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Abstract 
 

The Carajás Terrane in the Amazon Craton hosts Precambrian Cu-Au deposits with 

resources larger than 100 million tonnes of ore (e.g. Igarapé Bahia-Alemão, 

Cristalino, Sossego, 118 and Salobo). This thesis examines at a local scale, structural 

aspects of the Sossego and Sequeirinho deposits, located in the Archaean granite-

gneiss basement of the Canaã dos Carajás region, the boundary between the Carajás 

and Rio Maria Granite Greenstone Terranes. 

 The study focuses on the understanding of the processes, controls and styles 

of two regionally representative Archaean IOCG examples and also investigates the 

tectonic framework and structural evolution of the Canaã dos Carajás region. 

Primary data comprises traditional methods of field mapping and structural analysis, 

microscopic investigation, combined with modern digital mapping, lineament and 

particles size analysis. The principal aims of the study include: (1) identification of 

crustal scale regional lineaments and their relationship with mineral deposits; (2) a 

new tectonic framework and structural model for the Canaã dos Carajás region; and 

(3) description and interpretation of the structural framework of the Sossego and 

Sequeirinho mines. 

 The most prominent crustal scale lineaments in the Carajás Terrane comprise 

early WNW-ESE sets that configure the regional structural trend and mark the 

basement-cover assemblage contact, and relatively late NE-SW lineaments. Higher 

lineament frequencies and density were observed in the cover assemblage domain 

and coincide with numerous lineament intersections. Mineral occurrences and 

deposits are clustered and spatially associated with domains of higher lineaments 

density and areas where major lineaments intersect. Then, there is a spatial 

relationship between major lineaments and the occurrence of mineral deposits. 

The Canaã dos Carajás region comprises Archaean TTG gneisses, lens 

shaped amphibolite bodies, 2.7 Ga. syn-tectonic alkali granitoids and 1.88 Ga. 

isotropic granites. These rocks display widespread heterogeneous, anastomosing 

WNW-ESE and NE-SW foliation sets, related steeply dipping ductile shear zones 

associated with steep-to-moderately plunging mineral lineations. The nature and 

geometry of the ductile fabrics are compatible with a bulk pure-shear dominated 

transpression with partitioning of strain intensity with shortening and extensional 

 



 

directions oriented at approximately near horizontal (~020° Az) and near vertical 

respectively. Microstructures in quartz and feldspar indicate deformation at 

metamorphic conditions compatible with middle to upper amphibolite facies (~650-

700°C), overprinted by deformation at middle to upper greenschist facies conditions 

(~400-500°C). The Canaã dos Carajás region represents part of an original granite-

greenstone terrane that has undergone substantial reworking during a late sinistral 

transpressional deformation. The reworking took place at c.a. 2.7 Ga, coeval with 

syn-tectonic sub-alkaline magmatism. The basement comprises intensely deformed 

rocks uplifted from the lower-to-middle crust, deformed under high amphibolite 

facies conditions and later affected by localised deformation at greenschist facies 

conditions.  

The structural framework of the Sossego and Sequeirinho deposits comprises 

regional WNW-ESE structures (foliations and shear zones) offset by NE-SW 

sinistral faults. Sequeirinho is hosted along a NE-SW sinistral fault, associated with a 

positive magnetic anomaly. It comprises an “S” shaped tabular orebody whose tips 

are hosted by sub-vertical WNW-ESE sheared and foliated granitoids and schists. 

These are linked by a NE-SW sinistral fault zone containing mineralized breccias. 

Sossego comprises a sub-circular, vertical, pipe-like orebody with a central breccia 

body surrounded by a stockwork array of sulphide veins, faults and shear zones. 

Tensile and shear veins show single or composite mineral fillings consistent with 

episodic vein opening, with a progressive change in hydrothermal fluid composition 

during time. The Sossego breccias show high clast angularity, characteristic of 

immature explosion breccias, whilst the Sequeirinho breccias display rounded 

fragments with low angularity, typical of mature breccias whose particle 

fragmentation was dominated by wear and attrition during subsequent slip along a 

fault zone. Microstructures in quartz and feldspar indicate that the deformation at 

Sossego and Sequeirinho initially took place under low-to-middle (300-400°C) and 

middle-to-upper (400-500°C) greenschist facies, respectively. Latter overprinted by 

brittle-ductile structures and veins containing lower-temperature minerals formed 

between 170-250°C. The rocks in the area of the mines record deformational 

processes that initially took place under the viscous regime (>15km), represented by 

mylonites and ultramylonites. Progressive exhumation, possibly synchronous with 

regional transpressional thickening led to conditions compatible with the frictional-

viscous transition with intense fluid activity, with mineralization. 
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Chapter 1 
 

 

1.1 - Introduction 
 

 

Iron-Oxide-Copper-Gold (IOCG) mineral deposits comprise an unusual group of 

economic geological features because of their unusually wide variations in age, size, 

mineralogy, geochemical signatures, host rock lithologies and tectonic setting 

(Hitzman et al. 1992; Haynes 2000). The size and grade of the larger examples, 

together with their geological diversity has drawn considerable attention from 

exploration companies and academic researchers in the last decade (Pollard 2006). 

IOCG deposits are recognized in all continents, ranging in age of formation 

from the Late Archaean to the Early Tertiary; a majority have an age between 2.55 

and 1.5 Ga. Tectonically, they are considered to have formed in intracratonic or 

continental margin environments and, in many cases, show spatial and temporal 

controls associated with extensional tectonics (Hitzman et al. 1992). The sources of 

the hydrothermal mineralizing fluids are controversial, and are thought to result from 

either magmatic (Pollard 2001; Sillitoe 2003; Mark et al. 2005) or non-magmatic 

(Barton 2000; Haynes 2000) processes. In the former case, this deduction is based 

upon the temporal and spatial association between magmatic intrusions, the fluids 

that formed the Cu-Au mineralization and regional alteration patterns (Barton 1996; 

Oliver et al. 2004). 
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The Carajás Terrane hosts Precambrian Cu-Au deposits with resources larger 

than 100 million tonnes of ore. Examples include the Igarapé Bahia-Alemão, 

Cristalino, Sossego, 118 (or 118 Target) and the world class Salobo deposits. 

Research on these deposits has generally focussed on petrological, metallogenetic, 

geochemical and geochronological aspects, with structural characteristics and 

possible controls being very poorly documented in most cases. This thesis examines 

at a local scale, structural aspects of the Sossego and Sequeirinho deposits to: (i) 

improve the understanding of the processes, controls and styles of the Archaean 

IOCG examples; and (ii) reduce the degree of uncertainty when comparing the 

settings of these deposits to those formed by modern plate tectonic processes during 

the Phanerozoic. 

 Additionally, this research investigates at a broader scale, the tectonic 

framework of the granitic-gneissic basement, in the region close to the boundary 

between the Carajás and Rio Maria Granite Greenstone Terranes, known as the 

Canaã dos Carajás region, hosting the Sossego-Sequeirinho deposits. A knowledge 

of the tectonic framework and structural evolution here is crucial in order to better 

understand what sort of Archaean processes shaped the region as a whole, including 

the adjacent terranes located to the north and south. 

 Finally, this study investigates geophysical and topographic lineaments in the 

Carajás Terrane, an area where several high economic value Cu-Au deposits have 

already been identified, and where prospecting campaigns are still in development. 

Some of the deposits are structurally controlled and display a close association with 

large scale faults or shear zones. Multi-scale observation and interpretation of 

lineaments can show how these may be related to underlying, geological controls 

and the development of ore deposits. They also have the potential to help develop 
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better ways to more accurately predict and locate other IOCG deposits elsewhere in 

the world. 

Motivated by the need to advance the understanding of the enigmatic IOCG 

deposit class and its Archaean structural setting, the purpose of this study is to 

examine two regionally-representative IOCG orebodies and their surrounding region 

in the Carajás Terrane, Amazon Craton. Primary data comprises traditional methods 

of field mapping and structural analysis, microscopic investigation, combined with 

modern digital mapping, lineament and particle size analysis. The principal aims of 

the study include: 

 

- The identification of crustal scale regional lineaments and investigation of 

their relationship to the mineral deposits and known occurrences in the 

Carajás Terrane. 

- To develop a new tectonic framework and structural evolution for the Canaã 

dos Carajás region, and shed new light on the nature of the enigmatic 

boundary between the Carajás and Rio Maria Granite Greenstone Terranes. 

- To describe and interpret the structural framework of the Sossego and 

Sequeirinho mines by investigating the character and structural controls on 

their mineralization. 

- To provide new data to be used as geological-structural criteria in the future 

prospection of mineral deposits in the Amazon Craton and equivalent 

geological regions worldwide.  
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1.2 - Thesis outline 
 

This section presents the structure of the thesis and a summary of each chapter’s 

content. Each of the core chapters (3-4-5) deals with a specific issue and they are 

presented from regional (chapter 3) to local (chapter 5) scales. Chapters 3-5 were 

written as individual manuscripts, which can potentially be submitted to a scientific 

journal in the future. Consequently, each chapter includes a separate introduction and 

methods section, and distinct sections describing geological setting, geochronology, 

discussion of data and conclusions. Unavoidably, there is some overlap in the 

content of chapters 3-5, especially in the geological setting topics. Lastly, the 

appendix section contains: (1) a published paper to which I contributed with during 

the first year of my research when learning about and testing digital mapping 

methods; and (2) the vertical structural sections constructed in the Sossego and 

Sequeirinho mines described in chapter 5. 

 

Chapter 2  

 This chapter describes the regional geological setting of the study region. 

Key geological aspects of the Carajás and Rio Maria Granite Greenstone Terranes 

are summarized, including: stratigraphic, lithological, geochronological, tectonic and 

metamorphic information. This summary is particularly important in order to 

demonstrate the variety and the evolution of the geological knowledge in the region.  

 

Chapter 3  

 This chapter presents a regional, 2D multi-scale lineament analysis carried 

out using topographic (LANDSAT and digital elevation model) and airborne 
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magnetic surveys. The geometric (i.e. length, orientation and intersection) and spatial 

(i.e. density, and spacing) attributes of lineaments were quantified and compared 

within the Basement and Cover Assemblage domains. Finally, the spatial 

relationship between lineaments and mineral occurrences in the region was 

investigated to test the hypothesis that lineaments can act as potential sites for the 

preferential development of ore deposits.  

 

Chapter 4 

 This chapter describes structural aspects of the Canaã dos Carajás region, the 

transitional domain between the Carajás and the Rio Maria Granite-Greenstone 

terranes. The proposed structural framework and tectonic history for the region are 

constructed using combined studies of: (a) detailed aeromagnetic and gamma-

radiometric surveys; (b) field observations and measurements of planar and linear 

structural fabrics from rock outcrops; and (3) microstructural observations. 

Importantly, the microstructural results have implications for evaluating the 

exhumation history of the area. The integrated dataset is used to underpin a structural 

model that explains the dominant character and evolution of the tectonics in the 

region. Additionally, the observations and conclusions presented in this chapter are 

used as a framework for the more local mine studies presented in chapter 5.  

 

Chapter 5  

 This chapter focuses on two specific copper and gold orebodies currently 

exposed in two open cast mines. The structural framework and controls of the 

mineralization in the Sossego and Sequeirinho deposits are investigated by: (1) 

interpretation of aeromagnetic survey; (2) field observations and structural mapping 
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of exposed mine benches; and (3) structural logging of drill-cores from mineralized 

and barren zones. Complementary studies of particle size and shape analysis were 

carried out to characterize the brecciation processes and their intensity in both 

orebodies. Finally, the dominant deformation mechanisms and their respective 

temperature and pressure conditions were characterized using microstructural 

analysis of samples from mine benches and drill-cores.  

 

Chapter 6 

Presents a summary of the key findings and general conclusions of the study 

with suggestions for future research. 
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Chapter2 

 

 
A synthesis of the geological aspects of the South American 

Platform, Amazon Craton and Carajás Province  

 

 

2.1 - The South American Platform 
 

The South American Platform can be conveniently subdivided into two main 

types of Precambrian geotectonic units (Table 2.1): (1) cratonic blocks, comprising 

high-grade Archaean granitic-gneissic complexes (shields & cratons); and (2) a 

surrounding and anastomosing array of lower-grade collisional suture zones which 

typically act as persistent zones of reactivation and apparent tectonic weakness 

(mobile or fold belts) all through the regional geologic evolution (Almeida et al. 

1981; Almeida et al. 1984). During the Precambrian, the mobility along these sutures 

through successive rifting and orogenic processes resulted in the development of 

high-grade (up to granulite facies) shear zone belts, and highly folded and 

metamorphosed volcanoclastic sequences that correspond to reworked rift basins 

(Saadi et al. 2002). 
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Shields

Guyana

Mobile BeltsCratons Massifs

Central Brazilian

Atlantic

Amazonian Goias Central

Pernambuco Alagoas

Guaxupé

Uruaçu & Espinhaço

Paraguai Araguaia

Brasília

Araçui

São Luiz

São Francisco

Rio de La Plata

Sedimentary Covers

Amazonas

Parnaíba

Paraná

Costal and 
Continental Margin  

 

Table 2.1- Main geological units within the South American Platform. Maps in Fig. 2.1 show the 
location of the shields, cratons and sedimentary covers. 
 

 

 

The South American Platform basement is typically composed of igneous 

and metamorphic rocks, which are subdivided into three large shields separated by 

Phanerozoic basins (Fig. 2.1 A): (1) the Guyanas Shield in the north; (2) the Central 

Brazilian Shield south of the Amazon River; and (3) the Atlantic Shield along the 

coastline region of the modern Atlantic Ocean (Almeida et al. 1981; Almeida et al. 

2000). 

Archaean lithologies are mainly preserved in cratons that were assembled 

during the Neoproterozoic. These include: (1) the Amazonian Craton; (2) the São 

Francisco Craton; (3) the São Luiz Craton; (4) the Rio de La Plata Craton (Almeida 

et al. 2000) (Fig. 2.1 B). There are also a number of more minor massifs (not 

labelled in Fig. 2.1), including: (1) the Goias Central Massif; (2) the Pernanbuco-

Alagoas Massif; (3) the Guaxupe Massif (Almeida et al. 1981; Almeida et al. 2000). 
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Figure 2.1 – A – The continental area of the South-American plate showing the Andean Ridge, the 
Phanerozoic cover and the Pre-Cambrian basement (modified from Almeida et al., 1976); B – Crustal 
provinces of the South American Platform including: (1) Cratons; (2) Major Sedimentary basins; (3) 
the Andean Belt; and (4) unlabeled orogenic belts (modified from Cordani & Sato, 1999 and Cordani 
et al., 2000).  

 

 

The most important mobile belts, surrounding the cratons are: (1) the 

Paraguai-Aragaia; (2) the Brasilia, (3) the Araçui and (4) the Uruaçu-Espinhaço 

(Cordani et al. 2000). 

From the Early Silurian onwards, these basement units were covered to 

varying extents by large sedimentary basins (see Fig. 2.1 B), such as the Amazonas, 

the Parnaiba and the Paraná basins. The Coastal & Continental Margin 

sedimentary sequences accumulated in coastal graben and half graben of Cretaceous 

to Cenozoic age (Almeida et al. 1981). These intracratonic basins were established in 

the Palaeozoic and are bordered by marginal faulted regions that ultimately led to the 
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development of seaways between the basins (Petri et al. 1983) and the opening of the 

Modern Atlantic Ocean. 

 

 

2.2 - Regional Geotectonic Events 
 

 

 The numerous geochronological ages obtained for the geological units that 

make up the South American Platform (excluding the Andean region) allow the 

definition of several geotectonic events on a continental scale (Table 2). In Brazil, 

the following orogenic cycles are generally recognised (Wernick 1981): Guriense (> 

3.0 Ga); Jequie (2.7 ± 0.1 Ga); Transamazonico (2.0 ± 0.2 Ga) and Brasiliano (1.0–

0.52 Ga). 
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Table 2.2 – The main tectonic events recorded in the basement of the South America Platform (Modified from Almeida et al., 2000). 
 * indicates the important events recorded in Brazil. 
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2.3- Regional Structural Provinces 
 

The structural provinces of Brazil and their significance have been debated 

for many years, with many different models proposed based on either 

geochronological or tectonic evidence. 

Traditionally, ten Brazilian Structural Provinces (Fig. 2.2), each with an 

individual geological history, were defined based on the nature of the crystalline 

basement rocks and the sedimentary cover (Almeida et al. 1981; Wernick 1981). 

 

 
Figure 2.2 – The structural Provinces of Brazil. Legend: 1- Rio Branco; 2- Tapajos; 3- Sao 
Francisco; 4- Tocantins; 5- Mantiqueira; 6- Borborema; 7- Amazonian; 8- Parnaiba; 9- Parana; 10- 
Costal and Continental. (Almeida et al., 1981). 
  

12

Chapter 2



(Cordani 1979; Cordani et al. 1982) and (Cordani et al. 1988) proposed a new 

model for the Brazilian structural domains, using Sm-Nd and Rb-Sr data from more 

than 10,000 isotopic ages obtained from samples collected all over Brazil. They 

suggested that 45% of the present continental crust in the shields had formed by the 

end of the Archaean and that about 80% had formed by the end of the 

Palaeoproterozoic. They divided the Brazilian shield into 14 structural domains (Fig. 

2.3).  
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Figure 2.3 – Structural domains of the Brazilians shield. 1: Sao Francisco Craton (E-Eastern, C-
Central, W-Western), 2: Amazonian Craton (CA- Central Amazonian, MI- Maroni Itacaiúnas, RNJ- 
Rio Negro Jurena, RO/S –Rondonian/Sunsas), 3: Rio de la Plata and Luiz Alvez cratonic fragments, 
4: Sao Luiz Craton, 5- Rio Apa cratonic fragment, 6- Central Goias Complex, 7: Borborema 
Province (E-East, W-West, C-Central, Including NE Goias State), 8: Curitiba crustal fragment, 
including Sao Roque Belt, 9: Araxa, Alto Rio Grande belts, including Amparo complex, 10: 
Paraguay-Araguaia/Tocantins belts, 11: Dom Feliciano Belt, 12: Brasilia Belt, 13: Jequitinhonha 
Belt (Cordani et al., 1988). 
  

 

 

However (Hasui et al. 1984) called attention to the limitations of the 

Cordani’s model because the geochronological data used was substantially based on 

previously published K-Ar and Rb-Sr isotopic ages, some of them obtained from 

poorly defined isochrons of uncertain significance. Further, (Macambira et al. 1994) 
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also brought into question the reliability of these ages, and suggested that more 

robust radiometric dating techniques should be used (e.g. U-Pb, Pb-Pb and Sm-Nd), 

which led to the re-evaluation of the Cordani model. Fourteen major crustal blocks 

(Fig. 2.4) were therefore identified in Brazil based on this new isotopic data 

combined with gravimetric and magnetic surveys integrated with geological data 

(Costa et al. 1991; Hasui et al. 1992). The nuclei of the crustal blocks comprise 

granite-gneiss complexes and greenstone belt sequences bounded by high grade 

shear zone belts associated with sub-parallel volcano sedimentary sequences (Costa 

et al. 1992). 

 

 

 

 

Figure 2.4 – Major crustal blocks identified in Brazil by integrated interpretation of geological and 
geophysical data (Hasui et al., 1992). 
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The most recent proposal by (Schobbenhaus et al. 2003) combines both 

geochronological and tectonic approaches. They identified fifteen distinct chrono-

tectonic provinces (Fig. 2.5) defined as “regions with discrete stratigraphic, 

tectonic, magmatic, metamorphic and geomorphic features that are distinctive of 

those from the confining units”. The limits for the Provinces are either well-defined 

geological features (faults and shear zones, metamorphic fronts, hinterland terrains, 

erosion limits of sedimentary areas) or are poorly defined (arbitrary or transitional 

limits assumed in view of an inadequate knowledge base) (Schobbenhaus et al. 

2003). 

 

Figure 2.5 – Chrono-tectonic Brazilian provinces from Schobbenhaus & Neves, 2003. 
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2.4- The Amazonian Craton 
 

 The Amazonian Craton (Figs. 2.1 B and 2.6) is one of the largest cratonic 

areas in the world. It occurs in the northern part of South America, covering an area 

of about 4.3 x 105 km2 and stabilized towards the end of the Mesoproterozoic 

(Almeida 1976; Cordani et al. 1988). The craton is geographically divided into two 

Shields separated by the sedimentary sequences of the Palaeozoic Amazonas basin 

(see Fig. 2.1 A and B): the Guiana Shield to the north and the Central Brazilian 

Shield to the south (Cordani et al. 2000). 

 The geological subdivision proposed for the Amazonian Craton follows two 

main thematic streams: (1) the geochronological model; and (2) the structural-

geophysical model. 

 The first geochronological model was introduced by (Amaral 1974), who 

divided the Amazon Craton into three Archaean units based on sparse Rb-Sr data 

(Fig. 2.6-1). The model was improved and adapted by various authors as new 

additional data based on more robust analytical methods (Sm-Nd, U-Pb, Pb-Pb), 

became available. (Cordani 1979) improved Amaral (1974)’s model, by adopting a 

‘mobilistic’ approach and introducing the Rondinian Province (Fig. 2.6-2). The 

craton was redefined as an Archaean/Palaeoproterozoic old nuclei (Central 

Amazonian Province) surrounded by mobile belts formed during the Proterozoic. 

(Teixeira et al. 1989) proposed a new geochronological model for the region (Fig. 

2.6-3), modifying boundaries and adding the Sunsas province. Again, the 

geographical boundaries were adjusted by (Tassinari et al. 1996), who additionally 

reclassified the age intervals for the provinces and introduced the Rio Negro-Juruena 

Province (Fig. 2.6-4). The most recent geochronological model for the region was 

proposed by (Santos et al. 2000), using new U-Pb and Sm-Nd ages combined with 
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systematic mapping projects across the region. This model suggests a sevenfold 

division into provinces for the craton (Fig. 2.6-5) with the introduction of the Carajás 

Province. 
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Figure 2.6– The evolution of the models proposing the geotectonic-geochronological provinces for 
the Amazon Craton. Models: 1- Amaral (1974); 2- Cordani et al., (1979); 3- Teixeira et al., (1989); 
4- Tassinari et al., (1996) ; 5- Santos et al., 2000. –note the repeated changes to province borders.  
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 The fact that the geochronological models were heavily reliant on Rb-Sr data 

(even those with some Sm-Nd and U-Pb data) and the well known limitations of this 

isotopic method when used to study high grade polydeformed terrains, encouraged 

some authors (Hasui et al. 1984; Santos et al. 1984; Schobbenhaus et al. 1984; Costa 

et al. 1997) to limit the conclusions that could be based upon such isotopic 

information when proposing alternative models (Santos 2003). 

The structural-geophysical model is based on a combination of gravimetry-

magnetometry, geochronological data and structural geology (Hasui et al. 1984; 

Costa et al. 1997). Under this scheme, the Amazonian craton was divided into twelve 

Archaean blocks (Fig. 2.7) comprising granite-gneiss and/or greenstone terrains 

(Hasui et al. 1984). The boundaries of these blocks were taken to be nineteen 

Archaean collisional/shear belts (Fig. 2.7) many of which have experienced 

reactivation during the Phanerozoic (Costa et al. 1997). The model relies on an 

analogy with modern day “Himalayan” collisional processes to explain the initial 

formation and evolution of the craton. 

  

20

Chapter 2



 

Figure 2.7 – The main crustal blocks and it limits for the Amazon region in Brazil. (Hasui et al., 
1984). 
 

 

2.5- The Carajás Region - A summary of the previous 
work 
 

The current understanding of the Carajás region has developed over the last three 

decades, and has advanced significantly since the pioneering work of the Vale do 

Rio Doce’s exploration of the region in 1968, and research by the Brazilian 

Geological Survey (CPRM) and universities.  

Initial research during the 1960’s was aimed mainly at new prospective 

mining interests, describing lithological aspects, ore deposit genesis, stratigraphy, 

geochronology, and structural geology (Moraes Rego 1933; Barbosa et al. 1966; 

Almeida 1967; Ramos et al. 1983). 
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During the 1970’s, regional studies were given prominent importance, with a 

special focus on lithological descriptions and the establishment and correlation of 

stratigraphic sequences (Knup 1971; Puty et al. 1972; Beisiegel et al. 1973; Silva et 

al. 1974; McCandles et al. 1975; Issler 1977). The first attempts to model the main 

ore deposits in the region were proposed by (Resende et al. 1972; Suszczynki 1972; 

Anderson et al. 1974) and (Beisiegel et al. 1978). Additionally, some authors have 

tried to establish the main geological events using geochronological data (Amaral 

1974; Basei 1974; Amaral et al. 1975; Gomes et al. 1975). 

In the 1980’s a significant amount of research was carried out to determine 

petrogenetic and geochronological characteristics, and some descriptive studies of 

mineral deposits were also carried out (Almeida 1980; DOCEGEO 1981; 

Lindenmayer 1981; Hirata et al. 1982; Figueiras et al. 1984; Montalvão et al. 1984; 

Gibbs et al. 1986; Wirth et al. 1986; Huhn et al. 1988). Additional studies related to 

the regional framework were also presented, particularly those produced by: (Santos 

1980; Bernardelli et al. 1982; Cordani et al. 1982; Dall´Agnol 1982; Tassinari et al. 

1982). 

By the end of the 1980’s, DOCEGEO presented the first fully defined litho-

stratigraphic column for the Carajás Geochronological Province, based on a 

substantial volume of compiled geological data available for the region. An updated 

tectonostratigraphic framework for the Carajás Terrane was presented by (Araújo et 

al. 1991).  

More recent studies into the regional geology were developed by 

(Lindenmayer 1990; Barros 1991; Costa et al. 1995; Barros 1997; Pinheiro 1997) 

and have further improved the understanding of the geological framework in the 

region. There have also been a number of more localised tectonic and structural 
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studies that have mostly concentrated on specific mines and localities (Siqueira 

1990; Marçal 1991; Lab 1992; Pinheiro et al. 1997b; Domingos 2004). 

Since the end of the 1990’s, most of the published research focused mainly 

on the geological evolution, petrology, metalogenesis, regional geology and 

geochronology of the Carajás Geochronological Province. The most notable studies 

are work by (Pinheiro et al. 1997a; Althoff et al. 2000; Barros et al. 2001; Leite 

2001; Villas et al. 2001; Macambira et al. 2003). 

In the Rabo Ridge region, work carried out by (Lima 2002; Oliveira 2002) 

and (Sardinha 2002; Sardinha et al. 2006) have contributed to a finer-scale detailed 

characterization of the lithology and tectonic structures in the area. 

 

2.5.1- Lithostratigraphy 
 

The Carajás Geochronological Province lies within the southern portion of 

the Amazon Craton, part of the Central Brazil Shield (Fig. 2.8). It is limited to the 

east by the Neoproterozoic Araguaia Belt and to the west by the Iriri-Xingu Domain. 

It represents an important metallogenic province with several iron, copper, gold, 

manganese and tin deposits and contains some of the oldest and best preserved 

sequences of rocks in the craton. 

The Carajás Geochronological Province was formed and stabilized during the 

Archaean and was later affected by extensive Palaeoproterozoic magmatism 

characterized by anorogenic granitic intrusions and the intrusion of mafic and felsic 

dikes e.g., (Macambira et al. 1995). It is typically divided into two major tectonic 

domains (Fig. 2.9): (1) the Rio Maria Granite–Greenstone Terrane (3.05 to 2. 86 

Ga) in the south, and (2) the Carajás Terrane also described as Itacaiúnas Shear 
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Belt or (2.76 to 2.55 Ga) in the north (DOCEGEO 1988; Machado et al. 1991; 

Macambira et al. 1995; Dall'Agnol et al. 1997). The ages indicate the period when 

the the tectonic domains were formed. Both domains exhibit distinctive lithological, 

tectonic, stratigraphic and geochronological characteristics, but their exact boundary 

remains undefined. The existence of the Itacaiúnas Belt is disputed by (Barros et al. 

2001) who suggest that the north of the Carajás Geochronological Province could be 

a distinct and separate plutono-metamorphic belt instead of a shear zone belt. 
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Figure 2.8 – Location of the Carajás Geochronological Province (red dashed line) in the Amazon 
Craton according to Santos, 2000; the highlighted rectangles indicate the location of the map 
presented in Figure 2.9. Note the location of the Carajás (grey) and Rio Maria (black) Terranes 
limited to the east by the Araguaia Belt and to the west by the Iriri-Xingu Domain. 
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Figure 2.9 – Geological map of the Carajás Geochronological Province and its division into the 
Carajás Terrane and Rio Maria Granite-Greenstone Terrane (after Villas & Santos, 2001) 
 

 

2.5.1.1 - Rio Maria Granite-Greenstone Terrane 
 

The term ‘Rio Maria Granite Greenstone Terrane’ is used to describe the 

group of Archaean rocks located mainly in the south-eastern part of the Amazon 
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Craton limited to the north by the High Grade Granite-Gneiss Terrain (Xingu 

Complex). It is characterized by belts of metamorphosed volcano-sedimentary 

sequences (“greenstone” belts) surrounded by large regions of high-grade 

infracrustal rocks (granites and gneisses) ranging in age from ca. 2.96 to 2.87 Ga 

(Huhn et al. 1988). The contacts between the granitoids and the greenstones are 

typically steeply-dipping shear zones trending E-W, NW-SE, and NE-SW. These 

structures are thought to represent transpressive duplexes linked by dextral E-W 

strike-slip segments (Costa et al. 1995).  

The Rio Maria Granite-Greenstone Terrane (Fig. 2.9) is represented by a 

series of granitoids (the TTG Suite) and by a group of greenstone terrains (the 

Andorinhas Supergroup). 

 

2.5.1.1.1- TTG Suite 
 

The oldest basement units are the Arco Verde Tonalites (Althoff et al. 1993) 

dated at 2,957±21 Ma (U-Pb zircon; (Macambira et al. 1991; Macambira et al. 

1992)) and the Caracol Tonalitic Complex (Leite 2001) dated at 2,948±5 Ma. (Pb-

Pb zircon; (Leite et al. 2004)). These are intruded by Archaean granitoids including 

the Mogno Trondhjemite (2,871 Ma, U-Pb titanite; (Pimentel et al. 1994)), the Rio 

Maria Granodiorite (2,874 +9/-10 Ma, U-Pb zircon, (Macambira et al. 1991; 

Macambira et al. 1992); 2,872±5 Ma, U-Pb zircon, (Pimentel et al. 1994), the Mata 

Surrão Granite (2,872 ± 10 Ma, Pb-Pb whole rock; (Rodrigues et al. 1992; Lafon et 

al. 1994a); and 2,871 ± 7 Ma Pb–Pb zircon; (Althoff et al. 1998), and the Parazônia 

Tonalite (not shown in Fig. 2.9) (2,858 Ma, U/Pb titanite; (Pimentel et al. 1994)). 

These syn-tectonic granitoids were generated and emplaced during the closure of the 
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greenstone belt marginal basins during the final stages of evolution of the Rio Maria 

Granite-Greenstone Terrane (Souza et al. 1997). 

The Arco Verde Tonalite is the oldest unit in the TTG suite and consists of 

grey, equigranular, medium-grained (locally fine-grained) tonalites and 

trondhjemites with igneous isotropic to strongly foliated textures. Widespread 

compositional banding is defined by layers of distinct modal compositions, likely 

indicating a mingling of crystal-rich magmas with distinct proportions of biotite and 

feldspars (Althoff et al. 2000). Quartz-dioritic microgranular enclaves are common 

and conformable or cross-cutting veins of aplite and pegmatite are widespread. 

 Solid state deformation of the Arco Verde tonalites is heterogeneous with 

low strain domains (well-preserved magmatic banding and textures) and 

orthogneissic domains. These display an E–W trend with mainly subvertical 

foliations, associated with horizontal lineations, upright folds and subvertical shear 

zones (Althoff et al. 2000).  

The Caracol Tonalitic Complex was initially included in the Xingu 

Complex, but (Leite 2001) identified it as a new unit based on geochronological and 

structural data. The Complex occurs as three main domains. In the NW, it is 

characterized by a slightly wavy, sub-vertical N-S banding cross-cut by NE-SW 

dextral, ductile shear zones. The SW domain is oriented NW-SE, displaying rocks 

with prominent foliations and a sub-horizontal mineral lineation dipping to NW. 

Several NW-SE shear zones dipping ca. 20º to SW cross-cut this domain. The 

southern domain exhibit either NW-SE or WNW-ESE banding (Leite et al. 2004). 

The Mogno Trondhjemite is a large batholith composed mainly of coarse 

grained plagioclase, quartz, subordinate biotite, hornblende and accessories. 
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Granodioritic and metabasaltic xenoliths present in the trondhjemite indicate an 

intrusive relation with the rocks of the Andorinhas Supergroup (DOCEGEO 1988). 

The Rio Maria Granodiorite is intruded into the greenstone sequences 

(Dall'Agnol et al. 1999). It is characterized by granodiorites and tonalites formed by 

oligoclase, microcline, quartz, biotite, clinozoisite, allanite, zircon, and apatite 

(Araújo et al. 1991). The granitic body shows an elongate geometry aligned parallel 

to the structural grain in the adjacent supracrustal sequences (Costa et al. 1995). 

The Mata Surrão Granite is intruded into the Arco Verde Tonalite, is 

weakly deformed and consists of medium-grained equigranular grey granite with 

crosscutting veins of granite, pegmatite, and diorite (Althoff et al. 2000). 

The Parazonia Tonalite is represented by tonalitic stocks and sills mainly 

composed of plagioclase, quartz, and chloritized biotite (DOCEGEO 1988). It is a 

deformed pluton intruded into the Rio Maria Ganodiorite and in the Mogno 

Trondhjemite (Pimentel et al. 1994). 

 

2.5.1.1.2- The Andorinhas Supergroup - Greenstone-Belts 
 

The Andorinhas Supergroup is a typical greenstone sequence, 

stratigraphically divided into the basal Babaçu Group and the upper Lagoa Seca 

Group (DOCEGEO 1988). 

The main rock types of the Babaçu Group include metamorphosed 

komatiitic flows (dunites, peridotites, pyroxenites) and metabasalts intercalated with 

banded iron formations, schists, and metachert. The overlying Lagoa Seca Group 

consists of clastic (greywakes, siltstones) and chemical (banded iron formation) 
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metasedimentary rocks intercalated with ultramafic to felsic metavolcanic rocks 

(andesites, dacites, and riodacites) (DOCEGEO 1988). 

U–Pb dating of zircons in the Lagoa Seca group volcanic rocks yields ages of 

2.970±7 Ma which have been interpreted as the crystallization age of the original 

magma (Pimentel et al. 1994). 

Other individual greenstone belts (Sapucaia Group, Inajá Group, 

Identidade Group, Gradaus Group and Tucumã Group – these two are not 

shown in Fig. 2.9) are also included in the Andorinhas Supergroup (DOCEGEO 

1988). 

The Identidade Group (metagabbros, metabasalts, and metadacite) is 

thought to be correlative with the Lagoa Seca Group, with a Sm-Nd whole-rock age 

of 3,046 ± 74 Ma interpreted as representing the emplacement age of the magmas 

(Souza et al. 2001). 

The Inajá Group is composed of meta-ultramafic, metamafic (basalts and 

gabbros) rocks, and banded iron formations (Neves et al. 1999). (Rolando et al. 

2003) obtained a precise age of 2.988 ± 4 Ga (U-Pb zircon) which is thought to date 

the age of magmatism. 

The Tucuma and Gradaus Groups are considered to be product of the 

second cycle of greenstone belts generation (2.87-2.85) that is characterized by the 

relatively higher content of metasediments (greywakes, turbidites) and BIFs in 

comparison to the early supracrustal rocks, e.g. to correlate with the Lagoa Seca 

Group (Santos 2003).  
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2.5.1.1.3 - Other rock units 
 

Other lithostratigraphic units in the region include mafic-ultramafic layered 

rocks (the Serra Azul Complex) and extensive sequence of clastic platform 

sedimentary rocks (the Rio Fresco Formation). 

The Serra Azul Complex (dunites cumulates, serpentinized pyroxenites, 

peridotites, gabbros and anorthosites) intrude the Andorinhas greenstones belts in the 

Rio Maria region (DOCEGEO 1988), crystallizing at 2,970 ± 97 Ma (U–Pb zircon; 

(Pimentel et al. 1994)). 

The Rio Fresco Formation is a laterally variable, 2000m thick, low- to 

very low-grade metasedimentary sequence, which unconformably overlies the 

granitoid and greenstone assemblages. In the sequence, basal fluvial clastic 

sediments grade upwards into lagoonal to shallow marine carbonaceous, clastic and 

chemical sediments (Cunha et al. 1984; Meireles et al. 1984; Ramos et al. 1984; 

DOCEGEO 1988). (Araújo et al. 1988) referred to the Rio Fresco Formation as 

Águas Claras Formation in the central Carajás area. Detrital zircons analyzed from 

this formation show ages ranging from 3.67 to 2.76 Ga (Macambira et al. 1991; 

Macambira et al. 1998), which establish the maximum age for its deposition as 

Neoarchaean. 

  
 
 

2.5.1.2- The Carajás Terrane 
 

There are three main stratigraphical schemes proposed for the Carajás 

Terrane (Fig. 2.10): (i) (DOCEGEO 1988); (ii) (Araújo et al. 1991) and (iii) 

(Pinheiro 1997) published in (Pinheiro et al. 1997a). 
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(i) DOCEGEO (1988)’s proposal is based on lithological mapping, 

particularly within mines, and focuses on the lithostratigraphic and geochronological 

aspects of the Archaean and Proterozoic rocks. This proposal lacks much structural 

geological information and tries to establish a rather complex terminology. 

(ii) Araújo and Maia (1991) make the first attempt to organize the rocks in 

the region using tectonostratigraphic criteria. This proposal resulted from a regional 

mapping project with attention to the tectonic aspects of the area.  

(iii) Pinheiro (1997) proposed a new tectono-structural subdivision and 

evolution for the region based on detailed structural studies developed in key 

localities around Carajás. This proposal groups the rocks into two major groups: the 

Basement Assemblage, and the Cover Assemblage utilizing tectono-structural 

criteria. The stratigraphical proposal of Pinheiro & Holdsworth (1997a) was used as 

reference for the studies developed in this thesis.  
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Figure 2.10 – Stratigraphical proposals for the Carajás Terrane. 
 

 

 

33

Chapter 2



It is now generally agreed that two main Archaean and Proterozoic domains 

present in the area: (1) a High Grade Granite-Gneiss Terrain corresponding to the 

Basement Assemblage of (Pinheiro 1997); and (2) the Low Grade Supracrustal 

Volcano-Sedimentary Sequences corresponding to the Cover Assemblage (Araújo 

et al. 1991; Pinheiro 1997). 

 

2.5.1.2.1- High Grade Granite-Gneiss Terrain 
 

The High Grade Granite-Gneiss Terrain situated in the north of the Carajás 

Terrane is represented by the Xingu Complex (Silva et al. 1974), Pium Complex 

(Hirata et al. 1982), and several syn-tectonic Archean Granitoids – including the 

Plaque Suite (Araújo et al. 1988), and isolated small mafic-ultramafic intrusive 

bodies (Fig. 2.11). 
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Figure 2.11 – Geological map of the Carajás Terrane highlighting the Carajás and Cinzento Strike-
Slip Systems, major lineaments and ore deposits (after Pinheiro, 1997).  
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The Pium Complex was initially considered to be an integral part of the Xingu 

Complex (Hirata et al. 1982; DOCEGEO 1988). (Araújo et al. 1988) re-evaluated 

this interpretation, and identified it as a separate originally igneous rock unit, 

presently interleaved by strike-slip shear zones with rocks of the Xingu formation. It 

is typically composed of lenticular shaped stratiform basic and ultrabasic rocks 

(Hirata et al. 1982), with an E-W orientation. Its type locality lies near to the 

southern boundary of the Carajás Strike-Slip System, within the Xingu Complex. 

This unit corresponds to a heterogeneously deformed assemblage of granulite-facies 

rocks of varied composition (orthogneisses – charnokite/enderbites/mangerites; and 

para-gneisses – kinzigitic gneisses; (Costa et al. 1997; Pidgeon et al. 2000)). The 

contacts between these rocks and those of the Xingu Complex is marked by shear 

zones (Araújo et al. 1991). (Rodrigues et al. 1992) dated the Pium Complex as 3,050 

± 114 Ma (Pb-Pb whole rock) whilst (Pidgeon et al. 2000) used U-Pb (SHIRIMP) 

methods to date crystallisation of the parent rock at 3,002 ± 14 Ma and the granulite 

facies metamorphism at 2,859 ± 9 Ma. 

 

The term Xingu Complex was originally proposed by (Silva et al. 1974) to 

define the “infracrustal” rocks present throughout much of the Amazon Craton. It is 

typically composed of tonalitic gneisses, granodiorites, monzogranites, amphibolites 

and minor occurrences migmatites (Araújo et al. 1991). The rocks are 

metamorphosed at amphibolite facies and may be associated with migmatization. 

Preserved minor structures and fabrics strongly suggest superimposed polyphase 

deformation (Araújo et al. 1988; Araújo et al. 1991). Some amphibolites and 

migmatites in this unit may be derived from intensely reworked parts of the granite-

greenstone terrains (Araújo et al. 1988; Costa et al. 1995). Isotopic ages for the 
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Xingu Complex indicate that the last episode of migmatization took place at ca. 

2,851 ± 4 Ma (U-Pb zircon; (Machado et al. 1988)) with later tectono-thermal events 

at 2,519 ± 04 Ma (Machado et al. 1991). 

 

The Plaque Suite, defined by (Araújo et al. 1988), corresponds to a group of 

small lenticular deformed granitoids aligned in an E-W trend (see Fig. 2.11). They 

are restricted to the southern portion of the Carajás Terrane and the uppermost part 

of the Rio Maria Granite-Greenstone Terrane. 

These granitoids are syntectonically emplaced within the Xingu Complex 

during a major tectono-thermal event that caused partial melting of the crust 

associated with ductile shearing (Araújo et al. 1988; Araújo et al. 1991). Isotopic 

ages (Pb-Pb whole rock) for the emplacement of the granitoids are: 2,727±29 Ma 

(Avelar 1996); and 2,792±29 Ma (Avelar et al. 1999). The Planalto Granite (2,747±2 

Ma, Pb/Pb zircon; (Huhn et al. 1999)) exposed in the Rabo Ridge is belongs to this 

group of granites. 

 

Younger Syntectonic Granitoids 
 

A number of deformed granitoids were identified during the nineties in the 

Carajás Terrane. Many were initially thought to be part of the Xingu Complex but 

new mapping and geochronological data were obtained revealing their intrusive 

nature into the older rocks of the Xingu Complex.  

A range of Neoarchaean granitoids are present within the basement rocks of 

the High Grade Granite-Gneiss Terrain. These include:  
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1- the Old Salobo Granite located in the Igarapé Salobo region (Lindenmayer et al. 

1991; Lindenmayer et al. 1994) dated at 2,573±3 Ma (U-Pb zircon; (Machado et al. 

1991); 

2- the Itacaiúnas Granite (not shown in Fig. 2.11) – 2,560±3 Ma (U-Pb zincon; 

(Souza et al. 1996); 

3- the Rancho Alegre Granite (Serra do Rabo) – 2,743±2 Ma (U-Pb zircon; 

(Sardinha et al. 2006); 

4- the Granitic Stock Geladinho (not shown in Fig. 2.11) – 2,688±11 Ma (Pb-Pb 

zircon; (Barbosa et al. 2001); 

5- the Planalto Granite – 2,747±2 Ma (Pb-Pb zircon; (Huhn et al. 1999); 

6- the Cristalino Diorite (not shown in Fig. 2.11) – 2,738±6 Ma (Pb-Pb zircon; 

(Huhn et al. 1999); and  

7- the Estrela Granitic Complex (Barros 1997) situated in the east of the Carajás 

Region, dated at 2,527±34 Ma (Rb-Sr whole rock; (Barros et al. 1997), and more 

recently at 2,763±7 Ma (Pb-Pb zircon; (Barros et al. 2001). 

These foliated granitoid bodies are typically elongated parallel to the strike of 

the regional WNW-ESE foliation. They are intrusive into both the Xingu Complex 

and the Low-Grade Supracrustal Volcano Sedimentary Sequence (Holdsworth et al. 

2000; Barros et al. 2001; Sardinha et al. 2006). The granitoids are separated into two 

major groups: (1) an older (2.76-2.73 Ga) set, including the Plaque, Estrela, Planalto 

and Serra do Rabo granitoids, with monzogranitic compositions and intrusive 

relationships within the supracrustal rocks; and (2) a younger (2.5-2.6 Ga) set of 

calc-alkaline granitoids, that are rather poorly exposed and include the Geladinho, 

Old Salobo and Itacaiúnas granites (Sardinha 2002; Santos 2003; Tallarico et al. 

2005). 
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2.5.1.2.2- The Low Grade Supracrustal Volcanic and 
Sedimentary Sequences 
 

The Low Grade Volcanic and Sedimentary Sequences are mainly located in 

the inner portions of the Carajás Terrane (see Fig. 2.11). They comprise the rocks of 

the Itacaiúnas Supergroup (DOCEGEO 1988), overlain by the sedimentary cover 

sequences of Águas Claras Formation (Nogueira et al. 1995) and Gorotire 

Formation (Lima et al. 2001).  

 The Itacaiúnas Supergroup forms continuous E-W elongated zones, linked to 

major tectonic lineaments and strike-slip fault zones. It is primarily composed of 

metavolcanics and metasedimentary rocks (Costa et al. 1995). These include: (1) the 

Igarapé Salobo Group; (2) the Igarapé Pojuca Group; (3) the Igarapé Bahia 

Group; (4) the Grão-Pará Group; and (5) the Buritirama Group (not shown in 

Fig. 2.11).  

The Igarapé Salobo Group is divided into three major units, oriented 

WNW-ESE with sub-vertical dips and contains deposits of copper, gold, 

molybdenum and silver. The contact of this unit with the Xingu Complex is 

generally marked by shear zones (Oliveira et al. 1994). From the base of the unit 

upwards, the stratigraphy is divided into: the Cascata Gneiss, composed of granitic 

gneiss and subordinate units of alternating amphibolites and meta-pelites; the Three 

Alfa Formation - clastic and chemical metasedimentary rocks with subordinate 

units of basic to intermediate volcanics; and the Cinzento Formation - quartzites 

(DOCEGEO 1988). The age of metamorphism was estimated from U-Pb dating of 

zircon in the foliated amphibolites as being 2,761 ± 3 Ma (Machado et al. 1991). 
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The Igarapé Pojuca Group consists of a sub-vertical, WNW-ESE-striking 

volcano-sedimentary sequence, composed of mafic to intermediate meta-volcanic 

rocks, amphibolite, biotite schist, clastic sedimentary rocks, and ironstones. The 

metamorphic grade varies from greenschist to amphibolite facies (DOCEGEO 1988). 

The Corpo Quatro Formation is part of the Igarapé Pojuca Group and was identified 

and characterized by geochemical surveying and drilling campaigns. This unit 

comprises banded mafic rocks and schists (quartz, amphibole, sulphides, magnetite, 

almandine, and biotite) alternating with discontinuous units of chert, banded iron 

formations and massive sulphides (DOCEGEO 1988).  

 

The Igarapé Bahia Group is a volcano-sedimentary sequence oriented 

NNW and dipping on average 70o E, with occurrence limited to the area of the Bahia 

gold mine. It was metamorphosed under low grade conditions and contains 

occurrences of copper, gold, molybdenum and silver (DOCEGEO 1988). It is formed 

by two units: The lowermost “Grota do Vizinho” Formation – a sequence of 

sedimentary (siltstones, claystones, greywackes, rhythmites) and pyroclastic rocks 

(lapilli tuffs, laminated tuffs) with primary structures preserved, alternating with 

basic rocks (basalts, diabases, micro-gabbros); and the uppermost Sumidouro 

Formation – sandstones alternating with mafic volcanics (DOCEGEO 1988).  

 

 The Grão-Pará Group is renowned for its high economic grade, high 

tonnage iron ore deposits. It is composed of volcano-sedimentary sequences (mafic 

and felsic volcanics alternated with banded iron formations) that were originally 

divided into three main units: An ‘Upper Paleovolcanic’ sequence (basalts); the 

Carajás Formation (banded iron formations); and the lowermost Parauapebas 
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Formation sequence (basalts) (CVRD/CMM 1972). More recently, (Pinheiro 1997) 

divided the Grão-Pará Group into two main units: the older volcanic rocks of the 

Parauapebas Formation (Meireles et al. 1984); and the ironstones of the Carajás 

Formation (Beisiegel et al. 1973). He proposed that units of the Parauapebas 

Formation are interlayered or tectonically juxtaposed both above and below the 

Carajás Formation in the region of the N4 Plateau (Beisiegel et al. 1973; Anderson et 

al. 1974; Araújo et al. 1988; Pinheiro et al. 1997b).  

 

The Parauapebas Formation is composed of felsic to mafic metavolcanics 

metamorphosed at greenschist facies under low temperatures and pressures (Araújo 

et al. 1991). The units are bimodal sequences of basalts, dolerites and rhyolites. The 

age of crystallisation has been estimated by (Wirth et al. 1986), using U-Pb dating of 

zircons at 2,758 ± 39 Ma and by (Machado et al. 1991) at 2,759 ± 2 Ma. 

Geochemical studies suggest that these volcanic rocks have a strong affinity with 

continental tholeites (Gibbs et al. 1990; Lindenmayer et al. 1992) that were 

subsequently metamorphosed and hydrothermally altered (Wirth et al. 1986; Araújo 

et al. 1991; Teixeira et al. 1994). 

 

The Carajás Formation is represented by a thick unit of banded iron 

formations (jaspillites) and iron ore bodies (Pinheiro et al. 1997b). The jaspillite 

comprises alternating layers (2-20 mm) thick of very fine crystalline quartz and/or 

chert bands, with hematite, martite and pyrite (Araújo et al. 1991). The iron ore 

bodies are composed of different types of iron oxide with a nomenclature mostly 

related to its physical properties or industrial uses (Beisiegel 1982; Hoppe et al. 

1987). 
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 The Buritirama Group comprises a supracrustal sequence of clastic and 

chemical metasediments containing manganese deposits and marble layers (Oliveira 

et al. 1994). The stratigraphic succession begins with mica rich quartzite passing 

upwards into mica-schists, banded quartzite and mafic schists (DOCEGEO 1988). 

The Águas Claras (Araújo et al. 1991; Nogueira et al. 1994) and Gorotire 

Formation (Barbosa et al. 1966; Hirata et al. 1982) are younger and have 

significantly contrasting lithologies compared to the other volcano-sedimentary 

rocks in the region. They also clearly stratigraphically overlie the Grão-Pará Group 

in the centre of the Carajás region (Fig. 2.11). 

The Águas Claras Formation was initially identified as an upper part of 

the Grão-Pará Group e.g. (Araújo et al. 1991). (Nogueira 1995) combined analysis of 

sedimentary and stratigraphic characteristics, and structural data to redefine the unit 

as a ‘separate formation’. The unmetamorphosed sedimentary sequence lies 

unconformably on the older, low-grade metamorphosed volcanic rocks of the 

Parauapebas Formation and ironstones of the Carajás Formation, within the 

Archaean Grão-Pará Group (Araújo et al. 1991; Pinheiro 1997; Holdsworth et al. 

2000). 

The rock formations display heterogeneous deformation where high strain 

zones are closely associated with strike-slip faults and locally folds. Elsewhere the 

deformation is exclusively brittle and weak (Nogueira 1995; Holdsworth et al. 2000). 

This unit has a total thickness in the region of 1,500 meters and is divided into two 

members: (1) a Lower Member, deposited in a marine platform system, composed of 

mudstones, siltstones and subordinate sandstones; and (2) an Upper Member, related 
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to fluvial to shallow water littoral deposits comprising mainly sandstones and locally 

conglomerates (Nogueira 1995). 

(Nogueira et al. 1994; Nogueira et al. 1995) proposed an Archaean age for 

this unit and disagreed with a pull-apart basin model previously proposed by (Araújo 

et al. 1991). They proposed instead that the sedimentary sequence was laid down in 

an extensive basin, whose margins extended well beyond the limits of the present 

day outcrop of the Águas Claras Formation. 

Isotopic analysis of detrital zircons yielded ages between 2,778 and 3,020 Ma 

(U-Pb zircon, (Mougeot et al. 1996)). Zircons within a sandstone derived from 

syndepositional volcanism were dated at 2,681 ± 5 Ma and this is thought to 

represent a minimum age for the sedimentary sequence (Trendall et al. 1998). The 

Águas Claras Formation is intruded by gabbro/diabase dikes and sills with a 

minimum age for crystallization of 2,708 ± 37 (U-Pb zircon, (Mougeot et al. 1996)) 

and 2,645 ± 12 Ma (Dias et al. 1996). 

 

The Gorotire Formation comprises sequences of clastic, immature and 

little-deformed rocks (sandstones and conglomerates) outcropping predominantly 

around the eastern part of the Parauapebas River and in restricted areas overlying the 

supracrustal rocks of the Carajás Strike-Slip System. (Holdsworth et al. 2000). These 

rocks are believed to be deposited by debris-flow-dominated alluvial fans and 

braided fluvial systems, in an asymmetric graben closely linked to the later 

kinematic history of the Carajás Fault (Lima et al. 2001). The sandstones are purple 

arkosic wackes to arkoses with medium to coarse grain sizes, which are moderately- 

to poorly-sorted. The polymictic conglomerates are well lithified and grain-
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supported with pebbles and boulders derived from a broad range of protolith 

compositions (Pinheiro 1997). 

 

2.5.1.2.3- Mafic-Ultramafic Intrusions 
 
 Mafic-ultramafic plutonism is represented in the Carajás Terrane by the 

Luanga Complex, the Vermelho Ultramafics and the Santa Inês Gabbro (see 

location in Fig. 2.9). All these intrusions are thought to be related to an extensional 

Neoproterozoic event (Costa et al. 1995). 

 The Luanga Complex is an intrusive, mafic-ultramafic layered body 

formed by a basal unit of peridotites and dunites passing upwards into anorthosite 

gabbros (DOCEGEO 1988). The igneous mineral assemblages have been partially 

replaced by a metamorphic–hydrothermal assemblage formed of talc, tremolite, 

serpentine, albite, chlorite, epidote, and actinolite (Suita et al. 1988). An Rb–Sr age 

of 1,850 Ma has been interpreted as corresponding to a metamorphic–hydrothermal 

overprint (Suita et al. 1991), with the true age of crystallization being 2,763 ± 6 Ma 

(U-Pb zircon in an anorthosite gabbro) (Machado et al. 1991). Chromite seams and 

layers occur in the transition zone between pyroxenites and peridotite–dunites. The 

ore bodies are commonly characterized by massive to disseminated chromites 

cemented by olivine and orthopyroxene (Girardi et al. 2006). 

  

The Santa Inês Gabbro is a tabular body about 20 km long, trending NE-

SW, and formed by leucocratic and anorthositic gabbros showing ophitic to sub-

ophitic and subordinate porphyritic textures (DOCEGEO 1988). These rocks are 

thought to have undergone greenschist metamorphism given the presence of 
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widespread hornblende/andesine. The weak non-penetrative schistosity/foliation 

indicates some limited ductile deformational process (Araújo et al. 1991). 

 

 The Vermelho Ultramafics unit is located at the SW end of the Rabo Ridge 

(or Serra do Rabo), and it comprises a series of NE-SW trending basic-ultrabasic 

bodies and nickel deposits (Bernardelli et al. 1982). The unit contains a concentric 

spatial distribution of gabbros, metagabros, norite-gabrros, pyroxenites, bronzites, 

serpentinites and silexites (DOCEGEO 1988). Serpentinites within the unit are 

interpreted as being derived from dunites and peridotites. Metapyroxenites with high 

diopside-tremolite are suggestive of greenschist facies metamorphism, coupled with 

brittle-ductile processes recorded by the development of a protomylonitic-

protocataclastic deformation fabric (Araújo et al. 1991). The lack of isotopic ages for 

these units prevents accurately locating them in the regional stratigraphic column. 

However, (DOCEGEO 1988) and (Araújo et al. 1991) suggest for the Vermelho 

Ultramafics and Santa Ines Gabbro, Paleoproterozoic and Mesoproterozoic ages 

respectively.  

 

2.5.1.2.4- Anorogenic Granites 
 

Several Suites of Palaeo- to Mesoproterozoic (ca. 1.8-1.6 Ga) plutons intrude 

almost all the rocks of both basement and low-grade volcanic- sedimentary 

sequences in the Carajás and the Rio Maria granite-greenstone terranes (Machado et 

al. 1991; Dall'Agnol et al. 1999).  

These post-tectonic felsic plutons are widespread but are more abundant in 

the south (Rio Maria). They are generally non-foliated, monzogarnitic-syenogranitic 
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in composition, coarse to medium grained, massive, and remarkably discordant 

showing sharp contacts with, and angular inclusions of the Archaean country rocks 

(Ramo et al. 2002; Dall'Agnol et al. 2005). 

In the Carajás Terrane, the main anorogenic granites are: the Cigano Granite 

– 1,883 ± 2 Ma (U-Pb zircon; (Machado et al. 1991); the Serra dos Carajás or 

Central Granite – 1,880 ± 2 Ma (U-Pb zircon; (Machado et al. 1991); and the 

Pojuca Granite – 1,874 ± 2 Ma (U-Pb zircon; (Machado et al. 1991). 

In the Rio Maria Granite-Greenstone Terrane, the anorogenic plutons are 

more abundant, with six main units: the Jamon Granite – 1,885 ± 32 Ma (Pb-Pb 

zircon; (Dall'Agnol et al. 1999); the Musa Granite – 1,883 +5/-2 Ma (U-Pb zircon; 

(Machado et al. 1991); the Banach Granite – 1,880 Ma (Almeida et al. 2007); the 

Manda Saia Granite (Ramo et al. 2002); the Redenção Granite – 1,870 ± 68 Ma 

(Pb-Pb whole-rock; (Barbosa et al. 1995); and the Marajoara Granite – 1,724 ± 50 

Ma (Rb-Sr whole-rock; (Macambira 1992). 

