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Abstract: In this thesis, we compute the bag parameters which parameterise

non-perturbative hadronic matrix elements of 4-quark operators. These are required

for studies of B −B mixing and the inclusive decays of B and D mesons and they

represent the largest source of uncertainty in corresponding theory predictions. In

this work, the bag parameters are obtained using a HQET sum rule analysis of

the 3-point correlator to 3 loops, including SU(3) flavour breaking effects up to m2
s

corrections. Besides reproducing the known HQET sum rule values for Bd-mixing

and the lifetimes of Bd , B+, D0 and D+ mesons, we obtain for the first time results

for Bs-mixing and the lifetimes of Bs and D+
s mesons. For Bs-mixing, our results

are highly competitive, while for the lifetimes no state of the art lattice evaluation is

available. Furthermore, we consider the phenomenological implications of our results

for mixing observables and the values of the CKM matrix elements. Finally, we give

a thorough analysis of inclusive decay widths for charmed mesons, in an attempt to

study the viability of the HQE in the charm sector.
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Chapter 1

Introduction

The standard model (SM) has proven to be a huge success story for particle physics,

culminating in the discovery of the Higgs boson in 2012 [5,6] which cemented our un-

derstanding of how fermion and electroweak gauge boson masses are generated [7–9].

Yet colliders continue to run and the prospect of even larger, more capable colliders

lies on the horizon [10–12] with many open questions remaining unaccounted for by

the SM. One such problem facing particle physicists, is the baryon-asymmetry that

the universe exhibits. In order to explain how such an asymmetry could manifest2,

three conditions were put forward by Sakharov [13]: a mechanism for Baryon number

violation, C and CP violation, and a departure from thermal equilibrium. The first

of these criteria is met by the SM through non-perturbative processes known as

Sphalerons [14]. However, although both C and CP violation are present within

the SM it is not thought to be enough to explain the amount of asymmetry we

observe [15, 16]. Furthermore, a departure from thermal equilibrium would occur

during a strong first order phase transition. The electroweak phase transition is

a natural candidate, however this too is in contention with the SM since a higgs

mass mH < 70 GeV is necessary for it to be strongly first order. Therefore, the

baryon-assymetry problem would suggest the need for new physics (NP).

2The alternative is that the asymmetry was present from the big bang. However, if this were
the case it can be argued that it would be exponentially diluted during inflation of the universe.
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Another strong argument for NP comes from cosmological observations that have

been found to be inconsistent with the SM and predict that a huge proportion of the

matter content of the universe is unaccounted for. Signs of this ‘Dark Matter’ (DM)

were first hinted at as far back as the 1930’s [17–20], however no direct observation

of its existence has been made to date and even a strong consensus on it’s form has

yet to be reached [21]. Further evidence supporting the existence of NP, came with

the measurement of neutrino oscillations [22, 23] which indicated the non-vanishing

neutrino mass. The notion of a neutrino mass categorically requires an extension to

the SM due to the lack of a right handed neutrino which has so far not been found

in nature.

These are compelling reasons to search for beyond standard model (BSM) physics.

The question of how to search for such phenomena, presents us with two options: dir-

ect and indirect searches. Direct searches involve scanning for resonances in particle

collisions at higher and higher energy scales. However, in the LHC era, other than the

discovery of the Higgs boson, this has not proven as fruitful as first hoped1. Instead,

indirect searches have offered an enlightening source of guidance. This approach

focuses our efforts on precision measurements of observables. A comparison with

the SM prediction can then highlight missing NP effects if present. Furthermore,

this approach has played a crucial role historically in the development of the SM.

The discovery of the charm quark is typically accredited to the development of the

Glashow, Iliopoulos and Maiani (GIM) mechanism [24] which introduced a 4th quark

to the already established u, d and s, in order to remove divergences in K-mixing

transitions. Similarly, first measurements of the mass difference ∆Md in B-mixing

by ARGUS in 1987 [25] placed a lower bound on the top quark mass of mt > 50GeV.

This was against consensus at the time and in fact contradicted a supposed ‘clear

signal’ 3 years earlier suggesting mt ≃ 40GeV [26], which was later discounted [27].

Both K and B-mixing are examples of a rare set of processes studied in flavour

physics known as flavour changing neutral currents (FCNC). Since tree level quark

1SUSY didn’t show up.
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interactions with neutral gauge bosons are flavour diagonal in the SM, FCNC are

loop suppressed and appear as the so called box and penguin diagrams. The same

loop suppression does not in principle have to be found in BSM physics and therefore

FCNC can be highly sensitive to NP contributions. These form a testing ground

for potential BSM models, scrutinising their viability by placing constraints on their

parameter space [28].

Furthermore, whilst predictions for SM phenomenology continue to demonstrate

astounding levels of agreement with experiment, the field of flavour physics has

drawn increasing interest by becoming one of the few persisting sources of anomalies.

Current data suggests promising flavour anomalies in b → sll transitions, specific-

ally in the branching fraction ratios R(K(∗)) = B(B → K(∗) µµ)/B(B → K(∗) ee).

These are theoretically clean observables since the uncertainty due to potentially

large hadronic matrix elements cancels in the ratio. They can therefore be precisely

determined in the SM [29], for which the ratio R(K) is equal to 1 due to lepton

flavour universality (LFU) up to O(1%) corrections. Any pronounced shift from

unity would therefore be a sign of lepton flavour violating (LFV) effects and suggest

the presence of NP. Such a disparity has been found [30], in the form of a deficit

in the muon mode and a recent update on R(K) by LHCb predicts a disagreement

with the SM of 3.1σ [31]. The branching ratio of the pure leptonic decay B(B → µµ)

also offers a clean observable to test LFU since the hadronic input only enters as

the decay constant fB, and is precisely determined by lattice QCD [32]. The LHCb

update in [33] (see [34, 35] for the previous findings by ATLAS and CMS respect-

ively) found a 1σ deviation from the SM. A combined analysis [36, 37] of R(K(∗))

and B(K → µµ) however uncovers a disagreement with the SM between 4 ∼ 4.7σ,

indicating a promising area to probe NP1. Further hints towards LFV comes from

the anomalous magnetic moments of the muon and the electron where we observe

4.2σ [38–40] and 2.4σ [41–43] deviations from the SM respectively. These appear

1The global fits in [36] also explore combined analyses including the theoretically less clean
angular observables.
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with opposing signs, which naturally makes it a challenge to satisfy both with BSM

models that don’t incorporate LFV.

In order to capitalise on the rich phenomenology that flavour physics offers, we re-

quire high precision from both experiment and theory. From the theory perspective,

the challenge comes from higher order perturbative corrections and long distance

QCD effects. In heavy quark physics, the latter is usually the dominant source

of uncertainty and arise in the form of hadronic matrix elements. Undeterred by

the obstacle, a concerted effort has spawned the development of several theoretical

tools to assist in this struggle and advanced our theoretical understanding of flavour

physics considerably. In this regard, the impact of both the Heavy Quark Expansion

(HQE) [44] and the Heavy Quark Effective Theory (HQET) [45] cannot be overstated.

For processes involving hadrons containing a heavy quark, these disentangle the high

and low energy physics contributions and provide frameworks by which the calcula-

tion can be expanded in inverse powers of the heavy quark mass. This substantially

simplifies the problem and in the case of the latter can also reveal symmetries of

the low energy theorem that we can exploit. In the direct computation of hadronic

matrix elements, perturbation theory breaks down and non-perturbative methods

are unavoidable. For this purpose, the method of QCD sum rules was established

by Shifman, Vainshtein and Zakharov (SVZ) [46] and it has since proven itself ef-

fective in the determination of these parameters, becoming the standard analytical

approach. More recently, the development of lattice QCD [47] has overshadowed the

latter method in some cases, benefiting from the tremendous growth in computa-

tional power to provide precision numerical determinations. The two methods each

have their own strengths however and often are complementary to one another. For

example, light cone sum rules (LCSR)1 [48] and lattice calculations are typically both

required for a complete analysis of the form factors entering semi-leptonic decays
1A variation on SVZ sum rules, sharing the same notions of quark-hadron duality and dispersion

representations but employing a light cone expansion as opposed to the short distance expansion
which characterises SVZ sum rules. The details of the LCSR method however are beyond the scope
of this work and will not be discussed further.
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where they are applicable in separate kinematic regimes [49–53].

Aside from this example, there remain other instances where sum rules have been

found to be competitive with lattice. In recent years, this was found to be the case

for the bag parameter B [1,3,54,55] which, along with a decay constant, parameterise

the hadronic matrix elements of 4-quark operators. In this case, a sum rule can

be constructed for the deviation of the bag parameter from the vacuum insertion

approximation (VIA) ∆B = B − 1. Since numerically the bag parameter is found

to be very close to one [32], even uncertainties of order ∼ 20% for ∆B translate to

a precision of order ∼ 2% for the whole bag parameter. This has important phe-

nomenological implications in the study of B-mixing where in the SM prediction of

the mass difference ∆Md/s the bag parameter is the largest contributor to the overall

uncertainty. Furthermore, it has been shown [28] that popular BSM models aimed

at resolving the b → sll anomolies, can be strongly constrained by ∆Ms. Therefore

the improved understanding of these non-perturbative parameters can have a direct

effect on NP searches.

The main purpose of this work is the study of hadronic matrix elements of 4-quark

operators involved in Bs mixing and those required for an analysis of Bs and D+
s

lifetimes. To complement this, we also explore some of the implications of our results

to B-mixing and the CKM matrix and include a full analysis of the D+
s lifetime.

The rest of the thesis is arranged as follows:

In Chapter 2 we provide an introduction to some theoretical concepts which are

used in the latter parts of the thesis. The ideas behind the HQE and the HQET are

discussed and a brief overview into Bs-mixing is presented, before outlining the sum

rule method in the context of the HQET decay constant. Following this we introduce

some useful techniques for the calculation of loop integrals, namely Integration by

Parts identities and the concept of master integrals, and methods for expanding

loop integrals in some small parameter, specifically the Mellin Barnes representation

and the Expansion by Regions method. We end this section by reviewing the Fock-

Schwinger gauge, in which we expand the quark propagator in the background field
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technique and then demonstrate the computation of condensate corrections through

some simple example calculations.

In Chapter 3 we determine the values of the bag parameters for the Bs meson in the

full dimension-6 4-quark operator basis relevant for SM and BSM predictions of the

mass difference ∆Ms and SM predictions of the decay rate difference ∆Γs. This is

done first in the HQET at NLO in αs, including SU(3) flavour breaking effects up

to quadratic corrections of the strange quark mass, before matching onto QCD. We

discuss the effect of these results on the SM predictions for ∆Ms and ∆Γs and then

extract values for the top quark MS mass and for the leptonic branching fraction

B(Bs/d → ll) from these findings.

In Chapter 4 we make a short detour from our sum rule analysis to briefly explore

some of the implications of our findings in Chapter 3 for the values of CKM matrix

elements. This includes predictions for |VtsVtb|, the ratio |Vtd/Vts|, Vcb and the angle

γ of the unitarity triangle.

In Chapter 5 we return to the topic of sum rules and provide an analysis of the

HQET bag parameters for 4-quark operators entering the calculation of Bs and D+
s

lifetimes. Here we compute for the first time the effect of non-valence contributions

and again take into account the effect of SU(3) flavour breaking.

In Chapter 6 we carry out an in depth analysis of inclusive decay widths in charmed

mesons. We calculate the total decay rate of the D0, D+ and D+
s mesons, along with

the lifetime ratios τ(D+)/τ(D0) and τ(D+
s )/τ(D0), and determine the semileptonic

branching fractions Br(Dq → Xe+νe). In doing so, we bring together for the first

time in the charm sector, state of the art 4-quark operator matrix elements, and the

non-leptonic contribution to the coefficient of the Darwin operator.

Finally, in Chapter 7 we conclude by summarising our findings and discuss their

impact on the field of heavy quark physics.



Chapter 2

Theoretical Background

2.1 Heavy Quark Expansion

Whether our aim is to test the validity of the SM, extract a parameter of our theory

or probe for New Physics effects, finding an appropriate observable for our purposes

generally involves a compromise between what is easier to calculate theoretically

and what can be more precisely measured in experiment. In heavy quark physics we

study decays of heavy hadrons. If we consider exclusive decays (e.g Γ(Bd → πl+ν)),

where the final outgoing decay channel is singled out, then experimentally this can

be determined relatively easily whereas theoretically we have great difficulty due

to the non-perturbative effects of the bound states involved. Alternatively, if we

consider inclusive decays (e.g Γ(Bd → X)) then all possible final states are included.

This is obviously a greater undertaking for those in experiment who have to sum

up all the contributing decay modes. However, from a theory perspective it allows

for a powerful simplification of the calculation through the Heavy Quark Expansion

(HQE). For hadrons with a heavy quark the HQE permits us to express inclusive

decay rates as an operator expansion in the inverse of the heavy quark mass. For the

early development of the HQE, see [56–64] and for a modern review see [44]. Here

we summarise some of the key points, taking as an example the total decay rate of
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a B meson of mass MB which can be expressed as,

Γ(B) = 1
2MB

∑
X

∫
P S

(2π)4 δ(4)(pB − pX)| ⟨X(pX)|Heff |B(pB)⟩ |2, (2.1.1)

where Heff is the effective weak Hamiltonian [65], the delta function enforces mo-

mentum conservation between the B meson momentum pB and the sum of the out

going state momenta pX , we sum over all possible final states X and we integrate

over phase space. Through the optical theorem1 the total decay rate in Eq.(2.1.1)

can be expressed in the form,

Γ(B) = 1
2MB

⟨B|T |B⟩ , (2.1.2)

for which the transition operator T is defined by

T ≡ Im i
∫
d4xT{Heff (x)Heff (0)}. (2.1.3)

Therefore the total decay rate is proportional to the discontinuity of a forward scat-

tering amplitude of the B meson with a double insertion of the effective Hamiltonian.

An additional operator product expansion under the assumption that the b quark

mass mb is large leads to an expansion of Eq.(2.1.3) in 1/mb consisting of local

operators2. The total decay rate in Eq.(2.1.2) then takes the form,

Γ(B) = Γ3⟨O3⟩ + Γ5
⟨O5⟩
m2

b

+ Γ6
⟨O6⟩
m3

b

+ ...+ 16π2
[
Γ̃6

⟨Õ6⟩
m3

b

+ Γ̃7
⟨Õ7⟩
m4

b

+ ...

]
, (2.1.4)

for which Γi denote perturbative contributions and the matrix elements ⟨Od⟩ of mass

dimension d represent the non-perturbative input which we expect to be numerically

of order ∼ ΛQCD but must be calculated either through sum rule methods or on

the lattice. The tilde on ⟨Õ6⟩ and ⟨Õ7⟩ is to distinguish them as matrix elements

of 4-quark operators whereas those without contain 2-quark operators. The form of

the operators which are generated by the expansion are as follows:

• At dimension 3 we have the 2-quark operator bb and it is worth noting that
1The optical theorem follows as a result of conservation of probability (see [66] for proof).
2In the B system we find ΛQCD/mb ≪ 1 and so the power series is justified. However, since

mc/mb ∼ 3 it is not obvious that the HQE is viable for charmed hadrons (see Chapter 6).
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the perturbative coefficient Γ3 describes the decay of a free b quark.

• The next independent operators arise at dimension 5 in the form of the kinetic

and chromomagnetic operators bD2b and bσµνGµνb respectively. No independ-

ent dimension 4 operator appears in Eq.(2.1.4) since equations of motion relate

these back to bb. This is a significant result in itself since as a consequence the

first correction to the free quark decay calculation at dimension 3 comes with

a suppression of 1/m2
b .

• For dimension 6 the Darwin operator bDµ(v · D)Dµb emerges as the 2 quark

operator contribution whilst at this order we also get 4 quark operators contrib-

uting of the form (bΓq)(qΓb) (we also note that the forward scattering matrix

elements of the Darwin operator and the 4-quark operators are related via

equations of motion). The 4-quark contributions are the first to include effects

of the spectator quark q. It therefore has particular importance for studies

into SU(3) flavour breaking effects. The factor of 1/(16π2) has been pulled

out in Eq.(2.1.4) in order to highlight the phase space enhancement of 4 quark

operator contributions. Whilst Γi is a 2-loop calculation at leading order in

αs, Γ̃i has non vanishing contributions already at 1-loop.

• At dimension 7 we see 4 quark operators with an additional covariant derivative.

We will return later to explore these contributions in further detail. In particular,

analysis of 4 quark operator matrix elements using HQET sum rules are presented

in Chapters 3 and 5. Furthermore, in Chapter 6 a full analysis of the charm meson

lifetime is discussed.

2.2 Heavy Quark Effective Theory

The guiding principle behind the use of effective field theories is to choose an appro-

priately detailed physical description for the problem at hand. When considering
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processes at low energy scales, we cannot resolve and therefore do not need a full

description of high energy degrees of freedom. For example, the W boson mediates

flavour changing processes of the SM but at low energies µ ≈ mb, the large mass

of the W boson MW ≫ mb effectively shrinks the W boson propagator down to

a point so that the processes can be sufficiently approximated through 4-fermion

operators [67, 68]. The weak effective theory (WET) formalises this picture by in-

tegrating out degrees of freedom of mass ≥ MW from the generating functional

and introducing a Wilsonian operator product expansion (OPE) to form a clear

separation of scales. The final element to the procedure is the process of matching

the SM and WET at the high scale MW and running down the couplings of the

WET to the low scale mb using renoralisation group (RG) equations. This sums up

large logarithms of the form αs(µ) log(µ/MW ) that otherwise spoil the perturbative

expansion at µ = mb.

The heavy quark effective theory (HQET) has similar motivations. The purpose of

HQET is to describe the physics involved in hadrons containing a heavy quark of

mass mQ. In this case, the high scale is mQ whereas the low scale is set by ΛQCD and

heavy quark refers to a c or b quark1 since both have masses that are considerably

larger than characteristic scale of the hadron ΛQCD ≪ mQ. In this context, a heavy

quark is considered to move with the hadron four-velocity v and be almost on shell.

It is therefore appropriate to parameterise the heavy quark momentum as,

pµ
Q = pµ +mQ v

µ, (2.2.1)

where the ‘residual’ momentum p of the heavy quark is of the order p ∼ ΛQCD. Using

this definition, it is easy to see what the form of the heavy quark propagator will be
1Obviously the top quark fits the criteria but since it decays too quickly to form bound states

it has been neglected here.
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by expanding the QCD free quark propagator in the heavy quark limit mQ → ∞:

i
/pQ

+mQ

p2
Q −m2

Q

= i
/p+mQ(1 + /v)
p2 + 2mQp · v ,

= i
(1 + /v)

2ω + O
(

1
mQ

)
.

(2.2.2)

where ω = p · v denotes the ‘residual energy’ and determines how far off-shell the

heavy quark is, and we have used v2 = 1 (see Table 2.1 for the leading order HQET

Feynman rules).

The quark field is then also reparameterised,

Q(x) = e−imQv·xh(x) + O
(

1
mQ

)
, (2.2.3)

such that the field h, which describes the massless degrees of freedom, is defined by,

h(x) = eimQv·x (1 + /v)
2 Q(x). (2.2.4)

which implies the relation /vh = h. If we consider the heavy quark in the hadron rest

frame vµ = (1, 0, 0, 0), then from Eq.(2.2.4) it’s apparent that the field h corresponds

to the upper two elements of Q. Using these definitions, it follows that the HQET

Lagrangian in the heavy quark limit takes the form [69],

Lh = hi (v ·D)h. (2.2.5)

This has some important consequences. Firstly, although h annihilates heavy quarks

it does not create heavy anti quarks and therefore there are no heavy anti quarks in

the strict HQET description of the hadron. These only arise when including 1/mQ

corrections to Eq.(2.2.5). Secondly, Eq.(2.2.5) is independent of mQ and therefore in

the heavy quark limit the surrounding light degrees of freedom are insensitive to the

mass of the heavy quark. This leads to a flavour symmetry between a system of Nf

heavy quarks all moving with the same velocity v. Furthermore, since no gamma

matrices appear in Eq.(2.2.5), interactions with gluons have no effect on the spin

state of the heavy quark. As a result, the system exhibts an SU(2Nf ) spin-flavour

symmetry [70–72] which allows for non-trivial relations between the matrix elements
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of hadrons with different heavy quark flavours and allows hadrons to be identified

by the quantum numbers of their light degrees of freedom [73]. Symmetry breaking

effects can then be calculated by introducing 1/mQ corrections.

k

i j
i δij (1 + /v)

2(k · v)

i j

µ, a

i g taij v
µ

Table 2.1: HQET Feynman rules at leading order in 1/mQ.

2.3 Bs-mixing

In this section we give a brief introduction to Bs-mixing. Many reviews on this

subject are already available in the literature, in particular, see chapter 1.3 of [74]

for a thorough introduction and also the excellent discussions in [68,75–77].

s

sW

u, c, t

b

W

u, c, t

b

(a)

s

su, c, t

W

b

W

u, c, t b

(b)

Figure 2.1: Box diagrams that mediate Bs − Bs transitions. Both
apply to M s

12 for which an internal t quark gives the
dominant contribution. For Γs

12 only the diagram on the
right with internal u and c quarks enter the calculation.

The phenomena of neutral meson mixing can be described through a quantum

mechanical picture. Taking a 2 state system at time t consisting of a superposition
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of the flavour state |Bs⟩ and the anti flavour state |Bs⟩, its time evolution can be

expressed through the differential equation,

i
d

dt

|Bs(t)⟩

|Bs(t)⟩

 =
(
M̂ s − i

2Γ̂s
)|Bs(t)⟩

|Bs(t)⟩

 , (2.3.1)

where M̂ s and Γ̂s are 2 × 2 Hermitian matrices. In a system without mixing, the

diagonal terms of M̂ s correspond to the Bs mass MBs
and the diagonal terms of

Γ̂s correspond to its decay rate ΓBs
, while the off-diagonal terms of both disappear.

However, weak interactions in the SM generate nonvanishing off-diagonal terms M s
12

and Γs
12 through the box diagrams shown in Figure 2.1.

Contributions to M s
12 come from the dispersive part of these diagrams where in-

termediate states are off-shell, while the absorptive part contributes to Γs
12 where

intermediate states are on-shell. For this reason, only the diagram on the right of

Figure 2.1 contributes to Γs
12 and unlike M s

12 only u and c quarks play a role.

Diagonalising M̂ s and Γ̂s we find the mass eigenstates of the system for which we

label the heavy state |BH⟩ and the light state |BL⟩. The eigenvalues of M̂ s and

Γ̂s then correspond to the mass M s
H/L and the decay rate Γs

H/L of |BH/L⟩. In the

B system, we can expand the mass difference ∆M s and decay rate difference ∆Γs,

using |Γs
12/M

s
12| ≪ 11, which leads to the expressions,

∆Ms ≡ M s
H −M s

L

= 2|M s
12|
(

1 − |Γs
12| sin2 ϕs

12

8|M s
12|2

+ ...

)

≈ 2|M s
12|,

(2.3.2)

∆Γs ≡ Γs
H − Γs

L

= 2|Γs
12| cosϕs

12

(
1 − |Γs

12| sin2 ϕs
12

8|M s
12|2

+ ...

)

≈ 2|Γs
12| cosϕs

12,

(2.3.3)

1In D-mixing, a similar treatment is not appropriate. See discussions in [78] on the complications
that arise in D-mixing.
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where the mixing phase ϕs
12 is defined as,

ϕs
12 ≡

(
−M s

12

Γs
12

)
. (2.3.4)

Calculating M s
12 therefore allows us to determine the mass difference ∆Ms. For

this we use an effective Hamiltonian with degrees of freedom above the scale mb

integrated out of the theory,

M s
12 = ⟨B̄s|H∆B=2

eff |Bs⟩
2MBs

. (2.3.5)

Here our effective Hamiltonian H∆B=2
eff is given in the SM by,

H∆B=2
eff = C1 Q1 + h.c. (2.3.6)

with the Wilson coefficient C1 containing all dependence on the heavy degrees of

freedom and Q1 is the only 4-quark operator appearing,

Q1 = b̄iγµ(1 − γ5)si b̄jγ
µ(1 − γ5)sj, (2.3.7)

where i, j denote the colour indices in the fundamental representation. With only

one operator appearing1, the procedure is straightforward. To determine the Wilson

coefficient we calculate the quark level processes in Figure 2.1 and equate to the

calculation done in the effective theory.

Combining all contributions from both box diagrams we find the following structure,

M s
12 ∝ λ2

uF (xu, xu) + λuλcF (xu, xc) + λuλtF (xu, xt)

+ λcλuF (xc, xu) + λ2
cF (xc, xc) + λcλtF (xc, xt)

+ λtλuF (xt, xu) + λtλcF (xt, xc) + λ2
tF (xt, xt),

(2.3.8)

where the CKM inputs are represented by λi = VibV
∗

is and the box diagrams are

functions of xq = m2
q/M

2
W . From this we use CKM unitarity, ∑i VijV

∗
ik = δjk,

specifically λu + λc + λt = 0, to remove λu. As a result, Eq.(2.3.8) can be expressed

1This turns out to be the case even when NLO QCD corrections are considered.
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as,

M s
12 ∝ λ2

c [F (xc, xc) − 2F (xu, xc) + F (xu, xu)]

+ λcλt [F (xc, xt) − F (xu, xt) − F (xu, xc) + F (xu, xu)]

+ λ2
t [F (xt, xt) − 2F (xu, xt) + F (xu, xu)] .

(2.3.9)

In this form, the GIM suppression becomes evident [24]. We see that any constant

terms arising from the loop integrals cancel in the square brackets and, more signi-

ficantly, if all masses were equal then each line in Eq.(2.3.9) would independently

cancel entirely. Each term is subjected to the same order of CKM suppression and

so, setting mu = mc = 0, we can approximate M s
12 by the top contribution alone1,

M s
12 ∝ λ2

t [F (xt, xt) − 2F (0, xt) + F (0, 0)]

∝ λ2
tS0(xt),

(2.3.10)

where S0(xt) denotes the Inami-Lim function [79],

S0(x) = 4x− 11x2 + x3

4(1 − x)2 − 3x3 log x
2(1 − x)3 , (2.3.11)

The result of the full calculation reads,

M s
12 = G2

F

12π2λ
2
tM

2
WS0(xt)η̂BBf

2
Bs
MBs

, (2.3.12)

where the factor η̂B [65] encapsulates higher order QCD corrections, MW denotes

the W boson mass and GF is the Fermi constant. The hadronic matrix element

enters through,

⟨B̄s|Q1|Bs⟩ =
(

2 + 2
Nc

)
M2

Bs
f 2

Bs
B1(µ), (2.3.13)

where it is parameterised by the decay constant fBs
and the bag parameter B1(µ)

which determines the deviation from the vacuum insertion approximation (VIA)2

and is also dependent on the renormalisation scale µ. The bag parameter is by
1This is justified since xu ∼ xc ≪ 1 while xt > 1.
2A full set of states is inserted into Q1 in Eq.(2.3.13) and the ground state isolated. This is

assumed to give the dominant contribution and so all others are dropped. The bag parameter is
then a way of quantifying the neglected terms. Numerically, the VIA is in fact found to be a very
good approximation (see [28]).
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far the largest source of uncertainty in predictions of ∆Ms. Whilst modern lattice

groups can achieve precise results for decay constants, the matrix elements of 4-quark

operators presents a much greater challenge (see Chapters 3 and 5).

The calculation of Γs
12 is more technically challenging than that of ∆Ms since the

intermediate u and c states go on-shell. After integrating out the W boson, we are

left with a bi-local object. In order to get a series of local operators a second OPE

is applied. This is done through the formalism of the HQE already described in

Section 2.1. We therefore get an expression for Γs
12 as a power series in (ΛQCD/mb)

which reads [76],

Γs
12 = Λ3

m3
b

[
Γs(0)

3 + αs

4πΓs(1)
3 + ...

]
+ Λ4

m4
b

[
Γs(0)

4 + ...
]

+ ... (2.3.14)

where the Γs
i each contain a product of Wilson coefficients and matrix elements of

local operators and we have expanded each contribution in αs. In addition to the

operator Q1 appearing in ∆Ms, two new operators also contribute to Γs
3:

Q2 = b̄i(1 − γ5)si b̄j(1 − γ5)sj, (2.3.15)

Q3 = b̄i(1 − γ5)sj b̄j(1 − γ5)si, (2.3.16)

for which their corresponding matrix elements read,

⟨B̄s|Q2|Bs⟩ =
M2

Bs

(mb +ms)2

(
−2 + 1

Nc

)
M2

Bs
f 2

Bs
B2, (2.3.17)

⟨B̄s|Q3|Bs⟩ =
M2

Bs

(mb +ms)2

(
1 − 2

Nc

)
M2

Bs
f 2

Bs
B3, (2.3.18)

where the masses mb and ms are evaluated in the MS scheme. The term Γs
4 in

Eq.(2.3.14) is suppressed by an additional power of Λ/mb and here we find two more

4-quark operators arising,

Q4 = b̄i(1 − γ5)si b̄j(1 + γ5)sj, (2.3.19)

Q5 = b̄i(1 − γ5)sj b̄j(1 + γ5)si, (2.3.20)
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with the corresponding matrix elements parameterised by,

⟨B̄s|Q4|Bs⟩ =
(

2M2
Bs

(mb +ms)2 + 1
Nc

)
M2

Bs
f 2

Bs
B4, (2.3.21)

⟨B̄s|Q5|Bs⟩ =
(

2M2
Bs

Nc(mb +ms)2 + 1
)
M2

Bs
f 2

Bs
B5, (2.3.22)

In Chapter 3, we determine all of the above mentioned bag parameters for the 4-quark

operators necessary for calculating ∆Ms in the SM and BSM and ∆Γs in the SM with

HQET sum rules. Also appearing in Γs
4 are contributions from dimension-7 operators

(4-quark operators with an inserted covariant derivative). First non-perturbative

determinations of their matrix elements were carried out very recently [80] on the

lattice where before the VIA had to be relied upon. Taking into consideration the

recent developments of the non-perturbative inputs to both ∆Ms and ∆Γs we discuss

the current status of both in Chapter 3.

2.4 QCD Sum Rules

In this section we give an overview of the method of QCD sum rules (for enlightening

reviews and early development see [46,81–86]). The approach allows for an analytical

computation of hadronic amplitudes using perturbative QCD. Given an ansatz on

the hadronic spectral function, it has been successfully applied to extract non-

perturbative hadronic parameters in a model independent way. The typical starting

point of such calculations are time ordered correlation functions of currents that

satisfy the quantum numbers of the hadrons we wish to study. Motivated by the

work presented in Chapters 3 and 5 we will restrict our discussion to HQET sum

rules for a heavy-light meson H containing heavy-quark Q in this section. The

principles of the sum rule set up are no different in this context and it should serve

to familiarise the reader with the notation used in the latter half of the thesis.
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2.4.1 2 point correlator

Consider the two point correlator,

Π(ω) = i
∫
ddx eip·x ⟨0|T

[
j̃†q(0)j̃q(x)

]
|0⟩ , (2.4.1)

where the currents are defined by j̃q ≡ qγ5h with light quark field q and HQET field

h for heavy quark Q, where p is the residual momenta of the heavy quark (as defined

in Eq.(2.2.1)) and ω is the corresponding residual energy ω = p · v, and we have used

dimensional regularisation with d = 4 − 2ϵ. For large negative residual energy, the

quarks in the interpolating current are highly virtual and in the limit ω → −∞ can

be described through perturbative QCD. However, for values of ω > 0 the correlator

can form bound states. These manifest as resonances for single particle meson states

and a ‘continuum’ of multiparticle states along the positive real axis.

Figure 2.2: Contour chosen to isolate the pole at ω. The red marker
indicates the lowest single state hadronic resonance.
The squiggly line shows the continuum of multi-particle
and excited states.
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Since the correlator is analytic away from the positive real axis, these two regimes

can be related to one another by means of a dispersion relation:

Π(ω) = 1
2πi

∮
C

ds
Π(s)

(s− ω)

= 1
2πi lim

ϵ→0

∞∫
0

ds
Π(s+ iϵ) − Π(s− iϵ)

(s− ω) + 1
2πi

∫
R

ds
Π(s)

(s− ω)

=
∞∫

0

ds
ρ(s)

(s− ω) ,

(2.4.2)

where ρ(s) = lim
ϵ→0

(Π(s+ iϵ) − Π(s− iϵ))/2πi denotes the discontinuity in Π(s) along

the positive axis. Both the contour C and the discontinuity are indicated by the

plot in Figure 2.2. In the last step of Eq.(2.4.2), we have assumed that the radial

section vanishes in the limit R → ∞. This is not always the case however and to

account for possible divergent behaviour we can instead use the following form,

Πn(ω) = ωn

∞∫
0

ds
ρ(s)

sn(s− ω) +
n−1∑
i=0

ai ω
i, (2.4.3)

where n is chosen to ensure the radial portion of the integration disappears. In its

stead, we have polynomial corrections with coefficients ai. These can be discarded

however by taking the appropriate number of derivatives. This observation will be

one of the motivations behind a key alteration to the sum rule that we discuss in

Section 2.4.3. With this in mind, we will revert back to the form of the dispersion

relation shown in Eq.(2.4.2) for the remainder of this discussion.

For ω > 0 we can express the discontinuity of the 2-point function in terms of

hadronic parameters using an ansatz for the hadronic spectral function,

ρhad(ω) = F 2δ(ω − Λ) + ρcont(ω), (2.4.4)

with Λ ≡ MH − mQ denoting the mass difference [87] between the ground state

meson and heavy quark. In Eq.(2.4.4) the delta function determines the ground

state resonance while ρcont(ω) is defined as the continuum spectral density which

contains all of the complications of multi-particle and excited state resonances in

one deceptively simple looking term. The HQET variation of the decay constant F
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determines the coupling strength of the ground state resonance and is defined by

the HQET matrix element1,

⟨0|qγµγ5h|H(v)⟩ = −iFqv
µ, (2.4.5)

where the HQET state appearing is non-relativistically normalised such that,

|H(p)⟩ =
√

2MH |H(v)⟩ + O(1/mQ). (2.4.6)

Substituting Eq.(2.4.4) back into our dispersion relation Eq.(2.4.2) we get,

Π(ω) = F 2
q

(Λ − ω)
+
∞∫

ω0

ds
ρcont(s)
(s− ω) , (2.4.7)

where we have introduced a threshold parameter ω0 which indicates the energy at

which continuum contributions begin.

If we consider again the limit ω → −∞, the correlation function can be described

through perturbation theory since the process is predominantly short distance. How-

ever, taking some intermediate value of ω < 0, we are sensitive to long distance

non-perturbative effects from the QCD vacuum. Fortunately a procedure for separ-

ating out long and short distance effects is available to us in the form of the operator

product expansion (OPE).

2.4.2 Operator Product Expansion

• • • • ••

Figure 2.3: Contributions to Eq.(2.4.1) corresponding to LO per-
turbative (left), quark condensate (middle) and gluon
condensate (right).

At large momenta, as the quark-heavy quark pair travel over the short distance
1The meson state here contains a heavy particle. In later sections of this work concerned with B

mesons the convention in the literature is that B mesons contain b quarks while B mesons contain
b quarks.
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x they interact with the non-trivial QCD vacuum fields. Since the vacuum fields

generally fluctuate over long distances, it can be argued that to the fields generated

by our current jq they are experienced as static fields. Quantitatively, this idea is

formalised through the use of the operator product expansion,

∫
ddx eip·x T

[
j̃†q(0)j̃q(x)

]
= C01 +

∑
d=1

CdO
d, (2.4.8)

where Cd are Wilson coefficients containing short distance information. Long distance

effects are described by operators Od of mass dimension d which are constructed

from gauge invariant combinations of quark and gluon fields. Higher order terms

in the expansion generate power corrections ∝ ω−d. For the 2-point correlator, the

expansion in Eq.(2.4.8) is sandwiched between the initial and final vacuum states

and so described by a series of Wilson coefficients and vacuum expectation values

(VEV) ⟨Od⟩ known as the QCD condensates. At d = 0 we have the identity operator

1 and its coefficient C0 which corresponds to the result calculated in full perturba-

tion theory (since within that framework the VEV of higher dimensional operators

vanish). We show some of the leading non-perturbative corrections in Figure 2.3,

specifically quark condensate ⟨qq⟩ and gluon condensate ⟨GG⟩ contributions along

with the perturbative result at leading order in αs. We will discuss methods for

extracting the coefficients of condensates in Section 2.6. The tools used in this

case are the tools of perturbation theory. To determine the condensates themselves

however is beyond these methods. Instead, we have three options [85]: simulate

them using lattice QCD, construct a model to describe the vacuum (e.g. liquid

instanton model [88,89]), or fit them by comparing to other sum rules of measurable

quantities. In the latter case, we rely on the the validity of the OPE, by which

we mean that there is a clear separation of scales between the Wilson coefficients

and the condensates. Under this assumption however, the condensates are universal

and can be treated as phenomenological parameters of the theory. This method

has proven successful, a clear example being the estimation of the gluon condensate

⟨α
π
GG⟩ ≃ (0.012GeV)4 in the original SVZ sum rule studies [90]. Determined by
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fitting moment sum rules to experimental data for charmonium states, this value for

the gluon condensate is still in use today.

Though the OPE has been proven to be valid in full perturbation theory, its ap-

plication in QCD introduces non-perturbative effects which bring this into question.

The nontrivial character of the QCD vacuum has two main consequences for the

OPE [46]:

1. Non-vanishing condensates, ⟨Od⟩ ≠ 0

2. The breakdown of the OPE, beginning at critical dimension dcrit

The latter of these points can be understood as a breakdown of the separation of

scales principle that the OPE assumes. At some dcrit the VEVs become sensitive to

non-perturbative effects from short distance fluctuations and the validity of the OPE

is lost. Importantly, these effects typically only come into play at high orders in the

expansion1, beyond the order at which we need to truncate. We note that truncation

in this context is not solely due to our computational limitations. The operator

expansion, as with our perturbative expansion in αs, is divergent (see discussion

in [91]). An optimal truncation still leaves a gap between our OPE description of

the correlator and its exact theoretical solution. In fact, the effect of neglected terms

at ω < 0 may be magnified after analytical continuation to the positive real axis2.

There is therefore an inherent limitation on the accuracy of the OPE. These effects

are referred to as a violation of quark hadron duality (QHD) where QHD is the

assumption that the quark level picture of the OPE can be considered ‘dual’ to the

hadronic picture for ω > 0 (for an in depth discussion into QHD read the excellent

review by Shifman [91]).

Helpful discussions into how we can estimate the value of dcrit through instanton

models can be found in [46, 85, 91]. The topic of short distance non-perturbative

physics is beyond the scope of this work so we end this discussion here and put

together the pieces of our sum rule. Below dcrit, the OPE allows us to calculate the
1See e.g. [46] for one-instanton solution in the dilute gas approximation showing dcrit = 12.
2The correlation function may exhibit oscillatory behaviour for ω > 0 that the OPE is not

sensitive to.
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2 point correlator with the methods of perturbation theory supplemented with the

condensates. Equating this picture with our hadronic description gives us our ‘sum

rule’,
F 2

(Λ − ω)
+
∞∫

ω0

ds
ρcont(s)
(s− ω) =

∞∫
0

ds
ρOP E(s)
(s− ω) . (2.4.9)

For the 2-point case, the object of interest is the decay constant, as can be seen from

how we have isolated its contribution in Eq.(2.4.7). However, standing in our way

of directly calculating it is the remaining contribution from the continuum spectral

density. A useful alteration to the sum rule which helps to deal with this issue and

also with the problem of potential subtraction terms in our dispersion relation is the

Borel transform.

2.4.3 Borel Transform

The Borel transformed correlator is defined by [46],

Π(t) ≡ BtΠ(ω) = lim
−ω,n→∞
−ω/n→t

(−ω)n+1

n!

 d

dω

n

Π(ω), (2.4.10)

for which there are three main consequences that are apparent from the following

identities for the operator Bt. The first,

Bt[ωi] = 0, (2.4.11)

is immediately obvious since in the limit Eq.(2.4.10) applies infinite derivatives which

removes any polynomial terms. Importantly this removes the need for subtraction

terms from our dispersion relation.

