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Abstract: In this work we focus on the phenomenology of the charm system,

more specifically the description of D-mixing and the lifetimes of the D0, D+ and

D+
s meson. We start with a brief introduction of flavour physics and the role the

charm quark plays in the Standard Model (SM). Then, we focus on more specialised

techniques like the Weak Effective Theory (WET) and the Heavy Quark Effect-

ive theory (HQET) as well as the Heavy Quark Expansion (HQE), a framework

built to express inclusive decays of heavy hadrons as a series of local operators.

We continue with the description of the neutral meson mixing system in general

before focusing on the D0 case and discuss the peculiarities arising that make its

theoretical description more difficult than the B system. We propose two different

methods of tackling these issues and show that we can get results in the ballpark

of the experimental measurements. Then, we move to the calculations of the D

mesons lifetimes. Including the recently calculated Darwin operator contribution

and D+
s Bag parameters, we present updated results for the total and semi-leptonic

decay rates and their ratios. We conclude that after comparing our results with

experimental measurements by the LHCb, Belle II and BESIII collaborations we can

describe inclusive decays of charm mesons in the HQE framework albeit with large

theoretical uncertainties. Finally, we suggest how this work could continue in the

future and what new measurements would be needed to get more precise results.
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Chapter 1

Introduction

Particle physics tries to describe the fundamental particles of the Universe and their

interactions. The ultimate goal is the development of a theory that can explain all

physical observations at a small scale. Although we are not there yet, after decades

of research and discoveries we have a working theory that describes three of the

four (known) fundamental forces, and the currently known particle content. This

is the Standard Model (SM) of particle physics. In the rest of the chapter we will

introduce the SM and we will discuss in particular some specific features of it that

are the basis of the work developed in the remainder of the thesis.

1.1 The Standard Model

The SM is the culmination of many years of developing theories trying to explain

the laws of physics at the smallest scales. Mathematically it is defined as a quantum

field theory (QFT) with its dynamics described by the SM Lagragian, LSM . Histor-

ically one could say that the first part of the SM was the development of Quantum

Electrodynamics (QED), a theory that describes electromagnetism at the quantum

level. This was the achieved by the work of many physicists like Dirac [9], Feyn-

man [10–12], Schwinger [13, 14] and Tomonaga [15]. Since then many more steps
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were taken towards the SM, including the development of QCD [16–18], the devel-

opment of a weak theory [19, 20], its unification with QED [20–22], and the Higgs

mechanism [23–25].

The Lagragian of the SM is given by

LSM = −1
4FµνF

µν

+ iψ /Dψ

− ψiyijψjH + h.c.

+ |DµH|2 − V (H) , (1.1.1)

where the RHS terms are the self-interactions of the gauge fields, the kinetic terms

of the fermions and their interactions with the gauge fields, the interactions of the

fermions with the Higgs field and the kinetic term and self-interactions of the Higgs

field. The gauge symmetry of the SM is

SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)EM , (1.1.2)

where the SU(3)c is the gauge symmetry of QCD (c stands for the colour charge) and

SU(2)L×U(1)Y is the symmetry of the electroweak sector (L stands for left chirality

and Y for the weak hypercharge). The arrow shows the spontaneous symmetry break

of the electroweak symmetry to U(1)EM (EM stands for electromagnetism). Further-

more the SM is symmetric under the Poincare group. In the end, all renormalisable

terms that obey the gauge and Poincare symmetries are included in Equation (1.1.1).

The particle content of the SM can be split into matter (fermions), force medi-

ators (vector bosons) and the Higgs boson (scalar boson) that is responsible for

giving mass to particles. In the next two sections we will look into the separate parts

of the SM and present them in more detail.
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1.1.1 QCD

Quantum Chromodynamics (QCD) is the non-abelian (i.e. its generators do not

commute) gauge theory that describes the strong nuclear force with gauge group

SU(3)c. The SU(N) group has (N2 − 1) generators, so in the QCD case we have

8 generators denoted as T a. The colour label c can take the ‘values’ red, blue, and

green (these have nothing to do with the actual colours of the visible EM spectrum).

The strong force is mediated via the gluon particle. Since there are 8 generators in

the gauge group, there are 8 gluons too. If we isolate the pure QCD terms from

Equation (1.1.1) we get:

LQCD = −1
4F

a
µνF

µν
a + ψi(i /Dij −mδij)ψj , (1.1.3)

where the mass term originates from the Yukawa term of the SM Lagrangian. Under

the SU(3)c group the quark fields lie in the fundamental representation while the

gluons lie in the adjoint. The field strength tensor in QCD reads

Fα
µν = ∂µA

a
ν − ∂νAaµ + gsf

abcAbµA
c
ν , (1.1.4)

where Aaµ is the gluon field and a runs from 1 to 8, gs is the coupling constant of

QCD and fabc are the structure constants of the gauge group that satisfy [T a, T b]ij =

ifabcT cij. Note that fabc vanishes for abelian groups such as U(1) in QED. In that

case the field strength tensor is reduced to the first two terms of Equation (1.1.4).

As a consequence the gluons self-interact while the photon does not.

1.1.2 Electroweak Theory

The rest of the SM Lagrangian describes the electroweak theory and the Higgs

mechanism through which the symmetry SU(2)L × U(1)Y spontaneously breaks to

U(1)EM and the fermions and the weak gauge bosons obtain their mass. As the

subscript L indicates, the electroweak sector distinguishes between left and right

handed fermions (theoretically proposed by [26] and experimentally verified by [27]).
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This experimentally observed parity violation can be theoretically demonstrated by

putting left handed fermions in the doublet representation of SU(2) while the right

handed are singlets. The field strength tensors of this theory are

Wα
µν = ∂µW

a
ν − ∂νW a

µ + g1ε
abcW b

µW
c
ν , (1.1.5)

Bµν = ∂µBν − ∂νBµ , (1.1.6)

where the first line describes the field strength tensors of the weak force (notice

the similarity to the QCD one, where the structure constant is now simply the

Levi-Civita tensor) and the second line is the U(1)Y field strength tensor. W a
µ are

the three gauge boson fields of the SU(2)L theory and Bµ is the boson field of the

U(1)Y theory. Mass terms for the gauge bosons can not be simply added, since they

are not gauge invariant. However, the weak interaction seems to have a very short

range indicating very massive mediators. How do the W and Z bosons (and the

fermions of course) obtain their mass?

This is where the Higgs mechanism comes into play, causing the spontaneous sym-

metry breaking of the electroweak symmetry group as mentioned above. All that is

needed is the addition of a complex scalar field with a certain potential term.

The Higgs field is introduced as an SU(2)L doublet,

H =

φ
+

φ0

 , (1.1.7)

where the φ+, φ0 are complex scalar fields. The potential is given by

V (H) = µ2(H†H) + λ(H†H)2 , (1.1.8)

where for µ2 < 0 there is a non-trivial minimum of the Higgs potential at

〈H〉 = v√
2

=
√
−µ2

2λ . (1.1.9)
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Due to this non-zero VEV the Higgs field breaks the electroweak symmetry down

to the U(1)EM . Expanding the Higgs field from Equation (1.1.7) around the VEV

we get

H =

 0
v+h√

2

 , (1.1.10)

where h is the scalar field associated with the Higgs boson. Below we will shortly

show how the Higgs mechanism gives the gauge bosons their masses. For the fermion

case, see Section 1.2.1.

Gauge Boson Masses

The mass of the W and Z bosons comes from the third line of Equation (1.1.1) and

more specifically the |DµH|2 term. To see it clearly we use Equation (1.1.10) to

expand the covariant derivative

Dµ = ∂µ − ig1W
a
µ

σa

2 − ig2YLBµ , (1.1.11)

where g1, g2 and YL are the coupling for the SU(2)L interaction, the coupling of

the U(1)Y interaction, and the weak hypercharge respectively. For the mass terms

we keep only the terms proportional to v2 as the terms including the field h are

associated with interactions of the Higgs boson with the W and Z bosons. So the

mass terms are

Lgauge−mass =

∣∣∣∣∣∣∣∣
−i

2
√

2

 g2Bµ + g1W
3
µ g1W

1
µ − ig1W

2
µ

g1W 1
µ + ig1W

2
µ g2Bµ − g1W

3
µ


0

v


∣∣∣∣∣∣∣∣
2

(1.1.12)

= v2

8
(
g2

1(W 1)2 + g2
2B

2 + g2
1(W 2)2 + g2

1(W 3)2 − 2g1g2B
µW 3

µ

)
.

Now we rewrite the above equation by defining 4 new fields, as linear combinations

of the old ones

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ) ,

Zµ = cwW
3
µ − swBµ , (1.1.13)
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Aµ = swW
3
µ + cwBµ ,

where sw = sin θw, cw = cos θw and θw = tan−1
(
g2
g1

)
widely known as the weak angle,

first introduced by Glashow [20]. We recognise this new basis as the fields of the

actual W and Z bosons as well as the photon. In fact, in this basis the photon

remains massless as it should and we get

mW = g1v

2 ,

mZ = v

2

√
g2

1 + g2
2 ,

as the masses of the weak bosons.

Fermion couplings

For the fermion couplings we will use the mass basis introduced above for the gauge

fields, thus rewriting the covariant derivative

Dµ = ∂µ −
ig1

2
√

2
(
W+
µ σ

+ +W−
µ σ
−
)
− ig1

cos θw

(
σ3

2 − sin2 θwQ

)
Zµ − ieQAµ ,

(1.1.14)

where Q = σ
3

2 + Y and corresponds to the electric charge, σ± = σ1 ± iσ2, and e the

electron charge satisfying e = g1 sin θw. Now if we consider the kinetic part of the

SM Lagrangian regarding the quarks and expand it to separated terms we get

L = QL(i /D)QL + uR(i /D)uR + dR(i /D)dR , (1.1.15)

where QL =

uL
dL

. After substituting Equation (1.1.14) we obtain

L = QL(i/∂)QL + g1

(
W+
µ J

µ+
W,Q +W−

µ J
µ−
W,Q + ZµJ

µ
Z,Q

)
+ eAµJ

µ
A,Q , (1.1.16)

where

Jµ+
W,Q = 1√

2
uLγ

µdL ,
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Jµ−W,Q = 1√
2
dLγ

µuL ,

JµZ,Q = 1
cos2 θW

(1
2 −

2
3 sin2 θW

)
ūLγ

µuL +
(
−1

2 + 1
3 sin2 θW

)
d̄Lγ

µdL

− 2
3 sin2 θWuRγ

µuR + 1
3 sin2 θWdRγ

µdR

 , (1.1.17)

JµA,Q = 2
3uγ

µu− 1
3dγ

µd .

1.2 Flavour Physics

In Section 1.1.2 we mentioned how the left handed fermions can be expressed as

doublets of the SU(2)L, i.e

QL =

uL
dL

 , LL =

νe
eL

 .

Here the quark doublet QL consists of two component Dirac spinors of the up and

down quark with weak isospin +1/2 and −1/2 respectively. The lepton doublet LL

consists of two Dirac spinors of the neutrino and the lepton with weak isospin +1/2

and −1/2 respectively. It was later discovered that there are two more (heavier)

copies of these doublets and in total we have three generations of fermions. Flavour

physics studies specifically these different types of fermions and their interactions.

1.2.1 CKM

The way fermions obtain their masses is encoded in the Yukawa interaction term [28]

(third line of Equation (1.1.1)) since terms of the form mQ

(
QLQR +QRQL

)
would

not be gauge invariant under SU(2)L. The Yukawa Lagrangian for the interaction

of fermions with the Higgs field is

LY ukawa = QLŶ
uH̃uR + QLŶ

dHdR + h.c. , (1.2.1)
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where QL has three components (as many generations of fermions) and each com-

ponent is an SU(2)L doublet i.e.

Q1,L =

uL
dL

 ; Q2,L =

cL
sL

 ; Q3,L =

tL
bL

 . (1.2.2)

Ŷ u,d are the complex Yukawa coupling matrices of the up- and down-type quarks.

Finally, uR,dR are three-dimensional vectors of the right hand spinors of the up and

down-type quarks respectively. Notice also that in order to give the masses to the

quarks we need to introduce a modified Higgs field that depends on the original one:

H̃ = iσ2H
∗ . (1.2.3)

Now, if we replace the Higgs field with its expression in Equation (1.1.10) and keep

only the terms proportional to its VEV we get:

LY ukawa ⊃
v√
2
uLŶ uuR + v√

2
dLŶ ddR + h.c. . (1.2.4)

which looks like fermion mass terms. The Yukawa matrices in general do not need

to be diagonal. However, in order to get diagonal mass terms we will need to rotate

the basis of the quark eigenstates. The way to do this is to apply the singular value

decomposition and change from the weak eigenstate basis to the mass eigenstate

one. To do so we perform the transformation

uL,R → Uu
L,RuL,R

dL,R → Ud
L,RdL,R (1.2.5)

where the matrices U1,2 are unitary. In order for the Lagrangian terms to remain

unchanged the mass matrices need to transform accordingly

Mu = v√
2
Ŷ u → v√

2
(Uu

L)†Ŷ uUu
R =


mu

mc

mt

 ,
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Md = v√
2
Ŷ d → v√

2
(Ud

L)†Ŷ dUd
R =


md

ms

mb

 . (1.2.6)

Now we can see how this transformation changes the neutral and charged currents of

Equation (1.1.18). The combinations qL,RγµqL,R remain unchanged under the change

of basis. So the neutral currents remain as they are with the mass eigenstates. The

charged current however changes. See for example the W+ current:

Jµ+
W,Q → uL (Uu

L)† γµUd
LdL = uLVCKMγµdL , (1.2.7)

where we have introduced the Cabibbo-Kobayashi-Maskawa (CKM) matrix as

VCKM ≡ (Uu
L)† Ud

L . (1.2.8)

In exactly the same way we can show the transformation of the negative charged cur-

rent, with the hermitian CKM matrix. Although the CKM matrix could theoretically

be diagonal, it has been shown experimentally that it is not. These non-diagonal ele-

ments are responsible for the interactions between the different generations of quarks.

Historically the CKM matrix was first proposed as a 2 × 2 matrix in 1963 by

Cabibbo [29]. However, ten years later the current form of the matrix was expanded

to its current form by Kobayashi and Maskawa [30] (even before the c, b, t quarks

were discovered). A general n × n complex matrix has 2n2 parameters. Using its

unitarity property, the number of free parameters is reduced to n2 and if we discard

unphysical phases we end up with n(n− 1)/2 real parameters and (n− 1)(n− 2)/2

phases. In case of the SM with 3 generations of quarks this leaves 3 real parameters

and 1 phase. The complex phase is the source of CP violation in the SM. This is

something that can only happen with at least 3 generations of quarks, as for n = 2
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no complex phase is possible. The current CKM matrix can be written in detail as

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


0.974 0.225 0.004− 0.001i

−0.225− 0.0i 0.974− 0.0i 0.042

0.006− 0.001i −0.041− 0.0i 0.999

 ,

(1.2.9)

where the CKM elements are calculated based on input from the CKMfitter group [31]

(note that numbers are rounded and errors are omitted here). As we can see, the

diagonal elements are dominant (and close to 1) but the non-diagonal are still non-

zero. This implies that a quark is more likely to decay to same generation quark

(e.g. t→ b,) than “jump” between generations1.

CKM Parametrization

There are two widely used ways of parametrizing the CKM matrix. The first one

parametrizes the CKM elements in terms of three angles, θ23, θ12 and θ13 and one

phase δ13 as

VCKM =


c12c13 s12c13 s13e

−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 , (1.2.10)

where sij = sin θij and cij = cos θij. This is called the Standard Parametrization [32].

The other parametrization is an approximation that is based on the experimental

hierarchy s13 � s23 � s12 � 1 by introducing the parameter λ ≈ Vus and per-

form a Taylor expansion in this parameter. There are 3 more parameters (A, ρ, η)

introduced defined as

s12 = λ = |Vus|√
|Vud|2 + |Vus|2

,

s23 = Aλ2 = λ

∣∣∣∣∣VcbVus

∣∣∣∣∣ , (1.2.11)

1Only if the decay is possible, e.g. a b quark is most likely to decay in a c quark and not a t.
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(0, 0) (1, 0)

(ρ, η)

∣∣∣VudV ∗ub
VcdV

∗
cb

∣∣∣ ∣∣∣ VtdV ∗tb
VcdV

∗
cb

∣∣∣
γ

β

α

Figure 1.1: The unitarity triangle for the first line of Equation (1.2.13)

s13e
iδ13 = V ∗ub = Aλ3(ρ+ iη) .

Up to O(λ4) the CKM matrix becomes

VCKM =


1− 1

2λ
2 λ Aλ3(ρ− iη)

−λ 1− 1
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) . (1.2.12)

This is the Wolfenstein parametrization [33]. The unitarity of the CKM matrix gives

rise to three orthogonality conditions

Bd : VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 ,

K : VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 , (1.2.13)

Bs : VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 ,

where the first one can be depicted as a triangle in the (ρ, η) plane as shown in

Figure 1.1. These equations can be used in studies of neutral meson mixing and

other calculations simplifying them significantly without affecting the result.

1.2.2 Charm Quark and the GIM Mechanism

In this section we give a short historical review of the prediction of the charm quark

leading to its experimental discovery and its implications in the Glashow-Iliopoulos-

Maiani (GIM) mechanism [34].
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Before the proposal of a fourth quark, the quark model consisted of a triplet q =


u

d

s


and the Eightfold way was explaining the known meson and baryon states very

well [35,36]. Considering only the quark content, the weak interaction current was

written as

Jµ = uγµ(1− γ5)d′ + h.c. = qγµ(1− γ5)Cq + h.c. ,

d′ = cos θCd+ sin θCs , (1.2.14)

C =


0 cos θC sin θC

0 0 0

0 0 0

 ,

where θC is the Cabibbo angle and C, C† can be recognised as the raising and lowering

generators of the weak SU(2) group. The third generator is given by their commut-

ator and is not diagonal. Because of that this model allowed for Flavour Changing

Neutral Currents (FCNC) at tree level, something that was not suggested by data.

Another issue was arising when Glashow proposed his unification of the electroweak

theory in 1961 [20]. It could only be applied to leptons as it would require the quarks

to form SU(2) doublets, which was not possible with the quark content found till

then.

That was the case till 1970 when Glashow, Iliopoulos and Maiani introduced their

solution to suppressed ∆S = 1, 2 neutral currents. Their model required a fourth

quark with electric charge of +2/3 which was named charm quark. The introduction

of this new particle would change Equation (1.2.15) by adding

Jµc = cγµ(1− γ5)s′ + h.c. ,

s′ = − sin θCd+ cos θCs . (1.2.15)
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This way the matrix C becomes:

C =



0 0 cos θC sin θC

0 0 − sin θC cos θC

0 0 0 0

0 0 0 0


; q =



u

c

d

s


. (1.2.16)

Now the third generator associated with the Z boson is diagonal and FCNCs are

forbiden at tree level. How does it help with the ∆S = 1, 2 amplitudes though?

Two examples of such processes are the amplitudes KL → µ+µ− and K0 → K
0

respectively. From these amplitudes it was known experimentally that [1]

Γ(KL → µ+µ−)
Γ(K+ → µ+νµ)

= 2.60× 10−9 ,

MKL
−MKS

= 3.484× 10−12 MeV ,

where MKL,S
are the masses of the long-lived and short-lived mass eigenstate of K0

(which are linear combinations of the K0, K
0 mesons). Now the problem with the

three quark theory is that the diagrams contributing to these observables (shown in

Figure 1.2 in red) predict a much higher value. With the GIM mechanism though

and the introduction of the charm quark for every diagram in Figure 1.2 (shown in

blue) we get a second one where the u-quark is replaced by a c-quark. Notice however

the total sign of the coupling being opposite to the diagrams with the u-quark line.

In the case of mu = mc the total amplitude would vanish. Now that the masses are

different, the amplitude is proportional to α2m2
c−m

2
u

M
2
W

where α is the fine structure

constant. As we can see the sum of the two diagrams is very suppressed. In the

same way, GIM mechanism helps with the ∆S = 1 amplitudes. In Chapter 3 we will

see how the GIM mechanism affects the mixing of D0 meson with its antiparticle

and makes theoretical predictions very hard.

Although the charm quark was predicted in 1970, it was only confirmed experiment-

ally in 1974, independently in SLAC and BNL by teams led by Burton Richter [37]
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d

cos θC ,
− sin θC

sin θC ,
cos θC

s

s̄
sin θC ,
cos θC

cos θC ,
− sin θC

d̄

u,c

ū,c̄
W W

d

cos θC ,
− sin θC

µ+

s̄
sin θC ,
cos θC

µ−

u,c νµ

W

W

Figure 1.2: Box diagrams contributing to the K0 mixing amplitude (left) and KL →
µ+µ− amplitude (right). The coupling in each vertex is included so that the colour
matches the quark lines.

and Samuel Ting [38] respectively. The two teams observed a new resonance with

peak at around 3.1 GeV which was identified as a bound state of cc, more widely

known as “Charmonium”.

1.3 Rest of the Thesis

In this introductory chapter we presented the basics of the Standard Model. We also

focused on the flavour physics part of the SM and how the quarks interact with each

other and gain their masses. Finally we explained the importance of the discovery

of the charm quark through the GIM mechanism.

The remainder of this thesis splits into 4 more chapters. In Chapter 2 we introduce

some more specialised tools like Effective Theories and the Heavy Quark Expansion

framework. These topics play a very important role in the work done in the following

chapters and we try to present the reasoning behind them and their basic properties.

In Chapter 3 we discuss the system of D0 − D
0 oscillations. We present the ba-

sic formalism of neutral meson mixing and focus on the theoretical difficulties the

D0 − D0 system shows. Moreover, we present a new point of view regarding the

renormalisation scheme applied traditionally in these calculations. Using this new

method we show that it is possible to get theoretical predictions in agreement with
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the current experimental values, alas with large theoretical uncertainties.

In Chapter 4 we focus on the lifetimes of D mesons, more specifically D0, D+ and

D+
s and how we can calculate them in the Heavy Quark Expansion framework. We

conduct a very thorough study including two recently calculated contributions, the

Darwin term for the decay of the charm quark and the Bag parameters of the D+
s

meson. We also show the effect that these new results have in other observables like

lifetime ratios and semi-leptonic decays and their rations.

Finally, in Chapter 5 we summarise the work presented in the previous chapters and

comment on the effect these results can have for future work. We will also point to

the pieces missing in order to get better theoretical predictions and how attainable

this is in the near future. In Appendices A-D we include supplementary material,

like numerical input, example calculations and relevant proofs of equations used in

the previous chapters.





Chapter 2

Theoretical Methods in Flavour

Physics

In this chapter we will present some key concepts that are crucial in the study of

flavour physics. We will start by presenting the Weak Effective Theory (WET) that

simplifies our calculations at a lower energy scale by integrating out heavier particles.

In this theory we will present some key calculations that will be used throughout the

rest of the thesis. Next we will move to some more specialised methods, introducing

the Heavy Quark Effective Theory (HQET) and the Heavy Quark Expansion (HQE)

that are used to approximate the state of hadrons that include at least one heavy

quark in low energies and enables us to study their inclusive decays (e.g. hadron

lifetimes, mixing decay width).

2.1 Effective Theories

Effective Field Theories (EFTs) are a very powerful tool when you are interested in

calculating a process at a lower energy scale. Essentially you use only the theory that

is relevant to your energy regime and you “integrate out” higher degrees of freedom.

In this section we will introduce two examples of EFTs; the Weak Effective Theory

(WET) and the Heavy Quark Effective Theory (HQET). These two are examples of
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c s

u d̄

W+

c s

u d̄

Figure 2.1: Tree level diagrams contributing to the process c→ sud in the full theory
(left) and the effective theory (right). In the process from left to right the W boson
has been integrated out and a four-quark operator has been created instead.

a top down approach where you take a theory that works in a higher energy scale

(the SM in this case) and you integrate out the degrees of freedom higher than your

energy. What is left is an EFT that describes the “full” theory in this lower energy.

2.1.1 Weak Effective Theory

Matching

The weak decays of hadrons are driven by weak interactions of the quarks. However,

the quarks bind into hadrons at an energy scale of ∼ 1 GeV while the weak interaction

has a much bigger scale (MW,Z ≈ 80 − 90 GeV). In order to develop a low energy

theory of the weak interaction we can employ the Operator Product Expansion

(OPE) [39, 40]. To describe this method we will consider the decay c→ sud̄ which

happens through a W+ boson as shown in the left diagram of Figure 2.1. In this

section we will follow the same procedure as [41, 42]

The amplitude of this process at tree level is given by

Afull,(0) = i
ig1V

∗
cs

2
√

2
ig1Vud

2
√

2

(
siγµ(1− γ5)ci

) (
ujγµ(1− γ5)dj

)
k2 −M2

W

, (2.1.1)

where k2 is the momentum transfer through the W boson, the indices i, j show the
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c s

u d̄

W+

c s

u d̄

W+

c s

u d̄

W+

Figure 2.2: One-loop QCD correction diagrams in the SM. Gluon lines are shown in
red. Their symmetric counterparts are not shown here.

colour charge of the fields, and the superscript (0) indicates the calculation is at

tree level. We can expand the denominator of Equation (2.1.1) in powers of k2/M2
W

since k2 �M2
W . By doing so we rewrite

Afull,(0) = i
GF√

2
V ∗csVud

(
sici

)
V−A

(
ujdj

)
V−A

+O(k2/M2
W ) (2.1.2)

where
GF√

2
= g2

1

8M2
W

. (2.1.3)

We have also used the notation V −A which indicates the vector-axial vector current

i.e. (q1q2)V−A ≡ q1γ
µ(1−γ5)q2. The expression in Equation (2.1.2) is represented by

the diagram on the right side of Figure 2.1. What if we also include QCD corrections

to the diagrams of Figure 2.1? In this case we will also need to calculate the one-

loop diagrams of Figure 2.2. The corresponding diagrams in the effective theory are

identical to the “full” theory ones, but with the W propagator contracted to a point,

just like in the right diagram one of Figure 2.1. So far at tree-level we have seen only

one operator arising Q1 ≡
(
sici

)
V−A

(
ujdj

)
V−A

. If we include the QCD corrections

though, a second operator arises with a different colour structure. This operator can

be expressed as Q2 ≡
(
sicj

)
V−A

(
ujdi

)
V−A

.2 With these two operators we can build

2The notation of Q1, Q2 is just a convention and in the literature they can appear interchange-
able.
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our effective Hamiltonian:

Heff = GF√
2
V ∗csVud (C1Q1 + C2Q2) , (2.1.4)

where C1, C2 are called Wilson coefficients and can be considered as the couplings

of the effective vertices (e.g. the crossed circles in the right diagram of Figure 2.1).

The central aspect of this OPE is that low energy (long distance) and high energy

(short distance) effects are split into the matrix elements of these operators and the

coefficients respectively. Both of these quantities depend on an energy scale µ which

is the threshold of the above separation. However this parameter is unphysical and

so observables should be µ independent. This is achieved through the cancellation

of the µ dependence of Ci(µ) and 〈Qi〉(µ) at every order in the perturbative series.

If we calculate the effective amplitude at tree level (right diagram of Figure 2.1) we

get the expression

Aeff,(0) = i
GF√

2
V ∗csVud

(
C1〈Q1〉tree + C2〈Q2〉tree

)
, (2.1.5)

where 〈Qi〉tree is the tree level matrix element of the operator Qi. By requiring

Afull,(0) = Aeff,(0) we immediately get the values of the Wilson coefficients at LO:

C1 = 1 +O(αs) , C2 = 0 +O(αs) . (2.1.6)

As we mentioned earlier, the point of an EFT is to allow us to calculate quantities

at a smaller energy scale than the one of the full theory, simplifying the process as

we remove higher degrees of freedom that are not present in such energies. However,

after calculating the Wilson coefficients with their dependence on the matching scale

we still have one more thing to do. If we calculate the coefficients at a specific

(nth) order, we will include corrections up to O(αns ) terms. In these calculations

though we will also get large logarithms of the form ln(µmatch/µcalc) where µmatch

is the matching scale of the full and effective theories and µcalc is the energy scale

of our calculation. Since typically the calculation scale is much smaller than the
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matching ones, these logarithms become quite big and spoil the convergence of the

series. This problem can be solved by using the renormalisation group equations

(RGE) to sum these logarithms order by order. In Table 2.1 we can see specifically

what terms are included at each order. The results we show below correspond to

a LO+LL order (LL stands for Leading Logarithms). This means we perform the

matching at one-loop level and keep only leading logarithmic corrections of order

αs · ln. In order to obtain the QCD corrections to the Wilson coefficients we need

LL NLL NNLL N3LL

tree-level 1 - - -
1-loop αs ln αs - -
2-loop α2

s ln2 α2
s ln α2

s -
3-loop α3

s ln3 α3
s ln2 α3

s ln α3
s

Table 2.1: Terms included in the perturbative expansion of the Wilson coefficients
calculation.

to calculate the diagrams of Figure 2.2 and their corresponding ones in the EFT.