Neodymium isotopic data indicate that the Palaeoproterozoic granites were 

derived from Archaean sources (Dall'Agnol et al. 1999; Ramo et al. 2002; Teixeira et 

al. 2002). Magmatic underplating has been proposed as the heat source that formed 

the Carajás granite magmas (Dall´Agnol et al. 1994; Dall'Agnol et al. 1999). It has 

similarly been suggested that the Rio Maria granites could have been formed by 

processes involving thermal perturbations in the upper mantle, mafic underplating, 

and associated extension or transtension in the crust (Ramo et al. 2002). 
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2.6- Previous Tectonic Models 
 

 There are currently three main tectonic models proposed for the Carajás 

Terrane. Chronologically, these were proposed by: (1) (Costa et al. 1995); (2) 

(Araújo et al. 1991); and (3) (Pinheiro 1997) (published in (Pinheiro et al. 1997b; 

Pinheiro et al. 1997a) and (Holdsworth et al. 2000). Other tectono-structural models 

(Veneziani et al. 2004; Rosière et al. 2006) have also been proposed for the region, 

but have rarely been refered by other authors. 

 

The Araújo & Maia, 1991 model (Fig. 2.12) follows on from the structural 

subdivision of the Amazon Craton made by (Hasui et al. 1984). They consider the 

Itacaiúnas Shear Belt to be a major structural feature developed under an obliquely 

convergent (transpressional) regime. They defined two distinct structural domains: 

(1) an Imbricated Domain – extending from the southern boundary of the Carajás 

Terrane into a transitional region up to the granite-greenstone terrain to the south; 

and (2) a Transcurrent domain – located along the Carajás Terrane and represented 

by the Carajás and Cinzento Strike-Slip Systems. They proposed that both the 

Imbricated and Transcurrent domains were genetically related to an Archaean 

collisional episode involving continental blocks. This led to reworking of the granite-

greenstone terrain rocks and controlled the later deposition of the supracrustal 

sequences along strike-slip systems. During the Proterozoic, NE-SW regional 

extension produced granitic and mafic-ultramafic intrusions, followed by the 

deposition of volcano-sedimentary sequences infilling transtensional pull-apart 

basins (Araújo et al. 1991). 
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The model of Costa et al. (1995) separates the tectonostratigraphic evolution 

of the Carajás Terrane into three main tectonothermal events during the Precambrian. 

(i) The initial and longest event is marked by the nucleation and propagation 

of E-W oblique, south-dipping shear zones, associated with amphibolite facies 

metamorphism, leading to the uplift of granulites from the lower crust and reworking 

of the basement granitic rocks. 

The Carajás and Cinzento strike-slip systems were envisaged as having 

formed under a transpressional regime that ultimately led to the development of 

several pull-apart basins that were subsequently filled with volcano-sedimentary 

sequences belonging to the Itacaiúnas Supergroup. 
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Figure- 2.12 – Geological cross sections showing geometrical interpretation for: A-A’ the Imbricated 
Domain; B-B’ the Carajás Transcurrent Domain; and C-C’ the Cinzento Transcurrent Domain. 
Adapted from Araújo & Maia, 1991. 
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The pull-apart basins were then thought to be inverted under sinistral 

transpression accompanied with amphibolite-greenschist metamorphism along shear 

zones and widespread hydrothermal alteration. 

Finally, discrete WNW-ESE, N-S and NE-SW strike-slip faults were thought 

to have formed as the result of an oblique collision between the Araguacema and 

Belem tectonic blocks. 

(ii) During the second event, several NE-SW extensional segments developed 

along pre-existing faults, which were thought to be of Proterozoic age. 

(iii) Finally, the third event was related to the establishment of the Araguaia 

Belt that lies to the east of the Carajás Terrane. 

 

The tectonic model of (Pinheiro 1997) (Fig. 2.13) is based on a history in 

which subsequent brittle-ductile and brittle tectonic reactivation events were 

geometrically controlled by pre-existing Archaean ductile fabrics developed initially 

in the basement. This model proposes an alternating series of transpressional and 

transtensional reactivations in four main stages supported by field data: 

 

1- Initially, the rocks of the Basement Assemblage (Pium Complex, Xingu 

Complex, Plaque Suite and Igarapé Salobo Group) were affected by high 

temperature sinistral transpression forming broad E-W trending shear belts with 

blastomylonitic penetrative fabrics between about 3.0 to 2.8 Ga; 

2- Between 2.8 and 2.7 Ga, sinistral transpression caused folding of the 

basement rocks and the development of sinistral shear zones under medium to low 

temperature metamorphism. Later extension formed regional intracratonic basins 

that hosted the volcano-sedimentary sequences of the Grão-Pará Group at 
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approximately 2.76 Ga. These were later affected by low temperature metamorphism 

and hydrothermal alteration and were subsequently overlain by the rocks of the 

Águas Claras Formation.  

3-  The Carajás and Cinzento Strike-Slip Fault Systems were 

contemporaneously formed during dextral transtension at about 2.0-1.8 Ga. This 

regime down-faulted parts of the volcanic-sedimentary cover rocks within 

transtensional pull-apart-like features formed by the intersections of E-W 

transcurrent faults and NW-SE normal faults. 

4-  The final stage is marked by a weak sinistral transpression that led to weak 

inversion of the volcanic-sedimentary sequences through fault reactivation and 

folding, with moderate to strong amounts of deformation localised adjacent to major 

fault zones, especially the Carajás Fault. 

 

Whilst there are some similarities, the (Costa et al. 1995) and (Pinheiro 1997) 

models are significantly different: 

 

 (i) (Costa et al. 1995) propose that the basement reactivation is related to 

thrusts formed due to collisional processes. By contrast, (Pinheiro 1997) suggests 

that the reactivation events are strongly influence by the development of an early, 

steeply-dipping ductile planar fabric in the basement. This, it was suggested, 

favoured transcurrent reactivation styles rather than thrusting. 

  (ii) The pull-apart basin models suggested by (Costa et al. 1995), within 

which the volcano-sedimentary sequences were deposited and associated dextral 

transcurrent systems developed, are not consistent with the stratigraphic and 

sedimentological features observed in the rocks of the Grão-Pará Group and Águas 
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Claras Formation. (Nogueira 1995) and (Pinheiro et al. 1997b; Pinheiro et al. 1997a) 

therefore propose that these volcanic and sedimentary cover sequences were more 

likely deposited in wide intracratonic basins, with depocentres possibly located 

outside of the present Carajás Terrane and little local fault control on sedimentation 

patterns. 

(iii) According to (Pinheiro 1997), the regional tectonic inversion events 

recognised by (Costa et al. 1995) are restricted only to the rocks adjacent to major 

faults. 
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Figure 2.13 – Summary of the tectono-structural history of the Carajás Terrane (Pinheiro, 1997).  
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2.7- Metamorphism 
 

 High grade metamorphic rocks are present in the basement units represented 

by the granulites of the Pium Complex. The supracrustal sequences of the 

Andorinhas and Itacaiúnas Supergroups record different metamorphic grades, 

ranging from virtually unmetamorphosed and undeformed, through to greenschist-

amphibolite-facies conditions with regional metamorphic temperatures rarely 

exceeding 700ºC (Lindenmayer 1990).  

Hydrothermal submarine metamorphism affected the Itacaiúnas Supergroup 

prior to the regional metamorphic events. It produced variable amounts of 

decalcified plagioclase, epidote, chlorite, tremolite-actinolite, white mica, quartz and 

carbonates in the rocks of the Grão Pará and Igarapé Bahia Groups (Villas et al. 

2001). 

 Low grade greenschist and amphibolite and/or granulite facies 

metamorphism are described for the rocks of the Grão-Pará and Salobo Groups 

respectively (DOCEGEO 1988; Olszewski et al. 1989). 

  Contact metamorphism represented by granitic thermal aureoles overprints 

the submarine and regional metamorphic assemblages in at least two confirmed 

examples: as anthophyllite-cordierite-rich rocks developed in the metavolcanics of 

the Igarapé Pojuca Group (Winter 1995) and as pyroxene-hornfels and albite-

hornblende-hornfels facies rocks developed at temperatures of 600-650 ºC in the 

thermal aureole surrounding the Estrela Granite (Barros 1997; Barros et al. 2001). 
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2.8- Geochronology 
 

  

A substantial number of geochronological ages are available for the rocks in 

the Carajás Geochronological Province. The initial published ages were based on 

Rb-Sr and K-Ar isotopic techniques. However, the Rb-Sr ages are systematically 

younger compared to data obtained from more robust methods. This led to the use of 

more reliable techniques, such as U-Pb zircon and U-Pb SHRIMP, or Pb-Pb ages 

from whole rock or zircon analyses. 

However, (Machado et al. 1991) point out that some of the ambiguous 

geochronological results obtained for the Carajás Terrane could be due to the 

polymetamorphic/tectonic character of the area and the extensive alteration of many 

rock types. 

Table 3 shows some of the geochronological data obtained from the different 

lithological units in the province, which can be used to correlate and group the units 

into well defined time intervals.  

 

1) The granite-gneiss basement rocks are older than 2.8 Ga, becoming progressively 

older as one moves southwards from the Carajás Terrane (Xingu Complex 2.8 Ga) 

towards the Rio Maria Granite Greenstone Terrane (Caracol and Arco Verde 

Tonalites 2.9 Ga). 

2) The greenstone sequences of the Andorinhas Supergroup have a minimum age of 

2.87 Ga (Tucumã Group) and a maximum age of 2.98 Ga (Inajá Group).  

3) The ultramafic intrusive bodies are dated at 2.76 Ga (Luanga Complex in the 

Carajás Terrane) and 2.97 Ga (Serra Azul Complex in the Rio Maria Terrane), 
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suggesting that they correlate with the events that formed the Itacaiúnas Supergroup 

(~ 2.7 Ga – see below) and the Andorinhas Supergroup (~ 2.9 Ga – see above), 

respectively. 

4) The Archaean syntectonic granitoids can be arranged into distinct groups 

produced by three intrusive episodes that occurred at: ~2.87 Ga in the Rio Maria 

Terrane (Rio Maria Granodiorite, Mogno Trondhjemite, Xinguara Granite, etc); 

~2.7 and ~2.5 Ga in the Carajás Terrane (Estrela Granite, Planalto Granite, Plaque 

Suite; Itacaiúnas and Old Salobo Granites respectively). 

5) The volcanic-sedimentary sequences of the Itacaiúnas Supergroup display ages 

ranging from 2.73 to 2.76 Ga, The widespread correspondence and clustering of ages 

from widely separated localities suggests formation in the same, regionally extensive 

geological environment.  

6) The gabbroic sill intruded into the Águas Claras Formation is dated at 2,645 ± 12 

Ma, which can be regarded as a minimum age for this unit. 

7) The Proterozoic anorogenic granites exhibit ages from 1.72 to 1.88 Ga (Cigano, 

Carajás, Pojuca, Musa and Jamon Granites) related to a widespread 1.8 – 2.0 

regional intrusion event recorded in many parts of the Amazon Craton.  

8) Many of the granitic and supracrustal units in the Carajás region also often record 

younger ages compared to the absolute ages of crystallization for these rocks. The 

younger ages (2.4, 2.5 and 2.6 Ga) are likely linked to a variety of metamorphic, 

hydrothermal and tectonic events widely described in the literature (see (Machado et 

al. 1991; Lindenmayer et al. 1994; Reis et al. 1999; Holdsworth et al. 2000; Barros et 

al. 2001; Requia et al. 2003; Marschik et al. 2005)). 
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Supergroup Group / Intrusive Rocks Lithology Age (Ga) Method Author
Formation

A - Carajas Region
Cigano Granite Granite 1.731 ±  28 W-R Rb-Sr Goncalez et al. ( 1988)
Cigano Granite Granite 1 883 ± 3 ZR U-Pb Machado et al. (1991)
Carajas Granite Granite 1 880 ± 2 ZR U-Pb Machado et al. (1991)

Proterozoic Carajas Granite Granite 1 820 ± ? ZR U-Pb Wirth et al. (1986)
Granites Carajas Granite Granite 1.820 ± 49 ZR U-Pb Olszewski et al (1989)

Pojuca Granite Granite 1 874 ± 2 ZR U-Pb Machado et al. (1991)
Breves Granite Episyenite 1.880 ±  9 ZR SHR MP II Tallarico et al. (2004)
Breves Granite Granite 1.878 ±  8 ZR SHR MP II Tallarico et al. (2004)

Young Salobo Gran. Syenite 1 88 ± 80 W-R Rb-Sr Cordani (1981)
Águas Claras gabro 2.645 ± 12 ZR Pb-Pb Dias et al. (1996)

Grão-Pará volcanic sill 2.751 ± 4 ZR Pb-leach Krymsky et al. (2002)
Grão-Pará Rhyodacite 2.759 ± 2 ZR U-Pb Machado et al. (1991)
Grão-Pará Metarhyolite 2.758 ± 39 ZR U-Pb Olszewski et al (1989)
Grão-Pará Rhyolite 2.758 ± 39 ZR U-Pb Gibbs et al. (1986)
Grão-Pará Probable Tuff 2.743 ± 11 ZR SHRIMP Trendall et al (1998)
Grão-Pará Dolerite 2.740 ± 8 ZR SHRIMP Trendall et al (1998)
Grão-Pará Mylonitised Metarhyolite 2.757 ± 7 ZR SHRIMP Trendall et al (1998)
Grão-Pará Prphyritic metarhyolite 2.760 ± 11 ZR SHRIMP Trendall et al. (1998)
Grão-Pará Rhyolite 2.758 ± 39 ZR U-Pb Macambira & Lafon (1995)
Grão-Pará Rhyolite 2.757 ± 18 ZR Pb-Pb Macambira et al. (1996)

Igarape Pojuca Metarhyolite 2.497 ± 62 WR Rb-Sr Olszewski et al (1989)
Igarape Pojuca Ahphibolite 2.732 ± 2 ZR U-Pb Machado et al. (1991)
Igarape Pojuca Gabro 2 678 ± 107 WR Sm-Nd Lindenmayer et al. (2001)

tacaiunas Igarape Pojuca Metagabro 2 696 ± 109 WR Sm-Nd Lindenmayer et al. (2001)
Igarape Pojuca Andesite 2.683 ± 80 WR Sm-Nd Lindenmayer et al. (2001)
Igarape Pojuca Garnet-Biotite-Schist 2.668 ± 60 WR Sm-Nd Lindenmayer et al. (2001)

Group Igarape Pojuca mafic intrusive rocks 2.705 ± 2 ZR Pb-Pb Galarza et al. (2002b)
Igarape Pojuca saprolith 2 683 ± 7 ZR Pb-Pb Galarza et al. (2002b)
Igarape Pojuca metavolcanic 2.646 ± 30 WR Pb-Pb Galarza et al. (2002b)
Igarape Pojuca Meta Andesites host rock 2.719 ± 80 WR Sm-Nd Pimentel et al. (2003)
Igarape Pojuca Meta Gabro/ Andesite 2.757 ± 81 WR Sm-Nd Pimentel et al. (2003)
Igarape Salobo Rhyolite 2.740 ± ? ZR U-Pb Wirth et al. (1986)
Igarape Salobo Ahphibolite 2.761 ± 3 ZR U-Pb Machado et al. (1991)
Igarape Salobo Ahphibolite 2.497 ± 5 TI U-Pb Machado et al. (1991)
Igarape Salobo Gneiss 2 851 ± 4 ZR U-Pb Machado et al. (1991)
Igarape Salobo B F 2 551 ± 2 Mi U-Pb Machado et al. (1991)
Igarape Bahia Basic granophyre 2.577 ±  144 WR Rb-Sr Ferreira Filho ( 1985)
Igarape Bahia Metapyroclastic 2 330 ± 120 WR Rb-Sr Ferreira Filho ( 1985)
Igarape Bahia metapyroclastic 2.747 ± 1 ZR Pb-Pb Galarza et al. (2002)
Igarape Bahia mafic metavolcanic 2.758 ± 75 WR Sm-Nd Galarza et al. (2002)
Igarape Bahia Metapyroclastic 2.742 ± 72 WR Pb-Pb Santos (2002)
Igarape Bahia Meta volcanic/pyroclastic 2.759 ± 24 WR Sm-Nd Santos (2002)
Igarape Bahia Metavolcanic 2.748 ± 34 ZR SHRIMP Tallarico et al. (2005)
Igarape Bahia Metavolcanic 2 624 ± 8 ZR SHRIMP Tallarico et al. (2005)

Ultamafic Luanga Complx. Anorthosite 2.763 ± 6 ZR U-Pb Machado et al. (1991)
tacaiunas Granite Granitoid 2.480 ± 40 WR Rb-Sr Montalvao et al. (1984)

Archean tacaiunas Granite Granitoid 2 560 ±  37 ZR Pb-Pb Souza et al. (1996)
Granites tacaiunas Granite Granitoid 2.525 ± 38 ZR Pb-Pb Souza et al. (1996)

Old Salobo Granite Granitoid 2 573 ± 2 ZR U-Pb Machado et al. (1991)
Geladinho Granite Granitoid 2 688 ±  11 ZR Pb-Pb Barbosa et al. (2001)

Estrela Granite Granitoid 2.527 ± 68 WR Rb-Sr Barros et al. (1992)
Estrela Granite hornblenda sienogranite 2.763 ± 7 ZR Pb-Pb Barros et al. (2001)

Xingu Complex Gneiss 2.480 ± 30 WR Rb-Sr Montalvao et al. (1984)
Xingu Complex Granitic Leucossoma 2 859 ± 2 ZR U-Pb Machado et al. (1991)

Basement Xingu Complex Felsic Gneiss 2 851 ± 4 ZR U-Pb Machado et al. (1991)
Units Xingu Complex Amphibolite 2 519 ± 5 TI U-Pb Machado et al. (1991)

Pium Complex Granulite 3 050 ± 114 WR Pb-Pb Rodrigues et al. (1992)
Pium Complex Enderbite Protolith 3.002 ± 14 ZR SHRIMP Pidgeon et al. (2000)
Pium Complex Granulite 2 859 ± 9 ZR SHRIMP Pidgeon et al. (2000)

B - Transitional Region
Plaque Suite Granitoid 2.729 ± 29 ZR Pb-Pb Avelar et al. (1999)

Archean Plaque Suite Granitoid 2.736 ± 24 ZR Pb-Pb Avelar et al. (1999)
Granites Planalto Granite Granitoid 2.747 ± 2 ZR Pb-Pb Huhn et al. (1999)

Cristalino Diorite Diorite 2.738 ± 6 ZR Pb-Pb Huhn et al. (1999)
Serra do Rabo Gran. Granitoid 2.743 ± 1 ZR U-Pb Sardinha et al. (2002)

Basement Rio Maria Granod. Granitoid 2.850 ± 17 ZR Pb-Pb Avelar et al. (1999)
Units Xingu Complx Gneiss 2.972 ± 16 ZR Pb-Pb Avelar et al. (1999)  
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C -  Rio  Maria Greenstone Terrain
Musa Granite Granitoid 1 883 +5/-2 ZR U-Pb Machado et al. (1991)
Jamon Granite Granitoid 1 885 ± 32 ZR Pb-Pb Dall'Agnol et al. (1999)

Proterozoic Jamon Granite Granitoid 1.601±42 WR Rb-Sr Dall'Agnol et al. (1984)
Granites Marajoara Granite Granitoid 1.724 ± 50 WR Rb-Sr Macambira (1992)

Redenção Granite Granite 1 870 ± 68 WR Pb-Pb Barbosa et al. (1995)
Rio Maria Granod. Granodiorite 2 660 ± 40 WR Rb-Sr Montalvao et al. (1984)
Rio Maria Granod. Granodiorite 2.874 +9/-10 ZR U-Pb Macambira (1992)
Rio Maria Granod. Granodiorite 2.872 ± 5 TI U-Pb Pimentel & Machado (1994)
Rio Maria Granod. Granodiorite 2 874 ± 10 ZR U-Pb Macambira & Lancelot (1996)
Rio Maria Granod. Granodiorite 2 850 ± 17 ZR Pb-Pb Avelar (1996)
Rio Maria Granod. Quartz-Diorite 2.878 ± 4 ZR Pb-Pb Dall'Agnol et al. (1999)
Rio Maria Granod. Granodiorite 2.877 ± 6 ZR Pb-Pb Rolando & Macambira (2003)
Rio Maria Granod. Diorite 2.880 ± 4 ZR Pb-Pb Rolando & Macambira (2003)

Agua Fria Trondhjemite banded trondhjemite 2 864 ± 21 ZR Pb-Pb Leite et al. (2004)
TTG Mogno Trondhjemite Granitoid 2.871 ± ? TI U-Pb Pimentel & Machado (1994)

Mogno Trondhjemite Granitoid 2 87 TI U-Pb Dall'Agnol et al. (1998)
Granitoids Parazonia Tonalite Granitoid 2.858 TI U-Pb Pimentel & Machado (1994)

Cumaru Granodiorite Granitoid 2.817 ± 4 ZR Pb-Pb Lafon et al. (1994)
Mata Surrao Granite Monzogranite 2.872 ZR U-Pb Rodrigues et al (1992)
Mata Surrao Granite Leucogranite 2 872 ± 10 WR Pb-Pb Althoff et al. (2000)
Mata Surrao Granite Leucogranite 2.871 ± 7 ZR Pb-Pb Althoff et al. (2000)
Mata Surrao Granite Leucogranite 2.541 WR Rb-Sr Duarte et al. (1991)
Mata Surrao Granite Monzogranite 2.881 ± 2 ZR Pb-Pb Rolando & Macambira (2003)
Mata Surrao Granite Monzogranite 2 875 ± 11 ZR Pb-Pb Rolando & Macambira (2003)
Mata Surrao Granite Leucogranite 2.872 WR Pb-Pb Lafon et al. (1994)

Guaranta Granite Leucogranite 2 93 ZR Pb-Pb Althoff et al. (2000)
Xinguara Granite Granitoid 2.87 ZR Pb-Pb Dall'Agnoll et al. (1998)
Xinguara Granite Leucogranite 2.865 ± 1 ZR Pb-Pb Leite (2001)
Xinguara Granite Leucogranite 2 875 ZR Pb-Pb Rolando & Macambira (2002)

Inaja Group Metabasalt 2.988 ± 4 ZR U-Pb Rolando & Macambira (2003)
Lagoa Seca Grp. Metagraywakes 2 971 ± 18 ZR U-Pb Macambira (1992)

Andorinhas Lagoa Seca Grp. Felsic Metavolcanic 2.904 +29/-22 ZR U-Pb Macambira & Lancelot (1992)
Supergroup Lagoa Seca Grp. Felsic Metavolcanic 2.979 ± 5 ZR U-Pb Pimentel & Machado (1994)

Identidade Grp. Metadacite 2 944 ± 88 WR Pb-Pb Souza (1994)
Tucumã Grp. Metabasalt 2.868 ± 8 ZR Pb-Pb Avelar et al. (1999)

Ultramafic Serra Azul Complex peridotite 2.970 ± 7 ZR U-Pb Pimentel & Machado (1994)
Caracol Ton. Tonalite 2.948 ± 5 ZR Pb-Pb Leite et al. (2004)
Caracol Ton. Tonalite 2.936 ± 3 ZR Pb-Pb Leite et al. (2004)
Caracol Ton. Tonalite 2.942 ± 2 ZR Pb-Pb Leite et al. (2004)

Basement Arco Verde Ton. Tonalite 2.957 +25/-21 ZR U-Pb Macambira (1992)
Units Arco Verde Ton. Tonalite 2.96 ZR U-Pb Dall'Algnoll et al. (1998)

Arco Verde Ton. Tonalite 2.948 ± 7 ZR Pb-Pb Rolando & Macambira (2002)
Arco Verde Ton. Tonalite 2.988 ± 5 ZR Pb-Pb Rolando & Macambira (2003)
Arco Verde Ton. Tonalite 2.981 ± 8 ZR Pb-Pb Rolando & Macambira (2003)  

 

* WR- whole-rock, ZR- zircon, TI- titanite, MI- mineral 

Table 2.3 – Geochronological data from the Archaean and Proterozoic stratigraphic units of the 
Carajás Geochronological Province separated into 3 geochronological/structural domains (from N to 
S): the Carajás Region, the Transitional Region and the Rio Maria Granite-Greenstone Terrane. 
 

 

A considerable number of robust isotopic ages have been obtained from the mineral 

deposits in the Carajás Terrane. These data are important for deposits hosted in old 

crustal segments with long geological histories and complex structural evolution, 

where geochronological ages allow ore formation to be linked to specific structural 

or geological events. 
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 Table 4 presents isotopical ages for the major deposits in the Carajás Terrane.  

 

1) Most metallogenic deposits formed during two main time periods: an Archaean 

phase at 2.7-2.5 Ga and a Proterozoic phase at 1.88 Ga. 

2) The world-class high tonnage Fe-oxide, Cu-Au Salobo, Igarapé-Bahia-Alemão, 

Cristalino and Sossego-Sequeirinho deposits are related to mineralizing events at ca. 

2.7-2.5 Ga. 

3) The smaller to medium size Cu-Au Breves, Target 118, Gameleira, Estrela and 

Serra Pelada deposits were dated at 1.88 Ga, similar age to the time of 

crystallizations of the 1.88 Ga isotropic granitoids in the Amazon Craton. 

4) A small but significant number of ages are in the range 2.2 to 2.4 Ga in the 

Archaean deposits. These can be linked to ore remobilization events triggered by 

local tectonic activity and associated hydrothermal alteration. 

 

Age histogram plots for the lithological units and mineral deposits show a 

good correlation in the region as a whole. Three age maxima are observed for the 

regional lithological units (Fig. 2.14 A). They indicate major episodes of igneous 

(volcanic, plutonic) activity at 1.88, 2.57 and 2.76 Ga. Two of the three maxima are 

in accordance with the models presented in (Condie 2000; Parman 2007), which 

propose that episodic growth of continental crust and supercontinents caused by 

superevents took place at 2.7, 1.9 and 1.2 Ga. The age interval of 2.57 Ga can be 

related to either the plutonism that formed the Itacaiúnas and Old Salobo granites 

and/or to the tectonic episode that formed the Itacaiúnas shear belt. 

The age maxima on the graph of mineral deposits (Fig. 2.14 B) coincide well 

with the regional data suggesting that the deposits are closely associated with the 
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magmatic activity recorded at 1.88 and 2.76 Ga in the Carajás Terrane. The 

mineralization dated at 2.57 Ga can be linked to hydrothermal remobilization caused 

by tectonic reactivation events in the 2581-2497 Ma interval, possibly associated 

with the latest activity of a WNW-ESE sinistral shear system (Machado et al. 1991). 

MINERAL DEPOSITS
Deposit Lithology Material dated Method Age (Ma) Author

Fernando Mine ore (weathering profile) Re-Os 2.592 ± 13 Marschik et al. (2005)

Fernando Mine ore (weathering profile) Re-Os 2.602 ± 13 Marschik et al. (2005)

Serra verde host rock - metavolcanic Plagioclase Pb-Pb 2.747 ±  120 Reis et al. (2000)

Serra verde ore - massive sulfide Chalcopyrite-Molybdenite Pb-Pb 2.509 ±  85 Reis et al. (2000)

Serra verde ore-cpy-moly-qtz pods inside sulfide body cpy-moly Pb-Pb 2.760 ±  77 Reis et al. (2000)

Serra verde ore - massive sulfide Apatite U-Pb 2.362 ±  19 Reis et al. (2000)

Serra verde ore (primary massive chalcopyrite) Re-Os 2.609 ± 13 Marschik et al. (2005)

Gameleira Mineralized vein Biotite + Sulfide Sm-Nd 1700 ± 60 Lindenmayer et al (2001)

Gameleira vein sulphide Whole-Rock Pb-Pb 2.422 ± 12 Galarza (2002b)

Gameleira vein sulphide Whole-Rock Pb-Pb 2.246 ± 30 Galarza (2002b)

Gameleira ore chalcopyrite Pb leaching 2.218 ± 14 Galarza (2002b)

Gameleira ore chalcopyrite Pb leaching 2.190 ± 42 Galarza (2002b)

Gameleira biotite schist Whole-Rock Sm-Nd 1 958 Pimentel et al. (2003)

Gameleira metagabro Whole-Rock Sm-Nd 2.68 Pimentel et al. (2003)

Gameleira sienogranite Zircon U-Pb 1.583 +9 / -7 Pimentel et al. (2003)

Gameleira quartz grunerite vein Whole-Rock Sm-Nd 1.839 ± 15 Pimentel et al. (2003)

Gameleira meta andesite Biotite Ar-Ar 1.734 ± 8 Pimentel et al. (2003)

Gameleira biotite in sulfide vein Whole-Rock Sm-Nd 1.700 ± 31 Pimentel et al. (2003)

Gameleira ore (chalcopyrite + molybdenite) Re-Os 2.614 ± 14 Marschik et al. (2005)

Salobo hydrothermal altered gneiss whole-Rock Rb-Sr 2.029 ± 21 Gomes et al. (1975)

Salobo hydrothermal altered gneiss Amphiboles K-Ar 1.987 ± 77 Gomes et al. (1975)

Salobo Cu-Au ore Chalcocite Pb leaching 2.762 ± 180 Mellito & Tassinari (1998)

Salobo iron ore Magnetite Pb leaching 2.776 ± 240 Mellito & Tassinari (1998)

Salobo ore Chalcopyrite Pb leaching 2.427 ± 130 Tassinari & Mellito (2001)

Salobo ore Magnetite Pb leaching 2.112 ± 12 Tassinari & Mellito (2001)

Salobo ore Tourmaline Pb leaching 2 587 ± 150 Tassinari & Mellito (2001)

Salobo vein with bornite/magnetite Re-Os 2 576 ± 1 Requia et al. (2003)

Salobo vein with bornite/magnetite Re-Os 2 561 ± 3 Requia et al. (2003)

Salobo ore B te Pb leaching 2.579 ± 71 Requia et al. (2003)

Salobo ore Magnetite Pb-Pb 2 291 ± 220 Requia et al. (2003)

Salobo ore Chalcocite Pb-Pb 2.705 ± 42 Tassinari et al. (2003)

Salobo ore Remobilized CPY Pb-Pb 2.427 ± 130 Tassinari et al. (2003)

Salobo tourmaline quartzite/veins Tourmaline Pb-Pb 2 587 ± 150 Tassinari et al. (2003)

Salobo brecciated iron formation Magnetite Pb-Pb 2.112 ± 12 Tassinari et al. (2003)

Salobo hydrothermal altered gneiss Whole-Rock Rb-Sr 2.101 ± 130 Tassinari et al. (2003)

Salobo garnet-biotite schist whole-Rock Sm-Nd 2.424 ± 13 Tassinari et al. (2003)

Alemao fluorite in carbonatic vein Fluorite Sm-Nd 2.313 ± 1000 Santos (2002)

Alemao fluorite in carbonatic vein Fluorite Sm-Nd 2 504 ± 930 Santos (2002)

Alemao fluorite in carbonatic vein Fluorite Sm-Nd 2.580 ± 79 Santos (2002)

Alemao apatite inclusion in chalcopyrite Apatite U-Pb 2.700 ± 8,9 Santos (2002)

Alemao apatite inclusion in chalcopyrite Apatite U-Pb 0.986 ± 2,4 Santos (2002)

Alemao gold associated with CPY Gold particles Pb-Pb 2.575 ± 86 Santos (2002)

Alemao gold associated with CPY Gold particles Pb-Pb 2 810 ± 230 Santos (2002)

Alemao gold in late carbonatic vein Gold particles Pb-Pb 2 595 ± 200 Santos (2002)

Alemao gold in sulphide breccia associated with cpy Gold particles Pb-Pb 2.204 ± 17 Santos (2002)

Alemao gold in sulphide breccia associated with cpy Gold particles Pb-Pb 2 675 ± 130 Santos (2002)

Alemao gold in sulphide breccia associated with cpy Gold particles Pb-Pb 2.556 ± 95 Santos (2002)

Alemao late gold in suphide breccias Gold particles Pb-Pb 2 651 ± 120 Santos (2002)

Alemao late gold in suphide breccias Gold particles Pb-Pb 2 555 ± 270 Santos (2002)

Alemao ore - massive sulphide chalcopyrite Pb-Pb 2.521 ± 56 Santos (2002)

ornite-Chalcopyri

Molybdenite

Molybdenite

Molybdenite

Molybdenite

Molybdenite

Molybdenite
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Igarape Bahia ore Chalcopyrite Pb-Pb 2.850 ± 65 Mougeot et al. (1996)

Igarape Bahia ore Chalcopyrite + Gold Pb-Pb 2.764 ± 22 Galarza (2002)

Igarape Bahia ore Chalcopyrite Pb-Pb 2.850 ± 65 Mougeot et al, (1996)

Igarape Bahia ore (mineralized breccia) hydrothermal monazite SHR MP 2.575 ± 12 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.572 ± 21 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.592 ± 10 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.576 ± 17 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.555 ± 17 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.561 ± 16 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.564 ± 24 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.560 ± 19 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.557 ± 19 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.600 ± 33 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.580 ± 21 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.542 ± 20 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.519 ± 19 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.610 ± 20 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.554 ± 16 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.567 ± 17 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.552 ± 16 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.583 ± 30 Tallarico et al. (2005)

Igarape Bahia copper-gold bearing magnetite breccia Monazite SHR MP 2.279 ± 35 Tallarico et al. (2005)

Igarape Bahia ore Chalcopyrite + Gold Pb-Pb 2.764 ± 22 Galarza (2002)

Igarape Bahia ore Chalcopyrite in gold Pb-Pb 2.778 Galarza (2002)

Igarape Bahia ore (hydrothermal breccia) Chalcopyrite Pb-Pb 2.772 ± 46 Galarza et al. (2007)

Igarape Bahia ore (metapyroclastic rocks) Chalcopyrite Pb-Pb 2.754 ± 36 Galarza et al. (2007)

Igarape Bahia ore veinlet (mafic metavolcanic) Chalcopyrite Pb-Pb 2.756 ± 24 Galarza et al. (2007)

Igarape Bahia dikes Chalcopyrite Pb-Pb 2.777 ± 22 Galarza et al. (2007)

Igarape Bahia ore (hydrot breccia+metavolc+gossan) Gold particles Pb-Pb 2.744 ± 12 Galarza et al. (2007)

Igarape Bahia ore (hydrothermal breccia) Chalcopyrite Pb leaching 2 385 ± 122 Galarza et al. (2007)

Igarape Bahia ore (hydrothermal breccia) Chalcopyrite Pb leaching 2.417 ± 120 Galarza et al. (2007)

Sossego ore Amphiboles Ar-Ar 2 3 Marschik et al., (2003)

Breves late to post mineralization veins Monazite SHRIMP II 1.875 ±  7 Tallarico et al. (2004)

Breves late to post mineralization veins Xenotime SHRIMP II 1.869 ±  11 Tallarico et al. (2004)

Breves late to post mineralization veins Monazite/Xenotime SHRIMP II 1.872 ±  7 Tallarico et al. (2004)

Aguas Claras  sulfide in quartz vein x cutting gabro sills Sulphides Pb-Pb 2.358 ±  42 Silva et al. (2001)

Aguas Claras hydrothermal altered aguas claras qtz arenite minerals Rb-Sr 2.134 ± 64 Silva et al. (2001)

Cristalino ore - main ore body Chalcopyrite Pb-Pb 2.700 ± 29 Soares et al. (2001)

Cristalino ore - main ore body Chalcopyrite Pb-Pb 2.694 ± 19 Soares et al. (2001)

Cristalino ore - main ore body Chalcopyrite Pb-Pb 2.719 ± 36 Soares et al. (2001)

Estrela quartz-biotite-cooper stockwork vein monazite EPMA 1.839 ± 14 Volp et al. (2005)

Estrela aplite monazite EPMA 1.886 ± 19 Volp et al. (2005)

Estrela aplite monazite EPMA 1.827 ± 23 Volp et al. (2005)

Estrela aplite monazite EPMA 1.716 ± 19 Volp et al. (2005)

Estrela fluorite–sulphide secondary stockwork veins allanite EPMA 1.85 Volp et al. (2005)

Estrela fluorite–sulphide secondary stockwork veins monazite EPMA 1.85 Volp et al. (2005)

Serra Pelada Au ore monazite Pb-Th 1.861 ± 45 Grainger et al. (2007)

Serra Pelada hydrothermal biotite+chalcopyrite+pyrrhotite biotite Ar-Ar 1882 ± 3 Grainger et al. (2007)

118 chalcopyrite+xenotime in qtz vein Xenotime SHR MP II 1 868 ± 7 Tallarico 2003

118 massive cpy ± bornite ± Fe-oxide ± xenitime Xenotime SHRIMP II 1 869 ± 7 Tallarico 2003  

 

Table 2.4 – Geochronological data of the Archean and Paleoproterozoic mineral deposits in the 
Carajás Terrane. 
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Figure 2.14 – Age histograms for the geochronological data from (A) the regional lithostratigraphic 
units and (B) the mineral deposits in the Carajás Terrane.  
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Chapter 3 
  

 

Investigating ore-lineament relationships using multi-scale 

lineament analysis and magnetometry in the Carajás Region, 

Amazon Craton-Brazil 
 

 
 

3.1 Introduction 
 

Since the launch of the first LANDSAT satellite in 1972, remotely sensed 

imagery has become widely available and is used to support a range of applications 

in areas such as global change research, agriculture, forestry, geology, resource 

management, geography, mapping and oceanography. From 1984, geological 

mapping has undergone a dramatic transformation, entering the era of digital 

technology. Computer-aided mapping, multicriteria analysis, three dimensional 

representation and geographic information systems (GIS) have displaced 

conventional paper-based techniques (Scanvic et al. 1997). 

This new data has been subjected in many geological studies to lineament 

interpretation and analysis. The technique has been applied to structural mapping 

(Harrys 1991; Raghavan et al. 1993); mineral and hydrocarbon prospecting 

(Bonham-Carter 1985; Mirsa et al. 1991; Hein 1999); studies of groundwater flow-

paths and aquifer controls (Mabee et al. 1994; Ferguson et al. 1997) and the 
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prediction of ground control problems related to underground mining activities and 

structures (Kane et al. 1996). 

(Sabins 1987) defines lineaments as straight linear features, presumably 

expressing a sub-surface phenomenon that differs distinctly from the patterns of 

adjacent features. The processes that form these lineaments may influence its 

properties such as size, spatial distribution pattern and trend. Spatial analysis can 

help to unravel and provide insights into causative geological processes and may also 

reveal features that assist in the testing or formulation of hypotheses about geological 

processes (Clark et al. 1994). It is also important to interpret lineaments at different 

scales because, within a single dataset, differing features become evident at differing 

scales. Discrete lineaments are more evident on large scale maps, whereas regional 

lineament clusters or corridors are more easily identified in small scale maps 

(Boucher 1997). 

Lineaments maps and analyses have proved to be an effective, relatively 

quick and cost-effective tool during mineral resource exploration and were used, for 

example, in the discovery of many of the classical ore deposits in Australia. These 

include: the Olympic Dam Cu-Au-U deposit (O’Driscoll 1985; Lalor 1987); the 

Century Pb-Zn deposit (Woodall 1992); the Boddington, Plutonic and Kanowna 

Belle gold deposits (Woodall 1991); the Kambalda-St Ives nickel deposit (Odriscoll 

1986); and the Broken Hill nickel and gold deposit (O’Driscoll 1983). These 

discoveries were associated with lineaments and illustrate that this inexpensive and 

straightforward technique can play an important role in prospecting especially in the 

initial stages of mineral exploration campaigns. 

This study investigates lineaments in an area within the Carajás Terrane in 

the Amazon Craton, Brazil. Here, several high economic Cu-Au deposits have 
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already been identified, and prospecting campaigns are still in development with 

some successful discoveries recently made. Most of the deposits are structurally 

controlled and display close association with large scale faults or shear zones. These 

structures are typically expressed on Earth’s surface as sets of lineaments and an 

analysis of these features helps to better characterize the regional tectonic framework 

in what is in reality a structurally complex area. This chapter presents an integrated 

study of topographic (surface) and magnetic (subsurface) lineaments extracted from 

LANDSAT, SRTM images and aeromagnetic surveys. The datasets were analysed 

using GIS tools to determine lineaments characteristics and the main tectonic 

features present in the area. An investigation of what can be learnt from a multi-scale 

observation and interpretation of lineaments is also presented and it is shown how 

these may be related to underlying, geological controls and the development of ore 

deposits. 

 

3.2 Regional geological setting 
 

The study area lies within the Carajás Terrane situated in the southern portion 

of the Amazon Craton, part of the Central Brazil Shield (see Fig. 3.1). It used to be 

part of the Central Amazonian Province (Tassinari et al. 1999), but recent studies 

consider it to be an independent tectonic province (Santos et al. 2000). It is bounded 

to the east by the Neoproterozoic Araguaia Belt and to the west is overlain by 

Paleoproterozoic volcano-plutonic and sedimentary rocks of the Uatumã Supergroup 

(Araújo et al. 1991; Macambira et al. 1995), part of the Iriri-Xingu geochronological 

domain (see Fig. 3.1). To the south it is in contact with the Achaean Rio Maria 

Granite-Greenstone Terrane (DOCEGEO 1988; Huhn et al. 1988), whilst to the 
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north, it is covered by Palaeozoic and Cenozoic sediments of the Amazon Basin 

(Pinheiro 1997). It represents an important metallogenic province with several major 

iron, copper, gold, manganese and tin deposits and contains some of the oldest and 

best preserved sequences of Archaean-Proterozoic rocks in the craton (Galarza et al. 

2007). 

The Carajás Geochronological Province was formed and stabilized during the 

Archaean and later affected by extensive Palaeoproterozoic magmatism 

characterized by anorogenic granitic intrusions and mafic and felsic dykes (Pidgeon 

et al. 2000). It is divided into two major geochronological domains (see Fig. 3.2): the 

Rio Maria Granite–Greenstone Terrane (3.05 to 2. 86 Ga) to the south, and the 

Carajás Terrane, named after the prominent Carajás Ridge (2.76 to 2.55 Ga) to the 

north (DOCEGEO 1988; Machado et al. 1991; Macambira et al. 1995; Dall'Agnol et 

al. 1997). Both domains exhibit distinctive lithological, tectonic, stratigraphic and 

geochronological characteristics, but their mutual boundaries remain poorly defined 

(Galarza et al. 2007).  

The oldest rocks present in the Carajás Province are located in the Rio Maria 

Granite Greenstone Terrain (Macambira et al. 1995), with granitoids (Arco Verde 

Tonalite, Caracol Complex, Rio Maria Granodiorite, Mogno Trondhjemite, Xinguara 

and Mata Surrão Granite) intruding older greenstone-belt sequences of the 

Andorinhas Supergroup (Fig. 3.2). 

The Carajás Terrane (see geological map on Fig. 3.3) comprises two main 

Archaean and Proterozoic domains identified based on their markedly differing 

geological characteristics (Araújo et al. 1991; Pinheiro 1997).  

The High Grade Granite-Gneiss Terrain or Basement Assemblage is 

represented by granulite facies orthogneisses of the Pium Complex which are 
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tectonically intrusive into upper amphibolite facies tonalitic gneisses, granodiorites 

and migmatites of the Xingu Complex (see Table 3.1 for ages). Subvertical, WNW-

ESE-trending mylonitic fabrics formed coeval with the nucleation of the broad 

structure of the Carajás Terrane and are thought to have subsequently experienced 

several episodes of reactivation (Pinheiro 1997; Pinheiro et al. 1997a; Holdsworth et 

al. 2000).  

Low Grade Supracrustal Volcanic and Sedimentary Sequences or the Cover 

Assemblage include the Grão-Para; Igarapé Salobo and Igarapé Pojuca groups (see 

Table 3.1 for ages). These units show a range of metamorphic grades from virtually 

undeformed greenschist facies in the inner part of the belt, to intensely sheared 

amphibolite-granulite facies in the Cinzento Strike-Slip System (DOCEGEO 1988; 

Lindenmayer et al. 1991; Pinheiro et al. 1997a). The Cover assemblage is composed 

of older metavolcanic and sedimentary ironstones and clastic sequences, overlaid by 

a clastic sequence of shallow-water marine to fluvial deposits of the Águas Claras 

Formation, which is intruded by a gabbroic sill that constrains the minimum age of 

the formation.  

Syn-tectonic, Neoarchaean, alkaline granitoids and diorites of the Plaque 

Suite are intruded into rocks of both the Basement and Cover assemblages. These 

intrusive units are typically elongate and lie parallel to the strike of the regional 

WNW-ESE foliation (Holdsworth et al. 2000; Barros et al. 2001; Sardinha et al. 

2006).  

Palaeoproterozoic plutons intrude almost all the rocks of both basement and 

low-grade cover sequences in the Carajás area and the Rio Maria granite-greenstone 

terrane (Machado et al. 1991; Dall'Agnol et al. 1999). These isotropic granitoids 

display monzogarnitic-syenogranitic composition, coarse to medium grained and are 
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markedly discordant showing sharp cross-cutting contacts with the Archaean country 

rocks (Ramo et al. 2002; Dall'Agnol et al. 2005). 

The Carajás and Cinzento strike-slip systems (Fig. 3.3) are the most 

prominent structures within the Carajás Terrane. These fault systems were formed by 

at least three cycles of brittle-ductile strike-slip reactivation at low metamorphic 

grades, after the initial development of the terrane governed by ductile shear zones 

under amphibolite facies metamorphic conditions (Pinheiro 1997; Holdsworth et al. 

2000). They form an E-W trending set of discontinuous, sigmoidal, anastomosing 

lineaments almost 200 km long with a maximum width of 80 km. The geometry of 

these fault zones appears to be strongly controlled by the orientation of earlier shear 

zone fabrics in the basement. A later set of N-S to NNE-SSW fault lineaments cross-

cut the main sigmoidal structures (Pinheiro 1997; Holdsworth et al. 2000). The 

complex tectonic history of the Carajás region, dominated by transpressional and 

transtensional events is summarized in Table 3.2. 

 

3.3 Dataset and Methods 
 

The 6 major stages of data analysis employed during the study are 

summarised in Fig. 3.4, highlighting the key data manipulation and processing 

methods. Data were obtained from global databases that offer accessible, good 

quality coverage of most of the whole globe. All lineament picking and analysis 

were carried out using ESRI ArcMap software.  

 

 

68

Chapter 3



3.3.1 Imagery acquisition and processing 
 

 The remotely sensed data used in this study includes LANDSAT 7 ETM 

images and Shuttle Radar Topography Mission (SRTM) elevation-DEM data. The 

LANDSAT images were obtained from the Global Land Cover Facility (GLCF) 

website (http://glcf.umiacs.umd.edu/index.shtml), a research partnership between the 

University of Maryland and NASA. The two scenes utilized were acquired on 

09/07/2001 (Path 224, Row 064) and 31/07/2000 (Path 223, Row 064). The final 

image used in this study is a coloured composition using the band 7-2-1 (RGB), 

blended with a band 8 panchromatic with spatial resolution of 15 m (Fig. 3.5A). The 

bands were combined using the software Global Mapper v 7.04. The LANDSAT 

bands were imported into the program and, by using the option Overlay Control 

Centre, were merged according to the parameters presented in Figure 3.5 B. No 

directional edge filters or algorithms were applied to the image.  

SRTM V2 elevation data were downloaded from the NASA Jet Propulsion 

Laboratory website 

(ftp://e0srp01u.ecs.nasa.gov/srtm/version2/SRTM3/South_America/). The six 

SRTM, C-band radar data files (S06W050-051-052 and S07W050-051-052) have a 

moderate spatial resolution of 3 arc seconds or 90 m with vertical and horizontal 

accuracy of 12 m and 50 m respectively. Topographic features were enhanced by 

increasing vertical exaggeration by 15 and applying synthetic directional shading 

filters to produce four base hill shaded raster images (.TIFF) with directional 

illumination at 0ºaz, 45ºaz, 90ºaz and 120ºaz at a constant elevation angle of 2º (Fig 

3.6).  

After processing to enhance topographic features, the images were imported 

into a Geographic Information System (GIS) environment where lineaments were 
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picked (extracted). Existing lineament maps from (Lima 2002) and (Oliveira 2002), 

covering part of the area were georeferenced and digitized using ESRI ArcMap for 

semi-detailed analysis and to compare to any identified features. 

 

3.3.2 Lineament Extraction 
 

 Lineament extraction was performed manually from satellite images by 

digitization of three main visually interpreted categories of linear features: (1) 

topographic features such as straight valleys and scarps; (2) rock or textural 

boundaries; and (3) sharp tonal variation boundaries. Manual extraction has the 

disadvantage of being time consuming, and its reliability depends on the experience 

and knowledge of the user; it is also prone to user bias. However, despite increasing 

popularity and speed, automated lineament extraction was not adopted as testing 

showed that it typically produced shorter, discontinuous, straight lineaments when 

compared to those manually extracted. The automated method therefore, is 

particularly useful for studies where the user requests are mainly speed and 

directional analysis, with geometry or length being less important parameters.  

  Lineaments for the regional analysis were extracted from the satellite images 

at four fixed scales, without zooming during extraction: (1) 1:1 000 000; (2) 1: 750 

000; (3) 1:500 000; and (4) 1:250 000. The digitized lineaments maps, combined 

with manual extraction from the SRTM images to fill gaps on the existing dataset 

were used for finer scale lineament identification 
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3.3.3 Lineament treatment/correction 
 

 After extraction, lineaments may contain errors introduced by the interpreter 

during the digitizing process such as extra nodes, overlapping and/or lineament 

duplication. This can lead to exaggeration of lineament length, additional numbers of 

lineaments and cross-points and inaccuracy in the lineament density map. These 

errors were corrected using the script ‘Lineament Analysis 20040611 for ArcView 

3.1’ (http://arcscripts.esri.com/details.asp?dbid=13579) (Kim et al. 2004).  

Two tools were utilized to reduce data inaccuracy: (i) the Remove-Node tool 

(Fig. 3.7 A) which reduces the number of redundant nodes contained in the 

interpreted lineaments, preparing the dataset for the next step; and (ii) the Generalize 

tool (Fig. 3.7 B) which divides a single lineament into two based on the angle 

formed between the intersection of the lineament’s segments (Kim et al. 2004). 

These tools were used because of their specific development to minimize input errors 

inherent to the digitization process, optimizing the original digitized lineaments map 

data. Additionally, they have proved their efficiency in previous studies that used 

lineaments analysis for e.g.: (a) aid the construction of a transpressional model in a 

structurally complex region (Wilson et al. 2006); and (b) to examine the relations 

between lineament architecture and in-situ rocks stress on groundwater flow 

(Henriksen et al. 2006).  
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3.3.4 Lineament Analysis 
 

The analysis was performed by studying and analysing the length and azimuth 

attributes of lineaments using histograms, X/Y plots, rose diagrams and density maps 

for lineaments and lineament intersection points. 

 Length and azimuth were calculated using the EasyCalculate 5.0 script 

(http://arcscripts.esri.com/details.asp?dbid=12224). Histograms for length and 

azimuth together with azimuth against length plots were created using standard 

statistical software (Microsoft Excel and SigmaPlot 10) and directional rose 

diagrams were created using the EZ-ROSE computer program (Baas 2000). 

Lineament intersection points were generated using the tool Dist-to-cross-point in 

the script Lineament Analysis 20040611 (Kim et al. 2004). 

 Lineament density maps were constructed to assess the frequency of 

lineaments per unit area by using the density analysis from the Spatial Analyst tools 

in ArcMap. This tool runs a circle around the centre of each grid cell using a defined 

search radius (Fig. 3.8). The sum of lineament lengths inside the circle is divided by 

the circle's area, giving the density value (Silverman 1986). Default values for 

‘search radius’ and ‘cell size’ were used, as created within the Arc map software. 

These values satisfactorily delineated the resolution of density patterns across the 

study region. Investigations into other values for these parameters resulted in 

reduction in the precision of the general patterns in the data.  

 Lineaments were also compared and analyzed in relation to their geological 

character/control. This was carried out by considering their occurrence within 

individual geological and major tectono-stratigraphic units. This was done to 

investigate the role of pre-existing basement structures during the deposition and 

structural evolution of the Cover Assemblage and also to see if there was a spatial 
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control on the distribution of lineaments in particular geological units with specific 

ages. The spatial analysis of lineaments was carried out by overlying a square 

network on the lineament datasets and producing rose diagrams for each individual 

unit cell in the network. The procedures and methods described in this paragraph 

were successfully used to study lineaments in the whole Norway and in the Almazan 

Basin, Spain (Cortes et al. 1998; Gabrielsen et al. 2002). 

 

3.3.5 Geophysics – Magnetic Lineaments 
 

Aeromagnetic data was obtained from two surveys from the Brazilian 

National Department of Mineral Production (DNPM): (i) block 3 of the Geophysical 

Survey Program Brazil-Canada, 1975, total count, spacing 2 km; and (ii) Carajás 

Project (Area I), 1988, IGRF, spacing 2 km. Linear magnetic anomalies were 

visually identified and manually extracted in a GIS environment to create vector 

maps containing magnetic lineaments. 

 

3.4 Results – Lineament Characterization 
 

The lineaments extracted from the remotely sensed images are represented by 

five vector maps covering two study areas within the Carajás Terrane (see dashed 

and dotted lines in Fig. 3.9). On a regional scale, four maps were produced by 

picking lineaments at 4 different scales: 1:1 000 000; 1:750 000; 1:500 000 and 

1:250 000 (Fig. 3.10). A smaller study region (indicated by dotted line in Fig. 3.9) 

was selected to examine the local scale features which include a copper deposit and a 

smaller area studied in detail and described in Chapters 4 and 5. The finer scale 
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lineaments datasets of (Lima 2002) and (Oliveira 2002) were adopted for the 

lineaments analysis of this area (Fig. 3.11). Additionally lineaments extracted from 

STRM images were used to infill areas with no or sparse data. The lineaments 

datasets from (Lima 2002) and (Oliveira 2002) comprise raw lineaments only and 

were processed using the lineaments analysis methods previously described. 

 

3.4.1 Length Analysis   
  

Length attributes were investigated by analysing histograms and statistical 

values for each of the five vector maps (Fig. 3.12). Lineaments extracted at larger 

scales are more numerous and, on average, are shorter than those picked at smaller 

scales. Histograms for lineament lengths at all analysed scales show log-normal 

distribution with an asymmetric tail towards the right (longer lengths). The plots 

show a consistent similarity in the style of distribution but with a notable widening 

of the histogram base as the scale decreases. Meaning that, the range of lineaments 

lengths is directly proportional to the scale of observation (i.e. the finer the scale of 

observation, the less variation in lineaments length is noticed). Lineament lengths 

analysed according to geological domain are illustrated in Figure 3.13. At 1: 750 

000; 1:500 000 and 1:250 000 scales, lineaments are more numerous and shorter 

within the Cover Assemblage domain compared to the Basement Assemblage 

domain. However, at 1:1 000 000 and detailed scales, in the Cover Assemblage the 

lineaments are less numerous but longer. The ratios for numbers of lineaments in the 

Cover to Basement Assemblage domains from small to large scales are 2.5; 2.4; 

2.25; 1.9 and 0.7, which indicates that the as the scale increases, it becomes easier to 
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detect lineaments within the Basement Assemblage. Therefore, the longest, crustal 

scale lineaments are evident in the basement rocks. 

 

3.4.2 Orientation Analysis 
 

 Lineaments trends were studied by: (1) creating histograms of azimuth and 

rose diagrams to identify preferred orientations within each dataset (Fig. 3.14); and 

(2) creating maps for the lineaments separated according to the main directions 

recognized in the rose diagrams (Fig. 3.15). At a regional scale, five main lineament 

directions were recognized: NW-SE (I), NW-SE (II), E-W to WNW-ESE, NE-SW 

and N-S. The lineaments trending NW-SE were grouped into two sets (I – 120°-139° 

Az and II – 140°-150° Az) because: (a) the set II mainly occurs within the cover 

domain while the set I is widespread; and (b) the set II appears to be late, with few 

lineaments cross-cutting the set I. The NW-SE and N-S directions have respectively 

the highest and lowest statistical weight for both histograms and rose diagrams. For 

the most part, there is no significant change in lineament directions observed when 

sorting the data into geological domains, with similar patterns observed in both cover 

and basement rose diagrams. However, in the basement domain at 1:1 000 000 scale, 

there is a strong NE-SW directional component (Fig. 3.14 A), weakly manifested in 

the other data sets (Fig. 3.14 B, C, D).  

 Maps were created with lineaments separated into sets according to the five 

main azimuth directions identified in order to highlight the spatial distributions of the 

main directional sets (Fig. 3.15). Lineaments are generally straight to slightly 

curved, continuous, parallel to sub-parallel and display fairly regular spacing. It is 

apparent that the NW-SE I and E-W/ESE-WNW sets are numerically dominant with 
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1699 and 1364 lineaments respectively. Few lineaments are orientated N-S with only 

284 in total.  

Although the dominant lineament direction is variable, there is a distinct 

similarity in the mean length between all azimuth directions, apart from the NE-SW 

set. This set has a length two times longer than the average length of all other sets, 

which seems to explain the NE-SW spike in the orientation data at 1:1 000 000 (see 

Fig. 3.14). This information suggests that the NE-SW lineaments are potentially 

liked to major structures in the study region. 

All five lineament sets are observed within both cover and basement domains 

in the regional area. The NW-SE I, E-W/ESE-WNW and NE-SW sets have almost 

equal proportions of lineaments in both geological domains (Fig. 3.15 B, C, D). The 

sets NW-SE II and N-S exhibit some preferential concentrations, with between 80-

90% developed in the Cover Assemblage (Fig. 3.15 E, F). 

The lineaments identified within the area chosen for the more detailed 

analysis exhibit a complex network of interconnected, straight and continuous-to-

segmented lines, which occur in various directions as shown in the histograms and 

stereonets in Figure 3.14 E. A more detailed investigation of the lineament azimuths 

(Fig. 3.16 A) reveals six main directions: N-S, NE-SW I, NE-SW II, E-W, NW-SE I 

and NW-SE II. The spatial distribution and geometrical characteristics of these main 

sets are presented in Figure 3.16. The E-W (85º-108º Az) set is the dominant 

direction, with 1445 lineaments, homogeneously distributed within the area (Fig. 