Secondly we have,

Bt

 1
(s− ω)i

 = lim
−ω,n→∞
−ω/n→t

(−ω)n+1

n!

 d

dω

n

(s− ω)−i

= lim
n→∞

1
(i− 1)! t(i−1)

(i+ n− 1)!
(n− 1)! ni

1 + s

nt

−(i+n)

= e
−s
t

(i− 1)! t(i−1) ,

(2.4.12)
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which has a two fold effect. On the hadronic side of our sum rule, this introduces

an exponential weight function to our integral and therefore reduces our sensitivity

to ρcont. On the theory side, convergence of the OPE is improved since higher order

terms in the series become factorially suppressed. The downside is that choosing

t to optimise either of these effects worsens the other. Choosing a low value for t

isolates the ground state contribution further but increases the significance of the

higher order terms in our expansion. This is not ideal, since we are already aware

that our expansion must breakdown for some dcrit. Alternatively, choosing a higher t

suppresses higher order contributions and allows us to safely truncate after the first

few terms, but increases our sensitivity to higher energy resonances. Avoiding these

scenarios places conditions on our choice of t leading to upper and lower limits which

define the range t ∈ {tmin, tmax} in which the sum rule is stable. This is known

as the ‘Borel window’ [81]. It is worth noting that the existence of such a ‘Borel

window’ for any sum rule is not guaranteed since tmin may be found to be higher

than tmax. This can occur if the OPE is found to converge poorly or is affected by

short distance non-perturbative effects at relatively low orders.

The Borel transformed sum rule is by no means the only variation at our disposal.

Other alternatives to be used include moment sum rules and Gaussian weight func-

tions methods. Discussions on these as well as a thorough review of all aspects to

QCD sum rules can be found in [82].

In order to create a sum rule for the decay constant, we use QHD [81,91–93] which

allows us to approximate1,
∞∫

ω0

ds
ρcont(s)
(s− ω) =

∞∫
ωc

ds
ρOP E(s)
(s− ω) , (2.4.13)

where ωc is some cut-off which does not necessarily coincide with ω0 and needs to be

fixed. As we have discussed, the Borel transformation suppresses the contribution

from ρcont(s) and therefore reduces our sensitivity to violations of this approximation.

1This is an example of ‘global’ duality. Alternatively ‘local’ duality considers the approximation
that ρOP E(ω) = ρhad(ω) for ω → ∞ (see discussion in [81]).
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Using Eq.(2.4.13) we arrive at our final Borel HQET sum rule for the decay constant

(see [94–96] for early works),

F 2(µ) =
ωc∫
0

dω e
Λ−ω

t ρOP E(ω). (2.4.14)

We now have a direct route to calculating a non-perturbative hadronic parameter

which, for the most part, can be done using standard Feynman diagram techniques

with the additional input of the condensates. In Section 2.6 we will return to this

matter and explore how the coefficients of the condensates may be determined.

2.5 Technical Toolbox

In this section we provide an introduction to some useful methods widely used in

modern loop calculations. For illustrative purposes we also include simple example

calculations with the intention to familiarise the reader with the underlying principles

and terminology. This is done in preparation for Chapters 3 and 5, where some of

the methods discussed here will be employed in a more advanced setting.

2.5.1 Integration by Parts Identities

When faced with multi-loop processes, we encounter a large number of Feynman

diagrams. Each of these correspond to Feynman integrals which after a manipulation

of the Dirac algebra and a tensor reduction, in turn generate a large number of scalar

integrals. Since the prospect of calculating each of these individually is not a pleasant

one1, it is in our interest to find relations between them that might reduce the amount

of human input required. These scalar integrals can be categorised into ‘families’

which are defined by a distinct set of propagators to arbitrary power2.
1Or feasible, in most modern calculations.
2This includes to the power 0 and therefore multiple families can share subsets where the

propagators which distinguish them from each other vanish.
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• •• • • •

Figure 2.4: NLO correction to two point correlator.

First developed by Chetyrkin and Tkachov [97], integration by parts (IBP) identities

allow us to build a system of linear relations between integrals in a family through

differential operators (see [98] for an excellent review). A sufficient set of IBP

relations allows integrals to be expressed as a linear combination of integrals for

which the total sum of propagator powers is reduced and with it also the complexity

of the integrals that we are required to directly compute1. A profound outcome of

this procedure is that recursive applications reduces any integral in the family to a

finite set of integrals [99], commonly referred to as ‘master integrals’, forming a basis.

Once the exact form of these are known the entire family of integrals are solved for as

well. It is worth highlighting that the freedom in our choice of IBP relations reflects

a freedom in the set of master integrals, too. This observation is an important aspect

in the differential equations method of solving master integrals [100,101] which rests

on finding a choice of basis for which the system of differential equations of the

master integrals takes on a ‘canonical form’2.

n1 n2

n3 n4
n5

Figure 2.5: HQET 2 loop scalar integral.

To illustrate how IBPs are constructed, we consider the NLO contribution to the

perturbative part of the two point correlator Eq.(2.4.1). The Feynman diagrams this

corresponds to are found in Figure 2.4. The processes on the left and right contain

recursively 1 loop integrals. However, the middle diagram generates genuine 2 loop
1There is a freedom in our choice of IBP’s to generate and it is not always intuitive which

combinations will be most beneficial.
2This is used specifically for finding the analytical form of master integrals as an expansion in ϵ.
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scalar integrals of the form found in Figure 2.5 which corresponds to the expression,

I(n1, n2, n3, n4, n5) ≡
∫ ddk1

(2π)d

ddk2

(2π)d

1
D

n1
1 D

n2
2 D

n3
3 D

n4
4 D

n5
5

≡
∫

[dk] f(n1, n2, n3, n4, n5),
(2.5.1)

where we have assigned arbitrary powers ni to the propagators and in the second

line denoted the integrand by the function f(n1, ...) and used the shorthand [dk] ≡

ddk1 d
dk2/(2π)2d to make things compact. The set of propagators in Eq.(2.5.1) are

defined by,

D1 = 2(k1 · v + ω), D2 = 2(k2 · v + ω),

D3 = k2
1, D4 = k2

2, (2.5.2)

D5 = (k1 − k2)2,

where we have taken the light quark to be massless. The IBP relations between

different integrals of the family defined through Eq.(2.5.1) are generated by,

∫
[dk] ∂

∂kj

· (kif) = 0, (2.5.3)

which equates to zero since surface terms vanish in dimensional regularisation, though

the fact that we get zero on the r.h.s of Eq.(2.5.3) is not actually essential to the

construction of IBPs. Choosing i = 1 and j = 1, and using the relations,

k1 · ∂1 D1−n1 = −n1(D−n1
1 − 2ωD−n1−1

1 ),

k1 · ∂1 D3−n3 = −n32D−n3
3 ,

k1 · ∂1 D5−n5 = −n5(D3 −D4)D−n5−1
5 − n5D

−n5
5 ,

(2.5.4)

we derive a linear relation between integrals of different propagator powers:

[(d− n1 − 2n3 − n5) + 2ωn11+ − n5(3−5+ − 4−5+)]I(n1, n2, n3, n4, n5) = 0, (2.5.5)

where we use the operator notation for which 1+I(n1, ...) = I(n1 + 1, ...). Choosing

instead i = 2 and j = 1, we create a second IBP identity,
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[(−n3 + n5) − n3(4−3+ − 5−3+) − n11+2− + 2ωn11+

+ n5(4−5+ − 3−5+)]I(n1, n2, n3, n4, n5) = 0. (2.5.6)

Substituting Eq.(2.5.6) back into Eq.(2.5.5)we arrive at,

I(n1, n2, n3, n4, n5) = [n35−3+ − n34−3+ − n12−1+]
(d− n1 − n3 − 2n5)

I(n1, n2, n3, n4, n5). (2.5.7)

This relation removes the only non-trivial integral from the NLO calculation and

in fact for any integral with all ni > 0 it can be repeatedly used to express it as a

combination of integrals which all have one ni = 0. Setting all ni = 1, Eq.(2.5.7)

expresses our integral as a linear combination of 3 integrals, each with one propagator

raised and one propagator removed. Diagrammatically, this corresponds to,

1
(d−4)

 − −
•

•
•

where the dotted propagators appear twice in the integrand. The first diagram

appearing on the r.h.s is obviously factorised for us already whilst the second two

are recursively 1-loop integrals and therefore all three are easily expressible in terms

of gamma functions.

To completely solve the system, from this one could continue applying more combin-

ations of IBPs until we reach the irreducible master integrals, however realistically

this is not how such calculations are carried out. Instead of solving recurrence re-

lations for master integrals by hand on a case by case basis, it is common practice

to automate the process through dedicated computer programs. In the absence of a

general solution, the most popular alternative is to use the Laporta Algorithm [102].

This approach instead takes integrals with fixed integer powers and yields a large

system of IBPs. Predetermined rules for the ordering of integrals1 are then used with

Gauss elimination to replace complex integrals with simpler ones until a set of master
1For example, total number of positive indices, sum of positive indices, value of highest propag-

ator power etc..
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integrals is reached. The downside to the Laporta approach however, is that the

large and highly redundant system of linear equations it generates comes at the cost

of substantial computation times if left unaided. To counteract this effect, symmet-

ries are often used to remove some of the redundancies. This includes symmetries

under the permutation of propagator indices, Lorentz invariance identities [103],

boundary conditions1 and the Lie algebra [104] of the IBPs themselves. This brute

force method has proven very effective in the calculation of multiloop processes and

many implementations are publicly available (see FIRE [105], KIRA [106], AIR [107],

REDUZE [108]).

2.5.2 Mass Expansion methods

Motivated by the discussions in Chapters 3 and 5, here we introduce some methods

for calculating mass corrections to Feynman integrals.

Mellin-Barnes Integrals

First, we will outline how this can be achieved through Mellin Barnes integral

representations (see [109] for an introduction and [110–112] for the development of

its application to Feynman integrals). To begin with, let us consider the leading

order perturbative contribution to the correlator in Eq.(2.4.1), where we now take

the light quark to have mass m. This corresponds to the 1-loop diagram shown on

the left of Figure 2.3.

After wick contracting all of the fields,

Π(ω) = i
∫
ddx eipx ⟨0|T

[
j̃†q(0)j̃q(x)

]
|0⟩

= i
∫
ddx eipx ⟨0|hiδ(x)hjα(0)γ5

αβqjβ(0) qiγ(x)γ5
γδ|0⟩

1For example, if for some subset of propagators, when ni = 0 the integral vanishes.
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and substituting in the form of the propagators we find,

Π(ω) = i
∫
ddx eipx Tr

[
Sh

ij(x) γ5 S
(0)
ji (−x) γ5

]
= i

∫ ddk

(2π)d Tr
[
Sh

ij(p+ k) γ5 S
(0)
ji (k) γ5

]

= i
∫ ddk

(2π)d

4Nc(m− k · v)
2(k · v + ω) (k2 −m2)

, (2.5.8)

where Sh(x) denotes the HQET propagator and S(0)(x) denotes the free light quark

propagator which we define as,

iSh
ij(x) = i

∫ ddp

(2π)d e
−ip·xSh

ij(p), iS
(0)
ij (x) = i

∫ ddp

(2π)d e
−ip·xS

(0)
ij (p), (2.5.9)

with their momentum space representations given by,

Sh
ij(p) ≡ δij

(1 + /v)
2(p · v) , S

(0)
ij (p) ≡ δij

/p+m

p2 −m2 . (2.5.10)

Denominators of HQET propagators are linear in their momentum dependence1 and

instead of using the usual Feynman parameterisation, a more appropriate alternative

is found to be,
1

Aα Bβ = Γ(α + β)
Γ(α)Γ(β)

∫ ∞
0

dy
yβ−1

[A+By]α+β , (2.5.11)

which after applying to Eq.(2.5.8) and carrying out the loop integration leaves us

with,

Π(ω) = −4NcΓ(ϵ)
(4π)

d
2

∫ ∞
0

dy (m+ y)[y(y − 2ω) +m2]−ϵ, (2.5.12)

At this point, we can replace the term from Eq.(2.5.12) in the square brackets with

a Mellin Barnes integral representation defined by,

1
(X + Y )λ = 1

Γ(λ)
1

2πi

∫ i∞

−i∞
dz Γ(λ+ z)Γ(−z) Y z

Xλ+z , (2.5.13)

for which poles from terms of the form Γ(a+ bz) must appear on the left side of the

integration contour whereas those from Γ(a− bz) must appear on the right for the

relation to hold. This prescription continues through the calculation and should be
1A useful consequence of this fact is that if the number of loops is less than the number of HQET

propagators then the propagators are not linearly independent and partial fraction decomposition
can be used to remove some of the propagators.
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held even for Gamma functions that arise after carrying out the Feynman parameter

integral in the subsequent step.

(a) (b)

Figure 2.6: Potential contour choices, keeping to the left/right
(blue/red) prescription for the poles.

Applying Eq.(2.5.13) with the choice X = y(y − 2ω), Y = m2 for λ = ϵ, we can

separate out the mass dependence,

Π(ω) = −4Nc

(4π)d/2
1

2πi

∫ i∞

−i∞
dz Γ(ϵ+ z)Γ(−z)

∫ ∞
0

dy (m+ y)[y(y − 2ω)]−ϵ−zm2z.

(2.5.14)

Using the change of variables,

y →
y

(−2ω)
y

(−2ω) + 1 , (2.5.15)

we find that the integral over the loop momenta is expressable in terms of Gamma

functions leaving us with,

Π(ω) = −4Nc

(4π)
d
2

(−2ω)2−2ϵ

2πi

i∞∫
−i∞

dz

{(
m

−2ω

)2z

Γ(−z)Γ(2 − ϵ− z)Γ(−2 + 2ϵ+ 2z)

+
(
m

−2ω

)2z+1
Γ(−z)Γ(1 − ϵ− z)Γ(−1 + 2ϵ+ 2z)

}
.

(2.5.16)

In Figure 2.6, the plot on the left shows a potential choice of contour C for the
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integration of the second term in Eq.(2.5.16) whereas the plot on the right shows a

contour C ′ for integrating over the first term. The disparity between the two contours

arises due to a different left/right prescription of the pole positioned at z = 1 − ϵ.

It is important to be careful with any manipulation of the Gamma functions aimed

to ‘tidy up’ this expression since this can confuse the original left/right prescription

of the poles and lead to incorrect results. For example, using xΓ(x) = Γ(x+ 1), we

might be tempted to recast the first term of Eq.(2.5.16) so as to have a common set

of Gamma functions between the two:

Γ(2 − ϵ− z)Γ(−2 + 2ϵ+ 2z) = −1
2Γ(1 − ϵ− z)Γ(−1 + 2ϵ+ 2z). (2.5.17)

However, in doing so the pole at z = 1 − ϵ now seems to require to sit on the right

of the integration contour, which contradicts the original determination. In general,

it is best to leave the expression in Eq.(2.5.16) as it stands to avoid this confusion.

At this point, we can choose to close the contour to the right(left) and our integration

equates to an infinite sum over the residues of the poles lying to the right(left) of

the contour. The full form of integrals can be found this way by comparing the

sum of residues to known series representations of functions. In our case, we instead

consider the limit m ≪ ω. In this kinematic regime, we see from Eq.(2.5.16) that by

closing the contour to the right we achieve a power series in m/(−2ω) which we can

truncate by picking up only the residues of the poles closest to z = 0. To O(m3) we

arrive at,

Π(ω) ≃ 4Nc

(4π)
d
2
(−2ω)2−2ϵΓ(1 − ϵ)Γ(2ϵ− 1)

[
1
2 −

(
m

−2ω

)
+ (2ϵ− 1)

(
m

−2ω

)2

−2(2ϵ− 1)
(
m

−2ω

)3
− Γ(ϵ− 1)

Γ(1 − ϵ)Γ(2ϵ− 1)

(
m

−2ω

)3−2ϵ
]
.

(2.5.18)

The last term of Eq.(2.5.18) clearly would not have been found by a Taylor expansion

in the small mass m of the integrand in Eq.(2.5.8). This approach would hold to

O(m2) but misses this contribution that we are sensitive to at O(m3) and which the

use of Mellin-Barnes integrals has allowed us to find. This is an incredibly useful tool
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to have when encountering integrals for which the massless case is known but the

full mass dependence is not. However, the cost of finding our expansion using this

method is the introduction of another integral and a procedure of taking residues,

which becomes increasingly computationally difficult as we consider more complex

processes at higher loop orders.

Expansion by Regions

As we saw from the previous section, though effective, the Mellin Barnes procedure

of acquiring an expansion in the small mass limit grew relatively involved for what is

a basic example. Clearly, an alternative with more scalabilty would be greatly appre-

ciated before we want to attempt higher order perturbative corrections. Fortunately,

such a method is available to us. The ‘Expansion by Regions’ technique, first put

forward by Beneke and Smirnov [113] and later developed further by Jantzen [114]1,

allows us to expand on the integrand level. If we consider again the 1-loop example

in Section 2.5.2, a naive Taylor expansion of the integrand in m will not reproduce

the expansion of the full integral to all orders since the domain of the loop integral

k includes regions for which k ∼ m. The validity of the expansion breaks down in

these regions and we lose contributions to the full expanded result. Instead, the

Expansion by Regions tells us to proceed as follows:

1. Identify and separate regions of the loop momenta domain for which external

parameters may be considered large/small and Taylor expand the integrand

accordingly.

2. For each distinct region, integrate the expanded integrand over the full domain

of the loop momenta.

For our 1-loop example, we identify two regions: a hard region characterised by

k ∼ ω, and a soft region associated with k ∼ m. In the hard region it holds that
1See the paper by Janzten for general proofs and examples.
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|k2| ≫ m2 and therefore we can expand the light quark propagator in the small mass

whereas in the soft region we expand the heavy quark propagator in inverse powers

of the large residual energy. Applying the above to Eq.(2.5.8) we arrive at:

Tm
ω

[Π(ω)] = i
∫ ddk

(2π)d

4Nc(m− k · v)
2(k · v + ω) Th

[
1

(k2 −m2)

]

+ i
∫ ddk

(2π)d

4Nc(m− k · v)
(k2 −m2)

Ts

[
1

2(k · v + ω)

]
, (2.5.19)

where Tm
ω

[Π(ω)] denotes the Taylor expansion of the correlator and the expansion

operators Th and Ts act as,

Th

[
1

(k2 −m2)

]
= 1
k2
∑
a=0

(
m2

k2

)a

(2.5.20)

Ts

[
1

2(k · v + ω)

]
= 1

2ω
∑
b=0

(−1)b

(
k · v
ω

)b

. (2.5.21)

To calculate our expansion up to m3 it is sufficient to take terms up to a = 1 and

b = 0. Carrying out the integration is then straightforward and we find that the

hard region generates the first 3 terms of Eq.(2.5.18) while the last term originates

from the soft region1.

At this point, having blindly followed the two step plan above, it might seem sur-

prising that we have arrived at the same expression as Eq.(2.5.18) since it would

not be unreasonable to expect a fair amount of double counting going on by integ-

rating over the whole loop momenta domain for each expansion. To explain why

this is not the case, we consider an intermediate scale Λ which obeys m ≪ Λ ≪ ω,

and use it to split the integration domain D into Ds = {k ∈ Rd : |k2| < Λ2} and

Dh = {k ∈ Rd : |k2| ≥ Λ2} such that D = Ds ∪ Dh and Ds ∩ Dh = ∅. Using these

1Note that this confirms our previous statement that a naive Taylor expansion in m of the
integrand holds to quadratic order.
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definitions we can write, ∫
D
I =

∫
Ds

I +
∫

Dh

I

=
∫

Ds

TsI +
∫

Dh

ThI,

(2.5.22)

where to keep things compact we denote the integrand by I and in the the second

line we have acknowledged the fact that soft and hard expansions to I are valid in Ds

and Dh respectively by their definition1. Next we take the first term in Eq.(2.5.22)

and express the integral of TsI over Ds as an integral over the full domain D and

substract the integral over the hard region Dh,∫
Ds

TsI =
∫

D
TsI −

∫
Dh

TsI

=
∫

D
TsI −

∫
Dh

ThsI,

(2.5.23)

where the notation ThsI represents the application of the soft expansion operator Ts

followed by Th which we are now free to apply since the integral is over Dh. Likewise,

a similar expression for the second term in Eq.(2.5.22) can be found,

∫
Dh

ThI =
∫

D
ThI −

∫
Ds

TshI. (2.5.24)

Using, ∫
Ds

TshI +
∫

Dh

ThsI =
∫

D
TshI, (2.5.25)

where we have used the commutability between the operators Th and Ts, substituting

Eqs.(2.5.23) and (2.5.24) back into Eq.(2.5.22) we arrive at,

∫
D
I =

∫
D

TsI +
∫

D
ThI −

∫
D

TshI. (2.5.26)

All of the integrals in Eq.(2.5.26) are over the whole domain and all dependence

on our intermediate scale Λ through the definitions of Ds and Dh has therefore

dropped out too. A closer look at the third term reveals one last interesting feature.
1While it is not strictly true that |k · v| ≪ Λ in Ds, under integration only terms of even powers

of |k · v| are non-vanishing, and tensor reduction allows us to exchange terms (k · v)2 with terms
proportional to k2. Therefore this treatment is valid under integration.
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Explicitly we find,

∫
D

TshI = i
∫ ddk

(2π)d

4Nc(m− k · v)
2ω k2

∑
a=0

(
m2

k2

)a∑
b=0

(−1)b

(
k · v
ω

)b

= 0,
(2.5.27)

since the double expansion generates scaleless integrals which vanish in dimensional

regularisation. As a result, Eq.(2.5.26) becomes,

∫
D
I =

∫
D

TsI +
∫

D
ThI, (2.5.28)

which matches the form of Eq.(2.5.19).

2.6 QCD Condensates

Here we discuss the treatment of higher dimension terms in the OPE, namely the

condensates1. The standard approach is to use the background field technique. In

the context of our 2-point corelator, the vacuum that the quark-antiquark pair

propagates through is considered to be populated by soft external background fields

which oscillate over scales much larger than the distance the pair travels between

creation and annihilation. Closely related to the operator method first developed by

Schwinger for use in QED [115], the advantages of it’s application to QCD was first

made apparent in the early 80’s (see [116–119]). A key element of it’s effectiveness

is through the choice of the Fock-Schwinger (FS) gauge [115,120,121]. Also referred

to as the fixed-point gauge, this proves to be a powerful tool in the context of the

background field technique as it allows for a fully covariant expansion of the external

gluon 4-potential. A thorough introduction to the methods used in this section

can be found in [122] which discusses in detail the background field technique and

presents many example calculations relevant to those working in sum rules. Other

useful sources include the lecture notes by Pascual [123] and the review by Reinders,

1Our focus is on calculating the coefficients of the condensates in the OPE and not the condens-
ates themselves which is beyond the scope of this work.
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Rubenstein and Yazaki [85], both of which serve as helpful practical guides. In

Section 2.6.1 we first define the FS gauge and then present the expansions of the

external quarks and gluons. Then in Section.2.6.2 we derive the expansion of the

light quark propagator in the presence of a background gluon field. Following on

from this, in Section 2.6.3 we put these results to use by calculating the leading

condensate contributions to Eq.(2.4.1).

2.6.1 Fock-Schwinger Gauge

The Fock-Schwinger gauge is defined by:

(x− x0)µAa
µ = 0 (2.6.1)

for which the coordinate point xµ
0 represents a gauge freedom that we fix in the

following by setting x0 = 0. This is not a necessary step since for any amplitude the

dependency on x0 drops out and in doing so can even provide a useful way to check

our final result. Nevertheless, to keep our expressions compact we will place x0 at

the origin.

Now consider the following relation for the 4-potential Aµ(x),

Aµ(x) = ∂

∂xµ

(
Aρ(x)xρ

)
− xρ∂Aρ(x)

∂xµ

= ∂

∂xµ

(Aρ(x)xρ) − xρ∂Aµ(x)
∂xρ

− xρGµρ(x) + ig xρ
[
Aρ(x), Aµ(x)

]
= −xρ∂Aµ(x)

∂xρ

− xρGµρ(x)

(2.6.2)

where in the second line we have used the definition of the field strength tensor

Gµρ = i
g
[Dµ, Dρ] with covariant derivative Dµ = ∂µ − igAµ for Aµ = taijA

a
µ (with

ta a colour generator in the fundamental representation) and in the third line we

have removed the terms which vanish as a result of the gauge condition in Eq.(2.6.1).

Moving the first term of the r.h.s. over to the l.h.s to join Aµ(x) and changing
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variables x = x′α we arrive at,

d(αAµ (αx))
dα

= αxρGρµ(αx). (2.6.3)

Integrating over the full derivative in α from 0 to 1, we get a new expression for the

4 potential that will prove useful to us in later calculations,

Aµ(x) =
∫ 1

0
dααxρGρµ(αx) (2.6.4)

Next we recall the kinematic conditions under which we always work within the

OPE, specifically that our vacuum fields vary slowly with x. Therefore we expand

Aµ(x) in x about the origin. Consequently, expanding Eq.(2.6.1) gives us,

xµAµ(0) + xµxν1∂ν1Aµ(0) + 1
2x

µxν1xν2∂ν1∂ν2Aµ(0) + ... = 0. (2.6.5)

For the gauge condition to hold for all x then each individual term of the expansion

in Eq.(2.6.5) must also equate to zero. As a result, if we similarly expand the field

strength tensor in Eq.(2.6.4) we see that we can replace each partial derivative with

a covariant derivative,

Aa
µ(x) =

∫ 1

0
dααxρ(Ga

µρ(0) + αxν1∂ν1G
a
µρ(0) + 1

2!α
2xν1xν2∂ν1∂ν2G

a
µρ(0) + ...)

=
∫ 1

0
dααxρ(Ga

µρ(0) + αxν1Dν1G
a
µρ(0) + 1

2!α
2xν1xν2Dν1Dν2G

a
µρ(0) + ...)

(2.6.6)

After carrying out the integration we are left with an expression for Aµ(x) in terms

of the field strength tensor and covariant derivatives evaluated at the origin,

Aa
µ(x) = 1

2x
ρGa

ρµ(0) + 1
3x

νxρDνG
a
ρµ(0) + ... (2.6.7)

The same principles also give us an expansion of the external quark fields in terms

of covariant derivatives,

qα(x) = qα(0) + xρDρqα(0) + 1
2!x

ρxσDρDσqα(0) + ... (2.6.8)
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These expansions of the quark and gluon fields allow the condensates to arise nat-

urally when evaluating Eq.(2.4.1). We will see later that for the quark condensate

⟨qq⟩ ≡ ⟨0|qiα(0)qiα(0)|0⟩ the effect immediately follows after applying wicks theorem

to the time ordered correlator. For the gluon condensate ⟨GG⟩ ≡ ⟨0|Ga
µν(0)Ga

µν(0)|0⟩

we first need to expand the quark propagator in the background field.

2.6.2 Quark propagator

= + + + ...

Figure 2.7: Vacuum gluon corrections to the quark propagator.

In the fixed point gauge and in the strict HQET limit, interactions between the

heavy quark and gluons in the vacuum vanish. Therefore, to find the coefficient

of the gluon condensate we will only consider contributions from the light quark.

In the presence of a background gluon field the light quark propagator admits the

expansion,

iS(x, y) = iS0(x− y) + iS(1)(x, y) + iS(2)(x, y) + ... (2.6.9)

defined by [122],

iS(x, y) = iS(0)(x− y) + g
∫
d4z iS(0)(x− z) i /A(z) iS(0)(z − y)

+ g2
∫
d4z d4z′ iS(0)(x− z′) i /A(z′) iS(0)(z′ − z) i /A(z) iS(0)(z − y)

+ ...

(2.6.10)

where S(0)(x − y) denotes the free light quark propagator. Schematically, this

expansion is depicted in Figure 2.7. If we wish to work in momentum space then
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the Fourier transformed propagator is defined as usual by,

S(p) =
∫
d4xeipxS(x, 0). (2.6.11)

However, before continuing to derive the higher order corrections to the propagator,

we should pay closer attention to the notation in our definition of S(p) and make the

reader aware of a drawback of the Fock-Schwinger gauge. As a result of choosing a

fixed point x0 in our gauge condition, we lost translation invariance in our propagator.

Specifically, S(0, x) ̸= S(−x) and as a result,

S(0, x) =
∫ d4p

(2π)4 e
ipxS̃(p), (2.6.12)

for which S̃(p) ̸= S(p). Therefore we should be careful when switching to momentum

space in our calculation of the correlator. We will return to this issue when it arises

and continue with our derivation of the propagator corrections. In momentum space,

using Eq.(2.6.10) and Eq.(2.6.11) and taking only the leading term from Eq.(2.6.7)

the first correction takes the form,

iS(1)(p) = −ig
∫
d4z eipz

[∫
d4x eip(x−z)S(0)(x− z)

]
/A(z)S(0)(z)

= −ig S(0)(p)γ
µGρµ

2

∫
d4z zρ eipzS(0)(z)

= −ig S(0)(p)γ
µGρµ

2

(
−i ∂
∂pρ

)
S(0)(p),

(2.6.13)

where on the third line we have used zρeipz = −i ∂
∂p

ρ eipz to remove zρ from the

integral which then takes the form of S(0)(p). Applying the partial derivative we

find,

iS(1)(p) = −ig Gρµ

 /p+m(
p2 −m2

)
 γµ

 γρ(
p2 −m2

) − 2pρ(/p+m)(
p2 −m2

)2


= −ig taGa

µρ

4(p2 −m2)2

(
(/p+m)σµρ + σµρ(/p+m)

)
,

(2.6.14)

where we have pulled out the colour generator from the field strength tensor and

skipped some tedious Dirac algebra to arrive at the final form. For the purposes of

extracting the gluon condensate however, the first order correction is not sufficient
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and we must calculate S(2)(p). The process is in principle the same as for the S(1)(p),

but for completeness we will illustrate the steps to get there. We begin with,

iS(2)(p) =
∫
d4xeipxiS(2)(x, 0)

= ig2
∫
d4zd4z′d4xeipxS(0)(x− z′) /A(z′)S(0)(z′ − z) /A(z)S(0)(z)

= ig2
∫
d4zd4z′eipz

′
[∫

d4xeip(x−z
′)S(0)(x− z′)

]
/A(z′)S(0)(z′ − z) /A(z)S(0)(z)

= ig2S(0)(p)
∫
ddzddz′eipz

′
/A(z′)S(0)(z′ − z) /A(z)S(0)(p),

(2.6.15)

where again we use a change of variables in the final line to remove integration over x

and pull out the free quark momentum space propagator S(0)(p). We then substitute

in the expanded 4-potential in Eq.(2.6.7) keeping only the leading order term and

successively replace factors of z and z′ with derivatives,

iS(2)(p) = ig2S(0)(p)
∫
d4zd4z′eipz

′ 1
2Gρµγ

µz′ρS(0)(z′ − z)1
2Gσνγ

νzσS(0)(z)

= i
g2

4 S(0)(p)Gρµγ
µ

(
−i ∂
∂pρ

)
S(0)(p)Gσνγ

ν

(
−i ∂
∂pσ

)
S(0)(p).

(2.6.16)

From this we can predict how additional soft gluon insertions will affect the propag-

ator. In the momentum space representation, the quark travels freely between each

interaction with a gluon from the vacuum and each time it interacts we pick up an

insertion of the field strength tensor, a gamma matrix and a partial derivative which

acts on all preceding free propagators. Applying the first partial derivative gives us,

iS
(2)
ij (p) = −ig

2

4
[
tatb

]
ij
Ga

ρµG
b
σν

(/p+m)
(p2 −m2)

∂

∂pρ

γµ (/p+m)
(p2 −m2)

∂

∂pσ γ
ν (/p+m)
(p2 −m2)

= −ig
2

4
[
tatb

]
ij
Ga

ρµG
b
σν

(/p+m)
(p2 −m2)

× ∂

∂pρ

[
γµ(/p+m)γνγσ

(p2 −m2)2 − 2γµ(/p+m)γν(/p+m)pσ

(p2 −m2)3

]
,

(2.6.17)

where we have pulled out the colour generators from factors of the field strength

tensor. Following this we note that the term within the square brackets can be
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simplified using the anti-symmetric properties of Gb
σν which leads to,

iS
(2)
ij (p) = −ig

2

4
[
tatb

]
ij
Ga

ρµG
b
σν

(/p+m)
(p2 −m2)

× ∂

∂pρ


(
γµ(/p+m)γνγσ + 2γµγνpσ

)
(p2 −m2)2

 . (2.6.18)

With our intention being to extract the gluon condensate from Eq.(2.4.1) it is helpful

to already have in mind the relation [85],

⟨0|Ga
µρ(0)Gb

νσ(0)|0⟩ = δab (gµνgρσ − gµσgρν)
d(d− 1)(N2

c − 1)
⟨GG⟩ . (2.6.19)

Using Eq.(2.6.19), the partial derivative of the term in round brackets in Eq.(2.6.18)

vanishes. Therefore after applying the final derivative we arrive at,

iS
(2)
ij (p) = ig2 [tata]ij

(/p+m)
(p2 −m2)4

[
γµ(/p+m)γνγσpρ + 2γµγνpσpρ

]
× (gρσgµν − gρνgµσ)
d(d− 1)(N2

c − 1)
GG,

(2.6.20)

where summation over the indices of GG is implied. Contracting the Lorentz indices,

the gamma matrices reduce to a much less cumbersome form,

(
γµ(/p+m)γνγσpρ + 2γµγνpσpρ

)
(gρσgµν − gρνgµσ) = 2(d− 1)m/p, (2.6.21)

and after substituting Eq.(2.6.21) back into Eq.(2.6.20) we find a conveniently com-

pact form for S(2)(p):

iS
(2)
ij (p) = ig2 δij GG

dN

m(p2 +m/p)
(p2 −m2)4 . (2.6.22)

The final results in Eq.(2.6.14) and Eq.(2.6.22) can be found in [85]. For a full

derivation of the first correction to the quark propagator with a non-zero mass

including terms up to a covariant derivative of the field strength tensor in both

momentum and position space representations, see [124, 125]. Additional higher

order corrections can be found in [126].



2.6. QCD Condensates 55

2.6.3 Example Calculations

To calculate the condensate contribution to the correlator Eq.(2.4.1) stemming from

soft quark interactions at the spacetime points x and 0 (see Figure 2.3), we wick

contract only the 2 heavy quark fields, treating light quarks as soft external states,

Πq(ω) = i
∫
ddx eipx ⟨0| − hiα(0)γ5

αβqiβ(0)qjγ(x)γ5
γδhjδ(x)|0⟩

=
∫
ddx eipx

[
γ5Sh

ij(x)γ5
]

γβ
⟨0|qjγ(x)qiβ(0)|0⟩

(2.6.23)

We can now use Eq.(2.6.8) to expand the field qjγ(x) about x. Taking the leading

term only, we find the quark condensate:

⟨0|qjγ(x)qiβ(0)|0⟩ = ⟨0|qjγ(0)qiβ(0)|0⟩ + ...

= 1
4Nc

⟨qq⟩ ...
(2.6.24)

where on the second line we have used ⟨0|qjγ(0)qiβ(0)|0⟩ = Aδjiδγβ and taken traces

over the colour and spinor indices to solve for A. Higher order terms in Eq.(2.6.24)

can also be manipulated into the form of condensates by using equations of motion

[81,123]. After a few pages of algebra, we find to dimension-5 [123]:

⟨0|qjγ(x) qiβ(0)|0⟩ = δji

4Nc

[(
δγβ

(
1 − m2x2

8

)
+ i

4m/xβγ

)
⟨qq⟩

+δγβ

x2

16 ⟨qgσGq⟩
] (2.6.25)

where the mixed quark-gluon condensate ⟨qgσGq⟩ ≡ ⟨0|qiα gσ
µν
αβt

a
ijG

a
µν qjβ|0⟩ appears

after the insertion of 2 covariant derivates from Eq.(2.6.8) and we use the convention

σµν ≡ i
2 [γµ, γν ]. Substituting Eq.(2.6.25) back into Eq.(2.6.23) gives us,

Πq(ω) =
∫
ddx

ddk

(2π)d

ei(p−k)x

4Nc

{
Tr
[
γ5Sh

ii(k)γ5
] [(

1 − m2x2

8

)
⟨qq⟩ + x2

16 ⟨qgσGq⟩
]

+Tr
[
γ5Sh

ii(k)γ5/x
] [ i

4m ⟨qq⟩
]}

(2.6.26)

where we have switched to a momentum representation of the heavy quark propagat-

ors. Evaluating the traces, using the HQET Feynman rule for Sh(k) from Eq.(2.5.10)
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gives us,

Tr
[
γ5Sh

ii(k)γ5
]

= 4Nc

2(k · v) Tr
[
γ5Sh

ii(k)γ5/x
]

= − 4Nc(v · x)
2(k · v) (2.6.27)

In order to carry out the integration over x we make use of the relation,

∫ ddx

(2π)d

(
xµ1xµ2 ...xµn

)
ei(p−k)x = (i)n ∂

∂kµ1∂kµ2 ...∂kµn

δ(d)(p− k), (2.6.28)

which allows us to express Eq.(2.6.26) as,

Πq(ω) =
∫
ddk

1
2(k · v)

[(
1 + m

4 v
µ ∂

∂kµ

+ m2

8
∂

∂kµ∂k
µ

)
⟨qq⟩

− 1
16

∂

∂kµ∂k
µ ⟨qgσGq⟩

]
δ(d)(p− k),

(2.6.29)

for which the partial derivatives act on the delta function on the far right of the

expression. We can then use integration by parts,

∫
ddk f(k) ∂

∂kµ1∂kµ2 ...∂kµn

δ(d)(p− k) = (−1)n ∂f(k)
∂kµ1∂kµ2 ...∂kµn

∣∣∣∣∣
k=p

(2.6.30)

to instead apply the derivatives to the heavy quark propagator, leaving us with the

final step of simply integrating over the delta function. As a result, we are left with,

Πq(ω) = ⟨qq⟩
2ω

(
1 + m

4ω + m2

4ω2 + ...

)
− ⟨qgσGq⟩

16ω3 (1 + ...) (2.6.31)

where we have substituted in the residual energy ω = p · v and the ellipsis’ denote

the higher dimension contributions that we have neglected. In the massless light

quark limit m → 0, the expression in Eq.(2.6.31) matches the leading order result

found by [94] up to dimension-5.

Next we wish to find the coefficient of the gluon condensate ⟨GG⟩ for Π(ω). In the

Fock-Schwinger gauge, we do not have interactions between the static quark and the

background gluons. Therefore the only contribution comes from a double insertion

of the gluon field to the light quark propagator. Before factorising out this term
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from the correlator we first wick contract both heavy fields and both light quarks,

Π(ω) = i
∫
ddx eipx ⟨0| − hiα(0)γ5

αβqiβ(0)qjγ(x)γ5
γδhjδ(x)|0⟩

= i
∫
ddx eipx ⟨0|γ5

αβqiβ(0)qjγ(x)γ5
γδhjδ(x)hiα(0)|0⟩

= −i
∫
ddx eipxTr

[
γ5Sij(0, x)γ5Sh

ji(x)
]
.

(2.6.32)

At this point, we are presented with S(0, x) and if we wish to switch to a momentum

space description we should remind ourselves that since we have lost translation

invariance by using the FS gauge, that S̃(p) ̸= S(p). In their expanded forms

however, the differences between the two arise when we consider terms higher than

leading order in our expression for the 4-potential in Eq.(2.6.7), which come with

covariant derivatives. We do not consider these contributions here and a check of

the calculation for the fourier transform of S(2)(0, x) reveals S̃(2)(p) = S(2)(p).

