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Investigating Comparisons Between Human Learning and 

Machine Learning Using the Dots and Boxes Game 

 

Abstract 

From its origins, machine learning has drawn inspiration from the human brain and its thought 

processes. Despite machine learning drawing so much from human learning, comparisons of the 

progression of learning between the two are fraught with difficulties. This study aims to explore the 

similarities and differences between human and machine learning, using a perfect information board 

game, Dots and Boxes, that both humans and machine learning agents learn to play by training against 

the same ‘box-greedy’ policy agent. Three q-learning reinforcement learning agents have been created 

with three distinct levels of strategy to compare against the learning progression and strategy of 62 

human volunteers developed over 20 games each. Volunteers were also asked to complete BIS/BAS 

and CRT-MQC4 questionnaires after completing the Dots and Boxes task to study behavioural metrics 

that affect decision making, such as system 1 & 2 thinking and sensitivity to reward or punishment. 

Results from comparisons show how important context and prior knowledge is to human learning, and 

how machine learning agents can generalise better and reach optimal strategy faster with prior 

knowledge. Additional observations around how behavioural metrics affect individual decision making 

and correlations between machine learning agent strategy and human participant data allow for further 

comparisons to be made between human and machine learning. 

Keywords: reinforcement learning; human learning; cognitive psychology; q-learning; perfect 

information board game. 
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Introduction 

2.1 Human Learning  

The ability to learn is possessed by humans, animals and more recently by some machines. Human 

learning is essential to survival and quality of life, allowing individuals to acquire skills and achieve 

goals. G.A. Kimble defined learning as ‘a relatively permanent change in a behavioural potentiality that 

occurs as a result of reinforced practice’ (Hilgard, Kimble and Marquis, 1961). After a history studying 

human learning spanning hundreds of years, there are many learning theories and models used to 

explain human learning. While machine learning, where algorithms are trained to perform tasks, has 

drawn inspiration from human learning models, recent developments in machine leaning have begun to 

shed light on human learning in return. Examples of these recent developments include the work of 

Morse et al. (2015) discovering that our ability to retain new information partially depends on our 

physical relationship with it when studying children between 16-24 months old and a humanoid robot 

model, and the work of George Reeke showing that both humans and machines often need to perform 

a learning task themselves in order to understand its use in a different context when studying both 

human and AI systems while tracing letters. 

There is no universal agreement on a single model of learning, rather multiple models for different 

aspects of learning; one of them being dual process theory. Dual process theory, suggested by Peter 

Wason and Jonathan Evans in 1974, proposes two distinct types of processes involved in human 

decision-making: heuristic processes, pertaining to the selection of relevant information, and analytic 

processes, pertaining to generating judgements or inferences on the selected information to ultimately 

make a decision (Wason and Evans, 1974). Daniel Kahneman developed dual process theory further 

through his own interpretation, separating the two processes into intuition, often called system one, and 

reasoning, often called system two (2003). While intuition allows for quick decision-making, judgement 

is influenced by strong emotional bonds and the reasoning process if biased by these. Reasoning, system 

two, is a slower and much more calculated process. In a study performed by Kannengiesser and Gero 

(2019), evidence for Kahneman’s systems 1 & 2 thinking can be observed when comparing the design 

protocols of professional engineers and engineering students, where it is shown the more experienced 

designers use more systems 1 thinking than students. 

Often, situations that require humans to employ decision-making have a level of uncertainty involved 

regarding prospective wins and losses. In 1979, Kahneman and Tversky developed the behavioural 

model called prospect theory to explain how humans assess uncertainty. Prospect theory describes how 

individuals assess loss and gain perspectives asymmetrically, where people are much more sensitive to 

loss than to equivalent gains, also known as loss aversion. This bias affects an individual’s decision 

making in risky situations. 

Building on cognitivism, which focuses on the study of mental processes as opposed to behaviour to 

study human learning, economist and cognitive psychologist Herbert Simon proposed the human 

decision-making theory that instead of behaviour being based on all available information being 

processed rationally to reach an ‘optimum’ decision, human decision making is about achieving 

outcomes that are ‘good enough’ based on limited available information and inability to process all 

information (Newell & Simon, 1973). Rim et al. (2012) display evidence of satisficing and maximising 

in human volunteers when completing various tasks involving gambling, binary choice and general 

decision-making competence. Maximising volunteers displayed a tendency to search for large amounts 

of information and thus had different information processing styles to satisficing volunteers. The 

concept of human decision-making being bounded by ‘cognitive limits’ adds another layer of 

complexity to human vs machine learning comparisons. Features well known in humans, such as 

constraints on information processing and memory, are not shared in machines. How computationally 

https://www.britannica.com/topic/potentiality
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constrained humans can navigate and form strategy in complex tasks, and how machine learning can 

help our understanding of this, has been of great interest to cognitive psychology and machine learning 

scholars for many years. 

One of the ways in which computationally constrained humans can make decisions in complex 

situations is through the use of satisficing. A concept first introduced by Herbert A. Simon (1956), 

satisficing is a decision-making strategy where decision makers can satisfice by finding optimum 

solutions for a simplified world when the true optimal solution is hard to find. The opposite of satisficing 

is maximising, where the truly optimal strategy in a given task or game is strived for. While machine 

learning algorithms are often maximising in their attempts to find the global optimum policy of a task, 

human decision making varies more widely on the satisficing-maximising scale with variables such as 

individual personality, complexity of task and abilities of the individual to consider. 

While early machine learning aimed to replicate human learning to complete tasks, more recent studies 

have sought to draw comparisons between human learning and machine learning to help elucidate 

human learning mechanisms. Investigating the differences between human learners and machine 

learning algorithms when approaching the same task or facing the same opponent can offer a new 

perspective on human learning systems and allow us to improve our understanding of their underlying 

mechanisms. 

 

2.2 Machine Learning 

Despite the origins of artificial intelligence predating the 1950s, the term ‘machine learning’ was first 

coined in 1959 by Arthur Samuel, defining it as ‘the field of study that gives computers the ability to 

learn without being explicitly programmed’ (1959). Machine learning algorithms utilise various 

statistical methods and algorithms, which are trained to make classifications, predictions, complete 

tasks and even recognise patterns with higher accuracy than humans. The three main categories of 

machine learning algorithms are supervised, unsupervised and reinforcement learning algorithms 

(Jordan & Mitchell, 2015). In supervised machine learning, data with a clearly defined output is fed 

into an algorithm and feedback is administered depending on how well said algorithm can learn the data 

and apply its understanding to make predictions or classify unseen data. Contrary to this, unsupervised 

learning does not use data with a clearly defined output; instead, an algorithm learns patterns and 

structures in the data it is fed. Reinforcement Learning is a type of machine learning technique that 

enables an agent to learn in an interactive environment by trial and error using feedback from its own 

actions and experiences. Reinforcement learning differs from supervised learning in not needing 

labelled input/output data, and differs from unsupervised learning which assumes no actions or 

consequences; instead, learning is driven by a reward/punishment system that provides feedback to 

agents. Reinforcement learning is the closest machine learning paradigm to typical human learning, 

where sub-optimal actions are not explicitly corrected and instead outcomes of a series of actions are 

observed, similar to how, in most situations, children learn via feedback from exploration of their 

environment instead of from a parent constantly providing feedback with each action. In reinforcement 

learning there is emphasis on finding a balance between exploration of unknown environment and 

exploitation of current knowledge (Kaelbling, Littman and Moore, 1996). For the purposes of this paper, 

focus will largely be on reinforcement learning (RL). 

Most machine learning algorithms can be broken down into three components, each of which are run 

iteratively as the algorithm trains until appropriate accuracy is achieved: 

- Decision Process: calculations that take the input data and predict the output. 

- Error Function: a method measuring how good the prediction was by comparing to known 

examples if they are available (this is less applicable to unsupervised learning). 
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- Optimisation Process: a step where, using the error function, the decision process is altered to 

make better predictions and reduce error. 

The 1990s saw a shift in machine learning away from small-scale knowledge-based models towards 

ones driven by data. The need for scalability to accommodate large datasets, alongside ability to 

automate extraction of features in data instead of manual handpicking, led to the advent of deep learning 

by the 2000s. A sub-field of machine learning, deep learning algorithms largely follow the same process 

but leverage artificial neural networks with multiple layers to extract features from large datasets to aid 

predictions. Input data is transformed into abstract, decomposed representations at each neural network 

layer to extract features, similar to feature extraction in visual cortices of mammals. How individual 

brain cells conveyed information in the brain for feature detection, first discovered by Hubel and Wiesel 

(1962), inspired the development of the Neocognitron (Fukushima, 1980), which in turn inspired the 

production of further neural networks. The ‘all-or-none’ characteristic of biological neurons, where a 

neuron either generates an action potential or remains silent depending on its given input, is mimicked 

in artificial neural networks, simplifying the chemical and electrical activity in synapses as connected 

layers of numeric matrices. Through the training of this simplified network of artificial neurons with 

vast amounts of input data, effective feature extraction can be achieved. 

 

2.3 Human and Machine Learning Comparisons 

From Alan Turing’s ‘Turing Test’ (1950), where in order to pass a computer must be able to fool a 

human into believing it is also human, to Frank Rosenblatt’s perceptron, designed to simulate the 

thought processes in the human brain (1958), to more recent machine learning advancements, machine 

learning has been influenced by human learning and intelligence since its origins. However, despite 

machine learning drawing so much from human learning and both human and machine learning being 

experience-driven, it would be naïve to suggest the two are completely equivalent. Neural networks are 

merely imitations of human brains, limited by our lack of understanding and inability to recreate such 

complex nervous systems in a computational domain (Zador, 2019). Further distinctions have been 

made between human and machine learning in countless studies; Dubey et al show the importance of 

prior knowledge when humans learn a new task (2018), allowing transfer of knowledge across different 

domains or problems. Conversely, most machine learning algorithms often start learning from scratch 

and as such don’t have any prior knowledge reserves or context to draw from, leading models to become 

very specialised in completing one particular task but unable to effectively transfer that learning to 

another domain. Additionally, humans are able to learn from little experience, whereas machine 

learning algorithms typically need large amounts of data in order to effectively complete a task. In a 

pattern identification study, carried out by Kuhl et al (2020), comparing human and machine learning 

performance on the same amount of training data the performance of machine learning algorithms varies 

wildly across different patterns while human volunteers display more consistent performance. 

