutions, in terms

of the Rabi frequency Ω, are given by

Ω(x, t) = Ω0dn(η, k), (2.4.5)

Ω(x, t) = Ω0cn(η, k), (2.4.6)

where

η = (t − x/v)/τ. (2.4.7)

v and τ are defined by

1
v

= 1
c

+ µτ 2

2k2 , (2.4.8)

τ = 2
Ω0

, (2.4.9)

where c is the speed of light and µ is the propagation coefficient defined by 2.2.77.
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Figure 2.10: The Jacobi cn function for real values of u in the range -50 to 50 and
values of k in the range 0 to 1.

(2.4.8) determines the group velocity v of a dnoidal wave with the parameters of τ

and k propagating in a medium in which inhomogeneous broadening can be neglected.

If inhomogeneous broadening is included, the group velocity is given by [50]

1
v

= 1
c

+ µτ 2

2

∫ ∞

−∞

g(∆)d∆
[(k2 − ∆2τ 2)2 + 4∆2τ 2]1/2 , (2.4.10)

where c is the speed of light, µ is the propagation constant defined by (2.2.77), τ is

defined by (2.4.9), k is the elliptic modulus, ∆ is the the detuning of the field and

g(∆) is the Maxwell-Boltzmann distribution in terms of detuning given by

g(∆) ≡ (c/ω)f(−c∆/ω), (2.4.11)

where ω is the angular frequency of the light and f is the Maxwell-Boltzmann

distribution function defined by (2.2.16).

In the limit that k → 1, (2.4.8) and (2.4.9) tend to the hyperbolic secant solution
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described in the previous section: i.e.

Ω0dn(η, k) → Ω0 sech(η), (2.4.12)

Ω0cn(η, k) → Ω0 sech(η), (2.4.13)

as

k → 1.



Chapter 3

SIT Solitons

In this chapter, we will investigate the propagation of SIT solitons through a medium

of two-level resonators. Having explained the key features of SIT in the background

theory section, we will now compare the properties of the SIT pulses seen in numerical

simulations with analytical predictions. We aim to consolidate and build upon the

previous research. In particular, we will compare the speeds and trajectories of the

pulses in the numerical results with those of theoretical predictions. We will first

consider the case of a system without homogeneous broadening as the analytical

theory is well known and this will allow us to check that our program is working

properly and the system is well understood. We will then explore SIT in systems in

which spontaneous decay (homogeneous broadening) is included and see whether the

analytical theory describing SIT in systems without homogeneous broadening can be

extended to include it. We will simulate the propagation of a sech-solitons through

a medium of 85Rb atoms, resonant with the D1 transition shown in Figure 2.1, at

a temperature of 220◦C. This system and temperature was chosen since it was the

one used for the experiments and simulations on optical quasi-simultons reported in

reference [26] and, as previously explained, that research formed the starting point

for this work.



54 Chapter 3. SIT Solitons

3.1 No Homogeneous Broadening

Figure 3.1 shows the propagation of a pulse that is input with a sech-squared intensity

profile (i.e. a sech Rabi frequency profile as given by (2.3.6)), a FWHM of 1 ns and a

peak intensity of 0.9 kW/cm2 such that it has a pulse area of 2π. Because the input

field has a sech-squared intensity profile with an area of 2π, the pulse maintains a

constant shape and intensity throughout the medium as expected from the theory

of SIT explained in Chapter 2. It has been known since the initial paper on SIT by

McHall and Hahn that a sech-soliton, propagating through a medium in which both

homogeneous and inhomogeneous broadening can be neglected, will have a constant

velocity of the form [12]

v = 2c

2 + µcτ 2 , (3.1.1)

where c is the speed of light, µ is the propagation constant defined by (2.2.77) and

τ is defined by (2.4.9). Although it should be noted that McHall and Hahn used

a significantly different notation to that shown in (3.1.1). This equation can be

obtained from the equation giving the group velocity of a dnoidal wave (2.4.8) if

the parameter k is set to unity since a dnoidal wave becomes a sech pulse when

k → 1 as previously discussed. The white dotted line in Figure (3.1) shows the

theoretical trajectory of the pulse. As can be seen, it appears to agree exactly with

the numerical results. Indeed, a detailed comparison between the numerical and

theoretical field profiles at each distance reveals that the maximum absolute residual

between the analytic and numerical values for the position of the pulse peak is just

0.006 ns. This gives us confidence that our program is working correctly for the

simulations which do not include inhomogeneous broadening.

Figure 3.2 shows the propagation of exactly the same sech-soliton as in Figure 3.1

except inhomogeneous broadening (Doppler averaging) is included in the simulation.

It has also been known since the initial paper on SIT by McHall and Hahn that a

sech-soliton propagating in the presence of inhomogeneous broadening will move at
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Figure 3.1: Heatmap showing the propagation of a sech-soliton, with a FWHM
of 1 ns and a peak intensity of 0.9 kW/cm2 through a medium of 85Rb atoms at
220◦C. The field is resonant with the D1 transition, we neglect the spontaneous
decay mechanisms (homogeneous broadening) and there is no Doppler averaging
(inhomogeneous broadening). The white dotted line shows the theoretical trajectory
of the pulse.

a constant velocity of the form [12]

v = 2c

[
2 + µτ 2c

∫ ∞

−∞

g(∆)d∆
(1 + ∆2τ 2)

]−1

, (3.1.2)

where the symbols are defined as previously. Again, this can be obtained from the

velocity equation of a dnoidal wave propagating in the presence of inhomogeneous

broadening if the parameter k is set to unity (2.4.10). A detailed comparison between

the numerical and theoretical field profiles at each distance for the simulation shown

in Figure 3.2 reveals that the maximum absolute residual between the analytic and

numerical values for the position of the pulse peak is just 0.005 ns. Once again, we

have found excellent agreement between the theoretical trajectory and the numerical

calculations. This agreement gives us confidence that our program is also working

correctly for the case of inhomogeneous broadening.
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Figure 3.2: Heatmap showing the propagation of a sech-soliton through a medium
of 85Rb atoms at 220◦C. The field is resonant with the D1 transition, we neglect the
spontaneous decay mechanisms (homogeneous broadening) however we do include
Doppler averaging (inhomogeneous broadening). The white dotted line shows the
theoretical trajectory of the pulse.

3.2 Homogeneous Broadening

We now consider the more realistic case in which we include the spontaneous decay

from the excited state to the ground state. In their 1969 paper, McHall and Hahn

considered the effect of weak damping (homogeneous broadening) on the propagation

of SIT pulses by treating the effect as a small perturbation [12]. They derived an

expression for the variation of the total pulse energy with distance valid only in

the limit that the pulse was short compared to the homogeneous broadening time

(i.e. the reciprocal of the decay constant). A similar first-order perturbation analysis

was conducted by Kaup on the complete solution to the Maxwell-Bloch equations

for a two-level medium found by the inverse scattering transform and he found

that the pulse energy would vary in the same manner as predicted by McHall and

Hahn [55]. However, neither of these studies conducted any numerical simulations

of SIT solitons propagating in the presence of homogeneous broadening to test these

theories (probably in part due to the limited computing resources available at the

time). This was done much later by Alhasan, Fiutak and Miklaszewski during the
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1990s [64, 65]. In their 1992 paper, Alhasan, Fiutak and Miklaszewski found from

their simulations that the pulse area of a short input pulse (i.e. much smaller than

the homogeneous broadening time) with an input pulse area in the range π to 3π did

indeed still stabilise to an area of 2π (as predicted by the area theorem for the no

damping case) and maintained an approximately sech-squared intensity profile for a

considerable distance provided the only form of homogeneous broadening was from

spontaneous decay and there were no additional broadening mechanisms such as

from collisions [64]. Because of the energy loss from the pulse due to homogeneous

broadening, its peak intensity would decrease with distance and so the pulse width

would increase so that the area remained at a constant value of 2π. However, at

some distance the pulse would become too weak and the area would rapidly decrease

from 2π to 0π forming a 0-π pulse. 0-π pulses are pulses with an area of zero and

therefore they have electric field profiles that oscillate about zero [66]. If collisional

broadening was included, the pulse area did not stabilise but it was often seen to

oscillate around the 2π value. They also found that pulses with an area larger than

3π would breakup into multiple pulses as is well known to occur for the no damping

case. The total pulse area was then seen to stabilise at integer multiples of π but

would suddenly decrease by 2π at certain distances due to the collapse of a pulse

that had become too weak. This work was then followed up by a paper in 1994 by

Miklaszewski and Fiutak in which they investigated the propagation of SIT pulses

for pulse widths comparable with the homogeneous broadening time and studied

the collapse of the 2π to 0-π pulses in more detail [65]. They performed numerical

simulations and also derived some analytic results. We will now perform our own

simulations of SIT pulses propagating in the presence of homogeneous broadening

and compare our results with those found by Miklaszewski and Fiutak.