In the following calculations we will assume massless external quark and off-shell

momentum p such that p2 < 0 [41]. These assumptions will not change the result for

the Wilson coefficients but will simplify the calculation. We start with the results

for the full theory:

A
full,(1)
1 =

∫ ddl

(2π)d

sj ig1√
2
γµ

1− γ5

2
i(/p+ /l)
(p+ l)2 igsT

α
jiγ

ρci


ukigsTαklγσ i(/p+ /l)

(p+ l)2
ig1√

2
γν

1− γ5

2 dl

 −igµν
l2 −M2

W

−igρσ
l2

V ∗csVud


= −iGF√

2
V ∗csVud(sjci)V−A(ukdl)V−A

1
2

δjlδik − 1
NC

δjiδkl

αs
4π ln M

2
W

−p2

= − iGF

2
√

2
V ∗csVud

αs
4π ln M

2
W

−p2

〈Q2〉tree −
1
NC

〈Q1〉)tree
 , (2.1.7)

A
full,(1)
2 =

∫ ddl

(2π)d

sj ig1√
2
γµ

1− γ5

2
i(/p− /l)
(p− l)2 igsT

α
jiγ

ρci


uk ig1√

2
γν

1− γ5

2
i(/p+ /l)
(p+ l)2 igsT

α
klγ

σdl

 −igµν
l2 −M2

W

−igρσ
l2

V ∗csVud


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= iGF√
2
V ∗csVud(sjci)V−A(ukdl)V−A

1
2

δjlδik − 1
NC

δjiδkl

αs
4π ln M

2
W

−p2

= iGF√
2
V ∗csVud

αs
4π ln M

2
W

−p2

〈Q2〉tree −
1
NC

〈Q1〉)tree
 , (2.1.8)

A
full,(1)
3 =

∫ ddl

(2π)d

sjigsTαjmγρ i(/p− /l)(p− l)2
ig1√

2
γµ

(1− γ5)
2

i(/p− /l)
(p− l)2 igsT

α
miγ

σci


uk ig1√

2
γν

1− γ5

2 dk

× igµν
M2

W

V ∗csVud
−igρσ
l2


= −iGF√

2
V ∗csVud

αs
4πδij(s

jci)V−A(ukdk)V−ACF

1
ε

+ ln mu
2

−p2


= −−iGF√

2
V ∗csVud

αs
4π

CF
1
ε

+ ln µ2

−p2

〈Q1〉tree , (2.1.9)

where the indices 1, 2, 3 correspond to the diagrams of Figure 2.2 from left to right

and the superscript (1) indicates the calculations are at one-loop level. In the second

step of the above calculations we have kept only the terms that correspond to LO+LL

accuracy, discarding the rest and we have used the following identities:

TαijT
α
kl = 1

2

δilδjk − 1
NC

δijδkl

 , (2.1.10)

TαijT
α
jk = CF δik , (2.1.11)

where CF = (N2
C − 1)/2NC and NC is the number of QCD colours (NC = 3 here

and so CF = 4/3).

If we add all the diagrams together (the symmetric diagrams give the exact same

result) we get

Afull = Afull,(0) + 2
(
A
full,(1)
1 + A

full,(1)
2 + A

full,(1)
3

)

= −iGF√
2
V ∗csVud

1 + αs
4π

2CF

1
ε

+ ln µ2

−p2

+ 3
NC

ln M
2
W

−p2

〈Q1〉tree

+αs
4π

− 3 ln M
2
W

−p2

〈Q2〉tree
 . (2.1.12)
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The corresponding results in the EFT are

A
eff,(1)
1 = −iGF√

2
V ∗csVud

αs
4π

1
ε

+ ln µ2

−p2

 C1

2NC

〈Q1〉tree

+
1
ε

+ ln µ2

−p2

(CFC2 + C1

2

)
〈Q2〉tree

 ,(2.1.13)
A
eff,(1)
2 = −iGF√

2
V ∗csVud

αs
4π

1
ε

+ ln µ2

−p2

(C2

2 + CFC1

)
〈Q1〉tree

+
1
ε

+ ln µ2

−p2

(− C2

2NC

)
〈Q2〉tree

 , (2.1.14)

A
eff,(1)
3 = −2iGF√

2
V ∗csVud

αs
4π

1
ε

+ ln µ2

−p2

( C1

2NC

− C2

)
〈Q1〉tree

+
1
ε

+ ln µ2

−p2

( C2

NC

− C1

)
〈Q2〉tree

 . (2.1.15)

As previously if we put all contributions together (and include symmetric diagrams

that give the same result) we get

Aeff = Aeff,(0) + 2
(
A
eff,(1)
1 + A

eff,(1)
2 + A

eff,(1)
3

)
= −iGF√

2
V ∗csVud

(
A1〈Q1〉tree +B1〈Q2〉tree

)
, (2.1.16)

where

A1 =
1 + αs

4π

1
ε

+ ln µ2

−p2

2CF + 3
NC

C1

−3αs4π

1
ε

+ ln µ2

−p2

C2

 ,
(2.1.17)

B1 =
1 + αs

4π

1
ε

+ ln µ2

−p2

2CF + 3
NC

C2

−3αs4π

1
ε

+ ln µ2

−p2

C1

 .
Comparing the SM and the EFT result we get the results for the Wilson coefficients

C1 = 1− αs
4π

3
NC

1
ε

+ ln µ2

M2
W


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C2 = −αs4π3
1
ε

+ ln µ2

M2
W

 . (2.1.18)

Looking at Equations (2.1.17) and (2.1.18) we see the main objective of the OPE

which is the factorisation into short- and long-distance effects. Ignoring the divergent

terms which we will deal with in the next section the expressions of the Wilson

coefficients and the matrix elements are of the form1 + αs
4π ln M

2
W

µ2

 1 + αs
4π ln µ2

−p2

 , (2.1.19)

respectively. Multiplying the two to calculate the amplitude we get1 + αs
4π ln M

2
W

µ2

1 + αs
4π ln µ2

−p2

 =
1 + αs

4π ln M
2
W

−p2

+O(α2
s) , (2.1.20)

which are the logarithmic terms we get in the full theory. So indeed the OPE splits

the effects using the unphysical scale µ as a threshold.

Operator and Coefficient Renormalisation

If we look at Equations (2.1.12) and (2.1.17) we see some divergent terms. The ones

that are common in both equations cancel during the matching procedure (they are

not present in Equation (2.1.18)). Independently they could also be removed by

renormalising the quark fields. For the remaining ones we will have to renormalise

the bare Qi operators. To separate between the bare and renormalised operators we

will indicate the first ones with the superscript (0). We write

Q
(0)
i = ẐijQj =⇒ 〈Qi〉(0) = Z−2

q ẐijQj , (2.1.21)

where Ẑ is a 2× 2 matrix and Zq is the renormalisation constant for the quark field

which removes the common divergencies of the two theories. The matrix Z can be

easily identified as

Ẑ = 1 + αs
4π

1
ε

3/NC −3

−3 3/NC

 . (2.1.22)



2.1. Effective Theories 41

Inserting these updated matrix elements in Equation 2.1.17 we can extract the

renormalised Wilson coefficients:

C1 = 1 + αs
4π

3
NC

ln M
2
W

µ2 ,

C2 = −3αs4π ln M
2
W

µ2 . (2.1.23)

The same result would be obtained if instead of the operators we decide to renormalise

the coefficients. In that case we can write

C
(0)
i = Ẑc

ijCj , (2.1.24)

and the effective Hamiltonian can be rewritten as

1
GF√

2V
∗
csVud

Heff = C
(0)
i Qi(q(0)) = Z2

q Ẑ
c
ijCjQi . (2.1.25)

To get the effective amplitude we write

Aeff ≡ 〈Heff〉 = Z2
q Ẑ

c
ijCj〈Qi〉(0) , (2.1.26)

while by using the operator renormalisation we get

Aeff = Z2
q Ẑ
−1
ji Cj〈Qi〉(0) , (2.1.27)

and by comparing the two expressions we find

Ẑc
ij = Ẑ−1

ji . (2.1.28)

Renormalisation Group Equations

As we mentioned earlier it is not wise to simply set the µ scale to a value and

calculate the Wilson coefficients at that energy. The reason is the arising of large

logarithms that can spoil the perturbative expansion. In this section we will see how

we can perform a resummation of these logarithmic terms.

We start with the statement that Heff can not depend on the scale µ. That would
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mean

d

d lnµHeff = d

d lnµ

(
CiQi

)
= 0 =⇒ dCi(µ)

d lnµ Qi(µ) = −Ci(µ)dQi(µ)
d lnµ . (2.1.29)

Additionally, we can use that the bare fields should be scale independent to get

dQ
(0)
i

d lnµ = 0 =⇒ Ẑij(µ)dQj(µ)
d lnµ = −

dẐij(µ)
d lnµ

Qj(µ) . (2.1.30)

The above equation can be rewritten in matrix form as

d~Q(µ)
d lnµ = γ̂ ~Q(µ) , (2.1.31)

where γ̂ = Ẑ−1(µ) d
d lnµẐ(µ). The matrix γ̂ is defined as the anomalous dimension

matrix. Applying Equation (2.1.30) on Equation (2.1.29) we get the RGE for the

Wilson coefficients
d~C(µ)
d lnµ = γ̂T ~C . (2.1.32)

To solve this equation we will need to define the β function of QCD as

β(αs) = 1
2
dαs(µ)
d lnµ = −εαs − β0

α2
s

4π +O(α3
s) , (2.1.33)

where β0 = 11NC−2f
3 and f is the number of active flavours. Applying this we can

calculate the γ̂ matrix giving

γ̂ = αs
4π

−6/NC 6

6 −6/NC

 . (2.1.34)

Applying Equation (2.1.33) we can solve the RGE for the Wilson coefficients and

get
~C(µ) = Û (5)(µ,MW )~C(MW ) (2.1.35)

where the superscript (5) indicates the 5 active flavours between the scales MW and

mb . The evolution matrix Û is given by

Û(µ,MW ) = exp
 ∫ αs(µ)

αs(MW )
dα
γ̂T (α)
2β(α)

 . (2.1.36)
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Substituting the expressions for γ̂, β we get

~C(µ) = exp
− γ̂(0)T

2β0
ln
 αs(µ)
αs(MW )

~C(MW ) . (2.1.37)

Notice that this solution is valid for energies up to mb. For lower energies (as we

will need for this thesis) we will need to perform another matching of the 5-flavour

effective theory and the 4-flavour one, integrating out the heavy b quark. Then we

can apply the 4-flavour evolution matrix to the new initial conditions at mb. This

process has to be followed every time we go to lower energies and need to integrate

out heavier degrees of freedom.

If one wants to consider more generally the decay of the charm quark then the

effective Hamiltonian of Equation (2.1.4) can be extended with the addition of the

penguin operators Q3 −Q6

Q3 = (uici)V−A
∑
q

(qjqj)V−A ,

Q4 = (uicj)V−A
∑
q

(qjqi)V−A ,

Q5 = (uici)V−A
∑
q

(qjqj)V+A , (2.1.38)

Q6 = (uicj)V−A
∑
q

(qjqi)V+A ,

where the q index runs for all quark flavours and (qq)V+A = qγµ(1 +γ5)q. In the rest

of the thesis the Wilson coefficients used are also taking into account these QCD

penguins since we are looking into inclusive decays of the charm quark. We will

also consider two-loop corrections. A good review of this calculation can be found

in [41,42]

In conclusion, the procedure to calculate the Wilson coefficients at the charm mass

scale can be summarised in the following steps:

• Calculate the matching conditions at µ = MW for all the operators of the

effective Hamiltonian. For this we would need to calculate the corresponding
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diagrams both in full and effective theory and do the matching.

• Remove the remaining divergencies by performing the appropriate renormal-

isation.

• Sum over the logarithmic corrections at the considered order by using the RGE.

For this, we would need to calculate the anomalous dimension matrix at the

required order.

• Derive the evolution matrix and run down the scale to mb. Above we give the

result for the LO+LL calculation.

• From there, we will need to match a 5-flavour EFT to a 4-flavour EFT integ-

rating out the bottom quark i.e.

~C(4)(mb) = M̂(mb)~C(5)(mb) . (2.1.39)

The matrix M̂ needs to be determined in a similar matching process. This

matrix can be found in [43].

• We then apply the 4-flavour evolution matrix to this matching condition and

run down to µ = mc, i.e

~C(4)(µ) = Û (4)(µ,mb)~C(4)(mb) . (2.1.40)

2.1.2 Heavy Quark Effective Theory

One of the main properties of QCD that is unique to it, is the confinement property,

i.e. colour-charged particles are not allowed to be observed and they have to combine

themselves to colour singlet states which are called hadrons. Thus, hadron dynamics

are governed by the confinement scale or QCD scale ΛQCD ≈ 0.2 GeV. At such a

low energy scale however the running coupling αs is larger than 1 and hence can not

be expanded over. As a result, perturbative QCD can not be applied in this case

but it is still possible to calculate hadronic matrix elements by considering certain
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approximations. HQET [44–51] can be applied to hadrons that contain one heavy

quark Q i.e mQ � ΛQCD. Excluding the top quark which decays before hadroniza-

tion, heavy quarks can be assumed to be the bottom with mb ≈ 4.18 GeV (in the

MS scheme) and the charm with mc ≈ 1.27 GeV (again in the MS scheme). In such

an approximation the hadron can be simulated as a heavy quark softly interacting

with the light constituents. In the remaining of the section we will show how we can

describe such a system mathematically and how under this assumption the QCD

Lagrangian changes to the HQET one, giving a new set of Feynman rules.

The rest of the section follows the reviews [52–54]. In HQET the heavy quark

can be assumed to be almost on-shell, resulting in the following expression of its

momentum

P µ
Q = mQv

µ + kµ , (2.1.41)

where the LHS corresponds to the heavy quark momentum and vµ is the velocity

four-vector of the hadron with v2 = 1. kµ is the residual momentum which is of order

ΛQCD and comes from the interactions of the heavy quark with the lighter degrees of

freedom. If we use Equation (2.1.41) we can rewrite the QCD quark propagator as

i

/PQ −mQ + iε
= i

mQ/v + /k −mQ + iε

= i

v · k + iε

1 + /v

2

+O
 k

mQ

 , (2.1.42)

where the operator 1+/v
2 can be understood as a positive-energy projection operator.

In the same way we can define a negative-energy projection operator

P± = 1± /v
2 , (2.1.43)

satisfying the projection identities

P 2
± = P± ,

P±P∓ = 0 . (2.1.44)
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i j
= 1

v·k
1+/v

2 δji

i

a, α

j
= igsT

α
ijv

a

Figure 2.3: The quark propagator and the heavy quark-gluon vertex in the HQET
framework

By using that P+γ
µP+ = P+v

µP+ we can also rewrite the gluon vertex igsTαγµ as

igsT
αvµ up to leading order in 1/mQ.

The parametrisation of the QCD heavy quark field can be written (using the projec-

tion operators) as

Q(x) = e−imQv·x
(
hv(x) +Hv(x)

)
, (2.1.45)

where the two effective quark fields are defined as

hv(x) = eimQv·x
1 + /v

2 Q(x) ,

Hv(x) = eimQv·x
1− /v

2 Q(x) , (2.1.46)

and satisfy the equations

P+hv(x) = hv(x) = /vhv(x)

P−Hv(x) = Hv(x) = −/vHv(x) (2.1.47)

The large component hv(x) annihilates a heavy quark with velocity v while the small

one Hv(x) creates a heavy antiquark with velocity v. The exponential prefactor

in Equation (2.1.45) subtracts mQv from the heavy quark momentum so that the

effective quark fields contain only small effects of O(k). By looking at Equation

(2.1.46) we can see that effects from hv(x) are produced at leading order (because of

the presence of P+ in the effective propagator) while effects from Hv(x) are included

as 1/mQ corrections.
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If we consider only the large component of the heavy quark field, hv(x) and substitute

Equation (2.1.45) in the QCD Lagrangian we get

LQCD → hv(x)(i /D)hv(x) = hv(x)(iv ·D)hv(x) , (2.1.48)

using that P−hv(x) = 0 and P+γµP+ = P+vµP+.

As we can see the above Lagrangian has no dependence on the heavy quark mass,

making it flavour symmetric. This gives rise to an SU(Nh) symmetry where Nh is

the number of heavy quark flavours. Furthermore, since the operator v ·D does not

include gamma matrices, interactions of the heavy quark with the gluons leave its

spin unchanged. This is associated with an SU(2) spin symmetry. Together for Nh

heavy flavours we get an SU(2Nh) flavour-spin symmetry, see e.g. [44]

Expanding the covariant derivative in Equation (2.1.48) we obtain

LQCD → hv(x)(iv · ∂ + gsTαv · Aα)hv(x) , (2.1.49)

from where we can obtain the same Feynman rules as earlier and can be seen in

Figure 2.3. Considering the theory with only hv we have no way of creating or

annihilating antiquarks since hv(hv) annihilates (creates) a heavy quark Q. Thus, no

pair production is possible in the infinite heavy quark mass limit.

To consider 1/mQ, corrections we substitute the full Equation (2.1.45) into the

QCD Lagrangian and we obtain the effective one

LQCD → Q(i /D −mQ)Q→ (hv +Hv)(mQ/v + i /D −mQ)(hv +Hv)

= (hv +Hv)(−2mQ/vHv + i /Dhv + i /DHv)

= hvi /Dhv + hvi /DHv + hvi /DHv +Hv(i /D − 2mQ)Hv

= hv(iv ·D)hv −Hv(iv ·D + 2mQ)Hv + hvi /DHv +Hvi /Dhv ,

(2.1.50)
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where in the first step we have used the right hand equality of Equation (2.1.47),

in the second step the orthogonality of the two effective heavy quark fields and in

the third step the left hand equality of Equation (2.1.47). To simplify the above

Lagrangian it is convenient to define a parallel and an orthogonal part to the velocity

vector vµ of the covariant derivative. This reads

Dµ
⊥ = Dµ − vµ(v ·D) . (2.1.51)

Using this definition, the last two terms of Equation (2.1.50) are changed to

hvi /D⊥Hv + hvi /D⊥Hv . (2.1.52)

This new effective Lagrangian has two separate quark fields (hv, Hv), where the first

one describes a massless degree of freedom, while the second massive fluctuations

with mass equal to twice the heavy quark mass mQ. Finally, the last two terms of the

effective Lagrangian mix the two fields and describe virtual processes. An example

of such processes is the annihilation of a quark that moves forward in time to an an-

tiquark moving backwards and then turns back to a quark moving forward again [55].

From Equation (2.1.50) above we can derive the equations of motion for hv(x)

and Hv(x)

(iv ·D)hv(x) = −i /D⊥Hv(x) (2.1.53)

(iv ·D + 2mQ)Hv(x) = i /D⊥hv(x) . (2.1.54)

Rearranging the second equation we can define Hv(x) in terms of hv(x)

Hv(x) = (iv ·D + 2mQ − iε)−1i /D⊥hv(x) (2.1.55)

With this redefinition we can derive the effective Lagrangian from Equation (2.1.50)

as

Leff = hv(iv ·D)hv + hvi /D⊥(iv ·D +mQ − iε)−1i /D⊥hv . (2.1.56)



2.1. Effective Theories 49

This makes very clear that effects from Hv correspond to 1/mQ corrections in the

effective Lagrangian. The remaining two terms of Equation (2.1.50) cancel each other

by using Equations (2.1.54) and (2.1.55). The effective Lagrangian is now expressed

only in terms of the large component of the heavy quark field hv(x) while it includes

the effects of the small component Hv(x) in the second term clearly suppressed as

an 1/mQ correction.

From the initial expansion of the heavy quark field in Equation (2.1.45) the x-

dependence of the field is weak and derivatives acting on hv(x) will return only the

residual momentum kµ which is of order ΛQCD. We can take advantage of this and

expand the second term of the Lagrangian in powers of 1/mQ. We then obtain

Leff = hv(iv ·D)hv + 1
2mQ

hv(i /D⊥)(i /D⊥)hv +O(1/m2
Q) . (2.1.57)

Next we can use the identity

P+i /D⊥i /D⊥P+ = P+

[
(iD⊥)2 + gs

2 σµνG
µν
]
P+ , (2.1.58)

where we have used [Dµ, Dν ] = igsGµν and σµν = i[γµ, γν ]/2 to write it in the form

Leff = hv(iv ·D)hv + 1
2mQ

hv(iD⊥)2hv + gs
2mQ

hv
σµνG

µν

2 hv +O(1/m2
Q) . (2.1.59)

Finally, we can remove the ⊥ subscript since the parallel component of the covariant

derivative vanishes between the two fields i.e.

hv(x)vµσµνhv(x) = 0 , (2.1.60)

which follows from Equation (2.1.47). With this rewriting we can identify two

operators arising at order 1/mQ

O1 = hv(x)(iD⊥)2hv(x) ,

O2 = gs
2 hv(x)σµνGµνhv(x) . (2.1.61)
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The first operator describes the kinetic energy of the heavy quark arising from its

off-shell motion inside the hadron state, while the second one describes the interac-

tion of the spin operator of the heavy quark with the gluon field. We will call them

kinetic and chromomagnetic operator respectively. Due to their nature, the kinetic

operator breaks the heavy quark flavour symmetry due to its explicit dependence

on mQ, while the chromomagnetic operator breaks additionally the heavy quark

symmetry and so on.

Before continuing, it is convenient to organise the Lagrangian differently. This will

become clear in the calculation of matrix elements in HQET. In Equation (2.1.56),

we consider the first term as the HQET Lagrangian, and the second term as power

corrections expanded in 1/mQ

LHQET = hv(iv ·D)hv ,

Lpower = hvi /D⊥(iv ·D +mQ − iε)−1i /D⊥hv

= 1
2mQ

L1 +
 1

2mQ

2

L2 +O((1/2mQ)3) . (2.1.62)

In this case, the equation of motion for hv(x) reads

iv ·Dhv(x) = 0 . (2.1.63)

Up to order O(1/m2
Q), the effective Lagrangian becomes

Leff = hv(iv ·D)hv + 1
2mQ

hv(i /D⊥)2hv +O(1/m2
Q) . (2.1.64)

A big advantage of expressing the effective Lagrangian as in Equation (2.1.62) is the

calculation of matrix elements. To begin with, we will assume our Lagrangian takes

the form of Equation (2.1.50) and using Equation (2.1.55) express the QCD quark

field as

Q(x) = e−imQv·x
(

1 + (iv ·D + 2mQ − iε)−1i /D⊥

)
hv(x)

= e−imQv·x
(

1 + i /D⊥
2mQ

+O(1/m2
Q)
)
hv(x) . (2.1.65)
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If we consider the vector current involving a heavy quark and a light one i.e. Vµ(x) =

q(x)γµQ(x) then this can be expressed as

Vµ(x) = e−imQv·xq(x)γµ
(

1 + i /D⊥
2mQ

+O(1/m2
Q)
)
hv(x) . (2.1.66)

Taking the matrix element of this current between a heavy meson with velocity v,

M(v) and the vacuum. The QCD matrix element can then be written as

〈0|Vµ|M(v)〉 = 〈0|qγµ hv|M(v)〉+ 1
2mQ

〈0|qγµi /D⊥ hv|M(v)〉+O(1/m2
Q) . (2.1.67)

However, even if we ignore the explicit dependence inmQ in the prefactor, the second

term in the RHS still depends on mQ as the equation of motion for hv(x) includes

such corrections. If we instead use the Lagrangian form of Equation (2.1.62), the

equation of motion is independent on mQ and the matrix element of Vµ can be

written as

〈0|Vµ|M(v)〉QCD = 〈0|qγµ hv|M(v)〉HQET + 1
2mQ

〈0|qγµi /D⊥ hv|M(v)〉HQET

+ 1
2mQ

〈0|i
∫
dxT{qγµhv(0),L1(x)}|M(v)〉HQET

+ O(1/m2
Q) , (2.1.68)

where T is the time ordered operator. Now all the mass dependence of the matrix

element has been absorbed by the last term which is a power correction to the leading

order matrix element of the current.

Finally, we will discuss hadron masses in the HQET framework. Splitting the

quark field in two components we see that we have absorbed the heavy quark mass

in the exponential factor outside the field. Because of that, we can express the

hadron mass in HQET as

Λ = MH −mQ +O(1/mQ) , (2.1.69)

As a consequence, all hadrons with a heavy quark Q have the same mass mQ at

order m1
Q. The parameter Λ which is of order m0

Q stems from the interactions of the
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heavy quark with the light degrees of freedom inside the hadron and can be defined

as

Λ = 1
2〈H|H0|H〉 , (2.1.70)

where H0 is the Hamiltonian derived from the LHQET + Llight,gluons and the Lag-

rangian for the light quarks and gluons is the same as in QCD. We have also used

the normalisation of [56]. Similarly, the 1/mQ correction to the hadron mass can be

expressed as the expectation value of the Hamiltonian derived from the first power

correction L1.

2.2 Heavy Quark Expansion

The Heavy Quark Expansion (HQE) is a very powerful tool in the study of heavy

hadron inclusive decays, e.g. their lifetimes or mixing-induced decay widths. As

it was mentioned earlier, a heavy hadron system can be considered as the heavy

quark approximating the hadron state at leading order, while the interactions with

the lighter degrees of freedom are included as correction terms suppressed by some

power of 1/mQ. In the limit of mQ → ∞, only the leading term survives and one

can write Γ(HQ) = ΓQ where HQ is the heavy hadron. As a result, all hadrons with

a Q quark should have the same lifetime. In the case Q = b the correction to the

experimental values are of the order of few percent, but in the charm system they

are much larger. More specifically, the experimental values show that the biggest

lifetime ratio among charmed hadrons can reach almost 7 (τ(D+)/τ(Ξ0
c) ≈ 6.8) while

in the B system it is τ(Ω−b )/τ(Λ0
b) ≈ 1.1. It is clear that the infinite mass limit is not

a good approximation for the charm system and in the remaining of this section we

will develop the framework that will help us consider the corrections to the infinite

mass limit systematically. It is instructive to mention the primary contributions

to the development of the HQE for inclusive weak decays through the years and

its early uses. Many terms of the HQE were published first in [57] while its first

applications were focused both in semi-leptonic [58–60] and non-leptonic decays [61].
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A very good review focusing on the main steps in the development of HQE is [62].

The decay rate of a particle H to an n-particle final state is given by

Γ(H) = 1
2MH

∑
n

∫ n∏
i=1

d3pi
(2π)32Ei

(2π)4δ

pH − n∑
i=1

pi

|〈n|M|H〉|2 . (2.2.1)

We can also calculate the decay of the particle H in a different way though, using

the optical theorem which connects the imaginary part of the forward scattering

amplitude with the total cross section for the production of all possible final states.

To see this we need to start from the definition of the scattering amplitude Sfi

between an initial state i and a final state f

Sfi = 〈f |S|i〉 = δfi + iTfi , (2.2.2)

where

Tfi = (2π)4δ(pf − pi)Mfi (2.2.3)

is ensuring the conservation of 4-momentum between initial and final state particles.