3.16 E). The NW-SE I (109º-126º Az) and NW-SE II (134º-152º Az) sets occur as 

spatially elongate zones with 917 and 896 counts respectively (Fig. 3.16 F/G). The 

NE-SW I (40º-53º Az), N-S (0º-10º & 173º-180º Az) and NE-SW II (58º-73º Az) 

sets are the least abundant directions defining elongate zones formed by 
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discontinuous lineaments with a regularly spacing (Figs 3.16 B, C, D). All the sets of 

lineaments show similar lengths with an average of 747 m and +/- mean length of 

769m and 629 m.  

 

3.4.3 Lineament Length vs. Azimuth 
 

 Lineament length vs. azimuth relationships at the different scales analysed 

are presented in Figure 3.17. These results indicate that WNW-ESE to NW-SE 

lineaments are numerically dominant in the 0-7000 m interval whilst NE-SW 

lineaments are dominant in the size interval 10000-20000m (Fig. 3.17). The length–

direction relationship indicates that the mean direction vector progressively shifts 

from NW-SE to NE-SW as the length of the lineaments increases. 

 Lineaments analysed at finer scales do not show any clearly defined length–

direction relationship in the interval 0-625 m. E-W sets dominate the interval 750-

1500m and, as length interval increases to 3000m, the NE-SW set becomes 

prominent. Within the length interval 3000-5000m, E-W, NW-SE and NE-SW sets 

coexist in nearly equal proportions. 

 

3.4.4 Lineament Density 
 

 Density maps for lineaments extracted at regional and finer scales (Fig. 3.18) 

show spatial distributions and cumulative concentrations of lineament lengths 

(meters) per square kilometre. Density values are heterogeneous across the analysed 

areas. At regional scales, density anomalies show elongated patterns oriented along 

WNW-ESE and NE-SW directions, with higher values concentrated mainly within 

77

Chapter 3



the Cover Assemblage domains (Fig. 3.18 A/B/C/D). The main density anomalies 

for each regional dataset are indicated by dotted ellipses (Fig. 3.18 F) that spatially 

correlate with the density map anomalies for the total combined lineaments (Fig. 

3.18 E). At the detailed scale, the density anomalies show diffuse patterns with sub-

circular shaped clusters displaying subtle alignments in an E-W direction at the 

centre of the map (Fig. 3.18 G).  

 

3.4.5 Lineament Intersections 
 

Intersections at regional scales are characterized by sparse clusters of dots 

with heterogeneous spatial distributions (Fig. 3.19). Numbers of intersections do not 

show significant variations in relation to the scale of observation. Intersections form 

NE-SW aligned clusters at the four regional studied scales with a predominance of 

points located in the Cover Assemblage and at its contacts with the underlying 

Basement Assemblage. Lineament intersections for the dataset extracted at finer 

scales are numerous and occur mainly as: (i) spatially sparse dots; (ii) sub-circular 

clusters with high densities of dots; and (iii) aligned dots forming trails oriented 

predominantly N-S, NE-SW and NW-SE (Fig. 3.19 F). Lineament intersections 

density anomalies at regional and detailed scales (Fig. 3.19 G, H) concur well with 

the lineament density anomalies previously presented. 

 

3.4.6 Spatial Analysis of Orientations 
  

 The spatial variation of lineament orientations was investigated using a 

fishnet grid with cell sizes: (i) 10 km at regional scale (Fig. 3.20 A); and (ii) 2 km at 
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finer scale (Fig. 3.20 B). The fishnet analysis revealed six major directional 

domains: (1) WNW-ESE to WSW-ENE; (2) NW-SE; (3) NE-SW; (4) N-S; (5) 

bimodal; and (6) multidirectional. Regionally, the NE-SW directional domains are 

dominant in 48% of the central part of the map and in some narrow zones in the 

eastern and western portions. The WNW-ESE to WSW-ENE domains cover 23% of 

the grid as elongated clusters mainly located close to the margins of the area. NE-

SW domains occur in the south of the map as two clusters composing 6% of the grid. 

The bimodal and multidirectional domains represent 14% and 8% of the grid while 

the N-S domain is not statistically representative. 

 The area analysed at a finer scale (Fig. 3.20 B) shows a heterogeneous spatial 

distribution for the directional domains where: (i) the WNW-ESE to WSW-ENE set 

has 29% coverage concentrated in the western and central parts; (ii) the NW-SE set 

dominates 19% of the grid, with a slightly concentration in the eastern part of the 

map; (iii) the NE-SW set are distributed in elongate arrays of four to five cells 

composing 11% of the grid; and (iv) the N-S covers 8% and is sparsely distributed. 

Direction cells for the bimodal and multidirectional domains correspond to 14% and 

18% of the grid.  

 

3.4.7 Lineaments and Geology 
 

 Lineaments are present in all outcropping geological units of the Carajás 

Region. Figure 3.21 shows how the lineament distributions are related to the nine 

major geological units recognized in the area. Lineaments with azimuths in the 

interval 110°-140°Az (WNW-ESE and NW-SE) occur in all geological units, 

showing high relative frequencies from 6 to 45%. NE-SW lineaments also show 
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records in all geological units, but with smaller frequencies of 2 to 25%. This set has 

more expression in the Basement Assemblage than in the younger geological units. 

The E-W set is observed in the units of both Basement and Cover Assemblage but is 

almost absent in the younger anorogenic granites and Gorotire Formation. N-S 

lineaments have a notable presence in the younger geological units and a much 

weaker expression within the Basement Assemblage being entirely absent in the 

Pium Complex. The anorogenic granites and sedimentary rocks of the Gorotire 

formation (relatively younger units) are preferentially cross-cut by lineaments with 

NW-SE and NE-SW orientations.  

 

3.4.8 Magnetic Lineaments 
  

 Magnetic anomalies can be reliable subsurface indicators of tectonic 

structures e.g. (Hussein et al. 1996; Chernicoff et al. 2002; Austin et al. 2008; 

McLean et al. 2009), and can be considered together with topographic/geological 

lineaments in order to constrain surface and subsurface interpretations. The magnetic 

surveys analysed in this study (Fig. 3.22 A and C) and the interpreted lineament 

maps (Fig. 3.22 B and D, Fig. 3.23 A and B) show prominent linear NE-SW 

magnetic anomalies associated with – and possibly cross-cutting – sigmoidally 

curved WNW-ESE lineaments with an open “Z”- shaped geometry. The NE-SW 

lineaments are labelled F1, F2 and F3 and display a consistent 070°az, comprising a 

series of straight continuous segments, which can be up to 450 km long, separated by 

a distance of about 85 km (F1-F2) and 35 km (F2-F3). The sigmoidal geometry is 

best developed within the Basement Assemblage domains due to the low magnetic 

response in the areas of Cover Assemblage rocks. Another set of NE-SW lineaments 
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trending 045° Az, appears to cross-cut the WNW-ESE lineaments and may be linked 

to the main NE-SW set (070° Az). Some of the more prominent WNW-ESE 

lineaments appear to correspond to the Cinzento, Itacaiúnas, Carajás and Canaã 

Faults (see Fig. 3.22 D).  

 Major topographic lineaments (Fig. 3.23 C) were obtained by integrating all 

lineaments from different scales onto a single map and visually selecting the longest 

and most prominent segments. The comparison between the surface and magnetic 

lineament maps shows the following: (1) the WNW-ESE sigmoidal lineaments are 

clearly observed in both datasets; (2) the most prominent structures, trending NE-SW 

(70° Az) (F1, F2 and F3) were identified in all datasets; (3) the NE-SW (45° Az) set 

are present on the magnetic surveys but only one prominent trace (F4) was identified 

in the surface set ; and (4) the N-S and NW-SE sets detected in the surface lineament 

analysis are not clearly defined in the magnetic surveys.  

 Assuming that the NE-SW faults are strike slip faults, the geometric 

association with the sigmoidal features superficially suggests a sinistral sense of 

shear, i.e. F1-3 would correspond to regional-scale C’ slip or Reidel shear surfaces 

(Fig. 3.23D) (Tchalenko 1968; Tchalenko 1970; Platt 1984).  

   

3.4.9 Lineaments and Mineral Deposits – Spatial 
Relationships 
    

The spatial association between known mineral deposits and lineaments can 

be assessed visually. At regional scales, five major ore deposits show a close 

geographical proximity to well-defined lineament density anomalies (see Fig. 3.18 

E): Salobo, Breves, Águas Claras, Estrela and Sereno. At finer scales (Fig 3.18 G), 
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the deposits 118, Vermelho, Cristalino and Estrela are located adjacent to or within 

zones of maximum lineament density.  

This suggests a clear association between mineral deposits and major 

topographic or magnetic lineaments. Ore deposits – mainly Au, Cu, Pt and Ni – 

occur regionally in three main clusters (indicated in Fig. 3.24) covering areas of 500 

to 700 km². Clusters C1 and C2 are located in the eastern part of the area, adjacent to 

the towns of Parauapebas and Canaã dos Carajás. They include a set of major 

deposits (Sossego, 118, Cristalino, Serra Pelada) and minor occurrences sited along 

the regional-scale NE-SW lineaments F2 and F3 in areas where these features 

intersect major zones of prominent WNW-ESE lineaments. Cluster C3 lies in the 

northwest portion of the Carajás Ridge, comprising the world class Salobo and other 

deposits apparently associated with WNW-ESE lineaments, including the Carajás 

and Cinzento fault zones.  

 

3.5 Discussion 
 

3.5.1 General Aspects 
 

The topographic lineaments in Carajás show four main directions (in order of 

importance): NW-SE, E-W to WNW-ESE, NE-SW and N-S. The recognition of 

these sets concurs generally with the findings of previous remote sensing studies in 

the region (Nunes 2002; Veneziani et al. 2004; Carneiro et al. 2006).  

The lineaments in the Basement and Cover Assemblages show statistically 

significant differences in length, orientation and density attributes Granitic basement 

typically shows numerous and longer NE-SW lineaments, with relatively lower 
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lineaments density, while the Cover Assemblage exhibits abundant, shorter NW-SE 

lineaments forming domains of higher lineaments density. Long NE-SW lineaments 

probably correspond to major crustal scale fault zones, which appears to affect 

mainly the basement and possibly cross-cut and displace early WNW-ESE 

structures. These fault zones apparently delimit the eastern and western outcropping 

boundaries of the Cover Assemblage in map view (e.g. note F1 and F3 lineaments in 

Fig. 3.23). The F2 lineament runs across the centre of the Carajás structure but is not 

expressed clearly at the surface as a topographic feature within the Cover 

Assemblage domain. If this lineament corresponds to a fault, it may indicate that this 

structure is older than the Grão-Para Group and Águas Claras Formation. 

The Cover Assemblage displays well-developed NW-SE lineaments that may 

represent: (i) bedding; (ii) tectonic contacts between basement and cover 

assemblages; (iii) subordinate faults that propagated from major WNW-ESE faults 

e.g. Cinzento, Carajás and Itacaiúnas Faults; or (iv) some combination of these 

features. N-S lineaments occur in both Basement and Cover Assemblages and likely 

correspond to regionally recognised normal faults or diabase dikes e.g. (Pinheiro et 

al. 1997b; Pinheiro et al. 1997a; Holdsworth et al. 2000). These structures appear to 

truncate all the other lineaments. 

 

3.5.2 Lineaments length distribution 
 

Lineament lengths show log-normal distributions for all analysed scales. In most 

cases, differences in length distributions between sets with distinct trends are 

insignificant. The consistency in the type of length distribution for the five analysed 

scales even when comparing basement and cover may indicate that the studied 
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system of lineaments is scale-invariant. Log-normal distributions have been 

traditionally used to describe fracture length distributions and many raw fracture 

datasets show an apparently good fit to this distribution (Bonnet et al. 2001). 

However, in recent years, several studies have shown that fracture systems are scale-

invariant, having fractal geometry and show that its properties (i.e. length, 

displacement) follow a power-law relationship e.g. (Main et al. 1990; Scholz 1990; 

Dawers et al. 1993). So, why do the lineaments in Carajás show a log-normal rather 

than power-law relation? (Segall et al. 1983; Odling 1997 and) provide a fairly good 

explanation for the matter. They propose that resolution effects imposed on a power 

law population can result in a log-normal distribution caused by a combination of 

sampling effects known as truncation (short trace lengths are inadequately resolved) 

and censoring (long traces not totally sampled). The resolution effect certainly 

affected the analysed lineaments dataset, which were picked at fixed scales, not 

permitting to zoom into the very small lineaments neither zooming out to capture the 

full length of the regional traces. Structures with fractal geometry imply that 

regardless of the scale which the system is observed, it looks the same. In the studied 

area, this finding has important implications for future studies on characterizing 

faults or shear zones networks and predicting the connectivity of vein system in the 

mineral deposits. 

 

3.5.3 Lineaments density and intersections 
 

Lineaments high density domains and intersections show clear spatial correlation, 

indicating that the high density anomalies were produced by intersections of non-

parallel lineaments. The intersection clusters are localized especially where regional 
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scale NE-SW lineaments cross-cut WNW-ESE structures generating highly fractured 

zones. Importantly, many of these zones lie in close proximity to some of the major 

mineral deposits in the region.  

 

3.5.4 Lineaments and geology 
 

Lineament occurrence is not strongly determined by geological units. Distinct units 

may show a statistical abundance of certain lineament sets in relation to others, but 

generally, the main Basement and Cover Assemblage domains mutually record all 

lineaments sets identified (see Fig. 3.21). This may indicate that both assemblages 

were simultaneously affected by the processes that formed the present lineaments in 

the rocks. If these features correspond to faults, then it is likely that rheological 

contrast influenced the mechanical behaviour of the distinct units, controlling the 

length and frequency of the resulting lineaments. Reactivation of pre-existing 

structures in the granitic basement may also have affected the overlying volcanic and 

sedimentary sequences.  

Magnetic and topographic lineaments show a good spatial agreement, 

implying that near surface geological and subsurface geophysical features follow 

systematic distribution patterns, genetically linked to specific major geological 

structures. This relationship is recognized in many geological settings and its main 

implications are concerned with crustal architecture characterization and mineral 

potential e.g. (Dentith et al. 1993; Hill et al. 2002; Airo et al. 2004). 
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3.6 Implications for mineral Exploration 
  

The intersections of the major WNW-ESE and NE-SW lineaments show a close 

spatial relationship to the location of major mineral deposits and indicates that the 

main geological structures – likely fault zones – have an important control on the 

location and development of ore bodies (see Fig. 3.24). This could imply, for 

example, that these intersections may have channelled and controlled fluid flow 

migration through faults, acting as structural traps where fluid pressure conditions 

have changed, causing mineral precipitation. This hypothesis is consistent with 

previous models that explain how faults promote fluid migration throughout the crust 

during deformation, forming mineral deposits (Sibson 1996; Sanderson 1999). The 

scenario described in this paper is similar to the examples presented by (Odriscoll 

1986) for lineament-ore relationships observed in the Precambrian cratons of 

Australia. 

 

3.7 Conclusions 
  

The combined analysis of lineaments from multi-scale surface observations and 

interpretations of magnetic field anomalies allows a number of major lineaments of 

likely geological origins to be recognised and characterised in the Carajás Region. 

Many of these features likely correspond to regional scale fault structures and the 

close link between fault/lineament intersections and the location of major ore 

deposits is similar to that observed in other cratonic region, e.g. Australia (Odriscoll 

1986) and Abitibi Belt, Canada (Kerrich 1986b). It exemplifies a relatively common 

scenario where old rock sequences are cross-cut by regional structures/belts that 
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given the presence of suitable conditions, may facilitate and control the formation of 

ore deposits. The connection between ore deposits and major lineaments has 

important implications for mineral exploration in the area, since most current 

metallogenic theories tend to relate mineralization mainly to hydrothermal activity 

produced by magmatic events and not to fault movements. 

 Collectively, the major conclusions of the lineaments study include: 

• The main sets of lineaments identified in the surface and sub-surface are: 

WNW-ESE, E-W, NE-SW, NW-SE and N-S.  

• The lineaments are heterogeneously distributed in the area. 

• The Cover Assemblage is characterized by short, high density NW-SE 

lineaments while the Basement Assemblage domain shows long, low density 

and dominantly NE-SW lineaments.  

• The lineaments system appears to be scale independent. 

• It seems likely that the outcrop geology controls lineament frequencies but 

not their spatial distribution. 

• Mineral deposits have close spatial relationships to: (1) major WNW-ESE 

and NE-SW lineaments intersection zones; and (2) lineament density 

anomalies. 
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Figure 3.1
Figure 3.2

- The Amazon Craton and its geochronological provinces according to Santos, 2000; the
highlighte indicates the location of the .d area map presented in Note the location of the
Carajas (grey) and Rio Maria (black) Terranes limited to the east by the Araguaia Belt and to the west by
the Iriri Xingu Domain.
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Figure 3.2- Map of the main tectono lithostratigraphic domains forming the Carajas Province: the
Carajas Terrane showing NW SE elongated granitoids and portions of the volcanic and sedimentary
rocks; and the Rio Maria Granite Greenstone Terrane with granitoids intruding the greenstone sequences
of the Andorinhas Supergroup. Note the east limits of the province marked by the Araguaia Belt (AB).
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Age (Ga) Event Kinematics

0.24-0.15

Reactivation of fault system recorded by recent small-scale seismicity

Reactivation of fault systems during opening of the South Atlantic

Uncertain

Extension

1.92-1.88

Intrusion of granite plutons and dike swams

Weak tectonic inversion by fault reactivation with moderate to strong

deformation of the rocks adjacent to the Carajás Fault

Extension

Sinistral transpression

2.6-2.5

Emplacement of granitic intrusions, e.g. Old Salobo

Development and further reactivation of the Carajás and Cinzento str ke-slip

systems. Intrusion of sills and d kes and formation of the Carajás Fault

Dextral transtension

2.8-2.7

Volcanism and deposition of the Grão-Para; Igarapé Salobo, Igarapé,

Igarapé Bahia and Igarapé Pojuca Groups , with the latter metamorphosed

under very-low to medium temperature conditions

Emplacement of syntectonic granitoids, e.g. Estrela and Plaque

Formation of the Itacaiúnas Shear zone by high temperature ductile

deformation

Sinistral transpression

3.1-2.9

Formation of the tonalitic Gneisses of the Xingu Complex and further

intrusion of the Pium Complex

Table 3.2- Summary of the main tectonic events, their age intervals, products and kinematics recorded
in the Carajás Region. Modified from (Holdsworth and Pinheiro, 2000; Pinheiro and Holdsworth,
1997).
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Images Selection
& Acquisition

Image Processing

GIS Project
Compilation

Manual Lineaments
Extraction

Importing Existing
Dataset

Lineament Analysis

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Acquisition of 2 LANDSAT ETM scenes, 6 SRTM DEM files
and 2 magnetic surveys covering the study area

Merging of LANDSAT scenes and preparation of colour
composite and B&W images: 7-2-1 (RGB) and
Panchromatic (band 8)
Composition of SRTM mosaic and creation of 4 raster
images under distinct light directions

Creation of: (i) surface lineament maps on different scales
using combined LANDSAT and SRTM images and (ii)
magnetic lineament map from the geophysical surveys

Vectorization and georeferencing of existing lineament
datasets for the studied area imported into the GIS project

Set-up of GIS project to host imagery and vector datasets
into ArcMap from:
-Landsat
-SRTM
-Aeromag

Lineament treatment using the “remove node” and
“generalize” tools
Calculation and generation of lineament length and azimuth
histograms, rose diagrams, length vs azimuth plots, density
maps and intersection maps
Analysis of lineaments according to geological domains
(cover vs assemblage)
Spatial analysis of directional variation using the grid -cell
method

Figure 3.4- Workflow showing the main interlinked stages developed during the lineaments study for the
Carajás Region. The grey boxes indicate the main tasks and the white boxes give a brief description of the
activities developed within each task.
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A

B

Figure 3.5 - A: a sample of the LANDSAT colour composite R7G2B1 image used for lineament extraction.
The central depression corresponds to the Carajás Central Granite, reddish areas indicate ironstone
plateau and yellow tones symbolise exposed soil from deforested areas. Note the prominent NW SE
geometry of the Carajás Ridge with the Carajás Fault cross cutting the area obliquely. B: Control panels
from Global Mapper displaying the parameters utilized to generate the LANDSAT colour composite
image. The dashed yellow rectangle indicated the location of the SRTM image in Figure 3.6.

94

Chapter 3



0º 45
º

90º 120º

Figure 3.6 - Screen shots of the SRTM shaded relief model images (for location see Fig. 3.5) with the
illumination directions indicated by the white arrows. Bright grey tones indicate areas with higher
elevation, corresponding to the Carajás Ridge (720 m). Dark grey tones indicate regions of low relief (230
m) corresponding to the granitic basement for the region.
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Original dataset

a

b.

L₁

L₁

L′

L₂

L₂

node
Two lineaments linked by a
node exist
: L₁, L₂

After “Remove-Node”

a

b One lineament exists
: L₁, L₂ L′=>

After “Generalize”

b
L3

a

If is equal or less than 10º
Only one lineament exists.
: L′ ₃=>L

a

b
node If is larger than 10º,

lineaments are split
Two lineaments exist.
: L′ L₁, L₂=>

(a)

(b)

A

B

�

�

Figure 3.7- Workflow of the processes utilized to treat/correct interpreted lineaments.
A- lineaments after the “Remove Node” tool to eliminate redundant nodes. B-
Generalize tool to split lineaments with angles between segments larger than 10 degrees
(Modified from Kim et al., 2004).
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Radius

Grid
cell

Radius

L1

L2

L3

Density = [(L1 x V1) + (L2 x V2) + (L3 x V3)] / (area of circle)

Radius

Grid
cell

Radius

L1

L2

L3

Density = [(L1 x V1) + (L2 x V2) + (L3 x V3)] / (area of circle)

Figure 3.8 - Diagram showing the process for calculating lineament density values to generate the
density maps. In A, circle radius runs around the circumference from the center of a grid cell and computes
the length of each lineament within the circle. In B, the array of grid cells with the grey dots indicating the
circle center where the density values from the presented equation will be assigned.
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Figure 3.12- Lineament length histograms for the analysed datasets. The plots are constructed as length
intervals against frequency (number of lineaments). Additional statistical figures are presented in the
plots: number of lineaments, length sum, maximum length, minimum length and length mean.
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Figure 3.14 Lineament azimuth histograms and rose diagrams for the analyzed datasets. Shaded bars in
the histograms indicate the main lineament directions identified. The rose diagrams show preferred
directions for total lineaments and lineaments contained within the basement and cover domains.
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Chapter 4 

 

 
The geological and structural aspects of the “Canaã dos 

Carajás” region, limit between the Carajás and Rio Maria 

Granite Greenstone terranes 

 

 

4.1 Introduction 
 

Studies of the geology of Archaean terranes present opportunities to examine 

geological processes that operated during the earlier stages of Earth’s lithospheric 

evolution. However, despite decades of research and improvements in the 

effectiveness of geochronological and geochemical methods, one problem still 

remains unclear amongst geologists: whether Archaean plate tectonics operated in a 

manner similar to modern plate tectonics, i.e. horizontal tectonics e.g. (Bickle et al. 

1980; Silvennoinen et al. 2007), or whether it was dominated by mantle plumes, i.e. 

vertical tectonics e.g. (Hamilton 1998; Robin et al. 2009). More recently, an 

alternative hypothesis has been gradually elaborated by geoscientists. It proposes 

that in certain regions, the Archaean crust has been shaped by temporal changes from 

vertical-dominated to horizontal-dominated tectonic processes e.g. (Bouhallier et al. 

1993; Lin 2007; Van Kranendonk et al. 2007). Such models have helped to clarify 

and resolve debates about the nature of the tectonic regimes that formed, for 

example, the: Dharwar Craton, India (Bouhallier et al. 1993; Chardon et al. 2002); 
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the Superior Province, Canada (Bedard et al. 2003); and the Pilbara Craton, Australia 

(Hickman 2004; Van Kranendonk et al. 2004). 

 In the Amazon Craton, there are two important Archaean regions, both 

relatively well preserved, that record geological events ranging from 2.9 to 1.8 Ga: 

the Carajás and Rio Maria Granite Greenstone Terrane (see Fig. 4.1). Several studies 

mainly based on petrological, geochemical and geochronological data, have led to 

the present consensus that the regions comprise distinct terranes, formed under 

different tectonic settings. Specifically, it is suggested that vertical tectonics 

dominate in the Rio Maria Granite Greenstone terrane whilst horizontal (strike-slip) 

tectonics are predominant in the Carajás region. One problem with this assumption is 

that geochemistry alone does not allow a clear cut distinction between different 

tectonic settings to be made, particularly for the Archaean (Hofmann et al. 2004; 

Van Kranendonk 2004). Therefore, field-based observations to better constrain the 

interpreted tectonic history of the Archaean rocks are clearly going to be of some 

importance. 

 This chapter presents geophysical, microstructural and field-based data from 

the granitic-gneissic basement, in the region close to the boundary between the 

Carajás and Rio Maria Granite Greenstone terranes, known as the Canaã dos Carajás 

region (see the limits of the studied area in Fig. 4.1B). The ultimate aims of the study 

are: i) to propose a tectonic framework and structural evolution for the area and ii) to 

compare the findings with the geological characteristics of the adjacent terranes 

located to the north and south.  
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4.2 Datasets and methods 
 

Datasets were collected and analysed on three main scales of observation during the 

present study: 

a) Regional scale – comprises interpreted magnetic anomalies from an airborne 

geophysical survey; topographic lineaments identified on digital elevation 

models (DEM); and interpretation of integrated structural elements mapped 

in the field. 

b) Outcrop scale – corresponds to the observations, photographic sections, 

sketches and structural measurements collected from outcrops at studied 

localities in the field area. 

c) Microscopic scale – microstructural features recognized in thin sections 

collected in the field that provide evidence to characterize the deformation 

mechanisms and estimate the temperatures during the main deformation 

episodes in the region. 

 

4.2.1 Regional scale methods 
 

Magnetic and radiometric airborne surveys were analysed to extract prominent 

features defined by positive and negative anomalies. The studied surveys cover 

approximately 9600 Km2 (survey limits indicated by the dot-dashed rectangle in Fig. 

4.1) and include total magnetic field (IGRF - International Geomagnetic Reference 

Field) and gamma spectrometry survey techniques. Initially the raw XYZ format 

dataset were interpolated into a regular grid utilizing the Inverse Distance Weighted 

(IDW) method in ArcMap v. 9. IDW interpolation involves predicting a value for 
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any unmeasured location, using the measured values that surround the location 

where the prediction is to be made. It assumes that each measured point has a local 

influence that diminishes with distance. Additional interpolation from the raw 

geophysical datasets was carried out by running the hillshade function from the 

“Surface Interpolation Tools” part of the Spatial Analyst module in ArcMap: 

- Hillshade: obtains the hypothetical illumination of a surface by determining 

illumination values for each cell in a raster. It enhances the visualization of a surface 

for analysis, especially when using transparency.  

 Geophysical anomalies were picked for datasets viewed using a GIS platform 

(ESRI-ArcMap) where the diverse features interpreted from distinct datasets and 

maps were separated into layers. Surface (topographic) lineaments were manually 

picked from a 90 metres resolution DEM (digital elevation model) in ArcMap. 

 Regional foliation was interpreted at map scale by manually drawing lines 

parallel to the mapped foliation at each locality and trying to link or correlate 

foliation between neighbouring localities.  

 

4.2.2 Field logistics and Outcrop scale methods  
 

Outcrop data were collected during two campaigns that totalized 55 days of 

fieldwork. Rock outcrops were accessed via a reasonable network of primary and 

secondary unpaved roads as shown in Fig. 4.2. The search for outcrops in the area 

started along the roads and later moved to the vegetated and farming areas. Rock 

exposures were generally absent when traversing farming fields. Therefore, most of 

the studied outcrops are located near roads. 
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 Fresh rocks exposure is relatively limited considering the total extention of 

the studied area. Additionally, the equatorial climate in the region has facilitated the 

development of a considerably thick soil layer that is extensively used for 

agriculture. Despite this, the 101 visited localities displayed relatively good quality 

outcrops with individual areas ranging from 1 up to 9275 m2 and mode of 772 m2. 

Issues that have potentially affected the studies in the area include: (1) restricted 

access to some roads or areas because of broken bridges or denied authorization 

from land owners; (2) uncertainty about the continuity of the major geological units; 

(3) limited exposures of the geological contacts; (4) relative lack of mineral lineation 

and fault slickenlines; (5) occasionally unclear or ambiguous cross cutting relations; 

and (6) often insignificant or null displacement in faults. 

 The geological map in Fig. 4.3 was produced based on the maps of (Bizzi et 

al. 2002) and (Gomes 2003). The modifications incorporated into the source maps 

include: (1) addition of new granitoid bodies from the Plaque Suite, based on gamma 

spectrometry survey a and modification of geological boundaries in granitoids from 

the original dataset; (2) inclusion of mapped dykes; (3) incorporation of the most 

prominent lineaments from geophysical surveys and topography; and (4) 

representation of the average strikes and dips for the structures in the studied and 

visited localities. 

 The 101 studied localities were surveyed using digital mapping techniques as 

summarized by (Edmondo 2002; McCaffrey et al. 2005; Clegg et al. 2006; De 

Donatis et al. 2006) This method consists of recording the observed features and 

properties from the rocks into a georeferenced GIS database, using an integrated 

GPS-mobile GIS-PDA device with the advantage of facilitating data management, 

visualization and analysis. The structural aspects of planar and linear elements were 
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measured, collected and analyzed according to the methods published in (Passchier 

et al. 1990; McClay 1991; Twiss et al. 1992). Digital photo-mosaics were compiled 

for many outcrops and road-cuts using a tablet PC where the observations and data 

were annotated onto the digital photo to optimise the process of data treatment and 

analysis. 

  

4.2.3 Microscopic scale methods 
 

The description and interpretation of small-scale structures in deformed rocks were 

carried out using thin sections of representative samples under transmitted light 

microscopy. Microfabrics, textures and structures were identified and interpreted 

following the concepts presented in (Vernon 2004; Passchier et al. 2005). 

Observations of the fabric geometry and deformational characteristics of quartz and 

feldspars (Tullis et al. 1985; Hirth et al. 1992; Tullis 2002), were applied to 

understand the mechanisms of rock deformation and to estimate the metamorphic 

conditions under which the rocks were deformed. 

 

4.3 Geological setting 
  
This section presents a summary of the relevant information presented in Chapter 2, 

which describes the regional geology for the whole of the studied area. Additional 

information was included from areas where previous studies were carried out in 

more detailed scales: (a) the East of the Canaã dos Carajás Village; and (b) the Serra 

Dourada area.  
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4.3.1 Regional geology 
 

The study area lies within the south-eastern portion of the Amazon Craton in the 

Central Brazil Shield (Fig. 4.1 A). It is part of the Archaean geochronological 

Carajás Province (Santos et al. 2000; Tassinari et al. 2004), limited to the east by the 

Neoproterozoic Araguaia Belt (~ 600 Ma; (Moura 1993). To the west, it is overlain 

by Paleoproterozoic volcano-plutonic and sedimentary rocks of the Uatumã 

Supergroup and to the north it is buried by Palaeozoic and Cenozoic sediments of the 

Amazon Basin. The Carajás geochronological province was formed and stabilized 

during the Archaean and was later affected by extensive Palaeoproterozoic 

magmatism characterized by the intrusion of anorogenic granitoids, together with 

mafic and felsic dykes (Pidgeon et al. 2000). It is presently divided into two tectonic 

domains: the northern Carajás and the southern Rio Maria Granite-Greenstone 

terranes (Fig. 4.1 A). The geological characteristics of these terranes are summarized 

below (refer to geological map in Fig. 4.1 B). 

 

4.3.1.1 Carajás Terrane 
 

This domain is also referred to in the literature as the Itacaiúnas Shear Belt or 

Carajás Ridge (DOCEGEO 1988; Machado et al. 1991). It comprises two main 

Archaean and Proterozoic assemblages separated according to their 

tectonostratigraphic characteristics and ages (Araújo et al. 1991; Pinheiro 1997):  

 

A) Basement Assemblage comprising older mafic to felsic granulite-facies rocks of 

the Pium Complex (Silva et al. 1974) dated at 3050±114 Ma (whole-rock Pb–Pb; 
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(Rodrigues et al. 1992), and undifferentiated tonalitic to granodioritic gneisses and 

migmatites of the Xingu Complex (Araújo et al. 1991), 2859±2 Ma (zircon U–Pb 

data; (Machado et al. 1991). Sub-vertical, WNW-ESE-trending mylonitic fabrics 

were formed coeval with the development of the broad Itacaiúnas Shear Belt and 

experienced several episodes of reactivation (Pinheiro et al. 1997b; Pinheiro et al. 

1997a; Holdsworth et al. 2000). 

 

B) Cover Assemblage formed of lower grade supracrustal volcano-sedimentary 

sequences that include the Grão-Pará (2759±2 Ma; zircon U–Pb; (Machado et al. 

1991), Igarapé Salobo (2.761±3 Ma; zircon U-Pb, (Machado et al. 1991) and Igarapé 

Pojuca (2.732±2, zircon U-Pb, (Machado et al. 1991) Groups. The Grão Pará Group 

comprises the Parauapebas and Carajás Formations, and is economically one of the 

most important units because of its extensive occurrence and high economic grade, 

high tonnage iron ore deposits. It is composed of mafic and felsic volcanics 

alternating with banded iron formations overlain by basic metavolcanics and 

metasediments. These units show a range of deformation states and metamorphic 

grades from virtually undeformed greenschist facies in the inner part of the belt, to 

intensely sheared amphibolite-granulite facies in the Cinzento Strike-Slip System 

(DOCEGEO 1988; Lindenmayer et al. 1991; Pinheiro et al. 1997a). The Cover 

Assemblage is overlain by a clastic sequence of shallow-water marine to fluvial 

deposits of the Águas Claras Formation. Dating of a gabbroic sill (2681±5; zircon 

SHRIMP; (Trendall et al. 1998) constrains the minimum depositional age of the 

formation 
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  Syn-tectonic Archaean, alkaline granitoids and diorites of the Plaque Suite 

(2.736±24 Ma; Pb-Pb zircon; (Avelar et al. 1999) together with the Estrela(2763±7 

Ma; Pb-Pb zircon; (Barros et al. 2001), Planalto (2747±2 Ma; Pb-Pb zircon; (Huhn et 

al. 1999) and Serra do Rabo (2743±2 Ma; U-Pb zircon; (Sardinha et al. 2006) 

granites are intruded into both Basement and Cover assemblages. These units are 

typically elongate parallel to the strike of the regional WNW-ESE foliation 

(Holdsworth et al. 2000; Barbosa et al. 2001; Sardinha et al. 2006) 

 

4.3.1.2 Rio Maria terrane 
 

This tectonic domain comprises belts of metamorphosed greenstone sequences of the 

Andorinhas Supergroup (Souza et al. 2001) surrounded by large regions of high-

grade infracrustal rocks referred to as the TTG Suite (Dall’Agnol et al. 2006) 

ranging in age from ca. 2.96 to 2.87 Ga (Huhn et al. 1988). 

The Andorinhas Supergroup consists of the basal Babaçu and upper Lagoa 

Seca Groups. The former comprises metamorphosed komatiitic flows (dunites, 

peridotites, pyroxenites) and metabasalts intercalated with banded iron formations, 

schists, and metachert. The latter comprises clastics (greywakes, siltstones) and 

chemical (banded iron formation) metasedimentary rocks intercalated with 

ultramafic to felsic metavolcanic rocks (andesites, dacites, and riodacites) (Huhn et 

al. 1988). Felsic metavolcanics in the Lagoa Seca Group were dated at 2904+29/−22 

Ma (zircon U–Pb data;.(Macambira et al. 1992) and 2979±5 Ma (zircon U–Pb 

data); (Pimentel et al. 1994). 

The TTG Suite comprises an older basement represented by the Arco Verde 

Tonalites (Althoff et al. 1993) dated at 2957±21 Ma (U-Pb zircon; (Macambira et al. 
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1991; Macambira 1992) and the Caracol Tonalitic Complex (Leite et al. 2001) 

dated at 2948±5 Ma. (Pb-Pb zircon; (Leite et al. 2004). The basement is intruded by 

various calc-alkaline and potassic Archaean granitoids including: the Mogno 

Trondhjemite (2871 Ma, U-Pb titanite; (Pimentel et al. 1994), the Rio Maria 

Granodiorite (2874 +9/-10 Ma, U-Pb zircon; (Macambira et al. 1991; Macambira 

1992); 2872±5 Ma, U-Pb zircon, (Pimentel et al. 1994), the Mata Surrão Granite 

(2872 ± 10 Ma, Pb-Pb whole rock; (Rodrigues et al. 1992); (Lafon et al. 1994b); and 

2871 ± 7 Ma Pb–Pb zircon; (Althoff et al. 1998), and the Parazônia Tonalite (2858 

Ma, U/Pb titanite; (Pimentel et al. 1994), not within the limits of Fig. 4.1 B). These 

syn-tectonic granitoids were generated and emplaced during the closure of the 

greenstone belt marginal basins during the final stages of the tectonic evolution of 

the Rio Maria granite-greenstone terrane (Souza et al. 1997). 

  

 Paleoproterozoic plutons (ca 1.88 Ga) intrude most of the rocks of basement 

and low-grade volcano-sedimentary sequence in the Carajás (e.g. Cigano, Carajás 

Central and Rio Branco granites) and Rio Maria Granite-Greenstone terranes (e.g. 

Seringa, Musa, Bannach and Jamon) (Machado et al. 1991; Dall'Agnol et al. 1999). 

They are generally non-foliated, monzogarnitic-syenogranitic, coarse- to medium-

grained, massive and highly discordant showing sharp contacts with, and angular 

inclusions of the Archaean country rocks (Ramo et al. 2002; Dall'Agnol et al. 2005). 

 

 

 

 

Chapter 4

124



4.3.2 Local geology 
  

The geology of the Canaã dos Carajás region (see Fig. 4.3) and its surroundings is 

mainly represented by units belonging to the granitic-gneissic Basement Assemblage 

of (Pinheiro et al. 1997a). Oliveira (2002) and Lima (2002) described in detail the 

geological characteristics of the litho-stratigraphic units present in the studied region. 

Their key findings are summarized bellow: 

  

4.3.2.1 The Xingu Complex 
 

This unit covers most of the investigated area and comprises granitoids and 

amphibolites. The granitoids are ubiquitous and are typically migmatitic and 

gneissose, ranging from 2.928±1 (Sardinha et al. 2004) to 2.851±4 (Machado et al. 

1991). They are predominantly of tonalitic composition with minor variations to 

granodioritic and granitic members. In the field, these rocks show various tones of 

grey, are coarse- to medium-grainsize with equigranular and inequigranular textures. 

Their mineralogical assemblage includes quartz, plagioclase, alkali-feldspar, 

amphibole, biotite and secondary epidote (after calcic plagioclase). Quartz and 

feldspars also often form porphyroclasts and lensoid fragments enveloped by a mica-

rich matrix. Deformation is heterogeneous, with fabrics ranging from protomylonitic 

to mylonitic accoding to the (Sibson 1977) classification. 

 The amphibolites comprise metre wide and tens of metres long, elongated 

lens-like bodies spatially alternating with granitoids or occurring as enclaves with 

varied shapes and sizes. They have a dark-grey colour, equigranular textures with 
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fine- to medium-grainsizes composed essentially of amphibole, plagioclase, quartz 

and biotite. The only isotopic age for these rocks is 2.519±5 (Machado et al. 1991). 

 More recent work at finer scales using detailed mapping and geochronology 

has progressively subdivided the rocks of the Xingu Complex into other units. The 

newly defined units comprise several Archaean syn-tectonic granitoid bodies (e.g. 

Estrela Granite, Planalto Granite and the Mogno Trondhjemite) and the deformed 

granitoids of the Plaque Suite. The ages of these newly defined units range from 

2.763±7 (Barros et al. 2001) to 2.525±38 (Souza et al. 1996) (see other ages for 

Archaean Syn-tectonic Granites in Table 5.1) Future research in the area will 

potentially lead to the recognition and delineation of more new granitic bodies 

intruding the Xingu Complex. 

  

4.3.2.2 The Plaque suite 
  

This unit comprises a series of E-W elongate, alkaline granitoids, showing prominent 

planar fabric and geomorphologically represented by the presence of aligned and 

rounded ridges, 230 to 350 metres high. The rocks are dominantly biotite-granites 

showing pink and grey tones, coarse- to medium-grainsizes with equi and 

inequigranular varieties. The mineral assemblage includes K-feldspar, quartz, 

plagioclase, amphibole and accessory magnetite. 

 Granitoids from the Plaque Suite have been gradually separated into 

independent bodies, as more recent studies have better defined their petrological, 

geochemical and geochronological characteristics.  
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4.3.2.3 Palaeoproterozoic (anorogenic) granites 
  

These rocks are relatively scarce in the mapped region and are represented by the 

Rio Branco pluton and associated bodies (Fig. 4.3). They comprise isotropic, 

alkaline granites with colours ranging from pinkish-grey to pale grey. The medium- 

to coarse-grained rocks typically comprise quartz, feldspars, commonly altered to 

epidote and clay minerals, amphibole and accessory biotite. 

  

4.3.2.4 Dykes 
  

Gabbroic dykes form elongate steeply-dipping intrusive sheets which intrude rocks 

of the Xingu Complex and the relatively younger syn-tectonic granitoids. They can 

be tens to hundreds of metres long and tens of metres wide, dark grey, fine- to 

medium-grained, equigranular, and are essentially composed of plagioclase and 

amphibole. These bodies are typically isotropic, but deformed varieties (weakly 

foliated) were also observed. They trend E-W, NW-SE, and N-S. 

  

 Two relatively small areas within the investigated region were previously 

studied in Masters projects, which focussed on petrological, mineralogical and 

hydrothermal aspects. Their results remain unpublished and the main findings are 

summarized bellow: 
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4.3.2.5 East of Canaã dos Carajás Village 
  

(Gomes 2003) studied geological and geochemical aspects of the granitoids located 

to the east of the Canaã dos Carajás village (Fig. 4.3 A and C). The following rock 

units were identified in the area: (1) supra-crustal rocks correlated with the 

Itacaiúnas Supergroup; (2) basic rocks including amphibolites and gabbros; and (3) 

various granitoids comprising a) undifferentiated granitoids, b) leucomonzogranites 

(LMzG), c) hornblende-syenogranites (HbS), and d) tonalite-trondhjemites (TT). 

 Amphibolites occur as enclaves in the LMzG, showing fine to very fine 

textures characterized by alternating bands of quartz+feldspar and 

amphibole+biotite+pyroxene. These rocks have geochemical affinity with basalts 

and andesitic basalts. 

 The undifferentiated granitoids correspond to the Xingu Complex basement, 

comprising medium- to coarse-grained, grey monzogranites and tonalites with 

prominent ductile fabrics. Localized gneissic banding consists of alternating quartz-

feldspathic and amphibole-biotite-rich layers. Mineralogically these rocks comprise 

plagioclase, quartz, microcline, biotite and amphibole. 

 The leucomonzogranites (LMzG) consist of pink or grey, medium- to coarse-

grained granitoids, composed of plagioclase, quartz, microcline and biotite. These 

rocks are heterogeneously deformed showing E-W, sub-vertical foliations and 

preserve clear intrusive relationships with rocks belonging to the Xingu Complex. 

 Supracrustal rocks corresponding to the Itacaiúnas Supergroup comprise 

banded iron formations, metabasalts and talc-schists. They form isolated, E-W 

aligned ridges locally NE-SW oriented. 
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  Hornblende-syenogranites are pink, medium- to coarse-grained and 

composed of quartz, microcline, plagioclase and hornblende + biotite. The minerals 

form a pervasive E-W sub-vertical foliation with localized mylonitic zones and 

amphibolite enclaves. (Gomes 2003) separated these bodies from the Plaque Suite as 

defined by (Araújo et al. 1991) and grouped them into the syn-tectonic Planalto 

Granite, based on petrological aspects. 

 The tonalite-trondhjemites are intensely deformed rocks with alternating sub-

vertical layers of tonalitic and trondhjemitic composition. They exhibit grey or white 

colours, pervasive E-W sub-vertical foliations and equigranular, coarse textures. The 

mineralogy comprises quartz, plagioclase and accessory biotite. This unit was 

originally referred to part of the Plaque Suite (Araújo et al. 1991) and was later 

included in the Xingu Complex by (Lima 2002). 

 Gabbros occur as: (a) deformed, very fine-grained, dark grey-greenish rocks 

forming E-W elongated bodies; or (b) undeformed, dark coloured, coarse- to 

medium-grained rocks, represented by N-S dykes that cross-cut the LMzG and 

hornblende-syenogranites. 

 

4.3.2.6 Serra Dourada area 
 

(Souza 2007) studied the hydrothermal alteration in Archaean rocks in the Serra 

Dourada region (Fig. 4.3 A and B), 15 km NW of Canaã dos Carajás Village. The 

area comprises gabbros, diorites, dacitic dykes and ubiquitous granitoids including:  

Syenogranites – pinkish grey, fine- to medium-grainsize rocks, displaying a 

weak 010°-trending foliation and cross-cut by quartz-feldspathic dykes oriented 

070°. 
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Granodiorites – isotropic, pink-greyish, medium- to coarse-grained rocks, 

locally exhibiting migmatites and fractures filled with quartz and feldspar. The 

mafic-rich members preserve centimetre to metre wide, almond-shaped, tonalitic 

enclaves. 

Tonalites – grey, medium-grained rocks in contact with albitized rocks and 

cross-cut by quartz-feldspathic dykes and veins. 

Two groups of hydrothermally altered granitoids are also present and 

comprise: 

A) Scapolitized bodies: these are typically fine- to medium-grained and 

isotropic where scapolite replaces primary plagioclase or occurs as veins and 

veinlets. The extent of scapolitization in the area gradually increases from W to E. 

Petrographic observations indicate that these rocks are derived from tonalites.  

B) Albitized granitoids comprise magmatic and hydrothermal albite, k-

feldspar, quartz, and chlorite-biotite-muscovite. These rocks are isotropic, 

inequigranular and cross-cut by metre-scale albite veins in the more altered domains. 

Remaining portions of the original rock show mineralogical contents similar to the 

syenogranites. 

Gabbros form relatively small, E-W elongate bodies intruded into the 

granitoids. They show sub-ophitic textures and comprise amphibole, scapolite, 

biotite, epidote, apatite, chlorite and titanite. 

Diorite dykes, trending ENE to NE are intrusive into the granitoids. The 

dykes show porphyritic and glomeroporphyritic textures, fine- to medium-grainsizes 

and mineral content including: quartz, plagioclase, microcline and minor 

disseminated chalcopyrite, fluorite and epidote. 
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4.3.3 Geochronology 
 

A selection of representative isotopic ages for the broad area comprising the Carajás 

and Rio Maria Granite Greenstone terranes - and the portion separating these two 

terranes, known as Transitional Domain - is presented in Table 4.1. A brief analysis 

of the ages helps to define the main geochronological units in the area: 

 (1) The oldest ages correspond to the basement units including: (a) the Xingu 

Complex in the Carajás terrane and Transitional domain (2.972±16 Ga); and (b) the 

Caracol and Arco Verde tonalites in the Rio Maria Granite-Greenstone Terrane 

(2.942±2 and 2.981±8 Ga, respectively). The basement in the Rio Maria Granite-

Greenstone Terrane comprises older TTG granitoids and a number of calc-alkaline 

granitoids ~2.8 Ga old, intercalated with greenstone belts of ~ 2.9 Ga (see 

Andorinhas Supergroup units, Table 4.1). 

 (2) Volcano-sedimentary rocks from the Cover Assemblage with general 

ages of ~ 2.7 Ga (see units of the Itacaiúnas Supergroup in Table 4.1), that 

unconformably overlie the Basement Assemblage in the Carajás terrane. Syn-

tectonic alkaline granitoids dated at ~ 2.7 and 2.5 Ga are intrusive into the basement 

in the Carajás terrane and Transitional domain (see Archaean syn-tectonic granites in 

Table 4.1). Finally, ~ 1.8 Ga Palaeo-proterozoic anorogenic granitoids are 

ubiquitous in all three regions, and are represent a major phase of plutonism that 

occurred during a major crustal extensional event recognized across the whole of the 

Amazon Craton (give key references). 

 The study area sits in the Transitional domain including the Canaã dos 

Carajás region where (Sardinha et al. 2004) dated granitoids at ~2.9 and 2.7 Ga. 

These authors proposed that:  
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 (1) the oldest age (2.9 Ga) is comparable with those obtained for TTG 

granitoids in the Rio Maria Granite Greenstone terrane (e.g. Guaranta Granite and 

Caracol Tonalite), suggesting that part of the rocks forming the Transitional domain 

were formed synchronous with the development of the Rio Maria Greenstone 

terrane; and  

 (2) the 2.7 Ga age comes from a trondhjemite which is younger than those 

from the Rio Maria Granite-Greenstone Terrane, indicating that the Transitional 

domain also has rocks broadly equivalent in age to syn-tectonic and volcano-

sedimentary rocks in the Carajás terrane. Additionally, the 2.7 Ga age from biotite-

hornblende granites in Canaã dos Carajás is analogous to the age of crystallization of 

the closer syn-tectonic Planalto Granite (2.747±2 (Huhn et al. 1999). 

 The isotopic ages from (Sardinha et al. 2004) therefore suggest that a 

geological link exists between the three geochronological domains previously 

mentioned. In other words, the rocks in the Transitional domain show isotopic ages 

comparable with those observed in the Carajás and Rio Maria terranes. Further 

comparison of isotopic data (Fig. 4.4 A) shows a fairly good agreement between the 

age curves for the Carajás terrane, Transitional domain and Rio Maria Granite-

Greenstone terrane.  

 Age histograms from the Carajás terrane (Fig. 4.4 B,C), Transitional domain 

(Fig. 4.4 D) and Rio Maria Granite-Greenstone terrane (Fig. 4.4 E) show peaks at 

the ages of 1.88, 2.56, 2.75, 2.84 and 2.9 Ga. corresponding to phases of mafic and 

granitic magmatism and latter deposition of volcano-sedimentary rocks. The ages at 

2.5 and 2.7 Ga mark major events of mineralization. These peaks represent 

concentrations of ages at specific time periods, indicating large-scale events of 

crustal formation, associated with contemporaneous ore genesis. Alternatively, the 

Chapter 4

132



2.7 Ga ages from syn-tectonic granitoids mark an important episode of crustal 

shortening coeval with syn-tectonic magmatism (Holdsworth et al. 2000; Sardinha et 

al. 2006). Later events at 2.5 Ga have been interpreted as being related to the 

reactivation or nucleation of shear zones (Machado et al. 1991; Requia et al. 2003).

  

 

4.4 Results 
 

4.4.1 Regional scale interpretation 
  

Aeromagnetic surveys are perhaps the most common type of airborne geophysical 

survey. It is typically used in regional studies with applications that include: 

geological mapping, basement and basin tectonic studies and oil and mineral 

exploration e.g. (Chernicoff et al. 2002; ten Brink et al. 2007; Allek et al. 2008). 

Additionally, gamma spectrometry airborne survey is referred as an effective tool for 

geological mapping in different environments with further application in mineral 

exploration and structural analysis e.g. (Paradella et al. 1997; Jayawardhana et al. 

2000; Debeglia et al. 2006).   

 Magnetometric and gamma spectrometric anomalies were manually traced 

onto their respective surveys aiming to characterize the geometric and directional 

attributes of the anomalies. Magnetic anomalies have traditionally been used to 

delineate regional-scale structures. The basis for this method is the fact that magnetic 

minerals can be concentrated or depleted in the vicinity of faults or shear zones, 

forming positive or negative linear anomalies. Radiometric surveys are particularly 

useful to determine the form, size and limits of granitic bodies when these are 
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intruded into a middle crustal rock assemblage with contrasting contents of K, U, 

and Th in mineral phases. The maps presented in this section highlight the area 

where field data were collected and these are then described in the following section. 

 

4.4.1.1 Aeromagnetic characteristics 
  

Aeromagnetic data covering an area extending from the centre of the Carajás Ridge 

to south of the village of Canada in the Transitional domain (for location see dashed-

dotted box in Fig. 4.1 B) allowed imaging the geological features in terms of their 

magnetic responses. The resolution of the aeromagnetic data is controlled by a flight 

line spacing of 1 km. The raw magnetic data (in XYZ format) was interpolated into a 

regular grid that was subsequently processed to generate a hillshade surface. 

 

4.4.1.2 Aeromagnetic Patterns 
  

The magnetic survey was studied focusing on the linear geometry of the anomalies 

since these are generally indicative of geological features such as dykes, geological 

contacts, faults and/or shear zones.  

 Visual analysis of the interpolated raw magnetic data (see Fig. 4.5 A) reveals 

two prominent E-W-trending anomalies (shown in grey). Anomaly One (see Fig. 4.5 

B) is located in the northern part of the area. It corresponds well with the location of 

giant iron ore bodies in the region, producing the highest intensity levels of the 

magnetic field observed. This anomaly also coincides with an important geological 

contact that separates volcano-sedimentary rocks of the Cover Assemblage (to the 

north) from the granitic basement (to the south) (Figs. 4.1, 4.3, 4.5 A). 
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 Anomaly Two comprises a continuous and sinuous zone of high-to-

intermediate magnetic intensity located in the central-southern part of the area, (see 

Fig. 4.5 B). This anomaly is spatially associated with a series of distinct lens-shaped 

anomalies displaying moderate to strong magnetic responses (the pink polygons 

shown in Fig. 4.5 B). These coincide in geometry and broadly in location with the 

position of ca. 2.7 Ga syn-tectonic granitoids in the region (e.g. Planalto and Plaque 

Suite granitoids, Figs 4.1, 4.3). The combined occurrence of long, continuous and 

sinuous anomalies with lenticular bodies, is consistent with the presence of a major 

zone of concentrated deformation, which could have acted as structural pathways for 

the syn-tectonic emplacement of granites. 

 The E-W anomalies are cross-cut by relatively narrow, straight and 

continuous NW-SE and NE-SW lineaments ranging in length from 10 km up to 70 

km (see dashed lines in Fig. 4.5 B). Some of these lineaments appear to offset the E-

W anomalies, suggesting that they may represent shear or fault zones. 

 The hillshade surface map with illumination inclined at 30° from 020° Az 

(Fig. 4.6 A) highlights well the long, straight linear anomalies. The main sets of 

interpreted lineaments (Fig. 4.6 B) include: (1) NE-SW-trending lineaments forming 

a 30 km wide corridor that extends from the top NE to the bottom SW corners of the 

map; and (2) E-W-trending anomalies comprising numerous short (~5 km) lines in 

the background of the image and a long and continuous zone, about 15 km wide, 

with its northern and southern limits located close to the Cedere III and Canada 

localities, respectively. NW-SE lineaments are less numerous and seem to be 

spatially concentrated in the northern portion of the area. They seem to correspond 

primarily to part of the trace of the Carajás Fault and to a contact between the 
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volcano-sedimentary sequences in the Carajás terrane and the underlying granite-

gneiss basement. 

  

4.4.1.3 Gamma Spectrometric datasets 
 

Airborne radiometric data generally show the spatial distribution of natural levels of 

uranium, thorium and potassium, and are commonly used to assist in near surface 

geological mapping and mineral exploration studies. The studied gamma 

spectrometric survey covers the same area as magnetic survey (limits indicated by 

the dashed-dotted box in Fig. 4.1 B). The resolution of the data is determined by the 

1 km spacing of the N-S flight lines. Importantly, data interpretation was made 

visually from a three-channel colour composite image generated by merging the 

signals of the U-K-Th channels into a single layer. Additionally, the resulting raster 

image was converted into a hillshade map where prominent anomalies were 

identified. 

 

4.4.1.4 Gamma Spectrometric Patterns 
   

The three channel (U-K-Th) radiometric composite image shows red and blue 

colours corresponding to low and high gamma radiation values respectively (see Fig. 

4.7 A). The blue-green (high) anomalies occupy 17% of the studied area and seem to 

correspond to the locations of syn-tectonic Archaean granitoids (e.g. Plaque Suite, 

Estrela and Planalto) and Proterozoic anorogenic granites (e.g. Central, Cigano, Rio 

Branco) (compare the blue anomalies in the gamma survey with the location of the 

Central, Estrela and Rio Branco granites in Figs. 4.1, 4.3 and 4.7C). Low 
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radiometric values are dominant in the survey (red anomalies), and are interdispersed 

by subordinate blue anomalies. 

 The maps of interpolated radiometric values (Fig. 4.7 A and B) exhibit 

sinuous and straight linear anomalies. A prominent sinuous linear anomaly, broadly 

E-W-trending extends from the central-eastern to the lower south-western 

boundaries of the survey area (see solid lines in Fig. 4.7 C). The anomaly forms a 12 

km wide corridor comparable to the similar feature identified in the magnetic survey 

(see the grey Anomaly 2 in Fig. 4.5 B). Above the sinuous anomaly, a straight and 

linear anomaly is projected from the top NE corner to the central part of the survey 

area (see dotted-dashed line extending from the Racha Placa to Sossego localities in 

Fig. 4.7 C). The mentioned straight and sinuous anomalies, seem to delineate the 

limits of a high-strain zone, associated with larger elliptical anomalies (grey) and a 

trail of relatively smaller sub-rounded anomalies (pink polygons). The elliptical or 

sub-rounded anomalies (coloured polygons in Fig. 4.7 C) are enclosed by curved 

lineaments (thin dotted lines in Fig. 4.7 C) that resemble aureole-like features.  NW-

SE-trending straight linear anomalies seem cross-cut the formerly described 

structures (dotted-dashed straight lines in Fig. 4.7 B). 

 Importantly, part of the gamma survey, limited by the black vertical dashed 

lines (see Fig. 4.7) has spacing between the flight lines larger than the other parts of 

the survey. This explains the occurrence of the obvious N-S striped pattern, which 

implies a relatively higher degree on uncertainty for the interpretations carried out 

within this zone.  