Figure 3.3 shows a similar simulation to those presented in reference [65]. It shows

the propagation of a pulse with an input sech-squared intensity profile through a

medium in which homogeneous broadening is included. It can be seen that the field

profile appears to maintain a hyperbolic secant shape for a considerable distance
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but that the peak intensity decreases and the pulse width increases with distance

as found by Miklaszewski and Fiutak. By 40 µm, the pulse has destabilised and

the field has been entirely absorbed. Figure 3.4(a) shows the variation of the pulse

area with distance. It can be seen that the area remains constant at 2π until around

33 µm, at which point it rapidly decreases to zero as was first reported by Alhasan

et al. [64].

In reference [65], Miklaszewski and Fiutak derive an equation for the variation of

the total energy of the field with distance. They claim that the total energy of the

field, E(x), varies as [65]

dE(x)
dx

∼ −Γ
∫ ∞

0
ρ22(x, t), (3.2.1)

where Γ is the spontaneous decay rate and ρ22(x, t) is the excited state population.

This led us to derive an expression for the variation of the pulse energy with distance

in our model so as to see whether we also expect the energy to decay in the form

of (3.2.1) and to explore whether this is consistent with the numerical results. I

must acknowledge my supervisor, Robert Potvliege, for assistance in the following

analysis.

We define the quantity, ε(x), to be

ε(x) =
∫ ∞

−∞
|Ω|2dt′, (3.2.2)

where Ω is the Rabi frequency of the field and t′ is the shifted time defined by (2.2.67).

ε(x) is proportional to the total energy of the field at the distance x. Differentiating

(3.2.2) with respect to x and making use of the propagation equation (and assuming

that the single incident field is that of the probe field) (2.2.76) one obtains

dεp

dx
=
∫ ∞

−∞
(iµpΩ∗

pρ21 − iµpΩρ12)dt′. (3.2.3)

Then, by integrating the optical Bloch equation for ∂tρ22 (2.2.38) over all time and

making the assumption that ρ22 → 0 as t′ → ∞ (which must be true for a pulsed
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input field) it is possible to show that

dεp

dx
= −2Γµp

∫ ∞

−∞
ρ22dt′, (3.2.4)

where Γ is the spontaneous decay constant and µp is the propagation coefficient

defined by (2.2.77). This clearly has the same form as the expression found by

Miklaszewski and Fiutak (3.2.1). In Figure 3.4(b) we plot εp as a function of

distance. The solid green line shows the actual value of εp found by numerically

calculating the integral in (3.2.2). The dashed blue line shows the theoretical value

based on integrating ρ22 over all time at each distance to obtain dεp/dx as given by

(3.2.4) and then integrating this expression over the propagation distance to obtain

the theoretical variation of εp with x. It can be seen from Figure 3.4 (b) that the

actual and theoretical values of εp agree exactly.

It is interesting to explore whether it is possible to go further and calculate the

integral in (3.2.4) analytically and therefore to obtain an analytical expression for

ε(x). If we assume that Ωp and ρ22 have the same profiles as for the case in which

there is no homogeneous broadening (though the values will still change with distance

due to the absorption): i.e. Ωp = Ω0(x) sech(η) and ρ22 = sech2(η) where η is defined

by (2.4.7), it can be shown that

∫ ∞

−∞
sech2(η)dt′ = 2τ(x), (3.2.5)

where τ(x) = 2/Ω0(x) and Ω0(x) is the peak Rabi frequency at the distance x. Hence

we obtain
dεp

dx
= −4Γµpτ(x). (3.2.6)

By differentiating (3.2.2) with respect to x we find that

dεp

dx
= 2τ(x)Ω0(x)dΩ0(x)

dx
. (3.2.7)

By equating (3.2.6) and (3.2.7) and integrating we obtain an analytical equation for
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the variation of |Ω0(x)|2 with distance

|Ω0(x)|2 = |Ω0(0)|2 − 4Γµx, (3.2.8)

where Ω0(0) is the peak Rabi frequency of the pulse at x = 0 µm and the other

symbols are defined as previously. This analytical prediction is shown by the dashed

orange line in Figure 3.4(c). It can be clearly seen that it doesn’t agree with the actual

variation of |Ω0|2 with distance shown by the solid green line. The reason for this is

that ρ22 is actually not that well approximated by a sech function when homogeneous

broadening is included. Figure 3.5 shows the profiles of ρ22 at the entrance to the

medium for the cases of homogeneous broadening and no homogeneous broadening.

It can be seen that, somewhat counter-intuitively, including the spontaneous decay

actually results in a slower decay of ρ22 to zero after the pulse has passed. Indeed, the

numerical integration performed to solve (3.2.4) had to be done over a much longer

time range (200 ns) in order to satisfy the requirement that ρ22 → 0 as t′ → ∞.

However, it can be seen from Figure 3.4 that (3.2.8) does predict a linear decrease

of |Ω0|2 with distance as seen in the numerical results. The prediction can in fact be

made to agree well by changing the constant of 4 in (3.2.8) to a value of 6.6. This is

shown by the dash-dot blue line in Figure 3.4(c). However, the reasoning for this is

not clear and would require further investigation to justify.

Finally, we investigate whether the equations that give the pulse velocity when homo-

geneous broadening is ignored can be extended to include homogeneous broadening.

(3.1.1) gives the velocity of an ideal sech soliton when homogeneous broadening

is not included. It is interesting to explore whether (3.1.1) also gives the correct

instantaneous velocity for a given value of τ(x) when homogeneous broadening is

included. Figure 3.6 is a heatmap of the same simulation as shown in Figure 3.3. We

show the theoretical trajectory of the pulse, found by calculating the instantaneous

velocity at each time using (3.1.1). It can be seen that this theoretical trajectory

agrees very well with the actual trajectory taken by the pulse. Figure 3.7 shows

a simulation with the same set of parameters as Figure 3.6 except inhomogeneous
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broadening (Doppler averaging) is included. The theoretical trajectory of the pulse

shown here is found by calculating the instantaneous velocity at each time using

(3.1.2). Once again, it can be seen that the theoretical trajectory agrees very closely

with the actual trajectory of the pulse observed in the numerical results. To the best

of our knowledge, this is the first time it has been demonstrated that the equations

giving the velocity of sech-solitons in the absence of homogeneous broadening can

still be used to calculate the instantaneous velocity of a sech-soliton propagating

through a medium in which homogeneous broadening is included.
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Figure 3.3: The propagation of a pulse with an input sech-squared intensity profile
and an area of 2π through a medium of 85Rb atoms at 220◦C. The field is resonant
with the D1 transition, and we include the spontaneous decay from the excited state.
We do not include Doppler averaging (inhomogeneous broadening). I0 is the input
peak intensity. (a) Heatmap plot. (b) Cascade plot.
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Figure 3.4: The graphs in this figure correspond to the simulation shown in
Figure 3.3. (a) The variation of the pulse area with distance. (b) The variation
of ε normalised to its value at x = 0 as a function of distance . The solid green
line is the actual variation seen in the numerical results and the dashed blue line
is the theoretical prediction found by numerically integrating ρ22 over time at each
distance. (c) The variation of |Ω0|2 normalised to its value at x = 0 as a function of
distance. The solid green line is the actual variation seen in the numerical results
and the dashed orange line is the analytic prediction with a constant factor of 4.
The dash-dot blue line is the analytic prediction with the constant factor adjusted
to a value of 6.6 such that the theoretical prediction matches the numerical results.
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Figure 3.5: ρ22 as a function of time at a distance of x = 0 µm for the case of no
homogeneous broadening (green line) and for the case of homogeneous broadening
(dashed blue line).

