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Abstract: In this thesis, the perturbative integrability of 1+1 dimensional bosonic
massive quantum field theories is investigated. Starting from a theory with a generic
polynomial-like potential, the constraints on the masses and Lagrangian couplings
emerging by requiring purely elastic amplitudes at the tree level are obtained. It
is observed that theories satisfying these constraints are completely determined by
their mass ratios and 3-point couplings, while all the higher-order couplings can
be obtained recursively in terms of them by imposing the absence of production
for higher numbers of external legs. By exploiting different root system properties,
it is shown that all the bosonic affine Toda field theories universally satisfy the
constraints of purely elasticity at the tree level: a complete proof of their tree-level
integrability is therefore provided. Subsequently, the higher-order poles observed in
the bootstrapped S-matrices of the ADE series of affine Toda models are studied
in perturbation theory. These singular points have been explained in the past in
terms of anomalous threshold singularities in certain Feynman diagrams, where
multiple propagators go on-shell simultaneously in loop integrations. Networks of
Feynman diagrams contributing to these higher-order poles are found and residues
at the poles are obtained through perturbation theory, showing agreement with the
bootstrapped results. We show that the residues are generated by suitably cutting
the loop diagrams into products of tree-level graphs, which will be called ‘atoms’.
Most of these atoms simplify between one another and only a small number of them
survive matching the bootstrapped results. The simplification mechanism between
atoms inside networks is reminiscent of Gauss’s theorem in the space of Feynman
diagrams.
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Chapter 1

Introduction

1.1 A historical overview

Although the topic of this thesis is the integrability of certain 1+1 dimensional
massive quantum field theories, we present here a broader historical overview of
the subject starting from the study of critical phenomena and conformal field the-
ories. In theoretical physics, exactly solvable theories have always been of great
interest for their fundamental role in increasing our understanding of nature. The
Ising model [4] is probably the best-known example of an exactly solvable statistical
system. Its importance became clear when Onsager, by computing the free energy
on a two-dimensional lattice with a zero magnetic field, provided the first exact
description of a second-order phase transition [5]. In [6] Alexander Polyakov showed
that the correlation functions at the transition point are invariant under conformal
transformations suggesting that all critical phenomena in the scaling limit could
be described by conformal field theories (CFTs). Among all the conformal trans-
formations, the dilatation is of particular interest since the associated anomalous
dimensions of the local fields determine the critical exponents at the transition point.
These dimensions can in principle be computed by exploiting the conformal bootstrap
approach. This method, initially proposed by Polyakov [7], is based on axiomatic
properties. The most important requirement is the associativity of the algebra of
operators comprising the CFT from which crossing symmetry is derived: this leads
to an infinite set of dynamical equations for the structure constants of the operator
product expansions. The structure constants are fixed by the conformal symmetry
up to certain parameters: the anomalous dimensions and numerical factors. There-
fore the solutions of crossing equations allow us to find the values of the anomalous
dimensions.

The conformal bootstrap is formulated for an arbitrary number d of dimensions,
but for d > 2 the system has proved too complicated to be solved and the problem
remained untouched for decades. If d = 2 something special happens: the conformal
group becomes infinite-dimensional, being the direct product of the analytic and
anti-analytic transformations on the variables z and z̄ in the complex plane. The
algebra associated with these transformations is called the Virasoro algebra and
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its representations can be organized into conformal families: each one of these
families is defined by a state annihilated by all the lowering operators of the Virasoro
algebra, the so-called highest-weight vector (HWV) or primary state, plus all its
descendants. It was proved by Kac [8] that for particular values of the weights
of the primary operators the conformal families contain ‘null states’ that can be
consistently regarded as zero; as a consequence of this fact, the associated conformal
families become degenerate in the sense that they contain fewer fields than usual.
Focusing on the domain of the Virasoro central charge 0 < c ≤ 1, where the
conformal weights are all real and positive, Belavin, Polyakov and Zamolodchikov [9]
determined the values of c at which all the conformal families were degenerate.
The infinite set of values they found for the central charge define the so-called
minimal models having many interesting properties. Most importantly, the fact that
all the conformal families of minimal models were degenerate, with the additional
assumption of the existence of an associative algebra of local operators, allowed
Belavin, Polyakov and Zamolodchikov to formulate linear differential equations for
the correlation functions. They explained how to solve the conformal bootstrap
exactly by solving these differential equations; moreover, they claimed that the
minimal models could be identified with statistical systems at the critical points.
Further effort was subsequently done to check this conjecture. In [10] Friedan,
Qiu and Shenker showed that a necessary requirement for unitarity in the domain
0 < c ≤ 1 restricts the possible values of the central charge to

c = 1 − 6
(k + 2)(k + 3) , k = 1, 2, 3 . . . (1.1.1)

They noted that these conditions were satisfied by particular minimal models found
in [9]. By a matching between the scaling dimensions the values k = 1, k = 2, k = 3
and k = 4 have been identified in [10] with the Ising model, the tricritical Ising model,
the three-state Potts model and the tricritical three-state Potts model respectively.
This exact comparison has been made possible by simultaneous progress carried out
in the exact resolution of statistical systems (see [11] and references therein).

In their work [9] Belavin, Polyakov and Zamolodchikov assumed that all the holo-
morphic and anti-holomorphic conserved currents, having conformal dimensions (s, 0)
and (0, s) under the Virasoro dilatation generators on z and z̄, were descendants of
the identity operator through the action of the Virasoro lowering operators. The
simplest examples were the holomorphic and anti-holomorphic components of the
stress-energy tensor, with conformal dimensions (2, 0) and (0, 2) respectively. This
assumption was later relaxed [12], allowing for the existence of additional conserved
currents that are not Virasoro descendants of the identity. Any time this happens the
symmetry group is enlarged. For example, the presence of operators of dimensions
(3/2, 0) and (0, 3/2) generate the superconformal group [13], while conserved cur-
rents of dimensions (1, 0) and (0, 1) enlarge the symmetry to that of a Kac-Moody
algebra [14]. In a pair of remarkable papers [15, 16] Goddard, Kent and Olive
showed that the representations of the Virasoro algebra could be constructed out
of representations of the Kac-Moody algebras. All the minimal models with central
charges (1.1.1) were obtained from coset theories defined as quotients of Kac-Moody
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algebras:1
su(2)k × su(2)1

su(2)k+1
. (1.1.2)

Through this construction Goddard, Kent and Olive were able to prove that the
condition (1.1.1) is not only necessary but also sufficient to have unitary conformal
field theories.

The S-matrix bootstrap program is even older than the conformal bootstrap and
was a philosophy very famous in the sixties: it was based on the idea that the
S-matrix elements could be derived directly, without the use of Lagrangians or fields,
by imposing certain symmetries and universal properties. In this way, infrared
and ultraviolet divergences encountered in the computation of amplitudes through
the usual Lagrangian formalism could have been completely avoided. One of the
most important requirements of the S-matrix bootstrap is the analytical structure
of the amplitudes, arising by requiring unitarity and causality. An important book
on the subject is [17]. Due to the lack of symmetries, unfortunately, the initial
S-matrix bootstrap was insufficient alone to uniquely define physical observables and
interest in it was lost, partially due to the emergence of quantum chromodynamics
and the improvement of perturbative techniques. However, once again a special
consideration has to be given to two-dimensional quantum field theories: in 1978
Alexander and Alexei Zamolodchikov published a paper [18] in which they explained
how the presence of higher spin commuting conserved charges, in addition to unitarity,
crossing symmetry and analyticity, could be used to fix the S-matrix elements of
certain massive quantum field theories in 1+1 dimensions almost completely. The
theories considered in [18], characterised by having an infinite tower of conserved
charges, are called ‘integrable’ and the S-matrix bootstrap resulted extremely fruitful
in the computation of their S-matrices.

Even though the conformal and the S-matrix bootstrap approaches in 1+1 dimensions
being formulated in different contexts, the former to compute correlation functions
and the latter to evaluate S-matrices, they have a remarkable connection. For a given
CFT, all the composite fields made up of the analytic and anti-analytic components
of the stress-energy tensor define an infinite set of local integrals of motion (the
descendants of other analytic and anti-analytic primaries can also be considered if
a larger symmetry is involved than Virasoro). In [19, 20] Alexander Zamolodchikov
showed that certain deformations of minimal models by some of their spinless relevant
primary fields lead to renormalization group trajectories which conserve a subset of
the integrals of motion of the unperturbed CFT. As an example, in [19, 20] the Ising
model (in the scaling limit) was considered at the critical temperature in the presence
of a magnetic field and it was proved that higher-spin integrals of motion exist other
than energy and momentum. The existence of even one of these higher-spin charges,
together with its parity-symmetric partner, is enough to prove that the S-matrix
factorises and particle production is forbidden [21]. These considerations allowed
Zamolodchikov to implement the S-matrix bootstrap approach earlier defined in [18]
to solve the Ising model at the critical point in the presence of a magnetic field: the

1The subscript letters represent the grading of the Kac-Moody algebras.
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solution consisted of a list of S-matrix elements describing the interactions of eight
different types of relativistic particles. The results of Alexander Zamolodchikov were
then used as a starting example to study many other universality classes of critical
phenomena in two dimensions: while critical points can be described by conformal
field theories [9], some of their deformations by suitable relevant operators induce
renormalization group trajectories that are exactly solvable.

In 1990 Alexei Zamolodchikov introduced the Thermodynamic Bethe Ansatz (TBA)
in the context of two-dimensional relativistic quantum field theories [22]. This is
a method to compute the ground state energy and effective central charge of two
dimensional integrable systems on a finite volume in terms of their S-matrix elements.
The effective central charge c̃(R) can be numerically determined as a function of the
spatial volume R, interpolating between an ultraviolet- and an infrared-value in the
limits R → 0 and R → +∞. In [23], by means of the TBA, Klassen and Melzer were
able to evaluate the effective central charges of different integrable theories that were
thought to be obtained as deformations of CFTs through a relevant operator. In all
the considered cases they obtained the expected values of the CFT central charge in
the ultraviolet limit. In particular, the central charges of the minimal models with
k = 1, k = 2 and k = 4 in the series (1.1.1) were recovered starting from the minimal
S-matrices associated with the exceptional Lie algebras e(1)

8 , e(1)
7 and e(1)

6 respectively,
confirming results earlier conjectured in [20, 24, 25] through the S-matrix bootstrap.

In more recent years both the conformal and the S-matrix bootstrap approaches
have been revived. In [26], starting from Polyakov’s idea of crossing symmetry [7],
together with general considerations on the conformal block decomposition, it was
explained how to determine rigorous bounds on the anomalous dimensions of the
operators comprising a generic CFT. The study initiated in [26] opened the door to
numerical solutions of the conformal bootstrap in more than two dimensions and
was continued in a series of papers. Defining the continuum space version of the
spin by σ and the energy density by ϵ in the 3-dimensional Ising model, in [27]
the crossing symmetry was imposed on ⟨σσσσ⟩ and from it the space of allowed
dimensions (∆σ,∆ϵ) was carved out: surprisingly the 3-dimensional Ising model
was identified at a corner point on the boundary of this space. By performing a
similar study on mixed correlators, involving both σ and ϵ, further information
was later obtained [29], allowing the 3-dimensional Ising model to be isolated in a
small closed region in the (∆σ,∆ϵ) parameter space. The little island identifying
the 3-dimensional Ising model in the parameter space was later determined with
extremely high numerical precision in [30]. The Ising model is just an example of
how the conformal bootstrap can be used to numerically classify conformal quantum
field theories. Encouraged and inspired by the promising results obtained in the
study of CFTs, in the last few years many people revisited the S-matrix bootstrap
as well: the general philosophy is to use optimization algorithms to carve out the
space of scattering amplitudes numerically by the imposition of global symmetries,
unitarity, crossing and analyticity. The numerical S-matrix bootstrap has been
studied in a large number of papers touching many different models, from two-
dimensional theories [31] to gravitational amplitudes [32] (we point at [33] for a fresh
overview of the subject). More related to the topic of this thesis is the numerical
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S-matrix bootstrap in 1+1 dimensions introduced in [31]; in that paper and several
following publications it has been tried to carve out the space of scattering amplitudes
numerically by solving certain optimization problems. Particular points on the
boundary of such a space, on which the unitarity is saturated, have then been
identified with known integrable theories. If, on one hand, the optimization problem
developed in [31] is extremely interesting, being able to characterize the space of
S-matrices saturating unitarity, which therefore are suitable candidates to represent
integrable theories, a direct connection with standard perturbation theory is still
not completely understood and will be the focus of this thesis.

1.2 About perturbation theory

Examples of two-dimensional integrable models are in general hard to find, even
at the classical level. One of the main reasons is that the integrability of a given
theory is proven by finding the so-called Lax connection, from which an infinite set
of conserved charges can be generated. However, finding a Lax connection is in
general a difficult task; indeed only in recent years it has been argued how to extract
such a connection in a more systematic way making use of a correspondence with
4-dimensional Chern-Simons theories [34]. Different approaches have been developed
to generate integrable models to avoid the problem of finding a Lax connection;
one way is to deform known integrable theories through solvable deformations: this
is the method used by Zamolodchikov in [19, 20] to study integrable trajectories
of the renormalization group flow away from the critical points. In that case, the
undeformed starting theory was not just integrable but also conformal. More recently,
deformations have played an important role in the study of integrable sigma models
(see [35] and references therein) from which examples of solvable string theories can
be generated. The optimization techniques developed in [31] also provide useful tools
to classify integrable theories.

In this thesis, we will discuss a different approach to understanding the integrability
of a given theory pointed out in a review article [36]. In that review, it was shown
how the Lagrangian couplings of certain bosonic massive quantum field theories can
be constructed iteratively by imposing the absence of production in perturbation
theory. This imposition, already at the tree level, extremely constrains the possible
masses and Lagrangian couplings and can be used to define the space of massive
integrable quantum field theories having a Lagrangian construction. If on one hand
this approach can be used to classify integrable models, on the other hand, the way in
which integrability manifests itself in perturbation theory is interesting to understand
in its own right. Well-known integrable models, for which the S-matrix elements have
been conjectured through the bootstrap approach [18], when studied perturbatively,
manifest cancellations and simplifications in sums of Feynman diagrams that are
often ill-understood. This thesis will look at these cancellations in some detail: the
first part of the thesis is focused on general quantum field theories, while the second
part is devoted to the perturbative study of bosonic affine Toda models, a famous
class of integrable theories. More precisely the two parts of the thesis are structured
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as follows.
First part

In chapter 2 the S-matrix bootstrap program introduced in [18] will be reviewed
and the conventions used along with all the thesis will be set. The discussion
includes the Parke argument [21] to prove the absence of production in theories with
higher spin conserved charges and part of the Zamolodchikov computations presented
in [19, 20] to solve the Ising model deformed by a magnetic field. In chapters 3 and 4
the constraints on the masses and couplings obtained by imposing purely elastic
amplitudes at the tree level in bosonic Lagrangian theories with polynomial-like
potentials are derived. Following the discussion of [1], it is shown that the masses
and 3-point couplings, tuned by imposing pure elasticity in 4- and 5-point processes
at the tree level, are sufficient to classify integrable models while all the higher-order
couplings can be obtained through certain recursion relations introduced in [37]. By
adding the extra requirements that poles in elastic two-to-two processes are due to
only one on-shell propagating particle at a time and poles cancel between pairs of
Feynman diagrams in inelastic two-to-two processes, it is shown that the imposition
of pure elasticity in tree-level amplitudes implies the so-called ‘area rule’. This
rule was derived in [1] and connects the 3-point couplings C(3)

abc to the areas ∆abc of
the triangles composed of the masses ma, mb and mc of the coupled particles in a
universal way. The bootstrap fusing relations and the factorisation properties at all
orders of loops are shown to be implied by the absence of production in perturbation
theory.
Second part

The second part of the thesis is focused on affine Toda field theories. Chapter 5 is a
review of these models: we define their Lagrangian and a Lax pair construction of
their equations of motion showing proof of their classical integrability following the
lines of [38]. The results are presented making use of universal geometrical properties
of root systems and following conventions that will be useful also for chapter 6. In
chapter 6 we provide proof of the absence of production at the tree level valid for
all the affine Toda field theories. The proof, taken from [1], uses the Lie algebra
properties reviewed in chapter 5 to prove the scattering constraints discussed in the
first part of the thesis. Finally in chapter 7 certain loop features of simply-laced
affine Toda theories are investigated. Higher-order poles in amplitudes predicted by
the bootstrap are explained in perturbation theory in terms of anomalous threshold
singularities in certain Feynman diagrams according to the Coleman-Thun mech-
anism [39]: these singularities are generated by collections of diagrams that can be
arranged inside networks. We show that residues of amplitudes at higher-order poles
are obtained by cutting the diagrams into products of tree-level graphs, the so-called
atoms. In each network, most of the atoms cancel between one another in a way
that can be explained using the tree-level properties of these models. In the end,
the only contributing cuts are located on the boundary of the network. The results
in this chapter will appear in papers [2, 3] currently in preparation
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Axiomatic and Perturbative
Integrability in 1+1 Dimensions





Chapter 2

The S-matrix bootstrap in 1+1
dimensions

Integrable quantum field theories in 1+1 dimensions provide a fantastic playground
where non-perturbative techniques can be explored. This chapter aims to be a short
review of the topic; more extended pedagogical lectures can be found for example
in [36, 40]. Part of the study carried out in [18] will be reviewed together with the
argument presented in [21]: this argument shows how the absence of production and
the factorization of multiple-point S-matrices emerge by the action of the higher-
spin conserved operators on the wave packets. The concepts of unitarity, crossing
symmetry and bootstrap fusing relations will also be reviewed and used to revisit
the Zamolodchikov construction [19, 20] of the Ising model deformed by a magnetic
field.

2.1 Conserved charges and absence of production

The focus of this thesis will be on massive theories with possibly-different types
of scalar particles, each one coming with its own mass mj, in 1+1 dimensions. A
convenient choice to represent momenta is to use light-cone components, pj and p̄j,
with respect to which the energy and the spatial momentum are given by

Ej = pj + p̄j

2 , Pj = pj − p̄j

2 . (2.1.1)

A particle of mass mj is on-shell if pj p̄j = E2
j −P 2

j = m2
j . If this constraint is satisfied

then a single particle state can be parametrised by

pj = mjaj = mje
θj , p̄j = mj

1
aj

= mje
−θj , (2.1.2)

where aj ≡ eθj is a certain number and θj is called the ‘rapidity’. Physical states
are characterized by real values of θj (or equivalently by positive values of aj); in
particular a single particle moving to the right has a positive rapidity, while a particle
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moving to the left has a negative rapidity. A state corresponding to a particle of
type j will be indicated by Aj(θ). It is possible to define an n-particle state

|Aa1(θ1)Aa2(θ2) . . . Aan(θn)⟩ (2.1.3)

composed by a set of n possibly-different particles of types a1, . . . , an, carrying
respectively rapidities θ1, . . . , θn. Each particle has to be imagined to be spread
around a certain time-dependent position, with a momentum smeared around the
central value given by the corresponding rapidity. The state is therefore a collection
of wave packets. As long as the distance between the different wave packets is much
bigger than the interaction scale of the model it makes sense to think of the state
in (2.1.3) as a free state. Because the theory is massive, the interaction has indeed
a finite range1.

In the following the problem of computing the amplitude that a state subject to
no interaction in the far past (t → −∞), evolves into a certain free-state in the
far future (t → +∞) will be addressed. Since for t → −∞ it is required that the
particles do not interact, they have to be located from the left to the right on the
spatial line following the increasing order of their rapidities θ1 > θ2 > . . . > θn; the
‘incoming state’ can therefore unambiguously be written, removing the ket, as

|Aa1(θ1)Aa2(θ2) . . . Aan(θn)⟩in = Aa1(θ1)Aa2(θ2) . . . Aan(θn), (2.1.4)

with the fastest particle on the left and the slowest particle on the right. We define a
particle with rapidity θi to be faster than a particle with rapidity θj if θi > θj, with
both the rapidities considered with the respective signs. Analogously, for t → +∞,
the outgoing state has also to be free of further interactions; therefore, in the far
future, the particles need to be ordered on the spatial line from the left to the right
following the increasing order of their rapidities. If the state is composed by m

particles of types b1, . . . , bm carrying rapidities θ′
1 > θ′

2 > . . . > θ′
m, the state can be

written as

|Ab1(θ′
1)Ab2(θ′

2) . . . Abm(θ′
m)⟩out = Abm(θ′

m) . . . Ab2(θ′
2)Ab1(θ′

1). (2.1.5)

The order of the elements on the RHS of (2.1.4) and (2.1.5) is meaningful; the operat-
ors Aaj

(θj) are elements of the so-called Zamolodchikov-Faddeev (ZF) algebra [18, 43],
which is an associative non-commutative algebra. Assuming asymptotic complete-
ness, any intermediate state can equivalently be expanded in the in- or out-basis.
Moreover, there exists a change of basis through which it is possible to write each ele-
ment of the basis of in-states as a linear combination of out-states (and vice-versa).
Usually, a state taking a simple form when is written on the in-basis becomes a
very complicated object after it is written on the basis of out-states. This reflects
the fact that eigenstates of the free Hamiltonian in the far past become, in the far
future, complicated superpositions of out-states; contrarily, simple eigenstates of the

1Some results that will be presented in this chapter can be carefully extended to the massless
case. See for example [41] for an old review of the massless integrability and [42] for a more recent
one in the context of integrability in AdS/CFT.
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free Hamiltonian in the far future were complicated superpositions of in-states in
the far past. The matrix of the change of basis, describing the evolution between
incoming- and outgoing-states, is called the ‘S-matrix’. Given an incoming state
defined in (2.1.4), with rapidities θ1 > θ2 > . . . > θn, it can be written on the basis
of the out-states (2.1.5) as

Aa1(θ1) . . . Aan(θn) =
+∞∑
m=2

∫
θ′

m<...<θ′
1

dθ′
m . . . dθ

′
1S

b1,...,bm
a1,...,an

(θ1, . . . , θn; θ′
1, . . . , θ

′
m)Abm(θ′

m) . . . Ab1(θ′
1).

(2.1.6)

The absolute values squared of the different S-matrix elements

Sb1,...,bm
a1,...,an

(θ1, . . . , θn; θ′
1, . . . , θ

′
m)

correspond to the probabilities that the initial state Aa1(θ1) . . . Aan(θn) evolves, after
the interaction, into the different final states Abm(θ′

m) . . . Ab1(θ′
1). Not all the final

states Abm(θ′
m) . . . Ab1(θ′

1) are kinematically allowed. Usually, conserved quantities
constrain the space of possible nonzero S-matrix elements. For example, the outcomes
that do not satisfy energy and momentum conservation have zero S-matrix elements.
Let Q1 and Q−1 be the light-cone operators of the momentum. These operators act
on single-particle states as

Q1|Aa(θ)⟩ = mae
θ|Aa(θ)⟩ , Q−1|Aa(θ)⟩ = mae

−θ|Aa(θ)⟩,

i.e. they are diagonal and have as eigenvalues the light-cone components (2.1.2).
Since Q1 and Q−1 are local charges, which means they can be written as integrals
of local densities, their action on well-separated multi-particle wave packets behaves
additively

Q±1|Aa1(θ1) . . . Aan(θn)⟩ =
(
ma1e

±θ1 + . . .+mane
±θn

)
|Aa1(θ1) . . . Aan(θn)⟩. (2.1.7)

Such charges are conserved in all the translation-invariant theories, so that the
corresponding eigenvalues cannot change during the collisions; therefore the only
nonzero S-matrix elements Sb1,...,bm

a1,...,an
(θ1, . . . , θn; θ′

1, . . . , θ
′
m) are those satisfying

ma1e
±θ1 + . . .+mane

±θn = mb1e
±θ′

1 + . . .+mbme
±θ′

m .

Beyond energy and momentum, certain theories possess an infinite tower of functionally-
independent higher-spin conserved charges Qs. If these charges are in involution,
which means they all commute between one another (and with Q1 and Q−1), then
they can be simultaneously diagonalized by a suitable basis of particle-states and
the S-matrix can be exactly solved on this basis. In this sense, the theory is said
to be ‘integrable’. By ‘higher-spin’ we mean that the commutator between these
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operators and the generator M of the Lorentz boosts2 is

[M,Qs] = sQs, (2.1.8)

where the integer s is called the ‘spin’ of Qs. As a consequence of this fact, the
action of these charges on single particle states is determined by

Qs|Aa(θ)⟩ = γ(s)
a esθ|Aa(θ)⟩ , Q−s|Aa(θ)⟩ = γ(s)

a e−sθ|Aa(θ)⟩. (2.1.9)

The reason why the eigenvalues of the charges Qs take the simple form in equa-
tion (2.1.9) is the following. Let w(s)

a (θ) be a function of the rapidity defined by

Qs|Aa(θ)⟩ = w(s)
a (θ)|Aa(θ)⟩. (2.1.10)

Then, up to a normalization factor irrelevant to this discussion, it holds that

w(s)
a (θ) = ⟨Aa(θ)| Qs |Aa(θ)⟩. (2.1.11)

In 1+1 dimensions the action of the Lorentz group is very simple, being determined
by rapidity translations: θ → θ + λ. Under one of these transformations, the
eigenvalue changes as follows

w(s)
a (θ + λ) = ⟨Aa(θ)|eλM Qs e

−λM |Aa(θ)⟩ = eλsw(s)
a (θ),

where equations (2.1.8) and (2.1.11) have been used in the last equality. The equality
above leaves as only option for w(s)

a (θ) to be of the form in (2.1.9). We will deal with
parity-symmetric models, in which the conserved charges always appear in pairs, Qs

and Q−s.

Here we will just consider local charges, and their effect on the scattering, following
the lines presented in [18]. If we label by V the Hilbert space of the single particle
states, over which these charges act as shown in (2.1.9), then their action can be
trivially extended to multi particle states in V ⊗V ⊗ . . .⊗V . The action of a charge
Qs on multi particle states is usually referred to as the comultiplication ∆(Qs). If
Qs is local then it is characterized by a trivial comultiplication:

∆(Qs) = Qs ⊗ 1 ⊗ . . .⊗ 1 + 1 ⊗Qs ⊗ . . .⊗ 1 + . . .+ 1 ⊗ 1 ⊗ . . .⊗Qs

so that its action on a multiparticle state Aa1(θ1) . . . Aan(θn) is determined by

Qs|Aa1(θ1) . . . Aan(θn)⟩ =
(
γ(s)

a1 e
sθ1 + . . .+ γ(s)

an
esθn

)
|Aa1(θ1) . . . Aan(θn)⟩. (2.1.12)

The simplest examples of these charges are the light-cone components of the energy
and momentum operators previously defined. The effect of non-local charges is also
very important: they are symmetries of the theory acting with non-trivial comulti-
plication on multi particle states. Since the comultiplication is non-trivial, the 2-to-2
S-matrix elements can be directly constrained by requiring the vanishing of [Qs, Ŝ]

2In 1+1 dimensions the Lorentz group has a single generator, that in Euclidean signature
becomes a rotation in a plane.
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on two-particle states [44, 45]. The non-local charges belong to the mathematical
framework of Hopf algebras, to which notably the Yangian group belongs. Although
we will not go further into this topic, we refer the interested reader to [46] for a nice
review on the subject.

The action of the local charges on multi-particle states behaves as in (2.1.12): since
they are conserved during the scattering an infinite set of conservation equations

γ(s)
a1 e

sθ1 + . . .+ γ(s)
an
esθn = γ

(s)
b1 e

sθ′
1 + . . .+ γ

(s)
bm
esθ′

m (2.1.13)

needs to be imposed. For s = ±1 we have the usual energy-momentum conservation,
with γ(±1)

a = ma. The existence of such conservation laws, for infinitely-many
different values of s, suggests that there are only trivial solutions of the scattering:
the number of particles has to be the same before and after the collision, n = m,
and the sets of incoming- and outgoing-particles need to have the same quantum
numbers. This is reasonable, even though the argumentation is not rigorous; indeed
an infinite number of constraints does not automatically imply a trivial solution. For
example, for purely imaginary rapidities, it is possible to find production processes
conserving the infinite set of higher spin conserved charges. However, for real sets of
rapidities, that is no more the case and actually (2.1.13) is only satisfied by elastic
solutions. However, this requires some extra proof. A more rigorous argument was
presented in [21]. In that paper Stephen Parke argued that the existence of a pair
of higher-spin charges in (1+1)-dimensional theories is sufficient alone to ensure the
absence of production and the factorization of the scattering. In other words, after
having chosen a particular order of the rapidities, for any conserved charge of spin s
the following relations need to hold

θi = θ′
i and γ(s)

ai
= γ

(s)
bi

∀ i = 1, . . . , n.

This does not imply that the initial and the final particles have to be the same (i.e.
ai = bi); they just need to have the same sets of quantum numbers (γ(s)

ai
= γ

(s)
bi

) under
these higher-spin representations of the Lorentz group. In particular the following
conditions are satisfied:

• the number of incoming particles has to be the same as the number of the
outgoing ones;

• the sets of incoming and outgoing momenta are the same;

• any allowed n → n nonzero S-matrix factorises into the product of 2 → 2
S-matrices.

In the next section we will review the Parke argument, through which the bullet
points above will be proved.
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2.2 Factorisation and Yang-Baxter equation

Let ψ(x) be the spatial part of a single-particle wave packet, propagating with
momentum P̃ and located at the position x̃ at the starting time. It is described by

ψ(x) ∝
∫ +∞

−∞
dP e−a2(P −P̃ )2

eiP (x−x̃), (2.2.1)

where the overall normalization factor is omitted. We can introduce a phase in the
Fourier transform of the wave function

ψ(x;α) ∝
∫ +∞

−∞
dP e−a2(P −P̃ )2

eiP (x−x̃)e−iαϕ(P ) (2.2.2)

by acting on (2.2.1) with e−iαΦ̂ and assuming Φ̂ to be a diagonal operator on the
eigenvectors of the momentum. Since the Gaussian is centred in P̃ , most of the
contribution to the integral comes from the region around P̃ . Expanding ϕ at the
first order around P = P̃ , up to a constant overall multiplicative factor the wave
packet is modified as

ψ(x;α) ∝
∫ +∞

−∞
dP e−a2(P −P̃ )2

eiP [x−x̃−αϕ′(P̃ )]. (2.2.3)

The starting position x̃ is translated by αϕ′(P̃ ). By considering higher powers of
the expansion in P − P̃ , it would also be possible to compute the dependence of the
width a as a function of α.
As a starting example, the action of the Hamiltonian on the packet (2.2.1) will be
considered. In this case, assuming that the mass of the propagating particle is m,
then ϕ(P ) =

√
P 2 +m2, and the centre of the wave function changes as

x̃(α) = x̃+ α
P̃√

P̃ 2 +m2
. (2.2.4)

Parametrizing the spatial momentum in terms of the rapidity, according to (2.1.1)
and (2.1.2), then P̃ = m sinh θ and

x̃(α) = x̃+ α tanh θ. (2.2.5)

In this case, α plays the role of the time, while the quantity tanh θ is the velocity
of the particle. Such a formula describes the motion of a single-particle wave-packet
having a Gaussian distribution centered on the α-dependent position given in (2.2.5).
In the non-relativistic limit θ ≪ 1 (or equivalently P̃ 2 ≪ m2) the velocity can be
approximated tanh θ ∼ sinh θ = P̃

m
, which is of course what we expect.

The next step is to consider a multi-particle state, describing n particles located at
the starting time at the positions x̃1 < . . . < x̃n, and carrying a set of rapidities
θ1 > . . . > θn

ψ(x1, . . . , xn) ∝
n∏

i=1

∫ +∞

−∞
dPi e

−a2(Pi−P̃i)2
eiPi(xi−x̃i), (2.2.6)
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where the momenta are connected to the rapidities through P̃i = mi sinh θi with
i = 1, . . . , n. It is possible to modify such a state by acting, for example, with e−iαP̂ .
The effect is to translate all the centres of the wave packets of the same quantity
x̃i → x̃i + α. Since the physics is invariant under spatial translations, the S-matrix
elements do not change under such transformations and for any final state |f⟩ it
holds that

⟨f |eiαP̂ Ŝe−iαP̂ |ψ⟩ = ⟨f |Ŝ|ψ⟩.

Similarly the Hamiltonian Ĥ is the correct generator to describe time-translations.
Acting by e−iαĤ(P ) , from the previous discussion, the particles are translated by
rapidity dependent parameters x̃i(α) = x̃i + α tanh θi. This transformation makes
sense while α is small enough that no particles cross each other during the transform-
ation so that the state is free at all times between t0 (the starting time) and t0 + α.
If at t = t0 the particles occupy certain space positions, at the time t = t0 + α their
positions are modified according to their velocities; for sure the action by e−iαĤ(P )

does not modify the order in which the different particles collide since it is just a
temporal translation. If the starting time is assumed to be t0 or t0 + α, the same
order of collisions between the different wave packets will be observed.

The situation is more interesting if additional higher-spin conserved charges, of the
form in (2.1.9), exist. In the following, it will be shown that in the presence of
such operators the scattering factorises. The proof was given in a paper by Stephen
Parke [21] and it is based on the action of the ‘light-cone’ operators (2.1.9) on wave
packets. However, it should be mentioned that elements of the argument used in [21]
date back to [47, 48]. Below we explain this argument following the lines of the
review [36]. We assume there exists a conserved operator P̂s acting on single-particle
states as P̂ s, the power s of the spatial momentum (s ≥ 2).3 Acting with the
exponential of such operator on (2.2.6) it follows that

ψ(x1, . . . , xn;α) ∝
n∏

i=1

∫ +∞

−∞
dPi e

−a2(Pi−P̃i)2
eiPi(xi−x̃i)e−iαP s

i . (2.2.7)

According to the previous discussion, the centres of the different wave packets are
translated by αsP̃ s−1

i so that each particle is smeared around an α-dependent position

x̃i(α) = x̃i + αs ·ms−1
i · (sinh θi)s−1. (2.2.8)

Differently from the action of the Hamiltonian, which translates the particle positions
x̃i along space-time lines with gradients given by the velocities of the particles (i.e.
dx̃i

dα
= vi = tanh θi), in this case the gradients are given by s ·ms−1

i · (sinh θi)s−1 and
can grow arbitrarily with the rapidity. While the first transformation is associated
with a temporal translation, which preserves the order in which the different particles
collide, the second one can alter such order. The operator e−iαP̂s can be used to
move the particles relative to each other, changing their spatial distances. The

3Note that the action of P̂s is not the same as that one of Qs; however assuming the conservation
of P̂s instead of Qs does not modify the message of Parke’s argument and at the same time allows
to maintain simple mathematical expressions.



16 Chapter 2. The S-matrix bootstrap in 1+1 dimensions

consequence is that the order in which the different particles interact during the
temporal evolution of e−iαP̂s|ψ⟩ can be different from the order in which they interact
letting evolve in time the state |ψ⟩. Nevertheless, if P̂s is an operator associated
with a conserved charge (commuting therefore with the Hamiltonian), it must be
true that

⟨f |Ŝ|ψ⟩ = ⟨f |eiαP̂sŜe−iαP̂s|ψ⟩. (2.2.9)

The only possibility to have such equality valid for general sets of rapidities is that
the initial number of particles is the same as the final one and that ⟨f |Ŝ|ψ⟩ does not
have to depend on the order in which the particles interact.

To give some more explanation let us consider a production process of the form

1 + 2 → 3 + 4 + . . .+M, (2.2.10)

where the numbers 1, . . . ,M are labels for the particles involved in the collision and
M ≥ 5. If we consider 1 and 2 as asymptotic particles, nothing can happen before
their wave packets overlap: this is a consequence of the macroscopic causal properties
of space-time, usually named ‘macrocausality’. We will return to this concept in one
moment. The time t12, at which the trajectories of 1 and 2 intersect, must precede
the time of all the other interactions. After the first two particles collide a cascade
of subsequent collisions can in principle happen. An example of possible subsequent
collisions for M = 5 is shown in figure 2.1, where the vertical axis measures the time
and the horizontal axis measures the space. Though the process in figure 2.1 cannot
be identified with any integrable theory, due to the fact that there is a long-living
bound state particle propagating, it is however consistent with ‘macrocausality’. In
the considered example, 2 is the slower incoming particle. If we take its trajectory
and, at each collision, we follow the trajectory of the rightmost particle (the blue
line in figure 2.1) we end up on the trajectory of the fastest outgoing particle, which
we label by 3. By extending the trajectories of the particle 2 and 3, as is done in
figure 2.1 through two dashed red lines, we can find the time t23 at which they would
interact if they were freely propagating. Of course, it holds that

t12 < t23 (2.2.11)

otherwise the particle 3 would be generated before the incoming particles collide.
This is clear from figure 2.1 where the meeting point between the trajectories of 1
and 2 is below the meeting point of the trajectories associated with 2 and 3. This
fact has to be true in general, indeed the generation of the particle 3 is an effect
of the interaction of 1 and 2. If t23 < t12 then cause and effect are temporally
inverted and there is a violation of the macrocausality. The name macrocausality
follows from the fact that the causality violation happens at finite time scales and not
microscopically. The equality (2.2.11) may be violated at microscopic time scales but
not macroscopically. If we label by 2 the slower incoming particle and by 3 the faster
outgoing particle the same constraint t12 < t23 has to hold in any process of the form
in (2.2.10). An example of a production process (2.2.10) satisfying macrocausality is
shown on the LHS of figure 2.2. However, if P̂s is a conserved operator, by properly
tuning α in (2.2.9), we can move the trajectory of the particle 3 so that the amplitude
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Figure 2.1: Example of production process 1 + 2 → 3 + 4 + 5.
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Figure 2.2: On the left is a scattering process preserving the mac-
rocausality while on the right is a scattering process
violating the macrocausality. If the theory is integrable,
the two processes are related by the action of a higher-
spin conserved charge and both need to vanish.

defined on the RHS of equation (2.2.9) satisfies t23 < t12; its pictorial representation
is shown on the RHS of figure (2.2). Since this amplitude violates macrocausality,
it has to vanish and by (2.2.9) also the starting amplitude is zero. The reader is
invited to look at the paper by Parke [21] for a detailed computation of the action
of the higher-spin charges on the trajectories.

Due to this fact, the only processes having nonzero amplitudes are those in which the
incoming and outgoing particles have the same sets of rapidities. In these situations,
the S-matrix factorises into the product of 2-to-2 S-matrices and any scattering
event can be determined in terms of 2-to-2 S-matrix elements of the form depicted in
figure 2.3, where θij is a label for the difference between the rapidities of the scattered
particles, θi −θj. It will be always assumed that the 2-to-2 S-matrices depend on the
rapidities through such difference; this is a feature of all Lorentz-invariant theories.
The invariance under the order in which the collisions happen is then expressed in
terms of the so-called Yang-Baxter equation (or factorisation equation); it states
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Figure 2.3: Pictorial representation of a 4-point S-matrix element.
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Figure 2.4: Pictorial representation of the Yang-Baxter equation.

that, in a 3-to-3 scattering process of the form

Aa1(θ1)Aa2(θ2)Aa3(θ3) → Ab3(θ3)Ab2(θ2)Ab1(θ1),

where {a1, a2, a3} and {b1, b2, b3} represent respectively the types of the incoming-
and outgoing-particles and θ1 > θ2 > θ3, the S-matrix can be written equivalently as

Sb1b2b3
a1a2a3(θ1, θ2, θ3) = Sc1c2

a1a2(θ12)Sb1c3
c1a3(θ13)Sb2b3

c2c3 (θ23) = Sc2c3
a2a3(θ23)Sc1b3

a1c3(θ13)Sb1b2
c1c2 (θ12).

(2.2.12)
In (2.2.12) there is an implicit sum over the repeated indices c1, c2 and c3, correspond-
ing to all possible intermediate propagating particles between the 2-to-2 collisions.
Acting with e−iαP̂s on the initial state we can move the trajectories of the particles
as we wish, so to modify the points of interaction between pairs of particles. The
three types of collision depicted in figure 2.4, each one corresponding to one term
in the chain of equalities (2.2.12), are obtained by acting with e−iαP̂s on the initial
state for suitably chosen values of α. No matter the choice of α, the operator e−iαP̂s

commutes with the S-matrix and therefore the processes in figure 2.4 are physically
equivalent. The pictorial representation of the Yang-Baxter equation is given in
figure 2.4 and provides a restriction on the structure of the 4-point S-matrices.

Most of the following sections will be focused on integrable theories with purely
elastic S-matrices, in which the initial and the final sets of particles involved in
the scattering are identical. A legitimate question is then how we can distinguish
such interaction processes from freely propagating particles. In the remaining part
of this section, an answer to this question will be presented. Let ψin(x1, x2) be a
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two-particle state defined as

ψin(x1, x2) ∝
∫ +∞

−∞
dP1dP2 e

−a2(P1−P̃1)2
eiP1(x1−x̃1)e−a2(P2−P̃2)2

eiP2(x2−x̃2). (2.2.13)

It describes an initial set of particles located at the starting positions x1 < x2 and
propagating with rapidities θ1 > θ2. If the distance between the two wave packets is
much bigger than their width (|x2 − x1| ≫ a) then it makes sense to consider such
a state as a tensor product of two free single-particle states. If the particles are left
to propagate in time, after the collision the final state will be described by

ψout(x1, x2) ∝
∫ +∞

−∞
dP1dP2 e

−a2(P1−P̃1)2
eiP1(x1−x̃1)e−a2(P2−P̃2)2

eiP2(x2−x̃2)e−iϕ(P1,P2)

(2.2.14)
where the phase ϕ(P1, P2) contains a contribution coming from the energies of the
two freely propagating particles (t

√
P 2

1 +m2
1 + t

√
P 2

2 +m2
2), plus a phase inherited

from the collision. If the 2-to-2 S-matrix is given by

S(θ) = e−iγ(θ),

with θ ≡ θ1 − θ2, then the phase in (2.2.14) can be written as

ϕ(P1, P2) = t
√
P 2

1 +m2
1 + t

√
P 2

2 +m2
2 + γ(θ). (2.2.15)

As explained before, expanding (2.2.15) around the values P̃1 = m1 sinh θ1 and
P̃2 = m2 sinh θ2 the propagation equations for the centres of the two wave packets
are obtained

x̃1(t) = x̃1 + tanh θ1
(
t+ 1

m1 sinh θ1

d

dθ
γ
)

x̃2(t) = x̃2 + tanh θ2
(
t− 1

m2 sinh θ2

d

dθ
γ
)
.

(2.2.16)

If the centre of mass frame is assumed, where

m1 sinh θ1 = −m2 sinh θ2 = P̃ ,

it holds
x̃1(t) = x̃1 + tanh θ1t

′ , x̃2(t) = x̃2 + tanh θ2t
′ (2.2.17)

with
t′ = t+ i

P̃

d

dθ
logS. (2.2.18)

In the absence of interactions the particle-positions would evolve in time according
with (2.2.17) and t′ = t. If instead the theory is integrable, with a purely elastic
S-matrix, but it is not free, a time delay is observed; this delay can be written in
terms of the S-matrix, as given in (2.2.18). Even though after the collision the two
outgoing particles are the same as the initial ones, and do not modify their momenta,
it is possible to note that indeed an interaction happened since a time delay in the
motion of the wave packets is observed. We remark that the same behaviour is found
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also in the scattering between solitons in classical physics.

2.3 The axiomatic S-matrix

It has just been discussed how, in all integrable theories, multi-particle scattering
processes factorise into products of 2-to-2 interactions. Therefore any scattering
event can be written in terms of 4-point S-matrix elements. For a process of the
form

a(p1) + b(p2) → c(p3) + d(p4), (2.3.1)

where {a, b} and {c, d} represent respectively the types of the incoming and outgoing
particles, such elements are defined, according to (2.1.6), as

Aa(θ1)Ab(θ2) = Sdc
ab(θ)Ac(θ2)Ad(θ1), (2.3.2)

where the integral has been removed and the initial and final rapidities have been
set to be the same due to the conservation of the charges. As already mentioned
in section 2.1, the order of the operators Aj(θ) in (2.3.2) is important since they
are elements of the Zamolodchikov-Faddeev algebra. We also stress once again that
the focus of this thesis will be on Lorentz invariant theories, where Sdc

ab depends on
the external kinematics through the difference between rapidities, θ = θ1 − θ2. Such
S-matrices, whose pictorial representation is shown in figure 2.3, and their universal
properties will be described in this section.
First of all Sdc

ab(θ) is nonzero only if the initial and the final states agree on all
the eigenvalues of the conserved charges (2.1.9), for which γ(s)

a = γ
(s)
d and γ

(s)
b =

γ(s)
c . As a consequence of this fact, (ma,mb) = (md,mc), and therefore (p1, p2) =

(p4, p3). Moreover, the models that will be considered here are assumed to respect
the following additional symmetries

• Sdc
ab(θ) = Scd

ba(θ) (invariance under parity);

• Sdc
ab(θ) = S d̄c̄

āb̄
(θ) (invariance under charge conjugation);

• Sdc
ab(θ) = Sba

cd(θ) (invariance under time reversal).

For the process in (2.3.1) the Mandelstam variables (written in the light-cone com-
ponents of momenta) can be defined as

s = (p1 + p2)(p̄1 + p̄2)
t = (p1 − p3)(p̄1 − p̄3)
u = (p1 − p4)(p̄1 − p̄4).

(2.3.3)

In two dimensions they can all be expressed as functions of a single parameter. For
example, if the initial set of momenta is the same as the final one (i.e. p4 = p1,
p3 = p2), then u = 0 and

s = m2
a +m2

b + 2mamb cosh θ
t = m2

a +m2
b − 2mamb cosh θ = 2m2

a + 2m2
b − s.

(2.3.4)
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As can be seen from (2.3.4), physical external momenta correspond to the kinematical
region s ≥ (ma + mb)2, the equality being saturated when the incoming particles
propagate with equal rapidities. In such a region a requirement to have a well-defined
quantum field theory is that the S-matrix is unitary. For integrable models, in which
all production processes are forbidden by the existence of higher-spin conserved
charges, this requires∑

ln

Sln
ab(s)S̄ln

dc(s) = δadδbc ∀ s ≥ (ma +mb)2.

Combined with parity invariance and time reversal, the unitarity constraint can also
be written as

Sln
ab(s)S̄dc

ln (s) = δd
aδ

c
b ∀ s ≥ (ma +mb)2, (2.3.5)

where the sum over the intermediate particles l and n is understood. Although
scattering processes are computed at physical values of the external momenta, where
s ≥ (ma +mb)2, it is postulated that the S-matrix element Sdc

ab can be analytically
continued above the physical region into the complex plane. The function defined in
this way is single-valued after suitable cuts have been made. The properties of the
analytic continuation of the S-matrix are explained below.

The unitarity constraint (2.3.5), that in integrable theories receives contributions
only from 2-to-2 processes, would in a generic quantum field theory receive con-
tributions also from higher-point production processes. Any time the Mandelstam
variable s reaches a threshold value at which more particles can be generated on-shell
(for example a+ b → c1 + · · · + cn) the S-matrix element Sdc

ab receives a new contri-
bution4. The value s = (ma +mb)2 is the first of a series of branch points, each one
corresponding to one of these thresholds; the others are distributed on the real axis at
values s > (ma +mb)2. A cut on the complex s plane can be attached to each branch
point; by convention it is assumed to run to s = +∞ on the real axis. In integrable
theories, due to the absence of production, only the leading threshold (ma + mb)2

is present, the least energy squared at which the two-particle state Aa(θ1)Ab(θ2)
can exist. So, for positive s, a single branch cut, connecting s = (ma + mb)2 to
s = +∞ on the real axis, is present. However, this is not the end of the story.
A universal property of a quantum field theory is the so-called crossing symmetry:
given a generic process it is possible to convert an incoming particle into an outgoing
particle (and vice-versa) by changing the sign of its momentum and transforming it
into the corresponding anti-particle. Using this fact on the process (2.3.1), combined
with (2.3.4), it is possible to write

Sdc
ab(s) = Sdb̄

ac̄(2m2
a + 2m2

b − s). (2.3.6)

For the previous discussion the function Sdb̄
ac̄ has a branch cut starting at (ma +mb)2

(mc = mb is used, since the initial and final conserved charges have to be the same)
and running to +∞ on the real axis. This implies that the function Sdc

ab(s) has

4Such discontinuities can be seen by expressing the S-matrix in the form S = 1+ iT , and writing
the discontinuity of T through the optical theorem. See chapter one of [17] for a more detailed
discussion.
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Figure 2.5: Complex s plane corresponding to the physical sheet.

another branch cut, this time connecting s = (ma − mb)2 to s = −∞. The two
branch cuts are shown in figure 2.5, where they are surrounded by a red contour.
On the real axis in the middle between the cuts, for (ma −mb)2 < s < (ma +mb)2,
possible poles are present. They are due to intermediate bound state particles
propagating on-shell.

Since it is postulated that the S-matrix can be analytically continued above the
physical region into the complex plane, defining an analytic function, it follows that
S−(s), defined by

S−(s) ≡ S̄(s̄) (2.3.7)

is also analytic. This follows from a theorem in complex analysis stating that given
an analytic function f(z) then g(z) ≡ f̄(z̄) is also analytic. While S is defined above
the right cut, matching the values of physical scattering processes by approaching the
cut from above (the C region in figure 2.5), S− provides the analytic continuation of
S̄(s̄) below the cut (having as boundary the region D in figure 2.5). It can be proven
that on the region (ma − mb)2 < s < (ma + mb)2 of the real axis the S-matrix is
real and S−(s) = S̄(s) = S(s). A proof of this fact can be found in chapter 4 of [17].
Since S and S− share the same analytic continuation on (ma−mb)2 < s < (ma+mb)2

it follows that they are the same on the full complex s plane. Due to this fact it
follows that the S-matrix is real-analytic, i.e. it takes complex conjugate values at
complex conjugate points

S̄dc
ab(s) = Sdc

ab(s̄). (2.3.8)

Consequently the unitarity constraint (2.3.5) can be written in the form

Sln
ab(s+)Sdc

ln (s−) = δd
aδ

c
b ∀ s ≥ (ma +mb)2, (2.3.9)

being s+ and s− the values of the Mandelstam variable s approaching the cut from
above and below, s± = s ± i0. Once the different S-matrix elements have been
defined on the boundary regions C and D in figure 2.5, the values on the regions
A and B, respectively above and below the left-hand side cut, are obtained using
crossing symmetry. For example if s1 is taken to be a point just above the left-cut
on the region A, then Sdc

ab(s1) = Sdb̄
ac̄(s2) with s2 = 2m2

a + 2m2
b − s1 defined on the

region just below the right-cut.

It is then possible to prove that such cuts are both of square root type, by following
the argument presented for example in [36]. The proof will be given for the right-cut;
however for the one on the left the same argument applies. A function Sγ can be
defined by circling one time around the branch point s∗ = (ma +mb)2 following the
anticlockwise direction, so that Sγ(s∗ + ρeiδ) = S(s∗ + ρei(δ+2π)) with ρ ∈ R+ and
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Figure 2.6: Complex θ plane. The region 1, corresponding to 0 <
Im θ < π, represents the physical strip.

δ ∈ (0, 2π). Unitarity is then given by Sγ(s+)S(s+) = 1. Such relation, defined on
the region just above the cut, is written in a form that can be analytically continued
to the entire s plane, so to obtain

Sγ(s)S(s) = 1. (2.3.10)

In particular, if a point just below the cut is considered then it holds

Sγ(s−) = S−1(s−) = S(s+), (2.3.11)

where the first equality comes from (2.3.10) and the second equality is the unitarity
constraint on S. Since Sγ(s−) is the value of S after circling two times around the
branch point, from (2.3.11) it is evident that after two anticlockwise circles we come
back to the value S(s+). This implies that s∗ = (ma + mb)2 has to be a branch
point of square root type. The same argument can be repeated almost identically
for the other branch point, s∗∗ = (ma − mb)2. Despite the fact that s∗ and s∗∗

are both of square root type, the Riemann surface over which Sdc
ab is defined is not

necessarily a double cover of the complex plane. By circling one branch point at a
time, alternating between s∗ and s∗∗, it is in principle possible to reach many different
sheets. Figure 2.5 represents the ‘physical sheet’, containing on its boundary regions
the physical values of the S-matrix; in particular, approaching the right-cut from
above, on the region C, Sdc

ab makes physical sense as the S-matrix element describing
the scattering of {a, b} into {c, d}.