Furthermore, human performance plateaus after 20 instances whereas machine learning is much slower 

to plateau. Wang et al show faster learning in humans as a result of meta-learning in the prefrontal 

cortex, modelled as a recurrent neural network with weight adjustments driven by dopamine release 

(2018). Through this meta-RL system, humans may transfer prior learning to the learning of new tasks, 

thus speeding up learning. 

While there are many differences between human and machine learning, the learning process applied 

to train machine learning algorithms draws from some of the core principles behind human learning. 

Humans learn and acquire knowledge through experience, either directly or via the experience of others. 

Similarly, machines learn and acquire knowledge through experience in the form of data. A combination 

of consolidating information to memory and ability to transform memory to knowledge and skills is 

required for humans and machines alike to learn how to solve problems. A human may memorize the 
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solutions to a set of problems, but if they fail to transform that memory to problem solving skills then 

when posed with a new problem they will likely fail to solve it. Likewise, in machine learning all data 

may be memorised by a model, referred to as overfitting, leading the model to lack any ability to 

generalise and apply its learning to a new problem. 

Reinforcement learning algorithms’ origins lie in trial-and-error learning observed in animals by 

psychologists such as Thorndike. According to Thorndike, when no clear solution to a problem or a 

task is known to the learner they adopt a trial-and-error method of trying solutions and rejecting them 

if they do not bring the learner closer to completing the problem. Through this process the learner can 

eventually adopt a strategy formed from actions that lead to a solution to the problem (Thorndike, 1898). 

Similar to trial-and-error learning, reinforcement learning algorithms aim to learn a strategy, often 

referred to as a policy, by interacting with the environment or task and observing the result of their 

actions in the form of positive or negative rewards. The basic framework of RL draws from Markov 

Decision Processes (MDP), discrete-time stochastic control processes that model decision making 

processes. 

 

Figure 1: Interaction between an agent and environment in a Markov Decision Process (Sutton & Barto, 2018). 

 

A Markov decision process is a 4-tuple (𝑆, 𝐴𝑠, 𝑃𝑎 ,  𝑅𝑎), illustrated in Figure 1, where: 

- 𝑆 is a set of states, known as the state space 

- 𝐴𝑠 is a set of actions available from state 𝑆, known as the action space 

- 𝑃𝑎(𝑠, 𝑠
′) is the probability that performing action 𝑎 from state 𝑠 at time 𝑡 will lead to state 𝑠’ at 

time 𝑡 +  1 

- 𝑅𝑎(𝑠, 𝑠
′) is the immediate reward received after transitioning from state 𝑠 to state 𝑠’ via action 

𝑎 

The goal in MDP is to find an optimal policy: a function 𝜋 that specifies the action 𝜋(𝑠) that the 

algorithm, referred to as an agent, should choose in state 𝑠. This optimal policy can be found through 

applying q-learning, first introduced by Chris Watkins in his PhD thesis as a dynamic programming 

solution to policy finding in Markov Decision Processes (1989). Q-learning is a model-free 

reinforcement learning algorithm that learns the value of an action from a given state, and can ultimately 

find an optimal policy in any finite Markov Decision Process by maximizing the value function. Model-

free, in the context of q-learning, refers to whether an agent must predict the response of the 

environment; in other words an algorithm that estimates the optimal policy without estimating the 

dynamics (transition and reward functions) of the environment. Model-based agents learn a model of 

their environment from observations and plan an optimal solution using said model, thus estimating 

dynamics such as transition function and reward function with 𝑝(𝑠′ , 𝑟|𝑠, 𝑎). As such, model-based 
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learning lends itself to stochastic games or tasks with probabilistic transitions and model-free learning 

lends itself to deterministic games. 

Determining the quality of a state-action combination can be summarised in the function: 

𝑄 ∶ 𝑆 ×  𝐴 → 𝑅 

Where 𝑄 is a numeric matrix, the size of which is determined by the total number of states and actions. 

At the start of learning values in 𝑄 are set to an aribtrary number, then for each time point 𝑡 where the 

agent is in state 𝑠 the agent selects an action 𝑎𝑡, observes reward 𝑟𝑡, enters a new state 𝑠𝑡+1 and the 

corresponding value in 𝑄 is updated. 

At the core of q-learning is the Bellman equation, used to update values in the 𝑄 matrix via a weighted 

average of old information and new information gained through the agent’s trial and error. At each time 

step, values in 𝑄 are updated with the function: 

𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) ⃪ 𝑄𝑜𝑙𝑑(𝑠𝑡, 𝑎𝑡) +  𝛼 · (𝑟𝑡 +  𝛾 ∙ 𝑚𝑎𝑥𝑄(𝑠𝑡+1, 𝑎) − 𝑄𝑜𝑙𝑑(𝑠𝑡, 𝑎𝑡)) 

 

Updating 𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) can be broken down into three factors: 

- 𝛼 ∙  𝑟𝑡: reward gained when action 𝑎𝑡 taken in state 𝑠𝑡, weighted by the learning rate 

- 𝛼 ∙  𝛾 ∙  𝑚𝑎𝑥𝑄(𝑠𝑡+1, 𝑎): the maximum reward that can be gained from state 𝑠𝑡+1, weighted by 

the learning rate and discount factor 

- (1 −  𝛼)𝑄(𝑠𝑡 , 𝑎𝑡): the current value of the state – action pair, weighted by the learning rate. 

The learning rate (0 <  𝛼 ≤ 1) is a tuning parameter that determines each iterations step size and 

influences the amount newly acquired information overrides old information. A higher learning rate 

means Q ‘learns’ faster, as old information is overridden at a higher magnitude. The discount factor 

(0 <  𝛾 ≤ 1) is also a tuning parameter that determines how much an agent prioritises future rewards 

over immediate rewards. 

Q-learning belongs to the temporal difference (TD) learning class of reinforcement learning models, 

where an agent aims to update state-action values with the predicted total rewards over time in mind. 

By bootstrapping the maximum estimated next state-action values and incorporating them in the current 

timestep state-action q-value estimate, the agent can learn faster through the comparison of consecutive 

values and can develop a ‘lookahead’ policy that prioritises larger long-term rewards. 

Temporal difference learning has received a lot of interest by cognitive psychology and neuroscience 

due to similarities between error functions in these algorithms and neural ‘error functions’ in the 

brain. ‘A Neural Substrate of Prediction and Reward’, one of the first studies to draw these 

comparisons, compares the TD algorithm to the role played by dopamine neurons when predicting 

future rewards where the firing of dopamine neurons encodes reward prediction error (Schultz, Dayan 

& Montague, 1997). This study highlights data produced from trials where monkeys touch a lever 

after the appearance of a small light, after which a reward may or may not be delivered. In trials 

where a reward is not delivered after onset of the light, dopamine neurons are observed to fire below 

their basal rate. Additionally, before and in the early stages of training most dopamine neurons show a 

short burst of firing activity after reward delivery, which slowly changes to bursts of firing as soon as 

the light is illuminated after several days of training. These data combined suggest expected reward 

delivery based on the occurrence of light is encoded into the fluctuations of dopaminergic activity, 

encoding what we know to be reward prediction error. 

Additionally, Seymour et al. (2004) used fMRI to study brain responses of fourteen healthy human 

subjects during a second-order pain learning task and observed neural activity in the ventral striatum 
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and anterior insula corresponding to the signals for sequential learning predicted by temporal 

difference models. Volunteers were shown two visual cues after which a low or high intensity pain 

stimulus was delivered, where the second visual cue was fully predictive of the pain stimulus and the 

fist visual cue was probabilistically predictive of pain stimulus. As volunteers progressed through 

trials they learned the correct associations between stimulus, allowing for the study of not only 

expectation of pain but also the reversal of expectation. Trial data shows temporal difference 

prediction error slowly decreasing in later cues and increasing in the first cue as volunteers were able 

to make pain predictions. fMRI data of volunteer brains displayed significant correlation between 

specific brain regions and the prediction error, the signal driving learning, thus revealing a flexible 

aversive learning process in human learning. Among the highest correlations (statistically significant 

post-correction for multiple comparisons) are the right and left ventral putamen correlating with 

temporal difference prediction error with z-scores of 𝑧 = 5.38 and 𝑧 = 3.93 respectively, and the 

right head of caudate correlating with temporal difference prediction error with a z-score of 𝑧 = 3.75. 

Deep reinforcement learning is a subfield of machine learning that combines reinforcement learning, 

such as q-learning, and deep learning. Successful applications of reinforcement learning using neural 

networks such as TD-Gammon (Tesauro, 1995) and the first practical demonstration of 

backpropagation (LeCun et al., 1989) pioneered the advancement of deep reinforcement learning, 

leading to the development of the Deep Q-Network algorithm by DeepMind in 2015 (Mnih, 

Kavukcuoglu & Silver, 2015) to address the need for wider application of reinforcement learning 

outside of fully observed low-dimension state spaces, or where useful features for learning cannot be 

manually selected. Since these early advancements further game-oriented reinforcement learning agents 

have been developed for increasingly complex tasks. AlphaGo was able to defeat the human European 

Go champion using deep neural networks with tree search and training with simulated self-play (Silver, 

Huang, Maddison, et al.  2016). 

Such as in reinforcement learning, deep learning agents learn to make decisions by trial and error, 

however this learning process is aided by neural networks approximating expected reward from state-

action pairs. In Deep Q-learning, a neural network is used to approximate the q-value function, where 

representations of game states are fed in as input and q-values of all possible actions are generated as 

output. There are a number of neural network architectures, with Convolutional Neural Networks 

(CNNs) being among the most popular. Inspired by the neuronal organization in the animal visual 

cortex, CNNs are multilayer perceptrons regularized so that local connectivity can be used to learn 

patterns instead of full connectivity between neurons, similar to cortical neurons responding to stimuli 

in restricted regions of the visual field (Fukushima, 1980). The relatively sparse connectivity between 

layers helps reduce risk of overfitting, where models learn training data too well and fail to generalise 

unseen data, and the use of kernels panned across input data means features can be learned and extracted 

irrespective of their location in data. 