Figure 3.6: Heatmap showing the propagation of a sech-soliton through a medium
of 85Rb atoms at 220◦C. The field is resonant with the D1 transition, and we include
the spontaneous decay from the excited state. We do not include Doppler averaging
(inhomogeneous broadening). The blue dotted line shows the theoretical trajectory
of the pulse found by calculating the instantaneous velocity of the pulse at each time
by using the equation for the velocity of an ideal sech-soliton propagating through a
medium in which there is no homogeneous broadening (3.1.1).
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Figure 3.7: Heatmap showing the propagation of a sech-soliton through a medium
of 85Rb atoms at 220◦C. The field is resonant with the D1 transition, and we include
the spontaneous decay from the excited state. Doppler averaging (inhomogeneous
broadening) is also included. The blue dotted line shows the theoretical trajectory
of the pulse found by calculating the instantaneous velocity of the pulse at each
time by using the equation for the velocity of an ideal sech-soliton propagating
through an inhomogeneously broadened medium in which there is no homogeneous
broadening (3.1.2).
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3.3 Summary

In this chapter, we explored the propagation of SIT solitons through a medium of two-

level resonators. We used numerical simulations to investigate the dynamics of the

soliton propagation in the presence or absence of different broadening mechanisms

and compared our results to previous numerical studies as well as to analytical

predictions. For the case in which there is no homogeneous broadening, the physics

is well known and our simulations were in agreement with the established theory. For

the case in which homogeneous broadening is included, we found that the total energy

of the field decayed in a manner consistent with the predictions of Miklaszewski and

Fiutak, though it was not possible to extend these into a completely analytical

model. Most notably, it was found that the equations that describe the velocity of

sech-solitons in the absence of homogeneous broadening can still be used to calculate

the instantaneous velocity of the pulses when homogeneous broadening is included.



Chapter 4

One-Field Optical Transients

Having looked at the propagation of sech-pulses, we will now investigate a different

type of light field propagating through a medium of two-level resonators: that

of a continuous wave (CW) input. CW fields are frequently used in vapour cell

experiments. They may at first seem to be an uninteresting case since a CW field

will quickly reach a steady state with a two-level system due to the balancing out of

the effects of optical pumping from the ground to the excited state and spontaneous

decay from the excited to the ground state. However, during the time that the field is

being turned on and shortly after, the field and atoms will be in a region of transience

and interesting dynamics may occur. We will study these optical transients in this

chapter.

4.1 No Homogeneous Broadening

Before investigating the transient effects that would occur in any real atomic sys-

tem with spontaneous decay, it is first useful to explore what the solutions to the

Maxwell-Bloch equations for CW input fields are when homogeneous broadening is

not included. This will help us to better understand the effects that occur when

homogeneous broadening is included and there is also substantial previous literature

on this case that we can compare our results to.
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The propagation of a CW field resonant with a two-level medium without homogen-

eous broadening but including inhomogeneous broadening was first analysed by Crisp

in 1972 [28]. He performed a numerical analysis that showed that a step-function

input pulse (i.e. a pulse that was turned on instantaneously to a constant intensity

at some time) got reshaped into a train of pulses as the field progressed further

into the medium. Crisp had shown previously that the Jacobi dnoidal and cnoidal

functions satisfy the Maxwell-Bloch equations for the propagation of a resonant light

field through an inhomogeneously broadened medium of two-level resonators [50].

He then compared the train of pulses formed from the CW field with the dnoidal and

cnoidal wave solutions and found that the pulse trains that arose from the CW input

could be described quite accurately by a dnoidal wave of the form of (2.4.5) with a

parameter of k = 0.8. He found that regardless of the input intensity, the dnoidal

wave that most closely approximated the pulse train had the parameter of k = 0.8

and therefore suggested that this was the asymptotic solution (i.e. that a CW field

input into a two-level medium would always reshape into a pulse train described

by a dnoidal function with a parameter k = 0.8). The problem was later revisited

by Horovitz and Rosenberg in 1982, although they did not include inhomogeneous

broadening in their study as Crisp had done. They found that, in fact, there was

no single asymptotic solution of the form suggested by Crisp [29]. By investigating

numerically the propagation of pulses over longer times and further distances than

considered by Crisp, they found that the pulses became narrower and gained a larger

peak amplitude the further they propagated. They found that at a given distance

and over a short region of time the pulse train could indeed be approximated by a

dnoidal function with a parameter k but that the value of k needed to approximate

the pulse train got closer to 1 as distance increased. However this could not be

described by a single dnoidal function of the form of (2.4.5) with a k parameter that

tends to 1 as distance goes to infinity since the average time separation of the pulses

in the pulse trains seen in their simulations appeared constant at all distances and

the pulses of a dnoidal wave get further apart as k increases as was explained in
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Chapter 2. Horowitz and Rosenberg explained the effect by introducing an asymp-

totic area theorem that restricts the time average of the field to be equal to that of

the input field. They defined the CW pulse area to be

θ(x) =
∫ t

−∞
Ω(x, t′) dt′, (4.1.1)

where θ is the area, t is the time at which the area is being calculated and Ω(x, t) is

the Rabi frequency [29]. This extends the pulse area theorem of McHall and Hahn

to CW inputs. We will now conduct our own study of these effects. We will compare

our results to the findings of Crisp and Horovitz and Rosenberg and look at what

happens at further distances and longer times than considered in these studies.

We now present the results of simulations very similar to those performed by Crisp

and Horovitz and Rosenberg. However, we choose to study the specific system of a

field resonant with the D2 transition in 85Rb since, as previously explained, we are

framing our investigation in the context of vapour cell experiments. We consider the

D2 transition rather than the D1 transition as this seemed more logical considering

we will study a two-field case in the next chapter in which the field resonant with the

D2 transition is strong. We also decided to model a vapour at a temperature of 80◦C

rather than the 220◦C temperature considered in the work on optical simultons [26]

as doing so lowers the atomic density and allows for propagation lengths on the order

of millimetres rather than micrometers which may be more amenable to experiment.

However, these choices do not affect the physics we will consider here in any important

way.

We first consider the same situation as considered by Horovitz and Rosenberg: a

CW input field is switched on instantaneously at t = 0 ns and propagates through a

medium in which there is no inhomogeneous broadening. This is shown in Figure 4.1.

We show the modulus of the electric field amplitude (normalised to the input) rather

than the intensity as this makes some of the features clearer to see. The modulus of
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Figure 4.1: Propagation of a CW field which is instantaneously turned on at t = 0
ns. Iplat = 5 W/cm2 and |E| is related to I as shown in (4.1.2). Both homogeneous
and inhomogeneous broadening are neglected.

the electric field amplitude |E| is related to the intensity I by

|E| =
√

2I

cϵ0
, (4.1.2)

where c is the speed of light and ϵ0 is the permittivity of free space. It can be seen

that the field breaks up into a train of pulses as it travels into the medium as was

found by both of the previous studies. It can also be seen that there is an initial spike

at t = 0 ns. This is known as an optical precursor and represents a pulse propagating

at the speed of light [31]. This happens as a result of the instantaneous turn-on of

the field since light is initially input into the medium so fast that there is effectively

no absorption [29]. There are then small oscillations of |E|/|Eplat| which correspond

to oscillations of the field about zero. These are the 0-π pulses we discussed in the

previous chapter [66]. In similarity to the theory of SIT, these 0-π pulses result from

the fact that the pulse area of the input field is below π until a certain time (which
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will vary depending on the intensity) and so the field in this region will tend towards

a state with an area of zero as it propagates further into the medium. At later times

it can be seen that a train of pulses have been formed. The troughs of the pulses do

not go to zero and the heights of the peaks and troughs are varied as was seen in the

results of Crisp and Horovitz [28, 29]. It can also be seen that the pulses become

sharper and narrower as they travel further in agreement with the behaviour found

by Horovitz and Rosenberg [29].