In terms of the variable s the story may look quite complicated, but everything
becomes simpler if the functional dependence is expressed in terms of the rapidity,
as discussed in [18]. By inverting the first equation in (2.3.4) the ‘physical sheet’
can be mapped into a region of the complex θ plane known as the ‘physical strip’. It
corresponds to the strip 0 < Imθ < π in figure 2.6 and it is labelled by the number
1. The region of the s plane near the branch cuts, indicated with letters A, B, C
and D in figure 2.5 are mapped to the regions of the θ plane having imaginary part
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Figure 2.7: Map of a path γ from the physical sheet to the physical
strip.

close to 0 and iπ inside the strip. Now let s1 to be a point just above the right-cut
of the physical sheet and to circle around s∗ following the anticlockwise direction
until, after a 2π angle, we return to the starting point; the situation is represented
on the LHS part of figure 2.7. As previously explained the S-matrix, as a function
of s, is not single-valued at the point s1. After circling around the branch point
we get the analytic continuation Sγ of the matrix S, so that Sγ(s1) ̸= S(s1), and
it holds the matrix equation (2.3.10). Working in terms of the rapidity, by looking
at the RHS part of figure 2.7, it is possible to observe that the path γ maps the
point θ1 into θ2 = −θ1. Of course due to the fact that cosh θ is an even function, the
Mandelstam variable s takes the same value both at θ1 and at θ2 and it is necessary
to analytically continue S into Sγ to distinguish between the two points, which are
defined on two different sheets of the complex s plane. However, if the S-matrix is
written as a function of θ it comes out that it is single-valued in this variable and
the unitarity matrix equation (2.3.10) becomes

S(−θ)S(θ) = 1, (2.3.12)

which written making all the indices explicit is

Sln
ab(−θ)Sdc

ln (θ) = δd
aδ

c
b . (2.3.13)

Differently from (2.3.5), the formula in (2.3.13) is written in a form that can be
analytically continued to the full θ plane and is therefore valid for any value of θ.
Given a matrix S, defined on the physical strip, which is the region 1 in figure 2.6, its
value on the region 2 is known from the analytic continuation of unitarity (2.3.13). It
is possible to analytically continue the crossing constraint as well; in such case (2.3.6)
becomes

Sdc
ab(θ) = Sdb̄

ac̄(iπ − θ). (2.3.14)

While the strip 0 < Im θ < π is the most interesting region of the θ plane, since
it contains on its boundary physical scattering processes, the S-matrix is defined
on an infinite number of possibly-different strips, nπ < Im θ < (n + 1)π, each one
corresponding to a different cover of the complex s plane. In the remaining part of
this thesis the focus will be just on models having purely elastic S-matrices, for which
no degeneracies appear and the existence of higher-spin conserved charges is enough
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to impose the equality between the incoming- and outgoing-particles. In one moment
it will be shown that in these models there are only two different strips, 1 and 2
in figure 2.6, and that all the 2-to-2 S-matrix elements are periodic functions with
periodicity 2πi. If the process in (2.3.1) is elastic not only the incoming- and outgoing-
momenta are the same (this is indeed a feature of all integrable theories), but also
the types of particles do not change during the collision, i.e. Sdc

ab(θ) = Sab(θ)δd
aδ

c
b .

For real positive values of θ (i.e. on physical configurations) Sab(θ) has to be a phase.
Then the unitarity and crossing constraints, for these purely elastic models, become
respectively

Sab(−θ)Sab(θ) = 1 (unitarity), (2.3.15a)
Sab(θ) = Sab̄(iπ − θ) (crossing). (2.3.15b)

Combining in sequence crossing and unitarity relations the following chain of equal-
ities holds

Sab(θ) = Sab̄(iπ− θ) =
(
Sab̄(θ− iπ)

)−1
=
(
Sab(2iπ− θ)

)−1
= Sab(θ− 2iπ), (2.3.16)

from which it is clear that the S-matrix has to be a 2πi-periodic function.

2.4 Bound states and bootstrap equations

Since the S-matrices that will be considered are diagonal, the Yang-Baxter equa-
tion (2.2.12) is trivially satisfied and plays no role. Instead, a set of ‘bootstrap
relations’, that will be defined in this section, are of great importance to construct
consistent S-matrix elements. The bootstrap machinery to construct purely elastic S-
matrices of integrable models from scratch was first developed by Alexander B. Zamo-
lodchikov [19]; through it, he conjectured the S-matrix elements for the quantum
field theory describing the scaling limit of the Ising model at the critical temperature
perturbed by a magnetic field. Remarkably he found out from completely axiomatic
principles the particles comprising the theory and their masses. These masses have
been more recently confirmed experimentally [49] in the laboratory. Before mov-
ing to discuss the axiomatic approach implemented by Zamolodchikov, some more
information about the poles lying on the imaginary axis of the physical strip (see
the blue marks in figure 2.6) have to be given. They are not necessarily all simple.
Higher-order singularities can be present and explained in terms of Coleman-Thun
type diagrams [39]. These are Feynman diagrams in which the internal propagators
go all on-shell simultaneously for particular values of the loop integration variables
and external momenta. These diagrams will be discussed in some detail in the final
chapter of this thesis in the context of affine Toda field theories, while the focus
here will be only on the simple poles, due to intermediate bound states propagating
on-shell in tree-level Feynman diagrams.
All the particles are assumed to be possible asymptotic states of the theory; this
implies, to prevent decay processes, that any time a 3-point coupling C(3)

ijk is nonzero
the mass of each particle appearing in the vertex should be smaller than the sum of
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Figure 2.8: On-shell vertex on the right and its dual description on
the left.

the other two. As a consequence of this, the masses of three particles admitting a
nonzero 3-point coupling can be drawn in Euclidean space as the sides of a triangle.
To find the poles it is necessary to study the region in which the external momenta are
complex and the aj factors in (2.1.2) are phases (i.e. the rapidities θj are imaginary).

If there exists a nonzero coupling C
(3)
abc̄ mediating the interaction between three

on-shell particles a, b and c 5, then the momenta p1, p2 and p4 making the process

a(p1) + b(p2) → c(p4)

on-shell are complex numbers satisfying

p1 + p2 = p4 (2.4.1)

and having absolute values equal respectively to ma, mb and mc. By considering the
first equality in (2.1.2) then (2.4.1) can be written as

mae
iU1 +mbe

iU2 = mce
iU4 (2.4.2)

where the imaginary values of the rapidities of the different particles have been
labelled by iU . A similar equality is obtained for the other light-cone components
of the momenta, p̄1 + p̄2 = p̄4, corresponding to substitute U with −U for all the
rapidities in (2.4.2). The three complex numbers in (2.4.2) close a mass-triangle
corresponding to the 3-point vertex C

(3)
abc̄. By looking at the triangle in figure 2.8,

assuming the direction of p4 to be the axis respect to which the angles are measured
in counterclockwise way, it holds p1 = mae

iŪb
ac , p2 = mbe

−iŪa
bc and p4 = mc; the

conservation equations for the light-cone components of the momentum can therefore
be written as

mae
iŪb

ac +mbe
−iŪa

bc = mc (conservation of Q1), (2.4.3a)
mae

−iŪb
ac +mbe

iŪa
bc = mc (conservation of Q−1). (2.4.3b)

Such triangular relations can be combined to construct Feynman diagrams with

5For a given index c representing a particle of type c, it is adopted the convention to use c̄ to
represent the respective antiparticle. While a particle of type c is annihilated by the index c and
it is created by the index c̄, the respective antiparticle is respectively annihilated/created by the
index c̄/c.
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Figure 2.9: On-shell singular Feynman diagram (on the first row)
and its crossed symmetric version (on the second row).

internal propagators on-shell as shown in figure 2.9. The conventions to label by Ū c
ab

the angle opposite to the side c in the mass-triangle ∆abc, and to set U c
ab ≡ π − Ū c

ab,
are used. Following such conventions the square of the mass of the particle c is given
by

m2
c = m2

a +m2
b + 2mamb cosU c

ab. (2.4.4)

In an elastic process
a+ b → a+ b,

with C
(3)
abc̄ ̸= 0, the pole at s = m2

c can then be written in terms of θ (the difference
between the rapidities of the incoming particles)

Sab(θ) ∼ |C(3)
abc̄|2

s−m2
c

= |C(3)
abc̄|2

2mamb(cosh θ − cosU c
ab)
.

Equation (2.4.4) and the first relation in (2.3.4) have been used in the second equality
above. It is immediate to see that the pole is located at the position θ = iU c

ab, the
external angle obtained by extending the side a in the triangle composed by the
masses ma, mb and mc (as indicated in figure 2.9). If now the ‘crossed symmetric’
process

a+ b̄ → a+ b̄

is considered, by writing the Mandelstam variable t as in the second row of (2.3.4)
it holds that

Sab̄(θ) ∼ |C(3)
abc̄|2

t−m2
c

= −|C(3)
abc̄|2

2mamb(cosh θ + cosU c
ab)
.

This time the pole is located at θ = iŪ c
ab = i(π − U c

ab), as shown in the second line
of figure 2.9; this is exactly what is expected from crossing symmetry, since due
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Figure 2.10: Closure relation associated to the conservation of Qs

when Cabc̸̄=0.

to (2.3.15b) any time Sab has a pole, say at θ = iθ0 (with 0 < θ0 < π), then Sab̄ has
a pole at θ = i(π − θ0) with opposite residue compared to Sab.
The conservation of the light-cone components of the momentum (2.4.3) can be
extended to all the higher-spin conserved charges in a natural way. The idea is
that the particle c, propagating with rapidity θ4 in figure 2.8, can be seen as a
superposition of two bound particles a and b, propagating with rapidities θ1 =
θ4 + iŪ b

ac and θ2 = θ4 − iŪa
bc respectively

Aa(θ1)Ab(θ2) = Ac(θ4). (2.4.5)

Acting on such a state with any pairs of higher spin conserved charges, Qs and Q−s,
and comparing the eigenvalues obtained on the two sides of (2.4.5) we obtain

γ(s)
a eisŪb

ac + γ
(s)
b e−isŪa

bc = γ(s)
c (conservation of Qs), (2.4.6a)

γ(s)
a e−isŪb

ac + γ
(s)
b eisŪa

bc = γ(s)
c (conservation of Q−s). (2.4.6b)

Such ‘fusing relations’ provide a generalization of (2.4.3) to the higher-spin conserved
charges of the model. As happens for the momenta, the fusing relations of higher-spin
charges can also be drawn in the complex plane as closure conditions of triangles (this
time having sides of length γ(s)

a , γ(s)
b and γ(s)

c ); the pictorial representation of (2.4.6a)
is given in figure 2.10. The set of relations (2.4.6) is known as the ‘conserved charge
bootstrap’. Starting with a set of masses and 3-point couplings all the angles of
the mass fusing triangles are determined. From them, the angles of the higher spin
triangles are fixed, being just the angles of the mass-triangles multiplied by s, the
spin of the charges (as shown in figure 2.10). This returns an overdetermined set of
constraints for γ(s)

j , the eigenvalues of the higher-spin charges: for a given s, if the
only solution to such constraints is the trivial one γ(s) = 0 then there is no conserved
charge of that spin. Given the masses and the 3-point couplings, the infinite tower
of higher-spin conserved charges is therefore determined. The eigenvalues of such
charges are then defined up to overall multiplicative factors, one for each s, that do
not modify the fusing angles of the triangles in figure 2.10.
The argument can be repeated similarly for the S-matrix and leads to a set of
algebraic bootstrap relations [50] connecting the S-matrix elements to one another.
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Figure 2.11: Pictorial representation of an S-matrix bootstrap con-
straint.

Such equations emerge from the following fusing idea: suppose that c is a bound
state of two elementary particles a and b. Then consider a particle of type d; it can
interact before or after the particles a and b fuse together to generate c. Through
the action of the higher-spin conserved charges it is possible to move from the LHS
to the RHS picture in figure 2.11. By equating the two expressions, the S-matrix
element Sdc can be obtained as the product of the elements Sda and Sdb shifted by
the proper fusing angles:

Sdc(θ34) = Sda(θ31)Sdb(θ32),

where θij ≡ θi − θj. Defining θ ≡ θ34 and substituting the values of the fusing angles
given in figure 2.8 the following algebraic equation must hold

C
(3)
abc̄ ̸= 0 =⇒ Sdc(θ) = Sda(θ − iŪ b

ac)Sdb(θ + iŪa
bc). (2.4.7)

Of course if (2.4.7) is valid for any θ it also holds that

Sdc(−θ) = Sda(−θ − iŪ b
ac)Sdb(−θ + iŪa

bc).

Using the unitarity condition (2.3.15a) we conclude that

C
(3)
abc̄ ̸= 0 =⇒ Sdc(θ) = Sda(θ + iŪ b

ac)Sdb(θ − iŪa
bc). (2.4.8)

The two constraints (2.4.7) and (2.4.8), similarly to the charge conservation equations
(2.4.6a) and (2.4.6b), are therefore equivalent. If the nonzero 3-point couplings and
a single S-matrix element, say S11

6, of a given integrable theory are known, then
it is possible to construct all the other S-matrix elements by using one of the two
bootstrap conditions, (2.4.7) or (2.4.8). The approach, that was used by A. B.
Zamolodchikov in his seminal works [19, 20] on perturbed conformal field theories, is
to make an ansatz for a single S-matrix element and from that apply the bootstrap
to generate new S-matrix elements iteratively. The process should close on a finite
number of S-matrix elements reproducing through their poles a particular set of

6In this regard the particle 1 has to be ‘fundamental’ in the sense that we will be discussed in
the next section.
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particles. In the next section it will be shown how the ‘bootstrap philosophy’ works
for the example first studied in [19].

2.5 Building blocks and minimal S-matrices

The scaling limit of the Ising model taken at the critical temperature T = Tc and
zero magnetic field is probably the best-known example of a conformal field theory.
It is the c = 1/2 conformal field theory (k = 1 in the series of minimal models (1.1.1))
describing the propagation of free massless Majorana fermions. Defining by H1/2 the
action of this theory, it is then possible to perturb it by switching on a magnetic
field:

H = H1/2 + λ
∫
d2xσ(x). (2.5.1)

In (2.5.1) σ is the local magnetisation (or spin density) in the scaling limit, while λ
is a magnetic field. The renormalization group flow induced by the presence of such
a perturbation drags the theory out from the conformal point. The c theorem [51]
teaches us that the effective central charge has to decrease along with the RG flow
and reaches its minimal value in the infrared limit. Since there is no unitary CFT
with c < 1/2, the perturbation has to introduce a mass gap and the perturbed theory
has to be massive. Even though the conformal symmetry is broken, the trajectory
of the renormalization group induced by λ is integrable. In [19, 20] Zamolodchikov
argued, based on the counting of dimensions in Virasoro representations, that the
perturbed action (2.5.1) supported integrals of motion with (at least) spins

s = 1, 7, 11, 13, 17, 19 (2.5.2)

(and their negatives s = −1,−7,−11,−13,−17,−19), a remnant of the conformal
symmetry.
Even though the counting argument implemented by Zamolodchikov is not sufficient
to verify the existence of conserved charges for infinitely many spins, it provides
enough spins to implement the Parke argument discussed in section 2.2 (which makes
complete sense since the deformed theory has to be massive, due to the c theorem).
So the factorisation of the S-matrix is ensured. With the additional assumption
that all the masses of the deformed theory are different, and the associated S-matrix
is therefore purely elastic, Zamolodchikov was able to implement the bootstrap
technology previously explained to derive a proposal for the S-matrix and the mass
spectrum of the model. This is incredibly surprising since he started only from the
knowledge of the existence of conserved charges with spins (2.5.2). In the following
we will revisit the steps of [19, 20] that made this construction possible.
Let us start assuming the existence of a massive real particle, that we label by 1
with associated mass m1 and with a nonzero 3-point coupling C

(3)
111. In this case

there is a fusing relation leading to an equilateral triangle in figure 2.8, for which
the conservation equation (2.4.6a) becomes

γ
(s)
1 eis π

3 + γ
(s)
1 e−is π

3 = γ
(s)
1 . (2.5.3)
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Zamolodchikov worked with the assumption that the particle 1 is ‘fundamental’, by
which we mean that all the other particles can be obtained by initial fusions of 1.
This implies that γ(s)

1 ≠ 0 for all the conserved charges Qs that the theory possesses.
Indeed, if we suppose that there exists a particular s̃ such that γ(s̃)

1 = 0, then all the
particles a propagating in one of the direct or crossed channels of S11 need to have
γ(s̃)

a = 0 or the fusing relations (2.4.6) associated with s̃ cannot be satisfied. We can
then apply the fusion on the particles a so generated: since 1 is fundamental we
can continue fusing generating the eigenvalues of all the other particles. In the end,
we would obtain that γ(s̃)

a = 0 for any particle a of the model. Since by asymptotic
completeness any state |ψ⟩ can be written as a superposition of multi-particle states
in the in- or out-basis and Qs acts additively on these states we have

Qs̃|ψ⟩ = 0 ∀ |ψ⟩,

having as only solution Qs̃ = 0. Therefore s̃ cannot be the spin of a conserved charge.
This implies γ(s)

1 ̸= 0 for all the spins s of the conserved charges and equation (2.5.3)
becomes

2 cos
(πs

3
)

= 1.

It admits as solutions all integers s with no common divisor with 6. These are

s = 1, 5, 7, 11, 13, 17, 19, 23, 25, 29 . . . (2.5.4)

and their negatives. We note that the spins found in (2.5.4) are more than is expected
from the counting argument in (2.5.2). In particular s = 5 has to be excluded since is
not present in (2.5.2). This induced Zamolodchikov to enlarge the starting spectrum
by adding a further particle with mass m2 > m1, and to assume two other nonzero
couplings: C(3)

112 and C(3)
221. If that is the case then the following fusion relations have

to hold:

C
(3)
112 ̸= 0 =⇒ γ

(s)
1 eisŪ1

12 + γ
(s)
1 e−isŪ1

12 = γ
(s)
2

C
(3)
221 ̸= 0 =⇒ γ

(s)
2 eisŪ2

21 + γ
(s)
2 e−isŪ2

21 = γ
(s)
1

(2.5.5)

Dividing the first equation by γ(s)
1 and the second equation by γ(s)

2 respectively, and
multiplying the two we obtain

4 cos sŪ1
12 cos sŪ2

21 = 1. (2.5.6)

If we have more than two conserved charges (2.5.6) provides an overdetermined
system of equations in Ū1

12 and Ū2
21. However, for all values of s in (2.5.4) that are

not multiples of of 5, it admits the solution

Ū1
12 = π

5 , Ū2
21 = 2π

5 .

The remaining angles Ū2
11 and Ū1

22 (obtained by imposing the sum of the internal
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angles of triangles equal to π) are 3π
5 and π

5 respectively. Then m2 is determined by

m2
2 = 2m2

1 − 2m2
1 cos(Ū2

11).

leading to the ‘golden’ mass ratio
m2

m1
= 2 cos π5 .

This is a promising result, that removes all multiples of 5 from the allowed spins;
the list (2.5.4) is therefore further reduced to

s = 1, 7, 11, 13, 17, 19, 23, 29 . . . (2.5.7)

This is now a set that looks in agreement with what we expect from the lower-order
spins of the surviving Virasoro currents (2.5.2).

Having imposed the fusing relations on the charges, we now study their effect on
the S-matrix. In that regard, a convenient choice of building blocks from which to
construct the S-matrix elements is given by

(x)θ =
sinh

(
θ
2 + iπx

2h

)
sinh

(
θ
2 − iπx

2h

) , (2.5.8)

where h is an integer depending on the theory under consideration. In this case,
because we know in advance the final result, we adopt the choice h = 30; this is the
minimum number making all the arguments x of the building blocks integers. The
building blocks (2.5.8) are 2πi-periodic functions that by construction satisfy

(x)−θ = (2h− x)θ = (x)−1
θ .

Each S-matrix element Sab constructed as a product over these fundamental blocks
is therefore meromorphic on the complex θ plane, 2πi-periodic and unitary, in
agreement with (2.3.16) and (2.3.15a). Crossing symmetry is less straightforward
and has to be imposed. For each building block (x)θ its crossed symmetric partner
is (h− x)θ for which

(x)iπ−θ = −(h− x)θ. (2.5.9)

An S-matrix element Sab, describing the interactions of two particles of types a and
b, will be written (up to an overall sign) as the product over certain building blocks

Sab(θ) =
∏
x∈Λ

(x)θ, (2.5.10)

where Λ is a set of possibly-repeated integers in [0, h]. Imposing crossing sym-
metry (2.3.15b) and making use of (2.5.9) the element Sab̄ has then to be

Sab̄(θ) =
∏
x∈Λ

−(h− x)θ. (2.5.11)

In the special situation in which the particle b is real (i.e. b̄ = b) the two S-matrices
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(x)θ = •
x0 h

− +

Figure 2.12: Picture of the building block (x)θ. For purely imagin-
ary rapidities the sign of (x)θ is negative for Imθ < πx

h

and is positive for Imθ > πx
h

. The pole region of the
physical strip has been represented in units of π

h
with

increasing angles from the left to the right.

in (2.5.10) and (2.5.11) have to be the same, implying that for each x ∈ Λ then
h− x has also to be in Λ. In other words S-matrices involving real particles always
have blocks coming in pairs (x)(h− x)7. The overall sign is then fixed in such a way
that the residues at the poles come with the correct sign according to their being
generated by bound states propagating in the forward or crossed channels. Note that
each building block, for purely imaginary rapidity θ = iu (u ∈ [0, π]), is negative if
u < πx

h
and positive if u > πx

h
as shown in figure 2.12. At the pole the residue is

therefore positive and we have

(x)iu ∼
2 sin πx

h

u− πx
h

.

If there is no more than one building block in the S-matrix, then we expect it
corresponds to a particle propagating in the forward (or s) channel, its residue being
positive8. For multiple building blocks the situation is more complicated: the sign
changes each time we cross a building block in the way shown in figure 2.13. The
requirement is that poles dividing a negative (on the left) and a positive (on the
right) region of the S-matrix correspond to bound states propagating in the forward
channel while poles dividing a positive region from a negative one correspond to
bound states propagating in the crossed channel. In certain cases blocks appear
with even multiplicity, as happens in (2.5.17), where two blocks (at positions 11 and
19) are of type (x)2. In this case, the sign does not change when we cross the block
and they do not have an explanation in terms of particles propagating in one of the
direct or crossed channels. Their origin is due to certain threshold singularities in
loop level Feynman diagrams [39], but we will not go further into that discussion
here. We will return to this issue in chapter 7.

Let us now move on with our original discussion. We have indeed defined all
the necessary ingredients to start constructing the S-matrix elements of the model
described by (2.5.1). We note that C(3)

111 and C
(3)
112 are both nonzero implying that

S11 has two poles at iU1
11 = i2π

3 and iU2
11 = i2π

5 corresponding to the propagation in
the forward channel of the particles 1 and 2 previously found. Since all the particles
are real, the same bound states have also to propagate in the crossed channel, and
other two poles are present at iŪ1

11 = iπ
3 and iŪ2

11 = i3π
5 . Having set h = 30

7The product between crossed symmetric building blocks (x)(h − x) is often found in literature
in the more compact notation − sinh θ+i sin (πx/h)

sinh θ−i sin (πx/h) or − tanh (θ/2+iπx/2h)
tanh (θ/2−iπx/2h) .

8This requirement can fail if the theory is not unitary, but it is not our case. See for example [52].
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S11(θ) = • • • • • • • •

m3 m1 m2 m2 m1 m3

(0) (2) (10) (12) (18) (20) (28) (30)

− + − + − + −

S12(θ) = • • • • • • • •

m1 m4 m2 m3 m3 m2 m4 m1

(6) (8) (12) (14) (16) (18) (22) (24)

+ − + − + − + − +

Figure 2.13: Pole structure of S11 and S12. Each nontrivial building
block corresponds to the propagation of a bound state
in the forward (red) or crossed (blue) channel. The
masses of the intermediate propagators are indicated
above the poles.

then the arguments of the building blocks (corresponding to the pole positions) are
represented in units of π

30 and a reasonable guess for S11 is

S11(θ) = (10)(12)(18)(20).

However, it turns out that the bootstrap equation

S11(θ) = S11(θ − i
π

3 )S11(θ + i
π

3 ), (2.5.12)

coming from setting a = b = c = d = 1 in (2.4.7), is not satisfied by this guess. The
minimal way to satisfy (2.5.12) is to add a pair of building blocks, (2) and (28), to
S11 corresponding to the propagation of a further particle. The minimal solution
to (2.5.12) is then given by

S11(θ) = −(2)(10)(12)(18)(20)(28). (2.5.13)

The overall sign has been set to make all the poles appear with the correct sign of
the residues, in agreement with the expected channels of the propagating bound
states. Noting that

(0) = 1 and (h) = −1

the element in (2.5.13) can also be written as

S11(θ) = (0)(2)(10)(12)(18)(20)(28)(30). (2.5.14)

Its pictorial representation is shown in the first line in figure 2.13. The pole at
i2π

30 has to correspond to a particle, say 3 (with m3 > m1), propagating in the
s-channel, for which it holds U3

11 = i2π
30 and Ū3

11 = i28π
30 . From the presence of this

new pole, obtained by requiring the bootstrap relation (2.5.12), the spectrum has to
be enlarged so to contain a new particle with mass

m2
3 = 2m2

1(1 + cosU3
11)
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from which we obtain
m3

m1
= 2 cos π30 .

Having found the masses m1, m2 and m3 (which are defined up to an overall scale)
the angles of the triangle ∆123, having as sides m1, m2 and m3, can be determined.
They are

Ū3
12 = 16π

30 , Ū2
13 = 9π

30 , Ū1
23 = 5π

30 . (2.5.15)

Moreover we can now going forward applying the bootstrap. Since C(3)
112 ̸= 0 the

S-matrix element S12 is obtained from (2.5.14) by using (2.4.7) with a = b = d = 1
and c = 2

S12(θ) = S11(θ − i
π

5 )S11(θ + i
π

5 ) = (6)(8)(12)(14)(16)(18)(22)(24). (2.5.16)

Most of the poles of S12 are expected. The pair of blocks (6)(24) and (12)(18)
corresponds to the propagation of 1 and 2. Similarly the pair (14)(16) corresponds
to the propagation of the particle 3 in agreement with the fusing angle Ū3

12 found
in (2.5.15). This confirms that the coupling C

(3)
123 is not zero and can be used to

introduce additional fusing relations between different S-matrix elements. There is
just one pair of building blocks that could not have been predicted. It is (8)(22)
which introduces an additional particle, that we label by 4. The interested reader
can try to go forward and generate new S-matrix elements by applying the fusing
relations (2.4.7) inserting from time to time as input the masses and fusing angles
obtained from the pole structure predicted by the S-matrices previously generated.
For example, it can be checked that

S13(θ) = (1)(3)(9)(11)2(13)(17)(19)2(21)(27)(29). (2.5.17)

Incredibly in [19, 20] Zamolodchikov discovered that the bootstrap closed within
exactly eight particles with the following masses:

m1 m5 = 2m2 cos 2π
15

m2 = 2m1 cos π5 m6 = m2

m1
m3

m3 = 2m1 cos π30 m7 = m2

m1
m4

m4 = 2m2 cos 7π
30 m8 = m2

m1
m5

(2.5.18)

One of the strongest pieces of evidence that the S-matrix conjectured by Zamolod-
chikov was the correct one to describe the system in (2.5.1) comes from [23]. In that
paper, Klassen and Melzer, by using the thermodynamic Bethe ansatz (TBA) [22]9,
recovered the central charge of the unperturbed model H1/2 starting from the S-
matrix elements described above. Indeed, by putting the theory on a ring of finite
length R and taking the ultraviolet limit R → 0, they observed that c̃(R) → 1/2.

9We refer to [53] for a pedagogical introduction to the TBA.
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The final set of masses and S-matrix elements obtained by closing the bootstrap
have many interesting features. The masses (2.5.18) correspond to the components
of the lowest eigenvalue eigenvector of the Cartan matrix of E8, that we label by
C [E8]. This means that, if we define γ(1) = (m1, . . . ,m8), then

C [E8]γ(1) = 4 sin2 π

60γ(1).

Surprisingly the first eight spins (2.5.7) correspond to the exponents of the Lie
algebra E8. For each of them there is an eigenvector of C [E8] defined by

γ(s) = (γ(s)
1 , . . . , γ

(s)
8 ),

where γ(s)
a are the sides of the higher-spin fusing triangles (see figure 2.10), satisfying

C [E8]γ(s) = 4 sin2 πs

60γ(s).

This observation suggests that a generalization should be possible also for other
Lie algebras that therefore have to be in correspondence with certain integrable
theories. We will return to the deep mathematical aspects of this topic in chapter 5.
S-matrices of this type, which do not show any further poles or zeros in addition
to those demanded by the bootstrap fusing relations, have been linked in literature
with perturbations of certain conformal field theories; a representative example is
the one just discussed. These S-matrices are called ‘minimal’ since they contain only
the minimal requirements imposed by the bootstrap, with no additional zeros or
poles.

A reason why the mass ratios and the spins (2.5.7) of the theory just discussed might
be related to the root system of E8 can be traced back to the fact that the Ising
model at the critical point can be realized in terms of the coset [15, 16]

(E8)1 × (E8)1

(E8)2
.

Similar constructions are verified for different statistical systems, which have a
realization in terms of cosets of the form

G1 × G1

G2
, (2.5.19)

where G is a simply-laced Lie algebra. Examples can be found for example in
appendices B and C of [54]. The central charge of the CFT constructed from the
coset (2.5.19) is given by

c = r
(

1 − h

(h+ 2)

)
(2.5.20)

where r and h are the rank and the Coxeter number of the simply-laced Lie algebra G
respectively. Integrable deformations of these CFTs by a suitable operator generate
massive theories with minimal S-matrices encoding properties of the Lie algebra G.
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More generally in [55, 56] the discussion was extended to cosets of the form

Gn × G1

Gn+1
(2.5.21)

with central charges given by

c = r
(

1 − h(h+ 1)
(n+ h)(n+ h+ 1)

)
. (2.5.22)

In [56] it was argued that integrable deformations of these cosets could be described
by affine Toda field theories with imaginary coupling and with underlying Lie algebra
G, but for n > 1 the associated S-matrices are expected to be non-diagonal.

2.6 Introducing coupling-dependent factors

The minimal S-matrices discussed in the previous section cannot be derived from
a Lagrangian using standard Feynman diagram techniques. If that were the case,
they should contain a coupling constant g inherited from the interacting part of
the Lagrangian: in this way the S-matrices could be perturbatively expanded for
small values of g and would reproduce a free theory at the value g = 0. However,
such a parameter is missing and the minimal S-matrices do not have a perturbative
interpretation. A natural question is then how we can introduce a coupling g into
these models so that in the limit g → 0 it holds that Sab = 1 (∀ types of particles a
and b). This can be done by multiplying each building block (x)θ of the minimal S-
matrices by a factor (x+Bx)−1

θ , where Bx(g) is a certain (in principle x-dependent)
function of g satisfying Bx(0) = 0. For a certain minimal S-matrix of the form
in (2.5.10), its perturbed version will be

Sab(θ; g) =
∏
x∈Λ

(x)θ

(x+Bx(g))θ

. (2.6.1)

Each factor (x + Bx)−1 introduces a zero at the position θ = iπ(x+Bx)
h

; in the limit
g → 0 all the Bx(g) go to zero and the positions of the zeros overlap the positions
of the poles so to return a trivial S-matrix. We should now find the set of Bx, one
for each building block, that allow for the closure of the bootstrap fusing relations,
satisfy crossing symmetry and do not alter the signs of the residues at the poles.
In [57] it was discovered that the imposition of such constraints leaves very little
freedom on the possible values of Bx which can differ one from another just by a
multiplicative sign.

Let B(g) be a function of the coupling, positive for small g, describing the displace-
ment of the zeros from the poles. Below we show how such a displacement-function
has to enter into the S-matrix element S12 in (2.5.16). Starting with the first building
block on the right, which in this case is (24), we need to introduce the zero so that
the pole residue at θ = iπ24/30 does not change sign. As it happens for the poles,
a zero at the position iπx/h divides the imaginary axis of the physical strip into
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••
(24)(24 − B)−1

+ − +

Right

• •
(24) (24 + B)−1

+ − +

Wrong

Figure 2.14: Right and wrong way to introduce the zero (depicted
in red) overlapping the pole (depicted in black) of S12
in the limit g → 0.

. . . •
(18 − B)−1

•
(18)

•
(22)

•
(22 + B)−1

•
(24 − B)−1

•
(24)

− + − + − +

Figure 2.15: Correct way to introduce zeros in S12 so that the signs
of the residues are left unchanged.

a left region where (x)−1 is negative and a right region where (x)−1 is positive; its
behaviour is the same as that reported in figure 2.12, with the only difference that
now iπx/h represents the position of a zero. By using this consideration, the zero
associated with the pole at θ = iπ24/30 needs to approach the pole from the left,
as shown on the LHS of figure 2.14 where it is depicted in red; this is the only way
to maintain the same ordering of signs as in the minimal S-matrix element S12 in
figure 2.13. Indeed, approaching the pole from the right we would change the signs
around the pole, introducing a forward channel with negative residue. The zero has
therefore to be introduced through (24 −B)−1. On the left of the zero, the sign of
the S-matrix becomes positive again (see the LHS of figure 2.14). To avoid changing
the sign of the residue of the next pole, located at iπ22/30, the zero associated with
it has to approach iπ22/30 from the right. In figure 2.15 the positions of the first few
zeros are shown. Comparing it with the minimal S-matrix element S12 we see that
the residues of the poles do not change signs. If we go forward introducing the zeros
so to do not alter the sign order around the poles we discover that the non-minimal
S-matrix element S12 can be written in the form

S12(θ; g) = {7}{13}{17}{23}, (2.6.2)

where we have introduced the new notation for the building blocks

{x}θ = (x− 1)θ(x+ 1)θ

(x− 1 +B)θ(x+ 1 −B)θ

(2.6.3)

following the lines of [57]. In that paper, it was observed that all the S-matrices ob-
tained from introducing a coupling dependence in the minimal S-matrices associated
with simply-laced Dynkin diagrams (the case discussed in section 2.5 is a particular
example where the Dynkin diagram is that of the E8 Lie algebra) can be written as

Sab(θ; g) =
h−1∏
x=1

step 2

{x}Nab(x)
θ , (2.6.4)
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where the non-negative integer coefficients Nab(x) depend on x and on the types of
particles {a, b}. They correspond to the multiplicities of the building blocks {x}. It is
worth saying that the bootstrap constraints, together with the request of preserving
the signs of residues at the poles, force these new S-matrices to be written in the
form (2.6.4), as noted in [57]. Surprisingly the displacement between poles and zeros
is described by a single function B(g), which is the same for all the building blocks.
This is a consequence of requiring the closure of the bootstrap fusing relations. These
theories enter the class of the so-called affine Toda models and we will discuss them
in detail in the second half of this thesis, where we will introduce them through their
Lagrangian description.
The new building blocks (2.6.3) have many important properties inherited from the
minimal building blocks (2.5.8). They are meromorphic in θ, 2πi-periodic and satisfy

{x}−θ = {2h− x}θ = {x}−1
θ . (2.6.5)

Similarly to what happens for the minimal cases the S-matrices constructed using
the building blocks (2.6.3) are therefore automatically 2πi-periodic and unitary. The
crossing symmetry is satisfied by noting that

{x}iπ−θ = {h− x}θ.

If a building block {x} appears in Sab then it can be checked that {h−x} is contained
in Sab̄ so that these modifications of minimal S-matrices are again crossing symmetric.
Figure 2.16 shows the first eight S-matrix elements obtained by introducing the
required zeros in the E8 minimal model. Each building block {x} is represented by
a brick, with vertical faces located at x− 1 and x+ 1 respectively, the pole positions.
The zeros of {x} are both in the region inside the brick, indeed for small g it holds
that

x− 1 < x− 1 +B < x+ 1 −B < x+ 1.

While the zeros can cross one another without changing the sign of the residues at
θ = iπ(x ± 1)/h, they cannot intersect the poles. In this second case, we would
obtain bound state particles generating pole residues with wrong signs. To avoid
this situation we require

0 < B(g) < 2. (2.6.6)

In addition, the same constraint avoids that additional unwanted poles are introduced
inside the physical strip [57]. Note also that each building block is invariant by
sending B into 2 −B:

{x}2−B = {x}B. (2.6.7)

Such a property is of course reflected on the S-matrix that becomes trivial not only
when B = 0 but also when B = 2 (in this second case the zero located at x+ 1 −B

overlaps the pole located on x− 1). This property is universally satisfied in all the
self-dual affine Toda theories [57]. The dependence of B in terms of the coupling g
will be given in section 6.4, where g will be a specific coupling in the Lagrangian.
With the axiomatic construction of S-matrices explained above we conclude this
chapter. In the rest of the thesis, the focus will be on Lagrangian aspects of integ-
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S11(θ) = × × × ×
{1} {11} {19} {29}

S12(θ) = × × × ×
{7} {13} {17} {23}

S13(θ) = × × × × × ×
{2} {10} {12} {18} {20} {28}

S14(θ) = × × × × × ×
{6} {10} {14} {16} {20} {24}

S15(θ) = × × × × × × × ×
{3} {9} {11} {13} {17} {19} {21} {27}

S16(θ) = × × × × × × × ×
{6} {8} {12} {14} {16} {18} {22} {24}

S17(θ) = × × × × × × × × × × × ×
{4} {6} {8} {10} {12} {14} {16} {18} {20} {22} {24} {26}

S18(θ) = × × × × × × × × × × ×
{5} {7} {9} {11} {13} {15} {17} {19} {21} {23} {25}

Figure 2.16: First eight S-matrix elements of the e(1)
8 affine Toda

theory.
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rability, from which we will try to rediscover many of the properties presented in
the previous sections.





Chapter 3

Perturbative S-matrices and no
particle production

3.1 Perturbative simplicity in 1+1 dimensions

The existence of an infinite tower of higher spin conserved charges, responsible for
the Yang-Baxter and bootstrap equations, combined with the constraints of crossing
and unitarity has led in the past to proposals for the exact S-matrices of many
integrable theories in 1+1 dimensions. In the previous sections, some examples of
constructions of these S-matrices have been reviewed. The results obtained through
this axiomatic procedure can then be checked further using standard perturbation
theory, from whose perspective integrability reveals itself in cancellations of sums
of Feynman diagrams contributing to production processes. This is what in this
thesis will be referred to as ‘perturbative integrability’, by which is meant the
vanishing of all such sums, both at tree level or including all loop diagrams as
well. Despite these cancellations being expected in all the massive quantum field
theories possessing higher spin conserved charges, their explanation in perturbation
theory is mathematically intricate and interesting to understand in its own right.
The Lagrangian requirements to make these cancellations possible are generally
ill-understood and will be a matter of discussion in the remaining part of this thesis.

The topic can be introduced along the lines of [36], by looking at the simplest example
of interacting theory in 1+1 dimensions, λϕ4 1. The Lagrangian of the model is

L = 1
2∂µϕ∂

µϕ− m2

2 ϕ2 − λ

4!ϕ
4 (3.1.1)

from which the following Feynman rules can be derived

1Early studies of the absence of production in integrable models include [58, 59], which discuss
the cancellation mechanism of Feynman diagrams contributing to production processes in the
sine-Gordon theory at tree level and at one loop.
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• •

1st-set

• •

2nd-set

Figure 3.1: Different sets of Feynman diagrams in a production
process 2ϕ → 4ϕ, depending on if the incoming particles
(in red) are directed to the same vertex or different
vertices.

= i
p̄p−m2+iϵ,

• = −iλ.

The task is to compute the connected part of the amplitude for the production
process 2ϕ → 4ϕ at the tree level. If the momenta are parametrized using their
light-cone components (2.1.2) (where in the present case all the masses are the
same), by labelling with a1 and a2 the components of the incoming particles and
with a3, a4, a5, a6 the components of the outgoing ones, it is clear that for physical
external momenta it needs to be true that ai > 0 ∀ i ∈ {1, 2, 3, 4, 5, 6}. This is a
requirement to have all particles with positive energies. For these physical kinematic
configurations, the production process 2ϕ → 4ϕ cannot have internal momenta on-
shell. This is easily verified if we split the Feynman diagrams contributing to the
process into two different sets characterised as follows: the first set contains Feynman
diagrams having both the incoming particles directed to the same vertex, as shown
in the first picture in figure 3.1. Contrarily, the second set contains diagrams with
the two incoming particles directed to different vertices. This second configuration
is shown in the second picture in figure 3.1. Let us suppose that, in a Feynman
diagram belonging to the first set, the momentum of the internal propagator is
on-shell. In this case, the propagating particle can be directed from left to right or
from right to left in the first diagram in figure 3.1. In both cases we end up with
a contradiction: if the momentum is directed to the right then the RHS vertex, on
the pole, would correspond to a tree-level process 1ϕ → 3ϕ where all the particles
involved are physical and on-shell. Similarly, if the momentum is directed to the left,
on the pole we would obtain a tree-level process 3ϕ → 1ϕ on the LHS vertex. Both
of these processes are kinematically forbidden since they do not conserve energy. It
is therefore impossible, for any physical choice of the external momenta, to make
the internal propagator on-shell in diagrams belonging to the first set in figure 3.1.
An analogous discussion can be repeated for the Feynman diagrams in the second
configuration implying the impossibility to have, for physical values of the external
momenta, poles in a production process 2ϕ → 4ϕ.

To obtain a more symmetric expression for the amplitude, it is convenient to look
at the annihilation process 6ϕ → 0 instead of 2ϕ → 4ϕ . In the end it is clear that
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it is possible to generate the amplitude M2ϕ→4ϕ by crossing 4 incoming momenta
to outgoing momenta in M6ϕ→0, indeed it holds that M2ϕ→4ϕ(a1, a2, a3, a4, a5, a6) =
M6ϕ→0(a1, a2,−a3,−a4,−a5,−a6). With this in mind, we perform the sum over all
the Feynman diagrams with six incoming momenta at the tree level. Since in the
production process 2ϕ → 4ϕ there is no choice of physical external momenta for
which internal bound states can go on-shell we can set iϵ = 0 in all the denominators
of propagators so that the amplitude M6ϕ→0(a1, . . . , a6) (in the physical region of
external kinematics of M2ϕ→4ϕ: a1 > 0, a2 > 0, a3 < 0, a4 < 0, a5 < 0, a6 < 0) is
given by

Σσ • •

aσ(1)

aσ(2)

aσ(3)

aσ(4)

aσ(5)

aσ(6)

= −iλ2

m2 Σσ
1

(aσ(1)+aσ(2)+aσ(3))(a−1
σ(1)+a−1

σ(2)+a−1
σ(3))−1

= −iλ2

m2 Σσ
aσ(1)aσ(2)aσ(3)

(aσ(1)+aσ(2))(aσ(2)+aσ(3))(aσ(3)+aσ(1))

There is a single master topology, into which the momenta can enter in 6!
3!3!2! = 10

different ways, each one labelled by a suitable permutation σ and corresponding to
a different Feynman diagram.

Note that there are many manners to write the amplitude as a function of a1, . . . , a6,
each one corresponding to a choice of variables used to write the momenta flowing
in the intermediate propagators. For a given permutation σ, the propagator con-
necting the two vertices with incoming momenta (aσ(1), aσ(2), aσ(3)) on the left and
(aσ(4), aσ(5), aσ(6)) on the right can be written both as

aσ(1)aσ(2)aσ(3)

(aσ(1) + aσ(2))(aσ(2) + aσ(3))(aσ(3) + aσ(1))
(3.1.2)

or
aσ(4)aσ(5)aσ(6)

(aσ(4) + aσ(5))(aσ(5) + aσ(6))(aσ(6) + aσ(4))
. (3.1.3)

After imposing the overall conservation of the light-cone components of the momenta

6∑
i=1

ai = 0 ,
6∑

i=1

1
ai

= 0 (3.1.4)

the two quantities (3.1.2) and (3.1.3) become the same so that the choice adopted to
write the propagator in each Feynman diagram is irrelevant. A convenient convention
is to do not privilege any of the two choices and to write each propagator as the
average of the two. With this prescription, the amplitude is given by

M6ϕ→0(a1, . . . , a6) = −iλ2

m2 H(a1, . . . , a6) (3.1.5)
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where

H(a1, . . . , a6) = 1
2
∑

σ

(
aσ(1)aσ(2)aσ(3)

(aσ(1) + aσ(2))(aσ(2) + aσ(3))(aσ(3) + aσ(1))

+ aσ(4)aσ(5)aσ(6)

(aσ(4) + aσ(5))(aσ(5) + aσ(6))(aσ(6) + aσ(4))

)
.

(3.1.6)

Remarkably the expression in (3.1.6) is symmetric under any permutation of the vari-
ables aj, and the same property applies separately to its numerator and denominator,
defined by

H(a1, . . . , a6) = 1
2
N(a1, . . . , a6)
D(a1, . . . , a6)

.

This symmetry is manifest in the sum of pictures of the Feynman diagrams. However,
it is in general broken once we adopt a particular choice of momenta to write
the algebraic expressions of the graphs and is restored only on the kinematical
surface conserving the overall energy and momentum. The advantage of using the
prescription (3.1.6) is that this symmetry is maintained also if (3.1.4) is not satisfied.
This allows us, following the same method of [60], to apply the fundamental theorem
of symmetric polynomials on (3.1.6). This theorem states that any symmetric
polynomial in n variables a1, . . . , an can be written as a polynomial expression in
terms of the elementary symmetric polynomials defined by

sk ≡

1 if k = 0∑
1≤i1<···<ik≤n ai1 . . . aik

if k = 1, . . . , n.
(3.1.7)

In the considered case n = 6 and with some manipulations it can be shown that

N = − 2s3
3s6 + s2

3s4s5 + s2
1s

2
4s5 + s1s

2
2s

2
5 − 2s2s3s

2
5 − 6s1s4s

2
5 + 5s3

5

+ s1s2s
2
3s6 − 2s2

1s3s4s6 − 6s2
1s2s5s6 + 12s1s3s5s6 + 5s3

1s
2
6

(3.1.8)

and

D = s3
3s6 + s1s2s3s4s5 − s2

3s4s5 − s2
1s

2
4s5 − s1s

2
2s

2
5 + s2s3s

2
5 − s3

5+
2s1s4s

2
5 − s1s2s

2
3s6 + s2

1s3s4s6 + 2s2
1s2s5s6 − 3s1s3s5s6 − s3

1s
2
6.

(3.1.9)

Despite the expressions (3.1.8) and (3.1.9) are quite complicated, on the kinemat-
ical surface satisfying (3.1.4) it holds that s1 = s5 = 0 and they drastically sim-
plify. Indeed, the only combination of symmetric polynomials different from zero in
((3.1.8),(3.1.9)) is s3

3s6 so that

H(a1, a2, a3, a4, a5, a6) = −1.

This implies, in two dimensions, that provided the overall energy and momentum
are conserved the amplitude M6ϕ→0, and therefore also M2ϕ→4ϕ, is a constant which
does not depend on the particular configuration of the external momenta. At this
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point, it is tempting to cancel such a constant by adding a properly tuned coupling

− 1
6!
λ2

m2ϕ
6

to the starting Lagrangian (3.1.1). In this manner, after such a coupling is introduced,
the tree-level production amplitude M2ϕ→4ϕ is identically zero. By defining g2 ≡ λ

m2

the new Lagrangian with both the ϕ4- and the ϕ6-interaction is

L = 1
2∂µϕ∂

µϕ− m2

g2

(
g2

2 ϕ
2 + g4

4!ϕ
4 + g6

6!ϕ
6
)
.

It is also possible to go forward and calculate the amplitude for the process 2ϕ → 6ϕ.
Once again, after a challenging computation, it will be discovered that M2ϕ→6ϕ is a
constant that can be cancelled by introducing a proper 8-point coupling. By con-
tinuing without stopping to cancel higher- and higher-point processes by introducing
new couplings we end up with a well-known integrable Lagrangian, that one of the
sinh-Gordon model

LShG = 1
2∂µϕ∂

µϕ− m2

g2

(
cosh gϕ− 1

)
. (3.1.10)

The analysis can be repeated in a similar fashion by starting assuming the existence
of a cubic interaction. In this case, though the problem is a bit harder, by imposing
the absence of production for all processes with even and odd numbers of external
legs (note that in the previous case all the processes with odd external legs were
automatically zero due to the symmetry ϕ → −ϕ of the Lagrangian), the following
Bullough–Dodd Lagrangian

LBD = 1
2∂µϕ∂

µϕ− m2

6g2

(
e2gϕ + 2e−gϕ − 3

)
. (3.1.11)

would be obtained. The fact that (3.1.10) and (3.1.11) are the only two possible
options arising from imposing absence of production at all orders of external legs for
Lagrangians with a single scalar field was already remarked in [36].

One fact deserves a little attention at this point. Previously it was mentioned that
the two amplitudes M6ϕ→0 and M2ϕ→4ϕ can be mapped one into the other by just
changing the signs of the light-cone components a4, . . . , a6. This may sounds a bit sus-
pect in general, since then it needs also to be true that M2ϕ→4ϕ(a1, a2, a3, a4, a5, a6) =
M3ϕ→3ϕ(a1, a2,−a3, a4, a5, a6) and therefore the cancellation of M2ϕ→4ϕ should also
imply the cancellation of M3ϕ→3ϕ. This is actually in contradiction with what is
expected in an integrable theory, where a 3-to-3 process should not be zero, but
instead it should factorize into the product of 2-to-2 S-matrices as discussed in
section 2.2. Where is the mistake? The answer comes from the iϵ factors in the
denominators of the propagators. In a generic production process, such as 2ϕ → 4ϕ,
there is no way for physical external momenta to make the internal propagators
on-shell. This implies that the amplitude M2ϕ→4ϕ(ϵ), with all the ϵ-parameters in
place, on the physical external configurations of momenta is equivalent to M2ϕ→4ϕ(0),
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the same amplitude obtained by summing Feynman diagrams having set ϵ = 0 in all
propagators. Then it is possible to verify that M2ϕ→4ϕ(0) is a function identically
zero on all the complex domain of a1, . . . , a6 (as far as the energy and momentum
are conserved), implying that M2ϕ→4ϕ(ϵ) = 0 for any choice of physical external
momenta. On the other hand, M3ϕ→3ϕ(ϵ) can develop poles in its propagators for
physical values of the external momenta, and it is not true that ϵ can be set to zero in
the Feynman diagrams or infinities in physical processes would be observed. Instead,
all propagators have to be considered with the respective iϵ factor. After summing
over all diagrams, the limit ϵ → 0 has to be taken. In this limit, the connected part
of the 3-to-3 amplitude decomposes into two pieces

lim
ϵ→0+

M3ϕ→3ϕ(ϵ) = M fact
3ϕ→3ϕ +Mprod

3ϕ→3ϕ

of which the first corresponds to factorized scattering, and contains additional delta
functions of the momenta that force the incoming and outgoing particles to carry
the same set of momenta. Instead Mprod

3ϕ→3ϕ contributes to production processes. This
second term is exactly the contribution satisfying the crossing symmetry equality
previously discussed: Mprod

2ϕ→4ϕ(a1, a2, a3, a4, a5, a6) = Mprod
3ϕ→3ϕ(a1, a2,−a3, a4, a5, a6).

At the tree level, such a term is not affected by ϵ and can be obtained by summing
all the different Feynman diagrams, imposing ϵ = 0 in all the propagators from
the beginning. In a generic quantum field theory Mprod can contain singularities
for complex kinematics, arising from on-shell propagating particles in internal lines;
however, in an integrable model, all such infinities must cancel each other, since
otherwise the production amplitude would not vanish2. This means that if a certain
Feynman diagram is singular for particular values of the external momenta, at least
one other diagram is expected to become singular for the same choice of the external
momenta in such a way that the infinities cancel, making the total Mprod free of
singularities. This has to hold at any number of external particles.