 

2.4 Dots and Boxes 

Board games make for an effective paradigm to study both human and machine learning, acting as 

complex but contained environments for either humans or machines to showcase learned strategy. 

Samuel’s ground-breaking work applying machine learning to the game of checkers (1959) paved the 

way for further board game algorithms, such as Quinlan’s application of decision trees to chess end-

games (1983) and the application of search algorithms and board pattern recognition to Othello (Lee & 

Mahajan, 1990). Board games with perfect information, where players have the same information that 

would be available at the end of the same (i.e. Chess, Tic-Tac-Toe or Go), are useful mediums to study 

human and machine learning for many reasons. Perfect information games are woven into the history 

of AI and its advancement; between the 1990s and 2000s many landmark goals of AI were achieved, 
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including the defeat of chess grand master Gary Kasparov by IBM’s Deep Blue (Campbell, Hoane and 

Hsu, 2002). Practically, perfect information games can range in complexity and the lack of stochastic 

processes allows learners to develop and apply intelligent strategy without the setbacks of chance. 

Dots and Boxes is a perfect information deterministic two-player game created by French 

mathematician Edouard Lucas in the 19th century. Players start with an empty grid of dots and take turns 

to place single lines, either horizontally or vertically, between two unconnected adjacent dots. When a 

player completes the fourth side of a 1 x 1 box, they earn one point and must take another turn. The 

player with the most points (i.e. most boxes claimed) once no more lines can be placed wins. Boards 

may be any size larger than 2x2 boxes (3x3 dots) and don’t necessarily have to be symmetrical, but for 

the purposes of this study this paper focuses on 3x3 box grids only. 

Optimal Dots and Boxes strategy varies depending on board size, however there are general stages to 

the development of strategy that may be applied to most boards. Weaver and Bossomaier (1998) 

distinguish several levels of strategy that can be applied against an opponent on a 3x3 box grid. The 

first phase of strategy is classed as random, where players place lines arbitrarily with no lookahead or 

examination of the board. Players do not register opportunities for claiming boxes nor avoid allowing 

their opponent to claim boxes. 

The second phase of strategy is classed as greedy, where players will claim a box if the opportunity is 

made available. The third phase of strategy builds on the second greedy phase, but with the addition of 

the player applying one step look ahead to avoid giving their opponent the opportunity to claim a box 

by avoiding placing third sides of boxes if they are able. 

The fourth phase of strategy is reached when a player can learn to optimally concede boxes for a larger 

future reward. The fifth phase of strategy builds on the fourth phase with the addition of the player 

avoiding completing some squares. A player may want to avoid completing squares if their opponent is 

baiting them into completing short chains, as seen in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Both phases four and five of strategy require a certain amount of ‘unlearning’ greedy strategy, which 

can pose a problem both in human and machine learning, where agents must be adaptable depending 

on the opponent faced. Additionally, the temporal strategy required in phases four and five require 

players to avoid using impulsive system 1 thinking and rely on system 2 reasoning instead. Weaver and 

Bossomaier’s heuristic network was only able to reach the first phase of strategy defined, and while 

more recent attempts to model Dots and Boxes agents have seen higher win rates very few studies 

Figure 2: Examples of the fourth and fifth levels of strategy described. The left image displays an example of the fourth phase of 

strategy, where player blue can choose to bait the opponent (orange) into claiming the shorter chain and consequently opening up 

the longer chain for blue to claim. The right image displays an example of the fifth phase of strategy, where player blue can avoid 

claiming the last two boxes of the short chain and bait the opponent into claiming them instead, consequently opening up the longer 

chain for blue to claim. 
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analyse the resulting agent strategy. As such, it is still an open question to what degree machine learning 

agents are able to achieve these levels of strategy or higher, and whether the learning trajectory of said 

agents follow that of human learners. 

Inhibition control can vary across individuals and may be measured in multiple ways, including via the 

BIS/BAS scale. The BIS/BAS scale is a self-report questionnaire of 24 questions rated on a 4-point 

Likert scale (Carver & White, 1994) with questions are designed to measure two motivational systems, 

the first being the Behavioural Inhibition System (BIS) and the second being the Behavioural Activation 

System (BAS). The questionnaire yields one BIS score and three BAS scores, defined as: 

- BIS: Sensitivity to punishment, motivation to avoid aversive outcomes. 

- BAS Drive: Motivation pertaining to the persistent pursuit of desired goals. 

- BAS Fun Seeking: Motivation pertaining to a desire for new rewards and willingness to 

approach a potentially rewarding experience on impulse. 

- BAS Reward Responsiveness: Sensitivity to positive outcomes and positive attitude towards 

rewards. 

Many behavioural theorists believe these two motivational systems underlie behaviour and ability to 

control impulse.  

The Cognitive Reflection Test (CRT-MCQ 4) is a multiple-choice test designed to measure intuition, 

inhibition and cognitive reflection. The test reliably predicts reasoning performance and decision-

making. Volunteers were offered a seven question, four-option response format CRT to complete after 

playing Dots and Boxes. Each of the seven questions has one correct answer, one intuitive (incorrect) 

answer and two other incorrect answers. Often, participants respond to questions with an intuitive, yet 

ultimately wrong, answer. For a participant to get the correct answer, they must take some time and 

apply analytical processing via system two reasoning, instead of relying on system one intuition alone 

(Sirota & Juanchich, 2018). 

The prefrontal cortex controls many of the executive functions of the brain involved in decision making 

and learning, such as planning, reasoning and impulse control. Impulsive individuals make risky 

decisions, choosing immediate rewards despite potential long-term negative consequences (Moeller et 

al., 2001). As such, when studying learning and decision making in humans it is important to assess 

individual risk appetite and impulsivity. The Barratt Impulsivity Scale (BIS 11) is a questionnaire 

designed to assess impulsiveness in individuals (Patton et al., 1995); however for the purposes of this 

study BIS/BAS and CRT-MCQ 4 were deemed sufficient to infer impulsivity as well as other 

behavioural characteristics. With the combination of BIS/BAS self-reporting, where impulsive 

behaviour may be seen as a joint function of BAS Fun and BAS Drive in particular (Poythress et al., 

2008), and CRT-MCQ, which directly assesses impulsivity over reasoning, impulse control of 

individuals can be evaluated. 

Despite being a perfect information and deterministic task, and thus lending itself to reinforcement 

learning, Dots and Boxes has been little studied as a reinforcement learning task compared to the likes 

of Chess and Go. While there are few studies to reference, those that have been conducted have trialled 

various reinforcement learning algorithms to varying degrees of success. Bossomaier & Knittel (2006) 

apply an artificial economics model to the Dots and Boxes task, where policy is learned as a series of 

behavioural rules instead of through q-learning. However, the artificial economics model required 

hundreds of thousands of games to train against, and performance against a sophisticated artificial 

player did not exceed a 40% win rate. Zhang, Li & Xiong (2019) compare a Monte-Carlo tree search 

Dots and Boxes agent against AlphaZero, a general-purpose deep learning algorithm that has mastered 

games such as Shogi, Chess and Go (Silver et al., 2018), and found the Monte-Carlo algorithm failed 

to reach the same levels of success as AlphaZero. 
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As Dots and Boxes is relatively unknown compared to other board games, and with strategies of varying 

complexity and a multitude of ways reinforcement learning agents can be trained to complete it, it is 

therefore a perfect task to use to study both human and machine learning. In this study multiple q-

learning agents were developed to capture different learning progressions and levels of strategy for 

comparison with human volunteer data. To draw comparisons between machine learning and human 

learning, both human participants and machine learning agents ‘trained’ against a box-greedy Dots and 

Boxes q-learning agent, after which data such as board states, actions and wins/losses were collected 

for analysis.  

 

 

Methodology 

With the difficulties faced modelling Dots and Boxes via Monte-Carlo (Zhang, Li & Xiong, 2019)  and 

economics models (Bossomaier & Knittel, 2006) in mind, q-learning was selected as the most 

appropriate algorithm to model the Dots and Boxes task due to its successes when applied to similar 

board game tasks such as Connect 4 (Alderton, Wopat & Koffman, 2019). In this study, three q-learning 

models were developed; one q-learning with linear approximation of features model and two Deep-Q 

learning models with the same architecture but trained in different ways. The resulting ‘box-greedy’ q-

learning with linear approximation of features agent was used as an opponent for human volunteers to 

play 20 games against, as well as an opponent for the two Deep-Q models to train against.  

 

3.1 Q-Learning with Linear Approximation of Features 

3.1.1 Architecture 

To effectively model different learning progressions and different stages of strategy, multiple models 

utilising different reinforcement learning techniques were needed. While the first stage of strategy 

defined by Weaver and Bossomaier could be captured effectively via a random policy agent, more 

advanced strategy required q-learning to train agents to develop more effective policies. A basic q-

learning agent for a 4x4 dot board was first created - however the Q-value table of all possible actions, 

of which there are 24 on a 4x4 dot board, against all possible board states, of which there are 224 = ~17 

million on a 4x4 board, was too large and cumbersome to train effectively. State-space had to be 

approximated to reduce the size of the Q-value table to a trainable size. 

The best method for approximating state-space largely depends on the qualities of the state-action space 

and whether tasks are linear or non-linear. Approximating states as a sum of the state-space features is 

a simple but effective function approximation method, used here as an adaptation of the method outlined 

by Melo & Ribeiro (2007) and adapted for the Dot and Boxes task. Q-learning with linear combination 

of features provides a solution to large state spaces where states can be represented by a sum of their 

features, meaning the value of state-action pairs can be represented as so: 

𝑄(𝑠, 𝑎) = 𝑤0 + 𝑤1𝑓1(𝑠, 𝑎) + 𝑤2𝑓2(𝑠, 𝑎) + ⋯+ 𝑤𝑛𝑓𝑛(𝑠, 𝑎) 

The aim is to use sets of handcrafted features to generalise the estimation of state-action pairs with 

similar features. This turns updating the Q-value matrix into a regression problem, where the goal is to 

learn the function mapping state-action features to their state-action Q-values (i.e. 𝑓(𝑠, 𝑎) → 𝑄(𝑠, 𝑎)). 