Both Crisp and Horovitz reported that the mean time separation of the pulses

(i.e. the time difference between successive peaks) remained constant. However, it

appears that the average time separation of the pulses in Figure 4.1 increases with

distance. Indeed, it is found that the mean time separation of the pulses at 5 mm is

5.9 ns, at 15 mm it is 6.7 ns and at 30 mm it is 7.7 ns. To investigate this further we

ran a simulation with the same input field as in Figure 4.1 over a longer time range

of 300 ns and a distance of 120 mm. This is shown in Figure 4.2. It is immediately

apparent from this figure that the time separation between the pulses is not constant.

This calls in to question the asymptotic area theorem of Horovitz and Rosenberg. In

Figure 4.3, we plot the pulse area (minus its value at 250 ns) over 2π as a function

of time for the field profiles shown in Figure 4.2. The pulse area is given by (4.1.1).

It can be seen that the number of complete pulses that have formed prior to a given

time is equal to the multiple of 2π that the area was last at. For example, at 40 mm

and 300 ns the area (relative to its value at 250 ns) is just below 12 × 2π and so we

would expect there to be 11 complete pulses between 250 ns and 300 ns. It can be

seen from Figure 4.2 that this is indeed the case (the 12th pulse is in the process of

forming since the area is approaching 12×2π). It therefore seems that this is the key

feature: the pulse area integrated over each pulse (i.e. between the minima either

side of each pulse) is always equal to 2π irrespective of the distance into the medium.

This does not restrict the time separation of the pulses to be constant as concluded

by Horovitz and Rosenberg. It seems that they arrived at that conclusion because

they did not go far enough into the medium (quite possibly due to the limitations
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of the computing resources available at the time). Unfortunately, there is not time

within the present study to look into this in more depth. However, it is certainly an

intriguing result and warrants further investigation in the future.

Figure 4.2: Propagation of a CW field which is instantaneously turned on at t = 0
ns. Iplat = 5 W/cm2 and |E| is related to I as shown in (4.1.2). Both homogeneous
and inhomogeneous broadening are neglected.

In a real experiment, an input CW field would take a non-zero amount of time to

reach a constant intensity. A typical CW field, switched on with a Pockels cell, may

take ∼2 ns to reach a constant intensity. Figure 4.4 shows a similar set of results to

those in Figure 4.1 except the input field is turned on smoothly from 0 ns to 2 ns,

plateauing out at a constant intensity of Iplat = 5 W/cm2. It can be seen that the

field evolves in the same way as for the case of instantaneous turn-on except the

optical precursor spike at t = 0 is no longer present, as was predicted by Horovitz
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Figure 4.3: The CW pulse area (minus its value at 250 ns) as defined by (4.1.1) as
a function of time corresponding to the field profiles shown in Figure 4.2.

and Rosenberg.

Inhomogeneous broadening was included in Crisp’s analysis, but not in the work of

Horovitz and Rosenberg. They claim that including it was not likely to have an effect

on their results, except in terms of re-normalising parameters [29]. We will check

that claim now. Figure 4.5 shows a set of results with the same input parameters as

in Figure 4.4 except inhomogeneous broadening is included in the simulation. It can

be seen that a train of pulses still form in the presence of inhomogeneous broadening

but the 0-π pulses are no longer present. This happens because the 0-π pulses

produced by different velocity classes do not oscillate in phase with each other and,

since the field oscillates about zero, this results in the field having an average value

of zero when averaged over all velocity classes. It can also be seen that the group
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Figure 4.4: Propagation of a CW field which is turned on smoothly between t =
0 ns and t = 2 ns. Iplat = 5 W/cm2 and |E| is related to I as shown in (4.1.2). Both
homogeneous and inhomogeneous broadening are neglected.

velocity of the pulses is faster when inhomogeneous broadening is included since the

peaks at a given distance occur earlier than for the case without inhomogeneous

broadening. This is due to the fact that most of the light is de-tuned from resonance

when inhomogeneous broadening is included due to the Doppler shifts which leads

to a higher group velocity as given by (2.4.10).

We now compare the pulse trains formed from the CW field with the dnoidal wave

solutions of the inhomogeneously broadened Maxwell-Bloch equations found by

Crisp [50]. Figure 4.6(a) shows a heatmap plot of the same simulation as shown in

Figure 4.5. Parts (b) to (d) of Figure 4.6 show the normalised intensity of the field

at various distances along with the best fitting dnoidal wave. The Rabi frequency

of the dnoidal wave is defined by (2.4.5) but we will write it again here for ease:

Ω(x, t) = Ω0(x)dn(η, k), (4.1.3)
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Figure 4.5: Propagation of a CW field which is turned on smoothly between
t = 0 ns and t = 2 ns. Iplat = 5 W/cm2 and |E| is related to I as shown in (4.1.2).
Homogeneous broadening is neglected but inhomogeneous broadening is included.

where Ω0(x) is the peak Rabi frequency of the wave at distance x, k is a parameter

between 0 and 1 and η is given by

η = (t − x/v)/τ . (4.1.4)

v is the velocity given by (2.4.10) and τ is defined as

τ(x) = 2
Ω0(x) . (4.1.5)

It can be seen that the dnoidal wave is a good approximation to the field within

a small time range, but that the parameter k of the best fitting function increases

with distance as seen by Crisp and Horovitz. The dnoidal wave is only a good

approximation over a small time range since the heights of the peaks and troughs of

the field change with time and so the amplitude of the best fitting dnoidal function

must vary with time. Indeed, it appears that the pulse train is evolving into a train
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of sech pulses as it moves deeper into the medium. This is similar to what was

observed by Horovitz and Rosenberg. However, without their restriction on the time

separation of the field, it seems that the pulses would become infinitely separated

sech solitons as x → ∞. This is an interesting possibility, but a further investigation

over a greater distance (and possibility some kind of analytical study) would be

required to confirm it. The dashed-blue line shows the theoretical prediction for

the trajectory of the dnoidal function that most closely matches the field between

t = 120 ns and t = 180 ns at x = 25 mm (i.e. the function shown in Figure 4.6(b)).

The trajectory is calculated by using the velocity obtained from 2.4.10. It can be

seen that in the region close to x = 25 mm, the theoretical trajectory agrees well

with the actual trajectory taken by the pulses. However, the k parameter varies with

distance and so the theoretical trajectory of the pulses based of the k parameter at

x = 25 mm is clearly not valid for all distances.
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Figure 4.6: (a) Heatmap of a field with Iplat = 5 W/cm2, turned on smoothly
between t = 0 ns and t = 2 ns. The dashed-blue line shows the theoretical velocity
calculated for the dnoidal wave that most closely matches the field between t = 120 ns
and t = 180 ns at x = 25 mm. (b) The normalised intensity between t = 120 ns and
t = 180 ns at x = 25 mm (solid blue line) plotted along with the best-fitting dnoidal
function (dashed orange line with the parameter k shown on the figure). (c) The
same as (b) but at x = 15 mm. (d) The same as (b) but at x = 5 mm.
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4.2 Homogeneous Broadening

We now investigate the much more realistic situation in which a CW input field

propagates through a two-level medium in which there is spontaneous decay from

the excited state to the ground state (homogeneous broadening). It is well known

that the Rabi oscillations that result when a CW field interacts with a two-level

system are damped due to spontaneous decay [38]. This causes a two-level system

driven by a CW field to reach a steady state (i.e the density matrix and field become

constant in time). However, it takes a certain amount of time for such a system

to reach the steady state. Before the steady state is reached, a dynamics would

occur that is surely similar to the situation we considered in the previous subsection

(i.e a breakup of the CW field into a train of pulses as it travels further into the

medium). There is little previous research that has focused on this issue. Indeed, in

the paper by Horovitz and Rosenberg [29] on the propagation of CW fields in the

absence of homogeneous broadening, they simply state that the effect of homogeneous

broadening on their results is unclear and that further study is required to address

this. A study was conducted by Macke and Segard [31] in 2010 in which they did

study the propagation of a CW field through a two-level medium of homogeneously

broadened resonators. They presented graphs which showed that transient pulse

trains did indeed form from the CW field as it propagated into the medium before

the system reached a steady state. However, the focus of their paper was on the

optical precursors that occur ahead of the main field (i.e the 0-π pulses that we

discussed in the previous section) and they say little about the transient pulse trains

that form from the main field. We will therefore conduct our own investigation,

aiming to elucidate and clarify the work that has been done previously.