In this chapter and the next one, such a problem will be rigorously defined by
searching for the necessary and sufficient conditions that have to hold to make
these cancellations possible at the tree level. Some of the results covered here have
been studied in other literature. The way to constrain the structure of higher-point
couplings of general massive two-dimensional quantum field theories by imposing
the absence of particle production at the tree level has been studied for example
in [37, 63, 64]. In particular, in [37], adopting a particular multi-Regge limit, an ex-
plicit condition determining higher-point couplings in integrable theories of multiple
massive bosonic fields in terms of the masses and lower-order couplings was found;
such condition was then solved for Lagrangians with a single scalar field, leading
to the ‘rediscovery’ of the sinh-Gordon and Bullough-Dodd theories. Such results
will be revisited in the next sections. Different open problems, left uncovered in [37],
have then been studied in [1] and will be mentioned along with the next sections.
Most importantly for this chapter, in [1] is shown that the absence of singularities

2An exception happens in massless theories where an expansion around a trivial vacuum generally
leads in two dimensions to an IR catastrophe. This generates ambiguities in perturbation theory,
and integrable Lagrangians can manifest production at the tree level [61, 62].
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in amplitudes imply that they are constant. It is worth also mentioning that the
presence of production in the world-sheet scattering has been used to rule out the
tree-level integrability for different string theories [60, 65, 66].

The problem that will be addressed can be defined as follows. Let

L =
r∑

a=1

(
1
2∂µϕa∂

µϕā − 1
2m

2
aϕaϕā

)
−

+∞∑
n=3

r∑
a1,...,an=1

1
n!C

(n)
a1...an

ϕa1 . . . ϕan (3.1.12)

be a general Lagrangian for a quantum field theory of r interacting massive scalar
fields, possibly with different masses, in two dimensions. The index a in (3.1.12)
is a label for the possible types of particles in the model, which correspond to the
possible asymptotic states of the theory. The convention ϕā = ϕ∗

a is adopted. If the
component ϕa is real, it is assumed a = ā, while if ϕa is a complex field ā represents
an index ∈ {1, . . . , r} different from a.3 In this way, it is taken into account both the
case in which the fields in (3.1.12) are real and the one in which they are complex.
By assuming the Lagrangian (3.1.12) as a starting point, in the next sections it will
be explained how to find the possible sets of masses and couplings for which the
theory defined by (3.1.12) is perturbatively integrable at tree level, with a purely
elastic S-matrix for 2-to-2 processes.

Before going on, for the sake of clarity, is appropriate to comment a bit more on the
conventions adopted. A generic n-point amplitude will be labelled by M (n), which
corresponds to the sum over all relevant connected Feynman diagrams without
inserting additional normalization factors. Contrarily it will be referred to the S-
matrix as the amplitude properly normalized and multiplied by the Dirac delta
function of overall energy-momentum conservation. In 2-to-2 elastic processes it
holds

Sab(p1, p2, p
′
1, p

′
2) = M

(4)
ab (p1, p2, p

′
1, p

′
2)(2π)2δ(2)(p1 + p2 − p′

1 − p′
2)Alegs (3.1.13)

where Alegs contains external leg normalization factors; it can be checked that each
external particle carries a factor (

√
4π)−1 so that in this case Alegs = (4π)−2. Then

the Dirac delta function of the overall energy-momentum conservation can be ex-
pressed in terms of the rapidities; by considering only the kinematical configuration
in which the outgoing momenta are equal to the incoming ones then

δ(2)
(
p1 + p2 − p′

1 − p′
2

)
= δ(θ1 − θ′

1)δ(θ2 − θ′
2)

mamb sinh θ12
. (3.1.14)

An additional contribution corresponding to the reflection kinematical configuration
is present on the RHS of (3.1.14) but it is omitted here, since M (4)

ab is zero on such
configurations in purely elastic models. Plugging Alegs and (3.1.14) inside (3.1.13)

3For example if a theory of two real fields ϕ1 and ϕ2 is given, then it has to be considered
1̄ = 1 and 2̄ = 2 so that the non-interacting part of the Lagrangian is 1

2 ∂µϕ1∂µϕ1 + 1
2 ∂µϕ2∂µϕ2 −

1
2 m2

1ϕ1ϕ1 − 1
2 m2

2ϕ2ϕ2. On the other hand if the fields are one the complex conjugate of the other
it is assumed 1̄ = 2 and 2̄ = 1, so that the free Lagrangian is given by ∂µϕ1∂µϕ1̄ − m2

1ϕ1ϕ1̄.
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the value of the elastic S-matrix is

Sab(θ) = M
(4)
ab (θ)

4mamb sinh θ , (3.1.15)

where as usual θ ≡ θ1−θ2 and the product of Dirac delta functions δ(θ1−θ′
1)δ(θ2−θ′

2)
has been omitted.

3.2 The logic step by step

Below the steps followed to find the set of masses and couplings making sums of
Feynman diagrams contributing to inelastic processes equal to zero are summarized.
Here is the logic:

(i) A generic n-point on-shell tree-level amplitude M (n) (by it we mean the production
part of the amplitude, which is the sum over Feynman diagrams having set ϵ = 0 in
the propagators) is assumed as a starting point; it depends on n−2 momentum para-
meters a1, . . . , an−2 (an−1 and an are fixed by imposing the momentum conservation
constraints), defined as in (2.1.2). By exploiting some universal properties of the
amplitude it will be proved that the absence of poles in M (n) (including poles at infin-
ity) implies that such a function is a constant, not depending on the particular choice
of a1, . . . , an−2. This fact is rather easily-seen if the scattering involves particles with
the same mass, since in this case M (n) is a rational function of a1, . . . , an−2 and
by Liouville’s theorem the fact that such a function is bounded implies that it is a
constant. This is the case considered in [37]. More work is required if M (n) involves
particles with different masses, since after imposing momentum conservation square
roots in M (n) are introduced. This second situation was covered later in [1] and will
be discussed in section 3.3.

(ii) Then it is possible to proceed inductively by supposing that M (j) is not just
constant but zero for j ∈ {5, 6, 7, . . . , n − 1} with n − 1 ≥ 6; in this case M (n) has
to be a constant. Indeed suppose that M (n) has a pole. This corresponds to putting
a propagator on-shell as shown in figure 3.2 and factorising the amplitude into two
on-shell sub-amplitudes M (m+1) and M (n+1−m). Since n − 1 ≥ 6, at least one of
M (m+1) and M (n+1−m) involves a scattering process of five or more particles and
therefore it is equal to zero by the induction hypothesis. Since the residue at the
pole is proportional to the product of M (m+1) and M (n+1−m) in the limit in which
the k-particle in figure 3.2 goes on shell, the residue goes to zero and no singularity
arises. Due to the previous point, the fact that M (n) is free of any singularities
implies that such an amplitude is a constant.

(iii) The next step is to determine what constant such an n-point amplitude is equal
to, and subsequently tune the next higher point coupling C(n)

a1,...,an
in (3.1.12) in such

a way to cancel that constant. To achieve this the multi-Regge limit defined in
[37] should be adopted; it corresponds to a particular kinematical configuration in
which most of the Feynman diagrams are suppressed, making the computation of
the amplitude particularly simple. In this manner, by imposing that M (n) has to
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k

1

2

3
. . .

m

m+ 1

m+ 2

m+ 3

. . .
n

Figure 3.2: The residue of M (n) in the limit in which the k-
propagator is on-shell factorises into the product of
two amplitudes involving scattering processes of less
particles. Since at least one of them is equal to zero
for the induction procedure the full amplitude does not
present singularities.

vanish, the n-point coupling can be obtained in terms of the masses and the lower
point couplings. The method is described in detail in section 3.5 where the technique
used in [37] is reviewed. For the sake of clarity it is important to emphasise once
again how the induction procedure explained in (ii) and (iii) works in a step by step
way. Suppose that the absence of production in 5- and 6-point processes has been
proved, which corresponds to have M (5) = M (6) = 0. Then as explained above the
amplitude M (7) cannot have any poles and, by point (i), is a constant, not depending
on the particular choice of the external momenta. Since the choice of the kinematics
does not affect the value of the 7-point amplitude it is not restrictive at this point
to adopt a particularly simple kinematical configuration to tune the value of the
7-point couplings. In this manner a new amplitude, M (7), can be added to the set
of null processes and it holds that M (5) = M (6) = M (7) = 0. It is then possible to
proceed inductively to all the higher point amplitudes. The relation allowing all the
n-point couplings to be found (with n ≥ 5) in terms of the masses, 3- and 4-point
couplings is given in equation (3.5.7), and was first obtained in [37].

(iv) Finally and most importantly the sets of masses, and 3- and 4-point couplings,
that ensure the absence of particle production in 5- and 6-point processes, have to
be found. They will provide the basis for the induction procedure.

In the rest of this chapter first point (i) is proved (in section 3.3), and then the
multi-Regge limit mentioned in (iii) to obtain the recursion relation for higher point
couplings is reviewed. This is done in section 3.5. Point (iv), which provides the
basis of the entire induction hypothesis, will be covered in chapter 4; that chapter
contains part of the results presented in [1]. Defining the set of allowed masses,
3- and 4-point couplings making the induction possible corresponds of defining the
space of tree-level integrable theories with a Lagrangian of type (3.1.12). This opens
the door to the possibility of classifying integrable models by imposing the absence
of production.



52 Chapter 3. Perturbative S-matrices and no particle production

3.3 Constant amplitudes from the absence of
singularities

Let us consider the scattering of n particles that by convention we assume to be all in-
coming, with possibly-different masses. Written in the light cone components (2.1.2),
the constraints of overall energy-momentum conservation are

n∑
i=1

miai = 0, (3.3.1a)

n∑
i=1

mi

ai

= 0. (3.3.1b)

In the following, a1, . . . , an−2 are kept as independent variables, while an−1 and an

are written as functions of them by using (3.3.1). The constraint (3.3.1a) can be used
to write an−1 as a negative linear combination of the other light cone components;
therefore by substituting its expression into (3.3.1b) a quadratic equation for an

is generated. If we solve this equation two different solutions for an are obtained,
differing from one another for a square root quantity coming with opposite sign in
the two solutions. Due to the structure of the constraints (3.3.1), it is not difficult
to check that the argument of the square root is a homogeneous polynomial, that
will be called S(2n−4), of order 2n − 4 in the variables a1, . . . , an−2, where n is the
number of scattered particles. Moreover S(2n−4) is a polynomial of order four in each
one of the aj, with j ∈ {1, . . . , n − 2}. Let us consider for example the scattering
of 5 particles. In that case S(2n−4) = S(6) is a homogeneous polynomial of order six
in a1, a2, a3; possible terms of order six admitted in S(6) are a2

1a
2
2a

2
3 or a4

1a2a3 while
a5

1a2, though it is of order six, is not an admitted term since it is of order 5 in a1;
indeed, for any n, S(2n−4) is a polynomial of order four in each one of its variables,
so that powers of the ajs bigger than four are not admitted.

Without imposing the overall energy-momentum conservation there are many differ-
ent ways to write an n-point amplitude, corresponding to different rational functions
in a1, . . . , an. However, no matter the initial rational function in a1, . . . , an is chosen,
on the kinematical surface conserving the total energy and momentum the amplitude
becomes a uniquely defined function of the form

M (n)(a1, . . . , an−2) = Q
(N)
1 +Q

(N+2−n)
2

√
S(2n−4)

Q
(N)
3 +Q

(N+2−n)
4

√
S(2n−4)

. (3.3.2)

The different quantities in the numerator and denominator on the RHS of (3.3.2) are
homogeneous polynomials in the variables a1, . . . , an−2 of degree indicated in their su-
perscripts. For example, S(2n−4)(λa1, . . . , λan−2) = λ2n−4S(2n−4)(a1, . . . , an−2). The
number of particles involved in the scattering is indicated by the lowercase letter
n, while the capital letter N depends on n and the number of Feynman diagrams
contributing to the process and it is a generic positive integer. It is worth mentioning
that the total amplitude, due to the Lorentz invariance of the Lagrangian (3.1.12),
does not scale under a global transformation aj → λaj. This fact is guaranteed by
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the matching between the degrees of the different polynomials in (3.3.2). Note also
that in principle the amplitude is not a single-valued function for a particular choice
of a1, . . . , an−2, but instead has two branches of solutions that correspond to taking
the positive or negative sign in front of the square root term

√
S(2n−4). The two

signs correspond to the two possible kinematical configurations obtained solving the
constraints (3.3.1) in terms of an−1 and an.

In the special situation in which the n- and (n− 1)-particle are of the same type, a
symmetry is present in the two solutions obtained by imposing energy-momentum
conservation; they can be mapped one into the other by exchanging an and an−1.
Since the amplitude is also symmetric under this transformation, it has to be invariant
by mapping one branch into the other. The effect of this is that the two polynomials
Q

(N+2−n)
2 and Q

(N+2−n)
4 in front of the square root terms in (3.3.2) have to be

zero. Such situation, in which the amplitude continues to be rational also on the
kinematical region satisfying the conservation constraints, has been analysed in [37].
In that paper, the authors discussed how proving the absence of poles in M (n) is
equivalent to proving that it is a constant. Indeed the only rational function without
any poles is a polynomial; moreover, the only polynomial in a1, . . . , an−2 invariant
under a scaling aj → λaj is a constant. A bit more tricky is the case in which the
masses are different. In this case the square root could actually be present in (3.3.2)
and Liouville’s theorem cannot be directly applied to show that M (n) is a constant.
In this more general scenario, a further step is required to prove the triviality of the
amplitude and it is explained below following the argumentation of [1].

Let a1 = z be an independent free parameter and a2, . . . , an−2 be fixed in (3.3.2). For
fixed values of a2, . . . , an−2, the term S(2n−4)(z, a2, . . . , an−2) appearing in the square
root, as previously mentioned, is a polynomial of order four in z; it is therefore
proportional to

S(z) = (z − z1)(z − z2)(z − z3)(z − z4), (3.3.3)

where z1, z2, z3 and z4 are four branch points depending on the particular values of
a2, . . . , an−2. This makes M (n) a rational function of the two arguments z and

√
S(z).

The branch cuts of
√
S(z) can be chosen to be any copy of non-intersecting segments

connecting the branch points in pairs. For example, one branch cut can be set by
connecting z1 with z2 and the other one by connecting z3 with z4. If we circle around
the branch points we move from one cover of the complex plane, corresponding to
one kinematical solution of the energy-momentum conservation (3.3.1), to a second
one on which the sign of

√
S(z) is flipped. The domain of the amplitude is therefore

a two-sheeted covering of C, Σ1 and Σ2, each one corresponding to one of the two
kinematical configurations obtained by solving (3.3.1). If now the cuts are opened
and the point at infinity is added it is possible to see that the double cover of the
complex plane is homeomorphic to a torus, with Σ1 and Σ2 corresponding to the two
halves of the doughnut. All this comes from standard considerations on Riemann
surfaces as described for example in [67]. In appendix A a detailed map from such
double cover of the complex plane to the torus is reported; the derivation follows an
argument that can be found in [68].

In conclusion, if the amplitude does not have any singularities in a1 in both the
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Riemann sheets, no matter the choice of a2, . . . , an−2, then Liouville’s theorem applies
on the torus and the amplitude has to be a constant in the variable a1. Repeating
the previous analysis one variable at a time we conclude that if M (n) is completely
free of singularities, both at finite values of the momenta and at infinity, then

∂

∂a1
M (n)(a1, . . . , an−2) = ∂

∂a2
M (n)(a1, . . . , an−2) = . . . = ∂

∂an−2
M (n)(a1, . . . , an−2) = 0.

Therefore a necessary and sufficient condition an amplitude has to satisfy to be
constant is to have a bounded absolute value. In this way point (i) is proved.

The fact that the Riemann surface Λ over which the amplitude is defined has the
topology of a torus ensures that there exists a map between such a torus to Λ making
the amplitude single-valued on the doughnut. In appendix A a parametrization on
the torus is explicitly written using the Weierstrass ℘ elliptic function; it is possible
applying this map by using other elliptic functions. In the next section, it will be
explained how this map can be realised in a simple example using the Jacobi function
sn. From it, we derive the elastic scattering as the limiting case in which the torus
becomes degenerate.

3.4 Elastic scattering from degenerate doughnuts

A useful exercise to check that things go as expected is to parameterize a four-
point inelastic scattering on a torus and recover the case in which the initial and
final masses are equal in a second time. In the limit in which the initial and final
particles are equal, we find that the torus over which the amplitude is a single-valued
meromorphic function becomes degenerate. In such a limit it splits into two separate
regions, over which the amplitude is still meromorphic, but cannot anymore be
analytically continued from one region to the other by circling around the branch
points. The two values of the amplitude over these two separate regions correspond
to two distinct functions that represent respectively a transmission and a reflection
process.

The scattering process (2.3.1) is now considered, assuming that the initial and final
states are different: {a, b} ≠ {c, d}. Using the already-defined Mandelstam variables
in (2.3.3) and considering the external particles on-shell, in two dimensions the values
of t and u can be completely fixed in terms of s

t = m2
a +m2

b +m2
c +m2

d − s

2 + (m2
a −m2

b)(m2
d −m2

c) − Σ(s)
2s

u = m2
a +m2

b +m2
c +m2

d − s

2 + (m2
a −m2

b)(m2
c −m2

d) + Σ(s)
2s .

(3.4.1)

In the expressions above Σ is a double-valued function of s

Σ(s) =
√

(s− s1)(s− s2)(s− s3)(s− s4) (3.4.2)
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presenting two Riemann sheets. The branch point positions are given by

s1 = (ma +mb)2 , s2 = (ma −mb)2 , s3 = (mc +md)2 , s4 = (mc −md)2.

The branch cuts can be fixed along the two segments on the real axis of the s plane
connecting s1 with s3 and s2 with s4. Then Σ is defined over a double cover of the
complex plane and we can move from one to the other sheet over which Σ takes
values by rotating by 2π around the branch points. To study an elastic process the
limit in which the lengths of the branch cuts shrink to zero is taken; it corresponds
to md → ma and mc → mb, in such a way as to close the tunnels between the two
Riemann sheets. To this end, it is helpful adopting the following values of the masses
given by

ma = µ cosα , mb = µ sinα

and
mc = µ sin β , md = µ cos β.

In the limit β → α, the same values for the initial and final masses are obtained,
moreover, with these special values of the masses, it holds m2

a +m2
b = m2

c +m2
d = µ2.

Therefore if the change of variable

s = m2
a +m2

b + 2mamby,

is made then, by defining λ = mamb

mcmd
, the relation (3.4.2) can be expressed in terms

of y
Σ(y) = 4mambmcmd

√
(1 − y2)(1 − λ2y2). (3.4.3)

By looking at (3.4.3) the argument under square root should be recognized as a
known expression appearing in Jacobi elliptic functions. Using a Schwarz–Christoffel
transformation defined by

ξ(y) =
∫ y

0

dt√
(1 − t2)(1 − λ2t2)

. (3.4.4)

the entire complex plane, over which y takes values, can be mapped into a rectangle
composed of points ξ. For each y ∈ C there are two possible values for ξ(y) depending
on the Riemann sheet over which the function w(y) = 1√

(1−y2)(1−λ2y2)
is integrated

over. Integrating over the sheet where w(0) = 1 the entire complex plane is mapped
into the red rectangle in figure 3.3. The branch points, corresponding to the values
of y at which w is singular, are mapped into the bullets located on the frame of
the red rectangle. Similarly by performing the integration (3.4.4) over the surface
on which w(0) = −1 and translating by a λ dependent parameter 2ω1 we map the
second cover of C into the blue rectangle in figure 3.3. The union of the red and blue
rectangles corresponds to a torus having periodicity along the real and imaginary
axes given by 4ω1 and 2ω2 respectively, where the quantities ω1, ω2 depend on the
ratio λ between the masses. The function Σ is not single-valued on C, but is a
meromorphic function on the torus. If we want to map back to the double cover of
the complex plane from the torus we need to invert the integral expression (3.4.4).
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Figure 3.3: Torus surface over which the 4-point amplitude takes
values. The red and blue regions correspond to the two
different kinematical configurations obtained by solving
the momentum conservation constraints and are the two
halves of the torus.

This generates a known function in complex analysis known as Jacobi elliptic sine
sn(x, λ2). We can parametrize y = sn(x, λ2), then for each y ∈ C there are two values
of x, xr taking value on the red rectangle, and xb lying on on the blue rectangle,
such that sn(xr, λ

2) = sn(xb, λ
2) = y. On the other hand, the Jacobi sine satisfies

the following differential equation

(y′)2 = (1 − y2)(1 − λ2y2).

so that at the point xr and xb at which y takes the same value it holds y′(xr) =
−y′(xb). It is clear now why Σ is meromorphic on the torus; up to the multiplicative
factor 4mambmcmd it is exactly the derivative of the Jacobi sine function, so that
the Mandelstam variables can be entirely parametrized in terms of sn(x, λ2) and
sn′(x, λ2), with x taking values on the two halved of the torus in figure 3.3, each one
corresponding to a cover of C.

To obtain the degenerate limit in which the initial and final masses are the same,
the parameter λ is sent to one from the left, λ → 1−. In this limit, the quantity
ω1 tends to infinity and the red and blue regions in figure 3.3 become infinite far
away from one another. This is the case in which the branch points collide in pairs
s3 = s1, s4 = s2 and Σ reduces to

Σ(s) = ±(s− s1)(s− s2). (3.4.5)

The two disjoint red and blue regions on the torus correspond to the different choices
of sign in (3.4.5); once a sign is chosen, it is not possible to move to the region
with the opposite sign since the branch cuts have collapsed to points and the torus
has become degenerate. The limit λ → 1 corresponds to the special case in which
Jacobi elliptic functions reduce to hyperbolic functions. In this situation, one of the
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Figure 3.4: Example of Jacobi elliptic function sn(x, λ2) and its de-
rivative, plotted for real values of x. In the first row, the
red and blue segments correspond to the intersection
of the red and blue regions of the torus in figure 3.3
with the real axis. Approaching λ2 to one, as shown
in the second row, we push the blue part infinitely far
away, and the Jacobi elliptic functions become hyper-
bolic functions defined over half of the torus.
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two doughnut periodicities (that one along the imaginary axis) is preserved while
the other one becomes infinite. In figure 3.4 an example of degeneracy is shown by
plotting the functions sn(x, λ2) and sn′(x, λ2) for real values of x. It is possible to
see that in the particular situation in which λ = 1 the red half part of the torus
occupies the entire x axis not leaving the possibility to pass in a continuous way to
the blue part of the doughnut. To do that it would be necessary to flip the sign in
(3.4.5) which corresponds of sending sn′(x, 1) = Sech2(x) → −Sech2(x).

The red and the blue regions correspond to the two kinematical configurations in
which transmission and reflection occur. In the first situation the scattering is elastic;
it is the case in which the initial and final sets, (a, b) and (d, c), are the same and both
carry the same momenta (p4 = p1, p3 = p2). In this configuration the Mandelstam
variable u is equal to zero while t = 2m2

a + 2m2
b − s, reducing to the limiting case

in (2.3.4). If the theory is integrable, the amplitude in this region does not have
to be zero since the scattering conserves all the quantum numbers. Contrarily the
blue half part of the degenerate torus corresponds to a reflection process in which
the incoming and outgoing particles have different momenta. This is the region in
which the amplitude (that is not the same function defined on the red cover, since
we cannot analytically continue from one domain to the other) is expected to be
zero and where all the singularities coming from different Feynman diagrams should
cancel.

Having proved that the absence of poles implies a constant amplitude, it is possible
now to move on to find the constraints on the masses and couplings leading to
perturbative integrability at tree level. Point (ii) in section 3.2 was already discussed
and does not need further study. It is based on the consideration that once a
certain number of zero amplitudes M (5) = M (6) = · · · = M (n−1) = 0 has been set
by having properly tuned the masses and the couplings (C(3), C(4), . . . , C(n−1)) in
(3.1.12), the next n-point coupling is uniquely fixed by requiring the corresponding n-
point scattering process to be zero. This mechanism and its first steps were discussed
in [36] but it was only in [37] that it was explained how to handle the problem to all
orders, making use of a particular multi-Regge limit of the amplitude. In the next
section, a review of the analysis carried out in [37] will be performed, through which
the higher point couplings will be found one by one; this is the content of point (iii)
in the logic summarized in section 3.2.

3.5 The multi-Regge limit

To find a condition on the n-point coupling a particular multi-Regge limit has to be
adopted; in such limit, one particle is assumed to be at rest while n− 3 particles are
taken to be extremely energetic with increasing energies

a1 = 1 and aj = −xj−2 for j = 3, . . . , n− 1 (3.5.1)

where x ≫ 1. By convention, it will be assumed that all the momenta are incoming.
Imposing momentum conservation, the remaining two momenta, on one of the two
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branches of solutions, are

a2 = −m2

m1
+o(x−1) and an = mn−1

mn

xn−3 + mn−2

mn

xn−4 + . . .+ m3

mn

x+o(x0). (3.5.2)

In a tree-level scattering process, any internal propagator inside a Feynman diagram
splits the external particles into two subsets. On one side there is a subset α ⊂
{1, . . . , n} while on the other side is its complement. If the aj are chosen as in (3.5.1),
(3.5.2), the only nonzero propagators in the limit x → ∞ are those that divide the
diagram into subsets {1, 2, . . . , k} and {k + 1, . . . , n− 1, n}, since in all other cases
the momentum transferred diverges. In particular if a propagator Ga(α) of a particle
of type a, splitting a diagram into a subset α and its complement, is considered,
then it holds

Ga(α) = i

(∑j∈α mjaj)(
∑

j∈α
mj

aj
) −m2

a + iϵ

→

− i
m2

a
if α = {k + 1, . . . , n− 1, n} (or equivalently α = {1, 2, . . . , k}),

0 otherwise.
(3.5.3)

Therefore in this limit, the only surviving tree-level diagrams are chains with all the
particles ordered from left to right as shown in figure 3.5 . Any nonzero diagram
contributes with a factor (−i)V +P where V is the number of vertices and P is the
number of propagators; moreover any time a propagator connects two vertices a sum
over all the possible propagating particles has to be taken.

The scattering of 5 particles in this limit is discussed as a starting example. The
types of the particles are labelled with the letters b1, . . . , b5, and the parameters of
the light cone components of their momenta are defined as in (2.1.2) with the letters
a1, . . . , a5. Proving that such an amplitude is a constant is not trivial, and finding
the conditions on the masses, 3- and 4-point couplings making this possible will be
the concern of the next chapter. But if it is assumed that they have been tuned
in such a way that the conditions hold, and therefore M (5)

b1b2b3b4b5 is a constant not
depending on the external momenta, then the multi-Regge limit (3.5.1), (3.5.2) can
be used to find the value of this constant. As already explained, in this limit only
Feynman diagrams corresponding to ordered chains survive, and the value of the
amplitude can be read from the first (blue) row in figure 3.5

M
(5)
b1b2b3b4b5 ≃

∑
i

C
(4)
b1b2b3 ī

C
(3)
ib4b5

m2
i

−
∑
i,j

C
(3)
b1b2 ī

C
(3)
ib3j̄
C

(3)
jb4b5

m2
im

2
j

+
∑

i

C
(3)
b1b2 ī

C
(4)
ib3b4b5

m2
i

− C
(5)
b1b2b3b4b5 .

(3.5.4)
The equality (3.5.4) is valid up to an overall multiplicative factor containing a power
of the imaginary unit coming from vertices and propagators. By requiring that the
5-point process (3.5.4) is zero, for any choice of types {b1, b2, b3, b4, b5}, the values
of the 5-point couplings C(5)

b1b2b3b4b5 are fixed in terms of the masses and the 3- and
4-point couplings. Once it has been proved that all 5-point processes are null one
can move to M (6). Once again the six-point amplitudes could in principle depend
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Figure 3.5: Nonzero diagrams contributing to a 5- and a 6-point
process in the multi-Regge limit. In the result for M (6)

it is contained the amplitude M (5); such amplitude is
depicted in blue.

on the external kinematics adopted and it will be a matter of the next chapter to
check the conditions for a six-point amplitude to be a constant. However if M (6)

is assumed to be independent on the external momenta, then the values of 6-point
couplings can be fixed by making these amplitudes equal to zero. Let b1, . . . , b6 be
the labels for the external particles and a1, . . . , a6 be their momentum-parameters,
defined as in (3.5.1), (3.5.2). Then the value of M (6)

b1b2b3b4b5b6 is given by summing
over all the Feynman diagrams in which the external legs are ordered, as recorded
in the second and third rows in figure 3.5. The algebraic expression for this sum is

M
(6)
b1b2b3b4b5b6 ≃

∑
a

C
(3)
b1b2ā

m2
a

[∑
i

C
(4)
ab3b4 ī

C
(3)
ib5b6

m2
i

−
∑
i,j

C
(3)
ab3 ī

C
(3)
ib4j̄
C

(3)
jb5b6

m2
im

2
j

+
∑

i

C
(3)
ab3 ī

C
(4)
ib4b5b6

m2
i

− C
(5)
ab3b4b5b6

]

+
∑
i,j

C
(4)
b1b2b3 ī

C
(3)
ib4j̄
C

(3)
jb5b6

m2
im

2
j

−
∑

i

C
(4)
b1b2b3 ī

C
(4)
ib4b5b6

m2
i

−
∑

i

C
(5)
b1b2b3b4 ī

C
(3)
ib5b6

m2
i

+ C
(6)
b1b2b3b4b5b6 .

(3.5.5)

We note that the expression returned in (3.5.5) is not completely new. Indeed the
blue part in (3.5.5), that matches the blue pictures in the second row of figure 3.5, is
exactly the value of a 5-point amplitude in the multi-Regge limit. Since the 5-point
couplings have already been tuned in such a way to make such part null, the blue
terms in (3.5.5) can be ignored and the constraint on the six-point couplings to have
a theory with null processes with six external legs can be obtained by imposing that
the second row in (3.5.5) is equal to zero.

It is worth mentioning that the values of momenta entering into the 5-point process
in the first row in figure 3.5 are all on-shell since all the momenta are associated with
external particles. On the other hand, the amplitude M (5) that can be read as the
blue expression in the second row of figure 3.5 is off-shell since one of the momenta
(let us call it P ) is flowing in an internal propagator and satisfies P 2 = 0 due to the
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multi-Regge limit with six external legs. Despite this fact, the value of the off-shell
5-point amplitude appearing inside M (6), where the external parameters have been
fixed to be in the multi-Regge limit according with (3.5.1) with n = 6, is exactly
the same as the value of the on-shell amplitude M (5) verifying the multi-Regge limit
with n = 5. This consideration, deriving from the fact that for x ≫ 1 the Minkowski
norm of momenta flowing inside propagators can only be zero or infinity, allows us
to identify in a generic n-point amplitude all the k-point amplitudes, with k < n,
that have already been derived in the previous steps. In principle these amplitudes
are off-shell, but as an effect of this multi-Regge limit, their values are the same as if
they are on-shell in a multi-Regge limit with fewer external particles. For example,
the value of a 7-point amplitude in this high energy limit, up to an overall factor, is

M
(7)
b1...b7 ≃

∑
a

C
(3)
b1b2ā

m2
a

M
(6)
ab3...b7 +

∑
a

C
(4)
b1b2b3ā

m2
a

M
(5)
ab4...b7

+ i
∑
i,j

C
(5)
b1b2b3b4 ī

C
(3)
ib5j̄
C

(3)
jb6b7

m2
im

2
j

− i
∑

i

C
(5)
b1b2b3b4 ī

C
(4)
ib5b6b7

m2
i

− i
∑

i

C
(6)
b1b2b3b4b5 ī

C
(3)
ib6b7

m2
i

+ iC
(7)
b1...b7 .

(3.5.6)

Once again the first two contributions on the RHS of (3.5.6) contain respectively a
6- and 5-point process in their multi-Regge limit and have to be zero by the previous
analysis. The constraint on the 7-point coupling is therefore derived by setting to
zero the second row of (3.5.6).

With these preliminaries over, the general Lagrangian in (3.1.12) can be constructed
by induction. The couplings up to C(n−1)

b1...bn−1 are assumed to be known and are tuned
so as to set the amplitudes M (5) = M (6) = . . . = M (n−1) = 0. If now a scattering
process involving n external legs is considered, the only Feynman diagrams surviving
are those shown in figure 3.6. All the other diagrams involve processes contained in
the amplitudes that have been fixed to zero by the induction hypothesis. Imposing
that the n-point scattering is also null, from figure 3.6 the following equation for the
n-point coupling has to hold:

C
(n)
b1...bn

−
∑

l

C
(n−1)
b1...bn−2 l̄

1
m2

l

C
(3)
lbn−1bn

−
∑

s

C
(n−2)
b1...bn−3s̄

1
m2

s

C
(4)
sbn−2bn−1bn

+
∑

l

C
(n−2)
b1...bn−3s̄

1
m2

s

C
(3)
sbn−2 l̄

1
m2

l

C
(3)
lbn−1bn

= 0.
(3.5.7)

This equation was found in [37] and allows the value of C(n) to be found given the
values of the masses and the 3-, 4-, (n− 2)- and (n− 1)-point couplings.

The sinh-Gordon model discussed at the beginning of this chapter can be rediscovered
by using (3.5.7). If (3.1.1) is assumed to be the starting Lagrangian from which
constructing all the higher-order couplings iteratively then C(3) = 0 and (3.5.7)
reduces to

C(n) = 1
m2C

(n−2)C(4) (3.5.8)

with driving coupling C(4) = λ. The recursion can be easily solved and the following
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Figure 3.6: Diagrams surviving in an n-point scattering process
in the multi-Regge limit having fixed M (4), M (5), . . . ,
M (n−1) to be zero by tuning the vertices up to C(n−1)

a1...an−1

closed expression
C(2n) =

( λ
m2

)n−2
λ (3.5.9)

for the higher point couplings is obtained. By defining g2 ≡ λ
m2 the potential of the

model can then be written as

V = m2

g2

+∞∑
n=1

g2n

(2n)!ϕ
2n, (3.5.10)

which is exactly the expansion of the sinh-Gordon potential in (3.1.10). Apart from
this simple example, where the driving data are just composed of (m1, C

(3)
111, C

(4)
1111) =

(m, 0, λ) (we label by 1 the single particle of the model), in all the other cases defining
the set of masses, 3- and 4-point couplings allowing for integrable solutions of (3.5.7)
is not an easy task. Equation (3.5.7) provides indeed a necessary condition for the
absence of particle production at the tree level, but it is not a sufficient condition
to ensure the tree-level integrability. Also in the simplest case of integrable theory,
which is the sinh-Gordon model, (3.5.7) does not imply that the 2ϕ → 4ϕ process
studied at the beginning of this chapter is a constant.
With equation (3.5.7) the proof of points (i), (ii), (iii) from section 3.2 is concluded.
What is still missing is point (iv), corresponding to the finding of possible sets of
masses, 3- and 4-point couplings that make the induction possible. To find these
values the cancellation of poles in 4-point inelastic processes4 and in events involving
production with 5 and 6 external legs has to be imposed. If suitable values for the
masses and lower-order couplings can be found so to cancel such poles then the basis
for the induction procedure is found and, by the analysis carried out in (i), (ii) and
(iii), the relation in (3.5.7) becomes a sufficient condition to prove the absence of
particle production in the theory. Since these lower point processes are the basis
of the entire induction we call the masses and the 3/4-point couplings the ‘seeds of
integrability’.

4As already remarked more that one time in the present thesis we construct integrable Lag-
rangians of theories presenting purely elastic scattering, i.e. with a diagonal S-matrix in 2-to-2
interactions.



Chapter 4

Seeds of integrability

The purpose of this chapter is to figure out what constraints on masses, 3- and
4-point couplings need to be satisfied to allow only elastic tree-level scattering in
4-, 5- and 6-point interactions. The solutions to these constraints would define
unambiguously integrable models, which therefore can be classified by imposing the
absence of production at the tree level. The results presented in sections 4.1, 4.2
and 4.3 cover part of the content of a paper in collaboration with Patrick Dorey [1].
However, the full classification of possible sets of masses and lower-order couplings
spanning the space of integrable theories with Lagrangians of the form in (3.1.12)
is not addressed here. In section 4.4 some comments about this classification, also
based on the discussion presented in [1], are reported. Section 4.5 is instead due
solely to the author and is not presented in other literature; in such section, it
is shown how the bootstrap and factorisation features at all orders follow by the
cancellation of certain Landau poles in loop-level diagrams.

4.1 Simplification processes in 4-point
non-diagonal scattering

We start by considering a 2-to-2 non-diagonal scattering amplitude; such amplitude
is required to be null since the theories we are looking at are purely elastic. Let
examine the case in which two incoming particles a and b evolve to two outgoing
particles c and d of different types. The process, as well as the conventions for
the Mandelstam variables, are those of section 2.3; they are respectively (2.3.1)
and (2.3.3). In this case we assume {a, b} ≠ {c, d}; in particular the masses of the
incoming- and outgoing-particles are not necessarily the same.

If the theory is integrable such processes should be forbidden, a fact that should
be visible perturbatively. This requires that a so-called flipping rule on the masses
and couplings of the particles should exist, as introduced in the context of the
perturbative study of higher poles in Toda theories in [69]. The idea is that any
time a Feynman diagram contributing to a non-diagonal 2-to-2 process has a pole
at a particular value of the external momenta, there must be a pole in at least one



64 Chapter 4. Seeds of integrability

a(p1)

b(p2)

c(p3)

d(p4)

i(p1 + p2)
+

a(p1)

b(p2)

c(p3)

d(p4)

j(p3 − p1)
+

a(p1)

b(p2)

c(p3)

d(p4)

l(p4 − p1) = finite

Figure 4.1: Poles in the s-, t- and u-channel in a 2-to-2 off-diagonal
process. The poles cancel so that the total contribution
is finite.

other diagram for the same value of the momenta, so as to obtain a finite (and
therefore constant) overall result which can be cancelled by a suitably-chosen 4-point
coupling. Note that this includes the possibility to have diagrams with on-shell
bound state particles propagating in all three different s-, t- and u-channels, whose
sum of residues is equal to zero.

Since by assumption all the fields contained in (3.1.12) are the creators and annihil-
ators of asymptotic particles, as already explained in section 2.4, anytime a coupling
C

(3)
abc is nonzero the masses ma, mb and mc can be drawn as sides of a fusing triangle

∆abc (this would avoid decay processes at the tree level). The on-shell momenta
entering the triangle are then complex numbers, having absolute values given by the
respective masses, and with arguments given by their purely imaginary rapidities
(see figure 2.9). Combining such fusing triangles in pairs it is then possible to draw
Feynman diagrams with intermediate on-shell propagators. Such pictures do not
restrict only to the diagonal processes depicted in figure 2.9 but extend also to the
inelastic cases discussed in this section; for example, figure 4.1 shows three on-shell
Feynman diagrams contributing to the inelastic process a+ b → c+ d. It contains
an example of flipping rule in a case for which poles appear simultaneously in three
Feynman diagrams with three possibly-different particles i, j and l propagating
on-shell in the s-, t- and u-channels respectively. As shown in the figure, while the
diagrams having particles i and j propagating in the s- and t-channels are represen-
ted by convex quadrilaterals, the diagram with the l particle propagating in the u
channel is concave. In such a situation on the pole position we have s = m2

i , t = m2
j

and u = m2
l for the same value of the external momenta. Remembering that in

two dimensions only one Mandelstam variable is independent t and u can be Taylor
expanded with respect to s as

t(s) = t(m2
i ) + dt

ds

∣∣∣∣
m2

i

(s−m2
i ) + . . . = m2

j + dt

ds

∣∣∣∣
m2

i

(s−m2
i ) + . . .

u(s) = u(m2
i ) + du

ds

∣∣∣∣
m2

i

(s−m2
i ) + . . . = m2

l + du

ds

∣∣∣∣
m2

i

(s−m2
i ) + . . .

(4.1.1)
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Summing the three diagrams in figure 4.1 the amplitude near the pole is

M
(4)
ab→cd ∼ C

(3)
āib

1
s−m2

i

C
(3)
c̄id̄

+ C
(3)
ajc̄

1
dt
ds

∣∣∣∣
m2

i

(s−m2
i )
C

(3)
bj̄d̄

+ C
(3)
ald̄

1
du
ds

∣∣∣∣
m2

i

(s−m2
i )
C

(3)
bl̄c̄
.

(4.1.2)
From a general property of the diagonals of quadrilaterals (in appendix B an explicit
derivation is given) it is known that for the second diagram in figure 4.1,

dt

ds

∣∣∣∣
m2

i

= −∆ajc∆bjd

∆aib∆cid

(4.1.3)

where ∆ABC is the area of the triangle having for sides the masses mA, mB and mC .
The minus sign in (4.1.3) reflects the fact that the diagram is convex, so stretching
the i diagonal keeping the lengths of the external sides fixed causes the j diagonal
to get shorter. Contrarily for the concave quadrilateral (the last diagram in figure
4.1) increasing the i diagonal also increases the l diagonal too, and we have

du

ds

∣∣∣∣
m2

i

= ∆ald∆blc

∆aib∆cid

. (4.1.4)

Substituting (4.1.3) and (4.1.4) into (4.1.2) it holds

M
(4)
ab→cd ∼ ∆aib∆cid̄

s−m2
i

[
C

(3)
āib
C

(3)
c̄id̄

∆aib∆cid

−
C

(3)
ajc̄C

(3)
bj̄d̄

∆ajc∆bjd

+
C

(3)
ald̄
C

(3)
bl̄c̄

∆ald∆blc

]
. (4.1.5)

The singular contribution to the amplitude in the neighbourhood of the pole s ∼ m2
i

is obtained; it corresponds to choosing a value of the red diagonal in figure 4.1 close
to mi with the external sides kept fixed at their mass-shell values. This formula
makes it natural to incorporate the area of the corresponding mass triangles into
the parametrisation of the 3-point couplings by setting

C
(3)
ijk = ∆ijk fijk. (4.1.6)

While the area of the triangle does not distinguish particles from antiparticles, since
their masses are equal, fijk needs to differentiate indices of particles from those of
antiparticles that as usual are indicated respectively with i and ī. A first feature of
these parameters, coming from the way in which the Lagrangian (3.1.12) was written,
is that fijk has to be symmetric under exchange of any pair of indices. Moreover,
the reality of the Lagrangian in (3.1.12) requires

fāb̄c̄ = f ∗
abc . (4.1.7)

Substituting (4.1.6) into (4.1.5), the residue for a 2-to-2 inelastic amplitude is pro-
portional to

Res(M (4)
ab→cd) ∼ fāibfc̄id̄ − fajc̄fbj̄d̄ + fald̄fbl̄c̄ (4.1.8)
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and the requirement that it be equal to zero implies the following constraint

fāibfc̄id̄ − fajc̄fbj̄d̄ + fald̄fbl̄c̄ = 0. (4.1.9)

The situation can be generalized to the degenerate case in which more than a single
particle propagates on-shell in each one of the channels. If for example there are
different intermediate states, all with mass mi, propagating on-shell in the s-channel
we need to sum over all the possible particles i in (4.1.9) with that mass. The more
general situation is therefore obtained by introducing in the relation (4.1.9) three
different sums over all the possible particles i, j and l with respective masses mi, mj

and ml. Cases for which the cancellation of poles happens between pairs of Feynman
diagrams with opposite residues, corresponding to particles propagating in just two
different channels, are also contained in relation (4.1.9) by simply setting one of the
terms to zero.

It is worth noting that the pole cancellation condition in inelastic 4-point processes
not only relates the values of different 3-point couplings, but also gives strong
constraints on the possible sets of masses. The requirement that poles always have
to appear at least in pairs to cancel, as in figure 4.1, is highly non-trivial and
leaves very little freedom on the possible masses of the theory. Moreover, the fact
that the amplitude should not have any singularities, no matter which branch of
the kinematics is considered in the solution of the energy-momentum constraints,
together with the flipping move, allows for the construction of networks of Feynman
diagrams related to each other. Below it is shown how this works in an example of
the e(1)

8 affine Toda theory. This model, like all the other affine Toda field theories
constructed from simply-laced Dynkin diagrams, is characterised by satisfying the
following ‘simply-laced scattering conditions’

Property 4.1. A theory respects ‘simply-laced scattering conditions’ if in 2 to 2
non-diagonal scattering the poles cancel in pairs (flip s/t, s/u or t/u) and in 2 to 2
diagonal interactions it presents only one on-shell propagating particle at a time.

These conditions will be studied further in the analysis of 5-point interactions where
they will play a crucial role in constraining the values of the couplings. If they are
satisfied, the cancellation mechanism of the singularities happens between flipped
copies of Feynman diagrams with particles propagating in a pair of channels: s/t,
s/u or t/u. It never happens that three poles appear simultaneously in Feynman
diagrams with on-shell bound states propagating in the three different channels.
The two flipped diagonals correspond to the masses of two particles propagating
in different channels cancelling each other. Three types of flip are distinguished
depending on how a diagonal is replaced with its flipped version. Flips of type I are
characterised by maintaining the external convex shape of the polygon during the
replacement procedure (in figure 4.2 it is the flip connecting the s- to the t-channel).
Contrarily flips of type II and type III change the order of the external particles in
passing from one channel to its flip, obtaining in one case a concave polygon. These
two kinds of flip are distinguished by the fact that in the former, one of the two
points remains the same (in figure 4.2 we see indeed that both the j and l vectors
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Figure 4.2: Possible simultaneous poles in a non-allowed four-point
process. In theories satisfying simply-laced scattering
conditions, only two among the three diagrams diverge
simultaneously for a particular choice of the external
kinematics. In this case the product of the three-point
couplings changes sign flipping from the s- to the u-
channel whereas it does not change sign flipping from
the t- to the s-channel and flipping from the t- to the
u-channel.

starts from the meeting point of the sides a and b) while in the latter both the
starting and the ending point of the diagonal change. Depending on the type of flip
connecting the cancelling diagrams, the product of the f -functions entering in the
three-point vertices may or may not change sign. Assume for example to have a
type I flip, connecting in our case the s- and the t-channels (which means the pair of
cancelling singularities corresponds to a copy of diagrams with particles propagating
in the s- and t-channels). In such a case only the first two terms in (4.1.9) are
different from zero implying that the product of the corresponding f -functions, in
order to avoid the singularity, does not change sign

fab̄ific̄d̄ = fac̄j̄fjcd̄.

Using the same argument it is easy to see that the sign does not change in type
II flips, while it does change with a flip of type III. These different situations are
summarised in figure 4.2. This sign rule will return useful when loop diagrams will be
studied in the final part of this thesis. It will allow us to understand the cancellation
mechanism at the loop level and to compute sums of singular diagrams contributing
to Landau poles. The original paper [69] differentiated between two different kinds
of flips that were the two different types they encountered in the construction of
loop networks of singular Feynman diagrams. We distinguish a third type of flip
here in order to understand the sign rule connecting products of different 3-point
couplings, as also shown in figure 4.2.
Below it is shown how to generate a network of Feynman diagrams entering into a
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certain non-allowed process in the e(1)
8 affine model. In the present case different

colours are used to indicate the different masses of the theory, that are labelled
following the increasing order m1 < . . . < m8. Consider the inelastic process with
external momenta

p• + p• → p• + p•, (4.1.10)

in which a ‘blue’- and a ‘black’-particle (with masses m5 and m3 respectively in
e

(1)
8 ) evolve into a ‘red’- and an ‘orange’-particle (with masses m1 and m2). If the

on-shell shape of a single Feynman diagram contributing to this scattering process
is known, corresponding to a certain kinematical configuration of the external states
at which an internal diagonal is on-shell, it is then possible to figure out from it all
the remaining diagrams. In the following it is explained how all the on-shell graphs
can be generated.
Suppose to know the quadrilateral number (1) in figure 4.3, with an on-shell green
diagonal corresponding to a particle with mass m4 propagating in the s channel.
Starting from this configuration it is possible moving to the other two diagrams by
applying two different moves. We can flip the green propagating particle finding
what other diagonal is equal in length to one of the possible eight different values
of masses in the theory. We find in this manner that a type III flip can be applied
moving the diagram to the configuration (12), in which a ‘black’-particle propagates
in the crossed-channel. The two diagrams (1) and (12) are one the flipped of the
other, and the associated poles, that appear for the same external kinematical
configuration, cancel in the sum. On the other hand, it is also known that there is
another choice of the external kinematics for which the ‘green’-particle of diagram
(1) is on-shell. Such a second choice corresponds to reflecting the outgoing ‘red’-
and ‘orange’-particle with respect to this green segment, and represents the other
solution of Σ in (3.4.2) satisfying energy-momentum conservation. This second
move, which will be called a ‘jump’ in figure 4.3, corresponds to keeping the diagonal
associated to the propagating bound state fixed and reflecting two external sides
with respect to it. This move preserves the singular propagator while changing the
external kinematical configuration at which this propagator diverges. Starting from
the diagram (1), in figure 4.3, the two moves are applied, alternating ‘jumps’ and
‘flips’. While the ‘flip’ changes the type of propagator entering into the diagram,
connecting, therefore, two different Feynman diagrams contributing to the process,
the ‘jump’ does not change the particles and the vertices of the diagram but only
the values of the external momenta. In figure 4.3, (1) and (2) correspond to the
same diagram with different choices of external kinematics, similarly (3) and (4) and
so on. After a finite number of jumps and flips we return to the graph we started
from. This generates in total six different Feynman diagrams contributing to the
process, whose on-shell configurations are contained in the copies of pictures [(1),(2)],
[(3),(4)], [(5),(6)], [(7),(8)], [(9),(10)] and [(11),(12)] (each pair of graphs contains
two different kinematical configurations of the same diagram).
This discussion can be extended to models (such as the non simply-laced affine Toda
theories) in which it is also possible to find 3 simultaneously on-shell propagating
particles for a single kinematical configuration. Although figure 4.3 shows a particular
scattering from the e(1)

8 theory for which the flipping rule happens between pairs of
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m1 : m2 : m3 : m4 : m5 :

m6 : m7 and m8: not present in the picture

(12)
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Figure 4.3: Network of Feynman diagrams with different on-shell
configurations of external momenta contributing to an
inelastic process in the e(1)

8 affine Toda field theory. Seg-
ments depicted with different colours are equal in length
to the different masses of the theory. By properly or-
dering the external lines it is possible, for each pair of
diagrams connected by one flip, to recognize the corres-
ponding flip shown in figure 4.2.
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diagrams, similar networks need to be present in any integrable model constructed
from a Lagrangian of the form in (3.1.12).

To any flip in a theory with simply-laced scattering conditions a constraint of the
form (4.1.9) can be associated, where the contribution that is not present has to be
set to zero. Since the network is closed in a circle this leads to a finite number of
constraints on the functions fijk, that in the present case become

f•••f••• = −f•••f••• = −f•••f••• = −f•••f••• = −f•••f••• = −f•••f•••, (4.1.11)

where different colours are used to label the different particles. The signs connecting
the products of the different f -functions come from the sign rule (summarized in
figure 4.2) for the different types of flip. By simplifying some of the equal terms
in (4.1.11) it follows from these constraints that f••• = f••• and f••• = f•••. It
is interesting to note that the network of graphs in figure 4.3 includes all of the
Feynman diagrams involving 3-point couplings contributing to the scattering (4.1.10),
so, perhaps surprisingly, all these different graphs could be found starting from a
single Feynman diagram. However the story is not quite over; indeed at this point
a set of nonzero couplings is known and from them we can start studying further
processes. For example both f••• ̸= 0 and f••• ̸= 0; this implies that a diagram in
which a ‘blue’ and a ‘black’-particle fuse into a ‘red’-propagator, that then decays
into a ‘orange’- and a ‘green’-state, can be drawn. Starting from this diagram,
‘jumps’ and ‘flips’ can be applied to obtain the different graphs contributing to the
process

p• + p• → p• + p•.

This would relate the 3-point couplings of this second process to the 3-point couplings
entering into (4.1.10).

Only a few special sets of masses allow closed networks of diagrams to be obtained
for all the different processes. If we instead start with a generic diagram, drawn as a
quadrilateral having sides of random length, and start applying ‘jumps’ and ‘flips’ to
it, we will go on adding more and more particles to the theory in order to make the
singularity cancellations possible. In the end, the network will never close. To obtain
a closed loop of graphs, we need to start with a special set of masses, corresponding
to an integrable theory.

