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Abstract

Classification is the task of assigning a new instance to one of a set of predefined

categories based on the attributes of the instance. A classification tree is one of the

most commonly used techniques in the area of classification. In recent years, many

statistical methodologies have been developed to make inferences using imprecise

probability theory, one of which is nonparametric predictive inference (NPI). NPI

has been developed for different types of data and has been successfully applied to

several fields, including classification. Due to the predictive nature of NPI, it is well

suited for classification, as the nature of classification is explicitly predictive as well.

In this thesis, we introduce a novel classification tree algorithm which we call the

Direct Nonparametric Predictive Inference (D-NPI) classification algorithm. The D-

NPI algorithm is completely based on the NPI approach, and it does not use any

other assumptions. As a first step for developing the D-NPI classification method,

we restrict our focus to binary and multinomial data types. The D-NPI algorithm

uses a new split criterion called Correct Indication (CI), which is completely based

on NPI and does not use any additional concepts such as entropy. The CI reflects

how informative attribute variables are, hence if the attribute variable is very infor-

mative, it gives high NPI lower and upper probabilities for CI. In addition, the CI

reports the strength of the evidence that the attribute variables will indicate regard-

ing the possible class state for future instances, based on the data. The performance

of the D-NPI classification algorithm is compared against several classification algo-
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rithms from the literature, including some imprecise probability algorithms, using

different evaluation measures. The experimental results indicate that the D-NPI

classification algorithm performs well and tends to slightly outperform other classi-

fication algorithms.

Finally, a study of the D-NPI classification tree algorithm with noisy data is

presented. Noisy data are data that contain incorrect values for the attribute vari-

ables or class variable. The performance of the D-NPI classification tree algorithm

with noisy data is studied and compared to other classification tree algorithms when

different levels of random noise are added to the class variable or to attribute vari-

ables. The results indicate that the D-NPI classification algorithm performs well

with class noise and slightly outperforms other classification algorithms, while there

is no single classification algorithm that acts as the best performing algorithm with

attribute noise.
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Chapter 1

Introduction

1.1 Overview

Classification is one of the most common data mining techniques that is used for as-

signing a new instance to one of a set of predefined categories based on the attributes

of the instance. The aim of classification is to successfully predict the unknown class

state of an instance given the values for its attribute variables. Classification algo-

rithms (or classifiers) are used to explain the underlying knowledge from training

data in order to be applied to unseen data (test data) to predict their class states.

There are many possible classification algorithms available in the literature that one

might use to predict a categorical target variable, the classification tree (or decision

tree) is one of the most commonly used because of its interpretational simplicity.

There are a number of algorithms that are used to build classification trees, the

ID3 algorithm [55] and its extension the C4.5 algorithm [56] are two of the most

commonly used algorithms in order to generate classification trees.

In recent years, theories of imprecise probabilities have been widely developed

for several areas of statistics. Many methods of statistical inference have been in-

troduced based on imprecise probability theory, and it has been shown that they

have some advantages over other methods based on the classical probability theory.

One of the recently developed methodologies based on imprecise probability theory

is Nonparametric Predictive Inference (NPI) [12, 24, 25, 26, 28]. NPI is a statistical

1
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framework based on Hill’s assumption A(n) [38], introduced in Section 2.4.1, with

the use of lower and upper probabilities to make inferences about future instances.

NPI has been introduced for several types of data sets and has many successful ap-

plications in statistics, operations research, risk and reliability [26]. In this thesis we

use NPI for Bernoulli data [24] and NPI for multinomial data [28], with applications

in classification trees.

Due to the predictive nature of NPI, it is well suited for classification, as the na-

ture of classification is explicitly predictive as well. Therefore, several classification

methods have been successfully developed based on the NPI approach [3, 14, 50, 51].

Different classification trees have been built based on NPI and using an extension of

the information gain split criterion, which is a well-known classic split criterion used

by the ID3 algorithm. These classification trees are built by replacing precise proba-

bilities in the classical method with imprecise probabilities, which are obtained using

the NPI approach. In this thesis, we build classification trees completely based on

NPI and without adding any further assumptions. This is achieved by introducing

a new split criterion, which is based on the NPI lower and upper probabilities and

does not use any other added concepts from the literature.

In this thesis, we present a new algorithm to build classification trees using im-

precise probabilities and based on the NPI approach, which we call the Direct Non-

parametric Predictive Inference (D-NPI) classification tree algorithm. As a first step

to develop the D-NPI classification method, we introduce the D-NPI classification

algorithm for binary data, we then generalize it for multinomial data. The D-NPI

classification method is a novel approach to generate classification trees by employ-

ing the NPI lower and upper probabilities for events with binary and multinomial

data, without adding any further assumptions. In order to build classification trees

using the D-NPI classification method, we introduce a new split criterion. The novel

split criterion presented in this thesis is named Correct Indication (CI). The CI split

criterion presented in this thesis is different to other split criteria in the way it does

not use any additional concepts such as entropy. Based on the NPI methodology, the
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CI split criterion reports the strength of the evidence that attribute variables will

indicate the correct class state for new instances. Therefore, the CI split criterion

reflects how informative attribute variables are with respect to predicting possible

class states, and hence to select the best ones among them to place at each node

when building a classification tree.

We conduct an experimental analysis on several data sets in order to assess the

performance of classification trees built by the D-NPI algorithm and to compare its

performance with the performance of other classical and imprecise classification tree

algorithms. We also evaluate the performance of the D-NPI classification algorithm

when different random noise levels are added to data sets, and then we compare its

performance with other classification algorithms. Noisy data are data that contain

incorrect values for the attribute variables or class variable. Real-world data sets

are never perfect and often suffer from corruptions that may affect the performance

of any classifier. We evaluate the performance of the classification algorithms using

the classification accuracy (on testing sets), in-sample accuracy (on training sets)

and average tree size. For this analysis, a 10-fold cross-validation scheme is applied

on different data sets from the UCI Machine Learning Repository database.

1.2 Outline of thesis

This thesis is structured as follows. Chapter 2 introduces preliminary materials from

the literature, relevant to this thesis. We begin with a brief overview of classifica-

tion and classification trees. Then, a brief introduction to imprecise probabilities

and NPI is given, particularly, we introduce NPI for Bernoulli data and NPI for

multinomial data, where these two types are relevant to Chapter 3 and Chapter

4, respectively. Finally, we briefly summarise some previous research studies which

consider classification trees from the NPI perspective.

In Chapter 3, we present a new classification method based on NPI, which we
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call Direct NPI (D-NPI) classification. We illustrate how we can base classification

on the NPI lower and upper probabilities for Bernoulli data without adding any

further assumptions. Then, a novel split criterion (i.e. Correct Indication (CI)) is

introduced to be used with binary data and for building classification trees. An

experimental analysis is then conducted on five data sets in order to assess the per-

formance of the D-NPI classification tree algorithm and to compare the results with

other classification tree algorithms from the literature. Part of this chapter was

presented at the 12th Workshop on Principles and Methods of Statistical Inference

with Interval Probability (WPMSIIP 2019) at Durham University, UK in September

2019. Also, part of this chapter was presented at the 12th International Conference

of the ERCIM WG on Computational and Methodological Statistics (CMStatistics

2019) and 13th International Conference on Computational and Financial Econo-

metrics (CFE 2019) at University of London, UK in December 2019.

Chapter 4 generalizes the D-NPI classification method to multinomial data. We

introduce the Direct NPI classification algorithm for multinomial data (D-NPI-M),

which can be used with a known number of unordered categories. The D-NPI-M al-

gorithm uses the CI split criterion, which is developed based on the NPI method for

multinomial data. In this chapter, we explain how to derive the NPI lower and upper

probabilities for CI, considering multinomial data. We carry out an experimental

analysis on eight data sets in order to assess the performance of the D-NPI-M classi-

fication tree algorithm and to compare it with some other classification algorithms.

This chapter was presented at the 12th International Symposium on Imprecise Prob-

ability: Theories and Applications (ISIPTA) at Granada, Spain in July 2021. Part

of this chapter was also presented at a seminar at Durham University.

In Chapter 5, we explore the use of the D-NPI-M algorithm, introduced in Chap-

ter 4, with noisy data sets. We begin this chapter with a brief overview of data noise

and we highlight some previous research studies, which applied classification meth-

ods on noisy data sets. In order to test the performance of the D-NPI-M algorithm

with noisy data sets, we add different levels of random noise to either class vari-
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able or attribute variables. Then, we evaluate the performance of the D-NPI-M

algorithm with the added noise levels, and we compare its performance with other

classification algorithms. The results in this chapter were presented at a seminar at

Durham University.

Finally, Chapter 6 presents the conclusions of this thesis. This chapter also

suggests some interesting research topics to extend the research work presented in

this thesis. Some of these future research topics are also discussed in the final

sections of Chapters 3 to 5.



Chapter 2

Preliminaries

In this chapter we review the main topics from the literature to provide the relevant

background for this thesis. An introduction to noisy data is presented at the start of

Chapter 5. First, we introduce the concept of classification and classification trees

with emphasis on classification tree construction and the most commonly used split

criteria when building classification trees. Then, we introduce imprecise probability

with highlighting the Imprecise Dirichlet Model (IDM) and some classification works

done from an imprecise probability perspective. After that we present an overview of

Nonparametric Predictive Inference (NPI), particularly, NPI for binary data, which

is used in Chapter 3, and NPI for multinomial data, which is used in Chapter 4.

Finally, we review some works on classification trees using the NPI approach.

2.1 Classification

Classification is one of the most common data mining techniques that is used to

assign a new observation to one of a set of predefined categories or classes, based on

the observed values of one or more attribute variables. Classification can be consid-

ered when the target variable, also called class variable, is categorical, whereas in

the situation that the target variable is continuous, regression methods can be used.

Throughout this thesis we will use the terms ‘target variable’ and ‘class variable’

interchangeably. The classification algorithms are built using a training set, where

6
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classes are already known, and then their performances are evaluated on a separate

testing set. There are many possible classification algorithms, or classifiers (we will

use these two terms interchangeably), that have been used in the literature to pre-

dict a categorical target variable. For example, linear discriminant analysis, logistic

regression, K-nearest neighbours, support vector machine, naive Bayes, classifica-

tion tree and random forests. Some details and examples about these classification

algorithms are given by Hastie et al. [37] and by James et al. [40].

Among the most used methods of classification, classification trees are the most

widely used for classification. Classification trees are attractive because of their

interpretational simplicity, and they can predict the possible class by a sequence

of simple partitions. In order to build classification trees, a split criterion should

be used to select the best splitting attribute variable at each node. Note that in

this thesis we use the term attribute variables. They could be also called features,

predictors, independent variables, or explanatory variables. More details about clas-

sification trees and split criteria are given in Section 2.2.

Classification tasks are fundamental in many situations. For example, classifiers

can be used to assign individuals who are at low, medium or high risk of acquir-

ing a particular disease; or to determine which customers can or cannot afford to

buy a specific product in a supermarket, and many other examples in such situ-

ations. In this thesis we introduce a new method of classification which we call

Direct Nonparametric Predictive Inference classification. In this method, we build

classification trees using a novel split criterion which we call Correct Indication.

Correct Indication is completely based on the lower and upper probabilities given

by Nonparametric Predictive Inference (NPI).

2.2 Classification trees

A classification tree is a nonparametric technique which represents a hierarchical

data structure. The idea of a classification tree is to classify a new observation into
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Figure 2.1: The structure of a classification tree.

one of a predefined set of classes based on its attribute values. So, classification

trees are used to predict the class of a categorical target variable. Classification

tree algorithms have been popular in machine learning and statistics for solving

classification tasks [20, 56]. A classification tree has three types of nodes which are:

� A root node which is the topmost node in a tree and has no incoming edges.

� An internal node which has only one incoming edge and two or more outgoing

edges.

� A leaf node which has no outgoing edges.

In a classification tree, each non-leaf node represents an attribute variable, each

branch denotes the outcome of an attribute variable and each leaf node is assigned

to one class label. Figure 2.1 shows the structure of a classification tree. Classifying

a new observation is straightforward once a classification tree has been built. So,

observations are classified by navigating them from the root node of the tree and

going down to a leaf node according to the value of the attribute variables along the

path [45]. Let us consider the following small example to further clarify the idea

of classification trees, where the objective is to predict the possible class for a new

instance based on a small number of attribute variables.

Example 2.2.1 Consider a data set that consists of a class variable with two states,

A and B, and three attribute variables X, Y and Z. Where X has two possible



2.2. Classification trees 9

 

  

 

   

 

 

 

  

       

 

 

  

 

     

 

𝑌 

𝑨 𝑋 

𝑨 𝑩 

𝑩 

𝑩 

𝑍 

𝑦1, 𝑦3 
𝑦2 

𝑦4 

𝑥1 𝑥2 

𝑧1 𝑧2 

Figure 2.2: Classification tree for Example 2.2.1.

values x1 and x2, Y has four possible values y1, y2, y3 and y4 and Z has two possible

values z1 and z2. Suppose that a classification algorithm leads to the tree in Figure

2.2, then a new instance with attribute values, Y = y2, X = x2 and Z = z1 will lead

to predicted class A.

□

2.2.1 Classification tree construction

To construct a classification tree, assume we have a data set which includes one

or more attribute variables and a labelled class variable. First, the data set is

divided into two disjoint subsets which are training and test sets. Then, the classi-

fier is constructed using the training set and tested using the test set. One of the

most commonly used methods in practice is a 10-fold cross validation [43]. In this

method, the data set is split randomly into 10 subsets of approximately equal size,

called folds. Each fold is used as a test set and the remaining 9 folds are combined

together to use as a training set. This process is repeated 10 times so that each
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fold is used once as a test set. Finally, the 10 classification accuracies achieved from

these test sets are then averaged. Throughout all the experimental analysis in this

thesis, we use 10-fold cross validation.

After dividing the data set into training and test sets, a classification tree algo-

rithm is applied on the training set in order to choose the best splitting attribute

variable. Different classification tree algorithms use different split criteria. After

selecting the best attribute variable to be on the root node, we divide the training

set into disjoint subsets based on the values of the chosen attribute variable. Note

that this is the case when having a categorical attribute variable. For continuous

attribute variables, a threshold is determined by the split criterion to convert it to

a categorial variable. However, not all split criteria deal with continuous attribute

variables. Hence, we have to decide to remove continuous variables or convert them

to categorical ones. Then, we proceed in the same way for all internal nodes by

choosing the best attribute variable (most informative) at each step, and dividing

the training subsets based on its values. Note that each branch can only include

each attribute variable once, but the same attribute variable can appear multiple

times in the tree. Finally, if there is no further attribute variable available to use

for splitting, we stop splitting and fix a leaf node with the most common state in

the class variable. One may also stop splitting when there may still be attribute

variables that could be used, but all are deemed uninformative.

There are a number of approaches available to use as a split method for building

classification trees. In Section 2.2.2, we review the most commonly used classic split

criteria, in addition to an imprecise split criterion that builds classification trees

from imprecise probability perspective. Note that for our main contributions in this

thesis in Chapter 3 and Chapter 4, we use a completely new split criterion based on

the NPI approach.
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2.2.2 Split criteria

A classification tree algorithm requires a split criterion which is used to select the

best attribute variable to split on at each step of building the tree. Several classifica-

tion tree algorithms have been developed using different split criteria. Split criteria

are mainly used in order to reduce the impurity of a node. A node is 100% pure

when all instances in it belong to the same class, and 100% impure when the in-

stances are split evenly between classes. There are many split criteria that have been

used for classification tree algorithms in the literature, we review three of the most

commonly used classic split criteria which are Information Gain [55], Information

Gain Ratio [56] and Gini Index [20]. These split criteria are used to implement the

ID3, the C4.5 and the CART algorithms, respectively. In addition, we briefly review

an imprecise split criterion called Imprecise Information Gain that has been used

to construct credal classification trees [10]. These split criteria are introduced to

compare some classification algorithms with our new algorithm, which uses a novel

split criterion, which we call the Correct Indication split criterion. It is introduced

in Chapter 3 for binary data and in Chapter 4 for multinomial data.

Information Gain: The Information Gain split criterion was introduced by Quin-

lan in 1986 [55] as a split criterion for the ID3 algorithm. Information Gain uses

entropy as an impurity measure. Entropy, also called the Shannon Entropy [60], of

a training set S is given by

H(S) = −
K∑
i=1

pi log2(pi), (2.1)

where pi is the proportion of S belonging to class i (for i = 1, ..., K), so K is the

total number of classes, and log2 is used because the information is coded in bits

[23]. Generally speaking, entropy represents a level of uncertainty or impurity in a

set of instances. The Information Gain of an attribute B, relative to the training

set S is given by

Gain(S,B) = H(S)−
∑

u∈V (B)

|Su|
|S|

H(Su), (2.2)
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where V (B) denotes all values of attribute B, and Su is the subset of S for which

attribute B has value u, where |S| denotes the cardinality of the set S. The Infor-

mation Gain handles only categorical attributes.

The Information Gain split criterion is used by the ID3 algorithm in order to

select the best splitting attribute variable at each node when building classification

trees. The ID3 algorithm builds trees as follows:

� Given a training set with a set of instances, if all instances belong to the same

class, then stop and assign this class as a leaf node.

� Consider all attribute variables that divide the training set into two or more

subsets, then calculate the Information Gain (Formula 2.2) for each attribute

variable.

� Select the attribute variable with the highest Information Gain, then assign it

to the root node.

� Divide the training set into subsets based on the values of the selected at-

tribute variable, then run this procedure recursively on each subset.

Gain Ratio: The Gain Ratio split criterion was introduced by Quinlan in 1993

[56] as an extension to the Information Gain split criterion. It is used as a split

criterion for the C4.5 algorithm, hence, the C4.5 algorithm is an alternative version

of the ID3 algorithm. Unlike the ID3, the C4.5 algorithm handles both categorical

and continuous attributes. The Information Gain is biased toward attribute vari-

ables that have many states [55]. So, these attribute variables are more likely to

be selected. To solve this problem, Quinlan [56] introduced the Gain Ratio split

criterion, which normalizes the Information Gain as follows:

GR(S,B) =
Gain(S,B)

SI(S,B)
, (2.3)

where Gain(S,B) is given by Equation (2.2), and Split Information SI(S,B) is

given by:
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SI(S,B) = −
n∑

j=1

|Sj|
|S|

log2
|Sj|
|S|

. (2.4)

The SI(S,B) represents the information generated by splitting the training data

set S into n partitions corresponding to the values of the attribute variable B. The

C4.5 algorithm builds classification trees in a similar way to the ID3 algorithm, but

it uses the Gain Ratio split criterion (Formula 2.3) to select the splitting attribute

variable at each node.

Gini Index : The Gini Index split criterion was introduced by Breiman et al. in

1984 [20] as a split criterion to implement the Classification and Regression Trees

(CART) algorithm. The CART algorithm constructs only binary trees. Here, the

term ‘binary’ means that each internal node in the classification tree can have only

two outgoing edges (child nodes). The Gini Index measures the degree of impurity

of an attribute with respect to the classes. It is defined as follows:

Gini(S) = 1−
K∑
i=1

(pi)
2, (2.5)

where pi is the relative frequency of class i in S, for i = 1, ..., K. The minimum value

of the Gini Index is achieved when all observations in the sample belong to only one

class, while the maximum value of the Gini Index is achieved when all classes have

equal probability. After splitting S into two subsets S1 and S2 with sizes N1 and

N2, the Gini Index of the split data is defined as

GiniSplit(S) =
N1

N
Gini(S1) +

N2

N
Gini(S2). (2.6)

In this way, the split with the best Gini value is selected. Note that the CART

classification algorithm will not be applied during the experimental analysis in this

thesis, but we briefly introduce it as it one of the popular classification tree algo-

rithm, besides the ID3 and the C4.5 algorithms.

Imprecise Information Gain: The Imprecise Information Gain (IIG) split crite-

rion was introduced by Abellán and Moral in 2003 [10] to build classification trees
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from an imprecise probability perspective. The IIG for an attribute variable X is

defined as follows:

IIG(X,C) = S(K(C))−
∑
i

p(xi)S(K(C|(X = xi))), (2.7)

where S(K) is the maximum entropy of a credal set, and K(C) and K(C|(X = xi))

are credal sets for the class variable C and for C given the value xi of the attribute

variable X, respectively; and i = 1, ..., n for a partition of the data set; and p(xi)

is a probability distribution that belongs to the credal set K(X). Credal sets are

closed and convex sets of probability distributions [1]. The IIG is applied on credal

sets using uncertainty measures of probability distributions [8]. For more details

and extended explanations of the IIG see [8, 10, 11]. Different classification trees

can be built using the IIG split criterion. For example, one can build a classification

tree using the maximum entropy distributions from the credal set of distributions

associated with the Imprecise Dirichlet Model (IDM) [1] or with the Nonparamet-

ric Predictive Inference for multinomial data (NPI-M) [2], which are introduced in

Sections 2.3 and 2.4, respectively. In this thesis, we refer to a classification tree

built with the IIG and the IDM by IDM algorithm; the IIG and NPI-M by NPI-M

algorithm; and the IIG and the A-NPI-M by A-NPI-M algorithm, where A-NPI-M

stands for Approximate NPI-M.

2.3 Imprecise probabilities

In the middle of the 19th century, the idea of imprecise probabilities was first pro-

posed in Boole’s book [17]. Since then, imprecise probability based methods have

been developed for many areas of statistics. An overview of the main aspects of

imprecise probabilities theory and applications has been presented by Augustin et

al. [13], and by Walley [64].

In classical probability theory, for an event A, a precise probability p(A) ∈

[0, 1] is used to quantify uncertainty about A, where p is a probability measure
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satisfying Kolmogorov’s axioms [13]. In real world data sets, precise probability

calculated from the data is likely to be inaccurate, hence, having the possibility to

use imprecise probability may give advantages over the use of precise probability.

Imprecise probability uses lower and upper probabilities for the event, and hence

reflects more uncertainty about the event. Unlike classical probability, in imprecise

probability we assign an interval probability for an event A, such as [P (A), P (A)],

where 0 ≤ P (A) ≤ P (A) ≤ 1, and where P (A) denotes the lower probability

and P (A) denotes the upper probability for event A. The classical probability is a

special case in imprecise probability which occurs when P (A) = P (A). Complete

lack of information about an event A is represented by P (A) = 0 and P (A) = 1.

Weichselberger [66] defined the structure, M:

M = {p(.) : P (A) ≤ p(A) ≤ P (A),∀A ∈ A}, (2.8)

where A is a set of events, and p(.) is a set-function defined on A satisfying Kol-

mogorov’s axioms in classical probability theory. The lower and upper probabilities

for an event A are:

P (A) = inf
p(.)∈M

p(A) (2.9)

and

P (A) = sup
p(.)∈M

p(A). (2.10)

Here some basic concepts of imprecise probability are briefly highlighted. For more

details and a complete introduction to imprecise probability, we refer to Walley [64]

and Augustin et al. [13].