We again consider fields resonant with the D2 transition in 85Rb and set the temper-

ature of the vapour to 80◦C. Figure 4.7 shows the propagation of fields with input

plateau intensities of Iplat = 5 W/cm2 and Iplat = 15 W/cm2 which are both turned

on smoothly between t = 0 ns and t = 2 ns. It can be seen that there is a breakup
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of the fields into trains of pulses at short times but that the contrast (difference

in intensity between maxima and minima) decreases as time progresses until the

fields reach a steady state with constant intensity. This is due to the spontaneous

decay from the upper state to the lower state. More insight can be found by looking

at the variation of the populations and coherences shown in Figure 4.8. It can be

seen that the decay term dampens the oscillation in the populations until a steady

state is reached when ρ11, ρ33 and the imaginary part of the ρ13 coherence term are

constant. Our results show the same features as found in the simulations of Macke

and Segard [31]: i.e. a CW field breaks up into a train of pulses and the oscillations

are damped until a steady state is reached after a sufficient time. We will now

explore what governs the absorption distance (i.e. the distance the field travels into

the medium before it is absorbed) and compare the situation to the case of an SIT

soliton propagating in the presence of homogeneous broadening that we examined

in Chapter 3.

The variation of the intensity with distance in the steady state region obeys the

equation [34]
dI(∆)

dx
= −κ(∆, I)I(∆), (4.2.1)

where I is the intensity of field (in the steady state region), x is the distance into the

medium, κ is the (intensity dependent) absorption coefficient and ∆ is the detuning

of the field defined by ∆ = ω − ω0 where ω is the frequency of the light and ω0

is the resonance frequency. In the simulations considered here the input light has

a frequency that is exactly resonant with the transition (i.e. ω = ω0). However,

when inhomogeneous broadening is included, different frequencies of light are seen

by different atoms due to the Doppler effect and ∆ becomes a function of the atomic

velocity ux given by

∆(ux) = −ω0ux/c. (4.2.2)

This means that (4.2.1) must be solved separately for each velocity class and an

average must be found by weighting the sum of these solutions with the Maxwell-
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Figure 4.7: (a) Heatmap of a field with Iplat = 50mW/cm2. (b) Heatmap of a field
with Iplat = 5W/cm2. Both fields are turned on smoothly between t = 0 ns and
t = 2 ns and the simulations include homogeneous broadening and inhomogeneous
broadening.

Boltzmann distribution function defined by (2.2.16). To make a simpler comparison,

we will compare (4.2.1) to the numerical results for a case in which inhomogeneous

broadening is neglected. In this case, κ is given by [34]

κ(0, I) = − N σ(0)
1 + I/Isat(0) , (4.2.3)

where N is the atom density, σ(0) is the (on-resonance) absorption cross-section, I

is the intensity and Isat(0) is the (on-resonance) saturation intensity. For a two-level

atom, and for linearly polarised light propagating along one axis, σ(0) is given by [34]
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Figure 4.8: The field, populations and coherence’s at 5 µm into the medium for an
input field with Iplat = 5 W/cm2. Both homogeneous broadening and inhomogeneous
broadening are included. (a) The intensity normalised to the plateau intensity. (b)
the ground state population ρ11. (c) the excited state population ρ33. (d) the
imaginary part of the ρ13 coherence.

σ(0) = λ2
0

π
, (4.2.4)

where λ0 is the resonance wavelength (λ0 = 2πc/ω0). Isat(0) is given by [34]

Isat(0) = πhcΓ
λ3

0
, (4.2.5)

where Γ is the spontaneous decay rate from the excited state to the ground state

and the other symbols are defined as previously. Substituting (4.2.3), (4.2.4) and

(4.2.5) into (4.2.1) we obtain

dI

dx
= − N σ(0)I

1 + I/Isat(0) . (4.2.6)

It can be seen from (4.2.6) that if I ≫ Isat(0), then dI/dx ≈ −N σ(0)Isat(0) and

hence I = −N σ(0)Isat(0)x + I0. However, if I ≪ Isat(0) then dI/dx ≈ −N σ(0)I

and hence I = I0 exp(−N σ0x) in accordance with Beer’s law [57]. (4.2.6) does in
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fact have a general solution given by

I(0) = Isat(0)W
[

I0

Isat(0) exp (I0/Isat(0) − N σ(0)x)
]

, (4.2.7)

where W is the Lambert W function [67]. The Lambert W function is defined as

the inverse of the function y = xex for x ≥ −1 (its principal branch) [67]. Figure 4.9

shows the variation of the intensity in the steady state region of a field with a

plateau intensity of 5 W/cm2 turned on smoothly over 2 ns. We have also plotted

the theoretical prediction given by (4.2.7). It can be seen that the numerical results

are in good agreement with the theory and that the intensity decreases linearly with

distance. This is because the saturation intensity for the D2 transition in 85Rb is

Isat = 5 mW/cm2 and we are considering a field which has an input intensity 1000×

this value. Once the intensity has reached the saturation intensity, it is then absorbed

very rapidly (and nonlinearly) over ∼20 µm as shown in Figure 4.10. For intensities

I ≪ Isat(0), (4.2.7) converges to Beer’s law and the intensity decays exponentially

with distance.

Figure 4.9: The variation of the intensity with distance in the steady state region
(t = 300 ns) for a field with Iplat = 5 W/cm2 that has been turned on smoothly over
2 ns. The solid blue line shows the intensity obtained from the numerical results
and the dashed red line shows the theoretical intensity predicted by (4.2.7).

If inhomogeneous broadening is included, the situation is more complicated and the

intensity variation with distance in the steady state as found from the numerical
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Figure 4.10: The variation of the intensity with distance in the steady state region
(t = 300 ns) for a field with Iplat = 5 mW/cm2 that has been turned on smoothly
over 2 ns. The solid blue line shows the intensity obtained from the numerical results
and the dashed red line shows the theoretical intensity predicted by (4.2.7).

results is shown in Figure 4.11. It can be seen that the intensity variation is nonlinear

at much higher intensities than seen in the case without inhomogeneous broadening.

This is because the saturation intensity increases as the light becomes further detuned

from the resonance frequency and the intensity of the light for the inhomogeneously

broadened case is an average over the Maxwell-Boltzmann distribution of velocity

classes (detunings).

The pulses in the pulse trains which exist shortly after the turn-on of the field shown

in Figure 4.7 appear to show a similar behaviour to the sech-solitons of SIT explored

in the previous chapter. Their peak amplitudes decrease and their widths increase

as the pulses travel further into the medium. We will now compare the propagation

of a pulse on a pulse train formed from a CW field with a comparable sech-soliton.

Figure 4.12(a) is a heatmap of the field formed from a CW input which was turned

on smoothly between t = 0 ns and t = 2 ns and had an plateau intensity of 5 W/cm2.

The field is shown starting from a distance of 1.5 mm into the medium, after the

pulse train has already formed. Figure 4.12(b) is a heatmap of a sech pulse which has

a peak intensity the same as that of the first pulse of the train in (a) at x = 1.5 mm.