Instead of using Bellman update steps to update Q-values directly, the Bellman equation is used to 

update feature weights 𝑤 = (𝑤0,  𝑤1, … , 𝑤𝑛) through gradient descent, as so: 
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1. Weights 𝑤 = (𝑤0,  𝑤1, … , 𝑤𝑛) are initialised randomly 

2. For each weight update step, do: 

a. Observe reward 𝑟 and next state 𝑠’ from state 𝑠 and action 𝑎. 

b. Update weight via 𝑤 ← 𝑤 +  𝛼 ∙ (𝑟 +  𝛾 ∙  𝑚𝑎𝑥𝑄(𝑠′, 𝑎) −  𝑄(𝑠, 𝑎)) ∙ ∇𝑤
⃗⃗ ⃗⃗  ⃗𝑄(𝑠, 𝑎), 

where ∇𝑤
⃗⃗ ⃗⃗  ⃗𝑄(𝑠, 𝑎) is the gradient of 𝑄(𝑠, 𝑎) in 𝑤. 

3. Move from state 𝑠 to 𝑠’ and repeat. 

 

With Bellman update steps being performed to update weights 𝑤𝑖 in place of a large Q-value table, this 

function approximation reduces the state space size from |𝑆| to |F| (where 𝐹 is the domain for 𝑓 ∈ 𝐹). 

𝑤0 is the bias term weight of  𝑓0(𝑠, 𝑎) = 1, which is used as a universal feature for 𝑓 ∈ 𝐹. The gradient 

∇𝑤
⃗⃗ ⃗⃗  ⃗𝑄(𝑠, 𝑎) provides the direction in which the weight updates are performed, allowing weights to 

converge to the optimal values and thus optimal Q-values. 

 

 

 

Figure 3: a Example of an original state (within domain of 224 state space) represented as features within a domain of 2n state 

space, where n < 24. b Example training games from q-learning linear combination of features agents, one with rewards 

granted for box-wins as well as overall game wins and one with rewards only given for overall game wins. The agent that was 

only rewarded for overall game wins, while ending up with the same number of boxes won as the box-win reward q-learning 

agent, would often employ counterintuitive strategy. As the random policy agent opponent was unlikely to claim boxes at 

random in early stages, this behaviour would not be penalised. 

Function approximation, while effectively reducing state space size and thus increasing the speed at 

which an optimal policy is found, does have many limitations. When characterising states in terms of 

their features, selection of features can be limited by the understanding of the game environment and 

strategy of those choosing the features. Unsupervised feature learning methods such as autoencoders or 

independent component analysis may be applied in these situations, but for the purposes of this model 

manual feature engineering was appropriate. Features selected for this model were largely handpicked 

and aimed to characterise the 24-edge board in terms of the 9 boxes available to claim instead, with 

features such as whether a state-action pair claims a box or sacrifices a box (i.e. allows the opponent to 

claim said box). 

While effective at reducing training time and model complexity, reducing states to their features is often 

lossy and if chosen features fail to characterise an element of a state integral to the optimal policy, then 

the optimal policy for the original state space cannot be found; an optimal policy for the function 

approximated state space can only be found instead. Though these limitations are not ideal in the pursuit 

of finding the ultimate optimal strategy, it provides an interesting agent to compare against human 

strategy, which is often itself restricted by cognitive limitations. The concept of satisficing, where sub-

optimal ‘good enough’ solutions are found for simplified versions of tasks, is often used in human 



15 
 

decision making. This concept has since been introduced into machine learning studies where satisficing 

can be used to find a strategy that fits the ‘aspiration level’ much faster than finding the optimal strategy 

(Tamatsukuri & Takahashi, 2019). 

3.1.2 Training 

Learning rate α and discount factor 𝛾 were both selected in line with existing board game q-learning 

agents and advice from Even-Dar & Mansour (2003), which suggests the optimal learning rate for a 

random policy Markov Decision Process is 𝛼 =
1

𝑡𝜔 , ω = 0.85. Generally, the discount factor is high 

and often arbitrarily set to 𝛾 = 0.9, resulting in q-values better representing cumulative future reward. 

This is ideal when finding the optimal policy for a task that has a temporal nature, such as Dots and 

Boxes. It is important to find a balance between valuing short-term vs long-term reward in Dots and 

Boxes as while long-term reward strategies that conceed boxes are crucial to winning against strong 

opponents, it is also important not to miss out of greedy opportunities early on in the game while the 

structural ‘traps’ (such as open box chains) needed for long-term plays are not yet present on the board. 

 Hyperparameters set as 𝛼𝑖𝑛𝑖𝑡 = 0.85 and  𝛾 = 0.9 provided stable training and efficient learning in q-

learning with linear combination of features, with learning rate decaying over the first 𝑁 = 2000 

training games to 𝛼𝑒𝑛𝑑 = 0.25 as follows: 

𝑟 = 𝑚𝑎𝑥 (
𝑁 − 𝑛𝑠𝑡𝑒𝑝

𝑁
, 0)  

𝛼 ← (𝛼𝑖𝑛𝑖𝑡 − 𝛼𝑒𝑛𝑑)𝑟 + 𝛼𝑒𝑛𝑑 

The q-learning with linear combination of features agent was trained against a random policy agent 

over multiple games until the q-learning agent’s win rate plateaued. The weights of approximated 

feature-action pairs were updated at the end of each game, and resulting q-values were stored as a 

numeric matrix upon completion of training. Rewards were granted to all state-action pairs in a game 

if the q-learning agent won, and all state-action pairs in a losing game were penalised. Any state-action 

pairs that directly led to q-learning agent completion of a box were also rewarded a small number of 

points. This was necessary in order to accelerate training and avoid the q-learning agent developing a 

policy that encouraged acting randomly in early game states, which was behaviour seen in the initial 

training trials but not observed once implementing box completion rewards (Fig 3b). 

 

3.2 Deep Q-Learning 

3.2.1 Architecture 

Due to limitations such as lossy state representations, q-learning with linear approximation of features 

policy was only able to converge to a ‘box greedy’ strategy; a more optimal policy required another 

state-space approximation approach. As such, two Deep Q-learning agents were developed and trained. 

When deciding on Deep Q-learning neural network architecture, the kind of neural network that fits the 

problem best is often down to the kind of data an agent is learning from and the qualities of the game 

or task environment. Neural networks of fully-connected (or dense) layers, while structure agnostic and 

applicable to most input types, often have much weaker performance than purpose-built architectures. 

Unlike other hidden layers such as convolutional layers, fully-connected layers often struggle to learn 

features and as such can fail to generalise board states not seen before in training but containing features 

observed in previous training data. 

When dealing with learning sequential games or tasks, Long Short-Term Memory (LSTM) models are 

often used due to their ability to remember values over arbitrary timesteps. However, learning a strategy 
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in environments with Markov properties, such as Chess or Dots and Boxes, is less reliant on sequential 

board states and more reliant on the spatial relationships and board ‘features’ of a single board state. As 

such, architectures such as Convolutional Neural Networks (CNN) are better suited to working with 

matrix representations of board states, and are able to develop internal representations of the board 

states to learn spatial relationships and patterns. 

CNNs consist of an input layer, hidden layers and an output layer, where hidden layers include layers 

that perform convolutions finding the dot product between kernels and the layer’s input matrix. As the 

smaller kernel matrix filters over the input matrix in a layer, a feature map is generated which 

contributes to the input of the next layer. Pooling layers are then used to down sample the feature maps, 

summarising the features generated in the convolution layer. Before the output layer, flattened feature 

maps from the final pooling layer are fed into a fully connected layer where non-linear combinations of 

features are found and then fed to the output layer. Finally, the output layer returns classifications or 

predictions based on the data fed into the input layer. Between hidden layers, activation functions are 

used as a threshold to decide if data should be fed on to the next layer’s neurons. Rectified Linear 

Activation Unit (ReLU) is regarded as the best activation function in most deep learning situations, 

defined as 𝑔(𝑧)  =  𝑚𝑎𝑥{0, 𝑧}. The ability to output true zero values introduces sparsity in the 

following layers and speeds up the learning of features. 

In the Deep-Q architecture developed for this study, hidden layers comprised of three lots of  

convolution layers with ReLU, each followed by max pooling layers. After three convolutions, flattened 

feature maps are fed into a dense fully-connected layer which reshapes output to a flattened list of size 

1x24, with an approximated q-value for each action. Figure 5a shows a diagram outlining the basics of 

this architecture. 

 

Figure 4: Example of how this board state would be encoded as a 4x3x3 boolean array. The first box, coloured green in this 

figure, encodes all four of its edges as boolean values, 1 for a placed edge and 0 for an unplaced edge. The boolean edges of 

each box are encoded in 3x3 matching box placement on board states – with one 3x3 matrix for each NESW coordinate. 

CNNs typically lend themselves to image-based supervised learning as each layer applies filters to 

subsets of the input, sweeping over the input data to create a feature map summarising the whole image. 

This makes CNNs ideal for any input that contains features with strong local connectivity, but also 

means the way in which board state data is fed into the network is very important to highlight said local 

connectivity. For these reasons, Dots and Boxes board states for 4x4 dot grids were reshaped from 1x24 

size lists of Boolean values denoting all 24 board edges and their states, where 1 denotes a placed edge 

and 0 denotes an unplaced edge, into 4x3x3 size boolean arrays based on edge NESW coordinates in 

relation to each of the 9 boxes (Fig. 4). 

 

3.2.2 Training 

Deep Q-learning neural networks must be trained to approximate the q-value function using large 

batches of state-action-reward data, often referred to as experience replay data. The training of a CNN 

consists of a forward phase, where input is passed through the network completely, and a backward 

phase in which hidden layer weights are updated through backpropagation, where the gradient of the 

loss function between target and predicted values is calculated with the aim of minimising loss through 

changing network weights.   
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In deep q-learning a neural network is used to approximate the Q-value function, so that for every state 

fed into the neural network a predicted Q-value for each action taken from that state can be made. 

Instead of directly updating Q-values, as in classical q-learning, neural network weights must be 

updated at each Bellman update step, similar to q-learning with linear approximation of features. 