In the matrix element between a general initial and final state we can add a full set

of states while integrating over the phase space and write using the unitarity of S

∑
n

∫ n∏
i=1

d3pi
(2π)32Ei

〈f |S|n〉〈n|S†|i〉 = δfi , (2.2.4)

where

〈n|S†|i〉 = 〈i|S|n〉∗ . (2.2.5)

Using that and Equation (2.2.2) we can rewrite Equation (2.2.4) in the case of

forward scattering (|f〉 = |i〉) as

∑
n

∫ n∏
i=1

d3pi
(2π)32Ei

(δin − iT ∗in)(δin + iT ∗in) = δii =⇒

i(Tii − T ∗ii) +
∑
n

∫ n∏
i=1

d3pi
(2π)32Ei

T ∗inTin = 0 =⇒

2ImTii =
∑
n

∫ n∏
i=1

d3pi
(2π)32Ei

|Tin|2 , (2.2.6)
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and after substituting Equation (2.2.3) one gets

2ImMHH =
∑
n

∫ n∏
i=1

d3pi
(2π)32Ei

(2π)4δ

(
pH −

n∑
i=1

pi

)
|MHn|2 . (2.2.7)

Finally, if we apply Equation (2.2.1) we obtain

Γ(H) = 1
mH

ImMHH . (2.2.8)

In the presence of an effective Hamiltonian (as in our EFT) we can write the transition

matrix as

THH = 1
2〈H|S|H〉 , (2.2.9)

where

S = i
∫
d4x

∫
d4yT

{
Heff (x)Heff (y)

}
(2.2.10)

is the first non-vanishing term from the expansion of the scattering matrix

S = Te−i
∫
d

4
xHeff (x) . (2.2.11)

The notation T in the definition above indicates the time-ordering operator. After

some algebraic manipulation we can get rid of the integration over y (without loss of

generality one could eliminate x), and applying Equation (2.2.3), Equation (2.2.8)

becomes

Γ(H) = 1
2mH

Im〈H|T |H〉 (2.2.12)

where

T = i
∫
d4xT

{
Heff (x)Heff (0)

}
. (2.2.13)

Taking H to be a heavy hadron with heavy quark Q and considering the soft

interactions of Q with the background gluon field3 or the spectator quarks we expand

Equation (2.2.12) in a series of local operators Od of increasing dimension d i.e.

Γ(HQ) = 1
2MHQ

∑
d

cd
〈Od〉
md−3
Q

, (2.2.14)

3For more details about the expansion of the quark propagator to the soft gluon background
field we point you to the excellent reviews [63,64]
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where 〈Od〉 = 〈HQ|Od|HQ〉 and cd are their corresponding ∆Q = 0 Wilson coeffi-

cients. Because of the double insertion of the Heff , in our calculations cd will be

quadratic functions of the ∆Q = 1 Wilson coefficients. The operators can have any

gauge-invariant form and should be bilinear in the heavy quark.

Since the heavy quark Q is interacting with the light degrees of freedom at scales of

order ΛQCD, much smaller than mQ we can extract this large mechanical part from

Q i.e.

Q(x) = e−imQv·xQv(x) , (2.2.15)

where v is the hadron 4-velocity. Notice that Qv is similar to hv from HQET but in

this case it is a rescaled full QCD four-component spinor and not a two-component

static field as described in Section 2.1.2. In general, the HQET is an effective theory

designed to systematically use the simplified QCD interactions at the heavy quark

limit. The HQE on the other hand is a framework that lets us calculate inclusive

decays of heavy hadrons without having to calculate all exclusive decay channels

at hadronic level. Furthermore it is, an OPE that by definition is expressed in full

QCD i.e. the fields entering Equation (2.2.14) are four-component full QCD fields.

Of course it can be implemented with HQET fields as well (as is done in Chapter 4).

More details about the difference between the HQET and the HQE can be found

in [64].

Starting with the lowest order operator, QQ we can express it at leading order

as QvQv but we can also get higher order corrections. To do so we will need the

following identities stemming directly from the expansion of Equation (2.2.15) and

the equation of motion (i /D −mQ)Q = 0

P−Qv(x) = i /D

2mQ

Qv(x) , (2.2.16)
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and its conjugate form

Qv(x)P− = Qv(x)−i
←−
/D

2mQ

, (2.2.17)

where P− is the projection operator defined in Equation (2.1.44). Expanding QQ

we get

QQ = = QvQv = QvQv −Qv/vQv +Qv/vQv

= Qv/vQv + 2QvP−Qv

= Qv/vQv + 2QvP−P−Qv

= Qv/vQv + 2Qv

−i
←−
/D

2mQ

i
−→
/D

2mQ

Qv

= Qv/vQv +Qv

(i /D)2

2m2
Q

Qv + total derivative , (2.2.18)

where the total derivative does not contribute to the forward scattering since the

matrix element of such an operator vanishes in zero momentum transfer [65]. Now

we take the middle term and expand it splitting the Dirac structure into a symmetric

and antisymmetric half.

Qv

(i /D)2

2m2
Q

Qv = Qv

( [γµ, γν ](iDµ)(iDν)
4m2

Q

)
Qv +Qv

({γµ, γν}(iDµ)(iDν)
4m2

Q

)
Qv

= 1
2m2

Q

Qv(iDµ)(iDν)(−iσµν)Qv + 1
2m2

Q

Qv(iDµ)(iDµ)Qv .

(2.2.19)

So finally we can write (excluding the total derivative term)

QQ = Qv/vQv + 1
m2
Q

Qv(iDµ)(iDν)(−iσµν)Qv + 1
m2
Q

Qv(iDµ)(iDµ)Qv . (2.2.20)

Following this expansion we can make some interesting observations:

• The first term arising in the expansion of QQ is proportional to unity up to a

normalisation factor as it corresponds to a conserved charge related to the the

heavy quark flavour [61].

• There is no correction proportional to 1/mQ. Such dimension-four operators
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would have a single derivative and through equations of motion are reduced to

dimension-five or higher. Also we can not include a dimension-four operator

in Equation (2.2.14) either as it would have the form Q /DQ and it would

reduce to QQ via equation of motion. This result is known as the CGG/BUV

theorem [58,61]. In HQET this result is known as Luke’s Theorem [50].

From here on we will indicate the two operators at dimension-five as

Okin = Qv(iDµ)(iDµ)Qv , (2.2.21)

Ocmag = Qv(iDµ)(iDν)(−iσµν)Qv , (2.2.22)

where both are the equivalent operators we derived in HQET. Further expansion

gives us the 1/m3
Q corrections [66]

OρD = Qv(iDµ)(iv ·D)(iDµ)Qv , (2.2.23)

OLS = Qv(iDµ)(iv ·D)(iDν)(−iσµν)Qv . (2.2.24)

At dimension-six we are also getting four-quark operators of the form QΓqqΓQ where

Γ refers to a Dirac structure and q is the spectator quark. For brevity we are not

including the colour indices here but when necessary they will be made explicit.

In general we can expand Equation (2.2.14) for the decay of a hadron HQ as

Γ(HQ) = Γ3 + Γ5
〈O5〉
m2
Q

+ Γ6
〈O6〉
m3
Q

+ ...+ 16π2
(

Γ̃6
〈Õ6〉
m3
Q

+ Γ̃7
〈Õ7〉
m4
Q

+ ...

)
, (2.2.25)

where the tilde indicates the four-quark contributions. These terms at leading order

in αs arise from one-loop diagrams while the two-quark contributions come from

two-loop diagrams. Therefore, the first ones are enhanced by a 16π2 phase space

factor. The Γi coefficients can be calculated as a series in αs i.e.

Γi = Γ(0)
i + αs

4πΓ(1)
i +

(
αs
4π

)2
Γ(2)
i +O(α3

s) , (2.2.26)
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while in Equation (2.2.25) we also use the notation

〈Oi〉 = 〈HQ|Oi|HQ〉
2MHQ

. (2.2.27)

In terms of units, the Γi
m
i−3
Q

functions have units GeV4−i while 〈Oi〉 come with units

GeV i−3. Thus each term of Equation (2.2.25), and hence the total decay rate Γ(H),

has units GeV.

We still need a way to calculate the matrix elements of Equation (2.2.14). These

encode low energy effects so we need to use non-perturbative methods to evaluate

them such as Lattice QCD [67] or QCD Sum Rules [68]. In the HQET framework

these matrix elements can be expanded in series in 1/mQ and parametrised by

non-perturbative parameters. Depending on the matrix element we are evaluating,

various methods can be used, such as fitting to experimental data (see e.g. [69]) or

spectroscopic relations (see e.g. [55]). The matrix element of QQ can be expanded

in this framework as

〈HQ|QQ|HQ〉 = 1− µ2
π − µ2

G

2m2
Q

+O(1/m5
Q) , (2.2.28)

where µ2
π, µ

2
G parametrise the matrix elements of the kinetic and chromomagnetic

operators respectively, i.e.

−〈HQ|Qv(iDµ)(iDµ)Qv|HQ〉 = 2MHQ
µ2
π , (2.2.29)

〈HQ|Qv(iDµ)(iDν)(−iσµν)Qv|HQ〉 = 2MHQ
µ2
G . (2.2.30)

Identical to Equation (2.2.30) we can parametrise the matrix elements of OρD and

OLS just by replacing µ2
G with ρ3

D and ρ3
LS respectively.

For the four-quark operators, apart from the standard non-perturbative methods one

can apply Vacuum Insertion Approximation (VIA) to estimate their matrix elements.
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Using VIA we can write

〈HQ|QΓqqΓQ|HQ〉 = 〈HQ|QΓq|0〉〈0|qΓQ|HQ〉 . (2.2.31)

The four-quark operators we will be mostly interested in will have the Dirac structure

V − A or S − P . To evaluate them one can start from the definition of the hadron

decay constant

〈0|qγµγ5Q|HQ〉 = ifHQpµ , (2.2.32)

where pµ is the hadron momentum. Also in the case of a pseudoscalar meson, parity

conservation requires

〈0|qγµQ|HQ〉 = 0 , (2.2.33)

〈0|qQ|HQ〉 = 0 , (2.2.34)

and thus we can construct the V − A and S − P structures.





Chapter 3

D-Mixing

In this chapter we will introduce the basics of neutral meson mixing focusing on the

case of D0 mesons. We will derive the basic quantities that define a mixing system

and see why the D0- mixing system has some peculiarities that make its theoretical

description very difficult. To tackle them we show two different ways of choosing the

renormalisation scale and present updated results that show better agreement with

the experimental measurements even with large uncertainties. A great review of

neutral meson mixing can be found in [70] while for a recent update in the D0-mixing

we refer you to [71].

3.1 Introduction to Neutral Meson Mixing

Out of all the mesons, K,D0, Bd and Bs are the only ones that mix with their

antiparticles. These processes are driven by ∆F = 2 transitions at the partonic level

where F = S,C,B (strangeness, charmness, bottomness). The Feynman diagrams

for D-mixing can be seen in Figure 3.1. In order to develop the framework of neutral

meson mixing systems we start with the time-dependent state |D0(t)〉. We use the D

meson as an example in this section but all this applies to all other mesons mentioned
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c u

ū c̄

d, s, b d̄, s̄, b̄

W+

W−

c u

ū c̄

d, s, b

d̄, s̄, b̄

W+ W−

Figure 3.1: The box diagrams contributing to D-mixing.

above, unless specified otherwise. We can express the state as

|D0(t)〉 = A(t)|D0〉+ A(t)|D0〉+
∑
i

Ai(t)|fi〉 , (3.1.1)

where the A coefficients carry the time dependence and correspond to the likelihood

of the original state transitioning to the respective one in the RHS. Out of the terms

above, for mixing we are only interested in the transition |D0〉 → |D0〉, and vice versa.

Using the Wigner-Weisskopf approximation [72] we write down a Schrödinger-like

equation describing the D0 −D0 system

i
d

dt

|D
0(t)〉

|D0(t)〉

 = Ĥ

|D
0〉

|D0〉

 , (3.1.2)

where

Ĥ =
(
M̂ − i

2Γ̂
)
. (3.1.3)

The matrices M̂, Γ̂ are 2× 2 complex and hermitian. The latter stems from the fact

that you can decompose any matrix in a hermitian (M̂) and an anti-hermitian ( i2 Γ̂)

part. By considering the hermicity of these matrices as well as CPT invariance we

can write M̂ and Γ̂ as

Γ̂ =

Γ11 Γ12

Γ∗12 Γ11

 ; M̂ =

M11 M12

M∗
12 M11

 . (3.1.4)

The non-vanishing Γ12,M12 are the quantities that drive the mixing dynamics. These

are the absorptive and dispersive parts of H12. The first one corresponds to box

diagrams with internal on-shell particles, while the latter includes only virtual con-

tributions (including possible BSM particles). Because of their CKM structure these
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quantities can be complex and so can be written as

Γ12 = |Γ12|eiφΓ , (3.1.5)

M12 = |M12|eiφM . (3.1.6)

In the case of no mixing, the non-diagonal elements would vanish, M11 would cor-

respond to the mass of the meson and Γ11 would describe the total inclusive decay

rate of the meson. In the case of mixing, in order to get the physical eigenstates of

the mesons we need to diagonalise the matrices M̂, Γ̂. To do so we can write

Û−1
(
M̂ − i

2Γ̂
)
Û =

ML − i
2ΓL 0

0 MH − i
2ΓH

 , (3.1.7)

where the matrix Û has the form

Û =

p p

q −q

 . (3.1.8)

This form is possible because of the original structure of Γ̂ and M̂ . The subscripts

{L,H} indicate the light and heavy meson eigenstate respectively. Once we substi-

tute Equation (3.1.7) in Equation (3.1.2) and solve it we can write|D
0(t)〉

|D0(t)〉

 =

 g+(t) q
p
g−(t)

p
q
g−(t) g+(t)


|D

0〉

|D0〉

 , (3.1.9)

where

g+(t) = e−imte−
1
2 Γt
{

cosh ∆Γt
4 cos ∆Mt

2 − i sinh ∆Γt
4 sin ∆Mt

2

}
, (3.1.10)

g−(t) = e−imte−
1
2 Γt
{
− sinh ∆Γt

4 cos ∆Mt

2 + i cosh ∆Γt
4 sin ∆Mt

2

}
(3.1.11)

In the above expressions we have used the following notation:

m = MH +ML

2 , Γ = ΓH + ΓL
2 , (3.1.12)

∆M = MH −ML , ∆Γ = ΓL − ΓH . (3.1.13)
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It is easy to check that the g+(t), g−(t) functions satisfy the obvious initial conditions

g+(0) = 1, g−(0) = 0. Using Equations (3.1.10) and (3.1.11) we can now calculate

the time-dependent decay rate of a meson (or an antimeson) to a final state f or f .

For the transitions D → f , D → f we define the amplitudes

Af = 〈f |D〉, Āf = 〈f |D̄〉 , (3.1.14)

and similarly for D → f̄ and D̄ → f̄

Af̄ = 〈f̄ |D〉, Āf̄ = 〈f̄ |D̄〉 . (3.1.15)

For this work we will only focus on flavour specific decays which have the following

properties:

1. The decays D̄ → f and D → f̄ are forbidden and these transitions can only

occur as D̄ → D → f and D → D → f̄ . This means Āf = Af̄ = 0.

2. No direct CP violation arises in such decays, which means |Af | = |Āf̄ |

An example of such a decay is D0 → Xl+νl.

In general, for the time dependent decay of a D meson to a state f we can write

Γ [D → f ] (t) = Nf |〈f |D(t)〉|2 , (3.1.16)

where Nf is a normalisation constant and we take Nf = Nf̄ since it depends only

on the kinematics. Using Equation (3.1.9), the expressions for g+(t) and g−(t) and

considering only flavour specific decays we get

Γ [D → f ] (t) = Nf |Af |2

2 e−Γt
(

cosh ∆Γt
2 + cos ∆Mt

)
. (3.1.17)

Similarly for the other processes we get

Γ[D̄ → f ](t) = Nf |Af |2

2 e−Γt
∣∣∣∣∣pq
∣∣∣∣∣
2 (

cosh ∆Γt
2 − cos ∆Mt

)
, (3.1.18)

Γ[D → f̄ ](t) =
Nf |Āf̄ |

2

2 e−Γt
∣∣∣∣∣qp
∣∣∣∣∣
2 (

cosh ∆Γt
2 − cos ∆Mt

)
, (3.1.19)
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Γ[D̄ → f̄ ](t) =
Nf |Āf̄ |

2

2 e−Γt
(

cosh ∆Γt
2 + cos ∆Mt

)
. (3.1.20)

3.2 Mixing Observables

So far, we have introduced the time-evolution equation for the mixing system and

built most of the notation we will need to define the quantities that describe this

system. We start by considering the eigenvalues of Ĥ:

λL,H = ML,H −
i

2ΓL,H , (3.2.1)

which satisfy

(λL − λH)2 = 4H12H21 . (3.2.2)

The LHS of the equation above can be expressed as

(λL − λH)2 =
(

(MH −ML) + i

2(ΓL − ΓH)
)2

=
(

∆M + i

2∆Γ
)2

= ∆M2 − 1
4∆Γ2 + i∆M∆Γ , (3.2.3)

while for the RHS we get

4H12H21 = 4
(
M12 −

i

2Γ12

)(
M21 −

i

2Γ21

)
= 4

(
M12M21 −

1
4Γ12Γ21 −

i

2(M12Γ21 +M21Γ12)
)

= 4|M12|2 − |Γ12|2 + 4i|M12||Γ12| cosφ12 , (3.2.4)

where in the last line we have used M12 = M∗
21 and Γ12 = Γ∗21. Using additionally

that the non-diagonal elements of the matrix Û−1ĤÛ vanish we can write

q

p
= −2M∗

12 − iΓ∗12

∆M + i
2∆Γ = −

∆M + i
2∆Γ

2M12 − iΓ12
. (3.2.5)

Equating the real and imaginary parts of Equations (3.2.3) and (3.2.4) we get

4|M12|2 − |Γ12|2 = ∆M2 − 1
4∆Γ2 ≡ a , (3.2.6)

4|M12||Γ12| cosφ12 = ∆M∆Γ ≡ b , (3.2.7)
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where φ12 = arg
(
− M12

Γ12

)
. In B-mixing one can simplify these equation by using

|Γ12/M12| � 1. This is not valid in D-mixing and in order to calculate ∆Γ,∆M one

needs to calculate both M12 and Γ12.

Experimentally it is found that the CP -violating phase φ12 is small (HFLAV [73]

states a [−1.2◦, 2.42◦] range) and so we can use it to expand the mass and decay

width in a Taylor series4 [71]. To do so we solve Equation (3.2.6) and Equation

(3.2.7) for ∆Γ,∆M and write

∆M2 =

√
a2 + b2 + a

2 , (3.2.8)

∆Γ2 = 2
(√

a2 + b2 − a
)
. (3.2.9)

The quantities ∆M,∆Γ, a, b can also be rewritten in terms of the ratio

r12 = |Γ12/M12| (3.2.10)

as

∆M = ±
√

2
2 |M12|

√
w + 4− r12 , (3.2.11)

∆Γ = ±
√

2|M12|
√
w + r12 − 4 , (3.2.12)

a = |M12|2(4− r12) , (3.2.13)

b = 4|M12|2
√
r12 cosφ12 , (3.2.14)

where w =
√

(4− r12)2 + 16r12 cosφ12
2 and then we can write

√
a2 + b2 ± a = |M12|2

(√
(4− r12)2 + 16r12 cosφ12

2 ± (4− r12)
)
. (3.2.15)

If we expand this in small φ12 we get

√
a2 + b2 ± a = |M12|2(4 + r12)

(
1− 16r12

(4 + r12)2
φ2

12

2

)
± (4− r12) +O(φ4

12) . (3.2.16)

4The expansion in φ12 that is included in this section and in Ref [71] has been independently
cross-checked by us before its publication.
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Now we can express ∆Γ,∆M in the small φ12 regime

∆Γ = ±2|Γ12|
(

1− 4
4 + r12

φ2
12

2 +O(φ4
12)
)
, (3.2.17)

∆M = ±2|M12|
(

1− r12

4 + r12

φ2
12

2 +O(φ4
12)
)
. (3.2.18)

We notice that the quantities 4
4+r12

, r12
4+r12

can only vary between 0 and 1 and the first

corrections to Equations (3.2.17) and (3.2.18) arise at order φ2
12. Using the range of

values of φ12 stated above5, the correction to the leading term for both ∆Γ and ∆M

is less than 0.1%. Finally, we can easily derive from Equations (3.2.17) and (3.2.18)

the approximations

|∆Γ| ≈ 2|Γ12|, |∆M | ≈ 2|M12| . (3.2.19)

In the case of Bq-mixing we can also consider the approximation |Γq12| � |M
q
12| and

express the ratio of ∆Γq/∆M q and the semi-leptonic CP asymmetries very simply

in terms of Γq12 and M q
12. First by solving the system of Equations (3.2.6), (3.2.7)

for ∆Γq and ∆M q we can write

∆Γq = 2|Γq12| cosφq12 +O((|Γq12|/|M
q
12|)2) , (3.2.20)

∆M q = 2|M q
12|+O((|Γq12|/|M

q
12|)2) . (3.2.21)

Then we can write

∆Γq

∆M q =
∣∣∣∣∣ Γq12
M12q

∣∣∣∣∣ cosφq12 = Re
(
− Γq12
M q

12

)
. (3.2.22)

Next we define the CP asymmetry in flavour specific decays aqfs as

afs = Γ[B̄q → f ](t)− Γ[Bq → f̄ ](t)
Γ[B̄q → f ](t) + Γ[Bq → f̄ ](t)

, (3.2.23)

where f is a flavour specific state. In the case of semi-leptonic decays the above

quantity is also called semi-leptonic CP asymmetry, aqsl. Considering the semi-

5HFLAV defines φ12 = arg
(

M12
Γ12

)
which is a π factor different from our definition. This however

does not change the above results since the only dependence on φ12 comes from cos (φ12)2 which
is the same for both definitions.
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leptonic case we insert Equations (3.1.18) and (3.1.19) in the above formula and

write

aqsl =
1−

∣∣∣ q
p

∣∣∣4
1 +

∣∣∣ q
p

∣∣∣4
= 4|M q

12||Γq12| sinφ12

4|M q
12|+ |Γq12|

=
∣∣∣∣∣ Γq12
M12q

∣∣∣∣∣ sinφq12 +O((|Γq12|/|M
q
12|)3)

≈ Im
(

Γq12
M q

12

)
, (3.2.24)

where in the second line we have used the two expressions of Equation (3.2.5). The

result up to the second line is valid for all neutral meson mixing, however, in the

third line we have used |Γq12| � |M
q
12| and it can be used only in Bq-mixing.

3.3 D-Mixing

All the definitions and formulas above are not valid only for the D0-mixing system

but can be generalised to other mesons that mix with their antiparticles. From now

on though we will focus specifically on the D-mixing system. The current theoretical

understanding of charm physics needs to be improved so that we will be able to

use the current and future huge amount of data obtained from experiments like

LHCb [74], BESIII [75] and Belle II [76]. One of the latest big discoveries was the

announcement of a non-vanishing measurement of ∆ACP [77]

∆ACP = ACP (D0 → K+K−)− ACP (D0 → π+π−) , (3.3.1)

where

ACP (t, f) = Γ(D0(t)→ f)− Γ(D0(t)→ f)
Γ(D0(t)→ f) + Γ(D0(t)→ f)

. (3.3.2)

In fact, the value measured was ∆ACP = (−15.4 ± 2.9) × 10−4 and it is the first

discovery of CP violation in the charm system. Possible explanations of this de-

viation from zero can be contributions from BSM physics (see e.g. [78, 79] partly
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based on the calculation of [80]) or it could still also be explained within the SM

(see e.g. [81–84]).

The quantitative description of D-mixing is still an unsolved puzzle in charm phys-

ics. Due to immense recent progress, D-mixing is by now experimentally very well

established and precisely measured [73,85]

x = ∆M
ΓD

= 0.409+0.048
−0.049% , y = ∆Γ

2ΓD
= 0.615+0.056

−0.055% , (3.3.3)

where ΓD is the total decay of the D0 meson. Using Equation (3.2.17) and Equation

(3.2.18) we can rewrite the quantities x, y as

x ≈ x12 = 2 |M12|
ΓD

, y ≈ y12 = |Γ12|
ΓD

(3.3.4)

up to corrections of O(φ2
12). This way x and y depend on the non-diagonal elements

of the mixing matrix. Different theory approaches for x, y can cover a huge range of

values, differing by several orders of magnitude, see e.g. [86,87]. Future measurements

are expected to give even more precise values and also a stronger bound (or even

a measurement) of the CP -violating phase φ12 . So is there a way to improve the

theoretical values of these quantities?

3.4 HQE in D-Mixing

We start to investigate Γ12 within the framework of the HQE, as presented in Section

2.2. The study of M12 is beyond the scope of this work. Therefore we are not in a

position to determine the value of φ12 = π − φΓ − φM . Using HQE we can write

Γ12 =
[
Γ(0)

6 + αs
4πΓ(1)

6 +O(α2
s)
]〈Q6〉
m3
c

+
[
Γ(0)

7 +O(αs)
]〈Q7〉
m4
c

+O(1/m5
c) . (3.4.1)

Unlike the full decay rate of the D meson the HQE for mixing starts from dimension-

six with four-quark operator contributions. Diagrammatically one can see Equation

(3.4.1) in Figure 3.2. The product of two ∆C = 1 operators from the effective
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Hamiltonian is matched into a series of local ∆C = 2 operators (note in this case

this is the “full” theory unlike in Section 2.1.1 where full theory was the SM). The

operators arising at dimension-six are

Q = ciγµ(1− γ5)uicjγµ(1− γ5)uj , (3.4.2)

QS = ci(1− γ5)uicj(1− γ5)uj , (3.4.3)

Q̃S = ci(1− γ5)ujcj(1− γ5)ui , (3.4.4)

which are not independent from each other. In fact, a linear combination of them

gives a 1/mc suppressed operator [88,89]

R0 = QS + α1Q̃S + 1
2α2Q+O(Λ/mc) , (3.4.5)

where

α1 = 1 + αs
4πCF

(
12 log µ2

mc

+ 6
)
, (3.4.6)

α2 = 1 + αs
4πCF

(
6 log µ2

mc

+ 13
2

)
. (3.4.7)

The matrix elements of the above operators can be parametrised as (see e.g. [88])

〈D0|Q|D0〉 = 8
3M

2
Df

2
DB1 , (3.4.8)

〈D0|QS|D
0〉 = −5

3M
2
Df

2
DB

′
2 , (3.4.9)

〈D0|Q̃S|D
0〉 = 1

3M
2
Df

2
DB

′
3 , (3.4.10)

where

B′2 = M2
D

m2
c

B2 , (3.4.11)

B′3 = M2
D

m2
c

B3 , (3.4.12)

and the bag parameters B1, B2, B3 are equal to 1 in VIA. Equation (3.4.15) is tradi-

tionally used to eliminate Qs or Q̃S from the calculation.
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At subleading order 1/mc we have four additional operators arising, along R0

R2 = 1
m2
c

ci
←−
D νγµ(1− γ5)Dνuicjγ

µ(1− γ5)uj , (3.4.13)

R3 = 1
m2
c

ci
←−
D ν(1− γ5)Dνuicj(1− γ5)uj , (3.4.14)

and the operators R̃i which are obtained by switching the colour indices to get the

colour rearranged operators. Note that the missing R1 operator is not present in D-

mixing since it is proportional to mu ≈ 0 (see e.g [88]). We just choose to follow the

notation of most literature, e.g. [88–93]. Their matrix elements can be parametrised

as

〈D0|R0|D
0〉 = −4

3

(
M2

D

(mp
c)2 − 1

)
M2

Df
2
DBR0 , (3.4.15)

〈D0|R2|D
0〉 = −2

3

(
M2

D

(mp
c)2 − 1

)
M2

Df
2
DBR2 , (3.4.16)

〈D0|R̃2|D
0〉 = 2

3

(
M2

D

(mp
c)2 − 1

)
M2

Df
2
DBR̃2

, (3.4.17)

〈D0|R3|D
0〉 = 7

6

(
M2

D

(mp
c)2 − 1

)
M2

Df
2
DBR3 , (3.4.18)

〈D0|R̃3|D
0〉 = 5

6

(
M2

D

(mp
c)2 − 1

)
M2

Df
2
DBR̃3

, (3.4.19)

see e.g. [88]. The parametermp
c by definition is the pole charm quark mass. Normally,

the pole mass is not a suitable parameter in HQE due to renormalon ambiguity that

leads to bad convergence of the perturbation series. These can be avoided by using

an alternative mass scheme (like the short-distance MS mass scheme). However, we

can not just replace the pole mass with another one. We need to use a conversion

formula between them. Typically this conversion formula has the form

mPole
Q = malt

Q (1 +O(αs)) (3.4.20)

As we can see, at LO the pole mass can be taken equal to the new one and all their

differences are included as QCD corrections. However since Γ7 is only known to LO

we can lose significant information by just using the LO result of the mass conversion.