A comparison of the profiles of the two fields at two distances are shown in parts (c)
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Figure 4.11: The variation of the intensity with distance in the steady state region
(t = 300 ns) for a field with Iplat = 5 mW/cm2 that has been turned on smoothly over
2 ns (this is the intensity variation seen in the numerical results). The simulation
includes both homogeneous broadening and inhomogeneous broadening.

and (d) of Figure 4.12. The simulation included homogeneous broadening but not

inhomogeneous broadening so as to reduce the computation time. It can be seen that

the trajectories are similar, but not identical. The sech-soliton has a smaller peak

intensity than that of the first pulse of the pulse train at x = 2.8 mm and is absorbed

slightly more rapidly. It is clear that the pulses of the pulse trains formed from the

CW field are not exact sech pulses since the field does not go to zero either side of

these pulses as it does for a pure sech pulse. However, the first pulse of the train is

quite closely approximated by a sech pulse (as can be seen from Figure 4.12(c)) and

it follows a similar trajectory to one through the medium. It is also the case that

the atomic medium is entirely in the ground state prior to the arrival of both the

sech-soliton and the first pulse in the pulse train at each time and distance. This is

not the case for the pulses further along the train and these are also clearly less well

approximated by a sech-function. There is not time within the present investigation

to explore the connection between the pulse trains formed from a CW field and

sech-solitons in more detail but it appears that the first pulse of the pulse train

formed from a CW field propagates similarly to a comparable sech-soliton.



4.2. Homogeneous Broadening 85

Figure 4.12: Comparison of the transient pulse train formed from a CW field with
a sech-soliton. (a) Heatmap of a field with Iplat = 5 W/cm2 (which was turned on
smoothly between t = 0 ns and t = 2 ns), but starting from a distance of 1.5 mm
into the medium after the pulse train has already formed. (b) A sech-soliton with a
peak intensity the same as that of the peak intensity of the first pulse in the train
at 1.5 mm. (c) The field profiles of the pulse train (solid blue line) and sech-soliton
(dashed orange line) at a distance of 1.5 mm. (d) The same as (c) but at a distance of
2.8 mm. The simulation includes homogeneous broadening but not inhomogeneous
broadening.
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4.3 Summary

In this chapter, we explored the propagation of CW fields through a medium of

two-level resonators, focusing on the dynamics that occur shortly after such fields

are turned on. We first looked at the case in which homogeneous broadening was

ignored, since there was substantial literature to compare our results to. It was found

that a CW field breaks up into a train of pulses as it propagates into the medium,

as had been observed previously by Crisp [28] and Horovitz and Rosenberg [29].

Importantly, it was found that our results were not in agreement with one of the key

findings of Horovitz and Rosenberg: namely their asymptotic area theorem which

required that the average time separation between the pulses is constant for all

distances. Instead, by going to greater distances than they had considered, we found

that in fact the pulses are seen to separate as distance increases. We also compared

the dnoidal wave solutions to the Maxwell-Bloch equations found by Crisp [50] with

the pulse trains formed from a CW field and found that a dnoidal wave with a

certain parameter k was a good approximation to the field at a particular distance

and over small time region. We then considered the more realistic situation in which

homogeneous broadening was included. We observed that pulse trains were still seen

to form from a CW field shortly after it was turned on, however the oscillations

were damped and the system reached a steady state after a period of time, as had

been seen previously in the simulations of Macke and Segard [31]. We compared

the absorption of the fields in the steady state with the established theory, and

found that the theoretical predictions were in agreement with our numerical results.

We also compared the propagation of a sech-soliton with the transient pulse train

formed from the CW field. It was observed that the first pulse in the train propagates

similarly to a comparable sech-soliton.
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Two-Field Optical Transients

Having studied the propagation of CW fields through a medium of two-level res-

onators in the previous chapter, we now turn our attention to the case in which

there are two CW fields, each resonant with a transition of a three-level V-system.

In Chapter 2, we discussed in depth the previous work on optical simultons that

was conducted here at Durham [26]. In that study, Ogden et al. considered the

propagation effects that occur when a weak CW probe field is resonant with the

D1 transition in 85Rb and a strong, pulsed coupling field is resonant with the D2

transition. We will now extend that investigation to the case in which the coupling

field is a strong CW field instead of a pulse. To the best of our knowledge this is

the first time that such a case has been studied. We will compare the physics of

this situation with that of the optical simultons of reference [26], to the one-field

cases we have studied in the previous chapters and to the EIT phenomenon that

we discussed in Chapter 2. As was done in reference [26], we will consider the

three-level V-system of 85Rb shown in Figure 2.1. However in contrast to [26], we

choose to set the temperature of the vapour to 80◦C rather than 220◦C which lowers

the atomic density and allows for propagation lengths of millimetres rather than

micrometers. As explained previously, this choice of temperature should not be

regarded as particularly important.



88 Chapter 5. Two-Field Optical Transients

5.1 Weak Probe

5.1.1 No Inhomogeneous Broadening

We first consider the simpler situation in which inhomogeneous broadening is neg-

lected. Figure 5.1 shows a simulation in which a strong CW coupling field and a weak

CW probe field are both incident on the medium. Both fields are turned on smoothly

over 2 ns reaching plateau intensities of Iplat
c = 5 W/cm2 and Iplat

p = 1 µW/cm2.

In the absence of the coupling field, the probe field would be absorbed very rap-

Figure 5.1: Heatmaps showing the co-propagation of a strong CW coupling field
and a very weak CW probe field. (a) shows the coupling field with Iplat

c = 5 W/cm2.
(b) shows the probe field with Iplat

p = 1 µW/cm2. Both fields are turned on smoothly
between t = 0 ns and t = 2 ns. The simulation includes homogeneous broadening
but not inhomogeneous broadening.
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Figure 5.2: This figure corresponds to the heatmaps shown in Figure 5.1 at a
time of 180 ns. (a) The dashed (orange) curve is the intensity of the the coupling
field normalised to its input plateau intensity, Iplat

c = 5 W/cm2. The solid (blue)
curve is the intensity of the probe field normalised to its input plateau intensity,
Iplat

p = 1 µW/cm2. (b) The eigenenergies of the three-level system corrersponding
to the fields in (a).

idly (∼10 µm) due to its very low intensity as we showed in the previous chapter.

However, when the strong coupling field is also present, the probe field is able to

travel much further into the medium as can be seen in Figure 5.1. In fact, the probe

field travels the same distance into the medium as the coupling field does. The

probe field also breaks up into a train of pulses in accordance with the coupling

field. Each pulse of the probe field train is seen to co-propagate with (i.e. follows

the same trajectory as) a pulse of the coupling field train. The situation therefore

appears to be very similar to that of the optical simultons of reference [26], in which

the weak probe field was transmitted through the medium by means of the strong

coupling field. There was also a co-propagation effect by which each pulse that

formed on one transition followed exactly the same trajectory as a corresponding
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pulse on the adjacent transition, as is the case in the results shown in Figure 5.1. As

was discussed in Chapter 2, Ogden et al. attributed the mechanism underpinning

the optical quasi-simultons phenomenon to that of soliton-induced transparency

(SOIT), as explored previously by Kozlov and Kozlova [58, 59]. However, as the

name suggests, this relies on the field inducing the transparency to be a sech-soliton

(or at least certainly well approximated by one). That is not the case here. Indeed, a

transparency is induced on the probe field by the coupling field even after the steady

state has been reached and there are no pulses at all. The mechanism that gives rise

to the transparency seen in this situation seems therefore to be of a different nature

to SOIT.

In Chapter 1, we introduced the concept of electromagnetically-induced transparency

(EIT). This is the effect by which the absorption of a weak probe field can be

significantly reduced due to the application of a strong coupling field [20]. In a way,

such a definition also applies to the SOIT effect in which a strong coupling field

(i.e. a soliton) induces a transparency on a weak probe field. However, the term EIT

is usually only used to describe such an effect in situations in which the atom-light

system is in a steady state (i.e the density matrix and fields have relaxed to constant

values). This is exactly the situation shown in Figure 5.1 for large times: by 180

ns the pulse oscillations have all disappeared due to the effect of the spontaneous

decay and the fields and density matrix at each distance have become constant with

time (though they are of course not constant with distance due to the absorption).