In 1996, Walley introduced an imprecise probability model for inference from

multinomial data [65], which is called the Imprecise Dirichlet Model (IDM). The

IDM is one of the most popular imprecise probability models. Assume that we have

a data set with N observations. Let X be a variable whose values, or categories

belong to {x1, ..., xn}, and let nxi
denote the total number of observations in xi, for

i = 1, ..., n. The IDM-based lower and upper probabilities for the event that the

next future observation, Xn+1 will be in xi, are
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P IDM(Xn+1 ∈ xi) =
nxi

N + s̃
(2.11)

and

P IDM(Xn+1 ∈ xi) =
nxi

+ s̃

N + s̃
, (2.12)

where s̃ is a parameter which is chosen independently of the data (this parameter

is written as s by Walley [65] but because we use s later in the thesis for another

parameter we denote a different symbol). The value of s̃ determines how quickly the

lower and upper probabilities converge when the sample size increases [65]. Walley

suggested to choose the value of the parameter s̃ equal to 1 or 2 [65]. As shown by

Abellán [1], the IDM gives imprecise probabilities that lead to the following (closed

and convex) credal set of probability distributions,

L =

{
p | p (xi) ∈

[
nxi

N + s̃
,
nxi

+ s̃

N + s̃

]
, i = 1, . . . , n,

n∑
i=1

p(xi) = 1

}
. (2.13)

The IDM has been applied to many statistical problems in the literature. Some

of these applications were reviewed by Bernard [15]. However, the use of the IDM

has been criticised for some disadvantages [54]. Some of these disadvantages of the

IDM were already discussed by Walley [65], and by other researchers, which mo-

tivate researchers to introduce alternative models for inference from multinomial

data. The presence of these disadvantages motivates researchers to develop alter-

native inference models. Coolen and Augustin [27, 28] proposed a new model for

inference from multinomial data, which is Nonparametric Predictive Inference for

Multinomial data (NPI-M). This model is an alternative to the IDM and is based

on the NPI method. The NPI-M is free from some disadvantages of the IDM such

as that the NPI-M does not make any prior assumptions about the data.

In recent years, imprecise probability theory has been applied to classification

trees. One of the first applications was introduced by Abellán and Moral [10], where

they estimate the probabilities of the classes in each leaf node by using the Imprecise
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Dirichlet Model. Following that paper, many papers have presented classification

trees from imprecise probability perspective [9, 46, 47, 52]. Imprecise probability

theory has also been used in classification by random forests as in [4, 6, 62]. Ran-

dom forests are a combination of trees where each tree is built using a random

vector sampled independently from the training set with the same distribution for

all trees, and each tree votes for the most popular class [19]. Then, the majority

vote is taken for classification. There are also several other works on classification

trees from imprecise probability perspective, and based on Nonparametric Predic-

tive Inference [3, 14, 35]. Abellán et al. [3] and Baker [14] show that applying the

NPI-M to classification trees leads to slightly better classification accuracy than

the IDM. In this thesis, we also introduce a new application of classification trees

with imprecise probability, and based on the Nonparametric Predictive Inference

approach. Our new classification method can base classification on the lower and

upper probabilities given by NPI, without adding any further assumptions. We

build classification trees using a new split criterion, which is also completely based

on NPI. The Nonparametric Predictive Inference approach is introduced in Section

2.4. We also introduce some works on classification from the NPI perspective with

more explanations in Section 2.5.

2.4 Nonparametric Predictive Inference (NPI)

Nonparametric Predictive Inference (NPI) is a statistical methodology which uses

only a few modelling assumptions to learn from data in the absence of prior knowl-

edge. NPI is based on Hill’s assumption A(n) [38], explained in Section 2.4.1, and

uses lower and upper probabilities, also known as imprecise probabilities, to quantify

uncertainty [12]. NPI has been developed in recent years for different applications in

statistics, operations research, risk and reliability [26]. NPI has also been presented

for different types of data, such as Bernoulli data [24], real-valued data [12], right-

censored data [29], ordinal data [33] and multinomial data [14, 27, 28]. In Section

2.4.1, we introduce Hill’s assumption A(n). Then, we introduce NPI for Bernoulli
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data in Section 2.4.2, and NPI for multinomial data in Section 2.4.3.

2.4.1 A(n) assumption

Hill [38] introduced the assumption A(n) for prediction about future observations

when there is no strong prior knowledge about the form of the underlying distri-

bution of a random quantity. Hill’s assumption A(n) directly provides probabilities

for one or more real-valued future random quantities, based on observed values of

related random quantities. Let X1, ..., Xn, Xn+1 be real-valued and exchangeable

random quantities, where we assume that the probability of ties is zero. Let the

ranked observed values of X1, ..., Xn be denoted by x1 < ... < xn, and let x0 = −∞

and xn+1 = ∞ for ease of notation. These ordered observations partition the real

line into n+1 open intervals Ij = (xj−1, xj) for j = 1, ..., n+1. The assumption A(n)

states that the next future observation, represented by a random quantity Xn+1,

falls equally likely in any interval Ij with probability
1

n+ 1
for each j = 1, ..., n+1,

i.e. P (Xn+1 ∈ Ij) =
1

n+ 1
. Hill’s assumption A(n) does not assume anything else,

and it is clearly a post-data assumption related to exchangeability of n + 1 values

on the real-line [30].

2.4.2 NPI for Bernoulli data

This section summarises NPI for Bernoulli random quantities as introduced by

Coolen [24]. Suppose that we have a sequence of n + m exchangeable Bernoulli

trials where the possible outcomes of each trial are either ‘success’ or ‘failure’, and

the data consist of s successes in n trials, where m stands for future trials. Let Y n
1

and Y n+m
n+1 denote the random number of successes in trials 1 to n, and n + 1 to

n + m, respectively. Because of the assumed exchangeability of all trials, a suffi-

cient representation of the data for the inference considered is Y n
1 = s. Now, let

Rt = {r1, ..., rt}, with 1 ≤ t ≤ m + 1 and 0 ≤ r1 < r2 < . . . < rt ≤ m, and for ease

of notation, let
(
s+r0
s

)
= 0. Then, the NPI upper probability for the conditional
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event Y n+m
n+1 ∈ Rt|Y n

1 = s, for s ∈ {0, . . . , n}, is

P
(
Y n+m
n+1 ∈ Rt|Y n

1 = s
)
= n+m

n

−1
t∑

j=1

 s+ rj

s

−

 s+ rj−1

s

 n− s+m− rj

n− s

 . (2.14)

It is sufficient to determine the NPI upper probability only, as the corresponding

NPI lower probability, can be derived by the conjugacy property, P (A) = 1−P (Ac),

where Ac is the complementary event to A.

P
(
Y n+m
n+1 ∈ Rt|Y n

1 = s
)
= 1− P

(
Y n+m
n+1 ∈ Rc

t |Y n
1 = s

)
(2.15)

whereRc
t = {0, 1, . . . ,m}\Rt. More details and examples about the NPI for Bernoulli

quantities are give by Coolen [24].

In Chapter 3, we base classification on these NPI lower and upper probabilities,

but considering only a single future observation, i.e. m = 1. For this case, the NPI

lower and upper probabilities are

P
(
Y n+1
n+1 = 1|Y n

1 = s
)
=

s

n+ 1
(2.16)

and

P
(
Y n+1
n+1 = 1|Y n

1 = s
)
=

s+ 1

n+ 1
. (2.17)

Similarly, the NPI lower and upper probabilities for the event that Y n+1
n+1 = 0|Y n

1 = s

are

P
(
Y n+1
n+1 = 0|Y n

1 = s
)
=

n− s

n+ 1
(2.18)

and

P
(
Y n+1
n+1 = 0|Y n

1 = s
)
=

n− s+ 1

n+ 1
. (2.19)

2.4.3 NPI for Multinomial data

Coolen and Augustin [12, 27, 28] have developed Nonparametric Predictive Inference

for Multinomial data (NPI-M). The NPI-M is based on the circular -A(n) assump-

tion, which is a variation of Hill’s assumption A(n) [27]. Since multinomial data are
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represented as observations on a probability wheel, and hence as circular data, we

use the circular -A(n) assumption, which is denoted by AO(n) [25, 27]. Suppose that

we have ordered circular data y1 < y2 < ... < yn which create n intervals on a circle,

represented as Ij = (yj, yj+1) for j = 1, ..., n − 1 and In = (yn, y1). The assump-

tion AO(n) states that the next future observation, represented by a random quantity

Yn+1, falls equally likely in any interval Ij for each j = 1, ..., n, i.e. P (Yn+1 ∈ Ij) =
1

n
.

The AO(n) is a post-data assumption related to exchangeability for such circular data.

The NPI-M model represents multinomial data as observations on a probability

wheel, where each of these n observations is represented by a line from the center of

the wheel to its circumference. The wheel is divided into n equally-sized slices. Us-

ing the circular -A(n) assumption, the next future observation has probability mass
1

n
of falling into any given slice. Hence, we have to decide which category each of

these slices represents.

Coolen and Augustin [28] assume that each observed category is represented by

one single segment of the probability wheel, where the segment is an area between

two lines from the center to the circumference of the wheel. Combining this assump-

tion with circular -A(n) implies that two or more lines representing observations in

the same categories are positioned next to each other. Therefore, a slice that is

bordered by two lines representing different categories is a separating slice, which

could be assigned to any of these different categories or to unobserved category. It

is also assumed that there is no ordering of the categories, and hence no ordering of

the segments on the wheel.

Coolen and Augustin introduced the NPI-M for the case of a known number

of categories [28] and for the case of an unknown number of categories [27]. We

restrict our focus in this thesis, for Chapters 4 and 5, on the case where the number

of possible categories, denoted by K, is known. We assume that K ≥ 3. However,

for the case when K = 2, the NPI-M can be used, but using NPI for Bernoulli data

[24] is more appropriate as it leads to slightly less imprecision. In the following we



2.4. Nonparametric Predictive Inference (NPI) 21

summarise the results of Coolen and Augustin [28] when K is known, using similar

notation as in [28].

Suppose that there are K ≥ 3 possible categories denoted by C1, ..., CK . We

assume that C1, ..., Ck for 1 ≤ k ≤ K are observed categories, and Ck+1, ..., CK are

unobserved categories. Let nj represent the number of observations in category Cj

for j = 1, ..., k, and let the total number of observations be n =
∑k

j=1 nj. The

general event of interest can be denoted by

Yn+1 ∈
⋃
j∈J

Cj (2.20)

where J ⊆ {1, ..., K}. Let OJ = J
⋂
{1, ..., k} and UJ = J

⋂
{k+1, ..., K} represent

the index-set for the categories in the event of interest that have been observed, and

the index-set for the categories in the event of interest that have not been observed,

respectively. Let r = |OJ | and l = |UJ |, hence 0 ≤ r ≤ k and 0 ≤ l ≤ K − k. This

leads to k − r observed categories which are not included in the event of interest,

and K − k− l unobserved categories which are not included in the event of interest.

To find the NPI lower and upper probabilities for the event of interest, we have to

consider all the possible configurations of the different segments on the probability

wheel. The NPI lower probability for the event of interest is achieved by selecting

the configuration that minimises the number of slices assigned to the event, and the

NPI upper probability for the event of interest is achieved by selecting the configu-

ration that maximises the number of slices assigned to the event.

The NPI-M lower probability for the event of interest (2.20), based on n obser-

vations, is

P

(
Yn+1 ∈

⋃
j∈J

Cj

)
=

1

n

(∑
j∈OJ

nj − r +max(2r + l −K, 0)

)
(2.21)

and the NPI-M upper probability for the event of interest (2.20), based on n obser-

vations, is

P

(
Yn+1 ∈

⋃
j∈J

Cj

)
=

1

n

(∑
j∈OJ

nj − r +min(2r + l, k)

)
. (2.22)
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The derivation of the NPI-M lower and upper probabilities (2.21) and (2.22) are

explained with more details, examples and discussions in [28]. Coolen and Augustin

[28] also presented some fundamental properties of NPI-M lower and upper proba-

bilities.

For events Yn+1 ∈ Ci, so considering only a single category, the NPI-M lower and

upper probabilities are

P (Yn+1 ∈ Ci) = max

(
0,

ni − 1

n

)
(2.23)

and

P (Yn+1 ∈ Ci) = min

(
ni + 1

n
, 1

)
(2.24)

where i = 1, ..., K and ni is the number of observations in category i. For clas-

sification problems, generally events with only observed categories are considered.

Therefore, we consider the case that these single categories have been observed, i.e.

ni > 0.

For unobserved categories, the NPI-M lower and upper probabilities are

P (Yn+1 ∈ Ci) = 0 (2.25)

and

P (Yn+1 ∈ Ci) =
1

n
. (2.26)

In the following example we illustrate how we can calculate the NPI-M lower

and upper probabilities for events with a single category, as these NPI-M lower and

upper probabilities are used in our method of Direct NPI classification in Chapters

4 and 5.

Example 2.4.1 Suppose that there are five possible categories, C1, C2, C3, C4

and C5, which have been observed 4, 2, 1, 0 and 0 times respectively. Suppose we
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are interested in the event Y8 ∈ Ci, for i = 1, ..., 5. The NPI-M lower and upper

probabilities for the event Y8 ∈ C1 are as follows:

P (Y8 ∈ C1) = max

(
0,

4− 1

7

)
=

3

7

and

P (Y8 ∈ C1) = min

(
4 + 1

7
, 1

)
=

5

7
.

Similarly, the NPI-M lower and upper probabilities for the events Y8 ∈ C2 to Y8 ∈ C5

are

P (Y8 ∈ C2) =
1

7
and P (Y8 ∈ C2) =

3

7

P (Y8 ∈ C3) = 0 and P (Y8 ∈ C3) =
2

7

P (Y8 ∈ C4) = 0 and P (Y8 ∈ C4) =
1

7

P (Y8 ∈ C5) = 0 and P (Y8 ∈ C5) =
1

7
.

□

2.5 NPI classification

In imprecise probability applications, the maximum entropy measure is used to

quantify uncertainty for building classification trees. Abellán and Moral [10] consid-

ered the use of maximum entropy distributions taken from the credal set associated

with the Imprecise Dirichlet Model (IDM) for building classification trees. However,

as the use of the IDM has been criticised due to some drawbacks, the NPI-M could

be an appropriate alternative to the IDM for quantifying uncertainty, and hence

replace the IDM in the maximum entropy measure. Unlike the IDM, the NPI-M

does not assume any prior knowledge about the data. Due to the predictive nature

of the NPI approach, it is well suited for classification, as the nature of classification

is explicitly predictive as well.
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The NPI-M has been applied successfully in the area of classification [2, 3, 14,

35, 50, 51]. In [2], two different algorithms were presented in order to obtain the

maximum entropy distribution using the NPI approach. The first one is the NPI-M

algorithm and the second one is an approximation of the NPI-M which is referred

to as the A-NPI-M algorithm [2]. These two algorithms are also presented and

explained in detail with some examples in Baker’s thesis [14]. Note that due to

some constraints of the NPI-M model, the set of probability distributions obtained

from the NPI-M is not a credal set [2]. The NPI-M does not lead to a credal set

because of the limitations which are caused by the constraints on the probability

wheel. However, taking these constraints into account, Abellán et al. [2] presented

an algorithm that obtain the maximum entropy distribution based on the NPI-M

model. For ease of application, the A-NPI-M algorithm which leads to a credal set

is used to obtain the maximum entropy distribution. The A-NPI-M is simpler than

the NPI-M because it does not necessarily consider the constraints associated with

the NPI-M model. These two NPI algorithms (NPI-M and A-NPI-M) can be used in

order to build classification trees using the maximum entropy measure in a similar

way to the IDM classification trees.

Abellán et al. [3] have presented an application of NPI-M in classification trees.

They have conducted extensive experiments to assess the performance of classifica-

tion trees built using the NPI-M model. They compare the performance of classifi-

cation trees generated by the NPI-M with the performance of trees generated by the

IDM and C4.5 algorithms. Their results show that the NPI-M slightly outperforms

the IDM, besides, classification trees which are built using the NPI-M are smaller

than the ones built using the C4.5 and IDM algorithms.

Another experiment has been conducted by Baker [14] in order to study the

performance of the A-NPI-M algorithm when it is used to build classification trees.

She compared the performance of the A-NPI-M algorithm to the IDM algorithm

and three different classical algorithms. The findings indicate that the A-NPI-M

algorithm significantly outperforms other classical methods such as the ID3 and the
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C4.5 algorithms, but has very similar performance to the IDM algorithm. Baker

[14] has carried out additional experiments in order to compare the A-NPI-M and

NPI-M algorithms, and to determine which one of them is more successful when

applied to classification trees. She also compared these two algorithms with the

IDM algorithm. She found that all these algorithms have similar performance with

the A-NPI-M and NPI-M algorithms slightly superior to the IDM algorithm. She

also concludes that the A-NPI-M and NPI-M algorithms perform in a very similar

way where in most data sets the difference in classification accuracy is negligible.

A recent application of the use of NPI-M in classification trees has been presented

by Moral-Garćıa et al. [51]. They proposed a new adaptation of decision trees to

Multi-Label Classification based on the NPI-M model. The Multi-Label Classifica-

tion refers to the task of predicting the set of labels, which are associated with an

instance. This method assumes that an instance could be associated with multiple

labels. Their findings indicate that the Multi-Label Decision Trees based on NPI-M

perform better than the Multi-Label Decision Trees based on precise probabilities,

particularly when working with noisy data. Another application of NPI-M in clas-

sification is presented by Moral-Garćıa et al. [50]. They build an imprecise classifier

based on the NPI-M and IDM algorithms, where the IDM algorithm is implemented

with different values of the parameter s̃. In imprecise classification, trees may re-

turn a set of classes in leaf nodes rather than a single class. The results achieved

by Moral et al. [50] indicate that the performance of the NPI-M is the same as the

performance of the IDM with the best choice of the parameter s̃. As a result, the

NPI-M is more suitable than the IDM to be used in imprecise classification since

the NPI-M is parameter free.

In this thesis, we contribute to the theory of classification from the NPI per-

spective, by developing a new classification tree algorithm. The novel classification

method presented in this thesis has been named Direct Nonparametric Predictive

Inference classification (D-NPI). The D-NPI classification method commences by

applying the NPI approach to a classification tree with the use of a new split crite-
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rion named Correct Indication (CI) to choose the best splitting attribute variable at

each node. The CI split criterion is completely based on the NPI lower and upper

probabilities for events containing binary or multinomial data, and it does not use

any additional concepts such as entropy. We first introduce the D-NPI classification

method for binary data in Chapter 3, then we generalise that for multinomial data

in Chapter 4.



Chapter 3

Direct NPI Classification for

Binary Data

3.1 Introduction

In this chapter, we introduce a new method of classification using imprecise probabil-

ities and based on the NPI approach, which we call Direct Nonparametric Predictive

Inference (D-NPI) classification. We develop the D-NPI classification method for

binary data in this chapter, while in Chapter 4 we generalize the D-NPI classification

method to multinomial data. The D-NPI classification method can base classifica-

tion on the NPI lower and upper probabilities for events containing binary data,

without adding any further assumptions or information. We build D-NPI classifica-

tion trees using a new split criterion, named Correct Indication (CI). The CI split

criterion is completely based on the NPI lower and upper probabilities, and it does

not use any additional concepts like entropy. Using this split criterion, we present a

new classification tree algorithm, which is based on the D-NPI classification method.

We have carried out an experimental analysis in order to assess the performance

of the D-NPI classification algorithm when building classification trees. We have

also compared the performance of the D-NPI classification algorithm with other

classical algorithm such as the C4.5 algorithm [56], and other imprecise algorithms

based on the IDM or NPI-M such as the NPI-M algorithm [3, 14], the A-NPI-M

27
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algorithm [3, 14] and the IDM algorithm [10] with two choices of the parameter s̃.

These classification algorithms are introduced in Chapter 2. We then have evaluated

the performance of the classification algorithms using the classification accuracy (on

testing sets), in-sample accuracy (on training sets) and average tree size. A 10-fold

cross validation scheme has been applied on different data sets from the UCI Ma-

chine Learning Repository database [32].

This chapter is organized as follows: Section 3.2 introduces the method of D-NPI

classification, and illustrates how we can base classification on the NPI lower and

upper probabilities for events with binary outcomes. In Section 3.3, we explain how

the D-NPI classification method can be used to build classification trees. First, we

introduce the novel split criterion, Correct Indication (CI), which is used to select

the best splitting attribute when building classification trees. Then, the building

process of a classification tree using our method is described with an illustrative

example. In Section 3.4, we present results of an experimental analysis that is con-

ducted to assess the performance of our method and compare it with some existing

methods from the literature. Finally, some concluding remarks and related topics

for future research are presented in Section 3.5.

3.2 Direct NPI classification

In this section, we introduce Direct NPI classification using NPI for Bernoulli data

[24], introduced in Section 2.4.2. We illustrate how we can base classification on

the NPI lower and upper probabilities for binary data without adding any further

assumptions. Then, an example to illustrate the Direct NPI classification will be

given. We first develop the method of Direct NPI classification for complete binary

data, where both the class variable and the attribute variables are binary.

Assume that we have a data set of n instances which only have two values, 0 or

1. These instances can also be indicated as ‘negative’ or ‘positive’ cases. Suppose

that there are T ≥ 1 binary attribute variables. Let tj indicate attribute variables,
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for j ∈ {1, ..., T}. The value of each attribute is either 0 or 1, i.e. tj = 0 or tj = 1.

Let D be a binary class variable, where D = 0 or D = 1. Let n0 denote the total

number of instances with D = 0, and let n1 denote the total number of instances

with D = 1, so n = n0 + n1.

Suppose that we want to see if attribute tj is useful for indicating the possible

class state for a future instance. The attribute tj is useful if an instance with at-

tribute value tj = 1, has a high probability of being classified as D = 1, so that

tj = 1 is an indicator for D = 1, and an instance with attribute value tj = 0, has

a high probability of being classified as D = 0, so that tj = 0 is an indicator for

D = 0. Therefore, we are interested in the conditional events D = 1|tj = 1 and

D = 0|tj = 0. Note here that this approach to indication allows the attribute values

to be relabelled, possibly multiple times in the construction of a single tree. More

clarification and example about this issue of relabelling are given in Section 3.3.2.

Of course, the ideal situation would be that all instances with attribute value tj = 1

are classified as D = 1, and all instances with attribute value tj = 0 are classified as

D = 0. These conditional events indicate that attribute value 1 (tj = 1) is related

to class state 1 (D = 1) in terms of the data set, and similarly for D = 0|tj = 0. In

other words, each attribute value in the data set indicates a particular class state.

We consider such events for one future instance for which the attributes are available

but we do not know its class states. This instance is assumed to be exchangeable

with all other n instances in the data set. Let n(tj = 1) be the total number of

instances in the data set which have value tj = 1. Let n1(tj = 1) denote the total

number of instances which have value tj = 1 and which are classified as D = 1, and

let n0(tj = 1) denote the total number of instances which have value tj = 1 but are

classified as D = 0. Thus, n(tj = 1) = n1(tj = 1) + n0(tj = 1). Note that these

numbers are known from the data set.

It should be emphasized that the inference considers an instance which is not in

the data, and hence, its class state is unknown. We denote the unknown class state

of one future instance, which is not included in the data set, by Dn+1. Judgement on
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correctness of the predictive inference on this instance is impossible at the time of

such predictions, but the effectiveness of such judgments can be considered based on

success of the attribute variables for the n available instances in the data set. Using

NPI for Bernoulli data [24], introduced in Section 2.4.2, see Equations (2.16) and

(2.17), we can derive the NPI lower and upper probabilities for Dn+1 = 1|tn+1,j = 1.