Weights are updated through the loss function, which is the mean squared error of predicted Q-values  

and target Q-values: 

𝐿(𝑤) = ((𝑟 +  𝛾𝑚𝑎𝑥𝑎𝑡+1
𝑄(𝑠𝑡+1, 𝑎𝑡+1;𝑤

𝑡𝑎𝑟𝑔𝑒𝑡)) − 𝑄(𝑠, 𝑎; 𝑤𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))
2

 

As the true target Q-values are unknown, with this being a reinforcement learning problem, the 

regression to the target Q-values can be unstable as the target changes through training. In order to 

stabilise training, a target Q network is needed separate from the prediction Q network, which changes 

with each episode. Both networks use the same architecture but the target Q network weights, 𝑤𝑡𝑎𝑟𝑔𝑒𝑡, 

are updated by the prediction network weights, 𝑤𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, after a number of training episodes, allowing 

the target network to be fixed for periods of time. 

Another necessity to stabilise deep-q training is training through experience replay. An experience 

replay table is required to store all past states and actions. In the early stages of training the deep-q agent 

plays by its current policy, be that random or a policy trained from a previous iteration. As the agent 

plays all information on each turn is stored in a table, including total reward updated for each turn at 

the end if the agent wins or loses (Fig. 5b). Once the table is of a certain size, the agent may then start 

training from the table, meaning the agent is training via sampling from a uniformly distributed batch 

of data instead of overfitting on a small number of turns from a single game. 

 

Figure 5: a CNN architecture; board representations are reshaped into numeric matrices and passed as input through 

convolution and pooling hidden layers. The resulting predicted q-values for state-action pairs are outputted as a vector. b 

Example experience replay table entries. For each simulated game at each turn, states, actions and rewards are stored until 

enough data is available to train the CNN in batches. 
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To avoid the deep-q agent converging to a locally-optimum policy early exploration was necessary in 

each training iteration. Epsilon decay was utilised, where epsilon is set as a high value in the initial 

stages of training and slowly decreases with each episode of training. Each time the agent is prompted 

to take an action it first checks if a randomly generated number 𝑛 (0 ≤ 𝑛 ≤ 1) is greater than epsilon 

𝜀 (0 ≤ 𝜀 ≤ 1). If 𝜀 > 𝑛 then the agent selects a random action from the available action space, 

otherwise the agent selects an action based on 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄). At the start of training, the probability of 

the agent choosing a random action and exploring the state-action space is high (e.g. 𝜀 = 𝑝𝑖𝑛𝑖𝑡 = 0.7).  

As training progresses, 𝜀 decays at rate 𝑟 over 𝑁 training episodes: 

𝑟 = 𝑚𝑎𝑥 (
𝑁 − 𝑛𝑠𝑡𝑒𝑝

𝑁
, 0)  

𝜀 ← (𝑝𝑖𝑛𝑖𝑡 − 𝑝𝑒𝑛𝑑)𝑟 + 𝑝𝑒𝑛𝑑 

As training progresses, the agent can then begin focusing on exploitation and converge to a globally-

optimum policy rather than a locally-optimum one. 

To select the optimal hyper-parameters, the Deep-Q model was run multiple times against a random 

policy agent over 5,000 games with incremental changes to either the learning rate, α, or discount factor, 

γ. When training the Deep-Q model against a random policy agent over 5,000 games,  𝛾 ≥ 0.75 and 

initial learning rate  0.75 ≤  𝛼𝑖𝑛𝑖𝑡  ≤ 0.85 were found to be the optimal boundaries for initial hyper-

parameters. 𝛼𝑖𝑛𝑖𝑡  ≥ 0.9 displayed a dramatic decline in win rate, possibly due to unstable learning as 

old learning is continuously rewritten. Ultimately, the hyper-parameters were set as 𝛼𝑖𝑛𝑖𝑡 = 0.85 and  

𝛾 = 0.9, the same values as in the q-learning with linear combination of features agent with the same 

learning rate decay as defined in Section 3.1.2 of this paper. 

 

 

Figure 6: Line plots showing hyper-parameter tests for learning rate (𝛼) and discount factor (𝛾), where Deep-Q agent % wins 

against random agent are taken (averaged over 200 games) after training against 5,000 games with the specified parameters. 

50% is marked as the baseline % wins that Deep-Q agents start at. 

 

As Dots and Boxes is a 2-player game, an opponent is necessary in the model training process to 

generate experience replay data. To allow for comparisons to be made between human learners and 
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Deep-Q agents, both human volunteers and Deep-Q agents learned how to play Dots and Boxes against 

the q-learning with linear combination of features agent. 

There are many different approaches that can be taken when training a neural network, each influencing 

the resulting agent policy in various ways. As such, multiple Deep-Q models were trained with their 

resulting agent policies compared to each other. One instance of the Deep-Q model, referred to as Deep-

Q agent 1, was trained against the ‘box-greedy’ q-learning with linear combination of features agent; 

just as human volunteers learn how to evolve their Dots and Boxes strategy against the ‘box-greedy’ q-

learning agent. A second instance of the Deep-Q model, referred to as Deep-Q agent 2, was trained 

using a three-step shared learning approach. Shared learning is a training technique where a single 

network is trained via the use of many adversaries with diverse policies (Zhou et al. 2019). This strategy 

typically speeds-up training and allows a single agent to develop generalised counter-strategy against a 

wider range of opponents. 

 

The training of Deep-Q agent 2 was performed in three main stages: 

1. A new Deep-Q agent with no prior policy trained against a random policy agent, creating Deep-

Q agent 2A. 

2. Newly updated Deep-Q agent 2A trained against the q-learning with linear approximation of 

features agent, creating Deep-Q agent 2B. 

3. Newly updated Deep-Q agent 2B trained against a fixed copy of itself (Deep-Q Agent 2B’) in 

competitive multi-agent style, creating Deep-Q agent 2C. 

Multi-agent reinforcement learning, where multiple agents cohabit an environment either cooperatively 

or competitively, is often used to train models but this method can be very time-consuming when both 

agents begin their training with no prior policy. With the addition of steps 1 and 2 before competitive 

multi-agent training in step 3, pre-existing agents can be used to accelerate training before the final 

multi-agent training step where strategy is refined. Training two or more agents adversarially is an oft-

used training method in reinforcement learning, where simulating training data is sometimes difficult 

and creating new adversarial agents to train against is time consuming. TD-Gammon was one of the 

early applications of multi-agent reinforcement learning and self-training to board games (Tesauro, 

1995). Following TD-Gammon, more sophisticated multi-agent methods have been developed to train 

multiple agents cooperatively and competitively, however for the purposes of this project training Deep-

Q agent 2B against a fixed Deep-Q Agent 2B’ was the most effective and stable approach. 

Similar to how prior knowledge and experience aids human learning, machine learning algorithms can 

benefit from techniques such as transfer learning and training against various opponents. The 

introduction of prior knowledge and learning in reinforcement learning can be done in many ways 

depending on the task at hand. Many transfer learning techniques involve first training an agent to 

complete a similar problem then using that same model as a starting point to train to complete the 

intended problem. While this technique is more frequently used in image-based classifications and 

predictions, some studies have displayed benefits of transfer learning from different problems or 

domains in strategy problems such as games. Sato, Iida and van den Herik have displayed transfer 

learning by first training an agent in a Tic-Tac-Toe environment then using that prior knowledge to aid 

the same agent when trained in a Connect 4 then Connect 5 environment (2015). For the purposes of 

this study, the Dots and Box task is simple enough to use transfer learning against agents of varying 

levels of strategy without need for a simpler domain or task, such as Tic-Tac-Toe, to draw knowledge 

from. 
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3.3 Volunteer Trials 

To assess the similarities and differences in human and machine learning, it was necessary to collect 

human volunteer data of participants playing games of Dots and Boxes, with the intention of comparing 

the learning process and resulting strategy of individuals across 20 games to the training of q-learning 

algorithms. In order to more accurately draw comparisons between algorithms and participants, human 

volunteers played all 20 games against the ‘box-greedy’ q-learning with linear combination of features 

agent, just as Deep-Q agent 1 was trained. 

To collect human volunteer data, a website was created using Python with the Flask web application 

framework to host the greedy q-learning algorithm and allow volunteers to play against it (Fig. 7a). 71 

participants were recruited and forwarded to a website explaining the rules of the Dots and Boxes game. 

After completing a short 2x1 dot board task to assess understanding of the task, participants were then 

forwarded to a representation of a 4x4 dot board where they took turns playing against the ‘box greedy’ 

q-learning with linear combination of features algorithm to place edges and claim boxes across 20 

games. Game information including board state, action played, turn number and number of boxes 

claimed was stored in a data frame at each turn to get a complete log of each volunteers’ games. 

The majority of participants were recruited from the Durham University Psychology Department 

participant pool, from which all participants fall in the age range of 18-24. All participant demographics 

are reported in Supplementary Table 1. No exclusion criteria were applied in the volunteer process. All 

volunteers were asked to sign a consent form and were provided with an information sheet detailing the 

experiment and intended use of data (Supplementary Fig. A & B). 

 

Figure 7: a The Dots and Boxes task user interface allowing volunteers to complete 20 games against the q-learning agent. b 

An example question from the CRT MCQ 4 test, where four answers are presented to volunteers. 5 pence is the correct answer 

(measuring system 2), 10 pence is the intuitive answer (measuring system 1) and the other two answers are incorrect decoys. 
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Each game played by volunteers is tagged with the level of strategy reached in that game, from levels 

1 to 5 based on the phases of strategy described by Weaver and Bossomaier (1998). Each volunteer 

starts at level 1 (random) and is marked as having progressed to a higher level of strategy if said player 

exhibits that level of strategy consistently for at least three games in a row. Levels of strategy are 

decided by the following criteria: 

- Level 2 (Box Greedy): Player exhibits this strategy if, as soon as opponent places third edge on 

a box, the player completes the box. 

- Level 3 (Box Greedy +): Player exhibits this strategy if, alongside exhibiting level 2 strategy, 

they also avoid placing the third edge on a box if possible. 

- Level 4 (Temporal): Player exhibits this strategy if, alongside exhibiting levels 2 and 3 strategy, 

they also bait the opponent into claiming short chains instead of long chains. 