Therefore we choose to use the initial value of the pole mass. Additionally in the
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case of B-mixing it was suggested in [93] to use a power correction mass for similar

reasons and also to make sure the bracketed terms of the Equations (3.4.15) - (3.4.19)

are of order ΛQCD ∼ 0.2GeV. Here we find that even when using the value of pole

mass we can achieve that and hence we will use mp
c = 1.67GeV. Ideally of course,

with more orders of Γ7 known, mp
c can be replaced by a renormalon-free mass safely,

using additional terms of the conversion formula.

To calculate Γ(0)
6 and Γ(1)

6 we need to evaluate the left and middle6 diagram of Figure

3.2. The results can be found in [88–93] after substituting mb → mc, mc → ms and

all other relevant parameters. The LO calculation can also be found in Appendix

D. The expression for Γ(0)
7 can be taken with similar switches from [88, 90, 93] and

is included in Appendix D as well. The dimension-six matrix elements have been

calculated in [4, 94]. Using the experimental value for y in Equation (3.3.3) we can

c

µ1

ū

u

µ1

c̄

s, d

s̄, d̄

c

µ1

ū

u

µ1

c̄

s, d

s̄, d̄

µ1

(a)

c u

ū c̄

µ2

(b)

Figure 3.2: (a) Diagrams describing the mixing of neutral D mesons via intermedi-
ate ss̄, sd̄, ds̄ and dd̄ states in the “full” theory at LO-QCD (left) and NLO-QCD
(right). The crossed circles denote the insertion of ∆C = 1 operators of the effective
Hamiltonian describing the charm-quark decay. The dependence on the renormalisa-
tion scale µ1 in the Wilson coefficients cancels against the µ1 dependence of the QCD
corrections. (b) Diagram describing mixing of neutral D mesons at NLO-QCD in
the HQE. The full dot indicates the insertion of ∆C = 2 operators. The dependence
on the renormalisation scale µ2 cancels out between the QCD corrections to the
diagram and the matrix elements of the corresponding ∆C = 2 operators.

write

∆ΓExp ≥ 0.027ps−1 , (3.4.21)

6The middle diagram is only one of the diagrams contributing to Γ(1)
6 . See [89].
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at one standard deviation.7 Based on that and using the approximation |∆Γ| ≈ 2|Γ12|

we define the following quantity

Ω = 2|Γ12|SM

0.027 ps−1 . (3.4.22)

A value of Ω smaller than 1 indicates that we are unable to describe D-mixing

within 1σ. A naive application of HQE leads to Ω = 3.4 × 10−5 at LO-QCD and

Ω = 6.2× 10−5 at NLO-QCD. As we can see this prediction is around five orders of

magnitude smaller than 1. We can split y into separate contributions based on the

internal quark content

y = (ysd + yds)︸ ︷︷ ︸
∆S=1

− (yss + ydd)︸ ︷︷ ︸
∆S=0

. (3.4.23)

It turns out that every bracket gives a value larger than the experimental measure-

ment of y with an implicit uncertainty of at least 20%. By taking the numerical

difference of ∆S = 1 and ∆S = 0 however, we end up with a result approximately in

the range [10−4, 10−5]. Taking this result at its face value we are implicitly assuming

a precision of 10−4 . . . 10−5 in the individual ∆S = 1, ∆S = 0 which of course is

unrealistic. For the above calculation of Ω and the following ones we are using

PDG [95] for all the masses and the strong coupling while for the CKM elements we

are using input from [96]. For the non-perturbative matrix elements we have used [4]

and the meson decay constant is from [97].

Using CKM unitarity we can further work out where this huge cancellation is ori-

ginating from, expressing Γ12 as

Γ12 = −
(
λ2
s Γss12 + 2λsλd Γsd12 + λ2

d Γdd12

)
(3.4.24)

= −λ2
s

(
Γss12 − 2Γsd12 + Γdd12

)
+ 2λsλb

(
Γsd12 − Γdd12

)
− λ2

bΓdd12 , (3.4.25)

7In [6] a value of 0.028ps−1 was used since the latest measurement of y was not available. This
difference does not have a significant numerical impact.
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where λq = VcqV
∗
uq and Γqq

′

12 denotes the contribution from the diagrams with internal

quark pair qq′. We have also used the CKM unitarity equation λd + λs + λb = 0.

The peculiar feature of Equation (3.4.25) is that in terms of absolute size, the CKM

dominant factor λ2
s multiplies the doubly GIM suppressed term, the CKM suppressed

factor λsλb multiplies the more lightly GIM suppressed term and the doubly CKM

suppressed factor λ2
b multiplies a term with no GIM suppression. This results in all

three terms of Equation (3.4.25) having similar size and all of them being heavily

suppressed:

Γ12 =
(
2.08 · 10−7 − 1.34 · 10−11I

)
(1st term)

−
(
3.74 · 10−7 + 8.31 · 10−7I

)
(2nd term)

+
(
2.22 · 10−8 − 2.5 · 10−8I

)
(3rd term) . (3.4.26)

This feature is very different from the case of B-mixing, where the CKM dominant

term multiplies the term with no GIM suppression.

The suppression in Γ12 seems to be lifted by one order of z = m2
s/m

2
c if we go

from LO-QCD to NLO-QCD [98]. More specifically, if one expands the Γij combina-

tions of Equation (3.4.25) in powers of z one finds

Γss12 =


1.62− 2.34 z − 5.07 z2 + . . . (LO) ,

1.42− 4.30 z − 12.45 z2 + . . . (NLO) ,
(3.4.27)

Γsd12 − Γdd12 =


−1.17 z − 2.53 z2 + . . . (LO) ,

−2.15 z − 6.26 z2 + . . . (NLO) ,
(3.4.28)

Γss12 − 2Γsd12 + Γdd12 =


−13.38 z3 + . . . (LO) ,

0.07 z2 − 29.72 z3 + . . . (NLO) .
(3.4.29)

Several possible solutions have been proposed as an explanation for this big difference

between HQE and experiment:

• Higher orders in HQE could be less affected by GIM suppression [99–101]. A
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full determination of dimension-nine and twelve will be needed for that though

(first estimates of dimension-nine can be found in [102]).

• Quark hadron duality could also explain it. In [103] it was shown that a duality

violation of only 20% could be enough to match the experimental values. For

a recent investigation see also [104].

• One might also argue that the HQE is simply not applicable in the charm

sector because of the relatively small mass of the charm quark. In e.g. [105–107]

different methods, such as summing over exclusive decay channels, have been

investigated.

• It is also possible that contributions from BSM physics could enhance the

theoretical predictions (see e.g. [108–110]).

3.5 Alternative scale setting

If we look at Figure 3.2 we will see that there are two renormalisation scales arising,

µ1 and µ2. The first one originates from the ∆C = 1 Wilson coefficients and from

the NLO-QCD correction diagrams. It is essentially the same scale we introduced

in Section 2.1.1. The second scale comes from a different matching procedure and

is included in the the radiative corrections of the HQE diagrams (right diagram of

Figure 3.1.7). This cancels exactly with the scale dependence of the matrix elements

of the ∆C = 2. Normally, in a calculation going from LO-QCD to NLO-QCD the

dependence to the renormalisation scale is reduced, but that does not seem to be the

case in D-mixing. In fact, if you look at Figure 3.3 it looks like the scale dependence

gets worse in the case of |Γ12|. However, if we look in a specific Γij12 contribution

in Figure 3.4, the scale dependence looks better at NLO-QCD. This weird scale

dependence behaviour in |Γ12| can be understood then as another effect of the severe

GIM cancellations. Since the cancellation of the µ2 dependence is very pronounced

we will only consider the µ1 scale.
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LO

NLO
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Figure 3.3: Scale dependence of |Γ12| at LO-QCD (blue) and NLO-QCD (orange)

LO

NLO

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.3

1.4

1.5

1.6

1.7

1.8

Figure 3.4: Scale dependence of |Γss12| at LO-QCD (blue) and NLO-QCD (orange)

In the naive application of HQE that we mentioned earlier, we set µ1 = mc so

that terms proportional to αs(µ1) log(µ2
1/m

2
c) are minimised. In order to estimate

the scale uncertainties due to truncation of higher orders, we vary µ1 from 1 GeV

to 2mc. Normally in the B system we would vary between mb/2 to 2mb, but for

the charm mass that would lead us to very low energies where the perturbation

theory is not valid anymore. Thus we set a bound at 1 GeV. Here we propose two

alternative ways of treating the scale µ1. Both of them are based on the idea that

different internal quark pairs contribute to different decay channels of the D0(D0)
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meson. More specifically, the ss pair corresponds to a K+K− final state, the sd(ds)

to K−π+(K+π−) and the dd pair to π+π−. For each of these observables we will

introduce their specific µ1 scale indicated as µij1 , where i, j is the internal quark pair.

While traditionally these scales were set equal µss1 = µsd1 = µdd1 = mc, we introduce

two alternative renormalisation scale setting schemes.

1. The central values of all three scales are set to mc but they are varied inde-

pendently from each other between 1 GeV and 2mc. Note that we set µss1 = µdd1

throughout this calculation while µsd1 is varied independently from the other

two. The reason for this is because final states K+K− and π+π− are not fully

independent as can be connected through rescattering, but the ∆S = 1 state

is independent.

2. We introduce a new parameter ε which is related to the kinematics of the

decay and set the scales according to the available phase space. For ss we will

set µss1 = mc − 2ε, for sd (and ds) we set µsd1 = mc − ε and for dd we keep

µdd1 = mc.

By using the first method, we get a very extended range of values for Ω: Ω ∈ [4.5×

10−5, 1.82]. In fact, by scanning independently the two available scale parameters,

84 out of the 121 values give Ω > 0.1, while only 11 yield Ω < 10−3. These 11 values

correspond to µss1 = µsd1 = µdd1 . As we see, even a slight deviation from equal scale

values starts lifting the GIM suppression. In this calculation we are using the MS

scheme, the {Q, Q̃S} operator basis for dimension-six and HQET Sum Rules results

for the computation of the matrix elements. Using instead the Pole scheme, the

{Q,QS} operator basis or Lattice QCD results for the matrix elements, we find in

general an increased range of values for Ω:

• Using the Pole scheme we get Ω ∈ [9.8× 10−6, 9.07] with all choices of different

scale parameters giving Ω > 0.1.

• The choice of {Q,QS} basis increases the maximum value of Ω to almost 7 for

the MS scheme and 23 for the Pole.
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• Using the Lattice QCD values increases the result by 2-3 units in all cases,

compared to the HQET Sum Rules.

Importantly, in all cases we can obtain values of Ω > 1!

Using instead the ε method for setting the renormalisation scales, we can estimate

the numerical value of the parameter ε as the strange quark mass, i.e ε ≈ 0.1 GeV,

or we can compare the energy release of D0 → K+K−, M
D

0 − 2M
K

+ = 0.88 GeV,

with that of D0 → π+π−, M
D

0 − 2M
π

+ = 1.59 GeV, leading to an expectation

of ε ≈ 0.35 GeV. As we can see in the top right plot of Figure 3.5 we can match

the experimental value of y for ε ≈ 0.2 GeV. Again, the above calculation is done

in the MS scheme, using the {Q, Q̃S} operators and HQET Sum Rules results

for the matrix elements. In Figure 3.5 we can see the behaviour of Ω as we vary

ε in all different scenarios (mass scheme, operator basis, non-perturbative input).

In all of them we can see that we can achieve Ω = 1 with a choice of ε ≈ 0.2−0.3 GeV.

Finally, we need to test this alternative renormalisation scale setting procedure

with other HQE predictions and see how it affects them. In lifetime calculations

(both in charm or bottom system) as well as in the decay rate difference in Bq-mixing

there are no significant suppressions arising, thus our alternative scale setting (any

of the two methods) would produce results already covered by the current range of

theoretical uncertainties. However, there are (less pronounced) GIM cancellations in

the calculation of semi-leptonic CP asymmetries in Bq-mixing. In the SM we get:

Re
(

Γq12
M q

12

)SM

= − ∆Γq
∆Mq

=


−(49.9± 6.7) · 10−4 q = s

−(49.7± 6.8) · 10−4 q = d
, (3.5.1)

Im
(

Γq12
M q

12

)SM

= aqsl =


(+2.2± 0.2) · 10−5 q = s

(−5.0± 0.4) · 10−4 q = d
. (3.5.2)

The results of applying the ε method in these observables can be found in Table

3.1. The blue entries in the table indicate values that lie within the theoretical
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Figure 3.5: Comparison of the ε dependence of Ω at LO-QCD (blue) and NLO-QCD
(pink) for different values of µ: the central lines corresponds to µ = mc while the
other lines to µ = 1 GeV and µ = 2mc. In the label of each plot are stated the
scheme used, the dimension-six operator basis and the values of the non-perturbative
matrix elements.
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ε ( GeV ) Γs12/M
s
12 Γd12/M

d
12

0 -0.00499 + 0.000022 I -0.00497 - 0.00050 I
0.2 -0.00494 + 0.000023 I -0.00492 - 0.00053 I
0.5 -0.00484 + 0.000026 I -0.00482 - 0.00059 I
1.0 -0.00447 + 0.000037 I -0.00448 - 0.00084 I
1.5 -0.00287 + 0.000091 I -0.00309 - 0.0021 I

Table 3.1: Numerical results of Γ12/M12 for Bs and Bd meson mixing after applying
the ε renormalisation scale setting.

uncertainties while the black ones are not covered by them. We can see that the real

part of Γs12/M
s
12 remains within the uncertainties for values of ε up to 1 GeV, while

the imaginary part can be increased by almost 100% for both Bs and Bd mesons.

Note that we use values of ε up to 1.5 GeV since in the B system the heaviest internal

quark would be the charm instead of the strange.



Chapter 4

Lifetimes of D Mesons

The lifetimes of charmed mesons are very precisely known experimentally [1, 111].

Unlike the B meson lifetimes though, they exhibit a much wider range of values, as

mentioned in Section 2.2. Apart from the lifetimes, inclusive semi-leptonic branching

fractions have been measured [1], including a very recent measurement for the D+
s

meson by the BESIII Collaboration [2]. In this chapter we revisit the inclusive decays

of D mesons. Including the recently evaluated Darwin operator contribution [8] and

D+
s Bag parameters [5], we present an updated theory status of the D lifetimes.

We start by summarising the results for the calculation of the perturbative HQE,

followed by a listing of non-perturbative parameters for the ∆C = 0 matrix elements.

Finally, we show our numerical results for different quark mass definition schemes.

4.1 Introduction

The current status of lifetimes and semi-leptonic branching ratios for all three D

mesons is shown in Table 4.1. To calculate such inclusive decays we will use the HQE

framework. The decay of a D meson can be written then as in Equation (2.2.25)

with the substitution of mQ → mc. The Γi, 〈Oi〉 follow the notation of Equations

(2.2.25)-(2.2.27). We can see the expression for the decay of a D-meson is a series

expansion in two parameters Λ/mc and αs(mc) where Λ ≈ ΛQCD. While in the B
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D0 D+ D+
s

τ [ps] 0.4101(15) 1.040(7) 0.504(4)

Γ [ps−1] 2.44(1) 0.96(1) 1.98(2)

τ(Dq)/τ(D0) 1 2.54(2) 1.20(1)

Br(Dq → Xe+νe)[%] 6.49(11) 16.07(30) 6.30(16)
Γ(Dq → Xe+νe)
Γ(D0 → Xe+νe)

1 0.977(26) 0.790(26)

Table 4.1: Status of the experimental determinations of the lifetime and the semi-
leptonic branching fractions of the lightest charmed mesons (Dq ∈

{
D0, D+, D+

s

}
).

All values are taken from the PDG [1] apart from the semi-leptonic D+
s -meson decays

which were recently measured by the BESIII Collaboration [2].

system these parameters are small enough to expand in them, for the charm one this

is not very clear. As a starting point we will investigate whether these parameters

can give a convergent series. The Particle Data Group [1] gives the following values

for the pole and MS mass of the charm quark

mpole
c = 1.67± 0.07 GeV , (4.1.1)

mc(mc) = 1.27± 0.02 GeV . (4.1.2)

The choice of mass as well as the loop order of the calculation has a big effect on

the value of the running coupling. In Table 4.2 we show the values of αs(mc) for

three different values of mc at 2-loop and 5-loop using the RunDec package [3]. Even

αs(mc) mc = 1.67 GeV mc = 1.48 GeV mc = 1.27 GeV

2-loop 0.322 0.346 0.373
5-loop 0.329 0.356 0.387

Table 4.2: Numerical values of the strong coupling αs evaluated at different scales
and different loop order, obtained using the RunDec package [3].

though the determination of the MS mass is well founded, that of the pole mass

seems to be affected by a potential breakdown of the perturbation theory. However,

we can not just choose the MS-mass a priori as the HQE is naturally defined via the

pole mass. We can write the pole mass as a function of the MS mass up to third
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order of the running coupling [112–114]

mPole
c = mc(mc)

1 + 4
3
αs(mc)
π

+ 10.43
(
αs(mc)
π

)2

+ 116.5
(
αs(mc)
π

)3


= mc(mc) [1 + 0.1642 + 0.1582 + 0.2176] , (4.1.3)

where we have used the 5-loop result for the running coupling. In Table 4.2 we have

used a third value for mc which corresponds to the pole mass at first order in αs as

calculated from Equation (4.1.3).

The leading term in the decay of a free charm quark (Γ3) is proportional to m5
c

so the way we treat these higher orders in the mass relation can potentially have big

effects. If we truncate the series at first order in αs then we can write

(
mPole
c

)5
= mc(mc)5 [1 + 0.1642]5 = 2.14mc(mc)5 . (4.1.4)

If we keep only the terms up to αs, discarding higher orders, we obtain

(
mPole
c

)5
≈ mc(mc)5 [1 + 5 · 0.1642] = 1.82mc(mc)5 , (4.1.5)

which is almost 15% smaller than Equation (4.1.4). Finally, if we keep all the terms

of Equation (4.1.3) we get

(
mPole
c

)5
= mc(mc)5 [1 + 0.1642 + 0.1582 + 0.2176]5 = 8.66mc(mc)5 , (4.1.6)

which is almost 4 times larger than the value of Equation (4.1.4). Since our results

seem to have a strong dependence on the way we treat the charm mass we will

consider the following possibilities.

1. Use Equation (4.1.3) to first order in αs, since this is the order to which

most of the Wilson coefficients are known. In this case we fix mPole
c = 1.48

GeV and αs = 0.356 and express everything in terms of the pole mass. A

further possibility would be to consider the expansion in Equation (4.1.3) to

be an asymptotic one, whose smallest correction appears at order α2
s, which

is where we stop the expansion. In this case we get the pole mass value from
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PDG, mPole
c = 1.67 GeV. We did a numerical test for this large value of the

charm quark mass and the results for decay rates are roughly 30% larger than

the values obtained in the 1S scheme discussed below. Since we expect this

enhancement to be compensated by missing NNLO corrections to the non-

leptonic decay rates, we will not separately present results for mPole
c = 1.67

GeV.

2. Express the c-quark mass in terms of the MS mass [115],

mPole
c = mc(mc)

[
1 + 4

3
αs(mc)
π

]
, (4.1.7)

takingmc(mc) = 1.27 GeV [1], and expand consistently up to order αs. Because

of the dependence on the fifth power of the charm-quark mass, in this case Γ3

is affected by a large correction 5× (4/3)(αs/π).

3. Express the c-quark mass in terms of the kinetic mass [65, 116]. The kinetic

scheme has been introduced in order to obtain a short distance definition of the

heavy quark mass which allows a faster convergence of the perturbative series

and is still valid at small scales µ ∼ 1 GeV. The relation between the kinetic

scheme and the MS and Pole schemes can be found, up to N3LO corrections,

in [117]. At order αs one has

mPole
c = mKin

c

1 + 4αs
3π

4
3
µcut

mKin
c

+ 1
2

(
µcut

mKin
c

)2 , (4.1.8)

where µcut is the Wilsonian cutoff separating the perturbative and non-perturbative

regimes. Using mc(mc) as an input, the authors of [117] obtain

mKin
c (1GeV) = 1.128 GeV (N3LO) , (4.1.9)

mKin
c (1GeV) = 1.206 GeV (NLO) . (4.1.10)

Comparing with Equation (4.1.7) it follows that the kinetic scheme might be

preferred to the MS scheme, if the coefficient of αs/4π in Equation (4.1.8),

would give a suppression factor. For µcut = 1 GeV and mKin
c = 1.2 GeV, this
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is not the case, while using lower values i.e. µcut < 1 GeV, the convergence

of the series could be improved, however this would bring in an additional

uncertainty due to the closeness to the non-perturbative scale ΛQCD. In our

numerical analysis we will investigate the kinetic scheme with µcut = 0.5 GeV.

From [117] we take the following value

mkin
c (0.5 GeV) = 1.363 GeV (4.1.11)

obtained for consistency at NLO in αs and using as an input mc(mc).

4. In addition, we will consider the 1S-mass scheme defined as [118,119]

mPole
c = m1S

c

(
1 + (αsCF )2

8

)
, (4.1.12)

where CF = 4/3, and the 1S mass m1S
c ≈ 1.44 GeV is obtained using the

conversion from the MS-scheme (implemented in the RunDec package [3])

at one loop level. Note that the correction within the 1S scheme in fact

starts at order α2
s, which however is still considered to be a NLO (not NNLO)

effect8 [118].

In the following study we are using updated results for both the ∆C = 0 Wilson coeffi-

cients and for the non-perturbative parameters. Γ3 is known at NLO-QCD [121–128]

for non-leptonic decays. NNLO-QCD [129–138] and NNNLO-QCD [139,140] correc-

tions have been computed for semi-leptonic decays, while for non-leptonic decays

NNLO corrections have been determined in the massless case and in full QCD (i.e.

no effective Hamiltonian was used) in [141]. Γ5 was determined at LO-QCD for

both semi-leptonic and non-leptonic decays [61, 142–144]. For the semi-leptonic

modes even NLO-QCD corrections are available [145–147]. In the b-system, Γ6 was

first computed at LO-QCD in [148] and recently the NLO-QCD corrections were

determined in [149], both for the semi-leptonic case only. Very recently Γ6 has been

determined also for non-leptonic decays [150–152] and the coefficient was found to

8Similarly, another possibility would be to study the potential subtracted mass [120].
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be large. For semi-leptonic D-meson decays, Γ6 was determined in [153], see also

the recent [154], while the corresponding results for the non-leptonic charm modes

are presented for the first time in [8]. Γ̃6 is known at NLO-QCD for lifetimes of

B-meson [155, 156] and of D-meson [157], while Γ̃7 and Γ̃8 have been estimated in

LO-QCD in [158,159]. The calculation of Γ̃6 and Γ̃7 can also be found in Appendix D.

On the non-perturbative side, at dimension-five, the matrix element of the chro-

momagnetic operator can be determined from spectroscopy, while for the kinetic

operator there exist several Heavy Quark Effective Theory (HQET) determinations

with lattice simulations [160–164] and using sum rules [65, 165, 166]. The matrix

elements of the four-quark operators 〈Õ6〉 have been computed using HQET sum

rules [4]. Violations of SU(3)F and so far undetermined eye-contractions could yield

visible effects and a calculation of these corrections with HQET sum rules, follow-

ing [167], has been performed in [5]. Corresponding lattice results for the matrix

elements of the four-quark operators would be highly desirable.

4.2 Total Decay Rates

The effective Hamiltonian for inclusive charm decays can be decomposed in three

parts

Heff = HNL
eff +HSL

eff +Hrare
eff , (4.2.1)

where the three terms correspond to non-leptonic decays of the charm quark (c→

q1q2u, qi = u, d, s), semi-leptonic decays of the charm quark (c→ q`+ν`, ` = e, µ and

q = d, s) and rare decays of the D meson like D → π`+`−. The branching fraction

of such rare decays is much smaller than tree-level transitions, and hence we will

not include them from now on (see e.g. [168,169] for studies for New Physics in such

decays) The other two terms can be written as

HNL
eff = GF√

2

 ∑
q1,2=d,s

λq1q2 [C1Q
q1q2
1 + C2Q

q1q2
2 ]− λb

6∑
j=3

CjQj

+ h.c., (4.2.2)
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HSL
eff = GF√

2
∑
q=d,s

∑
`=e,µ

V ∗cqQ
q` + h.c. , (4.2.3)

where λq1q2 = V ∗cq1Vuq2 and λb = V ∗cbVub are the CKM factors and Ci(µ1) denote the

Wilson coefficients evaluated at the renormalisation scale µ1 ∼ mc. The operators

Q
q1q2
1 , Q

q1q2
2 denote the tree-level ∆C = 1 operators while Qi, i = 3 . . . 6 are the

penguin operators arising in the single Cabibbo suppressed decays c → ssu and

c → ddu, or in even further suppressed decays like c → uuu. The operator Qq` is

the semi-leptonic operator arising at tree-level and its Wilson coefficient is equal to

1. The tree-level operators can be written as

Q
q1q2
1 =

(
q̄i1γµ(1− γ5)ci

) (
ūjγµ(1− γ5)qj2

)
, (4.2.4)

Q
q1q2
2 =

(
q̄i1γµ(1− γ5)cj

) (
ūjγµ(1− γ5)qi2

)
, (4.2.5)

Qq` = (q̄γµ(1− γ5)c)
(
ν̄`γµ(1− γ5)`

)
. (4.2.6)

The values of the Wilson coefficient for the non-leptonic operators can be found in

Table 4.3. We see that the Wilson coefficients of the penguin operators are very small

µ1[GeV] 1 1.27 1.36 1.44 1.48 3

C1(µ1) 1.25
(1.34)

1.20
(1.27)

1.19
(1.26)

1.18
(1.25)

1.18
(1.24)

1.10
(1.15)

C2(µ1) −0.48
(−0.62)

−0.39
(−0.50)

−0.40
(−0.53)

−0.37
(−0.49)

−0.37
(−0.48)

−0.24
(−0.32)

C3(µ1) 0.03
(0.02)

0.02
(0.01)

0.02
(0.01)

0.01
(0.01)

0.01
(0.01)

0.00
(0.00)

C4(µ1) −0.06
(−0.04)

−0.05
(−0.03)

−0.04
(−0.03)

−0.04
(−0.02)

−0.04
(−0.02)

−0.01
(−0.01)

C5(µ1) 0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.00
(0.00)

C6(µ1) −0.08
(−0.05)

−0.05
(−0.03)

−0.05
(−0.03)

−0.04
(−0.03)

−0.04
(−0.03)

−0.01
(−0.01)

Table 4.3: Comparison of the Wilson coefficients at NLO-QCD (LO-QCD) for dif-
ferent values of µ1.

and additionally their contributions are also strongly CKM suppressed by a factor

λb � λq1q2 . Therefore in our analysis we will neglect their effect. The expansion in
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+c c c c + . . . + + . . .

c c
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O3 O5 O6 Õ6 Õ7
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q̄2
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q1
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q q qq

Figure 4.1: The diagrams describing contributions to the HQE in Equation (2.2.25).
The crossed circles denote the ∆C = 1 operators Qi of the effective Hamiltonian
while the squares denote the local ∆C = 0 operators Oi and Õi. The two-loop
and the phase space enhanced one-loop diagrams correspond respectively to the
two-quark operators Oi and to the four-quark operators Õi in the HQE.

these terms as in Equation (2.2.25) can be presented graphically as in Figure 4.1.