So far we have found the conditions under which the 2-to-2 non-diagonal scattering
amplitude constructed using only 3-point vertices has no poles and is therefore a
constant not depending on the choice of the momenta. Now the 4-point coupling has
to be set to cancel this constant leading to a null process at the end. Focusing on the
non-diagonal process having as incoming- and outgoing-particles respectively {a, b}
and {c, d}, the amplitude obtained using only 3-point vertices is given by summing
over all the possible particles propagating in the s-, t- and u-channels

M
(4)
ab→cd = −i

∑
s

C
(3)
abs̄

1
s−m2

s

C
(3)
sc̄d̄

− i
∑

j

C
(3)
ac̄j̄

1
t−m2

j

C
(3)
jbd̄

− i
∑

l

C
(3)
ad̄l̄

1
u−m2

l

C
(3)
lbc̄ .

(4.1.12)
Since it has already been proved that after having properly tuned the masses and
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3-point couplings such amplitude is a constant (for {c, d} ̸= {a, b}) a particular
choice of momenta that simplifies the computation can be taken. Two choices of
multi-Regge limit can be adopted; we can set s = +∞, t = −∞ and u = 0 or
s = +∞, t = 0 and u = −∞. This corresponds of solving the limit s → +∞ in the
two different Riemann sheets over which Σ in (3.4.2) takes values. In both cases,
the result needs to be the same, since in the absence of poles the amplitude is a
constant, and the 4-point coupling cancelling the process is

C
(4)
abc̄d̄

=
∑

j

C
(3)
ac̄j̄

1
m2

j

C
(3)
jbd̄

=
∑

l

C
(3)
ad̄l̄

1
m2

l

C
(3)
lbc̄ . (4.1.13)

A similar result can be obtained in the case in which the particles in the initial
and final state are equal, so that {c, d} = {a, b}. In this case, the 4-point coupling
has to be set to cancel the reflection process, corresponding to the function defined
over the blue half of the degenerate torus described in section 3.4; in this manner,
only transmission is allowed. The only situation in which the 4-point coupling
cannot be obtained from the masses and 3-point vertices is when it involves the
scattering of 4 real equal particles. This is a situation in which the reflection cannot
be distinguished from the transmission and the event is always allowed. In this case
to tune the 4-point coupling correctly the interaction of five external states has to
be studied.

4.2 No-particle production in 5-point processes

The cancellation of 4-point non-diagonal processes is made possible by the flipping
rule, cancelling all the poles appearing in the sums of Feynman diagrams. We now
study how the same rule permits the cancellation of all singularities in the 5-point
scattering amplitudes, provided we impose extra constraints on the values of the fijk

and the 4-point couplings.

We start with the case in which all the interacting particles are different. This is
somewhat trivial, since whenever an internal propagator goes on-shell the amplitude
is split into a 3-point vertex and an on-shell 4-point inelastic process. Since the
inelastic 4-point processes are null, entering into the analysis previously performed,
the residues of such scattering processes are all zero and no singularity appears. Even
though this situation does not add any new constraints on the couplings, and these
cancellations can be proved by using the flipping rule alone, it is anyway interesting to
study in some more detail how these singular diagrams cancel. Since these diagrams
will be also contained inside certain loop diagrams studied in chapter 7, we think is
good to give some more detail on their cancellation and a discussion is reported in
appendix C.

Here we move directly to a less trivial case, in which the scattering involves two
equal particles as in the following 3-to-2 event:

a(p1) + b(p2) + d(p3) → c(p4) + d(p5). (4.2.1)
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b(p2)
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Figure 4.4: Divergent contributions to the process a+ b+d → c+d.
We list the poles that have nonzero residues when the
propagators connecting the 3-point vertices and the 4-
point on-shell amplitudes are mass-shell. Despite the
three contributions being separately divergent we prove
that their sum is finite if additional constraints are im-
posed on the 3- and 4-point couplings.

We choose to study a process with 3 incoming and 2 outgoing particles, but of course
particles can be brought from the left-hand side to the right-hand side of the arrow
(and vice-versa) by changing the sign of the momenta and particles to antiparticles.
This process represents the most general case of a 5-point scattering amplitude
that could in principle contain poles. Such poles can appear when, as shown in
figure 4.4, the propagator connecting the blobs1 and the 3-point vertices is a particle
of the same type as those present as external legs. This is indeed the only way to
have a nonzero residue when the propagator diverges because the 2-to-2 scattering
processes represented by the three blobs in figure 4.4 are diagonal. The three different
combinations of Feynman diagrams in figure 4.4 are summed, choosing to write the
momenta in light-cone components as in (2.1.2). By using Lorentz invariance and the
conservation of the overall energy and momentum three parameters can be removed
from the amplitude, so that it can be written as a function depending only on a3
and a5. Then we study its dependence on one parameter at a time, starting with
a5. Taking the limit a5 → a3 (i.e. choosing the same momenta for the incoming and
outgoing d particle in (4.2.1)) we can isolate the residue of the amplitude at the pole

M (5)(a3, a5) ≃ 1
a5 − a3

Res
a5=a3

M (5)(a3, a5). (4.2.2)

The residue in the expression above is a function of a single parameter a3 and can
be written as

Res
a5=a3

M (5)(a3, a5) =

− C
(3)
abc̄

md

a3

[ 1
mc

a4a3

a2
4 − a2

3
M

(4)
cd (a4, a3) − 1

ma

a1a3

a2
1 − a2

3
M

(4)
ad (a1, a3) − 1

mb

a2a3

a2
2 − a2

3
M

(4)
bd (a2, a3)

]
.

(4.2.3)

1The blobs represent the sum of all tree-level Feynman diagrams having as external legs the
types of particles entering into the blob.
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The parameters a1, a2 and a4 in (4.2.3) are fixed and on the pole satisfy a fusing
relation of the form depicted in figure 2.8, so that the residue depends only on a3.
M

(4)
cd , M (4)

ad and M
(4)
bd are the on-shell values of the 2-to-2 amplitudes in figure 4.4.

This corresponds to taking the limit in which the blobs in figure 4.4 go on-shell and
the intermediate propagators diverge. Since these blobs are allowed processes, the
three terms in the square brackets in (4.2.3) do not vanish individually but must
cancel between themselves. To prove this, it is sufficient to prove that the sum of
these terms has no poles as a function of a3. This is enough to show that it is
a constant as a function of a3, which can be seen to be zero by taking the limit
a3 → ∞.

Before continuing the study of the singularities connected to 5-point interactions we
show how the requirement that the expression in (4.2.2) has zero residue is equivalent
to imposing tree-level bootstrap relations connecting the different S-matrix elements.

4.2.1 The tree-level bootstrap

The 2-to-2 S-matrix elements Sij are given in terms of M (4)
ij by (3.1.15). Using this

conversion and writing the a-variables as ai = eθi the requirement that the residue
of (4.2.2) is equal to zero is equivalent to the following constraint on the tree-level
S-matrix

Stree
cd (θ43) = Stree

ad (θ13) + Stree
bd (θ23). (4.2.4)

In this equality, the only free parameter is the rapidity θ3 of the d-particle, since
all the other rapidities are frozen on their on-shell values making the diagrams in
figure 4.4 singular on the pole. Defining the difference between the c- and d-particle
rapidities to be θ43 = θ, the relation in (4.2.4) can be written as

Stree
cd (θ) = Stree

ad (θ + θ14) + Stree
bd (θ + θ24) (4.2.5)

The quantities θ14 and θ24 are the differences between the rapidities of the a- and
the c-particles, and between the rapidities of the b- and the c-particles interacting
in the vertex C(3)

abc̄. These are imaginary angles that are frozen on the pole position,
where the on-shell particles fuse in the 3-point vertex C(3)

abc̄ satisfying the triangular
relation in figure 2.8. Referring to figure 2.8 we label

θ41 = −iŪ b
ac , θ42 = iŪa

bc.

Therefore we can write the constraint for the cancellation of the 5-point process as

Cabc̄ ̸= 0 =⇒ Stree
dc (θ) = Stree

da (θ − iŪ b
ac) + Stree

db (θ + iŪa
bc) (4.2.6)

where Ū b
ac is the angle between sides ma and mc and Ūa

bc is the angle between mb

and mc in the mass triangle ∆abc.

The relation in (4.2.6) connects all the 2-to-2 tree-level S-matrix elements of the
theory together and represents the first order in perturbation theory of the bootstrap
relation (2.4.7), that, if the integrability is preserved at quantum level, is valid order
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by order in the loop expansion

Sij(θ) = 1 + Stree
ij (θ) + . . . (4.2.7)

It is interesting to note how the bootstrap equations at the tree level completely
emerge from the sole requirement that all the 5-point processes are equal to zero and
their pictorial representation can be recognised in the sum of the singular diagrams
in figure 4.4. Verifying the cancellation of the 5-point processes for a general theory
requires to prove that the tree-level bootstrap relation (4.2.6) is satisfied between
all the different S-matrix elements. Such a relation is converted into particular
constraints on the 3- and 4-point couplings of the theory.

4.2.2 Pole cancellation and ‘Simply-laced scattering
conditions’

We now search for the additional constraints on the couplings necessary for the
tree-level bootstrap relations to be satisfied, and therefore for the vanishing of all
the 5-point processes, for models satisfying the ‘simply-laced scattering conditions’
defined in property 4.1. We show how in these theories a necessary condition for the
absence of particle production in 5-point interactions is that the absolute values of
the f -functions do not depend on the particular 3-point vertex we are considering
and from the relation in (4.1.6) we can then deduce the following area rule

|C(3)
ijk | = |f | ∆ijk, (4.2.8)

where |f | is the absolute value common to each f -function. We now proceed to
prove this assertion, adopting the method already used for the 4-point off-diagonal
processes and imposing the absence of singularities. The requirement that the residue
of (4.2.2) does not have any singularities in the variable a3 is equivalent to requiring
that the LHS and the RHS terms of the relation (4.2.6) have the same pole structure.
To verify the cancellation between the different poles appearing in (4.2.3) we split
the possible singularities of the residue into two kinds. The first type corresponds
to singularities due to the possibility that some propagators go on-shell inside the 4-
point amplitudes M (4)

cd , M (4)
ad and M (4)

bd , and will be called ‘flipped singularities’ (since
they will cancel by just using the flipping rule) while the second type are ‘collinear
singularities’; this last kind happens when one of the denominators in (4.2.3) diverges,
that is the situation in which a2

3 → a2
4, a2

3 → a2
1 or a2

3 → a2
2. We study these two

different situations separately and we show how, with a few additional constraints,
the poles of (4.2.3) cancel in both cases.
Flipped singularities

We start describing the first kind of poles, those due to simultaneous singularities
in M

(4)
cd , M (4)

ad and M
(4)
bd . An example of this situation is represented in figure 4.5

where both the Feynman diagrams (on the bottom) and their dual description in
terms of vectors in the complex plane (on the top) are drawn. A propagating i-
particle is supposed to go on-shell in M

(4)
cd (it is represented by a red line in the
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b(p2)

a(p1)

c(p4)

d(p3)

d(p5)

c(p4)i(p3 + p4) flip I b(p2)

a(p1) d(p3)

d(p5)

c(p4)i(p3 + p4)

j(p1 + p3)

flip II

a(p1)

a(p1)

b(p2)
c(p4)

d(p3)

d(p5)

j(p1 + p3)

b(p2)

a(p1)

c(p4)

c(p4)

d(p3)

d(p5)

i(p3 + p4)

flip I

d(p3)

a(p1)

j(p1 + p3)

c(p4)

b(p2)

d(p5)

i(p3 + p4)

flip II

d(p3)

a(p1)

j(p1 + p3)
d(p5)

b(p2)

c(p4)

a(p1)

Figure 4.5: Pole structure in the process a+ b+ d → c+ d. On the
bottom and the top are listed respectively the Feynman
diagrams and their on-shell description.
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first picture of figure 4.5). Looking at the quadrilateral defined by vectors a(p1),
b(p2), i(p3 + p4) and d(p3) we note that the flipping rule can be applied on the
propagating particle c(p4). As explained previously there are two possibilities for
the flip, one case in which a(p1) + d(p3) = i(p3 + p4) − b(p2) = j(p1 + p3) where
j is an on-shell propagating particle, and one in which the on-shell propagating
particle is given by b(p2) + d(p4) = i(p1 + p3) − a(p1). We are assuming that we
cannot have both at the same time. In figure 4.5 the first situation is shown; it
is evident how, after having applied two flips, the same values of momenta which
contribute to a pole in M

(4)
cd generate another pole in the amplitude M (4)

ad . If the
particles were all different we could continue to flip internal propagating particles
and we would obtain a closed network with a finite number of diagrams connected
by simple flips, as that one discussed in appendix C. In this situation since two
particles are identical after two flips the network is completed and we have obtained
all the divergent diagrams. Focusing on the situation shown in figure 4.4 in which
M

(4)
cd and M (4)

ad diverge simultaneously we compute the residue of the RHS of (4.2.3)
with respect to the variable a3. To this end we write only the divergent part in
square brackets of (4.2.3). We keep the two momenta of the d-particles parallel
(corresponding to the limit a5 = a3) and we move them simultaneously so that the
i particle is nearly on-shell (p2

i = m2
i ). In this way we are close to the pole of the

residue. By convention we choose the direction of the momentum p4 to be the axis
with respect to which we measure the angles and we choose counterclockwise to be
the positive direction of angles. In this way looking at the first picture in figure 4.5 we
have a4 = 1, a1 = eiŪb

ac , a2 = e−iŪa
bc and a3 = a5 = ei(π−Ū i

cd). We remember that ŪA
BC

refers to the angle in the triangle ∆ABC between the sides B and C. Substituting
such quantities into the divergent part of the residue (4.2.3) we obtain

Res
a5=a3

M (5)(a3, a5) ∼ 1
mc

1
sin(Ū i

cd)
| C(3)

cd̄i
|2

p2
i −m2

i

− 1
ma

1
sin(Ū j

ad)
| C(3)

adj̄
|2

p2
j −m2

j

(4.2.9)

Always referring to the first drawing in figure 4.5 now we move the inclination of
d(p3) and d(p5) keeping them parallel. Expanding p2

j in terms of p2
i around the pole

p2
i = m2

i we obtain

p2
j = m2

j +
dp2

j

dp2
i

∣∣∣∣∣
p2

i =m2
i

(p2
i −m2

i ) + . . . = m2
j + ∆adj

∆cdi

(p2
i −m2

i ) + . . . (4.2.10)

The last equality has been obtained using the formula (B.3.1) on the quadrilateral
defined by the sides a(p1), b(p2), i(p3 + p4), d(p3) and having as diagonal j(p1 + p3)
in the diagram on the top right of figure 4.5. Expressing at this point the pole in
terms of p2

i we see that (4.2.9) is proportional to

1
p2

i −m2
i

[
| C(3)

cd̄i
|2

∆2
cdi

−
| C(3)

adj̄
|2

∆2
adj

]
. (4.2.11)

Substituting (4.1.6) into (4.2.11) and requiring the quantity in square brackets to
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be zero implies the following equality

| fcd̄i |2=| fadj̄ |2 . (4.2.12)

In fact, this relation follows from the properties already imposed in the cancellation
of 2-to-2 off-diagonal processes, as follows. Looking at the three on-shell diagrams
of figure 4.5 we note that the following relations hold,

fabc̄fcd̄ifc̄d̄i =
type I flip

fadj̄fjb̄ifc̄d̄i =
type II flip

fadj̄fād̄jfabc̄, (4.2.13)

where we used the sign rules satisfied by the different types of flips summarized in
figure 4.2. Simplifying the common factor fabc̄ in the first and in the third terms
in (4.2.13) and using (4.1.7) we obtain exactly the relation (4.2.12) that is therefore
simply a consequence of the flipping rule.

The relation (4.2.12) is consistent with the area rule (4.2.8). This consistency is due
to the fact that we are assuming, as part of the simply-laced scattering conditions,
that the flipping rule happens between pairs of graphs. If we violated this condition,
having an s-, t- and u-channel particle simultaneously on-shell in the quadrilateral
defined by a(p1), b(p2), i(p3+p4), d(p3) in figure 4.5, not only c and j would contribute
to the pole but also another on-shell particle, l say, a bound state of b(p2) and d(p3).
In this situation an extra contribution |C(3)

bdl̄
|2

∆2
bdl

would be present in the square brackets
of (4.2.11), providing another term in the relation (4.2.12) that would become

| fcd̄i |2=| fadj̄ |2 + | fbdl̄ |2 . (4.2.14)

In this situation, we see that for a given d particle the absolute value of its corres-
ponding f -function depends on the particles with which it couples according with a
set of constraints of the form expressed in (4.2.14).

However, though the relation (4.2.12) agrees with the area rule (4.2.8), it is not
enough to prove it. At a first glance, it may seem from the expression in (4.2.12)
that given a generic particle d, the absolute value of its f -function fdij does not
depend on the particles i and j with which it couples. Such a conclusion is too
hasty, since the indices {c, ī} and {a, j̄} appearing on the LHS and on the RHS
of (4.2.12) are not arbitrary but correspond to particular on-shell channels inside
the amplitudes M (4)

cd and M
(4)
ad . To show that the area rule is universally satisfied

by all the models respecting property 4.1 we need to study also the second kind of
singularities, happening when the momenta of two particles become collinear; we
refer to these as ‘collinear singularities’.

Collinear singularities

This second situation can arise only when we have at least three equal particles in
the scattering. Indeed suppose we take the limit a3 → a4; in this situation the term
in front of M (4)

cd (a3, a4) in equation (4.2.3) becomes infinity but at the same time,
if c and d are particles of different types, we also have M (4)

cd (a3, a4) → 0 . This is
indeed the limit in which the transmitting and the reflecting processes involving the
2-to-2 scattering of the particles c and d become equal. Since the latter event is
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b(p2)

a(p1)

c(p4) c(p5)

c(p3) c(p4)

b(p2)

a(p1) c(p4)

c(p5)

c(p3)

a(p1)

b(p2)

b(p2)

a(p1) c(p5)

c(p4)

c(p3)

a(p1)

b(p2)

Figure 4.6: Infinite contributions to the residue of the amplitude
a+b+c → c+c when collinear singularities are present.
The infinities sum to zero so that in the end the residue
is finite.

forbidden in any integrable theory in this limit both the processes need to be zero
and collinear singularities are not allowed.

The story is different if the labels c and d are equal. In this case transmission
cannot be distinguished from reflection and M (4)

cc (a3, a4) (we give particles c and d

the same label since we are analysing the situation in which they are equal) does
not go to zero for a3 → a4; so it is possible to have singularities due to collinear
momenta. In particular if d = c, in the limit a3 → a4 the amplitude M (4)

cc (a4, a3) is
nonzero while the term in front of it in equation (4.2.3) goes to infinity. However
in this case other poles appear in the amplitudes M (4)

bc and M (4)
ac that cancel this

singularity. A picture of this situation is shown in figure 4.6 where we highlight how
the collinear singularity in the first graph is accompanied by two poles due to two
on-shell particles propagating in M

(4)
bc and M (4)

ac . As before, to evaluate the singular
part of the residue, we keep a4 = 1 the direction respect to which we measure the
angles following the counterclockwise convention. At this point we choose to move
p3 and p5 keeping them parallel and with fixed length. So we choose a3 = a5 = eiθ.
The collinear singularity happens in the limit θ → 0. Once again we have a1 = eiŪb

ac ,
a2 = e−iŪa

bc . Expanding the red propagators in figure 4.6 with respect to the angle θ
around the value θ = 0 we obtain

p2
b(θ) = m2

b − 2mamc sin(Ū b
ac)θ , p2

a(θ) = m2
a + 2mbmc sin(Ūa

bc)θ (4.2.15)

Now we expand the expression between square brackets in equation (4.2.3) isolating
the pole 1

θ
. After a straightforward calculation we obtain

Res
a5=a3

M (5)(a3, a5) ∼ i

2mcθ

[
M (4)

cc (1, 1)+ i

2m2
a sin2(Ū b

ac)
| C(3)

abc̄ |2 + i

2m2
b sin2(Ūa

bc)
| C(3)

abc̄ |2
]

(4.2.16)
The term M (4)

cc (1, 1) represents the amplitude for a process c+ c → c+ c in which the
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momenta of the incoming and outgoing particles are collinear. Then we substitute
in this formula the expression for the 3-point coupling in (4.1.6) and we obtain that
the residue is equal to zero if in the collinear limit the scattering amplitude for a
process of the form c+ c → c+ c is given by

M (4)
cc

∣∣∣∣
collinear

= − i

4m
2
c | fāb̄c |2 . (4.2.17)

Such relations allow the 4-point coupling C(4)
ccc̄c̄ to be fixed in terms of the 3-point

couplings also in those cases in which the procedure described in the end of section 4.1
cannot be applied (i.e. when the 4-point amplitude is diagonal). We note that the
absolute value of a function fāb̄c containing a particle of type c does not depend on
the particles a and b with which it couples, being the LHS of the equality (4.2.17)
independent on a and b. In contrast to (4.2.12), the particles a and b are completely
arbitrary, being any pair of particles coupling with c. For this reason, we can
state that any theory satisfying the simply-laced scattering conditions reported in
section 4.1 respects an area rule of the form (4.2.8). Indeed, given the arbitrariness
of the interacting particles, from the relation in (4.2.17) we can have only two
possible situations: either there exist two decoupled sectors of the theory that do
not interact with each other and can have two possible different absolute values of
their f -functions, or, if all the particles are connected, there exists only one possible
value of |fijk| that needs to be common to all the 3-point couplings. This implies
that the expression in (4.2.17) can consistently be written as

M (4)
cc

∣∣∣∣
collinear

= − i

4m
2
c | f |2 (4.2.18)

where |f | is the common value to all the absolute values of the f -functions. The
combination of (4.2.18) with the area rule (4.2.8) ensures, in theories satisfying
simply-laced scattering conditions, that the residue of the amplitude at the pole
a5 → a3 is equal to zero, independently of the value of a3. Therefore the amplitude
has no singularities in a5 and it is a constant in this variable. The entire discussion
can be repeated identically for the variable a3 so that we have

∂M (5)

∂a3
= ∂M (5)

∂a5
= 0,

and M (5) is constant everywhere.

As a simple check that everything is working correctly, we consider a theory of a
single real scalar field of mass m. In this case, the 3-point coupling is given by the
relation in (4.1.6) and can be written as

C(3) =
√

3
4 m2λ (4.2.19)

where on the right-hand side we have written the value of the area of an equilateral
triangle of side m and λ corresponds to the value of the f -function in equation
(4.1.6). By a direct calculation of the scattering amplitude for a 2-to-2 collinear
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process in this theory we obtain

M (4)
cc

∣∣∣∣
collinear

= (−iC(3))2 i

4m2 −m2 − (−iC(3))2 i

m2 − (−iC(3))2 i

m2 − iC(4). (4.2.20)

Comparing this expression with (4.2.18), where in this case | f |2= λ2, we find that
the value of the 4-point coupling cancelling poles in 5-point events needs to be

C(4) = 9
16m

2λ2. (4.2.21)

The following coupling, C(5), is then fixed by requiring that M (5) is not just a
constant but it is zero. It is fixed by using the formula (3.5.7) with n = 5, that for
this particular case becomes

C(5) = 2
m2C

(4)C(3) − 1
m4C

(3)C(3)C(3),

From this expression we read

C(5) = 15
√

3
64 m2λ3. (4.2.22)

If we write the first few terms of the Lagrangian that we are constructing

L = 1
2∂µϕ∂

µϕ− m2

2 ϕ2 − 1
3!

√
3

4 m2λϕ3 − 1
4!

9
16m

2λ2ϕ4 − 1
5!

15
√

3
64 m2λ3 + . . . (4.2.23)

we note that they are the lower orders in the expansion of the Bullough-Dodd
Lagrangian (3.1.11), where the coupling g is defined in terms of λ as g =

√
3

4 λ. All
the other couplings can be obtained by acting iteratively with (3.5.7) and it can be
shown that they match with the expansion of (3.1.11).

4.3 No-particle production in 6-point processes

Events involving 6 external particles are relatively simple to analyse once we know
that non-diagonal scattering is not allowed in 4- and 5-point processes. In this case,
the most general process not trivially equal to zero is given by

a(p1) + b(p2) + c(p3) → a(p4) + b(p5) + c(p6). (4.3.1)

Indeed, if there were more than three different particles then any time an internal
propagator goes on-shell it would factorise the amplitude into two processes of which
at least one is inelastic, generating a zero residue. For the event represented in
equation (4.3.1), all the poles also cancel. The reason is that such poles appear
always in copies as shown in figure 4.7. The two diagrams in figure 4.7 are equal
except for the fact that in the limit a4 → a1 (i.e. on the pole) they have two
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c
c(p3)

a(p1)

a(p4)

c(p6)

b(p5)

b(p2)

c
c(p3)

a(p1)

a(p4)

c(p6)

b(p5)

b(p2)

Figure 4.7: Allowed poles in the 6-point amplitude a + b + c →
a+ b+ c. The sum of these two contributions is nonzero
only in a subregion of the momentum space where the
sets of incoming and outgoing momenta are equal.

propagators with opposite sign, that are given respectively by

G1 = i

mamc

−a2
1a3

a1 − a4

1
a2

3 − a2
1

(4.3.2)

and
G2 = i

mamc

a2
1a3

a1 − a4

1
a2

3 − a2
1

(4.3.3)

This suffices to prove that the sum of the two singularities in the diagrams is equal
to zero.

The situation is different if we keep the iϵ prescription in the propagators. In this
case, each propagator can be written in terms of its principal value and its delta
contribution. While the former cancels once it is summed with all the other diagrams
(indeed the divergent parts of the principal values of G1 and G2 sum to zero while the
remaining finite contribution is cancelled by all the other non-divergent diagrams)
the latter gives a nonzero result. We can prove this using the distribution formula

lim
ϵ→0+

( 1
x+ iϵ

− 1
x− iϵ

)
= (−2πi)δ(x). (4.3.4)

By a direct sum of the propagators in (4.3.2), (4.3.3) and considering the extra iϵ
factors in the denominators we obtain

G1 +G2 = i

mamc

a2
1a3 lim

ϵ→0+

 1
(a1 − a4)(a2

1 − a2
3) + ia2

1a3ϵ

mamc

− 1
(a1 − a4)(a2

1 − a2
3) − ia2

1a3ϵ

mamc


= 2π
mamc

a2
1a3

|a2
1 − a2

3|
δ(a1 − a4) = π

mamc

δ(θ1 − θ4)
| sinh θ13|

(4.3.5)

where we define θ13 the difference between the rapidities of the a- and c-particle,
having respectively momenta p1 and p3. Using such result by a direct sum of the
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two diagrams in figure 4.7 and multiplying by the extra factor

(2π)2δ(2)
( ∑

i=1,2,3
pi −

∑
k=4,5,6

pk

)
≡ (2π)2δ

( ∑
i=1,2,3

p0
i −

∑
k=4,5,6

p0
k

)
δ
( ∑

i=1,2,3
p1

i −
∑

k=4,5,6
p1

k

)

coming from the conservation of the total momentum we obtain

4π3 1
mamc| sinh θ13|

M (4)
ac (a1, a3)

1
mbmc| sinh θ23|

M
(4)
bc (a2, a3) δ(θ1−θ4)δ(θ2−θ5)δ(θ3−θ6).

(4.3.6)
In (4.3.6) we exploited the fact that the additional delta function arising from (4.3.5)
constraints the possible space of outgoing momenta to a smaller subregion. In
particular we used the following equality

δ(θ1 − θ4)δ(2)
( ∑

i=1,2,3
pi −

∑
k=4,5,6

pk

)
= δ(θ1 − θ4)δ(2)

(
p2 + p3 − p5 − p6

)

= δ(θ1 − θ4)
δ(θ2 − θ5)δ(θ3 − θ6)
mbmc| sinh θ23|

(4.3.7)

to factorise the 6-point scattering into a product of two 4-point amplitudes. Inserting
then the normalisation factor (a multiplicative term 1√

4π
for each external particle)

and adding the contribution (4.3.6) to the other two pairs of diagrams similar to the
one shown in figure 4.7, but with particles a and b propagating in the middle, we
find that the final 6-point S-matrix is given by

Stree
abc (θ1, θ2, θ3) =

[
Stree

ac (θ13)Stree
bc (θ23) + Stree

ab (θ12)Stree
bc (θ23) + Stree

ab (θ12)Stree
ac (θ13)

]
× δ(θ1 − θ4)δ(θ2 − θ5)δ(θ3 − θ6).

(4.3.8)

In the equality above the tree-level part of the 2-to-2 S-matrix is bound to the
4-point amplitude through the relation (3.1.15) which is valid at all the orders in
perturbation theory. It is interesting to note how equation (4.3.8) exactly matches
the factorisation requirement we expect to see at the tree level. This fact needs to
be valid at any order in the coupling if the theory is integrable and therefore must
hold order by order in perturbation theory

Sabc(θ1, θ2, θ3) = Sab(θ12)Sbc(θ23)Sac(θ13)
=
(
1 + Stree

ab (θ12) + . . .
)(

1 + Stree
bc (θ23) + . . .

)(
1 + Stree

ac (θ13) + . . .
)
.

(4.3.9)

The relation in (4.3.8) corresponds to the tree-level order of the expansion (4.3.9),
after the disconnected diagrams are discarded.

Summarising, all the non-diagonal 6-point processes are null if we fix the 6-point
vertices appropriately through (3.5.7), while the diagonal processes are nonzero only
in a small region of the momentum space, exactly when the amplitude is factorised
into the product of 2-to-2 interactions.
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4.4 Remarks on the tree-level classification

In the previous sections, strictly following the analysis carried out in [1], we have
given necessary and sufficient conditions for a theory with a Lagrangian of the
form (3.1.12) to be perturbatively integrable, with a purely elastic S-matrix, at the
tree level. It has been proved that the theory is completely defined once the mass
ratios and the 3-point couplings are known. Once this fundamental data is given, the
4- and the higher-point couplings can be uniquely determined using the equalities in
(4.1.13), (3.5.7) and by requiring that a set of tree-level fusing bootstrap relations
(4.2.6) is satisfied. The tree-level bootstrap approach is particularly useful to find the
4-point couplings C(4)

cccc, in which four real equal particles fuse together; indeed such
couplings contribute to 4-point elastic processes and the relation (4.1.13) cannot be
applied.

Probing the space of tree-level perturbatively integrable theories corresponds to
searching for the mass ratios and 3-point couplings from which the entire Lagrangian
can be constructed iteratively. This problem can be addressed by two different routes.
On the one hand, it is possible to select the possible candidates by searching for what
masses and 3-point couplings allow for the cancellation of poles in all 2-to-2 inelastic
processes, according to what has been discussed in section 4.1. Subsequently only
the models having S-matrices satisfying the relations (4.2.6) are actually integrable
models at the tree level. On the other hand, it is possible to address the problem
in the opposite direction, by first imposing the tree level bootstrap relations (4.2.6).
This second approach is in principle simpler: matching the pole structure of the
different S-matrix elements entering the bootstrap corresponds to setting the values
of the masses while matching the residues at the poles corresponds to defining the
absolute values of the 3-point couplings. To determine the relative signs among
the different 3-point couplings we need then to require the cancellation of 4-point
inelastic processes from which we obtain a set of relations of the form in (4.1.9).

Although the problem of classifying all perturbatively integrable theories at the tree
level is not addressed in this thesis, many of the tools to pursue that goal have
been provided. Hints for such a classification can be found in [70, 71] where the
first steps were performed for non-perturbative S-matrices of minimal models using
a bootstrap approach. Reproducing the classification at the tree level should be
simpler than studying the quantum exact S-matrices, since the fact that the RHS
of (4.2.6) involves a sum instead of a product (as it happens in (2.4.7)) does not
introduce higher-order singularities that often generate inconsistencies. Restricting
attention to theories satisfying the simply-laced scattering conditions, it is important
to stress that the number of degrees of freedom is further restricted. Once the masses
have been fixed, the 3-point couplings (if they are not null) must obey the area rule
(4.2.8). The only relevant information is therefore the values of the masses and
what 3-point couplings are nonzero. The set of integrable theories with N different
particle types and satisfying simply-laced scattering conditions lives in

RN−1 × (Z2)
N(N+1)(N+2)

6 (4.4.1)
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the product between the space of mass ratios and the 3-point couplings. A group
Z2 is associated with each 3-point coupling: since the absolute value of the coupling
is determined by the area of the mass triangle the only relevant information is if
the coupling is or it is not zero. The exponent N(N+1)(N+2)

6 corresponds then to
the number of 3-point couplings in a theory with N types of particles. In the
next chapters, we will show how simply-laced and twisted affine Toda field theories
belong to this class of models. However it still remains unclear if they are the only
integrable models in two dimensions respecting property 4.1, or it is possible to find
some integrable theory verifying such conditions that is not an affine Toda theory.
Before moving into the second part of this thesis, which contains a discussion of
perturbative aspects of affine Toda field theories, in the next section we show how
the bootstrap fusing relations and the factorisation properties at all loops can be
derived in perturbation theory from certain constraints on the scattering.

4.5 Loop features

Bootstrap fusing relations and factorization have been largely applied in the past
to conjecture exact results for the S-matrices of a variety of quantum field theories.
Though these equations, with a small number of extra assumptions, allow us to find
non-perturbative S-matrices they have always been taken as a starting genuine axiom,
based on integrability properties of the models that are promoted to be preserved
at the quantum level. In this section we assume a different perspective showing
how such relations appear as residues of particular threshold singularities in loop
processes with 5 and 6 external particles, anticipating a topic that will be discussed
more rigorously in chapter 7: the Landau poles. The bootstrap and factorization
assumptions follow therefore by the absence of non-elastic scattering in perturbation
theory. We start by looking at the bootstrap fusing rules.

4.5.1 Pole cancellation and bootstrap relations at loop level

In the present section we describe bootstrap relations at one loop arising from the
requirement that, at this loop order, 5-point processes do not present poles since they
should be forbidden. The higher loop case can then be obtained straightforwardly
as a generalization of these one-loop cancellations.
We consider once again the process (4.2.1) and we take the collinear limit p5 → p3 in
which the poles appear. At this order in the loop expansion, the singular diagrams
are shown in figure 4.8. The first three graphs are exactly analogous to those
already seen in the tree-level case. They produce the same expression presented
in (4.2.3), with the only difference that the amplitudes in square brackets are now
obtained by summing over one-loop Feynman diagrams. The only additional different
contribution comes from the last graph in figure 4.8 that will be computed below.
The two blobs appearing in the fourth picture in figure 4.8 contain all the possible tree-
level diagrams contributing to the elastic amplitudes M (4,0)

ad and M
(4,0)
bd . Compared
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b(p2)
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c c(p4)

d(p3)

d(p5)

+

1-loop

b(p2)

a(p1)

a
c(p4)

d(p3)

d(p5) +

1-loop

b(p2)

b

a(p1)

c(p4)

d(p5)

d(p3)
+

Tree

Tree

a(p1)

b(p2)

c(p4)

d(p3)

d(p5)

b

d
a

= finite

Figure 4.8: The one-loop bootstrap relations are obtained imposing
that the sum of the residues of the one-loop singular
diagrams contributing to the fusing pole a + b → c is
zero.

to previous notation, where a single superscript index was given in amplitudes to
indicate the number of external particles, here we introduce a second index to keep
track of the number of loops. Therefore, the expression M (4,0) indicates a 4-point
amplitude at 0 loops (i.e. at the tree level). One example of the diagrams appearing
in such blobs is shown in figure 4.9 with the corresponding dual description on the
RHS. In the collinear limit p5 → p3 there is a point in the loop integration region
in which the propagators a, b and d connecting the two blobs with the three-point
vertex Cabc̄ and the two blobs each other are simultaneously on-shell. This brings an
order-one pole that needs to be taken into account in the total sum. However, for
general kinematics of the d particle, though maintaining the limit a5 = a3, the on-
shell amplitudes M (4,0)

ad and M
(4,0)
bd do not possess any internal on-shell propagators.

In other words, all the red particles i and the blue particles j propagating in the
two blobs in figure 4.9 are off-shell on the pole position given by having the internal
a-, b- and d-propagators on-shell. This is always the case except for a finite discrete
number of values of p3 corresponding to the pole positions of M (0)

ad or M (0)
bd (or

both). Anyway, we suppose to be far away from these positions. The double-blob
contribution in the first image in figure 4.9 can therefore be written as

D = (−iCabc̄)
∫ d2l

(2π)2
i

(pa − l)2 −m2
a + iϵ

M
(4,0)
da (p3, p1, pd + l, pa − l) i

(pd + l)2 −m2
d + iϵ

×M
(4,0)
db (pd + l, p2, p5, pb + l) i

(pb + l)2 −m2
b + iϵ

(4.5.1)

where we are expanding the loop around some values of the internal a- , b- and
d-propagators given by pa, pb and pd. Since the loop integration has two degrees of
freedom we can set pa and pb on-shell at the position l = 0:

p2
a −m2

a = 0 , p2
b −m2

b = 0. (4.5.2)

However for general kinematics of p5 and p3 in such a position the momentum pd is
off-shell. In figure 4.10 it is depicted the position l = 0 around which we integrate.
On the LHS p3 and p5 are not parallel and there does not exist a point inside the
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Figure 4.9: Example of Feynman diagrams appearing in the two
blobs corresponding to the tree-level amplitudes M (4,0)

ad ,
M

(4,0)
bd . On the RHS it is shown their dual geometrical

description.

integration region at which the three propagators a, b and d are simultaneously
on-shell. In particular for l = 0, a and b are on-shell but d is not. On the RHS of
figure 4.10 we see how when we take the collinear limit p5 → p3 in the position l = 0
not only are pa and pb on-shell, but also pd since it becomes equal to the common
value pd = p3 = p5. Now we write the distance of pd from its mass-shell condition
in terms of the difference a5 − a3; in this manner, we can express the pole residue
in the same way as we did for the other terms in (4.2.3). To determine the quantity
p2

d − m2
d in terms of the difference between the two phases a3 and a5 we need to

combine some relations. First we note that the following equalities hold

p2
d −m2

d = (p3 + p1 − pa)2 −m2
d = mamd

a3a2
1

(a1 − aa)(a2
1 − a2

3) ,

p2
d −m2

d = (p5 + pb − p2)2 −m2
d = mbmd

a3a2
2

(ab − a2)(a2
2 − a2

3) .
(4.5.3)

On the RHS of the second line, we have written a3 instead of a5 since we are taking
the limit a5 → a3. Then we use the momentum conservation

maa1 +mba2 +mda3 = maaa +mbab +mda5

that combined with the two equalities in (4.5.3) leads to the following relation

md(a5 − a3) = ma(a1 − aa) +mb(a2 − ab) = (p2
d −m2

d) 1
md

(
a3a

2
1

a2
1 − a2

3
− a3a

2
2

a2
2 − a2

3

)
.
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a(p1)

b(p2)

d(p3)

d

d(p5)

c(p4)
a

b

a5 → a3

a(p1)

b(p2)

d(p3)

d

d(p5)

c(p4)
a

b

Figure 4.10: Limit a5 → a3 shown in the dual Feynman diagram
description. Once we fix the values of the a- and b-
propagators on-shell on the LHS we highlight that the
d internal particle is off-shell. We see how the length
of the internal momentum carried by d is shorter than
the on-shell value p2

d = m2
d. On the RHS in the limit

a5 → a3 the internal d-propagator goes on-shell and
its length becomes equal to the mass md generating a
first-order pole.

Manipulating a little bit of the expression in brackets on the RHS and writing the
aj variables in terms of the rapidities we obtain the desired result

p2
d −m2

d = 2m
2
d

a3

sinh θ13 sinh θ23

sinh θ21
(a5 − a3) ≡ x(a5 − a3). (4.5.4)

If we substitute (4.5.2) and (4.5.4) into the loop integral (4.5.1) we obtain that the
double-blob contribution around its singular value becomes

D = (−iCabc̄)
∫ d2l

(2π)2
i

−2pa · l + l2 + iϵ
M

(4,0)
da (p3, p1, pd + l, pa − l)

i

x(a5 − a3) + 2pd · l + l2 + iϵ
M

(4,0)
db (pd + l, p2, p5, pb + l) i

2pb · l + l2 + iϵ
.

(4.5.5)

At this point we rescale l = l̃ (a5 − a3) and keep the limit a5 → a3 neglecting all the
subleading terms which do not carry any additional singularities in this limit

D = (−iCabc̄)
1

a5 − a3

∫ d2l̃

(2π)2
i

−2p1 · l̃ + iϵ
M

(4,0)
da (p3, p1, p3, p1)

i

x+ 2p3 · l̃ + iϵ

×M
(4,0)
db (p3, p2, p3, p2)

i

2p2 · l̃ + iϵ
.

(4.5.6)

Looking at the RHS image in figure 4.10 we see that p3 can be expressed in terms
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of p1 and p2 through the linear combination

p3 = ∆bd

∆ab

p1 − ∆ad

∆ab

p2 (4.5.7)

where ∆bd, ∆ad and ∆ab are respectively the areas of the triangles formed by the
copies of vectors (b(p2), d), (a(p1), d) and (a(p1), b(p2)). Then we adopt a change of
variables which will be largely used also in chapter 7:

2p1 · l̃ = u , 2p2 · l̃ = v.

Keeping into account the Jacobian carried by this new choice of variable

d2l̃ = du dv

4mamb sinh θ12

the loop integral reduces to

D = (−iCabc̄)
1

a5 − a3

1
4mamb sinh θ12

M
(4,0)
da (p3, p1) M (4,0)

db (p3, p2)

×
∫ du dv

(2π)2
i

−u+ iϵ

i

x+ ∆bd

∆abc
u− ∆ad

∆abc
v + iϵ

i

v + iϵ
.

(4.5.8)

The integration can easily be performed using Cauchy’s theorem by closing the u-
contour on the upper half complex plane and the v-contour on the lower half-plane.
The integration result is simply given by i

x
, so that the result for the double-blob

diagram in figure 4.8 can be written as

D = Cabc̄

x(a5 − a3)
1

4mamb sinh θ12
M

(4,0)
da (p3, p1) M (4,0)

db (p3, p2). (4.5.9)

When we substitute the value of x given in (4.5.4) into this last expression the
sinh θ21 in x simplifies with sinh θ12 in (4.5.9) generating a minus sign. Thus if we
sum the four singular contributions depicted in figure 4.8 we obtain

M
(5,1)
abd→cd = 2a3

Cabc̄

a5 − a3

×
[ 1
4mdmc sinh θ34

M
(4,1)
dc (θ34) − 1

4mdma sinh θ31
M

(4,1)
da (θ31) − 1

4mdmb sinh θ32
(θ32)M (4,1)

db (θ32)

− 1
4mdma sinh θ31

M
(4,0)
da (θ31)

1
4mdmb sinh θ32

M
(4,0)
db (θ32)

]
.

(4.5.10)

The first three terms on the RHS of (4.5.10) have been obtained in the same way
as we did in the tree-level case (4.2.3) with the only difference that amplitudes are
given by summing over one-loop diagrams now. Using the relation in (3.1.15) and
defining θ34 ≡ θ the requirement that on the pole a5 = a3 the singularity disappears
becomes

S
(1)
dc (θ) = S

(1)
da (θ − iŪ b

ac) + S
(1)
db (θ + iŪa

bc) + S
(0)
da (θ − iŪ b

ac)S
(0)
db (θ + iŪa

bc). (4.5.11)
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Figure 4.11: List of contributions to the pole in the process a+ b+
d → c + d. The imposition that the residue is null
on the pole position gives the N -loop order bootstrap
relation.

This represents the one-loop order of the expansion of the bootstrap relation (2.4.7).
Such a relation can be easily generalised at N -loops imposing that at all orders the
residue of the pole for the process (4.2.1) is equal to zero. The diagrams contributing
to the pole at N loops are shown in figure 4.11 and the imposition that their sum
has a zero residue on the pole returns

S
(N)
dc (θ) = S

(N)
da (θ − iŪ b

ac) + S
(N−1)
da (θ − iŪ b

ac)S
(0)
db (θ + iŪa

bc)
+ S

(N−2)
da (θ − iŪ b

ac)S
(1)
db (θ + iŪa

bc) + . . .+ S
(N)
db (θ + iŪa

bc),
(4.5.12)

where a superscript index is associated to each S-matrix element reporting its loop
order. After having taken into account the singular contributions at all the loop
orders the imposition of the pole cancellation is written as

Mabd→cd ∼ Cabc̄

a5 − a3

[
Sdc(θ) − Sda(θ − iŪ b

ac)Sdb(θ + iŪa
bc)
]

= 0, (4.5.13)

which exactly matches the bootstrap relation (2.4.7).

It is still an open problem to verify the full bootstrap equations (4.5.13) in perturba-
tion theory for general purely elastic quantum field theories. Moreover, an important
remark is necessary. In the discussion above we implicitly assumed that the 3-point
coupling C

(3)
abc̄, as well as the masses of the propagating particles, remain fixed on

their classical values, no matter the loop order we are considering. This claim is
false in general. There are examples of quantum theories, such as the non self-dual
affine Toda models, where the masses, and therefore the fusing angles (which are Ū b

ac
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and Ūa
bc in (4.5.13)), renormalize in a non-trivial way at the quantum level [57]. We

should take into account this fact in (4.5.13). In addition also the 3-point couplings
can be modified by quantum corrections. Note that the residue in (4.5.13) is null
in two situations: when the bootstrap equation is satisfied, but also when Cabc̄ is
equal to zero. In particular, the possibility that some 3-point coupling (different
from zero at the classical level) cancel after the renormalisation procedure can in
principle spoil some of the bootstrap fusing equations. The quantum story is very
complicated and a full understanding of it is still lacking.

4.5.2 Loop-level factorisation

Another aspect of integrable theories is the factorisation of their S-matrices. In
section 2.2 we reviewed the argument proposed by Parke [21], according to which the
presence of two higher spin conserved charges, in addition to energy and momentum,
should suffice to have absence of production and factorisation in the scattering. Even
though a full perturbative quantum proof of the absence of production is still lacking,
in this section we highlight where the factorisation of the S-matrix comes from in
perturbation theory. In particular, we point out what contributions, which survive
after all the Feynman diagrams are summed, are responsible for splitting a 3-to-3
S-matrix into the product of three 2-to-2 S-matrices. At a given loop order

L = m+ n+ k + 1 (4.5.14)

these contributions are reported in figure 4.12, where the blobs represent respectively
sums of all the Feynman diagrams with fixed loop numbers m, k and n. As a
convention we assume these numbers running on the integers between −1 and +∞,
where −1 and 0 inside a blob correspond respectively to have no interactions and
tree-level interactions. The two pictures in figure 4.7 in the more general set-up
presented here, cover the case k = 0, n = 0 and m = −1.

After having computed the two contributions in figure 4.12 we need to sum over all
the integers m, k and n ∈ [−1,+∞] satisfying the condition (4.5.14). In this way we
obtain the L-loop contribution to the amplitude. We focus on the diagram on the
LHS in figure 4.12. As we saw before we can use the two degrees of freedom of the
loop integration variable to set the momenta of the particles a and b propagating
in the loop on-shell and equal to the external momenta p1 and p5. Instead, the
momentum of the c-propagator is not free since we have already used our freedom to
tune properly the momenta pa and pb. For this reason for general external kinematics
pc is off-shell, as depicted on the LHS of figure 4.13. It is only in the collinear limit
a4 → a1 that also the momentum pc goes on-shell and becomes equal to the common
value pc = p3 = p6 as it is shown on the RHS of figure 4.13.
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Figure 4.12: Pair of diagrams contributing to the factorisation of
the six-point process a+ b+ c → a+ b+ c at the fixed
loop-order L = m+ n+ k + 1.
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Figure 4.13: Collinear limit of the loop diagram contributing to the
factorisation of a+ b+ c → a+ b+ c. On the LHS it
is shown the point in the integration region in which
the internal a and b-propagators are collinear to two
external particles. In the limit in which the set of
outgoing momenta is equal to the set of the incoming
ones also the internal c-propagator becomes on-shell
and collinear to the external c-particles.
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The integral expanded around the values pa = p1 and pb = p5 is given by

DL =
∫ d2l

(2π)2
i

2p1 · l + l2 + iϵ
M (4,n)

ac (p1 + l, p3, p4, pc + l) i

p2
c −m2

c + 2pc · l + l2 + iϵ

×M
(4,k)
bc (p2, pc + l, p5 + l, p6)

i

2p5 · l + l2 + iϵ
M

(4,m)
ab (p1, p5 + l, p5, p1 + l)

(4.5.15)

The momentum of the c-propagator can then be written in the collinear limit a4 → a1

p2
c −m2

c = (p1 + p3 − p4)2 −m2
c → mamc

a3a2
1

(a1 − a4)(a2
1 − a2

3)

We rescale the integration variables multiplying by the displacement from the singular
position a4 = a1

l = (a1 − a4)l̃,

and we consider only the singular value of the integral. Writing p3 as a linear
combination of p1 and p2 and using the following change of variables

u = 2p1 · l̃ , v = 2p2 · l̃

the integral is solved using Cauchy’s residue theorem by closing both the u- and the
v-contours on the lower half-plane. The final result is

DL = i

4mamb sinh θ12
M (4,n)

ac (p1, p3, p1, p3)
1

mamc

a3a2
1

(a1 − a4)(a2
1 − a2

3) + iϵ

×M
(4,k)
bc (p2, p3, p2, p3)M (4,m)

ab (p1, p2, p1, p2).
(4.5.16)

The diagram on the RHS of figure 4.12 can be obtained in the same way with the
only difference that now pc is pointing in the ‘opposite direction’ (i.e. from the k-loop
blob to the n-loop one). Therefore the value of DR is obtained by substituting a3
with −a3. Summing the two contributions we obtain

DL +DR = i

4mamb sinh θ12
M (4,n)

ac (p1, p3) M (4,k)
bc (p2, p3) M (4,m)

ab (p1, p2)

× lim
ϵ→0+

[ 1
mamc

a3a2
1

(a1 − a4)(a2
1 − a2

3) + iϵ
− 1

mamc

a3a2
1

(a1 − a4)(a2
1 − a2

3) − iϵ

]

= π

4mamb sinh θ12
M (4,n)

ac (p1, p3) M (4,k)
bc (p2, p3) M (4,m)

ab (p1, p2)
1

mamc sinh θ13
δ(θ1 − θ4).

(4.5.17)

where the distribution formula (4.3.4) has been used. The rest of the computation
exactly follows the tree-level case discussed in section 4.3. The delta function δ(θ1−θ4)
obtained by sending iϵ to zero multiplied by the delta of the overall-energy momentum
conservation returns the expression in (4.3.7). Adding finally a normalisation factor

1√
4π

for each external state we get that the contribution arising from the two diagrams
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in figure 4.12 is given by

1
4mamb sinh θ12

M
(4,m)
ab (θ12)

1
4mbmc sinh θ23

M
(4,k)
bc (θ23)

1
4mamc sinh θ13

M (4,n)
ac (θ13)

× δ(θ1 − θ4)δ(θ2 − θ5)δ(θ3 − θ6)
(4.5.18)

Summing over all the integers k,m, n = −1, 0, . . . L satisfying (4.5.14) we obtain the
value of the L-loop S-matrix for the process (4.3.1); it is given by

S
(L)
abc→abc =

L∑
k,m,n=−1

k+n+m+1=L

S
(m)
ab (θ12)S(k)

bc (θ23)S(n)
ac (θ13). (4.5.19)

The relation in (4.5.19) corresponds to the L-loop order in the expansion of (4.3.9).