- Level 5 (Temporal +): Player exhibits this strategy if, alongside exhibiting levels 2, 3 and 4 

strategy, they also sacrifice the last two boxes in a chain to bait the opponent into completing 

the two boxes and opening up a longer chain. 

When studying human decision-making and learning, it is important to avoid making assumptions that 

all individuals are alike and behave as a group. A multitude of factors can influence the way individual 

humans make decisions and learn, from personality attributes such as drive and decisiveness to general 

intelligence. For these reasons, it was important to try to assess the sensitivity to reward and punishment 

in human volunteers as well as individual use of systems 1 and 2 thinking. After playing 20 games, 

volunteers were asked to complete the BIS/BAS questionnaire and the CRT-MCQ 4 test to measure 

sensitivity to punishment and reward and use of system 1 and 2 thinking respectively. Both Dots and 

Boxes task data and questionnaire data were stored with unique random IDs to map task data to 

questionnaire responses while still maintaining volunteer anonymity. Once collected, answers to the 

BIS/BAS questionnaire and CRT-MCQ 4 test were graded and scores for individuals were calculated 

according to the guidance from their original papers.  

 

 

Results 

4.1 Volunteer Trial Data 

In total 71 responses were received, 9 of which were excluded due to incompletion of either the Dots 

and Boxes task or questionnaires, leaving 62 participants with complete datasets to perform analysis 

on. Participants were classed as high scorers for BIS/BAS groups if satisfying �̅� ≥ µ, where �̅� is 

individual mean score of BIS/BAS group questions and µ is mean of population. Participants were 

classed as high scorers for CRT groups if satisfying 𝑠 ≥ µ, where 𝑠 is score of CRT groups and µ is the 

population mean score. Data across BIS/BAS and CRT was fairly bimodal and as such it made sense to 

place participants in categories based on this. Distributions of participant scores can be found in 

Supplementary Figures 3a-f.  
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Figure 8: a & b Line plot displays average number of player wins per quartile (5 games per quartile) across all 62 participants. 

Bar plots display average number of player wins per quartile for each BIS/BAS and CRT group. Standard error displayed for 

each bar. CRT Correct High n = 38, CRT Intuitive High n = 32, BIS High n = 32, BAS Drive High n = 32, BAS Reward High 

n = 34, BAS Fun High n = 27. 
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As observed in Figure 8a, participants classed as high correct CRT scorers won more games in each 

quartile than average, and participants classed as high intuitive CRT scorers won fewer games in each 

quartile than average. Interestingly, while number of games won per quartile plateaus in quartiles 3 and 

4 across all 62 participants, there is a decline in number of games won from quartile 3 to quartile 4 

among participants with high BAS Fun Score. While this could seem to suggest a loss of interest and 

subsequent carelessness in gameplay by the fourth quartile of games among high BAS Fun scorers, 

when running additional two-way ANOVA tests, the impact of high BAS Fun on total score across all 

quartiles was not statistically significant, as was the TukeyHSD pairwise tests between quartiles 3 and 

4 in high BAS Fun participants (Supplementary Tables 3 & 4). Only high CRT correct, CRT intuitive 

and BAS Drive displayed a statistically significant effect on participant total won games 

(Supplementary Table 3). 

 

Figure 9: a Box plots displaying distribution of games at which players first reach each level of strategy between levels 1-5, 

where level 1 is the level all participants start at. The percentage of the participants exhibiting each level of strategy is 

displayed to the right of each box plot. b Heatmap displaying Spearman correlation between BIS/BAS and CRT groups and 

game metrics. Rho (r values) displayed between each group with significance of each correlation denoted by asterisks. Strategy 

Level 3 n = 57, Level 4 n = 37, Level 5 n = 9. 



24 
 

Each game played by participants was tagged with a level of strategy reached as outlined in the Methods 

section of this paper. All participants were able to reach level 2 of strategy before completing all 20 

games, and the majority of participants (91.5%) were able to reach level 3 of strategy before completing 

all 20 games. Fewer participants reached levels 3 and 4 of strategy before completing all 20 games 

(59.6% and 14.9% respectively). The majority of participants reached levels 2 and 3 strategy within the 

first quartile (games 1 to 5) of games 

As observed in Figure 9b, there is a moderate positive correlation of rho(36)=0.36, p<0.01 between 

participants classed as high correct CRT scorers and total number of games won. Additionally, there is 

a moderate positive correlation of rho(36)=0.44, p<0.05 between high correct CRT scorers and number 

of games played at level 4 strategy, and low positive correlation of rho(36)=0.29, p<0.05 between high 

correct CRT scorers and players winning their first game between games 1 to 5. There is a moderate 

negative correlation of rho(30)=-0.40, p<0.01 between participants classed as high intuitive CRT 

scorers and number of games played at level 4 strategy. Additionally, there is a moderate negative 

correlation of rho(30)=-0.34, p<0.05 between high intuitive CRT scorers and players winning their first 

game between games 1 to 5, and a low negative correlation of rho(30)=-0.27, p<0.01 between high 

intuitive CRT scorers and total number of games won. 

There are no correlations between number of games played at level 5 strategy and BIS/BAS or CRT 

groups, bar the low negative correlation between high BIS scorers and employment of level 5 strategy, 

however this is not a statistically significant correlation. There is a moderate negative correlation of 

rho(30)=-0.41, p<0.01 between high BAS Drive scorers and players winning their first game between 

games 1 to 5, and low negative correlation of rho(30)=-0.10, p<0.05 between high BAS Drive scorers 

and total number of games won. There is also a moderate negative correlation between high BAS Drive 

scorers and number of games played at level 4 strategy, however the correlation is not statistically 

significant. Interestingly, there is no significant correlation between groups high BIS, high BAS Fun 

and high BAS Reward against game and strategy metrics. 

 

4.2 Q-Learning with Linear Combination of Features 

 

Figure 10: Line plot displaying percentage games won after each 1,000 games trained against, where training is between a 

Q-learning with linear combination of features agent against a random agent. Levels of strategy reached at training stages 

are marked. 
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The first agent trained was the q-learning with linear combination of features agent. A random policy 

agent was created to play against the q-learning model, with the q-values of the approximated feature-

action space updated at the end of each game depending on overall result of the game, with all feature-

action pairs either rewarded or penalised for winning or losing respectively, as well as a smaller 

additional reward for individual feature-action pairs that complete a box. 

Training was performed until the agent had converged to a globally optimum policy and win rate had 

stabilised over 19,000 games against the random policy agent. At the end of each interval of 1,000 

games, 100 games were played between the random agent and q-learning agent independently of 

training to track progress and collect metrics such as percentage wins. 

A random sample of 20 games from each 100-game test phase was taken and strategy for each game 

was logged against rules defined in Section 4.1. If the agent displayed a level of strategy as defined 

consistently across all 20 games, then that phase of training is marked as having reached that level.  The 

q-learning agent consistently displayed stage 2 strategy after training against 8,000 games, then stage 3 

after 14,000 games, at which point win rate had stabilised, as seen in Figure 10. Stages 4 and 5 were 

not reached, leading to the q-learning agent settling on a ‘box greedy’ policy. 

 

4.3 Deep-Q Learning 

Two versions of Deep-Q learning agents with identical model architecture were trained to both 

investigate differences in training approaches and ultimately select the best Deep-Q agent between the 

two. Deep-Q agent 1 was trained solely against the q-learning with linear combination of features agent, 

and Deep-Q agent 2 was trained in three stages against a random policy agent (creating Deep-Q agent 

2A), then against the q-learning with linear combination of features agent (creating Deep-Q agent 2B), 

then finally against a fixed copy of itself (creating Deep-Q agent 2C). Deep-Q agent 1 was trained until 

performance plateaued at around an 84% win rate when against the q-learning with linear combination 

of features agent. Deep-Q agent 2 was trained in three phases, where training moved on to the next 

phase once performance began to plateau, ultimately reaching a win rate of around 84% in phase 3 of 

training, when training against a fixed copy of itself. 
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Figure 11: a Line plot displaying percentage games won after each 1,000 games trained against, where training is between a 

Deep-Q learning agent against a q-learning with linear combination of features agent. b Line plot displaying percentage 

games won after each 1,000 games trained against, where training is done in three successive phases on the same model. 

Phase 1 training is performed between a Deep-Q learning agent against a random agent, phase 2 against a linear combination 

of features agent and phase 3 against a copy of the Deep-Q learning agent. Levels of strategy reached at training stages are 

marked. 

Similar to the analysis of strategy in Section 4.2, a random sample of 20 games from each 100-game 

test phase was taken and strategy for each game was logged against rules defined in Section 4.1. If the 

agent displayed a level of strategy as defined consistently across all 20 games, then that phase of training 

is marked as having reached that level. Deep-Q agent 1 consistently displayed stage 2 strategy after 

training against 13,000 games, stage 3 strategy after 20,000 games, stage 4 after 25,000 games and stage 

5 after 28,000 games. Deep-Q agent 2 consistently displayed stage 2 strategy after training against 4,000 

games, stage 3 strategy after 15,000 games, stage 4 strategy after 20,000 games and stage 5 strategy 

27,000 games. Deep-Q agent 2 displayed all levels of strategy earlier in training than Deep-Q agent 1, 

suggesting training in transfer learning phases allowed Deep-Q agent 2 to train faster. Ultimately, both 

Deep-Q agents consistently displayed a ‘temporal’ policy towards the end of training. 
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Ultimately, Deep-Q agent 2 was selected as the final Deep-Q agent as it not only displayed temporal 

strategy stages 4 and 5, but also was able to display lower levels of strategy when necessary, for example 

when playing against a random policy agent. While Deep-Q agent 1 trained only against the q-learning 

with linear combination of features agent was able to display stages 4 and 5 of strategy, this display of 

higher-level strategy was often less consistent and the agent struggled to generalise against unfamiliar 

opponents, such as a random policy agent. 