Starting from the lowest order in the HQE we obtain the free decay of the charm

quark Γ3, which at LO can be written as

Γ(0)
3 = Γ0 c3 = Γ0

[
f
(
zs, ze, zνe

)
+ f

(
zs, zµ, zνµ

)
+ |Vud|2Na f (zs, zu, zd) + . . .

]
,

(4.2.7)

where the following notation is introduced

Γ0 = G2
Fm

5
c

192π3 |Vcs|
2 , (4.2.8)

Na = 3C2
1 + 2C1C2 + 3C2

2 , (4.2.9)

and we introduce as well zq = m2
q/m

2
c . In the remaining of the thesis we assume

the masses of the electron, neutrino and up and down quarks negligible, thus ze =

zν = zu = zd = 0. The function f(zq1 , zq2 , zq3) denotes the phase space effect of the

final state particles. In the approximations of one massive particle and two equally
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Figure 4.2: Scale dependence of the Wilson coefficient combination Na = 3C2
1 +

3C2
2 + 2C1C2.

massive particles it can be simplified to

f(z, 0, 0) = 1− 8z + 8z3 − z4 − 12z2 log z , (4.2.10)

f(z, z, 0) =
√

1− 4z(1− 14z − 2z2 − 12z3)

+ 24z2(1− z2) log 1 +
√

1− 4z
1−
√

1− 4z
, (4.2.11)

while the general expression can be found in e.g. [170]. In Equation (4.2.7) the

first two terms correspond to the semi-leptonic decays c → se+νe and c → sµ+νµ

while the third term to the CKM favoured c→ sdu. The ellipsis denote the CKM

suppressed modes. The dependence on the scale µ1 enters the calculation via the

Wilson coefficient Na. Its dependence on µ1 is depicted in Figure 4.2 indicating a

shift from LO to NLO and a reduction of the the scale uncertainty at NLO. In order

to calculate the full NLO result of Γ3 we also need corrections coming from NLO

diagrams. It is helpful to express the full result for Γ3 as

Γ3 = Γ0

[
3C2

1 C3,11 + 2C1C2 C3,12 + 3C2
2 C3,22 + C3,SL

]
, (4.2.12)

where each C3,ij includes contributions from all possible decay modes. The NLO

parts of C3,11, C3,22 and C3,SL were calculated at [121] while we have used [124, 128]

for C3,12. The LO results are presented in Appendix B.
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Mass scheme ΓLO
3 [ps−1] ΓNLO

3 [ps−1]

Pole (mc = 1.48 GeV) 1.45+0.17
−0.14 1.52+0.20

−0.16

MS (Equation (4.1.7)) 0.69+0.06
−0.09 1.32+0.06

−0.03

Kinetic (Equation. (4.1.8)) 0.97+0.10
−0.11 1.47+0.27

−0.30

1S (Equation (4.1.12)) 1.25+0.14
−0.13 1.50+0.31

−0.25

Table 4.4: Numerical values of ΓLO
3 = Γ(0)

3 and ΓNLO
3 = Γ(0)

3 + αs(mc)/(4π) Γ(1)
3 using

different schemes for the c-quark mass. The uncertainties are obtained by varying
the renormalisation scale µ1 between 1 GeV and 3 GeV.

Numerical results for Γ3 in different mass are presented in Table 4.4. We find

that the NLO values are in good agreement with the experimental measurements of

Table 4.1. Looking more closely at the NLO effect in Γ3 we see some very interesting

cancellations, more visible in the Pole scheme. In fact, for non-leptonic modes the

corrections from the NLO diagrams and the NLO corrections to the Wilson coeffi-

cients come with different signs. Additionally, the total NLO correction from the

non-leptonic modes and the one from the semi-leptonic ones have similar sizes but

different signs, cancelling each other out up to a final small NLO contribution. In

the MS scheme though the correction coming from the mass conversion formula in

Equation (4.1.7) is very large (due to the m5
c factor) and breaks this cancellation

ΓPole3 = ΓLO
3

1 +

 NL︷ ︸︸ ︷
1.84︸ ︷︷ ︸
diag.

− 0.74︸ ︷︷ ︸
WC

−
SL︷ ︸︸ ︷

0.67

 αs
π

+O
(
αs
π

)2
 , (4.2.13)

ΓMS
3 = ΓLO

3

1 +

 NL︷ ︸︸ ︷
2.10︸ ︷︷ ︸
diag.

− 0.70︸ ︷︷ ︸
WC

−
SL︷ ︸︸ ︷

0.71 +
conv.fac.︷ ︸︸ ︷
6.66

 αs
π

+O
(
αs
π

)2
 .(4.2.14)

Similar effects happen in the 1S and Kinetic schemes. To obtain a first indication

of the convergence rate of the QCD perturbative series we look at higher orders of

the series. More specifically, NNLO [137] and NNNLO [139] corrections are known

for the semi-leptonic decays of the b quark, and preliminary NNLO [141] corrections

are available for the non-leptonic decays of the b quark. We find that higher order

corrections seem to be crucial for a reliable determination of Γ3. Note however that

the results of [141] can not be used for phenomenological applications since they are
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not complete.

The first corrections to the decay of the free charm quark arise at dimension-five

and can be split in two operators as we have seen in Section 2.2, the kinetic and

chromomagnetic operators. By considering all contributions at this order in the

HQE we can write schematically

Γ5
〈O5〉
m2
c

= Γ0

[
cµπ

µ2
π

m2
c

+ cG
µ2
G

m2
c

]
, (4.2.15)

where the coeffcient cµπ = −c(0)
3 /2 and the coefficient cG can be expressed as

cG = 3C2
1 CG,11 + 2C1C2 CG,12 + 3C2

2 CG,22 + CG,SL . (4.2.16)

The individual contributions to cG can be found in Appendix B. In e.g. [150] they

were calculated for the non-leptonic decays of the b quark, but since there are no IR-

divergencies we can use them for the charm system with the appropriate replacements

e.g. mb → mc,mc → ms. For the c → sµ+ν mode we would need the expression

for two different massive particles in the final state which can be found in [170].

However, since ms ≈ mµ ≈ 100 MeV we can safely use the formula from the c→ ssu

mode by setting Nc = 1, C1 = 1 and C2 = 0. By neglecting the final state masses

and the CKM suppressed modes we can approximate cG as

cG ≈ −|Vud|2
[9
2

(
C2

1 + C2
2

)
+ 19C1C2

]
− 3. (4.2.17)

The coefficient in front of C1C2 is very large and comes with a negative sign, causing

cancellations in cG. In Figure 4.3 the µ1 behaviour is shown in LO and in partial

NLO where only corrections to the Wilson coefficients have been included. Because

of the previously mentioned cancellations we can see that depending on the scale at

which we compute cG, the sign is changing, leading to big uncertainties due to scale

variation between 1 GeV and 3 GeV.

For details about the calculation of short-distance effects and expansion of the
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Figure 4.3: Scale dependence of the coefficient of the chromomagnetic operator.

dimension-three and five matrix elements one could refer to e.g. [142,143,150,171]

while a detailed calculation can be found in [172]. As before, we can write for Γ6

Γ6
〈O6〉
m3
c

= Γ0 cρD
ρ3
D

m3
c

, (4.2.18)

for the Darwin operator, where

cρD = 3C2
1 CρD,11 + 2C1C2 CρD,12 + 3C2

2 CρD,22 + CρD,SL . (4.2.19)

The non-leptonic coefficients have been computed in [150–152] for b quark decays

but unlike cG we can not simply change the masses and use the expressions for the

charm quark. The expressions for the charm system can be found in Appendix B,

after the authors of [150] modified them to include full dependence on the strange

quark mass [8]. For the semi-leptonic modes we can simply use the expressions de-

rived for the non-leptonic ones and substitute NC = 1, C1 = 1, C2 = 0 and ms → mµ.

Neglecting the final state masses and the CKM suppressed modes we find

cρD ≈ |Vud|
2
(

18C2
1 −

68
3 C1C2 + 18C2

2

)
+ 12 . (4.2.20)

As we can see, no cancellation arises here since all coefficients have the same sign,

and can potentially give a big contribution to the full decay rate of D mesons

(based on the size of the coefficients). Of course there is still the non-perturbative
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parameter ρD to be determined. We will discuss this in the next section. The µ1 be-

haviour of Γ6 can be seen in Figure 4.4 where again we compare the LO result with a

partial NLO result, where only corrections from the Wilson coefficients are included.

1.0 1.5 2.0 2.5 3.0
40

50

60

70

80

Figure 4.4: Scale dependence of the coefficient of the Darwin operator.

So far we have not discussed the spectator quark (the light quark of the meson),

because all the previously mentioned contributions are the same for all charmed

hadrons – the non-perturbative parameter can differ from hadron to hadron as

we will see in the following section. Starting at order 1/m3
c , four-quark operators

arise that involve the spectator quark. As mentioned in Section 2.2 we will denote

these contributions with a tilde i.e. Γ̃6, Γ̃7 etc. There are three different topologies

for these diagrams, shown in Figure 4.5, corresponding from left to right to Weak

Exchange (WE), Pauli Interference (PI) and Weak Annihilation (WA) diagrams.

Non-leptonic contributions enter through all three topologies; however, semi-leptonic

c
q1 c

uu q2

c
q1

c

u

q̄2 q̄2

c u c

q1q1 q2

Figure 4.5: Spectator quark effects in the HQE expansion: WE (left), PI (middle)
and WA (right).
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modes can appear only through the WA diagram. The ∆C = 0 operators appearing

at dimension-six are

Oq
1 = (c̄ γµ(1− γ5)q) (q̄ γµ(1− γ5)c), (4.2.21)

Oq
2 = (c̄(1− γ5)q) (q̄(1 + γ5)c), (4.2.22)

Oq
3 = (c̄ γµ(1− γ5)Tαq) (q̄ γµ(1− γ5)Tαc), (4.2.23)

Oq
4 = (c̄(1− γ5)Tαq) (q̄(1 + γ5)Tαc), (4.2.24)

where q is the spectator quark and Tα are the colour matrices and summation over

them is implied. Their matrix elements can be parametrised as

〈Dq|Oq
i |Dq〉 = f 2

Dq
AiM

2
Dq

(Bi + δqqi ) , (4.2.25)

〈Dq|Oq
′

i |Dq〉 = f 2
Dq
AiM

2
Dq
δqq
′

i , q 6= q′ , (4.2.26)

where q, q′ = u, d, s, A1,3 = 1, A2,4 =
M

2
Dq

(mc+mq)
2 and Bi are the Bag parameters9

in QCD. The δqq
′

i parametrise the so-called eye-contractions, (see Figure 4.6) and

describe subleading effects in the matrix elements. In VIA all δ’s vanish while

B1,2 = 1 and ε1,2 = 0. In the HQET framework one can also define a similar set of

c c

q q

q

c c

q′ q′

q

Figure 4.6: Diagrams describing the eye-contractions.

operators10

Õq
1 = (h̄v γµ(1− γ5)q) (q̄ γµ(1− γ5)hv), (4.2.27)

9Note that in the remaining of the chapter we may refer to B3,4 as ε1,2 as it is more standard
in the literature.

10Note that all quantities defined in HQET will be defined with a tilde, comparing to the QCD
ones.
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Õq
2 = (h̄v(1− γ5)q) (q̄(1 + γ5)hv), (4.2.28)

Õq
3 = (h̄v γµ(1− γ5)Tαq) (q̄ γµ(1− γ5)Tαhv), (4.2.29)

Õq
4 = (h̄v(1− γ5)Tαq) (q̄(1 + γ5)Tαhv), (4.2.30)

which are parametrised as

〈Dq|Õq
i |Dq〉 = F 2(mc)MDq

(B̃q
i + δ̃qqi ), (4.2.31)

〈Dq|Õq
′

i |Dq〉 = F 2(mc)MDq
δ̃q
′
q

i , q 6= q′ , (4.2.32)

where F (µ) is the decay constant defined in the HQET as

〈0|q̄γµγ5hv|Dq(v)〉 = i F (µ)
√
MDq

vµ . (4.2.33)

The relation between the QCD decay constant defined in Equation (2.2.32) and the

HQET one up to αs and 1/mc corrections [55,173] for µ = mc is

fDq = F (mc)√
MDq

(
1− 2

3
αs(mc)
π

+ G1(mc)
mc

+ 6 G2(mc)
mc

− 1
2

Λ̄−mq

mc

)
, (4.2.34)

where Λ = MDq
−mc and the parameters G1, G2 characterise the matrix elements

of non-local operators of dimension-seven. Again in VIA B̃1,2 = 1 while B̃3,4 = 0. In

this study we are assuming isospin symmetry i.e.

(∼)

Bu
i =

(∼)

Bd
i ,

(∼)

δuq
′

i =
(∼)

δdq
′

i ,
(∼)

δqui =
(∼)

δqdi . (4.2.35)

Note that in order to work properly in HQET and calculate these contributions

at NLO we need to take into account the extra corrections coming from Equation

(4.2.34) instead of simply using fDq . There are also 1/mc corrections in the same

equation which will be included in the calculation of dimension-seven contributions.

By considering only the CKM dominant modes and neglecting for brevity the ef-

fect of eye contractions, we can write the LO-QCD expression of the dimension-six
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contribution for D0, D+ and D+
s meson as

16π2 Γ̃D
0

6
〈Õ6〉D

0

m3
c

= Γ0|V ∗ud|2 16π2MD
0f 2
D

0

m3
c

(1− zs)2

{(1
3C

2
1 + 2C1C2 + 3C2

2

) [
(B̃u

2 − B̃u
1 ) + zs

(
2B̃u

2 −
B̃u

1

2

)]

+2C2
1

[
(ε̃u2 − ε̃u1) + zs

(
2 ε̃u2 −

ε̃u1
2

)]}
, (4.2.36)

16π2 Γ̃D
+

6
〈Õ6〉D

+

m3
c

= Γ0|V ∗ud|2 16π2MD
+f 2

D
+

m3
c

(1− zs)2

{(
C2

1 + 6C1C2 + C2
2

)
B̃d

1 + 6
(
C2

1 + C2
2

)
ε̃d1
}
, (4.2.37)

16π2 Γ̃D
+
s

6
〈Õ6〉D

+
s

m3
c

= Γ0|V ∗ud|2 16π2MD
+
s
f 2
D

+
s

m3
c{(

3C2
1 + 2C1C2 + 1

3C
2
2 + 2
|V ∗ud|2

)(
B̃s

2 − B̃s
1

)
+ 2C2

2 (ε̃s2 − ε̃s1)
}
,

(4.2.38)

where the equations correspond to the WE, PI and WA topologies respectively. Note

that in the D+
s expression we are including two WA diagrams, one non-leptonic and

one semi-leptonic as they are both CKM dominant. For the semi-leptonic expression

we have neglected the muon mass for brevity but it will be included in the numerical

evaluation. The above equations show some interesting numerical effects. First, in

the charm system one expects that the spectator effects have a similar size to Γ3

unless additional cancellations take place. Using mpole
c = 1.48 and Lattice QCD

value for the decay constants [97] we roughly get

16π2MD
0f 2
D

0

m3
c

= 4.1 ≈ O(c3) , 16π2MD
+
s
f 2
D

+
s

m3
c

= 6.0 ≈ O(c3) . (4.2.39)

This result led the authors of [174] to suggest a different ordering of the HQE series

for the charm system. Looking more closely to the Wilson coefficient combinations

appearing in Equations (4.2.36) - (4.2.38) we find

CS
WE = 1

3C
2
1 + 2C1C2 + 3C2

2 , CO
WE = 2C2

1 , (4.2.40)

CS
PI = C2

1 + 6C1C2 + C2
2 , CO

PI = 6 (C2
1 + C2

2) , (4.2.41)

CS
WA = 3C2

1 + 2C1C2 + 1
3C

2
2 , CO

WA = 2C2
2 , (4.2.42)
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where the superscripts S and O refer to the colour-singlet and colour-octet operator.

In Table 4.5 we show the valus for all six combinations at different values of the

renormalisation scale µ1. As we can see, the coefficient CS
WE is strongly suppressed

µ1 [GeV] 1 1.27 1.36 1.44 1.48 3

CS
WE(LO) 0.09 0.03 0.02 0.02 0.01 0.01

CS
WE(NLO) −0.03 −0.03 −0.03 −0.02 −0.02 0.04
CO

WE(LO) 3.57 3.24 3.16 3.11 3.08 2.63
CO

WE(NLO) 3.11 2.89 2.83 2.79 2.77 2.44
CS

PI(LO) −2.80 −2.12 −1.96 −1.85 −1.79 −0.79
CS

PI(NLO) −1.74 −1.28 −1.16 −1.08 −1.04 −0.27
CO

PI(LO) 13.0 11.4 11.0 10.7 10.6 8.50
CO

PI(NLO) 10.6 9.55 9.31 9.13 9.05 7.60
CS

WA(LO) 3.82 3.61 3.56 3.53 3.51 3.24
CS

WA(NLO) 3.57 3.42 3.38 3.36 3.35 3.16
CO

WA(LO) 0.77 0.55 0.51 0.47 0.46 0.21
CO

WA(NLO) 0.41 0.30 0.27 0.25 0.24 0.10

Table 4.5: Comparison of the combinations CS,O
WE,PI,WA, respectively at LO- and

NLO-QCD, for different values of the renormalisation scale µ1.

and it can even change sign within the considered range of µ1. On the other hand,

the coefficient CO
WE is much bigger. Additionally, the Bag parameters of the colour

singlet operators cancel exactly in VIA in Equation (4.2.36). All this indicates that

the octet and singlet terms might contribute similarly to the WE diagram. For

PI the coefficients CS
PI, C

O
PI are significantly larger than the WE ones (again the

octet coefficient is much larger than the singlet one) and we get large modifications

compared to the case C1 = 1, C2 = 0, hinting that gluon radiative corrections can be

very important. Finally, in WA we see that CWA is the largest one, but the singlet

Bag parameters cancel each other exactly in VIA, hence the octet term can not be

neglected. Therefore, a determination of the non-perturbative parameters is crucial

for the numerical calculation of the above expressions. If we include all CKM modes
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and NLO corrections we can express the four-quark contribution at dimension-six as

16π2 Γ̃Dq6
〈Õ6〉Dq

m3
c

= Γ0

|Vcs|2
4∑
i=1

 ∑
q1,q2=d,s

∣∣∣λq1q2∣∣∣2
AWE

i,q1q2

〈Dq|Õu
i |Dq〉

m3
c

+ API
i,q1q2

〈Dq|Õ
q2
i |Dq〉
m3
c

+AWA
i,q1q2

〈Dq|Õ
q1
i |Dq〉
m3
c

+
∑
q1=d,s

|Vcq1|
2 ∑
`=e,µ

[
AWA
i,q1`

〈Dq|Õ
q1
i |Dq〉
m3
c

] ,

(4.2.43)

where the matrix elements of the four-quark operators are given in Equations (4.2.31),

(4.2.32), and the short-distance coefficients for the WE, PI and WA topologies, cf.

Fig. 4.5 are denoted by AWE
i,q1q2 , A

PI
i,q1q2 and AWA

i,q1q2 , A
WA
i,q1`, respectively. The LO calcu-

lation can be found in Appendix D. NLO corrections to AWE
i,q1q2 and API

i,q1q2 have been

computed for HQET operators in [156]. The corresponding results for AWA
i,q1q2 can be

obtained by Fierz transforming the ∆C = 1 operators given in Equations (4.2.4),

(4.2.5). Since the Fierz symmetry is respected also at one-loop level, the functions

AWA
i,q1q2 are derived from AWE

i,q1q2 by replacing C1 ↔ C2. For the semi-leptonic modes,

the coefficients AWA
i,q1` have been determined in [157]. Note that in our analysis we

treat the contribution of the δ̃q
′
q

i parameters as a subleading “NLO” effect, therefore

their coefficients are included only at NLO-QCD. To demonstrate the importance

of the NLO-QCD corrections to the spectator effects, we show in Table 4.6 the

dimension-six contributions to the D-meson decay widths (see Equation (4.2.43))

splitting the LO and NLO parts, both in VIA and using HQET SR results for the

Bag parameters (the values used will be discussed in the following section). NLO-

QCD corrections turn out to have an essential numerical effect for the four-quark

contributions. In the case of the D0 and D+
s mesons these corrections lift the helicity

suppression of weak exchange and weak annihilation in LO-QCD when using VIA.

For the D+
s meson, in addition to the CKM dominant WA contribution, there is a

correction due to the CKM suppressed but nevertheless large PI topology. In the

case of the D+ meson the overall contribution from Pauli interference turns out

to be huge, of the order of −2.5 ps−1. In addition, the NLO correction to Pauli

interference also turns out to be very large, 50%− 100% of the LO term depending
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on the mass scheme. Already in the B system this NLO-QCD corrections were found

to be of the order of 30% for the ratio τ(B+)/τ(Bd), see e.g. [155] in the Pole scheme.

Thus, neglecting these contributions for charm lifetime studies, as done in [175], is

clearly not justified and a knowledge of NNLO-QCD corrections to the four-quark

contributions would be highly desirable.

Mass scheme D0 D+ D+
s

VIA

Pole −0.014︸ ︷︷ ︸
NLO

= 0.000︸ ︷︷ ︸
LO

−0.014︸ ︷︷ ︸
∆NLO

−2.64︸ ︷︷ ︸
NLO

= −1.68︸ ︷︷ ︸
LO

−0.97︸ ︷︷ ︸
∆NLO

−0.20︸ ︷︷ ︸
NLO

= −0.12︸ ︷︷ ︸
LO

−0.08︸ ︷︷ ︸
∆NLO

MS −0.010︸ ︷︷ ︸
NLO

= 0.000︸ ︷︷ ︸
LO

−0.010︸ ︷︷ ︸
∆NLO

−2.49︸ ︷︷ ︸
NLO

= −1.23︸ ︷︷ ︸
LO

−1.25︸ ︷︷ ︸
∆NLO

−0.18︸ ︷︷ ︸
NLO

= −0.08︸ ︷︷ ︸
LO

−0.10︸ ︷︷ ︸
∆NLO

Kinetic −0.012︸ ︷︷ ︸
NLO

= 0.000︸ ︷︷ ︸
LO

−0.012︸ ︷︷ ︸
∆NLO

−2.53︸ ︷︷ ︸
NLO

= −1.42︸ ︷︷ ︸
LO

−1.11︸ ︷︷ ︸
∆NLO

−0.19︸ ︷︷ ︸
NLO

= −0.10︸ ︷︷ ︸
LO

−0.09︸ ︷︷ ︸
∆NLO

1S −0.013︸ ︷︷ ︸
NLO

= 0.000︸ ︷︷ ︸
LO

−0.013︸ ︷︷ ︸
∆NLO

−2.60︸ ︷︷ ︸
NLO

= −1.58︸ ︷︷ ︸
LO

−1.02︸ ︷︷ ︸
∆NLO

−0.19︸ ︷︷ ︸
NLO

= −0.11︸ ︷︷ ︸
LO

−0.08︸ ︷︷ ︸
∆NLO

HQET SR

Pole 0.007︸ ︷︷ ︸
NLO

= 0.019︸ ︷︷ ︸
LO

−0.012︸ ︷︷ ︸
∆NLO

−2.89︸ ︷︷ ︸
NLO

= −1.87︸ ︷︷ ︸
LO

−1.02︸ ︷︷ ︸
∆NLO

−0.21︸ ︷︷ ︸
NLO

= −0.16︸ ︷︷ ︸
LO

−0.05︸ ︷︷ ︸
∆NLO

MS 0.020︸ ︷︷ ︸
NLO

= 0.014︸ ︷︷ ︸
LO

+0.006︸ ︷︷ ︸
∆NLO

−2.72︸ ︷︷ ︸
NLO

= −1.37︸ ︷︷ ︸
LO

−1.35︸ ︷︷ ︸
∆NLO

−0.20︸ ︷︷ ︸
NLO

= −0.12︸ ︷︷ ︸
LO

−0.08︸ ︷︷ ︸
∆NLO

Kinetic 0.014︸ ︷︷ ︸
NLO

= 0.016︸ ︷︷ ︸
LO

−0.002︸ ︷︷ ︸
∆NLO

−2.76︸ ︷︷ ︸
NLO

= −1.58︸ ︷︷ ︸
LO

−1.18︸ ︷︷ ︸
∆NLO

−0.20︸ ︷︷ ︸
NLO

= −0.13︸ ︷︷ ︸
LO

−0.07︸ ︷︷ ︸
∆NLO

1S 0.009︸ ︷︷ ︸
NLO

= 0.018︸ ︷︷ ︸
LO

−0.008︸ ︷︷ ︸
∆NLO

−2.84︸ ︷︷ ︸
NLO

= −1.76︸ ︷︷ ︸
LO

−1.08︸ ︷︷ ︸
∆NLO

−0.21︸ ︷︷ ︸
NLO

= −0.15︸ ︷︷ ︸
LO

−0.06︸ ︷︷ ︸
∆NLO

Table 4.6: Dimension-six contributions to D-meson decay widths (see Equation
(4.2.43)) (in ps−1) and split up into LO-QCD and NLO-QCD corrections within
different mass schemes and both in VIA and using the HQET SR for Bag parameters.

The 1/m3
c contribution is obtained by ignoring the effects of the light quark in

the incoming momentum expression pµ = pµc + pµq . If we include linear correc-

tion terms proportional to pq/mc we will get the 1/m4
c contributions which can be
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described by a basis of dimension-seven operators11

P q
1 = mq (c̄(1− γ5)q)(q̄(1− γ5)c) , (4.2.44)

P q
2 = 1

mc

(c̄
←
Dνγµ(1− γ5)Dνq)(q̄γµ(1− γ5)c) , (4.2.45)

P q
3 = 1

mc

(c̄
←
Dν(1− γ5)Dνq)(q̄(1 + γ5)c) , (4.2.46)

together with the corresponding colour-octet operators Sq1 , Sq2 , Sq3 . Due to the pres-

ence of a covariant derivative acting on the charm field in the operators P q
2 , P

q
3 (and

the colour-octet ones) which scales as mc at this order there is no immediate power

counting for these operators cf. the HQET operators in Equations (4.2.48), (4.2.49).

To evaluate the matrix elements of these operators in the HQET framework we need

to expand the charm quark momentum i.e. pµ = mcv
µ + kµ + pµq and also include

1/mc corrections to the effective heavy quark field and to the HQET Lagrangian as

shown in Section 2.2. Thus we get the following basis of dimension-seven operators

P̃ q
1 = mq (h̄v(1− γ5)q)(q̄(1− γ5)hv) , (4.2.47)

P̃ q
2 = (h̄vγµ(1− γ5)(iv ·D)q)(q̄γµ(1− γ5)hv) , (4.2.48)

P̃ q
3 = (h̄v(1− γ5)(iv ·D)q)(q̄(1 + γ5)hv) , (4.2.49)

and

R̃q
1 = (h̄vγµ(1− γ5)q)(q̄γµ(1− γ5)(i /D)hv) , (4.2.50)

R̃q
2 = (h̄v(1− γ5)q)(q̄(1 + γ5)(i /D)hv) , (4.2.51)

supplemented by the corresponding colour-octet operators S̃q1,2,3 and Ũ q
1,2, and the

non-local operators

M̃ q
1,π = i

∫
d4y T

[
Õq

1(0), (h̄v(iD)2hv)(y)
]
, (4.2.52)

11Note that usually in literature a redundant basis is used in which the operator denoted by P q
2

is the hermitian conjugate of P q
1 , namely P q

2 = mq(c(1 + γ5)q)(q(1 + γ5)c). These two operators
lead to the same matrix element so we only include P q

1 in our analysis.
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M̃ q
2,π = i

∫
d4y T

[
Õq

2(0), (h̄v(iD)2hv)(y)
]
, (4.2.53)

M̃ q
1,G = i

∫
d4y T

[
Õq

1(0), 1
2gs

(
h̄vσαβG

αβhv
)

(y)
]
, (4.2.54)

M̃ q
2,G = i

∫
d4y T

[
Õq

2(0), 1
2gs

(
h̄vσαβG

αβhv
)

(y)
]
, (4.2.55)

also supplemented by the corresponding colour-octet operators. The operators

P̃ q
1 , P̃

q
2 , P̃

q
3 originate from taking into account light quark momentum, R̃q

1, R̃
q
2 come

from the expansion of the effective field hv as in Equation (2.1.65), and M q
1,π, M q

2,π,

M q
1,G, M

q
2,G stem from corrections to the HQET Lagrangian as shown in Equation

(2.1.68). The parametrisation of these matrix elements is shown in Appendix C.