 Collectively, the geometry and patterns of the radiometric anomalies, suggest 

that: (1) the studied area is cross cut by what seems to be a prominent zone of strain 

accumulation; and (2) the presence of elliptical anomalies may indicate the presence 
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of deformed igneous bodies. The numerous high radiometric anomalies (pink 

polygons) appear to be spatially related with the broad deformation zone described. 

They are comparable with the radiometric response observed in syn-tectonic and 

anorogenic granites recognized in the area (e.g. Central, Estrela and Rio Branco). 

This suggests that the plutons and regional-scale deformation zone may be related to 

one another in some way.  

 

4.4.1.5 Summary 
  

The magnetic and radiometric surveys show good correspondence between their 

most prominent regional scale anomalies. Indicating that the major anomalies are 

more likely to correspond to real geological feature rather than being artificially 

produced. The features common in both datasets include: 

a) One broadly E-W trending, continuous and sinuous anomalies that may 

correspond to a regional scale shear zone or set of shear zones (see anomaly 2 

in Fig. 4.5 and the sinuous linear anomaly in Fig. 4.7).   

b) A consistent set of sub-parallel, straight and discontinuous NE-SW-trending, 

and subordinate NW-SE-trending lineaments possibly corresponding to 

brittle faults (see widespread straight lines in Figs. 4.5 B; 4.6 B; and 4.7 C). 

Importantly, several of these straight and linear geophysical anomalies match 

quite well, topographic lineaments at regional scale presented in chapter 3.  

c) Generally elliptical features with and E-W preferred orientation of their long 

axes that likely correspond to the location of granitoid plutons. 

The suggested geological significance of these anomalies are now investigated in 

the field. 
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4.4.2 Outcrop Data 
  

This section describes the lithologies, spatial distribution and structure of the 

geological units outcropping south of the Carajás terrane in an area of approximately 

1,370 Km2 extending from the west near the town of Racha Placa eastwards to 

beyond Canaã dos Carajás and from the village of Serra Dourada in the north to 

Canada in the south (see the area limits in Fig. 4.1 and 5.2). The area comprises 

predominantly granite-gneissic basement rocks including highly deformed older 

gneisses and moderately deformed younger basic rocks (volcanics, amphibolites). 

The basement gneiss units are intruded by deformed medium- to coarse-grained 

granitoids showing varied degrees of structural anisotropy. Finally, more isotropic, 

less deformed late granitic plutons intrude both gneisses and basic rocks. 

 

 

4.4.2.1 General lithologies 
 

5.4.2.1.1 Old Basic rocks 
  

This lithological group is represented by amphibolites and mafic rocks that typically 

occur as in situ outcrops or as boulders (Fig. 4.8 A, B, C). They often form 

elongated hills, 200m up to 300m long with gently rounded ridges. At map scale, 

these rocks represent E-W or NW-SE-trending lens-shaped domains concordant and 

discordant with the granitic basement. When intensely weathered, they develop dark 
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and compact lateritic ironstone crusts, composed of hematite and goethite, 3 to 5m 

thick in some cases. 

 Typical amphibolite mineral assemblages comprise: dark, prismatic 

amphiboles (hornblende and tremolite-actinolite), plagioclase and minor quartz. 

Grain sizes are coarser in isotropic (Fig. 4.8 D) and finer in sheared (Fig. 4.8 E) 

members, which display characteristic alternating feldspar- and amphibole-rich 

bands few millimetres up to 2-3 cm thick (Fig. 4.8 C, F). Deformed amphibolites are 

typically found: (1) associated with sub-vertical, semi-brittle, sinistral shear zones, 

having veins or alteration haloes consistent with fluid-related alteration during the 

deformation; or (2) in the sheared boundaries of amphibolites where they occur in 

contact with granitoids.   

 The mafic rocks have a dark-grey aphanitic matrix and in some members is 

possible to distinguish bladed plagioclase phenocrysts with the naked eye. Basalt is 

the dominant lithology, often showing parallel, mono or multi-directional sets of 

straight, 1mm thick veins apparently composed of aligned mafic minerals (Fig. 4.8 

F). 

 Amphibolites also occur as xenoliths within the granitic gneisses that range 

in size from 10 cm up to 90 cm with geometries ranging from elliptical to sub-

angular (Fig. 4.8 G and H). They are either isotropic or layered with alternating 

mafic and felsic rich mineral layers. 

 Collectively, amphibolites were interpreted as the oldest rocks in the study 

area because of their xenoliths in granitic gneisses. This relationship was not evident 

for the mafic rocks that have poorly exposed contacts with gneisses. At least part of 

the mafic rocks were observed as lens shaped bodies emplaced into the gneisses. 
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Characterizing a late, intrusive relationship. On the other hand, no contacts were 

observed in several outcrops of basic rocks. 

 

4.4.2.1.2 TTG Gneisses 
  

Granitic TTG gneisses form the main lithology of the Xingu Complex, which makes 

up at least 50% of the investigated area. However, its exposure is limited to creeks 

and topographically low-lying areas. The outcrops are relatively small, comprising 

boulders or flat platforms (Fig. 4.9 A and B). Gneissic banding is characterized by 

alternating melanocratic (grey) and leucocratic (white or pink) bands composed of 

biotite and amphibole and plagioclase, quartz, and k-feldspar, respectively.  

 The gneisses are inequigranular and comprise: (a) medium- to coarse-grained 

(Fig. 4.9 C and D) units, with relatively thick leucocratic bands (up to 3 cm wide) 

and low amounts of mafic minerals; and (b) medium- to fine-grained blastomylonites 

with a more uniform appearance, showing a streaky straight foliation defined by 

aligned mafic minerals and felsic minerals (Fig. 4.9 E and F). High temperature 

conditions seem to have favoured the formation of metre-scale pods and segregations 

of remobilized alkali-feldspar-rich material (Fig. 4.9 G) that lie sub-parallel to the 

banding in the coarse gneissic members. The finer grained, ‘streaky’ blastomylonites 

appear to be intensely deformed gneisses and contain numerous sigmoidal or lens-

shaped mineral aggregates and rotated porphyroclasts. 
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4.4.2.1.3 Mylonites 
  

Many gneisses and granitoids are cross-cut by networks of sub-vertical, mylonitic 

zones a few centimetres up to tens of m wide (Fig. 4.10 A and B). These are mainly 

composed of quartz, k-feldspar, plagioclase and biotite. The minerals form elongate 

aggregates or stretched crystals that define a continuous sub-vertical foliation 

associated with a sub-vertical mineral lineation. Grainsize reduction mechanisms 

have led to the development of fine-, medium- or coarse-grained varieties of 

mylonite (Fig. 4.10 C, D and E) with grey, white or reddish colours reflecting 

differences in the mineralogical content. K-feldspar porphyroclasts, range in size 

from few millimetres up to 2-3 cm across and show dominantly symmetric or less 

commonly, asymmetric geometries. In plan view, porphyroclasts geometry suggests 

clockwise, counter clockwise or null vorticity. In profile view, looking parallel to the 

steep foliation surfaces, porphyroclasts shapes indicate vertical displacements with 

top-to-SSW or top-to-NNE sense of shear and also symmetric shapes. Less common, 

very large k-feldspar porphyroclasts were identified in the mylonites, some of them 

reaching an impressive 10 cm in diameter (Fig. 4.10 F).  

 

4.4.2.1.4 Granitoids 
  

Granitoids account the majority of the exposed rocks in the study area, showing 

variations in their composition, grainsize and intensities of internal deformation 

fabrics. The petrological, petrographic and geochemical aspects of these intrusive 

bodies were studied in detail by (Soares 2002; Gomes 2003; Sardinha et al. 2004; 

Gomes et al. 2007; Souza 2007). These authors describe the occurrence of 

Chapter 4

142



syenogranites (Fig. 4.11 A), granodiorites (Fig. 4.11 F), tonalites (Fig. 4.11 B, C, G 

and H) and isotropic granites (Fig. 4.11 E). The granitoids typically comprise 

varying proportions of k-feldspar, quartz, plagioclase, mafic minerals (biotite or 

amphibole) and minor sulphides or oxides. Hydrothermal alteration is locally 

observed, characterized by albitization (Fig. 4.11 A iii), scapolitization and 

chloritization. 

 Structural anisotropies are widely developed in the granitoids, including 

foliations, lineations, shear zones and fractures/joints. Magmatic fabrics (foliations) 

are normally observed in coarser rocks that show a weak- or moderate-alignment of 

prismatic feldspar grains (see close-up photo in Fig. 4.11 D). Solid-state deformation 

fabrics are heterogeneously developed and are distinguished from magmatic 

foliations by the presence of deformed lensoids of quartz (see close-up in Fig. 4.11 B 

and H), the development of wrapped feldspar porphyroclasts, “trails” of feldspar and 

mica grains and the development of discrete shear zones (linear features in Fig. 4.11 

H, not the fractures ) that show either straight or curviplanar geometries.  

 The degree of weathering is variable in these rocks, but it is generally 

moderate-to-high. Plagioclase-rich granitoids in particular often display intense 

alteration of feldspar into fine aggregates of clay minerals that are then washed away 

leaving the empty mould of the original mineral grains. Iron oxide red stains are also 

commonly present on the outcrops probably resulting from alteration of biotite, 

sulphides and amphiboles in the granites. 
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4.4.2.1.5 Dykes 
 

Dykes occur in the area as tabular bodies up to 50 metres wide and 400m long, 

forming long, straight, flat-topped ridges (see Fig. 4.12), trending N-S, WNW-ESE 

and NE-SW. The contacts between dykes and basement rocks and granitoids were 

not generally exposed in the field. However, observations at map scale show that the 

contact relations are both discordant and concordant with the main regional trend of 

the foliation. This is also consistent with the fact that the dykes are essentially 

unaffected by ductile deformation fabrics. 

  The dykes typically show dark grey colours, fine- to medium-grainsizes and 

are texturally isotropic and undeformed (Fig. 4.12 A and B). They are typically 

cross-cut by millimetre wide shears or microveins filled with chlorite (Fig. 4.12 B 

and C). The dykes are dominantly of basaltic composition with subordinate 

occurrences of andesitic types (Fig. 4.12 D). 

 

4.4.2.1.6 Contact relationships 
  

The previously described lithologies display two main types of contacts that are 

preserved in a few outcrops: 

1- Magmatic contacts: they are typically irregular in plan view and characterized by 

the mixture of distinct lithologies, typically more felsic and mafic granitoid phases 

(see and Fig. 4.13) or granite and mafic volcanic (amphibolite) rocks (see Figs. 4.14 

and 4.15). This type of contact seems to have formed by impingement see (Chen et 

al. 2001; Chen et al. 2004) of less competent granitic material into competent mafic 

domains whilst both rock types were in the magmatic state. This produces granitic 
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lenses or blobs (Fig. 4.11 D, E) with varied sizes and shapes that are interdigitated 

with and locally engulfed in the mafic portions. The granitic lenses normally display 

a preferred orientation, accompanied by the development of a sub-vertical foliation, 

trending E-W (solid state) or N-S (magmatic). 

 The nature of these contacts suggests that they are comparable with those 

described for the deformation of felsic and mafic magmas during the formation of 

Archaean greenstone belts, particularly because of the significant degree of 

intermingling observed (see (Condie 1981; Shackleton 1995; Windley 1995). 

Additionally, the development of steeply inclined to sub-vertical folds, foliations and 

sigmoidal-shaped lenses of mafic rocks are evidence of sub-horizontal shortening 

acting during the configuration of these contacts. The geometry of these structures 

indicates that they were formed in some areas under coaxial strains (symmetrically 

shaped lenses, isoclinal folds e.g. Figs. 4.13. and 4.15) and in others, sinistral non-

coaxial strain (asymmetric folds and sigmoidal lenses e.g. Fig. 4.14). This may 

indicate strain partitioning during bulk transpressional strain. 

 

2- Tectonic contacts are characterized by regular and continuous surfaces, 

commonly separating granitoids from amphibolites (see examples in Figs. 4.16 and 

4.17 A) or mafic intrusions (Fig. 4.17 B). The contact planes are mostly sheared, 

sub-vertical with straight or gently curved geometries oriented E-W, NE-SW and 

more rarely NW-SE. Most examples preserve smaller scale evidence of original 

magmatic intermingling of these lithologies (e.g. detailed images 1 and 2 in Fig 

4.16). 
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4.4.2.2 Structural Geometries and Kinematics 
   

This section describes the mesoscopic-scale planar and linear structural fabrics and 

kinematic indicators recorded in the studied rocks outcropping adjacent to in the 

Canaã dos Carajás study area. 

 

 

4.4.2.2.1 Foliation 
  

A penetrative ductile foliation was observed in gneisses, granitoids, mylonites and 

basic rocks. However, the degree of foliation development is extremely 

heterogeneous. 

 In the TTG gneisses, the foliation lies sub-parallel to the compositional 

banding formed by alternating mafic (biotite-amphibole-rich) and felsic (quartz-

feldspar rich) layers (see examples in Fig. 4.9 C, D and G). The metamorphic 

banding corresponds to an early Sn fabric, oriented N-S, NNW-SSE and NNE-SSW 

with steep to sub-vertical dips (~ 59°- 89°) towards both the E and W (Fig. 4.19 A i 

and G). The early Sn layering is folded by isoclinal folds with wavelengths ranging 

from few centimetres up to 30 cm. Steeply dipping to sub-vertical fold axial planes 

and sub-horizontal fold hinges lie parallel to the Sn banding, and are also broadly N-

S oriented (see stereonets on Figs. 4.18 C i, D i, I, J and field photos in Fig. 4.19 A-

D and Fig. 4.28). Migmatitic layers of medium- to coarse-grained k-feldspar often 

occur parallel to or cross-cutting the gneissic banding and may also form centimetre 

scale folds (see examples of migmatitic material in Figs. 4.9 D, G, Fig. 4.14, Fig. 

4.15 and Fig. 4.19 E, F, N. These layers appear to be products of partial melting of 
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granitic gneisses under relatively high temperature conditions. It is unclear whether 

they were folded whilst in a partially molten state. 

 Shearing and transposition of the early Sn fabric produced an S1 foliation in 

the gneisses. The new foliation is macroscopically classified as disjunctive, spaced 

and parallel. It is characterized by the preferred orientation of mafic minerals (e.g. 

biotite or amphibole) and elongated aggregates of medium- to fine-grained quartz 

and feldspars crystals (see examples in Fig. 4.9 E, F and Fig. 4.19 J and N). The S1 

foliation trends WNW-ESE and E-W with steep dips (~ 70°-89°) to the north and 

south (see stereonets on Fig. 4.18 A ii and G). An S2 foliation trending NE-SW, with 

steep dips (~ 64°-89°) both to the NW and SE (see stereonets on Fig. 4.18 A iii), was 

observed often in association with the sinistral shear zones that cross-cut the Sn and 

S1 fabrics (see examples in Fig. 4.20 and Fig. 4.21). Despite the mentioned cross-

cutting relations, field evidence does not make totally clear whether the S2 foliation 

is older or was synchronously formed with the S1 foliation. However the sinuous 

geometry of major magnetic and gamma-radiometric anomalies shows continuous 

linear segments that shift orientation from E-W to NE-SW and back to E-W (see 

Figs. 4.5 and 4.7). This geometrical relation suggests that S1 and S2 are perhaps 

contemporaneous. 

 Sn, S1 and S2 foliations are present in the foliated granitoids and mafic rocks 

(see field examples in Fig. 4.22 and Fig. 4.29 and stereonets in Fig. 4.18 M and U) 

with orientations and dip values broadly similar to those in the gneisses. This relation 

is consistent with a genetic and/or temporal link between the tectonic events that 

formed the ductile fabrics and the processes of syn-tectonic granitic emplacement 

and deformation.  
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 Both the gneisses and foliated granitoids are commonly cross-cut by ductile 

faults, centimetres to tens of metres wide, some of them containing mylonites. These 

mylonitic zones are parallel to S1 and S2 foliation trends. Mylonites mark zones of 

concentrated strain accommodation, and suggest intense partitioning of the bulk 

strain. Further, there is no clear evidence to constrain the relative age of the 

mylonites relative to S1 and S2 but it appears that they are parts of the same 

anastomosing foliation. The mylonitic foliation typically comprises a prominent 

planar fabric formed by long and thin quartz-feldspathic layers in the matrix 

enveloping relatively large feldspar porphyroclasts (see examples in Fig. 4.10). 

Morphologically, the mylonitic foliation is classified as disjunctive with variations 

to: (1) smooth and relatively straight & continuous – in the fine- to medium-grained 

varieties; or (2) rough and anastomosing – in the coarser members. 

 The grainsize in the mylonites ranges from fine (few millimetres) to coarse 

(up to 1 cm) in proto-mylonitic varieties. Porphyroclast shapes include lozenge, 

augen and spherical shapes that apparently show little rotation. The variations in 

textural characteristics observed in the mylonites seem to be related to an interplay 

between their protolith grain size and later strain intensity. 

The deformed granitoids show either mylonitic (previously described) or a 

ductile foliation morphologically classified as disjunctive, rough or smooth and 

parallel (see Fig. 4.22). The ductile planar fabric is characterized by the preferred 

alignment of mafic minerals, mafic aggregates and quartz ribbons. Diffuse foliation, 

characterized by aligned, widely-spaced concentrations of a dominant mineral phase 

was subordinately recognized. The heterogeneous development of foliation in the 

deformed granitoids once again indicates that strain was generally partitioned and 

concentrated into localised high strain zones. 
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The foliation in the older basic rocks can be classified as fine, straight and 

continuous, and is characterized in particular by the preferred alignment of prismatic 

amphibole crystals. Amphibolites display foliation defined by compositional banding 

formed by alternating amphibole- and feldspar-rich layers (see Fig. 4.23). Gently 

wavy or folded foliation and lenses or porphyroclasts of mafic minerals aggregates 

are subordinate features. The ductile foliation in amphibolites include: (1) WNW-

ESE (~ 110°Az) dipping 69° up to 88° towards NNE and SSW; (2) N-S dipping 69°-

88° to E and W; and (3) NE-SW dipping 63°-79° toward NW (see stereonets in Fig. 

4.18 U). 

  

4.4.2.2.2 Lineation 
 

Mineral lineations are typically associated with foliation planes and rarely form a 

penetrative fabric. They are typically defined by a preferred orientation of elongate 

mineral grains or polycrystalline aggregates, observed in the granitic lithologies as 

elongate quartz crystals or quartz-feldspathic aggregates (see examples in Fig. 4.24). 

Minor L tectonites (cigar shaped grains) were observed locally in some deformed 

granitoids. In foliated amphibolites, the lineation is defined by aligned amphibole 

crystals within exposed foliation planes. Mineral lineation average plunges are steep 

(~62°) to sub-vertical (~88°) towards the SSE and round to the NW (see stereonet for 

total mineral lineation in Fig. 4.18 B). Further, the sub-vertical lineation is consistent 

both within and outside shear zones and in foliated domains with different strike 

directions (see stereonets i, ii and iii in Fig. 4.18 B). In gneisses and granitoids, 

mineral lineations plunge steeply (average of 73° in gneisses and 71° in granitoids) 

mainly towards SE and SSW in the gneisses and SE, SW and NW in the granitoids 
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(see stereonets in Fig. 4.18 H and D). Collectively, mineral lineation in gneisses and 

granitoids indicates a sub-vertical orientation for the maximum principal stretch axis.  

  

4.4.2.2.3 Folds 
  

These structures are characterized by the bending or flexure of the compositional 

banding in the TTG gneisses and deformed granitoids alternated with mafic lenses, 

rarely observed in amphibolites, presumably because they lack a well-defined 

compositional banding. Their wavelength is typically of tens of centimetres, reaching 

metre scales in a few examples. Folds were grouped based on their orientation and 

style as follows: 

The early folded gneissic banding forms upright folds with tight to isoclinal 

limbs (Fig. 4.19 A-C). Minor similar folds were observed, showing gentle 

asymmetry with “long and short” limb geometries. Both fold types have axial 

surfaces generally oriented NNW-SSE with sub-vertical to steep dips (76°-88°) both 

to the NE and SW (see stereonets in Fig. 4.18 C and I). Their hinge lines plunge 

10°-26° mainly to the SSE and NNW (see stereonets in Fig. 4.18 D and J). These 

folds are associated with the Sn primary gneissic banding produced during early 

metamorphic episodes that formed these rocks. Additionally, folds in granitoids 

intercalated with mafic lenses (e.g. Fig. 4.13) show axial planes trending NWN-SES 

with dips of 71°-89° to both ENE and WSW (stereonets in Fig. 4.18 O) and hinge 

lines plunging 7°-31° towards SSE and NNW (see stereonet in Fig. 4.18 O). Finally, 

disharmonic folds in gneisses (Figs. 4.19 D, 4.20; 4.21; and 4.28) display a highly 

heterogeneous directional pattern giving a radial aspect to the stereonet in Fig. 4.18 

I.  
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 Intrafolial and asymmetric “drag folds” folds tend to occur within and 

parallel to the transposed foliation (S1 and S2) developed in gneisses. Intrafolial folds 

(examples in Figs. 4.19 I-L; Fig. 4.20; and Fig. 4.21) appear to be produced by the 

transposition of the Sn foliation observed in the gneisses. The drag folds are 

characterized by bending of the gneissic banding, foliation or pegmatitic veins at the 

margins of ductile shear zones (Figs. 4.19 M, N, P and 4.20, 4.21 and 4.29). 

Collectively, these folds show sub-vertical axial surfaces trending: (1) WNW-ESE 

~110° Az, dipping ~88° to NNE and SSW with hinge lines plunging gently (11°-

26°) to WNW and ESE; and (2) NE-SW ~ 40° Az, dipping 65°-88° to SE or NW 

with hinge lines plunging 7°-30° towards the NE and SW (see stereonets for folds 

axial planes and hinges in Fig. 4.18 C, D, I, J, O, V). Finally, subordinate folds 

display moderately to steeply plunging (40°-77°) fold hinges towards the E-SE and 

W-SW (see stereonets in Fig. 4.18 D and J). 

 Ptygmatic folds of granitic and pegmatitic veins are locally developed with a 

few centimetres wavelength and asymmetric lobate geometries typically forming “S” 

shaped folds (Fig. 4.19 E and F). Sheath folds are represented locally by the 

development of elliptical concentric rings of quartz+feldspar in biotite-rich gneisses 

units (Fig. 4.19 G and H). The development of these folds seems to be consistent 

with the observed variations in hinge line plunges described above. 

 The geometrical relationships between axial surfaces and hinge lines of the 

folds was described by using the Fleuty diagram, (Fig. 4.25), where the dips of axial 

surfaces are plotted against the plunges of hinge lines. The majority of the studied 

folds fit into the categories of sub-horizontal upright and gently plunging upright. 

These folds correspond to the previously described early isoclinal folds, intrafolial 

transposed folds and “drag” folds formed by reverse shear zones. 
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 It was not possible to determine with certainty whether large-scale folds are 

present in the studied area. Approximately 80% of the observed folds are upright and 

do not show vergence. Further, the remaining steeply inclined folds do not show a 

systematic change in fold vergence pattern, regionally consistent. Finally, further 

studies are necessary to unravel whether the mesoscopic-scale folds are linked to 

large-scale folds. 

 

4.4.2.2.4 Mylonitic Zones 
  

These features represent regions of high strain localisation, showing planar (Fig. 

4.26 A, B and Fig. 4.28) or curviplanar geometries (Fig. 4.26 C and D; Fig. 4.27), 

ranging from few millimetres up to tens of metres wide at outcrop scale. Strain 

gradient is the most notable characteristic observed in the majority of shear zones. In 

general, higher strain is concentrated within the centre of the shear zone, sharply 

decreasing towards the walls (Fig. 4.26 A, B, E, F and Fig. 4.29). Inside the shear 

zones, minerals show intensely reduced grain size and strong preferred alignment of 

quartz ribbons and mica trails, forming a prominent planar fabric morphologically 

characterized by disjunctive, spaced and parallel foliation (Fig. 4.26 E and F; see 

detail B photo in Fig. 4.27). Additionally, a number of shear zones show evidence of 

fluid-rock interactions indicated by the presence of halos of hydrothermal alteration 

and the precipitation of minerals (e.g. clay and chlorite).  

Shear zones and associated internal foliation are oriented along four main 

trends: (1) WNW-ESE (90°-110° Az) with dip angles between 56°-85° to NNE and 

SSW; (2) NE-SW (25°-42° Az) dipping mainly to SE and subordinately to NW with 

average dips of 70°-86°; (3) N-S (170°-190° Az) dipping 63°-76° to E or W; and (4) 
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NW-SE sub-vertical dipping towards NE and SW (see stereonets in Fig. 4.18 E, K 

and P). Mineral lineation within shear zones plunge in average 72° towards SSW in 

gneisses and 30° to 78° towards S, SW and NW in granitoids (see stereonets in Fig. 

4. 18 K and Q) evidencing a dominant near vertical position for the principal 

stretching axis. 

 The directional variations in shear zone orientations appear to reflect the 

network geometries of these anastomosing, curviplanar and locally interconnected 

features (see for example Figs. 4.26 C, D and Fig. 4.27). The strikes and dips of the 

shear zones trending WNW-ESE, N-S and NE-SW are notably similar to the three 

main sets of foliation and fold axial surfaces previously described. This suggests that 

all these structures are genetically related to one another, although some shear zones 

trending NW-SE seem to cross cut and post date the other three mentioned sets. 

  When cross-cutting gneisses, reverse-sinistral shear zones may cause 

relatively small offsets or bending of the adjacent foliations or banding, forming 

centimetre-scale asymmetric “drag” folds (Fig. 4.19 M, N, Fig. 4.20 and Fig. 4.28). 

In the foliated granitoids, shear zones modify the direction of the foliation, deflecting 

it from its original position to an oblique or parallel orientation in relation to the 

shear zone boundaries (Fig. 4.26 G and H). Observed shear sense indicators include: 

asymmetry in the foliation deflections, rotated porphyroclasts and more rarely “en 

echelon” sigmoidal veins in less common semi-brittle shear zones (see examples of 

kinematic indicators in Fig. 4.30). Shear zones show oblique kinematics with normal 

component showing mainly top to the S-SW kinematics and directional component 

comprising about 70% sinistral and 30 % of dextral examples. 
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4.4.2.2.5 Brittle Structures 
 

Late brittle structures are ubiquitous in the investigated area and include faults, 

fractures, veins and dykes. Large scale faults are poorly exposed in the area. 

However, one example of this type of structure (see Fig. 4.31 A) is preserved in a 

road-cut between the Serra Dourada village and the Sossego Mine. It comprises a 12 

metre wide, sub-vertical fault zone trending NE-SW (060° Az). The material within 

the fault zone comprises a predominant ultrafine grained, dark grey rock – probably 

a cataclasite - containing millimetric angular fragments of quartz and a few 

preserved lenses of granite up to a metre long and tens of centimetres thick (Fig. 

4.31 B, C, D). Within the fault zone, a number of brittle slip surfaces occur, 

ornamented with slickenlines and striae indicative of both dip-slip and strike-slip 

motion (Fig. 4.31 E, F). It was not clear from the limited set of exposures whether 

the two sets of slip indictors were related to a single complex set of fault movements 

or two distinct faulting events. Minor brecciated material and mineralization (quartz, 

malachite and chlorite) were widely observed in the fault zone (e.g. Fig. 4.31 C, D, 

G). Displacements could not be estimated because of the absence of markers. 

However the substantial width of the fault zone does suggest that it is likely to have a 

significant displacement (tens of metres or more). The fault zone corresponds to a 

NE-SW topographic lineament that also coincides with a linear magnetic anomaly of 

the same direction. The spatial correlation between the described fault zone and 

topographic and magnetic lineaments is important to validate the assumption that 

lineaments correspond to major fault zones.  

 Small scale faults occur widely in granitoids. These structures are generally 

characterized by discrete, continuous and planar surfaces with displacements in 

gneisses ranging from few millimetres up to 10 centimetres based on observed 
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offsets of banding (selected examples of these structures are shown in Fig. 4.32). 

The main fault sets are oriented along the following trends, presented from early to 

late relative ages (see stereonets on Fig. 4.18 F):  

(1) E-W (095° Az) dipping 52°-60° to the S and WNW-ESE (117° Az) dipping 60°-

80° to the NE;  

(2) NE-SW (031°-057° Az) dipping 57°-82° to the SE; and  

(3) N-S (173° Az) dipping 70°-84° to the W. 

 Gneisses record N-S and WNW-ESE fault trends (stereonet in Fig. 4.18 K) 

and granitoids are mainly cross-cut by the trends NE-SW and WNW –ESE (see 

stereonets in Fig. 4.18 R). Mafic rocks only display a negligible number of faults 

(stereonet in Fig. 4.18 Y).  

Cross-cutting relations between the early E-W and WNW-ESE-trending sets were 

not observed, so they are grouped together. Fault slickenlines (stereonet in Fig. 4.18 

F) indicate that oblique-slip and strike-slip movements were the dominant directions 

of displacement for the E-W/WNW-ESE-trending and NE-SW-trending fault sets 

respectively. However, senses of displacement are often ambiguous and rather 

poorly constrained in many cases due to lack of good 3D exposures. 

 Minor fault zone internal structures typically comprise interlinked sets of 

fault strands that wrap around angular rock fragments “cemented” by a dark clay-

rich matrix. Psuedotachylytes were not observed anywhere in the area associated 

with faults. Fluid circulation during fault development appears to be widespread 

based on the frequent occurrence of: (a) hydrothermal alteration of minerals adjacent 

to fault planes (mainly feldspars into clay minerals); and (b) the occurrence of 

mineral precipitation (e.g. iron oxide, clay minerals, albite and sulphides). 

Additionally, the occurrence of sulphides, magnetite or malachite in some fault 

Chapter 4

155



planes is an important indication of the possible presence of significant copper 

deposits in the area. Prominent sulphide mineralization was observed in sub-vertical, 

NE-SW discrete fault zones, 3 to 10 cm wide crosscutting isotropic granitoids in the 

Serra Dourada region.  

 Fractures and joints orientations notably follow the major directional trends 

of faults, shear zones and foliations: N-S, E-W, WNW-ESW, and NW-SE (see 

stereonets in Fig. 4.18 T). It seems that in general, fractures tend to form parallel to 

pre-existing ductile fabrics that act as zones of weakness. Supporting this assumption 

is the much great density of fractures observed in rocks that display intense ductile 

fabrics compared to those developed in isotropic lithologies. However, exceptions to 

this rule occur with the N-S sub-vertical fractures, as these appear to be consistently 

present in equal densities in almost all outcrops visited. 

 Most discrete fracture planes are straight and smooth with an absence of 

ornamentation (e.g., plumose failure structures, slickenlines). Important quantitative 

parameters used to characterize fractures (persistence, spacing, length and aperture) 

change according to lithology, although this aspect has not been studied in detail 

during the present work. Finally, most of the fractures show no offsets and their 

walls are occasionally coated by a thin film of a very fine and brown-to-red dark 

mineral mass of possibly hematite. 

  Veins were observed in granitoids and mafic rock, occurring typically as 

parallel to sub-parallel sets of tens of millimetres objects. They are normally sub-

vertical, tabular and can range in width from few centimetres up to a metre wide. 

They are commonly composed of quartz, feldspar (albite) or actinolite. Vein 

geometry ranges from straight and tabular in undeformed veins to “S” or “Z” shaped 

sigmoidal tension gash veins. Granitic (fine grained) and pegmatitic (coarse grained) 
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veins composed of quartz, feldspar and biotite, were observed cross-cutting 

granitoids. In few examples, pegmatitic veins were associated with brecciated 

material derived from the adjacent wall rock. Most measured veins show orientations 

along the trends: WNW-ESE, NE-SW and N-S (see stereonets in Fig. 4.18 T and Z). 

 

4.4.2.2.6 Summary of the field observations 
 

The region south of the Carajás Ridge comprises a c.a. 2.9 Ga. granitic gneissic 

basement intercalated with amphibolite lenses and intruded by c.a. 2.7 Ga. alkaline 

syn-tectonic granitoids. These rocks display a heterogeneous, anastomosing and sub-

vertical ductile regional fabric trending WNW-ESE, NE-SW and locally NNW-SSE. 

The regional foliation is associated with steep-to-moderately plunging mineral 

lineations. 

 The basement rocks are folded by upright isoclinal, intrafolial and 

asymmetric folds that show mainly sub-vertical or steeply inclined axial surfaces, 

and sub-horizontal or gently plunging hinge lines. These fold elements trend in the 

same directions observed for the foliations. Further, ptygmatic and sheath folds 

occur associated with pegmatitic and migmatitic gneissic domains. 

 Mylonitic zones commonly cross-cut the basement rocks following the trends 

NNW-SSE, WNW-ESE, NE-SW and NW-SE. 

The basement rocks are intruded by dykes and c.a. 1.88 Ga. A-type granitoids 

that like the oldest rocks are cut by faults, veins and joints. Discrete faults and fault 

zones trend from early to late relative ages: (1) E-W and WNW-ESE with respective 

dips of 52°-60° to the S and 60°-80° to the NE; (2) NE-SW dipping 57°-82° to the 

SE; and (3) N-S dipping 70°-84° to the W. Fault displacement is rarely observed and 
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fault slickensides indicate -slip and strike-slip dominant movements for the sets 

trending E-W/WNW-ESE and NE-SW. 

 Quartz veins and joints trend similarly along NNW-SSE, WNW-ESE and 

NE-SW orientations. Joints show no offset and kinematic indicators, however few 

show mineralization i.e. quartz, hematite and clay. 

 

4.4.3 Microstructural observations 
  

This section presents the results from the study of 30 thin sections of representative 

rocks from the investigated area. The samples were examined under a microscope 

using transmitted polarized light to describe and interpret the characteristics of the 

microstructures and fabrics observed. The interpreted data was used to try to 

reconstruct the metamorphic and structural history of the rocks. Finally, the 

microstructural observations on samples from the basement rocks is ordered from the 

least to the most deformed rocks  

 

4.4.3.1 Isotropic Granitoids 
  

These represent the least deformed members of the suite of rocks studied under the 

microscope. They are texturally homogeneous, with granoblastic textures, showing 

medium- to coarse- unimodal grainsize with average grain diameters between 1900 

µm and 2700 µm (Fig. 4.33 A). Crystal shapes are typically subhedral to anhedral 

and grain contacts are generally curved with the minor presence of straight contacts 

forming triple junctions. Graphic intergrowths were often observed (Fig. 4.33 B). 

Ductile fabrics are generally absent and fractures or micro-cracks show random 
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distributions, limited to individual grains of quartz. Feldspar grains are fairly well 

preserved, rarely fractured and occasionally show crystal zoning. 

 Evidence of for intracrystalline deformation in quartz in these rocks includes: 

(1) well-developed sweeping undulose extinction; (2) widespread presence of 

elongate sub-grains (Fig. 4.33 C) with diffuse boundaries and minor “blocky” sub-

grains (Fig. 4.33 D); and (3) deformation lamellae (Fig. 4.33 E). Recrystallization of 

quartz is localized, restricted to aggregates of small (18 µm) sub-rounded new grains 

located along some grain boundaries (Fig. 4.33 F) and elongate zones of 

concentrated strain (Fig. 4.33 G). Microstructures in quartz are compatible with low 

to moderate strain. Deformation appears to be partitioned into bands where 

recrystallization was favoured. 

 

4.4.3.2 Basalt & Gabbro Dykes 
   

Basalts are composed of granular fine grained minerals with homogeneous grain size 

of 100 µm on average and they lack any fabrics or preferred mineral orientations 

(Fig. 4.34 A). Microcrystalline textures typically comprise randomly oriented sub-

hedral to anhedral plagioclase prisms frequently showing tapering twins (Fig. 4.34 

B). Microstructures are restricted to few long and continuous fractures/veinlets filled 

with ultra-fine chlorite (Fig. 4.34 C); ductile or brittle fabrics are absent.  

 The gabbros show granular textures with inequant coarse-grainsizes with 

crystal ranging from 105 µm up to 2995 µm in diameter (Fig. 4.34 D). Plagioclase 

occurs as tabular crystals with typical aspect ratios of 0.16, which often show zoning, 

undulose extinction, alteration into sericite and localized symplectites with altered k-

feldspar (Fig. 4.34 E). Ductile fabrics and recrystallization are absent. Mineral 
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fracturing is widespread and represented by straight to gently curved discontinuous 

and multidirectional cracks, often filled with dark-brown cryptocrystalline material 

or chlorite (Fig. 4.34 F). 

 Despite the well preserved magmatic textures, plagioclase grains in both 

mafic rock types shows minor evidence of limited crystal plastic deformation 

including: (1) undulose extinction; (2) the presence of tapering twins; and (3) minor 

symplectite development. Tapering twins are formed by crystal deformation at low 

temperatures and their concentration may be related to local intensity of deformation 

(Vernon 2004). Symplectite nucleation and growth may be conditioned to low strain 

conditions, as evidenced by the random arrangement of delicate shapes, which could 

not survive in high strain environments (Hanmer 1982; Simpson et al. 1989). 

Collectively, these features are indicative of post-magmatic, relatively low 

temperature, low strain conditions. 

 

4.4.3.3 Amphibolites 
  

These rocks represent metamorphic and deformed products of mafic volcanic rocks 

from the older mafic sequence that is intruded by the granitic gneisses. Their general 

mineral assemblage includes: amphibole (hornblende), plagioclase (labradorite), 

biotite, quartz, pyroxene, k-feldspar and minor titanite. Prominent ductile fabrics can 

be separated into: (1) continuous foliation defined by the preferred alignment of 

mineral grains (Fig. 4.35 A); and (2) compositional banding characterized by 

varying concentrations of distinct mineral species with inequant grain sizes and 

varying degrees of preferred orientation (Fig. 4.35 B ). 
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 Continuous foliation in amphibolites is characterized by homogeneous 

mineral distributions and preferred orientation of elongated hornblende crystals, 

defining a grain shape preferred orientation (GSPO) (Fig. 4.35 C). The degree of 

mineral orientation varies among samples, perhaps reflecting different strain 

magnitudes experienced by the minerals. 

 The compositional banding observed in some amphibolites is characterized 

by alternating layers with distinct mineral contents or grain sizes/shapes (Fig. 4.35 

D). Dark green bands are mainly composed of coarse grained hornblende (~950 µm) 

and clear bands of mixed fine grained (~100 µm) clinopyroxene, plagioclase and 

minor epidote. Evidence of concentrated ductile deformation promoting the 

development of strong GSPO in the fine grained layers, indicating that strain was 

partitioned and concentrated along specific layers. 

 The two types of foliation observed in amphibolites appear to be related to a 

pre-existing compositional banding that facilitated partitioning of the deformation 

into specific layers. Because deformation involves minerals with different 

competence, strain incompatibilities along boundaries between domains of 

difference competence can produce mechanical instabilities, favouring the 

accumulation of strain in certain zones (Goodwin et al. 2002; Vernon 2004)  

 Amphibole grain diameters ranges from 80 µm up to 500 µm with euhedral 

and anhedral forms. They normally show straight contacts with other minerals and 

occasional triple junctions. Crystal elongation is varied, but the long prismatic 

crystals have average aspect ratios of up to 0.25. Limited weak undulose extinction 

is the only evidence of crystal plastic deformation. Mechanical fragmentation of 

larger grains is suggested by the presence of very small (~20 µm) ‘chips’ of 

amphibole surrounding larger grains (Fig. 4.35 E). This leads to the development of 

Chapter 4

161



a feature similar to core-and-mantle texture. The partial mixture of small amphibole 

grains with feldspar matrix could have been produced by grain boundary sliding 

between the two phases. Several other studies have suggested that, at temperatures 

below 650-700ºC, aggregates of fine-grained hornblende probably formed by 

fracturing rather than dynamic recrystallization (Stünitz 1993; Imon et al. 2004; 

Passchier et al. 2005) and that core-and-mantle structures on hornblende may also be 

due to fracturing (Nyman et al. 1992; Passchier et al. 2005) 

 Feldspars occur as polygonal aggregates of recrystallized strain-free small 

grains (~30 µm) and subordinate larger relict grains (~ 280 µm), showing sweeping 

undulose extinction, stress-induced glide-twins and multiple twinning and minor 

alteration to sericite (Fig. 4.35 F). The presence of small recrystallized grains is 

indicative of reasonably high grade conditions (above 600ºC), compatible with 

climb-accommodated (regime 2) dislocation creep where both SGRR and BLG occur 

(Altenberger et al. 2000; Kruse et al. 2001; Tullis 2002; Passchier et al. 2005). The 

development of tapering twins and multiple twinning, common in plagioclase relict 

crystals, are favoured at lower temperatures and faster strain rates (Vernon 2004), 

indicating that these features may be later stage products of minor deformation 

during retrogression metamorphism. 

Pyroxenes in amphibolites occur as granular or prismatic elongated crystals 

with moderate preferred orientations. The grains have euhedral and subhedral forms, 

ranging from 32 µm up to 366 µm diameter and occur as individual grains or 

polygonal aggregates with straight contacts (Fig. 4.35 G).. Intracrystalline 

deformational features are absent. 

Biotite occurs predominantly as thin tabular shaped crystals with lengths 

ranging from 40 µm up to 580 µm, oriented parallel to the foliation. Subordinated 
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subhedral grains with irregular shapes were also observed. Evidence of deformation 

is limited to sweeping undulose extinction and gentle kinking of individual grains. 

Quartz forms polygonal aggregates of fine (~ 50 µm) recrystallized grains 

with straight boundaries (Fig. 4.35 H). Sub-grains are less abundant and show 

moderate undulose extinction with lobate and diffuse grain boundaries. LPO are 

absent and a localized GSPO is seen in aggregates of recrystallized quartz grains that 

show moderate preferred orientation. Collectively, quartz shows deformational 

features indicative of dynamic recrystallization under dislocation creep regimes 2 

and 3 (Hirth et al. 1992) dominated mainly by GBMR and subordinately by SRR. 

These dislocation creep regimes and recrystallization mechanisms are compatible 

with temperatures of 500-700 ºC, indicative of middle to upper amphibolite facies 

conditions (Stipp et al. 2002; Passchier et al. 2005).  

    

4.4.3.4 Deformed Granitoids 
 

These rocks are characterized by recrystallized minerals and foliation formed under 

relatively high temperature during syntectonic recrystallization. Their mineral 

assemblages include: quartz, plagioclase (labradorite), k-feldspar, amphibole 

(hornblende), minor biotite, chlorite and zircon. Foliation is heterogeneously 

developed with presence of weak, prominent and mylonitic varieties (see two 

examples in Fig. 4.36 A); generally classified as disjunctive, rough, parallel or 

anastomosing. The constitutive minerals and their deformational features are 

described as follows: 

 Feldspars, in the low strain samples, form large inequigranular (up to 11 

mm), subhedral to sub-rounded relict grains surrounded by aggregates of fine (~ 20–

Chapter 4

163



50 µm) recrystallized grains of uniform grain size (Fig. 4.36 B). The abundance of 

recrystallized feldspar is proportional to the strain accommodated by the rocks. In 

the least deformed samples, recrystallization is limited to thin mantles of 

recrystallized grains along the boundaries of larger crystals that show strong 

sweeping undulose extinction and stress-induced twins. 

Intense grainsize reduction is observed in more deformed samples. Grain 

boundary rotation recrystallization produces relict grains with core-mantle texture 

and limited flattening. Fine-grained feldspar aggregates are smeared into the 

foliation, alternated with quartz ribbons (Fig. 4.36 C). Elongated recrystallized 

grains with a 2:1 ratio, are often oriented parallel or oblique to the foliation. They 

show undulose extinction, straight or lobate boundaries that can be either sharp or 

diffuse (Fig. 4.36 C). 

Evidence of crystal plastic deformation in relict grains or porphyroclasts 

includes: patchy undulose extinction, stress-induced twins, perthites and 

myrmekites preferentially developed along grain boundaries. The presence of these 

features suggests that strain was localised into the recrystallized zones with the relict 

grains playing the role of rigid objects accumulating limited strain. Fracturing is 

observed locally producing angular inequant feldspar grains and local “book shelf” 

structures (Fig. 4.36 D). (Simpson et al. 1989; Tsurumi et al. 2003) propose that 

myrmekites are developed at stress-concentration sites during progressive 

deformation of high grade metamorphic and granitic rocks. Some authors suggest 

that they grow at temperatures of 450-500°C (Tribe et al. 1996), whilst others 

suggest temperatures between 500 and 670°C (Wirth et al. 1987).  

 Quartz is intensely recrystallized, forming elongate subhedral clusters (Fig. 

4.36 E) or continuous ribbons with thicknesses ranging from 50 µm up to 800 µm. 
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The grains are strain free and show sharp, straight or gently curved boundaries 

normally configuring triple junction (120°). Grainsizes range from 34 µm up to 170 

µm and seem to be proportional to the quartz ribbon width. The microscopic 

characteristics of these strain-free polygonal quartz grains suggest that they were 

produced by static recrystallization, dominated by grain boundary area reduction 

(GBAR) mechanisms. Relicts of the dynamically recrystallized grains show 

relatively small grain size (~25 µm), interlobate contacts and undulose extinction, 

which indicate that, prior to the static recrystallization, quartz was dynamically 

recrystallized under conditions compatible with regime 3 dislocation creep (Hirth et 

al. 1992). Only one out of seven studied samples has partially recrystallized quartz. 

That shows moderately flattened grains with sweeping undulose extinction and 

elongated subgrains with straight and diffuse boundaries. The boundaries of relict 

grains are populated by very fine (~ 20 µm) sub-grains and minor new grains, 

forming good core-mantle structures. Fine subgrains show interlocked or lobate, 

sharp or diffuse boundaries (Fig. 4.36 F). The preferred orientation of the flattened 

grains, defines an SPO and the use of a tint filter reveals a moderate LPO. These 

microstructural features are consistent with those described for regime 2 dislocation 

creep regime (Hirth et al. 1992). 

  Amphiboles occur as strain-free sub-hedral prismatic crystals (up to 950 

µm) and more commonly as multiple needle-shaped lamellae oriented parallel to the 

foliation (Fig. 4.36 G). The amphibole “needles” seem to have formed by fracturing 

and were observed mixed with recrystallized quartz and feldspar, with their preferred 

orientation broadly parallel to the foliation. 

 Biotite is similar to amphibole. However, grain fracturing is practically 

absent and crystals are virtually strain free (Fig. 4.36 H). Biotite elongated grains are 
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oriented parallel to the foliation and show straight contacts with quartz or evidence 

of secondary grain growth where relatively smaller crystals are engulfed by quartz. 

 Titanite shows euhedral prismatic forms normally occurring associated with 

biotite or amphibole rich domains and shows no evidence of deformation. 

 Chlorite and epidote show no indication of deformation and represent 

common retrograde alteration products of biotite and feldspars respectively. 

The varied foliation types and deformational features in minerals suggest that 

deformation was highly heterogeneous. Thus, the microstructures observed in quartz 

and feldspar indicate that these granitoids were initially deformed under middle to 

upper amphibolite facies conditions (~650-700ºC) that appear to have been partially 

overprinted by retrograde metamorphism, with minor deformation under middle to 

upper greenschist facies conditions (~400-500ºC).   

 

4.4.3.5 Mylonites 
 

These samples display a prominent mylonitic foliation defined by a regular and 

relatively continuous planar fabric, formed of alternating quartz- and feldspar-rich 

bands wrapping around rigid porphyroclasts (Fig. 4.37 A). The typical mineral 

assemblage comprises: quartz; k-feldspar (microcline); plagioclase (labradorite), 

biotite and accessories. 

 Feldspars exist as large porphyroclasts and as dominant, finely recrystallized 

domains produced by widespread grainsize reduction of the original grains. 

Plagioclase and k-feldspar show similar microstructural characteristics and are 

described together. 
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 Porphyroclasts form sub-rounded to elongated augen or lozenge-shaped 

grains 320 µm to 4700 µm in diameter (Fig. 4.37 B), mantled by recrystallized 

feldspar forming well defined core-mantle textures. Features indicative of crystal 

plastic deformation in porphyroclasts include: (1) moderate to strong undulose 

extinction, (2) deformation twins and kink bands, (3) irregularly distributed 

polysynthetic twins, (4) flame perthites and myrmekites mainly located along crystal 

edges, and (5) occasional discrete high strain zones populated with ultra fine 

recrystallized grains (Fig. 4.37 B and C). The range in their size suggests that 

porphyroclasts acted as mechanically rigid particles during the processes of 

progressive grainsize reduction.  

 Recrystallized feldspar grains are much finer than quartz and define long and 

continuous bands formed of either:  

 A - ultra-fine aggregates of equant feldspar grains with an average size of 6 

µm and the occasional presence of larger grains (~ 42 µm) and trails of tiny biotite 

flakes (~ 8 µm) (Fig. 4.37 C). The crystals forming aggregates show curved and 

sharp contacts between each other and serrated boundaries when in contact with 

feldspar porphyroclasts. A SPO is defined by elongated recrystallized domains 

oriented parallel to the foliation. B - Recrystallized mixed phases of feldspar (~ 

20 µm up to 100 µm), quartz (~ 50 µm) and biotite (~ 100 µm long) with both 

straight and lobate contacts (Fig. 4.37 D). The grains of the mixed phase aggregates 

show serrated contacts with feldspar porphyroclasts and straight contacts with quartz 

foliae. Feldspar shows moderate to intense alteration to sericite. 

 The microstructural features observed in the feldspars are indicative of climb-

accommodated (regime 2) dislocation creep of (Tullis et al. 1985; Tullis 2002). 

Porphyroclasts with sweeping undulose extinction and mantled by fine recrystallized 
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grains are compatible with high temperatures in upper amphibolite facies 

(Altenberger et al. 2000; Kruse et al. 2001). Additionally, myrmekites commonly 

form along high stress margins of feldspar porphyroclasts from amphibolite grade 

granitic rocks (Simpson et al. 1989).  

 Quartz occurs as aggregates of polygonal inequant grains, with very weak 

undulose extinction and dominant sharp and straight or minor curved boundaries. 

Grainsize ranges from 20 µm up to 700 µm in diameter with the common presence 

of elongate grains (aspect ratios of 1:2 up to 1:4) oriented parallel to the foliation. 

Small biotite grains engulfed by quartz suggest that temperatures during deformation 

were high enough to counteract “grain-boundary pinning” effects (Tullis 2002). 

Quartz aggregates form lenses or layers of varied thicknesses that alternate with 

feldspar rich folia (Fig. 4.37 E). The larger and dominant polygonal grains indicate 

static recrystallization produced by grain boundary area reduction (GBAR) 

mechanisms (Fig. 4.37 F). Subordinate smaller grains with curved or lobate 

boundaries, indicative of GBMR represent relicts of “early” dynamically 

recrystallized quartz by dislocation creep (regime 3) (Hirth et al. 1992). 

 Biotite comprises relatively large (~ 180 µm long) and very fine (~ 10 µm 

long) subhedral and tabular crystals with aspect ratios of 1:2 up to 1:5, oriented 

parallel to the mylonitic foliation. Larger crystals occur mainly as clusters of aligned 

flakes normally intergrown with quartz and feldspar subgrains (Fig. 4.37 G). The 

very fine crystals form prominent, continuous trails (10 µm to 270 µm wide) 

interlayered with quartz- or feldspar-rich bands or wrapping around porphyroclasts 

(Fig. 4.37 H). Biotite flakes tend to concentrate in strain shadows associated with 

porphyroclasts and in some examples, needle-shaped biotite grains nucleate within 
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feldspar porphyroclasts. Deformational features are relatively rare, limited to minor 

folded cleavage planes. Kinking and undulose extinction are absent. 

 The microstructural features observed in quartz and feldspars agree with 

those described for high temperature mylonites in many other shear zones (e.g. (Bell 

et al. 1989; Pryer 1993; Altenberger et al. 2000; Stipp et al. 2002). The 

microstructures are consistent with those formed by progressive strain at middle to 

upper amphibolite conditions (~650-700ºC) (Tullis 2002). The minerals were 

probably annealed after strain ceased. 

 

4.4.3.6 Granitic gneisses 
 

 Orthogneisses corresponding to tonalites, granodiorites and subordinate 

monzogranites, are generally formed by varying proportions of plagioclase 

(labradorite), quartz, k-feldspar, biotite, minor hornblende and accessories. These 

rocks show prominent compositional banding, inequigranular grain sizes with larger 

clasts up to 8 mm in diameter set in a finer grained recrystallized matrix. The mineral 

assemblage is arranged typically into alternating mafic (biotite, hornblende and 

opaque minerals) and felsic (quartz and feldspar) bands, displaying a general 

granoblastic texture, with more mylonitic fabrics developed in high strain members 

(Fig. 4.38 A) 

 Quartz is intensely recrystallized, comprising inequant grains from 28 µm to 

756 µm in diameter. Larger grains are commonly elongate and oriented sub-parallel 

to the gneissic banding. They show strong sweeping undulose extinction, elongated 

sub-grains and sharp lobate contacts with the surrounding grains. Aggregates of 

smaller quartz grains form ribbons, augen-shaped domains and minor porphyroclasts 
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tails. Grain boundaries in these aggregates can be: (i) straight, produced by GBAR 

and indicative of annealing; or (ii) lobate or curved, resulting from GBMR. Quartz 

ribbons (Fig. 4.38 B) occur alternating with recrystallized feldspar layers and 

occasionally wrap around porphyroclasts. Ribbons show inequant subhedral or 

elongate grains with straight or lobate boundaries. A number of grains show 

evidence of intracrystalline deformation including sweeping undulose extinction and 

subgrains with diffuse contacts and long axes generally oriented parallel to the 

ribbon’s length. 

 Only one sample (P-83) shows intensely flattened quartz grains with 

sweeping undulatory extinction and elongate or inequant granular subgrains. Grain 

boundaries are decorated with aggregates of small (~ 20-30 µm) recrystallized grains 

with gently curved or irregular boundaries characteristic of dislocation creep 

recrystallization in the transition between regime 2 and regime 3 (Fig. 4.38 C). 

 Collectively, these structures are compatible with quartz having initially 

recrystallized by Regime 3 dislocation-creep GBMR (Hirth et al. 1992), and further 

annealed by GBAR that produced the polygonal “foam structures” (Passchier et al. 

2005) observed in the majority of the quartz crystals. 

 Feldspars occur as porphyroclasts or smaller grains in the recrystallized 

matrix with biotite and quartz. Porphyroclasts with irregular shapes and inequant 

sizes represent survivors of grain size reduction processes. They display evidence of 

crystal plastic deformation represented by: (a) moderate to strong undulose 

extinction, (b) bent clasts in high strain samples, (c) kinked or lenticular (tapering) 

plagioclase twins, (d) stress-induced twins near to grain margins, and (e) 

deformation bands (Fig. 4.38 D). Myrmekites and perthites were observed in 

feldspar porphyroclasts and indicate deformation under high temperature conditions 
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(Fig. 4.38 D and E). A few clasts are cross-cut by very thin (~ 3 – 11 µm) straight or 

gently curved cracks filled with biotite. Porphyroclasts show lobate or curved 

contacts with the grains in the surrounding recrystallized matrix. They are often 

mantled by recrystallized feldspar grains with lobate contacts (Fig. 4.38 F) and 

average sizes smaller than grains in the matrix. 

 Feldspars in the recrystallized matrix comprise aggregates of intergranular 

and inequant grains ranging from 16 µm to 230 µm in size. Grains from the fine- to 

medium-grained fraction show undulose extinction and lobate boundaries. By 

contrast, the coarse fraction has grains with straight contacts, often forming 120° 

triple junctions. Partially recrystallized myrmekite aggregates were observed 

incorporated into the fine grained matrix. 

 The widespread recrystallization of feldspars is related to the operation of 

SGRR and GBMR processes. The minimum temperature for plagioclase 

recrystallization is between 500 to 550ºC (Tullis et al. 2000). Additionally, k-

feldspar dynamic recrystallization has been observed under amphibolite facies 

~530ºC (Pryer 1993) and eclogite facies conditions (Altenberger et al. 2000). 

Myrmekites can form at stress-concentration sites during high-grade metamorphism 

(Tsurumi et al. 2003), at temperatures of 450-500°C (Tribe et al. 1996) and between 

500 and 670°C (Wirth et al. 1987). Finally, perthites can develop under either 

greenschist facies conditions (Pryer et al. 1995) or amphibolite facies at higher 

temperatures (Vernon 1999). 

Biotite is the main mafic mineral in the gneisses and occurs as:  

(a) elongate tabular flakes (Fig. 4.38 G) with aspect ratios ranging from 2.75 to 10.5, 

showing grain sizes (15 µm to 220 µm) inversely proportional to strain; or  
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(b) anhedral grains filling interstitial spaces between quartz-feldspathic recrystallized 

aggregates (Fig. 4.38 H).  

 Elongated biotite grains are normally aligned parallel to the gneissic layering, 

defining a mica-rich foliation in the more intensely deformed samples. The presence 

of continuous and discontinuous biotite trails seems to be proportional the quantity 

of mica available. Relatively thin and prismatic fragments are often engulfed by 

quartz or mark the boundaries between quartz grains giving them an elongated shape 

and controlling grain boundary geometry. 

  

 The collection of microstructures observed in quartz and feldspars is 

consistent with an initial deformation at high temperatures (amphibolite facies) that 

appears to have been partially overprinted by latte deformation at lower temperatures 

(greenschist facies). Comparing the microstructural observations from the studied 

gneisses with a summary of the deformational characteristics for granitic rocks at 

different crustal levels presented by (Tullis 2002), it is deduced that: (1) the high 

temperature deformation took place under middle to upper amphibolite facies 

conditions (~650-700ºC); and (2) the latter weak deformation occurred under middle 

to upper greenschist facies conditions (~400-500ºC). 

 

 

 

4.5 Tectonic history and structural model 
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The early configuration of the Archaean terrane exposed in the Transitional domain 

south of the Carajás terrane comprises high grade, TTG (thonalite-trondhjemite-

granodiorite) gneisses, intercalated with lenses of mafic volcanics and amphibolites. 

These units show generally sub-vertical, complex interfingering, curviplanar 

contacts. The lithological associations here are clearly equivalent to the classic 

characteristics of granite-greenstone terranes described in North America, Southern 

Africa and Australia (Condie 1981). 