Isolating the second order correction S(2)(p) and using the result from Eq.(2.6.22)

we find,

Πgg(ω) = −i
∫ ddk

(2π)d

Tr
[
γ5S

(2)
ij (k)γ5(1 + /v)δij

]
2(k · v + ω)

= −i
∫ ddk

(2π)d

g2 ⟨GG⟩m
d

Tr
[
(k2 +m/k)(1 − /v)

]
2(k · v + ω)(k2 −m2)4

= −i
∫ ddk

(2π)d

g2 ⟨GG⟩ (m+ ...)
d 2(k · v + ω)(k2)3

(2.6.33)

where we have kept only the leading term in the light quark mass m. The integral

is then easily solvable using,

∫ ddk

(2π)d

1
2(k · v + ω)(k2)a = i

(4π)d/2
Γ(2 − a− ϵ)Γ(2a+ 2ϵ− 3)

Γ(a) (−2ω)3−2a−2ϵ

(2.6.34)

and we reach our expression for the ⟨GG⟩ condensate,

Πgg(ω) =
⟨α

π
GG⟩

8d(4π)−ϵ Γ(−1 − ϵ)Γ(3 + 2ϵ)(−2ω)−3−2ϵ(m+ ...). (2.6.35)

Note that this whole contribution vanishes in the massless light quark limit.





Chapter 3

Mixing Bag Parameter

3.1 Introduction

In Section 2.3 we discussed the theory behind the mixing of Bs mesons. Experiment-

ally, this phenomena is well studied [76] and the mass difference ∆Ms = 2|M s
12| is

known to a high precision, with the current world average by HFLAV [127] (based

on the individual measurements [128–133]) placing the experimental value at,

∆MExp.
s = (17.741 ± 0.020) ps−1 . (3.1.1)

Note that this average does not yet include the most recent measurement by LHCb

[134] where a substantial reduction in their uncertainties was achieved.

As already mentioned, the hadronic contribution to B-mixing comes in the form of

the bag parameter B ≡ B
s
Q1 and the decay constant fBs

and the uncertainties of

their numerical values make up the largest contribution by far to the uncertainty of

the mass difference in the SM prediction. These parameters have been determined

by lattice simulations [135–137]2 and for the case of Bd mesons with HQET sum

rules [54, 55, 139, 140]. There is also a recent lattice determination of the SU(3)

breaking ratios [141].

2Work is currently ongoing to extract the Bs and Bd mixing bag parameters by JLQCD and
RBC/UKQCD [138].
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In this chapter we extend the analysis of [55] with the inclusion of SU(3) breaking

effects corresponding to a non-vanishing strange-quark mass, thus getting for the first

time a HQET sum rule prediction for the mixing Bag parameter ofBs mesons. Lattice

simulations typically achieve a much higher precision than sum rule calculations, but

in our case a sum rule for B − 1 is formed. Since the value of the Bag parameter

B is close to 1, even a moderate precision of the sum rule of the order of 20 % for

B − 1, translates into a precision of the order of 2% for the Bag parameter as a

whole, which is highly competitive. The determination we present here therefore

stands as an independent cross-check of the findings from the lattice. Additionally,

we find that by taking a ratio of ∆Ms and the rare branching ratio Br(Bs → µ+µ−)

the decay constant and the CKM dependence cancel and the Bag parameter will be

the only relevant input parameter.

The rest of this chapter is arranged as follows: in Section 3.2 we set up the sum rule

for the Bag parameter and determine the ms corrections, in Section 3.3 we present a

numerical analysis of the Bag parameters and study some of the phenomenological

implications. Finally, in Section 3.4 we summarise our findings and make some

concluding remarks.

3.2 Sum rules in HQET

3.2.1 Operator basis and definition of bag parameters

In this chapter we use the full dimension-six ∆B = 2 operator basis required for a

calculation of ∆Ms in the SM1 and BSM theories and for a SM prediction of ∆Γs.

The QCD operators involved are

Q1 = b̄iγµ(1 − γ5)si b̄jγ
µ(1 − γ5)sj,

Q2 = b̄i(1 − γ5)si b̄j(1 − γ5)sj, Q3 = b̄i(1 − γ5)sj b̄j(1 − γ5)si,

Q4 = b̄i(1 − γ5)si b̄j(1 + γ5)sj, Q5 = b̄i(1 − γ5)sj b̄j(1 + γ5)si. (3.2.1)

1The operator Q1 corresponds to the SM contribution to ∆Ms.
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while our HQET basis is defined as

Q̃1 = h̄
{(+)
i γµ(1 − γ5)si h̄

(−)}
j γµ(1 − γ5)sj, Q̃2 = h̄

{(+)
i (1 − γ5)si h̄

(−)}
j (1 − γ5)sj,

Q̃4 = h̄
{(+)
i (1 − γ5)si h̄

(−)}
j (1 + γ5)sj, Q̃5 = h̄

{(+)
i (1 − γ5)sj h̄

(−)}
j (1 + γ5)si,

(3.2.2)

where h(+/−)(x) is the HQET bottom/anti-bottom field1 and we use the notation

h̄{(+)ΓAs h̄
(−)}ΓBs = h̄(+)ΓAs h̄

(−)ΓBs+ h̄(−)ΓAs h̄
(+)ΓBs. (3.2.3)

The matching condition is given by

⟨Qi⟩ (µ) =
∑

CQiQ̃j
⟨Q̃j⟩ + O(1/mb), (3.2.4)

for which the NLO HQET-QCD matching coefficients CQQ̃ were presented in [55].

We also use the same basis of evanescent operators. As mentioned in [55], the HQET

evanescent operators are defined up to 3 constants ai with i = 1, 2, 3 in order to

gauge the scheme dependence. In the following we always work within the NDR

scheme and in dimensional regularisation with d = 4 − 2ϵ dimensions.

The QCD bag parameters Bs
Q are defined through [142]

⟨Q(µ)⟩ = AQ f
2
Bs
M2

Bs
Bs

Q(µ) = AQ(µ) f 2
Bs
M2

Bs
B

s
Q(µ), (3.2.5)

with the coefficients AQ given by

AQ1 = 2 + 2
Nc
,

AQ2 = M
2
Bs

(mb+ms)2

(
−2 + 1

Nc

)
, AQ3 = M

2
Bs

(mb+ms)2

(
1 − 2

Nc

)
,

AQ4 = 2M
2
Bs

(mb+ms)2 + 1
Nc
, AQ5 = 1 + 2M

2
Bs

Nc(mb+ms)2 ,

(3.2.6)

where MBs
denotes the Bs meson mass, mq corresponds to quark pole masses and

the Bs meson decay constant fBs
is defined by

⟨0|b̄γµγ5s|Bs(p)⟩ = −ifBs
pµ. (3.2.7)

1The definition of the anti-bottom field in the HQET limit can be derived from Eq.(2.2.4) by
changing v → −v
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The barred terms in the far right expression of (3.2.5) indicate that the quark masses

used there are in the MS scheme. We use the pole masses for our analysis and

convert to this form at the end. Similarly, the HQET bag parameters are defined

through

⟨⟨Q̃(µ)⟩⟩ = AQ̃ F
2
s (µ)Bs

Q̃(µ), (3.2.8)

with the coefficients AQ̃ given by

AQ̃1
= 2 + 2

Nc

, AQ̃2
= −2 + 1

Nc

, AQ̃4
= 2 + 1

Nc

, AQ̃5
= 1 + 2

Nc

, (3.2.9)

and where the matrix elements are taken between non-relativistically normalised

states ⟨⟨Q̃(µ)⟩⟩ ≡ ⟨Bs|Q̃(µ)|Bs⟩ with

|Bs(p)⟩ =
√

2MBs
|Bs(v)⟩ + O(1/mb). (3.2.10)

The HQET decay constant Fs(µ) follows from the definition in Eq.(2.4.5) and is

defined by,

⟨0|h̄(−)γµγ5s|Bs(v)⟩ = −iFs(µ)vµ, (3.2.11)

which can then be related to the full QCD decay constant fBs
via

fBs
=
√√√√ 2
MBs

C(µ)Fs(µ) + O (1/mb) , (3.2.12)

where C(µ) is found to be [143],

C(µ) = 1 − 2CF

αs(µ)
4π + O(α2

s). (3.2.13)

From our sum rule analysis we determine the HQET bag parameters Bs
Q̃. After

using Eq.(3.2.4), Eq.(3.2.5), Eq.(3.2.8), and Eq.(3.2.12) we construct relation,

Bs
Qi

(µ) =
∑

j

AQ̃j

AQi

CQiQ̃j
(µ)

C2(µ)
Bs

Q̃j
(µ) + O(1/mb), (3.2.14)

which allows us to then match the values of Bs
Q̃ onto their QCD counterparts.
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3.2.2 Finite ms effects in the HQET decay constant

In order to demonstrate our method for the treatment of finite ms effects, we

first consider the Borel sum rule for the HQET decay constant Fs (as discussed in

Chapter 2 and presented in Eq.(2.4.14)). For the Bs system it takes the form,

F 2
s (µρ)e−

Λ+ms
t =

ωc∫
0

dω e−
ω
t ρΠ(ω) , (3.2.15)

where ρΠ is the discontinuity1 of the two-point correlator

Π(ω) = i
∫
ddxeipx ⟨0|T

[
j̃†+(0)j̃+(x)

]
|0⟩ , (3.2.16)

with ω = p · v and the interpolating current j̃+ = s̄γ5h(+). The leading perturbative

part of the discontinuity is given by

ρpert
Π (ω) = Nc

2π2

[
(ω +ms)

√
ω2 −m2

s θ(ω −ms) + O(αs)
]
. (3.2.17)

For the remainder of this subsection we will consider the finite-energy (FESR) version

of the sum rule in Eq.(3.2.15) which is constructed by taking the limit t → ∞ and

allows for concise analytic expressions. We obtain

F 2
s (µρ)|FESR = Nc

6π2

(ωc − ms

2

)
(ωc + 2ms)

√
ω2

c −m2
s

+3m3
s

2 ln
 ms

ωc +
√
ω2

c −m2
s

+ O(αs) + [condensates]


= Ncω
3
c

6π2

[
1 + 3ms

2ωc

− 3m2
s

2ω2
c

− 3m3
s

4ω3
c

(
1 − ln m2

s

4ω2
c

)
+ . . .

]
. (3.2.18)

In the last step we have expanded the result in the small ratio ms/ωc ∼ 0.1. The

appearance of a m3
s ln(ms) term in the expansion indicates that energies ω of the

order ms contribute at order m3
s. These logarithms can be absorbed into the quark

condensate [94, 144]. In the following we show how the terms up to order m2
s

can be determined without knowing the full ms dependence of the discontinuity
1This is equivalent to the imaginary part of the two-point correlator but we change notation

here to be consistent with our discussion of the 3-point correlator where the double discontinuity
is taken.
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Eq.(3.2.17). This property is necessary for our determination of the ms effects to

the bag parameters. Without this being the case, the calculation with the inclusion

of full ms dependence involves very challenging Feynman integrals consisting of 3

loops and 3 scales. To begin with, we split the integration at an arbitrary scale ν

with ms ≪ ν ≪ ωc. Above ν we are permitted to expand the integrand in ms/ω,

yielding the identity

Tms
ωc

[F 2
s (µρ)]e−

Λ+ms
t = T{ms

ωc
,

ms
ν

, ν
ωc
}

 ν∫
ms

dω e−
ω
t ρΠ(ω) +

ωc∫
ν

dω e−
ω
t Tms

ω
[ρΠ(ω)]

 ,
(3.2.19)

where Tx[. . . ] follows from the notation in Section 2.5.2 of the Chapter 2. The

dependence on the scale ν has to cancel in the expanded result. We can therefore take

the limit ν → ms after expanding the result according to the scaling ms ≪ ν ≪ ωc.

We note that the contribution from the integration of the full integrand between

ms and ν does not vanish for ν → ms, because the limit has to be taken after the

expansion in ms and the two operations do not commute. It is however clear from

dimensional analysis that this contribution must be polynomial in ms starting at m3
s

since the exponential can be Taylor expanded. This demonstrates that it is sufficient

to compute the discontinuity in Eq.(3.2.17) as an expansion in ms/ω if we restrict

the analysis to the linear and quadratic terms which is clearly sufficient due to the

small expansion parameter. In the FESR limit considered above we find1

Tms
ωc

 ωc∫
ms

dω Tms
ω

[ρΠ(ω)]

 = Ncω
3
c

6π2

[
1 + 3ms

2ωc

− 3m2
s

2ω2
c

− m3
s

ω3
c

(
1 − 3

4 ln m
2
s

ω2
c

)
+ . . .

]
.

(3.2.20)

The difference between Eq.(3.2.18) and Eq.(3.2.20) is indeed of order m3
s and is

compensated by the contribution from the first term on the right-hand side of

Eq.(3.2.19).

At NLO we therefore only compute the expanded result by using the method of

regions(see our discussion in Section 2.5.2 of Chapter 2). The light degrees of freedom

1Here the limit ν → ms and the Taylor expansion commute, because the integrand is polynomial
in ms.
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Figure 3.1: Sample diagram involving a soft light-quark propagator
(red thick line).

can be either hard with momentum k ∼ ω or soft with momentum k ∼ ms whereas

the heavy quark field is always hard. Up to and including the order m2
s there are

however only contributions from diagrams where all lines are hard. An example

diagram involving a soft line is shown in Figure 3.1. The integral measure scales as

m4
s and the soft light-quark propagator scales as m−1

s , yielding an overall scaling of

m3
s. Diagrams where only the gluon is soft are scaleless and vanish in dimensional

regularization. Contributions where both loop momenta are soft are of the order

m4
s. Therefore, we only need to consider the fully hard momentum region where the

integrand can be naively Taylor expanded in ms. We obtain

ρΠ(ω) ≡ Π(ω + i0) − Π(ω − i0)
2πi (3.2.21)

= Ncω
2

2π2 θ(ω −ms)
1 + ms

ω
− 1

2

(
ms

ω

)2
+ . . .

+αsCF

4π

17 + 4π2

3 + 3 ln µ2
ρ

4ω2 +
(

20 + 4π2

3 + 6 ln µ2
ρ

4ω2 − 3 ln µ2
ρ

m2
s

)
ms

ω

+
(

1 − 9
2 ln µ2

ρ

4ω2 + 3 ln µ2
ρ

m2
s

) (
ms

ω

)2
+ . . .

+ O(α2
s)
+ [condensates],

in agreement with [94].

3.2.3 Finite ms effects in the Bag parameters

Whereas the central object for the decay constant sum rule was the two-point

correlator, for the Bag parameters our sum rule is based on the three-point correlator

defined by,

KQ̃(ω1, ω2) =
∫
ddx1d

dx2e
ip1·x1−ip2·x2 ⟨0|T

[
j̃+(x2)Q̃(0)j̃−(x1)

]
|0⟩ , (3.2.22)
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Figure 3.2: Examples for factorizing (left) and non-factorizing
(right) contributions to the three-point correlator
Eq.(3.2.22) at NLO in αs.

where ω1,2 = p1,2 · v and the interpolating currents for the Bs and Bs mesons read

j̃+ = s̄γ5h(+), j̃− = s̄γ5h(−). (3.2.23)

The accuracy of the sum rule approach crucially depends on the observation that

the contributions to the correlator can be split into factorizable and non-factorizable

ones, examples of which are given in Figure 3.2. Factorizable diagrams consist of the

LO contributions and αs corrections for which the gluon exchange is confined either

to the left or right loop separately. In these cases, the correlator factorises into two

2-point functions. The remaining diagrams do not exhibit this behaviour and are

therefore classed as non-factorizable contributions which consist of gluon exchange

between the left and right loops. The full set of factorizable contributions amounts

to Bs
Q̃ = 1 which allows us to formulate a sum rule for the deviation ∆Bs

Q̃ = Bs
Q̃ − 1

based only on the non-factorizable contributions [54,55,145,146]

∆Bs
Q̃i

(µρ) = 1
AQ̃i

Fs(µρ)4

ωc∫
0

dω1dω2e
Λ+ms−ω1

t1
+ Λ+ms−ω2

t2 ∆ρQ̃i
(ω1, ω2) (3.2.24)

= 1
AQ̃i

ωc∫
0
dω1dω2e

−ω1
t1
−ω2

t2 ∆ρQ̃i
(ω1, ω2)(

ωc∫
0
dω1e

−ω1
t1 ρΠ(ω1)

)(
ωc∫
0
dω2e

−ω2
t2 ρΠ(ω2)

) . (3.2.25)

where the second equation makes use of Eq.(3.2.15). The quantity ∆ρQ̃i
is the

non-factorizable part of the double discontinuity

ρQ̃i
(ω1, ω2) = AQ̃i

ρΠ(ω1)ρΠ(ω2) + ∆ρQ̃i
. (3.2.26)
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In [55] a simple analytical result for the HQET bag parameters was derived by

comparing Eq.(3.2.24) to the square of the sum rule for the decay constant Eq.(3.2.15)

with an appropriately chosen weight function

wQ̃i
(ω1, ω2) =

∆ρpert
Q̃i

(ω1, ω2)
ρpert

Π (ω1)ρpert
Π (ω2)

. (3.2.27)

The generalization of this approach to the ms corrections is straightforward. Ex-

panding the double discontinuity in ms, we obtain

∆ρpert
Q̃i

(ω1, ω2) ≡ NcCF

4
ω2

1ω
2
2

π4
αs

4π

r(0)
Q̃i

(x, Lω) +
(
ms

ω1
+ ms

ω2

)
r

(1)
Q̃i

(x, Lω)

+
(
m2

s

ω2
1

+ m2
s

ω2
2

)
r

(2)
Q̃i

(x, Lω) + . . .

 θ(ω1 −ms)θ(ω2 −ms), (3.2.28)

where x = ω2/ω1 and Lω = ln(µ2
ρ/(4ω1ω2)). With this parametrization, the sym-

metry of the three-point correlator under exchange of ω1 and ω2 manifests as a

symmetry under x ↔ 1/x of the r
(j)
Q̃i

. The result for the deviation of the Bag

parameters from the VSA reads

∆Bs,pert
Q̃i

(µρ) =
wQ̃i

(Λ +ms,Λ +ms)
AQ̃i

=

CF

NcAQ̃i

αs(µρ)
4π

r(0)
Q̃i

(
1, LΛ+ms

)
+ 2ms

Λ +ms

[
r

(1)
Q̃i

(
1, LΛ+ms

)
− r

(0)
Q̃i

(
1, LΛ+ms

)]

+ 2m2
s

(Λ +ms)2

[
r

(2)
Q̃i

(
1, LΛ+ms

)
− 2r(1)

Q̃i

(
1, LΛ+ms

)
+ 2r(0)

Q̃i

(
1, LΛ+ms

)]
+ . . .

,
(3.2.29)

where LΛ+ms
= ln(µ2

ρ/(4(Λ + ms)2)). We find that the result only depends on the

value of the double discontinuity at ω1 = ω2 = Λ +ms. Thus, the knowledge of the

ms-expanded double discontinuity is sufficient to determine the ms effects for the

Bag parameters in Bs mixing. However, the use of this weight function approach

relies on the expanded version of the sum rule Eq.(3.2.15) for the decay constant.

As discussed in the previous subsection, this approach gives an incorrect result at

the order m3
s and the result Eq.(3.2.29) is therefore limited to the quadratic order

in ms.
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Figure 3.3: Examples for soft corrections to the non-factorizable
part of the three-point correlator Eq.(3.2.22). The red,
thick light-quark line carries momentum of the order of
ms ≪ ω ∼ Λ.

3.2.4 Non-zero ms corrections to the non-factorizable part

We compute the ms-expanded result for the leading non-factorizable part of the

three-point correlators using the expansion by regions [113, 114]. As in the case

of the two-point correlator, contributions involving soft propagators like the ones

shown in Figure 3.3 first contribute at order m3
s. Therefore, only the fully hard

momentum region for which all loop momenta admit the scaling l ∼ ωi ≫ ms are

considered in our calculation. This corresponds to a naive Taylor expansion in ms

of the loop integrands. The amplitudes were generated manually and also using

QGRAF [147] with further processing in Mathematica. Manipulation of the Dirac

algebra was done with TRACER [148]. The scalar loop integrals were reduced to a set

of master integrals through IBP relations generated by FIRE [105] using the Laporta

algorithm [102]. The analytical form of these master integrals have been computed

to all orders in ϵ in [149]. Using HypExp [150], they were then expanded in ϵ up

to the necessary order. For completeness we state the results r(0)
Q̃i

= r
(0)
Q̃i

(x, Lω) for

ms = 0 previously presented in [55]

r
(0)
Q̃1

= 8 − a2

2 − 8π2

3 ,

r
(0)
Q̃2

= 25 + a1

2 − 4π2

3 + 6Lω + ϕ(x),

r
(0)
Q̃4

= 16 − a3

4 − 4π2

3 + 3Lω + ϕ(x)
2 ,

r
(0)
Q̃5

= 29 − a3

2 − 8π2

3 + 6Lω + ϕ(x), (3.2.30)
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with

ϕ(x) =


x2 − 8x+ 6 ln(x), x ≤ 1,

1
x

2 − 8
x

− 6 ln(x), x > 1.
(3.2.31)

For the linear terms r(1)
Q̃i

= r
(1)
Q̃i

(x, Lω) we obtain

r
(1)
Q̃1

= −a2

2 − 8π2

3 − 2ψ(x) +


2(18−63x+23x

2)
9(1+x) +

(
2 − 2(3+x

3)
3x(1+x)

)
ln(x), x ≤ 1,

2(23−63x+18x
2)

9x(1+x) −
(

2 − 2(1+3x
3)

3x(1+x)

)
ln(x), x > 1,

r
(1)
Q̃2

= a1

2 − 4π2

3 + 6Lω + ψ(x) +


243+162x−41x

2

9(1+x) +
(
5 + 3+x

3

3x(1+x)

)
ln(x), x ≤ 1,

243x
2+162x−41

9x(1+x) −
(
5 + 1+3x

3

3x(1+x)

)
ln(x), x > 1,

r
(1)
Q̃4

= −a3

4 − 4π2

3 + 3Lω +


4(36+9x+x

2)
9(1+x) +

(
3 − 2x

2

3(1+x)

)
ln(x), x ≤ 1,

4(1+9x+36x
2)

9x(1+x) −
(
3 − 2

3x(1+x)

)
ln(x), x > 1,

r
(1)
Q̃5

= −a3

2 − 8π2

3 + 6Lω +


29+11x−2x

2

1+x
+ 6 ln(x), x ≤ 1,

29x
2+11x−2

x(1+x) − 6 ln(x), x > 1,
(3.2.32)

with

ψ(x) =


(1−x)2

x
[2 ln(1 − x) − ln(x)] , x ≤ 1,

(1−x)2

x
[2 ln(x− 1) − ln(x)] , x > 1.

(3.2.33)

Last but not least, our results for the quadratic terms r(2)
Q̃i

= r
(2)
Q̃i

(x, Lω) are

r
(2)
Q̃1

= 1
1 + x2

(1 − x)2a2

4 + 2π2(1 − 4x+ x2)
3 + 2xψ(x)

(
2 + 1 + x

1 − x
ln(x)

)

+


−2(6+6x−x

2+2x
3)

3 + 2(2 − 4x+ x2) ln(x) − 4(1 − x2)Li2(1 − 1/x), x ≤ 1,

−2(2−x+6x
2+6x

3)
3x

− 2(1 − 4x+ 2x2) ln(x) + 4(1 − x2)Li2(1 − x), x > 1,

,

r
(2)
Q̃2

= 1
1 + x2

−(1 − x)2a1

4 − 3(1 − x)2Lω + π2(1 − 4x+ x2)
3 + x(1 + x)

1 − x
ln(x)ψ(x)

+


−75−198x+89x

2−4x
3

6 − (3 − 6x+ 2x2) ln(x) − 2(1 − x2)Li2(1 − 1/x), x ≤ 1,

+4−89x+198x
2−75x

3

6x
+ (2 − 6x+ 3x2) ln(x) + 2(1 − x2)Li2(1 − x), x > 1,

,
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r
(2)
Q̃4

= 1
1 + x2

(1 − x)2a3

8 − 3(1 − x)2

2 Lω + xψ(x)
2

(
1 + 3(1 + x)

1 − x
ln(x)

)

+



−(1 + 8x− 5x2)π
2

6 − 24−48x+16x
2+x

3

3 − (1 + x2) ln(x)

−(1 − x2) ln2(x) − 5(1 − x2)Li2(1 − 1/x), x ≤ 1,

+(5 − 8x− x2)π
2

6 − 1+16x−48x
2+24x

3

3x
+ (1 + x2) ln(x)

+(1 − x2) ln2(x) + 5(1 − x2)Li2(1 − x), x > 1,

,

r
(2)
Q̃5

= 1
1 + x2

(1 − x)2a3

4 − 3(1 − x)2Lω + 2π2(1 − 4x+ x2)
3

+2xψ(x)
(

1 + 1 + x

1 − x
ln(x)

)
− 29 − 62x+ 29x2

2

+


−(1 − x)2 ln(x) − 4(1 − x2)Li2(1 − 1/x), x ≤ 1,

+(1 − x)2 ln(x) + 4(1 − x2)Li2(1 − x), x > 1,

.
(3.2.34)

3.3 Results and phenomenology

Here we present a numerical analysis using the analytic results derived in the previous

section. To begin with we give a determination of the Bag parameters in Section 3.3.1.

We subsequently discuss the impact of these results for Bs mixing observables in

Section 3.3.2. We use the results of our mixing studies to extract a value for the top-

quark MS mass in Section 3.3.3. Finally, we then present an alternative prediction

of the branching ratios B(Bq → l+l−) derived from the ratios B(Bq → l+l−)/∆Mq

in Section 3.3.4.

3.3.1 Bag parameters

We determine the HQET Bag parameters at the scale µρ = 1.5 GeV using the

weight function approach Eq.(3.2.29). The strange-quark mass scheme in Eq.(3.2.29)

is undetermined since any scheme change would only affect the expressions at
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higher orders which are not taken into account. We use the value in the MS

scheme at the scale µρ which is determined from the central value of the aver-

age ms(2 GeV) = (95+9
−3) MeV [151]. To account for the uncertainties related to the

scheme choice and the truncation of the expansion in ms we increase the parametric

uncertainty and use ms(2 GeV) = (95 ± 30) MeV. To the perturbative part we add

the condensate contributions [152,153]. The lattice simulation [154] shows that light

and strange quark condensates agree within uncertainties and their result for the

strange-quark condensate has since been confirmed with a different method [155].

With the factorization hypothesis ⟨q̄Gq⟩ = m2
0⟨q̄q⟩ the same holds for the quark-

gluon condensate. We therefore assume the condensate corrections to be the same

in the B0 and B0
s systems. We obtain

Bs
Q̃1

(1.5 GeV) = (0.910 − 0.016ms
+ 0.003

m
2
s
) +0.025
−0.036

= 0.897 +0.002
−0.002(Λ) +0.020

−0.020(intr.) +0.005
−0.005(cond.) +0.014

−0.029(µρ) +0.003
−0.003(ms),

Bs
Q̃2

(1.5 GeV) = (0.939 − 0.006ms
+ 0.002

m
2
s
) +0.027
−0.031

= 0.936 +0.014
−0.016(Λ) +0.020

−0.020(intr.) +0.004
−0.004(cond.) +0.011

−0.016(µρ) +0.004
−0.004(ms),

Bs
Q̃4

(1.5 GeV) = (1.003 − 0.004ms
+ 0.001

m
2
s
) +0.023
−0.023

= 1.000 +0.005
−0.004(Λ) +0.020

−0.020(intr.) +0.010
−0.010(cond.) +0.000

−0.002(µρ) +0.003
−0.002(ms),

Bs
Q̃5

(1.5 GeV) = (0.988 − 0.008ms
+ 0.000

m
2
s
) +0.028
−0.027

= 0.980 +0.015
−0.012(Λ) +0.020

−0.020(intr.) +0.010
−0.010(cond.) +0.000

−0.007(µρ) +0.007
−0.006(ms),

(3.3.1)

where we have indicated the orders in ms with subscripts and find good convergence

of the expansion. The differences in the leading terms with respect to the results for

Bd mixing obtained in [55] arise because the logarithms LΛ are replaced by LΛ+ms

which we do not expand in ms/Λ.

The results Eq.(3.3.1) are then evolved to the matching scale µm = mb(mb) where

they are converted to QCD Bag parameters Bs
Q using Eq.(3.2.14). We do not consider

the effects of a non-zero strange-quark mass in the QCD-HQET matching. The
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matching corrections are of the order αs(mb(mb))/π ×ms(mb)/mb(mb) ∼ 0.001 and

therefore subleading compared to the linear terms αs(µρ)/π×ms(µρ)/(Λ+ms(µρ)) ∼

0.019 and even the quadratic terms αs(µρ)/π × [ms(µρ)/(Λ +ms(µρ))]2 ∼ 0.003 in

the sum rule. We do not include this uncertainty as a separate contribution in our

error analysis since it is covered by the conservative variation of the input value for

ms. Lastly, we convert the QCD Bag parameters to the usual convention which we

denoted as Bs
Q in Eq.(3.2.5). We find

B
s
Q1(mb(mb)) = 0.858+0.051

−0.052 = (0.870 − 0.015ms
+ 0.002

m
2
s
)+0.022
−0.033(SR)+0.046

−0.040(M),

B
s
Q2(mb(mb)) = 0.854+0.079

−0.072 = (0.857 − 0.005ms
+ 0.002

m
2
s
)+0.026
−0.030(SR)+0.074

−0.066(M),

B
s
Q3(mb(mb)) = 0.907+0.164

−0.155 = (0.880 + 0.027ms
+ 0.000

m
2
s
)+0.124
−0.125(SR)+0.107

−0.091(M),

B
s
Q4(mb(mb)) = 1.039+0.092

−0.083 = (1.043 − 0.004ms
+ 0.001

m
2
s
)+0.024
−0.024(SR)+0.088

−0.080(M),

B
s
Q5(mb(mb)) = 1.050+0.081

−0.074 = (1.058 − 0.007ms
+ 0.000

m
2
s
)+0.025
−0.025(SR)+0.077

−0.069(M),

(3.3.2)

where we have included the uncertainty from variation of ms in the sum rule (SR)

error and M denotes the uncertainty from the QCD-HQET matching. We compare

our results to other determinations from lattice simulations [135–137,156] and sum

rules [54] and the FLAG averages [157] in Figure 3.4 and find very good agreement

overall with similar uncertainties. We observe that the FNAL/MILC’16 value for

BQ1 is larger than all the other results – with respect to our value the difference

corresponds to 1.1 sigma. More recently HPQCD’19 completed an independent

lattice determination with (Nf = 2 + 1 + 1) which we find is in good agreement with

our own. Our Bag parameters for Q4,5 are consistent with both HPQCD’19 and

FNAL/MILC’16, while there is a tension of more than two sigma with respect to the

results of ETM’14. Similar tensions have been observed in the Kaon system [158]

where it was conjectured that a difference in intermediate renormalization schemes

might be responsible. We also consider the ratios Bs/d
Q1 ≡ B

s
Q1/B

d
Q1 of the Bag
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Figure 3.4: Comparison of Bag parameters relevant for Bs mixing.
The dark gray regions indicate the ranges spanned only
by the sum rule error whereas the light gray regions
correspond to the total uncertainties. The sum rule
value GKMP’16 corresponds to the result [54] for the
Bd system with an uncertainty of ±0.02 for the ms

effects added in quadrature as suggested by the authors
in [139].

parameters in the B0
s and B0

d system where a large part of the uncertainties cancel

B
s/d
Q1 (mb(mb)) = 0.987+0.007

−0.009 = (1.001 − 0.017ms
+ 0.003

m
2
s
)+0.007
−0.008(SR)+0.002

−0.002(M),

B
s/d
Q2 (mb(mb)) = 1.013+0.010

−0.008 = (1.017 − 0.006ms
+ 0.002

m
2
s
)+0.009
−0.008(SR)+0.002

−0.002(M),

B
s/d
Q3 (mb(mb)) = 1.108+0.068

−0.051 = (1.076 + 0.033ms
− 0.001

m
2
s
)+0.068
−0.051(SR)+0.007

−0.007(M),

B
s/d
Q4 (mb(mb)) = 0.991+0.007

−0.008 = (0.994 − 0.004ms
+ 0.001

m
2
s
)+0.006
−0.008(SR)+0.002

−0.002(M),

B
s/d
Q5 (mb(mb)) = 0.979+0.010

−0.014 = (0.985 − 0.007ms
+ 0.000

m
2
s
)+0.010
−0.013(SR)+0.002

−0.002(M).

(3.3.3)

The leading terms in the ms-expansion differ from unity because we do not expand

the logarithms LΛ+ms
in ms/Λ. Compared to the absolute Bag parameters we reduce

the intrinsic sum rule error to 0.005, the condensate error to 0.002 and the uncertainty

due to power corrections to 0.002 since the respective uncertainties cancel to a large

extent in the ratios. However, we enhance the intrinsic sum rule and condensate

error estimates for the operator Q3 by a factor of five since the sum rule uncertainties
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for this operator are enhanced by large ratios of color factors AQ1,2/AQ3 . A detailed

overview of the uncertainties is given in Appendix A.1. The ratios Eq.(3.3.3) are in

excellent agreement with the parametric estimates 1 ± 0.02 from [55,139] with the

exception of Q3 where this uncertainty should have been enhanced like the other

sum rule uncertainties listed above to account for the large color factors in the

QCD-HQET matching relation Eq.(3.2.14) for the Bag parameter.

Taking the FLAG [157]1 value with Nf = 2 + 1 + 1 for the ratio fBs
/fB of the decay

constants of B0
s and B0

d we obtain a high level of precision for the ratio

ξ ≡ fBs

fB

√
B

s/d
Q1 = 1.2014+0.0065

−0.0072 = 1.2014 ± 0.0050
(
fBs

fB

)
+0.0043
−0.0053

(
B

s/d
Q1

)
, (3.3.4)

where the ratio of decay constants and Bag parameters contributes equally to the

error budget.

3.3.2 Bs mixing observables

In this section we present the current status of the B mixing observables: ∆Ms,

∆Md, the decay rate differences ∆Γs and ∆Γd, and the ratio ∆Ms/∆Md, of which

the latter benefits from a reduced uncertainty due to the cancellation of CKM factors

and hadronic effects. In doing so we hope to provide the reader with a more up

to date picture of the analysis we carried out in [1]. Since that analysis was done,

weighted averages of the bag parameter results presented here along with other

sum rule [54, 55] and lattice determinations [136, 137, 141, 156, 157] were presented

in [28]. The source of uncertainties between sum rules and lattice are independent

and therefore the findings of [28] provide a reliable picture. Furthermore, the SM

predictions of ∆Γq obtained in [161] using the averaged non-perturbative input

from [28] are now used as the benchmark SM results by HFLAV [127].

Comparing the SM value for ∆Ms [28] we see an excellent agreement with the

1The average is dominated by the HPQCD’17 [159] and FNAL/MILC’17 [160] results.
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experimental measurement [127]:

∆MExp
s = (17.741 ± 0.020) ps−1,

∆MSM
s = (18.4+0.7

−1.2) ps−1, (3.3.5)

where the hadronic input for ∆M12
s was composed of the FLAG (Nf = 2 + 1 + 1)

value for the decay constant and the averaged bag parameter BAV
Q1 = 0.849 ± 0.023

based on [1, 137, 156] which is in excellent agreement with our sum rule result in

Eq.(3.3.2) albeit with a reduced uncertainty. As such, the SM value in Eq.(3.3.5) is

very close to our original sum rule prediction [1].

The SM value for ∆Γs was updated in [161] and compared to experiment [127] reads

as:

∆ΓExp
s = (0.082 ± 0.005) ps−1,

∆ΓSM
s = (0.091 ± 0.013) ps−1. (3.3.6)

The theoretical prediction for the decay rate difference includes NLO QCD [75,162–

164] and 1/mb [165, 166] corrections. The SM estimate in Eq.(3.3.6) represents a

significant improvement on previous theory predictions, partly due to the increased

precision of dimension-6 matrix elements. It also benefits from the inclusion of

non-perturbative results for dimension seven matrix elements calculated in [80],

where previously only the vacuum insertion approximation for these parameters

was available. Further reductions to the uncertainty can be made with a NNLO

computation of the HQE matching coefficients (see [167]).

Similarly, for Bd observables, the SM value with averaged hadronic inputs currently

agrees well with experiment [127]:

∆MExp
d = (0.5065 ± 0.0019) ps−1,

∆MSM
d = (0.533+0.022

−0.036) ps−1, (3.3.7)
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and:

∆Γexp
d = ( 0.7 ± 6.6) · 10−3 ps−1,

∆ΓSM
d = (2.6 ± 0.4) · 10−3 ps−1, (3.3.8)

where ∆MSM
d was calculated by [28] and ∆ΓSM

d from [124]. Currently there is only

an upper bound on ∆ΓExp
d available and so we estimate its value through [127]:(

∆Γd

Γd

)Exp

= 0.001 ± 0.010, τExp
Bd

= (1.519 ± 0.004) ps. (3.3.9)

Lastly, for the ratio of the mass differences, the current SM value [28] compared to

experiment reads as:(
∆Md

∆Ms

)Exp

= 0.0285 ± 0.0001,
(

∆Md

∆Ms

)SM

= 0.0298+0.0005
−0.0009 = 0.0297+0.0004

−0.0003 (had.)+0.0005
−0.0008 (CKM). (3.3.10)

The hadronic input entering the SM prediction is the ratio ξ, taken from a weighted

average of Eq.(3.3.4) and lattice determinations from [141, 156, 157]. We find that

our value for ξ has a precision almost twice that of the lattice determinations and

therefore the value of (∆Md/∆Ms)SM is dominated by our sum rule result. We have

also broken down the uncertainty contributions in Eq.(3.3.10) to illustrate that CKM

is the dominant source in this case. Furthermore, we observe a small deviation from

experiment ∼ 1.4σ.

3.3.3 Determination of the top-quark MS mass

The parametric error from the top-quark mass currently dominates the uncertainty in

the determination of the stability or meta-stability of the electroweak vacuum [168].

Direct measurements quote very precise values mMC
t = (172.76 ± 0.3) GeV for the

top quark mass [169], but these results correspond to so-called Monte-Carlo (MC)

masses and not the top-quark pole mass. One therefore needs to account for addi-

tional uncertainties from the scheme conversion [170] when these values are used for
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phenomenological predictions. Alternatively one can determine the top-quark mass

by fitting observables like the total top-pair production cross section which can be

predicted in terms of the top-quark mass in a well-defined scheme like MS. Simil-

arly, we can use the mass differences ∆Mq for a theoretically clean determination of

mt(mt). Using the CKMfitter values for Vtd and Vts as input we obtain

mt(mt) = (158+9
−6) GeV = (158+7

−6 (had.)+0
−1 (µ)+6

−1 (param.)) GeV, from ∆Ms,

mt(mt) = (155+9
−6) GeV = (155+6

−6 (had.)+0
−1 (µ)+6

−2 (param.)) GeV, from ∆Md.

(3.3.11)

Combining both results we find

mt(mt) = (157+8
−6) GeV = (157+7

−6 (had.)+0
−1 (µ)+4

−1 (param.)) GeV, (3.3.12)

where we have averaged over the hadronic and scale uncertainties, which are correl-

ated, and treated the parametric uncertainties, which are dominated either by Vtd

or Vts, as independent. This is in good agreement with the PDG average [169]

mt(mt) = (162.5+2.1
−1.5) GeV, (3.3.13)

of MS mass determinations from cross section measurements, albeit with much larger

uncertainties. A very precise measurement of the top-quark PS or MS mass with a

total uncertainty of about 50 MeV is possible at a future lepton collider running at

the top threshold [171–173].