Note here that tn+1,j = 1 is the attribute value for this future instance. We can

provide the NPI lower and upper probabilities for the event that a future instance,

which is not included in the data, say ‘instance n+1’, will be classified as Dn+1 = 1

given that its attribute value, tn+1,j = 1. The NPI lower probability is

P (Dn+1 = 1|tn+1,j = 1) =
n1 (tj = 1)

n (tj = 1) + 1
, (3.1)

and the NPI upper probability is

P (Dn+1 = 1|tn+1,j = 1) =
n1 (tj = 1) + 1

n (tj = 1) + 1
. (3.2)

We can also derive the NPI lower and upper probabilities for Dn+1 = 0|tn+1,j = 1

via the conjugacy property,

P (Dn+1 = 0|tn+1,j = 1) = 1− P (Dn+1 = 1|tn+1,j = 1)

= 1− n1 (tj = 1) + 1

n (tj = 1) + 1
=

n0 (tj = 1)

n (tj = 1) + 1
,

and

P (Dn+1 = 0|tn+1,j = 1) = 1− P (Dn+1 = 1|tn+1,j = 1)

= 1− n1 (tj = 1)

n (tj = 1) + 1
=

n0 (tj = 1) + 1

n (tj = 1) + 1
.

Similarly, the NPI lower and upper probabilities for Dn+1 = 0|tn+1,j = 0, i.e. the

NPI lower and upper probabilities for the event that the class state is Dn+1 = 0 for

this future instance if the value of its attribute, tn+1,j = 0, are given as follows:

P (Dn+1 = 0|tn+1,j = 0) =
n0 (tj = 0)

n (tj = 0) + 1
, (3.3)
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and

P (Dn+1 = 0|tn+1,j = 0) =
n0 (tj = 0) + 1

n (tj = 0) + 1
. (3.4)

Also, by the conjugacy property, the NPI lower and upper probabilities for Dn+1 =

1|tn+1,j = 0 are

P (Dn+1 = 1|tn+1,j = 0) = 1− P (Dn+1 = 0|tn+1,j = 0) =
n1 (tj = 0)

n (tj = 0) + 1
,

and

P (Dn+1 = 1|tn+1,j = 0) = 1− P (Dn+1 = 0|tn+1,j = 0) =
n1 (tj = 0) + 1

n (tj = 0) + 1
.

It should be noticed that the values of the above NPI lower and upper probabili-

ties will report the strength of the evidence for the class state of the future instance,

which is not included in the data, but is assumed to be exchangeable with the n

other instances in the data set. Of course, we can not conclude whether or not a

prediction based on the value of attribute tj is correct, but the above values report

the predicted class state for future instances based on the n available instances in

the data set. We can base NPI lower and upper probabilities for Dn+1 on the values

of each binary attribute, and then select the best attribute variable among them,

which gives the largest lower and upper probabilities. This is actually the main

aim of classification, hence, we can base classification on the NPI lower and up-

per probabilities. In Section 3.3, we explain how to build classification trees based

on the D-NPI classification method. Example 3.2.1 illustrates the proposed D-NPI

classification method.

Example 3.2.1 Suppose we have a data set of 100 people, where 35 people have

a particular disease and 65 people do not have the disease. Consider the test t1

(attribute variable) which is performed upon all people as shown in Table 3.1, where

t1 = 1 and t1 = 0 represent a positive and negative test result, respectively. Let D

represent disease status, where D = 1 denotes the presence of disease and D = 0
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denotes the absence of disease. We use this data set to illustrate the above NPI

lower and upper probabilities.

t1 = 1 t1 = 0

D = 1 15 20

D = 0 5 60

Table 3.1: The result of test t1.

First, just for the sake of clarifying some notations introduced earlier in this

section, from Table 3.1, the total number of instances which have values t1 = 1 is

n(t1 = 1) = 20, and the total number of instances which have values t1 = 1 and

which are classified as D = 1 is n1(t1 = 1) = 15, while the total number of instances

which have values t1 = 1 but which are classified as D = 0 is n0(t1 = 1) = 5. As

a result, n1(t1 = 1) + n0(t1 = 1) = n(t1 = 1). Similarly, the values with regard to

t1 = 0 are n(t1 = 0) = 80, n1(t1 = 0) = 20 and n0(t1 = 0) = 60.

Secondly, we consider the result of test t1 for one future person who is not

included in the data set, to predict his/her disease status. We calculate the NPI

lower and upper probabilities for the event that a future person, say person 101,

who is not included in the data set but is assumed to be exchangeable with the

100 people in the data set has the disease (D101 = 1) given that he/she has tested

positive (t1 = 1). The NPI lower probability, from Equation (3.1), is

P (D101 = 1|t101,1 = 1) =
n1 (t1 = 1)

n (t1 = 1) + 1
=

15

21
= 0.714

and the NPI upper probability, from Equation (3.2), is

P (D101 = 1|t101,1 = 1) =
n1 (t1 = 1) + 1

n (t1 = 1) + 1
=

16

21
= 0.762.

It is also possible to calculate these NPI lower and upper probabilities for the

event that the person does not have the disease (D101 = 0), given that he/she has
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tested positive (t1 = 1), via the conjugacy property. The NPI lower and upper

probabilities for this event are

P (D101 = 0|t101,1 = 1) = 1− P (D101 = 1|t101,1 = 1) =
n0 (t1 = 1)

n (t1 = 1) + 1
=

5

21
= 0.238

P (D101 = 0|t101,1 = 1) = 1−P (D101 = 1|t101,1 = 1) =
n0 (t1 = 1) + 1

n (t1 = 1) + 1
=

6

21
= 0.286.

Similarly we can calculate the NPI lower and upper probability for the event

that this future person does not have the disease (D101 = 0) given that he/she has

tested negative (t1 = 0), these NPI lower and upper probabilities are

P (D101 = 0|t101,1 = 0) = 0.741

and

P (D101 = 0|t101,1 = 0) = 0.753.

By the conjugacy property, we can also calculate the NPI lower and upper proba-

bilities for the event that this person has the disease given that he/she has tested

negative, these NPI lower and upper probabilities are

P (D101 = 1|t101,1 = 0) = 0.247

and

P (D101 = 1|t101,1 = 0) = 0.259.

As mentioned earlier, these NPI lower and upper probabilities for such events

directly report the strength of the evidence for the class state (disease status here)

for future instances, based on the data. Thus, it is clear from the values of the

NPI lower and upper probabilities that a future person with test result 1 has higher

NPI lower and upper probabilities of being classified as diseased than a person with

test result 0. Similarly, a person with test result 0 has higher NPI lower and upper
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probabilities of being classified as non-diseased than a person with test result 1.

This is also clear from the given data set that more people with test result 0 do not

have the disease, and more people with test result 1 have the disease. Therefore,

the correctness of the predictive inference on this future person can be considered

based on success of the test results for the n people in the data set.

□

To build a classification tree, we are interested in the best splitting attribute

variables to select at each node. Of course, we aim at the most informative at-

tribute variables. In our Direct NPI classification, if the binary attribute variable

is informative in both values, then it gives high NPI lower and upper probabilities

for such events. Thus, we can use the above NPI lower and upper probabilities to

decide on which attribute variable (test, in Example 3.2.1) we place at each node of

a classification tree.

We can calculate the above NPI lower and upper probabilities for such events

for all binary attribute variables and then determine which one is the best. In a

classification tree, we would have to decide which attribute variables to place on the

root node and at the child nodes. So, we have to use the above NPI lower and upper

probabilities in order to make this decision. In Section 3.3.1, we explain in more

detail our split criterion which is based on the NPI lower and upper probabilities

for events with binary data. In classification trees, we must also decide whether or

not including other attribute variables beyond the root node is useful. More details

about these decisions are given in Section 3.3.2.

After this brief introduction to Direct NPI classification for binary data, the

next step is to show how we build a classification tree based on these NPI lower and

upper probabilities. One of the most important issues in classification trees is how to

choose the best attribute variable to split on, i.e. the split criterion. We introduced

some of the most commonly used split criteria in the literature in Section 2.2.2. In

this thesis we propose a new split criterion to use with binary data, which we call

Correct Indication (CI). In Section 3.3.1, we will introduce this split criterion for
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use with binary data. However, we will generalise the Correct Indication (CI) split

criterion to multinomial data in Chapter 4, where attribute variables may have more

than two categories (see Section 4.3). In Section 3.3, we explain how we can use the

the NPI lower and upper probabilities for binary data directly to build classification

trees.

3.3 Direct NPI classification trees

In this section, we explain how the Direct NPI classification method can be used

to build classification trees. A classification tree is a simple method that can be

used to predict a class for a new instance based on its attribute values. The general

classification tree structure and some other details about classification trees have

been discussed in Section 2.2. In this section, we discuss building a classification

tree from Direct NPI classification perspective. The most important step to build a

classification tree is the split criterion. Several split criteria have been introduced in

the literature, we discussed three of the most commonly used classic split criteria,

and one recently introduced split criterion which is based on imprecise probability,

in Section 2.2.2. To build a Direct NPI classification tree, we use a new split crite-

rion, which we call Correct Indication (CI). The CI method is completely based on

the NPI approach. In this chapter, we introduce the CI split criterion for use with

binary data, while the CI split criterion is also introduced for use with multinomial

data in Chapter 4.

This section is organised as follows: Section 3.3.1 introduces the split criterion

CI for binary data. Section 3.3.2 describes the building process of the Direct NPI

classification trees and in Section 3.3.3 an example is presented.

3.3.1 Correct Indication (CI)

In this section we introduce a novel split criterion to be used when building classi-

fication trees based on the Direct NPI classification method. The concept of CI is
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used to decide on which attribute the data will be split. So, in order to select an

attribute variable for each node of the classification tree, the NPI lower and upper

probabilities for CI need to be calculated. After that we aim at the largest possible

values for both the NPI lower and upper probabilities for CI. The CI reports the

strength of the evidence that the attribute variables indicate, based on the data. In

this section, we introduce the NPI lower and upper probabilities for CI correspond-

ing to binary attribute variables.

Let p = P (tj = 1), hence, P (tj = 0) = 1− p. Using NPI for Bernoulli quantities

[24], introduced in Section 2.4.2, we get

p ∈
[
n(tj = 1)

n+ 1
,
n(tj = 1) + 1

n+ 1

]
. (3.5)

Now we can determine the NPI lower probability for the event that attribute tj

leads to CI by taking the NPI lower probabilities for (Dn+1 = 0|tn+1,j = 0), and

for (Dn+1 = 1|tn+1,j = 1), and p within the range given by (3.5) to minimise the

weighted average,

P j(CI) = min
p

(
n0 (tj = 0)

n (tj = 0) + 1
(1− p) +

n1 (tj = 1)

n (tj = 1) + 1
p

)
. (3.6)

This minimum is achieved for

p =


n(tj = 1) + 1

n+ 1
if

n0(tj = 0)

n(tj = 0) + 1
≥ n1(tj = 1)

n(tj = 1) + 1
,

n(tj = 1)

n+ 1
otherwise.

(3.7)

Similarly, the NPI upper probability for the event that attribute tj leads to CI is

given by

P j(CI) = max
p

(
n0 (tj = 0) + 1

n (tj = 0) + 1
(1− p) +

n1 (tj = 1) + 1

n (tj = 1) + 1
p

)
, (3.8)

where p is such that
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p =


n(tj = 1) + 1

n+ 1
if

n0(tj = 0) + 1

n(tj = 0) + 1
≤ n1(tj = 1) + 1

n(tj = 1) + 1
,

n(tj = 1)

n+ 1
otherwise.

(3.9)

These NPI lower and upper probabilities for CI should be calculated for each

single attribute variable. We aim at the maximum probability for CI for both NPI

lower and upper probabilities for a future instance. Generally, in a classification

tree, the most informative attribute variable is desired. In CI for binary data, if the

attribute variable is very informative in both cases, then it gives high NPI lower and

upper probabilities for CI. For example, if all attribute values tj = 0 indicate the

class D = 0, and all attribute values tj = 1 indicate the class D = 1, then this is an

example which would give the highest possible NPI lower and upper probabilities

for CI. Note that the CI given in this section is only applied to binary attribute

variables. For the case of multinomial attribute variables, where attributes may

have more than two categories, see Section 4.3. Throughout this thesis, we will

use the term ‘CI intervals’ for the intervals which are created by the NPI lower

and upper probabilities for CI for attribute variables, i.e. the NPI lower and upper

probabilities for CI are considered as end points of the CI intervals. Example 3.3.1

illustrates the calculations of the CI split criterion, and how the NPI lower and

upper probabilities for CI may indicate the best attribute variable to select when

building a classification tree.

Example 3.3.1 Consider a data set with 100 instances, two binary attribute vari-

ables (t1 and t2) and a binary class variable (D). The value of each attribute variable

is distributed between the two classes as illustrated by Table 3.2. The aim of this

example is to show how the CI split criterion is calculated for different attribute

variables, and how to identify the best attribute variable to use when building a

classification tree.

Consider the attribute variable t1. Using NPI for Bernoulli quantities [24], in-



3.3. Direct NPI classification trees 38

D t1 t2

1 0 1 0

1 65 2 30 25

0 5 28 20 25

Table 3.2: Data set description for Example 3.3.1.

troduced in Section 2.4.2, p is as follows

p ∈
[
70

101
,
71

101

]
.

The NPI lower and upper probabilities for CI for t1 are

P t1
(CI) =

28

31

(
1− 70

101

)
+

65

71

(
70

101

)
= 0.9117

P t1(CI) =
29

31

(
1− 71

101

)
+

66

71

(
71

101

)
= 0.9313.

Similarly, the NPI lower and upper probabilities for CI for t2 are

P t2
(CI) =

25

51

(
1− 50

101

)
+

30

51

(
50

101

)
= 0.5387

P t2(CI) =
26

51

(
1− 51

101

)
+

31

51

(
51

101

)
= 0.5593.

The values of the NPI lower and upper probabilities for CI for t1 are greater

than those values given by t2. These values of the NPI lower and upper probabilities

for CI reflect the strength of the evidence that each attribute variable indicates re-

garding the possible class states for future instances. Table 3.2 shows that instances

with values t1 = 1 have a higher proportion of being classified as D = 1 than being

classified as D = 0, and instances with values t1 = 0 have a higher proportion of

being classified as D = 0 than being classified as D = 1. Therefore, this attribute

variable has high NPI lower and upper probabilities for CI. In contrast, instances

with values t2 = 0 have the same proportion of being classified as D = 1 or D = 0,
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and instances with values t2 = 1 have similar proportions of being classified as D = 1

or D = 0. Thus, this attribute variable has not produced high NPI lower and upper

probabilities for CI. Note that the highest possible lower and upper probabilities

for CI are given by an attribute variable that perfectly classified the data. I.e. all

instances with values 1 are classified as class 1 and all instances with values 0 are

classified as class 0. The better indication about the possible class states for future

instances of t1 than of t2 is reflected by larger values of the NPI lower and upper

probabilities for CI for t1 than those values for t2. When building classification trees

we aim for the most informative attribute variable to place at each node, and for

this example one would select attribute variable t1 as it gives higher NPI lower and

upper probabilities for CI.

□

3.3.2 Building D-NPI classification trees

In this section, we describe how to build a Direct NPI classification tree using only

binary data. The basic idea is simple and it is applied recursively to each of the

nodes. The building process is similar to the well-known C4.5 algorithm (see Sec-

tion 2.2), but we use the CI split criterion to select the best attribute variable at

each node. Generally, the D-NPI classification tree recursively partitions the train-

ing data sets into smaller subsets, based on the most informative attribute variable

which is selected by the CI split criterion. Note here that the most informative at-

tribute variable is the one which has the largest NPI lower and upper probabilities

for CI.

It is important to note that during the process of building D-NPI classification

trees in this chapter, we assume that
n1(tj = 1)

n(tj = 1)
≥ n1(tj = 0)

n(tj = 0)
, which means that

attribute values are defined such that attribute value 1 (positive value) is related to

the class state 1 (positive class state) in terms of the data set. This link between

the attribute values and class states should be used at all stages of building the tree,

hence, we may need to redefine the attribute values when working with subsets of

the data, i.e. at different parts of the tree. Hence, further notation and attention
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D t1 t2

1 0 1 0

1 65 2 5 19

0 5 28 75 1

Table 3.3: Data set description for Example 3.3.2.

are required. Example 3.3.2 illustrates the case where an attribute variable needs

to be re-labelled to satisfy the assumption
n1(tj = 1)

n(tj = 1)
≥ n1(tj = 0)

n(tj = 0)
.

Example 3.3.2 Consider a data set with 100 instances, two binary attribute vari-

ables (t1 and t2) and a binary class variable (D). The value of each attribute variable

is distributed between the two classes as illustrated by Table 3.3. The aim of this

example is to illustrate when attribute variables need to be re-labelled when building

the D-NPI classification trees.

For attribute variable t1, the assumption
n1(tj = 1)

n(tj = 1)
≥ n1(tj = 0)

n(tj = 0)
is satisfied,

while attribute variable t2 does not satisfy this assumption. Hence, we need to re-

label the attribute variable t2 as follows: t2 = 1 as t2 = 0 and t2 = 0 as t2 = 1.

Then, the attribute variable t2 will satisfy the above assumption, and will be ready

to use when building the D-NPI classification trees.

□

Suppose that we have a training data set, D, which has a binary target variable

and binary attribute variables, tj, where j = 1, ..., T . The method starts with a tree

with a root node, then we go through interior nodes finally arriving at the leaves

which describe a possible class state. In our method, each non-leaf node will have

an attribute variable with two possible values, say tj = 0 or tj = 1.

First, we calculate the Correct Indication (CI) intervals for the complete list of

attribute variables tj, using the NPI lower and upper probabilities for CI given in

Equations (3.6) and (3.8). Then, we compare the values of the CI intervals for the

full training set with the interval given by the NPI lower and upper probabilities for
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CI if no attribute variable is used, which are defined in the following paragraph. In

this thesis, we refer to the NPI lower and upper probabilities for CI if no attribute

variable is used by the NPI lower and upper probabilities for NA, where NA is the

event of CI in case no attribute variable is used.

Let P (NA) indicate the NPI lower probability for CI if no attribute variable is

used, and P (NA) indicate the NPI upper probability for CI if no attribute variable

is used. The NPI lower and upper probabilities for CI if no attribute variable is

used, P (NA) and P (NA), correspond to simply stating the most common value in

the target variable. Using the NPI method for Bernoulli quantities [24], introduced

in Section 2.4.2, see also Equations (2.16) and (2.17), the NPI lower and upper

probabilities for CI if no attribute variable is used are

[P (NA), P (NA)] =

[
s

n+ 1
,
s+ 1

n+ 1

]

where s is the number of positive cases in n instances, or the larger value in the

target variable. When the number of positive and negative cases is equal, we choose

any of them to calculate the NPI lower and upper probabilities for CI if no attribute

variable is used. For example, suppose we have a class variable with 70 instances in

class state 0, and 30 instances in class state 1, where all instances are equal to 100,

then the NPI lower and upper probabilities for CI if no attribute variable is used

are

P (NA) =
s

n+ 1
=

70

101

and

P (NA) =
s+ 1

n+ 1
=

71

101
.

The probability interval for CI if no attribute variable is used measures the weighted

average of the most common value in the target variable at the first split step. Then

it does the same with the following splits when building the classification tree, where

these splits are based on the chosen attribute variable at the root node.
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After that, for each attribute variable, tj, we consider whether the NPI lower

and upper probabilities for CI for this attribute are greater than the NPI lower

and upper probabilities for NA, respectively. I.e. the NPI lower probability for

CI is greater than the NPI lower probability for NA, and the same for the upper

probabilities. If this is the case, then we choose the attribute variable with the

highest CI interval as a root node. This means that we consider two conditions in

order to split upon the attribute variable with the highest CI values, which are

P (CIj∗) > P (NA) and P (CIj∗) > P (NA) (3.10)

where the P (CIj∗) and P (CIj∗) correspond to the attribute variable with the high-

est NPI lower and upper probabilities for CI, and P (NA) and P (NA) correspond

to the highest class state of the target variable. So, j∗ indicates the attribute vari-

able that gives the maximum values for the NPI lower and upper probabilities for

CI compared to the other attribute variables. If we have two or more attribute

variables that all fulfil the two conditions in (3.10) but they overlap in their NPI

lower and upper probabilities for CI, we choose the one with the highest NPI upper

probability for CI. In the case of having two or more attribute variables that all

have the same NPI upper probability for CI and the same NPI lower probability

for CI giving that they all fulfil the two conditions in (3.10), we choose any of them

to build the tree. If there is no attribute variable that fulfils the two conditions in

inequalities (3.10), we do not split further and transform the node into a leaf with

the most common class in the target variable.

The two conditions in (3.10) are used as a stop criterion when building the D-NPI

classification trees. In order to split further when building the D-NPI classification

trees, we need to choose attribute variables that produce more information with

regard to predicting the possible class state. The NPI lower and upper probabilities

for NA are achieved directly from the class variable, so information comes form the

class variable only. Therefore, we look for an attribute variable that contains more

information than the NPI lower and upper probabilities for NA. An attribute vari-

able that has higher values for the NPI lower and upper probabilities for CI should

have more information about predicting the possible class state than only consider-
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ing the NPI lower and upper probabilities for NA. This stop criterion could prevent

overfitting in the D-NPI classification trees, as it prevents us from building larger

trees that may over fit the data and has less classification accuracy on the testing set.

However, studying this stop criterion in more detail remains as a future research

topic. For example, using the imprecision (i.e. the difference between the NPI lower

and upper probabilities for CI, and for NA) along with the two conditions in (3.10)

particularly when there is overlap between two or more attribute variables that all

fulfil these conditions or in other cases when one condition of (3.10) is met but not

the another one. Such study and more investigations about this stop criterion might

lead to a better conclusion about using them when building the D-NPI classification

trees.

After selecting the best attribute variable tj∗ at the root node, based on CI, we

split the training data setD into two subsetsDj∗=0 andDj∗=1, whereDj∗=0

⋃
Dj∗=1 =

D and Dj∗=0

⋂
Dj∗=1 = ∅. After this stage, we calculate the CI intervals for each

subset and then compare the values of each subset with the corresponding prob-

ability interval for NA following the first chosen attribute variable. That means

comparing the intervals of CI for the first subset Dj∗=0 with the probability interval

for NA corresponding to Dj∗=0, and comparing the intervals of CI for the second

subset Dj∗=1 with the probability interval for NA corresponding to Dj∗=1. If there

is no attribute variable with a greater CI interval than the CI interval for NA, i.e.

no attribute variable that fulfils the two conditions in (3.10), then we do not split

further and fix a leaf with the most common class in the target variable. Otherwise,

we choose the attribute variable with the highest CI interval to split on. A node

will be designated as a leaf node only if we do not have any attribute variable that

fulfils the two conditions in (3.10). Finally, the above process can be represented as

a classification tree. Algorithm 1 describes the D-NPI classification tree algorithm,

named D-NPI algorithm. In Section 3.3.3, we apply the D-NPI classification method

to a data set in order to illustrate the construction of the D-NPI classification tree.