Part II

Perturbative Integrability in Affine
Toda Field Theories





Chapter 5

Affine Toda models and their
underlying geometry

5.1 Definition of the models

From the general considerations discussed in the first part of this thesis, we move
on to study a particular class of bosonic quantum field theories: the affine Toda
models. In this and the next chapter, we show how all the bootstrap and perturbative
requirements are universally satisfied by these models at tree level. These models
are a particular class of (1+1)-dimensional quantum field theories describing the
interaction of r bosonic scalar fields ϕ = (ϕ1, . . . , ϕr) ∈ Rr. Each theory is defined
in terms of a set of r + 1 vectors {α′

0 . . . α
′
r}, all lying in Rr, whose inner products

are encoded in one of the twisted or untwisted affine Dynkin diagrams [72], together
with a mass scale m and a coupling g. The Lagrangian is

L = 1
2∂µϕa∂

µϕa − m2

g2

r∑
i=0

nie
g·ϕa(α′

i)a (5.1.1)

where the sum over the repeated indices labelling the components of ϕ and the roots
is implicit. Affine Toda theories are associated with Kac-Moody algebras of finite
type. The integers ni appearing in the Lagrangian are characteristic for each algebra.
The set {α′

i}r
i=0 comprises the simple roots of the algebra and the additional root

α′
0, necessary to have a stable vacuum, defined by

α′
0 = −

r∑
i=1

niα
′
i. (5.1.2)

In this way, after having imposed n0 = 1, we obtain
r∑

i=0
niα

′
i = 0. (5.1.3)

The last condition ensures that the Taylor expansion of the potential around ϕ = 0
does not have a linear term in ϕ and therefore ϕ = 0 is a stationary point around
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which it is possible to perform standard perturbation theory. In that regard, we
need to figure out what are the masses and the couplings, in such a way to be able to
define the Feynman rules. The potential in the Lagrangian (5.1.1) can be expanded
as follows:

V ≡ m2

g2

r∑
i=0

nie
g·ϕa(α′

i)a

= m2

g2

r∑
i=0

ni + 1
2M

2
abϕaϕb + 1

3!C
(3)
abcϕaϕbϕc + . . .

(5.1.4)

where the squared of the mass matrix and the couplings are defined in terms of the
roots through

M2
ab = m2

r∑
i=0

ni(α′
i)a(α′

i)b , C
(3)
abc = m2g

r∑
i=0

ni(α′
i)a(α′

i)b(α′
i)c , . . . (5.1.5)

The first step is to diagonalize the mass-squared matrix so to find the masses of
the theory: m1, . . . ,mr. Next, after having found the basis making M2 of the
form M2 = diag(m2

1, . . . ,m
2
r), we need to express all the couplings in this basis. If

these theories are tree-level integrable, the data in (5.1.5) should provide the seeds
of integrability and it should be possible to write all the higher point couplings in
terms of these fundamental parameters as is done in (3.5.7) and (4.1.13) by imposing
absence of production. In the next chapter, we will show how these equations, for
the affine Toda theories, emerge from a completely different perspective and are
implied by properties of the simple roots {α′

i}r
i=1. In these cases, the perturbative

cancellation of inelastic processes is related to the beautiful geometry of the root
systems associated with such models [73, 74]. Aspects of this geometrical structure
have been explored in several papers, including [69, 73–79]. In particular, on-shell
momentum components with imaginary rapidity corresponding to poles in Feynman
diagrams can be seen as projections of higher-dimensional roots, the masses and
fusing angles corresponding to bound states of the theory being completely encoded
in the root system. Nevertheless, the full role of this geometrical structure in ensuring
the absence of production has remained unclear until [1], when a full proof of the
tree-level integrability of these theories was given.

In this chapter, a review of the integrability of affine Toda field theories is reported:
section 5.2 reviews the derivation of a Lax connection, necessary to prove the classical
integrability of these models. After having recalled important geometrical properties
of root systems in section 5.3, in section 5.4 (following the argumentation presented
in [38]) a correspondence between the spins of the conserved charged and the Lie
algebra exponents is made manifest. Through such correspondence in section 5.5
we introduce universal quantum aspects of affine Toda theories reviewing part of
the results shown in [73]. The root system properties discussed in the next sections
will be relevant also for chapter 6: from them, a universal proof of the tree-level
perturbative integrability of affine Toda field theories will be provided, based on the
novel results from [1].
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5.2 Classical integrability in affine Toda models

To capture all the universal properties making affine Toda models beautiful examples
of integrable quantum field theories, some more detail about their underlying math-
ematical structure is required. To that end, let us consider a semisimple Lie algebra
G and let H′ be a Cartan subalgebra of G, comprising a maximal set of commuting
generators {H ′

a}r
a=1. The dimension r of H′ is equal to the rank of the algebra.

Diagonalising the adjoint action of this subalgebra on the remaining generators of G
we obtain the following basis in G

{Eα′}α′∈Φ′ , {H ′
a}r

a=1 (5.2.1)

where
[H ′

a, H
′
b] = 0 , [H ′

a, Eα′ ] = (H ′
a, α

′)Eα′ . (5.2.2)

The index a runs from 1 to r and labels the basis of the Cartan subalgebra while
the set of vectors {α′}α′∈Φ′ in H′ make up a root system Φ′ of G. In (5.2.2) we used
the following scalar product

(X, Y ) = Tr(adX adY ). (5.2.3)

The generators {H ′
a, Eα′} of G can be tuned in such a way to satisfy the following

relations:

(H ′
a, H

′†
b) = δab, (5.2.4a)

(Eα′ , E−β′) = δα′β′ . (5.2.4b)

The symbol † represents the hermitian conjugate operation (conjugate transpose) in
cases when a matrix representation is chosen for the algebra. More generally the
operation † is defined by its action on the abstract elements of the algebra as

(X + iY )† = X − iY

for any X, Y ∈ iT with T being a compact form of G (see pp. 1003-1004 of [83]).
Given now a generic element v ∈ H′, it can be written as a vector v = (v1, . . . , vr) ∈
Cr having as components the coefficients of the expansion

v =
r∑

a=1
(v,H ′†

a)H ′
a ≡

r∑
a=1

vaH
′
a. (5.2.5)

The Lagrangian (5.1.4) can then be written in a form independent of the choice of
the basis used to define the root system as

L = 1
2(∂µϕ, ∂

µϕ) − m2

g2

r∑
i=0

nie
g·(ϕ,α′

i) (5.2.6)

In (5.2.6) the field ϕ and the roots {α′
i}r

i=0 have to be seen as elements of H′. By
expanding the roots and the field on the basis of H ′

a, as shown in (5.2.5), with the
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further condition H ′†
a = H ′

a, it is immediate to see that the Lagrangian in (5.2.6) is
the same as that one in (5.1.1). However, we prefer to relax such a condition here
and choose instead

H ′†
a = H ′

ā, (5.2.7)

with a and ā possibly different indices in {1, . . . , r}. Since ϕ, in some representation,
can be written on a basis of hermitian matrices with real coefficients, then of course
it has to hold that ϕ† = ϕ independently on the basis used to write ϕ. Combined
with (5.2.7) this leads to ϕ∗

a = ϕā, which allows us to keep into account also the
cases in which antiparticles are present. It will be a matter of the next sections to
provide a nice set of {H ′

a}r
a=1 making the squared of the mass matrix in the potential

diagonal. By Taylor expanding (5.2.6) on this basis, we will obtain a Lagrangian
of the form in (3.1.12) and we will be able to derive the scattering requirements
previously found from properties of Lie algebras.

Before moving to the quantum case it is instructive to see why these theories are
interesting already at the classical level. Their classical integrability was proven
in [38, 80] and relies on the existence of a Lax connection from which an infinite set
of conserved charges can be extracted. Below we explain in some detail how this
Lax connection can be constructed. First, we should set the following additional
properties for the generators:

E†
α′ = E−α′ ,

[Eα′ , E−α′ ] = α′,

[Eα′ , Eβ′ ] = Nα′,β′Eα′+β′ .

(5.2.8)

The third equality in (5.2.8) is different from zero only if α′ + β′ is a root, or if
α′ +β′ = 0 (in this case the second equality holds); Nα′β′ are the structure constants
of the algebra. Then the equations of motion derived from the Lagrangian (5.2.6),
which are

∂µ∂
µϕ+ m2

g

r∑
i=0

niα
′
ie

g·(ϕ,αi) = 0, (5.2.9)

can be written as the zero curvature condition of a properly chosen two-dimensional
vector potential Aµ. We can define this potential as

A0 = g

2∂1ϕ+ m

2

r∑
i=0

(
λciEα′

i
− 1
λ
c∗

iE−α′
i

)
e

g
2 (ϕ,α′

i),

A1 = g

2∂0ϕ+ m

2

r∑
i=0

(
λciEα′

i
+ 1
λ
c∗

iE−α′
i

)
e

g
2 (ϕ,α′

i),

(5.2.10)

where ci are complex numbers chosen in such a way to satisfy |ci|2 = ni, being ni

the same set of numbers appearing in (5.2.6). By using (5.2.2) and (5.2.8), it can be
shown that the zero curvature condition

F01 = ∂0A1 − ∂1A0 + [A0,A1] = 0, (5.2.11)

imposed to be satisfied for any value of the spectral parameter λ, is equivalent to
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the equations of motion (5.2.9).

An infinite tower of conserved charges can be defined by making use of the mono-
dromy matrix

T (λ) ≡ K(−∞,+∞;λ). (5.2.12)

where K is the path ordered exponential evaluated at a fixed time

K(a, b;λ) ≡ P exp
(∫ b

a
dx1A1(x1)

)
.

Provided the fields and their spatial derivatives satisfy suitable conditions at x1 =
±∞, and making use of the fact that

dK

dt
= KA0(b) − A0(a)K

then
t(λ) = Tr(T (λ)) (5.2.13)

does not depend on time. The quantity in (5.2.13) is called the transfer matrix
and, by performing its expansion in the spectral parameter λ, we can generate an
infinite number of conserved charges. This is however not enough to establish that
the theory is integrable. The charges generated through (5.2.13) have indeed to
commute, which is equivalent to require that values of the transfer matrix evaluated
at different points, say t(λ1) and t(λ2), are in involution. The involutary nature of
the charges can be checked by proving the so-called fundamental Poisson bracket
relation (FPR) [81] between the components A1 at equal times, which are formulated
in terms of a classical r-matrix. The proof for the affine Toda theories, together
with an expression for the r-matrix in terms of root system data, is given in [38].
Although we will omit to give a derivation of the r-matrix here, we will return to
the derivation of the conserved charges in section 5.5, after some additional tools
on Lie algebras will be provided. It is important to mention that the integrability
of Toda field theories was studied also in [82], where it was proven that the set of
classical conserved charges can be deformed through the coupling and promoted in
this way to a quantum set of commuting conserved charges. Even though this is not
the definition of quantum integrability adopted in this thesis, which instead relies on
the absence of production in scattering processes, these two different setups should
ultimately be connected.

5.3 The relevance of the Coxeter geometry

Let Q be the unique element in H′ such that

(Q,α′
i) = 1 ∀ simple root α′

i. (5.3.1)
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Then, given a generic root α′, written as a linear combination of the simple roots
with integer coefficients

α′ =
r∑

i=1
miα

′
i,

it holds that
[Q,E ′

α] = (Q,α′)Eα′ = ht(α′)Eα′ , (5.3.2)

where ht(α′) = ∑r
i=1 mi is called the height of the root α′. Of course any simple root

α′
i satisfies ht(α′

i) = 1. Moreover, if we define −α′
0 to be the root with greatest height1

then ht(−α′
0) = h− 1. The integer h is called the Coxeter number and for untwisted

affine Toda theories it is obtained by summing the integers {n0, n1, . . . , nr} defined
in (5.1.1). The other heights belong to the sets E ≡ {si}r

i=1 and Ẽ ≡ {−si}r
i=1,

where the numbers si are positive integers satisfying

1 = s1 ≤ s2 ≤ . . . ≤ sr−1 ≤ sr = h− 1.

The positive sets of integers E = {si}r
i=1 are characteristic of each Lie algebra and

are called exponents. They always appear in the number r, the rank of the Lie
algebra.

Following [75], we can define the element

A = exp
(2πi
h

adQ

)
, (5.3.3)

where h is the Coxeter number introduced above. Such an element acts diagonally on
the set of generators {H ′

a, Eα′} used to span the Lie algebra. Indeed, due to (5.3.2),
we have

AEα′ = ωsEα′ with ω = e
2πi
h (5.3.4)

and
AH ′

a = H ′
a. (5.3.5)

In (5.3.4) the integer s is an exponent of G, corresponding to the height of α′. It is
now possible to define a set of r linearly independent eigenvectors of A, one for each
exponent, generating a new Cartan subalgebra H (different from H′) of G. We label
by z1 and zh−1 the two eigenvectors of A with eigenvalues ω and ωh−1, defined by

z1 =
r∑

i=0
ciEα′

i
and zh−1 =

r∑
i=0

c∗
iE−α′

i
(5.3.6)

respectively. The coefficients ci are the same as those used to define the Lax connec-
tion in (5.2.10); they are complex numbers properly tuned so to satisfy |ci|2 = ni.
Due to this fact, combined with (5.2.8) and (5.1.3), it is not difficult to verify that
[z1, zh−1] = 0. The element z1 in (5.3.6) is a regular element in G [83], meaning that
all the elements commuting with it also commute between one another and form a
new Cartan subalgebra H in G. The other elements comprising the basis of H can

1If (5.1.1) is the Lagrangian of an untwisted affine Toda theory the greatest height root −α′
0

exactly matches with the definition given in (5.1.2)
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be similarly defined as2

zs =
∑

ht(α′)∈{s,s−h}
cα′Eα′ , zh−s =

∑
ht(α′)∈{s,s−h}

c∗
α′E−α′ . (5.3.7)

The coefficients cα′ have to be properly tuned so to ensure that the elements in (5.3.7)
commute with z1 (and therefore, by the fact that z1 is regular, commute with each
other) and satisfy the condition

(z†
s1 , zs2) = hδs1s2 .

Note that, due to the first equality in (5.2.8),

z†
s = zh−s.

The fact that the elements in (5.3.7) form a basis for a Cartan subalgebra in G is
a consequence of a lemma in [83] (see discussion at pp. 1012-1013 in [83]). Since
the set of {zs}s∈E generates a new Cartan subalgebra H, we can define a new root
system in H. By taking a generic root α ∈ H we can expand it on the basis of
{zs}s∈E as

α = 1
h

∑
s∈E

(α, zh−s)zs (5.3.8)

Acting with A on α we get

Aα = 1
h

∑
s∈E

ωs(α, zh−s)zs

From this fact, it should be clear that A is periodic with periodicity h and, for each
s, the two real combinations

zs + zh−s

2
√
h

and zs − zh−s

2i
√
h

(5.3.9)

span a plane in H on which A acts as a rotation by 2πs
h

. As Bertram Kostant [83]
noted, the restriction of A to H is a Coxeter transformation of H. By this, we mean
that if we have a (suitably ordered) set of simple roots {αi}r

i=1 with respect to H,
then the action of A on H can be written as a product of Weyl reflections, one for
each of the simple roots αi. The details of this construction are given below.
For any root α ∈ H we define the corresponding Weyl reflection to be the linear
transformation acting as a reflection respect to the hyperplane orthogonal to α:

wα(x) = x− 2 (x, α)
(α, α)α. (5.3.10)

Such reflections map the root system to itself and the closed group W that they
generate is called the Weyl group. For a given choice of simple roots, a Coxeter

2The case s = h/2 is a bit special; in such a case we can have zs = zh−s = zh/2, if there is a
single exponent with value h/2, or we can have zs = zs1 ̸= zh−s = zs2 (if there are two separate
exponents s1 and s2 both equal to h/2).
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Figure 5.1: E8 Dynkin diagram.

element of the Weyl group is the product of the Weyl reflections over that set of
simple roots. Of course, there are many possible choices depending on the choice
of simple roots, but the Coxeter elements that can be constructed starting from
these different choices, and the orderings of the reflections in any choice, belong
to the same conjugacy class of W . A convenient choice is the so-called Steinberg
ordering [84]: split the simple roots into two sets, ‘black’ and ‘white’, indicated with
the labels • and ◦. All the roots inside the same set are mutually orthogonal, and so
are not connected on the Dynkin diagram (see the example in figure 5.1). We then
write the Coxeter element w as

w = w•w◦ =
∏
α∈•

wα

∏
β∈◦

wβ. (5.3.11)

Kostant [83] showed how to define a particular set of r roots {γa}r
a=1 from which

the entire root system can be generated by the action of a given Coxeter element w.
This action produces r closed orbits each with h elements, where h is the Coxeter
number of the algebra. A convenient way of writing these roots uses the fundamental
weights {λa}r

a=1 of the Lie algebra, defined by

2
(αa, αa)(λa, αb) = δab. (5.3.12)

The root system can then be generated acting with w on the roots

γa = (1 − w−1)λa =
 αa if a ∈ ◦

−w−1αa if a ∈ •
(5.3.13)

The first equality holds for any Coxeter element, while the second assumes the
Steinberg ordering. We define the orbit Γa to be the set of roots obtained by acting
with the Coxeter element (5.3.11) on the root γa (after h steps we come back to the
starting root). The relations in (5.3.10), (5.3.11) define the geometrical action of w
on the Cartan subalgebra, as a combination of rotations of different subspaces of H.

It is possible to show that the eigenvalues of w are exactly equal to {ωs}s∈E, making
possible to identify w with the action of A restricted to H. Then the orthonormal
basis diagonalizing w in H is provided by the set {zs}s∈E in (5.3.7). The projectors
onto the different eigenvectors of w, used to expand the root α in (5.3.8), can then
be written as [74]

Ps = 1
h
zs ⊗ zh−s = 1

h

h−1∑
p=0

ω−spwp. (5.3.14)

While the first expression for the projector, written as a tensor product of zs and
zh−s, makes sense only if it is applied to an element inside H, the second definition
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can be extended to the full Lie algebra G. Indeed, making use of the fact that (5.3.3)
is the extension of w to the entire of G, we can write

Ps = 1
h

h−1∑
p=0

ω−spAp. (5.3.15)

If {eα} is the set of generators with respect to the Cartan subalgebra H, satisfying

[α, eβ] = (α, β)eα,

then the action of A on them is easily derived. Defining P ≡ e
2πi
h

Q then Aeβ =
PeβP

−1 and

[α,Aeβ] = P [P−1αP, eβ]P−1 = (w−1α, β)PeβP
−1 = (α,wβ)PeβP

−1. (5.3.16)

From (5.3.16) we see that
Aeβ = ewβ. (5.3.17)

We can always choose the roots {α} to be in Rr and set the generators so that

e†
α = −e−α , (eα, e−β) = −δαβ. (5.3.18)

With these conventions in place then we have

[eα, e−α] = −α (5.3.19a)
[eα, eβ] = Nαβ eα+β. (5.3.19b)

The reason why we choose a different convention for the new set of generators {eα}
compared to (5.2.8) is to have real structure constants Nα,β, a fact that will become
useful in the derivation of couplings of affine Toda field theories, as underlined in [74].
An important observation, due to how A is defined in (5.3.3), is that the structure
constants of the algebra are connected by

Nαβ = Nwα wβ. (5.3.20)

The check can be done noting that [Aeα, Aeβ] = P [eα, eβ]P−1, where the definition
of P is the same as that one used in (5.3.16).
Since the Cartan subalgebra H′ was invariant under the action of A (see (5.3.5)), a
consistent basis {H ′

a}r
a=1 in H′ is given by [83]

H ′
a = i√

h

h−1∑
p=0

ewpγa (5.3.21)

where a = 1, . . . , r and γa are the roots (5.3.13) in H labelling the orbits. For each
orbits Γa it holds that wΓa = Γa and therefore the elements in (5.3.21) are invariant
under the action of the Coxeter element. From the properties in (5.3.18) it is not
difficult to prove that also (5.2.4a) is satisfied. Since the elements in (5.3.21) span H
then they have to commute. This implies that any time there are two roots γ and β,
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γ

w−nγ

α

β

wmβ

n
n

m
m

Figure 5.2: Two reflected triangles of roots α+ γ+ β = α+w−nγ+
wmβ = 0.

belonging to the orbits Γc and Γb respectively, such that their sum is a root −α, then
there are exactly two other roots w−nγ and wmβ, for some integers n and m, in the
same orbits verifying Nw−nγ,wmβ = −Nγ,β. A picture of the two reflected triangles of
roots, projected onto the eigenplane of w spanned by real linear combinations of z1
and zh−1 is shown in figure 5.2. In the figure the angles are written in units of π

h
.

Another important fact, of which we do not provide proof here is that the projections
of the roots {γa}r

a=1 on the eigenplanes of w can be written using complex-number
notation as

Ps(γa) = γ(s)
a if a ∈ ◦

Ps(γa) = γ(s)
a e−i πs

h if a ∈ •
(5.3.22)

where the phase in (5.3.22) is because there is a πs
h

angle between the two sets of
black and white elements (see figure 5.3). Moreover, the values γ(s)

a of the root
projections on the different eigenplanes of w are connected to the eigenvectors
q(s) = (q(s)

1 , . . . , q(s)
r ) of the transpose of the Cartan matrix. There are r of such

eigenvectors, one for each expononent of the Lie algebra. For a given set of q(s)

satisfying
q(s)

a C
[G]
ab = 4 sin2 sπ

2hq
(s)
b , (5.3.23)

where C [G] is the Cartan matrix of the Lie algebra G, it holds

γ(s)
a =

√
2γ

2
a q

(s)
a

|Q(s)|
(5.3.24)

with
Qs = (|γ1| q(s)

1 , |γ2| q(s)
2 , . . . , |γr| q(s)

r ). (5.3.25)

A proof of this can be derived following for example the lines of [1] and [85].
From the equalities in (5.3.22) we can obtain the projections of all the roots on the
different w-eigenplanes by acting with w

Ps(wpγa) = ωpsPs(γa) , ω = e
2πi
h .

In table 5.1 we summarize the main ingredients presented in this section, since they
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Ps(α•) Ps(γ•)

Ps(γ◦) = Ps(α◦)
θsθs

Figure 5.3: Projections of the root γ◦ = α◦, γ• = w−1α• and α• on
the eigenplane of w spanned by zs and zh−s. By ◦ and
• we respectively mean any element in ◦ and • and we
defined θs ≡ πs

h
.

H′ = span
{
H ′

a = i√
h

∑
α∈Γa

eα

}r

a=1
H = span

{
zs = ∑

ht(α′)∈{s,s−h} cα′Eα′

}
s∈E

{Eα′}α′∈Φ′ {eα}α∈Φ

AEα′ = ωht(α′)Eα′ Aeα = ewα

AH ′
a = H ′

a Azs = ωszs

Table 5.1: Cartan algebras H′ and H with associated generators.

will be relevant also in the rest of this chapter and in the next one. On the LHS
of the table there are the elements used to span the Lie algebra G having chosen
as Cartan subalgebra H′ and associated root system Φ′. Instead on the RHS is the
data with respect to the Cartan subalgebra H and root system Φ. We should stress
that the field ϕ, appearing in the Lagrangian (5.2.6), lies in H′.

5.4 Higher spins and Lie algebra exponents

Making use of the definitions for the w-eigenvectors z1 and zh−1 written in (5.3.6),
the Lax connection previously defined in (5.2.10) can be rewritten as

A0 = g

2∂1ϕ+ mλ

2 e
g
2 ϕz1e

− g
2 ϕ − m

2λe
− g

2 ϕzh−1e
g
2 ϕ,

A1 = g

2∂0ϕ+ mλ

2 e
g
2 ϕz1e

− g
2 ϕ + m

2λe
− g

2 ϕzh−1e
g
2 ϕ.

(5.4.1)

In [38] D. Olive and N. Turok proved in a universal way (not depending on the
semisimple Lie algebra G considered) that a vector potential written in the form (5.4.1)
can be gauge transformed into an abelian potential. In the following, we review the
results of [38] using the prescriptions defined in the previous section. Under a gauge
transformation

Aµ → aµ = eGAµe
−G + eG∂µ(e−G)
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with G ∈ G the two-form

Fµν =
[
∂µ + Aµ, ∂ν + Aν

]
transforms as

eGFµνe
−G

and (5.2.11) continues to be satisfied. If we find a gauge transformation for which
aµ is abelian then [a0, a1] = 0 and the zero curvature condition on aµ reduces to

∂0a1 = ∂1a0,

implying that the integral of a1 on the full spatial line is conserved. The quantity
defined by

Q(λ) =
∫ +∞

−∞
dx1a1(x1;λ)

becomes therefore a natural generator of the conserved charges.

Using the language of Olive and Turok, we define the loop algebra in the homogeneous
grading as the vector space spanned by elements V ∈ G times polynomials in λ and
1/λ that under the action of the Coxeter element behave as

A V (λ) = V (ωλ).

The vector potential Aµ in (5.4.1) belongs to such a grading3 and so must aµ, since
the gauge transformation making the vector potential abelian (and for this the reader
should consult the paper by Olive and Turok) keeps Aµ in the homogeneous grading
of the loop algebra. The expansion of a1 in λ has therefore to be of the following
form

a1(λ) =
∑

s∈E mod(h)
J (s)(ϕ, ∂ϕ, ∂2ϕ, . . .)λszs

where the zs are the eigenvectors of the Coxeter element and the convention zs+h = zs

holds. In the expression above, the J (s) are functions of the fields and their derivatives
and correspond to the local densities of the conserved charges. Since the set of {zs}s∈E

spans the Cartan subalgebra H, the element a1 is abelian.

In [38] it was discussed that the abelianization of the vector potential can be per-
formed using two different gauge transformations, generating expansions with posit-
ive and negative powers of λ respectively. Here we recall one of them. First of all
we apply a gauge transformation on (5.4.1) with G = gϕ/2 so to obtain

A0 = −g∂−ϕ− m

2λzh−1 + mλ

2 egϕz1e
−gϕ

A1 = g∂−ϕ+ m

2λzh−1 + mλ

2 egϕz1e
−gϕ.

(5.4.2)

3This is easily proved by noting that both ϕ and the element Q used in (5.3.3) to define the
Coxeter element belong to H′ and therefore commute.
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where the conventions

x± = x0 ± x1 and ∂± = 1
2(∂0 ± ∂1)

have been adopted. Then a further gauge transformation can be found so to trans-
form the spatial component of (5.4.2) into

a
(−)
1 = m

2λzh−1 +
∑
s≥1

J (−s)(ϕ, ∂−ϕ, ∂
2
−ϕ, . . .)λszs, (5.4.3)

where the sum is performed over the positive integers corresponding to the exponents
of the Lie algebra modulo h. A different gauge transformation exists, making the
spatial component of (5.4.1) of the form

a
(+)
1 = mλ

2 z1 +
∑
s≥1

J (s)(ϕ, ∂+ϕ, ∂
2
+ϕ, . . .)

1
λs
zh−s. (5.4.4)

In the class of affine Toda field theories, the expressions for the conserved charges
in terms of the Lagrangian fields will assume the following form

Q±(s−1) =
∫ +∞

−∞
dx1J

(±s)(ϕ, ∂±ϕ, ∂
2
±ϕ, . . .),

where the local densities J (±s) are the coefficients of the expansion in the spectral
parameter of a(+)

1 and a
(−)
1 respectively. The spins of the conserved charges are

therefore in correspondence with the exponents of the Lie algebra, a fact that will
play a central role in the quantization of such theories. Before moving to the quantum
case, it is important to mention that in [38] it was proved that the generators of the
integrals of motion can be expressed in the form reported in (5.4.3) and (5.4.4) but
an explicit computation of the densities J (±s) is not reported in that paper. It would
be interesting trying to study such a problem, which at the moment leaves a little
hole between the classical and quantum integrability in affine Toda field theories.
Filling this hole could hopefully shed light also on related problems, such as providing
universal expressions for the densities of local conserved charges in chiral models;
in [86] these densities were found for several principal chiral models having as target
manifolds certain semisimple Lie algebras. The study performed in [86] was based
on a case-by-case analysis and was later extended in [87], where a more universal
understanding of the densities of local conserved charges was obtained: among the
results of that paper, it was discussed how to connect conserved charges in principal
chiral models to conserved charges in affine Toda field theories.

Fortunately in affine Toda field theories, the knowledge of the Lagrangian properties,
together with many results derived from the conjectured S-matrices found through
the bootstrap philosophy discussed in chapter 2 made it possible to quantize these
theories universally [73] without any need to pass through the classical expressions
of the conserved currents in terms of the fields. This should not be too surprising if
we think that in section 2.5 we derived the values of the masses and eigenvalues of
the conserved charges of the E8 minimal model (up to an overall scale defined for
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each γ(s)) starting from the only set of spins associated to the integrals of motion.
The spins of the conserved charges, which are the Lie algebra exponents according
to the derivation above, are now provided and can be used to derive the universal
quantum properties of these theories. We can therefore consciously jump over the
little gap not covered in [38] and explain how to quantise these models.

5.5 Quantum integrability and root projections

In [73] Patrick Dorey claimed that certain universal rules were satisfied for the
entire class of affine Toda theories, connecting bootstrap fusing relations satisfied
in integrable theories with Coxeter properties of Lie algebras. In this section, we
review some of the results conjectured in [73], which form the basis for a universal
understanding of quantum aspects of Toda models; instead, we leave to the next
chapter a proof of them together with an explanation of their role in ensuring the
absence of production in perturbation theory at the tree level.

From section 5.3 we learned that the root system Φ of a rank r Lie algebra G can be
split into r orbits containing h roots each one, being h the periodicity of the Coxeter
element. In [73] it was shown how to make a one to one correspondence between the
particles of the affine Toda theory and these orbits. Through this correspondence
the following fusing rule, early conjectured in [73] and then universally proved in [76]
exploiting an idea by M. Freeman [75], can be formulated:

C
(3)
abc̄ ̸= 0 iff ∃ α ∈ Γa, β ∈ Γb and γ ∈ Γc with α + β = γ. (5.5.1)

In the expression above Γa, Γb and Γc are the orbits constructed starting applying
the Coxeter element w on certain roots γa, γb and γc defined as in (5.3.13). If
this property is true, then the bootstrap fusing relations for the different conserved
charges, defined in (2.4.6), are obtained by projecting the root triangle α + β = γ

onto the different two-dimensional eigenplanes of the Coxeter element (see figure 5.4).
In this way r triangular closing relations are generated, one for each projector; such
triangular relations represent conservation laws of charges with different spins, and
are responsible for the simplicity of the S-matrix coming out from these integrable
theories. For each exponent s it holds that h−s is also an exponent so that each eigen-
plane of w is spanned by the two real combinations of zs and zh−s in (5.3.9). Apart
from the special case s = h/2, which could be associated with a one-dimensional
eigenspace of w, in all the other situations there are pairs of projectors Ps and Ph−s.
Acting with these projectors on the root closure relation α + β = γ we obtain the
two bootstrap fusing relations in (2.4.6). For this reason, from now on we will refer
to the eigenplane of w spanned by the two real linear combinations of zs and zh−s

in (5.3.9) as the ‘spin-s eigenplane’.

The root triangular relation projected onto the spin-s eigenplane of w (shown in
figure 5.4) can be written using the complex number notation (5.3.22) as

γ(s)
a eisUα + γ

(s)
b eisUβ = γ(s)

c eisUγ
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α

β γ Rr

γ
(s)
a

γ
(s)
b γ

(s)
c

R2

Figure 5.4: Fusing relation α + β = γ in the root space and its
projection Ps(α) + Ps(β) = Ps(γ).

where Uα, Uβ and Uγ are the arguments of the complex vectors that the roots α, β
and γ form when they are projected onto the spin-1 eigenplane of w. The relation
above can also be written in the probably better form as

γ(s)
a eis(Uα−Uγ) + γ

(s)
b eis(Uβ−Uγ) = γ(s)

c (5.5.2)

Comparing this expression with (2.4.6a), the correspondence between root projec-
tions and fusing relations should be clear. If α, β and γ are three roots belonging
to the orbits Γa, Γb and Γc respectively, then Uα − Uγ = Ū b

ac while Uβ − Uγ = −Ūa
bc.

The mass fusing angles are therefore the angles formed by the roots when they are
projected on the real plane spanned by z1 and zh−1; then the fusing angles of the
higher spin mass triangles are the mass fusing angles multiplied by s, the different
exponents of the Lie algebra.

The notion of the antiparticle is also naturally taken into account in this language;
note that any particle incoming into a vertex, by crossing symmetry can be converted
into an outgoing antiparticle (the same property is valid more in general on Feynman
diagrams). For example, if Cabc̄ ≠ 0 then there exist three particles, a b and c, with
momenta pa, pb and pc respectively, satisfying

a+ b → c,

with pa + pb = pc. However the index c̄ in the vertex is responsible not only of the
creation of particles of type c, but also of the annihilation of antiparticles of type c̄.
Another possible fusion is therefore

a+ b+ c̄ → 0,

and setting pc̄ = −pc the momentum of the antiparticle, then we get pa + pb + pc̄ = 0.
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For this reason, the fusing rule (5.5.1) can equivalently be written as

C
(3)
abc̄ ̸= 0 iff ∃ α ∈ Γa, β ∈ Γb and γ̃ = −γ ∈ Γc̄ with α + β + γ̃ = 0. (5.5.3)

For each orbit Γc in correspondence with a certain particle c, it needs to exists an
orbit associated to the antiparticle c̄ for which it holds Γc̄ = −Γc. This fact can
also be seen from the point of view of the elements in (5.3.21), which in the next
chapter will be used as a basis to expand the Lagrangian field ϕ. For each generator
H ′

a = i√
h

∑
α∈Γa

eα, due to the first property in (5.3.18), we have

H ′†
a = i√

h

∑
α∈Γa

e−α = i√
h

∑
α∈Γā

eα.

Therefore, it makes sense to identify H ′
ā ≡ H ′†

a and the field components lying along
these directions, remembering that ϕ† = ϕ, will be one complex conjugate of the
other. This implies that the orbits Γa and Γā are associated with two particles a and
ā, one the antiparticle of the other. In the special case in which an orbit contains
pairs of roots with the opposite sign then it holds that Γā = −Γa = Γa and the
particle a is real.
Simply-laced affine Toda theories are a particular class of the models described in
this section in which all the spots in the Dynkin diagram are connected by single
links and as a consequence of this the roots have all equal length. If we define the
squared length of the roots γa in (5.3.13) to be γ2

a = Λ2 then (5.3.24) reduces to

γ(s)
a =

√
2Λ q(s)

a

|q(s)|
.

This means that the vector γ(s) ≡ (γ(s)
1 , . . . , γ(s)

r ) is the eigenvector of the Cartan
matrix (having as eigenvalue 4 sin2 πs

2h
) normalized as4

γ(s) =
√

2Λ q(s)

|q(s)|
.

In light of this geometrical construction, the results obtained by Zamolodchikov
in [19, 20] and reviewed in the end of section 2.5 become more natural.
From the fusing rule (5.5.1) many other interesting properties follow. Among them,
in [73] a universal expression for the exact S-matrices of the ADE series of Toda
models was found and it was shown that unitarity, crossing symmetry and bootstrap
fusing relations were automatically satisfied by these S-matrices, being implied by
root system properties. Instead of reviewing such results here, following a historical
path, we prefer to postpone them to the next section where we will derive them from
perturbation theory providing at the same time a universal proof of the absence
of production valid in all the affine Toda models. This will be achieved strictly
following the results presented in [1].

4More rigorously it is an eigenvector of the transpose of the Cartan matrix as defined in (5.3.23),
but since all the roots have the same length then CT = C



Chapter 6

Tree-level integrability in affine
Toda field theories

6.1 Universal Lagrangian properties

Many results presented in [73] and reviewed in section 5.5, such as the fusing
rule (5.5.1), are valid independently of the existence of a Lagrangian formulation
for the integrable theory under consideration. For example, they perfectly apply
to the minimal model studied in section 2.5, which does not have a Lagrangian
description. In this chapter, we focus more strictly on Lagrangian aspects of affine
Toda field theories, where many properties postulated in [73] can be verified and
can be subsequently used to prove the tree-level perturbative integrability of these
theories, as it was done later in [1]. Some properties of structure constants useful in
this chapter are reported in appendix D.

An important observation of Freeman [75] is that is possible to write the potential of
a generic untwisted affine Toda field theory in a way that makes many perturbative
properties of the model more explicit, as

V = m2

g2

(
eg·adϕz1, zh−1

)
. (6.1.1)

The elements z1, zh−1 have been defined in (5.3.6) in terms of the generators
{E±α′

i
}r

i=0 associated to the Cartan subalgebra H′; it is easy to check that the ex-
pression in (6.1.1) is the same as the potential term in (5.2.6) by substituting (5.3.6)
into (6.1.1) and using

eg·adϕEα′ = eg·(ϕ,α′)Eα′ (6.1.2)

together with (5.2.4b). This is enough to prove that the potential in (6.1.1) is exactly
the same as the potential appearing, with a more standard notation, in (5.2.6).

On the other hand, the elements z1 and zh−1 are the eigenvectors of the Coxeter
element associated with the root system Φ, composed by the roots {α} living in the
Cartan subalgebra H (different from H′). By the fact that the basis in (5.3.21) is
orthonormal in H′ (i.e. it satisfies (5.2.4a)) the field can be expanded on this basis
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in the following way
ϕ =

r∑
a=1

(
ϕ,H ′†

a

)
H ′

a ≡
r∑

a=1
ϕaH

′
a (6.1.3)

and the kinetic term of the Lagrangian can be written as

1
2
(
∂µϕ, ∂

µϕ
)

= 1
2∂µϕa∂

µϕā (6.1.4)

where, as we previously said, we are working with the convention ϕā = ϕ∗
a. Taylor

expanding the operator eg·adϕ and using the relation in (6.1.3) the potential can be
written in the following form

V =
∞∑

n=0

1
n!C

(n)
a1a2...an

ϕa1 . . . ϕan (6.1.5)

with the couplings given by

C(n)
a1a2...an

= m2gn−2
(

[H ′
a1 , [H

′
a2 , [. . . [H

′
an
, z1] . . .]], zh−1

)
. (6.1.6)

In order to have a potential formulation making more explicit the properties of the
theory, we substitute the explicit form of {H ′

a}r
a=1 (5.3.21) in (6.1.6). After having

used the fact that z1 and zh−1 belong to the Cartan subalgebra H and the properties
in (5.3.22) we obtain the following expression for the couplings

C(n)
a1,a2,...,an

=

− in
m2

h
n
2
gn−2h γ(1)

a1 γ
(1)
an

∑
α1∈Γa1 ...αn∈Γan

(
[eα2 , [eα3 , [. . . [eαn−1 , eαn ] . . .]]], eα1

)
ei(Uαn −Uα1 ).

(6.1.7)

The sum runs over the roots inside the different orbits Γa1 , . . . ,Γan and γ(1) is defined
as in (5.3.24). Uα1 and Uαn are the angles that the different roots α1 ∈ Γa1 and
αn ∈ Γan generate when are projected on the spin-1 eigenplane of the Coxeter element
w.

We now proceed to investigate this relation for various values of n so as to find useful
expressions for the different couplings of the theory.

6.1.1 Masses

Writing the general formula (6.1.7) in the case n = 2 we have

C
(2)
ab = m2γ(1)

a γ
(1)
b

∑
α∈Γaβ∈Γb

(
eβ, eα

)
ei(Uβ−Uα). (6.1.8)

The only terms in the sum different from zero are those corresponding to β = −α.
This is possible only if the particle b is the conjugate of particle a, for which we have
Γa = −Γb. In that case for each root α in the orbit Γa there exists exactly one root
β such that Uβ = U−α = Uα + π. Therefore the exponential in (6.1.8) is equal to −1
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for any nonzero term in the sum and there are exactly h terms contributing to the
sum (one for each element of the Coxeter orbit). The final result is

C
(2)
ab = m2h(γ(1)

a )2δāb. (6.1.9)

The second-order expansion of the potential associated with such coupling is

1
2C

(2)
ab ϕaϕb = 1

2ϕaϕ
∗
am

2h(γ(1)
a )2 (6.1.10)

from which we can read the values of the masses

ma = m
√
hγ(1)

a . (6.1.11)

We note that in the chosen basis the mass-matrix is diagonal, therefore the next
orders in the potential expansion exactly correspond to the interaction-couplings of
the theory. Comparing the result in (6.1.11) with the formulas in (5.3.22) we see
that the masses of the theory are directly connected to the absolute values of root
projections onto the s = 1 eigenplane of the Coxeter element, a fact which played a
role both in the formulation of the fusing rule in [73], and in Freeman’s mass formula
proof in [75].

6.1.2 3-point couplings

To study other couplings we substitute the expression of the masses (6.1.11) in
(6.1.7). Defining

C̃(n)
α1,α2,...,αn

≡ ei(Uαn −Uα1 )
(
[eα2 , [eα3 , [. . . [eαn−1 , eαn ] . . .]]], eα1

)
(6.1.12)

we can write the n-point coupling as

C(n)
a1,a2,...,an

= −in g
n−2

h
n
2
ma1man

∑
α1∈Γa1 ...αn∈Γan

C̃(n)
α1,α2,...,αn

. (6.1.13)

Writing the couplings in this way we see that a given coupling C(n)
a1,a2,...,an

is nonzero
only if there exist n roots α1 ∈ Γa1 , . . . , αn ∈ Γan such that α1 + α2 + . . .+ αn = 0.
These roots form a (possibly non-planar) ‘polygon’ with n sides whose projection
on s = 1 plane are the masses of the particles a1, a2, . . . , an. Moreover the nonzero
terms of the sum in (6.1.13) are those for which any partial sum of their roots

αn−1 + αn,

αn−2 + αn−1 + αn,

...
α2 + α3 + . . .+ αn

(6.1.14)

is either a root or zero. This is a simple consequence of the commutation relations
in (5.3.19).
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Writing the equation (6.1.13) in the case n = 3 we obtain

C
(3)
abc = −i3 g

h
3
2
mamc

∑
α∈Γa,β∈Γb,γ∈Γc

C̃αβγ, (6.1.15)

While from (6.1.15) is immediate to see that C(3)
abc ̸= 0 requires the existence of three

roots α ∈ Γa, β ∈ Γb and γ ∈ Γc summing to zero, the opposite implication cannot
be taken for granted and the fusing rule (5.5.1) is still not proven at this point. We
proceed to prove it by explicitly computing the coupling.

Suppose we fix the root α ∈ Γa and search for all the roots γ ∈ Γc and β ∈ Γb

such that γ + β = −α. There are exactly two root triangles satisfying this relation
composed by {α, β , γ} and {α, β′ , γ′} (see figure 5.2). Referring to figure 5.2,
where γ′ = w−nγ for some integer n, we note that Uγ −Uα = −(Uγ′ −Uα). Moreover,
as explained in section 5.3, we have Nβ,γ = −Nβ′,γ′ and we obtain

C̃αβγ+C̃αβ′γ′ = ei(Uγ−Uα)
(
[eβ, eγ], eα

)
+ei(Uγ′ −Uα)

(
[eβ′ , eγ′ ], eα

)
= −2iNβ,γ sin(Uγ−Uα).

(6.1.16)
There are exactly h copies of this term connected by the Coxeter element so that
the final result for the 3-point coupling is

C
(3)
abc = 2 g√

h
mamcNβγ sin(Uγ − Uα) (6.1.17)

and the fusing rule (5.5.1) is proved. Since Uα and Uγ are the imaginary values of
the rapidities of the fusing particles a and c, this relation can also be written as

C
(3)
abc = fabc∆abc with fabc = 4 g√

h
Nβγsign

(
sin(Uγ − Uα)

)
, (6.1.18)

where ∆abc is the area of the fusing triangle composed by the masses of the particles
a, b and c, which is the projection of the triangle composed by the roots α, β and γ
on the spin-1 eigenplane of the Coxeter element. For simply-laced cases, for which
all structure constants have the same absolute value, this gives exactly the area
relation for the 3-point couplings. This result was found on a case-by-case basis
in [57] and proved in a universal way in [76]. While the proof in the latter paper a
little different from that given here, which follows instead the method used in [1],
both rely fundamentally on Freeman’s re-writing of the potential in the form (6.1.1).

The relation (6.1.18) is of fundamental importance in the pole cancellation of 2-to-2
nonelastic scattering interactions. Indeed we can associate to the f -functions found
in chapter 4 the values reported in (6.1.18) where α, β and γ are three arbitrary
roots in the orbits Γa, Γb and Γc such that α + β + γ = 0. It is then possible to
check that the constraint (4.1.9) directly follows from (D.0.1), implying the absence
of singularities in 2-to-2 non-diagonal processes in all the affine Toda theories. Below
we verify this in more detail.

The different momenta pj = mje
iUj evaluated on the pole position in figure 4.1

correspond to the root projections onto the spin-1 eigenplane of the Coxeter element,
making a correspondence between the imaginary rapidities of the momenta and the
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arguments of the projected roots. If a is a particle of the theory corresponding to the
orbit Γa then on the pole position its rapidity is a purely imaginary number iUα cor-
responding to the argument of a projected root α ∈ Γa on the spin-1 eigenplane of w.
In the computation of the couplings, it is however important to distinguish between
particles and antiparticles. In a physical process, by crossing symmetry, we can
always convert incoming particles into outgoing antiparticles (and vice versa) leaving
the amplitude invariant; the ones can be converted into the others by changing the
sign of their momenta and all their quantum numbers in all the Feynman diagrams.
This fact is taken into account by the root system where, for a given particle a
associated to the orbit Γa containing a set of roots {α,wα, . . . , wh−1α}, we have an
antiparticle ā associated to −Γa containing the roots {−α,−wα, . . . ,−wh−1α}. If
the particle is real then the two orbits Γa and −Γa coincide and both contain the
same set of roots. In the process (2.3.1) (in the case {a, b} ≠ {c, d}) two particles,
a and b, are annihilated and another two, c and d, are created; this means that the
Feynman diagrams contributing to the scattering have to contain the pair of indices
(a, b), to annihilate the incoming particles, and the pair (c̄, d̄), to create the outgoing
ones. The associated angles of the projected roots, that enter in the couplings, are
Uα and Uβ for the incoming states and U−γ = Uγ + π, U−δ = Uδ + π for the two
outgoing states.

Suppose that the momenta p1, p2, p3 and p4, presenting the geometry at the pole
shown in figure 4.1, are the projections of some roots α ∈ Γa, β ∈ Γb, γ ∈ Γc and
δ ∈ Γd. Then from figure 4.1, measuring the angles following the counterclockwise
convention, the values of signum-functions corresponding to the different channels
take the values

sign
(
sin(Uβ − Uα)

)
sign

(
sin(U−δ − U−γ)

)
= (−1) × (+1) = −1 (6.1.19a)

sign
(
sin(U−γ − Uα)

)
sign

(
sin(U−δ − Uβ)

)
= (+1) × (−1) = −1 (6.1.19b)

sign
(
sin(U−δ − Uα)

)
sign

(
sin(U−γ − Uβ)

)
= (+1) × (−1) = −1. (6.1.19c)

If now we substitute the values of the f -functions as given in (6.1.18) into the
constraint (4.1.9) and use the relations (6.1.19) we end up with the identity (D.0.1).
This relation is universally satisfied by the structure constants of any semi-simple Lie
algebra and it is the reason for the absence of inelastic scattering in 2-to-2 processes.

Let us also check that the remaining properties of the 3-point couplings are satisfied.
First we note that if three roots α ∈ Γa, β ∈ Γb and γ ∈ Γc satisfy α + β + γ = 0
then the following equality holds

sign
(

sin(Uα − Uβ)
)

= sign
(

sin(Uβ − Uγ)
)

= sign
(

sin(Uγ − Uα)
)
. (6.1.20)

This cyclic relation together with property D.1 implies

fijk = fjki = fkij. (6.1.21)

If we add to this the fact that both the structure constantNαβ and sign
(
sin(Uα−Uβ)

)
are antisymmetric under the exchange α ↔ β we obtain that the 3-point couplings
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are symmetric under exchange of any pair of indices. The condition (4.1.7), required
to have a real Lagrangian (and therefore a unitary theory) follows from property D.2.

If we specialise now in simply-laced Toda models, we note that the nonzero structure
constants of the Lie algebra share the same absolute value

|Nαβ|2 = Λ2

2 (6.1.22)

where Λ is the normalisation chosen for the root lengths. The relation (6.1.22) follows
from (D.0.3) noting that in simply-laced models α + β and α − β cannot both be
roots at the same time, since otherwise we would have 2Λ2 = (α+ β)2 + (α− β)2 =
2α2 + 2β2 = 4Λ2. This implies that the absolute value of fabc, if not zero, does not
depend on the choice of the coupled particles and we can write

|fabc| = |f | = 4 g√
h

√
Λ2

2 . (6.1.23)

Thus all the f -functions in simply-laced theories have the same absolute value, as
expected given the general considerations of section 4.2. Indeed in the simply-
laced theories, as explained in appendix D, if we have four different roots α, β,
γ and δ such that α + β = γ + δ = ϵ, where ϵ is another allowed root, then we
have that or α − γ or α − δ is a root, but not both. Since the space of momenta
producing poles is the projection of the root space, in such theories the cancellation
of singularities in 4-point non-diagonal scattering always happens between pairs of
diagrams and we never have 3 propagators on-shell simultaneously. On the other
hand, we also know, as just remarked, that if α + β is a root, α − β cannot be
a root too. This means that we cannot have more than one on-shell propagating
particle at a time in 2-to-2 diagonal scattering. These two conditions satisfied by
the simply-laced Toda theories are exactly the simply-laced scattering conditions
studied in chapter 4, through which, by imposing the cancellation of poles in inelastic
processes, we concluded that |fabc| cannot depend on the choice of indices a, b and c.
Thus imposing the absence of particle production in models satisfying property 4.1,
and extracting the 3-point couplings of simply-laced affine Toda theories starting
from their Lie algebra properties, we find the same area rule.

However simply-laced affine Toda theories are not the only integrable models re-
specting the simply-laced scattering conditions highlighted in chapter 4. To such
theories we should add the twisted theories, obtained by folding the affine extension
of certain simply-laced Dynkin diagrams. These models live in a subalgebra of their
simply-laced parents and therefore inherit all the properties of the ADE series. We
will discuss these cases separately in section 6.3.

We proceed now to the study of higher-point couplings in affine Toda theories.
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= Σρ ̸=0

γ
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ρ
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α

+ ρ = 0

Figure 6.1: Pictorial representation of the 4-point coupling as a sum
over roots ρ.

6.1.3 4-point couplings and generalisation

The next step is to compute the 4-point couplings. From (6.1.13) we can write them
as

C
(4)
abcd = −g2

h2mamd

∑
α∈Γa...δ∈Γd

ei(Uδ−Uα)
(
[eγ, eδ], [eα, eβ]

)
. (6.1.24)

By inserting the identity between [eγ, eδ] and [eα, eβ], written as

I = 1
h

∑
s∈E

zs ⊗ zh−s −
r∑

l=1

∑
ρ∈Γl

eρ ⊗ e−ρ (6.1.25)

we can split (6.1.24) into two terms

C
(4)
abcd = C

(4,0)
abcd + C

(4,1)
abcd . (6.1.26)

C
(4,0)
abcd corresponds to inserting the piece of the identity given by the basis of the

Cartan subalgebra. It is reproduced by summing over the configurations β = −α
and γ = −δ in (6.1.24). C

(4,1)
abcd is instead obtained by summing over the roots

α+ β = ρ = −γ − δ, where ρ is still a root of the system. A geometrical picture is
shown in figure 6.1.

We start from the computation of C(4,0)
abcd and then we move to C(4,1)

abcd . Summing over
all the roots in the orbits for which we have γ = −δ and β = −α we obtain

C
(4,0)
abcd = g2

h2mamdδab̄δcd̄

∑
α∈Γa,δ∈Γd

ei(Uδ−Uα)
(
α, δ

)
. (6.1.27)

Then we expand the scalar product
(
α, δ

)
on the eigenvectors zs of the Coxeter

element and express the projections in terms of the masses using (6.1.11), (5.3.22).
So we find the following result

C
(4,0)
abcd = g2

h2
m2

am
2
d

hm2 δab̄δcd̄

∑
s

∑
α∈Γa

eiUα(s−1) ∑
δ∈Γd

eiUδ(−s+1). (6.1.28)

Both the sums over α ∈ Γa and δ ∈ Γd constitute closed paths in the complex plane
for any s different from one, meaning that s = 1 is the only value that returns
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nonzero results. Developing for example the second sum we obtain∑
δ∈Γd

eiUδ(−s+1) = h δs1. (6.1.29)

Using this fact the final expression for (6.1.28) is

C
(4,0)
abcd = g2

h

m2
am

2
d

m2 δab̄δcd̄. (6.1.30)

We compute now C
(4,1)
abcd . To avoid too many indices we omit to indicate the orbits

in the sum; it is clear we intend the sum performed over α ∈ Γa, β ∈ Γb, γ ∈ Γc and
δ ∈ Γd, such that α+ β = ρ = −γ − δ. We can write this term in the following form

C
(4,1)
abcd = −g2

h2mamd

∑
l

∑
ρ∈Γl

( ∑
α, β

α+β=ρ

ei(U−ρ−Uα)
(
[eβ, e−ρ], eα

) ∑
γ, δ

γ+δ=−ρ

ei(Uδ−Uρ)
(
[eγ, eδ], eρ

))
.