 Such granite-greenstone terranes are generally believed to have formed by 

vertical tectonics during processes such as diapirism with autochthonous magmatism 

forming dome-and-keel structures like those seen widely in the adjacent Rio Maria 

Granite Greenstone Terrane (Althoff et al. 2000) and similar to the structures 

described in other Archaean cratons, e.g. India (Chardon et al. 1996); 

Kaapvaal (Kisters et al. 1995); Pilbara  (Collins et al. 1999); and Zimbabwe (Jelsma 

et al. 1993).  

 These early formed TTG (granitic) gneisses, occur as small preserved 

“islands” typified by sub-vertical N-S banding, affected by numerous small-scale, 

generally upright open to locally isoclinal disharmonic folds. The localized N-S 

structures appear to represent relicts of an early pre-2.8 Ga Archaean tectonic cycle. 

These early structures show notable symmetry, indicative of pure shear deformation 

under possibly magmatic conditions. The N-S structural trend has been recognised in 

parts of the Rio Maria Granite Greenstone terrane such as the Caracol Tonalite (Leite 

et al. 2004). The minimum age for these early structures is 2.9 Ga, the age of the 

oldest rocks (leuco-monzogranites) dated in the study area (Sardinha et al. 2004). 

 It is proposed that at approximately 2.7 Ga, the region was affected by a 

regional phase of sinistral transpression. This deformation has shaped much of the 
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present architecture of the lithological units and was accompanied by widespread 

coeval magmatism forming E-W elongated, foliated A-type granitoids. The ages of 

the syn-tectonic granitoids (see Table 4.1) constrain the approximate time when the 

transpression took place i.e. ~ 2.7-2.5 Ga.    

 Transpression produced a penetrative ductile fabric comprising an interlinked 

array of sub-vertical E-W and WNW-ESE foliation in the gneisses and syn-tectonic 

granitoids. Most of the strain was accommodated in shear zones oriented mainly 

parallel to the foliation, with the shortening direction being sub-horizontal and 

broadly NNE-SSW (~010-20° Az) trending. These features are responsible for the 

development of the prominent, continuous and sinuous E-W anomaly, ~ 15 km wide 

seen in the magnetic and radiometric surveys. 

Microstructures indicate that during main phase of transpression, the rocks 

were deformed at conditions compatible with middle to upper amphibolite facies 

(~650-700ºC). Euhedral quartz in highly deformed rocks, suggests that deformation 

ceased at temperatures sufficiently high to promote quartz recovery.  

 Discrete NE-SW shear zones with oblique-slip character seem to have 

formed during the latter stages of transpression. These structures cross-cut the E-W 

fabric and are geometrically comparable to the R, synthetic faults from the Riedel 

shear model, described in analogue models and natural examples of transpression 

presented in (Schreurs et al. 1998; Casas et al. 2001; Mattioni et al. 2007). 

Deformation after these later stages of transpression seems to have occurred under 

middle to upper greenschist facies conditions (~400-500ºC) based on the 

microstructures that overprint the relatively high temperature fabric.  

 Regionally, the E-W to WNW-ESE trend is recognized both to the north in 

the granitic basement at the Carajás terrane (e.g., (Pinheiro et al. 1997a) and to the 
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south in the Rio Maria Granite Greenstone terrane (e.g. (Althoff et al. 2000). 

Collectively, the mineral assemblages and associated microstructures, indicate a 

decrease in metamorphic grade from amphibolite to sub-greenschist reflecting 

progressive uplift, exhumation and syn-tectonic cooling of the region. This too is 

recognised in adjacent terranes (refs). It appears that the early amphibolite facies 

fabric formed over a relatively broad area under heterogeneous strain conditions. 

Subsequently, at greenschist facies conditions, deformation was partitioned and 

concentrated into high strain zones developed along the early ductile fabric. These 

interpretations agree with the conceptual fault model of (Sibson 1977), which 

suggested that an upper crustal network of frictional faults are projected downward 

at depth into a viscous deformation zone. The model also suggests that, at low grade 

greenschist, deformation tends to be localized into discrete mylonitic zones, while 

amphibolite facies mylonites exist over a relatively wider region. Thus, the 

deformation and deformation textures recorded in the study area rocks are 

compatible with lower to mid crust conditions comparable to those seen in many 

other basement complexes worldwide, e.g. Limpopo Belt, Zimbabwe Craton (Kolb 

et al. 2000); Hidaka Belt, Hokkaiko – Japan (Kanagawa et al. 2008), Glastonbury 

gneiss, north-central Connecticut, New England (Wintsch et al. 2002). 

 It is proposed that during the transpression, strain was partitioned with the 

bulk of the simple-shear component being accommodated by the shear zones. As a 

result, the lower strain regions between the shear zones are in relative terms likely 

dominated by the pure-shear component (see cartoon in Fig. 4.39). The steeply-

plunging mineral lineations in both pure-shear and simple-shear domains, are 

characteristic of heterogeneous transpression (Tikoff et al. 1997). The sub-vertical 

lineations preserved in the shear zones and total absence of sub-horizontal lineations 
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suggests a bulk pure-shear dominated transpression (Fossen et al. 1994; Tikoff et al. 

1997). It seems that the partitioning of deformation may have been, at least to some 

degree, controlled by the rheological properties of the rocks. In general, the gneisses 

are more highly deformed compared to the granites and mafic rocks.  

 After the sinistral transpression, widespread anorogenic magmatism and 

faulting are the last events recorded in the area. A late magmatic event has produced 

A-type, sub-circular, isotropic granitoids (e.g. the Rio Branco granite) and numerous 

mafic and subordinated felsic dykes, trending NW-SE, NE-SW and N-S. The 

granitoids were emplaced at 1.88 Ga during a regional scale phase of extensional 

tectonism that affected the Amazon Craton (Dall'Agnol et al. 2005). The age of the 

dykes is not well constrained but their isotropic character suggests that they are no 

older than 1.88 Ga. The three statistically representative sets of faults in the studied 

area with their respective nature are: WNW-ESE (oblique-slip), NE-SW (strike-slip) 

and N-S (extensional). These structures occur throughout the area, cross-cutting 

early gneisses and late isotropic granitoids. A late mineral assemblage comprising 

epidote+chlorite+albite+quartz is widely present in deformation bands or fractures 

and reflects retrograde metamorphic events that occurred at relatively low 

temperatures, presumably synchronous with faulting. 

 

 

 

4.6 Comparison with other Archaean Cratons 

 

The geological setting recognized regionally and within the local study area 

correlates with the main stages of evolution for the Archaean crust as proposed by 
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(Choukroune et al. 1995). The authors used field observations and strain field 

analysis to develop a four stage model of crustal deformation observed in Archaean 

terraces (Fig. 4.40): Stage(1) Pilbara Craton in Australia; Stage(2) from the Dharwar 

craton in South India; Stage (3) the Man Shield from Ivory Coast and Stage (4) Sino-

-Korean craton in China. 

  The structural characteristics observed in the Canaã dos Carajás region 

correspond to those described for stages 2 and 3 in the Choukroune model. 

Extending the comparison to the regional scale, the northern Carajás and southern 

Rio Maria terranes would correspond to the Sino-Korean craton in China (stage 4) 

and to the Pilbara craton (stage 1). This comparison highlights the regional 

progressive decrease in strain from the Carajás Ridge in the north to the Rio Maria 

terrane in the south.  

  

4.7 Regional issues 
 

 The rocks in the study area dominantly yield ages of between 2.9 and 2.7 Ga 

- ages that are also present in the rocks of the adjacent Carajás and Rio Maria 

Granite-Greenstone terranes. This correspondence in the isotopic ages of the three 

domains suggests a contemporaneous origin which casts some doubt on the validity 

of the current separation into different terranes. 

 However, it is possible that the region represents a unit of crust initially 

formed by a common event and then heterogeneously reworked during later events. 

In particular, the present study suggests that the rocks of the Transitional domain are 

part of the Rio Maria Granite Greenstone terrane that have experienced a much 
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higher degree of reworking during sinistral transpression and that this event 

increases in intensity northwards (Fig. 4.39). The same transpression also appears to 

dominate in the basement rocks of the Carajás terrane to the north (Pinheiro et al. 

1997a; Holdsworth et al. 2000). This hypothesis would also explain the relatively 

young ages (2.9 and 2.7 Ga) found in the rocks of the Carajás terrane and 

Transitional domain. The hypothesis is still a little speculative since there are far 

fewer modern isotopic ages, available for the Rio Maria Granite Greenstone terrane 

and Transitional domain compared to the Carajás terrane. 

The geophysical anomaly corresponding to the broad E-W shear zone hosting 

syn-tectonic granitoids in the Canaã dos Carajás region has been referred to as a 

tectonic discontinuity separating the Carajás and Rio Maria Granite Greenstone 

terranes (de Oliveira et al. 2009). This is possible, but the region also seems to mark 

a boundary between two domains that have suffered very different intensities of 

strain during a regional sinistral transpression ca 2.7Ga. The recognition of an 

intensely deformed granite-greenstone terrane in the region of Canaã dos Carajás has 

two direct regional implications: 

(1) It displaces the current geographic limit of the Rio Maria Granite-Greenstone 

terrane from the Sapucaia village, to the Canaã dos Carajás town, 40 km to 

the north. 

(2) It calls into question the currently accepted division of the Amazon Craton 

that establishes the Carajás and Rio Maria Granite Greenstone terranes into 

two distinct tectonic-geochronological domains, a proposal that is largely 

based on geochemical and isotopic data. 
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4.8 Conclusions 
 

 The Archaean rocks in the region of Canaã dos Carajás, near to the boundary 

between the Carajás and Rio Maria Granite-Greenstone terranes, are interpreted to 

represent part of an original granite-greenstone terrane that has undergone substantial 

reworking during a later regional transpressional deformation. This reworking 

records a temporal change from vertical tectonics, which formed the granite-

greenstone terrane, to a more horizontal-dominated tectonics regime at c.a. 2.7 Ga. 

during sinistral transpression accompanied by widespread syn-tectonic sub-alkaline 

magmatism. The transition from vertical to horizontal tectonics is consistent – at 

least in this part of the Amazon Craton – with a change in global tectonic processes 

consistent with a non-uniformitarian theory for Earth’s crustal evolution.  

 The Canaã dos Carajás region comprises intensely deformed rocks, uplifted 

from the lower-to-middle crustal levels, initially deformed under high amphibolite 

facies conditions and subsequently affected by more localised, down-temperature 

deformation at greenschist facies conditions. The widespread presence of mylonites 

in the region suggests that these rocks were deformed wholly within viscous 

deformational regime. 

 Finally, late brittle events formed faults, fault zones and veins, mainly 

observed in granitoids. Widespread hydrothermal alteration and localized occurrence 

of Cu mineralization in these structures, evidence the role they can play as potential 

sites for occurrence of ore deposits in the region. The demonstration that fault zones 

with evidence of mineralization correlates to major magnetic and topographic 

lineaments, confirms the relationship lineaments vs. mineralization investigated in 

Chapter 3. Further, investigation on how brittle structures can host mineralization 
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was carried out, and is presented in Chapter 5. This chapter describes the structural 

controls in the orebodies of Sossego and Sequeirinho, two IOCG deposits located 

within the region herein described. 
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Figure 4.3 (cont.) Fig. 5.2 APublished geological maps of the areas indicated in : B Geological map of
the Serra Dourada region from Souza, 2007. C Geological map of the eastern portion of the Canaã dos
Carajás region from Gomes, 2003.
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Supergroup Group / Intrusive Rocks Lithology Age (Ga) Method Author
Formation

A - Carajas Terrane
Cigano Granite Granite 1.883 ± 3 ZR U-Pb Machado et al. (1991)
Carajas Granite Granite 1.880 ± 2 ZR U-Pb Machado et al. (1991)

Proterozoic Carajas Granite Granite 1.820 ± 49 ZR U-Pb Olszewski et al (1989)

Granites
Anorogenic Pojuca Granite Granite 1.874 ± 2 ZR U-Pb Machado et al. (1991)

Breves Granite Episyenite 1.880 ± 9 ZR SHRIMP II Tallarico et al. (2004)
Breves Granite Granite 1.878 ± 8 ZR SHRIMP II Tallarico et al. (2004)

Young Salobo Gran. Syenite 1.88 ± 80 W-R Rb-Sr Cordani (1981)
Águas Claras gabro 2.645 ± 12 ZR Pb-Pb Dias et al. (1996)

Grão-Pará volcanic sill 2.751 ± 4 ZR Pb-leach Krymsky et al. (2002)
Grão-Pará Rhyodacite 2.759 ± 2 ZR U-Pb Machado et al. (1991)
Grão-Pará Mylonitised Metarhyolite 2.757 ± 7 ZR SHRIMP Trendall et al (1998)
Grão-Pará Rhyolite 2.758 ± 39 ZR U-Pb Macambira & Lafon (1995)
Grão-Pará Rhyolite 2.757 ± 18 ZR Pb-Pb Macambira et al. (1996)

Igarape Pojuca Ahphibolite 2.732 ± 2 ZR U-Pb Machado et al. (1991)

Itacaiunas

Igarape Pojuca Garnet-Biotite-Schist 2.668 ± 60 WR Sm-Nd Lindenmayer et al. (2001)

Group

Igarape Pojuca mafic intrusive rocks 2.705 ± 2 ZR Pb-Pb Galarza et al. (2002b)
Igarape Pojuca Meta Gabro/ Andesite 2.757 ± 81 WR Sm-Nd Pimentel et al. (2003)
Igarape Salobo Rhyolite 2.740 ± ? ZR U-Pb Wirth et al. (1986)
Igarape Salobo Ahphibolite 2.761 ± 3 ZR U-Pb Machado et al. (1991)
Igarape Salobo Gneiss 2.851 ± 4 ZR U-Pb Machado et al. (1991)
Igarape Salobo BIF 2.551 ± 2 Mi U-Pb Machado et al. (1991)
Igarape Bahia Basic granophyre 2.577 ± 144 WR Rb-Sr Ferreira Filho ( 1985)
Igarape Bahia metapyroclastic 2.747 ± 1 ZR Pb-Pb Galarza et al. (2002)
Igarape Bahia Meta volcanic/pyroclastic 2.759 ± 24 WR Sm-Nd Santos (2002)
Igarape Bahia Metavolcanic 2.748 ± 34 ZR SHRIMP Tallarico et al. (2005)
Igarape Bahia Metavolcanic 2.624 ± 8 ZR SHRIMP Tallarico et al. (2005)

Ultamafic

C
o

v
e

r
A

s
s

e
m

b
la

g
e

Luanga Complx. Anorthosite 2.763 ± 6 ZR U-Pb Machado et al. (1991)
Itacaiunas Granite Granitoid 2.560 ± 37 ZR Pb-Pb Souza et al. (1996)

Archean Itacaiunas Granite Granitoid 2.525 ± 38 ZR Pb-Pb Souza et al. (1996)

Granites
Syn-tectonic Old Salobo Granite Granitoid 2.573 ± 2 ZR U-Pb Machado et al. (1991)

Geladinho Granite Granitoid 2.688 ± 11 ZR Pb-Pb Barbosa et al. (2001)
Estrela Granite Granitoid 2.527 ± 68 WR Rb-Sr Barros et al. (1992)
Estrela Granite hornblenda sienogranite 2.763 ± 7 ZR Pb-Pb Barros et al. (2001)

Xingu Complex Granitic Leucossoma 2.859 ± 2 ZR U-Pb Machado et al. (1991)

B
a

s
e

m
e

n
t

A
s

s
e

m
b

la
g

e

Xingu Complex Felsic Gneiss 2.851 ± 4 ZR U-Pb Machado et al. (1991)
Xingu Complex Amphibolite 2.519 ± 5 TI U-Pb Machado et al. (1991)
Pium Complex Granulite 3.050 ± 114 WR Pb-Pb Rodrigues et al. (1992)
Pium Complex Enderbite Protolith 3.002 ± 14 ZR SHRIMP Pidgeon et al. (2000)
Pium Complex Granulite 2.859 ± 9 ZR SHRIMP Pidgeon et al. (2000)

B - Transitional Domain
Plaque Suite Granitoid 2.729 ± 29 ZR Pb-Pb Avelar et al. (1999)

Archean
Plaque Suite Granitoid 2.736 ± 24 ZR Pb-Pb Avelar et al. (1999)

Granites
Syn-tectonic

Planalto Granite Granitoid 2.747 ± 2 ZR Pb-Pb Huhn et al. (1999)
Cristalino Diorite Diorite 2.738 ± 6 ZR Pb-Pb Huhn et al. (1999)

Serra do Rabo Gran. Granitoid 2.743 ± 1 ZR U-Pb Sardinha et al. (2002)
Undifferentiated Granitoid 2.765 ± 39 ZR Pb-Pb Sardinha et al. (2004)

Basement
Rio Maria Granod. Granitoid 2.850 ± 17 ZR Pb-Pb Avelar et al. (1999)

Units
Xingu Complex Gneiss 2.972 ± 16 ZR Pb-Pb Avelar et al. (1999)
Xingu Complex Granitoid 2.928 ± 1 ZR Pb-Pb Sardinha et al. (2004)

C - Rio Maria Greenstone Terrane
Musa Granite Granitoid 1.883 +5/-2 ZR U-Pb Machado et al. (1991)
Jamon Granite Granitoid 1.885 ± 32 ZR Pb-Pb Dall'Agnol et al. (1999)Proterozoic
Jamon Granite Granitoid 1.601±42 WR Rb-Sr Dall'Agnol et al. (1984)

Granites
Anorogenic

Marajoara Granite Granitoid 1.724 ± 50 WR Rb-Sr Macambira (1992)
Redenção Granite Granite 1.870 ± 68 WR Pb-Pb Barbosa et al. (1995)
Rio Maria Granod. Granodiorite 2.874 +9/-10 ZR U-Pb Macambira (1992)
Rio Maria Granod. Granodiorite 2.874 ± 10 ZR U-Pb Macambira & Lancelot (1996)
Rio Maria Granod. Quartz-Diorite 2.878 ± 4 ZR Pb-Pb Dall'Agnol et al. (1999)
Rio Maria Granod. Diorite 2.880 ± 4 ZR Pb-Pb Rolando & Macambira (2003)

Agua Fria Trondhjemite banded trondhjemite 2.864 ± 21 ZR Pb-Pb Leite et al. (2004)
Calc-alkaline Mogno Trondhjemite Granitoid 2.871 ± ? TI U-Pb Pimentel & Machado (1994)

Mogno Trondhjemite Granitoid 2.87 TI U-Pb Dall'Agnol et al. (1998)
Granitoids Parazonia Tonalite Granitoid 2.858 TI U-Pb Pimentel & Machado (1994)

Cumaru Granodiorite Granitoid 2.817 ± 4 ZR Pb-Pb Lafon et al. (1994)
Mata Surrao Granite Leucogranite 2.871 ± 7 ZR Pb-Pb Althoff et al. (2000)
Mata Surrao Granite Monzogranite 2.881 ± 2 ZR Pb-Pb Rolando & Macambira (2003)
Mata Surrao Granite Monzogranite 2.875 ± 11 ZR Pb-Pb Rolando & Macambira (2003)

Guaranta Granite Leucogranite 2.93 ZR Pb-Pb Althoff et al. (2000)
Xinguara Granite Granitoid 2.87 ZR Pb-Pb Dall'Agnoll et al. (1998)
Xinguara Granite Leucogranite 2.865 ± 1 ZR Pb-Pb Leite (2001)
Xinguara Granite Leucogranite 2.875 ZR Pb-Pb Rolando & Macambira (2002)

Inaja Group Metabasalt 2.988 ± 4 ZR U-Pb Rolando & Macambira (2003)

Andorinhas Lagoa Seca Grp. Metagraywakes 2.971 ± 18 ZR U-Pb Macambira (1992)

Supergroup Lagoa Seca Grp. Felsic Metavolcanic 2.979 ± 5 ZR U-Pb Pimentel & Machado (1994)
Identidade Grp. Metadacite 2.944 ± 88 WR Pb-Pb Souza (1994)

Tucumã Grp. Metabasalt 2.868 ± 8 ZR Pb-Pb Avelar et al. (1999)
Ultramafic

G
re

e
n

s
to

n
e

B
e

lt
s

Serra Azul Complex peridotite 2.970 ± 7 ZR U-Pb Pimentel & Machado (1994)
Caracol Ton. Tonalite 2.936 ± 3 ZR Pb-Pb Leite et al. (2004)
Caracol Ton. Tonalite 2.942 ± 2 ZR Pb-Pb Leite et al. (2004)

TTG Arco Verde Ton. Tonalite 2.957 +25/-21 ZR U-Pb Macambira (1992)
Granitoids

Arco Verde Ton. Tonalite 2.96 ZR U-Pb Dall'Algnoll et al. (1998)
Arco Verde Ton. Tonalite 2.981 ± 8 ZR Pb-Pb Rolando & Macambira (2003)

Table 4.1

Tra

Compilation of isotopic ages for rocks in the Carajás, Transitional (or Canaã dos Carajás
region) and Rio Maria Granite Greenstone domains. The isotopic ages generally date the time of
crystallization of the rocks. nsitional and Rio Maria Granite Greenstone domains.
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Figure 4.5

The rectangle indicates the limits of
the map in Fig. 4.3 A

A BMap of interpolated magnetic field by Inverse Distance Weighted method; and Major
interpreted magnetic anomalies. Grey polygons represent prominent long and continuous anomalies,
while lensoid pink anomalies coincide with granitoids. The dashed lines correspond to discrete and
straight linear anomalies likely to be produced by shear or fault zones.
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Figure 4.8 older basic y
. I ly , . C

. D
. D veins of

. S . N
s

General aspects of the rocks observed in the stud area. and , typical boulders
of amphibolite and basalt n situ steep dipping banded amphibolite oarse grained,
hornblende rich amphibolite cross cut by quartz veinlets etail of the banded amphibolite, clear
portions are feldspar rich etail of basalt containing sub parallel chlorite+epidote tens of
millimetres and ub rounded and lens shaped amphibolite xenoliths in granitic gneisses ote the
presence of fabric in the xenoliths.
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Figure 4.9 G the y
Typical lying . E

; . G up
ly foliation . R

rich segregation within

eneral aspects of granitic gneisses from the Xingu Complex in the stud area. and
gneiss outcrops, as boulders or flat outcrops and xamples of the coarse gneiss

variety note the textural magmatic appearance and eneral and close view of fine grained
gneiss, with marked straight or lenses produced by shearing and emobilised k feldspar

fine grained gneiss.
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Figure 4.10
F . N

s. R

Examples of mylonites from relativelly wide ( ) and narrow ( ) shear zones. , and
ine, medium and coarse varieties of mylonite ote the variations in porphyroclasts and matrix size and

in the matrix porphyroclast elatively rare k feldspar porphyroclasts in coarse grained
mylonite.

A B C D E

Fratio

Chapter 4

192



A
i i

B

C

D

Figure 4.11 y
a .

F . M

.

Field photographs exemplifying some of the varieties of granitoids observed in the stud
area. and an outcrop and a closer view of a syenogranite and albitized portion of syenogranite

and lat outcrops of tonalites with its respective close up photos agmatic contact between
tonalite and syenogranite, in detail an elongated mafic xenolith oriented parallel to the magmatic
foliation
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E

G

H

F

Figure 4.11 (cont) R
.

S
. I

E

F
G H
H

oad cut outcrop of isotropic granite with enclosed microgranite, the detail
photo shows the sharp contact between the coarse isotropic granite and the fine grained microgranite

mall outcrop of a granodiorite and detail photo the general granular texture of the rock that also
contains mafic lens shaped xenolith and sotropic and sheared varieties of tonalities, note the
discrete shear zones in the outcrop at .
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Figure 4.12 y close up I
. B y t

. D y ly
.

Examples of outcropping d kes and photos. and sotropic and medium
grained basaltic dikes asaltic d ke cross cut by two sets of chlori e and epidote veinlets or shear
bands ioritic d ke with marked pink colour and larger feldspar crystals floating in a fine grained
matrix The dashed lines in B, C and D indicate the approximate boundary of the dykes.
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A

B

Figure 4.17 ed
s

s c

Detail photographs of tectonic contacts between granitoid and amphibolite ( ) and
volcanic mafic ( ). In the banded amphibolite seem to accommodate most of the deformation while the
granitoid displays only discrete faults. In , a sheared boundary (15 cm wide) separates granite from
volcanic and oblique structures in the volcani portion suggest sinistral kinematics.

A
B A,
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A B

C D

E F

G H

Fold
hinge

Figure 4.19 - A, B, C
D

E-F
G-H

Photos showing the different types of folds observed in the study region. are
examples of upright folds observed in granitic gneisses with fold hinges and axial planes trending N S.
Disharmonic folds in granitoid. Display “S” shaped ptygmatic folds of granitic veins in granitoids.

Centimetre scale sheath folds evidenced by the development of eye structures. Sheath folds are all
steeply plunging.
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I J

K

L

M N

O P

Figure 4.19 (cont) - I, J, K, L
M-N

O-P

Examples of transposed folds in granitic gneisses. Fold hinges and axial
planes are generally sub vertical trending E W or WNW ESE. Photos showing in plan view “drag”
folds formed adjacent to discrete shear zones. Examples of folded gneissic banding with asymmetric
geometries.
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A

D

E F

G H

B

C

Figure 4.22 - A
B C-D

E
F G, H

Photographic examples of the different styles of ductile foliation observed in granitoids.
and show typical symmetrical foliation marked by elongated ribbons of quartz. Display
asymmetric foliation characterized by the sigmoidal geometry of quartz ribbons. Weak foliation
outlined by elongate clusters of hornblende. , Show samples of relatively coarse granitoids with
weakly developed foliations.
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A

D

E F

G H

B

C

N=27

Foliation

Figure 4.23 - A-B

C . D
E F

G
H

Ductile planar fabrics observed in amphibolites. Show the compositional banding
present in amphibolites, with dark and white coloured bands representing the amphibole and feldspar
rich domains, respectively. compositional banding in amphibolite folded at centimetre scale gently
wavy compositional banding in amphibolite. straight and sharp compositional banding. foliation
showing S C geometry indicative of sinistral kinematics. “S” shaped porphyroclast enveloped in the
compositional banding and suggestive of sinistral kinematics. stereonet for mean foliation planes
measured in amphibolites.
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A

D

E

B

C

Figure 4.24 - A- B
C D-E

Representative examples of mineral lineations in the studied region. Show mineral
lineations in granitoids. Mineral lineation in sub vertical foliation plane in banded amphibolite.
Display a wider and detailed view of “L” tectonites in granitoids, note the “cigar” shaped quartz grains
in both pictures.
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Figure 4.25 - Classification of the folds observed in the gneisses using the Fleuty Diagram. The
classification is based on: the dip of the axial surface (x axis) plotted against the plunge of the hinge line (y
axis).
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C D

G H

A B

E F

Figure 4.26 - A- B
C-D

E- F
G-H

Representative examples of shear zone geometries and their characteristics. Show
aspects of the internal fabric of a planar shear zone. Note the straight geometry of the foliation. Show
examples of curviplanar shear zones, the shear zones walls and internal fabric are wavy and occasionally
anastomosing. Show the intensely reduced grain size and strong mineral alignment forming a
disjunctive foliation in shear zones. Show sigmoidal S C fabrics formed by sinistral shear zones
offsetting and displacing the early gneissic banding.
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A B

C D

E F

G H

Figure 4.30 - A-B
. C D E F

G H

Selected examples of sense of shear indicators. “S” shaped folded veins suggesting
sinistral kinematics , , , Examples of 4 distinct geometries of propohyroclasts wrapped by
foliation, indicating dextral and sinistral kinematics. , Show “en echelon” veins and tension gashes
formed under semi brittle regime indicating sinistral and dextral sense of shear respectively.
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A B

C D

E

Figure 4.32 - - A
B

C-D E

Selected examples of discrete faults producing centimetre scale displacements. Quartz
veinlet in amphibolite displaced by a set of parallel faults. Lozenge shaped feldspar porphyroclast in
granite mylonite cross cut by sinistral fault. Sinistral fault displacing shear zones in granitoid;
gneissic compositional banding offset by apparently dextral fault.
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10 x10 x
215 µm215 µm

C

Figure 4.33 -
A

B
C

D

E
F

G

Microstructural aspects of isotropic
granitoids. Scanned thin section showing
granoblastic isotropic texture characteristic of this
group of granitoids. Note the relatively uniform
mineral grain size. Graphic intergrowth, feature
typically present in isotropic granitoids.
Elongated quartz subgrains with diffuse
boundaries, note the inclusion trails oriented
perpendicular to the subgrain direction. Quartz
subgrains displaying blocky appearance. Notice
the diffuse subgrain boundaries almost
perpendicular. Deformation lamellae in quartz.

Localized recrystallized quartz; note the reduced
size of the new grains compared to the surrounding
grains. Zones of strain accumulation
(highlighted in black) in a large quartz grain.
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Figure 4.34 - A
B

C

D
E

F F

General microstructural aspects of basalts (A,B,C) and gabbros (D,E,F). Basalt scanned
thin section showing the very fine texture of the rock cross cut by few chlorite veinlets. Typical aspect of
basalt under the microscope, displaying lozenge shaped plagioclase crystals with tapering ends.
Detailed image showing the geometry of the chlorite crystals forming the veinlet seen in A. Notice the
crystal growth perpendicular to the veins walls. Scanned thin section of gabbro exhibiting coarse,
inequant granular texture, characterized by laths of plagioclase subophitically enclosed by pyroxene.

eldspar typical appearance: tabular, with zoning, minor alteration and fracturing. Mineral
fracturing concentrated in a pyroxene crystal.
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Figure 4.35 A B
C

D
E

F
G

H

Representative examples of microstructural aspects observed in amphibolites. Thin sections
displaying continuous foliation and compositional banding in amphibolites. Grain shape preferred orientation of
hornblende in amphibolite with continuous foliation. Microphotograph of the alternating compositional banding.
Note the striking difference in grain size for each layer. Larger hornblende crystals surrounded by smaller grains
apparently formed by mechanical fragmentation. Typical appearance of feldspars in amphibolites, showing sharp
and lobate boundaries, undulose extinction and stress induced glide twins; Pristine pyroxene grains showing
straight and sharp boundaries; Polygonal mineral aggregate with straight and sharp boundaries, formed of quartz
feldspar and hornblende.
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Figure 4.36 - A
B

C
D

E
F

G

H

Microstructural aspects of deformed granitoids. Scanned slides showing the general
appearance of a weakly (to the left) and a strongly foliated (to the right) granitoid. Relict feldspar
porphyroclasts and its recrystallized portions. Note thin zones of very finely recrystallized feldspar in the
sub rounded grain approximately in the centre of the image. Foliation defined by layered domains
formed of fine recrystallized feldspar and elongated quartz crystals. Feldspar forming “book shelf”
feature caused by fracturing of a larger grain. The geometry of the “book shelf” array also indicates
counter clock wise rotation. Strain free recrystallized quartz grains composing a mosaic in a lens
parallel to the foliation. Note the sharp, straight grain boundaries. Partially recrystallized flattened
quartz, grain boundaries are serrated and subgrains with undulose extinction of the crystals.
Hornblende crystal elongated parallel to the foliation and surrounded by recrystallized feldspar.
Minuscule acicular fragments of hornblende are present on the bottom left of the image. Elongated
biotite crystals with no deformation of fracturing, the long and straight boundary of the crystal seems to
control the shape of the adjacent quartz crystal.
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Figure 4.37 - A
B

C

D
E

F
G

H

Typical microstructural aspects of mylonites. Scanned slide of a mylonite sample under
natural and polarized light showing the general texture of the mylonitic foliation. Inequant feldspar
porphyroclasts with augen and sub rounded shapes immerse in a fine grained matrix of recrystallized
quartz and feldspar; note the strong undulose extinction and strain induced twins in some of the clasts.

feldspar porphyroclasts and very fine grained recrystallized domains, deformational features in
porphyroclasts include undulose extinction, stress induced twins and perthites. The recrystallized
domain is almost pure fine grained feldspar. Matrix of mixed, recrystallized feldspar, quartz and
biotite. Quartz foliae developed between two feldspar porphyroclasts, note the slightly preferred
elongation of quartz grains parallel to the foliation and a thin layer of recrystallized feldspar and biotite
separating the individual folia. Mosaic of recrystallized quartz displaying sharp and straight
boundaries suggestive of grain boundary area reduction. Fine flakes of tabular biotite showing
preferred orientation parallel to the mylonitic foliation. Biotite crystals forming a symmetrical
“tail” of a feldspar porphyroclast.
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Figure 4.38 - A
B

C

D

E
F

G
H

Scanned slides of ortho gneisses showing their distinctive compositional banding, the
sample on the left displays mylonitic fabric. Straight quartz ribbons composing the planar fabric
together with smaller recrystallized feldspar; quartz grains are strain free with sharp and straight
boundaries. Microphotograph showing two flattened domains comprising totally and partially
recrystallized quartz. The small recrystallized grains show gently curved or irregular boundaries while
the non recrystallized domain displays strong undulose extinction and elongated subgrains. A larger
feldspar porphyroclast at the bottom of the image, surrounded by smaller feldspar crystals. Deformation
features include: intense undulose extinction, perthites and stress induced tapering twins and
myrmekites. Mantled K feldspar porphyroclast with bended tapering twins, in contact with a band of
smaller unimodal grains of recrystallized feldspar. Boundary between a plagioclase porphyroclast and
a mantle of recrystallized feldspar; note the sharp lobate grain boundary in the recrystallized feldspar
crystals. Cluster of tabular elongated biotite crystals defining a mica rich folia. This is the typical mode
of occurrence of this mineral. Anhedral to subhedral biotite grains filling interstitial spaces between
quartz and feldspar crystals, the less common way of occurrence for biotite and probably a relict
magmatic texture.
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Figure 4.40 - Stages of evolution of the Archaean crust, interpreted on the basis of field evidence from
China, India and Ivory Coast (modified from Choukroune et al., 1995). The diagram presents the main
representative stages of deformation recognized in Archaean terranes from the least to the most deformed
member.
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Chapter 5 
 
 
 
 
The role of tectonic structures in the development of 

Archaean IOCG deposits: examples from the Sossego and 

Sequeirinho deposits, Carajás, Brazil  

 

5.1 Introduction 
 

The following statement gives an insight into what drives studies into one of the 

most challenging research topics in economic geology: “It is quite possible that 

examples of what have so far been called IOCG (iron oxide-copper-gold) deposits 

will ultimately prove to be products of several fundamentally different processes 

and/or environments” (Williams et al. 2005). The combination of multiple IOCG 

deposits into a single class is complicated by their unusually wide variations in age, 

size, mineralogy, geochemical signatures, host rock lithologies and tectonic setting 

(Hitzman et al. 1992; Haynes 2000). The size and grade of the larger examples, 

together with their geological diversity has drawn considerable attention from 

exploration companies and academic researchers in the last decade (Pollard 2006). 

Despite the increasing number of deposits classified under this category, detailed 

geological studies have mainly been focused on the largest examples such as the 

Salobo, Ernest Henry, Olympic Dam, Candelaria-Punta del Cobre, Manto Verde and 

Raul-Condestable deposits. 
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IOCG deposits are recognized in all continents, ranging in age of formation 

from the Late Archaean to the Early Tertiary; a majority have an age between 2.55 

and 1.5 Ga. Tectonically, they are considered to have formed in intracratonic or 

continental margin environments and, in many cases, show spatial and temporal 

controls associated with extensional tectonics (Hitzman et al. 1992). The sources of 

the hydrothermal mineralizing fluids are controversial, and are thought to result from 

either magmatic (Pollard 2001; Sillitoe 2003; Mark et al. 2005) or non-magmatic 

(Barton 2000; Haynes 2000) processes. In the former case, this deduction is based 

upon the temporal and spatial association between magmatic intrusions, the fluids 

that formed the Cu-Au mineralization and regional alteration patterns (Barton 1996; 

Oliver et al. 2004). 

The Carajás Terrane region hosts Precambrian Cu-Au deposits with resources 

larger than 100 million tonnes of ore. Examples include the Igarapé Bahia-Alemão, 

Cristalino, Sossego, 118 (or 118 Target) and the world class Salobo deposits. 

Research on these deposits has generally focussed on petrological, metallogenetic, 

geochemical and geochronological aspects, with structural characteristics and 

possible controls being very poorly documented in most cases. This chapter 

describes the structural framework of the Sossego and Sequeirinho mines and 

surroundings by investigating the structural controls on their mineralization. An 

improved understanding of the processes, controls and styles of the Archaean IOCG 

examples will help to reduce the degree of uncertainty when comparing the setting of 

these deposits to those formed by modern plate tectonic processes during the 

Phanerozoic. 
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5.2 Tectonic Setting 
 

The Carajás geochronological province (Santos et al. 2000; Tassinari et al. 2004) lies 

in the southern portion of the Amazon Craton, part of the Brazil Central Shield (Fig. 

5.1 A). The province is bounded to the east by the N-S-trending Neoproterozoic 

Araguaia Fold Belt (Moura 1993) and to the west by the Iriri-Xingu 

geochronological domain. To the north, it is covered by Palaeozoic and Cenozoic 

sediments of the Amazon Basin (Pinheiro et al. 1997a), and lies at the eastern margin 

of one of the globally recognized A-type granitoid provinces (Dall'Agnol et al. 

2005). 

Carajás represents an important metallogenic province with several base-

metal deposits and it also contains some of the oldest and best preserved sequences 

of Archaean-Proterozoic rocks in the craton (Galarza et al. 2007). 

 

5.3 Regional Geology of the Carajás Terrane 

 

5.3.1 Lithostratigraphy 
 

The Carajás geochronological province was formed and stabilized during the 

Archaean and was later affected by extensive Palaeoproterozoic magmatism 

characterized by the intrusion of anorogenic granitoids, together with mafic and 

felsic dykes (Pidgeon et al. 2000). It is divided into two major tectonic domains (Fig. 

5.1 B): the Rio Maria Granite–Greenstone Terrane (3.05 to 2. 86 Ga) to the south, 

and the Carajás Terrane (2.76 to 2.55 Ga) to the north (DOCEGEO 1988; Machado 
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et al. 1991; Macambira et al. 1995; Dall'Agnol et al. 1997). Both domains have 

distinctive lithological, tectonic, stratigraphic and geochronological characteristics 

and yet their boundary remains rather poorly defined (Galarza et al. 2007). It should 

be noted that the Carajás Terrane is also variously referred to in the literature as the 

‘Carajás Ridge’ ‘Carajás Mineral Province’ and ‘Itacaiúnas Belt’. 

The oldest rocks in the Carajás geochronological province are located in the 

Rio Maria Granite Greenstone Terrane (Macambira et al. 1995) and include: the 

Arco Verde Tonalite, the Caracol Tonalite, the Rio Maria Granodiorite, the Mogno 

Trondhjemite, the Xinguara and Mata Surrão Granites and a series of greenstone-belt 

sequences (see Fig. 5.1 B). 

The Carajás Terrane located to the north (Fig. 5.2) comprises two main 

Archaean and Proterozoic domains separated according to their tectonostratigraphic 

characteristics and ages (Araújo et al. 1991; Pinheiro 1997). The older Basement 

Assemblage (ca 3.0-2.86 Ga) contains orthogneisses of the Pium Complex that were 

originally intruded into tonalitic gneisses, granodiorites and migmatites of the Xingu 

Complex; all rocks are granulite–upper amphibolite facies (see Table 5.1 for ages). 

Sub-vertical, WNW-ESE-trending mylonitic fabrics were formed coeval with the 

development of the broad Itacaiúnas Shear Belt and experienced several episodes of 

reactivation (Pinheiro et al. 1997b; Pinheiro et al. 1997a; Holdsworth et al. 2000).  

Lower grade supracrustal volcano-sedimentary sequences make up the 

younger Cover Assemblage (Pinheiro 1997) that in this study is considered to include 

the Grão-Pará, Igarapé Salobo and Igarapé Pojuca Groups given their comparable 

ages (ca 2.7 Ga; see Table 5.1). These units show a range of deformation states and 

metamorphic grades from virtually undeformed greenschist facies in the region 

adjacent to the Carajás Fault, to intensely sheared, amphibolite-granulite facies in the 
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Cinzento Strike-Slip System (DOCEGEO 1988; Lindenmayer et al. 1991; Pinheiro 

et al. 1997a). The Cover Assemblage is overlain by a clastic sequence of shallow-

water marine to fluvial deposits of the Águas Claras Formation. Dating of a gabbroic 

sill (ca 2.65 Ga) constrains the minimum age of the formation (see Table 5.1). 

(Pinheiro et al. 1997a; Holdsworth et al. 2000) considered the Águas Claras 

Formation as part of the Cover Assemblage but in this thesis, the formation is 

considered as an independent unit for not displaying evidence of metamorphism.   

Syn-tectonic Archaean, alkaline granitoids and diorites of the Plaque Suite 

together with the Estrela, Planalto and Serra do Rabo granites (on average ca 2.75 

Ga) are intruded into both Basement and Cover assemblages. These units are 

typically elongate parallel to the strike of the regional WNW-ESE foliation 

(Holdsworth et al. 2000; Barbosa et al. 2001; Sardinha et al. 2006).  

A much younger suite of Paleoproterozoic plutons (ca 1.88 Ga) intrude most 

of the rocks of basement and low-grade volcano-sedimentary sequences in the 

Carajás Terrane, including the Águas Clara Formation (e.g. Cigano, Carajás Central 

and Rio Branco granites) area and Rio Maria granite-greenstone Terrane (e.g. Musa, 

Jamon and Banach granites) (Machado et al. 1991; Dall'Agnol et al. 1999). They are 

generally non-foliated, monzogarnitic-syenogranitic, coarse to medium grained, 

massive, and highly discordant showing sharp contacts with, and angular inclusions 

of the Archaean country rocks (Ramo et al. 2002; Dall'Agnol et al. 2005). 
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5.3.2 Structure 
 

The Carajás and Cinzento strike-slip systems (Fig. 5.2) are the most prominent 

structures within the Carajás Terrane. These fault systems display at least three 

episodes of brittle-ductile strike-slip reactivation at low metamorphic grades, after 

the development of the precursor regional amphibolites facies ductile shear zone. 

They form a generally E-W trending set of discontinuous, sigmoidal, anastomosing 

lineaments approximately 200 km long with a collective maximum width of 80 km. 

The geometry of these fault zones appears to be strongly controlled by the 

orientation of earlier shear zone fabrics in the basement. A later set of N-S to NNE-

SSW fault lineaments cross-cut the main sigmoidal structures (Pinheiro et al. 1997a; 

Holdsworth et al. 2000). The complex tectonic history of the Carajás Terrane, 

dominated by transpressional and transtensional events, is summarized in Table 5.2. 

 

5.3.3 Metamorphism 
 

High grade (granulite-upper amphibolite facies) metamorphic rocks are present in 

the basement units, the Pium and Xingu complexes. The supracrustal sequences of 

the Cover Assemblage record a range of metamorphic grades, from virtually 

unmetamorphosed through to greenschist-amphibolite facies. Collectively, these 

grades imply that regional metamorphic temperatures rarely exceeded 700ºC 

(Lindenmayer 1990).  

Hydrothermal submarine metamorphism has been documented in some parts 

of the Cover Assemblage (Grão Pará and Igarapé Bahia Groups) prior to the regional 
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metamorphic events. This produced variable amounts of decalcified plagioclase, 

epidote, chlorite, tremolite-actinolite, white mica, quartz and carbonate (Villas et al. 

2001). 

The Grão-Pará and Igarapé Salobo Groups are affected by low grade 

greenschist and amphibolite-granulite facies regional metamorphism respectively 

(DOCEGEO 1988; Olszewski et al. 1989). 

Two specific styles of contact metamorphism related to the intrusion of 

younger granite plutons overprinting the submarine and regional metamorphic 

assemblages have been documented: (a) anthophyllite-cordierite-rich rocks 

developed in the metavolcanics of the Igarapé Pojuca Group (Winter 1995); and (b) 

pyroxene-hornfels and albite-hornblende-hornfels facies rocks developed at 

temperatures of 600-650 ºC in the thermal aureole of the Estrela Granite (Barros 

1997). 

 

5.4 The Sossego Deposit 
 

The southern boundary of the Carajás Terrane, hosts three major Precambrian IOCG 

deposits: Cristalino, Sossego/Sequeirinho and 118 or Target 118 shown in Fig. 5.2. 

Sossego is hosted in the granite-gneissic basement, while the others are hosted in the 

volcano-sedimentary rocks of the Cover Assemblage. Thus, the Sossego deposit 

gives an opportunity to study and characterize the mineralization style and controls 

in basement rocks. 

 The following sections include a summary of the previous studies carried out 

at Sossego, comprising: geology, geochronology, hydrothermal alteration and 
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temperature & sources of the fluids. This information is then followed by a new 

study of the macro- and micro-structural aspects of the Sossego and Sequeirinho 

orebodies. 

 

5.4.1 History 
 

The Sossego Cu-Au deposit is located in the area known as Serra do Rabo in the 

south of the Carajás region (see Fig. 5.1 and Fig. 5.2). In 1984, during the gold rush 

decade, gold was initially discovered in streams and later in Sossego Hill by 

prospectors sampling alluvium and oxidized portions of the deposit in 1990. The 

area was acquired by MSS (Mineração Serra do Sossego) in 1998, who initiated 

studies to determine and evaluate the size and grade of the deposit. In 2002, the first 

Cu mine opened in Carajás, with the development the nearby Sequeirinho orebody, 

with total reserves of 245 Mt with an average grade 1.1% Cu and 0.28 g/t Au 

(Lancaster et al. 2000). 

 

5.4.2 Geology 
 

The Sossego deposit comprises two main orebodies, Sequeirinho and Sossego that 

are extended and linked laterally by minor orebodies ‘Pista’, ‘Baiano’ and ‘Curral’ 

(Fig. 5.3). The Sequeirinho and Sossego bodies hold 85% and 15% of the bulk 

copper reserves, respectively (Villas et al. 2005). 

 The mineralized bodies are located close to the southern contact zone 

between the volcano-sedimentary rocks of the Grão-Pará Group and the tonalitic to 
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trondhjemite gneisses and migmatites of the Xingu Complex (Monteiro et al. 2005; 

Moraes 2005). Detailed mapping shows that the deposit is located 1.6 km south of 

the inferred contact, enclosed completely within rocks of the granitic basement 

terrain. (Sardinha et al. 2004) suggest that the granitic gneisses and syn-tectonic 

granitoids in the Serra do Rabo area and around Canaã Village represent independent 

igneous bodies with intrusion ages ranging between 2.9 and 2.7 Ga. 

 In detail, the host rocks of the deposit include: various granites sensu lato 

(Fig. 5.4 A, B, C, D and E), granophyres (Fig. 5.4 E), gabbros (Fig. 5.4 F and G), 

felsic and mafic volcanics (Fig. 5.4 L, M, N, O), hydrothermaly altered rocks (Fig. 

5.4 H and J), breccias (Fig. 5.4 I) and dykes (Fig. 5.4 N and O), with varying 

degrees and styles of deformation and hydrothermal alteration (Lancaster et al. 2000; 

Neves 2007). 

 The granites are mostly quartz-bearing and dioritic-granodioritic comprising 

grey, medium to fine grained rocks (Fig. 5.4 C, D and E). They are typically altered 

with an isotropic or mylonitic fabric with subordinate porphyritic varieties (e.g. Fig. 

5.4 A and B). Mineralogically they comprise albite, quartz, k-feldspar, hastingsite, 

actinolite, with accessory epidote, chlorite, allanite and hematite (Villas et al. 2005). 

 The granophyric granite or granophyre is dark grey, with a fine-grained 

quartzofeldspathic groundmass containing blue quartz, microcline and plagioclase 

phenocrysts (e.g. Fig. 5.4 E and O). Micrographic intergrowths of K-feldspar and 

quartz are characteristic (Carvalho et al. 2005; Monteiro et al. 2008). 

 Felsic metavolcanic rocks (e.g. Fig. 5.4 L and M) are grey, fine grained, 

dacitic and carry feldspar phenocrysts set in a microcrystalline matrix of quartz and 

albite. They are often mylonitised and enclose green metamorphosed ultramafic 
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lenses made of serpentine, olivine, disseminated chromite/magnetite and talc 

(Monteiro et al. 2008). 

 The early granites are cross-cut by two distinct intrusive sequences (Carvalho 

et al. 2005; Villas et al. 2005): (1) early altered, medium-coarse grained gabbroic 

bodies displaying sub-ophitic textures, comprising plagioclase, pyroxene and 

hornblende (e.g. Fig. 5.4 F and G); and (2) late, brown rhyolite/dacite dykes with a 

marked porphyritic texture characterized by phenocrysts of plagioclase set in a fine 

matrix of K-feldspar and quartz (e.g. Fig. 5.4 O). 

 Hydrothermalites include: (1) metasomatic magnetite bearing rocks (Fig. 5.5 

A) with coarse grained magnetite (>50%) and subordinate chalcopyrite-epidote-

actinolite-apatite-albite-chlorite; and (2) massive ore bodies (Fig. 5.5 C) consisting 

of sulphides (chalcopyrite>>>siegenite+pyrite), magnetite, (F-Cl) apatite, chlorite, 

actinolite-Cl-K-Fe-hastingsite, Cl-biotite and quartz (Neves 2007). 

 The Cu mineralization in the Sossego and Sequeirinho orebodies is 

represented by breccias and stockwork domains. The breccias are texturally 

characterized by sub-rounded (Sequeirinho, Fig. 5.5 B and C) to angular (Sossego 

Fig. 5.4 I and Fig. 5.5 F, G) fragments of altered wall-rock. Clasts size varies from a 

few millimetres to 10 centimetres. The matrix is composed of chalcopyrite-

magnetite-actinolite-epidote-chlorite-quartz in the Sequeirinho body. In the Sossego 

body an early magnetite-actinolite-calcite-apatite assemblage is post-dated by a later 

pyrite-chalcopyrite-chlorite-quartz-epidote-muscovite assemblage (Carvalho et al. 

2005; Monteiro et al. 2005; Villas et al. 2005). The stockwork domains comprise 

millimetre to centimetre wide veins containing sulphide (+chalcopyrite and ± pyrite), 

actinolite, magnetite and calcite (e.g. Fig. 5.5 D, E and G). 
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5.4.3 Hydrothermal Alteration 
 

Host rocks and mineralized bodies display evidence of varied and locally intense 

hydrothermal activity characterized by at least six well-developed hydrothermal 

mineral assemblages within and surrounding the deposit (Villas et al. 2005; Monteiro 

et al. 2008). Hydrothermal episodes are mainly represented by sodic, sodic-calcic, 

potassic and mineralizing assemblages forming zones of pervasive alteration and/or 

vein stockwork arrays. Table 5.3 summarizes mineral parageneses and occurrence of 

the main types of alteration for the Sequeirinho-Pista-Baiano and Sossego-Curral 

orebodies from (Carvalho et al. 2005; Monteiro et al. 2005; Villas et al. 2005; 

Monteiro et al. 2008). 

 

5.4.4 Fluids Sources and Temperature 
 

Previous studies of the hydrothermal fluids in the Sossego deposit support the 

hypothesis that deeply-sourced mantle/metamorphic/magmatic-derived fluids were 

mixed with surface meteoric water or basinal brines e.g. (Marschik et al. 2003a). 

(Chiaradia et al. 2006) determined elemental rations for Cl/Br (800–1,500), δ37Cl 

isotope (+0.2 to +2.1‰) and Sr values that indicate mixing of a mantle-derived 

magmatic fluid with basinal brines. Positive δ37Cl values may result from a higher 

mantle chlorine contribution or from fractionation during the hydrothermal process, 

before mixing with the basinal brines. (Neves 2007) used δ13 CPDB values (-6,65 to -

4,66) for calcite to indicate a homogeneous, probably mantle-derived source. Values 
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of δ 18Ofluid from calcite (-7.24 to -5.17‰ and +1.14‰ to +3.21‰ at 150° and 

350ºC) indicate active participation of meteoric water in the Sossego hydrothermal 

system. However, higher values (+9.79‰ at 250ºC and +12.77‰ at 350ºC) also 

suggest a magmatic or metamorphic water signature. (Monteiro et al. 2008) propose 

that the massive magnetite bodies were formed by δ18O which was enriched 

(6.9±0.9‰) from deep-seated, formational/metamorphic fluids, possibly with a 

magmatic contribution. Sodic-calcic (6.0±0.8‰, at 500±25oC), and regional sodic 

alteration (3.6±0.6‰, at 450±50oC) reflect decreasing δ 18OH2O values, which 

suggests mixing with 18O depleted, externally derived meteoric or basinal fluids. 

 

5.4.5 Geochronology 
 

(Marschik et al. 2003b) obtained a minimum alteration age (2.2-2.3 Ga) for the 

hydrothermal system using 40Ar/39Ar dating of amphibole from the ore. Neves 

(Neves) analyzed Pb-Pb in chalcopyrite and Sm-Nd (whole-rock) from the main 

mineralized zones to obtain ages of 2,530±25, 2,608±25 and 2,578± 29 (Sm-Nd) Ma 

in Sequeirinho; and 1.585±28 Ma (Pb-Pb) in Sossego. The Archaean ages of 2.6-2.5 

Ga were interpreted as the time when the mineralization occurred, and is in good 

agreement with the timing of major regional tectonic events dated at 2.6 Ga 

(Machado et al. 1991; Holdsworth et al. 2000). The Mesoproterozoic age of 1.5 Ga 

was not considered to be geologically significant for the deposit, although it could be 

related to the granitic intrusion event of 1.5 Ga recognized in the Gameleira deposit 

(deposit location in Fig. 5.2) (Lindenmayer et al. 2001). 
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5.5 Field Logistics and Methods 
 

The field data presented in this chapter comprise geological and structural 

observations from both outcrops and drill-cores, collected during 140 days of field 

work. The studied localities include the Sossego and Sequeirinho mine pits and a 

nearby relatively small outcrop of isotropic granite (see Fig. 5.6). The areas 

surrounding the mines are covered by vegetation developed in soil cover, 13 to 30 m 

thick. The studied mine benches form a series of vertical sections with excellent 

exposure of rocks and structures. However, only the benches with clear access and 

free of debris and landslide risk, were studied. The cores selected for study were the 

most continuous, complete and displaying intact orientation marks. 

 The issues that potentially affected the data collection in the mines include: 

(a) restricted access to some of the mine benches; and (b) difficulty in observing the 

rocks and structures in detail where the benches were covered by a consolidated 

layer of dust or where there was the risk of rock fall. Additionally, unclear cross-

cutting relations and sense of kinematics for faults, represent major problems in 

constraining fault temporal relations. 

 Four main data collection methods were used during the present study: (1) 

lineament analysis; (2) field data acquisition; (3) breccia clast analysis; and (4) 

microstructural analysis. 

 An interpretation and analysis of lineaments using a Digital Elevation Model 

(DEM) and map of magnetic field anomalies was used to define the large-scale 

characteristics of the structural framework. Airborne magnetic surveys were 

interpreted at two scales: 1:300,000 for survey 1 (Fig. 5.7; 2,653 km2) and 1:35,000 

for survey 2 (Fig. 5.8; 52 km2). Both surveys consist of N-S flight lines with a 
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spacing and frequency of sampling at 1km/70m and 250m/1m, respectively. 

Magnetic measurements were taken in a time-domain with an accuracy of 1nT. The 

DEM with a 90 m resolution was interpreted at the same scale as survey 1. 

Lineaments were picked and analysed in a GIS environment using ArcMap® version 

9.1. 

 Structural field mapping was carried out along the mine benches using the 

digital mapping system developed at Durham University by the Reactivation 

Research Group known as GAVA - Geospatial Acquisition Visualisation and 

Analysis (McCaffrey et al. 2005; Wilson et al. 2005). Structural data locations and 

attributes were recorded using a mobile GIS platform (see (Edmondo 2002) based on 

a system using a DGPS and Tablet PC as described by (Clegg et al. 2006). GPS 

positions for the structural measurements were post-processed enabling a sub-metre 

spatial accuracy for the mapped elements. Photographic sections of the mapped 

benches were compiled by merging a sequence of photos covering the studied 

interval into a single scene onto which structural observations were then sketched 

and annotated. The number and total length of sections per mine were: Sossego= 15 

(998m), Sequeirinho= 29 (1160m). 

 Five oriented drill cores were examined to constrain the three dimensional 

characteristics of structures in the Sossego-Sequeirinho orebodies. Structural 

orientation data were recorded in 683 metres of core logs. Tectonic fabrics and 

related hydrothermal features were catalogued using close-up photographs.  

 Optical microstructural analyses were carried out using 49 thin sections of 

samples taken from mine benches and drill-cores and were interpreted using standard 

approaches and techniques (Hirth et al. 1992; Snoke et al. 1998; Tullis 2002; 
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Passchier et al. 2005). These data were used to characterize the dominant 

deformation mechanisms. 

 Clasts size and textural analysis of breccias were carried out using the 

methods and procedures presented by various authors (Jebrak 1997; Heilbronner et 

al. 2006; Mort et al. 2008). Nine breccia samples, including barren and mineralized 

types, were photographed at a high resolution. Clasts were first manually digitized 

and then imported into the UTHSCSA Image Tool software where particle 

geometrical properties were computed. These data were finally plotted as X-Y 

diagrams for comparison and analysis  

 

5.6 Lineament Analysis 
 

The regional structural framework for the Sossego-Sequeirinho Deposit and its 

surroundings was developed by analysis of topographic and magnetic lineaments at 

1:170,000 (Fig. 5.7) as outlined below: 

• E-W-trending long (7-22 km) and short (3 km) traces correspond to the most 

evident magnetic anomalies in the area; these are hardly represented on the 

DEM at this scale. The longer traces seem to coincide to the large iron 

orebodies present in the Serra do Rabo region and adjacent to the Carajás 

Fault. The shorter lineaments are mainly located in the central and southern 

portions of the granitic basement terrain. 

• NE-SW lineaments, formed by longer topographic and some shorter 

magnetic lineaments, stretch across the centre of the area. These correspond 
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to low magnetic value zones that seem to cross-cut E-W lineaments. Notably, 

the Sossego and Sequeirinho orebodies sit into one of these traces. 

• NW-SE lineaments were picked on both the DEM and magnetic surveys. The 

longest observed magnetic anomaly correlates with a deep valley following 

the surface trace of the Carajás Fault. This lineament set appears to cross-cut 

the other sets. 