3.3. Direct NPI classification trees 44

Algorithm 1 Pseudocode of the D-NPI algorithm.
1: Input:

2: TR: Training data set

3: Target: Target variable

4: Attr: List of attribute variables

5: procedure D-NPI(TR, Target, Attr)

6: Create a Root node for the tree

7: if TR have the same class C, then

8: Return the single-node tree with class C

9: if Attr is empty, then

10: Return the single-node tree with the most common class C in TR (*)

11: Otherwise

12: for each attribute, t in Attr do

13: Compute P t(CI) and P t(CI)

14: Choose attribute, t with highest P t(CI) and P t(CI)

15: if P t(CI) > P (NA) and P t(CI) > P (NA) then

16: Choose the attribute, t (*)

17: else

18: Add a leaf node labelled with the most common class in TR (*)

19: Set t the attribute for Root

20: for each value of t, vi, do

21: Add a branch below Root, corresponding to t = vi

22: Let TRvi be the subset of TR that have t = vi

23: if TRvi is empty, then

24: Add a leaf node labelled with the most common class in TR

25: else

26: Add the subset generated by D-NPI(TRvi , Target, Attr-{t})

27: return Root

28: (*): In case of ties, see descriptions in Section 3.3.2.
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Attribute Attribute Description Attribute type

a1 Temperature of patient continuous

a2 Occurrence of nausea binary

a3 Lumbar pain binary

a4 Urine pushing (continuous need for urination) binary

a5 Micturition pains binary

a6 Burning of urethra, itch, swelling of urethra outlet binary

d1 Inflammation of urinary bladder binary

d2 Nephritis of renal pelvis origin binary

Table 3.4: Attribute information of Acute Inflammations data set.

3.3.3 Example of the D-NPI classification tree

In this section, we illustrate how to build a classification tree using the Direct NPI

method. The data set used in this section is the Acute Inflammations data set,

which is extracted from the UCI Machine Learning Repository [32]. This data set

has been created by a medical expert as a data set to test an expert system, which

will perform the presumptive diagnosis of two diseases of the urinary system. This

data set consists of 120 instances, 6 attributes variables, and two target variables.

There are no missing values in this data set. A brief description of this data set is

given in Table 3.4.

All binary attribute variables have values of ‘yes’ or ‘no’ and the continuous

variable (temperature) has values between 35.5 and 41.5. As we mentioned earlier,

at this stage of developing the D-NPI classification method, we consider only binary

attribute variables. Therefore, a threshold of 37.95 has been taken for the continu-

ous variable to convert it into a binary variable (‘Low’ or ‘High’). This threshold is

the same as the threshold given by the Information Gain Ratio split criterion [56].

Note that this data set has two target variables, named d1 and d2, each de-

noting a particular disease. In this example, we build two different classification

trees, each is based on one of the target variables. The tree building process is

explained for one tree, while the another tree is built following the same procedures.
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Attribute P (CI) P (CI)

a1 0.663 0.684

a2 0.591 0.612

a3 0.724 0.745

a4 0.804 0.828

a5 0.826 0.847

a6 0.571 0.592

Table 3.5: The intervals for CI for all attribute variables.

The Acute Inflammations data set has been divided into training and testing data

sets, with the training set and testing set containing about 80% and about 20% of

all data, respectively. The D-NPI classification trees for both target variables have

been constructed on the same training data. Note that we apply this binary split-

ting for the training and testing data sets only here for the sake of illustrating the

construction of the D-NPI classification tree. However, we apply the 10-fold cross

validation scheme, introduced in Section 2.2.1, in order to assess the performance of

the D-NPI classification trees and compare it with other classification methods (see

Section 3.4). Thus, the 80%- 20% splitting method is only applied here to illustrate

our method, and is not considered in the experimental analysis.

First, we consider the target variable d1. Using Equations (3.6) and (3.8), we

calculate the NPI lower and upper probabilities for CI for all attribute variables.

Table 3.5 shows the NPI lower and upper probabilities for CI for all attribute

variables, considering d1 as the target variable. Now, we compare the intervals

in Table 3.5 with the interval generated by the NPI lower and upper probabilities

for NA. At this step, no further attribute means no attribute at all. We know

from the training set that the most common value in the target variable is ‘not

having the disease’ with 51 instances out of 96 instances. Therefore, the probability

interval for NA corresponds to indicating that ‘no disease’ is most likely. Using the

NPI for Bernoulli data [24], introduced in Section 2.4.2, the NPI lower and upper

probabilities for NA are

P (NA) =
51

97
= 0.526
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Attribute P (CI) P (CI)

a1 0.648 0.699

a2 - -

a3 0.765 0.815

a4 0.628 0.680

a6 0.495 0.548

Table 3.6: CI intervals for data set Da5=0.

Attribute P (CI) P (CI)

a1 0.639 0.694

a2 0.639 0.694

a3 0.639 0.694

a4 0.958 1

a6 0.618 0.673

Table 3.7: CI intervals for data set Da5=1.

and

P (NA) =
52

97
= 0.536.

Now, we simply compare these NPI lower and upper probabilities, [0.526, 0.536],

with the NPI lower and upper probabilities for CI, given in Table 3.5, and then we

choose the attribute variable with the highest CI interval, which is a5 (Micturition

pains) to be assigned to the root node. Note that the two conditions in (3.10) have

to be met. Thus, we split the data set according to the value of a5.

As the next step, the training data set D will be divided into two subsets Da5=0

and Da5=1, where Da5=0

⋃
Da5=1 = D and Da5=0

⋂
Da5=1 = ∅. Da5=0 contains 50 pa-

tients, 43 of them do not have the disease, and Da5=1 contains 46 patient, 8 of them

have the disease. We now need to calculate the intervals for CI for each subset,

these intervals are given in Table 3.6 and Table 3.7, respectively. Note that we do

not calculate the CI interval for the attribute variable a2 with Da5=0 as all instances

in a2 have the same value.

After that, we compare the CI intervals in Table 3.6 with the corresponding

probability interval for NA following a5 with values ‘no’ (Da5=0), which is

[P (NA), P (NA)] =

[
43

51
,
44

51

]
= [0.843, 0.863].

Similarly, we compare the CI intervals in Table 3.7 with the corresponding proba-

bility interval for NA following a5 with values ‘yes’ (Da5=1), which is

[P (NA), P (NA)] =

[
38

47
,
39

47

]
= [0.809, 0.830] .
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Figure 3.1: Classification Tree of Inflammation of urinary bladder.

Table 3.6 shows that there is no attribute variable that has higher CI interval

than the corresponding NPI lower and upper probabilities for NA. Therefore, no

splitting will be considered for this branch and we fix a leaf node with the most

common value in the target variable, which is not having disease. For the set Da5=1,

a4 has the highest CI interval, which is greater than the corresponding NPI lower

and upper probabilities for NA. Hence, we choose a4 as a second splitting variable.

After choosing a4 to split on for the data set Da5=1, the data set Da5=1 must

be divided into two subsets, as follows: Da5=1,a4=0, for which patients have Micturi-

tion pains (a5) but do not have Urine pushing (a4). Da5=1,a4=1, for which patients

have Micturition pains (a5) and also have Urine pushing (a4). Da5=1,a4=0 contains

8 patients, all of them were found not to have the disease and Da5=1,a4=1 contains

38 patients, all of them were found to have the disease. In this case, the intervals

for CI are not needed, as both sets are completely accurate (pure sets). Thus, a

leaf node is fixed for each branch with the corresponding class. Finally, the above

information can be represented as a classification tree. Figure 3.1 shows this D-NPI

classification tree, where the target variable is about predicting inflammation of the

urinary bladder.

Secondly, by considering the second target variable d2 (Nephritis of renal pelvis
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Figure 3.2: Classification Tree of Nephritis of renal pelvis origin.

origin) and following the same procedures, the D-NPI classification tree has been

constructed, it is shown in Figure 3.2.

This example illustrates how to build D-NPI classification trees. Our aim in

this example is only to illustrate the method of building the D-NPI classification

tree. Further analysis of this data set and evaluating the performance of the D-NPI

classification trees compared to other classification trees is presented in Section 3.4.

3.4 Performance of the D-NPI method

In this section, we carry out experiments on five data sets in order to assess the

performance of the D-NPI algorithm when building classification trees. We also

compare its performance with classical and imprecise algorithms. We compare the

D-NPI algorithm with the most commonly used classical algorithm to build classi-

fication trees, which is the C4.5 algorithm (see Section 2.2.2 for more details about

this algorithm). We also compare the D-NPI algorithm with three imprecise al-

gorithms which are the NPI-M, A-NPI-M and IDM algorithms (see Sections 2.2.2,

2.3 and 2.5 for more details about these algorithms). For the IDM algorithm, we

use two recommended values for the parameter s̃, 1 and 2. We refer to the IDM

algorithm with s̃ = 1 by IDM1 and the IDM algorithm with s̃ = 2 by IDM2.
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Data set N Attr # Class 1 # Class 2

Acute Inflammations 1 120 6 61 59

Acute Inflammations 2 120 6 70 50

Banknote authentication 1372 4 762 610

Breast Cancer Wisconsin 699 9 458 241

Congressional Voting Records 435 16 267 168

Table 3.8: Data sets description.

As a first step of developing the D-NPI algorithm, we apply it to only binary

data, so we need data sets that have both attribute and target variables with only

binary values. As such data sets are not commonly available, we have used only

five data sets and we have converted some continuous attribute variables to binary

ones. The five data sets used in this experimental analysis are obtained from the

UCI Machine Learning Repository database [32]. Table 3.8 shows a summary of the

main characteristics of these data sets, where ‘N’ is the number of instances in the

data sets, ‘Attr’ is the number of attribute variables, ‘# Class 1’ is the number of

instances in the first class and ‘# Class 2’ is the number of instances in the second

class. All these data sets have only two classes for the target variable. Note that the

Acute Inflammations data set has two target variables, based on each we construct

a tree. Thus, we consider it as two separate data sets, each one with a different

target variable. More details about these data sets can be found in [32].

We have applied the following pre-processing method: continuous attributes have

been converted to binary attributes using the optimal threshold selected by Infor-

mation Gain Ratio split criterion [56]. We then built all classifiers on the data sets

with binary attribute variables. Further, missing values have been replaced with

modal values.

For each data set, the D-NPI classification trees were built using the procedure

explained in Section 3.3.2. Then, classical classification trees were built for each

data set using the C4.5 algorithm. We used the RWeka package [39, 67] to build
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Class 1 (Predicted) Class 2 (Predicted)

Class 1 (Actual) TN FP

Class 2 (Actual) FN TP

Table 3.9: A sample confusion matrix.

Data set D-NPI C4.5 NPI-M A-NPI-M IDM1 IDM2

Acute Inflammations 1 94.17 100 100 100 100 100

Acute Inflammations 2 100 100 100 100 100 100

Banknote authentication 89.50 89.49 89.49 89.49 89.49 89.49

Breast Cancer Wisconsin 94.85 94.27 93.19 93.19 93.19 93.19

Congressional Voting Records 95.64 95.58 95.58 95.58 95.58 95.35

Table 3.10: Accuracy results of all classification algorithms.

the C4.5 algorithm. We also build classification trees based on different imprecise

algorithms, such as the NPI-M, A-NPI-M and IDM algorithms, using the imptree

package [34]. A 10-fold cross validation scheme has been applied for each data set,

and then the average results have been reported. More details about the 10-fold

cross validation have been given in Section 2.2.1. The experiments are run using the

statistical software R [57].

We used classification accuracy rates to measure and compare the performance

of all classification algorithms. Classification accuracy is the most commonly used

method to measure the performance of classification algorithms. It is calculated as

the ratio of the total number of correctly classified instances on the testing set to

the total number of instances. Given a sample confusion matrix as in Table 3.9, the

classification accuracy is

accuracy = TP + TN
N ,

where N = TN + TP + FN + FP, and TN, TP, FN and FP denote true negatives,

true positives, false negatives and false positives, respectively.

Table 3.10 shows the average results of classification accuracy rates of all classifi-

cation algorithms. It can be noticed that the D-NPI algorithm slightly outperforms
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Figure 3.3: The resulting tree generated by the D-NPI algorithm for Acute Inflam-

mations 1 data set.

other classification algorithms in four out of five data sets. However, for the Acute

Inflammations 1 data set, the D-NPI algorithm does not achieve the full classifi-

cation accuracy rate demonstrated by the other classification algorithms, but the

D-NPI algorithm produces relatively smaller trees than the other algorithms for this

data set. For more clarification, the D-NPI algorithm builds some trees for this data

set as shown in Figure 3.3, while other classification algorithms such as the C4.5,

NPI-M, A-NPI-M, and IDM algorithms builds relatively larger trees for this data

set as shown in Figure 3.4. Note that this data set is created by a medical expert as

a data set to test the expert system, which will perform the presumptive diagnosis

of two diseases of the urinary system, hence it is not a strange situation to have

a full classification accuracy rate by different classification algorithms. Some other

researchers have also used this data set and have got a full classification accuracy

rate, see Kadhem and Zeki [41] and Medjahed et al. [49], but Chandra and Bhaskar

[22] and by Bertsimas and Dunn [16] have reported lower classification accuracy for

this data set.

For the Banknote authentication, Breast Cancer Wisconsin and Congressional

Voting Records data sets, the D-NPI classification algorithm has a slightly better

performance in the classification accuracy rate than the other algorithms, although
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Figure 3.4: The resulting tree generated by the NPI-M and A-NPI-M algorithms

(left) and the resulting tree generated by the C4.5 and IDM algorithms (right) both

trees for Acute Inflammations 1 data set.

all classification algorithms have a very similar classification accuracy results. In

Section 3.3.2, we have stated that there are two conditions (see the inequalities in

(3.10)) which have to be fulfilled in order to split further when building the D-NPI

classification trees. During the experimental analysis, we noticed that using these

two conditions as a stop criterion leads to a better performance of the D-NPI clas-

sification algorithm.

To delve further into the analysis of the D-NPI algorithm and compare it with

other classification algorithms, we calculate in-sample accuracy rates for all classifi-

cation algorithms. In-sample accuracy measures the performance of the classification

algorithms on the training data set [16, 53]. The in-sample accuracy measure is not

commonly used to indicate classification accuracy, but it gives insight into how the

algorithm performs on the training set. It is known that if the classification algo-

rithm performs very well on the training set but not very well on the testing set,

this is likely to indicate overfitting. Thus, the in-sample accuracy is reported to

show the performance of classification algorithms on the training set, and hence, to
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Data set D-NPI C4.5 NPI-M A-NPI-M IDM1 IDM2

Acute Inflammations 1 94.17 100 100 100 100 100

Acute Inflammations 2 100 100 100 100 100 100

Banknote authentication 89.51 89.51 89.51 89.51 89.51 89.51

Breast Cancer Wisconsin 95.31 94.20 93.67 93.67 93.84 93.67

Congressional Voting Records 95.63 95.64 95.64 95.64 95.64 95.64

Table 3.11: In-sample accuracy results of all classification algorithms.

Algorithm D-NPI C4.5 NPI-M A-NPI-M IDM1 IDM2

Average 3.2 3 4.6 4.6 4.5 4.2

Table 3.12: Average tree size for all classification algorithms.

check on overfitting as well. Table 3.11 illustrates the average in-sample accuracy

of all classification algorithms. The results of in-sample accuracy are quite similar

in all data sets except Acute Inflammations 1 where the D-NPI algorithm achieves

the lowest in-sample accuracy, but with smaller trees generated for this data set.

Finally, in order to compare different trees generated by the classification algo-

rithms, an average tree size of each algorithm is reported. Table 3.12 presents the

average results of tree size (number of leaves) for each classification algorithm. Note

that we refer to tree size as the total number of leaf nodes, as was done by Bertsi-

mas and Dunn [16], and by Murthy and Salzberg [53]. However, the total number

of all nodes can be also considered as a tree size. The C4.5 classification algorithm

and the D-NPI classification algorithm generate the smallest trees with average tree

size of 3 and 3.2, respectively. However, the D-NPI classification algorithm mostly

builds smaller trees than the other algorithms, but in Breast Cancer Wisconsin, the

C4.5 algorithm has the smallest tree size compared to the other algorithms, and

hence, it gives the smallest average tree size. I.e. the D-NPI classification algo-

rithm builds the same size of trees or even smaller than the C4.5 algorithm in the

remaining four data sets. Compared to the NPI-M, A-NPI-M, IDM1 and IDM2 al-

gorithms, our study shows that the D-NPI algorithm tends to generate smaller trees.

In this experimental analysis, we found that the D-NPI classification algorithm
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performs well and slightly outperforms the other classification algorithms with re-

spect to classification accuracy, in-sample accuracy and tree size. It is also noticed

that the NPI-M algorithm and the A-NPI-M algorithm perform the same for all

these data sets. The IDM1 algorithm slightly outperforms the IDM2 algorithm,

but with relatively larger trees. This chapter is restricted to binary data, where all

inputs for both attribute and class variable are binary. Thus, the conclusions drawn

here are based on this type of data. In Chapter 4, we generalise the D-NPI algorithm

to multinomial data sets, and hence, we analyse more data sets and draw a clearer

conclusion about the performance of the D-NPI algorithm. We will also compare

and evaluate the performance of the D-NPI classification algorithm compared to

other classical and imprecise algorithms.

3.5 Concluding remarks

In this chapter we have presented a new method for building classification trees

based on NPI, which is Direct NPI classification (D-NPI). It will be of interest to

explore the use of the D-NPI classification method in random forests. The NPI

approach could be well suited to be applied to other classification methods such as

nonparametric classification methods, as it is a predictive method and the nature of

classification is explicitly predictive as well.

As a first step for developing D-NPI classification trees, this chapter considered

only binary data, where both attribute and class variables have only two values.

Direct NPI classification trees have been built using a new split criterion, which

we call Correct Indication (CI). The CI split criterion is completely based on the

NPI lower and upper probabilities for binary data. It does not use any additional

concepts or assumptions. We have carried out an experimental analysis in order to

assess the performance of the D-NPI classification method, and to compare it with

other classical and imprecise classification methods. The experimental results have

suggested that the D-NPI classification algorithm slightly outperforms the other

classification algorithms in terms of both classification accuracy and in-sample ac-
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curacy. The results have also indicated that the D-NPI classification algorithm

produces relatively smaller trees than the ones produced by imprecise algorithms,

but slightly larger trees than the ones generated by the C4.5 algorithm. Applying

the D-NPI classification algorithm to more data sets with more detailed analysis

could lead to more conclusions about the performance of the D-NPI classification

algorithm, and when it might be best used.

In Chapter 4, we generalize the D-NPI classification method to multinomial

data. It would be of interest to extend this work further to involve real-valued data.

Another interesting extension to this work is to develop the D-NPI classification tree

with imprecise classification. In imprecise classification, trees might return a set of

states rather than a single state in the class variable. It is also interesting to consider

developing the D-NPI classification method with taking the cost of misclassification

into account. In this consideration, we aim to minimize the total misclassification

costs instead of trying to optimize the total accuracy rate [59]. Finally, exploring

the use of imprecision as a stop criterion may lead to improvements on the D-NPI

classification algorithm. For example, by considering the difference between the NPI

lower and upper probabilities for CI, and for NA, especially, when there is overlap

between two or more attribute variables that all fulfil the two conditions considered

for splitting.



Chapter 4

Direct NPI Classification for

Multinomial Data

4.1 Introduction

In Chapter 3, we have introduced the D-NPI classification method for binary data.

In this chapter we generalise the D-NPI classification method to multinomial data.

Throughout this chapter, we assume that there is a known number of categories,

with no ordering of the categories. We also assume that there is at least one ob-

servation in each category. In this chapter, we restrict our focus to three or more

different categories which are all observed. However, the classification algorithm

in this chapter can be also used for two categories, and will lead to similar results

to the classification algorithm introduced in Chapter 3. Note that the Direct NPI

classification method for binary data, which has been introduced in Chapter 3 is not

a special case of the method introduced in this chapter when we have two categories.

In this chapter we introduce the Direct NPI classification algorithm for multi-

nomial data (D-NPI-M), which uses Correct Indication (CI) as a split criterion to

build classification trees. The CI used in this chapter is based on the NPI lower

and upper probabilities for multinomial data. We explain how to compute the NPI

lower and upper probabilities for CI. We carry out experimental analysis on eight

data sets in order to examine the performance of the D-NPI-M algorithm when

57
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building classification trees. We also compare the D-NPI-M algorithm to a classical

classification tree algorithm which is the C4.5 algorithm. We also compare the D-

NPI-M algorithm to imprecise methods which are the NPI-M, A-NPI-M and IDM

algorithms.

This chapter is organized as follows: Section 4.2 introduces the idea of Direct

NPI classification for multinomial data with an illustrative example. In Section 4.3,

we explain the split criterion, Correct Indication (CI) for multinomial data and we

derive the NPI lower and upper probabilities for the CI. Section 4.4 presents a new

algorithm to build classification trees with multinomial data, which we denote as

the D-NPI-M algorithm. In Section 4.5, we assess the performance of the D-NPI-M

algorithm and compare it with some other classification algorithms. Section 4.6

provides some more discussions about different classification trees generated by the

classification algorithms, based on a particular data set. Finally, some concluding

remarks and topics for future research are given in Section 4.7.

4.2 Direct nonparametric predictive classification

In this section, we illustrate how we can base classification on the NPI lower and up-

per probabilities for events with multinomial data, and without adding any further

assumptions. We will use similar notations as introduced in Section 3.2. Assume

that we have a data set of n instances. Suppose that there are T ≥ 1 attribute

variables. Let tj for j = {1, ..., T} indicate these attribute variables, where each

attribute variable can have a different number of categories. Let ci represent the

categories in attribute tj for i = 1, ..., kj. So, kj is the number of categories in

attribute tj. Suppose also that we have a target variable with a known number

of classes. We assume that the target variable is represented by a class variable

D ∈ {C1, ..., CR}. In our Direct NPI classification method we assume that all cate-

gories have been observed in the data. Throughout this chapter we refer to target

classes by Cr, and we denote attribute categories by ci.



4.2. Direct nonparametric predictive classification 59

Let nCr be the number of instances which are classified as class r, for r = 1, ..., R,

hence, n = nC1 + nC2 + ...+ nCR . Let n(tj = ci) be the total number of instances in

the data set which have tj = ci. Let n
C1(tj = ci) be the number of instances which

have tj = ci and which are classified as C1, so n(tj = ci) =
∑R

r=1 n
Cr(tj = ci) for

r = 1, ..., R.

Now we will see if attribute tj is useful or not. Clearly, tj is useful if there is a

high probability that an instance with attribute value tj = c1 indeed has class C1,

so that tj = c1 is an indicator for C1, and an instance with attribute value tj = c2

indeed has class C2, so that tj = c2 is an indicator for C2, and so on. First, we

assume that attribute category c1 is linked with class state C1, attribute category

c2 is linked with class state C2 and attribute category c3 is linked with class state

C3. It is important to note that this assumption is only considered here to illustrate

the main idea of the D-NPI classification method, with Example 4.2.1 to illustrate

the calculations of the NPI lower and upper probabilities based on this assumption.

However, in the experimental analysis in this chapter, we link each attribute cate-

gory with the class state which is most frequently associated with it. Clearly, the

number of attribute categories ci might not be the same as the number of possible

states in the class variable Cr. This case is discussed in Example 4.2.2. In this chap-

ter, we consider the class state with the highest frequency among possible states

corresponding to each attribute category. In other words, each attribute category

is linked with the class state that contains the largest number of instances. So it is

possible for multiple attribute categories to indicate the same class state. With this

consideration, we focus on the indication that is given by each category with regard

to predicting the possible class state. So, we are interested in the conditional events

(D = Cr|tj = ci).