(6.1.31)
The two sums on the right-hand side of (6.1.31) are evaluated at the same value
of ρ and run over all the {α, β} and {γ, δ} in their respective orbits such that
α + β = ρ = −γ − δ, where ρ are roots running in different orbits Γl; we have
separated the sum over the roots ρ into a sum over orbits l and a sum over the roots
inside these orbits. However, it is possible to check that the two sums∑

γ,δ
γ+δ=−ρ

ei(Uδ−Uρ)
(
[eγ, eδ], eρ

)
(6.1.32)

and ∑
α,β

α+β=ρ

ei(U−ρ−Uα)
(
[eβ, e−ρ], eα

)
(6.1.33)

are separately invariant moving ρ inside the orbit Γl, so we can choose one of them
and substitute it with the average over all the roots ρ in the orbit. The expression
in (6.1.31) can therefore be written as

C
(4,1)
abcd =

− g2

h2mamd

∑
l

(
1
h

∑
ρ′∈Γl

∑
α+β=ρ′

ei(U−ρ′ −Uα)
(
[eβ, e−ρ′ ], eα

) ∑
ρ∈Γl

∑
γ+δ=−ρ

ei(Uδ−Uρ)
(
[eγ, eδ], eρ

))
.

(6.1.34)

We recognise in this last relation the 3-point couplings that we found in (6.1.15),
giving us the result

C
(4,1)
abcd =

∑
l

C
(3)
abl̄

1
m2

l

C
(3)
lcd (6.1.35)

Combining now (6.1.35) and (6.1.30) we obtain

C
(4)
abcd = g2

h

m2
am

2
d

m2 δab̄δcd̄ +
∑

l

C
(3)
abl̄

1
m2

l

C
(3)
lcd . (6.1.36)
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This result has been obtained assuming a particular order for the indices a, b, c and
d. However, by the symmetry of the coupling, it needs to be valid for any order and
we have
∑

l

C
(3)
abl̄

1
m2

l

C
(3)
lcd + g2

h

m2
am

2
d

m2 δab̄δcd̄ =
∑

r

C
(3)
acr̄

1
m2

r

C
(3)
rbd + g2

h

m2
am

2
d

m2 δac̄δbd̄

=
∑

j

C
(3)
adj̄

1
m2

j

C
(3)
jbc + g2

h

m2
am

2
b

m2 δad̄δcb̄.

(6.1.37)

This relation exactly corresponds to the value that the 4-point coupling must assume
to set all the non-diagonal 2-to-2 scattering processes to zero, as shown in (4.1.13).
The missing term containing the Kronecker delta functions in (4.1.13) is not in
contradiction with (6.1.36) since in the scattering event we assumed the initial and
the final particles to be different.

For a generic n-point process we can make a similar decomposition of the coupling
into subcouplings. In particular, the number of decompositions depends in a certain
sense on the number of possible partitions of the n-sided polygon formed by the roots
associated with the n-point coupling considered. For each permutation in which we
write the indices of the coupling, we obtain a polygon composed of a particular set
of roots. We consider different partitions of such a polygon as the different ways
in which we split it into subpolygons, drawing diagonals emerging always from the
same vertex. Any time we split the n-gon into two subpolygons drawing a diagonal
we obtain one term given by propagators connecting two lower-order couplings and
one term corresponding to the null value of the diagonal (in expression (6.1.36) it is
given by the Kronecker delta function). The recursion relation obtained in (3.5.7)
corresponds to summing three suitable partitions of the coupling so to cancel the
values given by the zero-diagonals and leave only the ‘propagator-terms’. What we
do is to write

C(n)
a1...an

= C(n)
a1...an

+ C(n)
a1...an

− C(n)
a1...an

(6.1.38)

where on the right-hand side the three terms are equal but written in different ways
accordingly to their partitions. Referring to figure 6.2 we write all the contributions
for the different partitions. They are given by

C(n)
a1,a2,...,an

= g2

h

m2
an

m2 δān,an−1C
(n−2)
a1,...,an−2 +

∑
l

C
(n−1)
a1,...,an−2,l

1
m2

l

C
(3)
l̄,an−1,an

, (6.1.39)

C(n)
a1,a2,...,an

= g2

h

1
m2C

(n−3)
a1,...,an−3C

(3)
an−2,an−1,an

+
∑

s

C(n−2)
a1,...,an−3,s

1
m2

s

C
(4)
s̄,an−2,an−1,an

, (6.1.40)

C(n)
a1,a2,...,an

= g2

h

m2
an

m2 δān,an−1C
(n−2)
a1,...,an−2 + g2

h

1
m2C

(n−3)
a1,...,an−3C

(3)
an−2,an−1,an

+
∑
l,s

C(n−2)
a1,...,an−3,s

1
m2

s

C
(3)
s̄,an−2,l

1
m2

l

C
(3)
l̄,an−1,an

.
(6.1.41)

Summing the two expressions in (6.1.39), (6.1.40) and then taking the difference
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α1
α2

α3

αn−2

αn−1

αn =

ρ

+
ρ̃

−
ρ ρ̃

α1
α2

α3

αn−2

αn−1

αn

Figure 6.2: Decomposition of a n-point coupling as a sum of dif-
ferent partitions in such a way to obtain the recursion
relation (3.5.7).

with (6.1.41) we obtain the following value for the n-point coupling

C(n)
a1,a2,...,an

=
∑

l

C
(n−1)
a1,...,an−2,l

1
m2

l

C
(3)
l̄,an−1,an

+
∑

s

C(n−2)
a1,...,an−3,s

1
m2

s

C
(4)
s̄,an−2,an−1,an

−
∑
l,s

C(n−2)
a1,...,an−3,s

1
m2

s

C
(3)
s̄,an−2,l

1
m2

l

C
(3)
l̄,an−1,an

.
(6.1.42)

This expression, obtained purely from Lie-algebraic considerations, is the same
result as obtained in (3.5.7) by imposing the absence of particle production in the
multi-Regge limit in all the untwisted affine Toda models. This is a remarkable
fact that emphasizes how the scattering properties of these theories emerge by the
Coxeter geometry of their root systems. The idea of formulating a proof of the
absence of production in a more natural way is suggestive. It is reasonable to
expect that the cancellation between Feynman diagrams at any order of external
legs can be formulated in the form of a Gauss’s theorem in the space of diagrams.
This would make it possible to avoid completely the inductive approach followed
in this thesis. Though signals of the existence of a similar construction have been
experienced in some examples (see for example appendix C), its universal formulation
and connection to the root system geometry are still open.

6.2 From root systems to tree-level S-matrices

To conclude a general proof of tree-level perturbative integrability in affine Toda
theories, it remains to check that the bootstrap requirements (4.2.6) are universally
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satisfied. As mentioned in the previous part of this thesis, this fact, together with
the impossibility of 2-to-2 off-diagonal scattering, imposes the absence of poles in
5-point processes. We will see soon that the constraint (4.2.6) follows directly from
root system properties in a geometrical way.
Let us focus on a process of the form in (2.3.1), in the diagonal case in which d = a

and c = b. Since the process is diagonal the set of outgoing momenta is equal to
the set of incoming ones (p4 = p1, p3 = p2) and the Mandelstam variables can be
written in terms of the rapidity difference θ = θ1 −θ2 as in (2.3.4). For this particular
process, the 4-point coupling (6.1.36) becomes

C
(4)
aābb̄

= g2

h

m2
am

2
b

m2 +
∑

l

Caāl̄

1
m2

l

Clbb̄.

Since u = 0, the sum of the Feynman diagrams coming from the u-channel is cancelled
by the second piece of the four-point coupling written above. The amplitude is then
given by

Mab = −i
∑

i

C
(3)
ab̄i
C

(3)
iāb̄

s−m2
i

− i
∑

j

C
(3)
ab̄j̄
C

(3)
jāb

t−m2
j

− i
g2

h

m2
am

2
b

m2 . (6.2.1)

We remark that in this context Mab is a label for the amplitude and is not the
mass matrix defined in (5.1.4), (5.1.5). We can write the masses of the propagating
particles in terms of the angles formed by the momenta p1, p2 on the pole positions
m2

i = m2
a +m2

b +2mamb cosU i
ab , m2

j = m2
a +m2

b −2mamb cosU j
ab. To find these angles

we run over the inequivalent mass triangles in the orbit. We keep the root γa ∈ Γa,
corresponding to the a-particle, fixed and we move over the roots β = w−pγb ∈ Γb.
Since to each propagating particle there correspond two mass triangles, one the
reflection of the other, to find all the inequivalent scattering channels we need to
move w−pγb over half of the orbit. Defining Γ̃b to be half of the orbit corresponding
to the b particle and plugging ((6.1.17), (2.3.4)) into (6.2.1) we can write the s and
t channels in the more compact form

Mab = 2ig2

h
mamb

∑
β∈Γ̃b

(
|Nγa,β|2 − |Nγa,−β|2

) sinh2 iUγaβ

cosh θ − cosUγaβ

− i
g2

h

m2
am

2
b

m2 .

We use the convention of writing the difference between the angles of the root
projections on the spin-1 eigenplane of w as Uαβ = Uα − Uβ. Surprisingly, looking
at the relation in (D.0.3) we note that the structure constants disappear completely
from the formula above, leaving the place for a scalar product between the roots
associated with the interacting particles

Mab = −2ig2

h
mamb

∑
β∈Γ̃b

(γa, β) sinh2 iUγaβ

cosh θ − cosUγaβ

− i
g2

h

m2
am

2
b

m2 . (6.2.2)

For the ADE series (i.e. the models constructed from simply-laced affine Dynkin
diagrams), only one of |Nγa,β|2 and |Nγa,−β|2 can be different from zero at a time
and indeed the scalar product (γa, β) along Γ̃b can only assume the values ∓Λ2

2
corresponding to the propagation of particles in the s/t channels (we remember
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that Λ indicates the normalization chosen for the roots; it is convenient to assume
Λ =

√
2 in simply-laced theories in such a way that the structure constants are

phases and the residues for the s/t channels, up to a prefactor, are ±1). In the case
of non simply-laced theories, it is possible that for a given choice of β in Γ̃b there is
a propagating particle both in the s- and in the t-channel at the same time leaving
open the possibility for other values of the scalar product (γa, β). It is temping to
promote the relation in (6.2.2) to the more compact result

Mab = −ig2

h
mamb sinh2 θ

∑
β∈Γb

(γa, β)
cosh θ − cosUγaβ

. (6.2.3)

In (6.2.3) we are summing over the roots β in the full orbit Γb, and for this reason we
have removed the prefactor 2 compared to the expression in (6.2.2) since now we are
double counting all the fusing triangles. The other modification has been to remove
the surviving piece of the 4-point coupling and promoting the angles at the numerator,
corresponding to the poles positions, to be θ dependent , sinh iUγaβ → sinh θ.

In order to check that the two expressions in (6.2.2) and (6.2.3) are actually the
same we need to study their behaviour in the neighbourhood of all the poles and
at θ → ∞. The verification that the residues of (6.2.2) and (6.2.3) are the same
at any singularity θ = iUγaβ is a simple check that we leave to the reader. The
only fact that deserves attention is that for any pole, there are two terms in the
sum (6.2.3) contributing to it; such terms have to be summed to reproduce the
residues of (6.2.2).

We focus on what happens when θ ≫ 1. If we write the roots β ∈ Γb as β = w−pγb

with p = 0, . . . h− 1 then in the limit θ → ∞ the expression in (6.2.3) becomes

Mab

∣∣∣∣
θ≫1

= −ig2

h
mamb tanh2 θ

[
cosh θ

h−1∑
p=0

(γa, w
−pγb)

−
h−1∑
p=0

(γa, w
−pγb)

h−1∑
q=0
q ̸=p

cosUγa,w−qγb
+ o((cosh θ)−1)

]
.

(6.2.4)

Since the sum over all the roots in an orbit is equal to zero, the term proportional to
cosh θ in the square brackets is zero, avoiding a divergence as θ → ∞. The coefficient
in front of the term of order (cosh θ)0 is instead given by

h−1∑
p=0

(γa, w
−pγb)

h−1∑
q=0
q ̸=p

cosUγa,w−qγb
= −

h−1∑
p=0

(γa, w
−pγb) cosUγa,w−pγb

= −1
2
∑

s

γ(s)
a γ

(s)
b

h−1∑
p=0

(
e

i(s+1)(Uγa −Uw−pγb
) + e

i(s−1)(Uγa −Uw−pγb
)
)
.

(6.2.5)

The first equality above has been obtained considering that the sum of cosUγa,w−qγb

performed over the entire orbit is equal to zero. The second equality is derived by
decomposing the root w−pγb over the basis of Coxeter eigenvectors and writing the
projections using the relation (5.3.22). Finally the remaining sum in the second line
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of (6.2.5) generates two Kronecker deltas hδs,−1 and hδs,1 leading to

h−1∑
p=0

(γa, w
−pγb)

h−1∑
q=0
q ̸=p

cosUγa,w−qγb
= −hγ(1)

a γ
(1)
b . (6.2.6)

If we substitute the mass expression (6.1.11) into this last relation and plug the
result into (6.2.4) we discover that in the large rapidity limit the amplitude reduces
to

Mab(θ)
∣∣∣∣
θ≫1

= −ig2

h

m2
am

2
b

m2 tanh2 θ. (6.2.7)

Interestingly the amplitude written in (6.2.3) for θ ≫ 1 reproduces exactly the delta
term coming from the 4-point coupling and explicitly expressed in (6.2.2), implying
the equality between the two expressions in (6.2.2) and (6.2.3).

We may also ask about the behaviour of (6.2.3) in the collinear limit θ ≪ 1. In
this situation the amplitude is only nonzero if along the orbit Γb there is one root β
forming a projected angle Uγa,β = 0 on the spin-1 plane for which at the denominator
of (6.2.3) we have a term cosh θ − 1 going to zero as fast as the sinh2 θ term in the
numerator. This situation is realised if the roots γa and γb identifying the orbits
have the same colour, ◦ or •, according to the definition given in section 5.3, i.e.
they belong to the same orthogonal root set in the Dynkin diagram. Note that if
the roots have opposite colours then the projections of the representatives of their
orbits (γa and γb) on the spin-1 eigenplane of w differ by an angle π/h (as it is shown
in figure 5.3 by substituting s = 1): in this case, since the Coxeter element on the
spin-1 eigenplane acts as a rotation by an angle 2π/h, there is no possibility to have
Uγa,β = 0 for any value of β ∈ Γb. The collinear value of the amplitude is therefore
given by

lim
θ→0

Mab(θ) = −(γa, γb)
ig2

h
mamb lim

θ→0

sinh2 θ

cosh θ − 1 = −(γa, γb)
2ig2

h
mamb, (6.2.8)

where γa and γb are the representatives of the orbits Γa and Γb respectively and
have projections P1(γa) and P1(γb) aligned. Since γa and γb have the same colour,
the only scalar product (γa, γb) that is different from zero is when the two roots are
exactly the same. This implies that in the collinear limit the amplitude is given by

Mab(θ)
∣∣∣∣
θ≪1

= −2ig2

h
γ2

a m
2
aδab. (6.2.9)

In simply-laced models, all the roots have the same length γ2
a = Λ2. In this case,

taking into account (6.1.23), the expression in (6.2.9) coincides exactly with the
requirement (4.2.18) for the cancellation of 5-point amplitudes in theories satisfying
simply-laced scattering conditions. Since simply-laced affine Toda theories belong
to this class of models, this concludes the proof of their tree-level integrability.

The constraint (4.2.18) is not valid in non simply-laced theories; indeed it is a
requirement for the cancellation of 5-point processes only for theories satisfying
property 4.1. Despite that, we can still prove the cancellation of 5-point processes in
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non simply-laced models by checking that the tree-level bootstrap relations (4.2.6)
are satisfied. This is indeed the requirement for having zero residues in 5-point
amplitudes, as discussed in section 4.2.
We can write the tree-level S-matrix elements dividing the amplitude (6.2.3) by the
flux and normalisation factor 4mamb sinh θ. We obtain

Stree
ab (θ) = −ig2

4h
∑

β∈Γb

(γa, β) sinh θ
cosh θ − cosUγaβ

. (6.2.10)

In (6.2.10) all the mass dependence has disappeared and the scattering properties
are all encoded in the scalar products between γa and the different roots β in the
orbit Γb. From (6.2.10) we see that the building blocks necessary to construct the
different S-matrix elements of the theory at the tree level are given by sinh θ

cosh θ−cos Uγa,β
,

where Uγa,β are the different fusing angles formed by the projections of γa and β on
the spin-1 eigenplane of the Coxeter element. To prove the bootstrap relations in
(4.2.6) such building blocks need to be rewritten in a clever way, since at the moment
translations of θ and Uγa,β do not correspond inside a single building block. To that
end we note that the following identity holds

sinh θ
cosh θ − cosU = 1

2

[
coth

(
θ

2 − i
U

2

)
+ coth

(
θ

2 + i
U

2

)]
.

Moreover given a generic root β inside the orbit Γb for which (γa, β) ̸= 0, then there
exists another root β′, whose projection on the spin-1 plane is obtained by reflecting
P1(β) with respect to P1(γa) and satisfying (γa, β

′) = (γa, β) (analogously to the
situation represented in figure 5.2). If we define Uγaβ = U then Uγaβ′ = −U and the
sum of the associated building blocks can be written as

sinh θ
cosh θ − cosU + sinh θ

cosh θ − cos(−U) = coth
(
θ

2 − i
U

2

)
+ coth

(
θ

2 + i
U

2

)

From this fact we see that we can substitute the functions sinh θ
cosh θ−cos U

in (6.2.10) with
either coth

(
θ
2 − iU

2

)
or coth

(
θ
2 + iU

2

)
. As long as we sum over the entire orbit the

choice of sign in front of the fusing angles U it is not important since any time there
is a pair of roots whose projections form an angle U then there exists another pair of
roots presenting the opposite angle and having the same scalar product. Therefore
the S-matrix can be written as

Stree
ab (θ) = −ig2

4h
∑

β∈Γb

(γa, β) coth
(
θ

2 ± i
Uγaβ

2

)
, (6.2.11)

where the the sign in front of the angles Uγa,β can be freely chosen. Using this
new building block notation the tree-level bootstrap relations follow directly by
the linearity of the scalar product, since now we can match translations of θ with
translations of the fusing angles.
Suppose there exists a 3-point coupling C(3)

abc̄ ̸= 0. Then there must be three roots
α ∈ Γa, β ∈ Γb and γ ∈ Γc satisfying α + β = γ. Projecting these vectors on the
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Uαγ

Uγβ

P1(γ)

P1(α)

P1(β)

b

a

c

Figure 6.3: The image on the left reports the projections of the
roots α ∈ Γa, β ∈ Γb, γ ∈ Γc on the momentum plane
(spin-1 Coxeter eigenplane) forming the fusing triangle
corresponding to the coupling C(3)

abc̄. The RHS shows the
corresponding fusing process a+ b → c.

momentum eigenplane we obtain the mass fusing triangle ∆abc. We refer to figure
6.3 to label the angles of the projected triangle Ū b

ac = Uα,γ and Ūa
bc = Uγ,β. In this

manner, using the building block convention (6.2.11) with the choice of plus sign in
front of the fusing angles U the bootstrap equality (4.2.6) is verified as follows

Stree
da (θ − iŪ b

ac) + Stree
db (θ + iŪa

bc) = Stree
da (θ − iUα,γ) + Stree

db (θ + iUγ,β) =

− ig2

4h

h−1∑
p=0

[
(α,w−pγd) coth

(
θ

2 + i

2Uαw−pγd
− i

2Uαγ

)
+ (β, w−pγd) coth

(
θ

2 + i

2Uβw−pγd
+ i

2Uγβ

)]
=

− ig2

4h

h−1∑
p=0

[
(α,w−pγd) coth

(
θ

2 + i

2Uγw−pγd

)
+ (β, w−pγd) coth

(
θ

2 + i

2Uγw−pγd

)]
=

− ig2

4h

h−1∑
p=0

(γ, w−pγd) coth
(
θ

2 + i

2Uγw−pγd

)
= Stree

dc (θ).

(6.2.12)

A general tree-level proof of the absence of inelastic scattering in all the untwisted
affine Toda theories has therefore been completed. It is worth noting that the fusing
triangle in figure 6.3 can be reflected with respect to the side corresponding to P1(γ),
generating an equivalent mass triangle. The bootstrap relation associated to this
new triangle can be proved analogously to what we did in (6.2.12) but using the
formula (6.2.11) with the minus sign convention in front of the fusing angles.

The unitarity and crossing equations at the tree level can also be checked starting
from the universal expression (6.2.11). If we perform a loop expansion of the S-
matrix, as in (4.2.7), then the unitarity equation (2.3.15a) at the tree level reduces
to

Stree
ab (θ) + Stree

ab (−θ) = 0,

which is trivially satisfied by (6.2.10). Crossing symmetry (2.3.15b) is of course true,
since it is an intrinsic property of Feynman diagrams, valid order by order in the loop
expansion. It is however interesting to see explicitly how it fits into the geometrical
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formulation of (6.2.10):

Stree
ab (iπ − θ) = −ig2

4h
∑

β∈Γb

(γa, β) sinh θ
− cosh θ − cosUγaβ

= −ig2

4h
∑

β∈Γb

(γa,−β) sinh θ
cosh θ + cosUγaβ

= −ig2

4h
∑

β̃∈−Γb

(γa, β̃) sinh θ
cosh θ − cosUγaβ̃

= Stree
ab̄ (θ).

(6.2.13)

In the last equality we made the substitution β̃ = −β.

6.3 Folding and twisted Coxeter elements

Until this point, we have been working on a semisimple Lie algebra constructed over
an untwisted Dynkin diagram. In that case we have a copy of equivalent sets of simple
roots {αi}r

i=1 ∈ Φ and {α′
i}r

i=1 ∈ Φ′ associated to two different choices of the Cartan
subalgebra, that we have called respectively H and H′. Root systems associated with
twisted Dynkin diagrams can also be included in the previous analysis, as explained
in [1] based on considerations from [88]. The Dynkin diagrams of these models can
be obtained by ‘folding’ one and only one of the extended simply-laced diagrams [89].

The idea is the following. Suppose there exists an automorphism σ of a certain
extended Dynkin diagram composed by a set of roots {α′

i}r
i=0 acting as a permutation

of the points α′ → σ(α′). Here σ is a symmetry of the diagram behaving as a linear
map over the vector space H′. Therefore we can decompose each vector a in H′

into a component living in the invariant space under the action of σ (a∥) and into a
component perpendicular to such space (a⊥)

a = a∥ + a⊥.

To obtain the root system associated with the folded diagram starting from the
simply-laced one we set all the components α′⊥

i perpendicular to the subspace in-
variant under the action of σ equal to zero. The new set of roots that is generated
in this way lies entirely in the σ-invariant subspace, in other words all the roots in
{α′∥

i }r
i=0 are eigenvectors of σ with eigenvalue equal to one. Among them, many

roots are equal to each other after the reduction. In particular, all the roots that are
connected along a σ-orbit have the same projection on the σ-invariant eigenspace.
This implies that the new root system has a smaller number of elements than the
one we started with, and now the roots can have in general different lengths since
we have removed their projection on the space not invariant under the action of σ.

An equivalent way of seeing this is to look at the vectors defined in (5.3.21) that form
an orthonormal basis of H′. Each root in H′ can be written as a linear combination
in terms of this basis

α′ =
r∑

a=1
α′

aH
′
a.
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A case by case check [57] shows that for twisted Dynkin diagrams the space invariant
under the action of σ is generated by a subset of the vectors in (5.3.21). From
the point of view of affine Toda field theories, in which ϕ is an element of H′, this
corresponds to setting to zero all the field components along the directions H ′

a not
invariant under the automorphism σ. The root orbits Γ̃a ⊂ H necessary to define
the elements H ′

a which survive the automorphism define a new root system Φ̃ which
is contained inside the root system Φ associated to the Cartan subalgebra H. The
generators associated with the roots in Φ̃ define a subalgebra in the Lie algebra G
and the action of w in this embedded Φ̃ is exactly that of a twisted Coxeter element
of Φ̃ [88].
We study now what are the consequences of folding on an affine Toda Lagrangian.
Note that we can write the Lagrangian of the model both in terms of the generators
associated with the root system Φ, or in terms of the roots in Φ′. If we follow the latter
approach, by substituting (5.3.6) in (6.1.1) and using the relation (6.1.2) we find
the standard formulation for the Toda potential, as given in the Lagrangian (5.2.6).
Then we can apply the folding procedure to the extended set of simple roots, as
previously explained. In this way, we reduce the set to {α′∥

i }r
i=0, composed by the

projections of the roots on the eigenspace invariant under the automorphism σ of
the Dynkin diagram. The potential, after the reduction, becomes

m2

g2

r∑
i=0

nie
g·(ϕ,α

′∥
i ), (6.3.1)

where r is the rank of the starting simply-laced Dynkin diagram. Since many of the
α

′∥
i are equal to each other many terms in (6.3.1) can be summed and we obtain

the potential associated with the twisted model. On the other hand, the effect of
the reduction is the same as setting to zero all the vectors of the basis (5.3.21) that
are not invariant under the action of σ. This corresponds to suppressing all the
couplings in (6.1.6) that contain one or more of the vectors H ′

a that we set equal
to zero. The set of masses and couplings defining the twisted theory is therefore
the subset of the masses and couplings of the simply-laced theory that survives
the folding. Moreover, the root orbits in Φ defining the set of vectors (5.3.21)
invariant under the action of σ form a subalgebra of the initial simply-laced root
system. All the scattering properties are then satisfied within this subalgebra. If
we consider for example figure 6.2, that corresponds to a pictorial representation of
the relation (6.1.42), we note that all the roots ρ and ρ̃ that are expressed as sums
of different roots in the σ-invariant subalgebra need to belong themselves to this
subalgebra. This implies that for a given set of σ-invariant indices a1, . . . , an (that
means H ′

a1 , . . . , H
′
an

are invariant under the action of σ) the associated coupling
C(n)

a1...an
is defined by summing on the RHS of (6.1.42) only over the intermediate

indices inside the subalgebra. The relation (3.5.7), together with the other scattering
constraints, is therefore completely satisfied internally to such a subalgebra ensuring
the perturbative integrability of twisted Toda theories.
At the tree level, the S-matrix elements in the twisted model also come from the
ones of the starting simply-laced theory (6.2.10) (or (6.2.11) if we use a different
conventions for the tree-level building blocks). Indeed classically the S-matrix ele-
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ments of the twisted theory are just the subset of the S-matrix elements of the
simply-laced theory having indices invariant under the folding. We can see that by
considering a 2-to-2 elastic process presenting external particles in correspondence
with two σ-invariant orbits, Γa and Γb. To find all the particles propagating in the
s-channel, corresponding to certain roots γ, we keep fixed α ∈ Γa and we move β
in Γb. In this way, we generate the different bound states as γ = α + β. Since the
space invariant under σ is a subalgebra of the starting Lie algebra, all the roots γ
generated in this manner will also belong to orbits invariant under σ. A feature of a
subalgebra is indeed that any time we commute two elements in it, say eα and eβ,
we obtain another element of the subalgebra, [eα, eβ] = Nα,βeγ . The same argument
can be repeated identically for the particles propagating in the t-channel, ensuring
that the propagating bound states are all particles contained in the twisted theory.
Therefore, the S-matrices of the twisted theory are the subset of the S-matrices of
the simply-laced model having indices invariant under the folding.

Note though that this only works at the tree level. Once loops are allowed, it
was observed [57] that masses of simply-laced theories renormalize in a uniform
way, scaling all with the same multiplicative factor. However, that was not the
case for twisted theories. The reason is the following. Consider all the bubble
diagrams contributing to the renormalization of the mass of a certain particle c,
corresponding to a root, say γ. To find all the bubble diagrams contributing to the
mass correction we need to search for the pairs of roots {α, β} such that α + β = γ.
If γ ∈ Γc, where H ′

c is an element invariant under the folding, then this does not
imply that the roots {α, β} belong to σ-invariant orbits. Indeed given eγ in the
σ-invariant subalgebra it is in general possible finding generators eα and eβ outside
the subalgebra such that eγ ∼ [eα, eβ]. The contributions to the mass correction in
the starting simply-laced theory are therefore different from the contributions of the
twisted theory. In particular, due to the absence of some particles flowing inside the
loop, the mass ratios in the twisted theories in general shift in a coupling-dependent
way, complicating the picture considerably.

6.3.1 An example: the A
(2)
2 model from D

(1)
4

We now illustrate these considerations with a simple example. Let α′
1, α

′
2, α

′
3, α

′
4 be

the simple roots making up the D(1)
4 Dynkin diagram shown in figure 6.4:

α′
1 = ( 1√

3
,

1√
6
,−1,− 1√

2
) , α′

2 = ( 1√
3
,

1√
6
, 1,− 1√

2
),

α′
3 = (− 2√

3
,

1√
6
, 0,− 1√

2
) , α′

4 = (0, 0, 0,
√

2),

and let α′
0 be the lowest root defined by imposing ∑4

i=0 niα
′
i = 0 with (n0, . . . , n4) =

(1, 1, 1, 1, 2). In this case the Coxeter number h = ∑4
i=0 ni is equal to 6. The

affine Toda theory constructed starting from this Dynkin diagram, up to an overall
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D
(1)
4

α′
4

α′
3α′

1

α′
0

α′
2

A
(2)
2〈

α
′∥
1 α

′∥
4

Figure 6.4: Example of A(2)
2 Dynkin diagram obtained by folding

D
(1)
4 .

multiplicative factor, has a squared mass matrix of the form

M2 =
4∑

i=0
niα

′
i ⊗ α′

i = diag(2, 2, 2, 6).

The diagram automorphism σ defines a linear function by σα′
4 = α′

4, σα′
1 = α′

2 and
so on for the other roots, as shown by the arrows connecting the different spots on
the left-hand side of figure 6.4. The invariant space under the action of σ is spanned
by the component (0, 0, 0, 1) along which the root α′

4 lies. The reduction procedure
necessary to define the new root system associated with A

(2)
2 starting from the root

system of D(1)
4 corresponds to projecting the roots onto the direction invariant under

sigma, which is (0, 0, 0, 1). If we do this we obtain a new set of roots {α′∥
i }4

i=0, where
α

′∥
0 , α′∥

1 , α′∥
2 and α

′∥
3 are all equal to (0, 0, 0,− 1√

2) and α
′∥
4 = α4. The new Dynkin

diagram obtained after the folding is therefore composed by just two roots, that we
simply call α′∥

1 and α′∥
4 on the right hand side of figure 6.4, having lengths connected

by (α′∥
4 )2 = 4(α′∥

1 )2. The potential of the D(1)
4 affine Toda field theory (properly

shifted so to have V = 0 at ϕ = 0) is defined as

V = m2

g2

(
eg(ϕ,α′

0) + eg(ϕ,α′
1) + eg(ϕ,α′

2) + eg(ϕ,α′
3) + 2eg(ϕ,α′

4) − 6
)

(6.3.2)

and after the folding reduces to

V ∥ = m2

g2

(
4eg(ϕ,α

′∥
1 ) + 2eg(ϕ,α

′∥
4 ) − 6

)
= m2

g2
0

(
2e−g0ϕ4 + e2g0ϕ4 − 3

)
, (6.3.3)

where in the last equality we set g ≡
√

2g0. Up to a redefinition of the mass scale
this is exactly the potential of the Bullough–Dodd Lagrangian (3.1.11).
On the other hand, the invariant eigenvector (0, 0, 0, 1) corresponds to the element
H ′

4 in (5.3.21) defined by summing all the generators with roots living in the orbit
Γ4 (the one associated with the central spot of the D(1)

4 Dynkin diagram) of the
second Cartan subalgebra H. This orbit contains six elements, which form a set of
roots for A(1)

2 . This implies that A(1)
2 is a closed subspace of D(1)

4 living entirely on
the orbit Γ4. The Bullough–Dodd potential can then be written using Freeman’s
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formulation (6.1.1) as

V ∥ =
∞∑

n=0

1
n!C

(n)ϕn
4 (6.3.4)

with
C(n) = m2gn−2

(
[H ′

4, [H ′
4, [. . . [H ′

4︸ ︷︷ ︸
n times

, z1] . . .]], zh−1

)
. (6.3.5)

The same analysis holds for any twisted affine Dynkin diagram. In each case, we
start from an extended simply-laced diagram and apply the folding procedure. The
space invariant under σ is spanned by a subset of the vectors in (5.3.21) and such
vectors contain in the sum the generators of a subalgebra of the original simply-laced
root system. The Coxeter element w of the initial simply-laced diagram behaves as
a twisted Coxeter element defined on this subspace. In the example just presented
we started from two equivalent root systems Φ and Φ′ both associated with the
simply-laced diagram D

(1)
4 ; after the folding Φ′ reduced to the root systems of A(2)

2
and Φ reduced to the root system of A(1)

2 .

Recalling the results from section 2.5 we should mention that the particle 4 in the d(1)
4

affine Toda theory is not ‘fundamental’ in the sense used by Zamolodchikov [19, 20].
The set of exponents of D4 is E = {1, 3, 3, 5} and the generators {eα}α∈Γ4 together
with the pair of w-eigenvectors {z1, z5} close a subalgebra in D4; this subalgebra is
the Lie algebra associated to A2. Any root α ∈ Γ4 lies entirely on the w-eigenplane
spanned by z1 and z5 and the masses and fusing angles of the Bullough–Dodd model
are contained within this plane. All the roots in Γ4 have null projections on the
spin-3 eigenplane of w so that for the particular spin s̃ = 3 we have

γ
(s̃)
4 = 0.

Applying the bootstrap fusing relations on the particle 4 we never obtain information
about the other particles 1, 2 and 3 since we never leave the A2 subalgebra. In
figure 6.5 a pictorial representation of the discussed example is reported.

6.4 From tree- to exact-S-matrices

In section 2.6, reviewing the results from [57], we defined expressions for the S-
matrices Sab(θ; g) obtained by properly adding zeros to the minimal S-matrices
of perturbed CFTs, so to obtain Sab(θ; 0) = 1. In [57] it was argued that these
are the correct S-matrices arising from the Lagrangians (5.1.1) of affine Toda field
theories constructed over simply-laced Dynkin diagrams. We conclude this chapter
explaining how to reconstruct the non-perturbative S-matrices of affine Toda field
theories starting from the tree-level ones in (6.2.10).

We should first rewrite the root scalar products using the fundamental weights. By
using the first equality in (5.3.13) we obtain

(γa, w
−pγb) = ((1 − w−1)λa, w

−pγb) = (λa, w
−pγb) − (λa, w

−p+1γb). (6.4.1)
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Γ4

s = 3 eigenplane

s = 1 eigenplane

D4

A2

Figure 6.5: The masses and fusing angles of the Bullough–Dodd
model are all contained in the spin-1 eigenplane of the
Coxeter element of D4.

If we do so, then the universal expression for the tree-level S-matrix in (6.2.10) can
be written as

Stree
ab (θ) = 1

2

h−1∑
p=0

(λa, w
−pγb)⟨1 + u(γa, w

−pγb)⟩θ (6.4.2)

where we have defined the angles in units of π
h
, Uα,β = π

h
u(α, β) and the following

tree-level building block definition has been used

⟨x⟩θ = ig2

2h

(
− sinh θ

cosh θ − cos
(

π
h
(x− 1)

) + sinh θ
cosh θ − cos

(
π
h
(x+ 1)

)). (6.4.3)

As it happens for the expression in (6.2.10), where we double counted the poles
summing over the entire orbits Γb, also in (6.4.2) there are pairs of contributions
corresponding to equivalent triangles not connected by a Coxeter transformation
(an example is shown in figure 5.2). For each value x in the physical strip having a
positive coefficient (λa, w

−pγb) there exists a companion x′ = 2h− x with coefficient
(λa, w

−p′
γb) = −(λa, w

−pγb). The sum of the two partners is

1
2
(
(λa, w

−pγb)⟨x⟩θ − (λa, w
−pγb)⟨2h− x⟩θ

)
= (λa, w

−pγb)⟨x⟩θ

where in the last equality we used

⟨2h− x⟩θ = −⟨x⟩θ. (6.4.4)

Expressions for the S-matrices of simply-laced affine Toda field theories can be de-
rived from (6.4.2). If we normalize the root length to be Λ2 = 2, then from (5.3.12)
the scalar products between the fundamental weights and the simple roots can only
be zero or one. In (6.2.12) we showed that the tree-level bootstrap relations (4.2.6)
follow from the linearity of the scalar products, that allow a single S-matrix element
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to be written as a sum of other two S-matrix elements. Similarly the quantum exact
bootstrap relations (2.4.7), which relate S-matrices with products of S-matrices, have
also to follow from the linearity of the scalar products. The tree-level sum (4.2.6) can
be promoted to be the product in (2.4.7) by promoting the coefficients (λa, w

−pγb)
to be the exponents of the building blocks. Since in simply-laced affine Toda the-
ories these coefficients are all integers (having set Λ2 = 2), these exponents do not
introduce branch cuts and the analytic structure of the S-matrix continues to be
consistent. The exact S-matrices can consistently be written as

Sab(θ) = 1+Stree
ab (θ)+o(g4) =

h−1∏
p=0

(
1+⟨1+u(γa, w

−pγb)⟩θ+o(g4)
) 1

2 (λa,w−pγb)
, (6.4.5)

where the arguments inside the brackets in the product (6.4.5) are the non-perturbative
expressions for the building blocks evaluated up to the order g2. It is reasonable to
believe that formula (6.4.5), which has been completely determined starting from
perturbation theory, is the order g2 expansion of the quantum S-matrix

Sab(θ) =
h−1∏
p=0

{1 + u(γa, w
−pγb)}

1
2 (λa,w−pγb) (6.4.6)

in terms of the building blocks (2.6.3). Similarly to what happens at the tree-level,
for each brick {x} with 0 < x < h and associated exponent (λa, w

−pγb) > 0, we
find another brick {x′} = {2h− x} with exponent (λa, w

−p′
γb) = −(λa, w

−pγb). The
product of the two building blocks is obtained by using the properties in (2.6.5):

{x}
1
2 (λa,w−pγb){2h− x}− 1

2 (λa,w−pγb) = {x}(λa,w−pγb).

For example, the S-matrix element S12 of the e(1)
8 affine Toda theory, having h = 30,

can be written through the universal formula (6.4.6) as

S12(θ) = {7}1/2{13}1/2{17}1/2{23}1/2{37}−1/2{43}−1/2{47}−1/2{53}−1/2,

which combining

{7}1/2{53}−1/2 = {7} , {13}1/2{47}−1/2 = {13},
{17}1/2{43}−1/2 = {17} , {23}1/2{37}−1/2 = {23}

becomes the expression in (2.6.2).

If we compare the values

1 + ⟨x⟩θ = 1 + ig2

2h

(
− sinh θ

cosh θ − cos
(

π
h
(x− 1)

) + sinh θ
cosh θ − cos

(
π
h
(x+ 1)

)),
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with the expansion of the building blocks (2.6.3) around B = 0

{x}θ = 1 + iπB

h

(
− sinh θ

cosh θ − cos
(

π
h
(x− 1)

) + sinh θ
cosh θ − cos

(
π
h
(x+ 1)

))+ o(B2).

(6.4.7)
we obtain

B = g2

2π + o(g4).

In this way we relate the function B, describing the displacement between poles
and zeros in the building blocks (2.6.3), with the coupling g of the Lagrangians of
simply-laced affine Toda theories. In section (2.6) we argued that B has to take
values between 0 and 2: this was a requirement to preserve the correct signs of
the residues associated with bound state particles propagating in the forward and
crossed channels. In [57] the following expression for B was proposed

B = g2

2π
1

1 + g2/4π (6.4.8)

matching the expected tree-level result in the limit g → 0 and going to 2 in the limit
g → ±∞. We recall from section 2.6 that each building block (2.6.3) is invariant
under the transformation B → 2−B, corresponding to swapping the positions of the
zeros internally to the building block. This transformation is equivalent to sending
g → 4π/g, indeed

B
(4π
g

)
= 2 −B(g).

Therefore, the non-perturbative S-matrices (6.4.6) satisfy the following weak-strong
coupling duality

Sab(θ; 4π/g) = Sab(θ; g). (6.4.9)

This is very surprising if we think that there is no sign of such a duality in the
starting Lagrangian (5.1.1). A similar duality is observed also in W-algebras of
affine type as remarked for example in pp. 263-264 of [90]. Although a universal
proof of the relation (6.4.8) is missing, its validity has been confirmed at one loop
(i.e. at the order g4) based on a case by case analysis of ADE series of affine Toda
models [78]. The simplest example of an affine Toda theory is the sinh-Gordon model
having an S-matrix composed of a single building block

S11(θ) = {1}θ = (0)(2)
(B)(2 −B) . (6.4.10)

In this case, the Coxeter number h is equal to 2 and (0) = −(2) = 1; as a consequence
of this fact the S-matrix does not contain any poles in the physical strip. Rearranging
the expression in (6.4.10) it can be shown that

S11(θ) = sinh θ − i sin(πB/2)
sinh θ + i sin(πB/2) . (6.4.11)

The S-matrix of this model has a long history and a proposal for it can be found
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in [91]. It can also be obtained by analytically continuing g2 → −g2 in the B1-B1
S-matrix of the sine-Gordon quantum field theory, where B1 is the lightest breather
of the theory and g is the coupling of the sine-Gordon Lagrangian. The S-matrices
of the other affine Toda theories are a generalization of this simple example, which
has been relevant in the determination of the relation (6.4.8).
Another possible universal expression for the tree-level S-matrix is obtained by
substituting (6.4.1) into (6.2.11). If we do so we end up with

Stree
ab (θ) =
ig2

4h

h−1∑
p=0

(λa, w
−pγb)

(
− coth

(
θ

2 ± iπ

2hu(γa, w
−pγb)

)
+ coth

(
θ

2 ± iπ

2hu(γa, w
−(p+1)γb)

))
.

(6.4.12)

Equation (6.4.12) corresponds to the tree-level expansion of a universal formula
obtained the first time in [73, 74]; in those papers, a general expression for the S-
matrices of simply-laced affine Toda theories was formulated in terms of ‘half building
blocks’, through which it was verified that the unitarity, crossing and bootstrap
properties were universally satisfied. However, we prefer here not to introduce
additional expressions for the building blocks and keep as the only definition the
one reported in equation (2.6.3). With this prescription for the building blocks
the non-perturbative S-matrix is given in (6.4.6); this prescription is the same as
used in [92] manipulating results previously obtained in [73]. While the S-matrices
of simply-laced affine Toda theories found their universal formulation in [73, 74],
many previous papers, in which a case by case study was performed, were of great
importance in figuring out the exact S-matrices of these models. Among them we
mention [57, 70, 91, 93–96].
We should stress that the ADE series of affine Toda models represent a class that
behaves well at the quantum level: at one loop they preserve all the mass ratios [57]
suggesting that the geometrical structure obtained from the bootstrap is maintained
at quantum level in perturbation theory. In these cases the tree-level S-matrices
obtained in (6.2.10) can consistently be promoted to the non-perturbative expres-
sions (6.4.6), which passed many perturbative checks [69, 78, 79, 97, 98]. The
situation becomes more complicated for models constructed from non simply-laced
Dynkin diagrams [99–103] where the masses renormalize in a coupling dependent
way spoiling the natural geometrical connection between S-matrices and Coxeter
geometry. A geometrical formulation for the non-perturbative S-matrices of these
more complicated theories was proposed in [103], though it is much more convoluted
than the formulation of simply-laced theories.



Chapter 7

Loop-level integrability in affine
Toda field theories

7.1 Higher-order poles in bootstrapped
S-matrices

In chapter 2 we noted that sometimes the elementary building blocks (x)θ of certain
bootstrapped S-matrices appear with multiplicity higher than one. This was the
case for the minimal S-matrix element S13 in (2.5.17) where (11)2 and (19)2 were
two blocks contributing to poles of order two, located at the rapidity values i11

30π and
i19

30π respectively. Also in affine Toda field theories, where the elementary building
blocks assume the brick structure in (2.6.3), these higher-order poles can in general
be present. If we look at figure 2.16, containing some of the S-matrix elements
of the e(1)

8 affine Toda model, we note that most of the poles are of higher order
and correspond to the positions in which two or more bricks touch each other. In
this chapter, we focus on the mechanism under which these higher-order poles are
generated in perturbation theory in simply-laced affine Toda theories, i.e. models
having an underlying Lie algebra belonging to the ADE series. We assume the
squared length common to all the roots to be Λ2 = 2.
The non-perturbative S-matrices associated with these theories are written in (6.4.6)
in terms of the roots and weights of their underlying root systems. As already
remarked in the previous section, for a given S-matrix element Sab the building
blocks {x} (written in units of π/h) always appear in copies with opposite exponents
as

{x}
1
2 Nab(x){2h− x}− 1

2 Nab(x) = {x}Nab(x).

In the end Sab takes the form (2.6.4), with all the x belonging to the interval [1, h−1]
and all the Nab(x) being positive integers. Combining (6.4.7) with (6.4.8) we see that
each building block {x}, for small values of g, can be Taylor expanded, presenting
at leading order in the Lagrangian coupling two simple poles

{x}θ = 1 + ig2

2h

(
− 1
θ − iπ

h
(x− 1) + 1

θ − iπ
h

(x+ 1) + . . .
)

+ o(g4) . (7.1.1)
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The ellipses in the brackets above are finite at the pole positions θ = iπ
h

(x± 1), while
in o(g4) (which includes powers of the coupling g equal and higher than four) are
contained both finite and 1st-order poles at θ = iπ

h
(x± 1).

Our purpose here is to analyze the leading order singularities arising in the S-matrices
due to the presence of these building blocks. By leading order singularities we mean
that we perform the Laurent expansion of the S-matrix around a pole position and
at each order in the pole expansion we consider only the leading order in g2. In other
words, if we have a pole of order P sitting at the position θ = iθ0 we can write the
S-matrix around the pole as

Sab(θ) =
P∑

p=0

1
(θ − iθ0)p

(
g2

2h

)p(
ap + bpg

2 + o(g4)
)

+ o(θ − iθ0). (7.1.2)

For each coefficient of the Laurent series, we are interested in finding the leading
order terms in the coupling expansion, which are a0, a1, . . . , aP . It is straightforward
to obtain such coefficients from the bootstrapped result (2.6.4). A P th-order pole in
θ = iπ

h
x, with P = M +N , arises from terms in the S-matrix of the form

{x− 1}M{x+ 1}N ∼
(

1 + ig2

2h
1

θ − iπ
h
x

)M(
1 − ig2

2h
1

θ − iπ
h
x

)N

, (7.1.3)

where in (7.1.3) we substituted the terms of the building block expansion (7.1.1)
which are singular at θ = iπ

h
x. Each term obtained in the expression above cor-

responds to a leading order coefficient of the Laurent expansion written in (7.1.2).
Other quantities are present due to the complete expansion of the brick (7.1.1), but
these are subleading terms in g2. Note that the difference between multiplicities of
neighbouring bricks is a scalar product between roots, as written in (6.4.1). There-
fore the quantity Nab(x + 1) − Nab(x − 1), in simply-laced Toda models, can only
take values in {−1, 0,+1}. The leading order contributions to the Laurent expansion
around the pole iθ0 can then be written as

Sab(θ) ∼
N∑

n=0

(
N

n

)(
g2

2h

)2n 1
(θ − iθ0)2n

+ ν
N∑

n=0

(
N

n

)(
g2

2h

)2n+1 1
(θ − iθ0)2n+1 . (7.1.4)

The coefficient ν is equal to zero if two bricks, both of multiplicity N , touch each
other generating an even pole of order P = 2N . Instead, we have ν = +i/ − i

when there is a jump from a brick of multiplicity N + 1/N on the left to a brick of
multiplicity N/N + 1 on the right. These second types of poles are called odd-order
singularities since P = 2N + 1. The different situations are illustrated in figure 7.1.

In this chapter we try to highlight the origin of the formula (7.1.4) using perturbation
theory. The n = 0 contributions in (7.1.4) are naturally interpreted as the identity
(i.e. free propagators), in the first sum, and a bound state particle propagating at
the tree level in the forward/crossed channel (ν = +i/− i), in the second sum. From
n = 1 onwards, loop contributions start. Such higher-order singularities emerging by
imposing the closure of the bootstrap fusing relations can be explained in perturb-
ation theory in terms of the Coleman-Thun mechanism [39]: they are anomalous
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{x − 1}N {x + 1}N

ν = 0

{x − 1}N+1 {x + 1}N

ν = i

{x − 1}N {x + 1}N+1

ν = −i

Figure 7.1: Higher order singularities at θ = iπx
h

. From left to
right are reported a 2N -order pole and respectively a
forward/crossed channel pole of order 2N + 1. All the
situations are encoded in equation (7.1.4) substituting
the corresponding values of ν.

thresholds coming from Feynman diagrams in which all the internal propagators,
within the integration loops, can go simultaneously on-shell for particular choices
of the external kinematics. In the next sections the analysis will be carried out for
second- and third-order poles (which is P = 2 and P = 3 in (7.1.2)) in diagonal
scattering processes. In all the cases the coefficient ap of each term of the Laurent
expansion (7.1.2) are computed, displaying perfectly agreement with the bootstrap
formula (7.1.4). In [69] the authors studied poles of order P = 2 and P = 3 finding
in both cases the coefficient aP of the maximal singularity in (7.1.2). While the
results found matched the bootstrap expectations, the underlying mechanism that
led to the answer was not completely clear, particularly for P = 3. In that case, the
Feynman diagrams contributing to the pole generated a collection of complicated
numbers which, only after the sum, miraculously collapsed to the correct residue
expected from the bootstrap. We will highlight better the reason why this happens
following the argumentation of [2, 3]. Other aspects of higher-order singularities are
also covered in this chapter, although the computation of all the leading coefficients
ap of the Laurent expansion at arbitrary P has not yet been achieved, due to the
huge number of singular Feynman diagrams arising at higher loops. However we do
see some sign of how a general proof may be achieved.

Before moving on to study these poles by computing loop diagrams in perturbation
theory, we should mention some properties of the 3-point couplings characterising
simply-laced affine Toda models. Having set the squared of the root length to be
Λ2 = 2 , the relation (6.1.23) requires

fabc = 4 g√
h
σabc with |σabc| = 1.

In the expression above σabc is a phase of unit modulus, connected to the structure
constants and to the orientation of the projected root triangle through (6.1.18), by
which we get

σabc = Nα,βsign
(

sin(Uα − Uβ)
)
,

with α ∈ Γa and β ∈ Γb. If all the particles of the model are real then the structure
constants have to be real, indeed in this case each orbit contains pairs of opposite
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roots; for any root α ∈ Γa then −α = wh/2α ∈ Γa and it holds that

N−α,−β = Nwh/2α,wh/2β = Nα,β,

where in the last equality we used (5.3.20). By property D.2 it follows that N∗
α,β =

Nα,β. In the case in which some particles are complex, the structure constants
associated with the orbits of such particles could in principle be complex phases.
However, we can always tune the generators {eα}α∈Φ so that equations (5.3.18)
and (5.3.19) are satisfied and the structure constants are real. An explicit expression
for them in terms of scalar products between roots and fundamental weights was
derived in [74]. For this reason is not restrictive to assume all the σabc to be real so
that the values of the 3-point couplings, if they are nonzero, can be written as

C
(3)
abc = fabc∆abc with fabc = ±4 g√

h
. (7.1.5)

Despite it being possible to swap the signs of some 3-point couplings by transforming
eΓa into −eΓa (by which we mean that the transformation has to be performed on
each generator eα with α ∈ Γa), not all the fabc have arbitrary sign: remember that
the constraint (D.0.1) on structure constants has to be satisfied. This constraint
is responsible for the equality (4.1.9), which is necessary to avoid poles in 2-to-2
inelastic scattering processes. Since in this chapter we focus on the ADE series of
affine Toda field theories the simply-laced scattering conditions 4.1 are satisfied and
the pole cancellations in 4-point processes happen between pairs of singular diagrams.
One of the three terms in (4.1.9) is therefore always absent. The flipping rule for the
cancellation of tree-level non-diagonal processes also enters in loop diagrams and is
of great importance to find all the loop diagrams contributing to the higher-order
poles.