At LO-QCD these matrix elements can be parametrised by the non-perturbative

parameters F (µ), G1(µ), G2(µ) and Λ. Because they are only determined in large

uncertainties, we will be using instead the QCD decay constant as input which is

computed very pricisely using Lattice QCD [97]. In VIA and at the matching scale

µ = mc the matrix elements of the local operators R̃q
1,2 as well as the that of the

non-local ones can be absorbed in the QCD decay constant using Equation (4.2.34).

To make this point clearer, consider the contribution to the PI diagram at LO-QCD

including 1/m4
c effects,

Im T PI = Γ0 |V ∗ud|2
32π2

m3
c

(1− zs)2

CS
PI

(
Õd

1 + R̃d
1

mc

+ M̃d
1,π

mc

+ M̃d
1,G

mc

+ 21 + zs
1− zs

P̃ q
3

mc

)

+ (colour-octet part)
 . (4.2.56)

Evaluating this in VIA, the colour-octet contribution vanishes and using the para-

metrisation stated in Appendix C and in Equation (4.2.31) we get

〈Õd
1 + R̃d

1

mc

+ M̃d
1,π

mc

+ M̃d
1,G

mc

〉HQET = F 2M
D

+

[
1− Λ̄

mc

+ 2G1

mc

+ 12G2

mc

]

= f 2
DM

2
D

+ = 〈Od
1〉QCD , (4.2.57)

where the matrix elements are taken between the same D meson states and the

parameters F,G1, G2 are calculated at µ = mc. The same arguments can be made

for the WE and WA topologies. We should mention that in VIA, and neglecting the
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strange quark mass, the contributions to WE, WA vanish due to helicity suppression.

This is lifted once we include gluon corrections or strange mass effects, but again

the contributions of R̃q
i , M̃

q
i,π and M̃q

i,G in HQET can be completely absorbed in

fD by evaluating the matrix elements in VIA. For Oq
2 the only difference is that

R̃q
2 is absorbed by the combination (MD fD/mc)2 ≈ (1 + 2 Λ̄/mc) f 2

D. A detailed

analysis of 1/m4
c contributions has been made in [173] for the case of B-mixing. It

was found that in VIA, subleading effects of non-local operators can be absorbed in

the QCD decay constant. Further corrections stemming from the running of local

dimension-seven operators down to µ ≈ 1 GeV are small, and in fact neglecting them

one can absorb all 1/mc effects in fD.

Similarly to the 1/m3
c contributions, by summing over all CKM modes the 1/m4

c

effects can be written at LO-QCD as

16π2 Γ̃Dq7
〈Õ7〉Dq

m4
c

= Γ0

|Vcs|2
3∑
i=1

 ∑
q1,q2=d,s

∣∣∣λq1q2∣∣∣2
GWE

i,q1q2

〈Dq|P̃ u
i |Dq〉

m4
c

+GPI
i,q1q2

〈Dq|P̃
q2
i |Dq〉
m4
c

+GWA
i,q1q2

〈Dq|P̃
q1
i |Dq〉
m4
c

+
∑
q1=d,s

|Vcq1 |
2 ∑
`=e,µ

[
GWA
i,q1`

〈Dq|P̃
q1
i |Dq〉
m4
c

]
+(colour-octet part) . (4.2.58)

The results for the short-distance coefficients GWE
i,q1q2 , G

PI
i,q1q2 and GWA

i,q1q2 , G
WA
i,q1` are

presented in [157] and the full calculation is included in Appendix D. Note that,

due to the current accuracy of the analysis, at dimension-seven we include only the

contribution of the valence-quark, therefore e.g. 〈D0|P s
i |D0〉 = 0. In Table 4.7 we

show the central values for dimension-seven using the kinetic mass scheme. As we

D0 D+ D+
s

16π2 Γ̃Dq7
〈Õ7〉Dq

m4
c

[ps−1] 4.6× 10−7 1.05 0.10

Table 4.7: Dimension-seven contributions to D-meson decay widths (see Equation
(4.2.58)) in ps−1 within VIA in the kinetic mass scheme.
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can see, 1/mc corrections can vary from almost negligible in the D0 case to almost

as big as Γ3 for D+. It is therefore important to get a more precise measurement of

this contribution.

4.3 Determination of Non-perturbative

Parameters

In the previous section we discussed how to calculate several perturbative terms in

the HQE. However, we also need to have a way to determine the non-perturbative

parameters that couple them in order to get a reliable result. Starting with the

kinetic operator at dimension-five, there is no precise determination available for the

charm system. There are several predictions for the B system covering a wide range

of values. These can be found in Table 4.8. Assuming heavy quark symmetry, we

Source LQCD [176] LQCD [161] Exp. fit [69] QCD SR [166] QCD SR [165]

µ2
π[GeV2] 0.05(22) 0.314(15) 0.477(56) 0.10(5) 0.6(1)

Table 4.8: Different determinations of µ2
π(B) available in the literature.

can use the recently obtained value from [69] and get the estimate for the D meson

µ2
π(D) = (0.48± 0.2) GeV2 , (4.3.1)

where we have added an uncertainty of 40% to account for heavy quark symmetry

breaking. This value still fulfills the theoretical bound µ2
π ≥ µ2

G, see e.g. [54]. With

this value we expect corrections of order −10% (based on Equation (4.2.15)). Due

to isospin symmetry we can use this value of µ2
π for D0 and D+ mesons. For the D+

s

meson we can use the SU(3)F breaking which has been estimated in [157,177]

µ2
π(D+

s )− µ2
π(D0) ≈ 0.09 GeV2 , (4.3.2)

leading to

µ2
π(D+

s ) = (0.57± 0.23) GeV2 . (4.3.3)
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Of course a more precise experimental determination from fits to semi-leptonic de-

cays of D mesons (like it has happened for the B mesons) would be very desirable.

Moving to the chromomagnetic operator, the value of µ2
G has been determined

for B decays by fitting to experimental data in semi-leptonic decays [69]

µ2
G(B) = (0.306± 0.050) GeV2 . (4.3.4)

Again by assuming heavy quark symmetry we can expect a similar size for the charm

system. However we can also use spectroscopy to estimate this parameter [178]

µ2
G(D(s)) = 3

2mc (MD
∗
(s)
−MD(s)) , (4.3.5)

up to power corrections. Using meson masses taken from PDG [1] and setting

mc = 1.27 one gets

µ2
G(D) = (0.268± 0.107) GeV2, µ2

G(Ds) = (0.274± 0.110) GeV2, (4.3.6)

where again we have added a 40% uncertainty. These values are roughly 19% smaller

than the ones for the B system, while there is only a tiny amount of SU(3)F -symmetry

breaking of ≈ 2% which can be enhanced by power corrections. Alternatively, there

is another relation widely used in the literature independent of the choice of mc, see

e.g. [179]

µ2
G(D(s)) = 3

4
(
M2

D
∗
(s)
−M2

D(s)

)
, (4.3.7)

that yields

µ2
G(D) = 0.41 GeV2 , µ2

G(D+
s ) = 0.44 GeV2 , (4.3.8)

which are roughly 23% higher than the value for the B mesons. In our analysis we

will take the average of Equations (4.3.6) and (4.3.8) that gives

µ2
G(D) = (0.34± 0.10) GeV2, µ2

G(D+
s ) = (0.36± 0.10) GeV2 , (4.3.9)
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which agrees well with Equation (4.3.4). Again from Equation (4.2.15) the effect

of the chromomagnetic operator lies between −6% and +8% compared to Γ3. We

see again the issue with the coefficient cG and the cancellations it exhibits. A full

NLO-QCD determination of cG would give us a better idea of the size of this term.

For semi-leptonic decay rates the contribution of the chromomagnetic operator can

reach up to 20% as we can see in the following section.

For the Darwin operator there is only a determination for the B system from fitting

to semi-leptonic decays data [69]

ρ3
D(B) = (0.185± 0.031) GeV3 . (4.3.10)

Again using heavy quark symmetry and adding a 40% uncertainty we could write a

first estimate for the charm system

ρ3
D(D)I = (0.185± 0.08) GeV3 . (4.3.11)

Alternatively, the ρ3
D parameter can be expressed in terms of the Bag parameters of

the dimension-six four quark operators by expanding the equation of motion for the

gluon field [172]. At leading order 1/mQ we have

ρ3
D(H) = g2

s

18f
2
HMH

2 B̃q
′

2 − B̃
q
′

1 + 3
4 ε̃

q
′

1 −
3
2 ε̃

q
′

2

+
∑

q=u,d,s

(
2δ̃q

′
q

2 − δ̃
q
′
q

1 + 3
4 δ̃

q
′
q

3 −
3
2 δ̃

q
′
q

4

) , (4.3.12)
where H is a heavy hadron with mass MH and decay constant fH , q′ = u, d, s is the

light valence quark in the H-hadron, and the Bag parameters B̃q
1, B̃q

2, ε̃q1, ε̃q2, δ̃q
′
q

1

δ̃q
′
q

2 δ̃q
′
q

3 and δ̃q
′
q

4 were introduced in Section 4.2. The numerical values for all these

parameters can be found in Appendix A. For the strong coupling gs, [180] suggests

setting αs = 1. Using Equation (4.3.12) we present in Table 4.9 the values for ρ3
D

for B and D mesons for three different values of αs. As we can see when setting

αs = 1 we get values closest to Equation (4.3.10) indicating corrections at 1/mc of
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µ = 1.5 GeV µ = 1.0 GeV αs = 1

ρ3
D[GeV3] VIA HQET VIA HQET VIA HQET

B+, Bd 0.048 0.047 0.066 0.064 0.133 0.129

Bs 0.072 0.070 0.098 0.095 0.199 0.193

D+, D0 0.021 0.020 0.027 0.026 0.059 0.056

D+
s 0.030 0.029 0.040 0.038 0.086 0.082

Table 4.9: Values of ρ3
D(H) for B and D mesons in VIA and using HQET SR for

Bag parameters for three different choices of αs in Equation (4.3.12).

about 30%. Moreover, we find that VIA gives in Equation (4.3.12) values which

are very close to the HQET sum rule ones. We emphasise that due to the sizeable

SU(3)F breaking in the decay constants, Equation (4.3.12) leads also to a sizable

SU(3)F breaking for the non-perturbative parameters ρ3
D(D), ρ3

D(D+
s ). Taking the

values corresponding to αs = 1 and using HQET SR we get a second estimate for

the Darwin parameter

ρ3
D(D)II = (0.056± 0.022) GeV3 , ρ3

D(D+
s )II = (0.82± 0.033) GeV3 , (4.3.13)

where once more an uncertainty of 40% has been added. Equation (4.3.12) in VIA

becomes

ρ3
D(H) ≈ g2

s

18f
2
HMH . (4.3.14)

If we assume the Darwin parameter has similar size in B and D mesons then we can

write

ρ3
D(D) ≈ f 2

DmD

f 2
BmB

ρ3
D(B) , ρ3

D(Ds) ≈
f 2
Ds
mDs

f 2
BmB

ρ3
D(B) . (4.3.15)

These expressions lead us to a third estimate

ρ3
D(D)III = (0.082± 0.035) GeV3 , ρ3

D(Ds)III = (0.119± 0.052) GeV3 ,(4.3.16)

where again 40% uncertainty has been added. These values are consistent with the

last column of Table 4.9 and as we can see there is a much bigger SU(3)F -symmetry

breaking stemming from the ratio f
D

+
s
/f

D
0 (and a similar observation can be made
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for the B mesons). In our numerical analysis we will use the values of Equation

(4.3.16). Of course a more precise determination of ρ3
D would be very desirable.

The dimension-six Bag parameters of the D+ and D0 mesons have been determined

using HQET Sum Rules [4]; strange quark mass corrections, relevant for the Bag

parameter of the D+
s meson, as well as eye-contractions have been computed for the

first time in [5]. The numerical values can be found in Appendix A and the HQET

sum rules suggest values for the Bag parameter that are very close to VIA.

For the dimension-seven Bag parameters (defined in HQET), we apply VIA. As

one can see from Appendix C, the matrix elements of dimension-seven operators

in HQET depend also on the parameters Λ̄(s) = mD(s) −mc, for which we use the

following ranges [5].

Λ̄ = (0.5± 0.1) GeV, (4.3.17)

Λ̄s = (0.6± 0.1) GeV. (4.3.18)

Notice that we use only Equation (2.1.69) ignoring further 1/mc corrections as they

contribute to higher orders of the calculation.

4.4 Numerical Results

Moving to the numerical analysis we will be looking at total decay rates, semi-

leptonic decay rates and their ratios. We investigate several quark mass schemes

(with the kinetic scheme as default) and compare results using both VIA and HQET

SR values for the Bag parameters. All input values for these calculations can be

found in Appendix A. For the renormalisation scales, we fix the central values at

µ0 = µ1 = 1.5 GeV and vary them independently between 1 and 3 GeV. For the µ0

dependence of the Bag parameters we have used the anomalous dimension matrix

from [4]. Moreover we add an estimated uncertainty due to missing higher order

corrections.
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VIA

Observable Pole MS Kinetic 1S Exp.
value

Γ(D0)[ps−1] 1.71 1.49 1.58 1.66 2.44

Γ(D+)[ps−1] 0.22 −0.01 0.11 0.18 0.96

Γ̄(D+
s )[ps−1] 1.76 1.51 1.61 1.71 1.88

τ(D+)/τ(D0) 2.55 2.56 2.53 2.54 2.54

τ̄(D+
s )/τ(D0) 0.97 0.99 0.98 0.98 1.30

BD
0

sl [%] 5.43 6.55 6.14 5.75 6.49

BD
+

sl [%] 13.8 16.6 15.6 14.6 16.07

B
D

+
s

sl [%] 7.12 8.42 7.95 7.50 6.30

ΓD
+

sl /ΓD
0

sl 1.00 1.00 1.00 1.00 0.985

ΓD
+
s

sl /ΓD
0

sl 1.06 1.05 1.05 1.05 0.790

Table 4.10: Central values of the charm observables in different quark mass schemes
using VIA for the matrix elements of the 4-quark operators compared to the corres-
ponding experimental values (last column).

Starting with the total decay rates, we are expecting them to have big theoret-

ical uncertainties due to the dependence of the free quark decay on m5
c and due

to large perturbative and power corrections. In Tables 4.10, 4.11 we can see the

central values of all observables for various mass schemes using VIA and HQET SR

results respectively. In Table 4.12 we summarise the results for the kinetic scheme,

using HQET SR values and including full uncertainties (parametric, µ0- and µ1-

dependence). The estimated uncertainty due to missing higher orders is included in

the parametric value. The values of the total decay rates can be found in the first

three rows of these tables. These contents can also be visualised in the top graph of

Figure 4.7.

In all tables the last column corresponds to most recent experimental measurements.



4.4. Numerical Results 109

HQET SR

Observable Pole MS Kinetic 1S Exp.
value

Γ(D0)[ps−1] 1.73 1.52 1.61 1.68 2.44

Γ(D+)[ps−1] −0.03 −0.24 −0.12 −0.06 0.96

Γ̄(D+
s )[ps−1] 1.75 1.50 1.60 1.69 1.88

τ(D+)/τ(D0) 2.83 2.83 2.80 2.82 2.54

τ̄(D+
s )/τ(D0) 0.99 1.01 1.00 1.00 1.30

BD
0

sl [%] 5.26 6.42 6.00 5.59 6.49

BD
+

sl [%] 13.4 16.3 15.2 14.2 16.07

B
D

+
s

sl [%] 7.10 8.36 7.91 7.48 6.30

ΓD
+

sl /ΓD
0

sl 1.002 1.001 1.001 1.002 0.985

ΓD
+
s

sl /ΓD
0

sl 1.08 1.06 1.07 1.08 0.790

Table 4.11: Central values of the charm observables in different quark mass schemes
using HQET sum rule results [4, 5] for the matrix elements of the 4-quark operators
compared to the corresponding experimental values (last column).

There is a small subtlety regarding τ
D

+
s
; the experimental result includes the semi-

leptonic mode D+
s → τ+ντ which is not included in the HQE as the tau lepton is

heavier than the charm quark. Taking into account this we can define a reduced

decay rate for D+
s

Γ̄(D+
s ) ≡ Γ(D+

s )− Γ(D+
s → τ+ντ ) = (1.88± 0.02) ps−1 , (4.4.1)

using [1]

Br(D+
s → τ+ντ ) = (5.48± 0.23)% . (4.4.2)

This also leads us to a reduced lifetime ratio

τ̄(D+
s )

τ(D0)
= 1.30± 0.01 . (4.4.3)
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Observable HQE prediction Exp. value

Γ(D0)[ps−1] 1.61± 0.37+0.46 +0.01
−0.37−0.01 2.44± 0.01

Γ(D+)[ps−1] −0.12± 0.77+0.59 +0.25
−0.28−0.10 0.96± 0.01

Γ̄(D+
s )[ps−1] 1.60± 0.44+0.52 +0.02

−0.41−0.01 1.88± 0.02

τ(D+)/τ(D0) 2.80± 0.85+0.01 +0.11
−0.14−0.26 2.54± 0.02

τ̄(D+
s )/τ(D0) 1.00± 0.16+0.02 +0.01

−0.03−0.01 1.30± 0.01

BD
0

sl [%] 6.00± 1.57+0.33
−0.28 6.49± 0.11

BD
+

sl [%] 15.23± 4.07+0.83
−0.72 16.07± 0.30

B
D

+
s

sl [%] 7.91± 2.64+0.43
−0.38 6.30± 0.16

ΓD
+

sl /ΓD
0

sl 1.001± 0.008± 0.001 0.985± 0.028

ΓD
+
s

sl /ΓD
0

sl 1.07± 0.24± 0.01 0.790± 0.026

Table 4.12: HQE predictions for all the ten observables in the kinetic scheme (second
column), using HQET SR results for the Bag parameters. The first uncertainty is
parametric, the second and third uncertainties are due to µ1- and µ0-scales vari-
ation, respectively. The results are compared with the corresponding experimental
measurements (third column).

The main result we can draw from Table 4.12 and Figure 4.7 is that the HQE can

reproduce the experimental values of Γ(D0),Γ(D+) and Γ(D+
s ) within big uncer-

tainties. The decay rate of D+
s is in good agreement with the experimental value

while Γ(D0) and Γ(D+) are underestimated. A potential reason for that could be

the missing NNLO-QCD corrections to the free charm quark decay. It is also expec-

ted that while the various mass schemes yield similar results, further higher order

corrections will reduce these differences. We observe that the results on Table 4.10

and Table 4.11 do not differ much as the HQET SR values for the Bag parameters

are very close to VIA. Of course we could not ignore the negative result we get for

the D+ meson; this is an effect of the large negative value of the PI diagram which is

dominant for D+. This gets even worse if we consider NLO-QCD corrections but it

is partly compensated by dimension-seven corrections. An independent confirmation

of the HQET SR results with lattice QCD, as well as higher order QCD corrections
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to the spectator effects might give some more insights.

To analyse further the result for the total decay rates we can express them in

terms of the non-perturbative parameters. Using the kinetic scheme we can write

for the D0 meson12

Γ(D0) = 6.15 Γ0

[
1︸︷︷︸
c
LO
3

+ 0.48︸ ︷︷ ︸
∆cNLO

3

−0.13 µ2
π(D)

0.48 GeV2 + 0.01 µ2
G(D)

0.34 GeV2 + 0.31 ρ3
D(D)

0.082 GeV3

− 0.01︸ ︷︷ ︸
dim−6,VIA

− 0.005 δB̃
q
1

0.02 + 0.005 δB̃
q
2

0.02 + 0.137 ε̃q1
−0.04 − 0.125 ε̃q2

−0.04

+ 0.00︸ ︷︷ ︸
dim−7,VIA

−0.0045 rqq1 − 0.0004 rqq2 − 0.0035 rqq3 + 0.0000 rqq4

−0.0109 rsq1 − 0.0079 rsq2 − 0.0000 rsq3 + 0.0001 rsq4
]
, (4.4.4)

where we have normalised the parameters µ2
π, µ

2
G and ρ3

D to their central values and

we have introduced the following notation as a measure of deviation from VIA for

the colour singlet Bag parameters

B̃q
i = 1 + δB̃q

i i = 1, 2 . (4.4.5)

The parameters δB̃q
i are normalised conservatively to 0.02 while ε1, ε2 are normalised

to 0.04. Finally, we use the notation rqq
′

i ≡ δ̃qq
′

i /〈δ̃qq
′

i 〉, with 〈δ̃
qq
′

i 〉 being the central

values (shown in Appendix A). The contributions of the eye-contractions do not

seem to be very important while, due to selecting µ1 = 1.5 GeV, we get a very small

value for the coefficient of µ2
G. By varying the scale between 1 and 3 GeV though

we can get an effect of 5− 10%. The series for the D0 meson looks convergent with

the biggest correction coming from the Darwin term and the NLO-QCD corrections

to Γ3, making further QCD corrections to Γ3 and a more profound determination

of ρ3
D very important. Due to helicity suppression, the four-quark contributions are

very small (especially since the HQET SR values are very close to VIA).

12From here on we will be using the same label q in the Bag parameters for both u and d quarks
due to isospin symmetry.
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For the D+ meson we can write in the same way

Γ(D+) = 6.15 Γ0

[
1︸︷︷︸
c
LO
3

+ 0.48︸ ︷︷ ︸
∆cNLO

3

−0.13 µ2
π(D)

0.48 GeV2 + 0.01 µ2
G(D)

0.34 GeV2 + 0.31 ρ3
D(D)

0.082 GeV3

− 2.66︸ ︷︷ ︸
dim−6,VIA

−0.055 δB̃
q
1

0.02 + 0.002 δB̃
q
2

0.02 − 0.546 ε̃q1
−0.04 + 0.009 ε̃q2

−0.04

+ 1.10︸ ︷︷ ︸
dim−7,VIA

−0.0000 rqq1 − 0.0000 rqq2 − 0.0011 rqq3 + 0.0008 rqq4

−0.0109 rsq1 − 0.0080 rsq2 − 0.0000 rsq3 + 0.0001 rsq4
]
, (4.4.6)

where we encounter huge negative corrections due to Pauli Interference diagrams.

Here we can see some very interesting cancellations between the three dominant terms

Γ(0)
3 and 16π2

[(
Γ̃(0)

6 + αs/πΓ̃(1)
6

)
〈Õ6〉VIA/m3

c + Γ̃(0)
7 〈Õ7〉VIA/m4

c

]
that make the res-

ult sensitive to sub-dominant terms, e.g. higher order QCD corrections to Γ̃6, Γ̃7, Γ3,

Γ5, Γ6, and to deviations of the Bag parameter from VIA. It would be interesting to

study higher orders of the HQE, see e.g. [158,159].

For D+
s we obtain

Γ(D+
s ) = 6.15 Γ0

[
1︸︷︷︸
c
LO
3

+ 0.48︸ ︷︷ ︸
∆cNLO

3

−0.15 µ2
π(Ds)

0.57 GeV2 + 0.01 µ2
G(Ds)

0.36 GeV2 + 0.46 ρ3
D(Ds)

0.119 GeV3

− 0.20︸ ︷︷ ︸
dim−6,VIA

−0.161 δB̃
s
1

0.02 + 0.157 B̃s
2

0.02 + 0.089 ε̃q1
−0.04 + 0.122 ε̃q2

0.04

+ 0.10︸ ︷︷ ︸
dim−7,VIA

−0.0064 rqs1 − 0.0007 rqs2 − 0.0036 rqs3 + 0.0012 rqs4

]
.

(4.4.7)

Again here the series convergence looks nice and, similar to the D0 case, the domin-

ant correction comes from the Darwin operator and the NLO-QCD corrections to the

free quark decay. There is still a cancellation between dimension-six and dimension-

seven but it is less pronounced than D0 because of the CKM suppressed PI diagrams.
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Moving to lifetime ratios, we can define them as

τ(D+
(s))

τ(D0)
= 1 +

[
ΓHQE(D0)− ΓHQE(D+

(s))
]
τ exp(D+

(s)) . (4.4.8)

This way we can eliminate the contribution of the free-quark decay and also re-

duce the dependence on isolated non-perturbative parameters. The expressions for

ΓHQE(D0),ΓHQE(D+) and ΓHQE(D+
s ) can be found in the kinetic scheme in Equations

(4.4.4), (4.4.6) and (4.4.7) respectively, while their central values for several mass

schemes both in VIA and HQET SR can be found in the fourth and fifth rows of

Table 4.10, Table 4.11, Table 4.12 as well as in the second graph of Figure 4.7. As we

can see, the ratio τ(D+)/τ(D0) is well reproduced in all schemes while τ(D+
s )/τ(D0),

which is dominated by the SU(3)F -symmetry breaking differences of µ2
π, µ

2
G and ρ3

D,

is calculated to be closer to 1 than to the experimental value.

The large lifetime ratio τ(D+)/τ(D0) can be written as

τ(D+)
τ(D0)

= 1 + 2.62︸ ︷︷ ︸
dim−6,VIA

− 1.09︸ ︷︷ ︸
dim−7,VIA

+ 0.049 δB̃
q
1

0.02 + 0.003 δB̃
q
2

0.02 + 0.676 ε̃q1
−0.04 − 0.132 ε̃q2

−0.04
− 0.004 rqq1 − 0.000 rqq2 − 0.005 rqq3 − 0.001 rqq4 . (4.4.9)

Note that due to isospin symmetry there are no terms depending on µ2
π, µ

2
G, ρ

3
D or on

any of the eye contractions. Again we find a big cancellation between dimension-six

and dimension-seven, hinting that a more precise determination of the colour-octet

Bag parameters, as well as a calculation of higher order QCD corrections to spectator

effects can be very important.

Expanding the τ(D+
s )/τ(D0) ratio we get

τ(D+
s )

τ(D0)
= 1 + 0.012 µ

2
π(Ds)− µ2

π(D)
0.09 GeV2 − 0.0002 µ

2
G(Ds)− µ2

G(D)
0.02 GeV2

−0.071 ρ
3
D(Ds)− ρ3

D(D)
0.037 GeV3 + 0.10︸ ︷︷ ︸

dim−6,VIA

− 0.05︸ ︷︷ ︸
dim−7,VIA
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−0.003 δB̃
q
1

0.02 + 0.003 δB̃
q
2

0.02 + 0.081 δB̃
s
1

0.02 − 0.079 δB̃
s
2

0.02

+ 0.069 ε̃q1
−0.04 − 0.063 ε̃q2

−0.04 − 0.045 ε̃s1
−0.04 − 0.062 ε̃s2

0.04

− 0.0033 rqq1 − 0.0002 rqq2 − 0.0018 rqq3 + 0.0000 rqq4

− 0.0055 rqs1 − 0.0040 rqs2 − 0.0000 rqs3 + 0.0001 rqs4

+ 0.0032 rsq1 + 0.0003 rsq2 + 0.0018 rsq3 − 0.0006 rsq4 . (4.4.10)

As we can see, the biggest SU(3)F -breaking effect comes from the Darwin term

(≈ −7%) while the four quark contributions are limited to only +5% using VIA.