It therefore seems likely that the transparency induced on the probe in this region is

related to that of V-system EIT. V-EIT has recently by studied experimentally by

Higgins and Hughes here at Durham [7] and their study led us to consider the role

of EIT in our results. As was explained in Chapter 1, EIT in V-systems is almost

entirely due to Autler-Townes splitting [22, 23]. The Autler-Townes effect (or AC

Stark effect) is the effect by which an intense coupling field changes the eigenstates

of the coupled field plus atom Hamiltonian [22]. These eigenstates (called Dressed

states) are split in energy by an amount ℏΩc (for an on-resonance coupling field
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with a Rabi frequency of Ωc) and this means that the probe field is no longer

resonant with the D1 transition and can propagate through the medium as though

it were transparent [22]. We will now compare the absorption of the fields with

distance in the steady state region of Figure 5.1 (using the largest time available

from the simulation of 180 ns since this is closest to the condition of a steady state)

with the variation of the eigenenergies of the coupled field plus atom Hamiltonian.

Figure 5.2(a) shows the variation of the (normalised) intensities of the probe and

coupling fields as a function of distance corresponding to the fields shown in Figure 5.1

at a time of 180 ns. Figure 5.2(b) shows the three eigenenergies of the coupled field

plus atom Hamiltonian as a function of distance corresponding to the field intensities

shown in (a). These eigenenergies are calculated by diagonalising the interaction

Hamiltonian that was derived in Chapter 2 (2.2.32) using the values for the probe and

coupling Rabi frequencies at each distance found from the numerical results. It can be

seen that the eigenstates are split significantly at x = 0 mm. The natural linewidth

of the D1 transition is given by the spontaneous decay constant Γ = 5.75 MHz. This

corresponds to an energy splitting of h × 5.75 MHz which is clearly much smaller

than the energy splitting of h × 192 MHz seen at x = 0 in Figure 5.2(b). Therefore

the probe field, which is tuned to the bare state D1 transition frequency, is not on

resonance with the medium at x = 0. As the coupling field is absorbed, the splitting

of the eigenenergies is reduced until it becomes comparable to the linewidth of the

state at around 6.7 mm, at which point the probe field gets absorbed very rapidly.

From Figure 5.2(a), it can be seen that, although both fields are absorbed over the

same distance, the absorption profiles are different for the two fields. The coupling

field decreases linearly with distance, as expected from the theory discussed in the

previous chapter, but the probe field absorption is nonlinear. This is also a result

of the AT splitting. Initially, the splitting of the eigenenergies is large which means

that the probe field is far off-resonance and so it is absorbed slowly with distance.

However, as distance increases and the coupling field intensity decreases, the size of

the AT splitting reduces and so the probe field becomes closer to being on resonance
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which causes its rate of absorption to increase. It therefore seems that AT splitting

accounts for the transparency that occurs once the fields have reached a steady state.

The very first pulse of the train that forms from the strong CW field is fairly well

approximated by a sech-soliton (as was explained in the previous chapter) and so the

transparency effect that occurs at short times would seem to be similar to that of

SOIT. However, it can be seen from Figure 5.1 that the first pulse of the pulse train

that forms on the probe field goes no further into the medium than the field does in

the steady state. It seems therefore that the phenomena of SOIT and V-EIT (caused

by AT splitting) are in some way different aspects of the same underlying effect.

More research is clearly required to understand the exact nature of this relation.

However, these results certainly suggest that a connection between SOIT and V-EIT

must exist and provide a strong motivation for a future study on this issue.

5.1.2 Inhomogeneous Broadening

We now consider the situation in which inhomogeneous broadening is included.

Figure 5.3 shows a simulation identical to that of Figure 5.1 except inhomogeneous

broadening is included. The features are the same as seen in the case without

inhomogeneous broadening except the fields travel further and there are no 0-π

pulses for the reasons explained in the previous chapter. Figure 5.4(a) shows the

variation of the intensity of the fields shown in Figure 5.3 in the steady state (using

the largest time available from the simulation of 180 ns since this is closest to the

condition of a steady state). Figure 5.4(b) shows the three eigenenergies of the

coupled field plus atom Hamiltonian as a function of distance corresponding to the

field intensities shown in part (a). It can be seen that the absorption of the coupling

field is nonlinear when inhomogeneous broadening is included, as discussed in the

previous chapter, which makes the absorption profile of the probe more difficult to

interpret. It can be seen from Figure 5.4(a) that the rate of absorption of the probe

field still increases with distance, as was seen in the case without inhomogeneous

broadening (the wobbles towards the end are due to the fact that at t = 180 ns there
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is still some pulse oscillation and the steady state has not been completely obtained).

However, the rate of change of the probe intensity with respect to distance is less

extreme than in the no-inhomogeneous broadening case. This is because the rate

of change of the coupling field intensity with respect to distance actually increases

with distance when inhomogeneous broadening is included (whereas it is constant in

the no-inhomogeneous broadening case) which means that the rate of change of the

AT splitting energy with respect to distance is slower. Apart from the difference in

absorption profiles, the underlying physics of the inhomogeneously broadened case

appears to be identical to the one without inhomogeneous broadening described

previously and our conclusions and questions about the mechanisms giving rise to

the transparency effect are the same.
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Figure 5.3: Heatmaps showing the co-propagation of a strong CW coupling field
and a very weak CW probe field. (a) shows the coupling field with Iplat

c = 5 W/cm2.
(b) shows the probe field with Iplat

p = 1 µW/cm2. Both fields are turned on smoothly
between t = 0 ns and t = 2 ns. The simulation includes both homogeneous broaden-
ing and inhomogeneous broadening.
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Figure 5.4: This figure corresponds to the heatmaps shown in Figure 5.3 at a
time of 180 ns. (a) The dashed (orange) curve is the intensity of the coupling field
normalised to its plateau intensity, Iplat

c = 5 W/cm2. The solid (blue) curve is the
intensity of the probe field normalised to its plateau intensity, Iplat

p = 1 µW/cm2.
(b) The eigenenergies of the three-level system corresponding to the fields in (a).
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5.2 Strong Probe

Finally, we will investigate the situation in which both the incident fields are strong.

Figure 5.5 shows a simulation in which both the coupling and probe fields have an

input plateau intensity of Iplat = 5 W/cm2. Parts (a) and (b) show the coupling

and probe fields, respectively, propagating in the absence of the other field and

parts (c) and (d) show the coupling and probe fields when they are co-propagating