We consider such events for one future instance for which the attributes values

are known but which class status is unknown. Let Dn+1 denote the unknown class

status for a single future instance which is not included in the data. Using NPI

for Bernoulli data [24], introduced in Section 2.4, we can provide the NPI lower
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and upper probabilities for the event that a future instance, which is not included

in the data set has class r, Cr given that its attribute value is ci, tn+1,j = ci, for

i = 1, ..., kj, i.e. Dn+1 = Cr|tn+1,j = ci, for i = 1, ..., kj and r = 1, ..., R. The NPI

lower probability is

P (Dn+1 = Cr|tn+1,j = ci) =
nCr (tj = ci)

n (tj = ci) + 1
, (4.1)

and the NPI upper probability is

P (Dn+1 = Cr|tn+1,j = ci) =
nCr (tj = ci) + 1

n (tj = ci) + 1
. (4.2)

We could also use NPI for multinomial data for these lower and upper probabilities,

but that would lead to slightly larger imprecision.

The Direct NPI classification for the conditional event Dn+1 = Cr|tn+1,j = ci

can be calculated via Formulas (4.1) and (4.2). It should be noticed that the values

of these NPI lower and upper probabilities will directly reflect the strength of the

evidence with regard to the possible class state for the single future instance, based

on the data. Example 4.2.1 illustrates the calculations of the above NPI lower and

upper probabilities. We also illustrate in this example how attribute variables may

reflect the possible class state for a future instance.

Example 4.2.1 Consider a multinomial data set containing information about 10

people. Suppose that we have 3 tests (attribute variables) performed on all people,

each has 3 possible values. These tests are denoted by t1, t2 and t3. Also suppose

that we have a target variable (disease status), denoted by D, with 3 classes. Table

4.1 shows the categories of these tests and corresponding disease status.

We can calculate the NPI lower and upper probabilities for the event that a

future person who is not included in the data set, but assumed to be exchangeable

with the n people in the data set, has class C1 (D11 = C1) given that his/her test

result for t1 is c1 (t11,1 = c1). Based on the given data set and using Formulas (4.1)

and (4.2), the NPI lower and upper probabilities are
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Person t1 t2 t3 D Person t1 t2 t3 D

1 c1 c1 c1 C1 6 c1 c1 c1 C1

2 c1 c1 c1 C1 7 c1 c1 c2 C1

3 c2 c1 c1 C2 8 c2 c2 c2 C2

4 c3 c1 c1 C3 9 c3 c3 c3 C3

5 c3 c3 c2 C3 10 c1 c3 c3 C1

Table 4.1: Data set description for Example 4.2.1.

P (D11 = C1|t11,1 = c1) =
nC1 (t1 = c1)

n (t1 = c1) + 1
=

5

6

P (D11 = C1|t11,1 = c1) =
nC1 (t1 = c1) + 1

n (t1 = c1) + 1
=

6

6
.

Formally, for this inference this person’s disease status is assumed to be exchangeable

with those of the people in the data set who also had t1 = c11. We can also calculate

the NPI lower and upper probabilities for the event that this person has class C2

given that his/her test result for t1 is c2, which are

P (D11 = C2|t11,1 = c2) =
nC2 (t1 = c2)

n (t1 = c2) + 1
=

2

3

P (D11 = C2|t11,1 = c2) =
nC2 (t1 = c2) + 1

n (t1 = c2) + 1
=

3

3
.

Similarly, the NPI lower and upper probabilities for the event that this person has

class C3 given that his/her test result for t1 is c3, are

P (D11 = C3|t11,1 = c3) =
nC3 (t1 = c3)

n (t1 = c3) + 1
=

3

4

P (D11 = C3|t11,1 = c3) =
nC3 (t1 = c3) + 1

n (t1 = c3) + 1
=

4

4
.

Similarly, the NPI lower and upper probabilities for the same event, but based

on results for t2, are as follows

[P , P ](D11 = C1|t11,2 = c1) =

[
4

7
,
5

7

]
,
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[P , P ](D11 = C2|t11,2 = c2) =

[
1

2
,
2

2

]
,

[P , P ](D11 = C3|t11,2 = c3) =

[
2

4
,
3

4

]
.

Finally, we can also get the NPI lower and upper probabilities for the same event,

but based on results for t3, which are as follows

[P , P ](D11 = C1|t11,3 = c1) =

[
3

6
,
4

6

]
,

[P , P ](D11 = C2|t11,3 = c2) =

[
1

4
,
2

4

]
,

[P , P ](D11 = C3|t11,3 = c3) =

[
1

3
,
2

3

]
.

It can be noticed that attribute category c2 in t3 is equally associated with classes

C1, C2 and C3, and attribute category c3 in t3 is equally associated with classes C1

and C3. We link c2 in t3 with class C2 while linking it with C1 or C3 will lead to the

same result. This is also applied to c3 in t3. However, we have mentioned earlier in

this section that we link attribute category c1 with class C1, c2 with C2 and c3 with

C3 to illustrate the main idea of the D-NPI classification method. Further consid-

eration of different senarios of linking attribute categories with classes is given in

Example 4.2.2.

The above values of the NPI lower and upper probabilities reflect the strength

of the evidence that comes from the attribute variables with regard to predicting

the possible class state for the target variable. A perfect test would always give

the correct class state, while a noninformative test would provide no way to predict

the class state. For example, it is clear from the data set that t1 is the best test

with regard to indicating the class state, as each value from t1 indicates a correct

class state, and hence, it has not misclassified any category (no wrong diagnoses

in the data set). Hence, t1 has the highest NPI lower and upper probabilities for

predicting possible class states for the new person. In other words, t1 provides more

information than the other tests, and hence it is more valuable for predicting the

class state. We can also notice that t2 is better than t3 as it produces larger values

for the NPI lower and upper probabilities for the events of interest.



4.2. Direct nonparametric predictive classification 63

Person t1 t2 D Person t1 t2 D

1 c1 c1 C1 6 c2 c1 C1

2 c1 c2 C1 7 c2 c3 C3

3 c1 c3 C2 8 c2 c4 C3

4 c1 c4 C1 9 c2 c2 C2

5 c1 c1 C3 10 c2 c4 C3

Table 4.2: Data set description for Example 4.2.2.

□

In Example 4.2.2 we illustrate how to calculate the above NPI lower and up-

per probabilities but in which not all attribute variables have the same number of

categories.

Example 4.2.2 Consider a multinomial data set containing information about 10

people. Suppose that we have 2 tests (attribute variables) performed on all people,

where test 1 has two categories and test 2 has four categories. These tests are de-

noted by t1 and t2. Also suppose that we have a target variable (disease status),

denoted by D, with 3 classes. Table 4.2 shows the categories of both tests and

corresponding disease status.

As the number of attribute categories is not the same as the number of target

classes, we label where possible each attribute category to match the target class

that is most frequently associated with it. So, we can calculate the NPI lower and

upper probabilities for the event that a future person who is not included in the

data set, but assumed to be exchangeable with the n people in the data set, has

class C1 (D11 = C1) given that his/her test result for t1 is c1 (t11,1 = c1). Based

on the given data set and using Formulas (4.1) and (4.2), the NPI lower and upper

probabilities are

P (D11 = C1|t11,1 = c1) =
nC1 (t1 = c1)

n (t1 = c1) + 1
=

3

6

P (D11 = C1|t11,1 = c1) =
nC1 (t1 = c1) + 1

n (t1 = c1) + 1
=

4

6
.



4.2. Direct nonparametric predictive classification 64

We can also calculate the NPI lower and upper probabilities for the event that this

person has class C3 given that his/her test result for t1 is c2, which are

P (D11 = C3|t11,1 = c2) =
nC3 (t1 = c2)

n (t1 = c2) + 1
=

3

6

P (D11 = C3|t11,1 = c2) =
nC3 (t1 = c2) + 1

n (t1 = c2) + 1
=

4

6
.

Note here that we associate the attribute category c2 with the class state C3 as this

class state is the most frequently class that is associated with c2.

Similarly, the NPI lower and upper probabilities for the same event, but based

on results for t2, are as follows

[P , P ](D11 = C1|t11,2 = c1) =

[
2

4
,
3

4

]
,

[P , P ](D11 = C2|t11,2 = c2) =

[
1

3
,
2

3

]
,

[P , P ](D11 = C3|t11,2 = c3) =

[
1

3
,
2

3

]
,

[P , P ](D11 = C3|t11,2 = c4) =

[
2

4
,
3

4

]
.

Note that in the case of having two or more classes that are equally associated

with an attribute category, we choose any of them as all will lead to the same NPI

lower and upper probabilities. For example, the attribute category c2 has two classes

(C1 and C2) that are both equally associated with it, hence, we randomly choose C2

while choosing C1 will lead to the same result.

□

In summary, the main idea of the D-NPI classification is illustrated in Example

4.2.1 assuming that each attribute category indicate a different class state. Then, we

illustrate the D-NPI classification method when the number of attribute categories

is not the same as the number of class states. Finally, for the experimental analysis

in this chapter, we link each attribute category with the class state that is most
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frequently associated with it.

Generally speaking, higher values for the NPI lower and upper probabilities for

an attribute variable indicate that it is more informative with regard to reflecting the

possible class state. To build classification trees, we have to decide which attribute

should be placed at each node, starting from the root node to the leaves in the

tree. We can make such decisions by using these NPI lower and upper probabilities.

In classification trees we also need to decide whether or not adding more attribute

variables to the tree is useful. For such decisions, a stopping criterion should be

used. In Section 4.3, we introduce our new split criterion, which is used to build the

Direct NPI classification trees.

4.3 Correct Indication with multinomial data

In this section, we generalise our split criterion, Correct Indication (CI), to multi-

nomial data. The CI is introduced in Section 3.3.1 for binary data, where each

attribute variable has only two possible values. Generally speaking, the most in-

formative attribute variable is selected in classification trees for each split. For the

CI split criterion, if the attribute is very informative in all cases, then it gives high

NPI lower and upper probabilities for CI. Thus, we aim at the maximum values

for both NPI lower and upper probabilities for CI. In this section, we generalise

the CI formulas to attributes with a known number of categories, kj ≥ 3. Recall

that kj is the number of observed categories, labelled c1, ..., ckj . In this chapter we

assume that all possible categories have been observed as generally in classification

unobserved categories are never more likely than observed categories. It may also

possible to adapt our method to consider unobserved categories in future work.

Let pj,i = P (tj = ci) for i = 1, ..., kj and j = 1, ..., T , where for each attribute

variable tj,
∑kj

i=1 pj,i = 1. Using NPI for multinomial data [28], introduced in Section
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2.4, we get

pj,i ∈
[
nji − 1

n
,
nji + 1

n

]
(4.3)

where nji denotes the number of times we have observed category ci for tj.

We can determine the NPI lower probability for the event that attribute tj leads

to CI, by taking the NPI lower probabilities for the events Dn+1 = C1|tn+1,j =

c1, ..., Dn+1 = CR|tn+1,j = ckj , and pj,i within the range given by (4.3) to minimise

the weighted average,

P j(CI) = min
pj,i∈P

kj∑
i=1

nCr (tj = ci)

n (tj = ci) + 1
pj,i (4.4)

where P is the set of probability distributions over the categories which correspond

to the NPI lower and upper probabilities, and which is defined as follows:

P =

p | nji − 1

n
≤ pj,i ≤

nji + 1

n
,∀i = 1, ..., kj,

kj∑
i=1

pj,i = 1

 . (4.5)

Similarly, the NPI upper probability for the event that attribute tj leads to CI

is

P j(CI) = max
pj,i∈P

kj∑
i=1

nCr (tj = ci) + 1

n (tj = ci) + 1
pj,i. (4.6)

The above NPI lower and upper probabilities for CI should be calculated for

each single attribute variable, then we choose the most informative attribute at

each stage of building the classification tree based on these NPI lower and upper

probabilities.

To compute the NPI lower and upper probabilities for CI, which are given by

Equations (4.4) and (4.6), we consider all possible configurations δ on the probability

wheel (see Section 2.4), applying the circular -A(n) assumption to each δ to get

corresponding NPI lower and upper probabilities for CI (P δ(CI) and P δ(CI)), and
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then we take the NPI lower and upper probabilities with respect to the set S of all

configurations δ such that

P (CI) = min
δ∈S

P δ(CI) (4.7)

and

P (CI) = max
δ∈S

P δ(CI). (4.8)

Next, we derive optimal configurations which lead to the NPI lower and upper

probabilities for CI. We first consider the NPI lower probability for CI, then the

NPI upper probability for CI is considered.

4.3.1 Lower probability

To find the NPI lower probability for CI for attribute tj, P j(CI), we need to min-

imise over all possible configurations of the probability wheel, then to choose the

configuration that gives the smallest possible value.

Let fj,i =
nCr(tj = ci)

n(tj = ci) + 1
, for i = 1, ..., kj and j = 1, ..., T , so we rewrite Equation

(4.4) in the following way

P j(CI) = min
pj,i∈P

(fj,1pj,1 + fj,2pj,2 + ...+ fj,kjpj,kj). (4.9)

Suppose that the fractions fj,i are reordered in an increasing way and relabelled

such that f́j,1 ≤ f́j,2 ≤ ... ≤ f́j,kj , with corresponding ṕj,i. For example, considering

attribute variable t1, if the smallest f1,i is f1,2, then f́1,1 = f1,2 and ṕ1,1 = p1,2. Thus,

the NPI lower probability for CI is

P j(CI) = min
ṕj,i∈P

(f́j,1ṕj,1 + f́j,2ṕj,2 + ...+ f́j,kj ṕj,kj). (4.10)

We separate categories corresponding to the largest f́j,i as much as possible to

ensure that we can assign probability masses of slices ‘in between’ to its neigh-

bour with smaller value of f́j,i, for minimisation. Therefore, the configuration of

the wheel which gives the most flexibility to do so is the arrangement where cat-

egories c1, ..., ckj corresponding to ṕj,1, ..., ṕj,kj are permuted in the following way,
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Figure 4.1: Optimal configuration.

c1, ckj−1, c2, ckj−2, c3, ckj−3, ...., ckj . This arrangement can be represented on the prob-

ability wheel as in Figure 4.1.

Generally speaking, to find the NPI lower probability for CI for each attribute

variable tj, each category is assigned its lower probability,
nji − 1

n
and the remaining

probability mass is then shared between the categories with the smallest f́j,i in such

a way to derive the smallest value of the NPI lower probability for CI. However,

the way in which this can be shared must not violate the constraints on the prob-

ability wheel for each category. Hence, only
1

n
can be assigned from either side to

a category, which implies at most
2

n
in total to any category. We now consider two

cases: First, when kj is even. Then, when kj is odd.

Case 1: kj is even

To find the NPI lower probability for CI for each attribute variable tj, we initially as-

sign probability mass
nji − 1

n
to each category. Once these probability assignments

are made, there are kj separating slices remaining. These separating slices must
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then be shared equally between the categories with the smallest fractions f́j,i, pro-

vided that the resulting probabilities are no larger than their upper limits
nji + 1

n
.

Therefore, the kj remaining probability masses, each
1

n
, must be assigned to c1 to

c kj
2

, hence, we assign additional probability mass of
2

n
to each of c1 to c kj

2

.

Example 4.3.1 Suppose we have 6 possible categories, c1, c2, c3, c4, c5 and c6, and

data where (n1, n2, n3, n4, n5, n6) = (1, 2, 3, 4, 5, 6), so n = 21. For simplicity, sup-

pose also that we reorder their corresponding fractions fj,i, for i = 1, ..., 6 in an

increasing order such that ´fj,1 ≤ ... ≤ ´fj,6. Then the NPI lower probability for CI

for attribute tj is

P j(CI) = min
ṕj,i∈P

(f́j,1ṕj,1 + f́j,2ṕj,2 + ...+ f́j,6ṕj,6) (4.11)

Using NPI for multinomial data, each category is assigned its lower probability
nji − 1

n
. Thus, we assign

(
0,

1

21
,
2

21
,
3

21
,
4

21
,
5

21

)
to (c1, c2, c3, c4, c5, c6), respectively.

After that, there is a total remaining probability mass of
6

21
, which can be assigned

to c1, c2 and c3, with the constraint that not more than
2

21
can be assigned to a

single category. Figure 4.2 shows these categories in the optimal configuration of

the probability wheel, which leads to the NPI lower probability for CI. Note that

this and similar below configurations (for min and max) are not unique optima, as

one could exchange some of the segments with the same results. The slices separating

c1 from c5 and c6 are both assigned to c1, the slices separating c2 from c4 and c5 are

both assigned to c2, and the slices separating c3 from c4 and c6 are both assigned

to c3. Hence, these assignments are

(
2

21
,
2

21
,
2

21

)
to (c1, c2, c3). Therefore, the

final assignments are

(
2

21
,
3

21
,
4

21
,
3

21
,
4

21
,
5

21

)
to (c1, c2, c3, c4, c5, c6), respectively.

Following these assignments we get P j(CI).

□

Case 2: kj is odd

As for even-valued kj, we initially assign probability mass
nji − 1

n
to each category,

ci, for i = 1, ..., kj. Then, as we aim to assign maximal probability masses to the
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Figure 4.2: Optimal configuration of probability wheel for Example 4.3.1

categories with the smallest f́j,i, we assign probability mass of
2

n
to each of c1 to

c kj
2
− 1

2

. After that we assign the last remaining probability mass
1

n
to category c kj

2
+ 1

2

.

Example 4.3.2 Consider the same data described in Example 4.3.1, excluding the

last category c6 and its corresponding fraction fj,6. We then have 5 possible cat-

egories where n = 15. Recall that their corresponding fractions fj,i are reordered,

for i = 1, ..., 5 in an increasing order. Figure 4.3 shows the optimal configuration

of the probability wheel, which leads to the NPI lower probability for CI. In this

example, first, each category is assigned its lower probability
nji − 1

n
. Thus, we as-

sign

(
0,

1

15
,
2

15
,
3

15
,
4

15

)
to (c1, c2, c3, c4, c5), respectively. Then, we assign the slices

separating c1 from c4 and c5 to c1, and we assign the slices separating c2 from c3 and

c4 to c2. The slice between c3 and c5 are assigned to c3. This means that we assign(
2

15
,
2

15

)
to (c1, c2), respectively, and we assign the last remaining probability mass

1

15
to c3. Therefore, the final assignment is

(
2

15
,
3

15
,
3

15
,
3

15
,
4

15

)
to (c1, c2, c3, c4, c5),
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Figure 4.3: Optimal configuration of probability wheel for Example 4.3.2

respectively, which leads to P j(CI).

□

Following the above method in Case 1 and Case 2 of assigning probability masses

to the possible categories, we get the NPI lower probability for CI for attribute tj,

P j(CI).

4.3.2 Upper probability

To find the NPI upper probability for CI for attribute tj, we need to maximise over

all possible configurations on the probability wheel, and then choose a configuration

that gives the highest possible value of P j(CI).

Let fj,i =
nCr(tj = ci) + 1

n(tj = ci) + 1
, for i = 1, ..., kj and j = 1, ..., T , so we rewrite the
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Formula (4.6) in the following way

P j(CI) = max
pj,i∈P

(fj,1pj,1 + fj,2pj,2 + ...+ fj,kjpj,kj) (4.12)

and then we rearrange the fj,i in an increasing order such that f́j,1 ≤ f́j,2 ≤ ... ≤ f́j,kj .

Thus, the NPI upper probability for CI for attribute tj is

P j(CI) = max
ṕj,i∈P

(f́j,1ṕj,1 + f́j,2ṕj,2 + ...+ f́j,kj ṕj,kj). (4.13)

To maximise these NPI upper probabilities for CI, we separate the largest cate-

gories as much as possible to ensure that we can assign probability masses of slices

‘in between’ to their neighbours with larger value of f́j,i. Therefore, we consider the

same configuration of the probability wheel (see Figure 4.1) that is used to find the

NPI lower probability, but we want to assign as much probability mass as possible

to the categories with the largest f́j,i. Of course, each category is assigned its lower

probability
nji − 1

n
, and the remaining probability masses are shared between other

categories in such a way to get the largest possible value for the probability for CI.

We consider the following two cases to explain how this maximisation can be done.

Case 1: kj is even

As a first step, we assign probability mass
nji − 1

n
to each category. As a second

step, the remaining probability masses are then shared equally between the cate-

gories with the largest possible f́j,i. Hence, we assign probability mass of
2

n
to the

categories c kj
2
+1

to ckj . This method leads to the maximum possible value of the NPI

upper probability for CI, since we assign the remaining probability masses between

the largest categories. Note that we can not assign more than probability mass of
2

n
to any category.

Example 4.3.3 Consider the same data described in Example 4.3.1, where k = 6.

Recall that we reorder their corresponding fractions fj,i, for i = 1, ..., 6 in an in-

creasing order. Figure 4.4 shows these categories in the optimal configuration of
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Figure 4.4: Optimal configuration of probability wheel for Example 4.3.3

probability wheel, which leads to the NPI upper probability for CI. First, we as-

sign

(
0,

1

21
,
2

21
,
3

21
,
4

21
,
5

21

)
to (c1, c2, c3, c4, c5, c6), respectively. Then, to derive

the NPI upper probability for CI, the slices separating c6 from c1 and c3 are

both assigned to c6, the slices separating c5 from c1 and c2 are both assigned to

c5, and the slices separating c4 from c2 and c3 are both assigned to c4. These

assignments are

(
2

21
,
2

21
,
2

21

)
to (c4, c5, c6). Therefore, the final assignments are(

0,
1

21
,
2

21
,
5

21
,
6

21
,
7

21

)
to (c1, c2, c3, c4, c5, c6), respectively. Following these assign-

ments we get P j(CI).

□

Case 2: kj is odd

We initially assign probability mass
nji − 1

n
to each category, ci, for i = 1, ..., kj.

Then, the best way to distribute the remaining probability masses is to assign prob-

ability mass of
2

n
to the categories c kj

2
+ 3

2

to ckj . After that, to assign the last
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probability mass
1

n
to c kj

2
+ 1

2

. This distribution of the probability masses leads to

the maximum possible value of the probability for CI.

Example 4.3.4 Consider the same data in Example 4.3.2, where k = 5. Assume

also that we reorder their corresponding fractions fj,i, for i = 1, ..., 5 in an increasing

order. Figure 4.5 shows the optimal configuration of the probability wheel, which

leads to the NPI upper probability for CI. To derive the NPI upper probability for

CI, we first assign

(
0,

1

15
,
2

15
,
3

15
,
4

15

)
to (c1, c2, c3, c4, c5), respectively. Then, we

assign the slices separating c5 from c1 and c3 to c5, and we assign the slices separating

c4 from c1 and c2 to c4. The slice between c2 and c3 is assigned to c3. This means

that we further assign

(
2

15
,
2

15

)
to (c4, c5), respectively, and

1

15
to c3. Therefore,

the final assignments are

(
0,

1

15
,
3

15
,
5

15
,
6

15

)
to (c1, c2, c3, c4, c5), respectively, which

leads to P j(CI).

□
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Following the above method of assigning probability masses to the possible cat-

egories, we get the NPI upper probability for CI for attribute tj, P j(CI). Finally,

we can use these NPI lower and upper probabilities for CI to build classification

trees using the D-NPI-M algorithm, as explained in Section 4.4.