Moving to the semi-leptonic decays we introduce the notation ΓDsl ≡ Γ(D → Xe+νe)

and BD
sl ≡ Br(D → Xe+νe) and determine the theoretical values of the semi-leptonic

branching ratios as

BD,HQE
sl = ΓD,HQE

sl · τ(D)Exp. . (4.4.11)

The central values for the HQE predictions in various mass schemes, both in VIA

and HQET SR, can be found in the sixth, seventh and eighth row of Table 4.10,

Table 4.11 and Table 4.12 as well as in the third graph of Figure 4.7. We can write

the semi-leptonic decay rate of D0 in the kinetic scheme

ΓD
0

sl = 1.02 Γ0

[
1︸︷︷︸
c
LO
3

− 0.16︸ ︷︷ ︸
∆cNLO

3

−0.13 µ2
π(D)

0.48 GeV2 − 0.28 µ2
G(D)

0.34 GeV2 + 0.2 ρ3
D(D)

0.082 GeV3

− 0.0007 rqq1 − 0.0005 rqq2 − 0.0118 rsq1 − 0.0087 rsq2
]
, (4.4.12)

where the biggest correction comes from the chromomagnetic operator. Notice that

due to D0 having only WE contributions in dimension-six, the only terms arising

here come from eye contractions.

For the D+ meson we similarly write

ΓD
+

sl = 1.02 Γ0

[
1︸︷︷︸
c
LO
3

− 0.16︸ ︷︷ ︸
∆cNLO

3

−0.13 µ2
π(D)

0.48 GeV2 − 0.28 µ2
G(D)

0.34 GeV2 + 0.20 ρ3
D(D)

0.082 GeV3
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Figure 4.7: A comparison of the HQE prediction for the charm observables in the
kinetic scheme (blue) with the corresponding experimental data (green).

− 0.00︸ ︷︷ ︸
dim−6,VIA

−0.005 δB̃
q
1

0.02 + 0.005 δB̃
q
2

0.02 + 0.004 ε̃q1
−0.04 − 0.004 ε̃q2

−0.04

− − 0.0118 rsq1 − 0.0088 rsq2
]

(4.4.13)

which is the same series as D0 up to two-quark contributions, supplemented by CKM

suppressed WA terms that vanish at VIA. The deviations from VIA give only minor

corrections.
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Finally for the D+
s meson we obtain

ΓD
+
s

sl = 1.02 Γ0

[
1︸︷︷︸
c
LO
3

− 0.16︸ ︷︷ ︸
∆cNLO

3

−0.15 µ2
π(Ds)

0.57 GeV2 − 0.30 µ2
G(Ds)

0.36 GeV2 + 0.29 ρ3
D(Ds)

0.119 GeV3

− 0.00︸ ︷︷ ︸
dim−6,VIA

−0.15 δB̃
s
1

0.02 + 0.15 δB̃
s
2

0.02 + 0.10 ε̃s1
−0.04 + 0.09 ε̃s2

0.04

− 0.0010 rqs1 − 0.0007 rqs2

]
, (4.4.14)

where we see higher two-quark contributions due to SU(3)F - breaking effects and we

also have CKM dominant WA contributions to dimension-six and dimension-seven.

Again due to helicity suppression they vanish in VIA but the terms deviating from

it are much bigger than in D+.

Using the experimental value for τ(D0) we can define the semi-leptonic ratios as

ΓD
+

sl

ΓD
0

sl

= 1 +
[
ΓD

+

sl − ΓD
0

sl

]HQE
τ(D0)
BD

0

sl

exp

, (4.4.15)

ΓD
+
s

sl

ΓD
0

sl

= 1 +
[
ΓD

+
s

sl − ΓD
0

sl

]HQE
τ(D0)
BD

0

sl

exp

, (4.4.16)

where
[
ΓD

0

sl

]HQE
,
[
ΓD

+

sl

]HQE
and

[
ΓD

+
s

sl

]HQE
are given in Eqs. (4.4.12), (4.4.13) and

(4.4.14), respectively. The HQE predictions of these ratios can be found in the last

two rows of of Table 4.10, Table 4.11 and Table 4.12 as well as in the last graph of

Figure 4.7. For both ratios, HQE give values very close to 1, the first one agreeing

with experimental data while the second one being higher than the experimental

value. Expanding ΓD
+

sl /ΓD
0

sl

ΓD
+

sl

ΓD
0

sl

= 1− 0.005 δB̃
q
1

0.02 + 0.005 δB̃
q
2

0.02 + 0.004 ε̃q1
−0.04 − 0.003 ε̃q2

−0.04 ,(4.4.17)

we see that due to isospin symmetry all contributions at the two-quark level vanish

and only deviations from VIA can move this ratio from 1. Finally, for ΓD
+
s

sl /ΓD
0

sl we
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obtain

ΓD
+
s

sl

ΓD
0

sl

= 1− 0.024 µ
2
π(Ds)− µ2

π(D)
0.09 GeV2 − 0.016 µ

2
G(Ds)− µ2

G(D)
0.02 GeV2 + 0.09 ρ

3
D(Ds)− ρ3

D(D)
0.037 GeV2

+ 0.00︸ ︷︷ ︸
dim−6,7,VIA

− 0.15 δB̃
s
1

0.02 + 0.15 δB̃
s
2

0.02 + 0.10 ε̃s1
−0.04 + 0.09 ε̃s2

0.04

+ 0.0007 rqq1 + 0.0005 rqq2 + 0.0118 rsq1 + 0.0087 rsq2

− 0.0001 rqs1 − 0.0007 rqs2 , (4.4.18)

which is clearly dominated by the SU(3)F -breaking effects as well as deviations

from VIA. As we can see, the negative effect of the kinetic and chromomagnetic

operators is more than compensated by the Darwin term, while even some of the eye

contraction terms could have a visible effect, making their determination necessary.





Chapter 5

Conclusion

While experimental results become more and more precise, we need to improve our

theoretical predictions in order to get a better understanding of the fundamental

laws of physics. The Heavy Quark Expansion (HQE) has been proven a very effective

tool in the b system, however its applicability in charm decays has been argued over.

In this thesis we are testing this by considering the mixing of the D0 meson and the

inclusive decays of the D0, D+ and D+
s mesons.

This study consists of two parts. We began with Chapter 1, introducing the Standard

Model and flavour physics while also discussed briefly the role of the charm quark in

it. We continued in Chapter 2, by introducing some of the fundamental tools needed

in the study of heavy hadrons. More specifically, we presented the notion of an

effective theory and discussed two examples that are necessary for the calculations

following, the Weak Effective Theory (WET) and the Heavy Quark Effective Theory

(HQET). These let us simplify our calculations significantly by decoupling heavy

degrees of freedom from our theory. Moreover, we presented the HQE framework

which we then used for the inclusive decays calculation.

In the second part of the thesis, we focused on the phenomenology of the charm

system. More specifically, in Chapter 3 we presented the notation and framework
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to understand the mixing of neutral mesons and focused on the decay width dif-

ference of the D0 meson. This is a quantity well determined experimentally, but

theoretical predictions within HQE failed to come close. This has been one of the

main arguments against using HQE in the charm system. Finding that the reason

behind this are pronounced Glashow-Iliopoulos-Maiani (GIM) cancellations appear-

ing in the expression of ∆ΓD, we considered an alternative renormalisation scheme.

We proposed two different versions for the alternative scale setting, finding in both

of them that the GIM suppression is lifted. Moreover, considering different mass

schemes, operator bases, and values of non-perturbative parameters we were able to

reproduce the experimental value within large uncertainties. We also checked how

the new renormalisation scale setting affects Bq-mixing, apart from the semi-leptonic

CP asymmetries which exhibit weak GIM suppression, all other observables remain

inside current theoretical uncertainties.

In Chapter 4, we studied the total and semi-leptonic decay rates of the D0, D+ and

D+
s mesons. We conducted a comprehensive study of the HQE for the decay rates

of D mesons including the recently evaluated contribution of the Darwin operator

and D+
s Bag parameters. We also presented a more consistent way of calculating the

dimension-seven spectator effects both in QCD and in HQET. We explored various

mass schemes and calculated the total and semi-leptonic decay rates and their ratios.

All of them seem to agree or being close to agreeing with the experimental values, in

some cases with large theoretical uncertainties. More specifically, we get good agree-

ment with the ratio τ(D+)/τ(D0), the decay rate of D+
s and all semi-leptonic results.

To conclude, our results, even coming with large uncertainties, do not support the

claim that HQE breaks down in the charm system. Calculation of higher orders both

in QCD and HQE, as well as theoretical determination of many non-perturbative

parameters, are crucial to reducing these uncertainties and getting more precise

results. For the study of D-mixing there is still no theoretical calculation of the
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non-diagonal mass matrix element M12. This could be done in the future, using

dispersion relations, see e.g. [106, 181, 182]. Such a calculation would be highly de-

sirable since it would enable us to calculate the CP -violating phase φ12. Of course,

to further test our solution to the D-mixing puzzle, higher orders in QCD and HQE

would also be very important.





Appendix A

Numerical Input to Chapter 4

Parameter Value Source

αs(MZ) 0.1179± 0.0010 PDG [1]

|Vus| 0.224834+0.000252
−0.000059 CKMfitter [96]

|Vcb| 0.04162+0.00026
−0.00080 CKMfitter [96]

|Vub|/|Vcb| 0.088496+0.002244
−0.001885 CKMfitter [96]

δ
(
65.80+0.94

−1.29

)◦
CKMfitter [96]

mc(mc) [GeV] 1.27± 0.02 PDG [1]

mkin
c (0.5GeV) [GeV] 1.363 PDG [117]

ms [MeV] 93+11
−5 PDG [1]

M
D

0 [GeV] 1.86493 PDG [1]

M
D

+ [GeV] 1.86965 PDG [1]

M
D

+
s
[GeV] 1.968343 PDG [1]

fD [GeV] 0.2120± 0.0007 Lattice QCD [97]

f
D

+
s
[GeV] 0.2499± 0.0005 Lattice QCD [97]

Table A.1: Numerical input used in our analysis.
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HQET B̃1 B̃2 ε̃1 ε̃2

D+,0 1.0026+0.0198
−0.0106 0.9982+0.0052

−0.0066 −0.0165+0.0209
−0.0346 −0.0004+0.0200

−0.0326

D+
s 1.0022+0.0185

−0.0099 0.9983+0.0052
−0.0067 −0.0104+0.0202

−0.0330 −0.0001+0.0199
−0.0324

HQET δ̃1 δ̃2 δ̃3 δ̃4

〈Dq|Õq|Dq〉 0.0026+0.0142
−0.0092 −0.0018+0.0047

−0.0072 −0.0004+0.0015
−0.0024 0.0003+0.0012

−0.0008

〈Ds|Õq|Ds〉 0.0025+0.0144
−0.0093 −0.0018+0.0047

−0.0072 −0.0004+0.0015
−0.0024 0.0003+0.0012

−0.0008

〈Dq|Õs|Dq〉 0.0023+0.0140
−0.0091 −0.0017+0.0046

−0.0070 −0.0004+0.0015
−0.0023 0.0003+0.0012

−0.0008

Table A.2: Numerical values of the HQET Bag parameters [4,5] evaluated through a
traditional HQET sum rule at µ0 = 1.5 GeV. The Bq

i and ε
q
i include the corresponding

δqqi and the column with δssi has been removed because it only exists in the sum with
the valence parts, whereas δqqi are present because we have δud/dui .



Appendix B

LO Analytic Expressions for

C(q1q2)
3 , C(q1q2)

G and C(q1q2)
ρD

Here we present the LO results for dimension-three, five and six in two-quark con-

tributions as they have been used in [8] and Chapter 4 of this thesis. A detailed

calculation can be found in [172].

The coefficients Cq1q2
3 for the decay c→ q1q2u that satisfy

Γq1q2
3 = G2

Fm
5
c

192π3 |Vcq1 |
2|Vuq2|

2NaC
q1q2
3 ,

read for ρ = m2
s/m

2
c , see e.g. [183]:

C(dd)
3 = 1 , (B.0.1)

C(ds)
3 = 1− 8ρ+ 8ρ3 − ρ4 − 12ρ2 log (ρ) = C(sd)

3 (B.0.2)

C(ss)
3 =

√
1− 4ρ(1− 14ρ− 2ρ2 − 12ρ3)

+ 24ρ2(1− ρ2) log
(

1 +
√

1− 4ρ
1−
√

1− 4ρ

)
. (B.0.3)

The coefficients Cq1q2,ij
G for the decay c→ q1q2u where ij = 11, 12, 22 read:

C(dd)
G,11 = −3

2 = C(dd)
G,22 , (B.0.4)
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3 , C(q1q2)

G and C(q1q2)
ρD

C(dd)
G,12 = −19

2 , (B.0.5)

C(ds)
G,11 = −1

2
(
3− 8ρ+ 24ρ2 − 24ρ3 + 5ρ4 + 12ρ2 log (ρ)

)
= C(ds)

G,22 = C(sd)
G,11 = C(sd)

G,22 , (B.0.6)

C(ds)
G,12 = −1

2
(
19− 56ρ+ 72ρ2 − 40ρ3 + 5ρ4 + 12ρ2 log (ρ)

)
= C(sd)

G,12 ,(B.0.7)

C(ss)
G,11 = −1

2

(
√

1− 4ρ (3− 10ρ+ 10ρ2 + 60ρ3)

−24ρ2(1− 5ρ2) log
(

1 +
√

1− 4ρ
1−
√

1− 4ρ

))
= C(ss)

G,22 , (B.0.8)

CssG,12 = −1
2

(
√

1− 4ρ (19− 2ρ+ 58ρ2 + 60ρ3)

−24ρ(2 + ρ− 4ρ2 − 5ρ3) log
(

1 +
√

1− 4ρ
1−
√

1− 4ρ

))
. (B.0.9)

The coefficients C(q1q2)
ρD,mn

(ρ, µ0) including full ρ = m2
s/m

2
c dependence are given by the

expressions:

C(dd̄)
ρD,11 = 6 + 8 log

(
µ2

0

m2
c

)
, (B.0.10)

C(dd̄)
ρD,12 = −34

3 , (B.0.11)

C(dd̄)
ρD,22 = 6 + 8 log

(
µ2

0

m2
c

)
, (B.0.12)

C(ds̄)
ρD,11 = 2

3(1− ρ)
[
9 + 11ρ− 12ρ2 log(ρ)− 24

(
1− ρ2

)
log(1− ρ)− 25ρ2 + 5ρ3

]

+ 8 (1− ρ)(1− ρ2) log
(
µ2

0

m2
c

)
, (B.0.13)

C(ds̄)
ρD,12 = −2

3

[
17 + 12ρ

(
5 + 2ρ− 2ρ2

)
log(ρ) + 48(1− ρ)(1− ρ2) log(1− ρ)

−26ρ+ 18ρ2 − 38ρ3 + 5ρ4 + 24 ρ (1 + ρ− ρ2) log
(
µ2

0

m2
c

)]
, (B.0.14)

C(ds̄)
ρD,22 = 2

3(1− ρ)
[
9 + 11ρ− 12ρ2 log(ρ)− 24

(
1− ρ2

)
log(1− ρ)− 25ρ2 + 5ρ3

]

+ 8 (1− ρ)(1− ρ2) log
(
µ2

0

m2
c

)
, (B.0.15)

C(sd̄)
ρD,11 = 2

3

[
9− 16ρ− 12ρ2 + 16ρ3 − 5ρ4 + 12 log

(
µ2

0

m2
c

)]
, (B.0.16)
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C(sd̄)
ρD,12 = −2

3

[
17 + 12 ρ2 (3− ρ) log(ρ)− 24(1− ρ)3 log(1− ρ)

− 50ρ+ 90ρ2 − 54ρ3 + 5ρ4 − 12ρ (3− 3ρ+ ρ2) log
(
µ2

0

m2
c

)]
,(B.0.17)

C(sd̄)
ρD,22 = 2

3(1− ρ)
[
9 + 11ρ− 12ρ2 log(ρ)− 24

(
1− ρ2

)
log(1− ρ)

−25ρ2 + 5ρ3 + 12 (1− ρ2) log
(
µ2

0

m2
c

)]
, (B.0.18)

C(ss̄)
ρD,11 = 2

3

√1− 4ρ
(
17 + 8ρ− 22ρ2 − 60ρ3

)
− 4

(
2− 3ρ+ ρ3

)
+

− 12
(
1− ρ− 2ρ2 + 2ρ3 + 10ρ4

)
log

1 +
√

1− 4ρ

1−
√

1− 4ρ


− 12 (1− ρ)(1− ρ2)

(
log(ρ)− log

(
µ2

0

m2
c

)), (B.0.19)

C(ss̄)
ρD,12 = 2

3

√1− 4ρ
(
−33 + 24 log(ρ)− 24 log(1− 4ρ) + 46ρ− 106ρ2 − 60ρ3

)

+ 12
(
3− 2ρ+ 4ρ2 − 16ρ3 − 10ρ4

)
log

1 +
√

1− 4ρ

1−
√

1− 4ρ


+ 4 (1− ρ)2 (4 + 3(1− ρ) log(ρ)− ρ)

−12
(
1−
√

1− 4ρ− 3ρ+ 3ρ2 − ρ3
)

log
(
µ2

0

m2
c

), (B.0.20)

C(ss̄)
ρD,22 = 2

3

√1− 4ρ
(
9 + 24 log(ρ)− 24 log(1− 4ρ) + 22ρ− 34ρ2 − 60ρ3

)

+ 24
(
1− 2ρ− ρ2 − 2ρ3 − 5ρ4

)
log

1 +
√

1− 4ρ

1−
√

1− 4ρ


+ 12

√
1− 4ρ log

(
µ2

0

m2
c

). (B.0.21)





Appendix C

Derivation of ∆C = 0 matrix

elements in HQET

Here we derive the expressions for the ∆C = 0 matrix elements in HQET using VIA.

As a starting point we will use from e.g. [55]

〈0|qΓhv|M(v)〉 = i

2F (µ0)Tr (ΓM(v)) , (C.0.1)

〈0|∂µ (qΓhv) |M(v)〉 = i

2ΛF (µ0)Tr
(
vµΓM(v)

)
, (C.0.2)

〈0|qΓ(iDµ)hv|M(v)〉 = i

2Tr
{(
F1(µ0)vµ + F2(µ0)γµ

)
ΓM(v)

}
, (C.0.3)

whereM(v) is the meson state with velocity v, Γ is a generic Dirac structure and

Λ = MD −mc. In order to calculate F1(µ0) and F2(µ0) we can contract Equation

(C.0.3) with vµ. Using v2 = 1, (iv ·D)hv = 0 and

M(v) = −1 + /v

2 γ5

√
MD , (C.0.4)

for the pseudo-scalar mesonM we get F1(µ0) = F2(µ0). Next by taking the matrix

elements on both sides of Equation (C.0.3), contracting with γµ, and using

i∂µ (qΓhv) = qΓiDµhv + q(i←−Dµ)Γhv , (C.0.5)
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as well as q(−i
←−
/D) = mqq we get

F1(µ0) = F2(µ0) = −1
3Fµ0(Λ−mq)Tr (ΓM(v)) . (C.0.6)

Thus

〈0|qΓ(iDµ)hv|M(v)〉 = − i6F (µ0)(Λ−mq)Tr
{(
vµ + γµ

)
ΓM(v)

}
. (C.0.7)

If we evaluate the matrix element of Equation (C.0.5) we can write

〈0|q(−i←−Dµ)Γhv|M(v)〉 = − i6F (µ0)
{(

4Λ−mq

)
vµTr (ΓM(v)) +

(
Λ−mq

)
Tr
(
γµΓM(v)

)}
.

(C.0.8)

Now we can calculate the building blocks of the local HQET operators matrix

elements. Using the results in Equations (C.0.1), (C.0.7) and (C.0.8) we can find

〈0|qγµ(1− γ5)hv|Dq〉 = −i
√
MDF (µ0)vµ , (C.0.9)

〈0|q(1± γ5)hv|Dq〉 = ∓i
√
MDF (µ0) , (C.0.10)

〈0|q(−i←−D ν)γµ(1− γ5)hv|Dq〉 = iΛ
√
MDF (µ0)vµvν , (C.0.11)

〈0|q(−i←−Dµ)(1− γ5)hv|Dq〉 = iΛ
√
MDF (µ0)vµ , (C.0.12)

〈0|qγµ(1− γ5)(i /D)hv|Dq〉 = i(Λ−mq)
√
MDF (µ0)vµ , (C.0.13)

〈0|q(1 + γ5)(i /D)hv|Dq〉 = −i(Λ−mq)
√
MDF (µ0) . (C.0.14)

The matrix elements of the ∆C = 0 operators can be calculated in VIA based on

Equation (2.2.31) as the product of two matrix elements of the above form. Starting

with dimension-six we have

〈Dq|Õq
1|Dq〉 = 〈Dq|hv γµ(1− γ5)q|0〉〈0||q γµ(1− γ5)hvDq〉

=
(
〈0|q γµ(1− γ5)hv|Dq〉

)†
〈0||q γµ(1− γ5)hvDq〉

=
(
−i
√
MDF (µ0)vµ

)† (
−i
√
MDF (µ0)vµ

)
= MDF

2(µ0) , (C.0.15)
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Similarly for Õ2

〈Dq|Õq
2|Dq〉 = 〈Dq|hv (1− γ5)q|0〉〈0||q (1 + γ5)hvDq〉

=
(
〈0|q (1 + γ5)hv|Dq〉

)†
〈0||q (1 + γ5)hvDq〉

=
(
−i
√
MDF (µ0)

)† (
−i
√
MDF (µ0)

)
= MDF

2(µ0) . (C.0.16)

Moving to dimension-seven operators, we use

〈Dq|hv(1− γ5)q|0〉 =
(
〈0|q (1 + γ5)hv|Dq〉

)†
, (C.0.17)

〈Dq|hvγµ(1− γ5) (iv ·D) q|0〉 = vν
(
〈0|q(−i←−D ν) γµ(1− γ5)hv|Dq〉

)†
,(C.0.18)

〈Dq|hv(1− γ5) (iv ·D) q|0〉 = vν
(
〈0|q(−i←−D ν) (1 + γ5)hv|Dq〉

)†
, (C.0.19)

and now we have all pieces to calculate the matrix elements of P̃i and R̃i operators

getting the following results

〈Dq|P̃1|Dq〉 = −mqMDF
2(µ0) , (C.0.20)

〈Dq|P̃2|Dq〉 = −MDF
2(µ0)Λ , (C.0.21)

〈Dq|P̃3|Dq〉 = −MDF
2(µ0)Λ , (C.0.22)

〈Dq|R̃1|Dq〉 = −MDF
2(µ0)(Λ−mq) , (C.0.23)

〈Dq|P̃2|Dq〉 = MDF
2(µ0)(Λ−mq) . (C.0.24)

For the non-local operators M̃(1,2),(π,G) we use [55,173] and define

〈0|i
∫
d4xT [(q̄ Γhv)(0),O1(x)] |M(v)〉 = F (µ0)G1(µ0) Tr[ΓM(v)],

(C.0.25)

〈0|i
∫
d4xT [(q̄ Γhv)(0),O2(x)] |M(v)〉 = 6F (µ0)G2(µ0) Tr[ΓM(v)]

(C.0.26)

Next we can write

〈Dq|i
∫
d4xT [(q̄ Γhv)(0),O1(x)] |Dq〉
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= 〈Dq|qΓhv|0〉〈0|i
∫
d4xT [(q̄ Γhv)(0),O1(x)] |Dq〉 (C.0.27)

and similarly for the Ocmag operator. Evaluating these for the specific Dirac struc-

tures appearing we find

〈Dq|M̃ q
1,π|Dq〉 = 2MDF

2(µ0)G1(µ0) , (C.0.28)

〈Dq|M̃ q
2,π|Dq〉 = 2MDF

2(µ0)G1(µ0) , (C.0.29)

〈Dq|M̃ q
1,G|Dq〉 = 12MDF

2(µ0)G2(µ0) , (C.0.30)

〈Dq|M̃ q
2,G|Dq〉 = 12MDF

2(µ0)G2(µ0) . (C.0.31)

Since we are doing this calculation in VIA all matrix elements of colour rearranged

operators vanish. As a correction factor from VIA we insert in each result a bag

parameter which measures the deviation from VIA. For the colour rearranged oper-

ators we are using the same parametrisation as their colour singlet counterparts but

their bag parameters at VIA vanish.

Since at dimension-seven we are limited to LO-QCD we can substitute the HQET

decay constant F (µ0) with the full QCD, using F (µ0) = fD
√
MD.



Appendix D

Calculation of Spectator Effects

for Γ12 and Γ(D)

Here we present the spectator effect calculation for both Γ12 and the total decay rate

of D mesons. We start from the effective Hamiltonian for a general c→ q1q̄2u.

Heff = GF√
2
{C1Q1 + C2Q2}+ h.c. (D.0.1)

where Q1 = (ci qi1)V−A(qj2 uj)V−A, Q2 = (ci qj1)V−A(qj2 ui)V−A are the ∆C = 1 operat-

ors and q1, q2 = s, d. By considering the time-ordered product T
[
Heff (x)Heff (0)

]
and contracting two pairs of light quarks13 and using the Wick theorem we get four

different contributions

1. Decay width difference for the D0 meson

T
[
Heff (x)Heff (0)

] ∣∣∣∣∣
mix

=

: c(x)Γµq1(x)q2(x)Γµu(x)c(0)Γνq1(0)q2(0)Γνu(0) : . (D.0.2)

2. Dominant contribution to Γ̃6 for Γ(D0) from Weak Exchange diagram (WE)

T
[
Heff (x)Heff (0)

] ∣∣∣∣∣
WE

=

13Contracting all three pairs of light quarks corresponds to the Γ3 contribution for the free charm
quark decay.
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: c(x)Γµq1(x)q2(x)Γµu(x)q1(0)Γνc(0)u(0)Γνq2(0) : . (D.0.3)

3. Dominant contribution to Γ̃6 for Γ(D+) from Pauli Interference diagram (PI)

T
[
Heff (x)Heff (0)

] ∣∣∣∣∣
PI

=

: c(x)Γµq1(x)q2(x)Γµu(x)q1(0)Γνc(0)u(0)Γνq2(0) : . (D.0.4)

4. Dominant contribution to Γ̃6 for Γ(D+
s ) from Weak Annihilation diagram (WA)

T
[
Heff (x)Heff (0)

] ∣∣∣∣∣
WA

=

: c(x)Γµq1(x)q2(x)Γµu(x)q1(0)Γνc(0)u(0)Γνq2(0) : . (D.0.5)

In the above expressions we have used the notation Γµ = γµ(1 − γ5). For most

of the calculation of these diagrams we will work with general colour structures of

∆C = 1 operators and only in the end we will evaluate the specific operator insertions.