 

 A finer scale (1:35,000), magnetic survey 2 (Fig. 5.8) displays pronounced 

0.5 to 4 km long anomalies while on the DEM, topographic lineaments are poorly 

visualized. The Sossego and Sequeirinho deposits show a close spatial proximity to a 

prominent 3.5 km long, WNW-ESE anomaly (white-gray shades). In this survey, 

two sets of lineaments were visually identified: 

• WNW-ESE lineaments are characterized by relatively short and slightly 

wavy segments that show local deflection to the E-W. These lineaments 

configure an important 9 km long structural corridor that hosts the main 

anomaly where the deposits are located. Additionally, the Sossego orebody 

lies close to the intersection of the E-W and NE-SW sets. 

• NE-SW lineaments are relatively straight and long segments that define a 

3km wide zone that extends across the area, deflecting the main WNW-

ESE anomaly towards the SW in an apparently left-lateral fashion. The 

Sequeirinho orebody lies within this deflected anomaly that marks the 

intersection between the WNW-ESE and NE-SW lineaments. 
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 Analysis of the geological contacts in the area of the deposits indicates that 

the lithological distribution is controlled by the major tectonic structures (see 

geological map from MSS/VALE and the traced geological boundaries in Fig. 5.9). 

Geometrically, contacts form WNW-ESE straight lines that separate elongated, sub-

parallel domains of granitic, gabbroic and metavolcanic rocks. NE-SW traces 

intercept and displace WNW-ESE contacts causing apparently sinistral offsets of 

100m up to 850m towards the SW. The Sequeirinho corridor (see Fig. 5.9 C) is an 

important feature in the area. It is 130m wide and accommodates seemingly left-

lateral offsets of approximately 800m. 

  

5.6.1 Regional Structural Framework – summary and 
implications of lineament analysis 
 

In the region of the Sossego-Sequeirinho deposits, four sets of lineaments have been 

obtained from interpretations of DEM, magnetic surveys and geological maps. Short 

E-W lineaments seem to correspond to the previously described early ductile fabric 

in the granite-gneiss basement (Pinheiro 1997; Holdsworth et al. 2000). The major 

lineaments in this orientation correspond to the southern contact separating basement 

from the Grão-Para Group in the Rabo Ridge area, where iron ore deposits are 

located (see Fig. 5.2 and Fig. 5.7). The contact may be influenced by the earlier E-W 

ductile fabric and this tectonic discontinuity probably results from the inversion 

stage of the Grão-Para basin when significant vertical displacements were 

accommodated by reverse faults across much of the area. 

 WNW-ESE lineaments are interpreted to represent subtle directional 

variations of the early E-W ductile fabric. These two sets are found in most of the 
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granitic rocks in the area older than 1.8 Ga., as widespread foliation or locally as 

narrow ductile shear zones. They are normally associated with minor, well defined 

magnetic anomalies distinct from those generated by iron-ore bodies. 

 NW-SE lineaments detected in the magnetic survey at 1:170,000 scale 

correspond to the Carajás Fault. This is a well-defined structure that has been 

described in several of the previous studies of the area e.g. (Pinheiro et al. 1997a; 

Holdsworth et al. 2000; Rosière et al. 2006). The fault trace appears to be closely 

associated with larger E-W lineaments, implying that the fault perhaps nucleated 

from a major E-W discontinuity in a latter stage of tectonic inversion. 

 NE-SW lineaments are expressed in the magnetic surveys and geological 

maps. They define linear features that intercept and deflect the E-W and WNW-ESE 

lineaments towards SW suggesting a regional sinistral kinematic framework. At the 

deposit scale, NE-SW lineaments played an important role in controlling the 

geometry of the Sequeirinho orebody, which is aligned with one of these regional 

linear features (see the association between lineament and mineralization in Fig. 5.8 

B and Fig. 5.9 C). 

 The regional setting of the Sossego-Sequeirinho deposits seems to be similar 

to other described examples of mineral deposits hosted along regional scale 

lineaments, on lineament intersections or associated with linear magnetic anomalies 

(Odriscoll 1986; Kutina 1999; Hildenbrand et al. 2000; Reynolds 2000; Gay 2003). 

It further illustrates that regional scale lineaments can be used to identify high 

permeability conduits for pulsed discharges of crustal metamorphic or magmatic 

hydrothermal fluids as proposed by (Kerrich 1986b; Kerrich 1986a) and many 

others. This has important implications for present and future mineral exploration in 

the Amazon Craton, by highlighting areas of potential mineral occurrence in regions 
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that are covered by thick soil cover and dense vegetation. In the future, examining 

regional scale lineaments identified on remote sensing and aerogeophysics products 

can aid preliminary exploration surveys.   

 

 

5.7 Structures and Mineralization Controls 
 

This section presents the results of geological and structural observations from the 

Sossego and Sequeirinho mines, and some of their drill cores. The description of the 

results starts from the general (at mine bench scale) and ends with the more detailed 

aspects (at drill core scale). 

   

5.7.1 Sossego orebody 
 

The Sossego orebody is hosted in syn-tectonic tonalite and granophyre granitoids 

(see geological map in Fig. 5.10). These are fine-to-medium grained, generally 

isotropic and locally foliated showing varied degrees of hydrothermal alteration (e.g. 

Fig. 5.38 D and E). Schematically, the orebody comprises a concentric, sub-circular 

sequence of approximately 500m in diameter. The inner part of the sequence 

includes a sub-vertical breccia body that holds the bulk of the ore. The breccia shows 

multi-sized, mainly angular and subordinate sub-rounded fragments set in a matrix of 

sulphide and pulverized rock. The breccia body is surrounded by a stockwork 

domain, characterized by a multi-directional network of sub-vertical to gentle 

dipping sulphide veins, which forms the disseminated mineralization.       
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5.7.1.1 Foliation 
 

Foliation development is heterogeneous in the granitic exposures of the mine and 

spatially associated with shear zones. Additionally, detailed observations from the 

drill cores FG-9 and FG-14 (see their location in Fig. 5.10) allowed the foliation to 

be classed as continuous, smooth, spaced and parallel according to Paschier & Trow 

,2005 (see foliation photos in Fig. 5.12 A and Fig. 5.39 A, C and D). Structural 

attitudes of foliation recorded within the mine (see map in Fig. 5.10), display a 

slightly heterogeneous pattern on stereonet (Fig. 5.11 A), with a strong 115°-

120°striking trend dipping on average 55° to the NNE, and a subordinate trend 

oriented 090°-130° with dips of 78° to the S-SW. 

 The attitude of the foliation on drill-cores appears to agree with those 

observed in the mine. The core FG-9 (Fig. 5.28) cross-cuts mainly biotite schists, 

which show a prominent NE-SW foliation dipping moderately-to-steeply to the NE 

or steeply SW (Fig. 5.29 A). Foliation attitude is relatively constant although strike 

gradually swings clockwise vertically from 120° to 140° down the logged interval. 

On the other hand, core FG-14 (Fig. 5.30) in granitic rocks, shows foliation with 

strong variations in strikes and dips along the core. The stereonet for foliation (Fig. 

5.31 A) shows a diffuse pattern, with a subtle preferred orientation with a NW-SE 

trend and moderate dips to the NE and SW. Mineral lineations were not observed in 

the foliated rocks in either the mine or drill-cores. Collectively, the rocks in the 

Sossego orebody show heterogeneous foliation, associated with shear zones. 

Foliation trends dominantly NW-SE, dipping moderately to the NE. The directional 
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variation of the foliation can be possibly explained by: (1) its anastomosing nature; 

and/or (2) the occurrence of multimodal shear zones. 

 

 

 

5.7.1.2 Ductile Shear Zones 
 

These structures were observed mainly in the stockwork domain of the mine, being 

absent in the central breccia domain (see Fig. 5.10). Shear zones are, on average, 30-

50cm wide, not often exceeding 1m and show sharp contacts with the surrounding 

rocks (see field examples in Fig. 5.12). These zones are marked by a strong foliation 

often defined by alternating felsic and mafic millimetre wide bands occasionally 

enveloping porphyroclasts in the granite (Fig. 5.12 A); and homogeneous, gently 

wavy, darker and very thin bands for the zones within the granophyre (Fig. 5.12 B). 

Sulphides are often found in the ductile shear zones, disseminated in the foliation or 

as small pods formed of sulphide+quartz±carbonate (see detail in Fig. 5.12 B). 

Further, drill-core observations in FG-9 and FG-14 showed that in addition to the 

wider examples (e.g. Fig. 5.12 and Fig. 5.39 A, C, D), shear zones also occur as 

widespread, few centimetre-wide structures (e.g. Fig. 5.42 A, B D, F) marked by 

sharp boundaries and a prominent planar fabric. 

 Structural attitudes of shear zones are fairly heterogeneous (see stereonet in 

Fig. 5.11 B). However, density contours on stereonet indicate a dominance of NW-

SE trends with moderate to steep dips to the NE. Other statistically relevant trends 

are defined by: NE-SW, NNW and E-W strikes, with moderate to steep dips (Fig. 
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5.11 B). Shear zones observed in drill-cores show consistent orientations in core FG-

9 (Fig. 5.28), trending: (1) NW-SE with moderate dips to the NE; and (2) NE-SW 

dipping moderate-to-steeply towards the NW and SE (see stereonet in Fig. 5.29 E). 

On the other hand, shear zones in core FG-14 (Fig. 5.30), display multi-directional 

orientations (see stereonet in Fig. 5.31 C). Mineral lineations were absent in the 

shear zones observed in the mine and drill-cores.  

 Shear zones recorded in the mine outcrops and on drill-cores, agree in their 

main characteristics (e.g. fabric style, geometry and orientation). The prominent 

variation in orientation is suggestive of a multimodal array of the shear zones. 

However, the lack of favourable exposures did not permit their temporal relations to 

be constrained. Additionally, foliation and shear zones appear to be coeval structures 

because of their spatial coexistence and similar orientations (e.g. the prominent NW-

SE trend observed for both types of structures). Finally, shear zones and associated 

foliation, mark domains of concentrated ductile strain that bound zones of relatively 

isotropic rocks. On the basis of the available evidence and the fact that shear zones 

show similar fabric (discusses in the microstructural section), the most plausible 

explanation is that they are all broadly the same age. But in the absence of mutual 

cross-cutting relationship this can not be proven conclusively.  
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5.7.1.3 Faults 
 

 In the area of the Sossego orebody, two types of faults were documented, based on 

their geometry: 

- Type 1 faults are the most abundant and comprise discrete, narrow fault zones 3-5 

cm wide, geometrically represented by a single, continuous segment or minor 

irregular interlinked traces that show small offsets (see examples in Fig. 5.13). Very 

thin seams of dark grey, clay-rich fault gouge are present along individual fault 

planes with occasional presence of carbonate in veins. Fault boundaries are sharp, 

and are mostly characterized by the presence of a polished fault surface that 

commonly preserves slickenlines. 

- Type 2 faults are represented by wider fault zones (0.5 - 8m), characterized by 

parallel sets of relatively continuous fault planes, separated by a very fine, dark and 

incohesive material that bounds fragmented lenses of granitic protolith (see examples 

in Fig. 5.14). The fine and incohesive material appears to correspond to a fault 

gouge, formed of an intensely comminuted quartz-clay rich material composed of 

visible quartz fragments immersed in a very fine, foliated dark matrix. Protolith 

fragments are normally fractured and altered, occurring as elongate, sub-angular 

lenses oriented sub-parallel to the fault planes. Observed fault zones show 

considerable variations in the volumetric ratios of gouge/protolith lenses, with 

protolith lenses generally dominating. 

 Faults are clustered and homogeneously distributed along the logged 

intervals of the drill cores FG-9 (Fig. 5.28) and FG-14 (Fig. 5.30), respectively. 

Fault surfaces form discrete, few millimetre wide and relatively straight planes (see 

examples in Fig. 5.47 B, C, E), which show displacements of up to 20 mm. 
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Fragmented rock material, texturally similar to those described for type 2 faults, was 

occasionally present in the studied drill-cores. However, the material had very 

limited use for geological description because of its intense degree of disaggregation 

and fine grain size.  

 Faults mapped in the mine display multi-directional attitudes (e.g. see map in 

Fig. 5.10 and stereonets in Fig. 5.11 C), but N-S and E-W trending faults, with 

moderate-to-steep dips (60°- 80°) seems to be the statistically dominant trends based 

on density contours on stereonets. Additionally, the N-S trending faults were the 

longest and widest observed within the mine. Fault attitudes from drill-cores agree 

with those recorded in the mine (e.g. compare stereonets in Fig 5.11 C, Fig. 5.29 B 

and Fig. 5.31 B). Fault displacements were not estimated within the mine because of 

the absence of displacement markers in the exposed sections. 

 Approximately 70% of the fault planes at Sossego contain slickenlines, but 

the stereonet for all their measurements (Fig. 5.11 C) shows a scattered pattern that 

is difficult to interpret. The analysis of slickenlines and fault planes sorted by spatial 

sectors within the mine (Fig. 5.11 F) shows two types of domains containing: (1) 

single oriented fault planes with slickenlines indicative of dominant strike-slip and 

subordinated oblique slip faults (Fig. 3.11 I, II, VI); and (2) multiply oriented fault 

planes with fault sets showing either distinct kinematics (Fig. 5.11 F III and V), or 

displaying slickenlines oriented approximately at the fault intersections (Fig. 5.11 F 

IV and VII), which indicates contemporaneous fault slip. Further, the 

contemporaneous character of the faults in the mine is also supported by the 

preferential occurrence of slickenlines in fault plane intersection observed in drill 

cores (see Fig. 5.29 C and Fig. 5.31 E). 
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5.7.1.4 Veins 
 

Veins are widespread at Sossego (see map in Fig. 5.10). They show a broad range of 

thicknesses varying from few millimetres (see various examples in Fig. 5.45) up to 3 

m (Fig. 5.18 A), with tabular geometries (Fig. 5.15 A), sharp and straight contacts 

with the wall rocks. Subordinately, some veins display slightly curved shapes (Fig. 

5.17 A), branching geometries (Fig. 5.15 B) and stockwork arrays (see examples in 

Fig. 5.16 and Fig. 5.46 B, C, D). In the mine, veins show good vertical continuity, 

normally observed from top to bottom of the 8 m high benches, extending in some 

cases up to 40 metres. Sulphide veins are generally thicker and therefore more 

obvious within the mine, while barren veins are thinner and are better observed in 

drill-core samples. 

 Veins can be grouped into three main classes based on their mineral 

assemblage, geometry and the nature of their contact with the host rocks:  

 1 – Tensile veins (Fig. 5.15 and Fig. 5.45 F, H, G) correspond to relatively 

thin structures that are generally mono-mineralic, showing an ultra-sharp contact 

with the host rocks and occasionally forming stock-work arrays (Fig. 5.16). Tensile 

veins, millimetre to centimetre thick, also often form stockwork arrays observed in 

drill cores (see Fig. 5.46 B, C, D).  

 2 – Composite veins are characterized by at least two mineral phases that in 

Sossego typically include sulphides and calcite (Fig. 5.17 and Fig. 5.45 A, C, D). 

Vein margins often show evidence of shearing and have a distinctive fine-dark 

material developed on its walls, very similar to the gouge associated with type 2 

faults. Additionally, slickenlines were often observed in few of the vein walls, 
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evidencing a possible genetic link between the development of this type of vein and 

faults. 

 3 – Breccia veins are generally much thicker than the other two vein types 

observed in the mine (see examples in Fig. 5.18). They are easily distinguished by 

the presence of rock fragments surrounded by a matrix consisting of pulverized rock 

and hydrothermal mineral phases (i.e. pyrite, chalcopyrite, calcite and ± magnetite). 

At drill-core scale, breccia-veins comprise zones, 3 to 5 cm wide, of intensely 

fragmented rocks, cemented by at least two phases of hydrothermal minerals (e.g. 

Fig. 5.43 A,B,F) of apparently different ages (i.e. variable amounts of sulphides, 

carbonate, actinolite and magnetite). Evidence of fluid-fragment and fragment-

fragment interactions are indicated by: (1) the presence of thin reaction rims in a 

number of breccia clasts (e.g. Fig. 5.43 F); and (2) the well rounded nature of some 

clasts (e.g. Fig. 5.43 A), indicative of wearing or abrasion. Finally, clasts in breccia 

veins show textural differences including varied clasts sizes and degrees of 

roundness/angularity. These aspects will be discussed in detail later in the present 

Chapter. 

 The bulk of sulphide veins were recorded in the mine benches. Stereonets for 

their spatial attitudes (Fig. 5.11 D) highlight the statistical dominance of the trends: 

E-W, NNE-SSW and NE-SW with typical steep dips. Non-sulphide veins, mainly 

recorded in the drill-cores FG-9 and FG-14, show polymodal directions in the 

stereonets containing total measurements (see Fig. 5.11 E). Individually compared, 

barren veins in drill-cores display distinct directional patterns. Core FG-09 shows 

veins trending (i) NE-SW with steep dips to the SE; (ii) NE-SW with moderate dips 

to the NW; and (iii) NW-SE dipping moderately to the NE and SW (see stereonet in 

Fig. 5.29 D). Veins in core FG-14 follow the dominant trend NNW-SSE, dipping 
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moderately to the SW and steeply to the NE (see stereonet in Fig. 5.31 D). In 

summary, sulphide and barren veins have different structural attitudes with generally 

steeper dips observed in the sulphide types. 

 Sulphide veins are heterogeneously distributed in the mine, forming clusters 

of poly-directional domains (Fig. 5.10). Neither map nor field evidence suggests a 

spatially or lithologically controlled distribution in the major trends of sulphide 

veins. Conversely, the relatively thinner barren veins from drill-cores show distinct 

trends amongst themselves and in relation to the sulphide veins. These differences 

can be explained by distinct ages of formation for the two vein types. 

 

5.7.2 Interpretations of the structures at Sossego 
 

The structural framework in Sossego, comprises an interlinked array of 

heterogeneously distributed, sub-vertical and poly-directional structures (e.g. 

foliations, shear zones, faults and veins), with a relatively good correlation between 

some of the principal structural trends identified (compare the stereonets in Fig. 

5.11). Mineralization is focussed in a central, vertical pipe-like breccia body 

enveloped by a stock-work of veins. 

 Foliation and ductile shear zones striking WNW-ESE with moderate dips to 

the NE seem to have formed initially, possibly contemporaneously. Faults, veins and 

shear bands were later formed under brittle-ductile conditions and show mutual 

cross-cutting relationships in the rare localities where temporal relations were 

preserved.  
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 Tensile and sheared veins are typically sub-vertical with subordinate sub-

horizontal examples. There are no clear crosscutting relationships between flat and 

steeply-dipping fault veins which suggests a broad contemporaneity of the vein sets 

and a cyclic developmental sequence (Sibson et al. 1988). Episodic vein opening is 

indicated by the occurrence of different mineral phases within the veins suggesting 

that the hydrothermal fluid compositions may have changed through time. 

Displacement magnitudes along faults and shear zones were generally not estimated 

due to the absence of stratigraphic markers, and lack of evidence for displacement 

senses on a majority of faults, shear zones or veins. However, most of these 

structures display evidence of intense fluid influx and/or fluid flow indicated by the 

precipitation of hydrothermal minerals (e.g. chlorite, epidote, calcite, sulphides) 

within or around the structures and severe mineral alteration in the wall rocks. These 

observations indicate that faults, veins and shear zones played important roles as 

conduits of substantial fluid discharges in the hydrothermal system. These features 

are very similar to those described for fault-controlled vein systems by other authors 

(Newhouse 1940; Ray 1954; Peters 1993; Brown et al. 1996). In general, such vein 

systems are referred to as undulating, tabular to pipe-like bodies composed of intact 

and brecciated vein minerals, and slices of hydrothermally altered wall rocks. Veins 

widths typically vary from mm to more than 10 m in some deposits, with overall 

pinch and swell geometries seen in cross-section. 

 (Sibson 1996; Sibson 2000b) acknowledged the importance of low-

displacement faults and interconnected fractures as conduits for fluid flow stating 

that: “…while it is clear that fault-fracture networks form the principal avenues for 

large volume fluid flow in many areas, it is also notable that the hosting structures 

are generally not large displacement features”. Fluid circulation during faulting 
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processes can be linked to the seismic cycle (Schulz et al. 1998; Scholz 2002), 

increasing fluid pressures and reducing fault strength e.g. (Sibson 1994; Sibson 

2000a). Additionally, the presence of implosion breccias, make up of country rock 

fragments, resulting from sudden pressurization and depressurization processes that 

occur during distributed flow are also indicative of repetitive deformation 

characteristic of the seismic cycle (Scholz 2002). 

 Dip-slip, strike-slip, and oblique faults are present at Sossego. However, 

temporal relations between fault trends are not easily constrained because cross-

cutting relations are either poorly exposed or unclear. In general, however, it seems 

most likely based on the existing field evidence that the various orientation of faults 

show mutual cross-cutting relationships suggesting that the faults are broadly 

contemporaneous features. 

 

5.7.3 Sequeirinho Orebody 
 

Sequeirinho is the largest orebody in the area, exposed in an elliptical, NE-SW open 

pit mine, approximately 1,270m long and 585m wide (see Fig. 5.6). The Sequeirinho 

mine is located 1300 metres to the west of the Sossego mine, and comprises the 

following geological domains (see map in Fig. 5.19):  

 

1- Syn-tectonic tonalitic leucogranites, hosting minor lens-shaped bodies of gabbro, 

and hydrothermal epidote and actinolite are the dominant lithologies in the southern 

half of the mine. The granitoids form isotropic domains (see examples in Fig. 5.5 D 
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and Fig. 5.38 A, B, C, F) bounded by portions of foliated rocks related to shear 

zones (see examples in Fig. 5.5 A, B and Fig. 5.39 B, E, F, G, H).   

 

2- The northern or upper portion of the mine comprises a domain of mafic rocks 

represented by metabasalts and sheared felsic metavolcanics, granophyre and minor 

lenses of gabbro and hydrothermal magnetite and actinolite bodies. The metabasalts 

occurs as subordinate, isotropic domains sandwiched by dominant, intensely foliated 

metavolcanics represented by quartz-biotite schists (see examples in Fig. 5.5 K and 

Fig. 5.40). The granophyre domain is isotropic and intensely cross-cut by faults.   

 

3- The central part of the mine includes a major NE-SW shear zone that hosts the 

bulk of the mineralization in Sequeirinho, which is composed of sulphide breccias 

containing actinolite and magnetite fragments, surrounded by chalcopyrite matrix 

(e.g. Fig. 5.6 C). Minor disseminated sulphide mineralization occurs outside the 

breccia domain (examples in Fig. 5.6 A, B, D). 

 The geometric aspects, styles and orientations of the structures in the 

mentioned lithological domains, are presented in the following sections. 

 

5.7.3.1 Foliation 
 

At Sequeirinho, foliation is prominent in the quartz-biotite schists and granitoids 

exposed in the NW and SE flanks of the mine, respectively (Fig. 5.19). Distinctive 

characteristics were observed in foliation from these lithological domains. Where the 

biotite schists display a pronounced foliation, it can be morphologically classified as 
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continuous, smooth and parallel (Passchier et al. 2005). The schistosity is 

characterized by fine to very-fine, millimetre wide alternating bands of biotite and 

quartz with occasional, but considerable occurrences of quartz seams parallel to the 

foliation (Fig. 5.20). Symmetric boudins of metavolcanics 13-35 cm long are locally 

present, with parallel internal and external foliation and pressure shadows formed of 

quartz, actinolite and occasionally sulphide aggregates (Fig. 5.21). The slightly 

higher quartz content observed in the boudins provides a mechanical contrast with 

the surrounding biotite rich rocks, perhaps explaining their presence. No asymmetric 

shear-sense indicators were observed. 

 The drill-cores FG-5 and FG-20 (see location on Fig. 5.19) intersect the 

biotite schists characterized by a fine to very fine, typically straight foliation with 

minor porphyroclasts and occasional quartz-rich levels (see examples in Fig. 5.40 A 

and B). Evidence of hydrothermal activity is relatively limited in the schists, 

corresponding to zones or haloes of alteration parallel to the foliation (e.g. Fig. 

5.40C and D). Albitization (e.g. Fig. 5.40 C and D), potassic alteration (e.g. Fig. 

5.40 E) and sulphide deposition (e.g. Fig. 5.41 F and I) are commonly observed. 

Localized brecciation (e.g. Fig. 5.40 E) within the hydrothermal pathways indicates 

the development of high fluid overpressures. 

 Biotite rich boudins (~ 3 cm wide) separated by quartz pressure shadows 

were observed in the cores (e.g. Fig. 5.41 A and B). They are relatively smaller than 

the examples from the mine benches, but show matching geometry and style. 

Finally, quartz veins, 1.5 cm or less thick, are folded to various degrees within the 

schists. Fold styles include parasitic (Fig. 5.41 C); asymmetric with short limb to 

long limb geometries (Fig. 5.41 D); isoclinal to tight, with a wavelength of 2-3 cm 

(Fig. 5.41 E and F). In high strain zones, the quartz veins are parallel to the foliation 
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with hinges separated from limbs (Fig. 5.41 H and I). The varied degrees of 

deformation observed in quartz, suggests that strain was heterogeneously 

accumulated in the schists. 

 Foliation in the granitic rocks is spatially associated with WNW-ESE shear 

zones that show gradational contacts with virtually undeformed granitoids. The shear 

zones comprise mylonites that form 1 to 6 m wide intervals in drill cores (see drill 

core examples in Fig. 5.39 E, F, G, H). These foliated intervals in drill core FG-15 

(Fig. 5.32) display a dominant NE-SW foliation dipping steeply to NE (Fig. 5.33 A). 

The mylonitic fabric is characterized by straight (Fig. 5.22 A and Fig. 5.39 H), 

wavy (Fig. 5.22 B, C, D, F and Fig. 5.39 E and G) or anastomosing/sigmoidal (Fig. 

5.22 E and Fig. 5.39 F) features defined by elongated mineral aggregates that wrap 

around porphyroclasts or lenses of relatively more rigid material. Additionally, 

mylonites often show compositional banding characterized by a prominent and 

continuous planar fabric. Hydrothermal alteration is widespread in mylonites, 

including: sodic (Fig. 5.22 D, F); sodic-calcic (Fig. 5.22 A, B, C, E); chloritic (Fig. 

5.39 E, F, H); and potassic (Fig. 5.39 E, G) alteration. The mineral alteration in 

mylonites by hydrothermal fluids suggests that the intense strain accumulation in 

shear zones was associated with the throughput of large volumes of fluids. Finally, 

weak mineral lineations, defined by preferred linear alignments of mafic mineral 

grains (e.g. biotite and amphibole) are also preserved.  

 Collectively, the attitude of foliation recorded in the mine a drill cores, 

follows one principal and two subordinate trends (see stereonets in Fig. 5.23 A): (1) 

a prominent WNW-ESE-trend with steep, mostly SSW dips; (2) a NE-SW trend with 

moderate NW dip values; and (3) NNW-SSE trends with mean moderate dips to the 

WSW. Mineral lineations show mostly vertical to steep plunges towards the ESE. 
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The association of steep to sub-vertical foliations and mineral lineations, suggests a 

near horizontal compressional component connected with a sub-vertical stretching 

direction. The foliation trends measured in drill cores, agree with the attitudes in the 

mine and include: (1) FG-20 cross-cutting schists, displaying a strong E-W trend 

with moderate to steep dips toward the N and S (Fig. 5.37 A); and (2) FG-5 and FG-

15 intercept schists and granitoids respectively, and show prominent NE-SW 

foliation with NW moderate dips (see stereonets in Fig. 5.33 A and Fig. 5.35 A). 

Furthermore, the FG-5 core also shows a NNW-SSE foliation dipping moderately 

W.      

 The foliation defines two main spatial domains in the mine: (1) a marginal 

domain, located in the NW and SE flanks of the mine, where the steeply dipping 

WNW-ESE foliation prevails; and (2) a central domain characterized by NE-SW 

foliation with moderate dips to the NW. The NNW-SSE trend only occurs locally, 

and it is not important at the orebody scale. Note, however, that, the central part of 

the mine displays relatively fewer structural measurements because the mining 

operations were concentrated in this area at the time fieldwork was carried out.  

 

5.7.3.2 Shear Zones 
 

Shear zones at the mine scale comprise major structures associated with the foliated 

domains, previously described. Two notable examples of these structures recognized 

in Sequeirinho include: 

(1) a WNW-ESE sub-vertical shear zone, 8 up to 40 meters wide that extends 

from the SE to the NW flanks of the mine, and produced mylonites and 
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biotite schists in the domains of granitoids and felsic metavolcanics, 

respectively. The spatial relationship between the steep dipping to sub-

vertical foliation and mineral lineation indicates dominantly vertical 

displacements. 

(2) a NE-SW shear zone with moderate dips to the NW coincides with the long 

axis of the mine and with the position of the mineralized zone. Map scale 

observations (e.g. Fig. 5.9 C) show that the NE-SW shear zone offsets the 

regional WNW-ESE trend with apparent sinistral kinematics. Outcrop scale 

evidence for cross-cutting relationships was often unclear, but NE-SW 

foliations linked to the larger shear zone was observed in a number of 

localities. 

 

 Shear zones in drill cores comprise discrete and relatively thin bands, of few 

millimetres up to 5 cm wide, showing tabular (Fig. 5.42 C) or gently curved (Fig. 

5.42 E, G) geometries. They represent compartments of accumulated shear strain in 

sharp contact with the wall rocks. Further, shear zones display hydrothermal 

mineralization (e.g. quartz, sulphide, k-feldspar), suggesting the presence of fluids 

during ductile shearing. Total shear zone structural measurements show a fairly 

scattered pattern on the stereonet (see Fig. 5.23 E). However, the structural attitudes 

sorted by drill-cores FG-5 (Fig. 5.35 D), FG-15 (Fig. 5.33 C) and FG-20 (Fig. 5.37 

C) indicate that the shear zones trend NE-SW with NW and SE moderate to steep 

dips, and NW-SE with moderate to steep dips to the NE and SW. The relative ages 

of the two sets off shear zones remain unclear because exposures of cross-cutting 

relationships are not preserved. However, they are most likely to be the same age 

based on microstructural evidence that indicates common fabric styles and 
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deformation conditions for the studied shear zones samples (later described in the 

microstructural section).  

5.7.3.3 Faults 
 

Faults and fault zones are abundant in schists, granophyre and granitoid domains in 

the Sequeirinho orebody. They are distinguished from blast-generated fractures by 

good continuity and lateral and vertical persistence along the mine benches. Fault 

displacements at outcrop scale were not calculated or estimated given the general 

absence of offset stratigraphic markers in the mapped sections. Faults and fault zones 

were grouped into two types: 

 Type 1 comprises discrete fault zones that may occur as individual surfaces 

(Fig. 5.24 A) or parallel sets of faults forming continuous zones tens of centimetres 

up to 3m wide (Fig. 5.24 B). This fault type is normally present in the biotite schist 

domain and tends to occur parallel to the foliation in these rocks. Type 1 fault planes 

exhibit fairly straight planes (Fig. 5.24 C), but gently curved surfaces with broad 

wavelength also occur (Fig. 5.24 D). Fault gouges or fragmented fault rock materials 

are rare. 

 Type 2 faults (see examples in Fig. 5.25 and Fig. 5.26) are characterized by 

the presence of fragmented materials within the fault planes including altered and 

fractured lenses of wall-rock (e.g. Fig. 5.25 A, C, D), and fault gouge in variable 

quantities (see Fig. 5.25 B and Fig. 5.26) often showing an internal planar fabric or 

presence of hydrothermal mineral phases (see Fig. 5.26 B, C, D). Fault boundaries 

are sharp, straight or irregular, forming zones on average 20cm wide, ranging from 4 

cm up to a maximum of 2 m wide. 
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 The intensely friable fault gouge forms brown-reddish and minor green 

varieties (Fig. 5.26 B, C, D). They are mainly composed of phyllosilicates, clay 

minerals and very small lithic fragments, forming a fine anastomosing fabric 

oriented generally parallel or oblique to the associated fault plane (Fig. 5.26 B, C, 

D). Principal and subordinate fracture surfaces are present in the fault gouge 

domains, rarely displaying slip lineations indicative of the shear direction. The 

subordinate fractures can be either parallel or oblique to the cataclasite layers, but the 

principal surfaces are typically planar, continuous and often separate fault gouge 

layers of different colours (e.g. Fig. 5.26 D). Narrow fault zones also preserve fault 

gouge as thin (1 to 2 cm) layers smeared along the fault plane (Fig. 5.25 B). In broad 

fault zones (Fig. 5.26 A), fractured lenses of wall-rock and calcite bands were 

observed intercalated with fault gouge layers. 

 Drill cores FG-5 and FG-20, show faults with characteristics compatible with 

those described in the mine outcrops. Type 1 faults comprise narrow, well-defined 

planes showing small displacements of markers (1 mm up to 4 cm). Fault planes are 

discrete, cohesive and often filled with hydrothermal minerals (see Fig. 5.47 A, D, 

F). Strain is restricted to the immediate region of the fault plane with no evidence for 

the development of damage zones. Significant fluid flow along the fault planes is 

indicated by the presence of narrow alteration haloes. Type 2 faults show up in the 

drill cores as relatively long intervals of intensely fragmented material with similar 

properties to those observed in these faults in mine exposures.  

 Total faults attitudes (see stereonets in Fig. 5.23 B) show three major trends 

cited in order of statistical weight (Fig. 5.23 B): (1) E-W to WNW-ESE, dipping 

mainly steeply south; (2) NW-SE with steep dips both to the NE and SW; and (3) 

NE-SW dipping moderately to the SE and, to a lesser extent NW. Steep N-S faults 
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are also present in the area, but are relatively uncommon. The fault trends WNW-

ESE and NE-SW agree with the foliation trends, suggesting that at least some of the 

faults may have formed along pre-existing “weak” planes. The temporal relations 

between faults is not well constrained. 

 Slickenlines formed by elongate aggregates of clay minerals, quartz, chlorite, 

epidote or calcite are present in approximately 25% of the measured fault planes. 

Stereonets for the total number of fault slickenlines (Fig. 5.23 C) shows a scattered 

pattern, limiting interpretations. However, fault planes and slickenlines sorted by 

their location within the mine (see stereonets I to X in Fig. 5.23 F), show multi-

oriented fault planes with many of the slickenlines oriented close to fault 

intersections (see stereonets I, II and X Fig. 5.23 F), which suggests that faults 

slipped contemporaneously. Further, the overall attitude of the slickenlines indicates 

and oblique and strike-slip character for the faults. 

 

5.7.3.4 Veins 
  

Veins at Sequeirinho were observed and measured in drill-cores and range from few 

millimetres up to 10 cm in width. Cross-cutting relations were not observed, 

compromising the definition of veins on the basis of their relative ages. Vein fillings 

typically comprise the hydrothermal minerals quartz (Fig. 5.45 B, G), sulphide (Fig. 

5.45 H) and actinolite (Fig. 45 E) with contrasting composition and texture from the 

adjacent host rocks. Locally, interconnected veins form stockwork arrays, but these 

were only observed in the drill cores (see Fig. 5.46 A, E, F). The interconnected 

network of veins and veinlets facilitates the percolation of hydrothermal fluids, 

promoting alteration of the wall-rocks.  
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 The total vein attitudes from drill cores FG-15 (Fig. 5.33 B) and FG-20 (Fig. 

5.37 D) show a diffuse pattern on the stereonet (see Fig. 5.23 D). However, 

directional trends appear better when veins attitudes are sorted by individual core. So 

in FG-15 (see Fig. 5.33 B) the following orientations are observed - NE-SW striking, 

dipping steeply to the NW; NNW-SSE striking, dipping moderately to the E and W; 

and E-W striking, with moderate dips to the S. In FG-20 core (see Fig. 5.37 D) the 

main orientations are - N-S striking, with moderate dips to the W; NW-SE strikes, 

dipping steeply to the NW, and NE-SW striking, dipping steeply to the SE. 

 Minor breccia veins were observed in the drill core FG-20. They comprise 

zones, tens of centimetres wide, containing typically angular fragments of varied 

sizes cemented by hydrothermal mineral matrix: actinolite (Fig. 5.43 C), carbonate 

(Fig. 5.43 D) and quartz (Fig. 5.43 E). These features are highly localized and do not 

seem to play a major role in the structural framework of the deposit. 

 

5.7.4 Interpretations of the structures at Sequeirinho 
 

Sequeirinho corresponds to an “S” shaped orebody (see Fig. 5.9 C and Fig. 5.19) 

where: (1) the ends are hosted by schists and granitoids with sub-vertical WNW-ESE 

foliation; whilst (2) the central part linking the “S” tips, comprises mineralized 

breccias developed in a NE-SW shear or fault zone dipping moderately to NW. Thus 

the early WNW-ESW ductile fabric is offset by a sinistral NE-SW fault zone where 

the main sulphide breccia body is centred. 

 The early foliation is accompanied by a down-dip mineral lineation, 

suggesting that these structures record the action of near horizontal compressional 
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component, linked to a vertical stretching component. Foliation is restricted to 

mylonitic zones that mark domains of intense strain accumulation, intercalated with 

relatively undeformed domains. The alternating and interlayered character of the 

mylonitic and undeformed zones suggests that strain was partitioned into the 

mylonitic zones.  

 The biotite schists seem to represent localized sheared products of adjacent 

isotropic metavolcanic mafic rocks. This hypothesis is supported by: (1) the gradual 

development of foliation, moving from an isotropic domain of felsic volcanics into a 

foliated domain over a small region; (2) microscopic mineralogical and textural 

observations indicating similarities between the mafic metavolcanics and biotite 

schists; and (3) cross-cutting quartz veins in the mafic rocks are observed in the 

schists to be sub-parallel to and folded within the schistosity or forming boudins and 

sigmoidal lenses. 

 The main fault sets in the mine include the following trends: WNW-ESE; 

NE-SW; NW-SE; and N-S. Most are steeply dipping. The WNW-ESE trend 

coincides with the regional foliation (e.g. compare the statistical contours 

corresponding to the WNW-ESE trend in stereonets A and B in Fig. 5.23), 

suggesting that the early ductile fabric controlled the orientation and development of 

these faults. NE-SW faults are easily seen at map scales and show anticlockwise 

kinematics when displacing the regional foliation (the best example of these faults in 

Fig 5.9 C). The NW-SE fault set relative age is estimated to be younger than WNW-

ESE and NE-SW and older than N-S fault sets. Finally, the N-S trending faults are 

the youngest identified and are typically associated with late tabular diabase dykes 

regionally, although these are relatively rare in the mine itself. 
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 Type one faults, characterized by discrete narrow slip surfaces, are interpreted 

as having been produced by a short-lived movement history, under low regimes of 

pore fluid pressure at shallow crustal depths. Hence these faults generally lack 

significant breccias, cataclasites, gouge and hydrous mineral assemblages. By 

contrast, type two faults, with their associated fault rocks (i.e. cataclasites, 

ultramylonites) and hydrothermal minerals, are indicative of longer lived fault 

activity possibly associated with seismic slip. (Sibson 1977) suggests that continuous 

slip on principal slip surfaces is associated with various wear processes that produce 

layers of breccia, cataclasites and gouge bounded by tabular zones of damaged rocks. 

Indeed, the structural characteristics of the elements observed on faults containing 

cataclasites at Sequeirinho are comparable with those from the exhumed Punchbowl 

fault in the San Andreas System (Chester et al. 1998). Their observations on 

cataclasites led them to suggest that fault cores accommodated nearly all of the shear 

displacement leading here to the development of ultracataclasites along principal slip 

surfaces. They proposed that the localization of displacement along principal slip 

surfaces associated with zones of less cohesive ultracataclasites is consistent with 

seismic slip. It is possible that fault weakening in such cases may have been 

triggered by mechanisms such as thermal pressurization of pore fluids (Sibson 1973; 

Lachenbruch 1980). This takes place in fluid-saturated rocks when shear heating 

produced during seismic faulting causes sudden, highly localised increases in pore 

fluid volume leading to pressurization of the fluid and local reduction in effective 

stress and dynamic weakening. 

 Fault slickensides associated with multiple fault planes, and oriented close to 

the faults intersections indicate that many of the faults slipped contemporaneously. 

The hypothesis agrees with (Nietosamaniego et al. 1995) and (NietoSamaniego et al. 
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1997), who proposed that multiple fault patterns can be formed during one or more 

deformation phases with or without rotation of the principal stresses in the 

continental crust. They assume that old rocks from structurally complex zones 

contain multiple faults or planes of weakness formed during tectonic events that 

affected the rocks during the geological past. Further, due kinematic interactions, a 

fault pattern formed during a single deformation event of sliding on pre-existing 

planes has no restrictions regarding symmetry, number of slickenlines sets, number 

of faults nor orientation of the faults. 

  Finally, a more detailed fault analysis is limited by the lack senses of motion 

and displacement indicators. Fault planes are typically covered by a “wax” formed of 

hydrothermal minerals, rock fragments and clay. Whilst the direction of shear is 

often evident, the sense of motion is more rarely preserved. Offset markers were 

generally absent in the mapped benches of the mine. 

 

5.7.5 Rio Branco Granite 
 

The Rio Branco Granite is considered to be part the 1.88 Ga. suite of anorogenic 

granites described elsewhere in the Carajás Terrane, e.g. (Dall'Agnol et al. 2005). 

The structures in the granite were studied to be compared with those observed in the 

older rocks that host the Sossego and Sequeirinho orebodies. 

 The studied outcrops of the granite are located 3.8 km away from the 

Sequeirinho mine. They comprise a salmon-pink, medium- to coarse-grained 

isotropic granite, composed of plagioclase, quartz and minor amounts of biotite. The 

granite is cross-cut by faults and fault zones typically 9 to 20 cm wide (see Fig. 5.27 
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A), with exception of one 2m wide zone (see Fig. 5.27 B). Faults show sharp 

contacts with the granite and comprise sets of relatively straight sub-parallel surfaces 

e.g. (Fig. 5.27 B and C), bounding wall-rock lenses (Fig. 5.27 C) and a dark mass of 

fine rock fragments and hydrothermal minerals. 

 The Rio Branco Granite is cross-cut by two fairly consistent sets of faults: (1) 

a WNW-ESE striking set, dipping on average 65° to the SSW; and (2) a NNE-SSW 

set, dipping 80° to the ESE (see stereonet in Fig. 5.27 E). The slickenlines preserved 

(see red dots in Fig. 5.27 E) associated with the fault planes, indicate mainly a strike-

slip character for these structures. Faults shear sense, cross-cutting relations and 

displacement of the sets were not determined.  

 Hydrothermal activity along fault planes is recorded by the development of 

quartz veins, plagioclase altered into clay and within the faults, the presence of 

hematite, calcite and malachite mineralisation along fault surfaces e.g. (Fig. 5.27 D). 

 

5.7.6 Interpretation of the faults in the Rio Branco Granite 
 

The Rio Branco granite shows a moderately dipping (~ 50-60˚), WNW-ESE-

trending set and a steeply dipping (~ 80-90˚) NNE-SSW-trending set, that seem to be 

strike-slip features. These fault trends agree with the orientation of fractures and 

faults described in other 1.88 Ga. granitoids (e.g. Central and Cigano) in (Pinheiro 

1997). 

 The WNW-ESE faults show orientation comparable with the regional scale 

strike-slip Carajás and Cinzento faults (see Fig. 5.2). This fault set also agrees in 

direction with numerous surface lineaments highlighted within the volcano-
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sedimentary cover sequence in Carajás (lineaments in Fig. 5.2). (Pinheiro et al. 

1997a; Holdsworth et al. 2000) proposed that a regional sinistral transpression with 

brittle character, nucleated the Carajás and Cinzento strike-slip systems at ca. 2.6 Ga. 

The 1.88 Ga isotropic granitoids are older than the Carajás Fault and the therefore 

the presence of WNW-ESE trending faults in the Rio Branco Granite suggests that 

these structures were possibly formed by reactivation of pre-existing structures with 

the same orientation. These faults seem to also control the regional distribution of the 

volcano-sedimentary cover sequence in Carajás. 

 The observed NNE-SSW trending faults are comparable with N-S faults 

previously described in the Carajás Terrane, e.g. (Costa et al. 1997; Veneziani et al. 

2004) and are linked to the breakup of Pangea in the Early-Cretaceous, 130-120 Ma 

(Windley 1995), which subjected the Amazon Craton to extensional regimes. During 

that time, several N-S graben were formed, that locally preserve Paleozoic rocks 

notably at the eastern margin of the craton (Costa et al. 1997; Schobbenhaus et al. 

2003).  

 

5.8 Breccia Classification and Characterization 
 

Fault breccias from the Sossego and Sequeirinho orebodies were classified using the 

schemes proposed by (Woodcock et al. 2008) and (Mort et al. 2008) (see Fig. 5.49 

B). These authors suggest the terminology crackle, mosaic and chaotic for fault 

related breccias. This classification has the advantage of being non-genetic and uses 

clasts size as the primary criterion to classify a fault breccia. It assumes that the rock 
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has at least 30 % of its volume formed by “large” clasts, where fragments are greater 

than 2 mm in diameter (i.e. that the rock is a breccia (Sibson 1977). 

 Barren and mineralized breccias were studied using image analysis software 

(UTHSCSA ImageTool 3.0) to determine the geometrical parameters (see Table 5.4) 

of their fragments. The studied samples are generally representative of barren (Fig. 

5.48 B1, B8 from Sossego and Fig. 5.48 B2, B5, B6 from Sequeirinho) and 

mineralized (Fig. 5.48 B4, B9 from Sossego and Fig. 5.48 B3, B7 from Sequeirinho) 

breccias as a whole in the orebodies. The analysed images were captured from 

outcrop (Fig. 5.48 B1, B2), drill core (Fig. 5.48 B3, B7, B8, B9) and slab (Fig. 5.48 

B4, B5, B6) scale samples. 

 The breccias are generally described as cohesive, isotropic, with 

monomineralic or lithic fragments amalgamated by cement and/or matrix, composed 

of a single or several mineral phases (e.g. calcite, actinolite, biotite, pyrite, 

chalcopyrite, magnetite). Clasts display varied sizes and range from angular to sub-

rounded morphologies. There is also evidence of rotation, evidenced by the misfit of 

adjacent clasts. 

 Breccias typically comprise large fragments (30-54%) with cement/matrix 

(40-63%) and a limited amount of smaller clasts (0-9%) (see Fig. 5.49 A). The nine 

analyzed samples fall into the field of chaotic breccias when plotted on the ternary 

diagram from (Woodcock et al. 2008) (Fig. 5.49 B). 
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5.8.1 Textural characterization 
 

The breccia characterization carried out during the present study was based on a 

textural analysis of the clasts to quantify: (a) particle size distribution (PSD); and (b) 

fragment shapes. Particle morphological properties for each sample were 

quantitatively described using the parameters presented in Table 5.4.  

 Clasts size analyses were carried out using two types of measurements for 

fragment size: maximum clasts diameter, S (Billi et al. 2004; Hayman 2006; Mort et 

al. 2008), and clasts size, r, calculated as area grainlog , (e.g. (Bjornerud 1998; 

Clark et al. 2003; Clark et al. 2006). Different particle size parameters were used to 

investigate the influence of these values on fractal dimensions.  

 Particle size distributions (PSD) were quantified using log-log plots of clasts 

size (S and r) against number of clasts (with a range of sizes) (Fig. 5.50). The PSD’s 

follow a power-law distribution, indicative of a self-similar or fractal distribution of 

clasts sizes using both measurement criteria (i.e. S and r). Fractal dimension values 

D are varied and range between a maximum of 2.58 / 2.46 and a minimum of 1.17 / 

1.56 for PSD plots of S and r, respectively. The D values from PSD’s using S and r 

parameters show average difference of 0.24 (compare the values in the F and G 

graphs in Fig. 5.51), except for samples B9 and B6 that show the same D values for 

S and r. Breccias from the same ore-body can show considerable variations in D and 

no distinct pattern of fractal dimension was observed between barren and/or 

mineralized breccias. 
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5.8.2 Textural analysis 
 

The results of an analysis of clasts geometrical attributes in 9 breccia samples are 

presented in Fig. 5.51. The data is grouped by orebody and occurrence of 

mineralization. 

 Roundness and compactness values are relatively high for breccias at 

Sequeirinho compared to those from Sossego. Figure 5.51 (A & B) illustrates the 

gentle increase in roundness and compactness, progressing from B1 to B7. Clasts 

from mineralized breccias tend, in general, to be closer to a circular shape than those 

from their barren counterparts. 

 Sossego breccias have high aspect ratios and a greater variation in clasts 

elongation, in particular for the barren breccias (Fig. 5.51 C) compared to equivalent 

Sequeirinho samples. These display relatively homogeneous values for both barren 

and mineralized members. 

 Angularity values are heterogeneous, ranging from 15.7 to 18 (Fig. 5.51 D), 

with three distinct data clusters at values between: 15.7-15.9 (B3/B6/B7); 16.5-17 

(B2/B4/B5/B8); and 18 (B1/B9). Average clasts angularity is greater than 16.7 for 

Sossego and less than 16.7 for Sequeirinho. The presence of sulphide mineralization 

does not appear to affect clasts angularity measurements. 

 Graphs of clasts angularity vs. roundness and elongation vs. compactness, 

illustrated respectively on Figs. 5.52 A and B, show an inversely proportional 

relationship between these parameters, with the exception of samples B3 and B9. 

The Sequeirinho samples (B3-B6-B7) are progressively more rounded (less angular) 

than the Sossego samples (B9-B1), with evident clustering in the data distributions. 
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Additionally, an inversely proportional relationship is consistent between the values 

of fractal dimension D(S) vs. elongation (Fig. 5.52 C) and fractal dimension D(r) vs. 

angularity (Fig. 5.52 D), whose graphs show overall negative trends, if discarded the 

samples B1 for the graph (Fig. 5.52 C) and B1 and B9 for the graph (Fig. 5.52 D). 

Collectively, the Sequeirinho breccias tend to show more rounded/circular fragments 

with higher D values for their PSD, than the Sossego breccias, which display more 

angular/elongated fragments with lower D values. The cited relationships are 

important because they validate the PSD results, which in theory have D(r) and D(S) 

depending respectively on particle area, and maximum clasts diameter. 

 

5.8.3 Interpretation of the clasts size analysis 
 

The barren and mineralized breccias from the Sossego and Sequeirinho orebodies 

have been classified as chaotic breccias. According to (Mort et al. 2008; Woodcock 

et al. 2008), these breccia types have strongly rotated clasts, typically showing more 

than 20° average rotation and not preserving any geometric fit to formerly adjacent 

clasts. 

 The breccias at Sequeirinho show more rounded and less angular clasts 

compared to those at Sossego. Clasts concentration values for breccias from both 

orebodies range between 40% and 60%. The fractal dimension D values calculated 

from the particle size distribution of breccias range from 1.17 up to 2.58. Sossego 

breccias have smaller D values than those from Sequeirinho. Finally, the presence of 

Cu mineralization appears to show no direct influence on the geometrical properties 

of the breccias clasts.  
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 The textural analysis results generally agree with those presented by (Mort et 

al. 2008) for chaotic breccias. Values of clasts roundness and compactness indicate 

that the clasts are generally sub-rounded whilst the relatively low clasts 

concentration results attest to the dilatant character of the studied breccias. Clasts 

angularity is inversely proportional to roundness, which is theoretically predicted 

(Lin 1999; Storti et al. 2007). Angularity has been shown to be more sensitive to 

small changes in particle shape so it is thought to be more suitable than roundness 

for studying fault rocks with subtle variations in clasts shape (Storti et al. 2007). 

 Angularity values decrease and roundness values increase from Sossego to 

Sequeirinho. The change in particle shape suggests that the breccias were formed by 

distinct fragmentation mechanisms (Storti et al. 2007). Angular particles (Sossego) 

are thought to be formed mainly by sliding, cracking, fragmentation and dilatation, 

whilst more rounded clasts (Sequeirinho) likely formed due to rolling-attrition 

mechanisms during shearing (Mair et al. 2002; Guo et al. 2004; Anthony et al. 2005). 

 The calculated fractal D values for the Sossego and Sequeirinho breccias 

(1.17-2.58) are consistent with published data on grain size analysis of natural and 

experimental fault rocks (e.g. see Table 1 in (Keulen et al. 2007). Fractal D-values 

are related to specific fragmentation processes that operate in fault zones 

(Blenkinsop 1991). Therefore, the variation of D values, lower at Sossego and higher 

at Sequeirinho, indicate that the Sequeirinho breccias are more evolved/sheared as 

they have experienced more intense shearing with rolling and attrition. Systematic 

increases in D-value from immature to mature cataclastic rocks have also been 

observed by several other authors (Marone et al. 1989; Hattori et al. 1999; Billi et al. 

2004). 
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 The fractal dimension values (D) calculated for clasts size distribution in 

terms of area (r) diverges from those of clasts maximum diameter (S). Both size 

parameters have been used in studies on grain size distributions in fault rocks. If the 

difference in fractal dimension values presented here is related to way in which 

particle size has been measured, then future work on this topic will need to use a 

standard method for calculating fractal dimension for fault rocks in order to avoid 

biased or inappropriate comparisons. 

 

5.9 Microstructures 
  

Qualitative observations of the microstructural fabrics and deformation mechanisms 

were conducted to estimate temperatures and metamorphic conditions during the 

main deformation events and the geological evolution of the area. The rocks 

analysed in the following section comprise a mix of samples from the mine outcrops 

and drill cores that are representative as a whole of the geological units and fault 

rocks described in the orebodies.   

 

5.9.1 Sequeirinho 
 

In the Sequeirinho Mine four main categories of deformed rocks and associated 

structural features were identified: 

  

 Old weakly deformed granitoids are generally located in sections of the mine 

away from the major shear zones. They consist typically of a granular mixture of 
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coarse subhedral quartz and altered feldspar crystals (see examples in Fig. 5.53 A, B, 

C). Feldspar grains are generally larger than quartz and commonly show widespread 

alteration to fine grained white mica and clay minerals, which gives feldspar the dark 

“dirty” appearance under the microscope. Apart from the alteration, feldspar grains 

are fairly well preserved displaying weak to moderate undulose extinction, strain-

induced twin lamellae (Fig. 5.53 D) at some grain margins and localized grain size 

reduction due to brittle fracturing and cataclasis (Fig. 5.53 D). Quartz crystals have 

anhedral to subhedral forms, prominent undulose extinction that outlines elongated 

subgrains (Fig. 5.53 C, E) and chessboard features in few grains. Grain boundaries 

are straight and sharp or commonly serrated or interdigitated, indicating strain 

induced grain boundary migration recrystallization (Fig. 5.53 F). Locally, grain 

boundaries display dynamically recrystallized fine grained quartz (Fig. 5.53 F) by 

subgrain rotation recrystallization (SGRR). Ferromagnesian minerals are accessories 

or are absent in the observed samples.  

 

 Foliated granitoids mark the transition from weakly deformed granitoids to 

mylonites. Progressive and heterogeneous flattening of quartz grains from subhedral 

(Fig. 5.54 A) to elongate quartz ribbons (Fig. 5.54 C), with an aspect ratio of 0.125, 

defines a foliation ranging from weak to strong depending on the strain intensity (see 

the increase in strain from Fig. 5.54 A to C). The occasional presence of 

preferentially oriented fine-grained biotite or a hydrothermal aggregate of white 

mica+epidote further strengthens this foliation. Feldspars are strongly altered to 

sericite (note the dark dirty patches in the microphotographs under polarised light), 

limiting detailed microstructural observations in this mineral. No evidence of 

magmatic foliations was observed in any of the studied samples. 
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 Quartz grains in the initial stages of flattening (Fig. 5.54 A) tend to develop a 

relatively symmetrical augen shape with the co-existence of partially or totally 

dynamically recrystallized mineral aggregates. Remaining crystals show strong 

undulose extinction with elongate or polygonal subgrain boundaries, typically 

mantled by finer grained subgrains indicating SGRR (note the quartz domains in Fig. 

5.54 A, under crossed nicols). Lobate and straight grain boundaries on the newly 

formed quartz crystals indicate some grain boundary migration recrystallization 

(GBMR) and late recovery. Progressive flattening and recrystallization throughout 

the sample, of newly formed quartz grains by GBMR promotes an almost exclusive 

occurrence of newly formed quartz grains by GBMR as elongated aggregates with 

preferred orientation that characterizes aggregate shape preferred orientation (ASPO) 

(note the recrystallized quartz domains in Fig. 5.54 B and C under crossed nicols). 

Insertion of a sensitive tint plate reveals random and strong lattice preferred 

orientation (LPO) for the grains aggregates from the samples in Fig. 5.54 B and C 

respectively. 

 

 Granitic mylonites comprise highly strained deformed granitoids in the 

Sequeirinho mine. The anastomosing foliation is relatively continuous and composed 

of aligned aggregates of medium to fine grained recrystallized minerals. It wraps 

around porphyroclasts or lenses of “strong” minerals (Fig. 5.55 A). The main 

mineral assemblage is composed of quartz, K-feldspar, plagioclase and amphibole. 

Retrogression products are common, with abundant chlorite and alteration of 

feldspar to sericite. 

 Dynamic recrystallization is pervasive, indicated by intense grain size 

reduction. Quartz is almost totally recrystallized into narrow and elongate lenses or 
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ribbons of uniform grain size polygonal aggregates suggesting SGRR (Fig. 5.55 B). 

Grain boundaries are commonly straight with limited interlobate contacts. A few 

large relict grains, weakly or moderately flattened, are preserved within the 

recrystallized portions. They show notably undulose extinction, subgrains and 

enclosed recrystallized regions. A moderate to strong LPO is evident. Aligned quartz 

aggregates define a strong ASPO, but shape preferred orientation (SPO) and grain 

shape preferred orientation (GSPO) are generally absent. 

 Feldspars occur as fine or very fine recrystallized aggregates or larger 

fractured grains. The aggregates show uniform grain size distribution, forming 

elongated clusters or lenses that normally wrap around “rigid” grains (Fig. 5.55 C). 

Fractured grains have a variety of grain sizes and shapes, patchy undulose extinction 

and internal shear bands that develop aligned aggregates of very fine recrystallized 

grains. 