4.4 The D-NPI-M algorithm

In this section we present a new algorithm for classification trees with multino-

mial data, which we call Direct Nonparametric Predictive Inference classification

for Multinomial data (D-NPI-M). It is similar to the D-NPI classification tree al-

gorithm introduced in Section 3.3.2 for binary data, but the main difference is that

multinomial data are considered here. In the D-NPI-M algorithm, we use the CI

split criterion for multinomial data, introduced in Section 4.3, in order to choose

the best splitting attribute variable at each node when building a classification tree.

The building process is similar to the well-known C4.5 algorithm (see Section 2.2),

but using the CI, introduced in Section 4.3, as a splitting criterion. We use the

same stop criterion introduced in Section 3.3.2.

Suppose that we have a training data set, D, which has categorical attribute

variables, tj, with c1, ..., ckj as their possible values. Let C be the target variable

with C1, ..., CR as its possible classes. Note that we refer to target classes by Cr,

and we use ci to indicate attribute categories, for i = 1, ..., kj. For the training data

set, D, we first calculate the CI intervals, i.e. the NPI lower and upper probabili-

ties for CI, for the complete list of attribute variables tj, using the NPI lower and

upper probabilities for CI as given by Equations (4.4) and (4.6). Then, we com-

pare these NPI lower and upper probabilities for CI with the NPI lower and upper

probabilities for NA given by the NPI-M lower and upper probabilities as shown

in Section 2.4.3 (see Equations (2.23) and (2.24)), which correspond to the largest

class state. Recall that we indicate the NPI lower and upper probabilities for NA

by P (NA) and P (NA), respectively, as shown in Section 3.3.2. Recall also that
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these NPI lower and upper probabilities are the NPI lower and upper probabilities

for CI if no attribute variable is used. The NPI lower and upper probabilities for

NA correspond to simply stating the most common class of the target variable in

the data set, given in Equations (2.23) and (2.24), that correspond to the largest

class of the target variable. If there are two or more classes with the same number

of observations, we use any of them as all will give the same NPI lower and upper

probabilities for NA. Of course, one would be looking at the subset of the data set

at the specific stage of the classification tree.

Similarly as done in Section 3.3.2, we choose the attribute variable with the

highest value of the NPI lower and upper probabilities for CI, and which satisfy the

two conditions in (3.10) to place at the root node. Recall that the two conditions in

(3.10) are used as a stop criterion in Section 3.3.2. The same stop criterion is also

used in this section.

After selecting the best attribute variable tj∗ for the root node, we split the

training data set, D, into disjoint subsets Dj∗=ci , where Dj∗=ci includes all instances

with value tj∗ = ci, for i = 1, ..., kj∗ for the selected attribute variable. For example,

if we choose an attribute variable to split on with three categories, red, blue and

green, then we will have three subsets of the training data set, Dj∗=red, Dj∗=blue and

Dj∗=green. Then we calculate the NPI lower and upper probabilities for CI for each

subset and compare the CI intervals of each subset with the corresponding NPI

lower and upper probabilities for NA.

The D-NPI-M algorithm continues recursively by splitting further and hence,

constructs a new subtree for each branch not yet ending in a node. The algorithm

terminates when the two conditions in (3.10) are not fulfilled or when the observa-

tions in the subset all belong to the same class, in which case this class is used as a

label to that corresponding leaf node. This process can be represented as a classifi-

cation tree. The procedure to classify a new instance in the D-NPI-M algorithm can

be summarized in Algorithm 2, where this pseudocode of the D-NPI-M algorithm is
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similar to the algorithm used in Chapter 3 to build classification trees with binary

data. The main difference between the two algorithms is that here we apply the CI

split criterion to multinomial data. In Example 4.4.1, we illustrate the procedure to

build a classification tree using the D-NPI-M algorithm.
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Algorithm 2 Pseudocode of the D-NPI-M algorithm.
1: Input:

2: TR: Training data set

3: Target: Target variable

4: Attr: List of attribute variables

5: procedure D-NPI-M(TR, Target, Attr)

6: Create a Root node for the tree

7: if TR have the same class C, then

8: Return the single-node tree with class C

9: if Attr is empty, then

10: Return the single-node tree with the most common class C in TR

11: Otherwise

12: for each attribute, t in Attr do

13: Compute P t(CI) and P t(CI)

14: Choose attribute, t with highest P t(CI) and P t(CI)

15: if P t(CI) > P (NA) and P t(CI) > P (NA) then

16: Choose the attribute, t

17: else

18: Add a leaf node labelled with the most common class in TR

19: Set t the attribute for Root

20: for each value of t, vi, do

21: Add a branch below Root, corresponding to t = vi

22: Let TRvi be the subset of TR that have t = vi

23: if TRvi is empty, then

24: Add a leaf node labelled with the most common class in TR

25: else

26: Add the subset generated by D-NPI-M(TRvi , Target, Attr-{t})

27: return Root
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Attribute P (CI) P (CI)

a1 0.5463 0.6759

a2 0.5737 0.6571

a3 0.5737 0.6571

a4 0.6314 0.7532

Table 4.3: The CI intervals for all attribute variables.

Example 4.4.1 In this example we illustrate the process of building the D-NPI-M

classification tree, using the Lenses data set, obtained from the UCI machine learn-

ing repository [32]. The Lenses data set consists of 24 instances, for each there are

instances of 4 attribute variables and a class variable. All attribute variables are

categorical with 2 or 3 categories. The class variable has three states which are ‘the

patient should be fitted with hard contact lenses’, denoted here as ‘Hard Lenses’,

‘the patient should be fitted with soft contact lenses’, denoted by ‘Soft Lenses’ and

‘the patient should not be fitted with contact lenses’, denoted by ‘No Lenses’. The

class variable is distributed as follows: 4 instances in state 1, 5 instances in state 2

and 15 instances in state 3. Note that the aim of this example is only to illustrate

the building process of the D-NPI-M classification tree, measuring its performance

and comparing it to other trees is discussed in Section 4.5.

First, we calculate the NPI lower and upper probabilities for CI (CI intervals)

for all attribute variables using Formulas (4.4) and (4.6). These NPI lower and upper

probabilities for CI are shown in Table 4.3. Then, we compare the CI intervals in

Table 4.3 with the NPI lower and upper probabilities for NA, which are given by

the NPI-M lower and upper probabilities for the largest state of the class variable.

These NPI lower and upper probabilities for NA are

P (NA) = max

(
0,

ni − 1

n

)
=

14

24
= 0.5833

and

P (NA) = min

(
ni + 1

n
, 1

)
=

16

24
= 0.6667

where ni is the total number of instances in the largest class state.
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Attribute P (CI) P (CI)

a1 0.4000 0.6000

a2 0.4286 0.5714

a3 0.6310 0.7976

Table 4.4: The CI intervals for a4 = 2.

In order to find the best splitting attribute, we choose the attribute with the

highest value of the NPI lower and upper probabilities for CI which satisfy the two

conditions given in (3.10). We can see that attribute 4 (a4) has the highest CI

interval and satisfies the two conditions in (3.10). Therefore, we assign a4 to the

root node. Then, we split the data set according to the value of a4. The attribute

variable a4 has two values coded as 1 and 2. Note that a4 is no longer considered

for splitting in the next stages of building the D-NPI-M classification tree. As a4

has only 2 values, we split the data set into two subsets and again calculate the

NPI lower and upper probabilities for CI for each subset. Then, we compare the

values of CI intervals in each subset with the corresponding NPI lower and upper

probabilities for NA. Table 4.4 shows the CI intervals when a4 has value 2. In the

subset of the data set with a4 value 1, we get a pure subset in which all instances

have class ‘No Lenses’.

As the next step in the process of building the classification tree, we compare the

CI intervals in Table 4.4 with the corresponding NPI lower and upper probabilities

for NA which are [0.3, 0.5]. Therefore, we choose a3 as a second split below the

branch of a4 = 2. Similarly, we select a2 as a further split below the branch of a3

= 2. The tree terminates when the two conditions in (3.10) are not met or when

instances in a subtree all have the same class. So, we stop here and present the

resulting full tree as in Figure 4.6. More analysis of the D-NPI-M classification tree

and comparisons with other classification methods for building classification trees

are presented in Section 4.5.

□
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Figure 4.6: Classification Tree of Lenses Data set.

4.5 Performance of the D-NPI-M algorithm

In this section, we examine the performance of the D-NPI-M algorithm on eight

data sets from the UCI Machine Learning Repository database [32]. The aim of this

experimental analysis is to assess the performance of the D-NPI-M algorithm, and

to compare it with the most commonly used classical algorithm, the C4.5 algorithm,

and with some algorithms based on imprecise probabilities, namely the NPI-M, A-

NPI-M and IDM algorithms (the latter with two choices of the parameter s̃). More

details about these algorithms have been presented in Section 2.2.2. The data sets

used in this experimental analysis are diverse in terms of their size, the number of

classes and the range of categories of the attribute variables. A summary of the

main characteristics of each data set is given in Table 4.5, where column ‘N’ in-

dicates the number of instances in a data set, column ‘Att’ indicates the number

of attribute variables, column ‘Range of Att’ indicates the range of the number of

states of the categorical variables, and ‘Classes’ indicates the number of states of

the class variable. Further information and more details about these data sets can

be found in [32]. Two of these data sets have only two classes, but we use them in

this chapter as they have more than two categories for the attribute variables. Note

that in Chapter 3 we consider data sets where both the class variable and attribute

variables are binary.
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Data set N Att Range of Att Classes

CMC 1473 9 2-4 3

Hayes-Roth 160 5 3-4 3

Lenses 24 4 2-3 3

Modified Iris 150 4 3 3

Monk’s Problems-1 124 7 2-4 2

Nursery 12960 8 2-5 5

Post-Operative Patient 90 8 2-4 3

Qualitative-Bankruptcy 250 6 3 2

Table 4.5: Data sets description.

The experiments were conducted using the statistical software R [57]. Six classi-

fication algorithms have been used in this analysis. To build the C4.5 algorithm, we

used the RWeka package [39, 67]. More details about the C4.5 algorithm have been

presented in Section 2.2.2. We used the imptree package for building the NPI-M,

A-NPI-M and IDM algorithms [34]. The D-NPI-M classification algorithm has been

built using the procedure introduced in Section 4.4. A 10-fold cross-validation proce-

dure, as described in Section 2.2.1, has been used for each data set. In this analysis,

we used only eight data sets because we have not fully automated the D-NPI-M

algorithm for constructing the classification trees, which makes the application to

each data set time-consuming.

The Nursery data set is large, so to reduce the amount of computation required

for this data set, we fix a minimum split number of 100 observations in order to split

any node further or otherwise we terminate the tree and fix a leaf node with the

most common class in that node. So, this is an added stop criterion when building

classification trees. A minimum split number is a value that needs to be at least

attained to qualify for splitting. A minimum split value is sometimes fixed for a

specific value to reduce the required computation, in the same way as done by Bert-

simas and Dunn [16]. This minimum split value is also used for all other algorithms

applied to the Nursery data set, hence the comparison will be fair although the

accuracy could be lower than what is expected for this data set when the minimum

split value is not fixed.
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In the modified Iris data set, we convert four continuous attributes to categorical

attributes with three categories coded as, ‘L’, ‘M’ and ‘H’ using equal frequency from

the ‘arules’ package in R and using the ‘discretize’ function. This function

converts a continuous variable into a categorical variable using different strategies.

The default one is used which is equal frequency. Note that the frequencies may

not be exactly equal because of ties in the data. However, we aimed to convert all

attributes to categorical ones, then to apply all classification algorithms on the con-

verted data, because the D-NPI-M algorithm presented in this thesis only functions

for categorical attributes. It will be of interest to generalise the D-NPI-M algorithm

to deal with continuous attribute variables, as a topic for future research. All other

data sets only have categorical attribute variables. All missing values were replaced

by modal values. Finally, all classification algorithms have been applied to all these

data sets with the same pre-analysis steps in order to compare them fairly.

In order to measure the performance of the D-NPI-M algorithm and all the other

algorithms, three metrics have been used. First, we used the classification accuracy

rate, which is the most commonly used method to measure the performance of clas-

sification algorithms. It is calculated as the ratio of the total number of correctly

classified instances on the testing set to the total number of instances in the testing

set. More details about the classification accuracy rate have been introduced in

Section 3.4. Secondly, we used in-sample accuracy, which is the classification accu-

racy rate on the training set (see Section 3.4 for more details). Thirdly, an average

tree size for each algorithm is reported. Note that we refer to tree size as the total

number of leaf nodes, as was done by Bertsimas and Dunn [16] and by Murthy and

Salzberg [53]. All these measures have been calculated from 10 runs using 10-fold

cross validation, then the average results of these runs are reported as a final result.

First, the performance of the D-NPI-M classification algorithm in terms of its

classification accuracy has been evaluated against five other classification algorithms.

Table 4.6 presents the classification accuracies of the D-NPI-M classification algo-
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Data set D-NPI-M C4.5 NPI-M A-NPI-M IDM1 IDM2

CMC 45.49 45.31 42.93 42.93 42.93 42.93

Hayes-Roth 66.76 66.92 64.62 64.62 63.08 67.69

Lenses 81.67 70.00 80.00 80.00 75.00 80.00

Modified Iris 95.33 92.67 90.00 90.00 92.67 92.67

Monk’s Problems-1 73.33 69.17 69.17 69.17 69.17 69.17

Nursery 90.37 89.21 89.20 89.20 89.20 89.20

Post-Operative Patient 67.78 68.89 71.11 71.11 71.11 71.11

Qualitative-Bankruptcy 99.60 98.00 98.40 98.40 98.40 98.40

Average 77.54 74.94 75.68 75.68 75.20 76.40

Table 4.6: Accuracy results of all classification algorithms.

rithm and all the other algorithms for each data set. The results in Table 4.6 indicate

that the D-NPI-M classification algorithm slightly outperforms other classification

algorithms in six data sets. In Section 4.4, we have argued that we should use the

two conditions in (3.10) in order to select any attribute variable for splitting when

building classification trees by the D-NPI-M classification algorithm. It is noticed

that during the experimental analysis, using these two conditions leads to some im-

provements in the classification accuracy for the D-NPI-M algorithm.

For the Lenses data set, there is a clear difference in the classification accuracies

among classification algorithms, where the D-NPI-M classification algorithm clearly

outperforms the C4.5 and IDM1 algorithms, and is slightly superior to the NPI-M,

A-NPI-M and IDM2 algorithms. The reduction in the accuracy for the C4.5 and

IDM1 algorithms might be because they sometimes stop earlier than other algo-

rithms when building classification trees. However, the clear difference in the clas-

sification accuracy between different classification algorithms could be also because

it is a small data set with only 24 observations. This could be expected particularly

for smaller data sets, where may be larger differences in the classification accuracy.

For the Monk’s Problem-1 data set, the D-NPI-M classification algorithm has

the highest classification accuracy of 73.33%, where all other algorithms have the

same accuracy of 69.17% but with different trees generated by these algorithms.
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For this data set, the D-NPI-M classification algorithm returns relatively larger

trees than the other algorithms which might be the reason for its superiority. On

some occasions when analysing this data set, the CI split criterion, which is used

for the D-NPI-M classification algorithm, suggests more attribute variables to split

on when considering subsets for which other classification algorithms choose not to

split. This may indicate that our split criterion identified a further useful variable,

leading to better overall accuracy.

For the Post-Operative Patient data set, the NPI-M, A-NPI-M and IDM classifi-

cation algorithms have the highest classification accuracy rates. For the Hayes-Roth

data set, the IDM2 algorithm is slightly superior to all other algorithms with classi-

fication accuracy of 67.69%. For the CMC, Modified Iris, Nursery and Qualitative-

Bankruptcy data sets, the D-NPI-M classification algorithm is superior to all the

other algorithms. For the Modified Iris data set, the D-NPI-M classification algo-

rithm sometimes selects a different attribute variable on the root node than the

other classification algorithms, which improves its classification accuracy slightly.

In fact, its split criterion CI returns two different attribute variables with the same

NPI lower and upper probabilities for CI, which gives us the decision to start with

one of them. So, we randomly choose one of them. For the Qualitative-Bankruptcy

data set, the D-NPI-M classification algorithm splits one further step in some trees,

while the other classification algorithms stopped splitting. So here the split crite-

rion CI also identifies an attribute variable with some useful information, which

may indicate the possible class state of the target variable. As a result, the D-NPI-

M algorithm gives slightly better classification accuracy than the other algorithms.

Overall, according to the average classification accuracy rate, we can say that all

classification algorithms are performing similarly, but with a slightly better perfor-

mance by the D-NPI-M algorithm.

Secondly, following [16, 53], we have used the in-sample accuracy rate to measure

the performance of the D-NPI-M classification algorithm on the training set, and to

compare it with the other classification algorithms. The in-sample accuracy mea-
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Data set D-NPI-M C4.5 NPI-M A-NPI-M IDM1 IDM2

CMC 48.84 47.22 45.17 45.17 45.17 45.17

Hayes-Roth 83.67 81.51 79.33 79.33 81.51 82.35

Lenses 87.49 84.55 85.91 85.91 85.00 85.91

Modified Iris 95.33 95.41 92.07 92.07 94.07 94.07

Monk’s Problems-1 84.24 74.82 73.66 73.66 73.66 73.66

Nursery 90.37 89.21 89.26 89.26 89.26 89.26

Post-Operative Patient 71.23 71.36 71.11 71.11 71.11 71.11

Qualitative-Bankruptcy 99.60 99.24 98.40 98.40 98.40 98.40

Average 82.60 80.42 79.36 79.36 79.77 79.99

Table 4.7: In-sample accuracy results of all classification algorithms.

sure is not commonly used to indicate classification accuracy, but it gives insight into

how the algorithm performs on the training set. It is known that if the classification

algorithm performs very well on the training set but not very well on the testing set,

this indicates likely overfitting. Thus, the in-sample accuracy is reported to show

the performance of classification algorithms on both training and testing sets.

Table 4.7 shows the in-sample accuracy results of all classification algorithms.

The D-NPI-M classification algorithm slightly outperforms the other classification

algorithms in several data sets, followed by the C4.5 classification algorithm which

is also superior to other algorithms in some data sets. It is noticed that the IDM2

algorithm slightly outperforms the IDM1 algorithm with regard to both average

classification accuracy and average in-sample accuracy rates. In this experimental

analysis, the NPI-M and A-NPI-M algorithms are equivalent in all performance mea-

sures. These two algorithms do not always lead to the same result as shown by Baker

[14]. Finally, the D-NPI-M classification algorithm has the highest average result

of in-sample accuracy compared to the other classification algorithms. It should be

clarified that the D-NPI-M algorithm has good results on in-sample accuracy and

classification accuracy as well, which may indicate that it does not suffer from over-

fitting. For example, the D-NPI-M classification algorithm has a largest in-sample

accuracy rate in the Monk’s Problems-1 data set compared to other classification

algorithms, but it also has the largest classification accuracy rate on testing set (see
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Algorithm D-NPI-M C4.5 NPI-M A-NPI-M IDM1 IDM2

Average 8.53 7.85 8.79 8.79 9.58 8.64

Table 4.8: Average tree size for all classification algorithms.

Table 4.6).

Thirdly, in order to compare different trees generated by the classification algo-

rithms, the average tree size for each algorithm is reported. Table 4.8 shows the

average tree size for each classification algorithm. Note that we refer to tree size

as the total number of leaf nodes as was done by Bertsimas and Dunn [16], and

Murthy and Salzberg [53]. However, other researchers may consider the total num-

ber of all nodes. Of course both methods can be used to refer to the tree size. It

can be observed from Table 4.8 that the average tree size of all algorithms is nearly

equivalent with some smaller trees generated by the C4.5 algorithm followed by the

D-NPI-M algorithm. With regard to the IDM1 and IDM2 algorithms, we notice

that increasing the value of the parameter s̃ could lead to generating smaller trees.

This result for the size of trees generated by the IDM algorithms has also been re-

ported by Abellán et al. [3] in an extensive experiment to assess the performance of

different classification tree algorithms.

To summarise, from the classification accuracy given in Table 4.6, we draw the

following conclusions about the performance of the D-NPI-M algorithm. The D-

NPI-M algorithm is performing well and slightly outperforms other algorithms. The

NPI-M and A-NPI-M algorithms are performing the same on all these data sets.

The IDM2 algorithm outperforms the IDM1 algorithm with regard to this measure.

With regard to the in-sample accuracy, the D-NPI-M algorithm is slightly superior

to other algorithms followed by the C4.5 algorithm. As the D-NPI-M algorithm per-

forms well with regard to both the classification accuracy and in-sample accuracy,

this could be an indication it does not overfit the data sets. Finally, the C4.5 algo-

rithm has the smallest average tree size, while the IDM1 algorithm has the largest

average tree size.
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Algorithm D-NPI-M C4.5 NPI-M A-NPI-M IDM1 IDM2

Accuracy 75.00 50.00 66.67 66.67 58.33 58.33

Table 4.9: Single classification accuracies for Monk’s Problems-1 data set.

4.6 Monk’s Problems-1 data set example

In this section, we analyse the Monk’s Problems-1 data set in more detail, in order

to see the differences between the classification trees which are generated by differ-

ent classification algorithms. This data set is considered in this analysis as there is

a clear difference in the overall classification accuracy between the D-NPI-M algo-

rithm and the other classification algorithms. This data set contains a total of 124

instances equally divided between two classes, but we consider this data set here

as its attribute variables have more than two categories. Note that in Chapter 3

we use data sets where both the class variable and attribute variables are binary.

There are seven attribute variables, where one of these attribute variable refers to

an ID for each instance, hence, this ID attribute variable has been removed before

the analysis. The remaining six attribute variables are named as a1, a2, a3, a4, a5,

and a6. These attribute variables consists of 2 to 4 possible categories as follows:

a1, a2 and a4 have three categories, a3 and a6 have two categories and a5 has four

categories. There are no missing values in this data set.

In order to evaluate the performance of the D-NPI-M algorithm, and to compare

it with other classification algorithms, we have applied a 10-fold cross-validation

scheme on this data set, where the average results are shown in Table 4.6. In this

section, we randomly take one case from these 10 cases, to illustrate the differences

between the classification algorithms considered in this thesis. Table 4.9 illustrates

the single classification accuracy for each algorithm with this data set. Note that all

classification algorithms have been trained on the same training set and evaluated

on the same test set.
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Attribute P (CI) P (CI)

a1 0.6072 0.6363

a2 0.5383 0.5659

a3 0.5438 0.5614

a4 0.5644 0.5920

a5 0.6943 0.7362

a6 0.5088 0.5263

Table 4.10: The CI intervals for all attribute variables.
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Figure 4.7: The resulting tree for the D-NPI-M algorithm.

The classification tree built for the D-NPI-M algorithm (see Figure 4.7) shows

that a5 is the most informative attribute variable, hence, it is used for splitting at

the root node. Table 4.10 shows the NPI lower and upper probabilities for Correct

Indication (CI) for all attribute variables, where it is clear that a5 has the highest

NPI lower and upper probabilities for CI, which are also greater than the NPI lower

and upper probabilities for NA, given by,
[
P , P

]
(NA) = [0.4911, 0.5089]. The C4.5

algorithm also selected a5 for the root node in its classification tree (see Figure 4.8).