 

4.4 Volunteer Learning and Deep-Q Learning 

Drawing comparisons between the learning process of human volunteers and the training process of RL 

agents is fraught with difficulties. Volunteers had only 20 games to develop their strategy from a random 

policy, whereas RL agents had thousands of simulated games to draw experience from. However, this 

comparison is also clouded by the fact that humans have decision-making experience outside of the 

artificial Dots and Boxes Task environment, aiding their learning of the task with transferable skills and 

quick understanding of the game environment - RL agents often do not have such experience to draw 

from. 

The resulting three agents created from q-learning can be described as: 

- Random (with no policy learned via q-learning), where the agent places edges randomly for all 

board states. 

- Box Greedy (with policy learned from q-learning with linear combination of features), where 

the agent typically avoids placing the third edge on a box if it can and will always place the last 

edge on a box if the opportunity presents itself. 

- Temporal (with policy learned from Deep Q-learning), where the agent utilises a similar 

strategy to ‘box greedy’ but will not always try to claim boxes if sacrificing a small number of 

boxes can lead to claiming more boxes in the future. 

With these three distinct strategies, comparisons can be made between machine learning agents and 

human volunteers with their own distinct strategies. To draw said comparisons, volunteer game play 

must be benchmarked against each agent. For each volunteer game, the board states of each player turn 

are reshaped into matrices and passed through each of the three agents to find the resulting predicted q-

values from each of the random, greedy and temporal policies. Comparisons can then be made between 

actions made by human volunteers and actions that would have been made by each of the three machine 

learning agents. 
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Figure 12: a Example board state showing predicted q-values of each agent strategy and actual strategy of human player. In 

this example, the human player seems to adopt a temporal strategy as opposed to a greedy one.b Line graph showing the 

percentage of participants using greedy (or higher level) strategy in each game over the 20 trial games, based on correlation 

between volunteer gameplay and greedy agent predicted q-values. Standard error bars displayed. c Line graph showing the 

percentage of test games using greedy (or higher level) strategy at each 1,000 training game mark of both Deep-Q agent 1 

and Deep-Q agent 2, based on correlation between deep agent gameplay and greedy agent predicted q-values.  

  

    Deep-Q agent 1 

    Deep-Q agent 2 
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Figures 12b and 12c show the learning and adoption of greedy or higher strategy across human 

volunteer trials and deep learning agent trainings. Volunteer board states across all 20 games were fed 

into the resulting greedy and temporal agents, where q-values for each state-action pair were predicted 

and compared to the state-action pairs individual volunteers actually played. Random, greedy or 

temporal strategy was assigned to each game from each individual volunteer based on the highest 

correlating agent strategy across all board states. This same process was applied to Deep-Q agents, 

where 200 test games were played at each 1000 games training mark, q-values for each state-action pair 

were predicted using previously trained agents and strategy was assigned based on which agent 

correlated with training decisions. 

Human volunteers showed rapid learning of greedy strategy within the first quartile of games played, 

after which point the adoption of greedy strategy or higher seemed to fluctuate around 70% of games 

played. In contrast, both Deep-Q agents displayed more gradual learning and adoption of greedy 

strategy, Deep-Q agent 1 more so than Deep-Q agent 2. Additionally, the use of greedy or higher 

strategy was more consistent in both Deep-Q agents once greedy strategy was learnt when compared to 

volunteer games. There is a decline in adoption of greedy strategy at the 9,000 training games mark for 

Deep-Q agent 2, however this is likely due to the agent switching from training against a random agent 

to training against the q-learning with linear combination of features agent at that point. 

Between the two Deep-Q agents, while there are still stark differences, Deep-Q agent 2B (the resulting 

Deep-Q agent when trained against the q-learning with linear combination of features agent) most 

closely resembles the human volunteer learning process. One of the many difficulties in drawing 

comparisons between human and machine learning is the lack of context and prior learning in machine 

learning agents. Human volunteers likely will have played games similar to dots and boxes before, and 

as such will be able to transfer prior learning to the Dots and Boxes environment; depending on how 

agents are trained, there is little to no context and a policy must be learned from nothing. As Deep-Q 

agent 2B was first trained against a random Dots and Boxes agent before being trained against the 

greedy q-learning with linear approximation of features agent, it has more prior information then Deep-

Q agent 1, and as such is able to win more early-stage games as well as learning and adopting greedy 

strategy rapidly. 

 

 

Figure 13: Heatmap displaying Spearman correlation between BIS/BAS and CRT groups and predicted q-value agent strategy 

groups. Rho (r values) displayed between each group with significance of each correlation denoted by asterisks. 
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As observed in Figure 13, there is a moderate positive correlation of rho(36)=0.36, p<0.05 between 

high correct CRT scorers and temporal agent strategy. While there are low negative correlations 

between high intuitive CRT scorers and both temporal and greedy agent strategies, these correlations 

are not statistically significant. There is a low negative correlation of rho(30)=-0.26, p<0.01 between 

high BIS scorers and temporal agent strategy. Additionally, there is a low positive correlation of 

rho(32)=0.27, p<0.01 between high BAS Reward scorers and random agent strategy. Both high BAS 

Fun and high BAS Drive scorers have moderate negative correlations, rho(25)=-0.37, p<0.05 and 

rho(30)=-0.41, p<0.01 respectively, with greedy agent strategy. 

 

 

Discussion  

The Dots and Boxes game proves to be an effective task to study human and machine learning, allowing 

for observation of the impact of behavioural factors such as inhibition, sensitivity to reward and systems 

1 and 2 thinking on learning and decision making. Additionally, through the study of learning 

progression in both human participants and machine learning agents, the clear benefits of transfer 

learning in humans can be observed. 

While it is seen in many machine learning studies that transfer-learning or prior knowledge in models 

indeed speeds up training when applied effectively, it is interesting to confirm this in this study while 

also drawing comparisons between prior knowledge in reinforcement learning agents and in human 

volunteers when learning against the same opponent. Despite Deep-Q agent 1 learning how to play Dots 

and Boxes against the same q-learning with linear combination of features agent as human volunteers, 

Deep-Q agent 2’s learning progression observed in Figure 9 bears much more similarity to human 

volunteer learning progression observed in Figure 7c, where level 2 strategy is learned early on and 

adoption of levels 3-5 strategy gradually occurs as training progresses. While Deep-Q agent 1 plateaus 

in win rate before Deep-Q agent 2, as seen in Figure 11, it is important to remember Deep-Q agent 2 is 

at this point training against a more advanced opponent than Deep-Q agent 1; as such, reaching 

milestones such as level of strategy is a better indicator of training speed. Deep-Q agent 2 displays 

consistent use of level 5 strategy earlier than Deep-Q agent 1, as seen in Figure 11, suggesting faster 

training with the aid of transfer-learning. In future studies, it would be interesting to see if transfer-

learning using similar board games such as Tic-Tac-Toe before training agents in a Dots and Boxes task 

environment would improve learning speed further. 

Human participants quickly learn and develop a box-greedy strategy, with over 75% of games 

employing a box-greedy strategy by the 5th game played, observed in Figure 12a. In comparison, both 

Deep-Q agent 2 and Deep-Q agent 1 displayed much slower adoption of this strategy, with both agents 

passing the 75% greedy strategy games mark in quartiles 2 and 3 respectively, observed in Figure 12b. 

However, despite rapid adoption of levels 2 and 3 strategies, only 59.6% of participants consistently 

displayed level 4 strategy and only 14.9% of participants consistently displayed level 5 strategy, seen 

in Figure 9a. It is difficult to say if more participants would reach higher levels of strategy if they were 

studied over more than 20 games or if most participants simply satisficed, deciding that their reached 

level of strategy provided a ‘good enough’ win rate and thus not striving to reach higher levels of 

strategy. In future studies, satisficing may be assessed by increasing the number of games participants 

must complete to see if level of strategy reached plateaus. 

It would be possible to increase model performance and allow agents to develop higher levels of strategy 

earlier if 2-ply or 3-ply elements were introduced as part of Bellman update steps, where ply is defined 

as number of moves ahead (Samuel, 1959). Some of the best Deep RL agents apply deeper searching 

via methods such as Monte Carlo Tree Search (Guo et. al, 2014). The original Bellman equation is only 
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1-ply, as it only includes maximum reward from the next state and looks no further. This one step of 

lookahead can limit training performance, especially in tasks where more than one step of lookahead is 

necessary in higher levels of strategy. Deep Blue would typically search between 6 to 16-ply states in 

chess game trees to find the optimal strategy (Campbell, Hoane & Hsu, 2002), and TD-Gammon 

employs 2-ply search to find the optimal Backgammon strategy (Tesauro, 1995). While no more than 

2/3-ply is necessary for Dots and Boxes, as it is a simple task compared to the likes of chess, it would 

still be interesting in future studies to assess agents applying different levels of lookahead compared 

against human volunteer strategy, especially between CRT system 1 & 2 thinking groups of volunteers. 

Higher levels or strategy such as levels 4 and 5 require players to look at least two moves ahead, and 

certain volunteers consistently exhibited higher levels of strategy suggesting their engagement of some 

degrees of lookahead beyond the next immediate move. 

Both the BIS/BAS questionnaire and CRT-MCQ 4 test data allow for interesting analysis into individual 

learning and decision-making and the behaviours that may drive them. As BIS measures sensitivity to 

punishment or lack of reward, it is often hypothesised that those with a high BIS score would perform 

better than average. Indeed, the win rate of high BIS individuals in gambling style games is observed 

to be higher than the win rate of low BIS individuals (Kim & Lee, 2021). However, it is possible that 

BIS score becomes unreliable as a predictor of performance in artificial strategy situations such as Dots 

and Boxes, where poor performance has a much smaller impact on the participant. While BIS score had 

no observed statistically significant relationship with Dots and Boxes task metrics, such as total games 

won or games played at level 4 or 5 strategy (see Figure 9b), a low negative correlation was found 

between high BIS score and the use of temporal agent strategy (see Figure 13). As temporal strategy 

requires sacrificing short-term gains for long term rewards in the form of giving up short chains of 

boxes to the opponent, this correlation could potentially indicate high BIS individuals avoid the ‘risky’ 

short-term losses despite the possible long-term gains. 