(i.e. when both fields are present). Figure 5.6(a) shows the variation with distance

of the normalised intensities of the fields in the steady state (using the largest time

available from the simulation of 180 ns since this is closest to the condition of a

steady state). It can be seen that both fields travel significantly further into the

medium when they co-propagate than when they propagate independent of each

other. It can also be seen that they both travel the same distance into the medium

when they co-propagate. Figure 5.6(b) shows the three eigenenergies of the coupled

field plus atom Hamiltonian as a function of distance corresponding to the field

intensities shown in part (a). It can be seen that the energy splitting at x = 0 mm is

h × 234 MHz. This is larger than the energy splitting at x = 0 mm of h × 190 MHz

shown in Figure 5.4(b) for the case in which the probe field is weak. Therefore,

it appears that when both the coupling and probe fields are strong, they are both

contributing to the AT splitting and thus effectively each inducing a transparency

on the other field. This is what allows the fields to propagate further into the

medium when propagating together than they do when propagating separately. In

this situation, the eigenstates of the field plus atom Hamiltonian can be thought of

as being doubly dressed by the two fields. Such doubly-dressed states have been

explored experimentally in Ladder systems [68, 69], but to our knowledge they have

not been considered previously in V-systems. At early times (i.e. prior to the steady

state), it can be seen from Figure 5.5 that the pulses that form on each transition

when both fields propagate together follow exactly the same trajectories, despite the

fact the trajectories of the pulses that form from each field when they propagate
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independent of each other is different (e.g. compare the trajectories of the first pulse

of the train in each of the graphs of Figure 5.5). This is another intriguing effect

but the exact mechanism that gives rise to it is currently unclear. It could possibly

be related to the SOIT effects described by Kozlov and Kozlova [58, 59] that we

discussed in Chapter 1, though without the requirement that one of the fields must

be a sech-soliton. More research is certainly required to fully understand the physics

behind these effects.
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Figure 5.5: Heatmaps showing the propagation of a strong CW coupling field and a
strong CW probe field. Iplat

c = Iplat
p = 5 W/cm2. (a) The coupling field propagating

in the absence of the probe field. (b) The probe field propagating in the absence of
the coupling field. (c) The coupling field that is co-propagating with the probe field.
(d) The probe field that is co-propagating with the coupling field. Both fields are
turned on smoothly between t = 0 ns and t = 2 ns. The simulation includes both
homogeneous broadening and inhomogeneous broadening.



5.2. Strong Probe 99

Figure 5.6: This figure corresponds to the heatmaps shown in parts (c) and (d)
of Figure 5.5 at a time of 180 ns. (a) The normalised intensities of: the probe
field propagating in the absence of the coupling field (solid blue line), the coupling
field propagating in the absence of the probe field (solid yellow line), the probe
field co-propagating with the coupling field (dashed blue line), the coupling field
co-propagating with the probe field (dashed yellow line). (b) The eigenenergies of
the three-level system corresponding to the co-propagating fields in (a).
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5.3 Summary

In this chapter, we explored the propagation of two CW fields through a medium

of homogeneously broadened three-level resonators, focusing on the dynamics that

occur shortly after such fields are turned on. It was found that a weak CW probe

field is able to travel much further into the medium when coincident with a strong

CW coupling field than it can in the absence of the strong coupling field. At early

times before the steady state was reached, the CW probe field was reshaped into a

transient pulse train, in response to the pulse train formed from the strong CW field.

Each pulse of the train on one transition was seen to follow an identical trajectory

to that on the other transition, a property also displayed by the quasi-simultons

studied by Ogden et al. [26]. To the best of our knowledge it is the first time that

such a situation has been studied. It was found that the transparency of the probe

induced by the coupling field in the steady state region could be explained by the

well known Autler-Townes effect [22], but that further research was required to

elucidate the precise nature of the transparency mechanism prior to the steady state

being obtained. We then considered the case in which both fields were strong. It

was observed that in this case, both fields traveled further into the medium when

they were coincident than they did when they propagated independent of each other.

In the steady state region, this was again attributable to an Autler-Townes effect,

but the mechanism behind the dynamics that occurred before the steady state was

reached needed further study to clarify.
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Conclusions

In this thesis, we have used computer simulations and theoretical techniques to

explore the physics of light propagation in two and three level media. We have

framed our investigation around a specific system in 85Rb, but our results apply

more generally to a wide variety of systems. In the first chapter, we introduced the

important nonlinear propagation effects of SIT and simultons as well as the more

widely known effect of EIT. We explained that whilst many of these effects have

been known about for some time, there is much that is unclear about the underlying

physics that links them. The aim of our investigation was to study these effects,

seeking to compare our results with the existing literature and extend them to cases

not considered previously.

In Chapter 2, we outlined the theoretical framework commonly used to study the

propagation of light through atomic systems. We derived the optical Bloch equations

describing the state of the atoms with time and a propagation equation describing

the state of the field with distance collectively referred to as the Maxwell-Bloch

equations. We explained that we would solve these equations numerically in order

to simulate the propagation of light through atomic media. We then reviewed some

important studies that had previously investigated the phenomena of SIT solitons,

optical simultons and pulse trains [12, 26, 50].

We then began our investigation by exploring the propagation of SIT solitons through
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a medium of two-level resonators. For the case in which there was no homogeneous

broadening, it was found that the physics is well understood and our results were

in agreement with the established theory. For the case in which homogeneous

broadening was included, we observed a behaviour consistent with the work of

Miklaszewski and Fiutak [65]. We then showed a interesting result, which we believe

has not been shown previously, in which the instantaneous velocity of a sech-soliton

propagating in the presence of homogeneous broadening was shown to be the same

as that given by the equation describing the velocity of a sech-soliton in the absence

of homogeneous broadening.

In Chapter 4, we looked at the propagation of CW fields through a medium of

two-level resonators, focusing on the dynamics that occur shortly after such fields

are turned on. In the absence of homogeneous broadening, it was found that a

CW field breaks up into a train of pulses as it propagates into the medium, as had

been observed previously by Crisp [28] and Horovitz and Rosenberg [29]. We then

reported an important finding: namely that the average time separation of the pulses

seen in our results was not constant with distance as had been claimed by Horovitz

and Rosenberg. By going to greater distances than they had considered, we found

that in fact the pulses are seen to separate as distance increases. We also found that

the dnoidal waves studied by Crisp [50] with a particular parameter k were good

approximations to the pulse trains formed from a CW field at a particular distance

and over small time region. When we incorporated homogeneous broadening into

our simulations, we observed that pulse trains were still seen to form from a CW field

shortly after it was turned on, however the oscillations were damped and the system

reached a steady state after a period of time. These results were consistent with

those of Macke and Segard [31] and the absorption profiles of the fields in the steady

state region was in agreement with the established theory. Lastly, we compared the

propagation of a sech-soliton with the transient pulse train formed from the CW

field and it was found that the first pulse in the train propagated similarly to a

comparable sech-soliton.
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Finally, we considered the propagation of two CW fields through a medium of ho-

mogeneously broadened three-level resonators, once again focusing on the dynamics

that occur shortly after such fields are turned on. It was found that a weak CW

probe field is able to travel much further into the medium when coincident with

a strong CW coupling field than it can in the absence of the strong coupling field.

We also observed the formation of transient pulse trains on both fields, similar to

those seen in the one-field case, in which each pulse of the train on one transition

was seen to follow an identical trajectory to that of one on the other transition. We

noted the similarity to the optical quasi-simultons studied previously in the group

here at Durham by Ogden et al. [26] but believe that this is the first time such

an effect has been seen with CW input fields. We then looked into the mechanism

underpinning the effect, and found that the results seen in the steady state region

could be explained by the well known Autler-Townes effect [22]. However, it was

noted that further research is required to fully understand the dynamics that occur

before the steady state is obtained. We then considered the case in which both

fields were strong and it was seen that both fields traveled further into the medium

when they were coincident than they did when they propagated independent of each

other. Once again, the mechanism underlying the effect in the steady state region

was shown to be attributable to AT splitting, but further study is needed to fully

understand the phenomenon in the transience region before a steady state is reached.

In conclusion, our investigation has gone some way into elucidating the connection

between a variety of effects that occur when light propagates through an atomic

medium. We have compared our results to previous studies and made several original

findings. We have found that there is much that is still unknown or poorly understood

about light propagation effects and it is hoped that this study may help stimulate

greater interest in these phenomena. One limitation of our work was that we assumed

that the light fields were plane waves and therefore considered propagation along only

one-dimension. In the future, it would be interesting to explore the validity of this

assumption in different regimes by solving the full three-dimensional Maxwell-Bloch
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equations as has been done previously. It should also be noted that the ideal two

and three level systems we considered in this thesis are not complete descriptions

of real atomic systems, though they are often valid approximations. We considered

such ideal systems in this work since the emphasis was on understanding the essence

of the propagation effects which can generally be seen with simple models. However,

in the future it would be interesting to compare the results obtained with the simple

models to those found using more complex ones, for example by including the full

hyperfine structure of the D1 and D2 transitions of 85Rb as was done in the work

on optical simultons by Ogden et al. [26].
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