3.3.4 B(Bq → µ+µ−)

The branching ratio B(Bq → l+l−) is strongly suppressed in the SM and theoretically

clean. Thus, it provides a very sensitive probe for new physics. At present it has

been computed at NNLO QCD plus NLO EW [174] and the dominant uncertainties

are parametric, stemming from the decay constant and the CKM parameters. Both

uncertainties cancel out of the ratio [175]

B(Bq → l+l−)
∆Mq

=
3G2

FM
2
Wm

2
l τB

H
q

π3

√√√√1 − 4m2
l

M2
Bq

|CA(µ)|2
S0(xt)η̂BB

q
Q1(µ)

, (3.3.14)
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which in turn receives its dominant uncertainty from the Bag parameter Bq
Q1 . Using

our result Eq.(3.3.3) and including the power-enhanced QED corrections determined

in [176] we predict the branching ratio by multiplying Eq.(3.3.14) with the measured

mass differences

B(B0
s → µ+µ−)SM = (3.55+0.23

−0.20) · 10−9 ,

B(B0
d → µ+µ−)SM = (9.40+0.58

−0.53) · 10−11 ,(
B(B0

d → µ+µ−)
B(B0

s → µ+µ−)

)
SM

= 0.0265 ± 0.0003 = 0.0265 ± 0.0002
(
B

s/d
Q1

)
± 0.0002(exp) ,

(3.3.15)

where the uncertainties for the branching ratios are completely dominated by the

error from B
q
Q1 . The result for B0

s → µ+µ− is in good agreement with the current

experimental average [127]

B(B0
s → µ+µ−)exp = (3.1 ± 0.6) · 10−9 , (3.3.16)

while the latest measurements only provide upper bounds at 95% confidence level

for B0
d → µ+µ−

B(B0
d → µ+µ−)exp <



3.6 · 10−10 , (CMS [35]) ,

2.6 · 10−10 , (LHCb [33]) ,

2.1 · 10−10 , (ATLAS [34]) .

(3.3.17)

We compare our prediction Eq.(3.3.15) to the direct predictions from [160,174,176]

which depend on the decay constants and CKM elements |Vtq|, the predictions [137,

156] from the ratios B(Bq → l+l−)/∆Mq and the experimental average Eq.(3.3.16)

in Figure 3.5. The shaded regions correspond to the overlap of the one-sigma

regions for B(B0
s → µ+µ−), B(B0

d → µ+µ−) and B(B0
d → µ+µ−)/B(B0

s → µ+µ−)

where they were provided. We find good consistency among the various predictions

with similar uncertainties for both approaches and good agreement with experiment

whose uncertainty currently exceeds the theoretical one by a factor of about 3-4

in B(B0
s → µ+µ−). For completeness we provide our predictions for the branching
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Figure 3.5: We compare our prediction for the branching ratios
B(B0

q → µ+µ−) with q = s, d to other predictions us-
ing either the decay constants [160, 174, 176] (dashed
boundaries) or the Bag parameter Bq

Q1 [137,156] (solid
boundaries) as input. The experimental average for
B(B0

s → µ+µ−) is indicated by the region with the dot-
ted boundary.

ratios to electrons

B(B0
s → e+e−)SM = (8.37+0.55

−0.48) · 10−14 , (3.3.18)

B(B0
d → e+e−)SM = (2.22+0.14

−0.13) · 10−15 ,(
B(B0

d → e+e−)
B(B0

s → e+e−)

)
SM

= 0.0265 ± 0.0003 = 0.0265 ± 0.0002
(
B

s/d
Q1

)
± 0.0002(exp) ,

and tau leptons

B(B0
s → τ+τ−)SM = (7.58+0.50

−0.44) · 10−7 , (3.3.19)

B(B0
d → τ+τ−)SM = (1.98+0.12

−0.11) · 10−8 ,(
B(B0

d → τ+τ−)
B(B0

s → τ+τ−)

)
SM

= 0.0262 ± 0.0003 = 0.0262 ± 0.0002
(
B

s/d
Q1

)
± 0.0002(exp) .

3.4 Summary

In this chapter we have presented a HQET sum rule determination of the five ∆B = 2

Bag parameters describing Bs-mixing in the SM and beyond. In order to achieve
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this we had to calculate ms and m2
s corrections to the three-point correlator at the

3-loop level. In doing so, we obtain the most precise values for the ratios of Bag

parameters in the Bs and Bd system. Combining these findings with the current

FLAG value for fBs
/fBd

[157,159,160] we obtain the world’s most precise value for

the ratio

ξ ≡ fBs

fB

√
B

s/d
Q1 = 1.2014+0.0065

−0.0072 , (3.4.1)

which represents a reduction of the uncertainty by more than a factor of two compared

to the latest lattice results [137,141,156]. Our results enable a rich phenomenology:

contributing to a significant improvement in the theoretical determination of ∆Ms

and ∆Γs, which are now in agreement with the experimental values. The control we

have over the hadronic uncertainties thanks to the efforts of [1,28,54,55,137,141,156]

means we are now in a much stronger position to probe for NP effects in B-mixing.

Using all CKM elements as inputs we get constraints on the values of the top quark

MS mass which are compatible with direct collider determinations. Finally, using

our results we were able to give precise SM predictions for the leptonic branching

ratios of the rare decays Bq → ll.

Further improvements to the precision of our HQET sum rule results can be ob-

tained through the use of the HQET-QCD matching at NNLO (first steps in that

direction have been performed in [140]). Another line of improvement would be the

determination of 1/mb-corrections to the HQET limit.



Chapter 4

Determination of CKM parameters

4.1 Introduction

In the previous Chapter we determined the hadronic matrix elements for Bs-mixing

with HQET sum rules [1, 55] (cf. also [54]) and discussed their impact on the SM

predictions of ∆Md and ∆Ms when used along side the lattice results [137,141,156]

through the weighted averages presented in [28]. Assuming only SM contributions,

these can also be used to obtain a direct determination of |V ∗tsVtb| from the exper-

imental value of the mass difference ∆MExp.
s . Additionally, by taking instead the

ratio of the mass differences in the Bd and the Bs systems we can get a clean handle

on |Vtd/Vts|. In this Chapter we investigate the implications of these results for the

unitarity triangle angle γ, and use them to extract a value for the CKM element

|Vcb|.

4.2 Analysis

Using the results of [28] we determine the following combinations of CKM elements:

|VtsVtb| =
(
40.91+0.67

−0.64

)
· 10−3 (1)

=
(

40.91 +0.65
−0.62

∣∣∣
f

2
BB

±0.17|mt
±0.05|αs(MZ) ±0.02|∆Ms

)
· 10−3 ,
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∣∣∣∣∣Vtd

Vts

∣∣∣∣∣ = 0.2043+0.0010
−0.0011 (2)

= 0.2043 +0.0009
−0.0010

∣∣∣
ξ

±0.0003|∆Md
±0.0001|∆Ms

,

from the experimental measurements of the mass differences, updating the results

in [1]. Motivated by the well-known discrepancy between the direct determination

of the CKM elements Vcb and Vub from semi-leptonic b-hadron decays (see [177]) we

study the impact of these values on CKM unitarity fits.

The effects of B-mixing on CKM unitarity fits can be illustrated with the unitarity

triangle shown in Figure 4.1. The combinations of CKM elements (1) and (2) we

determined from ∆Ms and ∆Md appear in the lengths of the two non-trivial sides of

the triangle if we expand to leading order in the Wolfenstein parameter λ = |Vus|. Up

to reflection with respect to the ρ̄ axis the apex of the triangle is exactly fixed with

the addition of |Vub| and the precisely measured |Vus|. Here, we use this information

to determine the angle γ. Furthermore, we can extract |Vcb| = |VtsVtb| × [1 + O(λ2)]

with a precision that is competitive with direct measurements.

We perform a minimalistic CKM unitarity fit, first taking only the direct measure-

ments of the CKM element |Vus| = 0.2243 ± 0.0005 [151] and the mass differences

∆Md and ∆Ms into account. This strongly constrains the length of the side Rt.

Figure 4.2 shows our results in the |Vub| − γ and |Vcb| − γ planes where the shaded

blue regions indicate the parameter space satisfying the inputs within one and two

standard deviations. For values of γ larger than about 65◦ the unitarity triangle does

(0, 0) (1, 0)

(ρ̄, η̄)

γ β

α Rt =
∣∣∣∣∣
VtdV

∗
tb

VcdV
∗
cb

∣∣∣∣∣ =
1

|Vus|
∣∣∣∣
Vtd
Vts

∣∣∣∣ +O(λ2)Ru =
∣∣∣∣∣
VudV

∗
ub

VcdV
∗
cb

∣∣∣∣∣ =
|Vub|
|Vus|

1
|VtsVtb| +O(λ2)

Figure 4.1: Our conventions for the unitarity triangle in the ρ̄− η̄
plane.
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Figure 4.2: Our results for a minimalistic CKM unitarity fit based
on direct measurements of |Vus| and the mass differences
∆Md and ∆Ms are given as shaded blue regions. In-
cluding the exclusive or inclusive measurements of |Vub|
yields the orange and red regions, respectively. See text
for details.
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Figure 4.3: We show the updated constraints on the apex of the
unitarity triangle. The latest value for γ taken from
HFLAV [127] (light blue) is found to be much more
consistent with the constraints from B-mixing (green)
and the value of β, taken from HFLAV [127] (red) than
the previous measurement by LHCb [178] (dark blue).
The dark and light green regions indicate the 1σ and 5σ
bounds from mixing, while the blue and red regions refer
to the 1σ constraints. The dashed blue lines illustrate
the future precision of ±1.5◦ on the measurement of γ
if the central value had not shifted from its 2019 value.

not close within the two-sigma region1. This behaviour is illustrated in Figure 4.3

and allows us to derive a stringent upper limit on γ. At the level of five standard

deviations we obtain

γ ≤ 66.9◦ [5σ] , (3)

which is indicated by the horizontal dashed line in Figure 4.2. At this point we note

that at the time of our original analysis in [2] our results suggested a possible tension

with the latest measurements by LHCb [178], indicated on the far left of Figure 4.2

where it sits clearly above our 5σ bound. Recently an update by LHCb [180] brought

their measurement down considerably. This is reflected in Figure 4.2 in the result on

the far right which was obtained from HFLAV [127] using the new measurements by

LHCb and the findings by BaBar [181]. This illustrates that the status of γ is now

consistent with mixing constraints at the current level of precision. We note that the
1Similar observations were made in e.g. [179].
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indirect determinations of γ from the CKMfitter [182] and UTfit [183] collaborations

yield values that agree with the updated direct measurements also.

For smaller values of γ there are two intersections between the circle of length

Rt around the point (1,0) and the line crossing the origin at angle γ, leading to

two degenerate perfect-fit results for |Vub| and |Vcb| at a fixed value of γ. This

degeneracy can be broken by constraining the length of the side Ru by including the

measurements of |Vub| in the fit. Due to the well-known puzzle about different results

in exclusive and inclusive measurements (shown by the orange and red horizontal

error bars in Figure 4.2, values from HFLAV [127]) this step would normally have

to be taken with a grain of salt. However, due to a lucky numerical coincidence

the values of |Vub| are very close to the region where the intersection point of the

circles of length Rt and Ru lies at the maximal value of γ allowed by Rt as shown

by the orange and red ellipses in Figure 4.2 which are the results of the fit when the

exclusive or inclusive measurements of |Vub| are included. Thus, the dependence of

γ on the exact value of |Vub| is rather small. Indeed we find

γ =
(
63.3+0.7

−0.8

)◦
, from |V excl.

ub | , (4)

γ =
(
63.8+0.6

−0.6

)◦
, from |V incl.

ub | . (5)

We take the envelope of both values

γ = (63.4 ± 0.9)◦ , (6)

as our final result to be sufficiently conservative about the uncertainty associated with

the direct measurements of |Vub|. Eq. (6) represents the most precise determination

of γ to date. The result is fairly insensitive to the input value for |Vus|. If we inflate

the error in |Vus| by a factor of three we obtain γ = (63.4 ± 1.3)◦ and the upper

five-sigma bound (3) becomes 68.9◦, which still poses a very stringent constraint.

The effect of the exclusive or inclusive |Vub| measurements on the fit is also indicated

in the |Vcb| − γ plane by the orange and red ellipses, respectively. The difference

in the extracted values of |Vcb| is negligible and we again adopt the envelope as our
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final result

|Vcb| = (41.6 ± 0.7) · 10−3 . (7)

We also show the exclusive and inclusive HFLAV averages [127] and the result of a

reanalysis BJvD [184] of exclusive determinations in Figure 4.2. Our result yields

a competitive uncertainty and the one-sigma region overlaps with the inclusive and

the BJvD results, while there is a 1.7 and 2.9 σ tension with respect to the B → Dℓν

and B → D∗ℓν values quoted by HFLAV. The result (7) remains unaffected when

we inflate the |Vus|-uncertainty by a factor of three.

4.3 Summary

To summarise, we have performed here a minimal χ2 fit of the CKM parameters

based on the mass differences in the B system and direct measurements of |Vus| and

|Vub|. We found competitive results for |Vcb| which are in good agreement with the

inclusive determinations. In addition to this, we also obtained the currently most

precise value for the angle γ in the unitarity triangle. We find that the latest direct

measurements of γ are consistent with the B-mixing constraints. Furthermore, we

look forward to updates of the complete CKM unitarity fits by the CKMfitter and

UTfit collaborations where the latest theoretical developments [1, 28, 54, 55, 137,141,

156] in B-mixing are taken into account.



Chapter 5

Lifetime Bag Parameter

5.1 Introduction

The theoretical predictions for B-meson lifetime ratios currently stand in close

agreement with experimental results, see Table 5.1. The measurements of the Bs

Lifetime Ratio Experiment Theory
τ(B+)
τ(Bd) 1.076 ± 0.004 [127] 1.078+0.021

−0.023 [55]
τ(Bs)
τ(Bd) 0.998 ± 0.005 [127] 1.0007 ± 0.0025 [55]

Table 5.1: Experimental values (HFLAV [127]) of the lifetime ratio
of B mesons versus theoretical predictions based on the
2017 HQET sum rule prediction for the matrix elements
of the four quark operators in the MS scheme [55].

lifetime have recently been updated by the LHCb collaboration [132,185], the ATLAS

collaboration [186] and by the CMS collaboration [133] and interestingly the value of

ATLAS deviates from the other measurements [187]. In future we expect a further

improvement of the experimental precision indicated in Table 5.1. On the theory side

there has also been significant progress in the last years. As discussed in Section 2.1,

according to the heavy quark expansion (HQE) the total decay rate of a hadron HQ

containing a heavy quark Q can be expanded in inverse powers of the heavy quark

mass mQ and each term in the expansion is a product of a perturbative coefficient
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Γi or Γ̃i and a non-perturbative matrix element of a ∆Q = 0 operator OD or ÕD of

dimension D:

Γ = Γ3⟨O3⟩ + Γ5
⟨O5⟩
m2

Q

+ Γ6
⟨O6⟩
m3

Q

+ ...+ 16π2
[
Γ̃6

⟨Õ6⟩
m3

Q

+ Γ̃7
⟨Õ7⟩
m4

Q

+ ...

]
,(5.1.1)

with ⟨OD⟩ = ⟨HQ|OD|HQ⟩/(2MHQ
). We denote with Γi contributions related to two

quark operators Oi and with Γ̃i contributions related to four quark operators Õi.

Each perturbative coefficient Γi (Γ̃i) can be further expanded in the strong coupling

constant
(∼)

Γi =
(∼)

Γi

(0)
+ αs

4π
(∼)

Γi

(1)
+
(
αs

4π

)2 (∼)

Γi

(2)
+ . . . . (5.1.2)

Traditionally the four quark contributions indicated by Γ̃6⟨Õ6⟩ are considered to give

the dominant contributions to lifetimes ratios, because of the phase space enhance-

ment factor 16π2, see e.g. [188,189]. In these so-called spectator contributions, which

are known to NLO-QCD accuracy [190–193], the by far largest source of uncertainty

resides in the non-perturbative hadronic matrix elements ⟨Õ6⟩. The most recent

estimates for these parameters from lattice QCD [194] were carried out in 2001 and

only made public in proceedings. Movtivated by the successful findings of our HQET

sum rules analysis of Bs-mixing presented in Chapter 3, in this chapter we present

the first computation of the dimension-6 matrix elements of ∆Q = 0 four quark

operators with a non-zero strange quark mass. Furthermore, for the first time eye

contractions of the ∆Q = 0 four quark operators are determined as well as matrix

elements of penguin operators.

Very recently the Darwin term Γ6⟨O6⟩ was calculated for the first time for non-

leptonic decays and found to be very large [124, 195, 196]. For the lifetime ratio

τ(B+)/τ(Bd) this contribution will cancel due to isospin symmetry. However, for a

precise calculation of the ratio τ(Bs)/τ(Bd) the SU(3)F breaking contribution of the

form Γ6(⟨O6⟩Bd
−⟨O6⟩Bs

) has to be determined. The matrix element ⟨O6⟩Bd
is known

quite well from fits of the inclusive semileptonic B meson decays, see e.g. [197,198],

unfortunately a corresponding analysis has not been performed for the Bs meson,

thus ⟨O6⟩Bs
is largely unknown. However, the Darwin operator can be related to
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four quark operators via equations of motion (see e.g. [4, 195]) and thus our results

can also be used to estimate the size of the matrix element of the Darwin operator

for the Bs meson.

Since we work here in the strict HQET limit our results can also be applied to

the charm sector, where sizeable lifetime differences have been found experiment-

ally [169,199]:

τ(D+)
τ(D0)

= 2.54 ± 0.02 , τ(D+
s )

τ(D0)
= 1.20 ± 0.01 . (5.1.3)

As the expansion parameter αs(mc) and Λ/mc where Λ is a hadronic scale are quite

sizeable, a study of charm lifetimes can shed light on the convergence radius of the

HQE (this is discussed further in Chapter 6).

Our results can of course also be used for an analysis of spectator effects in inclusive

semi-leptonic B and D meson decays, where the same matrix elements will appear

(see Chapter 6).

The rest of this chapter is organised as follows: The sum rule setup is presented in

Section 5.2. We introduce the ∆Q = 0 operator basis and the parameterisation of

the matrix elements in Section 5.2.1. After this, Section 5.2.2 covers the sum rule

itself. Here there are large similarities with the methodology presented in Chapter 3

but due to the inclusion of non-valence contributions there is some additional nota-

tion required. We overview the perturbative part of the calculation in Section 5.2.3

including a brief overview of the obstacles that arise due to eye-contractions. Con-

densate contributions will be revisited in Section 5.2.4 and in Section 5.2.5 we present

analytic results. Lastly, our numerical analysis is discussed in Section 5.3 before we

summarise our findings and prospects in Section 5.4.
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5.2 Setup and calculation

5.2.1 Operator Basis

We carry out the sum rule in the exact HQET limit in order to avoid mixing between

operators of different mass dimensions. The basis we use coincides with that of [191],

except for the naming of the colour-octett operators. In the HQET limit (denoted

by the tilde) we get

Q̃q
1 = h̄γµ(1 − γ5)q · q̄γµ(1 − γ5)h, T̃ q

1 = h̄γµ(1 − γ5)TAq · q̄γµ(1 − γ5)TAh,

Q̃q
2 = h̄(1 − γ5)q · q̄(1 + γ5)h, T̃ q

2 = h̄(1 − γ5)TAq · q̄(1 + γ5)TAh, (5.2.1)

where h denotes the HQET field describing the heavy quark Q with mass mQ, the

light quark fields are denoted by q. In addition we use the same evanescent operators

as in [55] (choosing a1 = a2 = −8). A full description of SU(3) flavour-breaking

contributions at NLO in QCD also requires us to consider the QCD penguin operators

Q̃q
P = h̄γµT

Ah · q̄γµTAq . (5.2.2)

Note, that differing from the definition in [191] we need the flavour specific contri-

bution of the penguins, thus we are not summing over the light quark flavour q.

Inspired by [191,200] we parametrize the matrix elements of the above operators as,

⟨Bq|Q̃q
i (µ)|Bq⟩ = AQ̃i

F 2
q (µ)B̃q

i (µ) ⟨Bq|Q̃q
′

i (µ)|Bq⟩ = AQ̃i
F 2

q (µ)δ̃q
′
q

i (µ) ,

⟨Bq|T̃ q
i (µ)|Bq⟩ = AT̃i

F 2
q (µ)ϵ̃q

i (µ) ⟨Bq|T̃ q
′

i (µ)|Bq⟩ = AT̃i
F 2

q (µ)δ̃q
′
q

i+2(µ) ,

⟨Bq|Q̃q
P (µ)|Bq⟩ = AQ̃P

F 2
q (µ)B̃q

P (µ) ⟨Bq|Q̃q
′

P (µ)|Bq⟩ = AQ̃P
F 2

q (µ)δ̃q
′
q

P (µ) , (5.2.3)

for which the colour factors correspond to,

AQ̃i
= AT̃i

= 1 AQ̃P
= − CF

2Nc

, (5.2.4)

with the HQET decay constant Fq, the bag parameters B̃q
i , B̃q

P and ϵ̃q
i and the

non-valence contribution δ̃q
′
q

i , for q ̸= q′. Note that differing from [191] and [200] we
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(a) LO Factorisable (b) NLO Factorisable

(c) NLO Nonfactorisable
q

q′

(d) NLO Non-Valence

Figure 5.1: Some of the diagrams contributing to the correletor in
Eq.(5.2.5). Non-valence type diagrams like that shown
in (d) only appear at NLO.

have included in B̃q
i , B̃q

P and ϵ̃q
i also the non-valence contributions with q = q′. As

usual µ denotes the renormalisation scale dependence. In addition the heavy |Bq⟩

meson states (consisting of a heavy anti-quark Q and a light quark q ) are considered

in the strict HQET limit and thus our expressions hold both for B and D mesons.

5.2.2 The Sum Rule

As was the case in our analysis of the Bs-mixing bag parameters, the starting point

of our sum rule is the 3-point correlator,

Kq

Õq
′ (ω1, ω2) =

∫
ddx1d

dx2e
i(p1·x1−p2·x2) ⟨0|T

[
j̃q(x2)Õq

′
(0)j̃†q(x1)

]
|0⟩ , (5.2.5)

with the current defined as jq = qγ5h and the rest of the terms identical to Eq.(3.2.22).

Additionally, we have generalised the definition of the 3-point correlator to allow for

different light quark flavours between the inserted operators Õq
′
and the interpolating

currents j̃q.

Following our treatment of the correlator in Chapter 3, we categorise the possible

field contractions of Eq.(5.2.5) into factorisable and non-factorisable contributions.

Examples of the corresponding Feynman diagrams are found in Fig.5.1. As previously

discussed, this separation of contributions allows us to formulate a sum rule for the



92 Chapter 5. Lifetime Bag Parameter

deviation of the bag parameter ∆B from its vacuum saturation approximation (VSA)

value.

B̃q
i (µ) = 1 + ∆Bq

Q̃
q
i
(µ) , (5.2.6)

ϵ̃q
i (µ) = 0 + ∆Bq

T̃
q
i

(µ) , (5.2.7)

B̃q
P (µ) = 1 + ∆Bq

Q̃
q
P
(µ) . (5.2.8)

We find the following finite energy Borel sum rules,

∆Bq

Õq(µ) = 1
AOF

4
q (µ)

ωc∫
0

dω1dω2e
Λq−ω1

t
+

Λq−ω2
t ∆ρq

Õq(ω1, ω2) (5.2.9)

in which the term ∆ρq

Õq(ω1, ω2) corresponds to the non-factorisable part of the double

discontinuity of Eq.(5.2.5). Looking at the whole double discontinuity of the 3-point

correlator it is useful to separate out the various contributions further as,

ρq

Õq(ω1, ω2) = δÕQ̃ρΠ(ω1)ρΠ(ω2) + ∆ρq

Õq(ω1, ω2)

= δÕQ̃ρΠ(ω1)ρΠ(ω2) + ∆treeρ
q

Õq(ω1, ω2) + ∆pengρ
q

Õq(ω1, ω2) ,
(5.2.10)

for which δÕQ̃ is equal to 1 for the colour singlet and penguin operators and 0 for the

colour octet operators. In Eq.(5.2.10), the first term corresponds to factorisable con-

tributions, whilst ∆treeρ corresponds to the first set of non-factorisbale contractions

(see Fig.5.1c). The term denoted by ∆pengρ, stems from ‘eye-contraction’ diagrams

like that of the example illustrated in Fig.5.1d and was not considered in [55] as these

diagrams only become necessary when taking into account SU(3) flavour breaking ef-

fects. Note also, that these contributions first appear at NLO in QCD. The presence

of the non-valence terms also forces us to expand our basis of operators to include

the penguin operator defined in Eq.(5.2.2), which arises in renormalisation and thus

mixes with the original basis under renormalisation group (RG) running. Details

of the correlator renormalisation and the resulting structure of the renormalisation

group equations (RGE) are presented in Appendix B.1. For the matrix elements of

operators with a different light-quark flavour to that of the external meson state,
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only these ‘eye-contraction’ diagrams contribute and so the sum-rule has the form,

δq
′
q

Õq
′ (µ) = 1

AOF
4
q (µ)

ωc∫
0

dω1dω2e
Λq−ω1

t
+

Λq−ω2
t ∆pengρ

q

Õq
′ (ω1, ω2) (5.2.11)

In our analysis of the Bag parameters in Bs-mixing, the condensate contributions

were taken from [152,153]. However, for the analysis in this chapter we also present

analytic results of our calculation of the non-factorisable condensate discontinu-

ites. To distinguish these from the perturbative contribution, we therefore use the

following notation,

∆tree/pengρ
q

Õq
′ (ω1, ω2) = ∆pert

tree/pengρ
q

Õq
′ (ω1, ω2) + ∆cond

tree/pengρ
q

Õq
′ (ω1, ω2) , (5.2.12)

where the tree contribution vanishes if q ̸= q′. These are discussed in Section 5.2.3 and

Section 5.2.4 respectively and we show the results of our calculations in Section 5.2.5.

5.2.3 Perturbative contributions

As already mentioned, the eye-contraction diagrams represent a new contribution,

not previously calculated, to the sum rule analysis of the Bs lifetime matrix elements.

However the procedure for calculating them is no different than for the standard

tree-contraction terms and both are completely analogous to the calculation in Bs-

mixing from Chapter 3. Therefore here we will only briefly summarise the approach

and highlight the points where the two cases differ.

The amplitudes of the 3-loop processes were generated manually and the Dirac al-

gebra was computed using Tracer [148], treating γ5 in accordance with the Larin

scheme [201]. Alternatively, the amplitudes were also generated using QGRAF [147] and

the Dirac algebra computed using a private implementation in the ‘NDR’ scheme. We

found full agreement between both computations. An IBP reduction with FIRE5 [105]

leads the same set of master integrals as found in Bs.

It became apparent in this work that when considering ms corrections to eye-

contractions terms, these contributions could only be treated consistently within the

traditional sum rule approach and not with the weight function method. Therefore
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in this analysis we explicitly evaluate the integral in Eq.(5.2.9) and Eq.(5.2.11).

However, when applicable we compare the results of both methods and show that we

find them to be consistent. This will be discussed further in Sections 5.2.5 and 5.3.

Two notable consequences for our analysis result from the change to a traditional

sum rule approach. The first is that when also using the HQET sum rule for the

decay constant, the Λq dependence of the bag parameter drops out. Secondly, we

gain an explicit dependence of the bag parameter on both the cut-off ωc and the

Borel parameter t. As discussed in Section 2.4, these parameters need to be fixed.

In our implementation, this was done by comparing the HQET sum rules for Fq and

Λq to values found in the literature (see Appendix B.3 for the details of this fit).

5.2.4 Condensate contributions

We also carried out an independent analysis of the condensate contributions, that

have previously been determined for the massless case in [202,203]1 for the Qi and

Ti operators, but not for QP . Whenever appropriate we compare our results with

the literature in Section 5.2.5.

We use the standard approach of the background field technique in the Fock-

Schwinger gauge (see Section 2.6). Since, in calculating the deviation of the bag

parameters from their VSA values, we are only concerned with non-factorisable con-

tributions, the only diagrams that need to be considered are those found in Fig. 5.2

along with their symmetric counterparts. These represent the only condensate correc-

tions up to dimension-6 and leading order in αs, assuming that the quark condensate

factorises and thus leads to no correction to the non-factorisable contribution.

With regards to the non-valence terms, there is no dimension three quark condens-

ate contribution at the leading order in αs from the diagrams in Fig. 5.3. The left

diagram vanishes because the quark condensate flips the chirality and the Dirac struc-
1In the paper by Baek et al. [203], Eq.(20) yields an additional factor of 4 for ϵ1 compared to

the expression found in Eq.(11) of the same paper.
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Figure 5.2: Condensate corrections corresponding to ⟨αs

4π
GG⟩ and

⟨gsqσµνG
µνq⟩ respectively.

q

⟨q′q′⟩

q′

q

q′

⟨qq⟩

Figure 5.3: Quark condensate contributions to the eye contractions
at leading order in αs.

ture Γ1⟨q̄′q′⟩Γ2 vanishes for all the combinations of currents Γ1,2 appearing in the

considered operators. The ⟨q̄′q′⟩ condensate is therefore suppressed by an additional

αsmq
′/Λ. The right diagram is scaleless. The ⟨q̄q⟩ condensate is therefore suppressed

by at least an extra αs. There is also no dimension four gluon condensate ⟨αsG
2⟩

contribution at leading order in αs because the penguin loop is scaleless without an

extra gluon. Similar arguments lead us to conclude that the dimension five quark

gluon condensate ⟨q̄(′)σµνG
µνq(′)⟩ and the dimension six quark condensate ⟨q̄′q′q̄q⟩1

do not contribute at leading order in αs. Therefore, condensate contributions to the

eye-contractions are suppressed with respect to the perturbative contribution at first

order in the strong coupling and are not taken into account.
1If q′ = q this does not vanish, but is part of the factorisable contribution.
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5.2.5 Analytic results

In this section we present the analytic expressions of our calculation. Beginning with

the perturbative contribution, the double discontinuities defined in Eq.(5.2.10) can

be expressed in terms of their ms (generally denoted as mq below) expansion as,

∆pert
treeρ

q

Õq(ω1, ω2) ≡ NcCF

4
ω2

1ω
2
2

π4
αs

4π

r(0)
Õ (x, Lω) +

(
mq

ω1
+ mq

ω2

)
r

(1)
Õ (x, Lω)

+
(
m2

q

ω2
1

+ m2
q

ω2
2

)
r

(2)
Õ (x, Lω) + . . .

 θ(ω1 −mq)θ(ω2 −mq),

(5.2.13)

for x = ω2/ω1 and Lω = ln(µ2/(4ω1ω2)).

The non-factorisable tree contributions for the colour singlet operators at order αs

have a vanishing color factor, yielding r(j)
Q̃i

= 0. In the massless limit it was found [55]

r
(0)
T̃1

= −8 + a1

8 + 2π2

3 − 3
2Lω − 1

4ϕ(x) ,

r
(0)
T̃2

= −29
4 + a2

8 + 2π2

3 − 3
2Lω − 1

4ϕ(x) , (5.2.14)

and now we consider also

r
(0)
Q̃P

= 1
8Nc

[
−30 + 8π2

3 − 6Lω − ϕ(x)
]
, (5.2.15)

for the penguin operator, where

ϕ(x) =


x2 − 8x+ 6 ln(x), x ≤ 1,

1
x

2 − 8
x

− 6 ln(x), x > 1.
(5.2.16)

The linear terms in the strange quark mass read

r
(1)
T̃1

= a1

8 + 2π2

3 − 3
2Lω −


2(36+9x+x

2)
9(1+x) + 9+9x−2x

2

6(1+x) ln(x), x ≤ 1,

2(1+9x+36x
2)

9x(1+x) + 2−9x−9x
2

6x(1+x) ln(x), x > 1,

r
(1)
T̃2

= a2

8 + 2π2

3 − 3
2Lω +


−29+11x−2x

2

4(1+x) − 3
2 ln(x), x ≤ 1,

2−11x−29x
2

4x(1+x) + 3
2 ln(x), x > 1,

(5.2.17)
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r
(1)
Q̃P

= 1
36Nc

− 12π2 + 27Lω +


135+81x−22x

2

1+x
+ 3(9+9x+2x

2)
1+x

ln(x), x ≤ 1,

−22−81x−135x
2

x(1+x) − 3(2+9x+9x
2)

x(1+x) ln(x), x > 1,



and for the corrections quadratic in ms we find

r
(2)
T̃1

= 1
1 + x2

[
−(1 − x)2a1

16 + 3(1 − x)2

4 Lω − x

4ψ(x)
(

1 + 3(1 + x)
1 − x

ln(x)
)

+



π
2(1+8x−5x

2)
12 + 24−48x+16x

2+x
3

6 + 1+x
2

2 ln(x)

+1−x
2

2 ln2(x) + 5(1−x
2)

2 Li2
(
1 − 1

x

)
, x ≤ 1,

π
2(−5+8x+x

2)
12 + 1+16x−48x

2+24x
3

6x
− 1+x

2

2 ln(x)

−1−x
2

2 ln2(x) − 5(1−x
2)

2 Li2(1 − x), x > 1,



,

r
(2)
T̃2

= 1
1 + x2

[
−a2(1 − x)2

16 − π2(1 − 4x+ x2)
6 + 3(1 − x)2

4 Lω

+29 − 62x+ 29x2

8 − x

2ψ(x)
(

1 + 1 + x

1 − x
ln(x)

)

+


(1−x)2

4 ln(x) + (1 − x2)Li2
(
1 − 1

x

)
, x ≤ 1,

− (1−x)2

4 ln(x) − (1 − x2)Li2 (1 − x) , x > 1,

 , (5.2.18)

r
(2)
Q̃P

= 1
24Nc(1 + x2)

[
9(1 − x)2Lω − 9xψ(x)

(
1 + 1 + x

3(1 − x) ln(x)
)

+



45 − 102x+ 61x2 − 2x3 − (5 − 8x− x2)π2 − 12x ln(x)

−6(1 − x2) ln2(x) − 6(1 − x2)Li2
(
1 − 1

x

)
, x ≤ 1,

−2−61x+102x−45x
3

x
+ (1 + 8x− 5x2)π2 + 12x ln(x)

+6(1 − x2) ln2(x) + 6(1 − x2)Li2 (1 − x) , x > 1,


with

ψ(x) =


(1−x)2

x
[2 ln(1 − x) − ln(x)] , x ≤ 1,

(1−x)2

x
[2 ln(x− 1) − ln(x)] , x > 1.

(5.2.19)



98 Chapter 5. Lifetime Bag Parameter

The perturbative contribution to the double discontinuities of the eye-contractions,

defined in Eq.(5.2.10), can be expressed in terms of their ms (generally denoted as

mq and mq
′ below) expansion as

∆pert
pengρ

q

Õq
′ (ω1, ω2) ≡ NcCF

4
ω2

1ω
2
2

π4
αs

4π

s(0)
Õ (x, Lω) +

(
mq

ω1
+ mq

ω2

)
s

(1)
Õ (x, Lω)

+
(

1
ω2

1
+ 1
ω2

2

) [
m2

qs
(2)
Õ (x, Lω) +m2

q
′t

(2)
Õ (x, Lω)

]
+ . . .


× θ(ω1 −mq)θ(ω2 −mq). (5.2.20)

For the non-valence expression Eq.(5.2.20), s(i)
Õ corresponds to ms corrections of

order i stemming from a non-zero q quark mass (see Fig.5.1), whereas ms corrections

attributed to the q′ quark are contained within the t(2)
Õ term. It is also worth noting

that there is no t(1)
Õ in Eq.(5.2.20) since the double discontinuity evaluates to zero.

At the considered order the eye contributions for the color singlet and octet operators

differ only by their color factors

s
(j)
T̃i

= −1
2Nc

s
(j)
Q̃i
, t

(2)
T̃i

= −1
2Nc

t
(2)
Q̃i
. (5.2.21)

Our results for the singlet and penguin operators are in the massless case

s
(0)
Q̃1

= 20
9 + 2

3Lω + 1
9ϕ(x),

s
(0)
Q̃2

= −13
9 − 1

3Lω − 1
18ϕ(x),

s
(0)
Q̃P

= 13
9 + 1

3Lω + 1
18ϕ(x). (5.2.22)

The corrections proportional to the strange quark mass read

s
(1)
Q̃1

= 2
3Lω +


2(10+x−x

2)
9(1+x) + 2

3 ln(x), x ≤ 1,

−2(1−x−10x
2)

9x(1+x) − 2
3 ln(x), x > 1,

,

s
(1)
Q̃2

= −1
3Lω +


−13+4x−x

2

9(1+x) − 1
3 ln(x), x ≤ 1,

1−4x−13x
2

9x(1+x) + 1
3 ln(x), x > 1,

,



5.2. Setup and calculation 99

s
(1)
Q̃P

= −1
3Lω +


−13+4x−x

2

9(1+x) − 1
3 ln(x), x ≤ 1,

1−4x−13x
2

9x(1+x) + 1
3 ln(x), x > 1,

(5.2.23)

while the corrections quadratic in ms are given by

s
(2)
Q̃1

= 1
1 + x2

[
−10(1 − x)2

9 − (1 − x)2

3 Lω + x

3ψ(x)
]
,

s
(2)
Q̃2

= 1
1 + x2

[
13(1 − x)2

18 + (1 − x)2

6 Lω − x

6ψ(x)
]
,

s
(2)
Q̃P

= 1
1 + x2

[
−13(1 − x)2

18 − (1 − x)2

6 Lω + x

6ψ(x)
]
, (5.2.24)

t
(2)
Q̃1

= 1
1 + x2

 2x2

(1 − x)2ψ(x) −


2x2 − 2x ln(x), x ≤ 1,

2 + 2x ln(x), x > 1,

 ,

t
(2)
Q̃2

= 1
1 + x2

− x2

(1 − x)2ψ(x) +


x2 − x ln(x), x ≤ 1,

1 + x ln(x), x > 1,

 ,

t
(2)
Q̃P

= 1
1 + x2

 x2

(1 − x)2ψ(x) −


x2 − x ln(x), x ≤ 1,

1 + x ln(x), x > 1,

 . (5.2.25)

It can be clearly seen from Eq.(5.2.25) that the expressions for t(2)
O logarithmically

diverge at the point x = 1. For this reason, the weight function method is not

applicable here since it requires the discontinuity t(2)
O to be directly evaluated at the

point ω1 = ω2 = Λs. We briefly discuss the origin of this divergence in Appendix B.2.

For the condensates, we find the following expressions up to contributions of dimen-

sion six:

∆cond
tree ρ

q

Q̃
q
i
(ω1, ω2) = 0 + . . . ,

∆cond
tree ρ

q

T̃
q
1
(ω1, ω2) = −

〈
αs

π
G2
〉

64π2

(
1 + ms

ω1
+ ms

ω2

)
θ(ω1 −ms) θ(ω2 −ms)

+

〈
gsq̄σµνG

µνq
〉

64π2 [δ(ω1) θ(ω2 −ms) + δ(ω2) θ(ω1 −ms)] + . . . ,

∆cond
tree ρ

q

T̃
q
2
(ω1, ω2) = 0 + . . . , (5.2.26)



100 Chapter 5. Lifetime Bag Parameter

∆cond
tree ρ

q

Q̃
q
P
(ω1, ω2) =

〈
αs

π
G2
〉

384π2

(
1 + ms

ω1
+ ms

ω2

)
θ(ω1 −ms) θ(ω2 −ms)

−
〈
gsq̄σµνG

µνq
〉

384π2 [δ(ω1) θ(ω2 −ms) + δ(ω2) θ(ω1 −ms)] + . . . ,

from which only the bag parameters ϵ1 and BP receive non-vanishing contributions,

while

∆cond
pengρ

q

Q̃
q

′

i

(ω1, ω2) = 0 + . . . , (5.2.27)

as discussed above and therefore there are no condensate corrections to the δs at

this order. Considering the case ms = 0 we find perfect agreement with the results

found in [202]1. The analysis by [203] chooses instead an axial-vector interpolating

current, qγαγ
5h, and therefore their results differ from our own in addition to the

inconsistency mentioned in Section 5.2.4. As pointed out in [202], this choice means

that states of quantum number JP = 1+ are also being considered by the correlation

function.

5.3 Results

For our numerical analysis, the continuum cut-off ωc, and the Borel parameter t are

fixed for the cases of the Bd (because of isospin in our analysis Bu = Bd) and Bs

mesons separately through a sum rule analysis of their respective decay constants

and mass differences. From this analysis we find,

Bd : wc = 0.90 GeV, t = 1 GeV, (5.3.1)

Bs : wc = 0.95 GeV, t = 1 GeV. (5.3.2)

We evaluate the sum rules for the HQET bag parameters at the scale µ = 1.5 GeV.