7.2 Landau poles and cuts

In this section, we review the mechanism responsible for the generation of higher-
order poles in perturbation theory following the approach used in [2]. This method,
compared with the technique used in [69], is beneficial in the fact that makes evident
how the loops, on the pole position, factorise into particular products of singular
tree-level diagrams. This makes it possible to use the tree-level techniques studied
in [1] to obtain loop results. We work directly in the momentum space instead of
using Feynman parameters since this is particularly convenient in two dimensions.
To each order p in (7.1.2) we are only interested in finding the leading order in the
g2 expansion, which corresponds to finding Feynman diagrams with the maximum
number of internal on-shell momenta and carrying the minimum power of g. We will
show that such a situation occurs if the only vertices entering into the diagrams are
3-point couplings.

Let us consider a loop process involving the diagonal scattering of two particles, a
and b. Since there are two degrees of freedom for each loop, we can always tune the
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loop variables so that two momenta inside each loop are on-shell. Therefore we set
2L momenta satisfying the mass-shell condition

q2
j −m2

j = 0 (7.2.1)

where j = 1, . . . , 2L and L is the total number of loops. Then we expand the loop
integrals around the values where these 2L momenta are on-shell

Qj = qj +
L∑

i=1
λ

(Q)
ji li ≡ qj + k

(Q)
j . (7.2.2)

The vectors l1, . . . , lL are the L loop integration variables. This permits the corres-
ponding propagators to be written in the following form

1
Q2

j −m2
j + iϵ

= 1
2qj · k(Q)

j + (k(Q)
j )2 + iϵ

. (7.2.3)

All the loop integration variables are contained in the vectors k(Q)
j . If we define I to

be the total number of propagators then the remaining I − 2L momenta (those that
are not expanded around their on-shell values) are given by

Pj = pj +
L∑

i=1
λ

(P )
ji li ≡ pj + k

(P )
j . (7.2.4)

The remaining set of momenta pj around which the loops are expanded are frozen,
since we have already used all the loop freedom to set the momenta qj on-shell in
(7.2.1). Differently from qj the values pj are generally off-shell and could go on-shell
only at a particular value of the external kinematics in certain diagrams. Suppose
we define p(0)

a and p
(0)
b to be the values of the incoming momenta corresponding to

the pole position
s0 =

(
p(0)

a + p
(0)
b

)2
(7.2.5)

at which not only the momenta qj in (7.2.1) are mass-shell but also the remaining
vectors pj in (7.2.4), then we can expand pj around s0

p2
j −m2

j =
dp2

j

ds

∣∣∣∣
s=s0

(s− s0) + 1
2
d2p2

j

ds2

∣∣∣∣
s=s0

(s− s0)2 + . . . (7.2.6)

Therefore up to extra multiplicative factors, irrelevant to the purpose of the discus-
sion, the Feynman diagram in the neighborhood of s0 can be written as

I =
∫ L∏

i=1

d2li
(2π)2

2L∏
j=1

1
2qj · k(Q)

j + (k(Q)
j )2 + iϵ

I−2L∏
j=1

1
dp2

j

ds

∣∣∣∣
s=s0

(s− s0) + 1
2

d2p2
j

ds2

∣∣∣∣
s=s0

(s− s0)2 + . . .+ 2pj · k(P )
j + (k(P )

j )2 + iϵ
.

(7.2.7)
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g

g

g

g

∼ g4

(s−s0)2

g

g

g2 ∼ g4

s−s0

Figure 7.2: Examples of diagrams contributing to the coefficients
a2 and b1 in equation (7.1.2).

Redefining the integration variables in the following manner

li = (s− s0)l̃i , (7.2.8)

we can isolate the singular part of the diagram at s = s0:

I = 1
(s− s0)I−2L

∫ L∏
i=1

d2l̃i
(2π)2

2L∏
j=1

1
2qj · k̃(Q)

j + (k̃(Q)
j )2(s− s0) + iϵ

I−2L∏
j=1

1
dp2

j

ds

∣∣∣∣
s=s0

+2pj · k̃(P )
j + (k̃(P )

j )2(s− s0) + 1
2

d2p2
j

ds2

∣∣∣∣
s=s0

(s− s0) + . . .+ iϵ
.

(7.2.9)

The order of the pole is defined by p = I − 2L where, as already specified, I is the
total number of propagators flowing in the diagram and L is the total number of
loops. For fixed L, this order is maximal when the number I of singular propagators
is maximal, which corresponds to having all vertices with three legs. For example, a
one-loop diagram with four 3-point vertices and four propagators can contribute to a
second-order pole since I − 2L = 4 − 2 = 2. On the other hand, a one-loop diagram
with two 3-point vertices and one 4-point vertex contains only three propagators: in
this case, I − 2L = 3 − 2 = 1 and the order of the pole is one. Despite the order
of the pole being different in these two diagrams, by the fact that in affine Toda
theories a vertex of order n contributes as C(n) ∼ gn−2, they both contain a power
of the coupling g4. The two diagrams are depicted in figure 7.2.

For a fixed power of g, the leading coefficients ap in (7.1.2) are obtained by summing
over the maximal singular contributions of Feynman diagrams containing only 3-
point vertices and with all the internal propagators simultaneously on-shell. They
can be evaluated through (7.2.9) by omitting all the subleading contributions in
s− s0. If we do so the formula (7.2.9) becomes

I = 1
(s− s0)I−2L

∫ L∏
i=1

d2l̃i
(2π)2

2L∏
j=1

1
2qj · k̃(Q)

j + iϵ

I−2L∏
j=1

1
dp2

j

ds

∣∣∣∣
s=s0

+2pj · k̃(P )
j + iϵ

.

(7.2.10)

For example the box on the LHS of figure 7.2 contributes to the coefficient a2
through (7.2.10). On the other hand, by using (7.2.9), we can perform an expansion
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of the box diagram around the pole and obtain its contribution at the order (s−s0)−1,
which together with the triangular diagram in figure 7.2 contributes to the coefficient
b1.

Evaluating the coefficients bp through Feynman diagrams is in principle possible,
though it is complicated since the number of diagrams that need to be computed is
in general very large. In [98] the coefficient b1 was evaluated in the case P = 2 in the
affine Toda models of type A(1)

r ; in [2], by exploiting general tree-level integrability
properties of simply-laced models, this coefficient is computed for all the ADE
series of affine Toda theories at poles of arbitrary even order P = 2N . Incredibly
all the results display perfect agreement with the universal bootstrapped S-matrix
formula (6.4.6).

We return now to the main problem of this chapter: the evaluation of the leading
order coefficients ap in (7.1.2). To this purpose the integral (7.2.10) has to be
computed. We observe that all the denominators in the propagators of (7.2.10) are
linear functions of the loop variables, therefore the integration is simple. It can be
performed by closing a contour in the complex plane and using Cauchy’s theorem.
Depending on the choice of variables adopted when we perform the integral the
number of poles in the integration contour can change and the same result can be
written as sums over different residues. Each one of these sums is a sum over different
products of tree-level diagrams where each propagator with respect to which we take
the residue is cut. We show this explicitly in section 7.2.1 with an example.

After the computation we need to multiply by the following remaining factors, which
have been omitted in (7.2.10):

For each vertex: − iC
(3)
abc

For each propagator: i

A total multiplicative factor: 1
4mamb sinh iθ0

= 1
8i∆ab

(7.2.11)

The last term comes by expressing the overall energy-momentum conservation delta
function (2π)2δ(2)(pin

a +pin
b −pout

a −pout
b ) in terms of the rapidities on the pole position

and inserting the usual normalization factor 1√
4π

for each external particle. ∆ab is
the area of the triangle formed by the vectors pa, pb on the pole position. Finally,
we need to express s− s0 in terms of the rapidity at the pole

s− s0 = 2mamb

(
cosh θ − cosh iθ0

)
= 4i∆ab(θ − iθ0) (7.2.12)

where in the last equality we have expanded cosh θ around θ = iθ0 and used ∆ab =
1
2mamb sin θ0.

Once we understand what residues to take the difficult part in the evaluation of the
integral (7.2.10) is to compute the derivatives of the squared momenta on the pole
position, which are the terms on the RHS of (7.2.6). We have already mentioned
that the rapidity values at which poles can appear are purely imaginary numbers, so
Feynman diagrams at l1 = l2 = . . . = lL = 0 (the point in which all loop propagators
are singular simultaneously) are represented as planar geometrical figures in which
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the internal segments have lengths equal to the masses of the propagating particles.
Then evaluating the derivatives of the momenta squared amounts to a geometrical
problem, similar to the one already addressed in chapter 4 in the context of tree-level
scattering.
To compute the loop diagrams it is often useful to write the oriented area of the
triangle identified by a pair of vectors A, B in R2 as the determinant

〈
AB

〉
≡ 1

2

∣∣∣∣∣∣ Ax Bx

Ay By

∣∣∣∣∣∣ . (7.2.13)

In different situations, it will be necessary to write vectors in a non-orthogonal basis.
To do this the following identity can be used〈

AB
〉
D+

〈
BD

〉
A+

〈
DA

〉
B = 0 (7.2.14)

on any triplet of vectors A, B and D in R2. Doing the vector product with a fourth
element C we obtain the Plücker relation connecting areas of different triangles〈

AB
〉〈
CD

〉
+
〈
BD

〉〈
CA

〉
+
〈
DA

〉〈
CB

〉
= 0. (7.2.15)

In the next section, we show an example of Feynman diagram in which the Coleman-
Thun mechanism [39] for the generation of Landau singularities is manifest. The
example is simple and already known [69] but it contains some subtleties that are
characteristic of also more difficult cases and it is good to explain them here following
the lines of [2, 3].

7.2.1 An example: the box integral

Let us consider the box diagram in figure 7.3. The RHS shows the on-shell description
of the diagram, which is the point where the loop integration variable l is equal to
zero and all the internal propagators B, C, B′ and C ′ are simultaneously on-shell.
With a small abuse of notation, we define with the letters B, C, B′, C ′ both the
on-shell vectors and the particle labels. As explained previously, since the loop
carries two degrees of freedom we can set two momenta, say B and C, on-shell and
expand the integral around their on-shell values, which means that at l = 0 we have

B2 −m2
B = 0 , C2 −m2

C = 0. (7.2.16)

Having used all the loop freedom to set the values of B and C, for a general choice
of the external kinematics B′ and C ′ are off-shell at l = 0, and their propagators
diverge only at the special point s = s0 where the box diagram is singular. If we
expand the vectors B′ and C ′ around s0 we obtain

B′2 −m2
B′ = dB′2

ds

∣∣∣∣
B,C

(s− s0) + . . .

C ′2 −m2
C′ = dC ′2

ds

∣∣∣∣
B,C

(s− s0) + . . .

(7.2.17)
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C
B′C

′

B

Figure 7.3: Box diagram on the left and its on-shell dual description
on the right.

s → s0

Figure 7.4: Loop expansion around the on-shell values B2 = m2
B

and C2 = m2
C . The remaining momenta B′ and C ′

(drawn in red in the figure) are not on-shell for general
external kinematics (on the LHS) and go on-shell only
on the pole position s = s0 (on the RHS).

where inside . . . higher powers of (s − s0) are contained. The subscript letters B
and C in the derivatives indicate that we are differentiating B′2 and C ′2 with respect
to s keeping the lengths of B and C fixed at their on-shell values. The situation is
shown in figure 7.4 where on the LHS we see that near the pole position only B and
C are on-shell (the black internal momenta) while the red momenta B′ and C ′ are
off-shell; indeed their lengths do not correspond to the values of their masses. We
perform the integral in this position s ∼ s0 but at s ̸= s0, and in the end, we take
the limit s → s0 (RHS part of figure 7.4) at which the Feynman diagram becomes
singular. Expanding the loop around the values in (7.2.16), (7.2.17) and rescaling
the loop variable l = (s− s0)l̃ we obtain

I□ = 1
(s− s0)2

∫ d2l̃

(2π)2
1

2B · l̃ + iϵ

1
2C · l̃ + iϵ

1
dB′2

ds

∣∣∣∣
B,C

+2B′ · l̃ + iϵ

1
dC′2

ds

∣∣∣∣
B,C

+2C ′ · l̃ + iϵ
,

(7.2.18)
that is a particular case of the general formula (7.2.10). The residue at the pole is
isolated in the integral expression above and can be easily computed using Cauchy’s
theorem. With the purpose of using the scalar products 2B · l̃ and 2C · l̃ as integration
variables we express all the momenta in (7.2.18) as linear combinations of B and C.
This is easily done by using (7.2.14):

B′ = −∆B′C

∆BC

B − ∆B′B

∆BC

C , C ′ = −∆C′C

∆BC

B − ∆C′B

∆BC

C. (7.2.19)
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In these expressions we have labeled by ∆XY the area of the triangle having as sides
two vectors X and Y , which means, referring to definition (7.2.13), ∆XY =

√
⟨XY ⟩2.

We point out that all the coefficients of the linear combinations in (7.2.19) are
negative numbers. This is pictorially understood if we look at the right-hand side
part of figure 7.3. There we see that both B′ and C ′ belong to the section of the
plane spanned by positive linear combinations of the vectors −B and −C, since the
oriented lines identifying their directions are contained in the angle formed between
the arrows of B and C. If we write the integral (7.2.18) in terms of the integration
variables

u = 2B · l̃ , v = 2C · l̃

we obtain

I□ = 1
(s− s0)2

1
(2π)28i∆BC

∫
du dv

1
u+ iϵ︸ ︷︷ ︸

B

1
v + iϵ︸ ︷︷ ︸

C

1
dB′2

ds

∣∣∣∣
B,C

−∆B′C

∆BC
u− ∆B′B

∆BC
v + iϵ︸ ︷︷ ︸

B′

1
dC′2

ds

∣∣∣∣
B,C

−∆C′C

∆BC
u− ∆C′B

∆BC
v + iϵ︸ ︷︷ ︸

C′

,

(7.2.20)

where the factor in front of the integral comes from the Jacobian associated to the
change of variables

d2l̃ = 1
8i∆BC

du dv.

Each of the terms in the integral (7.2.20) corresponds to a particular propagator
whose particle label is indicated under it. The different ways in which we can close
the u/v-contours in the complex plane to write the result as sums over different
residues correspond to different possible decompositions of the loop as sums over
products of tree-level graphs. Let us consider the simplest situation in which we
close both the u- and v-contours in the lower half complex plane with a semicircle
of infinite radius. Using the residue theorem the result is simply given by

I□ = i

(s− s0)2
1

8∆BC

1
dB′2

ds

∣∣∣∣
B,C︸ ︷︷ ︸

B′

1
dC′2

ds

∣∣∣∣
B,C︸ ︷︷ ︸

C′

. (7.2.21)

The propagators corresponding to the B- and C-particles have been removed in
taking the residues, since they had simple poles in the lower half plane. On the other
hand, the propagators corresponding to B′ and C ′ survived since their poles were
not contained in the integration contour. Such surviving propagators are evaluated
at fixed on-shell lengths of the external momenta and fixed on-shell lengths of B and
C. This means that the loop integral has been reduced to a tree-level diagram in
which B and C play the role of external on-shell momenta. The quantities 1

dB′2
ds

(s−s0)

and 1
dC′2

ds
(s−s0)

correspond to the values of the B′- and C ′-propagators respectively
near the pole position. A pictorial representation of the cut is represented in the



7.2. Landau poles and cuts 147

first equality in figure 7.5.

At this point the problem amounts to finding the derivatives of B′2 and C ′2 respect
to the Mandelstam variable s. We focus on the triangle ∆bC , having as sides pb, C
and B′ and on the triangle ∆ab having as sides the external particles pa, pb. The
values of B′2 and s are given by

B′2 = m2
b +m2

C − 2mbmC cos ŪbC , s = m2
a +m2

b − 2mamb cos Ūab (7.2.22)

where we indicate by ŪXY the angle between sides X and Y . Since the momenta pa,
B and C defining the thin triangle ∆aBC are on-shell, the angle ŪaC is fixed along
the limit s → s0 and

dŪbC = dŪab.

Thanks to this fact the derivative of B′2 respect to s can be written as

dB′2

ds
=

dB′2

dŪbC

ds
dŪab

= ∆bC

∆ab

.

The last equality in the relation above has been obtained by using the expressions
in (7.2.22). Similarly, it is possible to show that

dC ′2

ds
= −∆bB

∆ab

.

By plugging the values of such derivatives into (7.2.21), multiplying by the remaining
factors (7.2.11), (7.2.12) and using the area rule (7.1.5) we obtain

D□ = 1
(θ − θ0)2

1
45

∆B′C′

∆ab

fBaC̄fCbB̄′fB′āC̄′fC′b̄B̄. (7.2.23)

By substituting the values of the f -functions defined in (7.1.5) inside (7.2.23) we
obtain the residue of the diagram at the pole. This value is given up to an overall sign
which is not completely specified from (7.1.5). We postpone this sign problem to the
next section where we will study the full network of Feynman diagrams contributing
to the threshold singularity. Let us instead consider here what happens if we choose
a different integration contour when we use Cauchy’s theorem. We perform the
integral (7.2.20) in two steps. First we integrate the u-variable closing the u-contour
with a semicircle in the lower half complex plane: in this way we obtain

I□ = 1
(s− s0)2

2πi
(2π)28i∆BC

∫
dv

1
v + iϵ︸ ︷︷ ︸

C

1
dB′2

ds

∣∣∣∣
B,C

−∆B′B

∆BC
v + iϵ︸ ︷︷ ︸

B′

1
dC′2

ds

∣∣∣∣
B,C

−∆C′B

∆BC
v + iϵ︸ ︷︷ ︸

C′

.

(7.2.24)

The B-propagator has disappeared from the integral, i.e. it has been cut. At this
point instead of closing also the v-path in the region below the real axis (generating
only one residue) we close the path in the upper half complex plane where both the
‘propagators’ B′ and C ′ in (7.2.24) have simple poles. The final result is a sum of
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pa
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= =

+

+

Figure 7.5: Box integral on the pole written as different sums over
tree-level diagrams. In the first line Feynman diagrams
are reported and in the second line their on-shell dual
description is shown.

two residues, one for each propagator presenting a pole in the region enclosed in the
integration path:

I□ = 1
(s− s0)2

i

8

[
1

∆BB′

1
∆BC

∆B′B

dB′2

ds

∣∣∣∣
B,C︸ ︷︷ ︸

C

1
dC′2

ds

∣∣∣∣
B,C

−∆C′B

∆B′B

dB′2

ds

∣∣∣∣
B,C︸ ︷︷ ︸

C′

+

1
∆C′B

1
∆BC

∆C′B

dC′2

ds

∣∣∣∣
B,C︸ ︷︷ ︸

C

1
dB′2

ds

∣∣∣∣
B,C

−∆B′B

∆C′B

dC′2

ds

∣∣∣∣
B,C︸ ︷︷ ︸

B′

]
.

(7.2.25)

The factor 1
∆XY

in front of each term in the sum above is a Jacobian depending
on which variables have been used in the integration; it can be used as a pointer
indicating which propagators X, Y have been cut. In the first term for example we
read 1

∆BB′
indicating that the propagators B and B′ have been cut, indeed we take

the residues with respect to their poles, and such propagators disappear in the final
result. The remaining particles C and C ′ are evaluated close to their on-shell values
making the diagram singular.

Making use of (B.3.1) it is not difficult to check that each combination of derivatives
in the denominators of (7.2.25) can be written in a simpler form and the result for
the singular diagram is given by

I□ = 1
(s− s0)2

i

8

[
1

∆BB′

1
dC2

ds

∣∣∣∣
B,B′

1
dC′2

ds

∣∣∣∣
B,B′

+ 1
∆C′B

1
dC2

ds

∣∣∣∣
C′,B

1
dB′2

ds

∣∣∣∣
C′,B

]
.

In the first term the particles B and B′ are on-shell and the derivatives are performed
at fixed values p2

a = m2
a, p2

b = m2
b , B2 = m2

B, B′2 = m2
B′ . In the second term the
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vectors having fixed lengths are instead pa, pb, C ′ and B. Multiplying by the usual
vertex and flux factors (7.2.11) and writing the pole in terms of the rapidity difference
as in (7.2.12) we obtain

D□ = 1
(θ − θ0)2

1
45fBaC̄fCbB̄′fB′āC̄′fC′b̄B̄

[∆B′C

∆ab

+ ∆B′B

∆ab

]
. (7.2.26)

To verify that the two results in (7.2.26) and (7.2.23) are the same we just write the
triangle areas in terms of vector products and note that〈

CB′
〉
+
〈
B′B

〉
=
〈
(C −B)B′

〉
=
〈
paB

′
〉
.

The box integral near to the Landau pole can be written both as a single term,
D(B,C), given by cutting the internal propagators B, C and multiplying by the
Jacobian factor 1

8i∆BC
, or as a sum over two terms. Each one of these two terms,

D(B,B′) and D(B,C ′), corresponds to a particular cut. A pictorial representation
of the two different ways of writing the singularity is shown in figure 7.5.

In summary, we have seen that the anomalous threshold singularity of the box integral
can be written as different sums over residues. To each residue a Feynman diagram
decomposition is associated, in which propagators having poles in the integration
contour disappear, i.e. they are cut. In this manner, the diagram behaves as a
tree-level graph with more external on-shell particles. The different ways in which
the loop can be broken into sums of these atoms (we refer sometimes to the full
diagram as a molecule, and to its residue decompositions as atoms) are dictated by
the on-shell description of the diagram. In the case considered the choice of B and
C to define the integration variables is a bit special. The triangle defined by these
two vectors is the ‘thinnest’ among the triangles reported on the RHS of figure 7.3
and all the other momenta (B′ and C ′) are linear combinations of B and C having
negative coefficients. The complete result is therefore obtained by cutting B and C.
We report below some of the different sums over cuts through which the box integral
can be written

D□ = D(B,C) = D(B,B′) +D(B,C ′) = D(B′, C) +D(C ′, C). (7.2.27)

The first equality in the expression above is given by closing both the u and v

contours in (7.2.20) in the lower half-plane. In this way, we obtain a single term
generated by cutting the propagators associated with momenta B and C, i.e. the
special vectors with respect to which all the other momenta are negative linear
combinations. The second equality in (7.2.27) corresponds to closing the u-contour
in (7.2.20) in the lower half-plane (there is a single pole in the integration path due
to the B-propagator) and the v-contour in the upper half-plane. Since now there
are two poles in the integration v-contour we have a sum over two different cuts,
associated with B′ and C ′. On the other hand on the RHS of the third equality
in (7.2.27) we have performed before the integration over v, closing the integration
path in the lower half complex plane. The v-contour encloses a single pole of the
propagator associated with the particle C, and therefore we obtain a single residue
corresponding to the cut of the C-propagator. Then closing the u-contour in the
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upper half-plane we obtain a sum over two residues, one corresponding to cutting
the B′-propagator and the other corresponding to cutting the C ′-propagator.

In the following sections, we will study networks of Feynman diagrams contributing
to some higher-order singularities. In this context, it is important to understand how
to decompose each diagram of the network in a clever way, so as to make manifest
the simplifications. We will show how special decompositions of diagrams connected
by flipping internal propagators sum to zero and the total result is given by only a
few surviving cuts. We proceed to study this phenomenon for 2nd-order poles and
then we move to 3rd-order poles.

7.3 Second-order poles

Second-order poles in the bootstrapped S-matrix appear when two building blocks,
both of multiplicity equal to one, touch each other and a product of the form
{x− 1}{x+ 1} is present. These are even order singularities with N = 1 and ν = 0,
for which the formula (7.1.4) becomes

Sab(θ) ∼ 1 +
(
g2

2h

)2 1
(θ − iθ0)2 . (7.3.1)

The singular part of the S-matrix can be explained in terms of threshold singularities
and was computed for the first time using perturbation theory in a paper by Braden,
Corrigan, Dorey and Sasaki [69]. What is not clear from that paper is the reason
why Feynman diagrams connected by flipping internal propagators, that normally
cancel at the tree level in 4-point non-diagonal processes, do not sum to zero at loop
level. In this section we show that this fact is related to how the loop diagrams are
cut and we write explicitly the surviving cuts contributing to the final result.

There are in total four Feynman diagrams contributing to the pole connected by flips
of type II, according to the convention discussed in section 4.1. The full network
of Feynman diagrams, together with their on-shell dual description, is reproduced
in figure 7.6. The external shape of each on-shell diagram entering the network is
always the same, representing the external particles; it is a parallelogram having
as sides the masses of the asymptotic incoming and outgoing states. Internally the
parallelogram is filled with triangles, representing 3-point vertices, having as sides
the masses of the propagators. An internal empty gap is necessary for the diagrams
number (2) and (4) on the RHS of figure 7.6 to represent propagators that cross
each other. Starting from any diagram of the network we can generate all the others
by flipping internal propagators. For example, to pass from diagram (1) to diagram
(2) in figure 7.6 we apply a flip on the RHS part of diagram (1): the positions of the
vectors B and B′ are exchanged and C ′ is flipped into C. As explained in section 4.1
this is a flip of type II and does not change the product of the 3-point couplings
entering the diagram. The same type of flip connects also the remaining diagrams
of the network to one another. After each flip, the product of the 3-point coupling
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Figure 7.6: Network of Feynman diagrams (on the left) and their on-
shell description (on the right) contributing to a second-
order pole.

does not change sign and we have

fBaC̄fCbB̄′fB′āC̄′fC′b̄B̄ =︸︷︷︸
(1)→(2)

|fBaC̄ |2|fCbB̄′ |2 =︸︷︷︸
(2)→(3)

fBbC̄′fC′aB̄′fB′b̄C̄fCāB̄

=︸︷︷︸
(3)→(4)

|fBaC̄ |2|fBbC̄′ |2 =
( 4g√

h

)4
.

Since diagrams (2) and (4) contain products of 3-point couplings that are necessarily
positive, being the absolute values squared of certain numbers, the product of the
f -functions has positive sign and it is given by

(
4g√

h

)4
. Using this fact combined

with (7.2.26) the first diagram of the network in 7.6 can be written as

D(1) = 1
(θ − θ0)2

(
g2

2h

)2[∆B′C

∆ab

+ ∆B′B

∆ab

]
, (7.3.2)

where, as already explained in the previous section, the two pieces in the sum (7.3.2)
represent two different cuts of the box.

The values associated with the other diagrams are straightforwardly obtained in the
same way. Diagram number (3) is similar to diagram number (1); in this case we
write its numerical value summing the cuts D(4)(C,B′) and D(4)(C,C ′). It is given
by

D(4) = 1
(θ − θ0)2

(
g2

2h

)2[∆C′B

∆ab

+ ∆C′C

∆ab

]
.

The remaining diagrams (2) and (4) are also simple; their integrals are
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Figure 7.7: Feynman diagrams decomposition into sums of products
of tree-level graphs.

I(2) = 1
(s− s0)2

1
(2π)28i∆BB′

∫
dudv

1
u+ iϵ︸ ︷︷ ︸

B

1
v + iϵ︸ ︷︷ ︸

B′

1(
dC2

ds

∣∣∣∣
B,B′

−∆CB′
∆BB′

u− ∆CB

∆BB′
v + iϵ

)2

︸ ︷︷ ︸
C

,

I(4) = 1
(s− s0)2

1
(2π)28i∆CC′

∫
dudv

1
u+ iϵ︸ ︷︷ ︸

C

1
v + iϵ︸ ︷︷ ︸

C′

1(
dB2

ds

∣∣∣∣
C,C′

−∆BC′
∆CC′

u− ∆BC

∆CC′
v + iϵ

)2

︸ ︷︷ ︸
B

.

Each one of the two results is given by a single cut, which is D(2)(B,B′) in the case
of diagram number (2) and D(4)(C,C ′) in the case of diagram number (4):

D(2) = 1
(θ − θ0)2

(
g2

2h

)2 (−∆BB′

∆ab

)
,

D(4) = 1
(θ − θ0)2

(
g2

2h

)2 (−∆CC′

∆ab

)
.

The full network of diagrams and its on-shell description, both cut into tree-level
graphs, are depicted in figures 7.7 and 7.8 respectively. In figure 7.8 we plot with the
same colour loop decompositions that differ by a single 4-point non-elastic tree-level
diagram in which one propagator is flipped. For example, looking at the blue cuts, we
see that on RHS there are two tree-level diagrams in which a particle propagating in
the t-channel and a particle propagating in the u-channel are simultaneously on-shell.
These tree-level graphs cancel in the sum to forbid poles in non-elastic scattering at
the tree level. The effect is that only two among the six different cuts in figure 7.8
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Figure 7.8: On-shell decomposition of diagrams into the product of
tree-level graphs. The numerical values of the diagrams
are reported omitting an overall factor 1

(θ−θ0)2

(
g2

2h

)2
.

contribute to the final result; they are the two black atoms having values

D(1)(B,C ′) = 1
(θ − θ0)2

(
g2

2h

)2 ∆B′C

∆ab

and D(3)(B′, C) = 1
(θ − θ0)2

(
g2

2h

)2 ∆BC′

∆ab

.

(7.3.3)

A general property is that given a point inside a parallelogram the sum of the areas
of the two triangles on the opposite sides of the point is equal to half the area of the
parallelogram. In our case we have ∆B′C + ∆BC′ = ∆BC + ∆B′C′ = ∆ab. Therefore
summing the surviving contributions in (7.3.3) we obtain

D(1)(B,C ′) +D(3)(B′, C) = 1
(θ − θ0)2

(
g2

2h

)2
, (7.3.4)

that exactly matches the leading order part of the second order singularity in the
bootstrapped S-matrix.

This result has been achieved noting that some atoms in the network differ from
each other by the presence of a pair of 4-point tree-level non-elastic diagrams con-
nected by flipping an internal propagator. Such atoms simplify in the final sum
so that only two cuts among the four initial diagrams are relevant and contain the
information necessary to obtain the S-matrix at the pole position. The problem of
evaluating all the Feynman diagrams at their threshold singularity reduces therefore
to a decomposition problem, in which the only relevant thing is to understand how
the loop needs to be cut. Then, without evaluating every single cut, we know what
are the cuts cancelling in the sum and we reproduce the final result by evaluating
only the surviving terms.
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Figure 7.9: Triangle diagram (on the left) and its on-shell repres-
entation (on the right).

7.4 Third-order poles

We now focus on the origin of third-order poles, restricting our analysis to the forward
channel since poles in the crossed channel can be obtained by sending θ → iπ − θ

through crossing symmetry. A general S-matrix, presenting two building blocks of
the following structure {x− 1}2{x+ 1}, will be considered. The Laurent expansion
of the bootstrapped S-matrix around the pole θ = iθ0 = iπx

h
has a leading order

expansion in g given by

Sab(θ) ∼ 1 + i
(
g2

2h

) 1
(θ − iθ0)

+
(
g2

2h

)2 1
(θ − iθ0)2 + i

(
g2

2h

)3 1
(θ − iθ0)3 , (7.4.1)

where the relation above is obtained by substituting N = 1 and ν = i in (7.1.4). It
would be interesting to understand how the different terms in (7.4.1) are generated
in perturbation theory. The identity is of course the non-interacting part of the S-
matrix while the contribution i

(
g2

2h

)
1

(θ−iθ0) comes from a tree-level diagram in which
an intermediate bound state is propagating. Since a detailed study of tree-level
scattering has already been performed in the previous chapter, we focus here only on
the last two contributions in (7.4.1), having poles of order two and three respectively.

7.4.1 Vertex corrections contributing to third-order
singularities

Before moving into the study of the S-matrix we focus on possible singular vertex
corrections. Such corrections are due to diagrams of the form shown in figure
7.9, when along the loop integration there exists a point in which all the internal
propagators are on-shell. We focus first on the problem of determining the sign of
the product of the 3-point couplings appearing in the diagram.

Consider the forbidden process a+ b → A+ B̄, with different incoming and outgoing
states. The event is well reproduced on the RHS of figure 7.9, where pc and C ′

correspond to a copy of particles propagating respectively in the forward and crossed
channels. Since the two channels are connected by a flip of type III, according to
the conventions used in section 4.1, the product of the couplings entering the two
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different channels changes sign after the flip. We have

fB′aC̄′fC′bĀ′ = −fabc̄fĀ′cB′ .

Multiplying both the right and the left hand sides of the expression above by fA′c̄B̄′ =
f ∗

Ā′cB′ we obtain

fB′aC̄′fC′bĀ′fA′c̄B̄′ = −
( 4g√

h

)2
fabc̄. (7.4.2)

This is a universal formula connecting the product of the f -functions entering the
tiling of a 3-point coupling C(3)

abc to the f -function fabc of the coupling.

The pole residue at (p(0)
a + p

(0)
b )2 = m2

c ≡ s0 can be derived by parametrising the
internal loop momenta in the following way

(A′ + l)2 −m2
A′ + iϵ = 2A′ · l + l2 + iϵ

(B′ + l)2 −m2
B′ + iϵ = 2B′ · l + l2 + iϵ

(C ′ + l)2 −m2
C′ + iϵ = dC ′2

ds

∣∣∣∣
A′,B′

(s− s0) + 2C ′ · l + l2 + iϵ

(7.4.3)

where we have chosen A′ and B′ to be the on-shell vectors around which to expand
the integral. Using the relation in (7.2.10) we obtain

I△′ = 1
s− s0

∫ d2l̃

(2π)2
1

2l̃ · A′ + iϵ

1
2l̃ ·B′ + iϵ

1
dC′2

ds

∣∣∣∣
A′,B′

+2C ′ · l̃ + iϵ
. (7.4.4)

We adopt the usual choice of integration variables

u = 2l̃ · A′ , v = 2l̃ ·B′. (7.4.5)

The relation in (7.2.14) allows to express C ′ as a linear combination of A′ and B′

leading to the following expression for the integral

I△′ = 1
s− s0

1
(2π)28i∆A′B′

∫
dudv

1
u+ iϵ

1
v + iϵ

1
dC′2

ds

∣∣∣∣
A′,B′

− ∆C′B′
∆A′B′

u− ∆C′A′
∆A′B′

v + iϵ
.

(7.4.6)
As in the box case, the integral can be easily computed by closing both the u and
the v contours in the lower half-plane. Using Cauchy’s residue theorem the result is

I△′ = i

8∆A′B′

1
dC′2

ds

∣∣∣∣
A′,B′

1
s− s0

= i

8
∆ab

∆B′C′∆A′C′

1
s− s0

. (7.4.7)

The last equality has been obtained by performing the derivative of C ′2 with respect
to s keeping the lengths of A′ and B′ fixed at their mass-shell values.

After having inserted the extra vertex and propagator factors (first two lines in
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Figure 7.10: Three types of vertex corrections contributing to a
third-order pole.

(7.2.11)) we obtain that the final value of the Feynman diagram is

D△′ = i

8
∆ab∆A′B′

s− s0
fA′c̄B̄′fB′aC̄′fC′bĀ′ = − g2

2hfabc̄
∆A′B′

θ − iθ0
(7.4.8)

where in the second equality above we used (7.4.2) and we expressed s− s0 in terms
of θ.
In all the cases analysed exactly three vertex corrections are found. This is a fact
noted in [69] that still requires an explanation in terms of root system properties. The
three different vertex corrections are reported in figure 7.10 following an increasing
order with respect to the angle formed between pa and the internal propagators C ′,
C and C ′′. It has been observed that their constituents always satisfy the following
universal relations

∆B′C′ + ∆BC + ∆B′′C′′ = ∆ab

∆A′C′ + ∆AC + ∆A′′C′′ = ∆ab

∆A′B′ + ∆AB + ∆A′′B′′ = ∆ab.

(7.4.9)

It is still unexplained how these identities are satisfied, though it is reasonable to
believe that they follow from universal properties of the Coxeter geometry associated
with root systems. Summing the three vertex corrections and combining (7.4.8)
with the third line in (7.4.9) we obtain the universal formula for the leading order
singularity of the vertex contributing to a third-order pole in the S-matrix. It is
given by

D△′ +D△ +D△′′ = − g2

2h
fabc̄∆ab

θ − iθ0
= − g2

2h
Cabc̄

θ − iθ0
. (7.4.10)

7.4.2 One-loop contributions

We show how to use the vertex correction (7.4.10) to compute the leading order
expansion of the S-matrix around the pole position. We compute one loop contribu-
tions first, which are responsible for the coefficient of order (θ− iθ0)−2 in the Laurent
expansion around the third-order pole in (7.4.1). To each vertex correction D△′ ,
D△ and D△′′ three singular Feynman diagrams are associated, connected by flipping
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Figure 7.11: Part of the one loop network of Feynman diagrams
contributing to the coefficient a2 (according to the
notation in (7.1.2)) of the Laurent expansion around
a third-order pole. In the second line cut diagrams are
shown. Diagrams of the same colour cancel in the sum
since they differ by a pair of flipped 4-point tree-level
graphs.

internal propagators. We show in figure 7.11 the three diagrams associated with the
vertex correction D△′ . We start by considering a one-particle reducible Feynman
diagram having on the LHS a vertex correction of type D△′ and in which a bound
state is propagating on its on-shell value. Both D△′ and the propagating bound state
carries a pole of order one so that their product generates an order two singularity,
matching the order 1

(θ−θ0)2 we intend to analyse. Among the three different diagrams,
two cancel in the sum (the blue ones in figure 7.11). Indeed when we compute the
loop integral they split into tree-level graphs two of which differ by flipping one
internal propagator. The sum of the three graphs in figure 7.11 is therefore simply
given by a single one-particle reducible graph presenting in order a 3-point vertex
(−iCabc̄), an on-shell bound state propagator i

s−s0
and the one loop vertex correction

D△′ . Since we need to repeat the same analysis for Feynman diagrams obtained by
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flipping one-particle reducible graphs containing D△ and D△′′ the final result for the
second-order coefficient of the Laurent expansion is proportional to

(−iCabc̄)
i

s− s0
(D△′ +D△ +D△′′).

By adding the flux factor as written in the third line of (7.2.11), using (7.4.10) and
expressing the pole in terms of the rapidity difference we obtain

1
32∆2

ab

g2

2h
|Cabc̄|2

(θ − iθ0)2 =
(
g2

2h

)2 1
(θ − iθ0)2 . (7.4.11)

This expression exactly matches the order (θ − iθ0)−2 of the S-matrix expansion
around the third-order pole obtained using the bootstrap.

7.4.3 Two-loop contributions

The maximal singular leading order term of the S-matrix on the pole position comes
from a two-loop computation. The complete network of Feynman diagrams, together
with their values, contributing to such a result was found for the first time in [69].
However, in that paper, the authors limited themselves to giving the final answer,
and did not explain the simplification structure underlying the network. In this
section we show how the result comes entirely by summing proper cuts located
at the boundary of the network while the bulk part simplifies. Using the flipping
move discussed in section 4.1 we also explain how to obtain the correct sign of each
Feynman diagram.

The network of singular diagrams is well represented in the PhD thesis of Patrick
Dorey [104], from which figure 7.12 is extracted and has a disk topology. Indeed,
after six vertical steps along the first column, the diagrams repeat periodically. The
diagrams in the first two columns, together with the three isolated graphs D(−2),
D(−1) and D(0), are planar. The diagrams D(13), . . . , D(23) in the centre of the disk
are instead non-planar and gaps are added in their tilings to represent propagators
that cross. Moreover, graphs in the network connected by a line are related by a
flip. Always following the convention of section 4.1, the first and the second column
are connected by a flip of type I, while in all the other situations (both moving from
the second to the third column, from the third to the fourth column and from the
fourth column to the central diagram D(23)) the flip entering in play is of type II.

Among the different graphs, the one-particle reducible ones are particularly simple
to be computed. These diagrams are obtained by glueing vertex corrections on the
opposite sides of an on-shell bound state propagator. They are reported in the first
column (containing diagrams D(1) . . . D(6)) and in the isolated part of the network,
comprising D(−2), D(−1) and D(0). In total there are 9 one-particle reducible diagrams
of this type, 3×3 since there are three types of vertex corrections, as shown in figure
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Figure 7.12: Network of Feynman diagrams (copied from [104]) con-
tributing to the a3 coefficient (see (7.1.2)) of a 3rd-order
pole.
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7.10. Summing over all the one-particle reducible two-loop diagrams we obtain

S
(1pr)
ab (θ) = 1

8i∆ab

(D△′ +D△ +D△′′) i

s− s0
(D△′ +D△ +D△′′)

= −i
(
g2

2h

)3 1
(θ − iθ0)3 ,

(7.4.12)

where in the last equality we used relations (7.2.12), (7.4.10) together with the area
rule (7.1.5). The result in (7.4.12) is universal, valid whatever simply-laced Toda
model we are considering. However, as remarked in [69], it carries a minus sign
compared to the result expected from the expansion of the bootstrapped S-matrix
(7.4.1). We will show now how the remaining diagrams D(7), D(8), . . . , D(23) conspire
to reproduce exactly 2 × i

(
g2

2h

)3
1

(θ−iθ0)3 in such a way that summing this new term
to (7.4.12) we obtain exactly the expected coefficient present in (7.4.1) in front of

1
(θ−iθ0)3 .
The contributions necessary to restore the bootstrapped result come from cuts of the
double-box diagrams D(7), D(8), . . . , D(12). We explain what cuts we need first; then
we show why these cuts are the correct ones. For all these diagrams we can decide
to remove respectively the top left and the top right vertices or the bottom left and
the bottom right vertices. The important thing is that once we choose what vertices
to remove, those that sit at the top or the bottom of the graph, we need to maintain
the same choice for all the diagrams in the second column of the network 7.12.
We decide to locate the cuts at the top of the diagrams, as it is shown in figure 7.13
where the graph D(8) is considered. The cut is associated with a particular residue
that is picked up when we compute the integral. The result is given by

I(8) ⇝
i

8∆BC

i

8∆A′′C′′

1
dA2

ds

1
dB′′2

ds

1
dC′2

ds

1
(s− s0)3

= i

8∆BC

i

8∆A′′C′′

∆ab

∆AC

∆ab

∆B′′C′′

(−∆ab

∆BA′′

) 1
(s− s0)3 .

(7.4.13)

The two factors i
8∆BC

and i
8∆A′′C′′

are the Jacobian determinants (multiplied by
imaginary units coming from the Cauchy’s theorem) of the choice of variables adopted
to perform the integration. The integration variables are 2B · l = ul, 2C · l = vl for
the box on the LHS part of the diagram and 2A′′ ·k = uk, 2C ′′ ·k = vk for the box on
the RHS. Then there are the propagators that have not been cut; close to the pole
they are given by 1

A2−m2
A

= 1
dA2
ds

(s−s0)
, 1

B′′2−m2
B′′

= 1
dB′′2

ds
(s−s0)

, 1
C′2−m2

C′
= 1

dC′2
ds

(s−s0)
.

The derivatives in the denominators are performed in the last equality of (7.4.13)
keeping fixed the lengths of the momenta associated with the cut propagators. At
this point we still need to multiply the expression in (7.4.13) by the remaining
quantities in (7.2.11), and write the pole in terms of the rapidity. To this end we
compute the product of the f -functions entering the 3-point vertices of the diagrams
D(7), . . . , D(12).
The flip used to pass from the double-vertex graphs (D(1), . . . , D(6)) in the first
column to the double-box diagrams in the second column (D(7), . . . , D(12)) of figure



7.4. Third-order poles 161

Figure 7.13: Example of a cut contributing to the final result.

7.12 is of type I and does not change the sign of the product of the 3-point couplings.
Therefore, if we use relation (7.4.2), the product of the f -functions entering the
different graphs in the second column of the network is always given by[

−
( 4g√

h

)2
fabc̄

][
−
( 4g√

h

)2
fāb̄c

]
=
( 4g√

h

)6
. (7.4.14)

Using this fact and multiplying the expression (7.4.13) by the remaining terms in
(7.2.11) the cut of the diagram D(8) can be written in terms of the rapidity difference
as

D(8) ⇝ i
(

g√
2h

)6 ∆AB′′

∆ab

1
(θ − iθ0)3 . (7.4.15)

The result for the cut is proportional to the area ∆AB′′ of the triangle in the central
bottom part of the graph. At this point, we note that D(8) admits a related diagram,
D(11), which is exactly D(8) rotated by an angle π. If we decide to cut such a diagram
in the same way, i.e. we remove the top left and the top right vertices, the associated
cut is given by

D(11) ⇝ i
(

g√
2h

)6 ∆BA′′

∆ab

1
(θ − iθ0)3 .

Noting that ∆AB′′ + ∆BA′′ = ∆AB + ∆A′′B′′ the sum of these two cuts is

i
(

g√
2h

)6 1
∆ab

1
(θ − iθ0)3 (∆AB + ∆A′′B′′).

The same analysis can be repeated for the copy of diagrams D(7) and D(10), which
again are related by a rotation of a π angle. In this situation, we obtain that the sum
is proportional to ∆A′B′ + ∆A′′B′′ . Finally summing the results obtained by cutting
the 3-point vertices on the top of diagrams D(9) and D(12) generates ∆AB + ∆A′B′ .
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The sum of the 6 cuts of the diagrams in the second column is therefore given by

12∑
n=7

D(n) ⇝i
(

g√
2h

)6 1
∆ab

1
(θ − iθ0)3 2(∆AB + ∆A′B′ + ∆A′′B′′)

=2i
(

g√
2h

)6 1
(θ − iθ0)3 ,

(7.4.16)

where in the last equality the third identity in (7.4.9) has been used. This result
summed to (7.4.12) generates the expected answer predicted by the bootstrapped
S-matrix.
The relations we obtained, both the formula in (7.4.12) and the contribution in (7.4.16)
are universal; they do not depend on the particular simply-laced Toda theory we are
considering and their sum returns the correct bootstrapped result. Two questions
arise at this point. First of all, we did not explain why the cuts that we considered
for the double-box integrals should reproduce exactly the right answer. Secondly,
we still need to explain why we are not considering the non-planar graphs present
in the centre of the network. In the remaining part of this section, we answer these
questions.
Let us consider the computation of the graph D(8) in more detail. Looking at figure
7.13 we see that such a Feynman diagram is composed of two boxes, one on the RHS
comprising the momenta C̄ ′, B′′, C ′′ and A′′, the other one on the LHS comprising
the momenta C, A, C̄ ′ and B. In the on-shell diagram in figure 7.13 we have reversed
the direction of the C ′-vector compared to the vertex correction in figure 7.10 to make
the loop integration more smooth; this is consistent if at the same time we change
the particle label C ′ with its antiparticle C̄ ′ as we did in 7.13. Each momentum
carries then a loop integration variable, say l for the momenta flowing in the LHS
box and k for the momenta flowing in the RHS one, with C̄ ′ containing both l and
k since it belongs to both the boxes. If all the LHS momenta are translated by
l with propagators 1

(C+l)2−m2
C+iϵ

, 1
(A+l)2−m2

A+iϵ
, 1

(B+l)2−m2
B+iϵ

and similarly the RHS
propagators are translated by k, then C̄ ′ is translated by the quantity l + k. The
double-box integral can then be performed by computing one at a time the single-box
integrals, before the one on the RHS and then the one on the LHS of the graph. If
we integrate first the loop variable k we note that both B′′ and C̄ ′ can be written
as negative linear combinations of A′′ and C ′′, therefore the box on the RHS can
be broken cutting the propagators associated with the particles A′′ and C ′′: the
integration generates a single residue as explained in the previous section. Similarly,
on the LHS box, we see that the two vectors with respect to which all the others are
negative linear combinations are A and C. Indeed both C̄ ′ and B can be written
as linear combinations of them with negative coefficients. Integrating over l we can
write the sum over residues of the LHS box equivalently as a single cut (A,C) or as
a sum of two cuts (B,C) and (B,C ′) exactly as we did in the expression (7.2.27).
In this case, we obtain

D(8) = D(8)(A,C,A′′, C ′′) = D(8)(B,C,A′′, C ′′) +D(8)(C ′, C, A′′, C ′′) (7.4.17)

In the first equality, we have written the complete result for the double box integral
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Figure 7.14: Atoms contributing to the third-order pole coefficient
of the S-matrix (in black) and additional coloured
terms coming from Cauchy’s residue theorem cancel-
ling the internal part of the network.
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corresponding to the diagram D(8). It corresponds to a single tree-level diagram
obtained by cutting the propagators A, C, A′′ and C ′′. However, similarly to what
happens in the one-loop case, it is possible to write the result as a sum over different
cuts, corresponding to different choices of residues when we use Cauchy’s theorem. In
this respect D(8)(B,C,A′′, C ′′) returns the desired cut contributing to (7.4.16) while
the remaining atom D(8)(C ′, C, A′′, C ′′) (the green shape in figure 7.14) will cancel
out with some bulk contribution of the network, as it will be shown in one moment.
In figure 7.14 all the cuts associated with the boundary of the network are reported.
The black pieces are the desired cuts contributing to the final result expected from
the bootstrapped S-matrix while the coloured cuts cancel out with the bulk part of
the network. The cancellation mechanism inside the bulk is shown in figure 7.15.
Apart from the diagram number (7), which entirely contributes to the boundary
and generates a zero remainder, all the other diagrams D(8), . . . , D(12) are split into
more pieces, some contributing to the bootstrapped answer, the others cancelling
the diagrams D(13), . . . , D(23) in the central part of the network. The cancellation
mechanism happens in different sectors, which we depicted with different colours
in figure 7.15. There are in total nine pairs of cut diagrams composed of graphs
differing by a single flipped four-point tree-level diagram. If we look for example
at the green cuts associated with the diagrams D(8) and D(13) in figure 7.15 we see
they are equal but for a singular tree-level graph that is flipped passing from D(8)

to D(13). Since the sum of such a pair of tree-level diagrams is zero, the sum of
the two green atoms is null. In addition to these pairs of canceling atoms there are
also six blue cuts coming from diagrams D(10), D(15), D(16), D(20), D(21), D(23) that
are equal with respect to their 3- and 4-point part but present different 5-point tree-
level diagrams. All these 5-point terms contribute to the singular part of a 5-point
scattering process and therefore they generate a zero amplitude after the sum as
explained in appendix C. This is a mere consequence of the tree-level perturbative
integrability of the model, which forbids production processes at the tree level.

Despite the result being expected from the bootstrap, it is surprising. The pole
structure of the bootstrapped S-matrix emerges in perturbation theory from an
underlying simplification which is explained using only the tree-level properties of
the model. How the different atoms of the internal parts of the network simplify
against each other is reminiscent of the divergence theorem: only a subset of the
original Feynman diagrams reproduces the expected answer through contributions
entirely located at the boundary. How the loops need to be cut to observe such
simplification is however still an empirical fact and in some cases not immediately
evident from the on-shell structure of the Feynman diagrams. The most difficult
situations are found when the loop is split into more than two atoms, as happens
for diagrams D(10), D(16) and D(21). In all this, a fundamental role is played by
the fusing angles associated with the on-shell geometry of the Feynman diagrams
that determine which cuts are allowed and which are forbidden. These angles are
determined by the root system underlying the theory and it is reasonable to believe
that a deeper understanding of what is observed, which is based on a case by case
study of different models, can be found from general properties of the Coxeter
geometry. However, finding a proof is still an open problem.
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Figure 7.15: Cancellation mechanism in the bulk part of the Feyn-
man diagram network. Atoms of the same colour are
equal but for singular tree-level diagrams contributing
to non-allowed processes therefore they sum to zero.
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In the remaining part of the chapter other universal properties of the Landau poles
are revealed by relying on observations made using such a cutting procedure.

7.5 Universal features of higher-order
singularities

We present general features of higher-order singularities starting by reviewing some
empirical properties of the geometry of the tiled parallelograms, as first discovered
in [69]. We show the relevance of these properties in the computation of certain
Laurent coefficients of the S-matrix expansion, following results that will be published
in [3].