For more clarification, after the second split on a5= 3 and a6= 2, the NPI

lower and upper probabilities for NA are
[
P , P

]
(NA) = [0.5385, 0.6923], these val-
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Figure 4.8: The resulting tree for the C4.5 algorithm (left) and the resulting tree

for the IDM2 algorithm (right).

ues reflect the amount of information regarding the possible predicted class that

come from the class variable at this subtree. At this step, the C4.5 algorithm

stopped splitting and fixed a leave node with class 1. However, the D-NPI-M al-

gorithm found that a3 has the NPI lower and upper probabilities for CI equals to[
P , P

]
(CI) = [0.6410, 0.8205], which means that a3 has more information regarding

the possible predicted class than the information given by the NPI lower and upper

probabilities for NA. Thus, the D-NPI-M split one more step in this subtree based

on a3. Here, it can be argued that the CI split criterion identified a useful attribute

variable which could lead to better accuracy result on the test set. Although the

D-NPI-M algorithm has produced a larger tree than the one generated by the C4.5

algorithm, it has performed clearly better than the C4.5 algorithm on the test set.

The D-NPI-M algorithm gives accuracy result of 75%, while the accuracy result for

the C4.5 algorithm is only 50%. The fact that the D-NPI-M algorithm has split two

more steps in the tree compared to the C4.5 algorithm is clearly the reason for the

better performance of the D-NPI-M on this data set.

The NPI-M, A-NPI-M and IDM2 algorithms have built their trees by choosing

another attribute variable to place at the root node, which is a1. According to the
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Figure 4.9: The resulting tree for the IDM1 algorithm (left) and the resulting tree

for the NPI-M and A-NPI-M algorithms (right).

CI split criterion, a1 is the second-most informative attribute variable after a5, as

it has the second largest CI values (see Table 4.10). Figure 4.8 shows the resulting

tree built by the IDM2 algorithm, and Figure 4.9 shows the resulting tree built by

the NPI-M and A-NPI-M algorithms. The trees which are built by the NPI-M,

A-NPI-M and IDM2 algorithms are smaller than the one generated by the D-NPI-

M algorithm, but they perform less well than the D-NPI-M algorithm on the test set.

Finally, the tree generated by the IDM1 algorithm is the largest tree compared

to all other trees generated by the other algorithms used in this thesis. Interest-

ingly, the IDM2 algorithm built the smallest tree and the IDM1 algorithm built the

largest tree, while both algorithms give the same classification accuracy on the test

set. However, the D-NPI-M algorithm built a tree which is relatively larger than

some of the other trees, but which correctly classified most of unseen instances in

the test set. Hence, this tree led to substantial improvement of the classification

accuracy result on the test set. Of course, generating large trees which are not per-

forming well on the test set is undesired, this is the case here for the IDM1 algorithm
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(see Figure 4.9). This is clearly undesirable because the tree generated by the IDM1

algorithm has accuracy of 58.33% on the test set, while the smallest tree generated

by the IDM2 algorithm (see Figure 4.8) gives the same accuracy result on the test

set. This means that in this case, the IDM1 produces a larger tree without improving

the classification accuracy result. However, relatively larger trees could be desirable

if they improve the classification accuracy result on the test set. For example, the

tree generated by the D-NPI-M algorithm is relatively large, but it gives the highest

classification accuracy result of 75% on the test set compared to other classification

algorithms. This may indicate that the CI split criterion identifies some few useful

attribute variables which may be missed by the other algorithms, and which lead to

some improvements on the overall classification accuracy.

This section has provided additional discussions about different trees generated

by the classification algorithms used in this thesis. However, further analysis of

this data set, the other data sets considered here, and additional data sets could

lead us to more insight into the performance of the D-NPI-M algorithm compared

to other algorithms for classification trees and when it might perform well. Such

investigations could also enable us to decide when it is best to use the D-NPI-M

algorithm or other classification algorithms based on characteristics of the data set.

This detailed investigation is not considered here, but it is an interesting topic for

future research.

4.7 Concluding remarks

In this chapter we have presented a new algorithm to build classification trees for

multinomial data, from the NPI perspective. This classification algorithm is called

Direct Nonparametric Predictive Inference classification for Multinomial data (D-

NPI-M). The D-NPI-M classification algorithm uses Correct Indication (CI) as a

split criterion. We have discussed the idea of Direct NPI classification with multino-

mial data. We have then generalised the CI split criterion introduced in Chapter 3
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to multinomial data with examples to illustrate the computations of the NPI lower

and upper probabilities for CI. Finally, the D-NPI-M algorithm has been intro-

duced with an illustrative example explaining how to build D-NPI-M classification

trees.

An experimental analysis has been carried out in order to assess the performance

of the D-NPI-M classification algorithm, and to compare it with the C4.5, NPI-M,

A-NPI-M, IDM1 and IDM2 classification algorithms. These classification algorithms

have been used to build classification trees for several data sets extracted from the

UCI Machine Learning Repository database. The performance of all classification

algorithms has been then measured using the classification accuracy, in-sample ac-

curacy and tree size.

The results achieved in this chapter have shown that the D-NPI-M classification

algorithm slightly outperforms other classification algorithms in some but not all

data sets, with regard to classification accuracy rate and in-sample accuracy rate.

It has been noticed that, for some data sets, the CI split criterion used in the D-NPI-

M algorithm leads to some improvements towards the overall classification accuracy

by suggesting splitting on different attribute variables than other algorithms or by

concluding a greater number of attribute variables are useful when building clas-

sification trees. The results have also indicated that the D-NPI-M classification

algorithm tends to build smaller trees than the NPI-M, A-NPI-M, IDM1 and IDM2

classification algorithms, but larger trees than the C4.5 classification algorithm.

As topics for future research, the idea of the Direct NPI classification could be

applied to other classification methods such as random forests. We have applied the

Direct NPI classification to binary data and multinomial data, however, it would be

interesting to generalize the Direct NPI classification to involve other types of data

such as real-valued data, ordinal data or data that may contain any other known

structure or relationship between the categories. Another possible extension to this

work would be the application of the D-NPI-M classification algorithm to imprecise
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classification, where it is allowed to return a set of classes rather than a single class.

A further topic for future research is the comparison of the D-NPI-M classification

algorithm with other classification methods from the literature which do not utilize

classification trees. It is clear that the inferences provided by the D-NPI-M classi-

fication algorithm are different from the inferences provided by other classification

methods, but such comparisons could still lead to some useful information and con-

clusions. Another topic to investigate, which is in line with the one we discussed

at the end of Chapter 3, is to consider developing the D-NPI-M classification algo-

rithm by taking the cost of misclassification into account. In this chapter we have

considered only observed categories, but once cost of misclassification is considered,

one cannot just neglect unobserved categories.

Finally, it would be of interest to investigate more fully the use of CI as a split

criterion for the D-NPI-M classification algorithm. For example, by considering the

imprecision, which might be defined as the difference between the NPI lower and

upper probabilities for CI, as a stopping criterion. Such considerations may lead

to improvement of the performance of the D-NPI-M classification algorithm. Also,

further investigations of the performance of the D-NPI-M classification algorithm

by considering more data sets with detailed analysis may be beneficial and lead to

more insights into aspects of data sets that may cause the D-NPI-M algorithm to

perform better than the other methods.



Chapter 5

Direct NPI Classification with

Noisy Data

5.1 Introduction

Classification tree algorithms are built using real-world data sets, where the values of

these data sets are the inputs for the classification algorithms. However, real-world

data sets are never perfect and could suffer from several problems, one of these

problems is the presence of noise. Data noise can be classified into class noise and

attribute noise. Class noise occurs when class states are incorrectly labelled, while

attribute noise refers to erroneous values in the attribute variables. Many studies

have been conducted to evaluate the performance of classification algorithms when

they are applied to noisy class or attribute variables, where only the former has

been widely addressed. Class noise tends to have more effect on the performance of

classification algorithms than attribute noise, while dealing with attribute noise is

more difficult than dealing with class noise [69]. The performance of the classifica-

tion tree algorithms based on such noisy data will definitely be affected, but some

classification algorithms may be more robust against noise than other algorithms.

Erroneous entries in data sets are unavoidable in many data mining applications

[68]. Erroneous or inaccurate attribute values are considered as an example of data

noise, which may cause a negative impact on the performance of any classification

95
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algorithm. In this chapter, we consider an application of the Direct NPI classifi-

cation tree algorithm for Multinomial data (D-NPI-M), as presented in Chapter 4,

with noisy data. We also assess the performance of the D-NPI-M classification al-

gorithm in terms of its classification accuracy when different levels of random noise

are added to the class or to attribute variables. We then compare its performance

with the C4.5, NPI-M, A-NPI-M and IDM classification algorithms, introduced in

Section 2.2.2, when different noise levels are present.

The rest of this chapter is organized as follows. In Section 5.2, an overview

and examples of data noise are given, and some methods for adding noise to data

sets are introduced. Section 5.3 presents a brief introduction to the literature on

classification methods for noisy data. In Section 5.4, we present the results of the

experimentation conducted to assess and compare the performance of the D-NPI-M

classification algorithm with other classification algorithms, on data sets with dif-

ferent levels of added random noise. Finally, Section 5.5 presents some concluding

remarks and possible future research topics.

5.2 Data noise

One of the most common data problems is data noise, with incorrect values being

recorded for some attribute variables or for the class variable. The presence of noise

is a common problem in real-world data sets that can suffer from corruptions which

may affect the performance of classifiers constructed on the basis of such noisy data

[58]. The noise might appear in data sets for several reasons. For examples, the

inputs may be incorrectly measured, experts may wrongly describe the input val-

ues, damaged measurement devices might unintentionally be used, or data might

get lost when transmitting and sorting the information [63]. It is expected that the

classification algorithms based on noisy data sets will be less accurate compared to

others based on noise-free data sets [61].
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Data noise can be categorized into two types which are class noise and attribute

noise. Class noise occurs when a class of an instance is incorrectly labelled, while

attribute noise occurs when the values of one or more attribute variables of an in-

stance are corrupted [21, 58]. For example, attribute noise could be because of

some errors in attribute values, such as erroneous attribute values, missing values

or incomplete values [69]. Examples of class noise sources include the same instance

appearing twice or more but are labelled with different classes, or some instances

being labelled with wrong classes [69]. The latter is the more common type in sit-

uations of class noise. In this chapter we refer to class noise as misclassifications,

whereas attribute noise is referred to as erroneous attribute values. These types of

noise examples are chosen to refer to class and attribute noise because these types

occur most commonly in real-world data sets [69]. These two types have been also

considered by Sáez et al. [58] for their extensive study tackling the problem of clas-

sification with noisy data. Sáez et al. [58] have applied different methods in order

to add noise into data sets, we introduce these methods in this section.

Note that our aim in this chapter is neither to detect noise in training data, nor

to identify and correct attribute or class noise from the training data. We mainly

focus on checking how the performances of the classification algorithms are affected

when they are applied to noisy data sets. In this chapter, we study the performance

of the D-NPI-M algorithm when it is based on noisy data sets. We also compare it

to other classical and imprecise algorithms that are applied to the same noisy data

sets. In order to examine the degree of robustness of the classification algorithms

with noisy data sets, we compare the performance of the algorithms built on the

original (noise-free) data set with the performance of the algorithms built on the

same data set with some added noise. If the classification accuracy results for noisy

data are close to those for the data set without added noise, then the algorithm is

considered to be robust. The robustness of classification tree algorithms is about

its capability to generate classification trees that are not sensitive to corrupted data

sets. The classification tree algorithm is more robust than the other algorithms if

it generates trees that are less influenced by added noise to data sets. This way
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of analysing the degree of robustness of classification algorithms in the presence of

noise has been also used by Sáez et al. [58].

In order to test the performance and robustness of classification algorithms with

noisy data we need a method to add noise to a data set. However, many available

data sets may not contain much noise or we may not know which instances are

noisy. Different methods for adding noise into data sets have been introduced in the

literature. Adding noise to data sets enables us to check the effect of noisy data on

the performance of classification algorithms and hence to identify which algorithms

are robust with regard to noisy data, and also to search for possible solutions to

improve the classification algorithms’ performance on such noisy data sets. In this

section we review some methods which are used in the literature to add noise to

data sets, not only for the sake of introducing them, but also to justify our choice

of the noise introduction method.

Zhu and Wu [70] applied two corruption mechanisms for adding noise to a class

variable, which are total random corruption and proportional random corruption.

For total random corruption, they randomly introduce noise to all classes, given a

specific corruption level that is determined by users. Thus, based on this determined

level, classes of instances are mislabelled. While for proportional random corruption,

the class distribution remains constant during adding noise. In this method, given

M classes, the class distribution is denoted as P1, P2, ..., PM , where P1 and PM are

the percentage of the most and least common classes, respectively, and Pi ≥ Pi+1.

To corrupt a particular noise level x.100%, random noise is proportionally intro-

duced to the different classes, where an instance labelled as i has P1

Pi
.x.100% chance

to be mislabelled. With this method, the actual noise level could be less than the

intended corruption level. For more details and explanations about these methods

of adding noise to data sets, see Zhu and Wu [70].

Another example of a method for adding noise to class and attribute variables

was introduced by Zhu and Wu [69]. To add noise to the class variable, given a
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noise percentage x% and a pair of classes, an instance with the first class has an x%

chance to be changed to the second class, so dose an instance of the second class.

For adding noise to attribute variables, given a noise percentage x%, the value of

an attribute is randomly changed (approximately x% of the time) to other possi-

ble values, where each possible value is equally likely to be chosen. For numerical

attribute variables, a random value between the minimum and maximum possible

values is chosen. For more details about this method, we refer to Zhu and Wu

[69]. Note that for adding noise in our experimental analysis in this chapter, we

exclude the original value of the attribute or class variable from the assignments,

hence, the actual percentage will be exactly the same as the theoretical percent-

age. This means that exactly x% of instances will have different values as there is

no chance for their original values to be selected. More details about adding noise

to class and attribute variables in our experimental analysis are given in Section 5.4.

Sáez et al. [58] have used four different methods in order to add a noise level x%

to each data set. For class noise, they use a uniform class noise scheme, which cor-

rupts the class labels of the instances by randomly replacing a class by another one

from the available classes, and a pairwise class noise scheme, which labels instances

of the largest class as belonging to the second largest class. For attribute noise, they

use a uniform attribute noise scheme and the Gaussian attribute noise scheme. For

the uniform attribute noise scheme, to corrupt an attribute with a particular noise

level x%, x% of the instances are selected and their attribute values are replaced

by other values from the domain of the attribute. In this method, a uniform dis-

tribution is used to select the replacement value for both numerical and nominal

attribute variables. The Gaussian attribute noise scheme is similar to the uniform

attribute noise scheme, but it uses a Gaussian distribution. For more details about

these methods see Sáez et al. [58].

A commonly used method for adding noise to data sets is presented by Mantas

and Abellán [46, 47], Abellán and Masegosa [7, 9], Mantas et al. [48] and Abellán

et al. [5]. In this method, they add a particular percentage of random noise to
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the class variable or to attribute variables in the training set only, so the test set

is left unmodified. The procedure to add noise into the class variable or attribute

variables is as follows: first, they choose randomly a given percentage of instances

in the training set, then, the values for these selected instances are randomly re-

placed by other possible values. Gray and Fan [36] have also used the same method

when they test the performance of different classification methods with noisy data.

They add random noise to the class variable by choosing a given percentage of

instances, then their classes are changed to other classes. In this chapter we use

the same method for adding noise to class and attribute variables. We randomly

select a given percentage of instances and then we replace the values of these se-

lected instances by other possible values. More details about applying the random

noise to data sets for class or attribute variables in our work are given in Section 5.4.

5.3 Data noise impact on classification algorithms

In this section we briefly discuss some previous studies which have investigated the

impact of data noise on classification algorithms. Many researchers have considered

class noise or attribute noise in their studies, we briefly describe some of these studies

and the concluded results. In the literature, class noise has been widely addressed,

while attribute noise has received less attention.

Zhu and Wu [69] presented a systematic evaluation of the effect of noise in

machine learning, by differentiating noise into two types, class noise and attribute

noise. They investigated how the class and attribute noise could affect the classifi-

cation accuracy of different classification algorithms, including the C4.5 algorithm.

They put more focus on attribute noise, and investigated the relationship between

attribute noise and its effects on the classification accuracy. They demonstrated

that data noise severely affects the classification algorithms in many circumstances,

where handling attribute noise is more difficult than class noise. The relationship

between attribute noise and the classification accuracy is not clear as the impact
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of attribute noise highly depends on the dependence between the class variable

and attribute variables [69]. However, in real-world data sets, the class variable is

much cleaner than attribute variables i.e. has less noise than attribute variables [69].

Mantas and Abellán [46] showed that classification trees based on imprecise prob-

abilities give better results compared to other classic classification trees when they

are applied to data sets with added random noise. They tested the performance of

classification trees by adding different levels of random noise, up to 30%, to both

class and attribute variables. Other researchers have also studied the effects of at-

tribute noise or class noise on the classification accuracy of different classification

algorithms [42, 58, 61]. However, in the literature, more attention has been paid to

noise in the class variable. In this chapter, we investigate the performance of our

newly presented classification method in case of noisy attribute and class variables.

Many researchers have studied the performance of classification algorithms when

they are applied to data with noisy class variable [5, 7, 9, 21, 47, 48, 70]. Some recent

studies have demonstrated that class noise has more impact on the performance of

classification algorithms than attribute noise [21, 69]. Zhu and Wu [70] have studied

the impact of class noise on classification algorithms for cost-sensitive classifica-

tion. Cost-sensitive classification aims to minimize the misclassification cost instead

of maximizing the classification accuracy as generally done in classification. They

concluded that class noise may seriously affect the performance of cost-sensitive clas-

sification algorithms, particularly when incorrectly predicting some classes becomes

extremely expensive.

Mantas and Abellán [47] have conducted several experimental studies to com-

pare the performance of the Credal-C4.5 classification algorithm, which is based on

imprecise probability, with other classical algorithms, the C4.5 and ID3 algorithms,

when building classification trees with class noise. The comparison has been carried

out by adding 10% and 30% of random noise to the class variable only. Their results

concluded that without added noise, all classification algorithms have similar per-
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formance, while the Credal-C4.5 classification algorithm obtains better performance

than other algorithms when noise is added. It has also been found that classification

tree algorithms based on imprecise probability, such as the Credal-C4.5 algorithm,

tend to perform better than classic classification methods such as the C4.5 algo-

rithm, when they are applied to data sets with added random noise to the class

variable [5, 48].

Abellán and Masegosa [7, 9] have presented an application of bagging credal clas-

sification trees, which is based on imprecise probability using data sets with added

random class noise. A bagging classifier is a method for generating multiple versions

of a classifier, then to use these classifiers to get an aggregated classifier [18]. In

[7, 9], Abellán and Masegosa have compared their method with similar schemes us-

ing classification trees built on the classic C4.5 algorithm, and they concluded that

their method outperforms other Bagging methods on data sets with a noisy class

variable. It would be of interest to compare the D-NPI-M classification algorithm

with bagging methods, but such comparisons are left as topics for future research.

5.4 Experimental analysis

In this section we study the performance of the D-NPI-M classification tree algorithm

when it is applied to noisy data sets. We also compare its performance with other

classic and imprecise classification tree algorithms, the C4.5, NPI-M, A-NPI-M and

IDM algorithms applied to the same noisy data sets. These algorithms have been

introduced in Sections 2.2.2 and were also used for the comparisons in Chapter 4. We

aim to assess the performance of these classification algorithms with different noise

levels. In this experimental analysis, we have implemented both the NPI-M and A-

NPI-M algorithms, but we exclude the A-NPI-M algorithm from the result sections

as both give always the same results with the used data sets. These algorithms

could give different results when they are applied to more data sets, as shown by

Baker [14]. In this section, we first present the way that the experiments have been
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Data set N Att. Range of Att. Classes

Lenses 24 4 2-3 3

Modified Iris 150 4 3 3

Monk’s Problems-1 124 7 2-4 2

Nursery 12960 8 2-5 5

Post-Operative Patient 90 8 2-4 3

Qualitative-Bankruptcy 250 6 3 2

Table 5.1: Data sets description.

conducted and a brief description of the used data sets is given. We then clarify

how the noise is added to either the class variable or to attribute variables. After

that, we present and discuss the results of the performance of the classification tree

algorithms with noisy class and attribute variables.

5.4.1 Experimental setup

In our experiments, we have used six data sets from the UCI Machine Learning

Repository database [32]. The characteristics of these data sets are summarized in

Table 5.1. These data sets have been also used in Section 4.5, hence, some more

details about these data sets are given in Section 4.5. We used only six data sets

because we have not fully automated the D-NPI-M algorithm for constructing the

classification trees, which makes the application to each data set time-consuming.

Different levels of random noise have been added to each data set, then six classi-

fication tree algorithms have been applied to each data set. We use the statistical

software R for our experimentations [57]. All R packages used to assess the perfor-

mance of these algorithms are introduced earlier in Section 4.5.

For these data sets, as in most of the real-world data sets, we do not know how

much noise they contain, if any, or which instances may be noisy. Thus, we do not

assume any particular level of noise in these data sets, hence, we consider these

data sets as noise-free. Therefore, we implement a random corruption method in

order to introduce some noise into these data sets. We add the following random

noise levels to the attribute and class variables: 5%, 15% and 30%. These random
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levels are selected following several researchers in the literature. It is reasonable to

add noise up to 30% as in most cases data sets may not contain more noise. Many

researchers in the literature have also added noise levels in their experiments up to

30% to either class or attribute variables [5, 7, 9, 44, 46, 47, 48].

To corrupt a class variable or attribute variables, i.e. adding noise into them,

x% of the instances are selected, where x refers to the noise level we want to add.

For adding noise to the class variable, x% of the instances in the training set are

randomly selected, then their class labels are replaced by another class from the

available classes, excluding the original class label. For adding noise to attribute

variables, we randomly select x% of instances, then for each categorical attribute

variable, we change the value of it to another possible value from the domain of

the attribute, excluding the original attribute value. The noise levels are added to

the training sets only, while the test sets are left unchanged. Adding noise to only

training sets enables us to check the effects of different noise levels of the training set

on the performance of the classification algorithms which are based on the data with

the noise level, but which are tested on a test data set without noise. This way of

adding noise allows direct comparison between the performance of the classification

algorithms on equivalent test sets, for increased levels of noise in the training sets.

Note that the D-NPI-M classification algorithm handles only categorical variables,

hence, any continuous variable is converted to categorical variable before applying

the classification algorithms on the training set. Unlike [61, 69], we exclude the

original value from the random assignments for both class and attribute variables

in order to ensure that x% of the training set will be changed.

In this experimental analysis, we have used 10-fold cross-validation scheme, in-

troduced in Section 2.2.1. In this chapter, we only use the classification accuracy

rate to assess the performance of the classification algorithms with noisy data sets.

The classification accuracy rate is the most commonly used metric for assessing the

performance of classification algorithms. We use only accuracy rate as we want to

have a general insight about the performance of the D-NPI-M classification algo-
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rithm and other algorithms with noisy data sets. However, using more metrics to

assess the performance of these classification algorithms might lead to more conclu-

sions.

The performance of the classification algorithms built on the original (noise-free)

training set acts as a reference that could be directly compared with the performance

of the classification algorithms obtained with different noisy levels of training data.