For the strange quark mass, we use the MS scheme value at the scale µ = 1.5 GeV

after running [204] from ms(2GeV)= 95+9
−3 MeV. As in the analysis of [1], we expand

1The additional factor of 4 appearing in Eq.(3.24) of [202] is accounted for by their choice of
operator normalisation.
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ms(2GeV) 95+9
−3 MeV [206]

⟨αs

π
G2⟩ 0.012 ± 0.006 GeV4 [207]

⟨dd⟩(2GeV) (−0.283 ± 0.002)3 GeV3 [154]

⟨ss⟩(2GeV) (−0.296 ± 0.002)3 GeV3 [155]

mb(mb) 4.203+0.016
−0.034 GeV [208,209]

MZ 91.1876 GeV [169]

αs(MZ) 0.1181 ± 0.0011 [169]

Table 5.2: Values of input parameter used in our numerical analysis.

the range of uncertainty to 95 ± 30 MeV in order to account for the missing terms

after our truncation of the ms expansion and scheme dependencies. After inspecting

the range of stability in the HQET sum rules of Fd/s and Λ, we chose to vary t by

±0.4 and to vary ωc by ±0.2 in our error analysis. The uncertainty associated with

the sum rule scale is estimated by varying µ between 1-2 GeV, running back to the

central value of 1.5 GeV and then scaling1 the resulting uncertainty by a factor of

2. The inputs for the other parameters used in this analysis can be found listed in

Table 5.2, which includes the numerical input of the condensates quoted at the scale

2 GeV.

We use the relation,
〈
gsq̄σµνG

µνq
〉

= m2
0 ⟨qq⟩ at the scale 2 GeV with m2

0 = 0.8 GeV2

[205] in order to determine the value of the mixed quark-gluon condensate. The

renormalisation group equations describing the running of the condensates down to

the sum rule scale can be found in Appendix B.3. In our analysis, a more conservative

estimate for their individual uncertainties of ±30% was chosen over the values quoted

in Table 5.2 in order to account for the accuracy in m2
0.

Our numerical results for the bag parameters Bi, ϵi and BP for the Bd and Bs

systems can be found in Table 5.3 and Table 5.4 respectively, where the total estim-

ated uncertainty is denoted by α. The contribution to the uncertainty associated
1We believe this treatment is justified given the usual procedure of varying between [µ/2, 2µ]

is not practical at such low scales, and so re-scale the uncertainty in order to compensate for this
limitation.
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Bd
i TSR α O(m0

d) O(m1
d) O(m2

d) αµ αP

Bd
1 1.0026 +0.0198

−0.0106 1.0026 − − +0.0197
−0.0105

+0.0005
−0.0007

Bd
2 0.9982 +0.0052

−0.0066 0.9982 − − +0.0051
−0.0066

+0.0005
−0.0004

ϵd
1 −0.0165 +0.0209

−0.0346 −0.0165 − − +0.0191
−0.0310

+0.0084
−0.0153

ϵd
2 −0.0004 +0.0200

−0.0326 −0.0004 − − +0.0200
−0.0326

+0.0010
−0.0006

Bd
P 0.9807 +0.0072

−0.0119 0.9807 − − +0.0053
−0.0077

+0.0049
−0.0091

Table 5.3: Bag parameter results for the Bd system using the tradi-
tional sum rule ‘TSR’.

with variations of the sum rule scale is denoted by αµ, whereas αP represents the

combined parametric uncertainty of ms, the Borel parameter, the sum rule cut-off,

and the condensates. We stress again that these parameters are taken in the strict

HQET limit mb → ∞ and therefore we do not quote an uncertainty associated with

1/mb corrections.

Evidently, the dominant source of uncertainty arises from scale variations. The

parametric uncertainty seems negligible in comparison, with the exception of ϵ1

and BP . Unlike the other bag parameters, these receive non-vanishing condensate

contributions (see Eq.(5.2.27)) and as a consequence are found to have a greater

dependence on the cut-off ωc and are sensitive to the numerical input of the con-

densates themselves. Additionally, we found dependence on the Borel parameter to

be weak in our analysis1.

We observe strong convergence of the ms expansion which suggests that we can

again be confident in the validity of the ‘expansion by regions’ method and it clearly

indicates that working up to order m2
s is sufficient. Numerical differences between the

O(m0
s) term of the Bs bag parameters and those of Bd come from 3 sources: different

input for the condensates, the lower cut of the sum rule integral (see Eq.(5.2.9) and

Eq.(5.2.11)), and a different value of the decay constant in the denominator since

1As was also found to be the case in [202].
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Bs
i TSR α O(m0

s) O(m1
s) O(m2

s) αµ αP

Bs
1 1.0022 +0.0185

−0.0099 1.0019 0.0006 −0.0003 +0.0185
−0.0099

+0.0004
−0.0005

Bs
2 0.9983 +0.0052

−0.0067 0.9986 −0.0004 0.0001 +0.0052
−0.0067

+0.0004
−0.0003

ϵs
1 −0.0104 +0.0202

−0.0330 −0.0097 −0.0008 0.0002 +0.0195
−0.0319

+0.0051
−0.0084

ϵs
2 0.0001 +0.0199

−0.0324 −0.0001 0.0002 0.0001 +0.0199
−0.0324

+0.0010
−0.0008

Bs
P 0.9895 +0.0053

−0.0077 0.9873 0.0016 0.0006 +0.0043
−0.0059

+0.0031
−0.0050

Table 5.4: Bag parameter results for the Bs system using the tradi-
tional sum rule ‘TSR’.

δud
i TSR α O(m0

d) O(m1
d) O(m2

d) αµ αP

δud
1 0.0026 +0.0142

−0.0092 0.0026 − − +0.0142
−0.0092

+0.0005
−0.0007

δud
2 −0.0018 +0.0047

−0.0072 −0.0018 − − +0.0046
−0.0071

+0.0005
−0.0004

δud
3 −0.0004 +0.0015

−0.0024 −0.0004 − − +0.0015
−0.0024

+0.0001
−0.0001

δud
4 0.0003 +0.0012

−0.0008 0.0003 − − +0.0012
−0.0008

+0.0001
−0.0001

δud
P −0.0083 +0.0209

−0.0322 −0.0083 − − +0.0208
−0.0322

+0.0025
−0.0017

Table 5.5: Non-valence bag parameters for the case q = q′ = u, d
(note δud = δdu ) using the traditional sum rule ‘TSR’.

we do not expand the ratio in ms.

At NLO in αs, the only contribution to the bag parameters of the colour singlet

operators comes from eye-contraction diagrams and therefore the deviation from

their VSA value is suppressed in comparison to the bag parameters for the colour

octet and penguin operators.

Our numerical findings for the non-valence bag parameters are presented in Tables 5.5-

5.7. Again no significant shift away from the VSA values was found. Additionally, fla-

vour breaking effects in the form of ms corrections are small. The first non-vanishing

corrections from the strange quark mass in the operator of an eye contraction dia-

gram appear at O(m2
s). This corresponds with the results for δsd

i shown in Table 5.7.

The plots in Fig. 5.4 show the dependence of the colour octet and penguin bag
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δds
i TSR α O(m0

s) O(m1
s) O(m2

s) αµ αP

δds
1 0.0025 +0.0144

−0.0093 0.0019 0.0006 −0.0000 +0.0144
−0.0093

+0.0004
−0.0005

δds
2 −0.0018 +0.0047

−0.0072 −0.0014 −0.0004 0.0000 +0.0047
−0.0072

+0.0004
−0.0003

δds
3 −0.0004 +0.0015

−0.0024 −0.0003 −0.0001 0.0000 +0.0015
−0.0024

+0.0001
−0.0001

δds
4 0.0003 +0.0012

−0.0008 0.0002 0.0001 −0.0000 +0.0012
−0.0008

+0.0001
−0.0001

δds
P −0.0041 +0.0217

−0.0338 −0.0062 0.0020 0.0001 +0.0217
−0.0338

+0.0018
−0.0015

Table 5.6: Non-valence bag parameters with a strange spectator
quark using the traditional sum rule ‘TSR’.

δsd
i TSR α O(m0

s) O(m1
s) O(m2

s) αµ αP

δsd
1 0.0023 +0.0140

−0.0091 0.0026 − −0.0004 +0.0140
−0.0090

+0.0005
−0.0007

δsd
2 −0.0017 +0.0046

−0.0070 −0.0018 − 0.0002 +0.0046
−0.0070

+0.0006
−0.0004

δsd
3 −0.0004 +0.0015

−0.0023 −0.0004 − 0.0001 +0.0015
−0.0023

+0.0001
−0.0001

δsd
4 0.0003 +0.0012

−0.0008 0.0003 − −0.0000 +0.0012
−0.0008

+0.0001
−0.0001

δsd
P −0.0074 +0.0207

−0.0316 −0.0083 − 0.0008 +0.0205
−0.0315

+0.0025
−0.0017

Table 5.7: Non-valence bag parameters considering a strange light
quark in the operator using the traditional sum rule
‘TSR’.
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parameters on the sum rule scale and the continuum cutoff for the Bd meson as

calculated using the traditional sum rule method. Also indicated on the plots is an

alternative result for which the perturbative tree contribution has been evaluated

using the weight function analysis1. Comparing the two methods we observe that

the predictions lie within the range of uncertainties of each other and therefore

demonstrate a sound level of consistency which provides us with further confidence

in the validity of the results presented in this chapter.

Finally we can compare our results with other sum rule analyses of the bag para-

meters that are available in the literature. The treatment in [202] shows several

key differences compared to ours: in that study, the necessary tools to calculate the

dominant perturbative 3-loop non-factorisable contributions shown in Fig. 5.1 were

not yet available. However, additional non-factorisable effects do arise from their

procedure for extracting the continuum cut-off, which in their case is not treated

as common between the 3-point and 2-point correlators. The main result of that

paper is quoted at the scale mb, for which there is significant mixing between the bag

parameters after running from the hadronic scale. It should also be noted that their

results differ from our own by a factor of F 2(mb)/F 2(µ) due to different conventions

in our definition of the matrix elements, (see Eq.(5.2.3)).

The latest preliminary estimates of the lifetime bag parameters with lattice QCD

were obtained 20 years ago in [194] and so an updated analysis would be greatly

appreciated. Comparing those values to our own we find a similar degree of precision

for the ϵi parameters, while our predictions for the Bi have a much smaller range of

uncertainty and we disagree with the low value quoted for B2.
1The corresponding plots for the colour singlet bag parameters have been omitted since they do

not receive contributions from tree contraction terms.
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Figure 5.4: Comparison of the weight function method (shown in
black) to the traditional sum rule approach (shown in
blue) for the case of a Bd meson. The plots illustrate
how the traditional result varies with respect to µ and
ωc on the left and right respectively. The dashed lines
indicate the range of uncertainty in the weight function
result, being set to ±0.02. The blue vertical line indic-
ates our final quoted error for the traditional sum rule
method.
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5.4 Summary

In this chapter, we have presented an updated sum rule analysis of the ∆B = 0 bag

parameters in the HQET limit which includes SU(3) flavour breaking effects for the

first time, employing the expansion by regions approach. The presence of the eye-

contraction diagrams and the mixing between operators of different dimensions in full

QCD however poses an additional challenge. For this reason, we worked exclusively

in HQET where no such mixing occurs. Consequently, the results presented here

are also applicable to the ∆D = 0 matrix elements and will be used in Chapter 6.

Furthermore, taking this limit leads us to find relatively small uncertainties for the

bag parameters themselves since all 1/mQ corrections reside in Γ̃7 of Eq.(5.1.1).

The eye contractions are first addressed in this work and also lead to a number

of new effects. Firstly, their renormalization requires that the penguin operator

QP be included in our operator basis. Additionally, since the light-quarks q′ in

the operators are not contracted with the light valence quarks q in the mesons,

they generate non-valence matrix elements δq
′
q

i for q ̸= q′. It was also found that

the weight-function method we employed in our B-mixing analysis cannot be used

with the non-valence matrix elements due to logarithmic divergences whose origin is

discussed in Appendix B.2. Therefore, we adopted the traditional sum rule approach

where the Borel parameter and the continuum cutoff are varied in our analysis. We

note however that we obtain good consistency between the two methods when they

are applied to the tree contractions as shown in Figure 5.4.

Numerically, we find that deviations from the VSA at the hadronic scale are generally

small. The O(1) uncertainties in the sum rule for the deviations are therefore

quite small in absolute terms and sufficient for a phenomenological analysis of the

τ(Bs)/τ(Bd) lifetime ratio.





Chapter 6

Charm Lifetime Analysis

6.1 Introduction

In the previous chapter we stressed that since our analysis of the bag parameters was

done in the HQET limit that they are applicable to both the B and D systems. In

the following we put these results to use by presenting an analysis of inclusive charm

decays. The lifetimes of charm mesons are determined experimentally very precisely

[169] 2 and show a pattern which is clearly less monotonous than in the b-sector,

with values spreading over a rather large range. Moreover, inclusive semileptonic

branching fractions have also been measured [169], and recently an update for the

D+
s -meson has been released by the BESIII Collaboration [210]. A summary of

the current experimental status is presented in Table 6.1. While in the bottom

sector, the approximation that the meson decay can be described in terms of the

free b-quark decay is experimentally well accommodated, for the charm system this

is poorly justified. A systematic way to study this assumption is provided by the

HQE (see Section 2.1), according to which the inclusive decay width of a meson

2New results from Belle II have recently been published [199]: τ(D0) = 410.5 ± 1.1 ± 0.8 fs,
τ(D+) = 1030.4 ± 4.7 ± 3.1 fs.
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D0 D+ D+
s

τ [ps] 0.4101(15) 1.040(7) 0.504(4)

Γ [ps−1] 2.44(1) 0.96(1) 1.98(2)

τ(Dq)/τ(D0) 1 2.54(2) 1.20(1)

Br(Dq → Xe+νe)[%] 6.49(11) 16.07(30) 6.30(16)
Γ(Dq → Xe+νe)
Γ(D0 → Xe+νe)

1 0.977(26) 0.790(26)

Table 6.1: Status of the experimental determinations of the lifetime
and the semileptonic branching fractions of the lightest
charmed mesons (Dq ∈

{
D0, D+, D+

s

}
). All values are

taken from the PDG [169] apart from the semileptonic
D+

s -meson decays which were recently measured by the
BESIII Collaboration [210].

containing a heavy charm quark can be written as

Γ(D) = Γ3 + Γ5
⟨O5⟩
m2

c

+ Γ6
⟨O6⟩
m3

c

+ ...+ 16π2
(

Γ̃6
⟨Õ6⟩
m3

c

+ Γ̃7
⟨Õ7⟩
m4

c

+ ...

)
, (6.1.1)

with the matrix element of the ∆C = 0 operators given by ⟨OY ⟩ = ⟨D|OY |D⟩/(2mD).

Their numerical size is expected to be of the order of the hadronic scale ΛQCD ≤ 1

GeV, but the actual value must be determined with a non-perturbative calculation.

Note that in Eq. (6.1.1) quantities labelled by a tilde refer to the contribution of four-

quark operators, while those without a tilde correspond to two-quark operators, cf.

Figure 6.1. The Wilson coefficients Γi in Eq. (6.1.1) can be computed perturbatively

and admit the following expansion in the strong coupling αs, i.e.

Γi = Γ(0)
i + αs(mc)

4π Γ(1)
i +

[
αs(mc)

4π

]2

Γ(2)
i + ... . (6.1.2)

In this chapter we will try to shed further light into whether the expansion parameters

αs(mc) and ΛQCD/mc are small enough to ensure the viabilty of the HQE in the

charm sector. The Particle Data Group [169] quotes, for the pole and MS mass of

the charm quark, the values

mPole
c = (1.67 ± 0.07) GeV , mc(mc) = (1.27 ± 0.02) GeV, (6.1.3)
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while the dependence of the strong coupling on both the charm scale and the loop

order (obtained using the RunDec package [204]) is shown in Table 6.2. For our

numerical analysis we use the 5-loop running of the strong coupling. While the

αs(mc) mc = 1.67 GeV mc = 1.48 GeV mc = 1.27 GeV

2-loop 0.322 0.346 0.373
5-loop 0.329 0.356 0.387

Table 6.2: Numerical values of the strong coupling αs evaluated
at different scales and loop order, obtained using the
RunDec package [204].

determination of the MS mass is theoretically well founded, the pole mass appears

to be affected by a potential breakdown of perturbation theory. On the other side,

the pole mass is the natural expansion parameter of the HQE. The relation between

the two mass schemes, up to third order in the strong coupling, reads [211–213]

mPole
c = mc(mc)

1 + 4
3
αs(mc)
π

+ 10.43
(
αs(mc)
π

)2

+ 116.5
(
αs(mc)
π

)3


= mc(mc) [1 + 0.1642 + 0.1582 + 0.2176] , (6.1.4)

where we have used the 5-loop result for the strong coupling at the scale 1.27 GeV.

Due to the fact that Γ3 depends on the fifth power of the charm pole mass, see

Section 6.2.2, one obtains quite different results according to how higher orders in

Eq. (6.1.4) are treated. Specifically, by truncating the expansion in Eq. (6.1.4) at

first order in αs, from mc(mc) = 1.27 GeV, we obtain for the pole mass the value

mPole
c = 1.479 GeV, which leads respectively to

(
mPole

c

)5
= mc(mc)5 [1 + 0.1642]5 = 2.14mc(mc)5, (6.1.5)

taking the fifth power of mPole
c , and

(
mPole

c

)5 ≈ mc(mc)5 [1 + 5 · 0.1642] = 1.82mc(mc)5 , (6.1.6)

further expanding up to the first order in αs. The result in Eq. (6.1.6) is about 15%

smaller than the one in Eq. (6.1.5). Instead, by including also all the higher order
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terms given in Eq. (6.1.4), we get

(
mPole

c

)5
= mc(mc)5 [1 + 0.1642 + 0.1582 + 0.2176]5 = 8.66mc(mc)5 ,(6.1.7)

which is roughly a factor four larger than the value in Eq. (6.1.5).

In the following, we will thus consider four different quark mass schemes:

1. Use Eq. (6.1.4) to first order in αs, since this is the order to which most of

the Wilson coefficients are known. In this case we fix mPole
c = 1.48 GeV and

express everything in terms of the pole mass. A further possibility would

be to consider the expansion in Eq. (6.1.4) to be an asymptotic one, whose

smallest correction appears at order α2
s, which is where we stop the expansion.

In this case we get the pole mass value from PDG, mPole
c = 1.67 GeV. We

carried out numerical tests for this large value of the charm quark mass and

found the decay rates to be roughly 70 − 90% larger than those obtained using

mPole
c = 1.48 GeV. Since we expect this enhancement to be compensated by

missing NNLO corrections to the non-leptonic decay rates, we will not present

separate results for mPole
c = 1.67 GeV.

2. Express the c-quark mass in terms of the MS mass [214],

mPole
c = mc(mc)

[
1 + 4

3
αs(mc)
π

]
, (6.1.8)

taking mc(mc) = 1.27 GeV [169], and expand consistently up to order αs.

Because of the dependence on the fifth power of the charm-quark mass, in this

case Γ3 is affected by a large correction 5 × (4/3)(αs/π).

3. Express the c-quark mass in terms of the kinetic mass [215,216]. The kinetic

scheme has been introduced in order to obtain a short distance definition of the

heavy quark mass which allows a faster convergence of the perturbative series

and is still valid at small scales µ ∼ 1 GeV. The relation between the kinetic

scheme and the MS and Pole schemes can be found, up to N3LO corrections,
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in [217]. At order αs one has

mPole
c = mKin

c

1 + 4αs

3π

4
3
µcut

mKin
c

+ 1
2

(
µcut

mKin
c

)2 , (6.1.9)

where µcut is the Wilsonian cutoff separating the perturbative and non-perturbative

regimes. Using mc(mc) as an input, the authors of [217] obtain

mKin
c (1GeV) = 1.128 GeV (N3LO) , (6.1.10)

mKin
c (1GeV) = 1.206 GeV (NLO) . (6.1.11)

Comparing with Eq. (6.1.8) it follows that the kinetic scheme might be preferred

to the MS scheme if the term in the round brackets of Eq. (6.1.9) would give

a suppression factor. For µcut = 1 GeV and mKin
c = 1.2 GeV, this is not the

case. Using lower values i.e. µcut < 1 GeV, the convergence of the series could

be improved, however this would bring in an additional uncertainty due to the

closeness to the non-perturbative scale ΛQCD. In our numerical analysis we

will investigate the kinetic scheme with µcut = 0.5 GeV. From [217] we take

the following value

mkin
c (0.5 GeV) = 1.363 GeV , (6.1.12)

obtained for consistency at NLO in αs and using as an input mc(mc).

4. In addition, we will consider the 1S-mass scheme defined as [218–220]:

mPole
c = m1S

c

(
1 + (CF αs)2

8

)
, (6.1.13)

where CF = 4/3, and the 1S mass m1S
c ≈ 1.44 GeV is obtained using the

conversion from the MS-scheme (implemented in the RunDec package [204])

at one-loop level. Note that the correction within the 1S scheme in fact

starts at order α2
s which however is still considered to be a NLO (not NNLO)

effect [218].1

The above arguments clearly indicate the importance of including higher order
1Similarly, another possibility would be to study the potential subtracted mass [221].
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perturbative QCD corrections to the decay rates.

With this work we present a study of the total decay rate of the D0, D+ and

D+
s mesons, of their lifetime ratios τ(D+)/τ(D0) and τ(D+

s )/τ(D0) and of the

semileptonic branching fractions Br(Dq → Xe+νe) using state-of-the-art expressions

for the ∆C = 0 Wilson coefficients and for the non-perturbative parameters. Γ3 is

known at NLO-QCD [222–229] for non-leptonic decays. NNLO-QCD [230–239] and

NNNLO-QCD [240, 241] corrections have been computed for semileptonic decays,

while for non-leptonic decays NNLO corrections have been determined in the massless

case and in full QCD (i.e. no effective Hamiltonian was used) in [242]. Γ5 was

determined at LO-QCD for both semileptonic and non-leptonic decays [59–61, 64].

For the semileptonic modes even NLO-QCD corrections are available [243–245]. In

the b-system, Γ6 was first computed at LO-QCD in [246] and recently the NLO-QCD

corrections were determined in [247], both for the semileptonic case only. Very

recently Γ6 has been determined also for non-leptonic decays [124, 195, 248] and

the coefficient was found to be large. For semileptonic D-meson decays, Γ6 was

determined in [249], see also the recent [250], while the corresponding results for the

non-leptonic charm modes are presented for the first time in this work. Γ̃6 is known

at NLO-QCD for lifetimes of B-meson [190,191] and of D-meson [200], while Γ̃7 and

Γ̃8 have been estimated in LO-QCD in [251,252].

On the non-perturbative side, at dimension-five, the matrix element of the chro-

momagnetic operator can be determined from spectroscopy, while for the kinetic

operator there exist several heavy quark effective theory (HQET) determinations

with lattice simulations [253–257] and using sum rules [215, 258, 259]. The matrix

elements of the four-quark operators ⟨Õ6⟩ have been computed using HQET sum

rules [55]. In Chapters 3 and 5 we calculated SU(3)F violating effects and so far

undetermined eye-contractions through HQET sum rules. Corresponding lattice

results for the matrix elements of the four-quark operators would be highly desirable.

We emphasise that the matrix element of the dimension-six Darwin operator, ⟨O6⟩,

can be expressed in terms of the above Bag parameters by taking into account the
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equation of motion for the gluon field strength tensor.

The rest of this chapter is arranged as follows: In Section 6.2, after briefly introdu-

cing the effective Hamiltonian describing the c-quark decays, we analyse in detail

the structure of the HQE, discussing each of the short-distance contributions in

Eq. (6.1.1). In Section 6.3, we describe how the corresponding non-perturbative

parameters are determined. Numerical results for the total D-meson decay widths,

their ratios, as well as for the semileptonic branching fractions, are presented in

Section 6.4. Finally, we conclude in Section 6.5 with an outlook on how to further

improve the theoretical predictions in the charm sector. The numerical input used

in the analysis are collected in Appendix C.1 and the complete expressions for the

coefficients of the Darwin operator for non-leptonic c-quark decays are presented in

Appendix C.2. We note here that unlike in Chapters 3 and 5, for the rest of this

analysis the HQET states conform to relativistic normalisation. This change is re-

flected in our parameterisation of matrix elements and decay constants, for which we

employ the conventions of [45] in the following. A summary of our parameterisation

of the matrix elements of the four-quark operators used in this chapter can be found

in Appendix C.3.

6.2 The Total Decay Rate

6.2.1 Effective Hamiltonian and HQE

The non-leptonic decay of a charm quark c → q1q̄2u (qi = u, d, s) is governed by the

effective ∆C = 1 Hamiltonian (see e.g. [67])

HNL
eff =GF√

2

 ∑
q1,2=d,s

λq1q2 [C1(µ1)Qq1q2
1 + C2(µ1)Qq1q2

2 ] − λb

6∑
j=3

Cj(µ1)Qj


+ h.c. ,

(6.2.1)

where λq1q2 = V ∗cq1Vuq2 and λb = V ∗cbVub are the CKM factors, Ci(µ1) denote the

Wilson coefficients at the renormalisation scale µ1 ∼ mc, Qq1q2
1,2 are tree-level ∆C = 1
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operators 1

Q
q1q2
1 =

(
q̄i

1γρ(1 − γ5)ci
) (

ūjγρ(1 − γ5)qj
2

)
, (6.2.2)

Q
q1q2
2 =

(
q̄i

1γρ(1 − γ5)cj
) (

ūjγρ(1 − γ5)qi
2

)
, (6.2.3)

while Qj, j = 3...6 are penguin operators, which can only arise in the singly Cabibbo

suppressed decays c → ss̄u and c → dd̄u or in further suppressed pure penguin

decays like c → uūu. Values of the Wilson coefficients at different scales are shown

in Table 6.3 both at NLO-QCD and LO-QCD.

µ1[GeV] 1 1.27 1.36 1.44 1.48 3

C1(µ1)
1.25

(1.34)
1.20

(1.27)
1.19

(1.26)
1.18

(1.25)
1.18

(1.24)
1.10

(1.15)

C2(µ1)
−0.48

(−0.62)
−0.39

(−0.50)
−0.40

(−0.53)
−0.37

(−0.49)
−0.37

(−0.48)
−0.24

(−0.32)

C3(µ1)
0.03

(0.02)
0.02

(0.01)
0.02

(0.01)
0.01

(0.01)
0.01

(0.01)
0.00

(0.00)

C4(µ1)
−0.06

(−0.04)
−0.05

(−0.03)
−0.04

(−0.03)
−0.04

(−0.02)
−0.04

(−0.02)
−0.01

(−0.01)

C5(µ1)
0.01

(0.01)
0.01

(0.01)
0.01

(0.01)
0.01

(0.01)
0.01

(0.01)
0.00

(0.00)

C6(µ1)
−0.08

(−0.05)
−0.05

(−0.03)
−0.05

(−0.03)
−0.04

(−0.03)
−0.04

(−0.03)
−0.01

(−0.01)

Table 6.3: Comparison of the Wilson coefficients at NLO-QCD (LO-
QCD) for different values of µ1.

From Table 6.3, we see that the Wilson coefficients of the penguin operators are

considerably smaller than C1 and C2. Furthermore, their contributions are strongly

CKM suppressed by the factor λb ≪ λq1q2 . We therefore exclude the effect of the

penguin operators in our analysis, given the current limited theoretical accuracy in

the charm sector.

The complete effective Hamiltonian describing all possible c-quark decays is a sum
1In our notation, Q

q1q2
1 is the colour-singlet operator.
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of non-leptonic, semileptonic and radiative contributions, namely

Heff = HNL
eff + HSL

eff + Hrare
eff , (6.2.4)

where HNL
eff is given in Eq. (6.2.1),

HSL
eff = GF√

2
∑

q=d,s

∑
ℓ=e,µ

V ∗cq Q
qℓ + h.c. , (6.2.5)

with the semileptonic operator Qqℓ = (q̄γµ(1 − γ5)c)
(
ν̄ℓγµ(1 − γ5)ℓ

)
, while Hrare

eff

describes decays like D → πℓ+ℓ−, whose branching fraction is much smaller than

those corresponding to tree-level transitions. For this reason, we will neglect rare

decays and we do not show an explicit expression for Hrare
eff .

In Section 2.1, we illustrated how the total decay width for the B meson could be

expressed as a discontinuity of a forward scattering matrix element of the transition

operator, consisting of a double insertion of the effective Hamiltonian (see Eqs.(2.1.2)

and (2.1.3)). Therefore, for the total decay width of a heavy D meson with mass mD

and four-momentum pµ
D we can write,

Γ(D) = 1
2mD

Im⟨D|T |D⟩ , (6.2.6)

with the transition operator

T = i
∫
d4xT {Heff(x) ,Heff(0)} . (6.2.7)

Following the reasoning discussed in Section 2.2, we now reparameterise the four-

momentum of the decaying c-quark, separating the "large" and "small" components

as

pµ
c = mc v

µ + kµ, (6.2.8)

where vµ = pµ/mD denotes the four-velocity of the D-meson. To account for the

residual interaction of the c-quark with the light degrees of freedom inside the

hadron (i.e soft gluons and quarks), we replace the residual momentum kµ → iDµ,

with Dµ being the covariant derivative with respect to the background gluon field.
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Additionally, the heavy charm quark field is redefined as

c(x) = e−imcv·xcv(x) , (6.2.9)

to remove the large fraction of the c-quark momentum. Using Eqs. (6.2.8) and (6.2.9),

Γ(D) in Eq. (6.2.6) can be expanded in the small quantity Dµ/mc ∼ ΛQCD/mc,

leading to the series in Eq. (6.1.1). The result is schematically shown in Figure 6.1.

The first diagram on the top line of Figure 6.1, corresponding to the limit mc → ∞,

represents the decay of a free c-quark, while power corrections due to the interaction

of the heavy quark with soft gluons and quarks are described respectively by the

second and third diagrams on the top line of Figure 6.1. Finally, before discussing

the individual terms in Eq. (6.1.1) separately, it is worth emphasizing that the field

cv is related to the effective heavy quark field hv, introduced in the framework of

the HQET (see Eq.(2.2.4), by

cv(x) = hv(x) + i /D⊥
2mc

hv(x) + O
(

1
m2

c

)
, (6.2.10)

where Dµ
⊥ = Dµ − (v ·D) vµ.

+c c c c + . . . + + . . .

c c

c c c c c c c c c c

O3 O5 O6 Õ6 Õ7

q1

q̄2

u

q1

q̄2

u

q1

q̄2
u u

q q qq

Figure 6.1: The diagrams describing contributions to the HQE in
Eq. (6.1.1). The crossed circles denote the ∆C = 1 op-
erators Qi of the effective Hamiltonian while the squares
denote the local ∆C = 0 operators Oi and Õi. The two-
loop and the phase space enhanced one-loop diagrams
correspond respectively to the two-quark operators Oi

and to the four-quark operators Õi in the HQE.
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6.2.2 Dimension-three Contribution

The leading term in Eq. (6.1.1), Γ(0)
3 , can be schematically written as

Γ(0)
3 = Γ0 c3

= Γ0

[
f
(
zs, ze, zνe

)
+ f

(
zs, zµ, zνµ

)
+ |Vud|2Na f (zs, zu, zd) + . . .

]
,

(6.2.11)

where we define

Γ0 = G2
Fm

5
c

192π3 |Vcs|2 , (6.2.12)

and we introduce the dimensionless mass parameter zq = m2
q/m

2
c . Note than we

neglect the neutrino as well as the electron, the up and down quarks masses, i.e.

zν = ze = zu = zd = 0, while zs ̸= 0 ̸= zµ. The first two terms in c3 in Eq. (6.2.11)

correspond to the semileptonic modes c → se+νe and c → sµ+νµ, while the third

term to the Cabibbo favoured decay c → sud̄. The ellipsis stand for CKM suppressed

contributions. The dependence on the ∆C = 1 Wilson coefficients is absorbed in

the combination Na = 3C2
1 + 3C2

2 + 2C1C2. The behaviour of Na as function of

the renormalisation scale, both at LO- and NLO-QCD, is shown in Table 6.4 and in

Figure 6.2, indicating a visible shift from LO to NLO and a moderate reduction of

the scale uncertainty in the NLO result. Else there are no cancellations in Na that

might lead to numerical instability. The phase-space function f(a, b, c) in Eq. (6.2.11)

describes the effect of the final state masses. In the case of one massive particle, it

reduces to the well-known expression

f(z, 0, 0) = 1 − 8z + 8z3 − z4 − 12z2 ln z , f (zs, 0, 0) ≈ 1 − 0.03 , (6.2.13)

which shows that the contribution due to the finite s-quark mass is small. The

analytic expression of f(a, b, c) for two different masses in the final state, can be

found e.g. in the Appendix of [260].

By including also NLO-QCD corrections, Γ3 can be schematically presented as

Γ3 = Γ0

[
3C2

1 C3,11 + 2C1C2 C3,12 + 3C2
2 C3,22 + C3,SL

]
, (6.2.14)

where a summation over all the modes is implicitly assumed. At NLO, the expressions
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1.0 1.5 2.0 2.5 3.0
3.0

3.5

4.0

4.5

5.0

Figure 6.2: Scale dependence of the Wilson coefficient combination
Na = 3C2

1 + 3C2
2 + 2C1C2.

µ1 [GeV] 1 1.27 1.36 1.44 1.48 3
Na(LO) 4.85 4.35 4.23 4.15 4.12 3.52

Na(NLO) 4.18 3.86 3.79 3.74 3.71 3.31

Table 6.4: Comparison of Na at LO- and NLO-QCD, for different
values of the renormalisation scale µ1.

for C3,11, C3,22 and C3,SL are taken from [222], where the computation was done for

three different final state masses, hence we can easily use these results for all c-quark

decay modes. For the coefficient C3,12 we use [225] for the c → sd̄u, c → ds̄u and

c → dd̄u decay channels, while the result of [229] is used in the case of final state

with two massive s-quarks, c → ss̄u.

Neglecting final state masses and approximating |Vud|2 ≈ 1 the following expression

was determined in 1991 [223], i.e.

cNLO
3 − cLO

3 = 8 αs

4π

(25
4 − π2

)
︸ ︷︷ ︸

<0

+(C2
1 + C2

2)
(31

4 − π2
)

︸ ︷︷ ︸
<0

−2
3C1C2

(7
4 + π2

)
︸ ︷︷ ︸

≥0

 .
(6.2.15)

The first term on the r.h.s. of Eq. (6.2.15) stems from semileptonic decays and the

next two terms from non-leptonic channels. For non-leptonic b-quark decays the

NLO corrections are negative, while for charm quarks decays the third term will

dominate over the second one and the correction becomes positive. Moreover, there
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Mass scheme ΓLO
3 [ps−1] ΓNLO

3 [ps−1]

Pole (mc = 1.48 GeV) 1.45+0.17
−0.14 1.52+0.20

−0.16

MS (Eq. (6.1.8)) 0.69+0.06
−0.09 1.32+0.06

−0.03

Kinetic (Eq. (6.1.9)) 0.97+0.10
−0.11 1.47+0.27

−0.30

1S (Eq. (6.1.13)) 1.25+0.14
−0.13 1.50+0.31

−0.25

Table 6.5: Numerical values of ΓLO
3 = Γ(0)

3 and ΓNLO
3 = Γ(0)

3 +
αs(mc)/(4π) Γ(1)

3 using different schemes for the c-quark
mass. The uncertainties are obtained by varying the
renormalisation scale µ1 between 1 GeV and 3 GeV.

is a sizable enhancement of the αs-corrections in the non-leptonic b-quark decays

due to finite charm quark mass effects [224–226,229] - the corresponding increase in

charm quark decays is much less pronounced as m2
c/m

2
b ≈ 0.1 ≫ m2

s/m
2
c ≈ 0.005.

The numerical values for Γ3 both in LO- and NLO-QCD, for different c-quark mass

schemes are shown in Table 6.5. The range of NLO-QCD values from 1.3 ps−1 to

1.5 ps−1 for the free charm-quark decay at NLO-QCD, is in good agreement with

the experimental determinations in Table 6.1. Moreover we observe small (< 5%)

corrections because of a non-vanishing strange quark mass. Interestingly the NLO-

QCD result is affected by strong cancellations. We observe a suppression of the

non-leptonic contribution due to the opposing sign between the NLO corrections to

the diagrams describing QCD corrections to the upper left diagram of Figure 6.1

and the QCD corrections intrinsic to the ∆C = 1 Wilson coefficients. There is then

a further cancellation between the semileptonic and the non-leptonic modes. This

behaviour can be nicely read off from the result in the Pole scheme:

Γ3 = ΓLO
3

1 +

 NL︷ ︸︸ ︷
1.84︸ ︷︷ ︸
diag.

− 0.74︸ ︷︷ ︸
WC

−
SL︷ ︸︸ ︷

0.67

 αs

π
+ O

(
αs

π

)2
 . (6.2.16)

Expressing the pole mass in terms of a short distance mass like the MS scheme, an

additional large NLO correction arises from the conversion factor of m5
c , which is

the origin of the large shift between the LO and the NLO values in the MS-, the
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kinetic and the 1S-schemes, see Table 6.5. We find e.g. in the MS scheme

Γ3 = ΓLO
3

1 +

 NL︷ ︸︸ ︷
2.10︸ ︷︷ ︸
diag.

− 0.70︸ ︷︷ ︸
WC

−
SL︷ ︸︸ ︷

0.71 +
conv.fac.︷ ︸︸ ︷
6.66

 αs

π
+ O

(
αs

π

)2
 .(6.2.17)

The corrections due to the mass conversion also make the overall semileptonic NLO

term in the MS scheme positive.

To get a first indication of the behaviour of the QCD series for the decay rate at

higher orders, we briefly discuss here the NNLO [238] and NNNLO [240] corrections

for the semileptonic b-quark decay and the preliminary NNLO-QCD corrections for

the non-leptonic b-quark decay [242]. In the Pole mass scheme [240]

Γ3(B → Xcℓν̄ℓ)
ΓLO

3 (B → Xcℓν̄ℓ)
= 1 − 1.72αs(µ)

π
− 13.09

(
αs(µ)
π

)2

− 163.3
(
αs(µ)
π

)3

= 1 − 0.12 − 0.06 − 0.05,
(6.2.18)

the semileptonic decay rate gets large negative corrections, and in the MS-scheme

Γ3(B → Xcℓν̄ℓ)
ΓLO

3 (B → Xcℓν̄ℓ)
= 1 + 3.07αs(µ)

π
+ 13.36

(
αs(µ)
π

)2

+ 62.7
(
αs(µ)
π

)3

= 1 + 0.21 + 0.06 + 0.02,
(6.2.19)

one finds [240] sizable positive corrections - driven by the conversion of the quark

mass from the Pole scheme to the MS-scheme and indicating again the importance

of higher order perturbative corrections. For the semileptonic charm quark decay

one finds even larger corrections1, e.g. in the Pole mass scheme

Γ3(D → Xℓ+νℓ)
ΓLO

3 (D → Xℓ+νℓ)
= 1 − 2.41αs(µ)

π
− 23.4

(
αs(µ)
π

)2

− 321.5
(
αs(µ)
π

)3

= 1 − 0.25 − 0.26 − 0.37,
(6.2.20)

which clearly spoils the perturbative approach and makes the use of different quark

mass schemes mandatory.