 Amphibole occurs as fractured grains aggregates with varied grain sizes and 

orientations, normally surrounding larger relict grains (Fig. 5.55 D). Relict grains 

show some degree of fracturing with gentle bending or kinking of cleavage planes. 

They often display a texture similar to mantle and core, but it is fact effect of 

fracturing and not crystal plasticity. 

 Porphyroclasts are mainly composed of K-feldspar and plagioclase, with 

smaller proportions of quartz, amphibole and with mineral aggregates 

(feldspar+amphibole+quartz) forming well defined pressure shadows. Clasts shapes 

vary from elliptical to sub-rounded, with poorly developed asymmetric tails (Fig. 

5.55 E). Feldspar clasts generally display a thin mantle of very fine recrystallized 

grains, moderate sweeping undulose extinction (Fig. 5.55 F) and strain induced 

twinning lamellae on the grain borders. 
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 Biotite schists show a banded aspect, dark colour, relatively high mica 

content (see scanned thin sections in Fig. 5.56 A, B and Fig. 5.57 A, B) and marked 

tendency to break along foliation planes. They were classified as schists based on 

field observations (see field photos in Fig. 5.20 and drill core examples in Fig. 5.40). 

However, examined under the microscope, the rocks reveal a prominent mylonitic 

foliation characterized by a fine grained matrix, strongly developed planar foliation, 

presence of lenses and layers of elongated mineral aggregates and porphyroclasts. 

 The schist protolith is an isotropic rock composed of strain-free sub-angular 

to sub-rounded quartz and k-feldspar crystals set in an aggregate of randomly 

oriented fine-grained biotite crystals (see scanned thin section and microphotography 

in Fig. 5.58 A and B respectively). This rock type corresponds to isotropic felsic 

metavolcanic rocks (see their distribution in Fig. 5.19) that are preserved in regions 

where the ductile deformation that formed the schists is low. In these protolith rocks, 

plagioclase, amphibole and chlorite veins cross-cut the rock (Fig. 5.58 C, D, E, F). 

Veins are typically massive with difuse (Fig. 5.58 C) or sharp (Fig. 5.58 E) 

boundaries, and range in width from a few millimetres up to 2.5 cm. They suggest an 

axial growth process which generated blocky (Fig. 5.58 F) and elongate (actinolite 

crystals in Fig. 5.58 D) crystals either perpendicular or oblique to the vein walls. 

 The mylonites are typically fine (Fig. 5.56 C, E) to very fine (Fig. 5.56 D, F) 

grained, showing a well developed ductile fabric. The fabric is composed of 

alternating biotite-rich and quartz-feldspathic layers, with a high degree of mineral 

preferred orientation (Fig. 5.56 E, F). Variations in the quartz-biotite ratio within 

these layers controls the overall composition (see the difference between Figs. 5.56 

C and D). Chlorite and epidote occur locally as products of secondary retrogression. 
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The observed foliation is typically continuous and parallel, wrapping around 

porphyroclasts and lenses. It varies locally, defining a weak sinistral S-C fabric. 

 Very-fine grained layers or bands are formed from a matrix of dynamically 

recrystallized biotite, quartz and K-feldspar that constitute a micro mosaic of mica 

crystals with a strong preferred alignment and unimodal grain-size distribution (e.g. 

Fig. 5.56 F). Mica grain size is proportional to its relative abundance, with the larger 

crystals associated with biotite-rich domains. Biotite commonly occurs between K-

feldspar and quartz grain margins or inside the grains, indicating grain boundary 

pinning and secondary grain growth. Aggregate shape preferred orientations (ASPO) 

are defined by quartz or feldspar forming lenses elongated parallel to the main 

layering (e.g. Fig. 5.59 A, B, C). Quartz lenses show random, weak-to-moderate 

LPO (Fig. 5.59 A). 

 Thin quartz lenses, ribbons or “fish” typically display strong sweeping 

undulose extinction, subgrain development (Figs. 5.59 B) and newly formed grains 

(Figs. 5.59 C), indicating that during deformation SGRR and GBMR were active. 

Feldspar occurs as domains of fractured grains (see domino fracture feature in Fig. 

5.59 D) or relict porphyroclasts. Fractured feldspars also form domains shaped as 

seams or lenses composed of finely fractured k-feldspar and plagioclase, showing 

homogeneous grain size distributions. Relict feldspar porphyroclasts sit in the matrix 

of recrystallized fine-grained quartz, feldspar and biotite. These relict porphyroclasts 

have a sub-rounded to slightly elongated shapes (Fig. 5.59 E, F). They do not show 

recrystallization and intracrystalline tensile fractures are often present. Tailing is 

absent or when observed, is poorly developed with unclear asymmetry. 

 Biotite schist domains contain deformed veins that vary from 1.5cm up to 5 

cm in thickness and normally show a coarser grain size compared to the wall rocks. 
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The main minerals present are: quartz and K-feldspar, biotite and amphibole. 

Epidote, chlorite, and white mica are present as secondary alteration products. Veins 

can be subdivided into two groups based on their microstructures: (1) boudinaged 

(Fig. 5.57 A), displaying augen-shaped fragments composed of generally coarse 

grained mineral aggregates of quartz, feldspar, biotite and amphibole; or (2) sheared 

(Fig. 5.57 B), dominantly composed of quartz and subordinate feldspar. Boudinaged 

veins show minerals relatively well preserved in the centre of the veins, with 

recrystallized portions restricted to high strain zones localized in their outer margins. 

Quartz grains from the inner portions are virtually undeformed with patchy undulose 

extinction, limited subgrain boundaries and deformation bands (see contrasting 

quartz grains in Fig. 5.57 C). Grain boundaries are sharp and serrated. Recrystallized 

quartz has very similar microscopic features in both vein types: fine to very fine, 

dynamically recrystallized, elongated grains that form an oblique foliation indicative 

of sinistral shear sense (Fig. 5.57 D, E). Deformation in quartz grains from the veins 

is characterized by SGRR mechanisms. Recrystallized grains exhibit a relatively 

uniform grain size and strong LPO (Fig. 5.57 F). Feldspar grains show varied grain 

sizes and shapes from subhedral to sub-rounded. Intracrystalline fractures and shear 

bands are common deformational features, whilst some crystals seem to have 

experienced sub-grain rotation processes. Deformation in biotite is mainly 

represented by kinking and, in amphibole, by intracrystalline fracturing. 

 

 Veins, faults and hydrothermal features at Sequeirinho, record fluid activity 

associated with mineral deposition and hydrothermal alteration. This section 

summarises the microstructural aspects of these structures in order to assess the 

relationships between fluids and deformation. 
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 Veins and veinlets are commonly found in the host rocks at Sequeirinho. 

Selected examples are presented in Table 5.5. They range in width from a few 

millimetres up to 10 centimetres. They typically comprise sets of sub-parallel and 

continuous master veins with subordinate anastomosing stockwork arrays and 

branching veins. Vein boundaries are either difuse or sharp with irregular/regular 

shapes.  

 The veins are typically composed of: chlorite, epidote, amphibole, 

plagioclase, quartz, magnetite, Cu-sulphide or calcite. Commonly at least two 

mineral phases are deposited in layers within the cavity, but monomineralic veins 

also occur (Fig. 5.60 A, B). Massive and fibrous veins occur in roughly equal 

proportions. Massive veins are composed of blocky, elongate crystals oriented 

normal to the vein walls (Fig. 5.60 C). Fibrous veins are mainly formed of chlorite 

and amphibole with mineral fibres oblique or sub-parallel to vein walls (Fig. 5.60 

D). Fibrous infills are also present in composite veins, generally forming the inner 

portion of the cavity when associated with quartz and plagioclase. 

 Most of veins show an internal structure characterized by layering or zoning 

that comprises either: (1) monomineralic grain size zoning with fine grains in the 

outer and coarse grains in the inner portions of the vein; or (2) two mineral phases 

forming/developing blocky, fibrous or blocky-fibrous layering. Solid (mineral) and 

fluid inclusions are widespread in quartz and feldspar grains. These occur as parallel 

discontinuous bands or random clusters together with subordinate wall rock 

fragments. 

 The degree of deformation and recrystallization in the veins is variable with 

the presence of both recrystallized and undeformed/preserved phases of the same 

mineral. Other than calcite and chlorite, most mineral phases show evidence for 
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either crystal plastic or brittle deformation (Fig. 5.60 E). Folded veins are rare and 

were only widely developed in the biotite schist domain (Fig. 5.60 F). Veins are 

normally cross-cut by faults, fractures and other veins. 

 Faults invariably show mineral precipitation onto the fault surface. They are 

distinguished from veins and mineral filled fractures by the presence of slip surfaces, 

comminuted wall-rock fragments or offset markers. 

 The geometry of single faults is characterized by a well defined, relatively 

smooth, straight slip surface varying in thickness from narrow discrete planes to 

wider fault zones. Narrow single fault planes are 1-2 mm wide, varying in width 

along their length. The fault planes are composed of a dark brownish 

cryptocrystalline material, perhaps iron oxide-stained, precipitated minerals or wall 

rock fragments in varied sizes and elongate euhedral to sub-rounded shapes (Fig. 

5.61 A, B). Displacement observed along these faults ranges up to 20 mm. 

 Fault zones comprises parallel sets of slip surfaces with secondary, obliquely 

oriented fault branches projecting off the main slip surfaces (Fig. 5.61 C, D). 

Comminuted wall-rock fragments with varying shapes and sizes occur within the 

zones and are totally or partially altered into chlorite, epidote or sericite (Fig. 5.61 

E). Fine to very-fine sub-rounded fragments occur along the master slip surfaces 

(Fig. 5.61 F). First and second order faults are effectively interconnected, leading to 

the development of a crude foliation within the fault zone. 

 Chlorite, iron oxide and epidote are the main mineral phases associated with 

faults and fault zones. These minerals are precipitated along the structures, filling 

open spaces or forming alteration haloes. Chlorite occurs as fibrous elongated grains, 
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oriented parallel or oblique to the fault planes. Epidote occurs as a granular mass 

normally mixed with chlorite in varied proportions.  

 

5.9.2 Sossego 
 

For the Sossego orebody, microstructural observations were made for the host rock, 

its deformed equivalents and in mineralized veins. 

 Granophyre granite is the dominant lithology in the mine (see macroscopic 

examples in Fig. 5.4 E and Fig. 5.38 E). It is a coarse-grained isotropic granitoid 

formed of K-feldspar, quartz, plagioclase and minor amounts of opaque oxide 

minerals. Intense micrographic and radiating intergrowths of quartz and K-feldspar 

are the distinguishing textural features of this rock (Fig. 5.62 A). 

 Quartz shows little evidence of dynamic recrystallization. Instead, it shows 

lobate grain boundaries and uniform extinction. Sub-grains are rare. Feldspars show 

no undulose extinction and when deformed develops fine grained aggregates of 

fractured grains. Very fine fibrous chlorite and subordinate sulphides are deposited 

along a pervasive network of late micro fractures. 

 Mylonites and ultramylonites are products of localized shear zone 

development within the granophyre granite. Mylonites typically show an 

anastomosing continuous foliated matrix that wraps around augen-shaped feldspar 

fragments, occasionally forming S-C fabrics. In localized mica-rich portions, 

foliation is straight, and eventually forms S-C’ fabric (Fig. 5.62 B). The matrix is 

commonly composed of medium-fine grained recrystallized quartz, biotite and 

feldspars – the latter severely altered to sericite, clay minerals and minor epidote. 
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Quartz is dynamically recrystallized forming porphyroclasts and elongated lenses or 

ribbons (Fig. 5.62 C), which are strongly flattened, totally or partially recrystallized 

indicating SGRR. New grains form polygonal aggregates with a unimodal grain size 

and limited examples of oblique foliation. Subgrain domains show strong undulose 

extinction with either elongate or subhedral grain shapes. 

 Quartz clasts have sharp boundaries with the matrix and are represented by: 

(1) “fish” objects with irregular/sweeping undulose extinction (Fig. 5.62 D); (2) 

mantled clasts with an undulose core and a mantle of sub-grains and/or newly 

formed polygonal grains (Fig. 5.62 E); and (3) sigmoids of subgrains and new grains 

(Fig. 5.62 F). Rare feldspar relicts occur as naked clasts being invariably 

saussuritized. The main SPO is defined by aligned quartz ribbons forming the 

foliation. An LPO is present in domains where subgrains and new grains coexist. 

Subgrain rotation and grain boundary migration are the dominant operative 

deformation mechanisms. The studied samples do not show consistent shear senses.  

 Ultramylonites are characterized by well defined millimetre-scale bands (Fig. 

5.63 A) formed of a fine matrix (<30 µm) containing varied proportions of quartz, 

K-feldspar, plagioclase, and chlorite. Sub-rounded relicts of quartz, feldspars and 

sulphide, form porphyroclasts within the matrix (Fig. 5.63 B, C). The matrix 

typically shows alternating felsic/mafic rich bands of fine grains that possess no 

marked SPO or LPO. Foliation is straight with the localized development of 

anastomosing fabrics. It is marked by elongated chlorite and sulphide grains (Fig. 

5.63 D). Quartz is dynamically recrystallized occurring as clusters or ribbons of 

polygonal new grains or subgrains formed by SGRR. Feldspars are intensely 

saussuritized and display reduced grain size by fracturing. Porphyroclasts can be 
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naked or occur as winged σ-type mantled clasts. GSPO and LPO are absent. 

  

 Mineralized and barren veins are widespread at Sossego and can be classed 

as shear or tensile features. Their mineral assemblages comprise: calcite, quartz, 

chalcopyrite, magnetite, albite, k-feldspar, chlorite, ± biotite, ± white mica 

 Vein walls typically show a 5 mm or less wide hydrothermal chlorite or 

biotite halo associated with intense microfracturing and subordinate veining. Thinner 

vein branches are commonly projected from the master fracture into the wall-rocks. 

Sheared boundaries characterise veins initiated by non-coaxial extension (Fig. 5.64 

A). They are typically a few millimetres wide, fine grained, comprising micas, quartz 

and k-feldspar and subordinate sulphide that forms aggregates oblique to the vein 

walls. The majority of these veins show an abrupt change from the sheared fabric to 

a granular isotropic texture. 

 Tensile veins have no apparent fabric and show a granular texture with 

heterogeneous grain size distribution (Fig. 5.64 B). Internal zoning is common and 

characterized by stratified domains, sub-parallel to the vein walls with distinct grain 

sizes and mineralogical characteristics. In the centre of the veins, minerals are 

subhedral/euhedral with sharp straight boundaries. Towards vein walls, crystals 

show interlocked, lobate or sub-rounded boundaries. 

 Deformation within the veins is relatively limited, mostly accommodated 

within sheared domains. Quartz shows uniform undulose extinction, deformation 

lamellae and several trails of fluid and solid inclusions. Subgrains can be present, but 

are generally rare. Calcite typically displays large grains with sulphide inclusions, 

serrated boundaries and tabular thick twins. Strain is manifested by the development 
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of locally curved twins, irregular undulose extinction and subordinate recrystallized 

grains. K-feldspar occurs in a variety of grain sizes and shapes from sub-rounded to 

euhedral. The crystals are fractured and have corroded boundaries when in contact 

with calcite. Undulose extinction, when present, is weak. 

 

5.9.3 Interpretation of the microstructural observations 

 

5.9.3.1 Ductile Features 
 
A summary of the ductile microstructural features and estimated temperatures of 

each of the dislocation creep regimes proposed by (Hirth et al. 1992) is presented in 

Table 5.6. 

 The little deformed and weakly deformed wall-rock domains comprise 

isotropic granites and metavolcanics at Sequeirinho and granophyre at Sossego. 

Generally these rocks show little evidence of crystal plastic deformation, although 

weakly developed Regime 1 dislocation creep characteristics were identified in a few 

samples. 

 The mylonites and ultramylonites at Sossego show microstructural features 

compatible with Regime 2. At Sequeirinho, similar mylonitic fault rocks and foliated 

granitoids were interpreted to have deformed at conditions compatible with the 

transition between Regime 2 and Regime 3. 

 The microstructural observations from quartz indicate that deformation 

occurred under the following conditions: ~300-400°C (lower to middle greenschist 

facies) in Sossego; and ~400-500°C (middle to upper greenschist facies) in 

Sequeirinho. Additionally, the minor presence of recrystallized feldspar at 
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Sequeirinho is consistent with temperatures that possibly exceeded 500°C in this 

orebody, since crystal plastic deformation of feldspar generally occurs at higher 

temperatures compared to quartz (Tullis et al. 1985; Bell et al. 1989). 

 These temperature estimated agree well with results presented by (Monteiro 

et al. 2008) who suggest temperatures using oxygen isotope partitioning data 

between mineral pairs as > 500°C for Sequeirinho and ~460°C for Sossego. 

  The coeval occurrence of microstructural features from Regime 2 and 

Regime 3 at Sequeirinho is possibly related to the presence of fluid. (Hirth et al. 

1992) and; (Tullis 2002) demonstrate that the transition from Regime 2 to Regime 3 

can occur due to the addition of trace amounts of water, since dislocation creep flow 

strengths depend on water fugacity. Widespread evidence of fluid activity in the 

studied samples is marked by: (a) the pervasive alteration of feldspars and micas; 

and (b) the precipitation of sulphides and magnetite along the mylonitic foliation. 

These observations make it very likely that the ductile deformational processes were 

intimately influenced by the presence of fluids. 

 

 

5.9.3.2 Kinematic Indicators & Porphyroclasts 
 

Oblique foliations and mineral fish indicate an overall sinistral shear sense for the 

mylonites. These features are considered to be reliable shear sense indicators 

(Passchier et al. 2005), but they are not observed in all the studied samples. The 

presence of σ-type porphyroclasts indicates that the shear flow regime favoured 

relatively high recrystallization rates at low shear–strain rates (Passchier 1986). 
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Porphyroclasts display both sinistral and dextral shear senses with approximately 

60:40 relative proportion. This ambiguous character may not be useful to determine 

the overall shear sense, but can give insights into the operative shear regime. 

(Simpson et al. 1993) demonstrated that in shear zones with a component of both 

pure and simple shear, porphyroclasts may rotate in directions opposite to that of the 

bulk flow regime. In summary, microstructural observations on mylonites indicate an 

overall sinistral shear sense with dextral components, which are consistent with 

transpression.  

 

5.9.3.3 Brittle Features 
 

Shear zones, veins and faults are ubiquitous in both deposits. These structures record 

important hydrothermal activity under brittle-ductile conditions and play a major role 

in controlling the genesis and architecture of the mineral deposits. 

 Observations on mineral filling highlighted mono and poly- mineralic veins. 

Massive, monomineralic veins are interpreted to have formed by a relatively simple 

growth history with a single phase of vein opening and sealing. The second group 

includes veins with multiple mineral fillings, which are interpreted as having opened 

episodically with associated temporal changes in fluid composition. Elongate 

crystals, fibrous mineral fills, the development of wall rock inclusion bands and fluid 

inclusions trails are indicative of crack–seal mechanisms similar to those described 

by several authors (e.g. (Ramsay 1980; Cox et al. 1983; Ramsay et al. 1987). Such 

models generally consider the repetition of a sequence of events to form a vein, 

involving: (1) crack opening, driven by fluid pressure increase; (2) fluids percolating 

along extension fractures with further precipitation of new crystalline materials onto 
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the fracture walls; (3) crack sealing leading to build up of tectonic stresses until the 

critical failure stress is reached causing a new failure; and (4) the new vein forms 

inside the earlier one splitting it into two parts, or forms along one of the vein-wall 

contacts. Vein sealing continues until there is wall to wall cohesion. This cycle is 

repeated and may form wide veins made up of numerous composite microveins, 

which appears to work well for the veins at Sossego.  

 

5.9.3.4 Veins and temperature 
 
Minimum estimated temperature conditions during vein formation were constrained 

using indirect evidence. Some of the observed veins are composed of fibrous 

aggregates and were interpreted as formed by crack-seal mechanisms. According to 

(Ramsay 1980), crack-seal veins are formed during deformation where temperature 

and pressure conditions were below upper greenschist facies. They also state that 

fibrous forms of crystal infills in veins are unstable at temperatures higher than 

350°C. Therefore, this can be interpreted as the maximum temperature for the 

formation of crack-seal fibrous veins. Additionally, (Passchier et al. 2005) suggest 

that twin geometries in calcite are one of the most promising temperature gauges to 

be used. Calcite twins from veins at Sossego were classified as Type II (tabular thick 

twins) following the standard geothermometry classification (Burkhard 1993; Ferrill 

et al. 2004). These “thick twin” types indicate temperatures greater than 170°C and 

less than 250°C. This constrains the minimum and maximum temperatures for this 

late-stage phase of hydrothermal mineralization. 

291

Chapter 5



 The greenschist facies minerals (i.e., epidote, chlorite, calcite) are generally 

found within high temperature veins estimated to have formed at 400°C to 600°C by 

(Monteiro et al. 2005).  

 

5.9.3.5 Faults & Fault Zones 
 

Fault zones are characterized by slip surfaces often associated with phyllosilicate-

rich planar fabrics and the presence of comminuted wall rock fragments mixed with 

hydrothermal minerals. Microstructural observations on fault zones provide evidence 

for cataclastic deformation coupled with hydrothermal fluid influx. Cataclasis is 

defined as deformation involving repeated brittle fracturing of grains operated by 

sliding and rotation of the fragments pass each other and further fragmentation of 

these into smaller particles (Sibson 1977; Passchier et al. 2005). This process is 

restricted to shallow levels in the crust (<10km) generally at relatively low 

temperatures and higher strain rates (Sibson 1977; Evans 1988). Heterogeneous 

degrees of fragmentation were observed in the fault zones, marked by variations in 

clasts average size and roundness. Hydrothermal minerals are ubiquitous within the 

faults. Epidote and chlorite were the main mineral phases indentified along slip 

surfaces, filling open spaces and replacing altered minerals (especially feldspars). 

 Dilatancy associated with brittle deformation allows fluid influx, and fluids 

are crucially important to fault behaviour (Snoke et al. 1998). They may promote 

fault weakening by: (1) reducing the effective stress (Miller et al. 1997); (2) causing 

stress corrosion around crack tips (Kerrich 1986a); or (3) causing reaction of the 

finely comminuted material with water to form weaker mineral phases (Mitra 1978). 

Syn-tectonic growth of epidote, chlorite and alteration of feldspars into fine grained 
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aggregates of epidote and micas are evidence of channelized fluid flow possibly 

facilitated by a pervasive fracture network (Jefferies et al. 2006). The fluids are 

interpreted to be related to the earthquake cycle on faults; during inter-seismic 

periods precipitation causes decreasing permeability and increasing fluid pressure, 

leading eventually to rupture, which then increases the permeability and decreases 

the fluid pressure (Sibson 1990; Snoke et al. 1998). These cyclic processes described 

as seismic pumping and fault valve behaviour (Sibson 1990) are particularly likely to 

occur towards the base of the seismogenic zone along high angle reverse faults, 

where metamorphic fluids develop a high fluid pressure due to the low permeability 

cap produced at the brittle-plastic transition (Etheridge et al. 1983). This setting is 

consistent with the observed sinistral transpressional tectonic regime associated with 

the development of the Sequeirinho and Sossego mineral deposits. 

 

5.10 Tectonic Interpretation 
 

The sequence of the major geological events in the study area is described based on 

the multi-scale structural data herein presented, and the previously published 

geochronological data. 

 The basement in the area comprises reworked granite-gneisses dated at 3.0 to 

2.9 Ga. These rocks represent products of early Precambrian tectonics and are not 

exposed in the studied mines. The forming processes of these rocks are unclear, but 

appear to be comparable to the vertical tectonics processes (i.e. diapirism) described 

in the adjacent Rio Maria Granite Greenstone Terrane to the south. 
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 The metavolcanics and schists present in the north of the mines may 

represent tectonised fragments of the volcano-sedimentary sequences of the Grão 

Para Group, which lie nearby. These rocks were deposited in an intracratonic basin 

formed at 2.8-2.7 Ga. The regional extensional regime that formed the basin, led to 

the emplacement of 2.7 Ga. granitoids (e.g. Estrela, Planalto, Serra do Rabo and 

Plaque Suite), that are dominant in the mines and host the bulk of the copper 

mineralization. Both metavolcanics and granitoids can be considered as the potential 

sources for the metals deposited during mineralization. 

 Tectonic inversion of the basin initiated at about 2.7 Ga, lasting up to 2.6 Ga. 

The basin inversion involved a regional phase of sinistral transpression controlled by 

a general NNE-directed oblique shortening with angle of relative shortening (α) of 

approximately 20°Az relative to the geographic north (see Fig. 5.65). Shortening 

produced a pervasive sub-vertical ductile fabric with 15º swing from E-W to WNW-

ESE trending foliation (see stereonets in Fig. 5.15 A and Fig. 5.23 A and field 

photos in Figure 5.20 and Fig. 5.22 A and F). The steeply plunging mineral 

lineation associated with the steep foliation, indicates that the principal shortening 

and extensional axes were approximately oriented near the horizontal and vertical 

positions respectively. Shear criteria observed in mylonites is consistent with 

sinistral transpression. Transpression was accompanied by metamorphism with 

conditions compatible with lower-to-middle (~300-400 ºC) and middle-to-upper 

(~400-500 ºC) greenschist facies.  

 As deformation progressed, it is proposed that the rocks locally reached their 

limit of mechanical plasticity promoting nucleation and propagation of NE-SW 

sinistral brittle-ductile shear zones and faults (e.g. Fig. 5.65). These structures are 
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evident in the aeromagnetic survey and at map scales curving and dragging early 

WNW-ESE structures (e.g. Fig. 5.8 B and Fig. 5.9 B and C). 

 At 1.8 Ga granitic plutons were intruded the basement domain during a later 

region phase of crustal extension. The Rio Branco Granite, adjacent to Sequeirinho 

belongs to this generation of granitoids. Despite the lack of isotopic dating, this 

granite shares petrological, textural and structural characteristics with other 1.8 Ga. 

anorogenic granites recognised in the region (e.g. Cigano and Central granites). 

 Mineralization appears to have formed at during the late stages or shortly 

after the 2.7-2.6 Ga transpressional event. Published isotopic ages constrain the time 

of mineralization between 2.6 and 2.5 Ga e.g. (Neves 2007) in Sequeirinho, under 

rheological conditions compatible with semi-brittle and brittle regimes. The 

mineralization at Sossego, compatible with dominantly brittle rheological conditions, 

was dated at ~1.5 Ga by (Neves 2007). The age has limited genetic significance 

because is not comparable with other ages obtained for copper mineralization in the 

region. Collectively, the copper mineralization in Sossego and Sequeirinho is 

probably linked to the major thermo-tectonic event at 2.7-2.6 Ga., when the interplay 

between deformation-metamorphism-magmatism provided the source metals, 

transporting fluids and the structures where the mineralization was hosted. 
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5.11 Fragmentation Mechanisms 
 

Based on clasts shape analysis and fractal D-values, breccia bodies can be separated 

according to the intensity of their experienced shearing:  

- low shearing breccias (Sossego): relatively high clasts angularity and smaller D-

values are characteristic of immature explosion breccias. These correspond to the 

early products of fragmentation dominated by particles fracturing and cracking that 

generate coarse and angular fragments. 

- high shearing breccias (Sequeirinho): rounded fragments with low angularity and 

higher D-values are typical of more mature breccias. They represent a further, later 

stage of particle fragmentation, dominated by wear and attrition when particles 

interact by rolling, sliding and rotation during subsequent slip along a fault zone 

(Blenkinsop 1991; Hattori et al. 1999; Keulen et al. 2007). Interestingly, the decrease 

in particle angularity can help promote a continuous reduction in friction during fault 

displacement, possibly favouring fault weakening processes (Mora et al. 1999) and 

reactivation. 

 Despite the differences in their degree of fragmentation, the breccia bodies 

share some characteristics with important implications for their genetic 

interpretations. Firstly, geological observations suggest that the brecciation process 

was repeated (seismogenic??). This assumption is reinforced by the presence of 

multiple variants of breccias that represent different products of brecciation cycles. 

Secondly, the presence of alteration halos in the clasts is evidence that breccia 

fragments experienced transport in the presence of chemically reactive fluid phases. 

These interpretations permit speculation that the breccias were formed by single 

rapid events related to the quick release or increase of fluid overpressure. This is 
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consistent with the suggestion that breccia formation is at least partially controlled 

by cyclic variations in shear stress during the seismic cycle, and by fluctuations in 

fluid pressure, which are associated with deformation-induced changes in fault 

permeability during fault-valve behaviour. 

 

5.12 Implications for exploration 
 

The Sossego and Sequeirinho orebodies are important examples of medium to large 

IOGC deposits. These deposits, together with the Salobo, Cristalino and Target 118 

deposits confirm the potential of the Carajás area for future prospects of this class 

and suggest that the Amazon Craton needs to be considered for further exploration of 

Archaean-Proterozoic IOCG deposits. 

 Soil geochemistry and geophysics have been the most used and successful 

exploration methods applied in the search for IOCG deposits in Carajás. Geophysics 

has proved to be a robust tool for prospecting these types of deposit, playing 

important roles in the location of large discoveries in Finland, Australia, Africa and 

Canada, especially the use of magnetometry. However, despite several examples of 

IOCG deposits around the world displaying close spatial association with major 

structures (i.e. faults or shear zones), structural criteria still seem to be viewed as 

being of secondary importance in the strategy of exploration campaigns. This is 

clearly inappropriate since it is widely accepted that major mineralised hydrothermal 

systems develop sufficient connectivity to create networks that link fluid source 

rocks to favourable sites for ore deposition (Jiang et al. 1997; Cox 1999). Relatively 

well-connected faults thus have the potential to form long-distance fluid 
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channelways and ore deposition may occur at specific structural sites such as 

terminal fault branches, fault offsets/jogs, faults in particular orientations, and 

smaller faults connecting larger faults (Stephens et al. 2004). 

 The data presented on this work agrees with other examples in the literature 

showing that the structural-tectonic framework represents one of the key elements in 

controlling the formation major mineralized IOCG systems. It is therefore suggested 

that the search and identification of crustal scale structures should become part of the 

exploratory strategy. These structures have the potential to act as fluid pathways, and 

parts of the system can act as traps of hydrothermal fluids at both regional and local 

scales. In summary, for exploration on the basement terrain of the Carajás Region it 

is recommended that careful observations should be focused on magnetic anomalies 

corresponding to NE-SW sinistral structures and, in particular on their intersections 

with the WNW-ESE regional trend.  

 

5.13 Conclusions 
 

 The integration of data at map, mesoscopic and micro scales and its interpretation 

permits to the following conclusions to be made:  

The deposits sit in the basement domain of the Canaã dos Carajás region 

including 2.9 Ga. Archaean gneisses intruded by 2.7 Ga syntectonic granitoids. 

These rocks display a widespread sub-vertical WNW-ESE ductile fabric formed at 

amphibolite facies.  

The structural framework of the area consists of regionally developed WNW-

ESE structures (foliations and shear zones) offset by NE-SW sinistral faults observed 
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at magnetic surveys and geological maps. The Sequeirinho orebody is hosted along a 

NE-SW sinistral fault, associated with positive magnetic anomaly whilst the Sossego 

orebody does not show obvious link to a major structure or prominent magnetic 

anomaly. 

 The main phase of deformation and mineralization took place at 2.7-2.6 Ga. 

under a region regime of sinistral transpression. Strain was heterogeneously 

accommodated defining low strain domains separated by high strain, mylonitic shear 

zones showing gradual boundaries. The transpressional deformation produced a 

ubiquitous sub-vertical foliation and locally developed steep mineral lineation; 

sinistral shear criteria are dominant.  Microstructural observations of quartz and 

feldspar indicate that the sinistral transpressive deformation at Sossego and 

Sequeirinho initially took place under low-to-middle (300-400°C) and middle-to-

upper (400-500°C) greenschist facies, respectively. The relatively high-temperature 

fabrics were then overprinted by a late brittle-ductile structures and veins containing 

the main copper mineralization and lower-temperature minerals interpreted to be 

formed at between 170 up to 250°C.  

Hydrothermal fluid flow was ubiquitous in both thermal regimes, intimately 

associated with high strain zones and nucleation/development of structures. Fluid 

circulation caused intense mineral alteration (particularly of feldspars) and 

precipitation of new minerals, some of them weak. What may have promoted fault 

weakening, possibly facilitating later fault reactivation. The evidence of temporal 

changes in fluid composition and the presence of ultracataclasites in some faults can 

be indicative of episodic fault slip triggered by fluid overpressure e.g. fault valve 

behaviour. 
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 The Sossego ore body comprises a sub-vertical pipe-like feature with an 

inner breccia body surrounded by a stockwork array of sulphide veins faults and 

shear zones (Fig. 5.65). By contrast, the Sequeirinho deposit is formed by a sub-

vertical, NE-SW tabular breccia body hosted along a fault (Fig. 5.65). 

 Both orebodies record intense hydrothermal activity with varied mineral 

alteration assemblages developed along faulted and sheared domains. Faults and 

shear zones acted as fluid pathways facilitating episodic fluid flow that formed the 

sulphide mineralization and caused pervasive alteration on the host rocks. 

 The studied breccia bodies show distinct textural characteristics and fractal D 

values. Sossego comprises immature breccias formed by fracturing and cracking 

assisted by highly pressurized fluids that produced coarse and angular fragments. 

Sequeirinho contains mature breccias formed by processes dominated by wear and 

attrition of particles consistent with episodic slip along a fault zone. 

 The intrusion of granitoids and subsequent metamorphism during sinistral 

transpression were the potential sources for the fluids that promoted widespread 

hydrothermal alteration and formed the mineralization when mixed with surficial 

fluids. The late emplacement of the 1.8 Ga. anorogenic granites may also have 

caused further fluid circulation that promoted some remobilization of mineralization. 

 Ultimately, the presented findings suggest that the rocks in the area of the 

mines record deformational processes that initially took place under the viscous 

regime (>15km), represented by mylonites and ultramylonites. Progressive 

exhumation, possibly synchronous with regional transpressional thickening led to 

conditions compatible with the frictional-viscous regime and intense fluid activity, 

300

Chapter 5



 

 

with mineralisation. Finally “dry” fractures and faults were later formed under a 

frictional regime. 
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Age (Ga) Event Kinematics

0.24

Present day

-0.15

Reactivation of fault system recorded by recent small-scale seismicity

Brittle reactivation of fault systems during opening of the South Atlantic in
the Mesozoic

Uncertain

Extension

1.92-1.88

Intrusion of granite plutons and dyke swams

Weak tectonic inversion by fault reactivation with moderate to strong

Brittle-ductile deformation of the rocks adjacent to the Carajás Fault

Extension or transtension

Sinistral transpression
(sinistral strike-slip faults,
reverse faults, folding)

2.6-2.5

Emplacement of granitic intrusions, e.g. Old Salobo

Dextral transtension
(small dextral strike-slip
on E-W and NW-SE faults)

2.8-2.7

Emplacement of syntectonic granitoids, e.g. Estrela, Plaque Suite, Planalto

Sinistral transpression

Sinistral transpression

Sinistral transpression

3.1-2.9

Development and further brittle reactivation of the Carajás and
Cinzento strike-slip systems. Intrusion of sills and dykes and formation
of the Carajás Fault

Formation of the tonalitic gneisses of the Xingu Complex and Pium

Volcanism and deposition of the Grão-Para; Igarapé Salobo, Igarapé Bahia
and Igarapé Pojuca Groups , with the later deformed and metamorphosed
under very-low to medium temperature conditions

Formation of the Itacaiunas Shear Belt by high temperature ductile
deformation affecting the basement rocks

Table 2 Summary of the main tectonic events, their age intervals, products and kinematics recorded in
the Carajás Region. After and .Pinheiro and Holdsworth 1997 Holdsworth and Pinheiro, 2000
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Hydrothermal Assemblage G e n e r a l i t i e s

S
o
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s

e
g
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-

C
u
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r

a
l

Sodic Alteration

Sodic
Alteration

Silicification
Epidotization

Silicification
Epidotization

Sodic-Calcic
Alteration

Apatite- Iron
oxide formation

Potassic
Alteration

Potassic
Alteration

Chloritization
Carbonatization

Chloritization
Carbonatization

Mineralization

Mineralization

Albite+tourmaline+scapolite+hematite+epid
ote (veins)

Generally pervasive alteration with restricted
ocurrence of albite veinlets

Intensively overprinted by potassic alteration

Breccia body displaying two distinct assemblages
forming the breccia matrix;late mineralized
assemblage strongly replace and alterate the
early assemblage

Quartz+epidote

Quartz+albite+epidote

K-feldspar+Cl-biotite+quartz±magnetite

Chlorite+calcite±quartz±titanite±rutil
e±magnetite

Occurs as veins when away and pervasive
close the mineralized zones; is the best
developed alteration assemblage

Characterized by veinlets and replacement
zones adjacent to the potassic alteration

Mineralized breccia bodies and veins show
three characteristic mineral assemblages
produced by distinct episodes

(I) early: magnetite-actinolite-apatite-calcite
(II) main: calcite-chlorite-epidote-quartz-pyrite-
chalcopyrite siegenite millerite
(III) late: calcite-quartz-chlorite-actinolite

±gold± ±

Epidote filling fractures-veins

Albite+hastingsite+actinolite;
Acessories:magnetite+calcite+epidote+qu
artz+titanite

regional character; fracture controlled; cuts and
replaces the sodic alteration assemblage; best
developed in gabroic rocks; also represented by
massive bodies of actinolite and magnetite cross-cut
by late epidote veins

Actinolite+magnetite+apatite

K-feldspar, Cl-biot i te, quartz, magnet i te
subordinated allanite, thorianite, chalcopyrite; Pista:
biotite±hastingsite-tourmaline-scapolite

overprints sodic and sodic-calcic assemblages;
forms hydrothermal haloes around mineralized
zones poorly developed at Sequeirinho; best
developed at Pista

A lb i te+ca lc i te+ch lo r i te Acessor ies :
rutile+pyrophanite+peroviskite

Spatially associated with potassic assemblage,
generally in metavolcanics of Pista

(I) early: actinolite/ferroactinolite+Cl-
Apatite+magnetite
(II) late:
epidote+chlorite+quartz+calcite+chacopyrite+pyrit
e+siegenite+millerite

Albite as veinlets and massive albitite

Table 3 - General summary of mineral parageneses and modes of occurrence of the main types of
hydrothermal alteration recognized in the Sequeirinho Pista Baiano and Sossego Curral .
Table summarized from Carvalho et al., 2005; Villas et al., 2005 ; and Monteiro et al., 2008.

orebodies

310

Chapter 5



0 7 143.5
Km

600000 620000 640000

92
80

00
0

93
00

00
0

±

0 7 143.5
Km

600000 620000 640000

92
80

00
0

93
00

00
0

±
Magnetic lineaments

Topographic lineament

Sossego orebody

Sequeirinho orebody

M
ag

n
et

ic
fi

el
d

sl
o

p
e

(d
eg

re
es

)

0.00 - 3.11

3.11 - 8.31

8.31 - 15.23

15.23 - 23.89

23.89 - 33.93

33.93 - 45.01

45.01 - 57.12

57.12 - 70.28

70.28 - 88.28

A

B

Figure 5.7 - A

B

Magnetic survey and interpreted lineaments picked at 1:170.000. aeromagnetic survey
(IGRF total intensity) with 1 km spacing between the flight lines; the anomalies represent the steepness
of the magnetic field in the area. Interpreted magnetic lineaments (black) and topographic lineaments
picked from digital elevation model (red). Stars represent the Sossego and Sequeirinho orebodies
respectively. Coordinate grid: UTM zone 22 south datum WGS89. The dashed polygon indicates the
location of the finer scale survey presented in Fig. 8.
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Figure 5.8 A
B

Magnetic survey and interpreted lineaments picked at 1:35,000. aeromagnetic survey
(IGRF total intensity) with flight lines spaced 250m; magnetic intensity represented in nT. Interpreted
magnetic lineaments and projected mineralized zones. The location of the Sossego and Sequeirinho
orebodies is indicated but the outer limits of the mines. Coordinate grid: UTM zone 22 south datum
WGS84.

312

Chapter 5



604000

604000

604000

606000

606000

606000
9

2
9

0
0

0
0

9
2

9
0

0
0

0
9

2
9

0
0

0
0

9
2

9
2

0
0

0
9

2
9

2
0

0
0

9
2

9
2

0
0

0

0 500 1,000250
Meters

0 500 1,000250
Meters

0 500 1,000250
Meters

Lithological contacts

Mineralized zones

Tectonic blocs

Mine limits

A

B

C

Fig 9 A
B

C

Analysis of geological contacts at map scale. geological map of the area containing the Sossego and
Sequeirinho deposits with lithological contacts delineated by black lines (the colour key is the same as Fig. 5.3);
Lineaments corresponding to lithological contacts only; Kinematic interpretation of lithlogical lineaments
displaying projected mineralized zones and major deformed blocks in grey.

ure 5.

Sequeirinho
Corridor

Sequeirinho
Mine
Sequeirinho
Mine

Sossego
orebody

So ego
Mine
Sossego
Mine

313

Chapter 5



Fig 10 Geological map of the Sossego orebody. The mine topography, limits of the mineralized
zones and lithologies are MSS/VALE mapping products. The structural symbols correspond to the
mapped structures during fieldwork in the mine. FG 9 and 14 indicate the location of the logged drill
cores
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Stereoghaphic projection diagrams presented as planes, poles of planes and density
contours of poles for mapped structures in the Sossego mine: foliation; shear zones; faults and
faults slickenlines; sulphide veins; and barren veins. Data is represented in equal area plots,
projected in the lower hemisphere.
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Fig 11 F stereonet for fault slickenlines and fault planes sorted by their spatial location in
the Sossego mine. Data is represented in equal area plots, projected in the lower hemisphere.
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A

B

Fig 12 A
B

Shear zones at Sossego. banded type shear zone and in detail, a close view of the
straight banding and a sigmoidal feature. steep dipping shear zone showing elongated mineralized
“pods” of sulphide+quartz.

ure 5. -
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A

B

Figure 5.13 - A

B

Type 1 faults at Sossego. moderately dipping discrete and straight fault plane; in detail:
(i) subhorizontal fault striae indicating directional fault motion and (ii) the white material is a thin
cataclasite layer. a gently curved fault plane showing fragmented material cemented by calcite into
the fault plane.
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A

B

C D

Fig 14 A
B

C

D

Type 2 faults at Sossego. relatively wide sub vertical fault zone on the weathered
profile; note the prominent banded aspect of red and white altered bands see detail photo. overview
of a steep dipping fault zone in “fresh” rock; closer view of the fault in B displaying evident “striped”
patter comprising alternating domains of less fractured and intensely fragmented friable material (in
detail) composed of clay minerals and rock chips; another example of fault zone characterized by
parallel sets of high strain fault strands separated by relatively less or undeformed domains of angular
fragments.
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A

B

Figure 5.15 - A
B

Extension veins at Sossego. typical single tabular vein filled with massive sulphide, note
the straight vein walls; branching sulphide vein with “Y” geometry, bench height= 6m.
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Fig 1 Sulphide and magnetite veins forming a well connected stockwork array. Note the random
orientation of the veins ranging from sub horizontal to sub vertical position. Stockwork veins show both
curved and straight angular geometry (in detail).

ure 5. 6 -
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A

B C

Fig 1 A

B & C

Sheared veins at Sossego. zoned vein showing sulphides+quartz in the outer part and
calcite±actinolite forming the inner fill. Note the presence of fine incohesive material along the vein
walls; examples of relatively narrow mono mineralic sheared veins.
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A

B C D

Fig 1 A
B

C
D

Examples of mineralized breccia veins at Sossego. robust sub vertical tabular breccia
vein, note the large angular fragments within the vein and calcite white patches; curvy tip of a
composite vein showing chalcopyrite in the outer and an unidentified mineral in the inner portion of the
vein that also contains sub rounded fragments; relatively narrow branch of vein containing an
elongated fragment approximately 10cm long; breccia vein apparently offset by shear band.
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NESW

Bench height= 4m

A

B C

Fig 2 A
B & C

Examples of foliation at Sequeirinho within the schists domain. typical appearance of
the prominent sub vertical schistosity observed in the mine benches; detailed views of the
foliation aspects: fine to very fine, straight and continuous prominent fabric, locally showing
alternating bands.
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30
cm

Fig 2 Symmetric boudins wrapped by foliation in the schist domain at Sequeirinho. In detail
quartz+biotite pressure shadows occasionally present at the boudins neck. Note the absence of foliation
inside the boudins.
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A B

CD

E F

foliation
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Fig 2
A

B C
D E

F

Selection of the most representative planar fabrics typically found in sheared granitic
domains at Sequeirinho. red plane represents the sub vertical foliation and arrow indicates the
position of the mineral lineation; & general and detailed aspects of mylonitic foliation showing its
anastomosing character and rigid porphyroclasts and lenses; & also show prominent
anastomosing foliation associated with albite and epidote rich alteration, note the limited presence of
porphyroclasts; a relatively weak foliation in the boundaries of a sheared domain.
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0 8 %

1 7 %

2 5 %

3 3 %

4 2 %

5 0 %

Foliation N= 478
Min. Lineation

N=29

0 7 %

1 4 %

2 2 %

2 9 %

3 6 %

4 3 %

5 1 %

Faults N=554

Faults slickenlines N=144

0 7 %

1 4 %

2 1 %

2 8 %

3 5 %

4 2 %

1 9 %

3 7 %

5 6 %

7 4 %

Barren veins N=54

Shear bands
N=59

A

B

C

D

E

Fig 2
A

B C D E

Diagrams of stereoghaphic projection diagrams presented as planes, poles of planes and
density contours of poles for mapped structures at the Sequeirinho mine: foliation and mineral
lineation; fault planes and zones; faults slickenlines; barren veins; and shear bands. Data is
represented in equal area plots, projected in the lower hemisphere.
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Fig 2 F Stereones for fault slickenlines and fault planes sorted by their spatial location in
the Sequeirinho Mine. Data is represented in equal area plots, projected in the lower hemisphere (black
triangles = slickenlines).
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A B

C D

C
om

pass

Fig 2 A B
C

D

Type 1 faults at Sequeirinho. discrete and straight fault plane in metavolcanic rock;
sub parallel set of sub vertical faults develop in biotite schist, bench height = 4m; conjugated “dry”
faults containing lozenge shaped fragments along the fault planes; set of “dry” sub vertical faults
with prominently curved planes.

ure 5. 4 -
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A

B C D

Fig 2 A

B

C D

Some examples of the Type 2 faults at Sequeirinho. sub vertical fault zone displaying
fragmented material within the fault plane, in the close up photo is possible to identify coarse and
angular fragments immerse in a very fine dark mass of extremely fine friable material; discrete fault
plane showing a thin layer of very fine and dark material smeared onto the fault plane, tiny chips of
quartz are visible within the fine material; & layered intensely fractured material on the fault
planes bounded by well defined surface (slip?), chloritization in C and precipitation of calcite in D are
evidence of fluids activity during or post faulting.
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a e z nDamage zone D ag zo eDamage zone

F ul o eFault core

A

B C D

Fig A

C D E B
C D

Wide fault zone in the granitic domain at Sequeirinho. outcrop wide photo shows the
general features of the fault zone including: dark fault core containing ultracataclasites intercalated
with wall rock fragments and asymmetric damage zones characterized by faults and fractures cross
cutting intensely altered granitic rocks. Note the apparent decrease in faults/fractures density from the
core towards the damage zones. The red brownish patches in the fault core are hematite stained
ultracataclasites; detailed photos of the features observed in the fault core: in the sharp
contact between ultracataclasite and altered granite; & well defined slip surfaces separating
different cataclasites layers (note different colours) and also making the limits between
ultracataclasites and lenses or layers of rock fragments. Late calcite is present along the lenses or
surfaces.

ure 5.26 -

332

Chapter 5



A B
C

E
D

F
ig

A
B

C D
E

p
a
n
o
ra

m
a

o
f
o
n
e

o
f
th

e
o
u
tc

ro
p
p
in

g
p
a
rt

s
o
f
th

e
R

io
B

ra
n
co

g
ra

n
it

e
cr

o
ss

-c
u
t
b
y

se
ve

ra
l
fa

u
lt

s
w

it
h

m
o
d
er

a
te

d
ip

s;
ex

a
m

p
le

o
f
“

d
ry

”
fa

u
lt

fr
o
m

th
e

N
-S

se
t,

th
e

fa
u
lt

zo
n
e

co
m

p
ri

se
s

se
ve

re
ly

fr
a
ct

u
re

d
a
n
g
u
la

r
fr

a
g
m

en
ts

;
a

ty
p
ic

a
l

fa
u
lt

fr
o
m

th
e

W
N

W
-E

S
E

se
t

w
it

h
re

la
ti

ve
ly

sm
o
o
th

a
n
d

st
ra

ig
h
t

fa
u
lt

p
la

n
es

co
n
ta

in
in

g
co

h
es

iv
e

ca
ta

cl
a
si

te
ce

m
en

te
d

b
y

ve
ry

fi
n
e

d
a
rk

h
yd

ro
th

er
m

a
l

m
in

er
a
l;

fi
b
ro

u
s

a
n
d

g
ra

n
u
la

r
q
u
a
rt

z
fo

rm
ed

o
n
to

th
e

fa
u
lt

p
la

n
e

ev
id

en
ci

n
g

th
e

p
re

se
n
ce

o
f

si
li

ce
o
u
s

fl
u
id

s
a
n
d

ex
te

n
si

o
n
a
ls

tr
es

se
s;

st
er

eo
n
et

s
fo

r
fa

u
lt

p
la

n
es

a
n
d

p
o
le

s
o
fp

la
n
es

in
d
ic

a
ti

n
g

th
e

m
a
in

N
-S

a
n
d

W
N

W
-E

S
E

fa
u
lt

se
ts

cr
o
ss

-c
u
tt

in
g

th
e

g
ra

n
it

e.

u
re

5
.2

7
-

N
=

2
2

333

Chapter 5



334

Chapter 5



335

Chapter 5



336

Chapter 5



337

Chapter 5



338

Chapter 5



339

Chapter 5



340

Chapter 5



341

Chapter 5



342

Chapter 5



343

Chapter 5



Isotropic Granites

A

B

C

D

E F

Fig
A B

C
D

E F

Core samples of isotropic granites with some examples of locally representative alteration
assemblages. granitoid showing sulphide (chalcopyrite) mineralization; albitized granitoid
overprinted by epidote; granitoid displaying three generations of hydrothermal minerals k feldspar
(pink) albite (white) epidote (green); granitoid showing potassic alteration partially overprinted
by albitization; unaltered granophyre; totally albitized granitoid. Samples from Sossego (D, E)
and Sequeirinho (A, B, C, F) orebodies.
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Mylonites

Fig

A B C
D E F G

H

Selected samples of representative types of mylonites developed in granitic rocks.
Foliation varies from relatively straight to gently anastomosing, typically enveloping porphyroclasts or
lenses. The mylonitic fabric can be found as: (i) “coarse” characterized by mineral fragments or lenses
and porphyroclasts; or (ii) fine, composed of narrow layers or ribbons of alternating minerals.
Dominant mineral assemblage includes: albite; actinolite+chlorite; albite porphyroclast and
some k feldspar; actinolite+magnetite; k feldspar+quartz+chlorite; epidote; k
feldspar+actinolite; albite+chlorite. Samples from Sossego (A, B, C, D) and Sequeirinho (E, F, G,
H) orebodies.
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Schists

Fig

A
B

C D
E

Representative biotite schist samples from Sequeirinho. These rocks are characterized by
their prominent fine to very fine foliation. Hydrothermal alteration is represented by fluid pathways
marked by silicification, albitization and discrete brecciation. schist with alternating very thin
bands of quartz and biotite; coarser schist comprising mylonitic level with prominent quartz
porphyroclasts; intensely albitized schist with preserved ductile fabric; partially albitized schist,
the patchy altered domains mark the sites of fluid rock interaction; schist with zone of intense
potassic alteration and localized brecciation, evidencing elevated pressures in the pathways.
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Boundins and deformed veins

Fig 4

A B C
D E F

G H I

Boudins and deformed veins in ultramylonites from the shists domain at Sequeirinho. The two photos
on the top show slightly asymmetric boudins with quartz pressure shadows along the boudin necks. Note the absence
of foliation inside the boudins. Folded quartz veins are ordered from top to bottom displaying strain increase.
Observe the occurrence of sulphide mineralization associated with these veins and transposed folded veins on the
photos at the bottom of the page. and show biotite rich boudins surrounded by quartz rich schist; quartz
vein forming a parasitic fold; quartz vein forming a assymetric fold; isoclinal folded quartz vein; quartz
and sulphide tight fold; secondary folded quartz veins projected from a central unfolded vein; and folded
quartz veins displaying their hinges distended from the fold limbs.
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Shear zones

Fig 4

A B D F C E G

Shear bands or zones developed in granite, granophyre and schist. Photos show the main
characteristics of these zones observed in all the studied domains of the mines. They are normally
narrow but may be up to 4 cm wide. Their geometry varies from straight to curved or anastomosing.
Sharp boundaries, internal foliation and hydrothermal alteration are notably observed in these
structures. Samples from Sossego ( , , , ) and Sequeirinho ( , , ) orebodies.
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Breccia Veins

Fig

Sossego A
B

F
Sequeirinho C D E

Photo collection of breccia veins and its key aspects. These features main characteristics
are: sharp boundaries with the wall rock and the presence of rock fragments generally cemented by
hydrothermal minerals. The three photos on the top show examples of “sheared” breccia veins. Their
distinctive features are either the presence of sheared boundaries or imbricated fragments indicating
flow. The photos on the bottom correspond to the mosaic type breccia veins with relatively angular
fragments with no evidence of rotation or motion. Breccia veins from: breccia showing sub
rounded fragments cemented by pulverized rock and minor sulphide; breccia composed of
elongated, sub angular and imbricated fragments; breccia showing reaction rings in fragments
cemented by hydrothermal sulphide and carbonate and , , .
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Breccias

Fig Mineralized and barren breccias from Sossego and Sequeirinho. These rocks main
characteristics are: varied fragment sizes ranging from few millimetres up to tens of centimetres; and
fragments shape varying from angular to sub rounded. Some samples show fragments with reaction
haloes indicating highly reactive fluids.
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Veins

Fig

A B
C D

E F G H I J
A C D F I J B E G

H

Representative samples of extensional and sheared veins from Sossego and Sequeirinho.
The two upper rows show sheared veins (note sheared walls) and the three rows at the bottom display
simple extensional types. Sheared veins formed of: actinolite and minor sulphide; quartz and
minor actinolite; actinolite and minor sulphide; magnetite and minor calcite. Extensional veins
composed of: actinolite; magnetite; quartz; chalcopyrite + quartz; Actinolite;
magnetite and minor sulphyde. Samples from Sossego ( , , , , and ) and Sequeirinho ( , , and

).
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Stockwork

Fig

B C

Typical aspects of stockwork domains formed by thin interconnect veins or veinlets. The
network of veins indicate favourable conditions for fluid percolation and/or flow evidenced by
alteration of vein walls and precipitation of minerals along the veins. The selected samples from Sossego
are filled with actinolite ( ), chalcopyrite ( ), and sulphide + epidote

ure 5.46 -
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( ); while in Sequeirinho, the
veinlets comprise epidote ( ), actinolite ( ) and calcite/actinolite ( ).
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Faults

Fig

B C E A D F

Examples of discrete fault planes in drill cores and its marking characteristics: (1) straight
and narrow fault planes commonly filled with very fine hydrothermal minerals; and small order of fault
displacements. Samples from the Sossego ( , , ) and Sequeirinho ( , , ) orebodies.
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Small
clasts
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Large clasts >2mm

Crackle
breccia
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Cement or
matrix
<0.1mm
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Sample
number of

clasts
clasts > 2mm % clasts 0.1-2mm %

cement-matrix

(<0.1mm) %

B1 251 41 0 59

B2 305 43 0 57

B3 707 30.1 6.2 63.7

B4 214 44.3 1.7 54

B5 190 54.8 3.3 41.9

B6 499 50.1 9.6 40.3

B7 441 54.6 2.5 42.9

B8 358 47 0.5 52.5

B9 255 54.9 0.5 44.6

A

B

Fig A
B

table showing the number of measured clasts, the three clast size divisions used to
classify the breccias and the respective percentage of the number of clasts per sample; ternary
diagram from Woodcock & Mort (2008), the triangle vertexes correspond to large clasts, small clasts
and cement/matrix. The black dots plotted into the “chaotic breccia” field correspond to the studied
breccias from Sossego and Sequeirinho.
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Fig Log log plots of clast size against their cumulative frequency. The graphs are grouped
according to the size parameter used (S or r). Stars and squares represent mineralized and barren
breccias respectively. The R squared value indicates how well the data fit the model of a straight line.
The closer this value is to 1.0, the better the fit of the data to the linear model. The y value represents the
equation of the best fit line and the negative exponent D (in bold) measures the slope of this line.
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fractal dimension D(r) vs. Angularity. Studied breccia samples from Sossego and Sequeirinho are
plotted in the graphs as stars and squares respectivelly.
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26mm

A B

C D

2.5X

2.5X

10X 20X

10X
1309 mµ

1309 mµ 654 mµ

5235 mµ

5235 mµ

E F

Fig A
B C

D
E

F

coarse granular aspect of anisotropic granite in thin section under natural and
polarized lights. and in natural light, anhedral quartz (clear) and altered feldspar (dark)
aggregates; in polarized light these minerals show interlocking contacts with no visible recrystallized
crystals. strain induced twins in feldspar crystals; note the finely fragmented material along the
major crystals. relatively large quartz crystals with undulose extinction, elongated subgrains and
curvy serrated boundaries. localized recrystallized small quartz subgrains and large grains with
strain induced interdigitated boundaries.
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42mm

A B

C D

E F

2.5X

10X

5X 5X

10X
1309 mµ

1309 mµ

5235 mµ

2617 mµ 2617 mµ

Fig A
B

C
D

E
F

thin section image from a mylonite from Sequeirinho and its marked wavy foliation
wrapping around porphyroclasts. quartz ribbons formed of equidimensional crystals composing a
mosaic of polygonal recrystallized grains indicating subgrain rotation recrystallization. fine grained
aggregates of recrystallized feldspar forming bands with moderate LPO. actinolite porphyroclast
consisting of aggregates of small fragments and preserved larger crystals, crystallization is dominated
by fracturing. sub rounded quartz porphyroclast with internal subgrains and tiny inclusion trails,
dynamically recrystallized quartz wraps around it forming gently asymmetric tails. sub angular
undeformed feldspar porphyroclast mantled by very fine recrystallized feldspar aggregate.

ure 5.55
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0 m30 mm m30 mm

A

5X

20X 50X

5X

B

C D

E F

2617 mµ

654 mµ 262 mµ

2617 mµ

Fig A B
C D

E F

Microscopic aspects of ultramylonites also described as schists. and scanned thin
sections and the general finely banded aspect of these rocks. and five times magnification
displaying examples of sharp and diffuse contact between the banding in the ultramylonites; note the
elongated quartz rich domains and marked orientation of biotite. and high magnification,
highlighting extremely fine biotite crystals and its intense degree of orientation.

ure 5.56 -

363

Chapter 5



A B

C D

E F

2.5X

5X 5X

5X

60mm 50mm

5235 mµ 2617 mµ

2617 mµ2617 mµ

Fig A B
C A

D E B

F

, scanned thin sections containing boudinaged and sheared quartz veins respectively.
microphotography from the detail in showing the internal portion of a boudinaged vein; coexisting

dynamically recrystallized (subgrain rotation) and undeformed quartz evidencing strain partitioning.
, microphotography from the detail in , presenting in natural and polarised light the sharp

boundary of a sheared vein in ultramylonite. Quartz is dynamically recrystallized (subgrain rotation)
into elongated subgrains oblique to the vein walls. dynamically recrystallized quartz displaying
strong LPO.

ure 5.57 -
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A B
B

C

C

D

E

E

F

Fig A
B

C D

E F

scanned thin section showing the general microscopic texture of the metavolcanic acid
rock type, note the intense presence of veins and shear bands; anhedral quartz and k feldspar
crystals immerse in a fine to very fine green biotite rich matrix; and composite micro vein showing
feldspar on the external portion and actinolite crystals in the inner part, perpendicular to the vein walls.

and solid inclusion trails in quartz feldspar veins evidencing episodic vein opening.

ure 5.58 -

10X
1309 mµ

5X

5X 5X

5X
2617 mµ

2617 mµ 2617 mµ
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A B

C D

E F

10X

10X

20X 20X

10X

10X
1309 mµ 1309 mµ

1309 mµ1309 mµ

654 mµ 654 mµ

Fig A
B C

D
E F

Detail of microstructures in ultramylonites. recrystallized quartz lenses displaying
random LPO; quartz fish with sweeping ondulose extinction and totally dynamically
recrystallized grains forming quartz lens; plagioclase porphyroclasts deformed as a domino like
segmentation; , sub rounded and augen shapes of quartz porphyroclasts enveloped by the
foliation and containing mineral inclusions.

ure 5.59 -
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A B

C D

E F

5X 5X

10X 10X

2.5X 2.5X

2617 mµ 2617 mµ

1309 mµ1309 mµ

5235 mµ 5235 mµ

Fig A
B

C
D

E
F

composite vein formed of calcite in the inner and quartz with mica inclusions in the
outer portion of the vein, suggesting at least to opening episodes. monomineralic very fine
epidote vein, the internal structures seem to be fractures. blocky quartz veins showing crystal
growth perpendicular to the vein walls and tiny inclusion trails parallel to the vein. fibrous
chlorite vein with fibres position indicating vein opening direction oblique to its walls. actinolite
vein showing fracturing limited to the internal part of the vein. asymmetric folded vein composed
of fine dynamically recrystallized quartz.

ure 5.60 -
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A B

C D

E F

5X

5X

5X

5X

2.5X

2617 mµ

2617 mµ

2617 mµ

2617 mµ

34mm
5235 mµ

Fig A

B

C

D

E

F

discrete fault plane with sharp boundaries and comprising elongated, imbricated
fragments immerse in brown cryptocrystalline material. Epidote along the fault external boundary is
product of alteration (hydrothermal?). fault plane in intensely chloritized rock showing well defined
slip surface and sub rounded fragments slightly porphyroclasts like mixed with ultra fine dark brown
matrix. Epidote replaces feldspars. chloritized fault zone defined by sub parallel faults (vertical
structures on photo) linked by oblique secondary fault strands, forming an interconnected network of
faults and micro cracks. fault zone characterized by main parallel slip surfaces (filled with ultra fine
dark material) bounding domains of intensely fractured and altered fragments showing a great range in
sizes and shapes. few randomly oriented angular fragments mixed with fine and very fine fault
products (material in between the two dark lines on photo) contrasting with minerals sizes and shapes
outside the fault zone. characteristic aspects of the material associated with fault zones: varied grain
sizes and shapes, randomly oriented and notably associated with the amorphous fine and dark matrix.
The clear minerals are quartz and brownish, altered feldspar. The dark lines are fault strands (slip
surfaces?).

ure 5.61 -
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A B

C D

E F

5X

5X

2.5X

5X

5X

5X

2617 mµ

2617 mµ

2617 mµ

2617 mµ

2617 mµ

5235 mµ

Fig A
B

C D
E

F

micrographic radiate intergrowth of quartz and k feldspar, the distinguishing feature of
granophyre granite at Sossego. locally developed S C' fabric on mica rich member of mylonites at
Sossego. flattened quartz porphyroclasts with strong undulose extinction and subgrains. quartz
“fish” with irregular/sweeping undulose extinction. quartz porphyroclast displaying core with
irregular undulose extinction mantled by dynamically recrystallized quartz aggregates. sigmoidal
quart lens showing oblique internal structures characterized by parallel elongated domains of
recrystallized aggregates and “undeformed” quartz.

ure 5.62
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A B

C D

2.5X

2.5X

10X

1309 mµ

5235 mµ

5235 mµ

34 mm

Fig A
B C

D

scanned thin section of ultramylonite exhibiting fine to very fine grain sizes and
prominent foliation defined by millimetre to sub millimetre wide bands. and image in natural and
polarized lights of the general features characterizing ultramylonites from Sossego: relatively straight
and continuous foliation comprising alternating quartz+feldspar and mica rich bands; presence or very
small quartz, altered feldspar and sulphide porphyroclasts. grain shape preferred orientation
characterized by elongated quartz and sulphides (black). Note the perfectly aligned long and fine mica
grains.

ure 5.63 -
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Chapter 6 

 
 

Conclusions summary and suggestions for future work 
  

This section presents a summary of the major findings and conclusions from chapters 

3, 4 and 5. These are concerned with: regional geological issues and the lineament 

analysis; the geological and structural character and history of the Canaã dos Carajás 

region; and finally the structural styles and controls on the mineralization of the 

Sossego and Sequeirinho IOCG Deposits. Finally, a brief discussion on broader 

regional issues and a discussion of possible future work are presented.  