In the region of purely imaginary rapidities, we can always associate to a n-point
scattering process a dual n-gon having as sides the masses of the interacting particles.
Following [69], we identify the depth of such a polygon with the number of elementary
triangles necessary to tile it completely. With elementary triangles we mean that
they have unit depth, i.e. they cannot be tiled into smaller constituents. For example,
the parallelogram corresponding to the second-order pole in figure 7.6 has a depth
equal to 4 since it can be tiled in four elementary triangles. Similarly, the fusing
triangle in figure 7.10 has a depth 3 since it can be tiled in three smaller vertices
having unit depth. From how it is defined it is clear that the depth is an additive
quantity and any figure composed by N constituents has a depth equal to

d =
N∑

i=1
di (7.5.1)

where di is the depth of each constituent. This is the same definition introduced
in [69]. If all the constituents we are looking at are elementary triangles then all of
them have unit depth and d = N . Instead, if one of the constituents, say j in the
sum, is not elementary, which means it can be further tiled in smaller pieces, the
total depth is obtained counting such term dj times; in other words, it contributes
to the sum with all its sub-pieces.

Under some circumstances, it may be interesting to look not at the complete tilings
of a polygon but only at some of its partial tilings. An example is provided by
figure 7.11 where to compute the second-order coefficient of the Laurent expansion
of the S-matrix around a third-order singularity we had to tile only partially the
parallelogram, contrarily to what happens in the network 7.12 where the full tiles
need to be taken into account. This example easily generalises as follows: to any
polygon of depth d a set of partial-depths are associated, defined as the set of
integer numbers ranging from 1 to d. We introduce here the concept of partial
depth, originally absent in [69], to explain the different coefficients ap of the Laurent
expansion (7.1.2). A parallelogram of depth d = 2P is associated with any pole of
order P of the S-matrix. Then the coefficient aP in (7.1.2) is generated by summing
Feynman diagrams corresponding to complete tilings of the parallelogram. All the
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lower order coefficients ap are instead obtained by summing over tilings of partial-
depth 2p. This is exactly what we did to obtain the coefficients a2 and a3 of the
expansion around the third-order pole: we summed over tilings of depth 4 and 6
respectively (see figures 7.11 and 7.12). This is not surprising if we think that we
are summing over Feynman diagrams with only 3-point vertices (remember that all
the diagrams with higher-point vertices contribute to the sub-leading coefficients
of the Laurent expansion). If we label the number of vertices by V , the number
of loops by L and the number of propagators by I the topology of such diagrams
imposes the relation V = 2I − 4L which is exactly equal to 2p, two times the order
of the pole as shown in (7.2.10). Since the number of vertices is exactly equal to
the number of constituents composing the tiling, and therefore to the partial (total)
depth considered, this agrees with our previous claim that the partial (total) depths
of the tilings contributing to the different coefficients ap are equal to 2p.

We distinguish now two different situations depending on the order P of the maximal
singular contribution: it can be even or odd.

Even-order poles. If the maximal singular contribution at the pole is even, say P =
2N (i.e. the bootstrapped S-matrix contains two bricks of the form {x−1}N{x+1}N),
then the parallelogram corresponding to the process has a depth 4N and there exist
N copies of the network 7.6 in which the internal constituents can further be tiled.
This is an empirical fact first observed in [69] that was applied in [2] to compute
the a2 coefficient of the S-matrix expansion. The derivation is the following. Each
of the N copies of the network is composed of tilings of partial depth 4 and can be
computed separately. It carries a contribution (7.3.4) so that the result given by the
sum over all the N copies is simply N times the result of a single network

Sab(θ) = 1 +N
(
g2

2h

)2 1
(θ − iθ0)2 + . . . (7.5.2)

This result is in agreement with what we observe in the bootstrapped S-matrix (7.1.4)
where the a2 coefficient of the expansion around the 2N th-order pole is the bino-
mial factor

(
N
1

)
. An example of pair of networks contributing to the second-order

coefficient around a 4th-order pole is shown in figure 7.16.

In the image we see that the two networks, at this depth level, are disjoint and are
not connected by any flip. Each one contributes separately to the final result. This
is no longer the case if we start searching for the tilings with a depth higher than
4, which in this case can be 6 or 8. The latter case corresponds to the search for
Feynman diagrams contributing to the a4 coefficient at the pole. The number of
such diagrams is huge. The graphs containing two vertices of depth 3 in figure 7.16
contribute with 9 Feynman diagrams (3 × 3 since each vertex of depth 3 counts 3
possible corrections of the form in 7.10) while the graphs containing a depth-four
parallelogram contribute with 4 diagrams (those coming from the second-order pole
network). In total there are 62 diagrams contributing to the a4 coefficient to which
we should add all the graphs obtained by them through the flipping move. The
fact that such a big number of diagrams should reproduce the simple result that
we observe in the bootstrapped S-matrix suggests that probably, as it happens for
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Figure 7.16: Pair of networks contributing to the a2 coefficient
(see (7.1.2)) of the Laurent expansion of the S-matrix
around a 4th-order pole. The example has been taken
from the e

(1)
8 affine Toda model and its masses are

reported with different colours following the order
m1 < m2 < · · · < m8. Inside the different tiles (apart
from those with unitary depth) their depth is reported.

third-order poles, the computation is reproduced by only a small number of cuts. It
would be very interesting to investigate the space of Feynman diagrams contributing
to such a simple result. On the other hand, there exist also Feynman diagrams
with partial depth equal to six. These are two-loop diagrams contributing to the a3
coefficient of the Laurent expansion around the pole. We expect a zero result for
this number. Indeed it is evident from the expression (7.1.4) that all the odd-order
coefficients of the expansion around a generic even-order singularity are zero. Once
again we do not have a motivation for why this happens, but it is probably due to
an underlying simplification that can be obtained by cutting the different diagrams
inside a network. A universal explanation, based on diagrammatic computations,
of the absence of all the odd-order terms in the expansion (7.1.4) around a generic
even-order pole would be very interesting.
Odd-order poles. If P in (7.1.2) is odd, then we have an odd-order singularity in
the S-matrix. In this case, the parallelogram associated with the diagonal process
can be split into two triangles each one of depth P . In the known examples coming
from affine Toda field theories, P can be any odd number from 1 up to and including
11.
Based on empirical observations we note that to each triangle of depth P = 2N + 1
we can associate N triplets of vertex corrections of the form in figure 7.10, so that
the triangle can be tiled exactly in 3N ways, as it was remarked in [69]. Then the
relations (7.4.9) are applied separately over each one of the N different triplets of
triangles (∆(1),∆(2),∆(3)), . . . , (∆(3N−2),∆(3N−1),∆(3N)). If we associate respectively
the label ∆a, ∆b and ∆c to the triangles constructed over the sides pa, pb and pc
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then we have
3∑

i=1
∆(3n−3+i)

a =
3∑

i=1
∆(3n−3+i)

b =
3∑

i=1
∆(3n−3+i)

c = ∆ab. (7.5.3)

for each triplet n = 1, . . . , N . This equality, pointed out in [3], is stronger than the
one noted in [69] in which the authors noticed that the sum over all the triangles
composing the 3N different tilings respect

3N∑
i=1

∆(i)
a =

3N∑
i=1

∆(i)
b =

3N∑
i=1

∆(i)
c = N∆ab.

The same sign rule (7.4.2) is applied to each one of the 3N different tilings. Labelling
by (f (i)

a , f
(i)
b , f (i)

c ) the three f -functions entering the 3-point couplings constructed
over the sides a, b and c in the i-th tiling, with i = 1, . . . , 3N , we have

f (i)
a f

(i)
b f (i)

c = −
( 4g√

h

)2
fabc̄. (7.5.4)

It is easy at this point to explain the origin of the coefficient a2 =
(

N
1

)
in the S-matrix

expansion (7.1.4). It comes by simply performing N times, one for each triplet of
vertex corrections, the computation reproduced in section 7.4.2, so that the final
result is simply given multiplying by N the result in (7.4.11) [3].
As happens for even-order singularities, also in this case to study the higher-order
coefficients of the Laurent expansion a3, a4, . . . we need to keep into account depths
of higher order. The N triplets of vertex corrections, that are disconnected at one
loop, by considering nested tilings start to become connected by flipping internal
propagators. We show an example of vertex corrections contributing to a 5th-order
pole in the next subsection.
We conclude this discussion of the properties of higher-order poles by noting that
the relation (7.5.4) can be iterated, a fact that was already known in [69]. We have
already explained that a triangle of total depth 2N + 1 can be tiled in three sub
triangles exactly in 3N ways. Then the triangles composing each one of these 3N
tilings can be further tiled in triangles and so on. By looking to more and more
nested tilings we end up with a configuration composed of 2N+1 pieces. By iterating
relation (7.5.4), the product of all the f -functions composing these maximal depth
tilings is given by

2N+1∏
j=1

f
(k)
j = (−1)N

( 4g√
h

)2N

fabc̄ (7.5.5)

where k = 1, . . . ,M labels the different tilings. The number M of possible different
tilings grows rapidly with N .

7.5.1 Two-loop vertex corrections and fifth-order poles

In this subsection the leading order singularity of a 3-point vertex having a depth
equal to 5 is computed and used to derive the one-particle reducible part of the
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S-matrix on a 5th-order pole. Also in this case the results obtained are universal,
valid in any simply-laced affine Toda model. The triangle in question can be divided
in three sub-triangles in exactly 6 different ways. We identify two triplets of tilings
at one loop, [(1, •), (2, •), (3, •)] and [(4, •), (5, •), (6, •)], satisfying separately the
relation (7.5.3) (with N = 2):

∆(1,•)
c + ∆(2,•)

c + ∆(3,•)
c = ∆ab and ∆(4,•)

c + ∆(5,•)
c + ∆(6,•)

c = ∆ab. (7.5.6)

We used the subscript letter c to indicate that we are summing, within the same
triplet, all the triangles constructed on the side c. The same relation is valid summing
the triangles constructed respectively on the a- and on the b-side as we pointed out
in (7.5.3).

Each one of these six different tilings is composed of two triangles having a depth
equal to 1 and one triangle having a depth equal to 3; the latter can therefore be
tiled in three different ways. The total depth, given by summing all the elementary
constituents of a single tiling is then 5. To take into account such a nested level of
tiles we use a second index, which is absent in (7.5.6) and substituted with a bullet.
Since for a given one-loop tiling we identify 3 additional nested tilings such a second
index takes values in {1, 2, 3}. Then the pairs of numbers (j, k), running respectively
from 1 to 6 and from 1 to 3, label the complete tiling. For example, the pair (1, 2)
indicates the tiling number one at the depth level 3, and among the three different
possibilities to further divide one of its constituents we choose the sub-tiling number
two. We did not identify a preferred order to arrange these tilings; we follow the
enumeration shown in figure 7.17. There, apart from the non-planar diagrams (7, 1),
(7, 2) and (7, 3)1, the tilings are arranged in two blocks of 9 diagrams each. The
six different rows label the main tiling, while the three columns provide a label for
the nested tilings. We then use the convention of labelling by ∆(j,•)

c the triangle
constructed over the side c in the one-loop configuration j while we label by ∆(j,k)

c

the triangle constructed over the side c in the nested tiling (j, k). To give an example,
∆(3,•)

c corresponds to the triangle ∆ce′′m′′ reported in any of the configurations (3, 1),
(3, 2) and (3, 3) in figure 7.17 while ∆(3,1)

c corresponds to ∆cd′′o that is one of the
components of the configuration (3, 1).

The two blocks of diagrams

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

and
{(4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (6, 1), (6, 2), (6, 3)}

in figure 7.17 are connected by flipping internal propagators. Starting from a generic
diagram of the first block we can generate a diagram of the second block acting
with a finite number of flips. In figure 7.17 we identified with the same symbol
diagrams connected by flips. Sometimes a single type I flip is enough to connect
the two diagrams in the different blocks; an example is provided by the tilings (1, 1)

1Note though that the example considered in figure 7.17 is degenerate. The momenta o and f
are parallel and this fact makes the diagram (7, 1) null.
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and (5, 1). According to the convention previously explained the little triangle ∆aih

common to both the tilings, can be equivalently labelled by ∆(1,1)
a or ∆(5,•)

a . In some
other situations, we need two flips of type II to connect the pair of diagrams. This
second case is represented by the pair of graphs (2, 3) and (5, 3). To pass from the
first diagram to the second one we need to pass through an intermediate non-planar
diagram (7, 2) acting with two flips of type II: (2, 3) → (7, 2) → (5, 3).

For each diagram in figure 7.17 we write its cut decomposition under it, representing
with different colours the cuts that cancel in pairs. The values of the non-cancelling
black atoms are reported under the diagrams, omitting an overall multiplicative
factor. We compute their sum one row at a time

3∑
i=1

D(1,i) = ∆(1,•)
c ,

3∑
i=1

D(2,i) = ∆(2,•)
c ,

3∑
i=1

D(4,i) = ∆(4,•)
c ,

3∑
i=1

D(5,i) = ∆(5,•)
c .

(7.5.7)

We also notice that

D(3,3) +D(6,3) = ∆jm′′n + ∆jmv

∆aj

∆cjx = ∆cjx, (7.5.8)

which implies
D(3,3) +D(6,3) = ∆(3,3)

c = ∆(6,3)
c . (7.5.9)

The sum of (7.5.7) and (7.5.9) is easily performed noting that ∆(4,•)
c = ∆(3,1)

c and
∆(5,•)

c = ∆(3,2)
c , so that

(7.5.7)+(7.5.9) = ∆(1,•)
c +∆(2,•)

c +∆(3,3)
c +∆(4,•)

c +∆(5,•)
c = ∆(1,•)

c +∆(2,•)
c +∆(3,•)

c = ∆ab,

where in the second equality we used

∆(3,1)
c + ∆(3,2)

c + ∆(3,3)
c = ∆(3,•)

c .

After introducing the proper overall multiplicative factor taking into account (7.5.5),
we obtain the value of the two-loop vertex correction at the pole

Dvertex = i
(
g2

2h

)2 fabc̄

(θ − iθ0)2 ∆ab = i
(
g2

2h

)2 Cabc̄

(θ − iθ0)2 . (7.5.10)

Differently from the one-loop vertex correction found in (7.4.10), the residue of
(7.5.10) is purely imaginary. This implies that the one-particle reducible part of the
S-matrix on the 5th-order pole acquires a different sign compared to the 3rd-order
pole S-matrix (7.4.12). In the present case we have

S
(1pr)
ab (θ) = 1

8i∆ab

Dvertex
i

s− s0
Dvertex = i

(
g2

2h

)5 1
(θ − iθ0)5 , (7.5.11)

that exactly matches the Laurent coefficient of order (θ − iθ0)−5 expected from the
bootstrapped relation (7.1.4) for N = 2 and ν = i. Surprisingly the one-particle
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Figure 7.17: Two-loop vertex corrections. Graphs with the same
symbol (△, ◦,□,▲, •,■,▲, •,■) are connected by flip-
ping one diagonal. Under each graph the cut propag-
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reducible diagrams reproduce the result expected from the bootstrap. In total there
are 21 × 21 = 441 such diagrams, since there are in general 21 different tilings of the
vertex, as reported in figure 7.17. Analogously to what happened for the 3rd-order
pole, we can then start applying flips on each of the one-particle reducible diagrams
to generate a network of Feynman diagrams contributing to the 5th-order pole. The
boundary of the 3rd-order pole network was composed of 9 one-particle reducible
diagrams (6 on the boundary of the disk plus the 3 separate diagrams D(−2), D(−1)

and D(0) in figure 7.12); similarly here we may have a boundary composed by 441
different diagrams. The internal part of the network contains therefore a tremendous
amount of graphs. Remarkably, all the irreducible graphs internal to the network
have to cancel between one another to reproduce the bootstrapped result. The
simplification should work in a similar way to what happens in figure 7.15, but with
a much bigger network. Finding the full network of singular diagrams and showing
that the particle-irreducible graphs of this network cancel between each other would
provide an important step forward in the understanding of the quantum integrability
of affine Toda models.





Chapter 8

Conclusions

One of the main motivations for the work carried out in this thesis was to provide
a better understanding of integrability in perturbation theory. While the axiomatic
bootstrap machinery allowed in the past decades to conjecture analytical results for
the S-matrices of a variety of (1+1)-dimensional integrable models, its connection
with Feynman diagram computations is often still ill-understood, as is the underlying
mechanism responsible for the cancellation of all non-elastic processes. An indication
that the bootstrap cannot be the end of the story comes from the fact that classically
integrable theories, having a Lax formulation of their equations of motion allowing
for the existence of an infinite tower of conserved charges, often are ruined at the
quantum level. Examples are provided by non simply-laced affine Toda models:
though is believed these theories are still integrable at quantum level [105], the
masses of the particles, fundamental to establishing the fusing angles entering the
bootstrap relations, renormalise in a bad way. This was observed already at one
loop [57] and makes the bootstrap construction much more convoluted [100]. Poles
in the S-matrices become coupling dependent and feeding the bootstrap with the
classical data simply leads to a wrong answer for the S-matrix elements. It is
therefore natural to ask if there is any connection between the axiomatic approach
proposed by Alexander and Alexei Zamolodchikov in [18] and the more standard
Feynman diagrammatic formulation of scattering amplitudes. In particular, it would
be important to discover a systematic approach to seeing if a theory is integrable in
perturbation theory and when loops modify its classical integrability.

As the first step in that direction, a systematic study of the absence of production
in bosonic massive quantum field theories with polynomial-like potentials has been
performed. By imposing the absence of off-diagonal processes at the tree level in
perturbation theory many constraints emerge on the mass spectrum and Lagrangian
couplings. Defining all the possible sets of masses and couplings satisfying these
constraints would correspond to classifying all the bosonic quantum field theories
with purely elastic S-matrices and polynomial-like potentials. Although we did
not pursue that goal, we checked the validity of these constraints for the class of
affine Toda quantum field theories proving in this way their tree-level perturbative
integrability. The proof has been formulated in such a way to be as rigorous as
possible and combine many results coming from different papers. Most importantly
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on-shell diagrams, contributing to singularities in amplitudes, are projections of
certain higher-dimensional polytopes composed of roots of the root system. The
cancellation of poles in non-elastic processes can then be proved by exploiting the
properties of the roots. To verify that all the non-elastic amplitudes are null an
important role has been played by the recursive approach [37], through which it
is shown how higher-order couplings can be recursively generated from the masses
and 3-point couplings. The same equation found in [37] by requiring the absence of
production at the tree level arises in all the affine Toda field theories by making use
of different Lie algebra properties.

At the tree level, no relevant distinction is made between simply- and non-simply-
laced affine Toda theories: in both cases the classical masses and fusing angles are
encoded in the underlying root systems leading to universal expressions for the tree-
level S-matrix elements. However, if we derive exact S-matrices from the tree-level
ones by promoting sums over building blocks to products of them, the non simply-
laced affine Toda theories generate inconsistencies. Indeed the powers to which
the building blocks are raised can in general be non-integer numbers, introducing
unexpected branch cuts in the S-matrices. The derivation of the quantum S-matrices
in non simply-laced cases is then further complicated by the fact that at the loop
level the mass ratios become coupling-dependent and a direct connection between
on-shell momenta and root projections is lost. Formulas for the exact S-matrices of
these theories have been proposed [100, 101, 103], but much of the elegance of their
simply-laced partners is lost. In contrast, for the ADE series of Toda theories, it was
verified that the mass ratios do not renormalize at one loop [57]. Therefore these
theories provide beautiful examples for studying perturbative quantum aspects of
integrable models.

A loop investigation of the higher-order poles arising in the bootstrapped S-matrices
of simply-laced affine Toda field theories has been performed. For each imaginary
value of the rapidity at which a higher-order pole is expected collections of singular
Feynman diagrams can be found and organised inside networks [69]: these diagrams
contain propagators inside loops that are all simultaneously on-shell, generating in
this way Landau singularities [39]. The number of Feynman diagrams contributing
to such singular values grows incredibly fast with the order of pole considered, which
is proportional to the number of loops. Not all the Feynman diagrams entering the
networks contribute to the results; many of them cancel each other out in a way
that can be traced back to the tree-level properties of the model. The only relevant
terms come from some particular cuts of the diagrams located at the boundary of the
networks, whose sum reproduces the expected value of the bootstrapped S-matrix at
the singularities. Differently from [69], where only the maximal singular contributions
of the S-matrix elements were studied, we performed the full Laurent expansion of the
bootstrapped S-matrices on the higher-order poles. Each coefficient of the expansion
can therefore be compared with perturbative calculations. While the coefficients a2
and a3 in equation (7.1.2) have been reproduced by networks of singular diagrams
lying on one- and two-dimensional surfaces respectively, it is reasonable to expect
higher dimensional networks for the coefficient an with n > 3. The coefficients
an, for n > 3, are reproduced in perturbation theory by Feynman diagrams with
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more than two loops and the computation can become very challenging. However,
simplifications are expected for all the coefficients. An example has been shown in
computing the one-particle reducible diagrams contributing to a4: surprisingly these
diagrams reproduce the expected result, meaning that all the one-particle irreducible
graphs, probably lying on the internal part of some higher-dimensional network, have
to cancel between one another. If on one hand more and more difficult networks are
generated by increasing the number of loops, on the other hand, we can keep the
number of loops fixed and study the lower order coefficients an in (7.1.2) for arbitrary
P . As a first case, it would be interesting to derive a3 in perturbation theory by
summing over two-loop diagrams for arbitrary P . Indeed the network 7.12 studied
in this thesis corresponds to the case P = 3, while two-loop networks contributing
to the coefficient a3 for arbitrary P have not been studied yet. If we search for
singular one-loop diagrams contributing to a2 for P arbitrary we find always the
same network repeated with higher multiplicities; something similar should happen
also for a3. An important difference is that a3 has to be null every time the order
P of the pole is even: this is important to have a matching with the bootstrapped
result in (7.1.4). We should also remark that despite the obtained results being
universal and independent of the particular simply-laced theory studied, we based
on a case by case analysis. More work is necessary to connect the obtained results
to root-system properties of the underlying Lie algebras in a universal way as it has
been done for the tree-level case. A possible approach to the problem would be to
reconstruct loop amplitudes starting from tree-level results. This would be possible
following an approach similar to that one used in [106, 107] and assuming as starting
point the universal expressions for the tree-level S-matrices of affine Toda theories
given in equation (6.4.2) in terms of the tree-level building blocks (6.4.3).

The tree-level perturbative integrability discussed in chapters 3 and 4 also leads to
different open problems. For example, it would be interesting to classify all Lag-
rangians showing purely elastic S-matrices at the tree level, employing the tree-level
bootstrap relations and flipping rule discussed in this thesis. While we proved that
all the affine Toda theories satisfy the constraints of pure elasticity, we did not verify
that these are the only such theories. The discussion can be generalized as well to
Lagrangians containing massive fields other than scalar ones, for which integrable
examples are known [108, 109], or having derivatives in the potential. By imposing
the absence of production, it may be possible to find all deformations preserving in-
tegrability at the tree level, rediscovering within this class the deformations presented
in [110, 111], whose Lagrangians are in most cases known [112].

Other deformations that can be studied by imposing the absence of production at tree
level are boundaries and defects [113, 114]: if properly defined, these impurities can
be introduced in integrable theories so to preserve a subset of the conserved charges
of the undeformed theory. In the context of affine Toda field theories, boundaries
and defect potentials have been found in [115] and [116] respectively by imposing
the survival of some conserved charges at the classical level. Approaching the same
problem from a different perspective, it would be interesting to study integrability-
preserving boundaries and defects by imposing the absence of production on the
impurity. The boundary and defect data necessary for the absence of production
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should be encoded in the root systems and it would be desirable to write the
boundary and defect potentials provided in [115, 116] in a way that makes the
absence of production more explicit. For example, a geometrical construction of the
boundary- and defect-couplings may be obtained by writing the field in a clever basis;
the Freeman construction [75] can be a possible approach to the problem. Finding
quantitative expressions for Landau singularities present in the conjectured boundary
reflection factors is also possible in principle. The prosaic origin of such singularities
has already been highlighted in [117] for certain integrable models and it would be
interesting to derive exact expressions for the residues at the poles by performing
perturbative computations as discussed for example in [118]. A perturbative study of
these impurities is further motivated by the fact that boundary and defect potentials
that are classically integrable can generate anomalies at the quantum level that
destroy the conservation laws [119, 120].



Appendix A

Double covering the complex plane

Property A.1. Given a fourth-order polynomial in z

R(z) = az4 + bz3 + cz2 + dz + e

such that the roots of R(z) = 0 are all unequal and the coefficients a and b are not
zero simultaneously, then there exists a map

z = αz′ + β

z′ + δ
(A.0.1)

making
R′(z′) ≡ (z′ + δ)4

(β − αδ)2R(z) (A.0.2)

of the form
R′(z′) = 4z′3 − g2z

′ − g3. (A.0.3)

Proof. By writing (A.0.1) as z = α + β−αδ
z′+δ

then (A.0.2) can be Taylor expanded
around z = α as

R′(z′) = R(α)
(β − αδ)2 (z′ + δ)4 + R(1)(α)

β − αδ
(z′ + δ)3 + R(2)(α)

2! (z′ + δ)2

+ R(3)(α)
3! (β − αδ)(z′ + δ) + R(4)(α)

4! (β − αδ)2,

(A.0.4)

where it has been defined R(n)(α) ≡ dnR
dzn

∣∣∣∣
z=α

. At this point it is possible to properly
tune the parameters α, β and γ in such a way to convert R′ in the form (A.0.3).
By choosing α to be one of the four roots of the polynomial R we obtain R(α) = 0;
in this way, the coefficient of the fourth power in z′ in (A.0.4) is made to vanish.
Subsequently, if it is set

δ = −R(2)(α)
24 and β = −R(2)(α)

24

(
α− 6R(1)(α)

R(2)(α)

)
(A.0.5)

R′(z′) is reduced to be a third-order polynomial of type (A.0.3).
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From property A.1 it follows that any rational function F in the variables z and√
R(z), where R is a generic polynomial of order four presenting different roots, can

be written as a rational function f in z′ and
√
R′(z′)

F (z,
√
R(z)) = F

(
αz′ + β

z′ + δ
,
(β − αδ)
(z′ + δ)2

√
R′(z′)

)
≡ f(z′,

√
R′(z′)). (A.0.6)

The initial function F is not single valued on C, indeed for each point z there are two
possible values of

√
R(z) defined over two different Riemann sheets. However after

the conversion (A.0.6) it is easy to map such a double cover of the complex plane to
a torus. This is achieved by using the parametrization z′ = ℘(x), where the symbol
℘ represents the Weierstrass elliptic function. To each value z′ on the complex plane
there are two different points x1 and x2 on a torus such that ℘(x1) = ℘(x2) = z′.
Moreover, the lattice Ω associated to ℘ is completely defined by a pair of numbers
g2 and g3 in terms of which ℘ satisfies the following differential equation

(℘(x)′)2 = 4℘(x)3 − g2℘(x) − g3.

Then the values of the derivative of ℘ at the points x1 and x2 are one the opposite of
the other and correspond to the two branches of solutions of

√
R′(z′). The starting

double valued function F can therefore be mapped into a single-valued periodic
meromorphic function

f(℘(x), ℘(x)′)

defined on a torus. This implies that if F (z,
√
R(z)) does not have any poles on

either of its Riemann sheets, then f(℘(x), ℘(x)′) has to be bounded on the torus,
and by Liouville’s theorem it must be a constant not depending on x.



Appendix B

The Cayley-Menger determinant

This appendix is extracted from [1] and collects some elementary geometrical prop-
erties of simplices; such properties are used in the thesis both to prove the absence
of singularities in inelastic processes and to compute values of Landau poles.

B.1 The basic formula

Let x0, x1, . . . , xn be n+ 1 points in Rn, and set Xij = ∥xi − xj∥2 for 0 ≤ i, j ≤ n.
Let vn be the n-dimensional simplex with vertices x0, x1, . . . , xn. Then a classic
result from distance geometry states that vol(vn)2, the square of the volume of vn,
is given by the Cayley-Menger determinant:

vol(vn)2 = (−1)n+1

(n!)22n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 X01 X02 · · · X0n 1
X10 0 X12 · · · X1n 1
X20 X21 0 · · · X2n 1

... ... ... . . . ... ...
Xn0 Xn1 Xn2 · · · 0 1

1 1 1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (B.1.1)

B.2 A generalisation

Now let x0, x1, . . . , xn+1 be n + 2 points in Rn, and set Xij = ∥xi − xj∥2 for
0 ≤ i, j ≤ n + 1. Let vn be the simplex with vertices x0, x1, . . . , xn, and vn+1
the simplex with vertices x0, x1, . . . , xn−1, xn+1. Note that vn and vn+1 have as a
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common face the n− 1 dimensional simplex with vertices x0, x1, . . . , xn−1. Then

vol(vn)vol(vn+1) = ε (−1)n+1

(n!)22n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 X01 · · · X0,n−1 X0n 1
X10 0 · · · X1,n−1 X1n 1

... ... . . . ... ... ...
Xn−1,0 Xn−1,1 · · · 0 Xn−1,n 1
Xn+1,0 Xn+1,1 · · · Xn+1,n−1 Xn+1,n 1

1 1 · · · 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(B.2.1)

where ε = +1/−1 according to whether xn and xn+1 lie on the same / opposite sides
of the codimension one hyperplane occupied by the common face. In the special
case where xn+1 = xn, we have ε = +1, vn+1 = vn, Xn+1,i = Xn,i for i = 1, . . . , n
and Xn+1,n = 0, and this reduces to the Cayley-Menger determinant.

To prove this result, we first set x0 = 0. Then RHS , the right-hand side of the above
formula, is equal to ε(−1)n+1

(n!)22n D, where D =
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ∥x1∥2 ∥x2∥2 · · · ∥xn∥2 1
∥x1∥2 0 ∥x1∥2−2x1·x2+∥x2∥2 · · · ∥x1∥2−2x1·xn+∥xn∥2 1
∥x2∥2 ∥x2∥2−2x2·x1+∥x1∥2 0 · · · ∥x2∥2−2x2·xn+∥xn∥2 1

... ... ... . . . ... ...
∥xn+1∥2 ∥xn+1∥2−2xn+1·x1+∥x1∥2 ∥xn+1∥2−2xn+1·x2+∥x2∥2 · · · ∥xn+1∥2−2xn+1·xn+∥xn∥2 1

1 1 1 · · · 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Subtracting the first row from every other row and the first column from every other
column except for the last ones,

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ∥x1∥2 ∥x2∥2 · · · ∥xn∥2 1
∥x1∥2 −2∥x1∥2 −2x1·x2 · · · −2x1·xn 0
∥x2∥2 −2x2·x1 −2∥x2∥2 · · · −2x2·xn 0

... ... ... . . . ... ...
∥xn+1∥2 −2xn+1·x1 −2xn+1·x2 · · · −2xn+1·xn 0

1 0 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding by the last row and column,

D = −

∣∣∣∣∣∣∣∣∣∣∣∣

−2x1·x1 −2x1·x2 · · · −2x1·xn

−2x2·x1 −2x2·x2 · · · −2x2·xn

... ... . . . ...
−2xn+1·x1 −2xn+1·x2 · · · −2xn+1·xn

∣∣∣∣∣∣∣∣∣∣∣∣
= −(−2)n

∣∣∣∣∣∣∣∣∣∣∣∣

x1·x1 x1·x2 · · · x1·xn

x2·x1 x2·x2 · · · x2·xn

... ... . . . ...
xn+1·x1 xn+1·x2 · · · xn+1·xn

∣∣∣∣∣∣∣∣∣∣∣∣
.

Now without loss of generality we choose coordinates so that x1 = (x1
1, 0, 0, . . . ), x2 =

(x2
1, x

2
2, 0, . . . ), . . . , xn = (xn

1 , x
n
2 , . . . x

n
n), xn+1 = (xn+1

1 , xn+1
2 , . . . xn+1

n ). Notice that in
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these coordinates the hyperplane inhabited by the common face is span(e1, . . . , en−1),
and so ε = sign(xn

nx
n+1
n ). Then

RHS = ε(−1)n+1

(n!)22n
D = ε

(n!)2

∣∣∣∣∣∣∣∣∣∣∣∣

x1
1x

1
1 x1

1x
2
1 · · · x1

1x
n
1

x2
1x

1
1 x2

1x
2
1 + x2

2x
2
2 · · · x2

1x
n
1 + x2

2x
n
2

... ... . . . ...
xn+1

1 x1
1 xn+1

1 x2
1 + xn+1

2 x2
2 · · · xn+1

1 xn
1 + xn+1

2 xn
2 + . . .

∣∣∣∣∣∣∣∣∣∣∣∣

= ε x1
1

(n!)2

∣∣∣∣∣∣∣∣∣∣∣∣

x1
1 x1

1x
2
1 · · · x1

1x
n
1

x2
1 x2

1x
2
1 + x2

2x
2
2 · · · x2

1x
n
1 + x2

2x
n
2

... ... . . . ...
xn+1

1 xn+1
1 x2

1 + xn+1
2 x2

2 · · · xn+1
1 xn

1 + xn+1
2 xn

2 + . . .

∣∣∣∣∣∣∣∣∣∣∣∣
.

Subtracting x2
1 times the first column from the second, x3

1 times the first column
from the third, and so on, and then expanding by the first row,

RHS = ε x1
1

(n!)2

∣∣∣∣∣∣∣∣∣∣∣∣

x1
1 0 · · · 0
x2

1 x2
2x

2
2 · · · x2

2x
n
2

... ... . . . ...
xn+1

1 xn+1
2 x2

2 · · · xn+1
2 xn

2 + . . .

∣∣∣∣∣∣∣∣∣∣∣∣
= ε (x1

1)2

(n!)2

∣∣∣∣∣∣∣∣∣
x2

2x
2
2 · · · x2

2x
n
2

... . . . ...
xn+1

2 x2
2 · · · xn+1

2 xn
2 + . . .

∣∣∣∣∣∣∣∣∣ .

Now we repeat the procedure until, as final step, we obtain

RHS = ε (x1
1)2(x2

2)2 . . . (xn−2
n−2)2

(n!)2

∣∣∣∣∣∣x
n−1
n−1x

n−1
n−1 xn−1

n−1x
n
n−1

xn+1
n−1x

n−1
n−1 xn+1

n−1x
n
n−1 + xn+1

n xn
n

∣∣∣∣∣∣
= ε (x1

1)2(x2
2)2 . . . (xn−1

n−1)2xn
nx

n+1
n

(n!)2 .

Since xn
nx

n+1
n = ε|xn

nx
n+1
n |, this is equal to vol(vn)vol(vn+1), as required.

B.3 An application

Let xi, i = 0, 1, 2, 3, be vectors identifying four points on a plane. Embedding the
plane in R3, the Cayley-Menger determinant for the volume of the simplex with
these four vertices must vanish:

0 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 X01 X02 X03 1
X10 0 X12 X13 1
X20 X21 0 X23 1
X30 X31 X32 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
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Differentiating the above equation,

0 = d

∣∣∣∣∣∣∣∣∣∣∣∣

0 X01 X02 X03 1
X10 0 X12 X13 1
X20 X21 0 X23 1
X30 X31 X32 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 dX01 dX02 dX03 0
X10 0 X12 X13 1
X20 X21 0 X23 1
X30 X31 X32 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

0 X01 X02 X03 1
dX10 0 dX12 dX13 0
X20 X21 0 X23 1
X30 X31 X32 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

0 X01 X02 X03 1
X10 0 X12 X13 1
dX20 dX21 0 dX23 0
X30 X31 X32 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

0 X01 X02 X03 1
X10 0 X12 X13 1
X20 X21 0 X23 1
dX30 dX31 dX32 0 0

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding this expression row by row and using the fact that the determinant of a
matrix is equal to that of its transpose we obtain

0 = − 2 dX01

∣∣∣∣∣∣∣∣∣∣
X10 X12 X13 1
X20 0 X23 1
X30 X32 0 1
1 1 1 0

∣∣∣∣∣∣∣∣∣∣
+ 2 dX02

∣∣∣∣∣∣∣∣∣∣
X10 0 X13 1
X20 X21 X23 1
X30 X31 0 1
1 1 1 0

∣∣∣∣∣∣∣∣∣∣
− 2 dX03

∣∣∣∣∣∣∣∣∣∣
X10 0 X12 1
X20 X21 0 1
X30 X31 X32 1
1 1 1 0

∣∣∣∣∣∣∣∣∣∣

− 2 dX12

∣∣∣∣∣∣∣∣∣∣
0 X01 X03 1
X20 X21 X23 1
X30 X31 0 1
1 1 1 0

∣∣∣∣∣∣∣∣∣∣
+ 2 dX13

∣∣∣∣∣∣∣∣∣∣
0 X01 X02 1
X20 X21 0 1
X30 X31 X32 1
1 1 1 0

∣∣∣∣∣∣∣∣∣∣
− 2 dX23

∣∣∣∣∣∣∣∣∣∣
0 X01 X02 1
X10 0 X12 1
X30 X31 X32 1
1 1 1 0

∣∣∣∣∣∣∣∣∣∣
Swapping some judiciously-chosen rows and columns within the determinants and
using the generalised Cayley-Menger determinant (B.2.1) we obtain

ε01(2, 3)∆230∆231 dX01 + ε02(1, 3)∆130∆132 dX02 +
ε03(1, 2)∆120∆123 dX03 + ε12(0, 3)∆031∆032 dX12 +
ε13(0, 2)∆021∆023 dX13 + ε23(0, 1)∆012∆013 dX23 = 0.

(B.3.1)

where εij(m,n) = +1/−1 according to whether xi and xj lie on the same / opposite
sides of the line connecting xm and xn.

Let the lengths of the sides of the quadrilateral, defined by the ordered vertices xi

(i = 0, 1, 2, 3), be fixed, so to move only its diagonals. This is equivalent to requiring
dX01 = dX12 = dX23 = dX30 = 0. In this case the relation (B.3.1) becomes

dX13

dX02
= −ε02(1, 3)

ε13(0, 2)
∆130∆132

∆021∆023
(B.3.2)

If the quadrilateral is convex then ε02(1, 3) = ε13(0, 2) < 0 giving relation (4.1.3).
Instead, if the quadrilateral is concave, then either ε02(1, 3) = −ε13(0, 2) = 1 or
ε02(1, 3) = −ε13(0, 2) = −1. In both cases the RHS of (B.3.2) is positive and (4.1.4)
holds.

It is important to note that in relation (B.3.1) triangles are defined by the names
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of their vertices while in the rest of the thesis triangles are defined by the labels of
their sides.





Appendix C

Cancelling second-order poles in
5-point amplitudes

In this appendix, the cancellation mechanism of second-order singularities associated
with 5-point processes at the tree level is shown for a theory satisfying ‘simply-laced
scattering conditions’. We focus on a creation event of the form

A+B → G+ F +D, (C.0.1)

where, with a bit of abuse of notation, we label by A, B, G, F and D both the
momenta and the types of the interacting particles. In the analysed case, for a
particular choice of the external kinematics, we assume there are in total six Feynman
diagrams presenting a double pole. They are connected by flipping the internal
propagators and are represented in figure C.1 on the vertices of a hexagon. Each side
of the hexagon corresponds to one flip, in which one propagator remains fixed while
the other one is modified. After a finite number of flips, the path of diagrams closes
generating in this particular case a hexagon. The corresponding on-shell diagrams
are reported in figure C.2.
We study the diagrams in the neighbourhood of the second-order singularity, where
the propagators are affected by small variations with respect to their mass-shell
condition. Looking for example at the diagram D(1) in figure C.1 (and at its on-shell
description in figure C.2) its internal propagating momenta respect

|L2 −m2
L| ≪ 1 , |E2 −m2

E| ≪ 1. (C.0.2)

The same is valid for the propagators entering in the other diagrams of the network.
Using the parametrization (4.1.6) for the couplings, the first diagram can be written
as

D(1) = F (1) ∆ADL∆BEL∆EF G

(L2 −m2
L) (E2 −m2

E) (C.0.3)

where we have defined
F (1) = fAD̄L̄fLBĒfEḠF̄ .

The diagram D(2) in C.2 is connected to the first one by a flip of type III. For this
reason, the product of the f -terms entering into the 3-point vertices of the second
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Figure C.1: Example of a network of singular Feynman diagrams
in a non-allowed 5-point process.

diagram is F (2) = −F (1), as explained in section 4.1, and we obtain

D(2) = −F (1) ∆ABC∆CDE∆EF G

(E2 −m2
E) (C2 −m2

C) . (C.0.4)

Once we set the lengths of the external sides (those associated with the masses of
the incoming and outgoing particles) we only have two remaining degrees of freedom
to define the shape of the pentagon associated with the 5-point process (C.0.1).
This means that the quantity (C2 −m2

C) can be written as a function of (E2 −m2
E)

and (L2 − m2
L). Since the propagators differ by small variations with respect to

their on-shell condition we can use the relation in (B.3.1). Focusing on the polygon
defined by the sides {E,D,A,B} in the first diagram in C.2, having as diagonals C
and L, we derive

C2 −m2
C = ∆ABC

∆BEL

(E2 −m2
E) + ∆ABC∆CDE

∆BEL∆ADL

(L2 −m2
L). (C.0.5)

Therefore

D(1) +D(2) =
F (1) ∆EF G

(L2 −m2
L) (E2 −m2

E) (C2 −m2
C)

[
(C2 −m2

C) ∆ADL∆BEL − (L2 −m2
L)∆ABC∆CDE

]
=

F (1) ∆ADL∆ABC∆EF G

(L2 −m2
L)(C2 −m2

C) .

(C.0.6)

An interesting fact is that the sum of two diagrams connected by one flip is not zero,
instead, it behaves as a new Feynman diagram-like object, with three areas at the
numerator and the two terms (L2 −m2

L) and (C2 −m2
C) at the denominator. Indeed
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the propagator 1
E2−m2

E
, common to D(1) and D(2), has disappeared and the sum of

the two diagrams connected by the flip contains only two propagators. Let see what
happens if we go forward summing also the diagram number (3). In this case, the
diagram D(3) is connected to D(2) by a type-I flip, therefore the sign of the diagram
does not change and we have F (3) = F (2) = −F (1). We can write

D(3) = −F (1) ∆ABC∆CGH∆DF H

(C2 −m2
C) (H2 −m2

H) . (C.0.7)

Adding also this diagram to the sum it holds

D(1) +D(2) +D(3) = F (1) ∆ABC

(L2 −m2
L)(C2 −m2

C)(H2 −m2
H)

×
[
(H2 −m2

H) ∆ADL∆EF G − (L2 −m2
L)∆CGH∆DF H)

]
.

(C.0.8)

Using again the relation in (B.3.1) before on the polygon defined by sides {F,D,C,G}
and then on that one with sides {E,D,A,B} we come to the identity

H2 −m2
H = − ∆DF H∆BG

∆ABC∆EF G

(C2 −m2
C) + ∆CGH∆DF H

∆EF G∆ADL

(L2 −m2
L).

Substituting such expression in (C.0.8) we obtain

D(1) +D(2) +D(3) = −F (1) ∆ADL∆DF H∆BG

(L2 −m2
L)(H2 −m2

H) . (C.0.9)

Once again the common propagator is disappeared and we obtain that the sum of
D(1), D(2) and D(3) is a new ‘Feynman diagram’ not present in the initial network.
Repeating these steps we find that the sum of the diagrams D(1), . . . , D(5) in figure
C.2 is a new diagram whose propagators are L and J . Such a diagram is exactly
equal to −D(6) and the sum of all the diagrams in the network, close to the double
pole, is equal to zero.

Another way to see that the sum of all the graphs is null on the 2nd-order pole is to
parametrise the propagators around the pole. A good choice for the parametrisation
is the following

L2 −m2
L = (x+ a1) δ , E2 −m2

E = (x+ a2) δ (C.0.10)

where a1 and a2 are two real numbers such that

a1 − a2 = ∆ADL∆BLE∆EF G (C.0.11)

and δ is a parameter going to zero. What we are trying to do is keeping the limit on
the double pole δ → 0. In doing this we can go close to the pole in different ways
depending on the value of x. For example we can take x ∼ −a1; in this case in the
limit δ → 0 the propagator 1

L2−m2
L

diverges much faster than the propagator 1
E2−m2

E
.

Any value of x corresponds to a particular direction we are following to go to the
double pole.
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Figure C.2: On-shell representation of the singular Feynman dia-
grams in a non-allowed 5-point process.

The reason why we adopt the parametrisation in (C.0.10) will become clear in one
moment. For now, we see that the diagram D(1) in figure C.2 can be written as

D(1) = a1 − a2

δ2(x+ a1)(x+ a2)
(C.0.12)

Using the relation in (C.0.5) we have

C2 −m2
C = δ (x+ a2)d+ δ (x+ a1)b (C.0.13)

where we have defined

d = ∆ABC

∆BEL

, b = ∆ABC∆CDE

∆BEL∆ADL

= ∆ABC∆CDE∆EF G

a1 − a2
. (C.0.14)

If we write the second Feynman diagram in terms of these new parameters we obtain

D(2) = −b(a1 − a2)

δ2(x+ a2)
[
(x+ a1)b+ (x+ a2)d

]
= −b(a1 − a2)

δ2(x+ a2)(b+ d)
[
x+ a1b+a2d

b+d

] (C.0.15)

Now if we define
a3 = a1b+ a2d

b+ d
(C.0.16)

we obtain
D(2) = a2 − a3

δ2(x+ a2)(x+ a3)
. (C.0.17)
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When the expression in (C.0.17) has a pole for x ∼ −a2 (which means the propagating
particle E goes on-shell much faster than the particle C) the expression in (C.0.12)
has also a pole. This is because the propagator corresponding to the E particle
is present in both diagrams. More interesting is that while the diagram D(2) for
x → −a2 has residue equal to −1 the diagram D(1) has residue equal to 1. What
we are observing is a mere consequence of the fact that when E goes on-shell the
diagrams D(1) and D(2) present as residues two on-shell four-point graphs whose
sum is non-singular. We are simply moving the poles of the propagators into the
poles of the variable x regulating the direction that we are following to get close
to the double pole position. After having repeated the previous steps for the other
diagrams we obtain that around the double pole the tree-level 5-point amplitude is
given by

M5 = 1
δ2

[
a1 − a2

(x+ a1)(x+ a2)
+ a2 − a3

(x+ a2)(x+ a3)
+ . . .+ aN − a1

(x+ aN)(x+ a1)

]

= 1
δ2

[
− 1
x+ a1

+ 1
x+ a2

− 1
x+ a2

+ 1
x+ a3

+ . . .− 1
x+ aN

+ 1
x+ a1

]
= 0,

(C.0.18)

where in this specific example N = 6. This is a telescoping sum and has an interesting
consequence: when we sum more diagrams we care only about the value of the first
one and of the last one. The coefficients aj parametrise the space of Feynman
diagrams.
Heuristically we can define a density function

ρx(a) = − 1
(x+ a)2 (C.0.19)

defined on the space of the Feynman diagrams. If we integrate over the closed path
given by the hexagon in figure C.2 we obtain zero,∫

C
da ρx(a) = 0 (C.0.20)

independently by the value of x. On the other hand, if we integrate only on a
connected part of the path we obtain∫ aj

ai

da ρx(a) = ai − aj

(x+ ai)(x+ aj)
(C.0.21)

This has the same structure as a Feynman diagram but now i and j are not consec-
utive in general. Therefore what we have written is a new Feynman diagram-like
object not present in the initial network. In other words, the sum of Feynman
diagrams along the path is still Feynman diagram-like object that combines different
propagators. This reflects exactly the same result that we have found in (C.0.9)
acting directly on the propagators. The sum over the Feynman diagrams of the
entire network is then equal to zero since we are integrating over the entire closed
path.





Appendix D

Some properties of structure
constants

In this appendix some simple properties of the structure constants that have inter-
esting consequences on the couplings of the corresponding Toda theory are derived.
For a more detailed discussion we invite the interested reader to look at the chapter
4 of [121].

Property D.1. If α, β and γ are three roots satisfying α+ β + γ = 0 then Nαβ =
Nβγ = Nγα

Proof. Using the relations in (5.3.18) and (5.3.19b) we obtain

Nαβ = −
(
[eα, eβ], eγ

)
= −

(
eα, [eβ, eγ]

)
= Nβγ

The rest of the equalities are proved by cyclicity.

Property D.2. N∗
αβ = N−α,−β

Proof. Combining again (5.3.18) and (5.3.19b) we obtain

N∗
αβe−α−β = −(Nα,β eα+β)† = −[eα, eβ]† = −[e−β, e−α] = N−α,−β e−α−β

Property D.3. Given four roots α, β, γ, δ (with α ̸= γ, α ̸= δ) such that α + β =
γ + δ = ϵ where ϵ is another root, then

Nα,βN−γ,−δ −Nα,−γNβ,−δ +Nα,−δNβ,−γ = 0 (D.0.1)

and at least one of the following conditions (or both) are satisfied

• γ − α = β − δ = ρ, with ρ root

• δ − α = β − γ = ρ̃, with ρ̃ root
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Proof. Since α + β and γ + δ correspond to the same root ϵ the two structure
constants corresponding to {α, β} and {γ, δ} are nonzero and we can write their
product in the following way

Nα,βN−γ,−δ = −
(
[eα, eβ] , [e−γ, e−δ]

)
= −

(
eα , [eβ, [e−γ, e−δ] ]

)
(D.0.2)

where (5.3.18) and (5.3.19b) have been used. At this point we use the Jacobi identity
and obtain

Nα,βN−γ,−δ =
(
eα , [e−γ, [e−δ, eβ] ]

)
+
(
eα , [e−δ, [eβ, e−γ] ]

)
=
(
[eα, e−γ], [e−δ, eβ] ]

)
+
(
[eα, e−δ], [eβ, e−γ] ]

)
= Nα,−γN−δ,β(e−ρ, eρ) +Nα,−δNβ,−γ(e−ρ̃, eρ̃)

From this fact using the convention in (5.3.18) and the antisymmetry of the structure
constants we obtain (D.0.1).
It is clear that if γ−α (= β− δ) or δ−α (= β− γ) is not a root we have that Nα,−γ

or Nα,−δ respectively is equal to zero. However since the equality in (D.0.1) always
holds and we know that the first term in the sum is nonzero then also the second or
the third term in the sum (or both) need to be different from zero, that means that
at least one of γ − α and δ − α is a root.

This fact is of fundamental importance in the cancellation of 2-to-2 non-diagonal
processes in affine Toda models. We highlight that in simply-laced theories α − γ

and α−δ cannot both be roots at the same time. Indeed in this case, setting the root
length equal to

√
2, and assuming that α − γ is a root, the equalities (α + β)2 = 2

and (α− γ)2 = 2 imply (α, β) = −1 and (α, γ) = 1. Hence (α, δ) = (α, α+ β − γ) =
2 − 1 − 1 = 0 and so (α− δ)2 = 4, and α− δ is not a root.

Property D.4. The ratios of the structure constants of any semisimple Lie algebra
take specific values. In particular if the long roots of G are normalised to length√

2 we have the following possibilities: if there are three roots α, β and γ satisfying
α + β + γ = 0 we can have

• |Nα,β| = 1 if |α| = |β| = |γ| =
√

2 or there is one root of length
√

2 and the
other two are shorter and with the same length.

• |Nα,β| = 1√
2 if |α| = |β| = |γ| = 1.

• |Nα,β| = 2√
3 if |α| = |β| = |γ| =

√
2
3 .

while in all the other cases |Nα,β| = 0.

Proof. We can write the absolute value of the structure constant corresponding to
two roots α, β in the following form

|Nαβ|2 =
(
Nαβ eα+β , N

∗
αβ e

†
α+β

)
=
(
[eα, eβ] , [e−β, e−α]

)
=
(
[[eα, eβ] , e−β] , e−α

)
= −([[e−β, eα] , eβ] , e−α) − ([[eβ, e−β] , eα] , e−α) = N−β,αNα−β,β − (β , α)
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Combining properties D.1 and D.2 we have

Nα−β,β = Nβ,−α = N∗
−β,α

and therefore we obtain

|Nα,β|2 = |N−β,α|2 − (β , α). (D.0.3)

All the absolute values of the structure constants can be obtained from this equality.
We focus on the case in which |α| = |β| < |γ| =

√
2; the other situations can be

studied similarly. By the fact that α, β and γ close a triangle and α2 = β2 the
following relation holds

α2 = γ2 + β2 + 2(γ, β) → 2(γ, β) = −γ2. (D.0.4)

We observe that the vector γ − β cannot be a root since

(γ − β)2 = 2γ2 + β2 > 4 (D.0.5)

which is bigger of the maximal allowed length. Therefore from the expression in
(D.0.3) we obtain

|Nγ,β| = −(γ, β) = γ2

2 = 1 (D.0.6)

All the other situations can be analogously studied.
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