Regarding the NNLO-QCD corrections to the non-leptonic decay rates, [242] presents

a partial result (not resumming the large logarithms, neglecting effects of the operator

1Results presented by Matteo Fael at CHARM 2020:
https://indico.nucleares.unam.mx/event/1488/session/12/contribution/56/material/slides/0.pdf
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Q
q1q2
2 and assuming a vanishing charm quark mass) for the b-quark. In the pole mass

scheme the authors obtain

Γ(b → cūd)
3Γ(b → ceν̄) = 1 + 1 αs(µ)

π
+ 67.1

(
αs(µ)
π

)2

. (6.2.21)

It is interesting to note that from the coefficient of the α2
s term, 67.1, a contribution

of 54.7 stems from not summing large logarithms of the form ln(MW/mb) and

ln2(MW/mb). Using Eq. (6.2.18) and the fact that, in the approximations of [242]

the ratio between non-leptonic and semileptonic rate is equal to 3 at LO-QCD, yields

Γ(b → cūd) = ΓLO(b → cūd)
1 − 0.7 αs(µ)

π
+ 52.3

(
αs(µ)
π

)2
 . (6.2.22)

For non-leptonic charm-quark decays the logarithms become even larger and we find

that the coefficient of the α2
s term increases from 52.3 to 91.2, which clearly indicates

the necessity of summing the large logarithms. Neglecting final state masses seems

to be well justified in the charm system. In order to further estimate the effect of

neglecting the operator Qq1q2
2 , we set in our code C1 = 1 and C2 = 0 and we get in

the Pole scheme

ΓNL
3

ΓNL,LO
3

= 1 − 1.4 αs(µ)
π

, (6.2.23)

while the result with the full inclusion of the effective Hamiltonian yields a very

different value of the QCD corrections

ΓNL
3

ΓNL,LO
3

= 1 + 1.6 αs(µ)
π

. (6.2.24)

All in all we conclude that, higher order corrections seem to be crucial for a reliable

determination of Γ3. Despite being conceptually very interesting, the result of [242]

is not useful for phenomenological applications and a full NNLO determination of the

non-leptonic decay rate using the effective Hamiltonian would be highly desirable.
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6.2.3 Dimension-five Contribution

The first corrections to the free charm-quark decay arise at order 1/m2
c and describe

the effect of the kinetic and the chromomagnetic operators. Their matrix elements

are parametrised by the two non-perturbative inputs µ2
π and µ2

G, i.e.

2mD µ
2
π(D) = −⟨D(p)|c̄v(iDµ)(iDµ)cv|D(p)⟩ , (6.2.25)

2mD µ
2
G(D) = ⟨D(p)|c̄v(iDµ)(iDν)(−iσµν)cv|D(p)⟩ , (6.2.26)

with σµν = (i/2)[γµ, γν ]. Both the operators receive a contribution from the ex-

pansion of the dimension-three matrix element ⟨D(p)|c̄vcv|D(p)⟩ [261]. However,

the chromomagnetic operator receives further contributions due to the expansion of

the short distance coefficient c3 and of the quark-propagator in the external gluon

field [60, 61, 124] - see the second diagram on the top line of Figure 6.1. Therefore,

at order 1/m2
c , we can schematically write

Γ5
⟨O5⟩
m2

c

= Γ0

[
cµπ

µ2
π

m2
c

+ cG

µ2
G

m2
c

]
. (6.2.27)

The coefficient of the kinetic operator is related to the dimension-three contribution1,

cµπ
= −c(0)

3 /2, and the chromomagnetic coefficient cG can be decomposed as

cG = 3C2
1 CG,11 + 2C1C2 CG,12 + 3C2

2 CG,22 + CG,SL , (6.2.28)

where again a summation over all the modes is assumed. The individual contribu-

tions CG,nm for non-leptonic modes can be found e.g. in the Appendix of [124].

In the latter reference, the coefficients of the chromomagnetic operator were determ-

ined for the non-leptonic B-meson decays, however, since there are no IR-divergences

at this order, it is straightforward to obtain the corresponding results for the charm-

sector, namely by replacing mb → mc, mc → ms, etc. For the semileptonic decay

c → sµ+νµ, the expression for two different mass parameters zs ̸= 0 ̸= zµ can be

1Since the dimension-5 contribution for non-leptonic modes is known only at LO in QCD, we
use the dimension-three coefficient c3 just at LO-QCD for cµπ

.
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Figure 6.3: Scale dependence of the coefficient of the chromomag-
netic operator.

found in the Appendix of [260].1 By neglecting the strange and muon masses and by

considering only the dominant CKM modes, the result for cG becomes very compact,

i.e.

cG ≈ −|Vud|2
[9
2

(
C2

1 + C2
2

)
+ 19C1C2

]
− 3. (6.2.29)

Because of the large coefficient in front of C1C2 and of its negative value, Eq. (6.2.29)

can be affected by cancellations. In Figure 6.3 we plot cG in Eq. (6.2.28), as a function

of the renormalisation scale µ1 while in Table 6.6 we list the numerical result for some

reference values of µ1. For cG a change of sign occurs in the region between 1 and 2

GeV – leading to a large uncertainty due to scale variation. Note, that the “NLO”

result shown in Figure 6.3 and Table 6.6 only includes QCD corrections due to the

∆C = 1 Wilson coefficients. A complete calculation of the NLO-QCD corrections

to cG is still missing (these corrections are only known for the semileptonic case)

and would be very desirable in order to reduce the huge scale dependence. The

numerical values of the non-perturbative parameters µ2
π and µ2

G will be discussed in

Sections 6.3.2 and 6.3.1.
1Since ms ≈ mµ ≈ 100 MeV ≪ mc, in principle one can safely set zs = zµ and use the

non-leptonic expressions for the semileptonic modes, e.g. c → ss̄u for c → sµν̄µ by setting
Nc = 1, C1 = 1, C2 = 0.
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µ1 [GeV] 1 1.27 1.36 1.44 1.48 3
cNL

G (LO) 6.20 4.34 3.91 3.58 3.43 0.62
cSL

G (LO) -3.11 -3.11 -3.11 -3.11 -3.11 -3.11
cG(LO) 3.09 1.23 0.80 0.47 0.32 -2.49

cG(”NLO”) 0.25 -1.06 -1.37 -1.62 -1.74 -3.95

Table 6.6: Comparison of the coefficients cSL
G , cNL

G , and cG = cSL
G +

cNL
G for different values of the renormalisation scale µ1 at

LO and “NLO”, setting for reference mc = 1.5 GeV.

6.2.4 Dimension-six Two-Quark Operator Contribution

By determining higher order 1/mc corrections in the expansion, respectively, of

the quark-propagator, of the matrix elements of mass dimension-three and mass

dimension-five, and of the corresponding short-distance coefficients, see e.g. [60, 61,

122,124] for details, one obtains the dimension-six contribution to Γ(D), which can

be compactly written as

Γ6
⟨O6⟩
m3

c

= Γ0 cρD

ρ3
D

m3
c

, (6.2.30)

with the matrix element of the Darwin operator given by 1

2mD ρ
3
D(D) = ⟨D(p)|c̄v(iDµ)(iv ·D)(iDµ)cv|D(p)⟩ . (6.2.31)

The coefficient cρD
can be decomposed into

cρD
= 3C2

1 CρD,11 + 2C1C2 CρD,12 + 3C2
2 CρD,22 + CρD,SL , (6.2.32)

including both non-leptonic and semileptonic contributions. For B-mesons decays,

the non-leptonic coefficients were computed recently in [124, 195, 248]. In order

to determine the corresponding expressions for the charm system, some subtleties

have to be considered. In b-quark decays, one assumes mb ∼ mc ≫ ΛQCD, and

the coefficient of the Darwin operator for the semileptonic b → cℓν̄ℓ decays is a

finite function of ρ = m2
c/m

2
b , which however diverges in the limit ρ → 0, i.e.

1Note that with the given definition for the dimension-six two-quark operators, in terms of full
covariant derivatives, the contribution of the spin-orbit operator to the decay width vanishes.
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in correspondence of the b → uℓν̄ℓ transitions. This is due to the fact that, the

radiation of a soft gluon off a massless quark-propagator leads to IR singularities

at dimension-six. In non-leptonic b-quark decays, one has to further deal with

the emission of a soft gluon from the internal light u-, d-, and s-quark lines. The

corresponding IR divergences are of the form log(mq/mb), for q = u, d, s, and are

removed by taking into account the mixing between the four-quark operators with

external q quarks and the Darwin operator under renormalisation, for details see

e.g. [124, 195, 262, 263]. Because of mc ≫ ms ∼ ΛQCD, it follows that one cannot

trivially generalise the results from the b- to the c-sector, i.e. by only replacing

mb → mc, mc → ms, etc., since there are further contributions due to the mixing

of four-quark operators with external s-quarks which must be additionally included.

Specifically, this leads to a modification of the coefficients proportional to C2
1 and

C1C2. Using the same procedure as discussed in [124], we have recomputed the

coefficients of the Darwin operator required for the study of D-meson decays. The

analytic expressions for CρD,nm, including the full s-quark mass dependence, however

finite in the limit ms → 0, are presented in Appendix C.2 for all non-leptonic modes.

To obtain the corresponding expression for CρD,SL, it is sufficient to set in the results

for the non-leptonic decays Nc = 1, C1 = 1, C2 = 0 and zs = zµ for the c → sµ+νµ

mode. In particular, we confirm the results in [250].

Again, by neglecting the strange and muon masses and by considering only the

dominant CKM modes, one finds

cρD
≈ |Vud|2

(
18C2

1 − 68
3 C1C2 + 18C2

2

)
+ 12 . (6.2.33)

Interestingly, in this combination all terms have the same sign and no cancellations

arise. In Figure 6.4 we show the dependence of the function cρD
in Eq. (6.2.32)

on the renormalisation scale µ1 and in Table 6.7 we quote the numerical result for

some reference values of µ1. The determination of the matrix element of the Darwin

operator will be discussed in Section 6.3.3.
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Figure 6.4: Scale dependence of the coefficient of the Darwin oper-
ator.

µ1 [GeV] 1 1.27 1.36 1.44 1.48 3
cNL

ρD
(LO) 60.6 51.7 49.6 48.1 47.5 35.4

cSL
ρD

(LO) 12.6 12.6 12.6 12.6 12.6 12.6
cρD

(LO) 73.2 64.3 62.3 60.8 60.1 48.1
cρD

(”NLO”) 60.5 54.5 53.1 52.1 51.6 42.8

Table 6.7: Numerical values of cSL
ρD

, cNL
ρD

, and cρD
= cSL

ρD
+ cNL

ρD
for

different values of the renormalisation scale µ1 at LO
and "NLO" with µ0 = mc = 1.5 GeV.

6.2.5 Dimension-six Four-Quark Operator Contribution

The perturbative coefficients in Eq. (6.1.1) considered so far are independent of the

spectator quark in the D meson, in fact its effect appears only in the corresponding

matrix elements of the dimension-five and dimension-six operators. Starting at order

1/m3
c , there are also one-loop contributions, cf. Γ̃6 in Eq. (6.1.1), in which the spec-

tator quark is directly involved. These correspond respectively to the weak exchange

(WE), Pauli interference (PI) and weak annihilation (WA) diagrams, depicted in

Figure 6.5 1. As discussed in Section 2.1, compared to the terms discussed above,

these contributions are phase space enhanced by a factor of 16π2. The corresponding
1In the case of semileptonic decays, only the WA topology can contribute.
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∆C = 0 four quark operators of dimension-six are 1:

Oq
1 = (c̄ γµ(1 − γ5)q) (q̄ γµ(1 − γ5)c), (6.2.34)

Oq
2 = (c̄(1 − γ5)q) (q̄(1 + γ5)c), (6.2.35)

T q
1 = (c̄ γµ(1 − γ5)TAq) (q̄ γµ(1 − γ5)TAc), (6.2.36)

T q
2 = (c̄(1 − γ5)TAq) (q̄(1 + γ5)TAc), (6.2.37)

where TA is a colour matrix and a summation over colour indices is implied. The

parameterisation of the matrix elements of the operators in Eqs. (6.2.34) - (6.2.37)

in QCD is given in Appendix C.3. Evaluating the matrix elements in the framework

of the HQET, we obtain the set of operators defined in Eqs.(5.2.1), i.e. 2

c
q1 c

uu q2

c
q1

c

u

q̄2 q̄2

c u c

q1q1 q2

Figure 6.5: Spectator quark effects in the HQE expansion: WE
(left), PI (middle) and WA (right).

Õq
1 = (h̄v γµ(1 − γ5)q) (q̄ γµ(1 − γ5)hv), (6.2.38)

Õq
2 = (h̄v(1 − γ5)q) (q̄(1 + γ5)hv), (6.2.39)

T̃ q
1 = (h̄v γµ(1 − γ5)TAq) (q̄ γµ(1 − γ5)TAhv), (6.2.40)

T̃ q
2 = (h̄v(1 − γ5)TAq) (q̄(1 + γ5)TAhv), (6.2.41)

1Sometimes, we will use the short-hand notation Oq
i , i = 1, 2, 3, 4 assuming Oq

3 ≡ T q
1 , Oq

4 ≡ T q
2 .

2Note that all quantities defined in HQET are labelled by a tilde, contrary to those in QCD.
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here hv denotes the HQET field defined by Eqs. (6.2.9), (6.2.10). The matrix

elements of these operators are parameterised as

⟨Dq|Õq
i |Dq⟩ = F 2(µ)mDq

B̃q
i , (6.2.42)

⟨Dq|Õq
′

i |Dq⟩ = F 2(µ)mDq
δ̃q

′
q

i , q ̸= q′ , (6.2.43)

where q, q′ = u, d, s, B̃q
i denote the Bag parameters in HQET, with B̃q

1,2 corresponding

to the colour-singlet operators, and B̃q
3,4 ≡ ϵ̃q

1,2 to the colour-octet ones, and F (µ) is

the HQET decay constant, defined as

⟨0|q̄γµγ5hv|Dq(v)⟩HQET = i F (µ)
√
mDq

vµ. (6.2.44)

where we have used relativistically normalised HQET states and hence the above

definitions differ from those in previous chapters (see Eq.(3.2.10)). Additionally a

factor of
√

2 has been absorbed into the definition of F (µ)1. See Appendix C.3 for

a summary of parameterisation used in this chapter of the 4-quark operator matrix

elements.

Similarly, the QCD decay constant fDq
is given by 2

⟨0|q̄γµγ5c|Dq(p)⟩QCD = ifDq
pµ, (6.2.45)

with p = mDq
v. The relation between fDq

and F (µ) up to αs and 1/mc corrections

can be found e.g. in [264,265]. At the scale µ = mc, it reads

fDq
= F (mc)√mDq

(
1 − 2

3
αs(mc)
π

+ G1(mc)
mc

+ 6 G2(mc)
mc

− 1
2

Λ̄ −mq

mc

)
, (6.2.46)

where Λ̄ = mDq
−mc, and the parameters G1 and G2 characterise matrix elements

of non-local operators. Note that in our analysis we express the parameter F (mc)

in Eqs. (6.2.42), (6.2.43), in terms of fDq
using Eq. (6.2.46). This brings additional

αs corrections – which become part of NLO dimension-six contribution – as well
1This convention is normally chosen so that F = mDq

fDq
when neglecting αs corrections

2The subscript ‘QCD’ or ‘HQET’ on the states is usually omitted, however for clarity it is
specified in the definition of the decay constant.
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as 1/mc ones. The latter, as it will be explained in detail in Section 6.2.6, can be

partially absorbed in the contribution of some of the dimension-seven operators in

HQET.

In vacuum insertion approximation (VIA), the Bag parameters of the colour-singlet

operators are equal to one, B̃q
1,2 = 1, and the Bag parameters of the colour-octet

operators vanish, ϵ̃q
1,2 = 0. Note that throughout this work we assume isospin

symmetry, i.e.

B̃u
i = B̃d

i . (6.2.47)

The quantities δ̃q
′
q

i in Eq. (6.2.43) describe the so-called eye-contractions, see Fig-

ure 6.6, and characterize "subleading" (compared to the large Bag parameters) effects

in the non-perturbative matrix elements – in VIA all eye-contractions vanish i.e.

δ̃q
′
q

i = 0. However, beyond VIA, the matrix elements of the four-quark operators

with external q′ quark differ from zero even when the spectator quark q in the Dq

meson does not coincide with the quark q′, as reflected by δ̃q
′
q

i in Eq. (6.2.43). Note

that in our notation the eye-contractions with q = q′, are in fact included in the Bag

parameters B̃q
i . And again, due to isospin symmetry we will use:

δ̃uq
′

i = δ̃dq
′

i , δ̃q
′
u

i = δ̃q
′
d

i , q′ = u, d, s .

The Bag parameters B̃q
i and δ̃qq

′

i have been determined using HQET sum rules,

specifically the Bag parameters B̃q
i for the D+,0 mesons were calculated in [55], while

corrections due to the strange quark mass as well as the contribution of the eye-

contractions, see Figure 6.6, were computed in Chapter 5. The numerical values of

the Bag parameters will be briefly discussed in Section 6.3.4 and they are summarised

in Appendix C.1.
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By considering only the dominant CKM modes and by neglecting the effect of the

eye-contractions, at LO-QCD and at dimension-six, the contribution of four-quark

operators to the D-mesons decay rate reads

16π2 Γ̃D
0

6
⟨Õ6⟩D

0

m3
c

= Γ0|V ∗ud|2 16π2MD
0f 2

D
0

m3
c

(1 − zs)2

{(1
3C

2
1 + 2C1C2 + 3C2

2

) [
(B̃u

2 − B̃u
1 ) + zs

(
2B̃u

2 − B̃u
1

2

)]

+2C2
1

[
(ϵ̃u

2 − ϵ̃u
1) + zs

(
2 ϵ̃u

2 − ϵ̃u
1

2

)]}
,(6.2.48)

16π2 Γ̃D
+

6
⟨Õ6⟩D

+

m3
c

= Γ0|V ∗ud|2 16π2MD
+f 2

D
+

m3
c

(1 − zs)2

{(
C2

1 + 6C1C2 + C2
2

)
B̃d

1 + 6
(
C2

1 + C2
2

)
ϵ̃d

1

}
, (6.2.49)

16π2 Γ̃D
+
s

6
⟨Õ6⟩D

+
s

m3
c

= Γ0|V ∗ud|2 16π2MD
+
s
f 2

D
+
s

m3
c{(

3C2
1 + 2C1C2 + 1

3C
2
2 + 2

|V ∗ud|2
)(

B̃s
2 − B̃s

1

)
+2C2

2 (ϵ̃s
2 − ϵ̃s

1)
}
, (6.2.50)

respectively, for the WE, PI and WA topologies. Note that in the latter we have

neglected the muon mass in the semileptonic decay c → sµ+νµ. In Eqs. (6.2.48) -

(6.2.50) some interesting numerical effects are arising. First, in the charm system,

one expects that the contribution due to the spectator quark is of similar size

compared to the leading term Γ3 in the HQE, unless some additional cancellations

are present. Using the pole mass mPole
c = 1.48 GeV and Lattice QCD values for the

decay constants [157] we roughly obtain that

16π2MD
0f 2

D
0

m3
c

= 4.1 ≈ O(c3) , (6.2.51)

16π2MD
+
s
f 2

D
+
s

m3
c

= 6.0 ≈ O(c3) . (6.2.52)

This result has led the authors of [266] to propose a different ordering for the HQE

series in the charm sector. However, to investigate further the size of four-quark

contributions, we consider the combinations of Wilson coefficients that appear in
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c c

q′ q′

q

Figure 6.6: Diagram describing the eye-contractions.

Eqs. (6.2.48) - (6.2.50), i.e.

CS
WE = 1

3C
2
1 + 2C1C2 + 3C2

2 , CO
WE = 2C2

1 , (6.2.53)

CS
PI = C2

1 + 6C1C2 + C2
2 , CO

PI = 6 (C2
1 + C2

2) , (6.2.54)

CS
WA = 3C2

1 + 2C1C2 + 1
3C

2
2 , CO

WA = 2C2
2 , (6.2.55)

where the superscripts S and O refer to coefficient in front of the colour-singlet and

colour-octet Bag parameters, respectively. A comparison of these combinations for

different values of the renormalisation scale µ1 is shown in Table 6.8.

µ1 [GeV] 1 1.27 1.36 1.44 1.48 3

CS
WE(LO) 0.09 0.03 0.02 0.02 0.01 0.01

CS
WE(NLO) −0.03 −0.03 −0.03 −0.02 −0.02 0.04
CO

WE(LO) 3.57 3.24 3.16 3.11 3.08 2.63
CO

WE(NLO) 3.11 2.89 2.83 2.79 2.77 2.44
CS

PI(LO) −2.80 −2.12 −1.96 −1.85 −1.79 −0.79
CS

PI(NLO) −1.74 −1.28 −1.16 −1.08 −1.04 −0.27
CO

PI(LO) 13.0 11.4 11.0 10.7 10.6 8.50
CO

PI(NLO) 10.6 9.55 9.31 9.13 9.05 7.60
CS

WA(LO) 3.82 3.61 3.56 3.53 3.51 3.24
CS

WA(NLO) 3.57 3.42 3.38 3.36 3.35 3.16
CO

WA(LO) 0.77 0.55 0.51 0.47 0.46 0.21
CO

WA(NLO) 0.41 0.30 0.27 0.25 0.24 0.10

Table 6.8: Comparison of the combinations CS,O
WE,PI,WA, respectively

at LO- and NLO-QCD, for different values of the renor-
malisation scale µ1.

From this it is evident that the combination of Wilson coefficients multiplying the
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colour-singlet Bag parameters of WE is strongly suppressed. Additionally, depending

on whether we disregard α2
s corrections in these combinations of ∆C = 1 Wilson

coefficients – as we do – or not, we can get even different signs for CS
WE at NLO.

Moreover, in Eq. (6.2.48) the Bag parameters of the colour singlet operators exactly

cancel in VIA at leading order in 1/mc. On the other hand, the coefficient of the

colour-octet operator is not suppressed for weak exchange. This indicates that, in

this case, both singlet and octet operators may be of equal importance. For Pauli

interference, the combinations of Wilson coefficients multiplying the colour-singlet

operators are significantly enhanced compared to those in WE, the same holds for the

colour-octet operators. Note that CO
PI and CS

PI get large modifications (and even a flip

of sign) compared to the case C1 = 1 and C2 = 0 revealing the importance of gluon

radiative corrections. Moreover CO
PI is enhanced compared to CS

PI, indicating that

both singlet and octet operators might be equally important for Pauli interference.

For weak annihilation, the corresponding combination in front of the colour-singlet

operators is large. On the other hand, the Bag parameters of the colour singlet

operators exactly cancel in VIA at leading order in 1/mc.

The above arguments show that, by neglecting the effect of the colour-octet operators

in VIA, one might be led to misleading conclusions, and therefore an accurate

determination of the deviation of the Bag parameters from their VIA values, using

non-perturbative methods like HQET sum rules or lattice simulations, is necessary.

Finally, by including all CKM modes as well as NLO-QCD corrections, the contri-

bution of four-quark operators to the total decay width at order 1/m3
c schematically

reads

16π2 Γ̃Dq

6
⟨Õ6⟩Dq

m3
c

= Γ0

|Vcs|2
4∑

i=1

 ∑
q1,q2=d,s

∣∣∣λq1q2

∣∣∣2
AWE

i,q1q2

⟨Dq|Õu
i |Dq⟩

m3
c

+ API
i,q1q2

⟨Dq|Õq2
i |Dq⟩
m3

c

+ AWA
i,q1q2

⟨Dq|Õq1
i |Dq⟩
m3

c


+

∑
q1=d,s

|Vcq1|2
∑

ℓ=e,µ

[
AWA

i,q1ℓ

⟨Dq|Õq1
i |Dq⟩
m3

c

],
(6.2.56)
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where the matrix elements of the four-quark operators are given in Eqs. (6.2.42),

(6.2.43), and the short-distance coefficients for the WE, PI and WA topologies,

cf. Figure 6.5 are denoted by AWE
i,q1q2 , API

i,q1q2 and AWA
i,q1q2 , AWA

i,q1ℓ, respectively. NLO

corrections to AWE
i,q1q2 and API

i,q1q2 have been computed for HQET operators in [191].

The corresponding results for AWA
i,q1q2 can be obtained by Fierz transforming the

∆C = 1 operators given in Eqs. (6.2.2), (6.2.3). Since the Fierz symmetry is

respected also at one-loop level, the functions AWA
i,q1q2 are derived from AWE

i,q1q2 by

replacing C1 ↔ C2. For the semileptonic modes, the coefficients AWA
i,q1ℓ have been

determined in [200]. Note that in our analysis, we treat the contribution of the δ̃q
′
q

i

parameters as a subleading “NLO” effect, therefore their coefficients are included

only at LO-QCD. To demonstrate the importance of the NLO-QCD corrections to

the spectator effects, we show in Table 6.9 the dimension-six contributions to the

D-meson decay widths (see Eq. (6.2.56)) splitting the LO and NLO parts, both in

VIA and using HQET SR results for the Bag parameters. NLO-QCD corrections

turn out to have an essential numerical effect for the four-quark contributions. In

the case of the D0 and D+
s mesons these corrections lift the helicity suppression of

weak exchange and weak annihilation being present in LO-QCD when using VIA.

For the D+
s meson, in addition to the CKM dominant WA contribution, there is a

correction due to CKM suppressed but nevertheless large PI topology. In the case of

the D+ meson the overall contribution from Pauli interference turns out to be huge,

of the order of −2.5 ps−1. In addition, the NLO correction to Pauli interference turn

also out to be very large, 50%−100% of the LO term depending on the mass scheme.

Already in the B system this NLO-QCD corrections were found to be of the order of

30% for the ratio τ(B+)/τ(Bd), see e.g. [190] in the Pole scheme. Thus, neglecting

these contributions for charm lifetime studies, as done in [267], is clearly not justified

and a knowledge of NNLO-QCD corrections to the four-quark contributions would

be highly desirable.
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Scheme D0 D+ D+
s

VIA

Pole −0.014︸ ︷︷ ︸
NLO

= 0.000︸ ︷︷ ︸
LO

−0.014︸ ︷︷ ︸
∆NLO

−2.64︸ ︷︷ ︸
NLO

= −1.68︸ ︷︷ ︸
LO

−0.97︸ ︷︷ ︸
∆NLO

−0.20︸ ︷︷ ︸
NLO

= −0.12︸ ︷︷ ︸
LO

−0.08︸ ︷︷ ︸
∆NLO

MS −0.010︸ ︷︷ ︸
NLO

= 0.000︸ ︷︷ ︸
LO

−0.010︸ ︷︷ ︸
∆NLO

−2.49︸ ︷︷ ︸
NLO

= −1.23︸ ︷︷ ︸
LO

−1.25︸ ︷︷ ︸
∆NLO

−0.18︸ ︷︷ ︸
NLO

= −0.08︸ ︷︷ ︸
LO

−0.10︸ ︷︷ ︸
∆NLO

Kinetic −0.012︸ ︷︷ ︸
NLO

= 0.000︸ ︷︷ ︸
LO

−0.012︸ ︷︷ ︸
∆NLO

−2.53︸ ︷︷ ︸
NLO

= −1.42︸ ︷︷ ︸
LO

−1.11︸ ︷︷ ︸
∆NLO

−0.19︸ ︷︷ ︸
NLO

= −0.10︸ ︷︷ ︸
LO

−0.09︸ ︷︷ ︸
∆NLO

1S −0.013︸ ︷︷ ︸
NLO

= 0.000︸ ︷︷ ︸
LO

−0.013︸ ︷︷ ︸
∆NLO

−2.60︸ ︷︷ ︸
NLO

= −1.58︸ ︷︷ ︸
LO

−1.02︸ ︷︷ ︸
∆NLO

−0.19︸ ︷︷ ︸
NLO

= −0.11︸ ︷︷ ︸
LO

−0.08︸ ︷︷ ︸
∆NLO

HQET SR

Pole 0.007︸ ︷︷ ︸
NLO

= 0.019︸ ︷︷ ︸
LO

−0.012︸ ︷︷ ︸
∆NLO

−2.89︸ ︷︷ ︸
NLO

= −1.87︸ ︷︷ ︸
LO

−1.02︸ ︷︷ ︸
∆NLO

−0.21︸ ︷︷ ︸
NLO

= −0.16︸ ︷︷ ︸
LO

−0.05︸ ︷︷ ︸
∆NLO

MS 0.020︸ ︷︷ ︸
NLO

= 0.014︸ ︷︷ ︸
LO

+0.006︸ ︷︷ ︸
∆NLO

−2.72︸ ︷︷ ︸
NLO

= −1.37︸ ︷︷ ︸
LO

−1.35︸ ︷︷ ︸
∆NLO

−0.20︸ ︷︷ ︸
NLO

= −0.12︸ ︷︷ ︸
LO

−0.08︸ ︷︷ ︸
∆NLO

Kinetic 0.014︸ ︷︷ ︸
NLO

= 0.016︸ ︷︷ ︸
LO

−0.002︸ ︷︷ ︸
∆NLO

−2.76︸ ︷︷ ︸
NLO

= −1.58︸ ︷︷ ︸
LO

−1.18︸ ︷︷ ︸
∆NLO

−0.20︸ ︷︷ ︸
NLO

= −0.13︸ ︷︷ ︸
LO

−0.07︸ ︷︷ ︸
∆NLO

1S 0.009︸ ︷︷ ︸
NLO

= 0.018︸ ︷︷ ︸
LO

−0.008︸ ︷︷ ︸
∆NLO

−2.84︸ ︷︷ ︸
NLO

= −1.76︸ ︷︷ ︸
LO

−1.08︸ ︷︷ ︸
∆NLO

−0.21︸ ︷︷ ︸
NLO

= −0.15︸ ︷︷ ︸
LO

−0.06︸ ︷︷ ︸
∆NLO

Table 6.9: Dimension-six contributions to D-meson decay widths
(see Eq. (6.2.56)) (in ps−1) and split up into LO-QCD and
NLO-QCD corrections within different mass schemes and
both in VIA and using the HQET SR for Bag parameters.

6.2.6 Dimension-seven Four-Quark Operator Contribution

The dimension-six four-quark operator contribution discussed in the previous section,

is obtained by neglecting in the expression of the incoming momentum pµ = pµ
c + pµ

q

the effect due to the small momentum of the light spectator quark pq ∼ ΛQCD.

Including also corrections linear in the quantity pq/mc, leads to the contribution

of order 1/m4
c to Γ(D), which can be described in terms of the following basis of
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dimension-seven operators, defined in full QCD, i.e. 1

P q
1 = mq (c̄(1 − γ5)q)(q̄(1 − γ5)c) , (6.2.57)

P q
2 = 1

mc

(c̄
←
Dνγµ(1 − γ5)Dνq)(q̄γµ(1 − γ5)c) , (6.2.58)

P q
3 = 1

mc

(c̄
←
Dν(1 − γ5)Dνq)(q̄(1 + γ5)c) , (6.2.59)

together with the corresponding colour-octet operators Sq
1 , S

q
2 , S

q
3 , containing the

generators TA, and again a summation over colour indices is implied. Due to the

presence in Eqs. (6.2.58), (6.2.59) of a covariant derivative acting on the charm quark

field, which scales as mc at this order, there is no immediate power counting for these

operators, cf. the HQET operators in Eqs. (6.2.61), (6.2.62). Moreover, note that

this basis differs from the one used in [252] for the computation of dimension-seven

and dimension-eight contributions.

In order to evaluate the matrix element of the dimension-seven four-quark operators

using the framework of the HQET, one has to further expand the charm quark

momentum, according to pµ = mcv
µ + kµ + pµ

q , see Eq. (6.2.8), as well as to include

1/mc corrections to the effective heavy quark field and to the HQET Lagrangian,

retaining only terms linear in k/mc and pq/mc. The small residual momentum of

the charm quark kµ will result in a covariant derivative acting on hv and the small

momentum of the spectator quark pµ
q will result in a covariant derivative acting on

the light quark field q. In this case, one obtains the following basis, which includes

the local operators

P̃ q
1 = mq (h̄v(1 − γ5)q)(q̄(1 − γ5)hv) , (6.2.60)

P̃ q
2 = (h̄vγµ(1 − γ5)(iv ·D)q)(q̄γµ(1 − γ5)hv) , (6.2.61)

1Notice that in e.g. [200] it is used a redundant basis in which the operator denoted by P q
2 is

related to P q
1 by hermitean conjugation, namely P q

2 = mq (c̄(1 + γ5)q)(q̄(1 + γ5)c) = (P q
1 )†. Since

these two operators lead to the same matrix element, we only include P q
1 in our basis. It then

follows that the operators here denoted by P q
2 and P q

3 , correspond respectively to P q
3 and P q

4 in
the notation of [200]. Furthermore, we point out that the matrix element of the operator P q

4 in
Eqs. (C5) and (C6) of [200] should have the opposite sign.
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P̃ q
3 = (h̄v(1 − γ5)(iv ·D)q)(q̄(1 + γ5)hv) , (6.2.62)

and

R̃q
1 = (h̄vγµ(1 − γ5)q)(q̄γµ(1 − γ5)(i /D)hv) , (6.2.63)

R̃q
2 = (h̄v(1 − γ5)q)(q̄(1 + γ5)(i /D)hv) , (6.2.64)

supplemented by the corresponding colour-octet operators S̃q
1,2,3 and Ũ q

1,2, and the

non-local operators

M̃ q
1,π = i

∫
d4y T

[
Õq

1(0), (h̄v(iD)2hv)(y)
]
, (6.2.65)

M̃ q
2,π = i

∫
d4y T

[
Õq

2(0), (h̄v(iD)2hv)(y)
]
, (6.2.66)

M̃ q
1,G = i

∫
d4y T

[
Õq

1(0), 1
2gs

(
h̄vσαβG

αβhv

)
(y)
]
, (6.2.67)

M̃ q
2,G = i

∫
d4y T

[
Õq

2(0), 1
2gs

(
h̄vσαβG

αβhv

)
(y)
]
, (6.2.68)

also supplemented by the corresponding colour-octet operators 1. We see that,

compared to the QCD basis, there are in addition the two local operators R̃q
1 and

R̃q
2 (and also the corresponding colour-octet ones), which emerge from the expansion

in Eq. (6.2.10), and the four non-local operators M̃ q
1,π, M̃ q

2,π, M̃ q
1,G and M̃ q

2,G (and

the corresponding colour-octet ones) which are obtained by taking the time-ordered

product of the dimension-six operators with the 1/mc correction to the HQET

Lagrangian, see e.g. [45] for details.

We parametrise the matrix elements of the operators in Eqs. (6.2.60) - (6.2.68)

using VIA and account for deviations from it by including the corresponding Bag

parameters, as it is explicitly shown in Appendix C.3. However, since for these

matrix elements there is no non-perturbative evaluation available yet, in our analysis

we have to rely only on VIA. It follows that, at LO-QCD the matrix element of

the dimension-seven operators listed above, can be expressed in terms of the HQET

non-perturbative parameters F (µ), G1(µ), G2(µ), and Λ̄, so far determined only

1Operators which vanish due to the equation of motion (iv · D)hv = 0 are not shown.



6.2. The Total Decay Rate 139

with large uncertainties. For this reason, we prefer to use as an input the QCD decay

constant fD, which is computed very precisely using Lattice QCD [157]. In doing so,

we obtain that in VIA and at the matching scale µ = mc, the contribution of the local

operators R̃q
1,2 as well as that of the non-local ones M̃ q

1,π, M̃ q
2,π, M̃ q

1,G and M̃ q
2,G can

be entirely absorbed in the QCD decay constant fD, cf. Eq. (6.2.46) (more precisely,

in the matrix element of the dimension-six QCD operators in Eqs. (6.2.34), (6.2.35),

which are proportional to fD), so that we are left only with the 1/mc contribution

due to the operators P̃ q
1,2,3, analogously to the QCD case 1.

To make this point more clear, we consider as an example the contribution due

to Pauli interference at LO-QCD and up to order 1/m4
c , in the case of c → sd̄u

transition, which constitutes the dominant correction to Γ(D+),

Im T PI = Γ0 |V ∗ud|2 32π2

m3
c

(1 − zs)2

CS
PI

(
Õd

1 + R̃d
1

mc

+ M̃d
1,π

mc

+ M̃d
1,G

mc

+ 21 + zs

1 − zs

P̃ q
3

mc

)

+ (colour-octet part)
, (6.2.69)

with CS
PI defined in Eq. (6.2.54). By evaluating the matrix element of ImT PI in

VIA, the contribution due to the colour-octet operators vanishes. Moreover, using

the parametrisation for the matrix elements of the four-quark operators given in

Eq. (6.2.42) and in Appendix C.3, we obtain in VIA and setting µ = mc, that

⟨D+|Õd
1 + R̃d

1

mc

+ M̃d
1,π

mc

+ M̃d
1,G

mc

|D+⟩HQET = F 2(mc)mD
+

[
1 − Λ̄

mc

+2G1(mc)
mc

+ 12G2(mc)
mc

]

= f 2
D m

2
D

+ = ⟨D+|Od
1|D+⟩QCD,

(6.2.70)

where in the second line we have used the conversion between the QCD and HQET

decay constants given in Eq. (6.2.46), showing that the contribution of the local

operators R̃q
i and non-local operators M̃ q

i,π and M̃ q
i,G is entirely absorbed in the QCD

1In the matrix element of P̃ q
1,2,3 one can replace the HQET decay constant with the QCD one,

up to higher order corrections.
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decay constant. Note that, by neglecting the effect due to the strange quark mass

and using VIA we reproduce the approximate result of Eq. (19) in [266].

The same argument applies also to the remaining topologies i.e. WE and WA.

However, it is worth mentioning that in VIA and neglecting the strange quark

mass, the contribution of WE and WA exactly vanishes at LO-QCD, due to the

helicity suppression. This suppression is lifted once the s-quark mass or perturbative

gluon corrections are included, and in this case it becomes again manifest that the

contributions of R̃q
i , M̃q

i,π and M̃q
i,G in HQET can be completely absorbed in fD by

evaluating the matrix elements in VIA 1. We note that a detailed analysis of the

dimension-seven contributions within the HQET has been performed in [265] for

the case of B − B̄-mixing. Specifically, it was found that in VIA, subleading power

corrections due to non-local operators can be entirely absorbed in the definition of

the QCD decay constant, and that the residual 1/mb corrections, due to the running

of the local dimension-seven operators from the scale mb to µ ∼ 1 GeV, is numerically

small (∼ 5% for [265]).2

Finally, by summing over all the CKM modes, at LO-QCD, the dimension-seven

contribution can therefore be presented as (with q = u, d, s)

16π2 Γ̃Dq

7
⟨Õ7⟩Dq

m4
c

= Γ0

|Vcs|2
3∑

i=1

 ∑
q1,q2=d,s

∣∣∣λq1q2

∣∣∣2
GWE

i,q1q2

⟨Dq|P̃ u
i |Dq⟩

m4
c

+GPI
i,q1q2

⟨Dq|P̃ q2
i |Dq⟩
m4

c

+GWA
i,q1q2

⟨Dq|P̃ q1
i |Dq⟩
m4

c


+

∑
q1=d,s

|Vcq1|2
∑

ℓ=e,µ

[
GWA

i,q1ℓ

⟨Dq|P̃ q1
i |Dq⟩
m4

c

]
+(colour-octet part) , (6.2.71)

where the matrix elements of the dimension-seven operators are presented in Ap-

pendix C.3. We confirm the results for the short-distance coefficients GWE
i,q1q2 , GPI

i,q1q2

1Note, that for the operator Oq
2 the contribution of Rq

2 is absorbed by the combination
(mD fD/mc)2 ≈ (1 + 2 Λ̄/mc) f2

D.
2By neglecting the effect of running down to a lower scale, from [265] one can see that in VIA

the QCD decay constant entirely absorbs all the 1/mb contributions.
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and GWA
i,q1q2 , GWA

i,q1ℓ presented in [200]. Note that, due to the current accuracy of the

analysis, at dimension-seven we include only the contribution of the valence-quark,

therefore e.g. ⟨D0|P s
i |D0⟩ = 0. Numerical values of the dimension-seven contribu-

tions to the decay rates and the ratios will be presented in Section 6.4. In Table 6.10

we show the central values of the dimension-seven contributions in ps−1 in the kinetic

mass scheme and we find for the D+ meson a correction that is almost as large as

the leading dimension three term, see Table 6.5.

D0 D+ D+
s

16π2 Γ̃Dq

7
⟨Õ7⟩Dq

m4
c

[ps−1] 4.6 × 10−7 1.05 0.10

Table 6.10: Dimension-seven contributions to D-meson decay
widths (see Eq. (6.2.71)) in ps−1 within VIA in the
kinetic mass scheme.

6.3 Determination of the Non-perturbative

Parameters

In the present section, we discuss the numerical determination for the matrix elements

of the operators introduced in Sections 6.2.2 - 6.2.6. We start with the operators of

the lowest mass dimension.

6.3.1 Parameters of the Chromomagnetic Operator

For the B system many of non-perturbative parameters have been determined by

performing fits to the experimental data for inclusive semileptonic decays [197,198].