We will also ignore the factor G
2
F

2 VCKM where VCKM = (V ∗cq1 Vuq2)2 for mixing and

VCKM = |V ∗cq1Vuq2|
2 for brevity and we will add it in the end. The quantities Γq1q212

and Γqq
′

A where A = WE, PI, WA and qq′ is the internal quark pair read

Γq1q212 = 1
2MD

〈D| Tmix|D〉 , (D.0.6)

Γqq
′

A = 1
2MD

〈D| TA|D〉 , (D.0.7)

where

Tmix = Im
{
i
∫
d4xT

[
Heff (x)Heff (0)

] ∣∣∣∣∣
mix

}
=
∑
i,j

CiCjT ijmix , (D.0.8)

TA = Im
{
i
∫
d4xT

[
Heff (x)Heff (0)

] ∣∣∣∣∣
A

}
=
∑
i,j

CiCjT ijA . (D.0.9)

Starting with the D-mixing expression we use the Wick theorem to write for the

time ordered product:

T
[
Heff (x)Heff (0)

] ∣∣∣∣∣
mix

=
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: ci(x)Γµqj1(x)qk2(x)Γµul(x)cm(0)Γνqn1 (0)qp2(x)Γνuq(0) :

= ci(x)γµ(1− γ5)qj1(x)qp1(0)γν(1− γ5)uq(0)

cm(0)γν(1− γ5)qn2 (x)qk2(x)γµ(1− γ5)ul(x)

= ciγµ(1− γ5)
∫ d4k

(2π)4
i(/k +m1)
k2 −m2

1 + iε
γν(1− γ5)uk

cmγν(1− γ5)
∫ d4l

(2π)4
i(/l +m2)
l2 −m2

2 + iε
γµ(1− γ5)ul

ei(pc+pu−k+l)δjpδnk , (D.0.10)

where the latin indices indicate the colour structure and the greek indices represent

the components of four-vectors. We have also used

ψ(x) = ψeipx (outgoing (anti)fermion with momentum p), (D.0.11)

ψ(x) = ψe−ipx (incoming (anti)fermion with momentum p),(D.0.12)

ψi(x)ψj(y) =
∫ d4l

(2π)4
i(/l +m)

l2 −m2 + iε
e−ip(x−y)δij . (D.0.13)

Next, using ∫
d4xei(p−l)x = (2π)4δ(p− l) , (D.0.14)

we can perform the integration over x

i
∫
d4xT

[
Heff (x)Heff (0)

]
=

i
∫ d4l

(2π)4 c
iγµ(1− γ5)

i(/l + /p+m1)
(l + p)2 −m2

1 + iε
γν(1− γ5)uq

cmγν(1− γ5) i(/l +m2)
l2 −m2

2 + iε
γµ(1− γ5)ulδjpδnk

= −4i
∫ d4l

(2π)4
lρlσ + lρpσ

((l + p)2 −m2
1 + iε)(l2 −m2

2 + iε)
(ciγµ(1− γ5)γργνuq)(cnγν(1− γ5)γσγµul)δjpδnk , (D.0.15)

where all the terms involving m1,m2 vanish (easy to check if you rearrange the

(1− γ5) terms) and p = pc + pu. Taking the imaginary part of Equation (D.0.15) we
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get

T ijmix = −4Im [igρσB00 + ipρpσ(B11 +B0)] δjpδnk

(ciγµ(1− γ5)γργνuq)(cnγν(1− γ5)γσγµul) , (D.0.16)

where we have used the notation for the one-loop integrals

∫ dDk

(2πD)
1

((l + p)2 −m2
1 + iε)(l2 −m2

2 + iε)
= B , (D.0.17)

∫ dDk

(2πD)
kµ

((l + p)2 −m2
1 + iε)(l2 −m2

2 + iε)
= pµB0 , (D.0.18)

∫ dDk

(2πD)
kµkν

((l + p)2 −m2
1 + iε)(l2 −m2

2 + iε)
= gµνB00 + pµpνB11 .(D.0.19)

We can determine the parameters B0, B00, and B11 in terms of B by contracting

Equations (D.0.18) and (D.0.19) with pµ, gµν and pµpν , a procedure called Passarino-

Veltman reduction [184]. We can then write for D = 414

B0 = −p
2 −m2

1 +m2
2

2p2 B , (D.0.20)

B00 = − 1
12p2λ

2(p2,m2
1,m

2
2)B , (D.0.21)

B11 = 1
p2 (m2

2B − 4B00) , (D.0.22)

where λ(a, b, c) =
√
a2 + b2 + c2 − 2(ab+ bc+ ca). Using the equations above as

well as

γνγργµ(1− γ5)⊗ γµγργν(1− γ5) = 4γµ(1− γ5)⊗ γµ(1− γ5) , (D.0.23)

γν/pγµ(1− γ5)⊗ γµ/pγν(1− γ5) = 4/p(1− γ5)⊗ /p(1− γ5) , (D.0.24)

we can rewrite Equation (D.0.16) including the factor G
2
F

2

(
V ∗cq1Vuq2

)2

T ijmix = −4G
2
F

2
(
V ∗cq1Vuq2

)2 [
4 Im(iB00)Qmix

V−A

+
(
2p2Qmix

V−A − 4Qpp,mix
S−P

)
Im(i(B11 +B0))

]
δjpδnk

14Here we ignore the terms that are real since we are only interested in the imaginary part of
the integrals.
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= −16G
2
F

2
(
V ∗cq1Vuq2

)2
(
Qmix
V−A Im

(
i

(
B00 + p2

2 (B11 +B0)
))

−Qpp,mix
S−P Im (i (B11 +B0))

)
δjpδnk

= −2G
2
F

3
(
V ∗cq1Vuq2

)2
[(m2

1 −m2
2)2 − p2(2p2 −m2

1 −m2
2)

p2 Qmix
V−A

−2(2(m2
1 −m2

2)2 − p2(p2 +m2
1 +m2

2))
p4 Qpp,mix

S−P

]
Im(iB) δjpδnk ,

(D.0.25)

where we define

Qmix
V−A = (ciγµ(1− γ5)ul)(cmγµ(1− γ5)uq) , (D.0.26)

Qpp,mix
S−P = (ci/p(1− γ5)ul)(cm/p(1− γ5)uq) . (D.0.27)

To create these operators we have additionally used the Fierz transformation

(q1q2)V−A(q3q4)V−A = (q1q4)V−A(q3q2)V−A . (D.0.28)

The operator Qpp,mix
S−P can be expanded (ignoring the colour indices) as

Qpp,mix
S−P = (c/pc(1− γ5)u)(c/pc(1− γ5)u) + (c(1 + γ5)/puu)(c/pc(1− γ5)u)

+ (c/pc(1− γ5)u)(c(1 + γ5)/pcu) + (c(1 + γ5)/puu)(c(1 + γ5)/puu)

= −m2
c(c(1− γ5)u)(c(1 + γ5)u) +mcmu(c(1 + γ5)u)(c(1− γ5)u)

+ mcmu(c(1− γ5)u)(c(1 + γ5)u)−m2
u(c(1 + γ5)u)(c(1 + γ5)u)

= −m2
cQ

mix
S−P , (D.0.29)

where we have used the equation of motion for fermions and we have neglected the

up-quark mass. Using the result from [185] for Im(iB) we find

T ijmix = G2
F

24π
(
V ∗cq1Vuq2

)2
m2
c

λ(1 + x̃, z1, z2)
(1 + x̃)2 ×

[{
(z1 − z2)2 − (1 + x̃)(2(1 + x̃)− z1 − z2))

}
Qmix
V−A

+2
{2(z1 − z2)2

1 + x̃
− (1 + x̃+ z1 + z2)

}
Qmix
S−P

]
δjpδnk , (D.0.30)



138 Appendix D. Calculation of Spectator Effects for Γ12 and Γ(D)

where Qmix
S−P = (ci(1−γ5)ul)(cm(1−γ5)uq) and we have used the notation zi = m2

i /m
2
c

and 1 + x̃ = p2/m2
c = 1 + 2pcpu

m
2
c

+O(p2
u)

Each quark propagator will give us a product of delta tensors indicating the flow

of colour to the external quarks. We have three different possibilities for operator

insertions: Q1⊗Q1, Q1⊗Q2 and Q1⊗Q1 and Q2⊗Q2 (Q1⊗Q2 and Q2⊗Q1 give

identical results).

• For Q1 ⊗Q1 we have in total a factor δjpδnkδijδklδpqδmn = δiqδkm creating the

operators

Q̃ = (ciγµ(1− γ5)uk)(ckγµ(1− γ5)ui) , (D.0.31)

Q̃S = (ci(1− γ5)uk)(ck(1− γ5)ui) . (D.0.32)

• For Q2 ⊗ Q2 we get δjpδnkδijδklδmqδln = δkkδilδqm = NCδ
ilδqm which creates

the operators

Q = (ciγµ(1− γ5)ui)(cmγµ(1− γ5)um) , (D.0.33)

QS = (ci(1− γ5)ui)(cm(1− γ5)um) . (D.0.34)

• For Q1⊗Q2 we get δjpδnkδijδklδmqδpn = δilδqm giving the Q,QS operators again.

We also get a factor 2 from symmetry by including the identical contribution

from Q2 ⊗Q1.

We can write now the full result for Γq1q212 (using Q = Q̃ through Fierz transforma-

tion)15

Γq1q212 = 1
2MD

G2
F

24π
(
V ∗cq1Vuq2

)2
m2
c

λ(1 + x̃, z1, z2)
(1 + x̃)2 ×

[
w1(x̃, z1, z2)

(
3C2

2 + 2C1C2 + C2
1

)
Q

+2w2(x̃, z1, z2)
((

3C2
2 + 2C1C2

)
QS + C2

1Q̃S

) ]
, (D.0.35)

15Here we define Γq1q2
12 slightly different than Equation (3.4.24), i.e. Γ12 =

∑
q1q2

Γq1q2
12 .
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where

w1(x̃, z1, z2) = (z1 − z2)2 − (1 + x̃)(2(1 + x̃)− z1 − z2)) , (D.0.36)

w2(x̃, z1, z2) = 2(z1 − z2)2

1 + x̃
− (1 + x̃+ z1 + z2) . (D.0.37)

The leading order contribution of the above expression is obtained by setting x̃ = 0.

To get the dimension-seven contribution from Equation (D.0.35) we expand the

coefficients to first order in x̃ and discard higher order terms. Then, we identify the

subleading operators

x̃ Q = 2pc pu
m2
c

(ciγµ(1− γ5)ui)(cmγµ(1− γ5)um)

= 1
m2
c

(ci←−Dργµ(1− γ5)Dρu
i)(cmγµ(1− γ5)um)

= R2 , (D.0.38)

x̃ QS = 2pc pu
m2
c

(ci(1− γ5)ui)(cm(1− γ5)um)

= 1
m2
c

(ci←−Dρ(1− γ5)Dρu
i)(cm(1− γ5)um)

= R3 , (D.0.39)

where we have used the equations of motion to express the momentum operators as

covariant derivatives acting on the fields. In an identical way we derive R̃2,3 from

Q̃, Q̃S respectively. As mentioned in Section 3.4 the operators Q, QS and Q̃S are

not independent and a linear combination of them (see Equation (3.4.15)) yields the

subleading operator R0. This relation is used to eliminate either QS or Q̃S from the

dimension-six result.

Moving to the lifetime calculations, we will start with the Weak Exchange dia-

gram. The calculation of WE, PI and WA topologies has an extra factor of 2 due to

the symmetric contribution we get by swapping 0 and x in the time-ordered product.

This symmetry is not present in mixing as the initial and final states are different.
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Similarly to mixing we can write

T
[
Heff (x)Heff (0)

] ∣∣∣∣∣
WE

=

2 : ci(x)Γµqj1(x)qk2(x)Γµul(x)qm1 (0)Γνcn(0)up(0)Γνqq2(0) :

= 2 ci(x) γµ(1− γ5) qj1(x) qm1 (0) γν(1− γ5) cn(0)

up(0) γν(1− γ5) qq2(x) qk2(x) γµ(1− γ5)ul(x)

= 2 ci γµ(1− γ5)
∫ d4k

(2π)4
i(/k +m1)
k2 −m2

1 + iε
γν(1− γ5) cn

up γν(1− γ5)
∫ d4l

(2π)4
i(/l +m2)
l2 −m2

2 + iε
γµ(1− γ5)ul

ei(pc+pu−k+l)δjmδqk , (D.0.40)

and by using Equations (D.0.11) – (D.0.14) we get

i
∫
d4xT

[
Heff (x)Heff (0)

] ∣∣∣∣∣∣
WE

=

2i
∫ d4l

(2π)4 c
i γµ(1− γ5)

i(/l + /p+m1)
(l + p)2 −m2

1 + iε
γν(1− γ5) cn

up γν(1− γ5) i(/l +m2)
l2 −m2

2 + iε
γµ(1− γ5)ul δjm δqk

= −8i
∫ d4l

(2π)4
lρlσ + pρlσ

((l + p)2 −m2
1 + iε)(l2 −m2

2 + iε)
(ci γµ(1− γ5)γργν cn)(up γν(1− γ5)γσγµ ul) δjm δqk . (D.0.41)

Taking the imaginary part of Equation (D.0.41) and using Equations (D.0.17) -

(D.0.22) and (D.0.28) we get

T ijWE = −32G
2
F

2
(
V ∗cq1Vuq2

)2
(
Qu
V−A Im

(
i

(
B00 + p2

2 (B11 +B0)
))

−Qpp,u
S−P Im (i (B11 +B0))

)
δjmδqk

= −4G2
F

3
(
V ∗cq1Vuq2

)2
[(m2

1 −m2
2)2 − p2(2p2 −m2

1 −m2
2)

p2 Qu
V−A

−2(2(m2
1 −m2

2)2 − p2(p2 +m2
1 +m2

2))
p4 Qpp,u

S−P

]
Im(iB) δjmδqk
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= G2
F

12π
(
V ∗cq1Vuq2

)2 λ(1 + x̃, z1, z2)
(1 + x̃)2 ×

[
m2
c

{
(z1 − z2)2 − (1 + x̃)(2(1 + x̃)− z1 − z2))

}
Qu
V−A

−2
{2(z1 − z2)2

1 + x̃
− (1 + x̃+ z1 + z2)

}
Qpp,u
S−P

]
δjmδqk , (D.0.42)

where for a general colour structure and spectator quark q we define

Qq
V−A = (cγµ(1− γ5)q)(qγµ(1− γ5)c) , (D.0.43)

Qpp,q
S−P = (ci/p(1− γ5)q)(q/p(1− γ5)c) . (D.0.44)

Considering now all the possible Wilson coefficient combinations we get the following

contributions

• For Q1 ⊗Q1 we have in total a factor δijδjmδmnδlkδkqδqp = δinδlp creating the

operators

O′1 = (ciγµ(1− γ5)ul)(ulγµ(1− γ5)ci) , (D.0.45)

O′pp2 = (ci/p(1− γ5)ul)(ul(1 + γ5)/pci) . (D.0.46)

• For Q2 ⊗Q2 we have in total a factor δilδkjδjmδmqδqkδnp = NCδ
ilδnp creating

the operators

O1 = (ciγµ(1− γ5)ui)(ulγµ(1− γ5)cl) , (D.0.47)

Opp
2 = (ci/p(1− γ5)ui)(ul(1 + γ5)/pcl) . (D.0.48)

• For Q1 ⊗ Q2 we get δijδjmδmqδqkδklδnp = δilδnp creating the operators O1

and Opp
2 We also get a factor 2 from symmetry by including the identical

contribution from Q2 ⊗Q1.

So far we are proceeding as in the previous computation. For lifetimes, however, we

want to express the results in terms of the colour-singlet and colour-octet operators
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instead of the colour rearranged ones. To do so we use Equation (2.1.10) and write

O′1 = 2T1 + 1
NC

O1 , (D.0.49)

O′pp2 = 2T pp2 + 1
NC

Opp
2 , (D.0.50)

where T1 = (cγµ(1−γ5)tαu) (uγµ(1−γ5)tαc) and T pp2 = (c/p(1−γ5)tαu) (u(1+γ5)tα/pc).

Putting everything together we can write for WE

Γq1q2WE = 1
2MD

G2
F

∣∣∣V ∗cq1Vuq2∣∣∣2
12π

λ(1 + x̃, z1, z2)
(1 + x̃2)

×


(

1
NC

C2
1 + 2C1C2 +NCC

2
2

)
[
m2
c w1(x̃, z1, z2)O1 − 2w2(x̃, z1, z2)Opp

2

]

+ 2C2
1

[
m2
c w1(x̃, r1, r2)T1 − 2w2(x̃, z1, z2)T pp2

] , (D.0.51)

where w1(x̃, z1, z2) and w2(x̃, z1, z2) are defined in Equations (D.0.36) and (D.0.37)

For the Pauli Interference we start with

T
[
Heff (x)Heff (0)

] ∣∣∣∣∣
PI

=

2 : ci(x)Γµqj1(x)qk2(x)Γµul(x)qm1 (0)Γνcn(0)up(0)Γνqq2(0) :

= 2 ci γµ(1− γ5)
∫ d4k

(2π)4
i(/k +m1)
k2 −m2

1 + iε
γν(1− γ5) cn

qk2 γ
µ(1− γ5)

∫ d4l

(2π)4
i(/l +mu)
l2 −m2

u + iε
γν(1− γ5) qq2

ei(pc−pq2−k−l)δjmδlp , (D.0.52)

Next, we integrate this over x and k to get

i
∫
d4xT

[
Heff (x)Heff (0)

] ∣∣∣∣∣∣
PI

=

2i
∫ d4l

(2π)4 c
i γµ(1− γ5)

i(/l − /p+m1)
(l − p)2 −m2

1 + iε
γν(1− γ5) cn

qk2 γ
µ(1− γ5) i(/l +mu)

l2 −m2
u + iε

γν(1− γ5) qq2 δjm δlp
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= −8i
∫ d4l

(2π)4
lρlσ − pρlσ

((l − p)2 −m2
1 + iε)(l2 −m2

u + iε)
(ci γµ(1− γ5)γργν cn)(qk2 γµ(1− γ5)γσγν qq2) δjm δlp . (D.0.53)

In PI we have a different Dirac structure from before. In order to simplify it we use

γνγργµ(1− γ5)⊗ γνγργµ(1− γ5) = 16γµ(1− γ5)⊗ γµ(1− γ5) , (D.0.54)

γν/pγµ(1− γ5)⊗ γν/pγµ(1− γ5) = 4p2γµ(1− γ5)⊗ γµ(1− γ5) . (D.0.55)

The one-loop integral in Equation (D.0.53) is a little different from before. The lρlσ

part of it gives the same result as Equations (D.0.22) and (D.0.21) despite having

(l − p)2 in the denominator. On the other hand, the pρlσ part has a different sign

from Equation (D.0.20) but it comes with an overall minus, so the sign difference is

countered. Thus, we get

T ijPI = 32G
2
F

2
∣∣∣V ∗cq1Vuq2∣∣∣2

[
Im

(
4iB00 + p2(iB11 + iB0)

)
Q
q2
V−A

]

= G2
F

2π
∣∣∣V ∗cq1Vuq2 ∣∣∣2m2

c

λ(1 + x̃, z1, zu)
(1 + x̃)

[
(1 + x̃− z1 − zu)Qq2

V−A

]
δjm δlp ,

(D.0.56)

where we have also used Equation (D.0.28). Similar to before we check all operator

insertions

• For Q1 ⊗Q1 we have in total a factor δijδjmδmnδklδlpδpq = δinδkq creating the

operator

O′1 = (ciγµ(1− γ5)qk2)(qk2γµ(1− γ5)ci) . (D.0.57)

• For Q2 ⊗Q2 we have in total a factor δilδlpδpnδkjδjmδmq = δinδkq creating the

operator O′1 again

• For Q1 ⊗Q2 we get δijδjmδmqδklδlpδpq = δiqδkn creating the operator

O1 = (ciγµ(1− γ5)qi2)(qk2γµ(1− γ5)ci) . (D.0.58)

We also get a factor 2 from symmetry by including the Q2 ⊗Q1 contribution.
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Using again Equation (2.1.10) we get PI

Γq1uPI = 1
2MD

G2
F

2π
∣∣∣V ∗cq1Vuq2 ∣∣∣2 m2

c

λ(1 + x̃, z1, zu)
(1 + x̃) (1 + x̃− z1 − zu)

[ ( 1
NC

(C2
1 + C2

2) + 2C1C2

)
O1 + 2(C2

1 + C2
2)T1

]
. (D.0.59)

Finally if we look at the Weak Annihilation topology we write

T
[
Heff (x)Heff (0)

] ∣∣∣∣∣
WA

=

2 : ci(x)Γµqj1(x)qk2(x)Γµul(x)qm1 (0)Γνcn(0)up(0)Γνqq2(0) :

= −2 ci γµ(1− γ5)qj1 Tr
γµ(1− γ5)

∫ d4k

(2π)4
i(/k +m2)
k2 −m2

2 + iε
γν(1− γ5)

∫ d4l

(2π)4
i(/l +mu)
l2 −m2

u + iε

qm1 γν(1− γ5) cn ei(pc+pq1+k−l)δkqδlp , (D.0.60)

where the trace over the spinor indices and minus sign come from the fermion loop.

Performing the integral over x and k we get

i
∫
d4xT

[
Heff (x)Heff (0)

] ∣∣∣∣∣∣
WA

=

−2ci γµ(1− γ5)qj1 i
∫ d4l

(2π)4 Tr
γµ(1− γ5)

i(/l + /p+m2)
(l + p)2 −m2

2 + iε

γν(1− γ5) i(/l +mu)
l2 −m2

u + iε

qm1 γν(1− γ5) cn δkq δlp

= 4i
∫ d4l

(2π)4
lρlσ + pρlσ

((l + p)2 −m2
2 + iε)(l2 −m2

u + iε)
(ci γµ(1− γ5)qj1)(qm1 γν(1− γ5) cn) Tr

[
γµ(1− γ5)γργνγσ

]
δkqδlp . (D.0.61)

Taking the imaginary part of the one-loop integral and computing the trace we

obtain

T ijWA = −32G
2
F

2
∣∣∣V ∗cq1Vuq2∣∣∣2 ×

Im
(B00 + p2

2 (B11 +B0)
)
Q
q1
V−A − (B11 +B0)Qpp,q1

S−P

δkqδlp
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= G2
F

12π
∣∣∣V ∗cq1Vuq2∣∣∣2 λ(1 + x̃, z1, z2)

(1 + x̃)2 ×m2
c

{
(z1 − z2)2 − (1 + x̃)(2(1 + x̃)− z1 − z2))

}
Q
q1
V−A

−2
{

2(z1 − z2)2

1 + x̃
− (1 + x̃+ z1 + z2)

}
Q
pp,q1
S−P

 δkqδlp .
(D.0.62)

As we can see we have reproduced the same result as in WE (up to the deltas). This

is not an accident as the two structures are connected via a Fierz transformation.

As we will see though after considering the colour flow the final results differ.

• For Q1 ⊗Q1 we have in total a factor δijδlpδpqδqkδklδmn = NCδ
ijδmn creating

the operators

O′1 = (ciγµ(1− γ5)qi1)(qm1 γµ(1− γ5)cm) , (D.0.63)

O′pp2 = (ci/p(1− γ5)qi1)(qm1 (1 + γ5)/pcm) . (D.0.64)

• For Q2 ⊗Q2 we have in total a factor δilδlpδpnδjkδkqδqm = δinδjm creating the

operators

O′1 = (ciγµ(1− γ5)qm1 )(qm1 γµ(1− γ5)ci) , (D.0.65)

O′pp2 = (ci/p(1− γ5)qm1 )(qm1 (1 + γ5)/pci) . (D.0.66)

• For Q1 ⊗ Q2 we get δijδmqδqkδklδlpδpn = δijδmn creating the operators O1

and Opp
2 We also get a factor 2 from symmetry by including the identical

contribution from Q2 ⊗Q1.

Using Equation (2.1.10) we put everything together for WA

Γuq2WA = 1
2MD

G2
F

∣∣∣V ∗cq1Vuq2 ∣∣∣2
12π

λ(1 + x̃, z1, z2)
(1 + x̃2)

×


(
NCC

2
1 + 2C1C2 + 1

NC

C2
2

)
[
w1(x̃, z1, z2)m2

cO1 − 2w2(x̃, z1, z2)Opp
2

]

+ 2C2
2

[
w1(x̃, r1, r2)m2

cT1 − 2w2(x̃, z1, z2)T pp2

] , (D.0.67)
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The expressions of Equations (D.0.51), (D.0.59) and (D.0.67) can be expanded to

give the exact dimension-six and dimension-seven results. For dimension-six we can

simply set x̃ = 0 and p2 = m2
c ignoring effects from small momenta. To include

dimension-seven contributions we expand the coefficients in x̃ keeping terms of order

O(x̃1)16. We still need to expand the operators17 Opp
2 and T pp2 . Their expansion is

identical so we will show only for Oq,pp
2

Oq,pp
2 = (c/p(1− γ5)q)(q(1 + γ5)/pc)

= (c /pc(1− γ5)q)(q(1 + γ5)/pc c) + (c/pc(1− γ5)q)(q/pq(1− γ5) c)

+ (c(1 + γ5)/pq q)(q(1 + γ5)/pc c) + (c(1 + γ5)/pq q)(q/pq(1− γ5) c)

= m2
c(c(1− γ5)q)(q(1 + γ5)c)−mcmq(c(1− γ5)q)(q(1− γ5)c)

− mcmq(c(1 + γ5)q)(q(1 + γ5)c) +O(m2
q)

= m2
c (Oq

2 − 2P q
1 ) +O(m2

q) , (D.0.68)

where Oq
1 and P q

1 are defined in Equations (4.2.22) and (4.2.44). Similarly we get

T pp2 = m2
c (T q1 − 2Sq1) +O(m2

q) . (D.0.69)

The final dimension-seven operators arise from x̃ Oq
1 and x̃ Oq

2

x̃ Oq
1 = 2pcpq

m2
c

(cγµ(1− γ5)q)(qγµ(1− γ5)c)

= 1
m2
c

(c←−Dργµ(1− γ5)Dρq)(qγµ(1− γ5)c) = 1
mc

P q
2 , (D.0.70)

x̃ Oq
2 = 2pcpq

m2
c

(c(1− γ5)q)(q(1 + γ5)c)

= 1
m2
c

(c←−Dρ(1− γ5)Dρq)(q(1 + γ5)c) = 1
mc

P q
3 , (D.0.71)

where P2 and P3 are also defined in Equations (4.2.45) and (4.2.46).

So far we have performed these calculations in QCD. To get the expressions for

16Note that x̃ = 2pcpq

m
2
c

for WE and WA since p = pc +pq but x̃ = − 2pcpq

m
2
c

for PI where p = pc−pq

17Note that from this point on we will use the fact that an operator and its hermitian conjugate
have the same matrix element and therefore we add a factor 2.
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WE, PI and WA in HQET we need to make some adjustments. First of all, we

decompose pµ = mcv
µ + kµ ± pµq 18 where vµ and kµ are the hadron velocity and the

residual momentum as introduced in Section 2.1.2. Then x̃ = 2v·iD
mc
± 2v·pq

mc
where we

have replaced kµ with iD since the derivative acting on hv returns only the k part

of the momentum. Next we expand the QCD quark field as in Equation (2.1.65) to

get19

c = hv

(
1 + i /D

2mc

)
+O(1/m2

c) . (D.0.72)

We are also using Equation (2.1.68) to write

(cΓµq)(qΓνc) ' (hvΓµ)(qΓνhv) + 1
2mc

(
(hv(−i

←−
/D)Γµq)(qΓνhv) + (hvΓµq)(qΓν(i /D)hv)

)
+ 1

mc

i
∫
dxT{(hvΓµq)(qΓνhv),L1(x)}+O(1/m2

c) , (D.0.73)

where the ' sign indicates that the LHS is evaluated in QCD states while the RHS

in HQET20 and L1 contains the 1/mc corrections of the HQET Lagrangian. Now

we expand Oq,pp
2 as

Oq,pp
2 =

(
c (mc/v − i

←−
/D + /pq)(1− γ5) q

)(
q (1 + γ5)(mc/v + i

←−
/D + /pq) c

)
= m2

c (c/v(1− γ5) q) (q(1 + γ5)/vc) +mc

(
c(−i
←−
/D)(1− γ5) q

)
(q(1 + γ5)/vc)

+ mc (c/v(1− γ5) q)
(
q(1 + γ5)(i /D)c

)
+mc (c/v(1− γ5) q)

(
q(1 + γ5)/pqc

)
+ mc

(
c/pq(1− γ5) q

)
(q(1 + γ5)/vc) +O(1/m2

c) , (D.0.74)

and using Equations (D.0.72), (D.0.73), (/v−1)hv = hv, (iv·D)hv = 0, (i /D−mq)q = 0

and the relation /v /D = − /D/v + 2v ·D we can write

Oq,pp
2 = m2

c

(
Õq

2 + R̃q
2

mc

+
M̃ q

2,π

mc

+
M̃ q

2,G

mc

− 2 P̃
q
1

mc

)
, (D.0.75)

18Again here WE and WA come with the plus sign while PI has a minus sign
19Note that the exponential factor in Equation (2.1.65) is already removed during the HQE so

we do not include it here
20We indicate this relation here but for simplicity we will continue using the = sign.
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where the HQET operators are defined in Section 4.2. In a similar way we can also

write

Oq
1 = Õq

1 + R̃q
1

mc

+
M̃ q

1,π

mc

+
M̃ q

2,G

mc

, (D.0.76)

x̃ Õq
1 = ∓2 P̃

q
2

mc

, (D.0.77)

x̃ Õq
2 = ∓2 P̃

q
3

mc

. (D.0.78)

where the minus sign corresponds to WE and WA topologies and the plus to PI. The

calculation for the colour-octet operators is exactly identical with the appropriate

substitutions.
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