 

6.1 – Regional Lineaments 
 

- The main sets of lineaments identified in the Carajás Terrane have the following 

orientations: WNW-ESE to E-W, NE-SW, NW-SE and N-S. - Overall, the volcano-

sedimentary Cover Assemblage domain displays higher lineament densities with a 

dominance of short NW-SE traces, while the granitic-gneissic Basement Assemblage 

has a much lower lineament density with a number of prominent, long NE-SW 

traces. 

- The contacts between the Basement and Cover assemblages (such as those around 

the Salobo and Serra Sul deposits) coincide with long and continuous WNW-ESE 

lineaments that change locally into E-W traces.  
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- The large-scale NE-SW lineaments, most prominent in the granitic basement, 

appear to interrupt the lateral continuity of the WNW-ESE trending outcrops of the 

Cover Assemblage. This is consistent with the suggestion that these NE-SW 

lineaments are faults formed late in the geological history. 

 - Zones of higher lineament density also coincide with domains containing 

numerous lineament intersections, particularly those produced by the mutual 

intersection of the WNW-ESE and NE-SW lineaments sets. 

- The geology does not appear to control the spatial distributions of the lineaments, 

i.e. the lineament sets occur in all geological units in the Carajás Terrane. However, 

geology does influence lineament frequencies, which are higher in the units forming 

the Cover Assemblage compared to the Basement Assemblage. 

- Mineral occurrences and deposits in the Carajás Terrane form clusters spatially 

associated with: (i) domains of higher lineament density; and (ii) areas where major 

WNW-ESE and NE-SW lineaments intersect. Clearly, then, there is a spatial 

relationship between major lineaments and the occurrence of mineral deposits.  

 

6.2 – The Canaã dos Carajás region 
 

- The regional macro-structures in the area, delineated by magnetic and gamma 

spectrometric surveys show: (i) a prominent broadly E-W trending, continuous and 

sinuous anomaly that may correspond to a regional scale shear zone or set of shear 

zones; and (ii) consistent late sets of NE-SW-trending, and subordinate NW-SE-

trending magnetic lineaments that possibly represent major brittle faults. 
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- The Canaã dos Carajás region comprises Archaean TTG gneisses, lens shaped 

amphibolite bodies, 2.7 Ga. syn-tectonic alkali granitoids and 1.88 Ga. isotropic 

granites. These rocks display a localized early N-S fabric developed in the granitic 

gneisses and amphibolites, overprinted by widespread heterogeneous, anastomosing 

WNW-ESE and NE-SW foliation sets related to later, steeply dipping ductile shear 

zones. The latter regional foliation is associated with steep-to-moderately plunging 

mineral lineations, consistent with a near vertical orientation for the stretching axis 

of finite strain. 

- The ductile fabric is locally folded, with fold axial planes and hinges at low angles 

to or sub-parallel with the trend of ductile shear zones and regional foliation. The 

early folded gneissic banding forms upright folds with tight to isoclinal limbs, sub-

vertical to steep dipping NNW-SSE axial surfaces and shallowly plunging hinge 

lines. Minor disharmonic folds also occur in the early gneisses. The widespread 

transposed fabric displays intrafolial and asymmetric “drag folds” typically oriented 

subparallel to the (transposed) foliation. Collectively, these folds have sub-vertical 

axial surfaces trending WNW-ESE and NE-SW combined with mainly gently 

plunging hinge lines. Lastly, ptygmatic and sheath folds occur locally in pegmatitic 

and migmatitic gneisses. 

- The nature and geometry of the planar and linear fabrics are compatible with a bulk 

pure-shear dominated transpression with partitioning of strain intensity with 

shortening and extensional directions oriented at approximately near horizontal 

(~020° Az) and near vertical respectively.  

- Later brittle structures are ubiquitous in the geological units of the Canaã dos 

Carajás Region. Outcrop-scale discrete fault planes, moderately-to-steeply dipping, 

show apparent displacements ranging from few millimetres up to 10 cm and 

377

Chapter 6



comprise sets that broadly agree with the major ductile trends: E-W and WNW-ESE, 

NE-SW and NW-SE. Quartz, albite and actinolite veins are common in granitoids 

and mafic rocks, occurring either as “S” and “Z” geometry tension gash arrays or as 

tabular veins, with both broadly following fault trends. 

- Microstructures in quartz and feldspar show that the basement rocks experienced 

deformation at metamorphic conditions compatible with middle to upper amphibolite 

facies (~650-700°C), later overprinted by relatively low temperature deformation at 

middle to upper greenschist facies conditions (~400-500°C). 

- The Archaean rocks in the Canaã dos Carajás region represent part of an original 

granite-greenstone terrane that has undergone substantial reworking during a late 

sinistral transpressional deformation. The reworking took place at c.a. 2.7 Ga during 

and was coeval with syn-tectonic sub-alkaline magmatism.  

- The granitic-gneissic basement comprises intensely deformed rocks uplifted from 

the lower-to-middle crust, initially deformed under high amphibolite facies 

conditions and later affected by localised, deformation along discrete shear zones at 

greenschist facies conditions. 

- Faults, fault zones and veins formed during latte brittle events and record 

widespread hydrothermal alteration and localized evidence of copper mineralization. 

A number of these structures correspond to major magnetic and topographic 

lineaments, confirming that the lineaments and their associated mineral deposits 

have a spatial correlation.  
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6.3 – The IOCG Sossego and Sequeirinho Deposits 
 

- The structural framework of the deposits comprises regionally developed WNW-

ESE structures (foliations and shear zones) offset by NE-SW sinistral faults most 

clearly seen in magnetic surveys and geological maps. The Sequeirinho orebody is 

hosted along a NE-SW sinistral fault, associated with a positive magnetic anomaly, 

whilst the Sossego orebody does not show any obvious link to a major structure or 

prominent magnetic anomaly.  

- The Sossego deposit comprises a sub-circular, vertical, pipe-like orebody with a 

central breccia body surrounded by a stockwork array of sulphide veins, faults and 

shear zones. The deposit displays early, heterogeneous and apparently 

contemporaneous WNW-ESE trending foliation and shear zones, overprinted by 

mutually cross-cutting, polymodal, sub-vertical to gently dipping faults, veins and 

shear bands. Tensile and shear veins show single or composite mineral fillings 

consistent with episodic vein opening, with a progressive change in hydrothermal 

fluid composition during time. Faults and shear zones generally contain 

hydrothermal minerals suggesting intense fluid influx and/or fluid flow. The 

mutually cross-cutting dip-slip, strike-slip, and oblique-slip nature of the faults 

suggest that they were broadly contemporaneous. 

- The Sequeirinho orebody is significantly different. It comprises an “S” shaped 

orebody whose tips are hosted by sub-vertical WNW-ESE-trending sheared and 

foliated granitoids and schists. These are linked by a NE-SW sinistral fault zone 

containing mineralized breccias. 

- The granitoids and schists in Sequeirinho show prominent mylonitic zones 

intercalated with relatively undeformed domains, suggestive of strain intensity 
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partitioning. The steeply-dipping to sub-vertical WNW-ESE mylonitic foliation is 

accompanied by a down-dip mineral lineation, indicating a near horizontal 

compressional component, linked to a vertical stretching component that acted to 

form these structures. 

- Rocks in Sequeirinho display multiple, steeply-dipping fault sets that include: 

WNW-ESE, NE-SW, NW-SE and N-S trends. The WNW-ESE trending faults 

clearly had their nucleation and development controlled by the pre-existing weakness 

planes parallel to the early ductile foliation. NE-SW faults cross-cut and displace the 

regional foliation in map view (see Fig. 5.9 in Chapter 5). The precise ages of the 

NW-SE fault set is unclear, but the N-S trending faults are clearly the youngest 

identified and are typically associated with late tabular diabase dykes regionally. 

- Fault slickenlines associated with multiple fault planes are often oriented close to 

the fault intersections indicating that many of the differently oriented faults may 

slipped contemporaneously. 

- In the Sequeirinho body, two distinct types of faults are recognised: i) discrete 

narrow fault planes that are thought to have been produced by a short-lived 

movement history, under low regimes of pore fluid pressure at shallow crustal 

depths; and ii) larger fault zones with well-developed fault rocks (i.e. cataclasites, 

ultramylonites) and hydrothermal mineral assemblages, that are thought to represent 

structures with long lived fault activity possibly associated with seismic slip. 

- Particle size and shape analyses for barren and mineralized breccias fragments 

indicate that: (i) the Sossego breccias show relatively high clast angularity and 

smaller D-values, characteristic of immature explosion breccias, compatible with 

fragmentation processes dominated by particles fracturing and cracking that generate 
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coarse and angular fragments; and (ii) the Sequeirinho breccias display rounded 

fragments with low angularity and higher D-values, typical of mature breccias whose 

particle fragmentation was dominated by wear and attrition when particles interact 

by rolling, sliding and rotation during subsequent slip along a fault zone. 

- Microstructural observations of quartz and feldspar indicate that the sinistral 

transpressive deformation at Sossego and Sequeirinho initially took place under low-

to-middle (300-400°C) and middle-to-upper (400-500°C) greenschist facies, 

respectively. These relatively high-temperature fabrics were then overprinted by later 

brittle-ductile structures and veins containing lower-temperature minerals interpreted 

to be formed at between 170-250°C. 

- Microveins include: (i) massive and monomineralic types formed by a relatively 

simple growth history with a single phase of vein opening and sealing; and (ii) 

polymineralic veins showing multiple mineral fillings, elongate crystals, fibrous 

mineral fills, wall rock inclusion bands and fluid inclusions trails. The latter set 

showevidence of crack–seal mechanisms and temporal changes in fluid composition 

through time. 

- The geometry of calcite twins in microveins and major composite ore veins 

suggests temperature formations ranging from 170°C up to 250°C. 

- Brittle fault rocks under the microscope revealed heterogeneous degrees of 

fragmentation and indicative textures of repeated brittle fracturing (cataclasis) 

accompanied by intense hydrothermal fluid influx. 

- The rocks in the area of the mines record deformational processes that initially took 

place under the viscous regime (>15km), represented by mylonites and 

ultramylonites. Progressive exhumation, possibly synchronous with regional 
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transpressional thickening led to conditions compatible with the frictional-viscous 

transition with intense fluid activity, with mineralisation. 

 

6.4 - Timing of the major crust forming events and 
global implications 
 

 The isotopic ages available for the Carajás Geochronological Province (see 

Tables 2.3 and 2.4 in chapter 2) can be used to indicate the timing of crystallization 

and mineralization for the rocks and mineralization within this region. Histograms 

for these groups of ages (see Fig. 6.1 A and B) highlight peaks at 1.88 Ga and 2.7 

Ga, corresponding to major periods of continental crust formation in this craton. 

Importantly, these ages coincide with two peaks of inferred crustal generation from a 

range of additional studies worldwide (see Fig. 6.1 C) (Condie 1998; Condie 2000; 

Parman 2007; Pearson et al. 2007). They suggest that the formation of Earth’s 

continental crust was mainly controlled by large-scale mantle melting events at 1.9, 

2.7 and 3.3 Ga, caused by pulses of mantle depletion. This proposed mechanism 

implies that the formation of the continental crust was episodic and punctuated by 

large, potentially global, melting events. These periods of pulsing enhanced crustal 

generation, termed ‘super events’ by (Condie 1998), can be linked to the formation 

of granite–greenstone terranes recognized in cratons worldwide. The Carajás Terrane 

records two of the three major super events of global continental crust formation; the 

2.7 Ga syntectonic granitoids (e.g. Plaque Suite, Estrela, Serra do Rabo) and 1.88 

G.a. a-type anorogenic granitoids.  
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Figure. 6.1 – A - age histogram of isotopic ages representing the crystallization time of granitic-
gneissic and volcano-sedimentary rocks in the region of Carajás, Canaã dos Carajás and Rio Maria 
(ages sources in table 2.3 – Chapter 2). B - Histogram for ages of mineralization from the Carajás 
Terrane (ages sources in table 2.4 – Chapter 2). C - Distribution of U/Pb zircon ages in juvenile 
global continental crust. Abundance is proportional to areal distribution of juvenile age provinces 
scaled from an equal-area projection of the continents (Condie, 1998). 
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6.5 - Regional Issues  
 

The study region of Canaã dos Carajás represents a boundary zone separating the 

Carajás and Rio Maria Granite Greenstone Terranes, which exhibit distinct structural 

styles and varied ages.  

 The Canaã dos Carajás area and nearby Sossego and Sequeirinho deposits 

indicate that the region comprises an intensely reworked granite-gneiss terrane 

deformed by pure-shear dominated, sinistral transpression. The deformation was 

highly heterogeneous and mainly localized along and adjacent to shear zones. The 

intervening less deformed “islands” of gneisses and amphibolites show fabric 

orientations similar to that described for the basement in the Rio Maria granite 

greenstone terrane (described in Chapter 4). This evidence suggests that the rocks in 

the Canaã area represent highly deformed, reworked parts of the granite-greenstone 

sequence seen in the Rio Maria Terrane. This implies that: (i) the current location of 

the Carajás-Rio Maria Granite Greenstone Terranes boundary sits in Canaã dos 

Carajás town; and (ii) calls into question the current accepted division of the 

Amazon Craton into the tectonic-geochronological Terranes of Carajás and Rio 

Maria Granite Greenstone, a proposal that is mostly made using geochemical and 

isotopical data. 
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6.5 Future work 
 
This section presents suggestions for future research topics that may contribute to 

resolve two key geological issues remaining in the region: (i) the subsurface 

geometry-architecture of the Carajás geochronological province and (ii) the absolute 

ages of the faults and fabrics in the granite-gneiss basement.  

 

- Regional Geophysics 
 

Despite the available regional-scale magnetic, gamma radiometric and minor 

gravimetric datasets, the 3D crustal architecture of the Carajás Geochronological 

Province remains poorly understood. The acquisition of seismic data could provide 

an initial step to building a subsurface model that would enable an improved 

understanding of the spatial configuration of the geological domains and structures. 

Onshore seismic surveys have successfully delineated the crustal architecture 

of poly-deformed Archaean and Proterozoic provinces elsewhere in the world, e.g. 

the Yilgarn Craton-Australia (Dentith et al. 2000; Goleby et al. 2006), North China 

Craton (Tian et al. 2009) and the Skellefte Proterozoic District-Sweeden (Malehmir 

et al. 2006). The principles and methods used in the mentioned examples could be 

applied in seismic transects across the Rio Maria Granite Greenstone Terrane, the 

Canaã dos Carajás region and the Carajás Terrane to better elucidate the sub-surface 

anatomy and crustal scale structures in the craton. 

Examples of the potential information that seismic data obtained across the 

Carajás and other provinces of the Amazon Craton could provide are: 
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- P and S wave data to indicate velocity variations within and across the craton that 

may correspond to province and terrane boundaries. 

- deep seismic reflection data to detect the depth of the Moho discontinuity and 

image crustal scale geometric features. One disadvange here might be that many of 

the tectonic structures are steeply dipping or sub-vertical and may not then be clearly 

imaged by seismic reflection methods. 

- seismic refraction data to indicate variations in crustal thickness, density and 

geometric constrains on crustal architecture. 

 

- Dating of fabrics and faults 
 

In Chapters 4 and 5 a widespread regional ductile fabric in the granitic basement, 

normally associated with shear zones trending in three directions (WNW-ESE, N-S 

and NE-SW) was described. The WNW-ESE fabric is present within syn-tectonic 

granitoids and is interpreted therefore to have formed at 2.7 Ga. However, there are 

no constraints on the relative ages of the other two fabric sets and exposures showing 

cross-cutting relationships are rarely found. Therefore, the ages of these fabrics and 

associated shear zones remain open to debate. More recent studies based on 

39Ar/40Ar dating of individual minerals have successfully dated deformation phases 

in the ductile fabrics from greenschist-to-amphibolite facies shear zones e.g.: white 

mica (Alexandrov et al. 2002; Challandes et al. 2003), hornblende (Barreiro et al. 

2006), and tourmaline (Bea et al. 2009). Future studies utilizing these analytical 

techniques can potentially answer the questions: (1) what are the absolute ages of the 

fabric sets observed in the region? (2) are the ductile fabric sets contemporaneous or 
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formed by distinct tectono-metamorphic events? and (3) in case of distinct ages for 

the fabrics, what regional events formed the fabrics?    

The relative ages of the faults are also not well constrained in the study 

region. The poly-directional fault sets often show uncertain or ambiguous cross-

cutting relations and absolute ages for faults are absent. Age constraints for the faults 

sets and perhaps for different stages of fault slip may be inferred through detailed 

structural mapping in key outcrops with good exposure, combined with the dating of 

fault rock materials, e.g. using 40Ar/39Ar dating of illite in fault gouges; (Solum et al. 

2007; Haines et al. 2008). 
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Abstract

Both the hardware and software available for digital geological mapping (DGM) have advanced considerably in recent

years. Mobile computers have become cheaper, lighter, faster and more power efficient. Global Positioning Systems (GPS)

have become cheaper, smaller and more accurate, and software specifically designed for geological mapping has become

available. These advances have now reached a stage where it is effective to replace traditional paper based mapping

techniques with those employing DGM methodologies. This paper attempts to assess and evaluate two currently available

DGM systems for geological outcrop mapping: one based on a Personal Digital Assistant (PDA) running ESRI ‘‘ArcPad’’,

and the second based on a Tablet PC running ‘‘Map IT’’ software. Evaluation was based on field assessment during

mapping of a well exposed coastal section of deformed Carboniferous and Permian rocks at N. Tynemouth in NE

England. Prior to the field assessment, several key criteria were identified as essential attributes of an effective DGM

system. These criteria were used as the basis for the assessment and evaluation process. Our findings suggest that the main

concerns presented by sceptics opposed to DGM have largely been resolved.

In general, DGM systems using a Tablet PC were found to be most suitable for a wide range of geological data

collection tasks, including detailed outcrop mapping. In contrast, systems based on a PDA, due to small screen and limited

processing power, were best suited for more basic mapping and simple data collection tasks. In addition, PDA based

systems can be particularly advantageous for mapping projects in remote regions, in situations where there is a limited

power supply or where total weight of equipment is an important consideration.
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1. Introduction

Digital geological mapping (DGM) is the process
of mapping and collecting geological data using
some form of portable computer and Global
.
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Positioning System (GPS), rather than a traditional
approach based on notebook and paper map.
Digital mapping is rapidly becoming accepted and
established as a valuable tool for geoscientists.

Over the past years there have been numerous
papers discussing the methodology, software devel-
opment, applications and the merits of DGM (e.g.
Struik et al., 1991; Brodaric, 1997; Briner et al.,
1999; Brimhall and Vanegas, 2001; Maerten et al.,
2001; Edmondo, 2002; McCaffrey et al., 2003; Jones
et al., 2004; Wilson et al., 2005; McCaffrey et al.,
2005). These papers document the ongoing techno-
logical development, which has allowed relatively
unwieldy computer equipment available to the early
digital pioneers to be replaced by lightweight and
user-friendly DGM systems. Most modern users
favour a DGM setup based around either a palm-
sized Personal Digital Assistant (PDA) or a larger
Tablet PC. In this paper, we examine and assess the
particular merits of these two types of DGM
system. In addition, we briefly summarize the
evolution and current status of DGM, and consider
some of the more general issues that remain
unresolved in digital mapping.

2. Overview of DGM

In recent years, technological advances and
innovations in portable computing, GPS, and
mobile Geographical Information Systems (GIS)
software have permitted geoscientists to undertake
digital data capture and mapping in the field. This
process has been referred to as ‘‘born digital
mapping’’ (Fitzgibbon, 1997) or primary digital
mapping (McCaffrey et al., 2005), and is the main
focus of this paper. Primary digital mapping
contrasts with other digital tasks such as transcrib-
ing field data into spreadsheets or databases, and
reproduction of field maps with cartographic or
graphic software; these are post-fieldwork tasks
related to secondary digitizing (McCaffrey et al.,
2005).

Digital field acquisition has been used by
surveyors and workers in the utility industries since
the late 1980s to input data or to correct, modify, or
create maps directly in the field. Generally the data
collected by these user groups, although often
varied, is in a relatively simple format, and can be
input into a handheld computer relatively easily by
an operator with limited computing skills using
standard software containing simple data collection
forms. In contrast, geological field mapping is an
390
iterative process of observation, reasoning, and
interpretation, which is strongly influenced by the
geoscientist’s prior knowledge, experience and ex-
pertise (Jones et al., 2004). In the field the
geoscientist uses a combination of processes and
scientific tools to gather the rich data provided by
the field environment. These include; recording
direct observations, collection of field samples,
measurement of bedding and structure, field sketch-
ing, photography and mapping. This process there-
fore requires a more flexible approach and a
broader range of recording media than that used
to record basic types of utility data mentioned
above. This level of flexibility is already met by
traditional paper-based mapping methodologies, so
geologists will need to be convinced of the added
value offered by digital mapping over traditional
methods before they are likely to adopt the new
methods.

3. Advantages of DGM

DGM is not simply a direct replacement for
traditional paper-based mapping methods; impor-
tantly, it gives the geoscientist the enhanced ability
to collect geospatially georeferenced field data that
can be analysed and visualized in ways that are
impossible or very difficult to achieve using tradi-
tional techniques (McCaffrey et al., 2005). Pioneers
of DGM (e.g. Struik et al., 1991; Brodaric, 1997;
Briner et al., 1999; Kramer, 2000; Brimhall and
Vanegas, 2001; Edmondo, 2002; McCaffrey et al.,
2003; Jones et al., 2004; Wilson et al., 2005;
McCaffrey et al., 2005) have discussed the many
advantages offered by DGM over traditional
methods, which include:
�
 GPS allows all data and their attributes to be
geospatially referenced in x,y,z, space, i.e. lati-
tude, longitude and elevation, (although data
added freehand by drawing with the stylus will
generally lack altitude values).

�
 There is a streamlined workflow from data

collection to final map production without the
need for disparate and separate data processing.

�
 Data derived using other geophysical and geo-

graphical systems can be easily integrated e.g.
satellite imagery, gravity and magnetic surveys,
geochemical sampling, Digital Elevation Models
(DEM) etc.

�
 Data management and storage capability are

enhanced.
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�
 There is greater accessibility to data for a wider
audience through data archives.

�
 A wider range of analytical techniques including

3D analysis, spatial analysis etc. can be applied.

�
 Accuracy and precision of GPS positional data

can be tested and quantified. This is not the case
in traditional mapping, where this possible
source of error is largely ignored.

�
 Cost savings can be gained by reduction in the

need for time-consuming data conversion and
handling.

Despite these numerous advantages many field
geologists are still reluctant to try the new technol-
ogy, preferring instead to continue to use the old
tried and tested methods of paper-based field
mapping. For example, in a survey of twenty nine
geological survey organizations in Europe, all
utilized secondary digitization for data storage and
the production of maps, however only two were
actively investigating the use of primary digital data
acquisition during geological mapping (Jackson and
Asch, 2002). Consequently, field geoscientists prac-
tising traditional methods of mapping and inter-
pretation of the complex geological structure and
history of the Earth, do not yet derive appreciable
benefit from the digital and information technolo-
gical advances and innovations that have been made
in other related fields of science (Brimhall et al.,
2002). Of the reasons often given for a particular
geoscientists’ reluctance to embrace DGM, three
main themes commonly arise: (1) cost and reliability
of equipment; (2) time required to learn the new
techniques required for DGM and (3) the complex
nature of the mapping process and the flexibility
required by any methodology.

4. Requirements of a DGM system

The technology involved in traditional field
mapping is cheap, well-proven, flexible, has a
familiar user interface, and is highly reliable.
Geological mapping is a time consuming and often
expensive process. Therefore, any DGM system not
only has to be as efficient as traditional methods,
but also in addition has to offer distinct advantages
over them. An important definition here is ‘‘Fit for
purpose’’ i.e. will the chosen DGM system perform
the tasks required of it efficiently, accurately and
consistently throughout the range of environmental
conditions met during mapping e.g. extreme cold
and heat, high humidity, very wet or dry? Prior to
391
field assessment we identified several key criteria
that we felt were critical to a well-designed DGM
system regardless of its intended purpose (Table 1).

4.1. Assessment criteria

4.1.1. Hardware
�
 Portability: the portability of a DGM system is
an important issue and not only concerns issues
of weight and size, but is also related to
ergonomics i.e. how comfortable the system is
to carry and hold in use. The location of any
individual mapping project can vary enormously
from roadside cuttings where weight of the
system is not an issue to extremely remote
settings where all equipment must be carried by
hand. In addition, peripheral equipment such as
extra batteries, chargers etc. need to be taken into
account.

�
 Performance: this covers aspects of screen size

and brightness, storage capacity, RAM and CPU
size/speed and the general ergonomics of each
system. Of vital importance is that the screen
should be clearly visible in bright sunlight.
Transreflective screens are the most effective;
these are relatively common in modern PDAs,
but less so in Tablet PCs.

�
 Reliability: this concerns the ruggedness of each

system and its suitability to carry out its task in a
variety of environmental conditions e.g. rain,
cold, heat and dust. Also under this heading is
the average ‘‘time-to-failure’’ i.e. how long will
the system (or its components) last under normal
operating conditions?

4.1.2. Software
�
 Operating system: the operating system (OS)
ultimately dictates which digital mapping soft-
ware can be used. Some manufacturers provide
different versions of their software for different
operating systems whilst others only produce
software for a single OS.

�
 Functionality: This criterion concerns two specific

issues: firstly does the software require any
setting-up or customization before even basic
mapping can be carried out i.e. is it ‘‘out-of-the-
box’’ ready? Secondly, does the software contain
an appropriate range of tools and functions to
carry out the required mapping, and can it be
customized to the users specifications?
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Critical criterion for the design of a ‘Fit for purpose’ digital geological mapping system
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�
 Usability: this can be a subjective issue and
depends largely on the user’s familiarity with
Graphical User Interfaces, and in particular,
previous experience with desktop GIS software.
However, a well designed, clear interface will
enable the user to utilize the software for
maximum efficiency as quickly as possible and
will also encourage them to continue to use the
system.

�
 Project set up: the pre-fieldwork setup of any

DGM project is critical and is typically a much
more involved process than the preparation
required for traditional paper-based mapping.
Base maps, aerial photographs, satellite images
etc. need to be scanned or downloaded. Scanned
raster images must be georeferenced, shapefiles (or
equivalent geographical objects) need to be created
and data collection forms produced. The ability to
be able to define levels of user control within a
project at set up is highly desirable. This allows a
project manager to establish a clearly defined set of
forms, base cartography and symbols etc. that will
be used by any particular group.

�
 Compatibility: DGM systems need to be able to

import and export files from and to a wide
392
variety of other applications which employ
numerous different file formats e.g. ESRI shape-
file, ArcInfo, MapInfo MIF, DXF, TIFF, JPG,
GIF, MrSID. The range of file formats sup-
ported and/or the ease of conversion is a key
issue.

�
 Reliability: issues of reliability are critical for any

system that will be used in remote settings or to
collect data that is not easily re-collected. Crashes
in software lead to delays in progress, reduced
confidence in the system and particularly
important, possible data loss. ‘‘Backwards
compatibility’’ (the ability of a system to open
files generated with earlier versions of the soft-
ware) is also an important consideration, parti-
cularly where archive data is more than a few
years old. The level of support offered by a
software manufacturer to its client is also
important.

In general, good DGM systems:
�
 need to be reliable, rugged and not significantly
bulkier than a field notebook and mapping
board;
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�
 should be fit for purpose and priced accordingly;
i.e. a system designed for reconnaissance map-
ping at a scale of 1:250 000 need not be coupled
to an expensive differential GPS capable of sub-
metre precision;

�
 have a simple and logical visual interface in order

to make the transition from traditional paper-
based mapping to DGM easier;

�
 should require little prior knowledge of computer

skills from the operator (with current students
and recently qualified geoscience graduates this
requirement is becoming less important because
of their general high level of IT expertise);

�
 should be adaptable enough to allow users to

easily configure the software to their particular
requirements whilst in the field without the need
for computer programming skills.

5. DGM hardware and software

Currently, many DGM systems belong to one of
two types: those built around a Personal Digital
Assistant (PDA), and those built around a Tablet
PC. The systems shown in Table 2 are just a small
selection of the many different PDAs and Tablet
PCs available on the market, and simply represent
those with which we have direct experience. The
main focus of this paper is to review the pros and
cons of both these types of DGM systems by
focussing on two in particular (Table 3). The first is
a PDA-based system comprising Trimble Recon
PDA, a GPS, and ArcPad mapping software
(Fig. 1a). The second system comprises an Xplore
iX104R rugged Tablet PC, Haicom HI-204S GPS
and MapITTM software (Fig. 1b). We will also look
briefly at the Trimble GeoXT, which is an
integrated PDA and GPS receiver system (Fig. 1c).

5.1. GPS choice and testing

The GPS is an important and integral component
in any digital mapping system and the choice
currently available is large. However, the GPS is
only required to provide positional information,
which is then displayed via the DGM software.
Therefore, more advanced features offered by some
GPS models, such as colour screens, ability to store
and display map data etc. are not required. What is
important is that the choice of a particular GPS is
determined by the mapping task to be undertaken
393
and the levels of accuracy and precision required.
Table 4 of McCaffrey et al. (2005), provides
precision and accuracy information for a range of
GPS units including the Garmin Geko 201 and the
Trimble GeoXT.

5.2. Accuracy and precision

Although many users assume that GPS receivers
give exact positions, it is important to understand
that there is some amount of uncertainty, or error,
inherent in these positions. Several factors contri-
bute to this error including satellite clock drift,
atmospheric conditions, measurement noise, and
multipath (i.e. reflection of the signal off buildings
etc. before being received by the GPS). Addition-
ally, vertical accuracy (elevation) for GPS measure-
ments is generally one and a half to three times
worse than horizontal accuracy.

5.3. Differential GPS, WAAS and Egnos

The accuracy of GPS receivers can be improved
by using differential correction (‘‘differential GPS’’,
DGPS), to reduce some of the error. DGPS involves
using a GPS base station, located at a known
position, to calculate corrections for each satellite.
The corrections can be derived by comparing the
known location of the base station to the apparent
location measured using GPS. This can increase the
accuracy of the autonomous GPS position (i.e. one
without differential corrections) from 5 to 10m
down to less than 1m, depending on the system
used.

There are two approaches to DGPS: real-time
and post-processing. Post-processing corrections are
stored on a disk and then applied to the field data
after data collection is complete. Real-time correc-
tions are broadcasted from the base station to the
field GPS receiver almost instantly, so that you can
begin to work with the more accurate GPS positions
immediately. There are various sources of real-time
DGPS signals, including Coastal beacons; Wide
Area Augmentation System (WAAS, North Amer-
ica), and European Geostationary Navigation Over-
lay System (EGNOS, Europe only). The Geko 201
and Haicom HI-204S are capable of receiving real-
time differential corrections using WASS and
EGNOS, while the GeoXT can utilize both real-
time correction using WAAS, EGNOS and beacon
data, as well as permitting differential corrections
via post-processing software.
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Fig. 1. PDA and tablet PC systems compared: (a) Trimble Recon

PDA running ArcPad software with Garmin Geko 201 GPS; (b)

Xplore tablet PC running Map IT software with Hicom HI 204S

GPS receiver and (c) Trimble GeoXT integrated PDA and GPS

receiver running ArcPad software.
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5.4. Testing accuracy and precision

Accuracy is the closeness of a measurement to the
actual value of the measured quantity, whereas
precision is the repeatability of a particular mea-
surement method. It is possible to be accurate and
not precise, and vice versa (Fig. 2). The precision or
error in a GPS position may be estimated by
repeated observations at the same location over a
given length of time (McCaffrey et al., 2005).
Accuracy can be determined by making observa-
tions on a known survey point (e.g. http://users.
erols.com/dlwilson/gps.htm). Wilson (2006) has
tested the accuracy of a variety of GPS units
including the Garmin Geko 201 and Trimble GeoXT
GPS (the Haicom HI-204S was unavailable at the
time of testing). For the test the position of a known
surveyed location was recorded daily over a fifty day
period. Fig. 3 provides the results for the Geko 201
and GeoXT. The accuracy observed for the Geko
and GeoXT is sufficient for a wide range of typical
field-mapping scales e.g. 1:250,000–1:5000.

Table 3 summarises the manufacturers’ specifica-
tions of all the GPS units evaluated. Predictably, the
more expensive GeoXT is more accurate than the
Geko, however, this difference is marginal and
would generally not be noticeable when mapping at
scales greater than 1:10,000. Although the Haicom
HI-204S was not tested, the manufacture’s accuracy
figures imply that it should have a similar accuracy
than that of the Geko and should therefore be
suitable across a similar range of mapping scales.

5.5. DGM system 1

5.5.1. Hardware

This DGM system is based around the Trimble
Recon PDA (Fig. 1a, Table 3). The Recon is a
ruggedised PDA, and is water, dust, and shock-
proofed to military standards (MIL-STD-810F). The
battery is user changeable, and provides the PDA with
approximately 8h of operation in normal conditions.
The unit is bright yellow, which gives it high visibility,
and has black rubber bumpers on each end that
provide protection and cover the battery and compact
flash slots. The PDA was connected to a Garmin
Geko 201 via a serial/Garmin cable, which provided a
lightweight, accurate, digital mapping system.

5.5.2. Software

The mapping software installed on the PDA is
ArcPad, part of the ESRI suite of GIS products.

http://users.erols.com/dlwilson/gps.htm
http://users.erols.com/dlwilson/gps.htm


Table 4

Summarized evaluation of the DGM systems assessed in the present work

Pros Cons

Hardware Xplore Tablet Large data storage capacity. Relatively heavy.

Processing power. The supplied case is poorly designed for field

mapping purposes.

Large screen size. Battery life (4.5 h ave.) requires additional

batteries to be carried.

Full PC specs. Screen needs dedicated digital pen loss could

be disastrous.

Trimble Recon

PDA

Light weight. Small screen size requires lots of scrolling.

Portable. Generally slow processor speeds long refresh

times for displays containing large raster

mages.

8 h+battery life. Needs PC and Active Sync to upload/

download data.

Software MapIT Fully specced GIS e.g. georeferencing, spatial

analysis, coordinate conversion etc.

Polyline data cannot be added manually when

using GPS (continuous streaming time or

distance only this has been rectified in v2).

Designed for digital pen input including direct

drawing onto map/photographs.

Polygon data cannot be entered using GPS

(this has been rectified in v2).

Fully field editable projects.

Easy Note function is extremely useful.

Automatic correlation of digital images with

geographical object.

ArcPad Easy user interface particularly to those

familiar with ArcGIS.

Some operations are difficult to locate & help

files are limited.

Part of the ArcGIS suite. Needs ArcGIS for full capability.

Full customization with ArcStudio (e.g. data

entry forms, toolbars etc.)

Needs ArcStudio for full customization.

Wide range of scripts, applets & third party

plugins available.

Requires a high level of IT skill for

customization.

P. Clegg et al. / Computers & Geosciences 32 (2006) 1682 16981690
This GIS mapping application is designed specifi-
cally for PDAs and integrates almost seamlessly with
ESRI’s desktop GIS application ArcGIS as a front-
end data-capture solution. It cannot be considered
as a standalone mapping software as it needs to be
used in conjunction with ArcGIS and ArcPad Studio
to provide the full range of GIS functionality.
ArcPad Studio is a separate software development
package for building custom ArcPad applications.

5.6. DGM system 2

5.6.1. Hardware

This system is based around the Xplore iX104R
(Fig. 1b, Table 3). Like the Recon this Tablet PC
conforms to MIL-STD-810F standards for water,
dust, and shock resistance. Battery life is specified at
approximately 8 h; although in our experience under
normal mapping conditions with the GPS connected
the average battery life is 4.5 h. The GPS receiver
397
used in this system is a Haicom HI-204S, which is
WAAS/EGNOS enabled and has a specified accu-
racy of 1–5m (DGPS) (Table 3). The GPS draws its
power from the tablet via the USB port.

5.6.2. Software

The mapping software installed on the iX104R
tablet is Map ITTM. This is a bespoke DGM software
application which has been developed in collaboration
with Terra Nova (De Donatis and Bruciatelli, 2006).
Unlike ArcPad, Map ITTM is a fully functioning,
stand-alone GIS mapping package with all the
functionality and capability of a desktop GIS such as
ArcGIS. It has been designed specifically for the Tablet
PC and thus makes full use of the ‘‘digital pen’’.

5.7. Trimble GeoXT

The GeoXT is an integrated GPS and PDA unit
ruggedised to IP54 standards of water, dust and



Fig. 2. Accuracy versus precision: (a) GPS positions relative to

true location (centre of target) show high accuracy and low

precision and (b) GPS positions relative to the true position show

high precision, but low accuracy.
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shock resistance (Fig. 1c, Table 3). Autonomous
positions have an accuracy of 1–3.5m, while DGPS
accuracies of o1m are achievable (Table 3). In
addition, an external beacon receiver (‘‘Beacon-
on-a-Belt’’ or ‘‘BoB’’) can be attached which will
provide correction data that can be post-processed
to achieve an accuracy of 10–20 cm. This requires
the installation of GPSCorrectTM software on the
GeoXT and post-processing of the data using
Pathfinder OfficeTM on a PC. If these levels of
accuracy and portability are required this is an
excellent system. However, it is a relatively costly
alternative (Table 3) and the speed of the processor
is slower than that of the Recon. This can cause
Fig. 3. Accuracy plots for the Garmin Geko and Trimble

GeoXT: (a) plan view of recorded GPS positions relative to a

known point collected over a fifty day period, (b) histogram

showing horizontal errors in metres of GeoXT and Geko GPS

positions and (c) probability vs. distance plot for GeoXT and

Geko GPS positions.
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quite long delays while the screen updates, especially
when mapping onto raster images such as base maps
or aerial photographs. In this respect, it is probably
more suited to simple data collection tasks where
accurate GPS positioning is required rather than a
full DGM project.

6. Field assessment

We tested the suitability of each system using the
criteria given in Table 1 by mapping a section of
well-exposed outcrops of deformed Permian and
Carboniferous sedimentary rocks at N. Tynemouth
on the coast of NE England, near to Newcastle
(Fig. 4a–c). Here, the outcrops offer a sequence of
easily identified, distinctive lithological units which
are deformed by a number of different structures
(e.g. faults, folds and fractures), which we felt would
serve as a suitable test of system performance, and
provide us with the necessary user-experience and
personal impression of each system. The findings of
the field assessment are presented below and
summarized in Table 4.

6.1. Hardware
�
 Portability: The extra external and internal
protection required to meet the MIL-STD-810F
standards have added both weight and bulk to
both units when compared to more conventional
PDAs and tablets (Table 2). Despite this, both
are well-designed and relatively easy to carry in
the field. The relatively small size of the Recon
allows it to be stowed easily when not required or
when both hands are needed on difficult terrain.
The iX104R tablet is by necessity larger and
heavier than the Recon. The carrying system
provided by the manufacturer, though adequate,
is not particularly well suited to outdoor work,
and is not well designed for mapping, where the
user may make regular measurements and often
needs both hands free for security on steep
ground.

�
 Performance: The two systems are vastly differ-

ent where it comes to performance. The iX104R
tablet is a fully specified PC, which can be
purchased in a variety of configurations depend-
ing on the available budget and or the require-
ments of the user. The Recon, although relatively
well specified for a PDA, lacks the processing
power, memory and storage capacity compared
to the iX104R. This becomes apparent when
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attempting to view large files such as aerial/
satellite images and raster maps. The iX104R
handles these with ease whilst the Recon may
take several minutes to initially display an image,
and redraw times are slow. This, coupled with the
small screen size of the Recon can be very
frustrating for the user while waiting for data to
load and display during scrolling of the screen.
The large, bright screen of the iX104R is
comfortable to use and feels more like mapping
onto a traditional paper field map. The buttons
on both the Recon and the iX104R are well laid
out and can be used while wearing gloves. One
important issue concerns the use of the digital
pen for operating the iX104R. The screen on this
particular model is not touch sensitive but uses a
special digital pen. Without this, the system is
useless, thus the loss of the pen can be
catastrophic. With this in mind it is important
that a spare pen or pens are carried. In contrast
the Recon uses a touch sensitive screen that can
be operated by any pointed object (e.g. a pencil).

�
 Reliability: Potential problems with hardware

reliability are often cited by those promoting the
continued use of traditional geological mapping.
Both systems are built to MIL-STD-810F stan-
dards and should therefore be suitable for all, but
the most extreme conditions. In our test both
performed perfectly in typical British spring
conditions of rain and wind. The longer-term
reliability of each system could not be tested in
the short duration of our test period, although
both systems are over a year old and have not
suffered failure in any of their components.

6.2. Software
�
 Operating system: Map IT and ArcPad are
designed to be used with Windows operating
systems. Specifically, Map IT runs on Windows
XP whilst ArcPad runs on Windows XP and
Pocket PC/Windows CE. Neither can be used
directly with Macintosh or Linux. An advantage
with ArcPad is that although it is specifically
designed to run on a PDA it will also run on any
PC running Windows XP or XP Tablet. This is a
consideration if a combination of PDA’s and
Tablet PC’s will be used during a mapping
project.

�
 Functionality: Map IT is a fully functional stand-

alone GIS and offers all of the tools available in



Fig. 4. (a) Map of UK with location of Tynemouth arrowed, (b) inset photograph showing the general appearance of the foreshore

outcrops mapped and (c) screen shot of the area mapped displayed using Map IT and the Xplore tablet PC. Inset bottom right shows

equivalent area viewed on the Recon PDA running ArcPad.
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other desktop GIS such as ArcGIS. In addition
Map IT has been specifically designed for
geological mapping. Therefore it is ready to use
‘‘straight-from-the-box’’ for DGM purposes.
Map IT offers the user two levels of operation.
The first as a manager where all the character-
istics and parameters of a project can be set up,
and the second as a surveyor who physically
carries out the mapping. The surveyor works
within the bounds of the project interface
prepared by the manager. This can provide a
simplified user interface for novices or a specific
set of data collection tasks, symbology etc. for
group use. ArcPad on the other hand is a generic
mapping package and requires a degree of
customization to optimize it for geological
mapping. Although there is a limited degree of
customization available within ArcPad itself, to
fully manage and customize a geological map-
ping project requires the additional resources
provided by ArcGIS and ArcPad Studio at a
considerable cost (Table 3). From this point of
view ArcPad is less ‘‘straight-from-the-box’’
ready than Map IT. However, for the advanced
user, the combination of ArcPad and ArcPad
. 5. Screen shots of (a) Map IT and (b) ArcPad showing general layo

ture attribute data.
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Studio allows a high level of customization to be
undertaken to create a highly tailored mapping
system.
Both ArcPad and Map IT allow the user to create
point, polyline, and polygon data either manually or

using the GPS. For polylines and polygon data GPS
vertices can be added individually or in a contin-
uous streaming mode. Both mapping packages
allow feature editing in the field. ArcPad supports
a limited degree of feature editing; points and
vertices on polyline and polygon features cannot be
dragged to new locations, but can only be moved to
a new position by entering the x,y,z values of the
new position or by the using the current GPS
position. Feature attributes e.g. strike and dip etc.
can be edited quickly and simply within the
appropriate features attribute table. As would be
expected from a fully functional GIS Map IT allows
full editing. The use of specific feature symbology is
an important issue when mapping. It is possible to
define and use specific feature symbols within Map
IT and ArcPad, however, a number of problems
occurred where symbols failed to be correctly shown
in ArcPad. User defined forms for the rapid
ut of working area and customized forms used for recording



Fig. 6. Screen shot of the ‘‘Easy Note’’ resource available in Map IT. Two ‘‘Easy Notes’’ labelled ‘‘faults’’ and ‘‘notes’’ have been linked to

the recorded feature. The note labelled ‘‘faults’’ contains a .jpg image file (shown on the left). This image has been annotated to show two

faults (highlighted). The note labelled ‘‘notes’’ contains a video .wav file, a .jpg file and a text file. All are fully georeferenced within the

project.
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recording of feature attribute data can be created in
both packages (Fig. 5).

Several innovative features within Map IT allow
the user to map in a more traditional way than is
possible with ArcPad. Easy-Note is a georeferenced,
electronic version of a Post IT note. The geologist
can create an Easy-Note at any time during
mapping (Fig. 6). Any type of file can be attached
to the note using ‘‘drag and drop’’. Digital
photographs of outcrop features etc. can be
annotated using the digital pen. The software uses
the time and date stamp from the exif file of each
image to synchronize it with the GPS location at the
time the image was taken, and thus georeferences
the image. Sketches and annotations using the
digital pen can be made on any other raster data
within the mapping project. Whilst it is possible to
perform similar tasks within ArcPad, there are no
dedicated tools for these tasks and the limitations
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imposed by the storage capacity and screen size of
the PDA make this a more difficult operation.
�
 Usability: Map IT and ArcPad both use an icon-
based system for most commonly used functions
and thus will be familiar to the majority of users.
The Map IT user interface is generally well set
out although the large number of buttons on the
screen may be daunting for new users. However,
it is designed to be used with a digital pen
without the need to open menus or use a
keyboard, and toolbars can be hidden as
required. The digital pen also allows the user to
write and draw as they would on a conventional
paper map or notebook. ArcPad on the other
hand, due to the reduced screen area compared
with the Tablet PC, has fewer buttons, but
utilizes drop-down menus. Toolbars can be
edited to show those buttons, which are most
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frequently used, and can be hidden when not
needed. Although the ArcPad interface is gen-
erally good, some functions can be difficult to
find, and the installed help files are very limited.

�
 Project setup: This is a crucial stage in any digital

mapping campaign. As a stand-alone GIS
package the advantage of Map IT is that the
entire project set up, management and final map
production is undertaken in a single application.
ArcPad requires that the greater part of the
project set up and management is undertaken in
ArcGIS, with additional customization carried
out using ArcPad Studio. All the required project
files are then transferred to the PDA to run
within ArcPad for data collection. Once mapping
is complete the files are then transferred back to
ArcGIS for display, analysis and map produc-
tion. This is quite a cumbersome process and can
lead to errors during transfer, such as overwriting
newer files with older ones. The full GIS
capability of Map IT also allows the user to
add additional material to a project without
needing to return to base e.g. non-georeferenced
raster images can be georeferenced in the field
and added as a new layer in a project, something
which is not straightforward within ArcPad.

�
 Compatibility: Map IT supports a wide range of

vector and raster formats including: ESRI
shapefile, UNGENERATE, ArcInfo, AutoCad,
DWG/DXF, MapInfo, NTFcadastral, Tiff,
BMP, JPG, GIF, PNG, MrSID and ECW.
ArcPad on the other hand is much more limited
in the file formats it supports. ESRI shapefiles are
the only vector data format that is supported,
while raster files are limited to JPG, MrSID,
BMP and CADRG. File formats that are not
directly supported by ArcPad must be converted
into usable formats by the wide range of tools
available in ArcGIS. This reliance on conversion
within ArcGIS places severe limitations on which
data can be added to an ArcPad project whilst in
the field.

�
 Reliability: During the test both ArcPad and

Map IT performed well, with no crashes of the
software. However, ArcPad has a tendency to
‘‘hang’’ occasionally. This appears to be due
more to the limitations of the memory in the
PDA rather than a problem with the stability of
ArcPad. On such occasions it is necessary to
perform a ‘‘soft’’ reset on the PDA. Although not
an issue directly related to the reliability of the
software, those involved in digital mapping
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should save their data regularly. In the case of
ArcPad running on a PDA, data should ideally
be saved to non-volatile memory so it is
protected in case of power failure. On some
PDA’s (not the Recon) the default folder for the
ArcPad software is not non-volatile. In these
cases, battery failure will lead to loss of the
ArcPad software, which will need to be re-
installed. Another important component when
looking at reliability is the support and backup
package offered by the manufacturer. ArcPad
and the associated suite of Arc products are
produced by ESRI. They provide a wide range of
support services including user forums, discus-
sion groups, software updates and online training
for many of their packages. This provides the
user with a vast resource, although at times it can
prove time consuming to locate the required
information. Map IT on the other hand lies at the
opposite end of the support spectrum. As a new
and small company it is possible that any
problems or questions are likely to be answered
more quickly. In addition the greater likelihood
of direct contact with users may provide an
enhanced environment for software development
and evolution.

7. Conclusions

From a broad general perspective based on the
critical criteria listed in Table 1 both the systems
assessed in this paper performed extremely well and
dispel many of the issues raised by DGM sceptics.
The Recon PDA and Xplore iX104R tablet are well
built, rugged and easy to operate. Map IT and
ArcPad are well designed, generally stable and offer
the user a broad range of mapping tools and
functions. However, for the specific purpose of
outcrop (‘‘green-line’’) mapping, the combination of
iX104R tablet and Map IT was found to be the
most suitable and most capable DGM system of the
two. The iX104 tablet with Map IT software
provides the geoscientist with a mapping experience,
which most closely matches that provided by
traditional paper-based mapping. The ‘‘Easy Note’’
facility and the ability to annotate photographs,
draw sketches and make handwritten notes
which are all georeferenced is not only extremely
useful, but importantly provides the user with a
familiar environment within which they can make
the transition from paper to digital mapping.
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Additionally, the greater processing power and
storage capacity of the tablet allows the user to
store and carry large volumes of supplementary
data in the field, where it can be consulted as
required. The functionality, usability and flexibility
provided by Map IT combined with the processing
and storage capacity of the Tablet PC allows the
iterative process of observation and interpretation
crucial to good geological field mapping to be
followed in DGM methodologies.

Despite the fact that the Recon/ArcPad system
was at times frustratingly slow, and the smaller
screen required much scrolling to see the whole
map, it was still possible to use the system for
outcrop mapping, albeit in a less flexible manner
than when using the tablet. The lightweight and
compact size proved particularly beneficial when
moving on difficult ground, as the unit can be easily
slipped into a pocket or carrying pouch. Therefore,
although the PDA-based system can be used for
outcrop mapping, it is generally more suited to
relatively simple mapping tasks such as sampling
surveys. Where portability is critical (e.g. very
remote areas where equipment must be carried in),
the lightweight and small size of the PDA-based
system may outweigh the limitations mentioned
above.

From a software point of view, although the out-
of-the-box usability of Map IT is superior to that of
ArcPad, by using ArcPad Studio it is possible to
develop fully customized mapping packages de-
signed for specific user groups and tasks. This
provides the user with a highly flexible development
package that possibly makes it more suitable for
large organizations where there are a broad range of
tasks to be undertaken and dedicated IT develop-
ment staff are available.

One critical factor, which may be the greatest
influence on choice for some users is cost. Both the
systems assessed are relatively expensive (Tables 2
and 3). It is possible to use cheaper hardware
options (Table 2), particularly PDA’s, but it should
be remembered that these cheaper options are not
designed nor intended to be used in hostile
environments. The cost of the equipment has to be
carefully weighed against the often much larger cost
of repeating fieldwork due to equipment that has
failed because of the rigors of fieldwork.

Although there is a general trend for consumer
electronics to become progressively cheaper, this
does not necessarily apply to more specialised
equipment. While laptops, PDAs and Tablet PCs
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have all dropped in price over recent years,
ruggedised systems remain expensive. In addition,
upgrades in performance are relatively slow to reach
the market when compared with un-ruggedised off-
the-shelf systems. Nevertheless, developments in
computer technology advance at a rapid pace. What
was considered to be state-of-the-art can quite
quickly become ordinary or obsolete. What was
once very expensive, becomes increasingly less so as
newer models are introduced. Therefore, the in-
formation and conclusions presented here are just a
snapshot in the continuing development of DGM
technology.
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