In the case of the chromomagnetic operator, one finds [198]

µ2
G(B) = (0.306 ± 0.050) GeV2 . (6.3.1)
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Assuming heavy quark symmetry we expect the corresponding parameter in the D

system to have a similar size. Another way of estimating the value of µ2
G is to use

the well-known spectroscopy relation [268]

µ2
G(D(s)) = 3

2mc (MD
∗
(s)

−MD(s)) , (6.3.2)

which holds up to power corrections. Using the value for the meson masses given in

the PDG [169] and setting mc = 1.27 GeV, we obtain the following estimates:

µ2
G(D) = (0.268 ± 0.107) GeV2, µ2

G(Ds) = (0.274 ± 0.110) GeV2, (6.3.3)

where we have conservatively added an uncertainty of 40% due to unknown power cor-

rections of order 1/mc. The values in Eq. (6.3.3) are roughly 19% smaller than those

obtained from experimental fits for semileptonic B-meson decays, see Eq. (6.3.1).

Moreover, Eq. (6.3.2) leads to a tiny amount of SU(3)f -symmetry breaking of ≈ 2%,

which might, however, be enhanced by the neglected power corrections. In the

literature many times instead of Eq. (6.3.2) the relation [45,269]

µ2
G(D(s)) = 3

4
(
M2

D
∗
(s)

−M2
D(s)

)
(6.3.4)

is adopted, which coincides with Eq. (6.3.2) up to corrections of order 1/mc. Nu-

merically we find that Eq. (6.3.4) yields

µ2
G(D) = 0.41 GeV2 , µ2

G(D+
s ) = 0.44 GeV2 , (6.3.5)

which are roughly 23% higher than that in Eq. (6.3.1). In our numerical analysis, we

will use the average value of the two determinations in Eq. (6.3.3) and Eq. (6.3.5).

This gives

µ2
G(D) = (0.34 ± 0.10) GeV2, µ2

G(D+
s ) = (0.36 ± 0.10) GeV2 , (6.3.6)

which agrees well with the one in Eq. (6.3.1).

Thus, from Eq. (6.2.27), we expect corrections to the total decay rate due to the chro-

momagnetic operator, cG µ
2
G/(c3 m

2
c) ranging between −6% and +8% with respect
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to the leading free-quark decay contribution. A large part of the sizable uncertainty

derives from the cancellations in the coefficient cG, shown in Table 6.6 and Figure 6.3,

which could be reduced with a complete determination of the NLO-QCD corrections

to cG. For semileptonic rates the contribution of the chromomagnetic operator can

be even of the order of 20%, see Section 6.4.3.

An experimental determination of µ2
G(D) from inclusive semileptonicD-meson decays

could further reduce the uncertainties and could in particular give some insight into

the numerical size of SU(3)F breaking.

6.3.2 Parameters of the Kinetic Operator

For the matrix element of the kinetic operator no precise determination is available

so far in the charm sector. Several predictions of µ2
π available in the literature for

the B-meson cover a large range of values, see Table 6.11. Assuming heavy quark

Source LQCD
[270]

LQCD
[254]

Exp.
fit [197]

Exp.
fit [198]

QCD
SR [259]

QCD
SR [258]

µ2
π[GeV2] 0.05(22) 0.314(15) 0.465(68) 0.477(56) 0.10(5) 0.6(1)

Table 6.11: Different determinations of µ2
π(B) available in the liter-

ature.

symmetry one can use the value obtained from the recent fit of the semileptonic

B-meson decays [198]:

µ2
π(B) = (0.477 ± 0.056) GeV2 , (6.3.7)

to get the following estimate for the D-meson

µ2
π(D) = (0.48 ± 0.20) GeV2. (6.3.8)

In the above, we have again added a conservative uncertainty of 40% to account for

the breaking of the heavy quark symmetry. This value clearly fulfills the theoretical

bound µ2
π ≥ µ2

G, see e.g. the review [271]. Thus we expect from Eq. (6.2.27)
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corrections due to the kinetic operator of the order of −10%, which is also found in

Section 6.4.3 – both for the total decay rate and the semileptonic one.

The SU(3)F breaking effects for the kinetic operator have been estimated in [200,272]

µ2
π(D+

s ) − µ2
π(D0) ≈ 0.09 GeV2 , (6.3.9)

leading to the following estimate we use for the Ds meson:

µ2
π(D+

s ) = (0.57 ± 0.23) GeV2. (6.3.10)

Again a more precise experimental determination of µ2
π from fits to semileptonic D+,

D0 and D+
s meson decays – as it was done for the B+ and B0 decays – would be

very desirable.

6.3.3 Parameters of the Darwin Operator

For the matrix element of the Darwin operator no theoretical determination for the

charm sector is available. We again could assume heavy quark symmetry and use the

corresponding value in the B-system, obtained from recent fits of the semileptonic

decays [198]:

ρ3
D(B) = (0.185 ± 0.031) GeV3 , (6.3.11)

and add quadratically an uncertainty of 40% for the transition from the B to the

D system, leading to a first estimate of

ρ3
D(D)I = (0.185 ± 0.080) GeV3 . (6.3.12)

Alternatively the Darwin parameter can be related to the matrix elements of the

dimension-six four-quark operators through the equation of motion for the gluon
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field. At leading order in 1/mQ one obtains:

ρ3
D(H) = g2

s

18f
2
H mH

[
2 B̃q

′

2 − B̃q
′

1 + 3
4 ϵ̃

q
′

1 − 3
2 ϵ̃

q
′

2

+
∑

q=u,d,s

(
2δ̃qq

′

2 − δ̃qq
′

1 + 3
4 δ̃

qq
′

3 − 3
2 δ̃

qq
′

4

)
+ O

(
1
mQ

)
,

(6.3.13)

where H is a heavy hadron with the mass mH and the decay constant fH , q′ = u, d, s

is the light valence quark in the H-hadron, and the Bag parameters B̃q
1, B̃q

2, ϵ̃q
1, ϵ̃q

2,

δ̃qq
′

1 δ̃qq
′

2 δ̃qq
′

3 and δ̃qq
′

4 were introduced in Section 6.2.5. Their numerical values are

summarised in Table C.2 in Appendix C.3. The strong coupling gs has its origin in

the non-perturbative regimes – e.g. [273] suggests to set αs = 1.

Using the input from the Appendix C.1 and applying Eq. (6.3.13) we derive estimates

of ρ3
D for B- and D-mesons both in VIA and using the HQET SR results for the Bag

parameters. The values are summarised in Table 6.12 for the three different choices,

αs(µ = 1.5 GeV), αs(µ = 1 GeV) and αs = 1.

µ = 1.5 GeV µ = 1.0 GeV αs = 1

ρ3
D[GeV3] VIA HQET VIA HQET VIA HQET

B+, Bd 0.048 0.047 0.066 0.064 0.133 0.129

Bs 0.072 0.070 0.098 0.095 0.199 0.193

D+, D0 0.021 0.020 0.027 0.026 0.059 0.056

D+
s 0.030 0.029 0.040 0.038 0.086 0.082

Table 6.12: Values of ρ3
D(H) for B- and D-mesons in VIA and using

HQET SR for Bag parameters for three different choices
of αs in Eq. (6.3.13).

Setting αs = 1 in Eq. (6.3.13) yields values for ρ3
D that are close to the one determined

from the fit of semileptonic B meson decays, Eq. (6.3.11), indicating 1/mb-corrections

in Eq. (6.3.13) of the order of +30%. Moreover, we find that VIA gives in Eq. (6.3.13)

values which are very close to the HQET sum rule ones. We emphasise that due

to the sizeable SU(3)F breaking in the decay constants, Eq. (6.3.13) leads also to
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a sizable SU(3)F breaking for the non-perturbative parameters ρ3
D(D), ρ3

D(D+
s ).

Taking the values corresponding to αs = 1 and using HQET SR results for the bag

parameters we get the second estimate (last column in Table 6.12)

ρ3
D(D)II = (0.056 ± 0.022) GeV3 , ρ3

D(D+
s )II = (0.082 ± 0.033) GeV3 , (6.3.14)

where we have again added a 40% uncertainty. Finally, another possibility to extract

ρ3
D(D) is to substitute in Eq. (6.3.13) the values of the Bag parameters in VIA, which

gives

ρ3
D(H) ≈ g2

s

18f
2
H mH . (6.3.15)

Assuming a similar size for the strong coupling in both the B- and D-meson matrix

elements, from Eq. (6.3.15) one obtains:

ρ3
D(D) ≈ f 2

D mD

f 2
B mB

ρ3
D(B) , ρ3

D(Ds) ≈ f 2
Ds
mDs

f 2
B mB

ρ3
D(B) . (6.3.16)

Using the most precise determination of the decay constants from Lattice QCD [157],

and of the meson masses from PDG [169] and taking into account the value of ρ3
D(B)

in Eq. (6.3.11), leads to the following estimates:

ρ3
D(D)III = (0.082 ± 0.035) GeV3 , ρ3

D(Ds)III = (0.119 ± 0.052) GeV3 , (6.3.17)

where we again assign in addition a conservative 40% uncertainty due to miss-

ing power corrections. These values are consistent with the numbers shown in

Table 6.12 for αs = 1. Contrary to the case of the dimension-five non-perturbative

parameters, in Eq. (6.3.17) one observes a large SU(3)f -symmetry breaking of

≈ 46%, similar to the ≈ 49% that one obtains for the B(s)-mesons, mostly stemming

from the ratios fBs
/fBd

and f
D

+
s
/f

D
0 . In our numerical analysis we use the values

shown in Eq. (6.3.17), which lies between the estimates obtained in Eq. (6.3.12) and

Eq. (6.3.14).

Again, here a more precise experimental determination of ρ3
D from fits to semileptonic

D+, D0 and D+
s meson decays – as it was done for the B+ and B0 decays – would be

very desirable and could have a significant effect on the phenomenology of inclusive
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charm decays.

6.3.4 Bag parameters of Dimension-six and

Dimension-seven

The dimension-six Bag parameters of the D+ and D0 mesons have been determined

using HQET Sum Rules [55]; strange quark mass corrections, relevant for the Bag

parameter of the D+
s meson, as well as eye-contractions have been computed for the

first time in Chapter 5. The results are collected in Table C.2 and the HQET sum

rules suggest values for the Bag parameter that are very close to VIA.

For the dimension-seven Bag parameters (defined in HQET), we apply VIA. As

one can see from Appendix C.3, the matrix elements of dimension-seven operators

in HQET depend also on the parameters Λ̄(s) = mD(s) − mc, for which we use the

following ranges [3]

Λ̄ = (0.5 ± 0.1) GeV,

Λ̄s = (0.6 ± 0.1) GeV. (6.3.18)

6.4 Numerical Results

In this section, using all the ingredients described above, we present the theoretical

prediction for the total and semileptonic decay rates, and for their ratios. All

the input used in our numerical analysis are collected in Appendix C.1. For each

observable, we investigate several quark mass schemes (with the kinetic scheme as

default) and compare the corresponding results using both VIA and HQET SR values

for the Bag parameters. The uncertainties quoted below are obtained by varying

all the input parameters within their intervals. For the renormalisation scales, we

fix the central values to µ1 = µ0 = 1.5 GeV and vary both of them independently

between 1 and 3 GeV. Moreover we add an estimated uncertainty due to missing
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VIA

Observable Pole MS Kinetic 1S Exp.
value

Γ(D0)[ps−1] 1.71 1.49 1.58 1.66 2.44

Γ(D+)[ps−1] 0.22 −0.01 0.11 0.18 0.96

Γ̄(D+
s )[ps−1] 1.76 1.51 1.61 1.71 1.88

τ(D+)/τ(D0) 2.55 2.56 2.53 2.54 2.54

τ̄(D+
s )/τ(D0) 0.97 0.99 0.98 0.98 1.30

BD
0

sl [%] 5.43 6.55 6.14 5.75 6.49

BD
+

sl [%] 13.8 16.6 15.6 14.6 16.07

B
D

+
s

sl [%] 7.12 8.42 7.95 7.50 6.30

ΓD
+

sl /ΓD
0

sl 1.00 1.00 1.00 1.00 0.985

ΓD
+
s

sl /ΓD
0

sl 1.06 1.05 1.05 1.05 0.790

Table 6.13: Central values of the charm observables in different
quark mass schemes using VIA for the matrix elements
of the 4-quark operators compared to the corresponding
experimental values (last column).

higher power corrections. The results are discussed in the following subsections and

they are summarised in Tables 6.13, 6.14, 6.15 and in Figure 6.7.

6.4.1 The Total Decay Rates

We start by investigating the theory prediction of the total decay rates, which are

expected to have sizable uncertainties due to the dependence of the free quark

decay on the fifth power of the charm quark mass and due to large perturbative

and power corrections. The central values for the HQE prediction of the decay

widths in different mass schemes, are shown in the three first rows of Table 6.13,

using VIA for the Bag parameters and of Table 6.14 using the HQET sum rules

results. In Table 6.15 we show the theoretical prediction including the corresponding
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HQET SR

Observable Pole MS Kinetic 1S Exp.
value

Γ(D0)[ps−1] 1.73 1.52 1.61 1.68 2.44

Γ(D+)[ps−1] −0.03 −0.24 −0.12 −0.06 0.96

Γ̄(D+
s )[ps−1] 1.75 1.50 1.60 1.69 1.88

τ(D+)/τ(D0) 2.83 2.83 2.80 2.82 2.54

τ̄(D+
s )/τ(D0) 0.99 1.01 1.00 1.00 1.30

BD
0

sl [%] 5.26 6.42 6.00 5.59 6.49

BD
+

sl [%] 13.4 16.3 15.2 14.2 16.07

B
D

+
s

sl [%] 7.10 8.36 7.91 7.48 6.30

ΓD
+

sl /ΓD
0

sl 1.002 1.001 1.001 1.002 0.985

ΓD
+
s

sl /ΓD
0

sl 1.08 1.06 1.07 1.08 0.790

Table 6.14: Central values of the charm observables in different
quark mass schemes using HQET sum rule results [3,55]
for the matrix elements of the 4-quark operators com-
pared to the corresponding experimental values (last
column).

uncertainties within the kinetic mass scheme and using the HQET SR values for the

dimension-six Bag parameters – the same result is visualised in Figure 6.7. In each

table, the corresponding experimental determinations are listed in the last column.

For the D+
s meson an additional subtlety is arising due to the large branching fraction

of the leptonic decay D+
s → τ+ντ , which is not included in the HQE, since the tau

lepton is more massive than the charm quark. Using the experimental value of the

leptonic branching ratio [169] (online update)

Br(D+
s → τ+ντ ) = (5.48 ± 0.23)% , (6.4.1)

we therefore define a reduced decay rate Γ̄(D+
s ):

Γ̄(D+
s ) ≡ Γ(D+

s ) − Γ(D+
s → τ+ντ ) = (1.88 ± 0.02) ps−1 , (6.4.2)
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Observable HQE prediction Exp. value

Γ(D0)[ps−1] 1.61 ± 0.37+0.46 +0.01
−0.37−0.01 2.44 ± 0.01

Γ(D+)[ps−1] −0.12 ± 0.77+0.59 +0.25
−0.28−0.10 0.96 ± 0.01

Γ̄(D+
s )[ps−1] 1.60 ± 0.44+0.52 +0.02

−0.41−0.01 1.88 ± 0.02

τ(D+)/τ(D0) 2.80 ± 0.85+0.01 +0.11
−0.14−0.26 2.54 ± 0.02

τ̄(D+
s )/τ(D0) 1.00 ± 0.16+0.02 +0.01

−0.03−0.01 1.30 ± 0.01

BD
0

sl [%] 6.00 ± 1.57+0.33
−0.28 6.49 ± 0.11

BD
+

sl [%] 15.23 ± 4.07+0.83
−0.72 16.07 ± 0.30

B
D

+
s

sl [%] 7.91 ± 2.64+0.43
−0.38 6.30 ± 0.16

ΓD
+

sl /ΓD
0

sl 1.001 ± 0.008 ± 0.001 0.985 ± 0.028

ΓD
+
s

sl /ΓD
0

sl 1.07 ± 0.24 ± 0.01 0.790 ± 0.026

Table 6.15: HQE predictions for all the ten observables in the kin-
etic scheme (second column), using HQET SR results
for the Bag parameters. The first uncertainty is para-
metric, the second and third uncertainties are due to
µ1- and µ0-scales variation, respectively. The results are
compared with the corresponding experimental meas-
urements (third column).

leading also to a reduced lifetime ratio

τ̄(D+
s )

τ(D0)
= 1.30 ± 0.01 . (6.4.3)

The first and main result we deduce from Table 6.15 and Figure 6.7, is that the

HQE gives values of Γ(D0), Γ(D+) and Γ(D+
s ) which lie in the ballpark of the

experimental numbers. Looking closer we find that our prediction for Γ(Ds) is in

good agreement with experiment (within large uncertainties), while the total decay

rates of the D0 and D+ mesons are underestimated. As a reason for that we suspect

missing NNLO-QCD corrections to the free charm quark decay.

Second, using different mass schemes yields similar results, and further higher order

correction will reduce the differences between these schemes. Due to the fact that

the values of the HQET Bag parameters [3, 55] listed in Table C.2 are close to the
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corresponding ones in VIA, the predictions shown in Table 6.13 and in Table 6.14

do not differ much. A peculiar role is played by the D+ meson, where we get a

huge theoretical uncertainty stemming from the large negative value of the Pauli

interference contribution at dimension-six. This term actually dominates the total

decay rate. Moreover, the large negative value is further enhanced by NLO-QCD

corrections, but partly compensated by the dimension-seven contribution. Here

further studies of the Bag parameters, e.g. via an independent confirmation of the

HQET sum rule results with lattice QCD, as well as calculation of higher order QCD

corrections to dimension-six and dimension-seven might yield deeper insights.

In order to further analyse the size of the individual contributions to the total decay

rate, we show below the numerical coefficients of each non-perturbative parameter in

the HQE, using the central values for the input in Appendix C.1 and (as an example)

the kinetic scheme for the charm mass with µcut = 0.5 GeV, namely1

Γ(D0) = Γ0

[
6.15︸ ︷︷ ︸
c

LO
3

+ 2.95︸ ︷︷ ︸
∆c

NLO
3

− 1.66 µ
2
π(D)

GeV2 + 0.13 µ
2
G(D)

GeV2 + 23.6 ρ
3
D(D)
GeV3

− 1.60 B̃q
1 + 1.53 B̃q

2 − 21.0 ϵ̃q
1 + 19.2 ϵ̃q

2 + 0.00︸ ︷︷ ︸
dim−7,VIA

− 10.7 δ̃qq
1 + 1.53 δ̃qq

2 + 54.6 δ̃qq
3 + 0.13 δ̃qq

4

− 29.2 δ̃sq
1 + 28.8 δ̃sq

2 + 0.56 δ̃sq
3 + 2.36 δ̃sq

4

]

= 6.15 Γ0

[
1 + 0.48 − 0.13 µ2

π(D)
0.48 GeV2 + 0.01 µ2

G(D)
0.34 GeV2 + 0.31 ρ3

D(D)
0.082 GeV3

− 0.01︸ ︷︷ ︸
dim−6,VIA

− 0.005 δB̃
q
1

0.02 + 0.005 δB̃
q
2

0.02 + 0.137 ϵ̃q
1

−0.04 − 0.125 ϵ̃q
2

−0.04
+ 0.00︸ ︷︷ ︸

dim−7,VIA

− 0.0045 rqq
1 − 0.0004 rqq

2 − 0.0035 rqq
3 + 0.0000 rqq

4

− 0.0109 rsq
1 − 0.0079 rsq

2 − 0.0000 rsq
3 + 0.0001 rsq

4

]
. (6.4.4)

1Here and hereafter, in the Bag parameters we use the same label q both for u or d-quarks,
reflecting the isospin symmetry, namely B̃u

i = B̃d
i ≡ B̃q

i and δ̃ud
i = δ̃du

i ≡ δ̃qq
i , δ̃us

i = δ̃ds
i ≡ δ̃qs

i ,
δ̃su

i = δ̃sd
i ≡ δ̃sq

i .
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In the second equality in Eq. (6.4.4) we have normalised the HQE parameters µ2
π(D),

µ2
G(D) and ρ3

D(D) to their central values. Moreover, we introduce

B̃q
i = 1 + δB̃q

i , (6.4.5)

to indicate deviations from VIA and we conservatively normalise δB̃q
i to 0.02. The

matrix elements of the colour-octet operators are normalised to −0.04 – here using

the central value of the HQET determination for ϵ̃ q
2 might underestimate its effect

due to the quoted HQET uncertainties. Furthermore, we introduce also the ratios

rqq
′

i ≡ δ̃qq
′

i /⟨δ̃qq
′

i ⟩, with ⟨δ̃qq
′

i ⟩ being the central values listed in Table C.2.

For the neutral D meson we find a convergent series, with the largest correction due

to the QCD corrections to the free quark decay and the contribution of the Darwin

operator. Here a calculation of the NNLO-QCD corrections to the free-quark decay

would be very desirable, as well as a more profound determination of the value of the

matrix element of the Darwin operator. Note that since we take as a central value

µ1 = 1.5 GeV, the coefficient of the chromomagnetic operator in Eq. (6.4.4) turns

out accidentally to be very small, see Figure 6.3. In fact, varying the renormalisation

scale µ1 between 1 and 3 GeV one finds quite sizable contribution of ∼ 5 − 10% due

to µ2
G(D).

Because of the helicity suppression, we get only small contributions from the weak

exchange diagrams. In LO-QCD and VIA these corrections actually vanish, the

small value ≈ −0.01 stems from NLO-QCD corrections, which break the helicity

suppression. Nevertheless, depending on the size of the ϵ̃q
i , the colour-octet operator

could give contributions of a similar size as the kinetic operator. Finally, according

to the HQET SR determination, the numerical effect of the eye-contractions does

not seem to be pronounced.



6.4. Numerical Results 153

Similarly, we get for the D+-meson decay width:

Γ(D+) = Γ0

[
6.15︸ ︷︷ ︸
c

LO
3

+ 2.95︸ ︷︷ ︸
∆c

NLO
3

−1.66 µ
2
π(D)

GeV2 + 0.13 µ
2
G(D)

GeV2 + 23.6 ρ
3
D(D)
GeV3

− 16.9 B̃q
1 + 0.56 B̃q

2 + 84.0 ϵ̃q
1 − 1.34 ϵ̃q

2 + 6.76︸ ︷︷ ︸
dim−7

− 0.06 δ̃qq
1 + 0.06 δ̃qq

2 − 16.8 δ̃qq
3 + 16.9 δ̃qq

4

− 29.3 δ̃sq
1 + 28.8 δ̃sq

2 + 0.56 δ̃sq
3 + 2.36 δ̃sq

4

]

= 6.15 Γ0

[
1 + 0.48 − 0.13 µ2

π(D)
0.48 GeV2 + 0.01 µ2

G(D)
0.34 GeV2 + 0.31 ρ3

D(D)
0.082 GeV3

− 2.66︸ ︷︷ ︸
dim−6,VIA

− 0.055 δB̃
q
1

0.02 + 0.002 δB̃
q
2

0.02 − 0.546 ϵ̃q
1

−0.04 + 0.009 ϵ̃q
2

−0.04

+ 1.10︸ ︷︷ ︸
dim−7,VIA

− 0.0000 rqq
1 − 0.0000 rqq

2 + 0.0011 rqq
3 + 0.0008 rqq

4

− 0.0109 rsq
1 − 0.0080 rsq

2 − 0.0000 rsq
3 + 0.0001 rsq

4

]
, (6.4.6)

where we observe huge negative corrections due to Pauli interference. In VIA we

get from dimension-six (summing LO and NLO-QCD) a ≈ −270% correction to

the LO-free-quark decay. Dimension-seven yields a large positive correction of

+110%. Because of the almost perfect cancellation between the three dominant

terms, 16π2
(
Γ̃(0)

6 + αs/πΓ̃(1)
6

)
⟨Õ6⟩VIA/m3

c , Γ3 and 16π2Γ̃(0)
7 ⟨Õ7⟩VIA/m4

c , the HQE

series for Γ(D+) becomes very sensitive to sub-dominant terms, e.g. higher order

QCD corrections to Γ̃6, Γ̃7, Γ3, Γ5 and Γ6, and to deviations of the Bag parameter

from VIA. In this case it might also be interesting to further study estimates of

higher orders in the HQE, see e.g. [251,252]. Else, we get for the two-quark ∆C = 0

contributions the same (due to isospin) size of corrections as in the D0 case and we

find, based on the HQET sum rules estimates, again that the eye-contractions give

only tiny corrections.
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Finally, we have for the D+
s -meson decay width:

Γ(D+
s ) = Γ0

[
6.15︸ ︷︷ ︸
c

LO
3

+ 2.95︸ ︷︷ ︸
∆c

NLO
3

− 1.66 µ
2
π(Ds)
GeV2 + 0.13 µ

2
G(Ds)
GeV2 + 23.6 ρ

3
D(Ds)
GeV3

− 49.6 B̃s
1 + 48.4 B̃s

2 − 13.7 ϵ̃s
1 + 18.8 ϵ̃s

2 + 0.63︸ ︷︷ ︸
dim−7

− 15.8 δ̃qs
1 + 2.34 δ̃qs

2 + 55.4 δ̃qs
3 + 25.0 δ̃qs

4

]

= 6.15 Γ0

[
1 + 0.48 − 0.15 µ2

π(Ds)
0.57 GeV2 + 0.01 µ2

G(Ds)
0.36 GeV2 + 0.46 ρ3

D(Ds)
0.119 GeV3

− 0.20︸ ︷︷ ︸
dim−6,VIA

− 0.161 δB̃
s
1

0.02 + 0.157 B̃s
2

0.02 + 0.089 ϵ̃s
1

−0.04 + 0.122 ϵ̃s
2

0.04

+ 0.10︸ ︷︷ ︸
dim−7,VIA

− 0.0064 rqs
1 − 0.0007 rqs

2 − 0.0036 rqs
3 + 0.0012 rqs

4

]
, (6.4.7)

where we find again a converging series with the dominant contribution coming from

the NLO-QCD corrections to the free quark decay and the Darwin term. For the

latter a more reliable determination of the corresponding non-perturbative matrix

elements would be highly desirable. In VIA, the four-quark operators show again a

pronounced cancellation between dimension-six and dimension-seven contributions.

6.4.2 The Lifetime Ratios

In order to eliminate the contribution of the free-quark decay, we calculate the

lifetime ratios as

τ(D+
(s))

τ(D0)
= 1 +

[
ΓHQE(D0) − ΓHQE(D+

(s))
]
τ exp(D+

(s)) , (6.4.8)

where ΓHQE(D0) and ΓHQE(D+
(s)) are given in Eqs. (6.4.4) and (6.4.6), (6.4.7), re-

spectively. In these ratios, Γ3 cancels exactly and Γ5 and Γ6 cancel up to isospin or

SU(3)F breaking corrections in the corresponding non-perturbative matrix elements.

The lifetime ratios should then be dominated by the contribution of four-quark
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operators.

The central values for the HQE prediction of the lifetime ratios in several mass

schemes are shown in the fourth and fifth rows of Table 6.13, Table 6.14, Table 6.15

and in Figure 6.7 and it turns out that the large lifetime ratio τ(D+)/τ(D0) is well

reproduced in all schemes, while in the case of τ(D+
s )/τ(D0) the HQE predictions

lie closer to one compared to the experimental values. The latter theory result is

dominated by SU(3)F breaking differences of the non-perturbative matrix elements

µ2
π, µ2

G and ρ3
D, which are only very roughly known, see Section 6.3. With future,

more precise determinations of these parameters our conclusion might significantly

change for this lifetime ratio.

The large lifetime ratio τ(D+)/τ(D0) can be expressed as

τ(D+)
τ(D0)

= 1 + 2.46 B̃q
1 + 0.16 B̃q

2 − 16.9 ϵ̃q
1 + 3.31 ϵ̃q

2 − 1.09︸ ︷︷ ︸
dim−7,VIA

− 1.71 δ̃qq
1 + 0.24 δ̃qq

2 + 1.15 δ̃qq
3 − 2.71 δ̃qq

4

+0.01 δ̃sq
1 − 0.01 δ̃sq

2 + 0.00 δ̃sq
3 + 0.00 δ̃sq

4

= 1 + 2.62︸ ︷︷ ︸
dim−6,VIA

− 1.09︸ ︷︷ ︸
dim−7,VIA

+ 0.049 δB̃
q
1

0.02 + 0.003 δB̃
q
2

0.02 + 0.676 ϵ̃q
1

−0.04 − 0.132 ϵ̃q
2

−0.04

− 0.004 rqq
1 − 0.000 rqq

2 − 0.005 rqq
3 − 0.001 rqq

4 . (6.4.9)

In VIA, we predict a lifetime ratio of 2.5, which is already quite close to the experi-

mental value. Again, we observe here a sizable cancellation between dimension-six

and dimension-seven contributions. In order to improve the theoretical prediction,

a more precise determination of the Bag parameters of the colour-octet operators is

mandatory, as well as of the perturbative higher order QCD corrections in Γ̃6 and

Γ̃7.
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And finally we get for the lifetime ratio τ(D+
s )/τ(D0):

τ(D+
s )

τ(D0)
= 1 + 0.14 µ

2
π(Ds) − µ2

π(D)
GeV2 − 0.01 µ

2
G(Ds) − µ2

G(D)
GeV2

−1.93 ρ
3
D(Ds) − ρ3

D(D)
GeV3 − 0.05︸ ︷︷ ︸

dim−7,VIA

− 0.13 B̃q
1 + 0.13 B̃q

2 + 4.06 B̃s
1 − 3.96 B̃s

2

−1.72 ϵ̃q
1 + 1.57 ϵ̃q

2 + 1.12 ϵ̃s
1 − 1.54 ϵ̃s

2

− 0.88 δ̃qq
1 + 0.13 δ̃qq

2 + 4.47 δ̃qq
3 + 0.01 δ̃qq

4

−2.39 δ̃qs
1 + 2.36 δ̃qs

2 + 0.05 δ̃qs
3 + 0.19 δ̃qs

4

+ 1.29 δ̃sq
1 − 0.19 δ̃sq

2 − 4.54 δ̃sq
3 − 2.04 δ̃sq

4

= 1 + 0.012 µ
2
π(Ds) − µ2

π(D)
0.09 GeV2 − 0.0002 µ

2
G(Ds) − µ2

G(D)
0.02 GeV2

−0.071 ρ
3
D(Ds) − ρ3

D(D)
0.037 GeV3

+ 0.10︸ ︷︷ ︸
dim−6,VIA

− 0.05︸ ︷︷ ︸
dim−7,VIA

− 0.003 δB̃
q
1

0.02 + 0.003 δB̃
q
2

0.02 + 0.081 δB̃
s
1

0.02 − 0.079 δB̃
s
2

0.02

+ 0.069 ϵ̃q
1

−0.04 − 0.063 ϵ̃q
2

−0.04 − 0.045 ϵ̃s
1

−0.04 − 0.062 ϵ̃s
2

0.04

− 0.0023 rqq
1 − 0.0002 rqq

2 − 0.0018 rqq
3 + 0.0000 rqq

4

− 0.0055 rqs
1 − 0.0040 rqs

2 − 0.0000 rqs
3 + 0.0001 rqs

4

+ 0.0032 rsq
1 + 0.0003 rsq

2 + 0.0018 rsq
3 − 0.0006 rsq

4 . (6.4.10)

With the estimates of µ2
π, µ2

G and ρ3
D from Section 6.3 we find that the largest

individual SU(3)F breaking effect (≈ −7%) comes from the Darwin term. Using

VIA we obtain a correction of +5% due to the four-quark contributions of dimension-

six and dimension-seven – finite values of the matrix elements of the colour-octet

operators as well as of δB̃s
1,2 might lead to numerically similar effects. Else we have

a large number of smaller SU(3)F breaking effects, which can be both positive and

negative.
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6.4.3 The Semileptonic Decay Widths and Their Ratios

For discussing the inclusive semileptonic decays of D mesons, we introduce the short-

hand notations ΓD
sl ≡ Γ(D → Xe+νe) and BD

sl ≡ Br(D → Xe+νe). We determine

the theory value of the semileptonic branching ratio as

BD,HQE
sl = ΓD,HQE

sl · τ(D)exp . (6.4.11)

The central values for the HQE prediction of the lifetime ratios in several mass

schemes are shown in the sixth, seventh and eighth row of Table 6.13, Table 6.14

and Table 6.15 and in Figure 6.7.

The semileptonic decay rate of the D0 meson can be written (in the kinetic scheme)

as

ΓD
0

sl = Γ0

[
1.02︸ ︷︷ ︸
c

LO
3

+ 0.16︸ ︷︷ ︸
∆c

NLO
3

− 0.27 µ
2
π(D)

GeV2 − 0.84 µ
2
G(D)

GeV2 + 2.48 ρ
3
D(D)
GeV3

− 0.28 δ̃qq
1 + 0.28 δ̃qq

2 − 5.23 δ̃sq
1 + 5.23 δ̃sq

2

]

= 1.02 Γ0

[
1 + 0.16 − 0.13 µ2

π(D)
0.48 GeV2 − 0.28 µ2

G(D)
0.34 GeV2 + 0.20 ρ3

D(D)
0.082 GeV3

− 0.0007 rqq
1 − 0.0005 rqq

2 − 0.0118 rsq
1 − 0.0087 rsq

2

]
, (6.4.12)

where as for the total D0-meson decay width we find a converging series, with

the largest correction due to the dimension-five operators, followed by the Darwin

operator contribution and the NLO-QCD corrections to the free quark decay. Note

that only the non-valence four-quark operator contributions (eye-contractions) are

present here.
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For the semileptonic D+-meson decay we obtain

ΓD
+

sl = Γ0

[
1.02︸ ︷︷ ︸
c

LO
3

+ 0.16︸ ︷︷ ︸
∆c

NLO
3

− 0.27 µ
2
π(D)

GeV2 − 0.84 µ
2
G(D)

GeV2 + 2.48 ρ
3
D(D)
GeV3 + 0.00︸ ︷︷ ︸

dim−7,VIA

− 0.28 B̃q
1 + 0.28 B̃q

2 − 0.09 ϵ̃q
1 + 0.09 ϵ̃q

2 − 5.24 δ̃sq
1 + 5.24 δ̃sq

2

]

= 1.02 Γ0

[
1 + 0.16 − 0.13 µ2

π(D)
0.48 GeV2 − 0.28 µ2

G(D)
0.34 GeV2 + 0.20 ρ3

D(D)
0.082 GeV3

− 0.00︸ ︷︷ ︸
dim−6,7,VIA

− 0.005 δB̃
q
1

0.02 + 0.005 δB̃
q
2

0.02 + 0.004 ϵ̃q
1

−0.04 − 0.004 ϵ̃q
2

−0.04

− 0.0118 rsq
1 − 0.0088 rsq

2

]
, (6.4.13)

where we find the same series as for the neutral D-meson supplemented by con-

tributions from CKM suppressed weak annihilation, which vanish in VIA both at

dimension-six and dimension-seven. Deviations from VIA give very small correc-

tions.

For the D+
s -meson we obtain

ΓD
+
s

sl = Γ0

[
1.02︸ ︷︷ ︸
c

LO
3

+ 0.16︸ ︷︷ ︸
∆c

NLO
3

− 0.27 µ
2
π(Ds)
GeV2 − 0.84 µ

2
G(Ds)
GeV2 + 2.48 ρ

3
D(Ds)
GeV3 + 0.00︸ ︷︷ ︸

dim−7,VIA

− 7.63 B̃s
1 + 7.63 B̃s

2 − 2.55 ϵ̃s
1 + 2.37 ϵ̃s

2 − 0.41 δ̃qs
1 + 0.41 δ̃qs

2

]

= 1.02 Γ0

[
1 + 0.16 − 0.15 µ2

π(Ds)
0.57 GeV2 − 0.30 µ2

G(Ds)
0.36 GeV2 + 0.29 ρ3

D(Ds)
0.119 GeV3

− 0.00︸ ︷︷ ︸
dim−6,VIA

− 0.15 δB̃
s
1

0.02 + 0.15 δB̃
s
2

0.02 + 0.10 ϵ̃s
1

−0.04 + 0.09 ϵ̃s
2

0.04

− 0.0010 rqs
1 − 0.0007 rqs

2

]
, (6.4.14)

where we have a larger contribution due to CKM dominant weak annihilation as

well as SU(3)F breaking corrections. Again, in VIA the four-quark contributions

vanish both at dimension-six and dimension-seven, but now deviations from VIA

might give sizable corrections.

Using the experimental values for the D0 lifetime and semileptonic branching fraction,
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we determine the semileptonic ratios in the following way

ΓD
+

sl

ΓD
0

sl

= 1 +
[
ΓD

+

sl − ΓD
0

sl

]HQE
τ(D0)
BD

0

sl

exp

, (6.4.15)

ΓD
+
s

sl

ΓD
0

sl

= 1 +
[
ΓD

+
s

sl − ΓD
0

sl

]HQE
τ(D0)
BD

0

sl

exp

, (6.4.16)

where
[
ΓD

0

sl

]HQE
,
[
ΓD

+

sl

]HQE
and

[
ΓD

+
s

sl

]HQE
are given in Eqs. (6.4.12), (6.4.13) and

(6.4.14), respectively.

The HQE values of these ratios are shown in the ninth and tenth rows of Tables 6.13,

6.14 and 6.15 and in Figure 6.7. In agreement with experiment HQE predicts values

for ΓD
+

sl /ΓD
0

sl very close to one. Using the inputs from Appendix C.1 the HQE prefers

also for ΓD
+
s

sl /ΓD
0

sl values close to one, while experiment find a value as low as 0.79

– again a more profound determination of µ2
G, µ2

π and ρ3
D as well as an inclusion of

dimension-seven contributions with two-quarks operators for D mesons might change

this conclusion.

We expand ΓD
+

sl /ΓD
0

sl as

ΓD
+

sl

ΓD
0

sl

= 1 − 0.27 B̃q
1 + 0.27 B̃q

2 − 0.09 ϵ̃q
1 + 0.08 ϵ̃q

2 + 0.00︸ ︷︷ ︸
dim−7,VIA

+ 0.27 δ̃qq
1 − 0.27 δ̃qq

2 − 0.01 δ̃sq
1 + 0.01 δ̃sq

2

= 1 + 0.00︸ ︷︷ ︸
dim−6,7,VIA

= − 0.005 δB̃
q
1

0.02 + 0.005 δB̃
q
2

0.02 + 0.004 ϵ̃q
1

−0.04 − 0.003 ϵ̃q
2

−0.04 . (6.4.17)

Due to isospin symmetry, in Eq. (6.4.17) the contributions of the kinetic, chromomag-

netic and the Darwin operators vanish. Moreover, in VIA there is also no correction

due to the spectator quark effects. Thus this ratio, within the framework of the HQE,

is predicted to be very close to one. Additionally, the effects of isospin symmetry and

cancellation of spectator terms in the VIA also results in a much smaller estimate

of the uncertainty, which is notable from Figure 6.7, when compared to the rest of

the observables.
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Finally, we obtain for the ratio ΓD
+
s

sl /ΓD
0

sl
1

ΓD
+
s

sl

ΓD
0

sl

= 1 − 0.27 µ
2
π(Ds) − µ2

π(D)
GeV2 − 0.82 µ

2
G(Ds) − µ2

G(D)
GeV2 + 2.42 ρ

3
D(Ds) − ρ3

D(D)
GeV3

− 7.47 B̃s
1 + 7.47 B̃s

2 − 2.50 ϵ̃s
1 + 2.32 ϵ̃s

2 + 0.00︸ ︷︷ ︸
dim−7,VIA

+ 0.27 δ̃qq
1 − 0.27 δ̃qq

2 + 5.11 δ̃sq
1 − 5.11 δ̃sq

2 − 0.40 δ̃qs
1 + 0.40 δ̃qs

2

= 1 − 0.024 µ
2
π(Ds) − µ2

π(D)
0.09 GeV2 − 0.016 µ

2
G(Ds) − µ2

G(D)
0.02 GeV2

+0.090 ρ
3
D(Ds) − ρ3

D(D)
0.037 GeV3 + 0.00︸ ︷︷ ︸

dim−6,7,VIA

− 0.15 δB̃
s
1

0.02 + 0.15 δB̃
s
2

0.02 + 0.10 ϵ̃s
1

−0.04 + 0.09 ϵ̃s
2

0.04

+ 0.0007 rqq
1 + 0.0005 rqq

2 + 0.0118 rsq
1 + 0.0087 rsq

2 − 0.0001 rqs
1

−0.0007 rqs
2 , (6.4.18)

which is dominated by SU(3)F -symmetry breaking corrections. The Darwin operator

gives a sizable positive contribution to the ratio, which is partly compensated by the

kinetic and the chromomagnetic terms. The spectator effects give in VIA a vanishing

contribution, but deviations from VIA could sizably affect the ratio and also eye-

contractions could yield a visible effect – here again a more precise determination

of the non-perturbative parameters is necessary in order to make more profound

statements.