In other word, in order to check the degree of robustness of the classification algo-

rithms with noisy data sets, we compare the accuracy results of the classification

algorithms from the original data sets with the performance (accuracy results) of

classification algorithms from data sets with different levels of noise. Thus, the most

robust classification algorithm is the one obtained the most similar classification ac-

curacy results with noisy data sets, compared to its accuracy results with noise-free

data sets. This method of comparing and analysing the degree of robustness has

also been used by Sáez et al. [58]. We apply our experiments in two phases. First,

we add the random noise only into the class variable, thereafter we add random

noise to the attribute variables.

5.4.2 Experimental results for class noise

In this section, we present the results of the performance evaluation of the D-NPI-M

algorithm with noisy data. We also compare the performance of the D-NPI-M al-

gorithm to the performances of the C4.5, NPI-M and IDM algorithms, similarly to

the approach taken in Chapter 4. In order to concentrate on the effects of noise on

these classification algorithms, we study and present the results of this experimental

analysis in two main categories. In this section, we present the results for the case of

random noise added to the class variable. Secondly, the case of random noise added

to the attribute variables is presented in Section 5.4.3.

To evaluate the impact of class noise, we have conducted experiments on six

data sets which were also used in Section 4.5, where different levels of class noise
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Data set D-NPI-M C4.5 NPI-M IDM1 IDM2

Lenses 81.67 70 80.00 75.00 80.00

Modified Iris 95.33 92.67 90.00 92.67 92.67

Monk’s Problems-1 73.33 69.17 69.17 69.17 69.17

Nursery 90.37 89.21 89.20 89.20 89.20

Post-Operative Patient 67.78 68.89 71.11 71.11 71.11

Qualitative-Bankruptcy 99.60 98 98.40 98.40 98.40

Table 5.2: Accuracy of classification trees on the original data sets.

are added to training sets only in the 10-fold set-up. We apply the different classifi-

cation algorithms to these noisy data sets and evaluate the impact of class noise on

the above classification algorithms on noise-free testing sets.

Table 5.2 shows the classification accuracy rate for all classification algorithms

based on the original data sets, and Table 5.3 presents the classification accuracy

rate for all classification algorithms based on noisy data sets with percentages of

random noise equal to 5%, 15% and 30%, added to the class variable in the training

sets. For the Lenses data set, there are clear differences in the classification accu-

racies among the classification algorithms on different noise levels, which is likely

due to the fact that it is a small data set with only 24 instances. It is also noticed

that the classification accuracies for all algorithms in this data set have increased

with 5% noise level, but decreased after that with 15% and 30% noise levels. Such

increase was also noticed in some papers from the literature when they add some

noise levels to data sets [9, 46, 48]. This illustrates that it may actually happen

that added noise leads to improved performance of a classification algorithm, which

would just be due to randomness and is more likely to happen for small data sets

and small noise levels. With low noise levels, some classification algorithms might

slightly perform better than their performance on noise-free data sets, but looking

at the performance of these algorithms on different noise levels enable us to check

the robustness of these classification algorithms with noisy data sets. For all the

noise levels considered, as well as without noise (as also seen in Chapter 4), the

D-NPI-M algorithm tends to perform better than the other algorithms, but with
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Data set Noise D-NPI-M C4.5 NPI-M IDM1 IDM2

Lenses 5% 86.67 85 85 80 85

Modified Iris 5% 94 94 94 94 94

Monk’s Problems-1 5% 69.49 71.67 68.33 69.17 68.33

Nursery 5% 90.37 89.33 89.30 89.30 89.30

Post-Operative Patient 5% 67.78 71.11 70 71.11 71.11

Qualitative-Bankruptcy 5% 99.2 98.4 98.4 98.4 98.4

Lenses 15% 76.67 70 75 75 70

Modified Iris 15% 93.33 92.67 91.33 92.67 92.67

Monk’s Problems-1 15% 71.92 67.5 67.5 69.17 67.5

Nursery 15% 90.39 89.17 89.17 89.17 89.14

Post-Operative Patient 15% 73.33 72.22 68.89 68.89 70

Qualitative-Bankruptcy 15% 98.4 98 98.4 98.4 98.4

Lenses 30% 65 55 60 55 65

Modified Iris 30% 94.67 94.67 93.33 93.33 94.67

Monk’s Problems-1 30% 67.37 64.17 55 55.83 53.33

Nursery 30% 90.29 89.14 88.97 88.97 89.07

Post-Operative Patient 30% 70 62.22 62.22 62.22 63.33

Qualitative-Bankruptcy 30% 94.8 94.4 84.8 87.2 91.6

Table 5.3: Accuracy of classification trees on data sets with class noise.

equal accuracy, for this data set, to the IDM2 when 30% noise level is present.

Table 5.3 shows that with noise level 5%, the D-NPI-M algorithm obtains the

best classification accuracy on three data sets and performs the same as the other

classification algorithms for the Modified Iris data set. For the Monk’s Problem-1

data set, the C4.5 algorithm slightly outperforms all other algorithms, and for the

Post-Operative Patient data set, the C4.5 and IDM algorithms slightly outperform

other algorithms at this noise level. However, for the Post-Operative Patient data

set, the D-NPI-M algorithm obtains the best classification accuracy when the noise

level increases to 15% and 30%.

The results in Table 5.3 show that the D-NPI-M algorithm performs well in the

case of a noisy class variable, and mostly better than the other algorithms considered



5.4. Experimental analysis 108

here. In Table 5.3, for 15% noise level, the D-NPI-M algorithm achieves the highest

classification accuracy in five out of six data sets with equal accuracy results to

imprecise algorithms in the Qualitative-Bankruptcy data set. In Table 5.3, for the

30% noise level, the D-NPI-M mostly performs better than the other classification

algorithms on all data sets with equal results of accuracy to the C4.5 algorithm and

the IDM2 algorithm for the Modified Iris data set, and with equal accuracy results

to the IDM2 algorithm for the Lenses data set.

To study the effects of adding noise to the class variable in more detail, Figure

5.1 shows the classification accuracy results of each classifier for each data set with

the different noise levels. Note that these classification results are the average ac-

curacy of applying 10-fold cross validation to each data set. Figure 5.1 shows that

the D-NPI-M algorithm slightly outperforms the other algorithms in most cases.

For the Post-Operative Patient data set, the D-NPI-M performs less well than the

other algorithms with the original data sets and 5% noise levels, but it achieves

the highest classification accuracy results with 15% and 30% noise levels. This is

due to the randomness in the data sets, with and without noise, overall one expects

more noise to lead to poorer results, but this can vary in specific applications. This

data set is relatively small with 90 instances, hence, such difference in the accuracy

results might happens. For this data set, we also notice that the performance of

the C4.5 algorithm has increased with 5% and 15% noise levels. This behaviour of

unexpected increasing in accuracy results with adding some noise was also noticed

in [46], when the performance of the C4.5 algorithm has increased with noise level of

5%, besides giving higher accuracy results with 20% and 30% noise levels than the

accuracy result with 10%. For the Nursery data set, all algorithms have a very sim-

ilar performance with different noise levels, while the D-NPI-M algorithm slightly

outperforms the other algorithms for all noise levels. For the Nursery data set, the

classification accuracies are stable across all noise levels which could be because it

is a large data set with 12960 observations, hence, the added noise may not clearly

affect the classification accuracy.
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Figure 5.1: Classification accuracy of all classifiers applied to each data set with

different noise levels added to the class variable.

The Monk’s Problems-1, Post-Operative Patient and Qualitative-Bankruptcy

data sets lead to big differences in the accuracy of the different algorithms in case of

30% class noise. However, for all of these three data sets, the D-NPI-M algorithm

obtains the highest classification accuracy. This mostly better performance of the

D-NPI-M algorithm in these three data sets indicates that it is more robust to higher

levels of noise in the class variable than the other algorithms considered here. We

conclude from this study that the D-NPI-M algorithm tends to be most robust with

regard to class noise among the algorithms considered in this study.

It is also interesting to look at the average accuracy over all data sets. Figure 5.2

depicts the average results of classification accuracy of each classification algorithm

when it is applied to data sets with percentages of random class noise equal to 0%

(the original data sets), 5%, 15% and 30%. From these average results, the D-NPI-

M classifier has the highest classification accuracy results when it is applied to the

original data sets, 15% and 30% noise levels. However, for 5% class noise, the C4.5

algorithm performs slightly better than the other algorithms, but with very close
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Figure 5.2: Average classification accuracy for all classifiers with different levels of

random noise added to the class variable.

performance to the D-NPI-M algorithm. For 30% class noise, the differences in the

average classification accuracy results are much bigger among the algorithms, with

the D-NPI-M algorithm having best accuracy and the IDM1 algorithm the worst.

One reasonable method to analyse the degree of robustness of classification al-

gorithms when they are applied to noisy data sets is to compare their performance

with original data sets to their performance for different levels of added noise. If

the accuracy is quite similar with and without added noise, then the algorithm is

robust to noise in the data. Figure 5.2 shows that the D-NPI-M algorithm has a

very similar average accuracy for the original data sets and the different noise levels

considered, in this study it was more robust than the other algorithms. The C4.5,

NPI-M and IDM2 algorithms also perform quite well and hence also show quite

good robustness to noise in the class variable, but the IDM1 algorithm is clearly less

robust at the 30% noise level.
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5.4.3 Experimental results for attribute noise

In this section, we present the results of the performance evaluation of each classi-

fication algorithm with different added noise levels to attribute variables. Table 5.4

shows the classification accuracy rates of each algorithm when it is applied to data

sets with 5%, 15% and 30% random noise added to attribute variables. Note that

the noise is added to each attribute variable. The classification accuracy of each

algorithm with noise-free data sets is shown in Table 5.2. Generally speaking, the

results achieved from applying random noise to attribute variables are quite mixed,

there is no single classification algorithm that seems to have the best performance

with noisy attribute variables. Attribute variables could have some correlations be-

tween each other and may depend on the class variable. Thus, this correlation and

dependence on the class variable may vary from an attribute to another, where the

effects of adding noise to each attribute variable could have different impact on the

performance of the classification algorithm. Therefore, analysing the performance

of classification algorithms with added attribute noise is more difficult and complex

than class noise. Zhu and Wu [69] also stated that the relationship between the

added noise to each attribute variable and the performance of classification algo-

rithm is unclear. They also did not reach to a clear conclusion about whether or not

there are particular types of attribute variables that are sensitive to added noise or

more sensitive than others.

Table 5.4 shows that, for 5% noise level, the D-NPI-M algorithm achieves the

highest performance in all data sets with equal performance to the other algorithms

in the Post-Operative Patient data set. With 15% and 30% noise levels, the results

are quite mixed without a clearly best algorithm. With 15% noise level, the D-NPI-

M algorithm performs slightly better than the other algorithms. The C4.5 algorithm

performs the same as the D-NPI-M algorithm in four data sets. At 15% noise level,

the D-NPI-M and C4.5 algorithms perform slightly better than the other algorithms.

However, with 30% noise level, the NPI-M and IDM algorithms perform better than

the C4.5 and D-NPI-M algorithms. At this noise level, for the Lenses data set, all

algorithms have the same performance, while the NPI-M algorithm performs slightly
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Data set Noise D-NPI-M C4.5 NPI-M IDM1 IDM2

Lenses 5% 73.33 65 68.33 68.33 68.33

Modified Iris 5% 94 92.67 90 92.67 92.67

Monk’s Problems-1 5% 72.95 70.32 66.28 67.82 65.51

Nursery 5% 90.21 89.14 89.09 89.04 89.11

Post-Operative Patient 5% 71.11 71.11 71.11 71.11 71.11

Qualitative-Bankruptcy 5% 99.6 98.4 98.4 98.4 98.4

Lenses 15% 83.34 83.34 83.34 83.34 80.01

Modified Iris 15% 94 94 82.67 92.67 92.67

Monk’s Problems-1 15% 74.04 74.23 70.19 72.63 69.42

Nursery 15% 90.17 89.24 89.21 89.21 89.21

Post-Operative Patient 15% 70 70 70 70 70

Qualitative-Bankruptcy 15% 99.6 99.6 98.4 98.4 98.4

Lenses 30% 63.34 63.34 63.34 63.34 63.34

Modified Iris 30% 92 92.67 93.33 91.33 91.33

Monk’s Problems-1 30% 61.35 66.15 66.86 68.59 66.09

Nursery 30% 89.01 88.85 89.07 89.14 89.07

Post-Operative Patient 30% 70 70 71.11 71.11 71.11

Qualitative-Bankruptcy 30% 98 98.8 97.6 97.6 97.6

Table 5.4: Accuracy of classification trees on data sets with attribute noise.

better than the other algorithms for the Modified Iris and Post-Operative Patient

data sets, with equal performance to the IDM algorithms for the Post-Operative

Patient data set. Finally, the IDM1 algorithm performs well in four data sets with

this noise level.

Figure 5.3 depicts the classification accuracy rates of each algorithm applied to

each data set with different levels of noise added to each attribute variable. Unex-

pectedly, in the Lenses data set, all algorithms have higher classification accuracy

with 15% noise level than their obtained accuracy results with the original data

sets and 5% noise levels, but all classification algorithms have then obtained similar

smaller accuracy results with 30% noise level. This increase, i.e. with 15% noise

level, might be because of the small number of all instances in this data set and the

random assignments as well. However, as seen in some previous researches with sim-
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Figure 5.3: Classification accuracy of all classifiers applied to each data set with

different noise levels added to attribute variables.

ilar analysis, such increasing in the classification accuracy with adding noise could

occur. For the Nursery data set, the D-NPI-M algorithm attains the best average

classification accuracy result for noise levels of 0% (the original data sets), 5% and

15%, while for 30% noise level all classification algorithms attain similar average

accuracy results. For the remaining data sets, there is no clear behaviour for the al-

gorithms in terms of their accuracy results with different noise levels. Although, the

D-NPI-M algorithm seems to perform well with noisy attribute variables, we can not

draw a clear conclusion about the results obtained from adding noise to attribute

variables. However, the relationship between attribute noise and the classification

accuracy is unclear [69]. We also find that in some situations, it might be hard to

interpret the results achieved by adding noise to attribute variables.

According to the average results of classification accuracy shown in Figure 5.4,

there is no clear superiority of any algorithm over the other algorithms. However, the

D-NPI-M algorithm has the highest average classification accuracy with the original

data sets and 5% noise level. With 15% noise level, the D-NPI-M algorithm has
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Figure 5.4: Average classification accuracy for all classifiers with different levels of

random noise added to attribute variables.

the best average accuracy result with similar performance to the C4.5 algorithm.

However, the D-NPI-M algorithm performs a bit worse than the other algorithms in

terms of the average classification accuracy at the 30% noise level. Unexpectedly,

the average classification accuracy results for all algorithms have slightly increased

with 15% noise level compared to the average accuracy results with the original data

sets and 5% noise levels. This increase could be because of the unexpected higher

classification accuracy results achieved by all classification algorithms for Lenses

data set with 15% noise level. However, for some data sets such increase might

happen with adding noise levels.

To sum up, the performance results of the classification algorithms with different

levels of random noise added to each attribute variable are quite mixed and vary

among the algorithms and the noise levels. Although the D-NPI-M algorithm tends

to perform quite well and attains the best accuracy results compared to other algo-

rithms at the 5% and 15% noise levels, it is not the best performing algorithm at

the 30% noise level.
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The impact of adding noise to attribute variables could be unclear in terms of

affecting the performance of the classification algorithms. This unclarity should be

studied and investigated in much more detail. For example, the attribute variables

could be correlated between each other and with the class variable. Of course, the

correlation levels between each attribute variable and the class variable are not the

same. Consequently, the impact of the added noise to the attribute variables differs

from an attribute to another. For example, if we add a particular noise level to

the attribute variables, this may cause more effects in terms of the classification

accuracy on the attribute variable that are more related to the class variable, while

the attribute variables, which are less related to the class variable may not clearly

suffer from this noise level. A possible solution for this issue, which is left as a

topic of future research, is to investigate separately each attribute variable with the

class variable, by adding the noise levels to only one attribute variable and then

to observe and analyse the performance results of the algorithm, and so on for the

remaining attribute variables, i.e. to study the effect of noise per attribute variable.

In this section we have given an insight into the effects of adding random noise

to attribute variables on the D-NPI-M algorithm, and compared its performance to

other classification algorithms with added noise. It is still unclear how the impact

of attribute noise may affect the performance of classification algorithms, although

we have obtained some insight about this impact. Analysing more data sets and

observing different types of attribute variables in a larger experiment could lead to

better conclusions about the effects of attribute noise on the performance of classi-

fication algorithms. Zhu and Wu [69] studied the impact of attribute noise on the

classification accuracy in an extensive experiment. However, they also found that

cases with attribute noise are much more complicated than class noise.
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5.5 Concluding remarks

This chapter presented an application of the D-NPI-M classification tree algorithm

to data sets with noisy instances, the noise is presented either in the class variable

or attribute variables. Data noise is often a problem in real-world data sets, which

may affect the performance of classification algorithms based on such data sets. We

briefly highlighted some studies that considered the problem of data noise on the

performance of classification algorithms.

An experimental analysis has been carried out on data sets with different levels

of random noise in order to asses the performance of the D-NPI-M classification

tree algorithm with noisy data, and to compare its performance with some existing

classification tree algorithms. We used the classification accuracy rate, i.e. percent-

ages of correct classification instances, to measure and compare the performance of

different classification algorithms. It will be of interest to consider more methods of

the performance measures in the future. The results obtained in this chapter have

shown that the D-NPI-M classification algorithm performs well on data sets with

class noise, with its performance at different levels of random noise being similar to

its performance on noise-free data sets. This indicates that it is robust with regard

to class noise in the data. It performed slightly better than the other classifica-

tion algorithms with different noise levels added to the class variable. For attribute

noise, none of the classification tree algorithms considered performed noticeably

better overall than the others. However, the D-NPI-M algorithm has the highest

average accuracy rate with 5% and 15% of noise levels, but it did not perform the

best with 30% noise.

This chapter gives an insight into the performance of the D-NPI-M algorithm

with noisy data sets, but some further interesting topics remain to be investigated.

In this chapter we check the performance of classification algorithms on noisy data

sets by adding some noise levels to data sets. However, it is also interesting to de-

tect and identify noisy instances in the training data sets, before trying to correct

them before training the classification algorithms [21]. This could be conducted in
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extensive experimentations which is beyond our scope in this thesis. In this chapter

we have added random noise to training data sets, while considering other kinds

of noise could also be possible and may return different results. It might also be

possible to study and compare different methods of adding noise to the training data

set and investigate their effects on the overall performance results. It will be also

interesting to study the effect of adding noise to both class and attribute variables

at the same time.

Another possible future work is to investigate further the impact of attribute

noise on the performance of classification algorithms, as this type of noise has

achieved less attention in the literature than class noise, and also our study did

not reveal much insight. However, dealing with attribute noise is more complex

than class noise due to a variety of reasons. For attribute noise, it might be better

to consider separately adding noise to each attribute variable and then to assess the

overall performance of the classification algorithm, and so on for the rest of the at-

tribute variables. Finally, a more detailed experimental analysis with a wider range

of data sets and more levels of noise for these data sets could lead to more con-

clusions about the performance of the D-NPI-M classification algorithm with noisy

data sets. Conducting such experimentations with more focus on the characteristics

of the data sets on which application of the D-NPI-M algorithm performs well, or

less well, could lead us to identify characteristics of data sets for which the D-NPI-M

algorithm will be appropriate.



Chapter 6

Conclusions and Future Research

In this chapter we first present a summary of this thesis, highlighting the main re-

sults presented. We then discuss some potential future research topics.

6.1 Conclusions

In this thesis we have introduced a new method to build classification trees, based on

Nonparametric Predictive Inference (NPI). To start introducing this method to the

area of classification, we developed this method only focusing on binary data, where

both class variable and attribute variables are binary. Then, we have extended our

method further to multinomial data, where class or attribute variables can have

more than two categories. The novel classification approach presented in this thesis,

which is completely based on NPI and does not use any other assumptions, is named

Direct Nonparametric Predictive Inference classification (D-NPI).

To build classification trees based on the D-NPI classification method, we have

introduced a new split criterion, which is called Correct Indication (CI). The CI

split criterion is completely based on the lower and upper probabilities given by NPI

for binary or multinomial data and it does not use any other assumptions or any

added concepts such as entropy. The CI split criterion reports the strength of the

evidence that each attribute variable will indicate the correct class state for new

118
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instances, hence, it can be used to determine which attribute variable it is best to

place at the root node when building classification trees, and so on for other internal

nodes. The NPI lower and upper probabilities for CI are also used as a stopping

criterion, by comparing them with the NPI lower and upper probabilities for CI in

case no further attribute variable is used.

To assess the performance of classification trees built using the D-NPI classifi-

cation method, we have carried out an experimental analysis on several data sets,

and we have evaluated the performance using the classification accuracy rate, in-

sample accuracy and tree size. We have compared the performance of our method

with other classification tree methods from the literature. The results from our

experimental analysis have shown that the D-NPI classification method performs

well, slightly better than the other methods considered. We have presented an ini-

tial study of the use of our classification method when data noise is present. We

have analysed the performance of our method when different random noise levels

are added to either the class variable or to the attribute variables, and we compared

its performance with other classification methods. Initial results suggest that our

method performs well in case of noise in the class variable, compared to other classi-

fication methods, while there is little difference in the performance of all considered

methods in case of noise in the attribute values.

6.2 Topics for future research

The work presented in this thesis leads to many possible future research directions.

As a first step to develop the D-NPI classification method, we started with only

binary data, then we have generalized it to multinomial data. Now, the D-NPI

classification method can be extended further to involve other types of data such as

real-valued data or ordinal data. In our work in Chapter 4 we assume that the cat-

egories are not ordered, however, it would be interesting to consider the work where

the categories are ordered or if there is any other known structure or relationship
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between the categories. Another idea for future research is to explore the use of the

D-NPI classification method in random forests.

One important topic for future research is to develop the D-NPI classification

trees with imprecise classification. In imprecise classification, trees might return a

set of possible classes in their leaves rather than a single class, as is the case in

classical classification trees and also in the new method presented in this thesis. It

will also be interesting to develop the D-NPI classification method taking the cost

of misclassification into account. Generally, the aim in classification is to maximize

the total classification accuracy rate, however, in many practical scenarios the aim

is to minimize misclassification costs. In particular in applications where the conse-

quences of misclassifications vary considerably, including the costs in the analysis is

crucial.

Further investigations of the D-NPI classification method on the used data sets

with a more detailed analysis, and considering a larger number of available data

sets, could lead to more insights about the performance of the D-NPI classification

method, as well as aspects of data sets which may indicate that the method can be

used successfully. Another useful research topic would be to evaluate and compare

the performance of the D-NPI classification method with other classification meth-

ods using more evaluation measures, such as nonparametric tests for performance

comparisons [31].

Finally, it will be interesting to further investigate the use of Correct Indication

(CI) as a split criterion for the D-NPI classification method. In this thesis, we

have stated two conditions for the CI split criterion in order to select any attribute

variable for splitting. These two conditions are as follows: the NPI lower probability

for CI has to be greater than the NPI lower probability for CI if no attribute variable

is used, and the NPI upper probability for CI has to be greater than the NPI upper

probability for CI if no attribute variable is used. However, we may consider the

use of imprecision, i.e. the difference between the NPI lower and upper probabilities
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for CI as a stopping rule, or only use one of the two conditions, or even combine

them or consider different conditions. This could improve the performance of the

D-NPI classification algorithm and lead to useful insights on when it is best to stop

splitting in the D-NPI classification trees.
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