Interestingly, both BAS Fun and BAS Drive display moderate negative correlations with greedy agent 

strategy in Figure 13. When training the ‘box-greedy’ q-learning with linear combination of features 

agent, level 3 strategy was reached before the agent satisficed and settled on a strategy that was good 

enough to achieve a decent win rate with the approximated state space. On the contrary, Deep-Q agent 

2’s temporal strategy was achieved through maximising where the best strategy was found against a 

range of opponents and without approximating state space to a simplified representation of the task. In 

existing studies assessing both BIS/BAS and maximisation vs satisficing the relationship between BAS 

subtypes such as Drive and Fun are ambiguous. Spunt et al. report positive correlation between BAS 

Drive and maximising behaviour in participants (2009), however this correlation is low and there is no 

observed relationship between BAS Fun and maximisation. While the moderate negative correlation 

between high BAS Drive participants and greedy strategy could be due to high BAS Drive individuals 

being less likely to satisfice, this hypothesis does not explain the low negative correlation between high 

BAS Drive participants and temporal strategy, which is maximising in nature. As such, in future studies 

comparing satisficing in RL agents against human learners the Maximisation Scale (MS) developed by 

Schwartz et al. may be a more appropriate behaviour metric than assessing BIS/BAS (2002). 

While both high BAS Fun and high BAS Drive display moderate negative correlations with greedy 

agent strategy in Figure 13, high BAS Reward displays no significant relationship with greedy agent 

strategy and instead shows moderate positive correlation with random agent strategy. Additionally, high 

BAS Reward displays no significant relationship with game metrics such as total wins or levels of 

strategy, seen in Figure 9b; while high BAS Reward individuals are sensitive to reward stimuli gained 

from winning, strategy employed by said individuals is not conducive to the achievement of rewards.  

The Cognitive Reflection Test proves to be a useful behavioural metric when assessing individual Dots 

and Boxes strategy. Strategy of individuals with a higher number of CRT-correct responses shows 

moderate positive correlation with the strategy employed by the temporal agent, seen in Figure 13, and 
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high CRT-correct individuals also displayed moderate positive correlation with game metrics 

suggesting higher performance, such as higher total number of wins and number of games played at 

level 4 strategy, as observed in Figure 9b. These findings consolidate high CRT-correct individual use 

of system 2 reasoning as opposed to system 1 intuitive thinking to avoid impulsive strategy with low 

pay-out, instead applying reasoning to adopt a more successful temporal-style strategy. High CRT-

intuitive individuals didn’t significantly correlate with any of the three RL agent strategies, making 

conclusions as to strategy employed by these individuals difficult. High CRT-intuitive individuals 

correlated with game metrics suggesting lower performance, as seen in Figure 9b, and lower 

performance when compared against the average win rate across participants in each quartile of games 

can be observed in Figure 8a. 

When drawing comparisons between human and machine learning it is important to note that there are 

orders of magnitude in difference in training times of agents compared to learning times in humans. 

More can be done to compare agent policies against human volunteer decisions, for example by 

calculating the Elo ratings of both human and agent players or comparing human volunteer moves 

against agent policies in similar situations, as displayed in the analysis of AlphaGo against champion 

Go players (Silver et al., 2018). Another more quantitative approach may have included calculating the 

likelihood of each human action according to each of the three agents developed and finding the 

combined likelihood of any given action to better benchmark human learning against machine learning. 

 

 

Conclusion 

To conclude, Dots and Boxes is an effective task to study both human and machine learning, allowing 

for various machine learning architectures and training methods as well as allowing for observation of 

how behavioural factors such as systems 1 and 2 of thinking affect human decision making. By 

benchmarking learning progression in terms of defined levels of strategy reached by both human 

participants and machine learning agents, the benefits of simulating the transfer learning done by 

humans in Deep-Q learning agents can be observed. BIS/BAS and CRT-MCQ 4 participant data allow 

for interesting insights into how behavioural metrics, such as impulsivity vs reasoning and sensitivity 

to reward and punishment, affect learning and decision making in humans. 
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Supplementary Tables 

 Under 18 18-24 25-34 35-44 45-54 55 or older 

No. Participants 2 59 3 1 3 3 
Table 1: Distribution of all participant ages. 

 

 Female Male Non-binary Prefer not to say 

No. Participants 47 15 2 7 
Table 2: Distribution of all participant genders. 

 

BIS/BAS/CRT Groups Mean Sq F Value Pr Significance DF 

BIS High 3.009 1.468 0.227  1 

BIS High:Quartile 0.305 0.149 0.93  3 

BAS Reward High 0.632 0.306 0.581  1 

BAS Reward High:Quartile 0.141 0.068 0.977  3 

BAS Fun High 5.446 2.702 0.102  1 

BAS Fun High:Quartile 1.565 0.777 0.508  3 

BAS Drive High 26.664 14.035 0.000241 *** 1 

BAS Drive High:Quartile 1.408 0.741 0.528966  3 

CRT Correct High 41.72 22.801 3.71E-06 *** 1 

CRT Correct High:Quartile 0.59 0.324 0.808  3 

CRT Intuitive High 34.54 18.582 2.68E-05 *** 1 

CRT Intuitive High:Quartile 1.25 0.673 0.569  3 

Total     70 
Table 3: Two-way ANOVA test results determining effect of high BIS/BAS/CRT and game quartiles on participant scores. 

Effects of high scoring in individual BIS/BAS/CRT groups on score and statistical significance (with Pr as p-values) 

displayed as well as interaction between BIS/BAS/CRT groups and quartile. CRT Correct, CRT Intuitive and BAS Drive 

effect on game score is statistically significant. 

 

 

 

 

   95% Confidence Interval  

BIS/BAS/CRT 

Groups 

Quartile 

Comparisons 

Mean 

Difference 

Lower 

Bound 

Upper 

Bound 

Pr adj 

BIS High Q2-Q1 3.19E-01 -0.44669 1.084984 0.701776 

 Q3-Q1 5.96E-01 -0.17009 1.36158 0.185461 

 Q4-Q1 5.96E-01 -0.17009 1.36158 0.185461 

 Q3-Q2 2.77E-01 -0.48924 1.042431 0.785215 

 Q4-Q2 2.77E-01 -0.48924 1.042431 0.785215 

 Q4-Q3 -4.44E-16 -0.76583 0.765835 1 

BAS Drive High Q2-Q1 3.19E-01 -0.41817 1.056467 0.676168 

 Q3-Q1 5.96E-01 -0.14157 1.333063 0.158568 

 Q4-Q1 5.96E-01 -0.14157 1.333063 0.158568 
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 Q3-Q2 2.77E-01 -0.46072 1.013914 0.765096 

 Q4-Q2 2.77E-01 -0.46072 1.013914 0.765096 

 Q4-Q3 -4.44E-16 -0.73732 0.737318 1 

BAS Fun High Q2-Q1 3.19E-01 -0.44021 1.078504 0.696168 

 Q3-Q1 5.96E-01 -0.16361 1.355099 0.179264 

 Q4-Q1 5.96E-01 -0.16361 1.355099 0.179264 

 Q3-Q2 2.77E-01 -0.48276 1.03595 0.780833 

 Q4-Q2 2.77E-01 -0.48276 1.03595 0.780833 

 Q4-Q3 4.44E-16 -0.75935 0.759355 1 

BAS Reward High Q2-Q1 3.19E-01 -0.44966 1.087956 0.704308 

 Q3-Q1 5.96E-01 -0.17306 1.364551 0.188317 

 Q4-Q1 5.96E-01 -0.17306 1.364551 0.188317 

 Q3-Q2 2.77E-01 -0.49221 1.045403 0.787189 

 Q4-Q2 2.77E-01 -0.49221 1.045403 0.787189 

 Q4-Q3 0.00E+00 -0.76881 0.768807 1 

CRT Correct High Q2-Q1 3.19E-01 -0.40445 1.042746 0.662959 
 Q3-Q1 5.96E-01 -0.12785 1.319342 0.146032 
 Q4-Q1 5.96E-01 -0.12785 1.319342 0.146032 
 Q3-Q2 2.77E-01 -0.447 1.000193 0.754607 
 Q4-Q2 2.77E-01 -0.447 1.000193 0.754607 
 Q4-Q3 1.33E-15 -0.7236 0.723597 1 
CRT Intuitive High Q2-Q1 3.19E-01 -0.41014 1.048439 0.668512 
 Q3-Q1 5.96E-01 -0.13355 1.325035 0.151197 
 Q4-Q1 5.96E-01 -0.13355 1.325035 0.151197 
 Q3-Q2 2.77E-01 -0.45269 1.005886 0.759026 
 Q4-Q2 2.77E-01 -0.45269 1.005886 0.759026 
 Q4-Q3 4.44E-16 -0.72929 0.72929 1 

Table 4: Two-way ANOVA test results after TukeyHSD (Honest Significant Differences) pairwise tests between game 

quartiles; Q1=games 1-5, Q2=games 6-10, Q3=games 11-15, Q4=games 16-20. Pr adj is p-values after adjustment for 

multiple comparisons. No pairwise comparisons are statistically significant. 
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Supplementary Figures 

 

Supplementary Figure 1: Study information all volunteers are provided with before participating. 
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Supplementary Figure 2: Consent form all volunteers must read and sign before participating.  

 

 

Supplementary Figure 3a: Distribution of CRT correct scores of all 62 volunteers. All volunteers with scores > µ were 

classed as belonging to group CRT Correct High (n = 38). 
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Supplementary Figure 3b: Distribution of CRT intuitive scores of all 62 volunteers. All volunteers with scores > µ were 

classed as belonging to group CRT Intuitive High (n = 32). 

 

Supplementary Figure 3c: Distribution of the average BIS scores of all 62 volunteers. All volunteers with average scores > 

µ were classed as belonging to group BIS High (n = 32). 
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Supplementary Figure 3d: Distribution of the average BAS Drive scores of all 62 volunteers. All volunteers with average 

scores > µ were classed as belonging to group BAS Drive High (n = 32). 

 

Supplementary Figure 3e: Distribution of the average BAS Reward scores of all 62 volunteers. All volunteers with average 

scores > µ were classed as belonging to group BAS Reward High (n = 34). 
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Supplementary Figure 3f: Distribution of the average BAS Fun scores of all 62 volunteers. All volunteers with average 

scores > µ were classed as belonging to group BAS Fun High (n = 27). 

 