6.5 Summary

We have performed a comprehensive study of charmed mesons lifetimes, of their

ratios and of the inclusive semileptonic decay rates. Compared to previous studies

we have included for the first time the sizeable contribution due to the Darwin term

in the charm sector (with new expressions shown in Appendix C.2), non-perturbative

1We note here a typo in the corresponding expression of this ratio in [200]. In Eq. (40) of [200],
the sign in front of the contribution of the kinetic operator has to be changed.
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Figure 6.7: A comparison of the HQE prediction for the charm
observables in the kinetic scheme (blue) with the cor-
responding experimental data (green).

estimates of the eye-contractions [3] and strange quark mass corrections to the Bag

parameters of the D+
s meson [3]. Moreover we have studied different mass schemes

for the charm quark.

In particular our new study supersedes the one done by some of us in [55] and we could

clarify in the present work that the dimension-seven operators R̃q
1,2 (introduced in [55]

as P q
5,6) can be absorbed in the definition of the QCD decay constant. In contrast

to the present work, [55] could describe the experimental number for τ(D+
s )/τ(D0)

by fitting the Bag parameters in order to accommodate the experimental value of
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ΓD
+
s

sl /ΓD
0

sl – this can be achieved by demanding e.g. for the difference B̃s
1 −B̃s

2 ≈ 0.032,

which is in slight tension with the HQET sum rule result B̃s
1 − B̃s

2 = 0.004+0.019
−0.012 we

are using here.

[267] also studies charm mesons, albeit restricting exclusively to a LO-QCD analysis.

Different quark mass schemes can only be distinguished starting from NLO-QCD

onwards – working at leading order in QCD only, the different quark mass schemes

used in our work would induce a relative uncertainty to the free-quark decay of

(1.48/1.27)5 ≈ 2.15, which is clearly not acceptable. Moreover, as can be nicely read

from Table 6.9, NLO-QCD corrections to the four-quark operators can dominate

over the LO contribution. Using exclusively LO-QCD expressions is thus a far too

crude and unnecessary assumption in the charm sector. Furthermore, [267] considers

only the MS scheme for the charm quark mass and obviously the recently determined

Darwin term and the eye-contractions could not have been included, since they were

not known at that point of time.

Finally, there is also some overlap with two recent studies of the Bc lifetime [274,275].

The first paper [274] considers also the free charm quark decay Γ3 and the second

one [275] the total D-meson decay rate without the free charm quark decay, i.e.

Γ(D) − Γ3. For Γ3 the authors of [274] consider three quark mass schemes: MS, 1S

and the meson mass scheme. They find in Table 3 and 4 of their paper values in the

MS/1S scheme which are slightly smaller/slightly larger than our values in Table 6.5:

1.0 ps−1 vs 1.3 ps−1 and 1.7 ps−1 vs 1.5 ps−1. Since they in principle use the same

NLO-QCD expressions as we do, we expect the slight difference to be rooted in a

different treatment of higher orders in αs and some differences in the values of the

input parameters. As in our study, they also find a relatively small effect due to

a non-vanishing strange quark mass. In [275] the authors determine the D-meson

decay rate without the free charm quark decay. In that respect they consider all the

corrections we also take into account, except contributions of dimension-seven and

eye-contractions. In the end, when considering the D+ meson they obtain values

for the Bc-meson decay rate of around 3.3 ps−1 (see Table III of [275]), compared



6.5. Summary 163

to the experimental value of 1.961(35) ps−1. We naively estimate that an inclusion

of the dimension-seven contribution to the D+ meson decay rate would decrease

their result by about 1.1 ps−1, see Table 6.10, and bring it in nice agreement with

the measurement. On the other hand, these missing dimension-seven contributions

might be partially compensated by the corresponding contributions to the Bc-meson

decay rate. Here a further investigation might be necessary to clarify this point.

Our main numerical results are presented in Tables 6.13, 6.14 and 6.15 and in

Figure 6.7. At a first glance all considered observables lie in the ballpark of the

experimental results. In particular, we find good agreement with experiment for the

ratio τ(D+)/τ(D0), for the total D+
s -meson decay rate, for the semileptonic rates

of all three mesons D0, D+ and D+
s , and for the semileptonic ratio ΓD

+

sl /ΓD
0

sl . The

values obtained with different mass schemes for the charm quark overlap and the

exclusive use of only one scheme might underestimate the uncertainties. Including

higher orders in the perturbative QCD expansion will further alleviate the differences

among the mass schemes. Looking, as a starting point, at the structure of the

contributions to the total decay rates and neglecting spectator effects, we find that

the NLO-QCD corrections to the free quark decay give the dominant correction (of

the order of 50% of LO-QCD free quark decay), followed by the Darwin term (of

the order of 30% of LO-QCD free quark decay). In the case of semileptonic decay

rates the chromomagnetic term provides the dominant contribution (of the order

of 30%), followed by the Darwin term and NLO-QCD corrections to the free quark

decay. Turning now to the spectator effects, we find them to be tiny for Γ(D0),

ΓD
0

sl and ΓD
+

sl , but they provide visible corrections to ΓD
+
s

sl and Γ(D+
s ) – in the latter

case we find also sizable cancellations between dimension-six and dimension-seven

contributions. For the D+ meson we find, however, a huge negative Pauli interference

contribution – with a substantial part stemming from the NLO-QCD corrections.

Moreover, one observes here a significant cancellation between dimension-six and

dimension-seven terms related to Pauli interference. The values of the HQET Bag

parameters entering the spectator effects are close to the VIA values, deviations
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from the latter can, however, lead to sizable effects in Γ(D+) and to visible effects in

Γ(D0), Γ(D+
s ) and ΓD

+
s

sl . Based on the HQET sum rule results [3] we find that eye-

contractions constitute only subleading corrections, they might, however, turn out

to be relevant for ΓD
+
s

sl /ΓD
0

sl and τ(D+
s )/τ(D0), when more precise non-perturbative

estimates will become available. In the end, the total decay rates of the D0 and

D+ mesons stay underestimated in our HQE approach and we suspect that this is

due to missing higher-order QCD corrections to the free charm quark decay and the

Pauli interference contribution. For the SU(3)F breaking ratios τ(D+
s )/τ(D0) and

ΓD
+
s

sl /ΓD
0

sl our predictions lie closer to one than experiment. This might originate

from the poor knowledge of the non-perturbative parameters µ2
G, µ2

π and ρ3
D in the

D0 and D+
s systems, as discussed in Section 6.3.

Our numerical analysis shows that there are many possibilities for future improve-

ments of the HQE predictions in the charm sector:

• Γ(2)
3 : NNLO-QCD [230–241] contributions to the semileptonic decays have been

found to be large and NLO-QCD corrections to the non-leptonic decay rates

represent one of the dominant corrections. Moreover we observe that at NLO-

QCD there is pronounced cancellation - see Eq. (6.2.16) and Eq. (6.2.17) - which

might not be necessarily present at NNLO-QCD. Thus a first determination

of the NNLO-QCD corrections to the non-leptonic decays might have some

sizable impact on the numerical studies of the total decay rates.

• Γ(1)
5 : Cancellations in the coefficient cG for the total decay rate, shown in

Eq. (6.6) and Figure 6.3 lead to large uncertainties, even the sign of these

corrections is ambiguous. Here a determination of the QCD-corrections to

the coefficient cG for the non-leptonic case might considerably improve the

situation.

• Γ(1)
6 : The Wilson oefficients of the Darwin operator are large, therefore QCD

corrections for the non-leptonic case might be important.
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• Γ(0)
7,8: Since the dimension-six contribution is sizable, the LO-QCD determina-

tion of the dimension-seven and dimension-eight contributions with two-quark

operators for the non-leptonic case might bring some additional insights on

the convergence of the HQE in the charm sector.

• Γ̃(2)
6 , Γ̃(1)

7 : Pauli interference dominates the total decay rate of the D+ meson.

Currently Γ̃(0)
6 , Γ̃(1)

6 and Γ̃(0)
7 are known and their numerical values were found

to be huge, see e.g. Table 6.9. Thus further QCD corrections will turn out to

be very important.

• Γ̃(0)
8 : since the four-quark dimension-six contribution can dominate the total

decay rate and Γ̃(0)
7 is also very sizable, a further study of the dimension-eight

contributions might bring further insights on the convergence of the HQE in

the charm sector, see [251,252].

• More precise determinations for the parameters µ2
G, µ2

π and ρ3
D – both for

the D0 and the D+
s mesons: the Darwin term and the chromomagnetic term

provide large corrections to the decay rates and they are poorly known –

in particular the size of SU(3)F breaking effects is largely unknown. An

experimental determination of µ2
G, µ2

π and ρ3
D from fits to semileptonic D+-,

D0- and D+
s -meson decays - as done in the B system, see e.g. [197] – would be

very desirable. This might be doable at BESIII, Belle II and a future tau-charm

factory. Moreover, new theoretical determinations, e.g. via lattice simulations

or sum rules could be undertaken.

• Independent lattice determination of the matrix elements of the four-quark

operators of dimension-six: here we have currently only HQET sum rule de-

terminations [3, 55] or outdated lattice results [194,276].

• A first non-perturbative determination of the matrix elements of the dimension-

seven four-quark operators in order to test the validity of VIA. A similar

endeavour has already been performed for Bs mixing [80].
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Overall, we find that the HQE can describe inclusive charm observables, in which

no pronounced GIM cancellation arises1, albeit with very large uncertainties. We

therefore do not observe a clear signal for a breakdown of the HQE in the charm

sector or of violations of quark hadron duality, see e.g. [277] and we presented a long

list of potential theoretical improvements, which might shed further light into the

convergence properties of the HQE in the charm sector.

1See e.g. [78] for a recent discussion of the extreme GIM cancellations in mixing of neutral D
mesons.
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Conclusions

In this work we have highlighted a sample of recent technical developments in the

theory of heavy quark physics. For some of the methods employed in multiloop

calculations, we discussed their application via elementary examples and we have

pointed the readers attention towards the pioneering papers and reviews.

Building on this introduction, we applied these concepts in a complete HQET sum

rule determination of the bag parameter for all five dimension-6 ∆B = 2 operators

relevant for the SM and BSM predictions of Bs mixing. This involved a NLO 3-loop

calculation of the 3-point correlator including SU(3) flavour breaking corrections

up to m2
s. Our analysis achieved a highly competitive level of precision and offers

an independent alternative to lattice determinations for which there is currently a

slight tension between the results found by the FNAL/MILC collaboration and the

more recent HPQCD findings. This situation hopes to be resolved in future, with

work ongoing by the RBC/UKQCD and JLQCD collaborations.

Using weighted averages of the bag parameter from the results presented here and

results from the most recent lattice determinations, we then discussed the current

status of SM predictions for ∆Mq and ∆Γq. These values are currently used by

HFLAV as the SM benchmark values. An accurate prediction of these observables

is highly desirable due to their relevance for tests of the SM, for the determination

of SM parameters and for NP searches. Moreover, growing evidence from b → sl+l−



168 Chapter 7. Conclusions

transitions supports extensions to the SM that also introduce additional contribu-

tions to ∆Ms. As a result, B-mixing is extremely well positioned to place stringent

bounds on such models and a precise determination of the bag parameter is crucial in

this respect since it is by far the largest source of uncertainty in the theory prediction

of the mass difference.

With this aim in mind, we have demonstrated in this work the effectiveness of the

sum rule approach. Furthermore, there is potential still for a further improved pre-

cision of the HQET sum rule via the inclusion of NNLO matching to QCD and the

inclusion of 1/mb corrections.

Expanding on this work, we calculated the HQET bag parameters of the ∆Q = 0

operators relevant for an analysis of the Bs and D+
s inclusive decay widths and

the SU(3) flavour violating lifetime ratios. We calculated for the first time the

bag parameter of the penguin operator and also the non-valence contributions of so

called eye contractions, along with ms corrections to the condensates. In contrast to

mixing, there has been little progress by the lattice community in this area and the

most recent lattice determination of these bag parameters for B mesons are already

over 20 years old with a corresponding result for the charm sector completely absent.

Therefore our findings represent the only state of the art determinations and in the

case of charm lifetimes are the only values at all currently available.

Furthermore, we studied the phenomenological implications of our findings, using

our results to extract values of the CKM parameters |VtbVts|, |Vtd/Vts|, Vcb and γ.

Predictions of the top quark MS mass where made and, using the experimental value

of ∆Md/s and only the bag parameter as a non-perturbative input, extracted values

for the leptonic branching ratios B(Bs/d → l+l−).

Finally a thorough analysis of inclusive decay widths of charmed mesons was presen-

ted. This was done in an effort to study the validity of the HQE in the charm sector.

It also brought together for the first time 2 recent technical developments: the cal-

culation of 4-quark operator matrix elements, and the non-leptonic contribution to

the coefficient of the Darwin operator. From our findings, we saw no clear sign of a
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breakdown of the HQE in inclusive charm decays and observe that the semileptonic

decay rates ΓD
0

sl , ΓD
+

sl and ΓD
+
s

sl the semileptonic ratio ΓD
+

sl /ΓD
0

sl , the total decay rate

Γ(D+
s ), and the lifetime ratio τ(D+)/τ(D0) are all consistent with experimental

results. As a result of this work we were also able to offer a comprehensive list of

the key theoretical and experimental measures that are required to further improve

the precision of the HQE in the D system.

The breadth of flavour physics observables provides ample opportunity for physicists

to further test the robustness of the SM and the potential structure of possible exten-

sions. Equipped with an arsenal of advanced theoretical tools and presented with a

generous selection of precision data, the flavour physicist today is well positioned to

probe our current understanding of the universe for weaknesses and deduce a more

accurate description.





Appendix A

Additional material for “Mixing

Bag parameter”

A.1 Inputs and uncertainties

Λ intrinsic SR condensates µρ ms 1/mb µm ai

B
s
Q1

+0.002
−0.003 ±0.018 ±0.004 +0.013

−0.027
+0.003
−0.002 ±0.010 +0.044

−0.038
+0.007
−0.008

B
s
Q2

+0.012
−0.014 ±0.020 ±0.004 +0.010

−0.015
+0.004
−0.004 ±0.010 +0.072

−0.063
+0.015
−0.015

B
s
Q3

+0.047
−0.055 ±0.107 ±0.023 +0.026

−0.001
+0.024
−0.026 ±0.010 +0.091

−0.073
+0.054
−0.053

B
s
Q4

+0.006
−0.005 ±0.021 ±0.011 +0.000

−0.002
+0.003
−0.002 ±0.010 +0.088

−0.079
+0.006
−0.006

B
s
Q5

+0.014
−0.012 ±0.018 ±0.009 +0.000

−0.007
+0.007
−0.006 ±0.010 +0.075

−0.067
+0.012
−0.012

Table A.1: Individual errors for the Bag parameters in the Bs sys-
tem.

Λ intrinsic SR condensates µρ ms 1/mb µm ai

B
s/d
Q1

+0.001
−0.002 ±0.005 ±0.002 +0.002

−0.006
+0.003
−0.002 ±0.002 +0.000

−0.000
+0.000
−0.000

B
s/d
Q2

+0.004
−0.003 ±0.005 ±0.002 +0.005

−0.002
+0.005
−0.004 ±0.002 +0.000

−0.000
+0.000
−0.000

B
s/d
Q3

+0.036
−0.023 ±0.025 ±0.010 +0.042

−0.019
+0.029
−0.031 ±0.002 +0.004

−0.005
+0.005
−0.005

B
s/d
Q4

+0.001
−0.002 ±0.005 ±0.002 +0.002

−0.005
+0.003
−0.002 ±0.002 +0.000

−0.000
+0.000
−0.000

B
s/d
Q5

+0.003
−0.004 ±0.005 ±0.002 +0.004

−0.010
+0.006
−0.006 ±0.002 +0.000

−0.000
+0.000
−0.000

Table A.2: Individual errors for the ratio of Bag parameters in the
Bs and Bd system.
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Parameter Value Source
mb(mb) (4.203+0.016

−0.034) GeV [208,209]
mPS

b (2 GeV) (4.532+0.013
−0.039) GeV [208,209]

mc(mc) (1.279 ± 0.013) GeV [278]
mpole

t (173.0 ± 0.4) GeV [151]
αs(MZ) 0.1181 ± 0.0011 [151]
Vus 0.224745+0.000254

−0.000059 [182]
Vub 0.003746+0.000090

−0.000062 [182]
Vcb 0.04240+0.00030

−0.00115 [182]
γ (65.81+0.99

−1.66)◦ [182]
fB (190.0 ± 1.3) MeV [157]
fBs

(230.3 ± 1.3) MeV [157]
fBs

/fB 1.209 ± 0.005 [157]
τ(B0,H

s ) (1.615 ± 0.009) ps−1 [151]
τ(B0

d) (1.520 ± 0.004) ps−1 [151]

Table A.3: Input values for parameters.
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Additional material for “Lifetime

Bag Parameter”

B.1 Renormalisation Group Equations

To determine the counterterm contribution to the three-point correlator (5.2.5) we

require the one-loop renormalisation of the operators (5.2.1). We obtain the structure

γ
Õ

q
′
Õ

q = δqq
′γÕÕ + γÕ

′
Õ (B.1.1)

with

γ̃
(0)
ÕÕ

=



3
Nc

− 3Nc 0 6 0 0

0 3
Nc

− 3Nc 0 6 0

3
2 − 3

2N
2
c

0 − 3
Nc

0 0

0 3
2 − 3

2N
2
c

0 − 3
Nc

0

0 0 0 0 −3Nc


, (B.1.2)

and
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γ̃
(0)
Õ

′
Õ

=



0 0 0 0 8
3

0 0 0 0 −4
3

0 0 0 0 − 4
3Nc

0 0 0 0 2
3Nc

0 0 0 0 4
3


, (B.1.3)

The renormalised correlator then takes the form

K
q,(1)

Q̃
q

′

i

= K
q,(1),bare

Q̃
q

′

i

+ 1
2ϵ

[(
2γ̃(0)

j̃
δij + γ̃

(0)
Q̃iQ̃j

)
K

q,(0)

Q̃
q

′

j

+ γ̃
(0)
Q̃iẼj

K
q,(0)

Ẽ
q

′

j

]
+ 1

2ϵ γ̃
(0)
Q̃

′
iQ̃P

K
q,(0)
Q̃

q
P
,

(B.1.4)

where the second term is the counterterm for the tree-level contractions and the

third term is the counterterm for the eye contractions.

Now, we consider the RGE for the Bag parameters. We have

dÕq
′

d lnµ = −
∑

q

γ̃
Õ

q
′
Õ

qÕq ,
dFq(µ)
d lnµ = −γ̃j̃Fq(µ) , (B.1.5)

and thus obtain the following RGE for the Bag parameters in the case with two

light-quark flavors q and s:

d

d lnµ

 B̃q
i

δ̃qs
i

 = −Ãj

Ãi

 γ̃ÕiÕj
+ γ̃Õ

′
iÕj

− 2γ̃j̃δij γ̃Õ
′
iÕj

γ̃Õ
′
iÕj

γ̃Õ
′
iÕj

− 2γ̃j̃δij


 B̃q

j

δ̃qs
j

 ,

(B.1.6)

which can be easily generalised to more than two quark flavours.

B.2 On the logarithmic divergence at x = 1

To investigate the origin of the logarithmic divergences in the results (5.2.25) for the

eye contractions, we study the cuts of the relevant diagram which are contributing to
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j†q jq

q̄

Õq′

q′

h h

j†q jq

q̄

Õq′

q′

h h

j†q jq

q̄

q′

h h

Figure B.1: Cuts which yield contributions to the double discon-
tinuity. Symmetric diagrams are not shown.

the double discontinuity (see Figure B.1). To simplify the discussion in this appendix

we only consider the scalar diagram and only work to the first order in ϵ where such

a logarithm appears, but we retain the full strange-quark mass dependence in the

penguin loop. Our results for the cuts (assuming ω2 > ω1, denoted by Sl, Sm and

Sr in this order for the three diagrams) are

Sl =
3∏

j=1

(∫ ddkj

iπd/2

)
(−2πi)4δ(2ω1 − 2v · k1)δ(2ω2 − 2v · k2)δ+(k2

1)δ+(k2
2)

(k1 − k2)2[k2
3 −m2

s][(k3 + k2 − k1)2 −m2
s]

= 2π3Γ(ϵ)Γ(−ϵ)
Γ(1/2 − ϵ)Γ(1 − ϵ)Γ(3/2 − ϵ)ω2ϵ

1 ω
2ϵ
2 m

2ϵ
s

+ O(ϵ0) , (B.2.1)

Sm =
3∏

j=1

(∫ ddkj

iπd/2

)
(−2πi)4δ(2ω1 − 2v · k1)δ(2ω2 − 2v · (k1 + k2))δ+(k2

1)δ+(k2
2)

(k1 + k2)2[k2
3 −m2

s][(k3 + k2)2 −m2
s]

= − 2π3Γ(ϵ)Γ(−ϵ)
Γ(1/2 − ϵ)Γ(1 − ϵ)Γ(3/2 − ϵ)ω2ϵ

1 (ω2 − ω1)2ϵm2ϵ
s

, (B.2.2)

Sr =
3∏

j=1

(∫ ddkj

iπd/2

)
(−2πi)5δ(2ω1 − 2v · k1)δ(2ω2 − 2v · (k1 + k2))

k2
2(k1 + k2)2

× δ+(k2
1)δ+(k2

3 −m2
s)δ+((k2 + k3)2 −m2

s)

= O(ϵ0) . (B.2.3)

Summing up these contributions, we find at the first non-vanishing order

Sl + Sm + Sr|ω2>ω1
= −8π2

ϵ
ln
(

1 − ω1

ω2

)
+ O(ϵ0) , (B.2.4)

which diverges logarithmically as ω1 → ω2. We reproduced this result by using

our setup described in Section 5.2.3 to first compute the scalar diagram and then

taking its double discontinuity. To understand this behaviour, we first note that the

external momentum p2 − p1 at the four-quark operator is assumed to be light-like

and thus vanishes when ω1 = ω2. Thus, in this limit the process between the two
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cuts in the diagram in the middle of Figure B.1 therefore reduces to the amplitude

with two external eikonal lines and one massless line which are all on-shell and

is not kinematically allowed. On the other hand the processes between the two

cuts of the other diagrams reduce to amplitudes with four external on-shell legs,

which are kinematically possible. We further note that both the left and middle

diagrams contain collinear divergences which cancel between the leading poles of both

contributions, but generate the logarithms at sub-leading orders. Examining the

diagrams in the ’tree’ contributions, we find that there are no double-cuts which yield

processes that are kinematically forbidden in the limit ω1 → ω2, which explains why

the logarithmic divergences are only found in the ’eye’ contributions. This behaviour

is reminiscent of large threshold logarithms that e.g. arise in Higgs production,

where infrared 1/ϵ poles cancel in the sum of real and virtual corrections, but large

logarithms appear because the real corrections are phase-space suppressed near the

threshold. Interestingly though, the logarithms we observe here appear to be of

collinear rather than soft origin.

B.3 Fq and Λq analysis

For the discontinuity ρΠ(ω) needed to form the sum rule of the HQET decay constant,

we use the NLO result computed in Ref. [94] along with the ms expanded result

computed in Ref. [1],

ρΠ(ω) ≡ Π(ω + i0) − Π(ω − i0)
2πi (B.3.1)

= Ncω
2

2π2 θ(ω −ms)
1 + ms

ω
− 1

2

(
ms

ω

)2
+ . . .

+αsCF

4π

17 + 4π2

3 + 3 ln µ2
ρ

4ω2 +
(

20 + 4π2

3 + 6 ln µ2
ρ

4ω2 − 3 ln µ2
ρ

m2
s

)
ms

ω

+
(

1 − 9
2 ln µ2

ρ

4ω2 + 3 ln µ2
ρ

m2
s

) (
ms

ω

)2
+ . . .

+ O(α2
s)
 (B.3.2)

−⟨s̄s⟩
2 δ(ω)

[
1 + 6αsCF

4π + O(α2
s)
]

+ ⟨s̄iσµνG
µνs⟩

32 δ′′(ω) [1 + O(αs)] + O(Λ6).
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After plugging Eq.(B.3.3) into Eq.(2.4.14), logarithmic terms of the form log(µ2/m2
s)

can be resummed by switching to the MS scheme,

ms = m̄s(µρ)
[
1 + αs(µρ)CF

4π

(
4 + 3 log

(
µ2

ρ

m̄2
s(µρ)

))
+ . . .

]
. (B.3.3)

We also note that ms terms arising from the lower integration cut in Eq.(2.4.14)

were not expanded in ms.

The running of the quark condensates takes the form [see Ref. [95]]

⟨s̄s⟩(µρ) = ⟨s̄s⟩(µ0)
[
αs(µρ)
αs(µ0)

] γ
(3)
0

2β0 ×
1 + αs(µρ) − αs(µ0)

4π
γ

(3)
0

2β0

γ(3)
1

γ
(3)
0

− β1

β0

 ,

⟨s̄iσµνG
µνs⟩(µρ) = ⟨s̄iσµνG

µνs⟩(µ0)
[
αs(µρ)
αs(µ0)

] γ
(5)
0

2β0
, (B.3.4)

with γ
(3)
0 = −8, γ(5)

0 = −4/3, γ(3)
1 = −404/3 + 40nf/9, β0 = 11 − 2nf/3 and

β1 = 102 − 38nf/3. The logarithmic derivative of Eq.(2.4.14) furthermore gives us a

sum rule for the mass difference Λs in the form [see Ref. [95]]

Λ = t2
d
dt

ωc∫
0
dω e−

ω
t ρΠ(ω)

ωc∫
0
dω e−

ω
t ρΠ(ω)

=

ωc∫
0
dω ω e−

ω
t ρΠ(ω)

ωc∫
0
dω e−

ω
t ρΠ(ω)

. (B.3.5)

To determine the appropriate ranges for the Borel parameters ti and the continuum

cutoff ωc in our bag parameter analysis, we consider the sum rules for the meson-

heavy quark mass difference Λq and the HQET decay constant F and compare with

the values found in the literature. The values of the HQET decay constants,

F (1.5 GeV) = (0.29 ± 0.01) GeV , Fs(1.5 GeV) = (0.35 ± 0.02) GeV , (B.3.6)

are determined from the static results of the ALPHA collaboration from Ref. [279]
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Figure B.2: Dependence of the sum rule results for F (µ) (top) and
Λ (bottom) on the Borel parameter t (left) and the
continuum cutoff ωc (right) in the Bq system.
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Figure B.3: Dependence of the sum rule results for Fs(µ) (top) and
Λs (bottom) on the Borel parameter t (left) and the
continuum cutoff ωc (right) in the Bs system.
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by matching at the scale m̄b(m̄b) and evolving the HQET decay constants down to

the scale 1.5GeV. For the mass differences we use, Λq = 0.5 and Λs = 0.6 for the Bq

and Bs mesons respectively. We find the behaviour shown in Figures B.2 and B.3

from which we determine the following intervals:

Bq : t = (1.0 ± 0.4) GeV , ωc = (0.90 ± 0.2) GeV ,

Bs : t = (1.0 ± 0.4) GeV , ωc = (0.95 ± 0.2) GeV . (B.3.7)



Appendix C

Additional material for “Charm

Lifetime Analysis”

C.1 Numerical input for Charm Analysis

We use five-loop running for αs(µ) [204] with four active flavours at the scale µ ∼ mc,

and the most recent value [169]

αs(MZ) = 0.1179 ± 0.0010. (C.1.1)

For the CKM matrix elements we apply the standard parametrisation in terms of

θ12, θ13, θ22, δ and use as an input [182] (online update)

|Vus| = 0.224834+0.000252
−0.000059 , (C.1.2)

|Vub|
|Vcb|

= 0.088496+0.001885
−0.002244 , (C.1.3)

|Vcb| = 0.04162+0.00026
−0.00080 , (C.1.4)

δ =
(
65.80+0.94

−1.29

)◦
. (C.1.5)

For the c-quark mass, we use different values depending of the scheme. In the

MS-scheme we take [169]:

mc(mc) = (1.27 ± 0.02) GeV, (C.1.6)
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in the kinetic scheme we employ (at NLO) [217]:

mkin
c (0.5 GeV) = (1.363 ± 0.02) GeV, (C.1.7)

and in the 1S-scheme (see Eq. (6.1.13)) we use m1S
c = 1.44 GeV [204].

For the s-quark mass we take the value [169]

ms =
(
93+11
−5

)
MeV. (C.1.8)

The masses of D-mesons are known very precisely [169]:

M
D

0 = 1.86493 GeV, M
D

+ = 1.86965 GeV, M
D

+
s

= 1.96834 GeV.

The values of the non-perturbative parameters used in the analysis are shown in

Tables C.1 and C.2.

Parameter D+,0 Source D+
s Source

fD [GeV] 0.2120±0.0007 Lattice
QCD [157] 0.2499±0.0005 Lattice

QCD [157]

µ2
π(D) [GeV2] 0.48 ± 0.20

Exp.
fit [198]
and HQ

symmetry

0.57 ± 0.23

Exp. fit [243],
SU(3)f -

breaking [272]
and HQ

symmetry

µ2
G(D) [GeV2] 0.34 ± 0.10

Spectro-
scopy
rela-

tions [268]

0.36 ± 0.10 Spectroscopy
relations [268]

ρ3
D(D) [GeV3] 0.082 ± 0.035

Exp.
fit [198]

and E.O.M
relation

0.119 ± 0.052
Exp. fit [198]
and E.O.M

relation

Table C.1: Numerical values of the non-perturbative parameters
used in our analysis.
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HQET,
µ0 =

1.5 GeV
B̃1 B̃2 ϵ̃1 ϵ̃2

D+,0 1.0026+0.0198
−0.0106 0.9982+0.0052

−0.0066 −0.0165+0.0209
−0.0346 −0.0004+0.0200

−0.0326

D+
s 1.0022+0.0185

−0.0099 0.9983+0.0052
−0.0067 −0.0104+0.0202

−0.0330 0.0001+0.0199
−0.0324

HQET,
µ0 =

1.5 GeV
δ̃1 δ̃2 δ̃3 δ̃4

⟨Dq|Õq|Dq⟩ 0.0026+0.0142
−0.0092 −0.0018+0.0047

−0.0072 −0.0004+0.0015
−0.0024 0.0003+0.0012

−0.0008

⟨Ds|Õq|Ds⟩ 0.0025+0.0144
−0.0093 −0.0018+0.0047

−0.0072 −0.0004+0.0015
−0.0024 0.0003+0.0012

−0.0008

⟨Dq|Õs|Dq⟩ 0.0023+0.0140
−0.0091 −0.0017+0.0046

−0.0070 −0.0004+0.0015
−0.0023 0.0003+0.0012

−0.0008

Table C.2: Numerical values of the HQET Bag parameters [3, 55]
evaluated through a traditional HQET sum rule.
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C.2 Expressions for the Darwin Coefficients

The coefficients C(q1q2)
ρD,mn(ρ, µ0) including full ρ = m2

s/m
2
c dependence are given by the

expressions:

C(dd̄)
ρD,11 = 6 + 8 log

(
µ2

0

m2
c

)
, (C.2.1)

C(dd̄)
ρD,12 = −34

3 , (C.2.2)

C(dd̄)
ρD,22 = 6 + 8 log

(
µ2

0

m2
c

)
, (C.2.3)

C(ds̄)
ρD,11 = 2

3(1 − ρ)
[
9 + 11ρ− 12ρ2 log(ρ) − 24

(
1 − ρ2

)
log(1 − ρ) − 25ρ2 + 5ρ3

]

+ 8 (1 − ρ)(1 − ρ2) log
(
µ2

0

m2
c

)
, (C.2.4)

C(ds̄)
ρD,12 = −2

3

[
17 + 12ρ

(
5 + 2ρ− 2ρ2

)
log(ρ) + 48(1 − ρ)(1 − ρ2) log(1 − ρ)

−26ρ+ 18ρ2 − 38ρ3 + 5ρ4 + 24 ρ (1 + ρ− ρ2) log
(
µ2

0

m2
c

)]
, (C.2.5)

C(ds̄)
ρD,22 = 2

3(1 − ρ)
[
9 + 11ρ− 12ρ2 log(ρ) − 24

(
1 − ρ2

)
log(1 − ρ) − 25ρ2 + 5ρ3

]
,

+ 8 (1 − ρ)(1 − ρ2) log
(
µ2

0

m2
c

)
, (C.2.6)

C(sd̄)
ρD,11 = 2

3

[
9 − 16ρ− 12ρ2 + 16ρ3 − 5ρ4 + 12 log

(
µ2

0

m2
c

)]
, (C.2.7)

C(sd̄)
ρD,12 = −2

3

[
17 + 12 ρ2 (3 − ρ) log(ρ) − 24(1 − ρ)3 log(1 − ρ)

−50ρ+ 90ρ2 − 54ρ3 + 5ρ4 − 12ρ (3 − 3ρ+ ρ2) log
(
µ2

0

m2
c

)]
,(C.2.8)

C(sd̄)
ρD,22 = 2

3(1 − ρ)
[
9 + 11ρ− 12ρ2 log(ρ) − 24

(
1 − ρ2

)
log(1 − ρ)

−25ρ2 + 5ρ3 + 12 (1 − ρ2) log
(
µ2

0

m2
c

)]
, (C.2.9)

C(ss̄)
ρD,11 = 2

3

√
1 − 4ρ

(
17 + 8ρ− 22ρ2 − 60ρ3

)
− 4

(
2 − 3ρ+ ρ3

)
+
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− 12
(
1 − ρ− 2ρ2 + 2ρ3 + 10ρ4

)
log

1 +
√

1 − 4ρ

1 −
√

1 − 4ρ


− 12 (1 − ρ)(1 − ρ2)

(
log(ρ) − log

(
µ2

0

m2
c

)), (C.2.10)

C(ss̄)
ρD,12 = 2

3

√
1 − 4ρ

(
−33 + 24 log(ρ) − 24 log(1 − 4ρ) + 46ρ− 106ρ2 − 60ρ3

)

+ 12
(
3 − 2ρ+ 4ρ2 − 16ρ3 − 10ρ4

)
log

1 +
√

1 − 4ρ

1 −
√

1 − 4ρ


+ 4 (1 − ρ)2 (4 + 3(1 − ρ) log(ρ) − ρ)

−12
(
1 − √

1 − 4ρ− 3ρ+ 3ρ2 − ρ3
)

log
(
µ2

0

m2
c

), (C.2.11)

C(ss̄)
ρD,22 = 2

3

√
1 − 4ρ

(
9 + 24 log(ρ) − 24 log(1 − 4ρ) + 22ρ− 34ρ2 − 60ρ3

)

+ 24
(
1 − 2ρ− ρ2 − 2ρ3 − 5ρ4

)
log

1 +
√

1 − 4ρ

1 −
√

1 − 4ρ


+ 12

√
1 − 4ρ log

(
µ2

0

m2
c

). (C.2.12)

The numerical values of the above coefficients for ρ = 0.006 are shown in Table C.3.

3C2
1 2C1C2 3C2

2

c → dd̄u 6 -11.33 6
c → ds̄u 6.10 -9.81 6.10
c → sd̄u 5.94 -11.23 6.10
c → ss̄u 6.04 -9.70 6.21

Table C.3: Numerical values of C(q1q2)
ρD,nm for ρ = 0.006 and µ0 = mc.
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C.3 Parametrisation of the Matrix Element of

Four-Quark Operators

The matrix elements of the dimension-six operators in QCD are parametrised in the

following way

⟨Dq|Oq
i |Dq⟩ = Ai f

2
Dq
m2

Dq
Bq

i , (C.3.1)

⟨Dq|Oq
′

i |Dq⟩ = Ai f
2
Dq
m2

Dq
δqq

′

i , q ̸= q′ , (C.3.2)

where

Aq
1 = Aq

3 = 1, Aq
2 = Aq

4 = m2
D

(mc +mq)2 .

In VIA the Bag parameters reduce to Bq
1 = Bq

2 = 1 and Bq
3 = ϵq

1 = 0, Bq
4 = ϵq

2 = 0

and all δqq
′

i = 0.

The matrix elements of the dimension-seven four-quark operators in Eqs. (6.2.60) -

(6.2.68) in HQET are parametrised in the following way:

⟨Dq|P̃ q
1 |Dq⟩ = −mqF

2(µ0)mD B̃
q
P,1 , (C.3.3)

⟨Dq|P̃ q
2 |Dq⟩ = −F 2(µ0)mD Λ̄ B̃q

P,2 , (C.3.4)

⟨Dq|P̃ q
3 |Dq⟩ = −F 2(µ0)mD Λ̄ B̃q

P,3 , (C.3.5)

⟨Dq|R̃q
1|Dq⟩ = −F 2(µ0)mD (Λ̄ −mq) B̃q

R,1 , (C.3.6)

⟨Dq|R̃q
2|Dq⟩ = F 2(µ0)mD (Λ̄ −mq) B̃q

R,1 , (C.3.7)

with Λ̄ = mD −mc, and

⟨Dq|M̃ q
1,π|Dq⟩ = 2F 2(µ0)mD G1(µ0) L̃q

1,π , (C.3.8)

⟨Dq|M̃ q
2,π|Dq⟩ = 2F 2(µ0)mD G1(µ0) L̃q

2,π , (C.3.9)

⟨Dq|M̃ q
1,G|Dq⟩ = 12F 2(µ0)mD G2(µ0) L̃q

1,G , (C.3.10)

⟨Dq|M̃ q
2,G|Dq⟩ = 12F 2(µ0)mD G2(µ0) L̃q

2,G , (C.3.11)
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and similar expressions for the colour-octet operators. Again, in VIA, the dimension-

seven Bag parameters are B̃q
P,i = 1, B̃q

R,i = 1, and L̃q
1,π = 1, L̃q

1,G = 1 and the

corresponding colour-octet Bag parameters vanish.

The expressions in Eqs. (C.3.3) - (C.3.7) can be obtained using a general paramet-

risation of matrix elements of the HQET quark currents with a heavy pseudo-scalar

meson M (see e.g. [45]):

⟨0|q̄ Γhv|M(v)⟩ = i

2F (µ) Tr[ΓM(v)] , (C.3.12)

⟨0|q̄ Γ iDαhv|M(v)⟩ = − i

6(Λ̄ −mq)F (µ) Tr[(vα + γα)ΓM(v)] ,(C.3.13)

⟨0|q̄(−i
←
Dα) Γhv|M(v)⟩ = − i

6F (µ) Tr[((4Λ̄ −mq)vα

+(Λ̄ −mq)γα)ΓM(v)],(C.3.14)

and for the non-local operators:

⟨0|i
∫
d4y T

[
(q̄ Γhv)(0), (h̄v(iD)2hv)(y)

]
|M(v)⟩ = F (µ)G1(µ) Tr[ΓM(v)],

(C.3.15)

and

⟨0|i
∫
d4y T

[
(q̄ Γhv)(0), 1

2gs

(
h̄vσαβG

αβhv

)
(y)
]

|M(v)⟩ = 6F (µ)G2(µ) Tr[ΓM(v)],

(C.3.16)

where Γ is a generic Dirac structure, and

M(v) = −√
mD

(1 + /v)
2 γ5 . (C.3.17)

Since we are limited to LO-QCD for the dimension-seven contribution, we can just

replace the HQET decay constant F (µ) by the full QCD one fD, using F (µ) =

fD
√
mD.
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